Christiane Fuchs

INEE ]
Diffusion Processes




Inference for Diffusion Processes






Christiane Fuchs

Inference for
Diffusion Processes

With Applications in Life Sciences

@ Springer



Christiane Fuchs

Institute for Bioinformatics and Systems Biology
Helmbholtz Zentrum Miinchen

Neuherberg

Germany

ISBN 978-3-642-25968-5 ISBN 978-3-642-25969-2 (eBook)
DOI 10.1007/978-3-642-25969-2
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012950004

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)


www.springer.com

To Florian






Foreword

Beginning with Brownian motion and its modifications, diffusion processes and
stochastic differential equations have a long tradition as mathematical models for
stochastic phenomena evolving in continuous time, with applications in diverse
substantive fields such as engineering, finance and life sciences. While many
textbooks, in particular in financial mathematics, include concise and rigorous
introductions to diffusion processes and stochastic calculus, they often provide
only limited information on modern statistical inference and usually neglect the
question of how to adequately approximate original phenomena through a diffusion
process at all. These two issues are, however, of fundamental importance in a
number of applied fields, in particular in modern life sciences: First, the original
processes typically have a large but discrete state space, and approximations through
diffusion processes can be challenging. Second, data are usually observed with
low frequency and often at non-equidistant time points, involve measurement
error etc. This requires modern tools such as simulation-based Bayesian inference.
Motivated through applications in epidemiology and molecular biology, this book
closes the existing gap. For the first time, it provides a unified presentation of the
approximation techniques, previously often developed for special cases only, and
a thorough account of modern statistical inference, including a powerful Bayesian
approach. Together with the two application chapters, this book will be of high value
for theoretical and applied work. For me, it was a pleasure to watch it grow, to be
able to give some advice, to read the final version, and, at last, to see it on my
bookshelf!

Munich, Germany Ludwig Fahrmeir
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Preface

This book originates from my doctoral thesis. One of the first problems of my work
was to describe the spread of an infectious disease by a diffusion process and to
statistically estimate the involved model parameters. At that time, I did not expect
such a seemingly straightforward task to surface so many diverse open problems
to fill an entire book. As a mathematician by training, I knew about stochastic
calculus, but I did not anticipate the troubles of deriving diffusion approximations
and inferring their parameters from real data.

When delving into the diffusion approximation literature, I noticed that there
were several, at first sight, contradicting approaches, some of them formulated in
generality, others being carried out for particular problems. Their appropriateness,
differences and conformities, however, were unclear as well as their extension to
more complex, e.g. multidimensional, processes. Furthermore, parameter estimation
for diffusions is a challenging problem, in particular if the application of interest
involves multi-dimensional processes, few observation times, latent variables and
considerable measurement error. Under these circumstances, probably the only
applicable technique is a popular Bayesian approach which is used in a number
of scientific papers. I was astonished that I could not find any textbook which
comprehensively explained it. Moreover, the method has a well-known but hard-
to-grasp convergence problem, which has not been detailed in any book or review
so far. Since I am convinced that these are subjects of wide-spread interest and
importance, I dedicated to them the major chapter in each of the first two parts of
this book. The third part finally addresses the initial project which triggered the
theoretical questions: to estimate a diffusion model for the spread of diseases.

In contrast to existing literature, this book treats modelling and inference for dif-
fusions under one umbrella. It thus covers both steps that necessarily arise in a real
application. Importance is attached to presenting the methods both comprehensibly
and mathematically well-founded. As such, the book addresses both theoreticians,
like mathematicians and statisticians, as well as practitioners, like bioinformaticians
and biologists. The reader is required to have basic knowledge about deterministic
differential equations, probability theory and statistics. An introduction to stochastic
calculus, in particular to diffusions, is provided in this book.

ix
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Chapter 1
Introduction

Life sciences cover a diverse spectrum of scientific studies of life, ranging from
intracellular processes at molecular level up to the worldwide spread of infectious
diseases in humans. Mathematical models are an indispensable tool for the under-
standing of such complex natural phenomena.

In order to describe the time-continuous evolution of a given system, determin-
istic models are often favoured as they allow comparatively simple simulation and
estimation techniques. Such models, however, do not capture the randomness of the
underlying dynamics and therefore turn out to be inadequate in many applications.
The utilisation of exact individual-based stochastic models, on the other hand,
typically proves to be infeasible in practice when the considered organism involves
large numbers of objects. A natural and powerful compromise is the application
of stochastic differential equations (SDEs) whose solutions are given by diffusion
processes. Hence, diffusions have become an increasingly important tool for the
statistical analysis of real world phenomena.

However, approximation of a given dynamic system is often done heuristically
in the literature, leading to diffusions that do not correctly mirror the true dynamics
of the original process. Furthermore, the statistical inference for diffusions typically
turns out to be demanding in real data situations as described below. Hence, the
statistical estimation of complex diffusion models as applied to real datasets is not
widely spread. These issues are addressed in the present book.

1.1 Aims of This Book

The main objectives of this book are threefold: First of all, given a dynamical
system of interest with the aim to describe its temporal evolution by means of a
diffusion process, one needs to construct this process such that it appropriately
mirrors the characteristics of the considered real phenomenon. In applications in life
sciences, the original process typically concerns whole numbers of objects such as
the numbers of infectious individuals in a population or the numbers of proteins in a

C. Fuchs, Inference for Diffusion Processes: With Applications in Life Sciences, 1
DOI 10.1007/978-3-642-25969-2__1, © Springer-Verlag Berlin Heidelberg 2013



2 1 Introduction

cell nucleus. Since the paths of diffusion processes are almost surely continuous,
a representation in terms of diffusions automatically involves an approximation
of the exact dynamics. The transition from discrete to continuous state space
causes internal fluctuations which appear as a noise term in the characterising
SDEs. These disturbances are small when the system is large. Depending on the
underlying problem, their correct specification may be a challenging task. As
authors typically work through specific examples, there is no universal standard
procedure. One objective of this book is to investigate the systematic derivation
of diffusion approximations with the aim to provide a general framework which
is both mathematically well-founded and attainable for practitioners. Moreover,
according procedures are required also for the case when the underlying system
is characterised by more than one size parameter. This problem is investigated in
this book for the first time as well.

Next, assume that a diffusion model for some problem of interest is given in
parametric form as the solution of an SDE. Provided time-discrete observations of
the underlying dynamics, one often wishes to statistically infer on the model pa-
rameters. In a first step, the present book investigates the state of the art concerning
this objective. As a consequence, maximum likelihood estimation would be the first
choice as it yields consistent and asymptotically efficient estimates. However, the
likelihood function of the time-continuous diffusion process is typically unknown
when the process is observed discretely in time, and hence maximum likelihood
estimation is not an option. There is comprehensive literature on alternative
frequentist methodology concerning statistical inference for diffusions. However,
the application of most such methods becomes problematic either when inter-
observation times are large or non-equidistant, or for multi-dimensional diffusion
processes, or when some components of the state vector are latent or measured with
error. Unfortunately, many datasets in life sciences possess at least one of these
properties. A powerful technique to overcome this problem is to estimate the model
parameters in a Bayesian framework. A well-known approach is based on the idea
to introduce auxiliary data points as additional observations. These are estimated by
application of Markov chain Monte Carlo (MCMC) techniques which alternately
update the auxiliary data and the model parameter. However, there is one notorious
convergence problem caused by a close link between the model parameters and the
quadratic variation of the diffusion path. A practical solution for this problem has
not yet been proven for multi-dimensional diffusion processes. This open question
is answered in this book.

Finally, a third aim of the present work is the application of the above theoretical
investigations to real datasets from life sciences. In particular, the spatial spread of
human influenza and the in vivo binding behaviour of molecules in a cell nucleus
shall be statistically analysed. These are of large interest for life scientists. The
considered datasets comprise several of the above mentioned properties so that the
utilisation of the newly developed Bayesian estimation technique is required.
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1.2 Outline of This Book

In accordance with the just formulated aims, the main chapters of this book are
structured in three parts as illustrated in Table 1.1: Chaps. 25 deal with modelling
especially by means of diffusions, Chaps. 6 and 7 concern the statistical inference
for such models, and Chaps.8 and 9 contain the two just mentioned application
studies, combining the former theoretical contributions.

Chapter 2 introduces the reader to mathematical modelling in life sciences,
with the focus on human epidemiology and molecular biology as two emerging
fields. Typical modelling approaches are explained, where emphasis is put on the
importance of using stochastic as opposed to deterministic models. Examples from
this chapter are recurrently employed throughout the entire book. For instance, the
application studies in Chaps. 8 and 9 originate from the above two research areas.

As a basis for the stochastic analysis of diffusions, which will be carried out in
the remainder of this book, Chap.3 provides a compact introduction to diffusion
processes and their characterising SDEs. The contents of this overview are oriented
towards the needs of this book. The reader who is familiar with stochastic calculus
may skip this chapter and refer to it when required.

Chapter 4 addresses the above mentioned approximation of Markov jump
processes by diffusions. For the first time, it provides a detailed overview of
such techniques in a multi-dimensional context. To that end, established methods
from the literature are supplemented by new formulations and extended to multi-
dimensional diffusion processes where necessary. Moreover, this chapter extends
all approaches to a more advanced framework, where the dimension of a system is
characterised through multiple size parameters rather than a single one.

The theoretical investigations from Chap.4 are illustrated in Chap.5, where
diffusion approximations for distinguished models from epidemiology are derived.
More specifically, this chapter considers a standard model for the spread of
infectious diseases and proposes an extension which allows for host heterogeneity.
The resulting diffusion processes form the basis of Chap. 8.

Table 1.1 Outline of this book

1. Introduction

L. Stochastic modelling 2.  Stochastic modelling in life sciences

3. Stochastic differential equations and diffusions in a nutshell
4. Approximation of Markov jump processes by diffusions
5
6
7

Diffusion models in life sciences
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4 1 Introduction

Statistical inference for discretely-observed diffusion processes is a challenging
task. As indicated before, maximum likelihood estimation is possible only in rare
cases which usually do not match the complex dynamics of processes in life
sciences. Chapter 6 introduces the reader to the theoretical background of parametric
inference for discretely-observed diffusions and reviews frequentist methods from
this highly developing research area. The techniques of this and the following
chapter are of course also applicable to datasets from other scientific areas than
life sciences.

Most techniques that are presented in Chap. 6 struggle when inter-observation
times of the considered phenomenon are large. Datasets in life sciences, however,
may well be of such low-frequency type. For the first time, Chap.7 reviews in
detail MCMC techniques which base on the introduction of missing data such
that the union of missing values and observations forms a high-frequency dataset.
Such techniques are also suitable for irregularly spaced observation intervals,
multivariate diffusions with possibly latent components and for observations that
are subject to measurement error. However, as already described in the aims
of this book, the considered concept suffers from convergence problems which
are due to strong dependence structures between the model parameters and the
quadratic variation of the diffusion path. As a consequence, the MCMC algorithm
experiences arbitrarily slow mixing. Chapter 7 newly formulates a modified tech-
nique for conditioned diffusions on infinite-dimensional state spaces and provides
the mathematical proof that the so-constructed MCMC scheme converges. For
practical usability, the proposed scheme is also formulated in algorithmic form. All
algorithms are implemented in R, which is a freely distributed software available at
http://www.r-project.org. Simulation studies certify moderate computing times and
a sound performance of the proposed scheme.

Finally, with the modelling and estimation tools from Chaps.2-7 at hand, it is
now possible to statistically analyse complex dynamics in life sciences. Applying
the diffusion approximations derived in Chap.5 and the Bayesian estimation
techniques developed in Chaps. 7 and 8 investigates the spread of human influenza,
which is one of the most common and severe diseases worldwide. More precisely,
statistical inference is carried out for a well-known dataset on an influenza outbreak
in a British boarding school and for the spatial spread of influenza in Germany
during the season 2009/10, in which the ‘swine flu’ virus was prevalent. Spatial
mixing of individuals is derived based on commuter data. This chapter provides a
first application of statistical parameter estimation for spatial epidemic models by
utilisation of diffusion approximations.

As a second application, Chap.9 investigates the binding behaviour of the
protein Dnmtl to chromatin. This protein plays a major role in the maintenance of
DNA methylation patterns and is hence of great interest. Suitable data is extracted
by application of a fluorescence microscopy technique called FRAP. Appropriate
kinetic models are derived as diffusion processes by means of the techniques from
Chap. 4, and statistical inference is performed by application of the techniques
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from Chap. 7. This analysis supplies new insight into cell cycle dependent kinetic
properties of Dnmtl. It is the first application of diffusion approximations in the
FRAP literature, where deterministic models are prevalent.

Chapter 10 briefly concludes this book and gives an outlook on projects which
can be based on its contributions. Supplementary material for the main chapters is
provided in Appendices A—C.
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Stochastic Modelling



Chapter 2
Stochastic Modelling in Life Sciences

The dynamics of natural phenomena such as the growth of populations of species,
the spread of epidemics, changes in gene frequencies or the course of chemical reac-
tions are all subject to random variation. Their evolution is not exactly predictable.
However, the application of mathematical models enables insight into such complex
processes.

This chapter motivates and reviews representative application fields from life
sciences and appropriate mathematical models. These applications and models
will recur throughout the entire book. They give rise to the model constructions
in Chaps.3-5 and the investigation and development of estimation procedures in
Chaps. 6 and 7. Moreover, they form the basis for the application studies in Chaps. 8
and 9.

The emphasis of this and the following chapters is on the important role of
chance. In the literature, there is a vast number of works for modelling the mentioned
dynamics where randomness is not taken into account. Such deterministic models
provide a convenient and sometimes also appropriate way to represent a situation
of interest. For comparison purposes, this deterministic approach is also introduced
here. In general, however, deterministic models are not able to capture the natural
stochastic behaviour of a real-world phenomenon. For instance, a deterministic
model for the spread of an infectious disease may predict a major outbreak in a
marginal situation and possibly prove wrong (cf. Sect.2.2). Deterministic models
for the dynamics of chemical reactions typically fail when the number of reactants
is small (e.g. McQuarrie 1967). As another example, Lande et al. (2003) invoke
harvest strategies, say in fishery, which may do harm to small populations of
endangered species when they are developed based on deterministic models. For that
reason, this book particularly focuses on the application of stochastic models. These
account for random fluctuations of the considered processes and assign probabilities
to critical events.

The structure of the present chapter is as follows: Sect. 2.1 introduces the very
general class of compartment models. From such a model, both deterministic and
stochastic processes can be derived. Sections 2.2 and 2.3 provide introductions to
two emerging fields of life sciences, namely to models for the spread of infectious

C. Fuchs, Inference for Diffusion Processes: With Applications in Life Sciences, 9
DOI 10.1007/978-3-642-25969-2_2, © Springer-Verlag Berlin Heidelberg 2013
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diseases and to models for processes in molecular biology, biochemistry and
genetics. Both sections start from a compartmental representation and then consider
three types of models. These are stochastic jump processes, deterministic continuous
processes and stochastic diffusion processes. The first type of process mirrors the
exact dynamics of the compartmental system, whereas the second and third can be
considered as approximations of the first. The development of an exact simulation
algorithm for the jump process in 1976 hence meant a considerable advancement in
the field of statistical modelling. This algorithm is presented in Sect.2.4. In many
situations, however, its application is computationally costly. Hence, numerical
approximation algorithms for the second and third type of process are outlined as
well. Section 2.5 concludes this chapter.

2.1 Compartment Models

In a compartment model, all objects involved in a system of interest are arranged
in a finite number of compartments, i.e. in groups of objects that are defined
through certain specified properties (Jacquez 1972). The compartments are mutually
disjoint, and the assignment of each object to a compartment is unambiguous.
The elements of each compartment are assumed to be homogeneous and well-
mixed. Interaction between different compartments happens through the exchange
of objects which is described by transition equations. Such passages are assigned
with some rate that typically depends on the concentrations of objects from the
distinct compartments. In this book, the considered compartmental systems are
usually closed, i.e. there is no flow of objects to and from the environment.

The classification of objects into different compartments may, for example, be
due to the location of animals or humans in a geographical region, the kinetic
properties of molecules, or the age or physical conditions of individuals that are
susceptible to a disease. Figures 2.1 and 2.2 display two compartment models from
the fields of applications that are considered in Sects. 2.2 and 2.3.

A compartment model is a convenient fundament for a dynamical system one
wishes to represent. From this model, different types of processes can be derived,
all of them standing for the same considered phenomenon. This book will consider

susceptible infection infectious recovery removed
individuals | — | individuals | — | individuals

Fig. 2.1 Compartmental representation of the susceptible—infectious—removed (SIR) model that
will be investigated in Sect.2.2.2. In this model, a population of interest is classified into
susceptible, infectious and removed individuals. Transitions between these three groups are due
to infections and recoveries
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dimerisation
-

NO, N,O,

-
dissociation

Fig. 2.2 Compartmental representation of the dimerisation of nitrogen dioxide. In this model, all
nitrogen dioxide (NO2) and dinitrogen tetroxide (N2O4) molecules in a gas are summarised in
two compartments. Depending on the temperature and pressure, two of the NO2 molecules may
dimerise, yielding one N2O4 molecule. The other way round, an N2 O4 molecule may dissociate
into two NOo molecules

the following three kinds: pure Markov jump process, deterministic processes with
continuous sample paths, and diffusion processes. First examples are shown in the
next two sections.

2.2 Modelling the Spread of Infectious Diseases

Epidemics of infectious diseases have shaped the history of humankind. They have
directly affected economy, politics and demography, the course of wars, social
behaviour and religious beliefs (McNeill 1976; Cunha 2004; Smallman-Raynor and
Cliff 2004; Sherman 2006; Oldstone 2010).

Devastating historic epidemics and pandemics include the Black Death in 1347-
1350 with 25 million deaths in Europe, where there was up to 50% mortality of the
urban population in England and Southern Europe; outbreaks of smallpox, measles
and typhus in Mexico in 1518-1520 with 2—15 million deads out of a population of
20 million; several cholera epidemics in India during the seventeenth century with
more than 20 million deaths; and the Spanish influenza pandemic in 1918-1920 with
estimated numbers of worldwide deaths lying between 25 and 50 million (Dobson
and Carper 1996; Smallman-Raynor and Cliff 2004; Vasold 2008).

Present-day pandemics comprise for instance the acquired immunodeficiency
syndrome (AIDS) caused by the human immunodeficiency virus (HIV) which was
identified in the 1980s. It is assumed that in 2008 there were 2.7 million new
infections, 2 million AIDS-related deaths and 33.4 million people living with the
virus worldwide (UNAIDS 2009). Quite recently, in 2009, an influenza pandemic
spread from Mexico over the whole world within a few months. It possibly affected
between 11 and 21% of the global population (Kelly et al. 2011) and caused more
than 18,000 deaths (WHO 2010). During the early stages of the epidemic, one even
feared much higher mortality. Hence, the spread of diseases is still a serious concern
in both the developed and developing world.

The elimination of infectious disease epidemics is desirable not only from a
humane viewpoint but also regarding economic factors such as manpower and
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public health costs. Even for diseases with relatively mild courses it is generally
favourable to invest in prevention rather than cure. Considerable progress in
understanding the propagation of infectious diseases from a medical point of view
has been achieved by Louis Pasteur (1822-1895) and Robert Koch (1843-1910),
who discovered the cause of infections by microorganisms. Targeted intervention
against the spread of diseases, such as vaccination or isolation, however requires an
overall comprehension of the typically complex dynamics of an epidemic. This is
achieved by application of mathematical modelling (Brauer 2009).

The objectives of this section are the following: First, to introduce basic models
for the spread of infectious diseases, and second, to motivate the utilisation of
stochastic rather than deterministic models. This presentation is oriented towards
the needs of subsequent chapters. For further information, the reader is referred to
Bailey (1975), Anderson (1982), Becker (1989), Anderson and May (1991), Daley
and Gani (1999), Andersson and Britton (2000), Diekmann and Heesterbeek (2000)
and Keeling and Rohani (2008).

2.2.1 History of Epidemic Modelling

Detailed statistics on disease counts go back to John Graunt (1620-1674) who
recorded weekly death counts in London together with their causes. The first mathe-
matical model for the spread of infectious diseases, however, is generally accredited
to Daniel Bernoulli (1700-1782), but epidemic modelling has not received much
attention until the beginning of the twentieth century. Early works include En’ko
(1889), Hamer (1906), Ross (1915) and Kermack and McKendrick (1927). Detailed
historical accounts on the development of mathematical epidemiology can be found
in Bailey (1975), Dietz (1967), Anderson and May (1991) and Daley and Gani
(1999).

In the early stages of epidemic modelling, the spread of diseases was generally
formulated as a deterministic process. According to Bailey (1975), the first author
who included a random component in an epidemic model was McKendrick (1926),
but that particular approach was only continued 20 years later. Instead, the class
of chain binomial models, independently introduced by Lowell Reed and Wade
Hampton Frost (see Abbey 1952 or Costa Maia 1952) and Greenwood (1931),
established itself. A model of this type considers the evolution of an epidemic
at discrete time points. To that end, the number of susceptible and infectious
individuals in a population is assumed to be binomially distributed, conditioned
on the state of the epidemic at the previous time point. An overview about chain
binomial models is given in Becker (1989) and Daley and Gani (1999).

In subsequent years, both stochastic and deterministic models were refined and
their mathematical analysis was extended; see e.g. Isham (2004) for a review. The
class of susceptible—infective—removed (SIR) models, which is introduced in the
next section, emerged as the most prominent description of the spread of infectious
disease epidemics.
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While the comprehension of disease dynamics and the development of mathe-
matical tools progresses, the general framework of modelling the spread of diseases
changes as well: First of all, the increased mobility of humans raises the risk
of fast spreading pandemics. On the other hand, detailed medical knowledge of
infection processes and improved hygienic conditions in many countries help
prevent transmission of diseases. Modern epidemiological models take into account
travel, social behaviour, the effect of intervention such as vaccination or isolation,
and many other aspects.

The following section introduces a standard model from epidemiology which
serves as the basis for many extensions as indicated in Sect. 2.2.3 and implemented
in Chap.5. This section concentrates on infectious diseases for humans. The
considered diseases are assumed to be directly transmittable rather than vector-
borne, i.e. transmitted for example by insects.

2.2.2 SIR Model

An SIR model (Kermack and McKendrick 1927; Bartlett 1949) classifies a popula-
tion of fixed size NN into susceptible (S), infectious (I) and removed (R) individuals.
Transitions between these classes are

®O+®-520 ad O ®. .1

The first transition means that each contact between a susceptible and an
infectious individual will cause an infection with rate &« € R, resulting in two
infectious individuals. The second transition denotes that each of these infectious
individuals will be removed with rate 5 € R4 due to being recovered and immune,
or quarantined, or dead. The parameter « is the contact rate of an infectious
individual for spreading the disease, and /3 is the reciprocal average infectious
period. Some authors also refer to « and 3 as the infection rate and removal rate,
respectively.

Modifications of the SIR model e.g. disregard recovery (SI), allow a return to the
susceptible status (SIS, SIRS), or incorporate a latent/exposed period (SLIR/SEIR).
For simplicity, we assume in this section that an individual is infectious as
soon as it is infected. The terms infected, infectious and infective are considered
interchangeable.

The SIR model is conveniently described as a time-homogeneous Markov
process. Unless otherwise stated, we assume the population closed during the time
of consideration, ignoring births, non-related deaths, and migration. Furthermore,
the population is presumed to mix homogeneously.

Different constructions of the SIR model can be found in the literature, see for
example Andersson and Britton (2000) for an overview. The following paragraphs
present three of the most common descriptions.
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Representation as Pure Markov Jump Process

Denote by S and I the absolute numbers of susceptible and infectious individuals in
the population under consideration. Due to the fixed population size N, the current
state of an SIR process is completely described by the tuple (S, I)’, which is an
element of the state space D = {(S, 1)’ € [0, N> N IN3| S + I < N}; the number
of removed individuals can be calculated as R = N — S — I.

Hence, let (S, I)’ € D be the state of the process at time ¢ € Rg. Assuming that
at most one event can occur within a small time interval of length At, there are three
possibilities for the state of the process at time ¢ + At:

1. (S —1,I+ 1) in case one infection occurs,
2. (S,I — 1) in case one recovery occurs,
3. (S, 1) in case nothing happens.

These transitions come up with probabilities
p1 = aSI/N At+o(At), ps =PI At+o(At) and p3=1—p1—p2, (2.2)

respectively, where o(At)/At — 0 as At — 0. See Sect. 5.1.2 for the derivation
of (2.2). For (S,1)" & ([0, N—1] x [1, N—1]) N D, the above target states may not
be an element of D. In those cases, however, the respective transition probabilities
leading to them are o( At). For an initial condition (Sy, Iy)" € D, the process can
therefore never leave the admissible state space.

A Markov process with the above described dynamics is also termed the general
stochastic epidemic. Section 2.4.1 describes how an according Markov chain can
exactly be simulated. Figure 2.3a shows a realisation of such a Markov chain.

A notable insight into the dynamics of the general stochastic epidemic is the
following stochastic threshold result: Let (Sp, Iy)’ € D denote the initial state of
the process and define Ry = «/3. Then, in large populations, a major outbreak will
occur with probability tending to

N L

1 (mln{l, 5 Ro })
as N and Sy = N — I grow to infinity for fixed Iy (Whittle 1955; Williams 1971;
Ball 1983). This probability is positive if and only if the relative removal rate R, Lis
smaller than the initial fraction of susceptibles Sy/N. In this formulation, the term
major outbreak means that the fraction S/N of susceptibles will fall below R *
roughly as far as it was above this threshold before, provided that the difference
between So/N and R ! is not too large. For more details, see for example Daley
and Gani (1999, Chap. 3.4). R is called the basic reproductive ratio and interpreted
as the average number of infections caused by an infectious individual during
its entire infectious period, provided that the infective enters a totally susceptible
population.
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Fig. 2.3 Illustration of SIR model for parameters o« = 0.5, 5 = 0.25 and population size
N = 100. (a) Temporal evolution of numbers of susceptible, infective and removed individuals in
the stochastic SIR model with transition probabilities (2.2) for initial value (So, Io)" = (95,5)’.
The graphs have been simulated by application of Gillespie’s Algorithm, i.e. Algorithm 2.1 on
p. 26. (b) Temporal evolution of fractions of susceptible, infective and removed individuals in the
standard deterministic SIR model (2.3) for initial value (s, %0)’ = (0.95,0.05)’. The graphs have
been obtained by application of the standard Euler scheme with step length 0.025. The vertical
line marks the instant at which the fraction of susceptibles falls below Ry ' = 8/a = 0.5.
The fraction of infectives reaches its maximum at this point. (¢) Temporal evolution of fractions
of susceptible, infective and removed individuals in the SIR diffusion model (2.4) for initial
value (so,%0)’ = (0.95,0.05)’. The graphs have been obtained by application of the Euler-
Maruyama scheme from Sect. 6.3.2 with step length 0.025

Representation Through a System of Ordinary Differential Equations

Another possibility to describe the infection dynamics in the SIR model is a
deterministic representation via the set of ordinary differential equations (ODEjs)

ds/dt = —asi, di/dt = asi— i, (2.3)

where s = S/N and i = I/N denote the fractions of susceptible and infectious
individuals. In this description, the state space C = {(s,i)’ € [0,1]*NR3 | s+i < 1}
is considered continuous, which is an eligible assumption for large populations. The
remaining fraction r = R/N can again be obtained as r = 1—s—i. The ODEs (2.3)
are subject to an initial condition (sg, i)’ € C. See Sect.5.1.4 for their formal
derivation.

Figure 2.3b shows the typical evolution of an epidemic following the determin-
istic description (2.3). While recovery follows a linear process, infections occur at
high rate only when both the fractions of susceptibles and infectives are sufficiently
large. As the ODEs are not explicitly solvable, the trajectories have been obtained
numerically by application of the standard Euler scheme (cf. Sect. 2.4.2). Figure 2.4
displays the course of the deterministic SIR process for different values of « and .
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Fig. 2.4 Fractions of susceptibles (dashed) and infectives (solid lines) in an SIR epidemic
following the deterministic model (2.3) for different values of o and 3 and initial value (so,%0)’
equal to (0.99, 0.01)’. The graphs have been obtained by application of the standard Euler scheme
with step length 0.025 for solving the ODE system. In both graphics, the parameters correspond
toRo = /B € {1.5,2.0,2.5}

The first equation in (2.3) implies that the fraction of susceptibles is strictly
decreasing as long as both s and ¢ are nonzero. Solving di/dt < Oleadsto s < 8/a.
That means, when R l.=p /v is greater than the initial fraction of susceptibles s,
no epidemic will develop. Otherwise, the epidemic will rise first but fall off as soon
as the fraction s drops below this threshold. This is the famous threshold theorem
by Kermack and McKendrick (1927). An obvious strategy to eradicate an epidemic
is hence to vaccinate the population until the latter requirement is met. The vertical
line in Fig. 2.3b indicates the first time point at which the fraction of susceptibles
falls below Ry ! Apparently, this mark agrees with the time point at which the
epidemic reaches its maximum with respect to the number of infected individuals.

Representation Through a System of Stochastic Differential Equations

A third variant to express the SIR dynamics (2.1) as a mathematical process is by a
stochastic differential equation (SDE)

(d5,> = ( ot ) dt + —— ( Vasi 0 ) (dBl>. 2.4)
di asi — Ji \/N —Vasi V/PBi) \dBa

In this equation, s and ¢ denote again the fractions of susceptible and infectious
individuals in the population. The right hand side of the differential equation (2.4)
consists of a deterministic and a stochastic component, that is the first and the
second summand, respectively. B; and By are independent Brownian motions, rep-

resenting stochasticity in disease transmission and recovery. As for the multivariate
ODE (2.3), an appropriate initial condition has to be specified for the SDE (2.4).
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Fig. 2.5 Different courses of stochastic SIR model with transition probabilities (2.2). The
simulations base on parameters « = 0.5, 8 = 0.25, population size N = 100 and initial
value (So, Io)" = (95, 5)’. The graphs have been obtained by application of Gillespie’s Algorithm
(Algorithm 2.1)

Stochastic differential equations and their solutions, which are typically diffusion
processes, will be formally introduced in Chap. 3. Diffusion processes possess
extremely wiggly but almost surely continuous trajectories. Figure 2.3c displays
the course of an SIR epidemic as described by Eq. (2.4).

Concluding Remarks

This section introduced three different representations of the standard SIR model.
There naturally arises the question which type of process is the most appropriate
one. The pure Markov jump process, considered first, mirrors the exact dynamics
following the transitions (2.1). In many cases, however, this type of process is
rather inconvenient for the purpose of simulation and statistical inference. The
ODE representation, considered next, has the advantage of a non-individual-based
view point. It facilitates interpretation and mathematical analysis, but unfortunately
ignores possible variation by chance. In particular, the ODEs (2.3) do not even
take into account the population size N and hence unrealistically predict identical
fractions of infectives and susceptibles in small and large populations. Finally,
the representation of the SIR model in terms of a multivariate SDE consists of
both a deterministic and a stochastic component and this way compromises on
the former two processes. For this reason, the utilisation of SDEs is favourable in
many contexts. Their statistical analysis is the subject of this book. A more elaborate
discussion concerning the three above representations is the topic of Chap. 4.

In order to further ellucidate the impact of random events in the SIR model,
recall the above deterministic and stochastic threshold results. Both the stochastic
model with transition probabilities (2.2) and the deterministic model following
the ODEs (2.3) possess the same threshold R ! = s,. The interpretation of this
threshold, however, differs substantially in these two models: In the deterministic
case, a major epidemic will always occur whenever R ! < sp. In the stochastic
case, a major outbreak does not necessarily happen if R ! < 5. The probability
for this event lies strictly between zero and one. Figure 2.5 illustrates that different
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realisations of the course of an epidemic may clearly differ in a stochastic
framework. A deterministic simulation for the same model parameters is displayed
in Fig. 2.3b. A further investigation of the SDE (2.4) requires its formal definition,
which is the subject of Chap. 3. An illustration of this model is for example given in
Sect.5.1.5.

Epidemics will usually terminate due to a lack of infectives, not due to a lack of
susceptibles, i.e. at the end of an epidemic outbreak not all individuals will typically
have suffered from the disease. According to the above thresholds, major epidemics
occur or have positive probability, respectively, when Ry < s. Suppose that this
is the case. Then, there are three general measures to weaken the strength of an
epidemic: First, to reduce the number of susceptibles, typically by vaccination, i.e.
to decrease the fraction s. Second, to reduce the number of potentially infectious
contacts, possibly by closing schools or simply invoking caution, i.e. to decrease a.
Third, to reduce the time until an infectious individuals goes over to the removed
class, for example by isolation, i.e. to reduce the average infectious period 371.
Each of these three strategies aims at lowering the difference between Ry = «/
and s, at best accomplishing Ry > s. The fact that an epidemic does not start
or fades out after sufficiently many individuals have left the susceptible state is
known as herd immunity. The subject of herd immunity, including many examples,
is discussed by Anderson and May (1985) and Fine (1993), corresponding control
strategies by Morton and Wickwire (1974).

2.2.3 Model Extensions

So far, the SIR model considered in the previous section is fairly simplistic,
assuming a homogeneously mixing population, homogeneity of individuals and a
time-homogeneous course of an epidemic. In most contexts, some modifications
are necessary in order to adapt the mathematical model to a real life situation in
which an epidemic develops. Some of these aspects are outlined in the following.

First of all, one very often experiences heterogeneity in contacts among the
population. In those cases, individuals typically mix homogeneously in certain
subgroups but not with respect to the entire population. It is then meaningful to
incorporate patterns into the model such as the age structure of the population
e.g. for childhood diseases, a risk structure e.g. for sexually transmitted infections,
a geographical structure like an assignment of individuals to different cities or
countries, or social structures such as households, schools or circles of friends.

Moreover, there is typically heterogeneity among individuals in the population.
For example, susceptible persons may differ in their degree of susceptibility,
such as children or elderly people that possibly have a weaker immune system,
or individuals that have acquired partial immunity to a disease due to previous
epidemics.

In some cases, it is also appropriate to extend an epidemic model such that
it accounts for time-varying background conditions. For example, the weather
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and temperature may well have an effect on the susceptibility of individuals.
Furthermore, there may be changes in social behaviour, either independently or
dependently on the course of an ongoing epidemic, leading to a variation of
contact rates. When observing the spread of a disease over a long period of time,
demographic changes such as births and non-related deaths may be included in the
model. Other models consider endemic components, i.e. the sustained presence of a
certain number of infectious cases in the population, or the presence of carriers that
are apparently healthy but infective.

Ample examples and references for the above model extensions are given
by Isham (2004) and Keeling and Rohani (2008). In order to mention just a few
of them, multipopulation epidemics are for example investigated by Rushton and
Mautner (1955), Ball (1986), Sattenspiel (1987), Sattenspiel and Dietz (1995)
and Ball et al. (1997). Such models can often be applied to any kind of contact
heterogeneity but are in most cases described for the division of a population
into several communities in distinct geographical areas. Chapter 5 in this book
introduces a multitype SIR model for arbitrary contact heterogeneities as well.
Concerning the remaining model modifications mentioned above, Hethcote (2000)
takes into account the age of individuals, and Hethcote (1994) gives many references
for models which take into account varying population sizes. Neal (2007) analyses
an epidemic model where individuals differ with respect to both their susceptibility
and infectivity. Ireland et al. (2007) consider seasonality in birth-rates of hosts. Riley
(2007) reviews some recent approaches for spatial modelling. Finally, Lloyd-Smith
et al. (2005) and Galvani and May (2005) investigate the impact of the presence of
superspreaders, that are individuals that communicate a disease in a substantially
greater extent than other individuals.

Appropriate modifications of the basic SIR model improve the compatibility
between the model assumptions and reality and hence increase the applicability of
the model. On the other hand, each extension automatically requires additional in-
formation such as community sizes or contact patterns between groups. One should
hence balance carefully between complex and oversimplistic models. Stochastic
models typically get along with fewer details as minor aspects can be covered by
random fluctuations. Chapters 5 and 8 in this book derive and statistically infer on a
probabilistic multitype model for the spread of an infectious disease.

2.3 Modelling Processes in Molecular Biology,
Biochemistry and Genetics

Understanding the mechanisms of heredity and variation of living organisms,
senescence and the emergence of diseases such as cancer has fascinated mankind
within living memory. Nowadays one knows that these phenomena are based
on chemical processes in living organisms and the structures and functions of
living cells.
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This section briefly considers mathematical modelling in the overlapping areas of
molecular biology, biochemistry and genetics. These fields comprise an enormous
variety of different applications and models, the complete review of which would
be far beyond the scope of this book. Hence, this section exemplarily addresses
one specific branch of the above research areas: That is, applications which utilise
the framework of chemical reactions for the modelling of selected key processes.
This section hence starts with historical background information and a mathematical
review on that subject in Sects.2.3.1 and 2.3.2, followed by an outline of cross
connections to other disciplines in Sect. 2.3.3.

2.3.1 History of Chemical Reaction Modelling

The first landmark in the development of chemical reaction modelling was set in
1850 by Ludwig Wilhelmy, who empirically derived a mathematical expression for
the progress of the inversion of cane sugar in the presence of acids (McQuarrie
1967; Arnaut et al. 2007). In several articles published between 1864 and 1879, Cato
Maximilian Goldberg and Peter Waage proposed the law of mass action, which says
that the hazard of an elementary reaction is proportional to the product of the con-
centrations of all reactants; cf. Sect. 2.3.2 for details. Important further contributions
to the understanding of the order and temperature dependence of chemical reactions
were made between 1865 and 1889 by Augustus Harcourt, William Esson, Jacobus
Henricus van’t Hoff, Wilhelm Ostwald and Svante Arrhenius (Laidler 1993). Until
1940, many mathematical models were formulated which described the mechanism
of a chemical reaction in a deterministic way. According to McQuarrie (1967),
Kramers (1940) was the first author who applied the theory of stochastic processes
to chemical reactions models.

Nowadays, detailed knowledge about molecular structures and mechanisms is
available, in addition to sophisticated mathematical and statistical modelling tools.
This enables the description and analysis of complex chemical networks. A detailed
historical review on chemical kinetics modelling is provided by Arnaut et al. (2007).
McQuarrie (1967) considers this subject from a statistician’s point of view.

2.3.2 Chemical Reaction Kinetics

Chemical reactions are typically specified by reaction equations of the form

a1+ ... +aAp — b1B1+ ...+ b B;. 2.5)
This equation describes a reaction in which k different reactants Ay, ..., Ay are
transformed into [ distinct products By, ..., B;. The numbers a;, i = 1,..., k, and

bj, 3 = 1,...,1, are the stoichiometries of the reaction and denote the numbers of
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reactants A; and products B; involved. They are assumed to be natural numbers
with greatest common divisor equal to one. In this chapter, equations like (2.5)
are declared to represent elementary reactions, i.e. reactions that do not consist of
several intermediate steps. Equation (2.1) on p. 13 was of type (2.5) as well.

As in the context of modelling the spread of infectious diseases in the previous
section, there are various approaches to mathematically describe the dynamics of a
process in which reactions such as (2.5) occur. In what follows, three possibilities
are briefly introduced in the same order as for the SIR model in Sect.2.2.2. All
representations have in common that they assume the underlying system well-stirred
and the process to be Markovian and time-homogeneous. In particular, external
parameters such as temperature and pressure are presumed to be constant.

Representation as Pure Markov Jump Process
The sets of reactants {A1, ..., A} and products {B1, ..., B;} are typically non-

disjoint subsets of a collection {C1,...,C,,} of particles that are present in the
considered system. The reaction equation (2.5) can hence be rewritten as

0101++Cm0m —>&101—|—+5m0m, (26)
where
o ifC; = Ay b; ifC; =B,
= a; ifC j and & = ;i C J
0 ifC; &{A1,..., A} 0 ifC; ¢{B,...,B}.
Fori € {1,...,m}, let X; denote the number of particles C; in the system and
define (X71,...,X,,)" as the state variable of a stochastic process describing the

system dynamics. The chemical reaction (2.6) then causes a state change

X1 X1 —(c1—¢1)
S [ : . @.7)

In real applications, one typically has several chemical reactions such as (2.6),
each causing a transition like (2.7). Every reaction is associated with a reaction rate
indicating the hazard with which the specific reaction is going to occur within the
next infinitesimal time interval. These rates are assumed to depend on the left hand
side of (2.6) only. Wilkinson (2006) exemplarily states the following reactions and
associated reaction rates, where the current state of the process is (X1, ..., X;n)":

Ci; — &1C1+ ... + ¢ Cy, (first-order reaction) with rate k1 X; (2.8)
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Ci+C;— ¢1Ci1+ ...+ ¢, C,, (second-order reaction) with rate ko X; X; (2.9)

2C; — &1C1+ ... + ¢, Cyy, (second-order reaction) with rate k3 X;(X;—1)/2.
(2.10)

In the second equation, one requires @ # j. The variables ki, ko, ks € R, are
called rate constants. They are usually unknown and hence the subject of statistical
inference based on available experimental data. The remaining parts of the reaction
rates result from combinatorial considerations, counting the number of possible
collisions between the reactants, and the fact that the hazard of two specific particles
colliding is constant (Gillespie 1992).

As a consequence of the above specified reaction rates, the probability that,
for example, reaction (2.8) will occur within a time interval of length At, pro-
vided that the current number of particles C; is X;, equals k1 X; At + o(At),
where o(At)/At — 0 as At — 0. Without any other reactions taking place, the
expected time until the occurrence of this reaction is exponentially distributed with
mean k1 X;.

Representation Through a System of Ordinary Differential Equations

A different possibility to describe the state of a system which is subject to elemen-
tary chemical reactions of type (2.6) is via the rates of change of the concentrations
of all reaction participants. To that end, consider the concentrations x1, . .., Z,, of
the particles X1, ..., X,,. These concentrations are considered continuous rather
than discrete quantities. The chemical reaction (2.6) induces a change of the current
state (z1,...,%m,)" which is typically described by a set of ordinary differential
equations (ODEs): For allt = 1,...,m, one has

da; /dt = k(¢ — ¢;) a7t - ... alm
for some positive (stochastic) rate constant k. This equation results from the law
of mass action, which was already mentioned in Sect.2.3.1. The sum of exponents
c1 + ...+ ¢y, is called the order of the reaction (McQuarrie 1967). The right hand
side of the ODE is positive if ¢; < ¢, i.e. if the chemical reaction described by (2.6)
increases the amount of particles X; in the system. It is negative or equal to zero if
the reaction decreases the number X; or leaves it unaltered, respectively. If there is
more than one possible reaction, each reaction is assigned a different rate constant,
and the ODEs resulting from each reaction equation are added in order to arrive at
a description for the whole reaction dynamics. For example, consider the following
set of coupled reactions for m = 2, which is a special case of Egs. (2.8)—(2.10):

o, — Ve + &V, (2.11)

CL+Cy — P 0y + &P oy (2.12)

20, — &V ¢y + &Y e, (2.13)
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For these reactions, one obtains the ODEs
day/dt =k (7= 1) w4+ ko (67— 1) wrwe + Recl¥a3 214)
dwa/dt = e a1 + ke (5§2>— 1) w122 + 3 (&§3> _ 2) 2 (215

for appropriate rate constants k1, ko, k3 > 0. Additionally, a suitable initial state of
the process needs to be specified. The constants k1, ks, ks in Egs. (2.8)—(2.10) and
the constants k1, kg, k3 in (2.14)—(2.15) depend on the units of X1, X and z1, xo,
respectively, and are not necessarily the same. See Wilkinson (2006, Chap. 6.6)
for the conversion from k; to k; in case the concentrations are measured in moles
per litre.

Representation Through a System of Stochastic Differential Equations

Finally, a third way to represent the evolution of a system which is subject to
chemical reactions utilises stochastic differential equations (SDEs). In case of the
reactions (2.11)—(2.13), the multi-dimensional SDE reads

. (A1 _ o (52 1. 5(3) .2

<d:c1> _ k1 (Cl 1) Ttk (Cl 1) T122+ksC; 22 s (011 012) <dB1>
dz2 ]_615;1)5614-]_62 (5&2)—1) CC1£CQ-|-]_€3 (5&3) — 2) m% 021 022 dB2
where 011, 012, 021 and o9 are functions of the state variables, rate constants and
stoichiometries not explicitly given here. The first summand on the right hand side
represents the deterministic component of the process and agrees with Egs. (2.14)
and (2.15). The second summand stands for the probabilistic component with B
and Bs being two independent Brownian motion processes. SDEs and Brownian
motion will formally be defined in Chap. 3.

2.3.3 Reaction Kinetics in the Biological Sciences

Reaction equations and their associated mathematical theory are convenient tools
also in the biological sciences. They are particularly used to describe the natural
laws which underlie the functioning of cells. This section gives some examples.

Chemical work can be performed by cells only if there is enough energy
available. Such energy is gained through cellular catabolism, which is a mechanism
consisting of a series of enzymatic reactions like

enzyme + substrate <+— complex — enzyme + product,
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where the enzyme acts as a catalyst (Keener and Sneyd 1989). Double-sided
arrows mean that the reaction can take place in both directions. Kinetic models for
metabolic systems are, for example, developed by Demin et al. (2005).

Within each cell, there are several thousand types of interacting proteins.
Depending on its environment, a cell determines the required amount of each protein
by means of transcription networks (Alon 2007). Transcription is one out of several
regulatory mechanisms in genetic networks and can be described by a set of coupled
elementary reactions (Wilkinson 2006). At a less detailed level, transcription and
other key processes can be assembled to construct genetic networks. For example,
the following components of a prokaryotic auto-regulatory network are summarised
by Wilkinson (2006):

g — g+ (transcription)
g+P +— g-P (repression)
r — r+P (translation)
2P —> Py (dimerisation)
r — 1] (mRNA degradation)
P — ) (protein degradation).

In these equations, P stands for a protein, P for the compound of two of these
proteins, g for a gene and r for a transcript of g. The empty set ) indicates that the
product of a reaction is not part of the model, and a dot represents the compound of
two components.

The close connection between models for chemical reactions and genetic
mechanisms is hardly surprising as genetics is based on the chemistry of nucleid
acids. There are, however, also cases of compartmental systems in cellular biology
where reaction equations represent transitions other than chemical reactions. In the
application in Chap.9, for example, the location of a diffusing protein between
a bleached and an unbleached part of the cell nucleus is observed. This can be

written as
Xbleached Xunbleached

A molecule that undergoes this transition does not change any of its chemical
or kinetic properties but only its location, so the compartments reflect the spatial
dimension of the problem here.

Plenty of further applications are, for example, presented in Jacquez (1972) and
McQuarrie (1967). Ehrenberg et al. (2003) give a brief overview about current
research questions in systems biology. For general reviews on mathematical models
in biology, see Goel and Richter-Dyn (1974), Renshaw (1991), Allen (2003) or
Lande et al. (2003).

Though representing entirely different natural phenomena, the above mentioned
applications have in common that they are intrinsically stochastic. A number of
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papers is devoted to the importance of the utilisation of probabilistic instead of
deterministic models in systems biology, biochemistry and genetics, see for example
Kimura (1964), Zheng and Ross (1991), Arkin et al. (1998), Sveiczer et al. (2001),
Rao et al. (2002), Bahcall (2005), Tian et al. (2007) and Boys et al. (2008). In
agreement with this point of view, the present book motivates, constructs and
statistically infers on stochastic models from life sciences.

2.4 Algorithms for Simulation

In Sects.2.2 and 2.3, different kinds of processes were considered to represent
the dynamics of different phenomena in life sciences. For the simulation of
these processes, one requires algorithms for the exact or approximate generation
of according sample paths. Such algorithms have already been applied for the
generation of Figs. 2.3-2.5.

2.4.1 Simulation of Continuous-Time Markov Jump Processes

Continuous-time pure Markov jump processes can always exactly be simulated. An
according algorithm is presented in what follows.

Consider a system consisting of n different types of objects such as molecules
in a fluid, predator and prey in a specified region or susceptibles and infectives in
a population. Assume that the time-continuous evolution of these objects can be
described by a time-homogeneous stochastic Markov process with state variable
X(t) = (X1(t),..., X,(t)) € Z™, where X;(t) is the number of type 7 objects
at time ¢ € R.. Suppose that there are m possible events k € {1,...,m} like
chemical reactions or interactions within a population, each causing a change
Ay, € Z"\ {0} in the state variable. Let A, = fi,(X) denote the hazard for event k,
where fi is an appropriate function depending on the state X. That means, the
probability that a type k event will occur within the next time interval of length At
conditioned on the current state X is A\ At + o( At), where o(At)/At — 0
as At — 0. The objective is to exactly simulate realisations of the considered
process, that means to successively draw pairs (7, k) € R4 x {1,...,m}, where
T is the waiting time until the occurrence of the next event, and k is the type of
event happening at that time.

Denote by p(7, k) the joint probability density function of 7 and k. Under the
assumption that only one event can happen at the same time, Gillespie (1976)
shows that

p(7, k) = A exp —TZA.,- = A\pexp(=A7) forr € Ry and k € {1,...,m},

Jj=1
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where \ = Z;n:l A;. This joint density can be expressed as p(7, k) = p(7)p(k|T),
where ‘

p(r) = ZP(T, k) = Nexp(—AT1), ie. 7 ~Exp()),
k=1
and
_p(rk) A
p(klT) = =05 =3 (2.16)

are the density of 7 and the conditional probability function of k, respectively.

This leads to an exact and efficient method to obtain sample trajectories of the
considered process on a time interval [tmin, tmax]. The procedure has been called
stochastic simulation algorithm (SSA) by its originator, but is usually known as
Gillespie’s algorithm:

Algorithm 2.1 (Gillespie’s Algorithm, Gillespie 1976).

1. Sett = tyin and initialise X (t).
2. While t < tmax:

i. Calculate )i, for all k and their sum ). Terminate if the system has reached
an absorbing state, i.e. A = 0.
ii. Draw T ~ Exp(A). Set 7% = min{7, tymax — t}.
iii. Draw k from (2.16).
iv. Set X (s)=X(t)foralls € (t,t+7*)and X (t+7*) =X (t)+Ap1(T* =7).
v. Sett =t+T.

Estimates of the average or the variation of the sample paths can be obtained
by respective Monte Carlo statistics. For further details and experimental results,
see Gillespie (1976, 1977). Extensions, later elaborations and improvements with
respect to computing time are contained in Gillespie (2007). Manninen et al. (2006)
provide ample references for different implementations of the Gillespie algorithm,
such as the next reaction method by Gibson and Bruck (2000), and alternative
approaches, for example the StochSim algorithm by Le Novere and Shimizu (2001).
Another good review is Wilkinson (2006, Chap. 8).

2.4.2 Simulation of Solutions of ODEs and SDEs

When a system consists of a large number of objects, the just described simulation
of a pure Markov jump process becomes expensive in terms of computing time.
In contrast, the most convenient process with respect to its simulation is the
deterministic process described by a set of ODEs, because this process has no
random component. If there is an analytically explicit solution of the ODEs
available, one can simply calculate the according multivariate sample path without
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any approximation error. Otherwise, numerical schemes such as the Euler scheme
can be applied to obtain approximate trajectories. Such algorithms can be found in
any standard textbook on numerical mathematics.

Similarly, a stochastic process described by a set of SDEs can exactly be
simulated if an explicit solution for the differential equations is known. Otherwise,
numerical approximation schemes are utilised. The consideration of respective
procedures is postponed to Sect.3.3 in the next chapter, because this subject
requires a preliminary introduction to stochastic calculus. The numerical ap-
proximation of a solution of an ODE arises as a special case of the algorithm
for an SDE.

2.5 Conclusion

Assessment of key mechanisms in life sciences cannot be imagined without the
application of mathematical models. Moreover, real situations can particularly
be rendered by the consideration of random events. This chapter provided an
introduction to established models in life sciences, starting with the general
class of compartment models in Sect.2.1 and then proceeding to applications in
mathematical epidemiology and biology in Sects.2.2 and 2.3. To that end, three
types of processes were considered, namely stochastic jump processes, deterministic
continuous processes and stochastic diffusion processes, the simulation of which
is the subject of Sect.2.4. The latter type of process emerges as a convenient
compromise between the former two, and hence this book focuses on diffusion
processes.

However, diffusions have not been defined formally in this book yet. For that
reason, Chap.3 introduces the theory of stochastic calculus to an extent which
is oriented towards the needs of subsequent chapters. Chapter 4 discusses the
application of the three above process classes and considers the derivation of
diffusion processes from the compartmental description of some phenomenon. This
methodology is applied in Chap. 5, where a multitype SIR model for heterogeneous
contact patterns is developed.

Until that point, this book is mainly concerned with the construction of models,
which enables the simulation of a considered mechanism for given sets of model
parameters. In practice, however, such parameters are unknown and hence to be
estimated statistically based on available observations. Therefore, Chaps. 6 and 7
consider the important subject of statistical inference for diffusion processes.

The methodology of all preceding parts is applied in Chaps.8 and 9 on the
example of modelling the spread of influenza and the binding behaviour of
molecules, respectively. These chapters also point out challenges arising from
typical data situations such as partial observations or measurement errors.
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Chapter 3
Stochastic Differential Equations and Diffusions
in a Nutshell

Stochastic differential equations are a powerful and natural tool for the modelling
of complex systems that change roughly in continuous time. Application areas
include econometrics and finance (Robinson 1959; Black and Scholes 1973; Merton
1976; Cox et al. 1985; Bibby and Sgrensen 2001; Elerian et al. 2001; Eraker 2001;
Chiarella et al. 2009), physics (van Kampen 1965, 1981; Ramshaw 1985; Tuckwell
1987; Seifert 2008), biology (Leung 1985; Elf and Ehrenberg 2003; Sjoberg et al.
2009), systems biology (Golightly and Wilkinson 2005, 2006, 2008), medicine
(Walsh 1981; Fogelson 1984; Capasso and Morale 2009), epidemiology (Barbour
1974; Clancy and French 2001; Hufnagel et al. 2004; Chen and Bokka 2005;
Alonso et al. 2007), population biology (Ferm et al. 2008), genetics (Kimura 1964;
Fearnhead 2006; Tian et al. 2007), social sciences (Cobb 1981; de la Lama et al.
2006), geostatistics (Duan et al. 2009) and traffic control (McNeil 1973).

This chapter provides a short introduction to stochastic differential equations and
their solutions, which under regularity conditions agree with the class of diffusion
processes. The contents of this primer are selected according to the needs of
the remaining parts of this book; it by no means claims to cover completely the
theory of stochastic calculus. Thorough works include Arnold (1973), Stroock and
Varadhan (1979), Gardiner (1983), Karatzas and Shreve (1991), Revuz and Yor
(1991), Kloeden and Platen (1999) and @ksendal (2003).

Generally speaking, a stochastic differential equation (SDE) is a differential
equation—i.e. an equation relating a process to one or several of its derivatives—
which involves any kind of randomness. This might be because of random coeffi-
cients, a random initial value or some dependence on a stochastic force.

However, a reasonable further classification as in Arnold (1973), Gard (1988) or
Kloeden and Platen (1999) distinguishes between the driving force being a regular
or irregular process. In the former case, solution processes of such equations have
differentiable sample paths and do not differ substantially from ordinary differential
equations. Such equations are referred to as random differential equations and are of
no further interest here. The second class contains stochastic differential equations

C. Fuchs, Inference for Diffusion Processes: With Applications in Life Sciences, 31
DOI 10.1007/978-3-642-25969-2_3, © Springer-Verlag Berlin Heidelberg 2013



32 3 Stochastic Differential Equations and Diffusions in a Nutshell

in the strict sense. These are forced by some irregular noise process—the notion
of which will be explained in Sect. 3.1.3—, and the sample paths of corresponding
solution processes are almost surely nowhere differentiable.

Section 3.1 conceives Brownian motion and Gaussian white noise as the key pro-
cesses of stochastic calculus. In Sect. 3.2, the introduction of the stochastic integral
allows the formal definition of stochastic differential equations, whose solutions turn
out to be essentially diffusion processes. For these, fundamental formulas are stated.
Section 3.3 deals with the simulation and numerical approximation of diffusion
sample paths; the latter is especially necessary due to the usual absence of explicitly
attainable solutions of SDEs.

Throughout this chapter let (§2, F*, F,P) be a filtered probability space with
sample space (2, o-algebra F*, F = (F;)i>0 the natural filtration and P a
probability measure on ({2, 7*). The o-algebra of Lebesgue subsets of R will be
denoted by £. We will consider continuous jointly £ x F*-measurable stochastic
processes

Tx—X
X { (t,w) — X (t,w)

with state space X C R4 d > 1, and non-empty time set 7' C Ry, but omit the
dependency on w in the notation X = (X);cr. We will generally assume that
for all subsets {tq,...,t,} C T and {xy,,...,x:, } C X the joint distribution
of X,,..., X, has a probability density and that conditional probabilities and
densities can be defined in the usual way.

3.1 Brownian Motion and Gaussian White Noise

This section defines elementary modules of stochastic calculus on which subsequent
considerations are based.

3.1.1 Brownian Motion

A real-valued F-adapted process B = (B;);>o is defined to be Brownian motion—
also called a Wiener process'—if

1. By = w almost surely for u € R fixed,
2. All paths are almost surely continuous,

'Some authors denote by a Wiener process the mathematical description given above while
Brownian motion stands for the physical movement of a diffusing particle. In this book, both terms
are used interchangeably.
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Fig. 3.1 Discrete sample path realisations of (a) one-dimensional standard Brownian motion, (b)
two-dimensional standard Brownian motion, (¢) a Brownian (0, 0, 10, 0)-bridge with volatility
parameter o = 1 and (d) standard Gaussian white noise for equidistant time steps of size 0.005

3. All paths have independent and stationary increments,
4. By ~ N(0,0%t) for all t > 0 and constant volatility parameter o € R

The process is called standard for u = 0 and 0 = 1. A vector-valued process
is said to be d-dimensional (standard) Brownian motion if its d components are
mutually independent one-dimensional (standard) Brownian motions. The existence
of such a process was first proven by Wiener (1923). The probability law induced
by standard Brownian motion is thus called Wiener measure. Figure 3.1a, b shows
typical discrete-time sample path realisations of one- and two-dimensional standard
Brownian motion.

Although the paths of one-dimensional Brownian motion are almost surely
continuous, almost all paths are nowhere Lipschitz continuous and hence nowhere
differentiable. As a consequence, almost all paths are of unbounded fotal variation
on any time interval [s, ] on the positive real line, i.e.

h(n)
aup > B~ B = e,

n =1
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where the supremum is taken over all partitions
Z, = (s = tén) < t§") < ... < tgzzl) = t) of [s,?] into h(n) subintervals for
arbitrary n and h. However, the sample paths have finite quadratic variation (B, B);
more precisely,

h(n)

. n n) \2 .
(B: Blisy = , m Pt (B = B") = (t—s)0* inL? 3.1)

(and hence also in probability), where §( Z,,) denotes the fineness of the partition Z,,
of [s,t]. If >>°,8(Z,) < oo, for instance for t,(cn) = s+ 27"k(t — s),
k =0,...,h(n) = 2™, one even obtains almost sure convergence in (3.1) (Arnold
1973). All properties naturally hold for each component of multi-dimensional
Brownian motion.

3.1.2 Brownian Bridge

If standard Brownian motion is further conditioned on some end point B; = v, then
the conditioned process (B ) co, is called a Brownian bridge. More generally,
Brownian motion (BT)TG[M] conditioned on B, = u and B; = v will be referred
to as a Brownian (s, u,t,v)-bridge. Like Brownian motion, Brownian bridges are
Gaussian processes, but without independent increments. See Fig. 3.1c for a discrete
sample path realisation of a Brownian bridge, obtained with the sampling algorithm
introduced in Sect. 3.3.2.

3.1.3 Gaussian White Noise

In many life sciences applications, a system is disturbed by external fluctuations
which vary much more rapidly than the system itself; the memory of the environ-
ment seems to be short compared to the memory of the system. In the idealised
case, the environment is considered memoryless, and the according disturbances
are called white noise. The paths of such a white noise process are uncorrelated at
any two distinct time instants®> and are extremely irregular.

Formally, white noise is defined as a continuous-time stationary process with
mean zero and autocorrelation function proportional to the Dirac delta function.
Such a process does not exist in the usual sense but belongs to the class of

2This choice of autocorrelation implies a constant nonzero power spectral density of the process,
defined as the Fourier transform of its autocorrelation function. That explains the term white noise
in analogy to white light, where all visible frequencies occur in equal amounts.
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generalised processes (see e.g. Arnold 1973). If the single values of the paths of the
white noise process are normally distributed, one speaks of Gaussian white noise.
In that case uncorrelatedness implies independence. In analogy to the definition of
Brownian motion, d-dimensional white noise consists of d mutually independent
one-dimensional white noise processes.

The choice of white noise as a model for the disturbances—i.e. the choice of
a memoryless environment—yields the advantage of retaining the Markov nature
of the system. Gaussian white noise can formally be interpreted as the generalised
derivative of the (nowhere differentiable) Brownian motion (see e.g. Kloeden and
Platen 1999). In the next section, we will hence use the notation dB; = &,dt
for standard Brownian motion B and a standard Gaussian white noise process
& = (&,)1>0,1.e. Var(&,dt) = Idt for all ¢ with I being the identity matrix. It is this
process that we referred to when we defined stochastic differential equations to be
driven by an irregular stochastic process at the beginning of this chapter. Figure 3.1d
shows a discrete-time simulation of Gaussian white noise. For a detailed discussion
of this process see Horsthemke and Lefever (1984).

3.1.4 Excursus: Lévy Processes

The integration of Brownian motion as a source of noise is generally reasonable for
models of perturbed systems in many contexts; the resulting diffusion processes (see
Sect. 3.2.5) are called Brownian-driven.

However, such models turned out to be unsatisfactory in some applications in
finance. In these cases more general driving forces are taken, inducing the Lévy
processes. These are defined as processes whose sample paths almost surely start in
zero, are continuous in probability and have independent and stationary increments
(Protter 1990). Special cases are the Poisson process and Brownian motion with
initial value zero.

Unlike the trajectories of diffusion processes, the paths of such Lévy-driven
processes may experience jumps. One famous example is the jump-diffusion model
by Merton (1976). However, the focus of this book lies on diffusion processes as the
appropriate model in many applications in life sciences; therefore, Brownian-driven
processes are considered exclusively in the following.

3.2 1to Calculus

Inclusion of white noise as a source of randomness in differential equations leads
to difficulties in the application of classical calculus. The need for a new integral
definition arises, resulting in stochastic calculus with the Itd calculus as a prominent
representative. This is introduced in the following.
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3.2.1 Stochastic Integral and Stochastic Differential Equations

Differential equations are eminently appealing for the modelling of phenomena
that evolve continuously in time as they express the rates of change. In order to
adequately include random fluctuations—which are present in all natural contexts—
there is a need to include a stochastic component. As motivated in Sect. 3.1.3, we
consider stochastic differential equations of the form

dX,
dt

= iu’(Xtvt) + O'(Xta t) ét’ Xto = X, (32)

with jointly measurable functions p : X x T — R4, o : X x T — R¥&>™
and m-dimensional standard Gaussian white noise &£. That means the differential
of X = (X¢)i>1, is composed of a systematic component g and zero-mean random
disturbances £ intensified by o. The noise £ is called additive if o is constant in
space and multiplicative otherwise. Using the notation dB; = &,dt for standard
Brownian motion B, we get a differential

dXt = [J/(Xt,t)dt + O'(Xt,t)dBt, Xto = Xy, (33)

or, equivalently, an integral

t t
Xt:XtO—|—/u(Xs,s)ds+/o'(Xs,s)st. (3.4)

to to

The first integral can be treated as an ordinary Lebesgue integral, but due to the
almost surely unbounded total variation of the sample paths of Brownian motion
(see Sect.3.1.1), the second integral cannot be understood as a Lebesgue-Stieltjes
integral. Instead, it is defined by taking advantage of the finite quadratic variation of
the Brownian motion paths as follows: Let Dﬁo,t] be the class of non-anticipating
jointly F* x L-measurable functions f : £2 x [tg,t] — R**! for appropriate k
and [ with

t

E| f(w,s)||* < oo forall s € [to,t] and /]E||f(w, s)||Pds < 00,  (3.5)

to

where ||A|? = tr(A’ A) denotes the Euclidean norm for a vector or matrix A. This
and the following statements shall hold for all w € 2. For step functions f € Dﬁoyt]
with jumps occurring at ¢; < ... < t,,_1, define

n

t
/f(w, $)AB,: =Y f(w,ti1)(Bi, — B,_,) (3.6)
to

i=1
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*

fort, =t.Forall f € D} there exists a sequence of step functions f,, € D

. . . [to,t]’ [to,t]
which approximates f in the sense that
t
ILm E|f(w,s) — f,(w,s)|*ds = 0. 3.7

to

With such a sequence {f, }nen, the It6 (stochastic) integral is now defined for
all f € Df‘to 4 as the mean-square limit of the integrals of the step functions, i.e.

t

t
/f(w,s)st = lim [ f,(w,s)dB, in L (3.8)
to

n—oo
to

The value of this integral does not depend on the particular choice of the f,,. If f
covers only

t
/Hf(w,s)||2ds <00 as. (3.9)
to

rather than condition (3.5), then there exists a sequence of functions f,, from this
larger class Dy, 4 so that

n—oo

t
lim /Hf(w,s) — f,(w,8)]?ds =0 as.
to

The It6 integral of such f is defined as in (3.8) with the convergence in L? replaced
by convergence in probability.

From now on let pu, 0 € Dr for any T' C R, where p fulfils (3.9) also for non-
squared norm and both coefficients depend on w € (2 through X (w), so (3.4) is
well-defined.

3.2.2 Different Stochastic Integrals

Like the classical Lebesgue-Stieltjes integral, the general stochastic integral is the
limit (now in mean-square) of a sequence of partial sums, but with the crucial
difference that the value of the limit depends on the selection of evaluation points
within the partition of the time axis. Different choices of evaluation points lead to
different stochastic integrals. The most common ones are the above It6 integral
and the Stratonovich integral, introduced by Itd (1944, 1946) and Stratonovich
(1966). As in (3.6), the 1t6 integral takes the left end point of each subinterval as
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the evaluation point, whereas the Stratonovich integral uses the midpoint of each
subinterval. The It6 integral has the most convenient property of being a martingale
but does not—unlike the Stratonovich integral—meet the transformation rules of
classical calculus (cf. Sect. 3.2.10).

For this book, only the It6 interpretation is of relevance, and we will restrict
our attention to that. However, it is possible to switch between the It and the
Stratonovich calculi whenever it is advantageous (see e.g. @ksendal 2003, Chap. 6,
for a respective formula).

3.2.3 Existence and Uniqueness of Solutions

With the definition of the stochastic integral, an F-adapted stochastic process X
is now defined to be the solution of the stochastic differential equation (3.3) if and
only if X satisfies the stochastic integral equation (3.4) almost surely. Then X is
Markovian and called an 116 process.

Such a solution exists pathwise uniquely if p and o are Lipschitz continuous.
Then, by definition, there exists a constant C' > 0 such that for all ¢ € T (in case
of T = [tg, 00) forall t € T” for all finite subsets 7/ C T) and ¢,y € X

The solution will be non-explosive with finite second moments if E|| X, ||* < oo
and there is a constant D > 0 with

(e, O] + llo(z, )]* < D(1 + [|=]) (.11

forall ¢ and x.
Pathwise uniqueness means that if there are two solutions X and X with the
same initial value, then

P <Sup X, — X > 0) =0,
teT

which implies equivalence of X and X.Sucha pathwise unique solution is called a
strong solution. It can be interpreted as a general functional of the Wiener process.
Under weaker assumptions (e.g. Kloeden and Platen 1999, Chap. 4), an SDE may
only have a weak solution which is obtained for a particular Wiener process. A weak
solution is unique if all solutions have the same probability law.

Every strong solution has an almost surely continuous separable version, hence
without loss of generality we can assume this property for X in the sequel. However,
it is generally not possible to find an explicit solution of an SDE; instead, numerical
approximation methods are applied (see Sect. 3.3).
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Example 3.1. One of the few cases in which an explicit strong solution is available
is given by the SDE

dXt = OéXtdt + O'XtdBt, X() = Xo, (312)

with parameters o € R, 0 € R, and state space X = R for xo € R. This SDE
is solved by the geometric Brownian motion X = (Xy);>0 with

1
Xt_:coexp<<a—502>t+03t) (313)

for all ¢ > 0. This process is described in more detail in Sect. A.1 in the Appendix.

3.2.4 Transition Density and Likelihood Function

The assumptions made on p. 32 regarding the existence of conditional probabilities
and densities particularly ensure the existence of the transition density p(s, x,t,y)
defined through

P(X, € AIX, =) = / p(s, 2, 1, y)dy (3.14)
A

for all F*-measurable sets A C X. p(s,x,t,y) is the density of a Markov
process X for going from state x € X attime s > Otoy € & attime ¢ > s.
For s = t, we define

p(tv T, tv y) = 6(‘7} - y)’

where ¢ denotes the Dirac delta function. If X is homogeneous in time, i.e. the
transition density depends on s and ¢ solely through their difference ¢ — s, we also
write p(t—s; x,y).

In many applications, the transition density further depends on a parameter 0
from a parameter space ©. For discrete observations x;,, . . ., ¢, and given starting
value x;, at time points tg < ... < ty, the likelihood function of @ reads

n—1 n—1
L(G) = H p@(t’ia Tt , ti+17 mt1‘+1) = H pQ(ti+1 - t’La Tt , mti+1)
1=0 i=0

for a time-homogeneous Markov process and all & € ©. The case of continuous
observations is regarded in Sect. 6.1.1. Estimation of 8 is one focus of this book and
will thoroughly be treated in Chaps. 6 and 7.
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3.2.5 Ité Diffusion Processes

A diffusion process is defined as a Markov process whose transition probability
function p meets the following three properties for all z € X and s > 0:

1. For all € > 0 one has uniformly

lim
tls t—s

/ p(s, z,t,y)dy =0, (3.15)
ly—=l>e
i.e. large jumps are improbable over small time intervals, that means the process

has almost surely continuous sample paths.
2. For all € > 0 the uniform limit

p(x,s) =lim

tls t— 8 / p(s, x,1, y)(y - fB)dy (3.16)

ly—=|<e

exists. The vector-valued function g is called the drift and describes the
instantaneous rate of change of the conditional expectation of the increments.
3. For all € > 0 the uniform limit

1
Y(x,s) =lim
tls t— s

/ ps,zty)(y—a)y—2)dy  (G17)

ly—=l[<e

exists. The symmetric and positive semi-definite matrix-valued function X is
called the diffusion matrix and reflects the instantaneous rate of change of the
conditional covariance of the increments. A matrix o with X' = oo’ is called
the diffusion coefficient.

Such a decomposition exists due to the positive semi-definiteness of X,
but is not necessarily unique, i.e. there might be matrices o # & with
oo’ = 66’ = X which do not even agree in their number of columns. However,
as Stroock and Varadhan (1979, Chap.5.3) show, the particular choice of the
diffusion coefficient does not influence the distribution of the process X as long
as it is a square root of the diffusion matrix.

An F-adapted process X satisfying the Ito SDE
dXt :/L(Xt,t)dt—FO'(Xt,t)dBt, Xto = Xy, (318)

is an It6 diffusion with drift p and diffusion matrix X' = oo’ if the coefficients p
and o fulfil the Lipschitz condition (3.10) and growth bound (3.11) and are
continuous in time. The other way round, if the transition density of an It6 diffusion
with starting value X, = x¢ is uniquely determined by the drift g and positive
semi-definite diffusion matrix ¥ = oo’, where again p and o satisfy (3.10)
and (3.11), it is a solution of the 1t6 SDE (3.18) (Arnold 1973, Chap. 9.3).



3.2 It6 Calculus 41
3.2.6 Sample Path Properties

For non-vanishing diffusion coefficient, diffusion processes look like Brownian
motion locally in time. Hence many characteristic sample path properties such as
the infinite total variation and non-differentiability are inherited from the driving
Brownian motion. As the integral exerts a smoothing effect, diffusion processes have
almost surely continuous sample paths. Similarly to (3.1), the quadratic variation
of the above It6 diffusion process on a time interval [s, t] is

h(n)

(X, X)[st) = (hgw (X () — th@l) (thn) §), /E T

in probability (and almost surely for sufficiently smooth X'), where §(Z,,) is the
fineness of a partition Z,, of [s,t]. This turns out to be of great importance in
parameter estimation if observations are continuous or on a sufficiently fine time
scale (see Sects. 6.1.1 and 7.3).

3.2.7 Ergodicity

For any ¢ > 0 and € X, denote by U (x) a spherical neighbourhood of radius &
around «. Assume that at time ¢y, a time-homogeneous diffusion process X is in
state ¢y € X. Let

T.(x) = tigtfo{Xt €U.(x)}

be the first time at which the process enters U (x). The process is called recurrent
if this time is almost surely finite, irrespectively of x( and x, i.e.

Ve>0 Vaxg,xzelX ]P(TE(EB) < oo|X,g0 zwo) =1.

Furthermore, the process is called positive recurrent or ergodic if the expected value
of this time point is finite, i.e.

Ve>0 Vaxg,xeX E( ‘Xto—:vo)<oo.
The diffusion process then possesses a stationary distribution (Klebaner 2005).
For one-dimensional diffusion processes, the following statements hold: The

scale function and speed measure of a time-homogeneous diffusion process

dXt = /,L(Xt)dt —|— O'(Xt)dBt, Xto = Xy,
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with positive diffusion X = o2 are defined as

x

s(xz) = exp —Q/M(Z)Efl(z)dz and m(x) =

o

27 (@)

forall z € X. The process is recurrent if and only if

x x

lim s(z)dz=—00 and lim [ s(z)dz = .
Tr—r—00 Tr—r00
ZTo o

It is positive recurrent if and only if
/ m(z)dz < oo.
X

If these two conditions are fulfilled, the diffusion process is ergodic, i.e. there exists
a stationary (or invariant) density m : X — R such that for a random variable £ ~ 7
and any measurable function h with IE|(€)| < oo one has almost surely

t

/h(Xs)ds = Eh(9). (3.19)

to

lim
t—oo t — to

Equation (3.19) relates the long-term time average of the paths to the spatial average
with respect to 7. The stationary density results as

m(x) = m(:z:)/ /m(:c)d:z:
X

(Kutoyants 2004, Chap. 1.2). Several of the inference techniques in Chap. 6 require
the existence of a stationary distribution. For ergodicity conditions for multi-
dimensional diffusion processes, see Klebaner (2005, Chap. 6).

3.2.8 Kolmogorov Forward and Backward Equations

Suppose the transition density p of an It6 diffusion process

dXt = ,U/(Xt,t)dt —+ O'(Xt,t)dBt, Xto = Xg,



3.2 It6 Calculus 43

is smooth enough such that the derivatives in the following partial differential
equations exist and are continuous. Then p satisfies the Kolmogorov forward
equation

Ip(s, z,t,y)
ot
3.20
Al st L P15ttty 320
P 81/(1) 2 = 8y(1)ay(ﬂ)
for fixed « and s and the Kolmogorov backward equation
_ ap(s7 w7t’y)
ds
d (3.21)
D(s,x,t,y) (s x,t,Yy)
=2 o g Z S

3,7=1

for fixed y and ¢, where ¢,y € X andt > s > 0, and 7, j denote the respective
components of ¢, y, u and X' = oo’. Remarkably, each of these equations uniquely
determines the transition density p (subject to an appropriate initial condition),
and hence diffusion processes are, like Gaussian processes, already completely
defined by their instantaneous mean and variance g and Y. Furthermore, if
the transition density of a stochastic process fulfils the Kolmogorov forward or
backward equation, then it is an It6 diffusion process.

Equations (3.20) and (3.21) are sometimes also called the forward and backward
diffusion equations. The terms forward and backward arise from the equations
describing the evolution of the process with respect to a later and former state,
respectively. The Kolmogorov forward equation is additionally known as the
Fokker-Planck equation. For shorter notation, introduce the two operators Lf; s and

L] 5 such that

op
=L} 5 d
ot an © 0s
The Kolmogorov forward and backward equations are important tools in the
approximation of pure Markov jump processes by diffusions as considered in
Chap. 4. The above equations correspond to diffusion equations of the It type.
Stratonovich (1989) deals with counterparts of (3.20) in other stochastic calculi.

=L} 5 (3.22)

3.2.9 Infinitesimal Generator
The infinitesimal generator G of a Markov process X is defined by

Gf(xz,t)= iltrfo EE(f(Xt-i—At,t—f—At) —f(:v,t)’Xt =x)
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for all measurable bounded functions f : X x T' — IR for which the uniform limit
exists. That is the expected infinitesimal rate of change of f(X,t) given X, = x.
Like the Kolmogorov forward and backward equations, G uniquely determines
a diffusion process for a given initial value. The infinitesimal generator of a
diffusion X with drift vector p and diffusion matrix X is related to the Kolmogorov
backward operator (3.22) through

. 0 .

with p(x,s) = p(s,x,t,y) and ¢t and y fixed. Hence, if one is able to derive the
infinitesimal generator of a diffusion process, one can directly read out its drift
vector and diffusion matrix. We will make use of this in Chap.4 when deriving
diffusion approximations from Markov jump processes.

3.2.10 Ito Formula

Let X = (X;)¢er be an Itd process with state space ¥ C R?andg : X x T — R/
a jointly measurable function that is twice continuously differentiable in space and
once in time. Then Y = (Y3):er with Y3 = g(X,t) is again an It6 process, and
for its kth component we get the It6 formula

g™ (X, t) 09 (X0t i)
dy W = 202 qr 4 Y bl x|
=1 (9

ot x(l)
(3.23)
(X1,1) 450 g 50
+ = Z axm 8:10(3) ) axDax!
fork =1,...,[, where the upper indices denote the respective component numbers.

The terms d.X t(i)dX t(j) are to be calculated according to the mean-square rules
(d)2=dt-dB"” =dBY .dt=0 and  dBWABY =5,dt, (3.24)

where §;; is the Kronecker delta, in combination with the SDE defining X ;.

Formula (3.23) is the Itd stochastic counterpart of the deterministic chain rule
in classical calculus (and also in Stratonovich calculus), where the second sum is
absent.
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3.2.11 Lamperti Transformation

An application of Itd’s formula is the following: Consider a one-dimensional Itd
diffusion (X;);>o with time-homogeneous diffusion coefficient, i.e.

dXt = /L(Xt,t)dt + U(Xt)dBt, Xto = X0,

and its Lamperti transform Y = (Y;)¢>0, where

Xt

Y = g(Xt) :/

a

_du
o(u)

for any a in the state space. Then Y fulfils the [td SDE

i.e. it has unit diffusion. This is a convenient property in the context of parameter
estimation, and hence this transformation will frequently be used in the methods
covered in Chaps. 6 and 7. Unfortunately, there is no such transform for general
multi-dimensional diffusion processes X with diffusion matrix X'. A transforma-
tion Y = g(X) with unit diffusion requires g : X — R/ to be an invertible
function fulfilling the conditions of the Itd formula and

vg(Xt)Z(Xt)vg(Xt)/ =1,

where
g g
Oz Ox(d)
Vg = T
g g™
Oz Ox(d)
(Papaspiliopoulos et al. 2003). Such g cannot be found in general. Ait-Sahalia

(2008), however, provides a necessary and sufficient condition for the availability
of an appropriate transform.

3.2.12 Girsanov Formula

Let IP, be the probability measure induced by the solution of the [td6 SDE

dX, = pu(X,,7)dr + o(X,,7)dB-
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for 7 € [to,t] and a fixed starting value at time ¢g, and let W, be the law of the
respective driftless process. Suppose that X = oo’ is invertible and o fulfils the
Novikov condition

t
1
Ep,_ | exp §/||H(XT,T)H2dT < 00.
to

Then P, and W, are equivalent measures with Radon-Nikodym derivative given
by Girsanov’s formula

S

1 S
(Xr0,51) = exp /u’ rldx, - 5/#’ X pdr (3.25)

t() t()

dP,
dW,

for all s € [to,t] and X, = (X7)re[to,s]- The coefficients p and X in the
integrals are evaluated at X ; and 7.

The right-hand side of (3.25) is a W-martingale and states the density of
the law of X with respect to W,. For continuous observation of X and known
diffusion coefficient, (3.25) serves as the likelihood of the parameters entering the
drift function (cf. Sect. 6.1.1).

3.3 Approximation and Simulation

If the solution of a diffusion process is explicitly known, it is straightforward to
sample from its distribution at discrete time instants since the increments of the
driving Brownian motion process are just Gaussian random variables. However,
as mentioned before, solutions of SDEs are usually unattainable in closed form.
Sections 3.3.1 and 3.3.2 hence deal with numerical methods to approximate the It6
diffusion process

dXt = ,U/(Xt,t)dt + O'(Xt,t)dBt, Xto = Xy, (326)

on a discrete time grid {o < t; < ... < t,, where the Lipschitz and growth bound
conditions (3.10) and (3.11) are assumed to be fulfilled and E|| X, || < oo. These
approximation techniques immediately yield approximate sampling algorithms.
Section 3.3.2 also covers the exact simulation of Brownian bridges, whose
probability distributions are explicitly known.

In the sequel, an approximation or simulation of X, will be denoted by Y7,
k = 0,...,n. Moreover, introduce the increments At;, = txy1 — t; and
AByj = By, ., — By, ~ N(0, At} I) fork =0,...,n — 1 and the maximum time
step A = maxy, Aty. The resulting approximation or exact realisation Y is consid-
ered a time-continuous process although the according sampling schemes naturally
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yield values only for a collection of discrete time instants. Intermediate data is usu-
ally obtained by linear interpolation. However, as mentioned in Sect. 3.2.6, the paths
of a diffusion process are extremely irregular, which cannot be reproduced this way.

3.3.1 Convergence and Consistency

As for the definition of the stochastic integral, one has to take care when deriving a
stochastic approximation method from its deterministic counterpart. As e.g. shown
in Fahrmeir (1976), such generalisations might for instance result in wrong drift
coefficients. It is hence crucial to evaluate approximation schemes through their
convergence and consistency properties. For stochastic differential equations, these
exist in a weak and a strong sense, where the first concerns distributional and the
second pathwise approximations. In this book, we only consider the latter.

With the above notation, an approximation Y of a process X on a time
interval [to,t,] is said to converge strongly of order p > 0 if there exist positive
constants C' and A such that

]EHth - Yn” S CAP

for all A € (0, Ap). It is called strongly consistent if there exists a non-negative
function (A) which tends to zero as A — 0 such that forall k =0,...,n — 1

_ 2
E||AE (Yisr — YilFy) — p(Ye, te)||” < 4(4)
and
A Yigr = Vi — B (Yig1 — Yi|F,) — 0(Yi, te) ABR > < 4(A).

Note that the order of strong convergence can be higher in special cases, e.g. for
constant drift and diffusion coefficients.

3.3.2 Numerical Approximation

An obvious way to obtain numerical approximation methods is to employ a
truncated version of the It6-Taylor expansion (Kloeden and Platen 1991)

t t
Xt:Xto—|—,U/(Xt0,t0)/dS+U(Xt0,t0)/dBS+R3

t() t()



48 3 Stochastic Differential Equations and Diffusions in a Nutshell
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Fig. 3.2 Discrete realisations of geometric Brownian motion, defined through SDE (3.12) or its
explicit solution (3.13) on p. 39, for o = 1, @ = 0.5 and o = 0.9: Exact sampling (solid lines),
Euler approximation (dashed), Milstein approximation (dotted) and Runge-Kutta approximation
(dash-dotted) for equidistant time steps 0.2 (left), 0.05 (middle) and 0.01 (right), each with respect
to the same driving Brownian motion

with a remainder term R3 with ith component

i L doiy
Rg)_zzzarj(Xm,to)<a ©) Xto,to>//dB dB{" + ..

j=11=1r=1 o i

where the sub- and superscripts denote the components of & € R4*™, & € R
and B € R™. The following Euler and Milstein methods are applications of
this. The Milstein scheme is of higher order of strong convergence than the Euler
approximation but involves the more elaborate computation and evaluation of
derivatives of the diffusion coefficient. The latter is avoided by the Runge-Kutta
scheme which is introduced thereafter. All approximations converge to the solution
of (3.26) in the It0 sense.

Figure 3.2 shows discrete approximations of geometric Brownian motion—
represented by the explicitly solvable SDE (3.12) on p. 39—obtained with the
Euler, Milstein and Runge-Kutta schemes in comparison with exact simulation for
different step sizes.

There are several more numerical approximation methods (Fahrmeir and Beeck
1974; Riimelin 1982; Chang 1987; Newton 1991; Kloeden and Platen 1999, and the
references therein), but the selection made here covers the needs of this book.

Euler Scheme

The Euler approximation (also called Euler-Maruyama approximation) of X is
obtained by setting Y, = x( and then successively?

3Contrarily to common matrix notation, but consistently with the differential equation representa-
tion, the scalar Aty is multiplied with the vector g from the right—a consetude that will be kept
throughout this book.
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Yir1 =Y + pu(Yi, tk)Atk + O'(Yk, tk)ABk (3.27)

for kK = 0,...,n — 1. It is strongly consistent and has strong order of conver-
gence p = 0.5.

Milstein Scheme

The Milstein method yields approximate values by setting Yy = ¢ and then
successively for the ith component

Ylg:zl = Ylgl) + ILLi(Yk,tk)Atk + Z O'ij(Yk,tk)AB](gj)

j=1
m m 5 tht1 s
. gil @BHap®
Y Y 0¥t ( oo (Yk,tk)> | [appan,
j=11l=1r=1 by in
fork =0,...,n — 1. For j = [ (and thus especially for one-dimensional Brownian
motion) the double integral simplifies to
tkt1 s
aBDaB® — X ((ABD)’ A
BYaBY = 2 (Bk)—tk,
tr tr

but otherwise its computation is generally more demanding (cf. e.g. Kloeden and
Platen 1999). Suppose that p and o are twice continuously differentiable with
uniformly Lipschitz continuous derivatives. Then the Milstein scheme is strongly
consistent and strongly convergent of order p = 1.

Runge-Kutta Scheme
One possible alternative to the computation of the derivative of the diffusion

coefficient in the Milstein scheme is the application of finite differences as in the
Runge-Kutta method

?k,j =Yy + p(Yi, te) Aty + 00 (Y, te) v/ Aty

Ylgle = Yéz) =+ ‘LLi(Yk, tk)Atk + ZO’ij (Yk, tk)ABI(CJ)

j=1

t
m m k+1 s

+ i ZZ(Uz‘l(f’k,j,tk)—Uu(Yk,tk)) //ngj)ngl)

Jj=11=1 te i

y
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fork = 0,....n—-1,5 = 1,...,mand ¢ = 1,...,d, where o,; denotes
the jth column of o. This derivative-free approximation is strongly consistent and
of strong order p = 1 if the coefficients are twice continuously differentiable with
uniformly bounded derivatives.

3.3.3 Simulation of Brownian Bridge

In Sect.3.1.2 a Brownian (s,u,t,v)-bridge B = (BT)TG[S7t] was defined as

Brownian motion conditioned on B, = u and B; = v. This process can exactly be
sampled at discrete time instants as follows (Beskos et al. 2006):

1. Simulate Brownian motion at times s = tg < t; < ... < t,, = t. This is done
by setting By = 0 and then successively drawing for fixed 0 € R+

B NN(Bk,UQAtkI) for k=0,...,n—1.
2. Construct a Brownian (s, 0,t, 0)-bridge B from the Brownian motion seeds via

tk—S
t—s

Bk:Bk— Bn for k:O,...,n.

3. Transform this to a Brownian (s, u, ¢, v)-bridge B through

~ _ t—t tr —
B, =B + btk Sv for k=0,...,n.
t—s t—s

3.4 Concluding Remarks

This chapter gives an overview of stochastic differential equations and diffusion
processes to the extent which is required as a basis for the remaining parts of this
book. It covers the motivation and introduction of stochastic integrals as opposed
to the classical Lebesgue-Stieltjes integral, the definition of diffusion processes,
material properties and formulas from stochastic calculus and finally numerical
approximation and exact sampling methods. References to monographs on these
subjects were provided at the beginning of this chapter.

Regularity conditions were stated whenever necessary. For the purposes of this
book, let the following assumptions from now on hold unless otherwise stated:
p and o denote jointly F* x L-measurable drift and diffusion coefficients of a
diffusion process. Dependence on a parameter 8 will be included in the notation
later in this book. Both p and o are supposed to be such that the stochastic
integral is well-defined (cf. Sect. 3.2.1), to fulfil the Lipschitz condition (3.10) and
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growth bound (3.11), and to be twice continuously differentiable with respect to
all arguments. The diffusion matrix X = oo’ is assumed positive definite and
invertible. These regularity conditions are usually fulfilled in applications in life
sciences.

The following Chaps. 4—7 show how to utilise diffusion processes for modelling
phenomena in life sciences and how to perform inference on the model parameters.
This is implemented in two applications in Chaps. 8 and 9.
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Chapter 4
Approximation of Markov Jump Processes
by Diffusions

In many applications in life sciences one is concerned with the time-continuous
evolution of numbers of individual objects such as the number of molecules in a
gas, the number of infectives in a population, the number of animals in some region,
the number of bacteria in a microscopic field etc. These numbers are stochastic
quantities, and the state space of an according stochastic process is a subset of the set
of integers or a multi-dimensional equivalent. If the process possesses the Markov
property, transitions from one state to another are most adequately described by a
so-called master equation. That is a differential-difference equation, i.e. a first order
differential equation in the continuous time variable and difference equation in the
discrete space variable. The discrete state space naturally implies discontinuity of
the trajectories. The considered processes are Markov jump processes.

However, the sizes of the jumps are often infinitesimally small compared to the
total size of the system. An approximation of the discontinuous paths by continuous
curves is then justified. For example, consider a large number of different types
of molecules which move around randomly, and assume that there is at most one
collision possible within an infinitesimally small time interval. If the collision causes
a reaction, the numbers of the involved types of molecules will change. On a
macroscopic view of the according trajectories, however, these individual jumps
will hardly be noticeable.

This chapter deals with the approximation of such Markov jump processes by
Markov processes with continuous state space and almost surely continuous sample
paths. The reward is the replacement of the master equation by a partial differential
equation that is more convenient to deal with in a sense that will be elaborated soon.
In order to maintain the strong Markov character of the original jump processes,
we employ as approximations the only class of stochastic processes that are both
strongly Markovian and have almost surely continuous sample paths. These are
the diffusion processes introduced in the previous chapter. The counterparts of the
master equations are the Kolmogorov equations discussed in Sect. 3.2.8.

The crucial point in the approximating procedure is that the sources of both the
systematic and fluctuating part of the resulting stochastic differential equation are
bound to agree with the initial description of the jump process. This is a complicated

C. Fuchs, Inference for Diffusion Processes: With Applications in Life Sciences, 55
DOI 10.1007/978-3-642-25969-2_4, © Springer-Verlag Berlin Heidelberg 2013
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matter which has been the subject of numerous modelling attempts and source of
considerable confusion (see van Kampen 1965, Chap. 1.C, for an overview). While
it is often straightforward to derive the drift of the approximating diffusion process
correctly, it is difficult to determine the strengths of the noise terms that arise
from internal fluctuations. Hence, several authors avoid a rigorous mathematical
derivation and set up the noise terms using heuristic arguments. The present chapter
reviews and further develops proper approximation techniques in order to take
remedial action.

This chapter is organised as follows: Sect. 4.1 categorises the key processes of
this survey and important properties of their transition densities. The necessity
of diffusion approximations and the intention of this chapter are emphasised in
Sect.4.2. Different techniques for the transition from a Markov jump process to
a diffusion process are presented in Sect.4.3 in detail. To that end, established
methods from the literature are supplemented by new formulations and constructive
algorithms in this book. Furthermore, results are presented in a multi-dimensional
framework in this chapter—in contrast to the existing literature, where formulas
are usually derived for the one-dimensional case. As a novelty, Sect. 4.4 extends
the approaches from Sect.4.3 to a more general framework, where the size of
the considered system is characterised through multiple rather than a single size
parameter. Section 4.5 discusses the appropriateness of different stochastic integrals
for the considered modelling purposes. The outcomes of the entire chapter are
summarised and collated in Sect.4.6. For a reader who is primarily interested
in explicit formulas for diffusion approximations rather than in the ideas of
the underlying approximating procedures, it might suffice to work through this
conclusion.

The methods of this chapter establish an indispensable part of this book as they
are utilised in Chaps. 5 and 9 for the approximation of jump models in life sciences.
The resulting diffusion approximations, in turn, form the basis of Chaps. 8 and 9,
where the spread of influenza and the molecular binding behaviour of proteins are
analysed.

For demonstration purposes, the epidemic susceptible—infected (SI) model is
employed as a running example to which the various approximation techniques are
applied after their derivation. This model is briefly introduced in Example 4.1. It
arises as a special case of the susceptible—infected—removed (SIR) model, which
is extensively considered in Sect.5.1, if one sets the recovery rate equal to zero.
Owing to the detailed and illustrative application of all approximation techniques
in Chap.5, the examples in the current chapter are restrained to the statement of
intermediate results. For full calculations, the reader is referred to the next chapter.

4.1 Characterisation of Processes

We start with a brief note on the three classes of stochastic models which we
will deal with in the course of this chapter: Markov jump processes, determin-
istic Markov processes with continuous sample paths, and diffusions. These are
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characterised through the transition density p(to, o, t, ) for the process arriving
at state  at time ¢ conditioned on an initial state x at time ¢y. In the following we
will fix tg and xo and also use the notation p(t, x) for p(to, zo, t, ). p is assumed
to fulfil the initial condition p(tg, xo, to, ) = d(x — @) and to be smooth enough
such that the derivatives in this chapter exist.

Gardiner (1983, Chap. 3.4) derives a differential equation for p, which he calls
the (forward) differential Chapman-Kolmogorov equation. It is valid for all Markov
processes in the interior of the state space X C R"™ and reads

8pg£w) = /[W(t, y,x—y)p(t,y) — W(t,z,y —x)p(t, fv)} dy
X
“4.1)
B Z": Owi(@ tp(t. ®)] 1 z": 0?23 (=, t)p(t, )]
—1 8:51- 2 —1 afi(‘:).%'j ’
3 1,3
where W is the transition rate, p = (i;)i=1,..n the drift vector and
XY = (Xij)ij=1,..n the diffusion matrix. These are defined for all ¢ > 0
and?,5=1,...,nas
. 1
W(t,xe,y —x) = iltr?o Ep(t, x,t+ At,y)

Atlo At
ly—z||<e

(@, t) = lim — / (i — 2)p(t, @, t + At y)dy
“4.2)

1
Si@t)=lm o [ e -pet+ At y)dy

ly—=| <e

(compare with the definitions in Sect. 3.2.5). Higher order terms such as

1
lm [ w0 o) - sp(t et + Ay)dy

ly—=|l<e
vanish. An analogous backward differential Chapman-Kolmogorov equation is

op(T,u,t,x
wnha) / W (r,uy — ) [p(r, u,t,2) = p(r,y.t,x) | dy

, 4.3)
- op(T,u,t,x) 8 0 p(r,u,t, )
— wi(u, 7) ————= — = Yii(u, 1) .
Z ou; Z J 5u15u7

=1 z] 1
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Gardiner highlights three classes of Markov processes. These are

e Pure jump processes, where g = 0 and X' = 0. In this case, Eq. (4.1) reduces to
the (forward) master equation

op(t, )
ot

— [ty - vty - Wity - op(ta)]dy, @
X

Eq. (4.3) to the backward master equation

op(T,u,t,x)

b8 [ Wiy - w o) sy, @9

Processes of this type have piecewise constant sample paths with finite jumps at
discrete time points. The paths can only be continuous if W (-, -, z) disappears
for z # 0.

* Deterministic processes, where W (-,-,z) = O forall z # 0, ¥ = 0 and p # 0.
Equations (4.1) and (4.3) become the first order partial differential equations

"L 9| pi(z, t)p(t, x)]
—~ Z B (4.6)
i=1
and
6]9(7 u,t,x) Zlh 1) Tazlt , ) 7

respectively. Formula (4.6) is called Liouville’s equation. These deterministic
processes are the only Markov processes with continuous and differentiable
sample paths.

* Diffusion processes, where W(-,-,z) = 0 for all z # 0, X' is nonzero and p
may be zero or nonzero. Equations (4.1) and (4.3) then equal the Kolmogorov
(forward) equation (or Fokker-Planck or forward diffusion equation)

op(t,z) _ Z": 5[Mz'(fc£?(ta o) “.7)

" o7 [Zij (:I}, t)p(f, :E)]
o 2

1
=1 2 ij=1 (95[:1({“)1:7

and Kolmogorov backward equation (or backward diffusion equation)
Bp(Tut:I: (T, u,t, ) 82(Tut:13)
ZMZ (u,7) 8u1 2 Z iy (u,7) 8u18uj

1,5=1

from Sect.3.2.8.
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Fig. 4.1 Simulation of the course of an epidemic according to the SI model from Example 4.1
with parameters N = 11 and A = 1. The model is described by three different classes of
Markov processes: (a) Representation as a pure Markov jump process according to the master
equations (4.9) or (4.10). The realisation is obtained using Gillespie’s algorithm (cf. Sect.2.4.1).
(b) Representation as a deterministic Markov process with continuous sample paths according
to Liouville’s equation (4.11) or its backward version (4.12). Equation (4.30) on p. 73 provides
an explicit formula for the course of the process whose transition density fulfils these equations.
(c) Representation as a diffusion process according to the Kolmogorov equations (4.13) or (4.14).
The simulated path approximation is obtained by transferring these equations to an SDE and then
using the Euler scheme from Sect. 3.3.2 with constant time step 10~2

Figure 4.1 illustrates these three classes of processes on the example of the
epidemic SI model, which is investigated in the following Example 4.1. If not further
specified, the terms master equation, Kolmogorov equation and diffusion equation
usually refer to the forward version. Not included in the above selection are for
example general Lévy processes like the jump-diffusion process from Sect. 3.1.4.

If p is a probability instead of a density, it is more convenient to write the
forward and backward master equations (4.4) and (4.5) as the sums over all possible
jumps A, i.e.

ap(t
pgé x) _ ; {W(t, x— A Ap(t,x — A) — W(t,x, A)p(t, m)} (4.8)
and
6 b 7t7
% =S Wrw A)p(r u,t,z) —plr.u+ At)),

A
respectively. See Sect. 4.3.1 for the derivation and interpretation of these formulas.

Example 4.1. Consider a population of fixed size N within which an epidemic
spreads according to the susceptible—infected (SI) model as follows: Assume that
all individuals can be classified as either susceptible or infected. Denote by S(t)
the number of susceptible individuals at time ¢ € Rg; the number of infecteds
then results as N — S(t). The only possible transition in the SI model is an
infection, which reduces the number of susceptibles by one and accordingly
increments the number of infecteds. Assume that at time zero the population



60 4 Approximation of Markov Jump Processes by Diffusions

consists of N — 1 susceptibles and one infected. Furthermore, suppose that all
individuals mix homogeneously and that the number of new infections within a short
time At is approximately proportional to the product of numbers of susceptibles
and infecteds. The discrete state space of the according time-homogeneous Markov
jump process is {0,1,..., N — 1}. The only possible jump is A; = —1 with rate
W(t,S,—1) = AS(N — S), where A\ € Ry stands for the infection rate.
Let p(7, 5% t,5) denote the probability that the process is in state S at time ¢
conditioned on the state S* at time 7 < ¢. The shorter form p(¢, S) = p(0, Sy, t, S)
refers to the initial state Sy = N — 1. The probability p is assumed zero outside
the considered state space. Then the Markov jump process is fully described by its
forward master equation

w =AMS+1D(N-=S—-1Dp(t, S+ 1) = AS(N — 9)p(t,S) (4.9)
or backward master equation

WSS At (N = ) 8°,1,8) —plr, 5~ 1,6.8)] @10)
for S*,S € {0,1,...,N — 1}. For an approximate description in terms of dif-

ferential equations one assumes a continuous state space [0, N). The deterministic
behaviour of the according process can then be described by Liouville’s equation

p(t,S) _ OAS(N — S)p(t, S)

4.11
ot oS 41D
or its backward analogue
op(r,S*,t,9) op(r,S*,t,9)
—————= = AS*(N - &) ————————. 4.12
or ( ) 0S5* ( )
The stochastic dynamics is given by the Kolmogorov forward equation
dp(t,S)  OAS(N — S)p(t,S) n 1 9?2AS(N — S)p(t, S) 4.13)
ot 08 2 052 '
or Kolmogorov backward equation
8p(T,S*,t,S)7 * * 8p(7—78*5t78)
MW=
(4.14)

1 9?p(r, S*,t,9)
_ )\5* N _ S* ) S

2 ( ) 0(5*)?
In these equations, p(7, S*,¢,.S) denotes the transition density of the process and
fulfils the initial condition p(0,.S) = 6(S — N + 1). The remaining chapter explains
how to obtain the differential equation descriptions (4.11)—(4.14). Figure 4.1 shows
realisations of the SI model according to the three different representations.
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4.2 Motivation and Purpose

The just introduced types of Markov processes—pure jump processes, deterministic
processes and diffusions—represent three essential types of models that are used to
describe the dynamics of natural phenomena in life sciences. Reflecting a system
by a master equation, Liouville’s equation or a diffusion equation is also referred
to as modelling on a microscopic, macroscopic and mesoscopic level, respectively
(e.g. Gillespie 1980). Table 4.1 gives a schematic overview over these three types of
models.

Jump processes are the most reliable models when numbers of discrete objects
are counted as described at the beginning of this chapter. The according master
equations are exact; they contain full information on both the macroscopic and
microscopic behaviour of the system. For small systems, one would hence stick
to the master equation description (see e.g. the references in Ferm et al. 2008). For
large systems, however, both simulation (using Gillespie’s algorithm, Sect.2.4.1)
and parameter estimation (using Monte Carlo methods) from the master equation
turn out to be computationally costly (Rao et al. 2002; Sjoberg et al. 2009). The
master equation is usually not analytically solvable, but even if a solution was
known, it would generally still not provide a decomposition into a systematic and a
fluctuating part (cf. the discussion at the beginning of Sect. 4.3.3).

Many authors hence go over to the second class of processes, the deterministic
ones, which are included in e.g. Pielou (1969), Eigen (1971), Bailey (1975),
Anderson and May (1991), Busenberg and Martelli (1990) and Keeling and Rohani
(2008). For this passage, the discontinuous sample paths of the original process
are approximated by continuous smooth curves, and the macroscopic behaviour
of the process is described by ordinary differential equations. This representation
facilitates both simulation and statistical inference substantially. It also contributes
to the comprehension of complex systems. However, as many phenomena in life
sciences are intrinsically stochastic, such deterministic processes do not provide
entirely realistic models. As Gillespie (1976, 1977) emphasises, their formulation
may be invalid in the neighbourhood of instabilities of the system. See Rao et al.
(2002) for a review article on the urgent need for stochastic models in molecular
biology or the ample references in the introduction of McQuarrie (1967) on the
same subject in chemical kinetics.

Table 4.1 Scheme of considered modelling levels with according equations fulfilled by
the transition density and resulting types of processes

Level Description Process
Microscopic ~ Master equations Pure Markov jump process
Mesoscopic Diffusion equations, Kolmogorov  Diffusion process
equations
Macroscopic ~ Liouville’s equation and backward  Deterministic Markov process with

analogue

continuous sample paths
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The reconciliation between the desire to seize a convenient model and the
demand to maintain the stochastic properties results in the third class of processes,
the diffusions. Although the characterising diffusion equations are again intractable,
they provide broader possibilities for simulation and interpretation. They imme-
diately reveal the composition of the stochastic process of a deterministic and a
stochastic component and enable modest calculation of other interesting quantities.
Sensitivity analysis and bifurcation theory become applicable (Rao et al. 2002). In
the infectious diseases literature, for example, diffusion approximations are further
utilised for the analysis of the duration (Barbour 1975b) or maximum size (Daniels
1974; Barbour 1975c) of an epidemic. Consequently, diffusion models are more
and more applied in life sciences as also shown by the references at the beginning
of Chap. 3.

However, to set up an approximating diffusion process to an underlying Markov
jump process is a demanding task. There actually seems to be no standard procedure;
authors usually work through the specific examples which they cover in their works.
Unfortunately, such derivations are not always performed very carefully; models are
not seldomly motivated by convenience rather than by probabilistic considerations.

The purpose of this chapter is to provide a detailed but compact overview
of multi-dimensional diffusion approximation techniques on a level that is both
mathematically well-founded and amenable for practitioners. To this end, methods
are kept general, and assumptions and full derivations are provided. On the other
hand, the design is informal where too much mathematical detail would make the
matter incomprehensible. For example, the existence of certain partial derivatives is
assumed rather than proved, even for probability functions which are only defined
on a discrete state space. Convergence properties of some series and the interchange
of certain limits are treated similarly. Indications are given where procedures are
heuristic.

A precise mathematical treatment of the approximation of pure Markov jump
processes by diffusions involves operator semigroup convergence theorems, mar-
tingale characterisations of Markov processes or the convergence of solutions of
stochastic equations. Such techniques are explored in Barbour (1972), Kurtz (1981)
and Ethier and Kurtz (1986). Further references on weak convergence theory are
e.g. Billingsley (1968) and Pollard (1984). More general limit theorems, including
higher order approximations, convergence to deterministic models, discrete time
models and convergence of non-Markovian processes, are treated in Barbour
(1974), Kurtz (1970, 1971) and Norman (1974, 1975). Furthermore, there are some
papers in which a rigorous derivation of diffusion approximations concentrates on
specific models, for example Feller (1951) on Markov branching processes with
an application in genetics, Daley and Kendall (1965); Daley and Gani (1999) on
rumours, McNeil (1973) on traffic control, Barbour (1975a) on birth and death
processes, Guess and Gillespie (1977) on population growth, Pollett (1990) on a
biological model and Andersson and Britton (2000, Chap.5), Clancy and French
(2001), Clancy et al. (2001) and Nasell (2002) on epidemic models.

The monographs of Gardiner (1983) and van Kampen (1997) contain several
diffusion approximation methods but dispense with general multi-dimensional
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formulas, which are derived in this chapter. Kepler and Elston (2001) review
the diffusion approximation of gene regulation models but with the emphasis on
different model specifications rather than on distinct approximation approaches.
Adressing scientists from biology, Gibson and Mjolsness (2001) briefly sketch the
different ideas of the transition from ordinary to stochastic differential equations
in an informal way without detailed formulas or derivations. This chapter aims
to be complete and compact. New techniques and multi-dimensional formulas
are developed, heuristic transitions are evaluated critically, and the framework
is extended to settings with multiple system size parameters. References for
applications of the various approximation techniques are provided in the respective
sections.

4.3 Approximation Methods

This section introduces methods for the systematic derivation of an approximating
diffusion process to a Markov jump process X. The central assumption in all
approaches is that occurring jumps of the approximated process are somehow small.
However, the state space of X is usually a subset of the multi-dimensional integer
lattice, i.e. the lengths of the jumps are bounded below by one. Hence, a constant
parameter N is introduced that appropriately measures the size of the system in
the sense that the jump sizes of the extensive variable X do not depend on N,
but the jumps of the infensive variable x = X /N become smaller as N grows
larger. This might for example be the number of molecules in a fluid or the carrying
capacity of a population. In the limit N — oo, the sample paths of & become smooth
continuous curves. In real applications, however, the jumps of & are of some finite
size. The scaled process x is approximated by a diffusion process, where the system
size NN still enters the diffusion coefficient. The resulting process is hence called a
diffusion approximation rather than a diffusion limit, which would correspond to a
deterministic idealisation of the original jump process.

When considering a stochastic system, one distinguishes between two different
kinds of noise (Horsthemke and Lefever 1984; Sancho and San Miguel 1984):
External fluctuations have their sources in the environment of the system and can in
some cases be controlled by the experimenter. Such disturbances are not investigated
here. Internal fluctuations are caused by the discrete nature of particles in the
system. They come up when the system is approximated by a continuous process
and are thus treated in this chapter. Internal forces are expected to be small when
the system size N is large. They usually have an effect of order O(N -1/ %) on the
macroscopic behaviour of the system and hence vanish as the system size tends to
infinity. External forces, on the other hand, do not scale with the system size.

Every diffusion equation can be approximated by a master equation, but the
reverse is not true (e.g. Gardiner 1983, Chap.7.2.1). Roughly speaking, the ap-
proximation is only possible if there is some scale parameter ¢ such that both
the average step size and the variance of the step size are proportional to §, and
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Fig. 4.2 Realisations of a -
scaled Poisson process —— Poisson process
(black) with jump diffusion approximation
size e = 10~ 2 and intensity 0.00015 -
parameter A = 0.1 compared

to realisations of the diffusion

approximation (grey)

day = eXdt + eV Ad By, 0.00010 -
obtained by the methods in
Sects. 4.3.1-4.3.5. The SDE
has the exact solution

z¢ = et + eV/AB, with 0.00005 -
o = 0. The Poisson process
does not fulfil the criteria that
ensure a satisfactory diffusion
approximation 0.00000 ~
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such that the jump probabilities increase as § decreases. These conditions reflect the
defining properties (3.15)—(3.17) of a diffusion process with ¢ — s set to § and hence
ensure consistency. The prototype for a jump process that cannot be approximated
by a diffusion is the univariate Poisson process with step size e, where the jump
probability is constant, the average step size is proportional to € and the variance of
the step size is proportional to £2. Figure 4.2 compares sample path realisations of
such a Poisson process with those of a diffusion approximation as obtained by the
techniques in Sects. 4.3.1-4.3.5.

In the following, let X = (X)¢>¢, be a stochastic jump process with state
space Dy C Z" whose memory is so small that a Markov model is appropriate.
In most applications in life sciences one has Dy C IN{j, but the above more
general state space also allows for e.g. modelling the decrease of a concentration
by defining the initial state as state zero. The sample paths of X are assumed to
be right-continuous and to have left hand limits. Division by the constant system
size N yields the scaled process © = (x¢)i>1, = X/N. At time to, the two
processes are in states Xo and g = X/N, respectively. Depending on the
context, X and x may also just denote a state of the extensive or intensive process.
For fixed NN, denote by Py and py the transition probabilities of X and x,
respectively. Similarly, W and wy are the respective transition rates (compare
with (4.2)), and Dy and Cy = N 'Dy are the state spaces of X and x. It is
essential to require that wy (¢, &, A) is peaked around x, i.e. there exists a bound &
such that wy (t,x, A) ~ 0 for all |A/N| > 4, i.e. large jumps A/N of the
intensive process are improbable within a small time interval. Furthermore, we
assume that wy (¢, @, A) varies slowly with @ such that Taylor expansions with
respect to & are justified.
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Different diffusion approximation techniques are now introduced as follows: The
first method (Sect.4.3.1) starts with the setup of the forward master equation of
the jump process, expresses it as a sum of difference quotients and considers its
approximation by the forward diffusion equation of a corresponding diffusion ap-
proximation. In the second approach (Sect. 4.3.2), convergence of the infinitesimal
generator of the jump process is investigated. The Langevin approach (Sect.4.3.3)
establishes a diffusion approximation as the sum of the deterministic process
and a fluctuating term. In the Kramers-Moyal expansion (Sect.4.3.4), the master
equation is expanded in a Taylor series with successive terms corresponding to
their order of nonlinearity. The diffusion approximation is then chosen such that
the corresponding forward diffusion equation equals the terms up to order 2 of the
Taylor series. Van Kampen’s expansion (Sect.4.3.5) criticises this procedure and
suggests a different Taylor series in powers of N ~'/2 to ensure that the neglected
coefficients are small. Under certain regularity conditions, all methods yield the
same approximating diffusion process. A detailed comparison of the different
outcomes follows in Sect.4.6. A deterministic model is again an approximation of
the stochastic one for N — oo.

4.3.1 Convergence of the Master Equation

The line of this procedure is as follows: We start by setting up the transition
probabilities Py of the stochastic process in which we count the numbers of
individual objects for fixed system size N. The state space of this process is discrete,
and the evolution of the transition probabilities is described by the master equation.
We then consider a sequence of discrete state space processes in which the state
variables denote the intensive variables, i.e. the fractions of different classes of
objects. For the system size tending to infinity, this sequence converges to a process
with state variables changing continuously in space. The limit of the according
sequence of master equations is approximated by a forward diffusion equation
which is taken as a description for the limiting process. The limit is obtained by
replacing difference quotients by the respective derivatives.

This technique has been used e.g. by Goel and Richter-Dyn (1974) for the
approximation of the univariate birth and death process. Gillespie (1980) in a
way reverses the method by considering an approximation legitimate only if its
discretised version reduces to the master equation; to that end, derivatives are
replaced by difference quotients.

The approximation method introduced in this section may seem obvious; how-
ever, it apparently has not been formulated in generality in the literature before.
Due to space constraints, only main results are shown here. The proofs of some
statements which enable this proceeding have been moved to Sect.B.1 in the
Appendix.



66 4 Approximation of Markov Jump Processes by Diffusions

Assuming that at most one event can occur during a small time interval of
length At, we can establish an equation for Py (t + At, X)) by summing over all
possible nonzero jumps AX # 0 to arrive at state X € Dy at time t + At:

Py(t+At, X)=> Py(t, X — AX,t + At, X)Py(t, X — AX)
AX

+(1 - §PN(t,X,t FALX + AX))PN(t,X).

The probability Py (-, X1, -, X2) is assumed zero here for all X1, Xs & Dy. The
first line collects all possibilities for transitions to the desired state at the desired
time. The second line is the probability that the process has already been in state X
at time ¢ and remained there during the considered time interval. That is why
the master equation, which results out of this equation, is also called a gain-loss
equation. Subtract Py (t, X') on both sides, divide by At and let At — 0. We then
obtain

dPx(t, X)
ot

= Z(WN(t, X—AX,AX)Py(t, X —AX)~Wy(t, X, AX)Py(t, X))
AX

with transition rates
. 1
Wn(t,X,AX) = £$EPN(t,X,t+At,X + AX)

as a description for the continuous time process with discrete state space. This is the
forward master equation (4.8). For an uncountable set of possible jumps, the sum
could easily be replaced by an integral. The functional form of Wy is determined by
the jump AX. For an alternative notation, one can assign to each possible jump an
index i from a set I and write Wy ;(t, X) = Wy (¢, X, A;) for the corresponding
jump A, resulting in

OPy(t, X)
at

- Z(WN,i(t, X — A)Px(t, X — A;) — Wia(t, X) Py (t, X)).
el

(4.15)

Instead of the extensive variable X we now regard the intensive variable x = X /N.
Consider a sequence of processes with (still discrete) state spaces Cy = N~ Dy
corresponding to a sequence of numbers N which tends to infinity. The master
equation for each process is

Opn (t, x)

.- :Z(wN,i(t,m_aAi)pN(t,m_sAi)_wN,i(t,m)pN(t,m)) (4.16)

iel
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with py(T,z,t,y) = Pn(7,Nzx,t,Ny), wy,(t,z) = Wn,(t,Nx) and
e = N~! In order to approximate the jump process by a diffusion process,
this master equation should be approximated by a Kolmogorov equation. That again
means that the difference terms in (4.16) should be replaced by derivatives with
respect to the components of x. The single summands in (4.16) are not of the form
of difference quotients though, so this step is not immediately admissible. However,
itis always possible to express each of these summands by a collection of difference
quotients of some order. This is proven in Lemma B.3 in Sect. B.1 in the Appendix.
Then, the master equation becomes

\ \

ot i€l kel; i€l kel;

where the notation D,Lk‘ stands for difference operators as introduced in Defini-
tion B.1, the I; are appropriate sets of vectors k = (0,kq,..., k) as used in
Lemma B.3, and |k| = 77, k;. The first component of k is zero because ¢t is
fixed on the right hand side of Eq. (4.17), i.e. there is no differentiation with respect
to the time variable.

It seems feasible now to approximate the difference quotients DLM/E‘M by
proper derivatives as € goes to zero. However, the consideration of ¢ tending to
zero, i.e. N tending to infinity, involves two limiting procedures: First, convergence
of the difference quotients, and second, convergence of the functions py and wy ;.
Accurate mathematical treatment of this limit is elaborate and beyond the purpose
of this chapter. However, in many examples the scaled function w; = N~ twy ;
does not depend on N anymore. We assume that this is the case here (at least
asymptotically), so that Eq. (4.16) equals (if necessary, asymptotically)

dpn(t,x) Z wi(t,x—eA;)pn(t,x—ecA;) — w;(t,x)py (t, )
ot N 5 '

icl

(4.18)

Furthermore, it seems plausible that Eq. (4.17) remains true if p is replaced by its
limit function p (which is assumed to exist), so Eq. (4.17) turns into

1 . t,x
)L +

i€l kel;

Provided that p and the w; are sufficiently often differentiable, it follows that—
regarding the limits of the difference quotients as € tends to zero—the master
equation becomes

op(t, @) _ 3 E|k|1<3'“fk(f’“’ﬂ’(lﬁ’“’)) (4.19)
)l

k1 e Kn
k:(k17~--;kn 8I1 8In
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for some finite set of differentiable functions fx, k € INj. Assume that the
derivatives are bounded. After restriction to terms up to order O(¢), i.e. ignoring
smaller terms with |k| > 3, Eq. (4.19) can then be rewritten as

op(t,x) _ z": (i (z, t)p(t, )] 1 z": Yik(x, t)p(t, )]

— 4.2
ot oz ToN Dz 0z, , (420)

j=1 j k=1

where p; and X with j,k = 1,...,n are the components of a vector p and a
matrix Y. These can be determined according to Algorithm B.1 and Example B.1 in
the Appendix. In some special cases, there are also explicit formulas for g and X—
see for instance Example B.2.

Heuristically, the space-continuous limit of the initial jump process is described
by Eq.(4.20). That is the forward diffusion Eq.(4.7) if X' is positive definite.
This equation corresponds to a diffusion process with drift vector p and diffusion
matrix X'/N, i.e. the intensive Markov jump process can be approximated by a
diffusion satisfying the SDE

da; = p(x, t)dt + \/LN o(xt,t)dB:, @y, = X0,
where o is a square root of X7, i.e. X' = oo’. The matrix o is not necessarily unique
as already discussed on p. 40.

Strictly speaking, since the Kolmogorov equation has been obtained using
heuristic arguments, the Lipschitz continuity of p and o needs to be checked at this
point in order to ensure the existence of a solution to the above SDE (cf. Sect. 3.2.3).
Note that such a solution is an approximation and not a limit as the system size
parameter [V is still part of the diffusion matrix.

The expansion of the backward master equation can be performed similarly and
is a special case of the approximation of the infinitesimal generator considered in
the next section.

Example 4.2. Recall the SI model from Example 4.1 on p. 59. The stochastic
process counting the absolute number S of susceptibles in a population of
size N is described by the master equation (4.9). Now consider the fraction
s = S/N of susceptible individuals and define &« = AN. Let py(t, s) denote
the transition probability of the according intensive process, wn,1(t,s) =
Wy (t,Ns,—1) = Nas(l — s) the transition rate and wy(¢,s) = as(l — s)
the scaled transition rate, i.e. wy = Nwj. Then the master equation of the intensive
jump process reads

Opn(t,s)  wi(t,s+e)pn(t,s+e) —wi(t, s)pn(t,s)

ot € ’

where ¢ = N 1. This corresponds to Eq. (4.18) above. The right hand side of the
master equation is already of the form of a difference quotient with respect to a
fixed vector (-, ),
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3pN(t, S) B D(lo)l)’7(»7g)’ (wl : pN)(t, 5)

o 5 '

The dot in the vector (-, )" of small parameters means that it is needless to fix its

first component as no derivative with respect to the first argument of w; - pn

is considered. According to Example B.1, the above quotient should not be
approximated by (9/9s)(wy - p)(t, s) but by Formula (B.7), i.e.

8p(t7 S) _ 8(U)l ) p)(t, S) + E 82(11)1 p)(tv S)

ot ds 2 ds? ’

4.21)

where py has been replaced by its limit function p. This is the Kolmogorov forward
equation that has already been stated by Eq.(4.13) for the extensive process.
The Kolmogorov equation (4.21) corresponds to a diffusion process with drift
w(s,t) = —wi(t,s) = —as(l — s) and diffusion N~1X(s,t) = ew;(t,s) =
as(1 — s)/N, i.e. to the solution of the SDE

1
dSt = —ast(l — St)dt + \/_N \/ ast(l — St)dBt (422)
with an appropriate initial value. For N — oo, (4.21) and (4.22) reduce to

Ip(t,s) _ (w1 -p)(t;s)

ot 0s

and
ds; = —asi(1 — s¢)dt.

4.3.2 Convergence of the Infinitesimal Generator

In this method, we aim to approximate the infinitesimal generator G of the diffusion
approximation by the limit of the infinitesimal generator G of the intensive jump
process & = (T)i>1,. The generator G allows us to directly read out the drift
vector and diffusion matrix of a corresponding diffusion approximation as seen in
Sect. 3.2.9. This idea follows the line of the very theoretical work of Kurtz (1981),
where the weak convergence of sequences of processes is related to the convergence
of corresponding generators as characterising semigroups. For better applicability,
this subsection presents it in a constructive form.

Let f : C x T'— R be a measurable twice continuously differentiable function,
where C is the state space of the approximating diffusion process and 7" is the time
set. Note that the state space Cy of « is a subset of C. The infinitesimal generator
of x is defined as

1
Gnf(u,t) = iiﬁ}) E]EN(f(mHAt,t—l- At) — f(u,t)‘wt = u) (4.23)
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foru € Cy and t € T, where Ex denotes the expectation with respect to the
transition probability pn of . Now proceed as for the approximation of the master
equation in Sect. 4.3.1: Label each possible jump (now including the jump of length
zero) with an index ¢ from an eligible set I and define

b, AL, ute A,
wi(t,u)zw(t,u,Ai)zN_le(t,u,Ai)ziigloN_l ey (tw o uted)

)

where it is again assumed that the transition rate w does not depend on N. For
e = N1, the generator (4.23) agrees with

1
lim ;(f(u—i-sAi,t—i-At) — fu,t))pn (tu,t + At,u+ e A;)
1
= lim S (fu+tedit+ At) - f(u+ed,t)

iel
—i—f(u—l—aAi,t) — f(u,t))pN(t,u,t—i—At,u—i—aAi)

_ Z Of(u+cA;,t)

5 iltr&p]v(t,u,t—i—At,u—i—aAi)

icl

f(u + aAi,t)—f(u, t)
+ Z w;(t,u) . :
el
Note that lima o pn(t,u,t + At,u + £A;) equals 1 if eA; = 0 and zero
otherwise, i.e.

of (u,t) flu+edt)—f(u,t)
icl

For each i, expand f(u + c¢A;,t) — f(u,t) as in Sect.4.3.1 (or Sect.B.1,

respectively) and consider the resulting difference quotients as ¢ tends to zero. Then

Oy f(u,t) = w + Z glkl-1 <Z wi(t,u)> M
k)

k1 kn
b Ouy Ouyy

for a finite number of vectors k € INj and appropriate sets I, C I. Assume that
these derivatives are bounded and neglect all terms of order higher than O(e). The
result can be taken as an approximation of the infinitesimal generator G and in that
case attains the form

5 n P n 82
Gf(u,t) = % + Zuj(uvt)%;t) + % > Zinl(u.t) 51{,-(;1;?

j=1 < jk=1
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ie. 9

_ B
As in the preceding Sect. 4.3.1, there are no explicit formulas for gt = (14;)=1,...n
and ¥ = (X)) k=1, n, but this book provides a constructive algorithm for

their derivation by Algorithm B.1 in Sect.B.1 in the Appendix. If X' is positive
definite, Eﬁ_’ =N is the Kolmogorov backward operator from Sect. 3.2.8 with drift
and diffusion matrix X'/N. This generator can be associated to the It6 diffusion
approximation

1
dx; = p(xy, t)dt + —= o (x,t)dB:, xt, = o,

VN

where o is a square root of /.

Under regularity conditions, the obtained g and X' agree with those from
Sect.4.3.1. The same is true for the results from the following sections. Differences
and similarities are discussed in the conclusion in Sect. 4.6.

Example 4.3. Consider again the process describing the fractions of susceptibles
during an epidemic which evolves according to the SI model. With the notation
from Example 4.2, the infinitesimal generator Gy of this process fulfils

gnf(s,t) = @ —i—wl(t,s)f(s _5712—f(3,t)

for a measurable twice continuously differentiable function f : [0,1] x Ry — R.
The difference f(s —e,t) — f(s,t) can be written as D(ll,o)',(—a,»)/f(sv t) with the
notation from Definition B.1. As before, the dot in the subscript indicates that the
respective argument does not have to be specified here. With the approximation
rule (B.7), one obtains

S s 2 s

where G denotes the infinitesimal generator of the limiting space-continuous
process. This generator agrees with the Kolmogorov backward operator with
drift yu(s,t) = —w1(t,s) and diffusion N='X(s,t) = ecw;(t,s). This results in
the same diffusion approximation as in Example 4.2.

4.3.3 Langevin Approach

In the Langevin approach we postulate rather than derive that the process X can
be represented by a diffusion approximation. It should however be ensured that
this postulation is justifiable in the sense that occurring jumps of the sample paths
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are sufficiently small. Therefore consider again the scaled process * = X /N and
require that it fulfils the 1t6 SDE

1
d:ct = ,U/(.’Bt, t)dt + \/_N O'(.’I}t, t)dBt y T, = T0- (425)
Equation (4.25) is also referred to as Langevin equation, and d B, is called Gaussian
Langevin force in this context. The original way to obtain the coefficients p and o is
as follows (see e.g. van Kampen 1981b, 1997, Chap. 9): The deterministic behaviour
of x is often known by the macroscopic equation (or phenomenological law)

dEz; = fi(Ex,, t)dt (4.26)

for some function gz. The drift function of (4.25) is then set to be identical with g,
and the diffusion coefficient is chosen such that it appropriately represents the
fluctuations of the trajectories around the deterministic course. On the other hand,
the master equation yields the exact cohesion

dEx; = Eu (:Bt, t) dt 4.27)
with

.1
p(u,t) = lm B (@oyar — x| T = u)
for u € Cy (van Kampen, 1997, Chap. 5.8). For nonlinear p, the terms p(Ex;,t)
and Ep (¢, t) do not coincide. To be more precise, expanding pu(+, t) around Eax;
in a Taylor series and then taking expectations on both sides yields

1
Ep(z¢,t) = p(Ex,, t)+§ p’ (Baxy, t)-E((x;—Exy)(z:—Eaxy) )+ ..., (4.28)

where the prime denotes differentiation with respect to the state variable. This means
that Ep(ay, t) and p(Exs, t) might differ by a term which is of the same order
as the fluctuations. If one is only interested in the macroscopic behaviour of z,
these additional terms are neglected anyway. If one however takes fluctuations into
account, identification of g with g might result in a wrong diffusion coefficient.
Figure 4.3 exemplarily displays the deviation between the determinstic course
and the expectation of the stochastic course of a susceptible—infected epidemic.
A detailed overview of difficulties arising from the above inconsistency and the
attempts of different authors to correct for this has been given by van Kampen
(1965); see also Hinggi (1982) or the example in Sect. 4.6.

Example 4.4. Once more, turn to the epidemic SI model and consider the process
that counts the absolute numbers of susceptible individuals. The following formulas
allow a direct comparison of the deterministic process S and the expectation of the
stochastic process S. These are taken from Renshaw (1991, Chap. 10), who again
refers to Haskey (1954).
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Fig. 4.3 Comparison of the
deterministic course S(t)
(solid line) and stochastic
mean course ES(t) (dashed
line) of an epidemic
following the ST model.
Displayed are the numbers of
susceptibles plotted against
time. The population size
equals N = 11 with one
infected individual at time O,
and the infection rate

is A = 1. The explicit
formulas for S(¢) and ES(t) 2 1
are shown in Example 4.4. As
suspected from Eq. (4.28), the
two curves do not coincide

—— deterministic course
10 + - --- stochastic mean course

fraction of susceptibles

time t

In the deterministic setting, the number S(¢) of susceptibles at time ¢ can be
modelled through the ODE

dS(t) = —=AS(t) (N — S(t))dt ,S(0)=N —1, (4.29)

assuming a continuous state space. This representation corresponds to Eq. (4.26)
with - - -
A(S(),£) = —AS(t) (N = S(2)).

The explicit solution of the differential equation (4.29) is given by

N(N —1)

N — 1+ exp(NXt) (4.30)

S(t) =

for all ¢ € Ry. The stochastic course of the epidemic, on the other hand, is best
expressed via the master equation

dPx(t,S)
at

for S = 0,1,..., N — 1, where Py(t,.S) denotes the probability that there are .S
susceptibles at time ¢ € Ry given that there were N — 1 susceptibles at time 0. This
has already been stated in Eq. (4.9) on p. 60. For even N — 1, the expected number
of susceptible individuals at time ¢ is then explicitly given by

= AS+1)(N =8 —1)Px(t,S + 1) — AS(N — S)Py(t, S)

ES(t)
S N exn(—Ni(N—i N—j—1 4.31)
=% (N(;);j‘i(l)?(]j(]jli)t) (N=2j)*M+2—(N=2j) 3 % .
i=1 k=j
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An explicit representation of the function p in Eq.(4.27) is not directly available
for general ¢ € Ro. However, graphical analysis is possible: Fig. 4.3 compares the
graph of the deterministic variable S(t) in Eq. (4.30) with the expectation ES(#) in
Formula (4.31) for N = 11 and A\ = 1. The discrepancy is considerable. This is due
to the deviation shown in Eq. (4.28).

An improved approach is the following one (see e.g. Walsh 1981; Allen 2003;
Lande et al. 2003): From the definition of diffusion processes (see Sect. 3.2.5) one
has

1
pu,t) = ilffh Z E (EBH_At —x ‘ T, = u) (4.32)

N7'3(u,t) = iitrfo E E ((CBH_At — @) (Tt — x) ‘ Ty = u) (4.33)

1
= iltIfOZCOV (@iyar — ’ T =u),

where X = oo’. As in Sect.4.3.1, assume that there is a countable set of possible
transitions for the process X causing jumps A, € Z"—i.e. jumps of sizes A; /N
for the process x—, where ¢ € I for some index set /. Then, consulting again the
transition rates wy ;(t, ) = Wx(t, Nz, A;) from the previous sections, (4.32)
and (4.33) arise as

=N wnlt,u)A;, (4.34)
el
—1 _ -2 . Al
N7'Z(u,t) = N2> wni(t, u) A AL (4.35)
el

This result can also be illustrated as follows (see e.g. Golightly and Wilkinson 2005,
2006, 2010): The transition rates wy ; represent the hazards of the respective events
to occur. Hence, if the current state of & at time ¢ is w and all transitions happen
independently of each other, the waiting time until the occurrence of the next event
of type ¢ is exponentially distributed with rate wy ;(t, ). As a consequence, the
number Z; of type 4 events within the small time interval (¢,¢ + At] is Poisson
distributed with rate wy ;(¢, u) At. Hence,

il _ -1
H(u7t)_£tlﬁ) Z]E (Z;N7'Aj|lxy = u) ;w]\“tu i
N X(u,t) = Altrilo ZZ Cov (Z; N7 Aj|lzi=u) = N_2EZI wy i (t, u)A; AL

Note that in this approach the consideration of N tending to infinity entered only
in the assumption that jumps are sufficiently small. In most cases, the functions



4.3 Approximation Methods 75

N~'w ~,; converge to bounded functions w; which do not depend on N. In the
limit, we have then established a drift vector and diffusion matrix of order O(1)
and O(N 1), respectively.

The Langevin approach has been applied in numerous fields such as finance
(Bouchaud and Cont 1998), genetics (Tian et al. 2007), systems biology (Golightly
and Wilkinson 2005, 2006, 2008), physics (Ramshaw 1985; Kleinhans et al. 2005;
Pierobon et al. 2005; Seifert 2008; Song et al. 2008) and medicine (Capasso and
Morale 2009). Be aware that some of these authors also use general instead of
Gaussian Langevin forces.

Example 4.5. In the SI model, the only possible jump is A; = —1 with according
transition rate wy 1 (¢, s) = Nas(1 — s); this has been determined in Example 4.1
on p. 59. The drift and diffusion of an according diffusion approximation follow
immediately with the above formulas (4.34) and (4.35) as

w(s, t) = N twni(t,8) A1 = —as(l — s),
N7'%(s,t) = N 2wy (t,5)A? = as(1 — s)/N.

This approximation agrees again with those from the previous examples.

4.3.4 Kramers-Moyal Expansion

This section introduces another, widely used approach to approximate the forward
master equation

Opn (t, )

o = Z(wN(t, x—cA, Apy(t,x—eA) —wn(t,z, A)pn(t, m))

A

for the transition probability py of the process = X /N, where the sum is again
taken over all possible jumps A = (Aq,..., A,) of the trajectories of X, and
e = N~ Expansionof wy (-, —cA, - )pn (-, & —cA) in a Taylor series around
yields

Opn (t, x)
ot
- - - (4.36)
= - (_E)m_l Tl e S e am,k(ta m)pN (tv :E)
202 \Ue) oo
with

K ={k=(ki,.... ko) € Ng||k| =m} (4.37)
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and the Kramers-Moyal moments

n

amk(t,w)zz HA? N~ wy (t,x, A) (4.38)
A \j-1

for all m € INy. Equation (4.36) is called Kramers-Moyal expansion as it has
first been derived by Kramers (1940) and further been developed by Moyal (1949,
Chap. 8). Note that the derivatives of p with respect to state variables are formally
not defined as py is a discrete probability measure. However, as already elucidated
in Sect. 4.2, the above expansion is to be seen as a heuristic approximation of the
master equation as the system size tends to infinity, and hence the notation is left
imprecise in this respect.

Terminating the right hand side of (4.36) after m = 2 and letting py tend to p
(assuming that this limit exists) results in

Op(t, )
ot

(4.39)

"0 1 0
=- Z R a1, (t, z)p(t, z) + N Z 90z, as, (i.j) (t, z)p(t, x)

=1 1,7=1

with a1 ; = a1 ¢, and a2,(i,j) = 02,e;+e;- In the heuristic framework of this chapter,
this is a description of the continuous state space process, i.e. for

p(x,t) = (a1:(t,@))iz1.n = N> wn(t, @, A)A (4.40)

and positive definite
— _ -1 /
B(x,t) = (a2, (t:@))ij=1,.n = N' D> _wn(t, @, A)AA,  (4.41)
A

Eq. (4.39) is equivalent to representing the process x by the diffusion approximation

da; = p(x, t)dt + \/LN o(xy,t)dB;, ®, = xo,
where o is a square root of .

Pawula’s theorem (Pawula 1967a,b) states that the Kramers-Moyal expansion
either terminates after m = 1 or m = 2, or it contains infinitely many terms.
That leads to the fact that the accuracy of the approximation of the master equation
does not necessarily improve when the truncation is done after some m > 3,
although this might be true in special cases: For example, Risken and Vollmer (1987)
show that the careful inclusion of more than only the first two terms yields better
approximation results for the Poisson process than the truncation after the second
term (compare also with the discussion of the Poisson process on p. 64).



4.3 Approximation Methods 77

The Kramers-Moyal expansion has been applied in various areas such as
physics (Kishida et al. 1976; Robertson et al. 1996; Naert et al. 1997), geophysics
(Strumik and Macek 2008), finance (Karth and Peinke 2003) and infectious disease
epidemiology (Hufnagel et al. 2004). Risken (1984, Chap.4.2) also contains an
analogous Kramers-Moyal backward expansion.

Example 4.6. The formulas (4.40) and (4.41) for the drift and diffusion of an
approximation through the Kramers-Moyal expansion are exactly the same as
Egs. (4.34) and (4.35) in the Langevin approach. Hence, see the previous Exam-
ple 4.5 for the approximation of the SI epidemic process using the Kramers-Moyal
expansion.

4.3.5 Van Kampen Expansion

Equation (4.39) is obtained under the assumption that a,, i is sufficiently small
for m > 3 and large IV, which has explicitly been demanded by Moyal (1949).
However, the smallness of these coefficients is not generally guaranteed. This lack
has been criticised by van Kampen and gave rise to the method in this section—now
known as van Kampen expansion—, where the master equation is systematically
expanded in powers of a small parameter. It has been introduced in van Kampen
(1961), but is more comprehensively described in van Kampen (1965, Chap. 3.D,
1997).

Although the expansion has been applied to multi-dimensional settings (e.g.
Gardiner 1983, Chap. 7.6; van Kampen 1997, Chap. 10.5; Chen and Bokka 2005;
Alonso et al. 2007), it seems that it has not been derived in a general multi-
dimensional framework in the literature. This is considerably more elaborate
than a univariate analysis—as described in Gardiner (1983, p.266): “This is so
complicated that it will not be explicitly derived here.” The following paragraphs
develop the van Kampen expansion for multi-dimensional processes.

As before, let Py be the transition probability function of the extensive vari-
able X. Define ¢(t) = (¢1(¢),...,dn(t))" with ¢(tg) = xo as the solution
of an ordinary differential equation describing the dynamics of the intensive
variable € = X /N deterministically in a sense that is specified more precisely
in Eq. (4.53) below. The probability function Py (¢, X) is peaked around N ¢(t)
with width proportional to N 2. In order to ease this dependence on N, introduce
z=(z1,...,2,) as the time-dependent transformation

2= X No()
N2

with probability function 7 satisfying

Pyn(t,X) = Pn(t,Np(t) + N2z) = 7n(t, 2). (4.42)
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Equating  the  total  differentials  with  respect to time, i.e.
dPy(t, X)/dt=dry(t, z)/dt, yields

8PN(t,X) - aﬂN(t,Z) _ % - d(b](t) aFN(t,Z)
o 0ot N Cdt 0z; (443)
j=1
as
i 10 (4.44)

dt dt

for all j. Note that the symbol d is used for the total differential and O for partial
derivatives (cf. the notation tables on pp. xvii). The comments from Sect. 4.3.4 on
derivatives of discrete probability functions apply here as well. Assume that there
are functions @; for | € INy, which do not depend on N, and a positive function f
such that

Wy (t,X,A)=f(N)Y N7'&, (t, N7'X,A). (4.45)
=0

The factor f(IV) represents the fact that large systems evolve slowlier than small
systems. For most cases such as the examples in Chap. 5 it would actually suffice to
consider a function @ with Wy (t, X, A) = N&(t, Nt X, A) (as has been done
in the methods in Sects. 4.3.1-4.3.4), but the above setting leaves the method more
general. As before, the transition probability Py fulfils the master equation

P (t, X

O LX) S (Wi, X~ A, A) Py (1, X~ 8) ~ W (1. X, A)Px(t, X)),
A

where the sum is taken over all possible jumps of size A = (4y,...,4,)".

With (4.45), this equation now becomes

o0

LX) _ pny zvl[@l(t,XT‘A,A)PN(t,X—A)
A =0

(4.46)

X
_ @ <t, s A) Py (t, X)]
Using (4.42) and (4.43), this expression can be written in terms of 7 as

orn(t, z) NE - do;(t) Orn(t, 2z)
1 NEY W oz,

N)Zizv l[ ( 4N~ 2(z—N"2A), A)WN(t,z—N*%A)
A

=0
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—, <t7¢(t) Y N2z A) NG z)]

Mg

N™ l[ (z—N m) (z)] (4.47)

0%

Il
<)

with ¥y(z) = &(t, ¢(t) + N~2z, A)mn(t, z) for all | € INy and fixed A and .
Taylor expansion of ¥;(z — N~2 A) around z yields

o n kj m
¥ (z— N =3 (-)"NTF Y Hjﬂ L(Z)n (4.48)

o %
m=0 ke, \j=1 7" 0z Oz,

with /C,,, defined as in (4.37). The combination of (4.47) and (4.48) yields

aﬂ'N(t,Z) % - d¢J(t) aﬂ'N(t,Z)
o N 2 dt 0z

= f(N)Z([% (Z—N%A) % (Z)}
A

+N*1{u71 (z —N’%A) - (z)} +O(N7?)

i, O 1 e %W,
— s S([N 4 e VLS4 e
j=1k=

Jj=1

+o(N |+ Nt o(NH)] +o(v2),

This measurement in powers of N is possible due to (4.45) and because 7 and
the @; are assumed not to be too irregular. Similarly to (4.38), define

ay ;(t, z) ZA @0 t z, A) as,(;, k) ZA Akéo(t z, A) (4.49)

(often called first and second jump moments) for all j,k = 1,...,n and resubsti-
tute ¥;(z) for &;(t, p(t) + N~'/2z, A)ry(t, z). We then obtain

athz d(b7 athz)
- Z dt 0z;

= f(V)(-N" %Za%a S () + N h2)my (1, 2)

+%N IZZa az(ak(f ¢(t) + N7 22)my (1, 2) + O(N~ ))

Jj=1 k=1
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Rescale the time such that N ! f(N)t = s, i.e. apply dmy /ds = (dwn /dt)-(dt/ds).
Then

0s > s e
Jj=1
PR
- S a;(s,0(s) + N7 22)mn (s, 2)
j=1 9%
+lii 0 9 k(S ¢(S)+N 2z)7TN(S z)+O(N,§)
2 i 970z (3RS |

Taylor expansion of dy;(s,@(s) + N~Y2z) and ay (jx)(s, d(s) + N~1/%z2)
around ¢(s) yields

N (s, z) _ N% i dej(s) Orn(s, z) (4.50)

=-N3Y i_ [al,j (s,p(s)) +N~2 Zziagf;(s,qs(s)) 4 o(Nfl)]nN(s,z) (4.51)

(42,010 (5, 8(5) + O(N ") [ my (5,2) + O(NTF),  (4.52)

()

where a; ’; denotes the first derivative of a1 ; with respect to the ith component of

the state Varlable. The terms of order N> cancel if

"L do;(s) 87TN R aﬁN(s,z)
Z (is _; 0z;

j=1

ie.

Lol 1,5,916) @.53)

s

forall j = 1,...,n. This is assumed to be fulfilled by definition of ¢. Furthermore,
¢ is supposed to be the unique stable solution of (4.53), and a, ; shall fulfil certain
regularity conditions such that all solutions of (4.53) converge to ¢ fast enough (van
Kampen 1997, Chap. 10.3). As N tends to infinity, only the terms of order O(1)
in (4.50) to (4.52) remain. These are

4.54)
~ (7 a 7 82 (
== 3 (o) 2L 57 s, T

= 0z;0zy,
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which is a linear forward diffusion equation for 7y, i.e. the drift term is linear
and the diffusion term constant. The solution of such an equation is a Gaussian
density (van Kampen 1997, Chap. 8.6). Presumably, Formula (4.54) remains true
when the probability 7 is replaced by the density 7 of the continuous variable z.
In the following we will show that (4.54) is then equivalent to a diffusion
equation for p(t,x), the transition density of * = ¢(t) + N~/2z, where
both z and « are treated as continuous variables. Equating the total differentials
dp(s,x)/ds = N2dn(s, z)/ds, one obtains

op(s,z) 1 on(s,z) <= On(s, z) dz;
0s =N 0s +Z 0z; ds

Plugging in (4.44), (4.53) and (4.54) with 7w replaced by 7 yields

=} (—ZZ@YQ} (5, p(e)) 72

™

1 n n 827-‘- aﬂ_
i) 2 ) (5, () 2T z) NZaM(s (s) 27(5:2)

0z;0zy, 0z

[alj(s d(s)) + N~ 2 Zzlfzglz (s (;5(3))] (s, z)

i=1

N%Zi[m](s $(s) + N2> zial") (s, () |pls, p(s)+ N 2)  (4.55)
i=1

= 0z;
DS az O [“2 Gk (85 ¢(S))]p(sv¢(s)+N*%z). (4.56)

j=1k=1

N | =

+

The expressions in the square brackets in (4.55) and (4.56) are the first terms of
a Taylor expansion of a1 ;(s,¢(s) + N~V2z) and a (j k) (s, p(s) + N~/22)
around ¢(s). The missing terms can be added since they are of order O(N 1)
and O(N~1/2), respectively, and will vanish anyway in the limit N — occ. We can
hence regard

n 9Qay (s, d)(s)—i—N_%z)w(s, z)
0s 0z;

62(127( ;. (s, &(s) —I—N_%z) (s, 2)
8zj8zk '
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Changing the time scale from s back to ¢ and differentiation with respect to z to
differentiation with respect to x yields

Op(t, x)
ot
4.57)

Zai (t,x)p(t, z) —NZZ 8:ck 2. (L 2)p(t, ).

This is a forward diffusion equation for p(¢, x) with drift

plx,t) = (a1,(t, ) Z@o t,x,A)A (4.58)

and diffusion matrix

N7 3(x,t) = N~ ag,(j) (6, ®))j k=1, = N Z%(t, x, A)AA’ (4.59)
a

if X is positive definite. Thus, heuristically, the process @ approximately follows a
stochastic differential equation

1
do; = p(xy, t)dt + —= o (21, t)dB:, @y, = X0,

VN

withoo' = X.

Van Kampen’s expansion is frequently applied, especially in life sciences, for
instance in molecular and cell biology (Leung 1985; Elf and Ehrenberg 2003;
Paulsson 2004; Sjoberg et al. 2009), microbiology (Hsu and Wang 1987), social
sciences (de la Lama et al. 2006), physics (van Kampen 1961), infectious disease
epidemiology (Chen and Bokka 2005; Alonso et al. 2007) or more generally in
population biology (McKane and Newman 2004; Ferm et al. 2008).

Example 4.7. In the SI model, we have observed that the only possible jump
is Ay = —1 with transition rate Wy (¢, Ns, —1) = wn1(t,s) = Nas(l — s). Van
Kampen’s expansion requires that W can be written in the canonical form (4.45).
This is fulfilled for f(N) = N, &y(t,s,—1) = N lwyi(t,s) = wi(t,s)
and ¢; = O for all [ > 1. The drift and diffusion of an approximation to the intensive
process are given by (4.58) and (4.59). With the above choices, these are

(s, t) = do(t,s,—1)A1 = wi(t, s)A1 = —as(l — s),
N='X(s,t) = N7 '®y(t,s,—1)A? = N"tw; (t,8) A = as(1 — s)/N.

Once more, this resembles the results from the previous examples.
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4.3.6 Other Approaches

A number of further approximation techniques is proposed by different authors,
especially in the physics literature and most often in the context of physical
processes:

Drummond et al. (1981) review quasi-probability methods for transforming mas-
ter equations into generalised diffusion equations. In these approaches, positivity of
the probability or positive-definiteness of the diffusion matrices cannot always be
guaranteed. A prominent example for such a quasiprobability method is the Poisson
representation (Gardiner and Chaturvedi 1977; Chaturvedi and Gardiner 1978)
which expands the probability distribution of the process in Poisson distributions.

Under the assumption of the asymptotic form p(x,t) < exp (Nw(x,t)) for
some function ¢, Kubo et al. (1973) approximate the transition density p by
a Gaussian distribution whose parameters are expressed through the cumulants
of . (In statistical thermodynamics, if the system is in equilibrium, 1 equals the
standardised negative free energy for a unit of the system whose size is determined

by N.)
Walsh (1981) suggests a well-timed diffusion approximation in the sense that
the approximating process X = (X¢):>¢, is a diffusion in which the jump

process X = (X;);>4, can be embedded, and there are stopping times (1}):>0
with ET; = ¢ for all t > 0 such that (X)¢>¢, and (X7, );>s, have the same
distribution. In other words, the sample paths of both processes cover the same
space (in distribution) at the same speed.

A variety of papers is devoted to the problem of processes with special properties
like irreversibility or nonstability. Grabert et al. (1983) suggest a technique for the
derivation of the forward diffusion equation for models which take into account
pressure and temperature fluctuations. The so-obtained drift coefficient differs
from that of the Kramers-Moyal expansion only by O(N 1), but the difference
between the two diffusion matrices is proportional to the deviation from steady
states as measured by a thermodynamic force. Hinggi et al. (1984) show that for
bistable systems the Kramers-Moyal expansion overestimates the transition rates
between deterministically stable states, while the approach by Grabert et al. (1983)
estimates them correctly. Further specialised approximation methods are developed
or reviewed in e.g. Green (1952), Grabert and Green (1979); Grabert et al. (1980),
Hénggi and Jung (1988), Shizgal and Barrett (1989) and Mufioz and Garrido (1994).

4.4 Extensions to Systems with Multiple Size Parameters

Section 4.3 has introduced diffusion approximation methods for systems whose
size is sufficiently described by a single parameter N € IN. In some appli-
cations, however, a more reasonable characterisation is given by an entire set
{N1,...,N4} C N¢, d € N, of system size parameters. An example for such
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an application is the multitype SIR model which will be presented in Sect.5.2,
where N; may stand for the population size of a geographical region labelled .
In these cases, the considered approximation techniques need to be adjusted as
investigated in this section.

As before, consider a pure Markov jump process which in its extensive
form is denoted by X. Let X = (X,...,X))" be a partition of the
state variable such that the vector X; is characterised by the size variable
Nii = 1,...,d. Then x = (N;'X/,...,N;'X/) specifies the respective
intensive jump process where occurring jumps are small if the system sizes are
large. Define the (invertible) diagonal matrix M such that X = M, and let
N = Z?:l N;. If Dg\?) C Z" denotes the state space of the extensive process,
C](\‘,i) = M_IDE\'?) = {M'X|X e Dg\‘,i)} is the state space of the intensive
one. (This notation is used although the sum N naturally does not determine the
individual sizes Ny, ..., Ng unless their ratios are fixed.) Once more, depending on
the context, X and x may interchangeably stand for the whole process or a single
state.

For appropriate I, let {A; |i € I} and {A; |i € I} = {M ' A;|i € I} denote
the sets of nonzero jumps of the extensive and intensive process, respectively. Adopt
the notation for the transition probabilities Py, pn and transition rates Wy ;, wn ;
from Sect. 4.3. Sections 4.4.1-4.4.5 present how the techniques from Sects. 4.3.1-
4.3.5 can be modified. For examples of these approximation procedures, the reader
is referred to Chap. 5.

4.4.1 Convergence of the Master Equation

According to Eq. (4.15), the forward master equation for X reads

OPy(t, X)

= > (Waalt, X = A)Pu(t, X = A;) = Wit X) Pu(t, X) ).

icl

The forward master equation for x is then

(?pNa(;f, x) _ iezl(wzv,i(t, x— A)pn(t,x — Ay) —wni(t, )N (L, cc))

Replace py by its limit function p and assume that there are functions wj
and small but positive §; such that wy,; = 9; Lw; for all i € I. Suppose
that the w; depend on {Ny,..., Ny} only through some statistic 7' for which
T({N1,...,Nq}) = T({cNy,...,cNg}) holds for all ¢ € IN. In other words,
w; does not change for N — oo as long as the proportions between the single
population sizes remain constant. This facilitates the following limiting procedure
between lines (4.61) and (4.62) (compare with the explanation on p. 67). The master
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equation becomes

= Z 5t (wi(t, x— A)p(t,x — A;) —wi(t, z)p(t, :13)) (4.60)

iel

As in Sect.4.3.1, the bracketed terms can be rewritten by sums of difference
operators, resulting in

=36t > Dl wi(t, x)p(t, ) (4.61)

el ki=(0,ki1,....kin)’

e
~3 5! Y e 0 wl( 2)p (k 2 ) 46

el ki=(ki1,--kin) (9 O

where &; = (0,€i1,...,&n) with |g; |7t € {Ny,...,Ng} forall i € I
and £ = 1,...,n. Typically, 6; ! cancels with one of the i, (at least up to a
finite constant) for all . Once more, restrict the master equation to terms up to
order O(max{N; ',..., N;'}). Then, one again arrives at

i ,ujwt (t, )] +1i [Z(z, t)p(t, )]

= € Jh=1 817](926k

o |

for some vector gt = (j1;)j—1....n and matrix X = (Zjx);x=1... . These can
be derived by application of Algorithm B.1 in Sect.B.1 in the Appendix. If x
is positive definite, these are the drift vector and diffusion matrix of the diffusion
process approximating the jump process x.

4.4.2 Convergence of the Infinitesimal Generator

In analogy to Eq.(4.24), for the infinitesimal generator of the intensive jump
process « in the new setting one obtains

Gl t) = LD S tw) (1 + Ant) — fla)

iel

where f : C x T — R is a measurable twice continuously differentiable function,
C the continuous state space of the diffusion approximation, z € Candt € T.Ina
similar manner as above,
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G f(a.t) = B0 S v 2) (f(@+ At) - o)
i€l
) + 3767wy (t ) 3 Dl flat) | 4.63)
el ki:(ki,17~~~;ki,n70)

withe; = (€;1,...,€in,0) and |g; x| 7! € {N1,..., Ng}. Hence,

kis ks kil
gNN——i—E 6 wi(t, x) E €i1 " Eim .

ki1 kin
iel ki=(Ki 1, kin) Oxq" -+ Oy

Again, take out ¢, ! for one of the giks k=1,...,n, and neglect all terms of order
higher than O(max{N;',..., N;'}). Then, Gy can be approximated by

2

+Zujwt -+ 5 ZE;kmt)a 83Ik

for a vector g = (p4;);=1,... » and matrix y = (Ejk)J k=1,....n. Once again, these

.....

can be determined using Algorithm B.1. For positive definite 2, this operator can
be seen as the generator of the diffusion approximation, i.e. the drift vector and
diffusion matrix are given by p and X, respectively.

4.4.3 Langevin Approach

Suppose the intensive jump process @ can be approximated by the solution of an
SDE with drift vector o and diffusion matrix Y. In the Langevin approach, the
formulas for pt and X' immediately follow from their definitions

1
[,I/(U t) = gltI\ILlOZE (wt+At — Iy |.’1}t = ’LL)
- 1

X(u,t) = iltrilo ZE ((CBH_At — @) (Trp At — Tt) ‘iltt = u)

for u € C (compare with Egs. (4.32) and (4.33)), i.e.
)= wnilt,u)A,,
el

iel

Note that in this formula the A;, i € I, denote the jumps of the intensive jump
process.
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4.4.4 Kramers-Moyal Expansion

In the Kramers-Moyal expansion, the master equation

3PN8(:7 :E) — Z(U)N,i(t, xTr — Al)pj\[(t, €Tr — Al) — 11)]\[71-(157 m)pN(t, m))

iel

of the intensive jump process x is approximated by a Taylor expansion in orders of
nonlinearity. As before, let A; = (AZ Lo A in) s € I, denote the jumps of x.
By expansion of wy (-, £ — A;)pn (-, Al) around a one obtains

—Ai )k o
k (9fo1 o gl

LIS S DS

iel m=1kek,, \j=

wN,i(ta w)pN(tu CE),

[Jam b
—

where for all m € INg
Ky = {k: (kl,...,kn)’elNgHM :m}.

Replace py by its limit p and terminate the above expansion after m = 2. Then

ZZAJ@ w.i(t, ®)p(t, x)

Jj=1 el

1 « o 0?
+§ Z ZAz i A g MMN,i(tvm)p(tvm)-

That means, the forward master equation can be approximated by

"0y, p(t)] 1 O Sule plt, )]
_Z j * 2 Z Ox;0xy,

with

and
2($,t) = (Ejk)j)kzl)m’n = ZwN)i(t,ilt)AiAli.

For positive definite X, this is a forward diffusion equation leading to a diffusion
approximation with drift vector g and diffusion matrix 3.
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4.4.5 Van Kampen Expansion

Like van Kampen’s expansion in the context of one system size parameter /N, its
extension to a set {N1,..., Ny} of system sizes considers the fluctuations of the
process x around a deterministic process ¢(t) = (¢1(t), ..., ¢n(t))" describing the
macroscopic behaviour of .

Let M; stand for the jth main diagonal element of the diagonal matrix M,
that is X; = M;x; for j = 1,...,n. In the multiple size parameter setting, the
probability function Py (¢, X) is peaked around M ¢(¢) with width proportional

to M 71 /% in the jth component. Hence, consider the time-dependent transformation

z=(21,...,2n) :M%(w—qb(t))
and the probability function 7 of z, which fulfils
Py(t, X) = Py (t, M(t) + M>z) = ny(t, 2).

Analogously to the procedure in Sect.4.3.5, equate the total differentials of Py
and 7y to obtain

8PN(t,X) 871']\[ t, Z - 1 dgf)J( ) 871']\[(15,,2)
ot ZM dt (92]' '

Jj=1

For the main diagonal elements of M one has M; € {N,..., Ny} for all j. For
v=1,...,d, define

Jo={ue{l,...,n}| M, =N,}. (4.64)

Without loss of generality, let N; # N, for j # k. Then Ji,..., Jq is a partition
of {1,...,n},i.e. a division into pairwise disjoint sets. Hence

OPy(t, X) _ awN £,2) = i dou(t) O (t, 2)

ot Z N Z dt Dz
u€Jy
corresponding to Eq. (4.43) in the previous considerations. Recall from p. 84 the
notation {A; |7 € I} for the set of all nonzero jumps of the extensive variable X .
In order to appropriately modify the canonical form (4.45), assume that there are
functions @;, | € Ny, and a partition [y, ...,I; of I such that for all ¢ € I and
j=1,...,d

WN(t,X,Ai):f(Nj)ZN;lgbl (t,M'X,A) ificl;. (4.65)
=0
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Plugging this in into the general form of the forward master equation

aPNgf , X) = (Wn(t,X—A;, A)Py(t, X—A;) - Wy (t, X, A)Py(t, X))
i€l

yields

aPNéi,X) =S NS ZN [qsl (L, MY (X—A,), A)) Py (t, X~ A,)
v=1 u€l, 1=0

—y(t, M~ X, A,) Py (t, X)}

as the equivalent of Eq. (4.46). Follow the transformations on pp. 78—80 to arrive at
an expression corresponding to (4.50)—(4.52). That is

N (s, z) d 1 d¢y(s) Onn(s, 2z)
o) 3ok 3 d6nl0) dnne (4.66)
d n
= —Z N?Z %{al jow (8, 0(8)) +N, 3 Zz%a1 G0 (8 @(8)) +O(N;l)} N (s, z) (4.67)
v=1 j=1 J i=1
1 IS & 9 -3 . -3
o33N o A (5 B() HO (N 2) | (5,2)+ > O(N, %), (4.68)
2 o= 020z, v=1
where
a1,5,0(t, 2)= ZAu]@o(tz A ) and  @s (j k)0 ZAu]Auk@o( z,Au)

u€ly u€ly

forj,k=1,....,n,v=1,....,dand A, = (Ay1,...,Aun), andagz denotes
the first derlvatlve of a1 w1th respect to the ¢th component of the state variable.
Furthermore, let

d
alj t Z ZA’LL]@O = A Z 1,5,v
uel v=1

for j = 1,...,n (compare with (4.49)). The terms of order Nv1 /2 in lines (4.66)—
(4.68) cancel if

dou(s) BWN (s, 2) 87TN(s,z)
> P Zald, e (4.69)
ueJy, J
forallv =1,...,d. Assume

a1,4,0(t,z) =0 ifj & J,. (4.70)
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This trivially implies

a150(t,z) =a1;(t,z) ifje Jy,
which means that the jumps A, with v € I, are sufficient to determine the first

jump moment of the jth component of X if 5 € J,. Under this assumption,
condition (4.69) turns into

dou(s) 87TN (s, 2) orn (s, z)
Z ds Z Gl u, v ) 8—%7
u€J, u€J,

ie.
depy ()
ds
and that in turn is equivalent to

= a1 yo(s,¢(s)) forallu € J,,

depy ()

s =a1u(s,@(s)) forallu=1,...,n.

This requirement again is fulfilled due to the definition of ¢(¢); compare with
Eq. (4.53). Hence, the expression (4.66)—(4.68) reduces to

onn(s,z) " _(9) 0z; N (8, 2)
9. = - | ay ;o (8, @(s)) T

v=1 1,7=1

1 - 0’1 (s, z)
+ ij%_:l Ao, (j,k),0 (5 D(8)) 0200

as N, tends to infinity for all v = 1, ..., d. Like Eq. (4.54), this is a linear forward
diffusion equation for 7. As shown on pp. 81-82, one can (heuristically) transform
it to a forward diffusion equation for p, which is the density of the intended diffusion
approximation process. The result is, according to (4.57),

d U
= Z Z 8_{53 Q15,0 (t, )p(t, x)

v=1 j=1

Ao (i t t
o 25 )

j=1k=1

Overall, provided that the diffusion matrix is positive definite, the diffusion approx-
imation can be described by an SDE with drift vector
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p(x,t)= <Z 1,5, (t, @) > = (a1, (t, x) —Z(bo (t,x, Au)A, (4.71)
J

=1,...,n uel

and diffusion matrix

v=1

d d
S(x,t) = (Z N;laz,(_,,k.),v(t,x)) =>"N, Z Do(t, z, Ay)A AL (4.72)
g, k=1 n uel

This result holds under the assumption of the existence of a canonical form (4.65),
condition (4.70) and further rather weak regularity conditions as in Sect. 4.3.5.

4.5 Choice of Stochastic Integral

Sections 4.3 and 4.4 introduced several techniques for the approximation of Markov
jump processes by solutions of stochastic differential equations. An immediate issue
in this context is the question of appropriateness of different stochastic calculi
with the Itd and Stratonovich calculus as their most prominent representatives,
see Sect.3.2.2. As a rule of thumb, one usually chooses the It6 interpretation
as an appropriate model if the random force is assumed to be exactly Gaussian
white noise. If the white noise process is only an idealisation, the Stratonovich
representation should be employed (Arnold 1973, Chap. 10.3).

In applications in life sciences, the memory of a system is usually short
but nonzero. In those cases the noise is called coloured, and the Stratonovich
interpretation is the suitable choice of integral. On the other hand, in some models
the underlying dynamics might be best described in discrete time with discrete
but uncorrelated noise forces, for example in population dynamics if successive
generations do not overlap in time. The white noise in the continuous model can
then be considered as exact, and the It6 calculus applies (Horsthemke and Lefever
1984, Chap. 5.4; Kloeden and Platen 1999, Chap. 6.1).

An argument supporting the Stratonovich interpretation is the following Wong-
Zakai theorem (Wong and Zakai 1965): Let B™ = (B\");>,,, n € NN, be a
sequence of processes with continuous state space, bounded variation, piecewise
continuous derivatives and Brownian motion as almost surely uniform limit as n
tends to infinity. Then the solutions of the random differential equations

ax" = p(XM dt + o (XM, 0)dBM" X = a,

converge sample-pathwise uniformly to the solution of the Stratonovich SDE with
(sufficiently regular) drift p, diffusion coefficient o and initial value x(. In the
context of approximating a given process by the solution of a stochastic differential
equation, the Stratonovich interpretation hence seems more natural.
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In the present chapter, the choice of calculus is superfluous as the interpretation is
already fixed by construction: The approaches in Sects. 4.3.1, 4.3.2,4.3.4 and 4.3.5
lead to forward or backward diffusion equations of the It type; compare with
Sect. 3.2.8. In Sect. 4.3.3, the interpretation is determined by the assumption that the
process satisfies an [td SDE. The same holds for the extended methods in Sect. 4.4.

Howsoever, both the Itd and the Stratonovich interpretations are mathematically
correct. Processes of these two types generally differ in their drifts but coincide in
their random fluctuations; transformation from one to the other is straightforward
(see also Sect.3.2.2). Hence, the true question is not which calculus to follow
but how to correctly determine the drift coefficient of the approximating process.
Braumann (2007) illustrates this on the example of modelling random population
growth. Results should be evaluated by comparison of analytical insight with
experimental data. See van Kampen (1981a) for further discussion.

4.6 Discussion and Conclusion

This chapter motivates and explains the approximate representation of pure Markov
jump processes by ordinary or stochastic differential equations: A jump process X
occurs whenever numbers of countable objects are observed, which is frequently
the case in life sciences applications such as genetics, systems biology, population
dynamics or physics. Suppose the size of a system can satisfyingly be described by
asingle parameter N. If N is comparatively large, a state-continuous approximation
for the evolution of the intensive process x = X /NN seems appropriate. Section 4.2
lists the benefits arising from such an approximation in detail. The model then
changes its characteristics as follows: In the original discrete state space model,
the probability for the process to stay in a given state during a short time interval
of length At tends to one as At approaches zero. In the continuous state space
approximation, on the other hand, this probability tends to zero.

Section 4.1 reviews the characteristics of jump processes, diffusions and deter-
ministic processes with continuous sample paths, as the latter two are the solutions
to the approximating differential equations. The three types of processes correspond
to models on a microscopic, mesoscopic and macroscopic level, respectively.
The macroscopic features of a process are determined by the average of all
particles of the system. The mesoscopic description additionally takes into account
internal fluctuations which are caused by the discrete nature of matter. These
are small when the system is large. A microscopic model is exact but usually
too expensive to work with except for small systems. Indisputably, the stochastic
(mesoscopic) approximation is more realistic than the deterministic (macroscopic)
one; the chapter hence concentrates on the derivation of approximating diffu-
sion processes. A deterministic model is then again an approximation of the
stochastic one.
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The concrete derivation of such a diffusion model, however, is complicated
especially for nonlinear fluctuations and has caused substantial confusion in the
literature as authors obtained different, but all plausible, results for identical
problems. The reason is that nonlinear processes cannot exactly be described by
second order differential equations for their transition densities, i.e. the description
by Kolmogorov equations is generally not free from error (van Kampen 1965).
Under relatively mild regularity conditions, however, approximate descriptions
of jump processes by diffusions are possible, and Sect.4.3 introduces several
approaches to obtain these. The framework is kept heuristic in order to achieve
comprehensibility also for practitioners. The reader interested in more mathematical
detail is referred to the according references in Sect.4.2. In all approaches, one
arrives for the intensive process « at a stochastic differential equation

1
da; = p(xt, t)dt + —= o (a1, t)dB:, @y, = To, (4.73)

VN

with some drift vector p and diffusion matrix N~'X = N~ 'oo’. The Itd lemma
implies
dXt:NdiL‘t, XtOZNiL‘tO,

in accordance with the results of the single algorithms when applied directly to the
extensive process X . The diffusion matrix of (4.73) scales with the inverse system
size, losing ground in large systems. As mentioned before, Eq. (4.73) is a diffusion
approximation rather than a diffusion limit. The latter corresponds to a deterministic
model and can be obtained by ignoring the stochastic part of (4.73).

The results of the approaches in Sect. 4.3 are as follows: In the rearrangement of
the master equation (Sect. 4.3.1) and of the infinitesimal generator (Sect. 4.3.2), the
drift and diffusion matrix are assembled as sums of limits of difference quotients;
explicit formulas for 1 and o are not available except for special cases as in
Example B.2 in the Appendix. However, Algorithm B.1 describes their derivation
for the general case. The two approximation approaches assume that the transition
rate wy of x fulfils

wn(t,x, A) = Nw(t,z, A) (4.74)

for all ¢,  and A and a function w which does not depend on V. This situation
applies, at least approximately, in most examples in life sciences. In the Langevin
approach (Sect.4.3.3) and Kramers-Moyal expansion (Sect.4.3.4),  and X' are
obtained as

pu(x,t) = N1 ZwN(t, x, A)A

A (4.75)
B(x,t)=N"1Y wy(t,z, A)AA,

A

where the sum is over all nonzero jumps A of the extensive jump process X . With
Eq. (4.74) fulfilled, these simplify to
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pla ) => wt,z, A)A
A

X(x,t) = Z w(t,z, A)AA'.
A

Van Kampen’s method (Sect.4.3.5) replaces condition (4.74) by the less restric-
tive canonical form

wn(t,z, A) = f(N)Y N~ (t,z,A) (4.76)
=0

for a positive function f and appropriate functions ¢;. The expansion results in

p(x,t) = Z Po(t,x, A)A
A

(4.77)
Z(x,t) =Y Po(t,z, A)AA.
A

Certainly, there are similarities in the results: The main difference between the
representation of the master equation through difference operators and the Kramers-
Moyal expansion lies in when to perform certain critical large N considerations
which are possible only in a heuristic framework. For example, in the former method
derivatives appear as late as possible, whereas in the Kramers-Moyal expansion
they already form the first step. The same parallels apply for the approximation of
the infinitesimal generator and a Kramers-Moyal backward expansion as contained
in Risken (1984, Chap. 4.2). Example B.2 shows that under certain requirements on
the possible jumps the techniques from Sects. 4.3.1-4.3.4 yield identical results.
Furthermore, if Eq.(4.74) is true, then f(N) = N, & = w and &, = 0
for [ > 1 in (4.76), i.e. van Kampen’s expansion yields the same result as the
Langevin approach and the Kramers-Moyal expansion. However, there are cases
where the outcomes (4.75) and (4.77) differ: Plugging in the canonical form (4.76)
into Formula (4.75) from the Langevin and Kramers-Moyal approach produces

pla,t) = (NN [@0 (t,, A) + N~'®y (t,z, A) + .. ] A
A

(4.78)
Sz t) = (NN Y [@0 (t,z, A) + .. ] AA.
A

Horsthemke and Brenig (1977) cite an example where (4.77) and (4.78) yield
different results: Consider the chemical reactions

®+® 2@, 20 H®+®, ®+®>0
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with rates k1, k2 and k3, where the numbers of particles of types A and B are kept
constant and particles of type C are immediately removed. The de facto transitions
are thus

®+® H®+2:Q0, 202Q®, ®+® 6.

Denote by a and b the fractions of type A and B particles in the system of size V.
The resulting forward diffusion equations for the transition densities p(t,z) for
fractions x of type X particles at time ¢ are

op(t,z) 0 Lo
o — _% (kla—kgl'—k3b)$p(tu‘r)+2]\] Ox2

(kra+kex+ksb)x p(t, )

according to van Kampen, Formula (4.77), and

op(t, x) - _ (/ﬁa — kox — k3b+k—2)xp(t,x)
ot Ox N 4.79)
+ = Lo (kya+koz+ksb)z p(t, x) |
ON 92 1 2 30) T pit,

due to Langevin and Kramers-Moyal, Formula (4.78) (and, by the way, also as a
result of the approximation procedures from Sects. 4.3.1 and 4.3.2). The reason for
this deviation is that the Langevin approach models the fluctuating part of =, whilst
van Kampen considers the fluctuations around the deterministic solution ¢(t). The
above example illustrates that the Formulas (4.75) and (4.77) shall not be applied
uncritically: Detailed analysis of the diffusion equation (4.79) shows that its only
stationary solution is p(t, x) = §(z) with the Dirac delta function d; the state 2 = 0
is an absorbing boundary that is reached in finite time. This result agrees with
the master equation description. Improvident transition to stochastic differential
equations, on the other hand, erroneously suggests fluctuations around the nonzero
stationary state of the macroscopic equation

dx; = (kla — koxy — kgb)xtdt.

In fact, the regularity assumptions for van Kampen’s expansion, which were
mentioned on p. 80, are not fulfilled in the above example, i.e. the method
is not applicable. All other approaches have to be applied with care as well.
See Horsthemke and Brenig (1977) for a more detailed discussion and further
examples. Section 4.3.6 covers some methods which are to be favoured if one
wishes to determine quantities that sensitively depend on the equilibrium properties.
Gitterman and Weiss (1991) however emphasise that no technique can reproduce all
characteristics of the original model.

In the usual case, where the methods from Sects. 4.3.1-4.3.5 are applicable, all
of them are asymptotically equivalent. Differences between the Kramers-Moyal
expansion (4.36) and van Kampen’s expansion occur only when higher moments are
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included in the model; see van Kampen (1997, Chap. 10.6)) for the univariate van
Kampen expansion including higher moments. The representations of the master
equation or infinitesimal generator through difference operators seem appealing
if the forward or backward master equation are given and one does not want to
reproduce the single transition rates W. Otherwise, the Langevin, Kramers-Moyal
and van Kampen approach provide immediate formulas for the drift and diffusion
matrix and are hence more convenient and widely used.

In some applications, the limitation to a single size parameter N does not
suffice to completely characterise the dynamics of a system. Instead, multiple
size parameters Np,..., Ny are applied. As a new result, Sect. 4.4 performs the
adjustment of the methods from Sects. 4.3.1-4.3.5 to the advanced setting.

Immediately involved with the application of stochastic differential equations is
the choice of stochastic integral. Section 4.5 discusses this matter with the plain
conclusion that the application of both the It6 and the Stratonovich interpretation
is correct as long as an analysis of the SDE follows the same calculus as the
approximation procedure.

In any case, the validity of a diffusion approximation should always be judged
by comparison of numerical results from the master equation and the diffusion
approximation model or, if available, by comparison of numerical and analytical
characteristics. This has been done by Ewens (1963), Gillespie (1980), Hayot and
Jayaprakash (2004), Ferm et al. (2008) and Sjoberg et al. (2009). A comparison
between stochastic and deterministic models has been performed by Nasell (2002).
See Grasman and Ludwig (1983) for an investigation of the accuracy of diffusion
approximations.

Diffusion approximations are not always possible; requirements to the original
model are sketched at the beginning of Sect.4.3. See Pollett (2001) for comments
on cases in which diffusion models are inappropriate as certain assumptions are
not fulfilled. In any circumstances, such approximations are only legitimate for
large system sizes. For medium sized systems that are too small for diffusion
approximations but too large for Monte Carlo evaluation of the master equation,
different methods are proposed; see for example Ohkubo (2008) and the references
therein.

To summarise, this chapter offers a survey of methods to model a pure Markov
jump process by a diffusion approximation. It supplements the variety of known
approaches by new formulations and fills the gap of general multi-dimensional
formulas, which partly do not appear in the existing literature. Furthermore, all
approximation techniques are extended to systems with multiple size parameters.
Assumptions and derivations are provided for all approaches to allow for critical
evaluation. Various references guide the reader to more detailed information. In all,
this chapter allows scientists with a moderate mathematical background to easily
apply diffusion approximation methods to a broad class of jump processes in order
to gain full advantages from that modelling approach.
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Chapter 5
Diffusion Models in Life Sciences

This chapter investigates representative models from life sciences which typically
involve large populations. These models are in a first step formulated in terms
of pure Markov jump processes. However, as motivated in Sect.4.2, a more
convenient representation is obtained by the transition to diffusion approximations.
This facilitates simulation and statistical inference. Hence, in a second step, the
jump processes are approximated by diffusions. The purpose of this chapter is on
the one hand to illustrate the methods from Chap. 4. On the other hand, the presented
models and their diffusion approximations are the basis for Chap. 8, where Bayesian
inference is performed on them.

The considered models are from the field of epidemiology, which represents
one important branch of life sciences. In particular, Sect.5.1 covers the standard
susceptible-infected—removed (SIR) model from Sect.2.2.2 for describing the
spread of infectious diseases. Section 5.2 proposes an extension of this standard
model in order to allow for host heterogeneity. Further diffusion approximations
are derived in Chap.9, where the binding behaviour of proteins is investigated in
living cells.

In both Sects.5.1 and 5.2, the respective model is first introduced via a com-
partmental representation and then described in terms of a Markov jump process.
Afterwards, the approximation approaches from Chap. 4 are applied. If one is only
interested in the resulting diffusion approximations rather than in the approximation
procedures, it is sufficient to only read the then following summaries. Each section
concludes with some illustration of the respective model. Section 5.3 investigates
the existence and uniqueness of solutions of the stochastic differential equations
derived in Sects. 5.1 and 5.2. Section 5.4 concludes this chapter.

It has already been discovered in Sect. 4.6 that under certain conditions the results
of different approximation procedures coincide. This is actually the case also for the
models considered here; it is hence redundant to apply more than one approximation
method. However, in order to provide examples for the theoretical investigations
from Chap. 4, each approach is considered separately.

C. Fuchs, Inference for Diffusion Processes: With Applications in Life Sciences, 101
DOI 10.1007/978-3-642-25969-2_5, © Springer-Verlag Berlin Heidelberg 2013



102 5 Diffusion Models in Life Sciences

The asymptotic behaviour of the standard SIR model as the population size
tends to infinity has been treated by several authors, e.g. by Nagaev and Startsev
(1970), Barbour (1974), Wang (1977), Kurtz (1981), Andersson and Britton (2000)
and Allen (2003). The case of open populations is investigated by Clancy et al.
(2001). Moreover, Alonso et al. (2007) take into account demographic changes.

Similar multitype SIR models have been considered in the literature as well, for
instance by Ball (1986), Bailey (1975), Daley and Gani (1999) and Andersson and
Britton (2000). In most cases, but not exclusively, these are formulated in terms of
deterministic processes. Diffusion processes for non-standard SIR models have been
treated by, for example, Hufnagel et al. (2004), Sani et al. (2007) and McCormack
and Allen (2006). These models are however different from the one considered in
this chapter.

5.1 Standard SIR Model

The following considerations introduce the standard SIR model in Sect.5.1.1,
characterise it as a jump process through its master equation in Sect.5.1.2 and
describe its approximation through a diffusion process in Sect.5.1.3. The results
are summarised in Sect. 5.1.4, and the diffusion process is illustrated in Sect. 5.1.5.

5.1.1 Model

Consider a population of size /N in which individuals are either susceptible to a
disease, infected, or removed. The population is assumed to be closed, i.e. the size
parameter N remains fixed, ignoring demographical changes that are not related to
the epidemic.

Recall from Sect. 2.2.2 the standard SIR model with the following transitions:

1. The contact between a susceptible and an infectious individual causes an

infection:
®O+O =20, (5.1)

where @ € Ry is the contact number of an infectious individual sufficient to
spread the disease.
2. An infective recovers:

O 5 ®, (5.2)
where 8 € R is the reciprocal average infectious period.

The variables above the arrows indicate which model parameters enter the probabil-
ity for the respective event to occur. As explained in Sect. 2.2.2, an appropriate state
space for a process following these transitions is
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Dy ={(S,1) € [0, N’ NING| S+ 1 < N}.

The vector of model parameters is 8 = («, 3)’.

This model has been widely adopted in infectious disease modelling due to its
simplicity and generality (see e.g. Keeling and Rohani 2008, for a monograph).
However, a central assumption in this formulation is that the population mixes
homogeneously. Surely, this situation is not given in many applications, for example
when one considers the nationwide or even worldwide spread of a disease. The
multitype SIR model in Sect. 5.2 corrects for this.

5.1.2 Jump Process

There are two possible nonzero jumps of the Markov process following the
transitions (5.1) and (5.2) that can occur within an infinitesimal time interval.
These are

A = <_i> for an infection and Ao = ( (1)) for a recovery.

Throughout this section, let S and I denote the absolute numbers of susceptible
and infective individuals. The process is considered time-homogeneous, and all
individuals are assumed to be mutually independent. Given the current state
X = (S,I) € Dy, the probability Py (At, X, X + A;) for an infection to
happen within time At is as follows: Each of the I infectives has « potentially
infectious contacts per time unit. On average, « - S/N of these contacts will be
with a susceptible individual and actually cause an infection.! The probability of an
infective contact in the considered time interval is hence I - «S/N - At 4+ o(At),
where o(At) /At — 0 as At — 0. Similarly, the probability Py (At, X, X + Ay)
of a recovery is SIAt + o(At). The transition rates

. 1
WNJ(X) = WN(X,Aj) = gltlilo EPN(At,X,X + Aj)

are thus

«Q

— ST ifj=1
N 117 )
61 if j = 2.

Wi i(X) =Wn;(S,I) =

"More precisely, the number is o« - S/(N — 1) as self-infections are excluded. However, this
difference is compensated by adequate choice of o and marginal for large N anyway. Division
by N instead of N — 1 is the standard notation.
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Let Py(t, X) = Pn(t; S, I) denote the probability that within time ¢ the extensive
process arrives at state X = (5,1)’ € Dy (subject to some initial condition).
Outside the state space, this probability is assumed zero. The master equation (4.8)
of the jump process X is then given by

aPN(t;S,I) _« .
— =y S+ DU - )Py S+ 1,1 - 1)

AU+ )Pt S, T+1) — (5 ST+ 1) Pa(5:5,1).

In terms of the intensive variable x = X /N = (s,i)) € Cy = N 'Dy, the
transition rates read

. . Nasi ifj =1,
wy(x, Aj)=wn j(x)=wn ;(s,1)=Wn ;(Ns, Ni)= (5.3)
N( J) NJ( ) N,J( ) N,J( ) {NBZ ifj=2,
i.e. one has wy = Nw, where
. ast ifj =1,
w(w, Aj) = wj(w) =w;(s,) =7 Y (5.4)
Bi  ifj=2.

5.1.3 Diffusion Approximation

This section now applies the diffusion approximation methods from Chap.4 to
the standard SIR model. As the size of the system is completely characterised by
the single parameter N, the appropriate techniques are those from Sect.4.3. As
indicated earlier, all approximation approaches yield the same diffusion process
for the model considered here. It is hence sufficient to restrain this section to the
application of one single approximation method. As an illustration for the theoretical
derivations in Chap.4, however, all techniques are applied here. The reader who
is rather interested in the results than in the procedures can skip this section and
continue with the summary in Sect. 5.1.4.

Convergence of the Master Equation

The first approximation approach to look at is the representation of the master
equation through a collection of difference quotients (cf. Sect.4.3.1). The standard
SIR model is actually already covered by Example B.2 in Sect. B.1 in the Appendix.
Nevertheless, the derivation is repeated here for illustration purposes.

Let pn(t;8,4) = pn(t,x) = Pn(t; Nx) be the probability that the intensive
process is in state © = (s,4)" after time ¢ with respect to a fixed predefined initial
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state and initial time. For ¢ = N1, the forward master equation (4.18) from p. 67
for this process reads

Opn(t,x)  wi(x—ecA)pn(t, x—cAr) —wi(x)pn(t, x)

ot o €
+w2(m—sA2)pN(t, r—eAy) — wo(x)pn(t, x)
€

Transferring this cohesion to the limit function p of p yields

Op(t;s,i)  wi(s+e,i—e)p(t;s+e,i—e) —wi(s,i)p(t;s,i)
ot - € (5:5)

Jualsite)p(ts,ite) —wals, dp(t; s, 1)
€

. (5.6)

We seek to write the right hand side of this equation in terms of difference quotients
in order to be able to approximate it in terms of derivatives of the respective
functions. The master equation then attains the form of a Kolmogorov equation.
The numerators of (5.5) and (5.6) are not yet of the required difference form as
stated in Definition B.1 in Sect. B.1. However, Algorithm B.1 describes how they
can neatly be expanded. For the numerator of the first term (5.5), this is as follows:

(w1 -p)(t;s+e,i—e)— (wy-p)(t;s,i)
= (wy-p)(t;s+e,i—¢e)— (w1 -p)(t;s +&,4) — (w1 -p)(t; 8,1 —€) 57
+ (w1 -p)(t;8,0) + (wy - p)(t;s+¢€,1) — (wy - p)(E;s,14)
+ (w1 -p)(t;s, i —e) — (wr - p)(E; 5, 4),

where the notation (wy - p)(t; s, ) is short for wy (s, )p(t; s, 7). With the difference
operator notation from Definition B.1, (5.7) can be expressed as

(D(21,1)’,(8,—€)’ + D(ll)o)/7(€),)/ + D%071)/)(,)_5)/)(w1 ° p)(t, S, Z) (58)

Again, the dot in the subscript means that the respective component does not have
to be specified. Following the remarks from Example B.1 and especially Eq. (B.7),
rewrite Eq. (5.8) as

D(Ql,l)’,(a,—a)’ (wl ' p) (t; S, Z)
1 Lol :
+ 5 Doy, ey (Wi P) (s = €,0) 4 5 Diy oy ae,y (W1 - D) (s — €,1)

1 _ 1 _
T35 Do 2y (. —ey (w1 p)(tis,i+e) + 3 D{o1y (. —azy (w1 - p)(t; s, +€)



106 5 Diffusion Models in Life Sciences

D2

= — 2R (wy ) (ks )

&2 Doy e,y : Dlioy e,y ;
+?€—2(w1-p)(t,s—a,z) +52—6(w1-p)(t,8—8,z)
&2 D? Y ) Diy 1y, . —2¢e)/ .

= (0 p)(t s+ €) — e 2 (wy - p) (8,0 4-e).

All quotients in this expression have the difference quotient form (B.1). It can hence
be approximated by

+ +e-+

TR NN A
0s0i 2 0s? Os 2 012

0
c3) s 69
The numerator of the second term (5.6) is simply
(w2 - p)(t;s,i+ ) — (wy - p)(t;5,1)

= Doy (.cy (w2 - p)(t; ,9)

2D2 , , Dl 7 (. ’
EO0e)r | o ZONN02) ) (w2 - p)(t; 5,1 —¢)

2 g2 2e
g2 92 0 _
~ (3% —|—€a) (wa - p)(t; s,1). (5.10)

Combining (5.9) and (5.10), an approximate representation of the forward master
equation is the Kolmogorov forward equation

opite) @) | 1 g~ Pt
ot : ox(9) 2N Oz dz (k) ’ '
j=1 7,k=1
where = (z(1), 2(?))" = (s,4)’, and p1; and ¥}, are the components of
pay=( Tw@ ) _( —as (5.12)
wi (x) — wa(x) asi — i '

and

E(m):( wi(x) - —wi(x) ):( st —asi ) (5.13)

—asi asi + Bi
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The diffusion matrix N !X is positive definite for all positive s and i. Hence, the
original intensive Markov jump process can be approximated by a diffusion process
which is the solution of

1
day = p(xy)dt + —= o(x:)dB;, x4, = xo,

VN

where xg is the initial value of the jump process at time tg, and X = oo’. The
decomposition of X is not unique; one possible diffusion coefficient is given by

1 _ 1/ Vasi 0
\/—Na(w)—m<_@\/m). (5.14)

A different diffusion coefficient is contained in Allen (2003, Chap. 8.11.3).

Convergence of the Infinitesimal Generator

In this paragraph, a diffusion approximation of the jump process is obtained by
approximating the respective infinitesimal generator (cf. Sect. 4.3.2).

Let f : C x T — R be a measurable twice continuously differentiable function,
where C D Cn denotes the continuous state space of the diffusion approximation,
and T' C Ry is the time set. According to Formula (4.24) on p. 70 and the
considerations in Sect.5.1.2, the infinitesimal generator Gy of the intensive jump
process equals

Ox flant) = 2D ¢y 22400 — I (@:1)
i w2(m)f(w+542,€t) — f(m,t)

forxz = (s,i)’ € Cy,t € T and e = N L. In terms of the variables s and i, this is

Gnf(s,i5t) = W +wi (s, i) f(S—E,Z'-i-E;t) — f(s,it)
. ) (5.15)
+wa(s,i) f(s,i —s,ti— f(s,z,t).

Analogously to the expansions in the previous approximation approach (or in
Example B.2), one has

Fs—e,ite;t)—f(s,ist) = (f(s—a,i—i—s;t)—f(s—s,z’;t)—f(s,z’—i—s;t)—i—f(s,z’;t))
+ (f(s—s, ist)—f(s,1; t))—i—(f(s, i+e;t)—f(s,1; t))
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= (D(zl'rl),v(575),+D%170),7(57')/+D%071),7('75)/) f(s7 Z’ t)

, 2 2§ 2
- <9 g t
< P oeoits 7 a5t 307 +€a>f($’l’ )

~

and

2 92
; . 1) — Dl oy~ [ E 9 9 .
f(syi—est) = f(s,i5) = Digay (,—ey f(s,858) = <? 52 € &)f(& it).

Altogether,

0 0 1 92 1 02 1 92
gy ~ ——l—wl(sz)[— }

0
ot 9s T9i TaNDs? Nosoi aNoi2
+ wa(s, ) [— 0 La—z]
0 2N 0i2
62
+ Z“J :C(J) 2N Z Zik(®) 5 on® (5.16)

forz = (z(1), 2?) = (s,7) and

;L(a:)—< —asi ) and Z(cc)_< asi —asi > (5.17)

asi — Bi —asi asi + [

That means, the generator Gn of the considered jump process approximately
coincides with /0t + LB Z /N where the latter is the Kolmogorov backward
operator. Regarding this as the generator of the approximating diffusion process,
we again arrive at the SDE

1
dcct = /L(.’Bt)dt + — U(mt)dBta Ty, = Lo,

VN

as a description of the diffusion approximation. Once more, o is a square root of X,
compare with Eq. (5.14).

Langevin Approach, Kramers-Moyal Expansion and van Kampen
Expansion

In the Langevin approach (Sect. 4.3.3), Kramers-Moyal expansion (Sect. 4.3.4) and
van Kampen’s expansion (Sect. 4.3.5), the diffusion approximation of the intensive
jump process is given by the solution of
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1
daey = p(xy)dt + — o(x¢)dBy, x4, = xg, 5.18
t = () JN (x¢)d By to 0 (5.18)

where explicit formulas for the drift g and diffusion matrix N '’ are provided.
In Sect.5.1.2, Eqgs. (5.3) and (5.4), it has been observed that the transition rate wy
of the jump process fulfils the condition wy = Nw for some function w that does
not depend on the population size N. As already discovered in the discussion of
Chap.4 on p. 94, in this case the three approximation approaches yield the same
result, which is

p(@)= Y wi@)d; and B(x)= ) w;j(@)A;A]

Jj=1,2 Jj=1,2

forx = (s,4)" € Cn.Hence, in the standard SIR model, the diffusion approximation
is given by Eq. (5.18) with

-} o (2) (%)

S 1-—1 . (00 ast  —asit
(@) = asi (—1 1) +pi (0 1> - (—asi asi—l—ﬂi) '

As announced earlier, that reproduces the result from the previous methods.

and

5.1.4 Summary

To summarise the results so far, Sect.5.1.1 introduced the standard SIR model,
Sect.5.1.2 characterised it as a jump process through its master equation, and
Sect.5.1.3 applied the various approaches from Sect.4.3 to derive a diffusion
approximation for it. Let © = (s,4)’, where s and ¢ denote the fractions of
susceptible and infectious individuals of the total population of size /N. The master
equation of the jump process with transitions (5.1) and (5.2) is

Opn (t; s, i

% = Na(s+e)(i —e)pn(t;s +e,i—e) + NB(i +e)pn(t;s,i+e)
—N(asi + Bi)pn(t; s, i),

where py is the transition probability of @, and e = N~!. All considered

approximation approaches arrive at the same stochastic differential equation, the
solution of which is the desired diffusion approximation process. This SDE reads

ds\) —asi 1 Vasi 0 4B,
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where By and Bs are independent Brownian motions, and d By /dt and d By /dt can
hence be interpreted as Gaussian white noise forces (see Sect. 3.1.3) accounting for
fluctuations in transmission and recovery. The continuous state space of x is the
simplex

C={(s,0) €[0,1>NRY|s+i<1}. (5.20)

The differential equation is subject to an appropriate initial condition
iy, = (S0,%0) € C. Note that the process given by the solution of (5.19) is
not a diffusion limit but a diffusion approximation as it still contains the size
parameter V. In the limit N — oo, one obtains the ordinary differential equation

ds —ast
<di> - <a5i . ﬂi) dt (5-21)

as a deterministic description of the dynamics of the system. However, in the context
of infectious disease epidemiology, one is dealing with processes that are highly sen-
sitive to disturbances. Although the ODE (5.21) mirrors the macroscopic behaviour
of the system, the stochastic and the deterministic process may differ substantially
regarding single realisations. Stochasticity becomes particularly important when
the initial fraction of infectives is small and the occurrence of an outbreak is not
obvious. The SDE (5.19) is hence clearly to be preferred.

5.1.5 Illustration

Graphical illustrations of the standard SIR model were shown in Sect.2.2.2, where
Fig.2.3 on p. 15 displayed sample paths for the three considered types of Markov
processes, and Figs. 2.4 and 2.5 demonstrated the role of the basic reproductive ratio
Ro = «/f and the impact of stochasticity. Figure 5.1 in this section contrasts the
trajectories of the diffusion process defined through (5.19) and the deterministic
process given by (5.21). Figure 5.1a shows how the stochastic sample paths (thin
lines) fluctuate around the deterministic course (thick lines). Figures 5.1b, c display
empirical pointwise 95 %-confidence bands for the trajectories of the diffusion
process, where the population size equals N = 1,000 and N = 10,000, repectively.
As obvious from (5.19), the width of the confidence band decreases for larger N.
Figure 5.1b particularly elucidates that the paths of a diffusion process do gener-
ally not fluctuate around their deterministic counterpart in a symmetric manner.
Moreover, variation is obviously non-constant. This reveals the weaknesses of an
estimation approach where one assumes independent and identically distributed
deviations of the observations from the deterministic prediction.
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a b c
N = 1000 N = 1000 N = 10,000
1.0 4 — susceptibles 1.0 4 1.0 4
— infectives

0.8 0.8 1 0.8
0.6 0.6 0.6
0.4 4 0.4 4 0.4 4
N I —a " N
00 ] . —/\ oo | /\

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

time time time

Fig. 5.1 Simulation of the standard SIR diffusion process with « = 0.5 and 8 = 0.25. The
trajectories have been obtained by application of the Euler scheme from Sect.3.3.2 with time
step 0.025 and initial value (so,%0)" = (0.99,0.01)” at time zero. (a) Five realisations of the
diffusion process (thin lines) in comparison to the deterministic course (thick lines) for N =1,000.
The sample paths for the fractions of susceptibles are plotted in black, the paths for the fractions of
infectives in red. (b) Empirical pointwise 95 %-confidence bands for the trajectories, represented
by the grey areas. These have been obtained from another 100 realisations of the diffusion process
with N = 1,000. The black and red lines show the paths of the deterministic model. (¢) Confidence
bands for N = 10,000

5.2 Multitype SIR Model

After having extensively considered the standard SIR model, we now turn to
a multitype extension of it. The standard SIR model does not allow for host
heterogeneity. It is therefore appropriately modified in what follows. The extended
model is introduced in Sect. 5.2.1, formulated as a jump process through its master
equation in Sect. 5.2.2 and approximated by a diffusion process in Sect. 5.2.3. Again,
asummary is provided in Sect. 5.2.4, and the model is further analysed in Sect. 5.2.5.

5.2.1 Model

In the multitype modelling approach, the population under consideration is parti-
tioned into pairwise disjoint clusters j = 1,...,n of sizes N;,ie. N = Z?:l Nj.
Such clusters might for example correspond to different geographic regions or
age classes. Individuals of each type are divided into n groups according to their
cluster such that S;, I; and R; denote the respective numbers of susceptible,
infective and removed individuals in cluster j. Define S =37, S;, I = >0 I
and R=>7"_| R;.

Within each cluster the population is assumed to mix homogeneously—i.e. the
infection dynamics within the cluster follows again the standard SIR model (5.1)—
(5.2)—but with a certain rate WJ]-\,Q individuals from cluster j are involved in the
infection dynamics of cluster k rather than of their own cluster j. These rates are
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summarised in a network matrix 7 = (731-\;2)]',1@:1,...,11 with row sums equal to one.
The entries on the main diagonal are the rates with which individuals are part of the
infection processes of their own clusters.

In case the clusters represent geographical regions like rural and urban districts,
individuals might be divided into n groups according to their (unique) home region.
The network matrix might then describe the traffic of commuters having their social
environment in their region of residence but being away from home while working
in a different region. If the clusters refer to different age classes, they might represent
homogeneous groups that gather for example in school, at work or in homes for the
aged. The network matrix then stands for social contacts between these age groups.

Since the travelling or contact behaviour of individuals may depend on their

medical state, we further introduce the network matrices v° = ('yfk)j7k:17,,,7n
andv! = ('yfk) j,k=1,...,n for susceptibles and infectives, respectively.
The transitions in this model are for all clusters j, k,m = 1,...,n:

1. A susceptible from cluster k gets infected in cluster j by an infective from
cluster m (where k and m might be equal to j):

S+, D, + D, (5.22)

The parameter «; € R is the contact number in cluster j, and -y, ; is short for
the jth columns 'yfj, ~I ; and 'yf\; of v, 4" and v, respectively.
2. An infective individual from cluster j recovers:

O, 2 ®, (5.23)

where 3; € Ry is the reciprocal average infectious period in cluster j.

Note that the critical contact number depends on the cluster where the infection
takes place. For example, if the clusters represent geographical regions, the risk
for a contagious contact strongly depends on parameters such as the population
density or the use of public transport. In case the clusters refer to age groups,
infectious contacts depend for example on contact behaviour of the individuals at
a certain age. In comparison, the average infectious period is determined by the
cluster of the recovering individual. To illustrate this on the above examples, in case
of geographical clusters recovery is subject to the medical standards at the place of
residence. For age groups, infectious periods depend on physical shapes.

In order to keep IV; constant forall j = 1,...,n, changes in cluster affiliation—
such as changes of places of residence or ageing—are ignored during the presum-
ably relatively short period of an epidemic outbreak. The numbers of removed
individuals in each cluster j can then be obtained as R; = N; — S; — I; at any
time point such that

DY = {(S1,. ., S, I, .o, 1) €]0, NJ2PNINZ?| S 4+-1;<N; for all j=1, ..., n}
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is an eligible state space for a process following the multitype SIR model. The
model parameter is 8 = (a,3,v%, 77, ¥") with « = (ai,...,a,)" and

ﬁ: (617"'7ﬁn)l~

5.2.2  Jump Process

The transitions of the multitype SIR model are given by Egs. (5.22) and (5.23). For
j=1,...,n,let S; and I; be the numbers of susceptible and infective individuals
in cluster j, which has a total population of size N;. Then, the state space of the
jump process is DE\?) as defined above. The size of the system is described by the
set of population sizes {N1, ..., N,}. Denote by e; = (0,...,1,...,0) the jth
unit vector and by O the null vector of dimension n. Assuming that at most one
event can happen within a short time interval of length At, possible steps of the

jump process are

A= (_ej ) for an infectionand A, ; = ( 0 ) for a recovery
‘ —€j

€;

of an individual from cluster j € {1,...,n}. All transition probabilities are
considered  homogeneous in  time. Given the  current  state
X = (S,-..,8,6h,....1,) € D, the probability of an infection of a
susceptible from cluster j in cluster k& (where j,k = 1,...,n) within time At
is I17% (X)) At + o( At) with

(number of infectives in cluster k) - (number of susceptibles from j in k)

I'H(X) =
(X) = o total number of individuals in cluster k ’
that is

ST

Zl 'leg]m

I7%(X) = oy 22 755,
Z F)/;Zkam
m=1

The probability of the recovery of an infective from cluster j is 77 (X ) At + o( At)
with .
(X)) = Bjl;-

Therefore, the transition rates of the process X are for all j

S IPR(X) ifr =1,
WN-,TJ(X) = Wn(X, Ar,j) = § k=1

TI(X) ifr=2.
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Let Py (t, X) denote the probability that within time ¢ the extensive process arrives

at state X € DE\?) conditioned on a prespecified initial state. The master equation
of the extensive process is

n

> RS +1,1; = )Py (t:5; + 1,1; — 1)
k=1

8PNtX z":

+ Tj(Sj,Ij + 1)PN(t;Squj + 1)

_ (i ij(Sj,Ij) —|—Tj(Sj,Ij)> PN(t; Sj,]j)‘|-

k=1

For better readability, only the relevant components of X are displayed here as
arguments of I17 k 77 and Py. Now consider the intensive variable

@ =(S1,..,8n,i1,.in) = (N7 'S0, ... Ny 'S, Ny T, ... N ' L) = MPX

with M = diag(N1,..., Np, N1,...,N,). The state space of the according
intensive jump process is C](\;l) =MDy M (M 'X|XeD n)} ie.

e ={(s1,- - smyity e yin) €[0, 1" N MT'ING™ | s;+4;<1forall j =1,...,n}.

Possible nonzero jumps of x are
for j = 1,...,n. Define
and

Then, forj =1,...,n

’LUN(.’B, Arﬂj) = wNyT_,j(m) = WN_’TJ'(M.’B) = | k_:l
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Thus wy,r; = Njw, ; with

(T, Arj) = wpj(w) = { k=1
vl (x) ifr =
This function depends on the population sizes Ny, . . ., N,, only through their mutual
ratios Ny, /N, where k,m =1,...,n

5.2.3 Diffusion Approximation

We now want to approximate the multitype SIR model by a diffusion. Clearly, this
model does not fit in the rather simple framework of the approximation methods
from Sect. 4.3; in order to completely describe its dynamics, one needs to employ
a whole set of size parameters Ny, ..., IV,,. Hence, for the derivation of a diffusion
approximation for the multitype SIR model, the extended techniques from Sect. 4.4
are applied.

Convergence of the Master Equation

The master equation of the multitype SIR process can be approximated by a
Kolmogorov forward equation as follows (cf. Sect. 4.4.1).

As before, denote by p the transition density of the approximating diffusion
process x. Following Eq. (4.60), it roughly fulfils

W2) S [N (@ = Arpltw = Ary) = v (w)plt. )

j=1
+ N; (wzj(iv — Ag)p(t,x — Ay ) — wy ()p(t, w))} :

For the sake of better readability, suppress non-involved components of x.
Withe; = N j_l, one then has

dp(t, )
ot

i[wl i (8i+¢€5,45—5)p(t; 85+€;,95—€5) —w1,5(85,95)p(t; 85, 45) (5.24)
€j

j=1

w2,5(85,95 +€;)p(t; 85,95 +€5) — wa,5(8;,%)p(L; 85,95)
€;

—+

(5.25)
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Close similarity to Egs. (5.5) and (5.6) on p. 105 is unmistakable. Hence, in
complete analogy to Eqs. (5.11)—(5.13), a diffusion approximation of the multitype
SIR model is described by the Kolmogorov forward equation

5 lau;f @pit.2) | ouj(ant w>]

= 0i;
Ly 82255 (=)ol ) JPE @) | 95 @)
2 = 015 0501

with the following coefficients: The drift vector and diffusion matrix of the diffusion
approximation are given by

o (B@N L s (2 @) 5 @)
pie) = (4 2) a5 )—(2%) wi) 6

The components of g (x) = (5 ())j=1,...n and ' (x) = (u}(x));=1,.. » arein

turn

pj (@) = —w(x) = - ¥=), (5.27)
ph(x) = wj(x) —wj(x) = Y (@) -0 (@), (5.28)

< . . . oSS LIl ST IS . i
and X consists of the diagonal matrices ¥ , Y and ¥ = Y with main
diagonal elements

E28(@) = Njhwy j(x) = Ny Zw““ (5.29)

Zf (@) = N (wn () + wa (@ (Z k(@) + vl )) . (5.30)

L5 (@) = =Nt wy (@) = —N; Zw”“ (5.31)
for j = 1,...,n. The matrix
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with diagonal matrices %% el 51, zero matrix 0 and

for all j is a square root of . Denote by C(™) the continuous analogue of C](f,l). The
diffusion matrix X () is positive semi-definite for all z € C(™) as

y'XY(x)y = (&’(w)y)/(&’(m)y) >0 forally € R*".

() is positive definite if furthermore all s; and 7; are nonzero since
(&'(m)y)l(&'(w)y) =0 & Jd(x)y=0 & y=0.

The last equivalence is true because &' (x) has nonzero determinant (in case all
components of x are positive) and is hence of full rank. Therefore, the intensive
jump process can be approximated by a diffusion process that is the solution of the
SDE

dxy = p(xy)dt + 6(x)d By, x4, = xo,

where x( is the state of the jump process at time ty. Note that, in contrast to
the SDE (5.19) for the approximation of the standard SIR model, there is no
universal scaling factor NV ~1/2 for the diffusion coefficient here. Instead, individual

factors V j_l/ ? are included directly in the components of &.

Example 5.1. In case of one group, i.e. n = 1, the network matrices v°, v/ and vV
consist of the single entry ;7 = 1. The diffusion approximation for the multitype
SIR has drift

psr.iy) = ( —m (s, 1) ) _ ( —onsyia )
7 Wll(slail) —Ul(slail) ays1i1 — Briy
and diffusion coefficient

mt(s1,11)
G(s1,11) = M _ 1 ( vaisiip 0 )
7 _\/Wll(sl,il) \/’Ul(sl,il) VN1 —Vaisiin vﬁlil
Ny
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This complies with the standard SIR model in Sect.5.1. For n = 2, the drift and
diffusion coefficient are

—mtl(x) — m3(x)

o) — —m2(x) — 2% (x)
ll'( ) 7T11(£B) + 7T12(£B) — Byiy
2 (x) + 722 (x) — Pais

and
11 12
W (2) + () . .
Ny
0 \/wm(:c) + 722(x) 0 0
- N
o(x) =
ri(@) + 7'%(e) . Bir
Ny Ny
0 (@) + (@) Bais
N2 N2
with
T i+ 7211% 2 g 12/ 8 ’7{2% i+ Yaaia g
™ () = a1 Y Y1151, T () = o Tw%zsla
7{\{ +7§{F T2N, T 722
1
. No - Ny - .
21, Mii1 + ”Y2llﬁ 2 g 22, \ ’7{2]\7_; i1 + Yoz g
T (x) = e Y, T (®) = g s,

AN 4 7N_2 N A N
11 2N, 127, 22

An illustration of the multitype SIR model follows in Sect. 5.2.5.

Convergence of the Infinitesimal Generator

This section deals with the approximation of the infinitesimal generator of the jump
process x as described in Sect. 4.4.2.

Consider a measurable twice continuously differentiable function
f: C™ x T — R, where C(™) is the state space of the diffusion approximation,
and 7' is the time set. Equation (4.63) from p. 86 reads for the multitype SIR model

n 2 A

ng(w7t) — w +Zzwﬂj($) f(w+ Ar,j7t) - f(:c,t)

€j

j=1r=1
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forx € CJ(\;L), te€eTande; = N Jfl. In order to simplify notation, non-involved
components of x are dropped. Then

G f,t) = LD 4 S [y () L =y o) = (s 152)
Jj=1 J
) f(sj’ij - Ej;t) - f(Sj,ij;t) .

€j

+ wa ;(x

Once more, this resembles the derivation of a diffusion approximation for the
standard SIR model, specifically Eq.(5.15) on p. 107. Hence, the results (5.16)
and (5.17) can be adopted for the present model. That yields

where

The vector p has components
w3 (@) = —wy j(x), () =wi;j(x) — ws (),

< <S5 < <.

and X consists of the diagonal matrices X', 2” and X ! with main diagonal
elements

£35(@)=N; w5 (x), Li[(@)=N; " (w1,;(@)+wz,;(x)), £ (@2)=—N; w1 ;(=).
Apply the approximation of G as the generator of the diffusion approximation. One

thus obtains a diffusion process with drift & and positive definite diffusion matrix 3.
This is the same result as obtained in the previous approximation approach.

Langevin Approach and Kramers-Moyal Expansion

Also in the framework of multiple size variables Ni,...,N,, the Langevin
approach (Sect.4.4.3) and Kramers-Moyal expansion (Sect.4.4.4) give explicit
formulas for the drift o and diffusion matrix X of a diffusion approximation of
a given jump process. These are for the multitype SIR model
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n

ZNJ (wlj A13+w23( )AQJ)

i@w(%%wmmb>

<.
—

<.
—

—iW%w@Cﬁﬁﬁﬁiﬁﬂw@Gm&ﬂ>

for x € C, where C is the appropriate state space of the diffusion approximation.
These findings agree with those from the two preceding procedures, i.e. with
Egs. (5.26)—(5.31).

Van Kampen Expansion

Finally, consider the approximation of the multitype SIR model using the extended
version of van Kampen’s expansion as developed in Sect.4.4.5.

This technique is applicable if the transition rate W can be written in the
canonical form (4.65) and if condition (4.70) holds. The former requirement is
fulfilled as

WN(X, Ar,j) = Nj 11)(]\4_1)(7 Ar,j)
forallr =1,2and j = 1,...,n, i.e. the terms in Formula (4.65) are to be chosen
as Pp(x, A) = w(x, A), Py =0forl > 1,

L={(rj)|r=12} with I=HIL={(rj)|r=12andj=1,...,n}
j=1
and f is the identity function. Because of M = diag (Ny,...,N,, N1,...,N,),

one has J, = {v,v + n} (compare with definition (4.64)). Hence, the second
condition is also true since

i jo(@) = Y (Au); Po(x, Au) = (A1) wiw(®) + (Agp); wa ()

uel,

B <_ZZ). wne(@) ¥ (_O) ws,o (@),

J J

which equals zero if j & {v,v + n}. The drift vector and diffusion matrix of the
diffusion approximation can thus be obtained by using Formulas (4.71) and (4.72),
that is
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B@) =Y N'> Pz, AL)A,A,

v=1 uel,

= Z Nt (wy () Ay j AL+ wa (@) Ag j A )

-2 (e () o) *2 (0 gt

in line with the results from all other approximation methods considered in this
section.

The fact that van Kampen’s expansion resembles the result of the Langevin
approach and the Kramers-Moyal expansion is not only—as in the single size
parameter case—in consequence of the special canonical form

N(x, A, ;) = N;Po(x, A, j),

but also due to the structure of the possible jumps: Because of A, = N, A, for
u € I,,, Formula (4.72) turns into

ZZN 2wy (x, Ay) A Al = ZwN DALAL

v=1uel, uel

5.2.4 Summary

The previous paragraphs dealt with the formulation as a jump process and the
derivation of a diffusion approximation for the multitype SIR model. As the size of
this system is best characterised through a collection of size parameters Ny, ..., Ny,
the appropriate approximation techniques are the modified ones from Sect. 4.4.

Let x = (s1,...,8n,01,...,1,)" denote the vector of fractions of susceptible
and infectious individuals in the n distinct clusters. The master equation of the jump
process with transitions (5.22) and (5.23) equals
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+ 07 (85,15 + &5)pn (t 55,15 + €5)

- (Z % (s5,15) + 07 (s, ij)) pn (t; 85, ij)} ;

k=1

wheree; = N j_l,

n
>0 VN
JkooN . m=1 RN T d J(g) = B.i
P (x) = ap = N VikSi an vl (x) = B,
Z /Ymk Nm
m=1 k

for all j and k. Note that for clarity only the relevant arguments of /%, v7 and of
the transition probability py of x are displayed.

As for the standard SIR model, all approximation methods yield identical
diffusion processes. Together with an appropriate initial condition, this is the
solution of the SDE

dx; = p(xy)dt + & (x:)d By, (5.32)

where

. . <S5 L II <. ST .
for vectors p° and p! and diagonal matrices X, ¥ and X" . The single
components of these are

/J'}S(w) = - Zﬂ-jk(m)v
k=1

n

Y (@) — (@)

k=1

1} ()

and

28@) = NP Y i),
k=1
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Sf@ = N (Z C) +vﬂ'<m>> ,
k=1
Sl@) = =N P> ()
k=1
for j = 1,...,n. The matrix

SS ~II ~SI
)

" ik (x
Z:: Nj

k=1

The 2n-dimensional Brownian motion B in Eq.(5.32) represents disturbances in
transmission, recovery, and migration. A corresponding deterministic description of
the model dynamics is given by

dx; = p(x)dt.

An illustration of the multitype SIR model follows in the next section.

5.2.5 Illustration and Further Remarks

In order to briefly demonstrate the dynamics of the multitype SIR model, the course
of an epidemic is simulated for network matrices

1—(n—1)a a a
N 5 s a 1-(n—1a--- a
N === . . . . € R
a a 1—(n—1)a

(5.34)
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a b

no migration (a = 0) weak migration (a = 0.0025) strong migration (a = 0.25)

0.20

0.15 4

fractions of infectives
fractions of infectives
fractions of infectives

0.05 1 §
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Fig. 5.2 Evolution of the fractions of infectives in n = 5 clusters. These agree in all parameters
but the initial fractions of infectives. In particular, o; = 0.5, 8; = 0.25 and N; =1,000
forj € {1,...,5}. Theinitial numbers of infectives vary from 1 to 5 % of the population. Contacts
between clusters occur according to the network matrix (5.34). There is no connection (a = 0)
between clusters in (a), weak contact (¢ = 0.0025) in (b), and strong influence (a = 0.25) in (c).
The thick lines show the deterministic evolution, the thin lines are three independent realisations of
the diffusion process. All paths have been obtained by application of the Euler scheme with time
step 0.025, see Sect. 3.3.2

with 0 < a < (n — 1)_1 describing the strength of contacts between clusters.
Figure 5.2 shows the evolution of the fractions of infectives during an epidemic
with n = 5 clusters which agree in all parameters but the initial numbers of
infectives. In the graphic on the very left there is no contact between clusters
(a = 0), while there is strong exchange on the right (a = 0.25). Apparently, with
increasing contacts of individuals between clusters, the courses of the epidemics
synchronise. This fact is again illustrated in Fig. 5.3, where the dotted vertical lines
mark the instants at which the fractions of susceptibles in the deterministic course
fall below Ry ! while the dashed lines indicate the actual turning points of the
deterministic course of the epidemics, defined as the instants where the maximum
amounts of infectives are reached. For clusters with initially high fractions of
infectives, the actual turning point lies before the one that is valid for the model
without exchange; for clusters with relatively few cases, the opposite situation
applies.

The definition of a multitype counterpart to the basic reproductive ratio Rg
in the standard SIR model with one homogeneous population is for example
discussed by Andersson and Britton (2000) and Isham (2004). Moreover, Roberts
and Heesterbeek (2003) and Heesterbeek and Roberts (2007) define and analyse
a type-reproduction number as an alternative threshold quantity. This number
coincides with R for homogeneous populations.

A possible modification of the multitype SIR model in this section is to
consider movement of individuals between clusters instead of cross-infection.
That means, individuals can change the cluster which they are associated with,
and infection occurs only within clusters. This case is for example investigated
by Dargatz et al. (2006). A disadvantage of that approach, however, is that



5.3 Existence and Uniqueness of Solutions 125

0.30 1

0.25

0.20

0.15

fractions of infectives

0.10

0.05

time

Fig. 5.3 Evolution of the fractions of infectives in n = 5 clusters between which people have
contacts according to the network matrix (5.34) with a = 0.075. The clusters agree in all
parameters but the initial numbers of infectives, which vary from 5 to 25 % of the population.
As in Fig.5.2, one has a; = 0.5, 8; = 0.25 and N; =1,000 for j € {1,...,5}. The thick
curves show the deterministic evolution, the thin lines are three independent stochastic simulations
of the diffusion process. The dotted vertical lines indicate the instants at which the fractions of
susceptibles in the deterministic course fall below R ! The dashed vertical lines mark the actual
turning points of the deterministic course of the epidemic, that are the time instants where the
fractions of infectives reach their maximums. Without contacts between clusters, these lines would
agree within each community. This is actually the case for the red lines here (up to numerical
inaccuracies). The sample paths have been obtained by application of the Euler scheme with time
step 0.025, introduced in Sect. 3.3.2

population sizes of the distinct clusters do not remain constant, and the model
is not immediately applicable to, for example, the case where clusters represent
age groups.

In Chap. 8, the multitype SIR model is applied for modelling the spatial spread of
influenza in Germany. Other models involving local and global infection dynamics
are developed in Hufnagel et al. (2004), Germann et al. (2006), Débarre et al. (2007),
Dybiec et al. (2009) and Ball et al. (2010). Watts et al. (2005) consider mixing on
even more than two scales.

5.3 Existence and Uniqueness of Solutions

When considering an SDE as a model for some natural phenomenon, one implicitly
assumes the existence of a solution of this SDE. Section 3.2.3 specified the Lipschitz
condition (3.10) under which a strong solution of an SDE exists pathwise uniquely.
This solution is non-explosive when it satisfies the growth condition (3.11).
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For the standard and the multitype SIR models, the Lipschitz condition is
actually not fulfilled as demonstrated in Sect. B.2 in the Appendix. Importantly,
conditions (3.10) and (3.11) are sufficient but not necessary for the unique existence
and non-explosiveness. Some authors describe weaker conditions, see e.g. Kloeden
and Platen (1999, pp. 134-135). Further references include Kushner (1972), who
studies the existence of a solution of an SDE when the drift function is not Lipschitz
continuous, Abundo (1991), who considers the existence of solutions for a predator-
prey model, and Kusuoka (2010), who investigates the existence of densities of
solutions in case the Lipschitz condition is not fulfilled. Related to this general
problem, Kaneko and Nakao (1988), Marion et al. (2002) and Berkaoui et al.
(2005) deal with conditions under which numerical schemes converge to the true
but unknown solution in case the Lipschitz condition is violated. Alternatively, one
could settle for weak instead of strong solutions as distinguished in Sect. 3.2.3; this
requires weaker assumptions.

In this book, the question of the existence of a strong solution for the considered
SIR models on the entire state space is not completely answered as it is not the focus
of this work. For our purposes, it suffices to consider the standard and multitype
SIR models on a slightly restricted state space such that all fractions of susceptible
and infectious individuals are bounded from below by an arbitrarily small but fixed
positive constant €. This does not limit the practical applicability of the diffusion
models. The original state spaces C and C(™ from Egs. (5.20) and (5.33) on pp. 110
and 123 then become

C.={(s,1) € [e,1°NRG | s +i < 1}
and
CIM={ (81, Spsit,...rin) € [6, 1" NRE" | s;+4; < Lforallj=1,...,n},

respectively. This modification has the effect that the drift vectors and diffusion
coefficients fulfil the Lipschitz and growth bound conditions as shown in Sect. B.2,
i.e. there uniquely exist non-explosive strong solutions of the SDEs on the modified
state spaces.

Independently of the investigation of the existence of a solution, diffusion
approximations for the SIR model are considered problematic anyway when there
are only few infectious individuals (e.g. Andersson and Britton 2000). The above
proposed restriction of the state spaces of the diffusion approximations does
hence not impose a serious constraint. An alternative approximation of the general
stochastic epidemic during the initial and final phase of an epidemic is for example
provided by Barbour (1976) and Andersson and Britton (2000, Chap. 3.3).
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5.4 Conclusion

The description of the spread of infectious diseases in terms of diffusion processes
enables convenient simulation of the random course of an epidemic even for
large populations. In this chapter, diffusion approximations for the standard SIR
model and a multitype extension were derived. On the one hand, these served
as illustrations for the theoretical investigations in Chap.4. On the other hand,
the present chapter provides the basis for Chap. 8, where an influenza outbreak
in a boarding school and the geographical spread of influenza in Germany are
statistically analysed. Another application of diffusion approximations in life
sciences is presented in Chap.9. There, the in vivo binding behaviour of proteins
is investigated as an example from molecular biology.

When applying the multitype SIR model in practice, several difficulties arise:
First of all, one will typically want to prespecify the network matrices vV, v
and ~/, or at least supply some information on their structure. That requires
knowledge about, for example, transportation or social networks, depending on the
definition of the clusters. In Chap. 8, commuter data from Germany is taken in order
to estimate the geographical dispersal of the population. References for further
examples for the utilisation of transportation networks are given in that chapter.
Social contact networks may, for example, be approximated by the evaluation of
contact diaries of similar surveys (Edmunds et al. 1997, 2006; Beutels et al. 2006;
Wallinga et al. 2006; Mossong et al. 2008).

Another issue concerns the data about disease counts which is most often
incomplete as many cases are not reported. In general, one also does not know the
exact times at which infections occurred, and data is aggregated over periods of
time. This is, of course, also problematic in case of one homogeneous population,
but worsens in case of multiple communities. For example, Uphoff et al. (2004)
summarise several difficulties arising from data aggregation over large geographical
areas, ranging from dissimilar consultation behaviour to differences in physicians’
opening hours, which limit the comparability of disease counts in distinct regions.
These examples represent only some out of many challenges which epidemiologists
are facing. Dealing with them is the subject of active research.
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Part 11
Statistical Inference



Chapter 6
Parametric Inference for Discretely-Observed
Diffusions

As we have seen in Chap. 3, diffusion processes provide a widely-used and powerful
modelling tool, and their mathematics is well understood. Chapter 4 described
how to construct a diffusion approximation to a given stochastic phenomenon.
This diffusion model is then known in parametric form. In practice, one usually
wishes to furthermore estimate the parameters of this model. Statistical inference
for diffusion processes, however, is a challenging problem. Difficulties arise from
the fact that observations are typically discrete while the underlying diffusion model
is continuous in time. In case of time-discrete observations, the likelihood function
for the model parameters is generally unknown, and hence maximum likelihood
estimation is not immediately possible.

This chapter provides a review on more sophisticated approaches to parametric
inference for discretely-observed diffusion processes. The literature already pro-
vides a variety of different estimation techniques, but this subject is also still a
highly developing research area. The present chapter concentrates on frequentist
methodology and serves as an overview and introduction to statistical inference for
diffusions. The emphasis of this book, however, lies on Bayesian techniques, which
show even more attractive characteristics. These are presented and further developed
in Chap. 7.

Throughout this chapter, we consider the time-homogeneous It6 diffusion
X = (X)¢>0 satisfying the stochastic differential equation

dXt = [,L(Xt,o)dt + O'(Xt,o)dBt, Xto = Xy, (61)

with state space X C R?, starting value xy € X’ at time ¢y = 0 and m-dimensional
standard Brownian motion B = (B;)¢>¢. The drift function g : X x © — R< and
diffusion coefficient & : X x © — R¥*™ are assumed to be known in a parametric
form. The statistical estimation of the possibly vector-valued parameter 6 from an
open set © C RP is the objective of the methods introduced in this chapter.

We assume that p, o and the diffusion matrix X' = oo’ fulfil the regularity
conditions stated in Sect.3.4 for all @ € O; in particular, it is provided that an
almost surely pathwise unique solution of the differential equation (6.1) exists for all

C. Fuchs, Inference for Diffusion Processes: With Applications in Life Sciences, 133
DOI 10.1007/978-3-642-25969-2_6, © Springer-Verlag Berlin Heidelberg 2013
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parameters on a respective filtered probability space (£2, F*, F, Pg), cf. Sect. 3.2.3.
The state space X is the same for all values of 6. The true parameter value is denoted
by 6y € O, and IEg and Varg stand for the expectation and variance with respect
to Py, respectively. For some estimation approaches it is furthermore required that
the diffusion process is ergodic. Such assumptions are indicated in the respective
sections. Observations of the diffusion path are always considered to be measured
without error.

This chapter is organised as follows: In order to provide the theoretical
background, Sect.6.1 starts with the formulation of the estimation problem for
continuous-time observations and then goes over to discrete time under the
assumption that the likelihood function of the parameter is known. Both scenarios
are not directly applicable in practice. Section 6.2 hence presents a first attempt
to obtain a feasible approximate maximum likelihood estimator. This approach,
however, leads to asymptotically biased estimators. The remaining techniques
covered in this chapter are more elaborate. They are grouped into three categories,
in particular into approximations of the likelihood function in Sect. 6.3, alternatives
to maximum likelihood estimation in Sect. 6.4 and a recent approach called the
Exact Algorithm in Sect. 6.5. A comparison of the presented estimation techniques
by means of a simulation study is beyond the scope of this book. However, a
discussion follows in Sect. 6.6 including a summary and references to evaluation
studies from the literature.

Other surveys on inference for discretely-observed diffusion processes are given
by Prakasa Rao (1999), Nielsen et al. (2000), Sgrensen (2004), Jimenez et al.
(2006), Hurn et al. (2007) and Iacus (2008). Whenever an estimation technique is
formulated for multi-dimensional diffusion processes in the original work, or the
extension to multi-dimensional diffusions is obvious, this chapter presents the more
general multi-dimensional case. Observation times are assumed non-equidistant
even though the simpler equidistant setting is common in the original literature.
Overall, the emphasis of this chapter is on the presentation of ideas and not on
technical detail. For the latter, the reader is referred to the references given along
the way.

The present review omits nonparametric inference. References for this topic
include Florens-Zmirou (1993), Ait-Sahalia (1996), Jiang and Knight (1997),
Soulier (1998), Jacod (2000), Hurn et al. (2003), Nicolau (2003) and Comte et al.
(2007). An introduction to the subject is given in Iacus (2008, Chap. 4.2), a detailed
overview by Prakasa Rao (1999).

6.1 Preliminaries

Crucially different situations occur depending on whether a diffusion process is ob-
served continuously or discretely in time. Time-continuous observation is obviously
impossible in practical applications. Still, the corresponding well-established theory
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is discussed in Sect. 6.1.1 for the sake of completeness and further understanding of
subsequent asymptotic considerations. It forms the basis for the investigations in
Sect. 7.3 in the next chapter, for example. In real data situations, one naturally has
to deal with time-discrete observations. Section 6.1.2 briefly presents the challenges
of parameter estimation for this setting. This is the starting point for the remainder
of this chapter. Finally, Sect. 6.1.3 specifies the data situation which is considered in
subsequent sections.

6.1.1 Time-Continuous Observation

Facing the hypothetical situation of continuous observation of a trajectory of X on
a finite time interval [s, t], parameter estimation can be carried out in two steps.
This procedure has been described by Le Breton (1974) for linear SDEs and is
explained for general SDEs in what follows: Split @ into one part 8; already
uniquely determined by the value of X(-, 8) and the remaining part 6. That means,
if ¥(X¢,0) = S for some matrix S, then there exists a unique deterministic
function g such that 8, = ¢g(.S, X ). This does not necessarily imply that 6, enters
only the diffusion matrix and @5 enters only the drift function.

Without loss of generality, let & = (07,05)". Since X has been observed
continuously, it is straightforward to calculate its quadratic variation

2" , t
X S X ) (X ) - [ 3o
k=1 s

where t,(c") =s+4+k27"(t —s) for k = 0,...,2", and the second equality holds
in probability and almost surely (see Sect.3.2.6). As a first step of the estimation
procedure, the parameter 8, can then be determined through the limits in probability

d<XaX>[s,t] — <X7X>[s,t] - <X3X>[s,t—2*”]

(X4, 0) = at s 2
= lim 2" (X~ X; ) (X=X, 9n)

by definition of 8; (see also Polson and Roberts 1994). Figure 7.25 on p.232 in
the next chapter illustrates how the diffusion coefficient of an Ornstein-Uhlenbeck
process can precisely be determined from a sample path with small inter-observation
time intervals.

In a second step, the remaining parameter 6, is now usually estimated using
likelihood inference. In Sect. 3.2.4, the likelihood function with respect to Lebesgue
measure was already considered for discrete observations. This function is generally
unknown. If, however, the parameter 6, has already been determined as described
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above, and hence the diffusion coefficient is known as a function of X, one can
change the dominating measure such that the likelihood becomes available. In that
case, the log-likelihood function of 8- reads

t
("t (9y) = /u’(XT,H)E_l(XT,G)dXT

S

) (6.2)
- %/;/(XT,0)2*1(XT,0)N(XT,0)dT,

S

where 8 = (07,0,)" is composed of the fixed §; and the argument 65 of the log-
likelihood function. Equation (6.2) is the Radon-Nikodym derivative dP, /dW
from Girsanov’s formula in Sect. 3.2.12, where P, is the law of X defined by (6.1),
and W, is the law of the respective driftless process. The crucial point why it is
possible to employ expression (6.2) as the log-likelihood is that the dominating
measure W, does not depend on 85 by definition of #5. Then maximisation of
either dP, /dW, or dPP, /dIL, where I denotes Lebesgue measure, yields the same
estimate for 0 irrespectively of the dominating measure. See also Kutoyants (2004,
Chap. 1.1) or Liptser and Shiryayev (1977, Chap. 7, 1978, Chap. 17) on this topic.
In practice, Eq. (6.2) would be replaced by its discretisation

n—1
Z “/(thvo)zil(th ) 0) (th+1 - th)
o 6.3)
1« 7
- 5 Z H/(thae)z 1(th70)H(th70) (tk+1 - tk)
k=0

according to the Itd6 interpretation of stochastic integrals, where
s=1tyg <ty <...<t,=1tare observation times.

6.1.2 Time-Discrete Observation

In practice, however, the paths of a diffusion process cannot be observed continu-
ously in time; due to the extremely wiggly trajectories (cf. Sect. 3.2.5), observations
can never be complete but always have a smoothing character. Estimation of 8 will
hence be based on observed states x1, ..., x, of X at discrete timest; < ... <1,
as well as on the starting value x( at time ¢ty = 0. The Kullback-Leibler distance
between the continuous-time and the discrete-time model has been investigated
by Dacunha-Castelle and Florens-Zmirou (1986) as a function of the time step
between observations.

The focus of interest for discrete-time observations now lies on the transition
density pg(s,x,t,y) with respect to Lebesgue measure, introduced in Sect. 3.2.4,
which is defined by
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Po(X € AIX. =a) = [ pols,.t.9)dy
A

for all measurable sets A, ¢ > s > 0 and x,y € X. As diffusion processes are
Markovian, the log-likelihood function of @ with respect to Lebesgue measure is

n—1
€n(0) = Z log po (Aty; Ty, Tpi1) (6.4)
k=0
with Aty = tg41 — tg for k = 0,...,n — 1. Under regularity conditions, Dacunha-

Castelle and Florens-Zmirou (1986) prove consistency, asymptotic normality and
asymptotic efficiency of the corresponding maximum likelihood estimator as n
tends to infinity for one-dimensional ergodic diffusion processes and arbitrary
equidistant time step.

However, the transition probability and hence the log-likelihood function are
intractable unless the diffusion process is analytically explicitly solvable, which is
rarely the case. Hence, in most situations, alternative methods need to be employed;
this chapter gives an overview of the most established ones.

6.1.3 Time Scheme

In the remainder of this chapter, we assume that the diffusion process under

consideration is observed at non-random discrete instants ¢; < ... < ¢, yielding a
dataset {x1, ..., x, }. Furthermore, the initial state x( at time ¢, = 0 is required to
be known.

Let A := maxy Aty be the maximum time step and 7" = Z;é At = t,

the time horizon. Three different experimental designs have been regarded in the
literature for increasing number of observations, i.e. n — oo; the following names
are adopted from Iacus (2008):

1. Large-sample scheme: The inter-observation times At remain fixed and 7" tends
to infinity.

2. High-frequency scheme: Observations become denser, i.e. A goes to zero,
and 7" remains constant.

3. Rapidly increasing design: The maximum time step A tends to zero while 7'
grows to infinity at the same time.

From a theoretical point of view, the high-frequency scheme and the rapidly
increasing design appear most convenient because they correspond to continuous
observation in the limit. The setup of consistent estimators for the model parameter
is often facilitated in these situations. For example, in some cases one can abandon
regularity assumptions such as ergodicity of the diffusion process. However, the
more complicated large-sample scheme seems to be most realistic in practice since
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observations typically arrive at fixed intervals. Like most authors cited in this review,
we will hence base the following sections on that design. Some considerations
of the other two schemes can for example be found in Prakasa Rao (1999) and
Tacus (2008).

6.2 Naive Maximum Likelihood Approach

As discussed in Sect. 6.1.2, the exact log-likelihood function (6.4) of the parameter 8
for a discretely-observed diffusion process is usually unknown. Approximate
maximum likelihood estimation would, however, be possible if an appropriate
approximation of the transition density was available. A first attempt to implement
this idea is described in the following.

Section 3.3.2 introduced the Euler scheme

Yk+1 =Y.+ H(Yk, 0) Aty + O'(Yk, 0) N(O, AtkI), (6.5)
where & = 0,...,n — 1, for approximately sampling the process
(Xt ) ke, = (Yi)rew, at discrete time points t; < ... < t, for given
parameter 6 and initial value X;, = Yy = x¢. This scheme becomes more

accurate as the maximum distance between two consecutive time instants tends
to zero. Hence, for small Aty, we can assume Y1 conditional on Y} to be
approximately normally distributed. The conditional mean and variance can be
obtained from (6.5) as

Eo(Yit1| Yi = @) = @ + p(xi, 0) Aty (6.6)
and
Varg (Yk+1| Yk = .’Bk) = E(.’I}k, 0) Atk. (67)

The probability density pg (Aty; €k, €r41) can thus be approximated by a Gaussian
density with mean and variance according to (6.6) and (6.7). In case X' does not
depend on 0, the so-resulting log-likelihood function

n—1
OT(0) =Y p (. 0) X (k) (@1 —Tk)
k=0
1 (6.8)
1 «— _
~3 > W (xk, 0) 5 (@) (., 0) Aty
k=0

corresponds to the Riemann-Iti approximation (6.3) of the log-likelihood (6.2)
based on continuous observation. As a general convention, additive constants not
depending on 0 are suppressed in the log-likelihood function.

Maximisation of the approximated log-likelihood function leads to an ap-
proximate or naive maximum likelihood estimator, sometimes also referred to as
quasi maximum likelihood estimator (e.g. Honoré 1997). This estimator has good
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asymptotic properties in case of decreasing time step, in particular in the rapidly
increasing design as defined in Sect. 6.1.3, see for example Florens-Zmirou (1989)
or Yoshida (1992). The more realistic case, however, is that the time step is fixed.
Lo (1988) provides a simple example where the naive maximum likelihood estima-
tor is inconsistent for fixed observation intervals. More generally, Florens-Zmirou
(1989) shows for ergodic diffusion processes with constant diffusion coefficient that
the naive maximum likelihood estimator for the drift parameter has an asymptotic
bias of the order of the equidistant fixed time step. This deficiency is not due to the
Gaussian nature of the approximated transition density but because of the generally
misspecified mean and variance of this normal density.

Unfortunately, in many applications in life sciences the time steps Aty are rather
large. The fairly simple maximum likelihood approach considered in this section
is hence not expected to yield satisfactory results in those cases. More advanced
estimation procedures are required in order to address this problem. The following
sections present such techniques.

6.3 Approximation of the Likelihood Function

The previous section concluded that in practical applications, where time steps
between observations are large, the transition density of a diffusion process cannot
satisfyingly be approximated by plain application of one of the standard numerical
schemes from Sect.3.3.2. This section hence introduces several more advanced
approaches to approximate the transition density. These can be utilised to derive
approximations of the log-likelihood (6.4). Maximisation of the so-obtained approx-
imate log-likelihood then leads to an approximate maximum likelihood estimator.

6.3.1 Analytical Approximation of the Likelihood Function

The first more advanced approach considered in this review was originated by
Ait-Sahalia (2002) and involves the expansion of the transition density in a Gram-
Charlier series, which will be specified below. The result is a closed-form expression
which is shown to converge to the true likelihood as more and more correction terms
are included.

The method works for one-dimensional diffusion processes under fairly weak
regularity conditions; see the original paper for details. Suppose the target process X
satisfies the SDE

dX; = /Lx(Xt,O)dt + Ux(Xt,O)dBt ,  Xo =z,

for ¢ > 0. In general, the transition density of this process is not suitable for
the expansion that is intended in this section as particularised below. The original
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process X is hence transformed to an appropriate process Z. The approximation of
the transition density of Z can then be transferred to the transition density of X. The
transformation from X to Z takes place in two invertible steps as follows.

The first operation transforms the diffusion X to a diffusion Y with unit diffusion
coefficient. This is done with Lamperti’s transformation described in Sect.3.2.11.
Then Y fulfils the SDE

/Lx(Xt,e) 1 80’)(
dY; = - =
! <UX(Xt,0) 2 Ox

(Xt; 0)> dt + dBt7 YO = Yo, (69)

for t > 0, where 9/0x denotes differentiation with respect to the state variable.
Let px ¢ and py g denote the transition densities of X and Y, respectively. Ait-
Sahalia (2002) demonstrates that the tails of py ¢ are thin enough for the considered
expansion. Overall, however, the density py,g(At; yo,y) is still not suitable as the
function is peaked around y = yg for small A¢. Hence, one performs a second
transformation

Y — o
Zy 7
for all ¢ > 0. Naturally, the initial value of this new process equals zg = 0. Ait-
Sahalia shows that for fixed At the transition density pz g (At; 20, 2) of Z fulfils
the necessary criteria; specifically, it can appropriately be expanded in a convergent
series around a standard normal density.

Hence, one writes the function pz ¢ as a Gram-Charlier series (e.g. Kendall et al.
1987, Chap. 6), that is

pz,60(At 20,2) = $(2) > 1 (At, 8, y0) Hy(2). (6.10)

Jj=0

In this expression, ¢ is the standard normal density, [{; are Hermite polynomials

22\ 09 22 .
H;(z) =exp (?> 527 &XP (—?> for j € Ny,

and
1 o0
n;(At,0,y0) = il /pz,g(At;zo,z)Hj(z)dz
1
= Eo (Hj(Zat)| Zo = 20). (6.11)

Kendall et al. actually define the H; with alternating sign; that, however, does not
change (6.10). The notation here follows Ait-Sahalia (2002).

The expected value in (6.11) can be rewritten via Taylor expansion (e.g. Gard
1988, Chap. 7) such that
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1 YAt — %o
(A, 0,y0) = — Bo | H, [ 2220 )|y, =
77]( yO) ,7' 9( J( \/E ) 0 yO)

Yar — yo
6.12
g@ < \/E >‘| o ) ( )

where Gy is the infinitesimal generator (cf. Sect. 3.2.9) of the diffusion process Y
with parameter 0, i.e.

Gof = i (- O)f' + "

for any sufficiently regular function f. The function py denotes the drift of Y as
apparent from (6.9).

Because of g = 1 and Hy = 1, the expansion (6.10) has leading term ¢(z),
i.e. the transition density of Z is expanded around a standard normal density. The
change of variables theorem yields

py.o(At;yo,y) = (A 2pze(At; 20, 2) (6.13)

and
px.0(At;zo,z) = (0x(2,0)) ' py.e(At;yo,y). (6.14)

Findings for pz ¢ can thus be transferred to px g.

Equation (6.10) provides an explicit closed-form expression for the transition
density pz ¢. The infinite sums in (6.10) and (6.12), however, can certainly not be
computed in practice. Thus truncate these sums to obtain

pze (At 20, % Z (K) At,@,yo)Hj(z) (6.15)
with
K
) at0.0) - L (Yo —w
n ( ) 790 ] ; Al
= Yat=yo

as approximations to the true density pz ¢(A4; 2o, z). Define pg,{ X K) and 12%

(1 K) o
transformations of p(Z K) analogously to (6.13) and (6.14). Ait-Sahalia proves that

there exists A > 0 such that for all At € (0, A), 8 € © and ¢, z € X one has

pX]go) (At o, T ) — pXﬁ(At;:vo,:v) as J — oo.
Equation (6.15) provides a closed-form approximation to the transition density of Z

but involves the fairly complex coefficients nEK). For example, one has
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1 1 3 1

- é(ﬂt)% (1y (15)? + 15 1y + py ' + guézu'é + %u'y’”)’
where the iy are all evaluated at (yo, 8). Ait-Sahalia however demonstrates that the
approximation is sufficiently accurate already for a small number of terms.

An extension of the above approximation procedure for multi-dimensional
diffusion processes is described by Ait-Sahalia (2008). It is applicable whenever
the process can be transformed to one with unit diffusion; cf. the remarks at the end
of Sect.3.2.11. Singer (2004) chooses an approach for one-dimensional processes
which is related to the one described here but expresses the coefficients of the
expansion in terms of conditional moments of the diffusion process.

6.3.2 Numerical Solutions of the Kolmogorov
Forward Equation

Section 3.2.8 introduced the Kolmogorov forward equation which uniquely de-
termines the transition density of a diffusion process with respect to a given
initial condition. Poulsen (1999) makes use of this description and approximates
the transition density by numerically solving this deterministic partial differential
equation. This approach has already been pursued by Lo (1988) who applies
this idea to particular (jump-)diffusion processes but does not develop a general
procedure.

The following considerations assume a one-dimensional diffusion process whose
transition density fulfils the Kolmogorov forward equation

dpe(t;xo,x) olu(z,0)pe(t; xo, )] N 19%[02(z, 0)pe(t; zo, )] 6.16
ot B ox 2 Ox? -16)
for ¢ > 0 and x9,x € X. The diffusion is assumed stationary and ergodic
(cf. Sect. 3.2.7). Indications for handling multi-dimensional diffusion processes are
given in the paper by Poulsen (1999).
By the product rule, Eq. (6.16) is identical with

ap@(t7 Zo, :E)

ot , 6.17)
Ope(t; xo, ) 0°pe(t; xo, )

= a(x, 0)pe(t; zo, z)+b(z, ) 0z c(z,0) oz

where

ou(z,0) 1 0%0%(x,0)
a(z,0) = — o + 3 02
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do(x,0)

b(x,0) = —p(z,0) + 20(x, 0) .

c(z,0) = %(72(3:,0).

These coefficients are known as functions of x and 6 since i and o are known
in parametric form. Poulsen (1999) approximates Eq. (6.17) by application of the
Crank-Nicolson method (Crank and Nicolson 1947). In the following, some more
detail on this is given than in Poulsen (1999). The reader who is rather interested in
the conceptual idea of the estimation procedure, however, may directly proceed to
the last paragraph of this section.

In the Crank-Nicolson technique, Eq. (6.17) is approximated by

Pitar — Pf
At
1 c+Ax _  x—Ax c+Ax 92T r—Ax
=~ | ap+b by Py +e by Dy + Dy (6.18)
2 2Azx (Azx)?
V(L PHAN DA PEAT = 20Fia T LAY
+ = lap¥y A+ c . (6.19)
2 2Ax (Az)?

In this equation, pf = pg(t; 2o, x) forall ¢ > 0 and zz € X, i.e. the lower index
of p{ denotes the time variable, the upper index denotes the state at this time, and 0
and z are kept fixed. Furthermore, ¢ = a(z,0), b = b(z,0) and ¢ = ¢(z,0).
The bracketed term in line (6.18) corresponds to an Euler forward approximation
of the right hand side of (6.17), and line (6.19) stems from an Euler backward
approximation. The Crank-Nicolson method is hence the average of these two
schemes. With the notation from Definition B.1 on p.379 in the Appendix, as a
side note, the last equation reads

+c

T r—Ax r—Ax
D(ll,oy,(At,.)fpt 1 <apf+bD(10,1)’,(~,2Ax)’pt D%o,z)/,(-,mypt )

At 2 2Azx (Azx)?
1 —A 2 —A
+l an” +bD(0,1)Z(»,2Am)/pf+Atx+CD(0,2)C(»,A1)'pf+AtI
o \Prrat 2Azx (Az)? ’
where ¢ is considered the first and = the second argument of p7. Now as-
sume that states zg,x1,...,2x, of the diffusion process have been observed at

times tg, t1, . . ., t,. Adapted to this setting, the expressions (6.18)—(6.19) read

z; x; Tit1 Ti—1 Tit1 x; Ti 1

P 1 ) Py, 7Py, 2SR N

S fk a(wh e)pf?—l +b({Ei, 9) i At S et 4 c(xi, 9) j—1 j—1 j—1
tj—tj—1 2 J Tip1—Ti—1 (Tig1 —xi) (@ —zi—1)

J J J
+c(zq, 0
Tip1 — Tio1 (@:,6) (zig1 — o) (ms — xi-1)

Tip1 Ti_1 Tj41 T, Tj—1
1 ) Py, D¢ Py, T 2Py TP
+§ <a(xi,9)pf;+b(xi,9) -7 ! !
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fori=1,...,n—1and j = 1,...,n. Rearrangement yields
Aijpy ™+ Bigpi + Cijpy ™ = gij-1, (6.20)
where
b(x;,0) c(x;,0)
AZJ - 9
2(@iv1 —xio1)  2(@ig1 — @) (@i — xi-1)
By — 1 _a(zi,0) n c(x;,0) ,
ti—tj—1 2 (Tit1 — i) (Ti — Ti1)
s = b(x;,0) c(x;,0)

2(@it1 — ) (i — wiz1)’
c(z;,0) P
2(@ip1 — ) (i — fci—l)) fi
c(z;, 0) o
(i1 — ) (i — le)> fi

C(:Cia 0) ) Lit1

2(xig1 — i) (T —mimq) )T

2(zi41 — xiz1)

Qij—1 = (_2( b(x;,0)

Tip1 — Tio1)

1 a(x;,0)
+ + -
tj — tj,1 2

+<2( b(x;,0)

Tip1 — Tio1)

In order to approximate the log-likelihood function ¢,,(0) as shown in (6.4) for
given 6@, one has to approximately determine all elements of
{pe(Aty;xk, xp41)|k = 0,...,n — 1}. For k = 0, this can be done as follows:
Summarise Eq. (6.20) as the tridiagonal system

o

Pt

D§1) DJ(_2) o 0 --- 0 0 0 pr1 q(),j:fl
Aij By Cij 0 --- 0 0 0 p';g Q1,J.71
0 Az Byj Coj --- 0 0 0 ';;3 qz,J.—l
. . . .o . Dt = q3,j—1 ,(6.21)
0 0 0 0 ---Ay1; Bno1,j Co1yj - ‘
0 0 0 O 0 DJ('S) DJ('4) ptjx anl.,]fl
pt]." dn,j—1

where D§1), D§2), D§3), D§4), qo,j—1 and g, j_1 have to be determined separately
from the boundary conditions. Derive p;i and g for all i according to the
initial conditions. Finally, solve (6.21) for j = 1. For different values of £, i.e.
different initial states and times, adapt (6.21) accordingly and successively solve
the resulting system for j = 1,..., k + 1. See Poulsen (1999) for technical details
considering the initial and boundary conditions. Note that this numerical procedure
determines several more values of the transition density than actually needed for the

approximation of £,,(8).
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Poulsen (1999) shows that the so-obtained approximation EH(O) of the log-
likelihood function ¢, (0) satisfies

0n(0) = £,(0) + h?g (0,20, ..., ) + 0(h*)g) (B, 0, . .., n),
where gr(Ll) and g,(f) are appropriate functions and & > 0 is chosen such that the
computing time for the approximated log-likelihood is at most of order n/h?.

6.3.3 Simulated Maximum Likelihood Estimation

This section describes an approach by Pedersen (1995b) and Santa-Clara (1995)
which is known as simulated maximum likelihood estimation (SMLE). It is based on
the observation that by the Chapman-Kolmogorov equation the transition density
can be expressed as

pg(s,m,t, ):/pg(s,w,t—5,z)p9(t—5,z,t,y)dz
X

- EQ (p@(t_(sttftsatvy”Xs - .’1})

forall z,y € X,t > s >0and 0 < § <t — s. For small 9, usually § < t — s,
the function pg(t — J,-,¢,-) can be replaced by a Gaussian density, and hence an
approximation of the above expectation can be obtained by Monte Carlo integration
through repeated (approximate) simulation of X;_5{X s = x}.

In the following, we concentrate on the work by Pedersen (1995b) who defines
the first-order approximation

p(el)(s, x,t,y) = ¢(y ’ x+ (t—s)u(x,0),(t — s)X(x, 0)) (6.22)

of pe like in the naive maximum likelihood approach in Sect.6.2. Once again,
the notation ¢(z|v, A) refers to a multivariate Gaussian density with mean v and
variance A evaluated at z. As further refinements of p(gl), Pedersen introduces for

numbers N > 2

N-1
p(ON)(Sv mvta y) = / ' / H p(el)(Tkaéka Tk+17€k+1) d€1 s déN*l? (623)
k=0

X X

where 7, = s+ k(t — s)/N fork = 0,...,N, &, = x and €5 = y. Pedersen
proves that, under weak regularity conditions,
lim pg" (s, 2, t,y) = pa(s, @, t,y) in L.

N —oc0
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Then, for observed states x;,...,x, attimes t; < ... < t,, the so-approximated
log-likelihood function converges in probability to the true log-likelihood func-
tion (6.4):

lim (N)(6): = lim ZIOgP(QN) (th, @i, L1, Tho1)

N—o00 N—00
= {,(0) in probability under Py, .

Pedersen (1995a) proves consistency and asymptotic normality of the estima-

tor éiN) which is obtained through maximisation of 255“. Note that N — oo refers
to decreasing time steps due to imputed intermediate states &, . . ., § ;_1, 1.e. it does
not correspond to the high-frequency time scheme defined in Sect. 6.1.3.

It would be computationally too costly to integrate out all unobserved vari-
ables £;,...,&_; in (6.23), but, as indicated before, we can alternatively write
the integral as

p(aN)(Sa €, tay) = E@ (p(gl) (TN—lu XTN,latu y)‘Xs = w)
= / pS) (vt zvo1, ) PR (zho1),  (6.24)
X

where ]Pg\],v_)l is the law of a random variable that is generated by N — 1 Euler steps

with equidistant time step (t—s) /N and starting point « at time s. Pedersen (1995b)

hence proposes to draw M independent random variables 2'\;_,, m = 1,..., M,
from IPg\J,le and to estimate p(gN) (s,x,t,y) by

von_ 1= m

by =g leg (Tn_1, 2% 1., Y). (6.25)

Since each of the M realisations 2%} _ requires /N —1 Euler steps, the computational
demand of this estimation is of order O(M N). It is hence desirable that (6.25)
converges quickly. Unfortunately, this is not the case for the just proposed sampling
scheme.

The reason for the poor convergence has been pointed out by Durham and Gallant
(2002) as follows: Expression (6.24) can be rewritten as

2 (s, ty) = [ ) (ovorzvoatyp(en ) QM v, (626
X
where p = d]Pg\],Vzl /dQ™Y) is the Radon-Nikodym derivative of ]Pg\z,vzl with respect

)

to a probability measure Q V), where IP%V 1 1s absolutely continuous with respect

to Q). (6.26) can then be estimated by importance sampling as

M
1 1 —m ~-m
Vi Z Py (1, 21, b y)p(ER ),

m=1
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Fig. 6.1 Illustration of importance sampling for intermediate states of Cox-Ingersoll-Ross (CIR)
process dX: = 0.06(0.5 — X;)dt + 0.15v/X:dBy starting in z = 0.08 at time s = 0
and ending in y = 0.11 at time ¢ = 1/12 = 0.08. The time interval [s,t] is further
divided into N = 10 equidistant subintervals. This setting corresponds to the example in Sect. 5
of Durham and Gallant (2002). The CIR process is introduced in Sect. A.3 in the Appendix of
this book. (a) Simulation of M = 30 independent discretised sample paths {z7",..., 2% _,},
m = 1,..., M, by application of the Euler scheme, i.e. as in Pedersen (1995b). Apparently,
there occur relatively large jumps between the states 237_; and y. (b) Simulation of M = 30
independent discretised sample paths as in (6.27), i.e. following Durham and Gallant (2002). These
appear more likely. (¢) Comparison of the integrand pél) (9/120, zn —1,1/12,y) in (6.24) (solid
line) and the empirical sampling density corresponding to the M realisations z3;_, in Fig.6.1a
(dashed line). (d) Comparison of the integrand p(el) (9/120, z2n—1,1/12, y)p(zNn—1) in (6.26)
and the empirical sampling density corresponding to the M realisations z3;_, in Fig.6.1b. The

density p has been obtained by Monte Carlo estimation with sample sizes 10°. This graphic shows
the logarithms of the densities

where 2 _,,...,2 , are independent draws from Q). Good results are
obtained in finite time if Q") has large probability mass where the integrand is
large. Figure 6.1 displays the results of a small simulation study which indicate that

this property is not met by Pedersen’s choice Q) = ]Pg\],vzlz Since ]Pg\],vzl is not
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conditioned on the end point X; = y, it produces trajectories which are usually
quite unlikely due to relatively large jumps between the states at times 7)y_; and ¢.
This becomes apparent in Fig. 6.1a, c.

One proposal for Q) by Durham and Gallant (2002) is to replace the normal
densities

m(Zpt1|2K) = qﬁ(zk“’zk + wu(zg, 0)d, X(z, 0)6)
in the Euler scheme by densities which are further conditioned on the end point,
i.e. by
T(2kt1] 2k, 2N) XT (21| 21) T (2N ]2k41)

= ¢(2p41| 21 + p(2zk, )8, (2, 0)0)

¢(zn] Zrp1 + (N—k—1) (2141, 0)8, (N —k—1)3(2)11, 0)5)

~ ¢(zk+1| zi + u(zg, 0)9, X(zg, 0)6)

- d(zn] Zrp1 + (N—k—1)pu(zx, 0)8, (N —k—1)X(2y, 0)0)

x ¢ (zk+1’2k 4 EN T ER 5 IN T Tkt E(Zk,9)5> ;

TN =Tk TN — Tk

where § = (¢ — s)/N. Then, if trajectories are sampled by setting zp = @ and
successively drawing

y—zr N—-k—1
Zhkt1 N(Zk-i- N_k' N—k 2(2%,0)6) (6.27)
fork =0,..., N — 2, the resulting zy_; is a realisation from Q™). Durham and

Gallant call this sampling pattern the modified bridge. The modified bridge will also
play a central role in the Bayesian estimation approaches in Chap. 7.

Figure 6.1b displays trajectories from this improved scheme. They seem more
likely than the sample paths in Fig.6.1a which are simulated as proposed by
Pedersen (1995b). Figure 6.1c, d confirms this impression: These show the empirical
sampling densities corresponding to Fig. 6.1a, b, respectively. Whereas the empiri-

cal sampling density in Fig. 6.1c clearly differs from the integrand pél) , the sampling

density in Fig. 6.1d obviously draws from regions where the integrand pf,l) p is large.

There is a number of suggestions how to further improve the SMLE approach.
One idea is to change the first-order approximation (6.22) in order to reduce
the estimation bias without having to increase the number of subintervals V.
Elerian (1998), for example, replaces the Euler scheme by the Milstein scheme as
introduced in Sect. 3.3.2. Durham and Gallant (2002) consider the application of a
higher order Iti-Taylor expansion as in Kessler (1997) and the local linearisation
method described in Sect. 6.3.4 below. They furthermore suggest various variance-
reduction techniques like the use of antithetic variates. The latter is also applied
by Brandt and Santa-Clara (2001). Stramer and Yan (2007) investigate the trade-off
between increasing the number of auxiliary time points and increasing the number
of simulated diffusion paths.
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6.3.4 Local Linearisation

The idea of the local linearisation method (Shoji and Ozaki 1998a) is to approx-
imate the considered diffusion process by a linear one. Like all linear diffusions,
the resulting approximation is explicitly solvable (e.g. Kloeden and Platen 1999,
Chap. 4.2), i.e. its transition density is available and can serve as an approximation to
the true transition density of the original process. The local linearisation constitutes
an improvement of the Euler scheme: While the Euler approximation sets the
drift and diffusion coefficient piecewise constant, the local linearisation method
considers them piecewise linear.

For one-dimensional diffusions, the local linearisation is performed as follows
(Shoji 1998; Shoji and Ozaki 1998a): Assume that the process X of interest fulfils
the SDE

dX; = u(X4,0) +0(0)dB:, Xo= zp. (6.28)

In case the diffusion coefficient o depends on the state variable, the process can
be converted to this form using Lamperti’s transform from Sect. 3.2.11. The local
linearisation method usually allows the drift to also depend on time; the focus of
this chapter, however, is on time-homogeneous diffusion processes.

For X satisfying the SDE (6.28), It6’s formula from Sect. 3.2.10 yields

62

a“)()(,g,a)d)mr (82)(Xt,0) 2(0) dt,

(x:.6) = (5

T

where 0/0x denotes differentiation with respect to the state variable. Assume
that Oy /Ox and 8%y /Ox? are constant in X; for t € [s,s + As), where s > 0
and As > 0. Then

62

o) (o) (X (G4 ) (X.000%0) (-

N(Xta 0)_/'L(Xsu 0) = (a

x
forall t € [s,s + As). With this, the drift function of X can be written as
w(X;,0) =CVX, + Pt 4+ CC

for appropriate constants Cs(l), 05(2) and Cs(g) that depend only on s and X. The
resulting SDE

X, = (CVX, + CPt + CcP)dt + 0(0)d B, (6.29)

fort € [s,s + As) has a linear drift function and a constant diffusion coefficient.
As indicated above, an explicit solution to such an SDE is generally available. See
Shoji (1998), Shoji and Ozaki (1998a) or Kloeden and Platen (1999, Chap. 4.2) for
the specific solution of (6.29).
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Shoji and Ozaki (1998b) describe this linearisation procedure also for multi-
dimensional processes. The method is, however, only applicable where a transfor-
mation to constant diffusion coefficient is possible; cf. the remarks in Sect. 3.2.11.

6.4 Alternatives to Maximum Likelihood Estimation

Unlike all estimating techniques investigated so far in this chapter, the approaches
in this section do not try to set up or approximate the likelihood function of the
parameter. Instead, they match certain statistics of the model with that of the data.
These statistics may be the moments of the process (as in Sect. 6.4.1) or their sample
analogues (Sects. 6.4.2 and 6.4.3) or some functions derived from auxiliary models
(Sects. 6.4.4 and 6.4.5). The model parameter is then estimated by the candidate
which produces the best conformity.

6.4.1 Estimating Functions

This section briefly describes how the general concept of estimating functions
(Godambe 1991; Heyde 1997) can be applied to diffusion processes. For a detailed
review on this topic see Bibby et al. (2009).

Let X be an ergodic diffusion which is the solution of the SDE (6.1), and assume
one has observations xg, x1,...,x, of X attimes 0 = t; < t; < ... < t,.
An estimating function for the parameter 0 is a function G,,(0; xo, . . . , ;) which
depends on the parameter and the data. When dependence on the observations is
clear, we simply write G,,(6). An estimate én for @ is obtained as a solution of

G (8) = 0.

Once more, let 8y denote the true parameter value. One usually requires that the
estimating function is (at least asymptotically) unbiased, that means

Eg(Gn(8)) =0,
and that the parameter is uniquely identifiable, i.e.
Eg,(Gn(0)) =0 << 0 =6,.

The most prominent representative for an unbiased estimating function is the score
function

ol,(0 0
é ) - kz_:a_ ogpg(Atk;iL‘k,wk-i—l)a

sn(0) = 3
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where the equation s,,(6) = 0 is solved by the maximum likelihood estimator.
However, as discussed before, the score function is usually not available. In that
case, one tries to imitate it by adapting the general form

1
Gn(0;xg,...,x,) = (0, Aty, @y, Tpi1). (6.30)
0

3
|

>
Il

In all estimating functions introduced below, the function g, in turn, is of type
J
9(0, At,x,y) = Z a;(0, At,x)h; (0, At, z,y) (6.31)

Jj=1
for some J € IN, where the a; are called the weights of the functions ;. The most
common estimating functions that appear in the literature can be categorised in the
following non-disjoint classes.
Martingale Estimating Functions

Martingale estimating functions satisfy the martingale property

Eg(Gn(e;Xto,.. .,th)

Fn1)=Gn-1(0; X4y,..., X4, ) (6.32)

for all n € IN, where F,, is the o-algebra generated by {X,,..., X, }. If the
function g in (6.30) attains the form (6.31), the condition (6.32) is fulfilled if and
only if

g (hj(O, At x, X At) ‘ Xo= cc) =0 (6.33)

forallj € {1,...,J},0 € ©, At € R, and € X. An obvious choice is
hi (0, Atz y) = f;(y,0) — Eo(f;(X a:,0) | X0 =) (6.34)

for base functions f; which are regular enough such that the expected values exist.
Then (6.33) is trivially fulfilled. Examples for functions of type (6.34) are given in
the polynomial estimating functions below.

Martingale estimating functions appear as a natural choice of an estimating
function since the score function possesses the martingale property as well.
Furthermore, the well-known martingale theory allows for immediate asymptotic
results as n — oco. Unbiasedness is directly implied by (6.33).

For given h;, j = 1,..., J, the weights o;; can be chosen in an optimal way such
that the resulting estimator of 6 has smallest asymptotic variance within the class
of estimating functions satisfying (6.31) with the specified h; (e.g. Sgrensen 2007;
Bibby et al. 2009). The choice of the h; is, however, more subtle. For asymptotic
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properties of martingale estimating functions, and in particular for asymptotic
variances, which are typically of sandwich type and depend on the true parameter,
see Sgrensen (2008) or Bibby et al. (2009).

Polynomial Estimating Functions

Polynomial estimating functions employ the form (6.34) with f; being a polynomial.
They hence form a subgroup of the above martingale estimating functions. Unlike
the true score function, polynomial estimating functions do not require knowledge
of the whole transition density but only of the first few conditional moments.
They are hence more robust to misspecification. When the conditional moments
are analytically not available, they may be obtained e.g. by Monte Carlo simulation.
Kessler and Paredes (2002) describe the impact of such simulation on the resulting
estimator of 6.

A linear estimating function utilises (6.31) with J = 1, h; as in (6.34)

and f1(y,0) =y, ie.
hi(0, At @, y) =y — Eo (X a | Xo = ).

This estimating function is appropriate when the diffusion coefficient
does not depend on 6; otherwise, a higher order polynomial should be
employed. A quadratic estimating function uses J=2, h; as above and
f2(y,0) = hi(0, At,x,y)h) (0, At, x, y), i.e.

hy (6, At,z,y) = h1(6, At,z,y)h (0, At,x,y) — Varg (X as ‘ Xo=ux).

When the diffusion process is one-dimensional, higher order polynomial estimating
functions usually employ

fiy, 0) =y*s

for suitable k£; € INg. Examples for particular linear and quadratic estimating
functions are given in Examples 6.1 and 6.2 below.

Estimating Functions Based on Eigenfunctions

The class of estimating functions based on eigenfunctions has been investigated
e.g. by Kessler and Sgrensen (1999). Let Gg denote the infinitesimal generator,
introduced in Sect.3.2.9, of a one-dimensional diffusion process X which solves
the SDE (6.1). A twice differentiable function 7(x, ) is an eigenfunction of Gg
with eigenvalue \(0) € Ry if

9977(% 0) = _)‘(0)77(17’ 0)

for all x € X. Kessler and Sgrensen (1999) show that under mild regularity
conditions one has
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Eo (n(Xat,0) | Xo = z) = exp(—A(0)At)n(z, ).

Hence, if 71,...,nK are eigenfunctions of Gg with eigenvalues A\q,..., Ag, the
choice (6.31) with J = K and

hj (07 At, x, y) =1y (yv 0) - exp(_)‘j (B)At)nj (‘Tv 0)7
i.e. h; being as in (6.34) with

fi(y,0) = n;(y,0),

yields a martingale estimating function. This estimating function is explicit in the
sense that the h; are known in explicit form. Kessler and Sgrensen (1999) deter-
mine the optimal weights for this function and prove consistency and asymptotic
normality for the resulting estimators. For eigenfunctions of the generator of a multi-
dimensional diffusion process see Bibby and Sgrensen (1995).

Simple Estimating Functions

In the class of simple estimating functions, the function g in (6.30) depends on one
state variable only, in particular

for some functions g and g. Simple estimating functions have the advantage that
they are often explicitly available. On the other hand, they do not take into account
the dependence structure between successive observations.

For example, let mg denote the invariant density of the ergodic diffusion process
as introduced in Sect. 3.2.7. Then (6.30) with

dlogme(y)

9(0, At,x,y) = g(0,y) = 20

(6.35)
forms a simple estimating function which is based on the assumption
that 1, ..., x, are independent and identically distributed draws from mg (Kessler
2000). In that case, GG,, would equal the score function of 6. Utilisation of this
estimating function is only reasonable when the process has reached stationarity.
Furthermore, it is only applicable for the estimation of those parameters that enter
the invariant measure.

As another example, Kessler (2000) constructs simple estimating functions
by application of the infinitesimal generator Gg for one-dimensional diffusion
processes. In particular, he sets
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2
Op(x,0) n 1 2(%0)8 /(;(;172, 0)

9(0,2) = Gop(z,0) = p(z,0) 5 5

(6.36)
for a sufficiently regular function p and shows that under certain assumptions
the resulting estimating function leads to a consistent and asymptotically normal
estimator of 6. Estimating functions with g of type (6.36) are also discussed
by Sgrensen (2001).

That completes the collection of those classes of estimating functions which
are considered in this section. Combinations are possible, that means different
estimating functions can be used for different parameter components as for example
for drift parameters and diffusion parameters. See Bibby and Sgrensen (2001) for
several examples.

Jacobsen (2001) investigates the problem of finding optimal or asymptotically
optimal estimating functions in the sense that the resulting parameter estimate has
smallest variance within a certain class of functions.

This section is concluded with the following two examples as an illustration of
the just introduced classes of estimating functions.

Example 6.1. In what follows, a linear martingale estimating function is con-
structed as in Bibby and Sgrensen (1995): For X not depending on 6, the
Euler approximation of the log-likelihood function is shown in (6.8). Derivation
of this function with respect to @ yields the according score function. For n
observations 1, . . . , &, in addition to the initial value x, it reads

n—1 !
o, 0)\
SEHICY(O) _ § <%> > l(mk)(mk+1 — Tp — H(xkae)Atk)v
k=0

where Op/06 is a d x p-dimensional matrix. This score function is biased and
hence not appropriate as an estimating function. An unbiased function can however
be obtained as

Gn(0) = Sgum(e) - Cn(0),

where C,, is the compensator of s2%°". This can be constructed as Co(8) = 0 and

n—

Cn (0) — Z Eg (SE_I’J_llcr(e) Eulcr } ]:k)

k=0
— [ Op(xr,0)\
— < Hagv > 2*1($k)(E9(th+l|]:k)—$k—p,(:1}k70)Atk)
k=0

for n € IN, where s§"*(@) = 0. Overall, one has

- (B0 5 (x| 20),

k=0
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which is an unbiased linear martingale estimating function with weight

I
a1(0, At,x) = (M) > x). (6.37)
00

Unbiasedness does not rely on the fact that the diffusion matrix does not depend on

the parameter. Hence, the same estimating function can be employed when it does.
Bibby and Sgrensen (1995) show that the optimal estimating function within this

class, i.e. the one leading to an estimator with smallest asymptotic variance, is the

one with weight

—1

8 /
a1(0, At,x) = <% Eg(XAt ‘ Xy = m)> <Varg(XAt ‘ Xo= :c))

The linear estimating function with the previous weight (6.37) is hence not optimal,
but it is approximately optimal for small time steps. Both estimating functions lead
to consistent and asymptotically normal estimators (Bibby and Sgrensen 1995).

Example 6.2. A well-known quadratic martingale estimating function is derived as
follows (see e.g. Sgrensen 2008): Assume that the increments of a one-dimensional
diffusion process with parameter 8 are approximately Gaussian, in particular

th+1 } {th = xk} ~ N(Ek(e)v Vk(e))v
where
Ey(0) =Eo(Xy,,, | Xy, =xx)  and  Vi(8) = Vare(Xy,,, | Xy, = 1)

The according score function for data xo, . . ., ,, equals

Sn(e) = nil @

k=0

2v,.(0)
(xk+1—Ek(9))+l (39 k )

Vi(0) 2 VEe) ((@r+1 — Ex(0))? — Vi (0)) | -

This is a quadratic martingale estimating function of the form (6.30) to (6.31)
with J = 2, h; and hs as in (6.34), weights

o 1o
—Eg(XAt|X0 = .’L‘) —Varg(XAt|X0 = ,T)

0, At x) = 22 d ay(0, At, z) = 28
a1(8, At, z) Varg(Xar| Xo =) a>(8, At, z) 2WVarg(X ar| Xo = 7)°

and polynomials

A0 =y and  fo(y,0) = (y — Ee(Xac|Xo = 2))”.

This estimating function is approximately optimal (Sgrensen 2008).
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6.4.2 Generalised Method of Moments

Related to the theory of estimating functions in the previous section is the
generalised method of moments (GMM) as developed by Hansen (1982). In this
approach, one considers functions 1, ..., depending on the parameter 8 and
the process X, where

Eq(v;(0; X)) =0 (6.38)

forj =1,...,J. Equation (6.38) for all j are called the moment conditions. These
are employed in order to estimate the parameter 8. For p-dimensional parameter 6,
one requires J > p moment conditions. The functions v; usually depend on only
one or two state variables in addition to the parameter. This case is also assumed in
the following.

Consider a one-dimensional ergodic diffusion process with true parameter 6
starting in x( at time fp, and assume that there are observations zj,...,x, at
times t; < ... < t, of this process which are i.i.d. draws from its invariant
measure mg,. Denote by X, and X; two independent random variables with
density mg, . The expected value of 1, (6; X, X;) for @ € O is usually not available
but can be approximated through the method of moments estimator

n—1

1
~ D 0 (85 3k, 2r41). (6.39)
k=0

The GMM estimator ,, is obtained as the minimiser of a norm of this expression.
In particular,

!
R 1 n—1 1 n—1
0, = argmin <ﬁ Z¢(0§$k7$k+l)> C, <ﬁ Z ¢(0§$k7$k+1)> , (6.40)
k=0 k=0

6co

where ¥ = (¢1,...,%)" and C,, € R’7*’ is a positive semi-definite weight
matrix. Under certain conditions (Hansen 1982), 6., is consistent and asymptotically
normal. Hansen (1982) determines the optimal weight matrix yielding an asymptot-
ically efficient estimator, but as this matrix involves the unknown parameter 6, it
cannot be used in practice.

In what follows, we look at two examples. Once again, denote by Gg the
infinitesimal generator of the considered diffusion process with parameter 6 as
introduced in Sect. 3.2.9. Let g and h be two functions for which Gg g and Gg h are
well-defined. Hansen and Scheinkman (1995) utilise the two moment conditions

Eo(Go 9(X:)) =0 (6.41)
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and
Eo(Go 9(X¢)h(Xs) — 9(X:)Go h(X,)) =0 (6.42)

for all ¢ > s > 0. The latter equation holds for time-reversible processes (Kent
1978), which includes all one-dimensional ergodic diffusions. The above moment
conditions (6.41) and (6.42) lead to method of moments estimators (6.39) with
functions

V(0;2,y) = Go g(y)

and
w(07 x, y) = g9 9(07 y)h(07 1’) - 9(07 y)gg h(eu :E)u

respectively. These are investigated for example by Jacobsen (2001).

The above elucidations refer to one-dimensional diffusions only. For the gen-
eralisation to multi-dimensional processes see Hansen and Scheinkman (1995) or
Jacobsen (2001).

6.4.3 Simulated Moments Estimation

Simulated moments estimation (SME) as carried out by Duffie and Singleton (1993)
bases on the same idea as the just considered generalised method of moments:
In the previous section, a norm of (6.39) was minimised. Due to the moment
conditions (6.38), this is exactly the same as minimising a norm of

n—1

1
~ D 05 (8:wk wiy1) — Bo (45(8; Xa, X)) (6.:43)
k=0

for some ¢t > s > 0. The generalised method of moments could hence theoretically
be extended to functions v,(0; X, X;) with nonzero expectation as long as this
expectation is known. When it is unknown, the SME is still appropriate as it
replaces the analytical expected value in (6.43) by the sample mean based on m + 1
additionally simulated values zg, 21, . .., 2, from the invariant density mg. The
simulated moments estimator is obtained as the minimiser of the norm of

m—1

n—1
1
EZ%(@;M,%H) - Z ¥;(0; 21, zi11)

k=0 =0

3

in an analogous manner as in (6.40) above. Duffie and Singleton (1993) supply
conditions for the consistency and asymptotic normality of the simulated moments
estimator.
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6.4.4 Indirect Inference

In indirect inference, the parameter of a model of interest is estimated indirectly
via the parameter of an auxiliary model (Gourieroux et al. 1993). This is convenient
whenever statistical inference for the original model is complicated and the auxiliary
model is chosen such that its parameter can easily be estimated.

Let Mg denote the original model with parameter § € © C R, and A, be the
auxiliary model with parameter p € R C R", where h > p. Both Mg and Ap are
assumed to be known in parametric form. Suppose one has observations xg, . . . , &,
from Mg, for some unknown 8y € ©. The objective is the estimation of 8. If
simulation from Mg is (at least approximately) possible, this can be performed by
indirect inference as follows:

In a first step, obtain an estimator f)zbs of p by treating xo, ..., x, as observa-
tions from the auxiliary model A,. Under regularity conditions, this estimator bflbs
tends to a parameter p, = g(6) for some invertible unknown function g as n — cc.

In a second step, determine 6 such that simulated data from My associated

with A, leads to an estimate of p that is close to f)zbs: For fixed 6, (approximately)

6.k) — {zéo’k), . ,z%e’k)}, k =1,...,K, from Mg.
Denote by f)glg’k) the estimator of p that is obtained when z(®¥) is treated as
observed from A,. Then, if certain assumptions are fulfilled, b;o’k) tends to g(6)
for all £ and n — oo. The indirect estimator 9n of @ is now chosen such that

pime) = K1 pL%") is close to p°P. In particular,

simulate K datasets z(

6, = axgmin ("~ 51"(8)) D (517 = 51"0)) . (644

where D, is a positive definite matrix converging to a deterministic positive definite
matrix D as n — oo. Under assumptions stated in Gourieroux et al. (1993), én
consistently estimates 6.

In the context of estimating the parameter @ of a stationary and ergodic
diffusion process, the auxiliary model is most conveniently chosen as a time-
discretisation of the original SDE as considered in Sect.3.3.2. The parameters 6
and p then have the same dimension and interpretation. The auxiliary parameter p is
estimated by maximum likelihood methodology. In that case, the indirect estimator

is independent of D,, in (6.44), and p°™* = p=™(@,,) (Gourieroux et al. 1993).
The following describes the indirect inference procedure for the parameter 6 of
an SDE

dXt :u(Xt,G)dt—i-a(Xt,@)dBt, Xto = Xy, (645)

for observations xg, ..., x, attimes 0 = tg < t; < ... < t,, = T. The auxiliary
model is chosen to be the Euler discretisation

Yk+1 =Y.+ [L(Yk, p)Atk + O'(Yk, p) N(O, Atkl), Y, = x,
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with Aty = tg41 — ti. For observations £y = yg, Yy, - - -, Y,, the log-likelihood
function of p for the auxiliary model is

n—1

9P Yo Yn) = Y1086 (ypir | Uy, + 1Yk, p) Ak, (yy, p)Ali)
k=0

where ¢(z|v, A) is the Gaussian density with mean v and variance A evaluated
at z, and X' = oo’. Now proceed as follows.

Step 1: Calculate the maximum likelihood estimator p°”

tions from the original model,

of p given the observa-

~obs
p,° = argmax q(p; xy,. .. ,wn).
pPER

Step 2: Determine the indirect estimator 6, of 6 by (numerically) solving

P = 0" (6n),

~sim

where p;, " (0) is determined for all 8 € O as follows:
(i) Fork =1,..., K, simulate the original diffusion process X with parameter 6
at times tg,...,t,. Denote the simulated values by zéo’k), e z%e’k). If

exact simulation from (6.45) is inconvenient or impossible, apply one of the
numerical approximation schemes from Sect. 3.3.2 on a time grid that is much
finer than the grid of observation times. Gourieroux et al. (1993) emphasise that
in this simulation, the same random seeds should be employed for all values

of 6.
(ii) Fork =1,..., K, obtain the maximum likelihood estimators
f);o’k) = argmax q (p; zée’k), e ,zg"”@) . (6.46)

pER

(iii) Calculate the average of these estimators,
1 X
~sim _ = E ~(6,k)
pn (0) - K p pn .

Under fairly general assumptions, the indirect estimator 6,, is a consistent and
asymptotically normal estimator of 6. See Gourieroux et al. (1993) for further
asymptotic properties and fields of application.

Broze et al. (1998) discuss the fact that approximate instead of exact simulation
in item (6.4.4) introduces a simulation bias. In case of approximate simulation,
they hence refer to the above method as quasi-indirect inference. Monte Carlo
experiments, however, show good performance of this approach for moderate
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sample sizes K. Furthermore, the authors remark that estimation results do not
improve if the Milstein instead of the Euler scheme is employed for the approximate
simulation. Overall, the resulting estimator is asymptotically unbiased also for
quasi-indirect inference (Gourieroux et al. 1993; Broze et al. 1998).

6.4.5 Efficient Method of Moments

A conceptually similar approach to the indirect inference in the previous section
is the efficient method of moments (EMM) (Gallant and Tauchen 1996). In this
technique, the criterion (6.44) is replaced by

6,, = argmin Q(8)'E,, Q(6) (6.47)
oco

for an appropriate positive definite matrix E,,, where

and ¢ is the log-likelihood function of p in the auxiliary model. For certain
choices of D,, and E,,, the estimators 9n obtained through (6.44) and (6.47)
are asymptotically equivalent (Gourieroux et al. 1993). The EMM is generally
more efficient than indirect inference as the computationally possibly demanding
calculation of the maximum likelihood estimator f)flg’k) in Eq. (6.46) is not required.
For details on the EMM, see Gallant and Tauchen (1996).

6.5 Exact Algorithm

A recent development in the simulation and estimation of diffusion processes is the
introduction of the Exact Algorithm which enables exact simulation of diffusion
paths without any time discretisation error. By now, the algorithm is available in the
different variants EA1 (Beskos and Roberts 2005), EA2 (Beskos et al. 2006a) and
EA3 (Beskos et al. 2008). Its implementation is easy and computationally efficient.
A drawback, however, is its limited applicability which is formulated in detail below.
This section explains the EA1, which is the earliest and simplest version of the Exact
Algorithm. The following first discusses the simulation of diffusion paths and then
the estimation of parameters.

Consider a one-dimensional diffusion process X = (X});>o with unit diffusion
coefficient, i.e. satisfying an SDE

dX, = u(X,,0)dt +dB,, X = 0. (6.48)
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The EA1 applies only to this class of diffusions. However, transformation of
a general one-dimensional diffusion to (6.48) can be obtained with Lamperti’s
transform, see Sect. 3.2.11.

Simulation

The EA1 aims to draw exact time-discrete skeletons of the diffusion process on the
time interval [0, T'], where T' € R, is fixed. The algorithm is based on the rejection
sampling scheme (see e.g. Grimmett and Stirzaker 2001) which works as follows:

Algorithm 6.1 (Rejection Sampling on R). Consider two equivalent probability
measures p and v on R with bounded Radon-Nikodym derivative, i.e. there exists
k € Ry such that for all z € R one has k- (dp/dv)(z) < 1. Suppose one is able to
sample from v. Perform the following steps:

1. Draw Z ~ v.
2. Accept Z with probability r - (dp/dv)(Z). Otherwise, return to step 1.

Then Z ~ .

In our case, we do not wish to sample a real random variable from p but a diffusion
process from a probability measure Pg induced by (6.48). In order to apply the
rejection sampling algorithm to this situation, we are looking for a probability
measure Zg which fulfils the following requirements:

(i) Itis possible to sample from Zg.
(ii) Py and Zg are equivalent.
(iii) The Radon-Nikodym derivative dIPg /dZg is bounded from above.
(iv) It is possible to exactly apply the acceptance probability in step 2 of Algo-
rithm 6.1.

Beskos and Roberts (2005) found out that an appropriate candidate for Zg is the
law of Brownian motion starting in xy and conditioned on an end point which is
drawn from a probability distribution with density

) o esp (40 - ).

where A(u) = [ u(y)dy for all u € R. In addition to the general assumptions at
the beginning of this chapter, they require the following conditions to hold:

* The drift coefficient i is everywhere differentiable.

* The integral [ exp(A(u) — u?/2T)du is finite.

o There exist constants k1, k2 € R such that k; < 0.5(u?(u) + ¢/ (u)) < ko for
allu € R.

* The time horizon T is small enough such that 0 < ¢(u) < T forall u € R,
where p(u) = 0.5(u?(u) + p/(u)) — k1.
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Beskos and Roberts show that the above choice of Zg fulfils the require-
ments (6.5) and (6.5). In particular,

% (X[O,T]) =K eXp(—H(X[OyT])), (6.49)
where H(X[o 7)) = fOT ©(X¢)dt. In a rejection sampling algorithm, the right hand
side of Eq. (6.49) can be taken as the acceptance probability with x = 1 because of
eXp(—H(X[07T])) S 1.

Naturally, it is not possible to sample infinite-dimensional objects from Zg.
However, assumption (6.5) is fulfilled in the sense that one can obtain exact finite
skeletons from Zg by first drawing the end point X from the density h and then
constructing a Brownian bridge skeleton at discrete time points as described in
Sect.3.3.3.

This skeleton from Zg then has to be accepted or rejected as a draw from Pg
with probability exp(—H (X[,77)). Assumption (6.5) requires that this is possible.
The value of H(X[o, 7)) cannot be calculated as this requires knowledge of the full
path Xjg 7. One can however circumvent this calculation; to that end, note that

a decision with acceptance probability H (X[o, 1)) = fOT ©(X;)dt can be made
as follows: First, draw a uniformly distributed point (¢,y) ~ U([0,T] x [0, M]),
where M is an upper bound of ¢ (e.g. M = T'). Next, simulate the value X
of the diffusion path at time ¢. Accept if y < p(X), reject otherwise. In order to
simulate an event with probability exp(—H (X[o,7])), Beskos and Roberts expand
the probability in a Taylor series and express the event as the countable union of a
sequence of increasing events and as the countable intersection of another sequence
of decreasing events. With this construction, they are able to come to an accept or
reject decision on the basis of a finite skeleton of the diffusion path. For details,
see Beskos and Roberts (2005).

Beskos et al. (2006a) replace this last mechanism by a simpler and more
efficient procedure that is based on the following observation: Let ¥ be a homo-
geneous marked Poisson process of unit intensity on [0, 7] x [0, M]. That means
v = {(t1,y1),---,(tk,yx)}, where t; < ... < {1 are the jump times of
a homogeneous Poisson process with intensity one on the time interval [0, 77,
and y1,...,yx ~ U([0, M]) are i.i.d. marks at these instants. Given a diffu-
sion path Xo 7}, let N be the number of marks below the graph (,¢(X})),
where ¢ € [0, 7. The total number of marks in the rectangle [0,7] x [0, M] is
Poisson distributed with intensity one. Thus N is Poisson distributed with intensity

T
H(X[07T]) = fO (p(Xt)dt, and
P(N =0 Xjo,17) = exp(=H (Xjo.1))-
The number IV can be determined given the discrete skeleton of X|g 7}. That means,

there is a simple possibility to make an accept/reject decision with the required
acceptance probability (6.49). The resulting algorithm is the following.
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Algorithm 6.2 (EA1).

1. Simulate a homogeneous marked Poisson process W = {(t1,y1), ..., (tk, yx)}
of unit intensity on [0,T] x [0, M], i.e. t1,...,tx € [0,T] are the jump times of
the Poisson process and yy, . . ., yx, ~ U([0, M]) are the i.i.d. marks.

2. Draw a skeleton from Zg at times t1, . .., g, i.e.

a. Simulate the ending point X1 ~ h of the diffusion path.
b. Simulate the values Yi,...,Y; at times ti,...,t; of a Brownian
(0,0, T, X1)-bridge as described in Sect. 3.3.3.

3. Ifo(Y;) <y foralli € {1,...,k}, accept the skeleton. Otherwise, reject and
return to step 1.

Then S = {(0,20), (t1,Y1),..., (tr, Yi), (T, X1)} can be regarded as a time-
discrete sample from Pg.

Once a skeleton is accepted as a sample from Py, it can be amended by further
draws from Zg at additional time instants (Beskos et al. 2006a).

The EA1 requires the function ¢ to be bounded. The EA2 (Beskos et al. 2006a,b)
extends the above methodology such that it is applicable also to diffusions where
either lim sup,, , . ¢(u) < oo or limsup,_, . ¢(u) < oco. The algorithm starts
by simulating the infimum of the diffusion path and the (maximum) time when this
infimum is achieved. Then, the diffusion path is composed of two Bessel processes.
This construction makes sure that these path segments do not fall below the infimum.
The EA3 (Beskos et al. 2008) even removes the just stated requirements on the
bounds of ¢ by including in the analysis not only the infimum but the whole range of
the diffusion path. The decision about acceptance or rejection in both EA2 and EA3
is again under consideration of a marked Poisson process. Generalisations to time-
inhomogeneous and multivariate diffusions are discussed in Beskos et al. (2008).

Estimation

The Exact Algorithm enables simple Monte Carlo maximum likelihood estimation
for those diffusions where the algorithm is applicable. This is described in the
following for the EA1 (Algorithm 6.2). Hence assume that the assumptions required
by EA1 are fulfilled.

The objective is the estimation of the transition density pg(t; xo,x) of the
diffusion process solving (6.48) for any z € R. Inference based on EA1 utilises
the fact that

po(t; zo, ) = Eg (po(t; z0, 2]9)),
where pg(t; zo, x|S) is the usual transition density pg further conditioned on a

skeleton S = ((0, ), (t1,Y1), ..., (tk, Yi), (T, X)) which has been constructed
with EA1 for 7' > t. Because of the Markov property of diffusion processes,
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conditioning on the whole skeleton reduces to conditioning on the left and right
neighbours (¢;, Y;) and (¢, Y;.) of (¢, z), i.e.

pe(t,$071’|s) = p@(t;xf)ax'nu Yr)u
where Y, and Y. are the values in the skeleton at times

t; = max{t;|t; <t,i=0,...,k+1} (6.50)
and

te =min{t; [t; > t,i=0,...,k+1} 6.51)

with g = 0 and ¢, = T'. It has already been noted above that, conditioned on the
skeleton, the diffusion process has the same law as a Brownian bridge. Hence,

t—1;
tr— 1

(t—t)(t, — 1)
tr — 1

po(t: 20, 2|1, Yy) —¢(:cm+ Y, — Y1), ) 6.52)

(Beskos et al. 2006a); this formula can be derived from the construction of
Brownian bridges in Sect. 3.3.3. That means, the transition density pg(t; zo, ) can
be estimated by Monte Carlo evaluation of the expected value of (6.52). This is
described by the following algorithm.

Algorithm 6.3 (Monte Carlo Likelihood Estimation using EA1).
1. Forj=1,...,J, perform the following steps:

a. Using EAI, draw a skeleton S from Pg on [0, T, where T > t.

b. Identify t; and t, as defined in (6.50) and (6.51) and the corresponding
values Y; and Y.

c. Compute (6.52) and store the result in p’.

2. Calculate the mean of all p’ to obtain a Monte Carlo estimate of pe(t; xo, ).

Algorithm 6.3 yields an unbiased estimate of the transition density. It can
be utilised to obtain pg for different values of the possibly multi-dimensional
parameter 8. The maximum likelihood estimator can then for example be found
by grid search methods.

More advanced techniques for statistical inference on the basis of the Exact
Algorithm are extensively discussed in Beskos et al. (2006b) and Beskos et al.
(2009).
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6.6 Discussion and Conclusion

This chapter reviews a variety of frequentist methods for the parameter estimation of
discretely-observed diffusion processes. Sections 6.1 and 6.2 introduce techniques
which are applicable only in an ideal situation where the diffusion process is
observed continuously in time, or the exact transition density is known, or obser-
vations are available at very dense time points. Sections 6.3—6.5, in contrast, cover
more sophisticated estimation approaches which are capable to cope with larger
observation intervals even when the transition density of the diffusion process in
unknown.

An ultimate grading of the various approaches is not clear cut as each technique
has its own strengths and weaknesses. In practice, the choice of an appropriate
method is typically problem-specific. First of all, it may depend on the form of
the drift or diffusion coefficient, or on the knowledge of eigenfunctions, or on the
fact whether the observed diffusion process is ergodic. Furthermore, the number of
observations, the data frequency, the dimension of the parameter and of the process,
or available computing power possibly influence the decision for or against a certain
estimating technique.

However, some general advantages and disadvantages of the presented tech-
niques can be identified: Approximations of the likelihood function as considered in
Sect. 6.3 yield the approximated function as a convenient by-product. The Hermite
expansion from Sect. 6.3.1 is generally appraised to be fairly efficient; unfortunately
it is also quite complex and barely transparent. The latter property also applies
to the Crank-Nicolson method from Sect. 6.3.2. Conveniently, the Crank-Nicolson
method and the simulated maximum likelihood estimation from Sect.6.3.3 are
generic approaches, i.e. the drift function and diffusion coefficient just have to be
plugged in. In practice that means that these approaches need to be implemented
only once in order to apply them to different models. However, simulation-based
techniques such as the simulated maximum likelihood approach, the simulated
moments estimation from Sect. 6.4.3, the indirect inference from Sect.6.4.4 and
the efficient method of moments from Sect. 6.4.5 are computationally demanding.
The estimating functions from Sect. 6.4.1 are less hard to compute. Moreover, they
are robust to misspecification when only the moments of the diffusion process
are matched. On the other hand, important information may be wasted when only
moments are considered. The quality of estimates obtained by the indirect inference
from Sect.6.4.4 and the efficient method of moments from Sect.6.4.5 severely
depends on the choice of the auxiliary model. Finally, the Exact Algorithm from
Sect. 6.5 yields unbiased estimators and is the most efficient technique of this
chapter unless the exact likelihood is available. Unfortunately, its applicability is yet
quite restricted; the EA1, for example, requires the diffusion process to be univariate
with unit diffusion coefficient and a drift function fulfilling the assumptions listed
onp. 161.
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A critical comparison of the presented estimation approaches by means of a
simulation study is beyond the scope of this book. Some evaluations can, however,
be found in the literature, shortly summarised in the next three paragraphs. A
documentation of the R-package sde, which implements several of the techniques
considered in this chapter, is contained in Iacus (2008).

Jensen and Poulsen (2002) numerically evaluate several estimation approaches
on the example of specific one-dimensional diffusion processes. The considered
techniques are the Hermite expansion from Sect. 6.3.1, the Crank-Nicolson method
from Sect.6.3.2, a binomial approximation technique as for example considered
by Nelson and Ramaswamy (1990), and the naive maximum likelihood approach
from Sect.6.2. Concerning the trade-off between speed and accuracy of the
approximations, these approaches turn out to be clearly ranked in the above order
with the Hermite expansion showing the best performance.

Honoré (1997) applies the naive maximum likelihood approach from Sect. 6.2,
the generalised method of moments from Sect. 6.4.2 and the simulated maximum
likelihood estimation from Sect. 6.3.3 to a specific model from financial economics.
Based on the outcomes of a simulation study, he labels the first two methods as
inappropriate due to large estimation bias, whereas the third approach is found to be
practical.

In another simulation study, Hurn et al. (2007) evaluate most of the approaches
considered in this chapter with respect to the ease of the implementation, time
exposure of the estimation method and accuracy of the resulting estimates. Briefly
summarised, the estimating functions based on eigenfunctions from Sect.6.4.1
and the Hermite expansion from Sect.6.3.1 are most satisfying considering time
exposure and accuracy at the same time. The authors however emphasise that the
diffusion models in the simulation study suit these two estimation techniques.

The application of most methods in this chapter becomes problematic as soon as a
diffusion process is only partially observed, i.e. some components of the state vector
are latent, or observations are measured with error. For example, in case of latent
variables, the Markov property of consecutive observations may no longer hold,
and the approximations of the likelihood function in Sect. 6.3 may not be applicable
anymore. Partial and/or noisy observations are for example considered by Gloter
and Jacod (2001a,b) and Jimenez et al. (2006).

A powerful approach to overcome this problem is to estimate the model
parameters in a Bayesian framework. Such a procedure is able to handle multi-
dimensional diffusion processes which are partially observed and measured with
error. This way, it outperforms the majority (if not all) of the methods presented
in this chapter and enables the statistical analysis of the complex applications in
Chaps. 8 and 9. Large samples or stationarity of the underlying process are not
required. As an appreciated by-product, the technique also estimates the sample
path at intermediate observation times. The presentation and further development of
such a method is the subject of the next chapter.
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Chapter 7
Bayesian Inference for Diffusions
with Low-Frequency Observations

The previous chapter considered a variety of frequentist procedures to infer on the
parameters of a diffusion process. The difficulty that underlies all approaches is
the general intractability of the transition density for discrete-time observations.
Most techniques struggle when inter-observation times are large. Datasets in life
sciences, however, may well be of low-frequency type. Examples are plant surveys
with yearly assessment, epidemics where public health reporting considers new
infections per week, or cost-intensive and hence infrequent measurements in
genetics. Even in finance, where high-frequency measurements are often available,
it may be advantageous to work with a thinned dataset; for instance, asset price data
can be corrected for certain microstructure effects this way (Jones 1998).

The present chapter introduces Bayesian inference methods which all base on
introducing missing data such that the union of missing values and observations
forms a high-frequency dataset. This facilitates approximation of the transition den-
sity and hence enables parametric inference even for large inter-observation times.
Moreover, the techniques are suitable for irregularly spaced observation intervals,
multivariate diffusions with possibly latent components and for observations that
are subject to measurement error. They even apply when different components
of the state space are observed nonsynchronously. Stationarity and ergodicity of
the diffusion are generally not required. As a Bayesian method, the estimation
procedure is not indispensably dependent on large samples.

The introduction of intermediate data between every two observations implies the
estimation of the missing values in addition to the model parameters, where both
the missing data and the parameters are treated as random variables. This task is
performed by application of Markov chain Monte Carlo (MCMC) techniques which
alternately update the imputed data and the model parameter and are usually feasible
within moderate computing time. The following considerations require familiarity
with basic MCMC ideas. Introductory texts on this topic can be found in Gilks et al.
(1996), Robert and Casella (2004) and Gamerman and Lopes (2006).
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As in Chap. 6, the focus of interest lies on the time-homogeneous It6 diffusion
process X = (X ¢);>o satisfying

dXt = u(Xt,H)dt + O'(Xt,e)dBt . Xto = Xy, (71)

with state space X C R, starting value &y € X at time ¢, = 0 and m-dimensional
standard Brownian motion B = (B;);>0. The drift function p1 : X x © — R? and
diffusion coefficient o : X x @ — R¥*™ are assumed to be known in a parametric
form, and @ € O for an open set @ C RP is the model parameter. X" is the same
for all @ € ©. Once again, we assume that p, o and the diffusion matrix X' = oo’
fulfil the regularity conditions stated in Sect. 3.4 for all 8 € ©.

This chapter is organised as follows: Sect.7.1 comprehensively explains the
basic concept of Bayesian data augmentation for diffusions. Proposal distributions
for both the diffusion path and the parameter are introduced and illustrated in
a simulation study. This is done under the assumption of complete observations
at discrete time points without measurement error. As the latter assumption is
not necessarily fulfilled in applications in life sciences, Sect.7.2 extends the
methodology to a latent data framework which also allows for observation error.
This section is especially helpful for practitioners, but it is not a premise for
the comprehension of the remaining chapter and may hence be skipped. Whilst
Sects. 7.1 and 7.2 treat the imputed path segments as countable sets of discrete
data points, Sects. 7.3 and 7.4 are dedicated to the consideration of continuous data.
This reveals a well-known convergence problem caused by a close link between the
model parameters and the quadratic variation of the diffusion path, pointed out in
Sect.7.3. In practice, this dependency causes arbitrarily slow mixing of the Markov
chains when large amounts of auxiliary data are imputed. In Sect.7.4, different
approaches are hence presented which aim at overcoming this difficulty. Special
focus is on the innovation scheme, newly developed in a continuous observation
framework, in Sect. 7.4.4.

This chapter brings together approaches from different authors on estimation
via Bayesian data augmentation in a multivariate framework and evaluates them
both analytically and computationally. A new sampling scheme is suggested where
existing methods do not lead to success, and its universal applicability is proven.
The contents of this chapter address both practicioners who wish to implement the
estimation schemes and theoreticians who are interested in convergence proofs. The
methods are deployed in Chaps. 8 and 9 where they enable statistical inference in
complex models in life sciences.

7.1 Concepts of Bayesian Data Augmentation for Diffusions

The idea of parameter estimation based on Bayesian data augmentation is similar
to the concept of the simulated maximum likelihood estimation (SMLE) approach
which was introduced in Sect. 6.3.3: In order to perform inference on the model
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parameter 6, one tries to approximate the true transition density pg of the diffusion
process by the Euler scheme or one of the higher-order numerical schemes from
Sect. 3.3.2. This is eligible only if inter-observation times of the observed data X obs
are small. Since such a requirement is usually not fulfilled in applications in
life sciences, additional data X mp ¢ intermediate time points is introduced.
To this end, a Markov chain Monte Carlo (MCMC) approach is employed to
construct a Markov chain {H(i), X imp(i)}i:17,,,, 1, of length L whose elements are
samples from the joint posterior density (6, X ™P|X°") of the parameter @
and the imputed data X'™P conditioned on the sample path observations X °*.

.....

.....

of the estimation procedure. . o
For the construction of the Markov chain {8"), X™P()},
two steps are alternately executed:

1, the following

yeeey

Path Update: Draw X ™P()~ W(Ximp(i) ‘ X°bs, 0(1'71)).
, , o (7.2)
Parameter Update: Draw 6~ 71'(0(1) | xobs, lep(z)).

This procedure has been proposed and shown to converge by Tanner and Wong
(1987), though not in the context of diffusions. The underlying idea is similar to the
one for the expectation-maximisation (EM) algorithm by Dempster et al. (1977).
In general, however, direct sampling is possible neither from 7(X ™| X°"*, §) nor
from 7(6) X °"*, X'™P) Hence, in both steps the Metropolis-Hastings algorithm is
used. This is further specified in Sect. 7.1.2 for the path update and in Sect.7.1.3 for
the parameter update.

The concept of Bayesian data imputation as a tool in inference for diffusions has
been utilised by a number of authors including Jones (1998), Elerian et al. (2001),
Eraker (2001), Roberts and Stramer (2001), Chib et al. (2004) and Golightly and
Wilkinson (2005, 2006a,b, 2008).

7.1.1 Preliminaries and Notation

As it is common practice in Bayesian analysis, let 7 generically denote all posterior
densities. In particular, the exact meaning of 7 is implied by the occurrence, order
and number of its arguments. If these differ for two densities, the two functions are
generally not the same. However, for notational brevity, according subscripts are
suppressed. The interpretation of 7 depends on the context but is always apparent
from its arguments. Analogously, let p generically denote all prior densities and g all
proposal densities. In sampling instructions such as (7.2), the variables on which one
conditions are usually not shown on the left of the tilde if their appearance is clear.
We basically aim to approximate the posterior density

70| Xy, X)) x7(Xryy oo, X170, 10)0(0)
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Y1 Ym—1

Fig. 7.1 Illustration of a one-dimensional path segment consisting of discrete data

points Yp, ..., Y,, at times to, ..., ts. The observed data Yy, Y, is labelled with crosses, the
imputed data Y7, ..., Yy —1 with circles
of the parameter 0 based on discrete observations X ,,..., X ,,, of a diffusion

process. In the present and the following subsections we assume that all observations
are complete, i.e. there are no latent or unobserved components for all observa-
tions X,, = (Xr,.1,...,X7,.q4). Since diffusion processes possess the Markov
property, such complete observations divide a sample path into segments that are
mutually independent conditioned on 0. The likelihood of 8 factorises as

M
T(Xrsoo Xry |0) =7(X-, |0) [[7(Xr | X7 ., 0).
=2

It is hence sufficient to consider the theory of Bayesian data imputation for a single
path segment between two consecutive complete observations; the generalisation to
more observed data points is then straightforward and clarified in Sect. 7.1.4. In the
following, we will hence restrict our attention to diffusions on a time interval [0, T'],
where the starting value Xy = x( and the final value X = ax are completely
observed and all intermediate data is unknown. As we consider time-homogeneous
diffusions here, the starting time zero is not a constraint.

As motivated above, the time interval is divided into m subintervals
which are not necessarily equidistant. The end points of these intervals are
0=ty <ty <...<tm1 <ty =T,implying the time steps Aty = tp11 — tg
for k =0,...,m — 1. The diffusion process X is in state X, at time ¢, but these
values are unknown for £ = 1,...,m — 1 and are hence treated as missing data. An
example for a path segment consisting of discretely observed and imputed data is
shown in Fig.7.1. For shorter notation, introduce Y, = X, fork =0,...,m.In
particular, Yy = xo and Y,,=x. Collect the observed data as Y°P = {Yo,Y,,}

and the imputed data as yimp — {Y1,...,Y,,_1}. Furthermore, refer to subsets

of the imputed data by Yi(I;”Z) = {Yat1,..-, Y1} for a,b € {0,...,m}

and a < b. Forb—a < 2, Yi(fi) is the empty set. Define the complement

of Yi(‘;i) as Y_i?;f’b) = ymp\ Yi(’;i). Note that later in this chapter X i(’;ftb) will

refer to continuous observation (X¢)yc (s, +,) and will hence substantially differ
from the countable set Yi(’;li).
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7.1.2  Path Update

We now investigate how to appropriately perform the path update step in (7.2).
As indicated above, direct sampling from the posterior distribution of the imputed
data given the observed data and the parameter is usually not possible; this option
comes into question only if the underlying SDE is analytically solvable or when
the conditions for the Exact Algorithm in Sect. 6.5 apply. We hence utilise the
Metropolis-Hastings algorithm for the general implementation of this step.

Satisfying convergence results are often achieved by application of update
strategies where at each iteration only a subset of the imputed data instead of the
whole path segment is renewed. For this, as a first step of the path update, one
chooses a time interval (¢,,t,) with a,b € {0,...,m} and b — a > 2 in whose
interior the path is to be updated. An update of the entire imputed data corresponds
o (ta,ty) = (0,T), ie. a = 0 and b = m. The choice of (¢,,t,) may be
deterministic or random with fixed or varying interval length ¢, —t,,. Possible options
are considered in Sect. 7.1.6.

Having decided about the block update strategy, select an appropriate proposal
distribution for Y‘(I;IZ) with density ¢ which possibly depends on the observed

data Y°", the current imputed data Y'™P and the parameter 6. In particular,
q may be conditioned on (subsets of) both the previously imputed data Y‘(I;IZ)
and the unaltered imputed data Y‘( )" From this distribution, draw a proposal

YIPr — [yr ..., Y, ,} for the subset of the imputed data which is to be

(a,b)
updated. Accept YI(I;]’];;‘ with probability

W(Yimp* Yimp !YObS o)q(Yimp !Yimp* Yimp YObS,O)

imp* -im (a,b)> = —(a,b) (a,b) (a,b)’ "—(a;b)’
C(Y I;)’Y(Lll)))zll\ im 1m obs imp* im im yobs :
ey (Y Ll | Y 0)a(Y G 1Y Q5 YU 5y Y 6)

Otherwise, discard the proposal and keep the previous data Y( )" Due to the
Markov property of diffusions, one has

RV Y (Y6 vy vy 0) ey
(YI(I;“Z) Ylm b)|Y°bS,0) e m(Yier | Yi,0) 1 po(Aty, Vi, Yir)

where Y = Y, and Y] = Y. The time steps Aty in pg are now supposed to be
small enough such that an approximation with the Euler scheme is allowed, i.e. pg
may be replaced by

7T_Euler (Yk+l ’ qu 0) — ¢(Yk+1 ’ Yk -+ H(ka O)Atk R E(Yk, G)Atk;) (73)

Here, as before, ¢(z|v, A) denotes the possibly multivariate normal density with
mean v and covariance A at z. In the following, we hence apply
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YR Y Eh)

- 11 (] Zeiiezid)) AERLLGE it 2)

kl;[a mEuler (YkJrl |Yk; 0) Q(YI(I;]’]Z; | Yi(r:,pb), Yj?z]z],)b)’ Y*obs7 0)

imps

with Y =Y, and Y] = Y, as the acceptance probability for the proposal Y(a b)"
The choice of the proposal density ¢ is discussed in what follows, where a number
of possible schemes is presented.

Euler Proposal
The most naive proposal for Yi(fi) is to simply apply the Euler sampling scheme
from Sect.3.3.2, i.e. to successively draw

Yy~ N(Y5 +u(Yy,0)At, 2(Y,0)Aty,) (7.5)
fork =a,...,b—2,where Y, =Y. In this case the proposal density equals
b—2

b—2
Y,.0) = [Lae (Vi1 | V7.6) = [ 72 (v | ¥7.6).
k=a k=a

(Y (i)

and the acceptance probability (7.4) for the proposal Yi(r;’pb; reduces to

b—1 _Euler * * b—2 Euler
i i T (Y:111Y%.0) T (Yit1|Yk, 0)
Ylmp* Ylmp —1A + i
C( (a,b)> (a,b)) (}:[a WEH]CY(YkJrl |Yk; 0) H WEulcr(Yl;"Jrl |}/’];"7 0)

=a

TP (VY 4, 6)

=1A
7.rEulc1r(}/'b|}/'b71, 0) ’

where Y, = Y. The Euler proposal (7.5) conditions on the starting point Y7, of the
path segment but is independent of its end point Y3. Hence, a problematic situation
arises which is similar to the difficulties in the SMLE approach by Pedersen (1995)
described in Sect.6.3.3: Transitions from Y;_; to Y}, are improbable if the
according jumps are large. This is most likely the case if one does not condition
on the end point; see also the typical path proposals in Figs. 7.2 and 7.3 on pp. 178
and 179. The acceptance probability for Y‘(?Z; is then typically small, leading to
low acceptance probabilities, i.e. inefficient MCMC samplers due to large numbers
of rejections. The following proposal densities condition on both Y, and Y5,
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Double-Sided Euler Proposal

One way to obtain more likely path proposals is to update Yi(‘;i) from the left to
the right, where for all % the proposal distribution of Y7, ; is conditioned on the
already updated preceding value Y and the subsequent value Yy o. This approach
is referred to as double-sided Euler proposal in the following. It has been employed
by Golightly and Wilkinson (2005) for equidistant time steps and, with some further
modification, by Eraker (2001).

In order to derive an appropriate proposal density, consider
T(Yis1|Yk, Yii2,0)
o T(Yit2 | Yiy1, 0)7(Yir1|Yi, 6)
~ O(Yigo | Yip1+06(Yig1, 0)Atg g1, X (YViy1,0) Aty 1)
(Y1 | Vi + (Y, 0) Aty X(Yy, 0) Aty),

which follows by exploitation of the Markov property of diffusion processes and
application of the Euler approximation. Replace pu(Yy41,0) and X (Yy41,0)
by (Y, 0) and X (Y7, 0), respectively, which is especially justified for small At.
Then, after some calculation, one obtains that 7(Yxt1|Y%, Yiio,0) is approxi-
mately proportional to

At + At
eXP(-% Y, XY, 0) ' Yig

_ Yiio—Y,
—2Y; 1 (Y, 0)7" (Yk'f‘ﬁ Atk)

) |

The obtained expression is an unnormalised Gaussian density. The according
proposal for Y‘(I;IZ) is to successively draw

Yio-Y; t —t
Y§+1~N<Y,;‘+ M2 Tk A, A2k z(y,:,o)mk) (7.6)

thy2 — tk tey2 — tk

fork =a,...,b—2and Y, = Y,. The acceptance probability for a so-proposed
path is

b— uler * * im
Euler

(a,b) ’ (a,b) (Yk-‘rl |}f]€7 0) QEZ (YI(I;]}Z;K ’ Ya, Yb, 0)

k=a
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Euler Proposal Double-sided Euler Proposal

00 02 04 06 08 1.0 00 02 04 06 08 1.0

Modified Bridge Proposal Diffusion Bridge Proposal

Fig. 7.2 Fifty path proposals for the Ornstein-Uhlenbeck process (A.2) on the time interval [0, 1]
fulfilling the SDE dX; = —0.5dt + dB;. All proposals are conditioned on Xy = 0 and
X1 = 2. The number of subintervals of [0, 1] is m = 10. In row-wise order, the paths are proposed
according to the Euler proposal (7.5), the double-sided Euler proposal (7.6), the modified bridge
proposal (7.7), the diffusion bridge proposal (7.9), the Gaussian proposal (7.11) and the Student
t proposal (7.13). The double-sided Euler proposal starts with a linear interpolation between X
and X1 and then iteratively conditions on the previously proposed path. The t proposal uses v = 3
degrees of freedom
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Euler Proposal Double-sided Euler Proposal

00 02 04 06 08 1.0 00 02 04 06 08 1.0

Gaussian Proposal Student t Proposal

00 02 04 06 08 1.0 00 02 04 06 08 1.0

Fig. 7.3 Fifty path proposals as in Fig. 7.2, this time with m = 100 subintervals
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with Y;" = Y}, and proposal density

a2 (YY)

Y, Yb,Yl(I;]Z 0) HQEQ(YkJrl‘YkaYkJrQaG)

b—2
YY) . trpa—t
:H¢(Y,:+1\Y,;‘+ 270k Apy,, 27Tk Z(Y,;*,O)Atk).
k=a

tparo—tk thyo—Tk
For evenly spaced time intervals, ie. tp = to + kAt for some At and all
k=1,...,m, the density ggo simplifies to

* * # 1 s 1 N
aw2 (Yies | Vi Yiers,0) = 0(Yii | 5 (Vi + Yisa) 5 B(Y1,0)40).
A possible variant of this Metropolis-Hastings update of Y(mxg) is the following
Metropolis-within-Gibbs procedure: Starting with & = a, propose Y}, ; as in (7.6)
above. Immediately after this proposal, accept or reject Y, with acceptance
probability

C(Yl:+la Yk+1)

T (Y o] Vi, 0) 7™ (Y Y, 0) qee (Yigr | Vi, Yite, 0)

=1A )
TP (Y o Yig1, 0) 7P (Y [V, 0) que (Y | Yi s Yieo, 0)

where Y,; = Y. Proceed similarly for k = a +1,...,b— 2. At the end, accept the
entire so-constructed path Y‘(Z]i;‘

With both the pure Metropolis-Hastings and the Metropolis-within-Gibbs version
of this double-sided Euler proposal one obtains high acceptance rates as each
proposed data point only means a minor change. On the other hand, the proposed
paths are quite stiff as there is not much tolerance for major changes. This lack
of flexibility is evident from Figs. 7.2 and 7.3 on pp. 178 and 179, which display
representative trajectories that have successively been sampled from (7.6) without
any intermediate acceptance or rejection. The result is again slow convergence and
high serial correlation of the elements of the Markov chain.

The following proposals dispose of the difficulty of high dependency be-
tween Y‘(Z”Z) and Y‘(mp) as they neglect the previously imputed data Y‘mp) Instead,
the attempt is to appropriately bridge the gap between Y, and Y}. As it is generally
not possible to exactly sample diffusion bridges, that are diffusion processes
conditioned on a starting and an end point, the proposals are approximations to
such processes.
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Modified Bridge Proposal

A flexible way to propose a diffusion bridge is to condition the proposal distribution
of Y;7,; on the preceding value Y7, and on the right end point Y of the path
segment to be updated. The resulting proposal (7.7) has been applied by Durham
and Gallant (2002), though not in a Bayesian framework, who call it the modified
bridge. Chib and Shephard (2002) discuss its utilisation in Bayesian analysis.

In analogy to the derivations for the double-sided Euler proposal above, regard

T(Yit1|Yi, Y5, 0) o< 7(Ye | Yit1, 0)7(Yis1|Yi, 0)
~ Yy | Yy + (Yig1,0)A 1, X(Yiy1,0)A4)
O(YViy1 | Yi + u(Yy, 0)Aty, X(Yy, 0) Aty),

where Ay = ¢, — tpy1 is the distance between the right end point of the
update interval and the time point of the currently considered imputed value. The
approximation of (Y} | Y41, @) by the Euler density is rough unless A is small,
and hence the length of the interval [¢,,t;] should not be chosen too large. As
before, approximate p(Yxy1,0) and X(Yiy1,60) by p(Yy,0) and X (Y, 0).
Then 7(Yg41|Y%, Yy, 0) is approximately proportional to

AT AL
exp(—%

_ Y,
Y XY, 0)7! (Yk+l_2 (Yk+m Atk)>‘| )

i.e. we again obtain a Gaussian density. The corresponding proposal for Y‘(mlg) is to
iteratively draw

Yo - Yy

—t
Yig~N <Y;;*+ S Al %E(Y;,O)Atk) (7.7)
b k b k

fork = a,...,b—2and Y, = Y,. The proposed path will be accepted with
probability

C(Yimp* Ylmp

) -, <b—1 FEuler(Y];k+1|Y]:70)> qMB(Y(I;]g | Ya,Yb,O)
(a:6)> ¥ (a,b)

f—a sriuler (Yk+1 |Yk7 0) dMB Yl(I;IZ;) ’ Y. Y, 0)

where Y, = Y} and

b2

QMB(Ylm ’Yavaa ) = H QMB(YI:Jrl ‘ YI:,Yb,O)
k=a

b2

=TT e(vin|vi+

k=a

Y,-Y; ty — t
b Yk py, T Ml E(Y;,o)mk).
ty — tg ty — tg
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For equidistant time intervals with ¢;, = ¢y + kAt, the proposal density reduces to

Y, -Y; b—k—1
b—k ' b—k

aus (Yii | Yi,Y5,6) = o (Y,:H |vi+ 2<Y;70>At) .

Diffusion Bridge Proposal

Apart from the prefactor of the diffusion matrix, the modified bridge proposal (7.7)
corresponds to the Euler sampling scheme for the SDE

X, — X,
ng:—%——F—&+wﬂXhmdBt,.Xo:wm (7.8)

where oo’ = X. This scheme has been applied by Chib et al. (2004) as a proposal
for Y‘(mlg) i.e. they successively sample

Y,-Y;
Y NN<Y1: + =k A, (Yljae)Atk> (7.9)

ty — tg,

for k = a,...,b—2and Y; = Y,. Method (7.9) is termed diffusion bridge
imp*

hereafter. The so-obtained candidate Y(a‘ b) is accepted with probability

b—1 _Euler * * Ylmp Ya7Y70
cvim v =1 n (T Db ¥0)) aon (VG | Y2 109).
1 rEuler (Y 4|Y, 0) qDB(yf P)‘y},}@,O)

where Y, =Y, and
b—2

JdDB (Ylmb) ‘ Yau Ybu 0) = HQDB (Y]:J,-l ‘ Y]:a Yb7 0)
k=a

Y,-Y;
—kAtk,
b — Uk

b—2
= H¢(Y1:+1 ’Y,: +

k=a

(Y;,e)Atk).

For equidistant time intervals with ¢, = ¢y + kAt, the proposal density equals

Y, - Y}

qoB (Y ’ Y, Y,,0) =¢ <Y1:+1 ‘ Y+ T Z(Y,;‘,O)At) :

Remark 7.1. Inthis special case where the true process—satisfying the SDE (7.1)—
and the proposal process—satisfying (7.8)—coincide in their diffusion matrices, the
acceptance probability is available in explicit form by application of a generalisation
of Girsanov’s formula from Sect.3.2.12. Let Pg be the law induced by (7.1)
conditioned on X;,, X, and 6, and let Qg be the law induced by (7.8). Then
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imps* im dfP imps dfP im
C(X(t ptb) X ptb)) =1A <dQ9 (X(t ptb ))/(ﬁ(‘x(tftb))>v (7.10)

where X (‘tn ) and X (’tnp: ) refer to continuous path segments on (¢4, tp). Delyon

and Hu (2006) show that IPg is absolutely continuous with respect to Qg (nota-
tion: ]?9 < Qp) for all 8 € O, i.e. the above Radon-Nikodym derivatives exist and
are finite. In practice, a time-discretisation of (7.10) is used. Similar considerations
follow in Sects. 7.3 and 7.4.

Gaussian and Student t Proposal

For one-dimensional diffusion processes, Elerian et al. (2001) suggest to find the
mode y of the Euler approximated log-density of Y(lmp) given Y, and Y}, that is

b—1
Yy = argmax <Z log wruter (Yit1 | Ya, )) 5

YR \k=a

and to work with the Gaussian proposal
Yo ~ Ny, V(y), (7.11)

where V (y) is the negative inverse Hessian of the above density evaluated at y,

-1

b—1
02y " logm™™M" (Vi i1 | Vi, 0)
Viy) =- | . (7.12)
oY "R oy
Y(l:]z?):

The mode y can for example be computed by numerical schemes such as the
Newton-Raphson method. Naturally, the according proposal density is

g6 (Y5 | Ya, Y6, 0) = oY |4, V().

A major advantage of this proposal distribution is that it allows simultaneous
sampling of all components of Ylmp* In case of thin tails of ¢, Elerian et al. (2001)
and Chib et al. (2004) propose to replace the Gaussian by Student’s t distribution,
resulting in the Student t proposal

v—2

Vb~ b, (y v (y)) (7.13)
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with proposal density

g (Yo [Ya, Y, 0)
Pt )b V) V) )
_ 3 14 (@) (ab) 7
r)(rv-2)== v—2

where v > 2 denotes the degrees of freedom and | A| is the determinant of a square
matrix A.

Hurn et al. (2007, Sect.2.5) point out that in practice the Hessian matrix
in (7.12) might computationally not be positive-definite and propose an appropriate
numerical correction.

Other Proposals

Recent further approaches include the following: Delyon and Hu (2006) suggest to
draw path proposals from the Euler discretisation of the SDE

X, — X,

dX,; = (u(Xt,O)—I— —_—
ty —t

) dt +0(X:,0)dB;, Xo=xo. (7.14)
The motivation of this choice is as follows: The proposed process should imitate the
behaviour of the original process satisfying the SDE (7.1) with an appropriate end
point condition as closely as possible. For 4 = 0 and oo’ = I, the SDE (7.14)
describes a Brownian bridge starting in X ¢ and ending in X4, , and (7.1) refers to
Brownian motion. Hence in that case the two SDEs induce the same law if the target
SDE (7.1) is further conditioned on the end point X7, .

For geometrically ergodic (Gilks et al. 1996, Chap. 3.3; Roberts and Rosenthal
1997) diffusions, Fearnhead (2008) introduces a mixture of the Euler proposal (7.5)
and the modified bridge proposal (7.7),

ar (Yi1 | Y7 Y0.0)
=c (1- eicon) a6 (Y ‘ Y/, 0) +e % qun (Vi ‘ Y;,Y,,0),

where ¢ and ¢y are constants and A, = ¢, — tx1. This construction puts large
weight on the Euler proposal for k close to a, and for k close to b it puts more weight
on the modified bridge proposal. For ¢; = 1, the according proposal scheme is

Yl:Jrl ~N (77k7 Ay)

with

Y,-Y;
N, = Y]: =+ <(1 — e_CZAO)M(YI;k, 0) =+ 6_02A° —tb ; k > Aty
b — Uk
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and

At
A = (1 — econ—k) E(Y,:, O)Atk.
ty — Tk
Similarly, a respective mixture of the Euler proposal and the diffusion bridge
proposal (7.7) leads to

Yl:—i—l ~ N (T’ka E(lev O)Atk) .
That is the Euler discretisation of the SDE

R Xy, — X1

dX,= ((1—6‘02“°)u<Xt,0)+ - )dt+a<Xt,0)dBt, X o=
-

(Suda 2009). The proposal variants in this paragraph are not further considered in
this chapter as the previous ones already form a representative selection.

As an illustration, Figs.7.2 and 7.3 on pp. 178 and 179 show path proposals
for the Ornstein-Uhlenbeck process, introduced in Sect. A.2, that are generated
according to the above methods for m = 10 and m = 100 intermediate time
intervals. The different proposals are applied in Sect.7.1.7 in a simulation study
to estimate the parameters of an Ornstein-Uhlenbeck process. A discussion follows
in Sect. 7.1.8.

7.1.3 Parameter Update

We now turn to the second of the two alternating steps in the scheme (7.2): the
parameter update. In most cases, direct sampling from the posterior distribution of
the parameter 6 is impossible, thus once more the Metropolis-Hastings algorithm
is utilised. To that end, choose a suitable proposal distribution with density ¢ for
the parameter @ which may be conditioned on the observed and imputed data y°bs
and Y'™P and on the current value of the parameter. From this distribution, draw a
parameter proposal 8" and accept it with probability

7_‘_(0* ‘Yobs, Yimp)q(g | 0*7 Yobs7 Yimp)
71,(0 ’Y0b57 Yimp)q(e* 07 Yobs’ Yimp) !

C(0*,8) =1 A (7.15)

Otherwise, reject the proposal 8 and keep the previous value 8. As in the path
update, one may decide to only update parts of the components of 8 at a time. In
that case, the argument of the proposal density ¢ might be adjusted respectively.
However, the so-obtained proposal density is proportional to the proposal density
for the whole parameter. Thus, we in the following denote by 6" the proposal for
the entire parameter, even if some components agree with the according parts of the
previous value 6. With Bayes’ theorem, the probability (7.15) becomes
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7_r(},»-obs’ Yimp| 0*)p(0*)q(0 | 0*7 Yobs7 Yimp)
7_‘_(},—obs7 Yimp‘ 0) p(e) q(e* 0, YObS, Yimp)

— 1A ml:[l Po~ (Atk, Yy, YkJrl) . p(@*) . q(e | 0*, Y*obs7 Yimp)
o Po(Ati, Yi,Yie) ) p(0)  q(67]6, Y Y™’

C(0%,0) =1 A

where p denotes the prior density of the parameter and pg is the exact transition
density of the diffusion process given the model parameter. As in the path update,
one can approximate pg with the Euler scheme since the time steps Aty are assumed
to be small for all k. Hence, in the following we employ the acceptance probability

(67,96)

i "ﬁl 71,Eulcr (YkJrl ‘Yka 0*) p(e*) q(0|0=k7 Yobs’ Yimp) (716)
— 7.‘_Euler (Yk-i-l ’qu 0) p(@) q(e* 07 Yobs, Yimp)

k=0

for the parameter proposal 6. The prior density p may be proper or improper
and usually depends on the considered diffusion model. For improper priors one
however has to ensure that the joint posterior distribution of all parameters is well-
defined. The choice of the proposal density g is model-specific and discussed in the
following.

Full Conditional Proposal

An often favoured choice of proposal density is the exact full conditional proposal

m—1
gerc (0]Y O, Y"P) = 7(0]Y P, ™) o< p(0) H po (At Yie, Yiy1).

k=0
(7.17)

If the normalising constant of this expression can be determined, one can perhaps
sample a proposal 8" from g.pc. However, as pg is usually unknown, one may rather
utilise the approximate full conditional proposal

m—1
arc (0], Y ™) oc p(6) [ 7™ (Vi1 | Vi, 6), (7.18)
k=0

which possibly results in a known distribution. If the exact transition density pg is
available and sampling from the exact full conditional proposal is performed, one
can replace 7" by pg in (7.16). Otherwise, Eq. (7.16) remains unchanged. Hence,
for both exact and approximate full conditional proposals the acceptance probability
is equal to one, i.e. Gibbs sampling is performed.

Cano et al. (2006) show the weak convergence of the approximate posterior
density to the true posterior under fairly general assumptions. They however also
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give an example where the requirements are not fulfilled; that is the Ornstein-
Uhlenbeck process satisfying the SDE (7.20) displayed on p.192 with § = 0,
0% = 1 and a non-informative prior for .

An example where both the exact and approximate full conditional densities can
be obtained and sampling from them is uncomplicated is shown in Sect.7.1.7. If
sampling from neither gepc nor g,rc is possible, different proposal schemes like
the following one have to be considered.

Random Walk Proposal
A frequently used idea is a random walk proposal which is independent of the
imputed and observed data and works as follows: Without loss of generality, assume
that for some r € {0,...,p} the components 61, ..., 0, take values on the real line,
and 0,41, ..., 0, are strictly positive. For j = 1,...,r, simply propose
* 2
07 ~ N (0;,77)
for some predefined ; € R4.. Then
arw (0716;) = (6716;,77) = 6(6; = 0;]0,77).
Forj=r+1,...,p, draw
log 05 ~ N (log6;,77).

This corresponds to the log-normal distribution, i.e.

05 ~ LN (log0;, %2)

and

qrw (05 ] 05) = 7 ¢(10g9 | log;,~7) = 9* (log(6%/6;) |0,72)

forj =r+1,...,p. Altogether, one has

arow (6 ¢ 93|o,~m AL 9*/9>|o,%>

Because of the symmetry of ¢(z | 0,v?) around z = 0, the functions ¢ cancel in this
expression. The acceptance probability (7.16) reduces to
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m—1 uler * * p *
(7.0~ 1 A (H <Yk+1|Yka0)>> o) (8

o ﬂ-EuleT(Yk_’_l ‘Yk, ] p(0) Pt Qj

The parameters 7 of the proposal distributions should be chosen deliberately:
A small variance usually causes higher acceptance rates; the resulting Markov
chain may exhibit high autocorrelation though. A large variance may induce many
rejections, but the Markov chain generally shows better mixing.

The above assumption about the components of 8 being either real or positive
applies in most applications. However, generalisations are possible and often
straightforward. For example, if for some j the component #; is negative, con-
sider —0; and proceed as above. In case of 6; € [u,v], one might apply the
generahsed logit function and its inverse, that is

[u,v] =R
logit : ¢ olog (w — u) (7.19)
v—x

and

R— [u,v]

logit™* : exp(y)
U (v —u) —

yout oy exp(y)

With this,

05 ~ logit™ " (N (logit(6;),77))

would be an appropriate proposal. Furthermore, all proposals can certainly be
extended by introducing dependencies between the single components of 8. The
update of the parameters can also be performed blockwise, i.e. the components of 0
are divided into subsets which are proposed and accepted or rejected separately. This
may lead to better mixing, but the repeated evaluation of the acceptance probability
also implies an additional computational effort. Such strategies are not treated here.

A simulation study and evaluation of the three parameter proposals introduced
above follows in Sects. 7.1.7 and 7.1.8.

7.1.4 Generalisation to Several Observation Times

As argued in Sect. 7.1.1, the imputation concepts considered so far are easily extend-
able to the general case where more observations are available than just the starting
and the end point of a sample path of a diffusion process. Suppose there are—in
addition to the initial value ,,—M complete observations x,,, ..., T, at times
O=1m9o<n<...<7my=T.Fori=0,..., M —1,divide each inter-observation
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Fig. 7.4 Illustration of a one-dimensional path consisting of the initial value and M discrete
observations at times 7o, . . . , Tas (labelled with crosses) and imputed data (labelled with circles)

interval [7;,7;4+1] into m,; sufficiently small subintervals with boundaries
i = tio < ti1 < ... < timi—1 < tim, = Ti+1. Impute auxiliary
data at the newly introduced time points. In the following, observations
on [, Ti41] are labelled Y; g = =z, and Y;,,, = x,,,, and the imputed
data is referred to as Yji,...,Y;,,,—1. Thus, one has observed data
Yyobs = {Y0.0,Y10,-- Y10, YM—1.m,_,} and overall imputed data
yimp — {Yii,...,Yim;—1]? = 0,...,M — 1}. This notation is illustrated
in Fig.7.4.

The update scheme (7.2) is adapted to the generalised setting as follows: The
likelihood of the entire discretely observed diffusion path changes to

M—1 m;—1 M—1 mi—1
Eul

II II po(tik+1 — ti, Yik, Yiks1) II II TNY 1 | Yk, 0)

i=0 k=0 =0 k=0

and is to be deployed accordingly in all occurring acceptance probabilities.

In case an interval (¢,,t,) contains one or more observation times 7;,...,7;,
a path proposal on (t,,t;) decomposes into independent path proposals
on (ta, Ti), (Ti, Ti+1), RN (Tj, tb) with the data at times t,,7;, Tit1,- .-, Tj, to

remaining fixed. These proposals are either collectively accepted or rejected.

7.1.5 Generalisation to Several Observed Diffusion Paths

Xobs,K

Assume one has K € IN independent observation sets X "bs’l, e of a

diffusion process fulfilling the SDE

dXt:u(Xtue)dt+U(Xt,0)dBt, Xto = X,

with identical parameter @ € O. This is for example the case in the application
in Chap.9 where a biological experiment is carried out several times under the
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same conditions and hence there are multiple series of observations of the same
dynamics available. The observation sets may differ with respect to the numbers
of observations, observation times and lengths of inter-observation intervals. In this
case, each observation set should be augmented with auxiliary data at appropriate
auxiliary time points, and inference on @ can be performed by repeated execution of

Update of Path 1: Draw X ™! ~ W(Ximp’l ‘ Xobst 0).

Update of Path K: ~ Draw X ™% ~ r( XK | xobs K g),
Update of Parameter: Draw 6 ~ 7T(0 ‘ Xxobsil ximpl o xobs K Ximp"K).

Due to the assumption of independent paths, one has

K
7T_(0}){0bs,17 Ximp,l’ o ’Xobs,K7 Ximp,K) o p(e) H ﬂ_(Xobs,h’ Ximp,h ‘ 0)
h=1

in the last step.

7.1.6 Practical Concerns

For the implementation of the considered MCMC scheme, some further issues have
to be considered. These are the choice of the update interval, the number of auxiliary
time points, and the handling of path proposals which lie outside the admissible state
space.

Choice of Update Interval

Selection of the update interval (¢,,%,) in whose interior the imputed data is to
be renewed may be of high relevance. Path updates on intervals containing large
numbers of imputed data points cause major changes and may speed up convergence
of the Markov chain. On the other hand, proposals for large data sets are more likely
to be rejected. Furthermore, the modified bridge proposal is a good approximation
to the path segment only if (¢, ;) is not too large.

Assume we have S+1 observed or imputed consecutive data points Y,

Y,,...,Ys and we wish to bound the number of updated data points for each
iteration by R < S — 1. As before, let the update interval (a,b) correspond to
a proposal for {Y,41,...,Y,_1}. The term update refers to both accepted and

rejected proposals here. An obvious procedure to draw (a, b) with a,b € {0,...,S}
and 2 < b —a < R+ 1 is the following:
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Algorithm 7.1.

1. Drawa ~ U({0,...,S5 — 2}).
2. Drawb~U({a+2,...,min{a+ R+ 1,S5}}).

However, the sampling algorithm for (a,b) should ensure that all data
points Y7y,...,Ys_; have the same probability to be updated; Algorithm 7.1
discriminates data points Y; with j close to 0 or S as there are fewer intervals (a, b)
fullfilling the above requirements at the boundaries than in the centre of (0,S).
A more detailed reasoning is included in Sect.B.3 in the Appendix. A corrected
algorithm is proposed in the following. Section B.3 provides the proof that with this
algorithm the probability to be updated is the same forall Y7i,...,Ys_1.

Algorithm 7.2.

1. Drawa* ~U({1—R,..., S5 —2}).

2. Draw b* ~ U({a* 4+ 2,...,min{a* + R+ 1,S + R — 1}}).
3. Set a = max{a*,0} and b = min{d*, S}.

4. In case of b — a < 2, repeat the above steps.

Alternatively, Elerian et al. (2001) suggest a blockwise update of the entire
dataYy,...,Ys_; with proposals for adjacent blocks with Poisson distributed sizes
for some fixed intensity parameter A € R :

Algorithm 7.3.

1. Setcy =0and j = 1.
2. Whilecj_y < S:

a. Draw Z ~ Po(X) and set ¢; = min{c;_1 + Z, S}.
b. Increment j.

The path is then successively updated on (t.,,te, ), (te;,te,) etc. The individual
proposals are independently accepted or rejected.

The decision whether to employ Algorithm 7.2 or 7.3 is problem-specific.
Algorithm 7.3 updates the sample path more rigorously but is therefore more
time-consuming than Algorithm 7.2. The choice might hence depend on the
amount of imputed data or the severeness of measurement error (cf. Sect.7.2.2).
The simulation study in Sect. 7.1.7 uses Algorithm 7.3 as the subsequent evaluation
includes the calculation of inefficiency factors; this is meaningful only if in each
iteration of the MCMC scheme all data points are investigated.

Sampling Strategy

The number m; of subintervals between every two consecutive observations at
times 7; and 7,41, ¢ = 0,..., M — 1, crucially influences the estimation results.
A small number of intermediate time points degrades the accuracy of the Euler ap-
proximation (7.3) to the true posterior density and may hence cause a discretisation
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bias. Large numbers of auxiliary time points, on the other hand, are computationally
costly. Hence, the numbers m,; of subintervals should be chosen both sufficiently
large and sustainably small. In general, they will be identified empirically.

Eraker (2001) suggests to start with small m; and to subsequently increase
these numbers after convergence of the Markov chain has been achieved. This
procedure is pursued until further increases of m; have negligible impact on the
estimation results.

However, too large amounts of imputed data can also deteriorate the behaviour
of the whole procedure. Section 7.3 deals with the convergence of the constructed
Markov chains as the m; tend to infinity.

Validity of Path Proposals

The random walk proposal for the parameter update in Sect.7.1.3 automatically
generates proposals from the parameter space ©. For the path update in Sect. 7.1.2,
however, there is no guarantee that the path proposals maintain the boundaries of
the state space. There are two general solutions to this problem:

The first possibility is to consider transformations of the process such that the
transformed sample paths are unrestricted. An SDE describing the transformed
process can be obtained using It6’s formula, which was provided in Sect. 3.2.10. For
example, Elerian et al. (2001) consider the logarithm of the one-dimensional Cox-
Ingersoll-Ross process, which has non-negative state space before transformation
and is introduced in Sect. A.3 in the Appendix.

An alternative solution to these possibly complicated calculations is to include
an appropriate indicator function in the acceptance probability of the path proposal
such that invalid proposals are rejected.

7.1.7 Example: Ornstein-Uhlenbeck Process

In this section, the implementation of the above methodology is illustrated on the
example of a specific diffusion. Consider the one-dimensional Ornstein-Uhlenbeck
process X = (X;);>0 which is described by the SDE

dX, = a(8 — X,)dt + 0dB;, , Xo = 0. (7.20)

for parameters 3 € R, a,0? € R, and initial value o € R. The solution of
this process is a Gaussian process, i.e. the exact transition density is available. A
detailed description of the Ornstein-Uhlenbeck process is included in Sect. A.2 in
the Appendix. The full conditional densities of the parameters are given in what
follows. Complete derivations are provided in Sect. B.4 in the Appendix.

Be aware that in case of improper or partially improper prior distributions it is
not guaranteed that the joint posterior density of all parameters is proper even if
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the full conditional densities are. Hence an analysis of the joint posterior should
precede the application of the full conditional distributions in an MCMC algorithm.
Section B.4 investigates in which cases the posterior density is proper. It turns out
that for fixed & € R this is true even for flat priors for 3 and 0.

Exact Full Conditional Proposal

Assume we have observed or imputed data Yp,Yi,...,Y, at time points
to,t1,...,tm. Since the transition density of the Ornstein-Uhlenbeck process is
explicitly known, the full conditional densities of the model parameters «, 3 and o>
can immediately be written in an unnormalised form. For 5 and o2, these are of the
following types: For flat priors

p(B)x1 forfeR and p(o®)x1 foro? € Ry, (7.21)
one has
1nz—1 Yk+l Yke_aAtk 02
1 +e— a Aty
ﬁ‘a7027Y07"'7YmNN k=0 1 ) 1 20 )
T L a—aAts —aAt
P 1+ e >4t P 1+e k

1_e 2 Aty

e _ aAty, —aAt
02‘a,B,Y0,...,YmNIG< Z Yk+1 Yie™ k 5(1 o k)) )

For conjugate priors
B~N(Bo,p3) and o* ~I1G(ko, 1) (7.22)
with hyperparameters 8y € R and pg, ko, o € R, one obtains
Bla,o® Yo, ..., Yn

0,250 nmzilYkJrl—YkeiaAtk 02
204p% - 14 e—adty

—a Aty ’ 2 m_ll e*OLAtk

0
o2 Tl_e o —
2ap[23 + kzzo 14e—aAtk 2ap[23 + kZ:o 14+e— Atk

02|O‘757}/05"'7Ym

Y —Yie~ aAty 1 e—aAtk
NIG< +ko, l/o—i—az Ak L e 25A(tk ) >, (7.24)
k=0
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where IG denotes the inverse gamma distribution (see the notation tables on
pp. xvii). For pg = 00, kg = —1 and vy = 0, this corresponds to the results above
for the flat priors. The full conditional density of «,

m(alB,0? Yo, ..., Ym)

(o

1 —QOtAtk

x m—1 ?

H Vi emadi
k=0

cannot be recognised to be of any standard distribution type. Naturally, as 3 and o>
are a priori independent in both (7.21) and (7.22), the above posterior distributions
remain valid if a mix of flat and conjugate priors is chosen. Full derivations of the
posterior densities are included in Sect. B.4 in the Appendix.

Approximate Full Conditional Proposal
In the general case, where the transition density of the diffusion process is not
available, approximate full conditional densities may be employed instead. These

are for the Ornstein-Uhlenbeck process as follows: For flat priors

pla)x1 fora € Ry, p(B)x1 forBeR, p(o?)x1; foro? € Ry,

one has
m—1
(Y1 — Yi)(B—Yk) )
= g
o‘|ﬁ7027}/05---7YmNMrunc b Om 1 — )
)2 Aty > (B-Yi) Aty
k:O k=0
Y. Y m—1
m + ZYkAtk
2 k=0 o
Yo, ..., Yo ~N
ﬂ|0[,0’, 05 s Im tm — to ) aQ(tm_tO) )

m—1 2
m 1 (Yiy1 — Yi — (B — Yi) Aty)
02’a7ﬁ7%7"'7YmNIG(5_17 Z Atk )
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where Mirune denotes the normal distribution truncated at zero, which generates
Gaussian random numbers on the positive real line (see also the notation tables on
pp- xvii). The conjugate priors

aNMrunc(O‘mpZ)u B NN(BOap%)u o’ NIG(KOJ/O)
lead to

a‘ﬂva2aYOa"';Ym

m—1
P2 (Vi1 —Y3) (B — Vi) + apo?
k=0 opa
NMrunc m—1 ’ m—1 ’
PRY_(B=Yi)’Aty+0®  p2Y (B Vi) Atyto’
k=0 k=0
ﬂ‘ava2aYOa"';Ym
m—1
Y. —Y(
a?p < O“FZYkAtk) +02B 5 9
~ N M , i , (7.25)
a2p%(tm—t0)+a2 azp%(tm —tg) + o2

0-2‘a7ﬁ7§/07"'7ym

87 —a(B - Yi)At)?
IG< +rRo L Vot E ket = Y j;(ﬂ K) ’“)>. (7.26)
k
k=0

Setting po, = 00, pg = 00, kg = —1 and 1y = 0 in these formulas yields the full
conditional densities which were obtained using flat priors. Again, the calculations
of these posterior densities are provided in Sect. B.4.

Random Walk Proposal

Assume that the current value of the parameter is & = (a, 3,0?)". Due to the
range of admissible values for the parameter components, the following random
walk proposals are apparent: Draw
loga™ ~ N (loga,~2)
B* ~N(B,73) (7.27)
log 0®* ~ N (logo?,72) (7.28)
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Fig. 7.5 Exactly sampled diffusion path at times 0,0.1,0.2,...,25 of an Ornstein-Uhlenbeck
process satisfying (7.20) with parameter @ = (0.5,0.9, 1)’. The estimation results in this section
condition on subsets of these observations

for some predefined positive constants v, 3 and ~,. The acceptance probability
for a so-obtained proposal 8* = (a*, 3*, 0%*)' is

oyt (it ) o
, k=0 WEuler(Yk+1’Yk70) p(e) ao?

Simulation Study
In the following, we generate exact discrete realisations {z,,,...,2r,, } of
the Ornstein-Uhlenbeck process at times 7p,...,7ps given the parameter

0 = (a,B,0%) = (0.5,0.9,1)" and the initial value xy = 0. Given the observed
data, we apply the estimating schemes described in this section in order to infer
on 6. All functions have been implemented in R.

To be more precise, in all experiments the employed dataset is a subset of the
discretely sampled diffusion path displayed in Fig.7.5. Inter-observation intervals
are chosen evenly spaced, i.e. ; = i/M for i = 0,...,M. Each interval
[7i, Ti+1] is then again partitioned into m equidistant intervals with boundaries
tij=(G+j/m)/Mfori=0,....M —1andj=0,...,m.

The parameter & = 0.5 is considered known whilst 3 and o2 are supposed
unknown. The synthetic data setting, however, allows for comparison of simulation
results with the true parameter values 3 = 0.9 and ¢ = 1.

For the path and parameter proposals, all considered approaches are studied.
Their abbreviations and respective formulas are summarised in Table 7.1. For /3
and o, the conjugate priors (7.22) with 8y = 0, pj = land kg = 1o = 3
are applied. The a priori expectations and variances of the parameters are thus
E(B) =0, Var(B) = 1, E(¢?) = 1.5 and Var(c?) = 2.25.

The estimation procedure performs the following steps:

1. Initialise Y™P by linear interpolation.
2. Draw initial values for 3 and ¢* from (7.22) with 5y = 0, p3 = 1 and
Ro = Vg = 3.
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Table 7.1 Abbreviations and formulas for parameter and path proposals used for
the parameter estimation in Figs. 7.6—7.20 and Tables 7.2-7.5. The parameter priors
are chosen as in (7.22). Hyperparameters are 3o = 0, p?j =land ko =19 =3

imp

Abbreviation  Path proposal Y( w.b)

E Euler (7.5)

E2-MH Double-sided Euler (Metropolis-Hastings) (7.6)

E2-MG Double-sided Euler (Metropolis-within-Gibbs)  (7.6)

MB Modified bridge (7.7)

DB Diffusion bridge (7.9)

G Gaussian (7.11)

t Student t (7.13)
Abbreviation ~ Parameter proposal B o2
eFC Exact full conditionals (7.23) (7.24)
aFC Approximate full conditionals (7.25) (7.26)
RW Random walk (7.27)  (7.28)

3. Repeat the following steps 10° times:
Path update:

(a) Choose an interval (t,, ;) using Algorithm 7.3 with A = 5.
(b) Draw a proposal Y(‘:llf’)* according to the investigated method; accept or
reject.

Parameter update:
If full conditional proposals are applied:

(a) Draw a proposal 8* (conditioned on the current 02) and accept.
(b) Draw a proposal 02* (conditioned on the new 3*) and accept.

If random walk proposals are applied:

(a) Draw a proposal 3* with y5 = 0.5.
(b) Draw a proposal o2* with 7, = 0.5.
(c) Accept both or none.

Results for T = 25, M = 25 and m = 2 are shown in Figs.7.6-7.11.
Figures 7.12-7.17 display results for 7' = 25, M = 25 and m = 10. These are
summarised in Tables 7.2—7.5 and Fig. 7.19. A discussion follows in Sect.7.1.8.

7.1.8 Discussion

In this section, a variety of path and parameter proposals were introduced as
modules in the general MCMC scheme (7.2) to alternately estimate the model
parameter and imputed sample path of a diffusion process. The different proposals
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were applied to infer on the parameters of an Ornstein-Uhlenbeck process whose
solution is available in explicit form. The evaluation of each proposal technique is
the objective of the following.

To begin with, consider the seven different path proposal schemes from
Sect.7.1.2; these are the Euler proposal, the double-sided Euler proposal (in a
Metropolis-Hastings and a Metropolis-within-Gibbs version), the modified bridge
proposal, the diffusion bridge proposal, the Gaussian proposal and the Student t
proposal. The most important criterion to rate an estimation scheme is certainly to
consider whether the parameter estimates approximately match the true values.

In short, the Euler proposal, double-sided Euler proposal (in both versions),
modified bridge proposal and diffusion bridge proposal yield satisfying estimation
results with respect to the obtained 95 % highest probability density intervals. The
Gaussian and Student t proposals, on the other hand, fail on exactly this account as
they obviously do not correctly estimate the parameters of the diffusion coefficient
in the considered example. This is apparent in Fig. 7.19.

A further issue is the investigation of the acceptance rates for the path and
parameter update which are listed in Tables 7.4 and 7.5. For m = 10, these are
apprehensively low for the random walk parameter update in combination with the
Gaussian and Student t proposals. The acceptance rates for the other path proposal
schemes seem inconspicuous yet but should possibly be further evaluated for higher
amounts of imputed data. In particular, the rates for the Euler proposal are expected
to further decrease as m increases as this proposal distribution does not condition
on the end point of the path segment.

There remains the question why the Gaussian and Student t proposals perform
so poorly although the simulated paths in Figs.7.2 and 7.3 on pp.178 and 179
do not appear to substantially differ from those obtained with the modified or
diffusion bridge proposal. Empirical investigations yield that within the MCMC
procedure, the Gaussian and Student t proposals seem to be unable to reproduce
the shape of a diffusion path. This is illustrated in Fig. 7.20 under consideration of
one characteristic property of diffusion paths: the quadratic variation. This attribute
was introduced in Sect. 3.2.6 for time-continuous data. In the present situation, we
estimate the quadratic variation of the discrete skeleton Y = {Yp,..., Yk} of the
Ornstein-Uhlenbeck process as

S

YY) = D (Yo - Y0)" (7.29)

i

Il
o

If the grid of time points is sufficiently fine, one should obtain

—

(YY) (o q/T = 0* = 1for 0® = 1. The left column of Fig.7.20 shows trace plots
of the quadratic variation of the diffusion paths obtained with the usual MCMC
scheme considered in this chapter so far, where 7' = 1, M = 10 and m = 10.In a
second experiment, the MCMC algorithm was modified such that the parameter 0
is fixed to its true value and only the imputed data is updated. The resulting trace
plots of the quadratic variation are shown in the middle column. The last column
shows the quadratic variation of a series of diffusion path proposals conditioned
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on the true parameter value without any accept/reject mechanism. Apparently, the
Gaussian and Student t proposals do in fact propose diffusion paths that match the
required quadratic variation. However, these paths seem to generally be rejected in
the MCMC procedure even when they are conditioned on the true model parameter.

As these are empirical results, the Gaussian and Student t proposals may work
better for different models like those considered in Elerian et al. (2001). In any
case, the experiments in that paper are not comparable to the simulation study here
with respect to the numbers of observations, which are 500 in Elerian et al. (2001)
and 25 here. However, there are other reasons speaking against the Gaussian and
Student t proposals: Chib and Shephard (2002) already point out the computational
cost which is necessary to search for the mode of the Gaussian or t distribution for
large numbers of missing data points. In fact, even in the relatively simple simulation
study in Sect.7.1.7, these two approaches turned out to be computationally much
more costly than other proposal schemes. In the context of importance sampling,
by the way, Eraker (2002) notices that the Gaussian proposal does generally not
meet the regularity conditions which are required for the convergence of the related
SMLE scheme in Sect. 6.3.3.

Now consider the remaining five path proposal schemes, that are the Euler
proposal, double-sided Euler proposal (two versions), modified bridge proposal and
diffusion bridge proposal. Figures 7.10, 7.11, 7.16 and 7.17 show autocorrelation
plots for the parameters 3 and 0. Figure 7.18 displays the inefficiency factors of
the serially correlated imputed data; see Sect. B.5 in the Appendix for details on
inefficiency factors. The modified bridge and diffusion bridge proposals show best
performance concerning the autocorrelation of both the parameter and the imputed
data. Thereby, the modified bridge proposal seems to work slightly better. It hence
emerges from the simulation study as the first choice of a path proposal scheme.

For the update of the model parameter, three different proposal schemes were
considered in Sect. 7.1.3: the exact full conditional proposal, the approximate full
conditional proposal, and the random walk proposal. The first one comes into
question only if the transition density of the considered diffusion process is known
in closed form; in practice, this is seldomly the case, and hence this proposal cannot
generally be selected. Moreover, even if the transition density was tractable and the
full conditional densities could be determined up to a normalising constant, this
would be of practical use only if one was able to generate random variates from this
density. In Sect. 7.1.7, the exact full conditional densities of the parameters 3 and o
could be associated with a normal and inverse gamma distribution, respectively. The
full conditional distribution of the parameter «, however, was not recognised to be
of any standard distribution type.

The approximate full conditional density can be computed for all diffusion
processes up to the normalising constant. The above comments on the practical
usability, however, apply here as well: There is no benefit of the approximate
full conditional density kernel unless a possibility to sample from it is at hand.
Furthermore, the calculations on pp. 193—-195 and in Sect. B.4 in the Appendix show
that the derivation of both the exact and the approximate full conditional densities
can be quite elaborate even for a fairly standard diffusion process.
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Fig. 7.6 Estimation of parameters of the Ornstein-Uhlenbeck process (7.20) as described on
pp. 196-197. The MCMC scheme conditions on observed data at times 0, 1,...,25 and intro-
duces m = 2 subintervals in between every two observations. This figure shows the trace plots
of 3. The Markov chains have length 10° but have been thinned by factor 50. The true value for 3
equals 0.9 and is indicated by the red horizontal line. Abbreviations for the path and parameter
proposals are listed in Table 7.1
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Fig. 7.7 Estimation results as described in Fig. 7.6. This figure shows the trace plots for o2. The
true parameter value for o2 equals 1 and is indicated by the red horizontal line
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Fig. 7.8 Estimation of the posterior density of S based on the results from Fig.7.6. Density
estimation takes into account the full Markov chain, i.e. without thinning, after having discarded a
10 % burn-in phase. The true value of the parameter is indicated by the vertical line
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Fig. 7.9 Estimation of the posterior density of o2 based on the results from Fig.7.7. Density
estimation takes into account the full Markov chain, i.e. without thinning, after having discarded a
10 % burn-in phase. The true value of the parameter is indicated by the vertical line



204 7 Bayesian Inference for Diffusions with Low-Frequency Observations

eFC aFC RW
1.0 1.0 1.0
0.8 0.8 0.8
L 06 L 06 L 06
E (E() 0.4 (<'() 0.4 2 0.4
0.2 0.2 0.2
0.0 0.0 0.0
0 50 100 150 0 50 100 150 0 50 100 150
Lag Lag Lag
1.0 1.0 1.0
0.8 0.8 0.8
L 06 L 06 L 06
E2-MH £ o. 2 os < os
0.2 0.2 0.2
0.0 0.0 0.0
0 50 100 150 0 50 100 150 0 50 100 150
Lag Lag Lag
1.0 1.0 1.0
0.8 0.8 0.8
L 06 L 06 L 06
E2-MG (<'() 04 (<':) 04 &() 04
0.2 0.2 0.2
0.0 0.0 0.0
0 50 100 150 0 50 100 150 0 50 100 150
Lag Lag Lag
1.0 1.0 1.0
0.8 0.8 0.8
L 06 L 06 L 06
MB 2 0.4 2 0.4 2 0.4
0.2 0.2 0.2
0.0 0.0 0.0
0 50 100 150 0 50 100 150 0 50 100 150
Lag Lag Lag
1.0 1.0 1.0
0.8 0.8 0.8
LL 06 L 06 L 06
DB (E() 0.4 (<'() 0.4 2 0.4
0.2 0.2 0.2
0.0 0.0 0.0
0 50 100 150 0 50 100 150 0 50 100 150
Lag Lag Lag
1.0 1.0 1.0
0.8 0.8 0.8
L 06 L 06 L 06
G (&:) 0.4 &() 0.4 2 0.4
0.2 0.2 0.2
0.0 0.0 0.0
0 50 100 150 0 50 100 150 0 50 100 150
Lag Lag Lag
1.0 1.0 1.0
0.8 0.8 0.8
L 06 L 06 L 06
t 2 04 (<':) 04 &() 04
0.2 0.2 0.2
0.0 0.0 0.0
0 50 100 150 0 50 100 150 0 50 100 150
Lag Lag Lag

Fig. 7.10 Autocorrelation plots for 3 based on the results from Fig.7.6. Calculation of the
autocorrelation takes into account the full Markov chain, i.e. without thinning, after having
discarded a 10 % burn-in phase
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Fig. 7.11 Autocorrelation plots for o2 based on the results from Fig.7.7. Calculation of the
autocorrelation takes into account the full Markov chain, i.e. without thinning, after having
discarded a 10 % burn-in phase
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Fig. 7.12 Estimation of parameters of the Ornstein-Uhlenbeck process (7.20) as in Fig. 7.6, this
time introducing m = 10 subintervals in between every two observations. This figure shows the
trace plots of 3. The Markov chains have length 10® but have been thinned by factor 50. The true
value for 3 equals 0.9 and is indicated by the red horizontal line
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Fig. 7.14 Estimation of the posterior density of 3 based on the results from Fig.7.12. Density
estimation takes into account the full Markov chain, i.e. without thinning, after having discarded a
10 % burn-in phase. The true value of the parameter is indicated by the vertical line
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Fig. 7.15 Estimation of the posterior density of o2 based on the results from Fig.7.13. Density
estimation takes into account the full Markov chain, i.e. without thinning, after having discarded a
10 % burn-in phase. The true value of the parameter is indicated by the vertical line
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Fig. 7.16 Autocorrelation plots for 5 based on the results from Fig.7.12. Calculation of the
autocorrelation takes into account the full Markov chain, i.e. without thinning, after having
discarded a 10 % burn-in phase
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Fig. 7.17 Autocorrelation plots for o2 based on the results from Fig.7.13. Calculation of the
autocorrelation takes into account the full Markov chain, i.e. without thinning, after having
discarded a 10 % burn-in phase
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Fig. 7.18 Inefficiency factors for imputed data generated by the MCMC scheme as described in
the simulation study on pp. 196-197. The estimation procedure conditions on observed data at

times 0 and 1 and introduces m = 10 subintervals in between these two observations. This figure

shows the inefficiency factor ¢(Yy) fork =1, ..

., m — 1 as described in Sect. B.5, where top = 0

1. The Markov chains have length 10° less a discarded burn-in phase of 10 %

and t,,
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Table 7.2 Estimation results as in Figs. 7.6 and 7.7 with T" = 25, M = 25 and m = 2. This table
displays the posterior means and posterior 95 %-hpd intervals after a 10 % burn-in phase. The latter
are computed according to Chen and Shao (1999). The true values of the parameters are 8 = 0.9

and 02 = 1. The hpd intervals are also shown in Fig.7.19 on p. 215

eFC

aFC

RW

E B:0.84, (—=0.01,1.71)

2:1.45,( 0.66,2.45)

B:0.84, (—0.02,1.70)

B :0.89, (0.20,1.59)
a2:0.87, (0.48,1.35)

B :0.90, (0.19,1.58)

3:0.89, (0.20,1.58)
02:0.87, (0.47,1.34)

B:0.89, (0.19,1.57)

E2-MH ) ) )
02 1.44, ( 0.65,2.44) 02:0.87, (0.47,1.35) 52:0.87, (0.47,1.36)
E2MG B:0.84, (—0.02,1.71) 3:0.89, (0.22,1.61) B:0.90, (0.22,1.61)
02 1.44, ( 0.65,2.44) 02:0.87, (0.47,1.34) 02:0.87, (0.46,1.35)
MB :0.84, (—0.03,1.69) /3 :0.89, (0.20,1.59) 3:0.90, (0.20,1.58)
02 1.43, ( 0.66,2.44) 02:0.87, (0.47,1.35) 52:0.88, (0.48,1.37)
DB B:0.84, (—0.02,1.71) 3:0.89, (0.19,1.58) B:0.89, (0.19,1.58)
02 1.45,( 0.65,2.46) 02:0.87, (0.47,1.35) 02:0.87, (0.48,1.38)
G B:0.92, (0.29,1.55) :0.94, (0.38,1.49) B:0.94, (0.38,1.48)
02:0.70, (0.44,1.00) 02:0.55, (0.35,0.77) 02:0.55, (0.35,0.77)

£:0.93,(0.35,1.53)
o2

£:0.95,(0.41,1.48)
:0.62, (0.40,0.87) o?

B:0.94, (0.43,1.47)
£ 0.50, (0.32,0.69) o2

£ 0.50, (0.33,0.70)

Table 7.3 Estimation results as in Figs. 7.12 and 7.13 with T' = 25, M = 25 and m = 10. This
table displays the posterior means and posterior 95 %-hpd intervals after a 10 % burn-in phase.
The true values of the parameters are 3 = 0.9 and o2 = 1. The hpd intervals are also shown in
Fig.7.19 on p.215

eFC aFC RW

E B :0.80, (—0.14,1.73)
02:1.77, ( 0.77,3.08)

B:0.79, (—0.16,1.74)

£:0.88,(0.15,1.63)
2:1.02,(0.53,1.58)

£:0.88, (0.14,1.62)

B3:0.88, (0.14,1.63)
o2:1.05, (0.56,1.65)

£:0.89, (0.11,1.61)

E2-MH
02:1.86, ( 0.76,3.30) 02:1.01, (0.54,1.55) 52: 1.00, (0.55,1.56)

EMG :0.80, (—0.13,1.74) B:0.88, (0.12,1.60) B:0.87, (0.12,1.63)
02:1.79, ( 0.78,3.10) 02:1.02, (0.55,1.58) 02:1.02, (0.53,1.55)

MB £ 0.80, (—0.14,1.74) B:0.88, (0.12,1.61) B:0.88, (0.14,1.62)
o2 1.81,( 0.78,3.12) 02:1.01, (0.56,1.58) 02:1.00, (0.52,1.55)

DB £ 0.80, (—0.14,1.74) B:0.88, (0.12,1.62) B:0.87, (0.13,1.64)
o2:1.81,( 0.78,3.13) 02:1.02, (0.55,1.57) 02:1.04, (0.57,1.58)

G B:1.00, (0.68,1.32) B:1.00, (0.69,1.31) B:1.00, (0.72,1.31)
02:0.17, (0.14,0.20) 02:0.16, (0.13,0.19) 02:0.16, (0.13,0.19)

B:1.01, (0.73,1.29) B:1.01,(0.73,1.28) B:1.01, (0.74,1.28)

0.13, (0.11,0.15)

q
q

2:0.13,(0.11,0.16) 2:0.13, (0.10,0.15) 2
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Table 7.4 Acceptance rates for the path update corresponding to the experiments in Figs. 7.6, 7.7,
7.12 and 7.13

eFC (%) aFC (%) RW (%)
E m=2 :62 m=2 :57 m =2 :57
m = 10: 46 m = 10: 44 m = 10: 45
E2-MH m =2 :88 m =2 :88 m =2 :88
m = 10: 67 m = 10: 67 m = 10: 67
E2-MG m=2 :92 m=2 :92 m=2 :92
m = 10: 98 m = 10: 98 m = 10: 98
MB m =2 :88 m =2 :88 m =2 :88
m = 10: 97 m = 10: 97 m = 10: 97
DB m=2 :79 m=2 :79 m=2 :79
m = 10: 72 m = 10: 72 m = 10: 72
G m =2 :53 m=2 :53 m =2 :53
m = 10: 37 m = 10: 37 m = 10: 37
t m=2 :52 m=2 :52 m=2 :52
m = 10: 36 m = 10: 36 m = 10: 36

Table 7.5 Acceptance rates

for the random wilk RW (%)
parameter update E m =2 :29
corresponding to the Markov m = 10: 16

chains displayed in Figs. 7.6,

7.7,7.12 and 7,13, The E2-MH m=2:29
acceptance rates for the exact m = 10: 16
and approximate full E2-MG m=2:29
conditional proposals m = 10: 16
are 100 % due to the MB m =2 :29
construction of the algorithm m = 10: 16
DB m =2 :29
m = 10: 16
G m=2 :25
m=10: 9
t m=2 :25
m = 10: 8

The random walk proposal, in contrast, is always available, easy to implement
and not problem-specific apart from the domain of the parameter.

The approximate full conditional proposal and the random walk proposal yield
similar posterior means for the parameters in Tables 7.2 and 7.3 and highest
probability density (hpd) intervals in Fig. 7.19. For all but the Gaussian and Student t
path updates, these posterior means match the true parameter values quite well for
m = 10. The exact full conditional proposal, on the other hand, underestimates /3,
overestimates o2 and produces fairly large hpd intervals unless it is combined with
the Gaussian or Student t proposal. Therefore, the approximate full conditional and
random walk proposals should be preferred for the parameter update.
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m=2 E-eFC m=2 — E-eFC
E-aFC —_—T E-aFC
E-RW — E-RW
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E2-MH-aFC —_—T E2-MH-aFC
E2-MH-RW Em— E2-MH-RW
E2-MG-eFC — E2-MG-eFC
E2-MG-aFC — E2-MG-aFC
E2-MG-RW R E2-MG-RW
MB-eFC — MB-eFC
MB-aFC Em— MB-aFC
MB-RW R MB-RW
DB-eFC — DB-eFC
DB-aFC — DB-aFC
DB-RW —_—T DB-RW
R G-eFC — G-eFC
_— G-aFC —_— G-aFC
R G-RW —_— G-RW
e t-eFC _— t-eFC
—_—t t-aFC —_— t-aFC
—_— t+-RW —_— t-RW
m=10 E-eFC m=10 E-eFC
E-aFC —_—t E-aFC
E-RW _— E-RW
E2-MH-eFC E2-MH-eFC
E2-MH-aFC —_— E2-MH-aFC
E2-MH-RW —_— E2-MH-RW
E2-MG-eFC E2-MG-eFC
E2-MG-aFC —_—t E2-MG-aFC
E2-MG-RW R E2-MG-RW
MB-eFC MB-eFC
MB-aFC E— MB-aFC
MB-RW R MB-RW
DB-eFC DB-eFC
DB-aFC D e— DB-aFC
DB-RW — DB-RW
R G-eFC - G-eFC
R G-aFC - G-aFC
e — G-RW - G-RW
—_1 t-eFC - t-eFC
o t-aFC - t-aFC
s t-RW - t+-RW
T T T T T T T T
0 1 2 3 0 1 2 3 4
B o®

Fig. 7.19 95% hpd intervals for 3 (left) and o2 (right) as displayed in Tables 7.2 and 7.3

For the specific random walk variances 7[23 and 72, the random walk proposal
causes higher autocorrelation in the Markov chains for 3 and o2 in Figs. 7.10, 7.11,
7.16 and 7.17 than the full conditional proposals. Yet the universal and convenient
employability of the random walk overweighs this last issue. Overall, the random
walk is the favourite parameter proposal scheme.

To summarise, this section introduces the general methodology of Bayesian
inference for diffusions via data augmentation. The implementation of the general
procedure is extensively discussed by considering specific path and parameter
proposal schemes and other practical concerns. The methodology is illustrated on
a simulation study for the one-dimensional Ornstein-Uhlenbeck process. To that
end, all algorithms have been implemented in R. As expected, for those update
schemes which were classified appropriate techniques in this discussion, estimation
results improve as the amount of imputed data increases from m = 2 to m = 10
intermediate subintervals. Overall, the modified brigde proposal for the missing
data in combination with the random walk proposal for the parameter show best
performance. Hence the following section concentrates on these two approaches
and extends them to a more general framework than considered in this section.
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Fig. 7.20 Trace plots of quadratic variation (7.29) of discretely sampled diffusion paths obtained
by three different experiments. Left: By application of the MCMC scheme as described in the
simulation study for unknown 3 and 02 with T = 1, M = 10 and m =
application of the same MCMC scheme, but for known 3 and 2. Right: By proposing paths
conditional on the true value of @ but without any accept/reject mechanism. All Markov chains
have length 105 but have been thinned by factor 50. The true value of the quadratic variation
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7.2 Extension to Latent Data and Observation with Error

The previous section introduced general concepts of parameter estimation for
diffusions using data augmentation schemes. Observations of the diffusion paths
at discrete time points were assumed both complete and without measurement
error. In applications in life sciences, however, these conditions are seldomly
fulfilled. Section 7.2.1 therefore extends the algorithms from Sect.7.1 to latent
data. Section 7.2.2 additionally adapts them to observation with error. Some of the
calculations in this section have also been carried out for equidistant time steps
by Golightly and Wilkinson (2006a, 2008), who partly arrive at different results
though.

7.2.1 Latent Data

It often occurs in applications in life sciences that the state variable of a diffusion
process (X¢);>0 is not fully observable and hence consists of an observed and an
unobserved latent part: In infectious disease epidemiology, for example, one reports
the numbers of infected individuals in a population but usually does not know the
numbers of susceptibles. In chemical kinetics, one may observe the sum of the
concentrations of two species but possibly cannot measure the single concentrations.
Typical examples outside of life sciences are stochastic volatility models being
composed of an observed asset price and a latent volatility.

This section extends the estimation schemes from Sect. 7.1, which alternately
perform a path and a parameter update, to a latent data framework. To that end, the
parameter update can be adopted from Sect. 7.1.3 without change. The path update,
however, needs to be modified for the latent data framework. This section hence
deals with path proposals in the presence of incomplete observations.

As before, assume that there are observations of the state of the process available

attimes 0 = 79 < 71 < ... < Tpy = T In order to reduce the lengths of inter-
observation time intervals, impute m; — 1 auxiliary time points in between every two
observation times 7; and 7;41 fori = 0,..., M — 1. Then, in all, there are K + 1

observation and auxiliary times, where K = mg+ ...+ mp;—1. Figure 7.21 shows
a discretised two-dimensional diffusion path which consists of a one-dimensional
observable part V' and a one-dimensional latent part L, where auxiliary data has
been imputed. The indices in the notation are as in Fig. 7.4 on p. 189.

To simplify notation, label all observed and auxiliary time points in ascending
order by ty, k = 0,...,K. Define O = {k € {0,...,K}|tr € {70,-..,70m}},
that is the set of indices of observation times. Like in the previous section, let
Y, = X, forall Kk = 0,...,K. For k ¢ 9O, Y}, is completely unobserved
and needs to be fully investigated in the path update. For £k € 9O, Y} is
partially observed, i.e. its components can be rearranged in a way such that
Y, = (V},L,) € RY for observed V), € R% and latent L, € R, where
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Fig. 7.21 Tllustration of a two-dimensional path with an observable component V' and a latent
component L. As in Fig. 7.4 on p. 189, the observed part of the path consists of the initial value at
time 79 and M discrete observations at times 71, . . ., Tas. Observed data is labelled with crosses,
imputed data with circles. The latent components are imputed at all observation and auxiliary times
and hence also labelled with circles

d = dj + ds. In that case, the path update changes L but leaves V, unaltered. For
simplicity, suppose that the decomposition of Y}, into V}, and Ly, is the same for
all k£ € O, although this assumption is not necessary for the path proposal schemes
considered in the following.

In what follows, we first investigate the general path update procedure and after-
wards provide the required proposal distributions. Adapted acceptance probabilities
are presented on pp. 223.

Choose an update interval (¢4,%p) such that [{a + 1,...,b — 1} N O| < 1, i.e.
there is not more than one observation time in the interior of (¢, t;). The following
situations may now occur:

1. One has [{a + 1,...,b— 1} N O| = 0, i.e. there is no observation time in the
interior of (¢4, ¢). In this case path proposals are obtained as in Sect. 7.1.2.

2. One has [{a + 1,...,b — 1} N O| = 1, i.e. there is exactly one observation
time ¢, in the interior of ({4,%,). As in the framework without latent data in
Sect. 7.1.2, there are various possibilities to propose the path segment between ¢,
and t;. The discussion in Sect.7.1.8 showed that satisfactory results can be
achieved by application of the modified bridge proposal. Hence this approach
is extended to the latent data case in the following. There are two strategies for
this extension:

a. First, propose L) |Y,,V,,Y},,0 as in (7.31) below, that is the latent
vector at the intermediate observation time ¢,.. Then, generate two
conditionally independent proposals on (t,,t.) and (¢.,%,) conditioned
onY,, V. LY}, 0 asinitem 1.

This approach is illustrated in Fig. 7.22.
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Fig. 7.22 Tllustration of update strategy (2a) on p. 218 for a two-dimensional process: the objective
is the update of a discretised path segment on the time interval (¢,,tp) in presence of an
intermediate observation time ¢,.. The path consists of a one-dimensional observable component V'
(lower curve) and a one-dimensional latent component L (upper curve). Under the assumption
that a # 0 and b # K, the end points L, and L are kept fixed. Crosses indicate observed values,
stars label unobserved but fixed values, and circles stand for unobserved values that are still to be
considered in the path update. This figure shows the first step of strategy (2a): Update L, (red)
conditional on Vi, L, V-, Vi, and Ly, (blue). In the second step, which is not shown here, L. is
considered fixed and the path is updated on (¢4, t,) and (¢,, t) as considered in Sect.7.1.2

b. Update the path segment from the left to the right. More precisely:

* Fork =a,...,r —2,propose Y; | | Y}, V,, Y}, 0 as in (7.35) below,
where Y = Y,. Alternatively—and computationally less costly—,
propose Y., 1 | Y}, V,., 0 asin (7.33).

* Propose L) | Y, 1,V,, Y}, 0 asin (7.31) below.

* Fork =r,...,b—2,propose Y, | Y}, Y}, 0 asinitem I, where Y
is composed of V. and L.

This procedure is shown in Fig.7.23.

Special situations occur when a = 0 or b = K: Usually, the imputed
data is updated merely on the interior of (¢,,%,) such that Y, and Y}, remain
unaltered. If, however, Yy or Y are only partially observed, their update has to
be included in the update of adjoining path segments. Under the assumption that
{a +1,...,b — 1} N O] = 0, this involves drawing from £(L¢|Vy,Y3,0),
L(Lg|Yk-1,Vk,0) and £(Yi+1|Ys, Vi, 0), where £ denotes the distribution
of a random variable. The first two distributions are provided in (7.37) and (7.39)
below. The third one corresponds to (7.33) with r replaced by K.

Exact sampling of the above mentioned conditional distributions is generally not
possible, but they can be approximated under consideration of the Euler scheme



220 7 Bayesian Inference for Diffusions with Low-Frequency Observations

a b
La La

ta tart taso=t4 t ta=toq to ta tarr taso=t4 t ta=toq t

ta tart taso=t4 t ta=tp 1 to ta tarr taso=t4 t ta=to 1 t

’ x observed * unobserved (imputed or latent) but fixed o unobserved‘

’ red: data to be updated blue: data to condition on ‘

Fig. 7.23 Tllustration of update strategy (2b) on p.218 for a two-dimensional process: The
objective is the update of a discretised path segment on the time interval (¢, tp) in presence of an
intermediate observation time ¢,.. The path consists of a one-dimensional observable component V'
and a one-dimensional latent component L. Under the assumption that a # 0 and b # K, the
end points L, and L are kept fixed. Crosses indicate observed values, stars label unobserved
but fixed values, and circles stand for unobserved values that are still to be considered in the path
update. This figure shows the single steps of strategy (2b): (a) Update the path from the left to
the right, i.e. start by investigation of the data at time ¢,41. As t,41 is an auxiliary time point,
both V41 and Lg41 (red coloured) are to be updated. The proposals are conditioned on Vg,
Lq, Vi, Vi, and Ly (blue). (b) Continue with the update of the data at time ¢,42 (red). The just
updated V41 and Lq1 are now considered fixed, hence condition on these and V,., V4, Ly
(blue). (¢) As V. is observed, update only the latent component L, (red) conditioned on V,._1,
Ly_1,V,, Vyand Ly (blue). (d) Last, update V3,1 and L1 (red) conditioned on its direct left
and right neighbours (blue)

and some further simplifications. Hence, the distributions that have not yet been
investigated in Sect.7.1.2 are now approximated in order to provide appropriate
proposal distributions for the diffusion paths. Most results are based on standard
multivariate normal theory. For the sake of brevity, only the outcomes are shown
here. Full derivations are given in Sect. B.6 in the Appendix.
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For shorter notation, abbreviate pu;, = (Y%, 0) and X, = X (Y}, 0) for all k
in the following. Furthermore, decompose p and X' into

IJ’U ZUU Evl
H—<Hz> and 2_<Zlv E”)
such that u¥ € R%, p! € R, XV € R% %1 and B! ¢ Rd2xd2,

Approximationof £(L,. | ¥, V;, %, 0) for k < r

Let a < k < r. The derivations in Appendix B.6 yield that the joint distribution of
V., and L, conditioned on Y}, Y} and 6 can be approximated as

Vi—Vy

Vit —— Qi !
VT) ‘ Akb ArbAkr <2ZU ZZ
Yk, Yb, 0 ~/ N lv 11 5 (730)
L, Lk+Lb LkAkr Agp DI NS W
kb

where Ay, = t, —tg, Ay = tp —t, and Ay, = tp — ti. Further conditioning on V.
yields

LYV, Y5,0 ~N(n,, Ag) (7.31)

with

Vi — Vi

i y Agp

Ly—L B
b_bk QA+ B2 ()7 (VT V- A,W)

Ay
and
ArbAkr

Ay = ———
¥ Agp

v vV -1 v
(54 - me(m) ' y)
Approximation of £ (Y41 | Y, V;,0) fork < r — 1

Leta < k <r — 1. Appendix B.6 shows that one has approximately

Y Y + p Aty LAl D;Atk
Y. 0~ 7.32
( v, ) i, N((Vmumr A\ D, m0a,,)) 792

where Aty = tpi1 — tpy D = tp — tpg1, Dy = Apr + Aty = 1, — 1
and D), = (X, X1, This implies

Yk-‘rl |Yk7VT70NN(pk7Fk) (733)
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with
V.=V
Vi + — At
k + Akr k
Pr =
V.-V,
L+ ungtk + EZJ(ZZU)_I (T’f _ HZ) Aty
and
I, — ZZUAIW— ZZlA;W_ %
FEA B AL BUAL, - B (E)ISYAL ) Ay

Approximation of £ (Y41 | Y, V., %, 0) fork < r — 1

The next extension is to further condition (7.33) on Y} in order not to lose this
end point information. As demonstrated in Appendix B.6, the conditional joint
distribution of Y1, V. and Y}, reads

Y Y+, Aty 2 Aty D%Atk XL AL,
Ve | Y0 ~N || Vitpidp |, | Dedtr X7 Agr DiAgy || (7.34)
Y, Yi+p Arp YAty DpAg, XpAp

with Ay, = t, — ¢ and the notation introduced so far. It follows that
Yii1|Ye, Vi, Yy, 0 ~ N(&,, %) (7.35)

with

—1
vy _ v
€ = Yy + ppAty + (D;CAtk,EkAtk) Ek/ Ay DpApyr Vi = Vi — pp Ak
D) Ay XA Yy — Yi — pp Ao

and

EZUAIW DkA;W) -t <DkAtk)

U, = X At — (D) Aty X At
. = Bty — (DAt B g(DMkaAkb e

Simulation from this distribution is computationally more elaborate than drawing
from (7.33) as (7.35) involves the inversion of larger matrices.

Approximation of £(Lo | 5, ¥;,0)

Consideration of
Y() | Yb, 0~ N(Yb - ,ubAob, EbAOb) (736)
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with Agp = t, — to immediately yields
Lo| Vo,Y5,0 ~ N(x, E) (7.37)

with
x = Ly — pp Ao + I3 (Z4°) (Vo = Vi + py Aos)

and
E=(Z -2y E) Ao

Approximation of £(Lk | Yx—1, Vi, 0)

Analogously,
Y |Yi1,0 ~N(Yi_1+ pg_ 1 Atg—1, 1Atk 1) (7.38)
implies
LK|YK—17VK70NN(K’7H) (739)
with

K=Lg 1+ pg 1 Atg+ ZE (SR ) (Ve = Vo1 — w1 At 1)

and
= (2% — SR (B S5 ) Atk 1.

Conclusion

Now that all required proposal distributions are at hand, we are able to write down
the adapted acceptance probability for the proposed imputed data opposed to the
current imputed data. We do this for the more complicated update strategy (2b) on
p. 218. The acceptance probability for strategy (2a) can then easily be obtained.
First assume [{a +1,...,b— 1} NO| =1landa # 0, b # K, i.e. there is one
observation time ¢, € (¢4, ). Then the acceptance probability reads
CAY s L Y (Y s L Y )

(a,r)’ (7, (a,r)’

W(yilnp* L:, Yimp* | Ya, ‘/T7 Yb7 0) q(Yimp Lr, Yimp ! Ya, V’r, Yby 0)

-1 A (@)’ ) (@)’ )
T (Y e L Y (I [ Ya Vi, Y3, 0) (Y (505 LY (70 | Ya, Vi Y0, 60)

The components of this acceptance probability are

b—1

W(Yi(‘;gj,L:,Yi(f;jg; Y., V,.Y5,0) H riuler (v | Yy, 0)
k=a
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and

a(Y (0 LY () [ Yo, Vi Y0, 0)

r—2 b—2
. (H q(Y,:H\Y,;vame))q(L:\Y:_l,vab,m-(H o(¥is, \Y,:,Yme)),

k=a k=r

where Y =Y,, Y, =Y,and Y, = (V/, LYY . For[{a+1,...,b—1}NO| =0
and a = 0, b # K, the acceptance probability is

CHLS Y (Lo YT )

(L. Yiohy | Vo, Y5, 0)  a(Lo. Y% | Vo, Y5, 0)
(Lo, Y (oh [ Vo, Y5, 0)  a(Lg, Y 0%} | Vo, Y5, 0)

with
) b—1
7(L5, YR | Vo, 3,0) (H T (Y | Y,:,e>)w<vg 0)
k=a
and

(L5, Y (o)

V07Yb70) = Q(LS

b—2
VOu Yb7 0) <H Q(Y]:J,-I ’ Y]:a Yb7 0))7

k=0
where Y = (V{, L") and 7(Y(|0) o« m(Lj|Vo,0) is some model-specific

density for the initial value. Similarly, for [{a + 1,...,b—1} N O] =0and a # 0,
b = K one has

C({Yl(r;pK*)7 LI*(}v {Yi(I;,I;{)v LK})

T(Y () Lic | Yo, Vie,0)  a(Y (i), Lic | Yo, Vi, 6)

— 1A oK) (a,K):
(Vb I | Yo, Vi, 0) - a(Y{0%), Lic | Ya, Vi, 0)
with K1
(Yo%) Lic | Yo, Vi, 0) I =™ (v, | Y5, 0)

k=a

and

K-2
a(Y (o) Lic Ya7VK70)2<H q(Y,;*H]Y,;*,VK,e))q(L*K Y1, Vk,0)

k=a

with Y7 = Y. This concludes the extension of the MCMC scheme (7.2) to a latent
data framework.
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7.2.2 Observation with Error

Another issue that is of importance in practice is that observations are often
measured with error, i.e. one has for all ¢;,

vp = Vi + er, er ~N(0,7%), (7.40)

where V, € R% is the observable partof X, , vy, is the measurement of Vi, and €y,
is the observation error with mean zero and positive definite covariance matrix Y.
Observation errors are considered independent for unequal observation times. This
is a setting that also underlies Kalman filters (e.g. Maybeck 1979). The 1), are
either assumed known from empirical data, or their estimation is included in the
inference procedure for the diffusion path and the model parameter. In the latter
case, let @ stand for the collection of all parameters to estimate including the Y.
This section adapts the MCMC scheme from Sect. 7.2.1 to also handle observation
errors in addition to latent data.

As before, suppose there are K + 1 observation and auxiliary times
to < t1 < ... < tg, and let © = {k S {O,...,K}ltk S {TQ,...,T]w}} be
the set of indices of observation times. As observations are assumed to be subject to
measurement error, the vectors V;, have to be updated also for k£ € O now.

The posterior density of the entire diffusion path {Y7} }x—o,... x conditional on
the observations {vy, } rco and the parameter 0 then equals

T ({Yi}r=o.,...x | {vk}reo,0)

o< m({vrtkeo [{Yi}r=o.... 1, 0)T({Yi}k=o,....x | 0)

— (H (v | Vk,Tk)> <Iﬁlw(yk+1 | Yk,0)>7r(Y0 1 6).

keO k=0

The posterior density of the parameter 8 conditioned on both the estimated and
observed path is

7(0 [{Yi}r=o,.... s {Vk }reo)

< (Tt ) ) (TL s 90.0) (3o ot

keO k=0

The path proposal distributions from Sect. 7.2.1 have to be adjusted to the new
setting. In particular, the observable parts V. need to be updated for £ € O in
consideration of (7.40). The new path update algorithm is as follows.

Choose an update interval (¢4,%p) such that [{a + 1,...,b — 1} N O| < 1, i.e.
there is not more than one observation time in the interior of (¢, t;). The following
situations may occur:

1. One has [{a + 1,...,b — 1} N O| = 0, i.e. there is no observation time in the
interior of (¢, tp). In this case path proposals are again obtained as in Sect. 7.1.2.
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2. One has [{a + 1,...,b — 1} N O| = 1, i.e. there is exactly one observation
time ¢, in the interior of (¢, t;). The two strategies from Sect. 7.2.1 now read as
follows.

a. Propose Y |Y,,v,, Y}, 0 as in (7.41) below. Then, generate two
conditionally independent proposals on (¢,,t,) and (¢.,%,) conditioned
onY,, Y Y, 0asinitem 1.

b. Update the path segment from the left to the right. More precisely:

* Fork =a,...,r —2,propose Y, | Y, v, Y, 0 as in (7.43) below,
where Y,; =Y,. Alternatively, propose Y., | Y}/, v, 0 as in (7.42).

* Propose Y, | Y, 1,v,,Y},0asin (7.41) below.

* Fork=r,...,b—2,propose Y;/, || Y}, Y}, 0 asinitem 1.

The special cases a = 0 and b = K involve drawing from £(Y|vo, Y3, ),
L(Yk|Yk-1,vk,0) and L£(Yi41|Yk,vk,0) under the assumption that
[{a +1,...,b— 1} N O| = 0. The first two distributions are provided in (7.44)
and (7.45). The third one corresponds to (7.42) with r replaced by K.

The following shows the required approximate proposal distributions. The
notation is adopted from Sect. 7.2.1.

Approximation of £(Y; | Y, vy, %, 0) fork < r

With (7.30), one obtains

Y,-Y; A, App Apyr Ek)

W(YT |Yk, vy, Y, 0)O<¢('Ur ‘ Vrvrr)(b(YT Awp Ak

Y+

which results in

Y, | Yi,v,, Y0, 0 ~ N (i, Ay) (7.41)
with
_ T, v, Ay o1 Y, -Y;
nk—Ak<< 0 )'i‘mzk Yk+A—kbAkr
and

1

~ rto Ak 1

A = T b .
= (% o) zie =

Approximation of £ (Y41 | Y, v, 0) fork <r — 1

Use (7.32) and v, = V. 4+ €,. to obtain

Yit1 ‘Y 0~ N Y + py Aty YAty DAY,
v, " Vi+puiAn)  \ DAty S AL +T,) )
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That yields ~
Yk-‘rl |Yk7vT70NN(pk7Fk) (742)

with
Pr =Y + p Aty + Dy (X0 Apr + Tr)il(vr — Vi — up A ) Aty

and
fk = (Ek — D;C (EZUAICT + Tr)_leAtk) Aty .

This formula corresponds to (7.33) in the case of no observation error.

Approximation of £ (Y41 | Y, vr, %,0) fork < r — 1

Analogously, with (7.34),

Y1 Y + p Aty 2 Aty D;QAL‘}C LAty
Uy Yk79NN Vk+“%AkT ) Dk:Atk Eszk:T+Tr Dk:Ak:T )
Y, Y + pp A X Aty D} Ag, XAk
and hence
Yk-‘rl |Yk7’UT7Yb70 NN({Iw!pk) (743)
with

-1
EEUA]CT + 7T Dy Ay, vr — Vi — P'ZAkr Aty
D} A, XAy Yy, — Y — A

€, =Yy + pp Aty + (D}, ) <

and

—1
- XA + T DAy D,
U, =X, - ’,2(’@’“ ) ()At Aty,.
k ( k= (Dy, Z) DAy il X)) TRk

Approximation of £(Y5 | vo, ¥, )
Equation (7.36) implies
7(Yo| vo, Y3, 6) x é(vo | Vo, T0)6(Yo| Yo — w40, Todar),

which leads to ~
Yo |vo, Y3, 0 ~ N(x, E) (7.44)
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with

5( _ é ((Tol’lm) + Eb_l Yb - /J/bAOb>
AOb

and

Approximation of £(Yx | Yx—_1, vk, 0)

Finally, with (7.38), one gets

Yi | Yk _1,v5,0 ~ N (&, IT) (7.45)
with ) A
- ~ Y. VK 1 YK71+H/K,1 tk—1
=11 K b,
" << 0 >+ et Atg -1
and
1 2—1 -1
= (Y0 Zxn)
00 Atg_1
Conclusion

Altogether, the path proposal density for partial observations with error accord-
ing to the update strategy (2b) on p.226 equals for a # 0, b # K and
{a+1,....0—-1}NnO|=1

r—2
Q(YI(I:}:)( ‘Ya7'UT7Yb76) _(H q(Y]:Jrl ‘Y]:;v'lhw Yb76)>

k=a

b—2
: q(Y: |Y:717’U7‘5Yb59) : <H q(YI:Jrl |Y7:5Yb79)>7
k=7

where Y, =Y, Fora=0,b# K and [{a+1,...,b—1}NO| = 0, the proposal

density is

b—2
(J(Yl[gfg)* |v0,Y%,0) = q(Y§ | vo,Ys,0) <H a(Yiy | YlvKbﬁ))-
k=0
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Similarly, forb = K,a #0and [{a+1,...,b0— 1} N O| = 0, one has

K-2

g(Y 25 | Yo, vk, 0) = <H (Y| Y/fva,O))tJ(Yf( | Yi_1.vk.0)
k=a

with Y =Y.
This concludes the extension of the MCMC concepts from Sect. 7.1 to latent data
and observation with error.

7.3 Convergence Problems

Now return to the simulation study from Sect. 7.1.7, i.e. consider again the situation
where discrete-time observations are complete and without measurement error. In
these experiments, relatively low amounts of auxiliary data were imputed; time
intervals between every two observations were divided into m = 2 and m = 10
subintervals only. Standard computers can easily deal with much higher numbers.
Figure 7.24 thus shows the trace plots of 3 and o2 for M = 25 observations and m €
{10,100, 1000}. This time, only the modified bridge proposal for the imputed data
and the random walk proposal for the parameter are applied as these turned out to
perform best in the discussion in Sect. 7.1.8. By increasing the number m of subin-
tervals, one hopes to further improve the results for m = 10 in Figs. 7.12 and 7.13.

However, Fig. 7.24 shows astonishing behaviour of the MCMC output: Instead of
reducing the estimation bias and delivering steadily improving parameter estimates,
mixing of the Markov chain for 02 becomes substantially worse as m increases.
Acceptance rates for 8 decrease from 16 % (m = 10) to 5% (m = 100) and 2 %
(m = 1,000). Inference for /3, on the other hand, appears relatively unaffected.

This section aims to investigate the above phenomenon. Its understanding is
essential for the remaining chapter. It was first analysed by Roberts and Stramer
(2001) and has been addressed by a number of researchers since then. The outcomes
of this section are the basis for Sect.7.4 which provides improvements of the
MCMC procedure investigated so far.

Without loss of generality, consider a time-homogeneous diffusion process X
on a time interval [0, 7], where the initial value Xy = @ is known and the final
value X7 = a is completely observed, i.e. X°™ = {xo,x}. The remaining
path segment X o1y = (X¢)se(0,7) is unobserved. Section 7.1.1 explains why
the restriction to this setting is sufficient and can easily be generalised to more
observations.

In order to get to the bottom of the problem of this section, assume that the
missing path segment can be imputed continuously. That means, X mp _ X (0,7) 18
an infinite-dimensional object rather than a countable collection of discrete data
points as considered in the previous sections. One will not face this situation
in practice; however, it corresponds to increasing the number m of subintervals
of [0, T to infinity in the discrete framework.
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Fig. 7.24 Estimation of parameters of the Ornstein-Uhlenbeck process (7.20) as described on
pp- 196-197. The path and parameter are updated via the modified bridge and random walk
proposals. The MCMC scheme conditions on data points at times 0, 1,...,25 (i.e. M = 25)
which are observed without error and introduces m € {10, 100, 1,000} subintervals in between
every two observations. This figure shows the trace plots of 8 and o2. The Markov chains have
length 105 but have been thinned by factor 50. The true values 3 = 0.9 and 02 = 1 are indicated
by the red horizontal lines. Update intervals are sampled with Algorithm 7.3

The key to the explanation for the diminishing convergence as m grows larger is
the quadratic variation identity for diffusion processes,

<Xa X>[O,T]

h(n) £ (7.46)

/!

= dim 3 (X0 = Xy ) (X o0 =X ) = / (X, 0)dr,
6(271),1,0 i—1 2 i—1 i i—1

= 0

which was introduced in Sect. 3.2.6. In this equation, §(Z,,) denotes the fineness
of a partition Z,, = (0 = tgn) < t§") < ... < t;’éi) = T) of [0,T] into h(n)
subintervals for arbitrary n and h. Equation (7.46) holds in probability and, for
sufficiently smooth 3, almost surely. Papaspiliopoulos et al. (2003) label very
similar properties which tie the data and the parameters an ergodicity constraint.
Roberts and Stramer (2001) point out that this equality implies that the quadratic
variation (X, X)jo 71 of the path and the diffusion matrix X are unavoidably
linked together: As soon as the full path X7 = X °bs | XMP s known, the
diffusion matrix can be calculated rather than estimated via (7.46); and the other
way round, a fixed diffusion matrix determines a path with the appropriate quadratic
variation. See Polson and Roberts (1994) for a detailed elaboration. In Sect. 6.1.1,
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this connection was emphasised as a convenient property as it theoretically allows
feasible identification of those model parameters that are uniquely determined by the
value of . In the context of the present chapter, however, this characteristic limits
the performance of the MCMC scheme. The crucial difference is that in Sect. 6.1.1
the diffusion path was assumed continuously observed. Here, it is considered
continuously imputed.

Mathematically, the problem can also be formulated as follows: Let Py denote
the probability measure induced by the diffusion process fulfilling the SDE

dXt = u(Xt,O)dt + o'(Xt,O)dBt , Xto = Xy,

for fixed parameter @ € ©. Denote by Wy the measure for the respective driftless
version,

dXt:a(Xt,O)dBt, Xt():mo.

Conditioned on the path X o 1), the distribution of the diffusion matrix is just
a point mass at the value implicated by the quadratic variation link (7.46). For
X(-,0) # X(-,0%), where 0,0 € O, the measures Wy and Wy~ are thus
mutually singular, i.e. they have disjoint support. This is denoted by Wg L Wep-.
The two measures IPg and Wy are equivalent according to Girsanov’s theorem in
Sect. 3.2.12, that means they have identical null sets. Hence, Pg L Py~ as well. For
the likelihood of @ with respect to Lebesgue measure I,

dPPg

L(6; X) = I

(X),
this implies
vXeX V0,0°co
(2(-,0) £3(,0%) = L(6:;:X)=0 Vv L(6*: X) =0 a.s.)
and

VX, X"€X Y0cO
(<X,X> £(X*,X") = L6: X)=0V LO:; X*) =0 as)

Now consider the updating scheme (7.2) on p.173, where both the path
update and the parameter update are performed using the Metropolis-Hastings
algorithm. These update steps use acceptance probabilities including the
factors  w(X™¥|0)/7(X|0)=L(6; X*)/L(0; X)  (path  update)  and
m(X|0")/m(X|0) = L(0"; X)/L(0; X) (parameter update), where the asterisk
tags the proposals. Presumably, the previous state (X, 6) of the Markov chain
is consistent and has positive likelihood. Then, unless X(-,0) = X(-,0%),
the numerators in both acceptance probabilities involve the factor 0, i.e. the
proposals X ™ and 8™ will be rejected. The update scheme is degenerate.
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Fig. 7.25 Kernel density estimates of joint densities of o2 and the quadratic variation per
time (Y, Y) [0,25] /25, where Y is an exactly sampled discrete skeleton of an Ornstein-Uhlenbeck

process on the time interval [0, 25] satisfying (7.20) on p. 192. The quadratic variation is calculated
as in Eq. (7.29) on p. 198. Density estimation is based on skeletons for 25,000 uniformly sampled
o2 ~ U([0.5,5.0]) with &« = 0.5 and B8 = 0.9 fixed. The skeletons are simulated on an
equidistant time grid with step lengths 0.1 (left), 0.01 (middle) and 0.001 (right)
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Fig. 7.26 Joint trace plots of 02 and (Y, Y") (0,25] /25 corresponding to iterations 80,000-85,000

(without thinning) of the Markov chains shown in Fig. 7.24. The quadratic variation is calculated
as in Eq. (7.29) on p. 198

In practice, we do not come into contact with either continuous observation or
continuous imputation. However, the above considerations imply that the algorithm
slows down as more and more data points are imputed and is even degenerate in
the limit. This explains the decreasing acceptance rates mentioned at the beginning
of this section. Even worse, the Markov chain runs a risk of appearing to converge
when in fact it is trapped in a consistent combination of X mP and 6.

Figure 7/.2_5\shows empirical joint densities for 02 and the quadratic variation

per time, (Y,Y") () »51/25, of a discrete path skeleton Y of an Ornstein-Uhlenbeck

process with diffusion coefficient o. Due to (7.46), one expects (Y, Y") [0,25] & 2502,
The quadratic variation is estimated as in (7.29) on p. 198. The time steps 0.1, 0.01
and 0.001 in the three graphics correspond to M - m = 250, 2,500, 25,000 observed
and auxiliary data points on the time interval [0, 25], respectively; that matches the

—

situations in Fig. 7.24. Figure 7.26 shows joint trace plots of o2 and (Y, Y>[0 25]/25
for the MCMC experiments considered in Fig.7.24.
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Altogether, one faces the dilemma that on the one hand it is essential to increase
the amount of imputed data in order to reduce the estimation bias, but on the
other hand this action results in arbitrarily slow mixing of the Markov chains.
This difficulty is well-observed in Fig.7.24. The algorithm can even arrive in a
deadlocked situation where both the imputed data and the model parameter remain
almost unaltered.

The following section reviews and develops novel improvements on the MCMC
algorithm in order to establish convergence that is not constrained by disturbing
dependence structures.

7.4 Improvements of Convergence

The previous section described the bad mixing behaviour of the MCMC scheme
considered in Sects. 7.1 and 7.2 which originates from the close connection between
the quadratic variation of a diffusion path and the parameters determined by the
diffusion matrix. Since the discovery of this cause by Roberts and Stramer (2001),
several authors have attempted to modify the basic MCMC scheme (7.2) in such a
way that it is not degenerate in the limit m — oo.

This section reviews some of these approaches, in particular a change of
factorisation of the dominating measure in Sect. 7.4.1, time change transformations
in Sect. 7.4.2 and particle filters in Sect. 7.4.3. The first two approaches fall into the
class of reparameterisations that cause a priori independence between the parameter
and the missing data; these are called (partially) non-centred parameterisations
(Papaspiliopoulos et al. 2003). The third approach modifies the MCMC scheme in
such a way that updates of the path and the parameter happen simultaneously rather
than alternately.

The just mentioned approaches work well for general one-dimensional diffusion
processes but are, however, not applicable or not appropriate for many multi-
dimensional diffusion processes in life sciences such as those considered in Chaps. 8
and 9. Details are given in the respective sections.

Hence, Sect. 7.4.4 develops a novel concept for infinite-dimensional state spaces
which is applicable to general multi-dimensional diffusions under fairly general
regularity conditions. We adopt the name innovation scheme for this method
due to similar but different approaches which are pointed out in Sect.7.4.4. The
convergence of the innovation scheme is proven, and its computational efficiency is
demonstrated in a simulation study.

7.4.1 Changing the Factorisation of the Dominating Measure

The approach described in this section is based on a parallel, drawn by Roberts and
Stramer (2001), between a suitable reparameterisation of a diffusion process and the
change of factorisation of the dominating measure. The latter should not depend on
the parameter to estimate.
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Consider a one-dimensional diffusion X satisfying the SDE
dX; = p(X)dt + odB;, Xo = xp, (7.47)

where o € R is the volatility parameter to be estimated and the drift function p
may depend on a parameter 8 not containing o. In the current context, 6 is of lower
priority and hence not included in the notation. Denote by P, the law induced
by (7.47), and let W, be the law of Brownian motion with volatility parameter o
and initial value x (recall Sect. 3.1.1 for the definition). IP, and W, are equivalent
measures and their Radon-Nikodym derivative dP,/dW,(X) = G(X;u,0) is
available. However, as noticed in Sect.7.3, W, is not suitable as dominating
measure due to the mutual singularity W, | W, for o # o*.

The reparameterisation suggested by Roberts and Stramer is motivated by the
following construction of Brownian motion B 7 with volatility parameter o and
initial value bg: First, draw the end point b ~ W, conditional on by. Next,
simulate a Brownian (0, 0, T, 0)-bridge B(O;f) with volatility parameter 1 as defined
in Sect.3.1.1. Imagine that this was possible in continuous time. Last, transform
this bridge to appropriate volatility and boundary points as in step 3 in Sect. 3.3.3
and utilise it as the path segment B g ). This procedure is a purely theoretical
consideration; in practice, simulation of Brownian motion at discrete time points
would be performed as in step 1 in Sect.3.3.3. However, the above construction
illustrates that the measure W, can be factorised as

WU (B[OvT)’ b) = (B807b07T7b) ® WU) (h’il (B[O,T); g, bOv b)a b)a

where B = h(B;0o,bg,b), and B denotes the law of a Brownian bridge with the
volatility parameter as subscript and the boundary specification as superscript.

The idea is now to decompose PP, in a corresponding manner. To that end,
consider the two transformations

. 1
Xt: hl(Xt;O') = ;Xt
- o . T —1t)io +tx
Xy = ho(Xy5d0,3) = X, — %
for ¢t € [0,T]. The function h; transforms X to a diffusion process which is the
solution of )
. X
ax, = MoXo)
o

dt +dB,, Xo = % : (7.48)
according to [t6’s lemma in Sect. 3.2.10. Note that this process has unit diffusion and
does therefore not experience the difficulties investigated in Sect. 7.3 concerning the
quadratic variation. However, the original process X cannot simply be replaced
by X as our inference conditions on the observed end point x. Knowledge of
& = hi(x;0) = x/o then again requires knowledge of o. Hence, the second
function hso transforms the unit volatility process X (0,77 Such that it starts and ends
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at zero. The concatenation of h; and hs carries out the same transformation as the
function h in the Brownian motion construction above:

B = h(B;0,bo,b) = ha(h1(B;0); ha(bo; 0), b (b; 7).
This implies
dP, dH . .
T Ko |7) = pOOTO (Xjo) [ #),
7 1

where H denotes the law of X. That means that conditional on the final point x, the
dominating measure can be written independently of o. Moreover,

ap, o "
dW W(X[O,T),x) = G(X; 1)
’ 1

(X0, %) =

with @ being the law of X, and [+ being defined as the drift function in (7.48). This
means that the likelihood of X is of known form.

Based on this reparameterisation one can now develop MCMC algorithms which
achieve improved convergence results. See Roberts and Stramer (2001) for details.
As the transformation is invertible, back-transformation to the original diffusion
path is straightforward.

Unfortunately, this method cannot be applied to general multi-dimensional
diffusion processes. Although some extensions are possible (Roberts and
Stramer 2001; Kalogeropoulos 2007; Kalogeropoulos et al. 2011), an appropriate
transformation requires reparameterising to unit diffusion coefficient. It was already
noted in Sect.3.2.11 that in the multi-dimensional case such a transform does
generally not exist.

7.4.2 Time Change Transformations

An alternative approach to reparameterise a diffusion process such that there is a
dominating measure which does not depend on the volatility parameters is via time
change transformations as suggested by Kalogeropoulos et al. (2010). This method
has been developed for several but not all possibly multi-dimensional diffusion
processes. The central tool in this procedure is the following time change formula
which can be obtained from a more general theorem in Pksendal (2003, Chap. 8.5);
see also Klebaner (2005, Chap.7): Let X = (X)¢c[o,7] be a diffusion process
fulfilling the SDE

dXt:H(Xt,e)dt+U(Xt,0)dBt, XO = Xy,

and

h@:/ﬂﬂw for ¢ € [0, 7]
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be a time change with positive time change rate ¢ : [0,T7] — R,. Note that
the function & is strictly increasing and hence invertible. Define another diffusion
process Z = (Z)sejo,n(r)) On a new time scale such that s = h(t) and
Z,=X;= X1 forallt € [0,7] and s € [0, (T)]. Then Z satisfies the SDE

o wZ,,0) o(Z,0) -
=y @t ey B Zom

The following illustrates the idea by Kalogeropoulos et al. (2010) to utilise the
time change transformation for our purposes on the example of a one-dimensional
diffusion process satisfying the SDE

dXt = ,LL(Xt, O)dt + O'dBt, XO = xg,

where ¢ € [0,1]. In this representation, the diffusion coefficient 0 € Ry is
considered as one component of 6. Let P~ be the measure induced by the process X
and WX the measure of a respective driftless version dM; = odB;. Suppose
that X; = x. Then, similarly to the considerations in the previous section, we can
write WX (X(01)) = Wi, (X[0,1)) W™ (x) with W', being the measure W~
further conditioned on the end point = at time 1. Then

dp? X G(X 0
W ( [0,1)5 :v) =G( [0,1)5 ) fo(),
where the function G is obtained via Girsanov’s formula from Sect. 3.2.12, and f,,
is the Lebesgue density of the end point X; under WX, In this expression, the
dominating measure Wf% ® L clearly depends on ¢ as W*lxm is the law of a Brow-
nian bridge with volatility parameter o. Hence consider the following time change
transformation which reparameterises the SDE to unit diffusion coefficient: Let

s=hy(t) = o’t
and consider the process

X for0 < s < g2

U. = hfl(s)

Mhl—l(s) for s > o2.

With the above time change formula we obtain

1(Us, 6)
dU, = o2
dB, for s > o2.

ds+dB; for0<s<g?

Clearly, the process U has unit diffusion, and U, = X; = z. Let PY be the
probability measure induced by U and WV the driftless counterpart. Then
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dpY
T a1y Vo) = O 0)fo(z),

where W = is the law of the driftless version of U conditioned on U,> = =x.
Although the parameter o has been eliminated from the diffusion coefficient, it is
still included in the time point o> where U reaches the state x. That means that
again the dominating measure W . @ L in the above expression depends on o.
Therefore introduce a second time change

S

02(0? —s)

u=ha(s) =

for s € [0, 02) and apply this in the transformation

Zy, = ! (U (1——) xo—%x) foru € [0, 00).

o2 —s o2
In the following let x9 = = = 0. Then

1 + uo?

Zy= "

Upt )

g

For better understanding of the derivation of an SDE for Z, introduce an
intermediate process Z such that Z, = U, - S and Zy = (1 + uo?)Z, ) o?

forall u € [0,00) and s € [0, 0?). Then, with

Oha(s) 1 : Oha . 4 ~ Ohy uot (1 +uo?)?
ds (02 —5)?’ M s (hy () = ds \1+uc?) ot ’

the time change formula yields

- ot 1(Zy,0) o?
dz, = —d dB,.
(1+wuo?)2 o2 ut 1+ uo?

Next, Itd’s formula from Sect. 3.2.10 leads to

027
v 9 2z,
u<1+ua2’ >+U

1+ uo?

1+ uo?

dZ, = Zydu + ———dZ, =
g

du 4 dB,.

Note that U,> = 0 implies Z., = 0. Hence, if PZ denotes the law of Z and WZ,
is the law of a unit diffusion process starting in state zero at time v = 0 and reaching
state zero at time u = 00, then

dpP?

d(WVZ—O(X)]L)(Z[O’OO)’O):G( Ooo)a )fa’( )
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Kalogeropoulos et al. (2010) prove that Wfqo is standard Wiener measure. In other
words, the dominating measure meo ® IL does not depend on . One can hence
perform inference for Z using the MCMC schemes from Sects. 7.1 and 7.2 without
the risk of bad mixing. As all transformations above are invertible, estimation results
for Z can easily be transferred to the original diffusion process X .

The above concept of time change transformations is generalised by
Kalogeropoulos et al. (2010) to certain higher-dimensional stochastic volatility
models. The extension to general multi-dimensional diffusion processes with state-
dependent diffusion coefficients, however, is still the subject of ongoing research.
The approach described in this section hence cannot be applied to the large-
dimensional applications from life sciences which are considered in Chaps. 8 and 9.

7.4.3 Particle Filters

Another idea to overcome disturbing dependencies between the parameter and the
quadratic variation of the diffusion path is the use of particle filters, where the path
and the parameter are updated simultaneously rather than alternately. The proposed
path and parameter are then consistent at any time. The principle of particle filters
for diffusions is described in the following.

Suppose there are M partial observations wvy,...,vys of the diffusion in
addition to the initial value vg at times 79 < 71 < ... < 7p. These
observations may be subject to measurement error. A particle filter successively
performs inference for the parameter and the diffusion path concentrating on the
time interval |7y, Tx11] for & = 0,..., M — 1. Certainly, estimation results for
different path segments shall not be independent; when focusing on [, Tg+1] for
fixed k, findings for [y, 7] are taken into account by conditioning on a set of
particles {Xgi), O(i)}izlym_’] for some large I € IN. These particles are considered
as draws from m(X,,,0|vo,...,v). For k = 0, they are generated from some
initial distribution. In case of complete observations without measurement error,
one has X 9}3 = vy, for all 7.

Joint inference for X, .} and 6 is now accomplished as follows: Based on
the particles { X 92, O(i)}izlwﬂ 1, a discrete probability function 7 is obtained as
an estimate of the density (X, ,0|vo,...,vs). This could for example be the
empirical probability function putting equal weight on all particles. Next, a new

Markov chain {X (i 00 }i=1,....1 is constructed conditional on the observa-
k> Tk+1]

tions vg, . . . , Vg4+1. Previous estlmatlon results are incorporated by using 7 in
F(X[Tk,7k+1]7 0’”07 s 7vk+l)

:7T(X ‘XT,C,O vo,...,vk+1)7r(XTk,0‘vo,...,vk).

(ks Tk+1

Discarding X fil e for all ¢ yields a Markov chain {X

can be regarded as a set of draws from (X

Tht1? (Z)}izl,.,,,f which

mis1> 000, ..., Vr 1) because of
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7T(X.,-k+1,0 'U(),...,'UkJrl): /W(X[Tk,7k+l],0 'UOa---akarl)dX['rk,'rk+1)-
Xoc

This is the set of particles used for inference on the subsequent interval [T 41, Tg42]-

Golightly and Wilkinson (2006a,b) implement such particle filters by using
MCMC techniques based on a discretisation of the path segment X, -, and
its transition density as in Sects. 7.1 and 7.2. In that case, the set of particles can for
each k be obtained as a Markov chain after thinning and discarding a burn-in phase.
Fearnhead et al. (2008) propose particle filters for diffusions based on the Exact
Algorithm from Sect. 6.5, thus not requiring any time-discretisations. Filtering for
(jump-)diffusions has also been applied e.g. by Del Moral et al. (2001), Chib et al.
(2004) and Johannes et al. (2006).

The crucial point why a particle filter theoretically solves the convergence prob-
lems discussed in Sect. 7.3 is that the parameter 6 and the path segment X (7, -, . )
are always generated in a way such that they are consistent. In particular, first
a parameter 8" and state X are drawn from 74 (X, @|vo,...,v), and the
remaining path segment X Z‘Tk ,7.,) conditions on these. In the MCMC context, then
either both (0", X7, ) and X(,, ., | are accepted or none.

As a convenient by-product, the particle filter enables online estimation, i.e.
it does not have to discard previous estimation results when new observations
become available at times larger than 75,. That means, a Monte Carlo sampler
does not have to be restarted but simply continues the procedure conditional
on the new observations. Online estimation is especially in demand in real-time
analysis, i.e. in applications where instantaneous action is required and results
of time-consuming estimation procedures cannot be awaited. Examples are the
monitoring of the spread of an infectious disease or modelling asset prices at the
stock market.

However, whilst fixing one problem, the use of particle filters brings up
other difficulties in practice: One issue is that poor approximations to the par-
ticles {X (Ti),O(i)}i:L___y 7 propagate poor approximations to subsequent sets of
particles. Second, the use of MCMC methods in combination with particle filters
as in Golightly and Wilkinson (2006a,b) are generally exposed to fairly low
acceptance probabilities and hence slow mixing of the Markov chains. Therefore
the methodology is not appropriate for the inherently computer-intensive data
augmentation of large-dimensional processes that may occur in life sciences; see
for example the application in Chap. 8.

7.4.4 Innovation Scheme on Infinite-Dimensional State Spaces

This section now develops a novel and widely applicable update scheme which
works for any multi-dimensional diffusion process under fairly general regularity
conditions. In particular, no special form of the diffusion coefficient such as a
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unit diffusion matrix is required. The MCMC method is computationally efficient
and experiences satisfying acceptance rates for any amount of imputed data. Most
importantly, it does not break down as the amount of imputed data grows to infinity.

In the form presented here, the method is newly investigated in this book. There
are however related approaches in the literature as described forthcoming. Adopting
the notation from corresponding references, the introduced method will be referred
to as innovation scheme in the following.

The idea of the innovation scheme can be motivated by means of the parameter
update for a diffusion process X on the time interval [0,7] as follows: As
in Sect.7.3, restrict the following considerations to the case where the initial
value Xy = x and the final value X = « are known and the remaining path
segment X (g ) is unknown. Once more, denote the measure of the target diffusion
by Py, that is the measure induced by a diffusion satisfying

dXt = [,L(Xt,o)dt + O'(Xt,o)dBt, XO = Xy.

Assume that o is invertible. Then, given X = (X¢);c[0,17 ~ Po, the process
B = (Bt)tE[O,T] with

dB; = 07" (X,0)(dX, — u(X,,0)dt), B =0, (7.49)

is d-dimensional standard Brownian motion. In particular, B has unit volatility and
hence possesses a property which is desirable in the context of the general data
imputation scheme considered in this chapter.

The above equations mean that there is a deterministic link between the target
process X and the parameter-free Brownian motion process B. This relationship
however conditions on the parameter. Define a function h such that X, = h(By, 0)
for all ¢ € [0,7] and given 6. This function is invertible in its first argument,
i.e. there is another function »~! such that h~!(X,,0) = B;. The connection
between X and B can be exploited in the parameter update of the MCMC
scheme (7.2) by conditioning the acceptance or rejection decision on B instead
of X. In particular, one updates 8|{B™P, x(,x} rather than 8|{X™" x,,x},
where B'™P = p~1(X™P ).

For given 0, x,  and X mp the parameter update could then look as follows:
. Draw 6" ~ ¢(0%|0).
2. Compute B™P = p=1(X™P @),
3. Accept 8" with probability

—_—

m(6" | B™P, a0, 2)q(0]6")

(67,0 =1 A . ALy
7T(0|Blmp7m07m)Q(0 |0)

otherwise keep 6. . . .
4. If 0" was accepted, replace X'™P by X"™P* = h(B"™P 0*).
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Note that the order of steps 1 and 2 could be exchanged. The path correction
in step 4 is new in comparison to the update schemes considered in Sects.7.1
and 7.2. Due to this step, the just presented algorithm overcomes the degeneracy
problems explored in Sect. 7.3, because the parameters 6 and 8™ are consistent with
X'"™P = p(B™P, @) and X"™P* = h(B™P,0*), respectively.

The algorithm however experiences a different drawback: The accep-
tance of O* implies the just mentioned path correction from X™P to
Xmpr — h(Bi’mp7 0™). The observed end point @, however, remains the same.
As generally h(h~'(x,8),0") # x for @ # 6*, there is no guarantee that X "™P*
satisfyingly bridges the gap between xy and x. One may trust in the Metropolis-
Hastings algorithm rejecting all unlikely proposals in a discrete-time framework.
A more reliable and desired tool is however an efficient algorithm for which
convergence in the continuous-time setting is proven.

In the following we hence introduce a similar but different update mechanism
and prove its convergence in a continuous-time framework.

Related Work

The idea to base the parameter update on a parameter-independent Brownian motion
process has already been mentioned by Chib et al. (2004). They consider it in a
framework where there is not necessarily an end point condition for the imputed
diffusion process. The above accentuated difficulty does hence not appear. Although
the modified update scheme is applied in a simulation study, the authors do not give
details for the calculation of the Brownian motion construct.

Golightly and Wilkinson (2008, 2010) seize the general concept of Chib et al.
and apply it to the parameter update as it is also investigated in this book. They
however do not consider a continuous-time framework as done here but exclusively
concentrate on discrete-time skeletons. In particular, Eq. (7.49) is replaced by

BkJrl = Ek + Uﬁl(Yk, 0) (Yk+1 Y. — H/(Yk, O)Atk) (7.50)

for appropriate indices k, Aty = tp41 — tr and EO = 0. To emphasise this
difference, the notation By, = By, and Y}, = X, is used here for observation
and auxiliary times ¢j. The back-transformation happens via

Yiri =Y+ O'(Yk, 0) (Bk-i—l — Bk) + M(Yk, O)Atk. (7.51)

As this construction does not satisfyingly handle possible end point conditions,
Golightly and Wilkinson also consider other deterministic links between B and Y.
To that end, define a function f such that Y, = f(By,0) and By = f~ (Y%, 0)
fork = 1,...,m and t,, = T. When conditioning the parameter update on this
transformation, the acceptance probability for the parameter becomes by change of
variables
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((67,90)
7(6* | Bo,...,Bn)q(6]6)

=1A - -
7r(0|Bo7...7Bm)q(9* 0)

o (77 TBeai B8\ per) (6]
i m(Bii1|Bi,6) p(0)  q(67|0)

— 1A (n”w ﬁlW(Y&l!Yﬁ,@*) p(6")  a(e]6”)
izo |7 (f(Bri1,0))] ito ™(Yir1|Y, 0) p(0) q(67]6)’

where Y = Y0, Y} = f(By,0) fork =1,...,m, and

af(-ék+la 0)

J(f(Bri1,0)) = ‘ 0B,
+1

is the Jacobian determinant of f. In this acceptance probability, the numerators and
denominators differ in both parameter and sample path, i.e. a critical situation as
described in Sect. 7.3 should not occur. There, however, remains to be proven that
the acceptance probability behaves nicely as part of the MCMC algorithm as the
time step between two consecutive imputed data points tends to zero.

The above approach has been explicitly designed for discrete path skeletons.
Golightly and Wilkinson (2010) emphasise that B can in principal be any deter-
ministic transformation of Y and that f does actually not have to be related to the
original diffusion process. They point out that certain transformations such as the
modified bridge from p. 181 are however advantageous with respect to the end point
condition of an imputed path segment.

In contrast to that, we in the following consider a specific transformation of the
original infinite-dimensional diffusion process. We employ this transformation in
both the parameter and the path update and show that the resulting MCMC scheme
works when applied to continuously imputed path segments. This proceeding
also supplies further insight on the method by Golightly and Wilkinson. See the
conclusion on pp. 261 for corresponding remarks.

Contribution of This Book

In the remainder of this section, we present an MCMC mechanism for infinite-
dimensional imputed path segments and show that it does not experience the
degeneracy problems pointed out in Sect.7.3. To that end, we investigate both
the parameter update and the path update in continuous time. We derive explicit
formulas for the involved acceptance probabilities so that these can be used in
practice. The performance of the new approach is illustrated afterwards in a
simulation study.
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Table 7.6 Overview of introduced probability measures. All measures assume X o = @, and B
is d-dimensional standard Brownian motion

IPQ : dXt = o-(Xt,O)dBt + y.(Xt,O)dt
Po : dX; = o(X:,0)dB; + (X, 0)dt Xr==x
-X
Doo : dX: = o(X: 60)dB;: + wT L de
’.B—Xt
Duo : dX, = o(X:0)dB, + (u(xt,9)+ o )dt
We : dXt = o-(Xt,O)dBt
We : dX; = o(X,0)dB; Xr==x
W : dXt = dBt
W : dXt — dBt ,XT:(E
—1 ’.B—Xt ~
Zo i dZy = o }(X1,0) (dX, - == dt), Zo=0, X:~Pp

The general concept of the proposed update mechanism is as follows: As before,
let P denote the law induced by a diffusion satisfying the SDE

dXt:H(Xt,e)dt+U(Xt,0)dBt, XO = Xy,

and let Py be the law of the same process but further conditioned on the end
point X1 = x. In this section, a number of probability measures is introduced.
For better lucidity, these are summarised in Table 7.6.

Once more, assume that the diffusion coefficient o is invertible. For X ~ ]?9,
define a process Z = (Z):e[o, 1) through

dZ, = o7 (X,,0) (dXt - ""jf—)it dt), Zo=0, (1.52)

- X
dB, + o (X,,0) <M(Xt, 0) - %) dt.
Let Zg denote the law of Z, and define a function g which is invertible in its first
argument such that X = ¢(Z,0) and Z = g~ !(X, 6). In terms of the process Z,
the respective SDE for this back-transformation reads

w—Xt

dXt = O'(Xt,e)dZt + T _¢

dt, XQ = Xy.

The initial value ¢ and the final point & of X are considered fixed and are hence
not included in the notation Py, Zg and g.
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a transform h, varying ¢ b transform h, varying a C transform g, varying ¢

0.5 4

(back-transformed) path
(back-transformed) path
(back-transformed) path

0.0 4

Fig. 7.27 Back-transformation of a sample path: The thick black line shows an exact discrete-
time realisation of a one-dimensional Ornstein-Uhlenbeck process X satisfying the SDE
dX; = —aXdt + odB; with Xo = 0and @ = (o, 02)’ = (0.5,1)’. The time grid consists
of 100 equidistant time points in the interval [0, 1]. The path is transformed to B = h~1(X, )
and Z = gfl(X ,0) defined through (7.49) and (7.52). Formulas for the discrete-time setting
are given in (7.50), (7.51), (7.68) and (7.69). The thin blue lines show the back-transformations
with respect to different parameters. Using the transform function h, the back-transformations
do not hit the original end point of the diffusion path. (a) Back-transformations h(B,0*)
for 8* = (0.5,02")" with 2" € {0.1,0.2,...,1.5}. (b) Back-transformations h(B, 6*)
for 0* = (a*,1)" with o* € {0.1,0.2,...,1}. (¢) Back-transformations ¢(Z,0*) for
6* = (0.5,02") with 02" € {0.1,0.2,...,1.5}. For 6* = (a*,1)’ with arbitrary a*,
the back-transformation equals the original process, i.e. X = g(Z, 0*)

Like the process B defined in (7.49) above, Z has unit diffusion. Moreover,
the construction of Zg explicitly involves the end point  of X. It ensures
that g(g~1(x,0),0") = x even for @ # 0*. This can be seen from the following
informal argument: Because of X = x, the time-discretisation of (7.52) at time T’
for a small time step &,

Zp—Zr.=0 ' (X1_c,0) <XT - Xr.— mTh 5) ;

implies that Z = Z_.. As a consequence, the back-transformation at time 7',

w_X;“—a
—_— £

)

X;"_X;“—aZU(X}—ave*)(ZT_ZT—a)‘f’ -
yields X% = x also for @ # 0. A formal reasoning is postponed to the proof of
Lemma 7.3 on p. 248.

Figure 7.27 displays back-transformations of a one-dimensional diffusion path X
based on the processes B = h~}(X,0) and Z = ¢ *(X,0) defined through
the SDEs (7.49) and (7.52). Note that for all diffusion processes X one has
X =g(971(X,0),0%)if 0" is such that o (-, 0) = o (-,0") even for @ # 0*. This
is a meaningful characteristic of the transformation as the degeneracy issues from
Sect. 7.3 involve only those components of 8 which enter the diffusion coefficient.
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The process Z is not Brownian motion, but the corresponding measure Zg
is absolutely continuous with respect to Wiener measure as will be shown in
Lemma 7.2 on p.248. As Z™P has unit diffusion, it qualifies to take over the
role of B™P = h~1(X™P @) in the idea presented at the very beginning of
the present Sect.7.4.4. Indeed, the construction of Z can be seen as an attempt
to mimic Brownian motion. We hence adopt the notation from Chib et al. (2004)
and call Z an innovation process. Moreover, an update algorithm based on
Z"™P — g=1(X"™P @) will be referred to as innovation scheme in the following.
The idea is to update 8| Z™P, xy, x and Z"™P|0, xo, x instead of O] X ™", x¢, =
and X imp|07 T, x, respectively. We suggest that the algorithms for the parameter
and path updates then look as follows:

Algorithm 7.4 (Parameter Update). Given 0, xo, © and X™P, perform the
following steps:

1. Draw 6" ~ q(6"|6). .
2. Compute Z'™P = g=1(X™P 9).
3. Accept 8™ with probability

m(6"| Z™P, @o, x)q(6 | 67)

¢e*,0)=1 A : ,
7T(0 | Zlmpa Zo, :c)q(O* | 0)

(7.53)

otherwise keep 6. ' ' .
4. If 0" was accepted, replace X'™P by X'""P* = ¢(Z"™P 0*).

Note that in step 1, the proposal density for the parameter is chosen such that it does
neither depend on the observed nor on the imputed data.

Algorithm 7.5 (Path Update). Given 0, zo, « and X ™, perform the following
steps:

1. Compute ZMmP = g__l(XinTp, 0).

2. Draw Z'™"" ~ q(Z™P"| 2™ xo, x, 0) such that it has unit diffusion.

3. Accept X"™'P* = g(Z'"™P*, 0) with probability

7T(Zimp* |.’1}0, €z, O)q(Zimp|Zimp*7 Zo, T, 0)

C(ZMPr 2Py =1 A : : :
ﬂ-(ernp|m07 w’ G)Q(Zlnlp*|zlmp7 wo? m? 0)

. (7.54)

otherwise keep X ™P.

A concluding correction of the parameter corresponding to step 4 in Algorithm 7.4 is
not necessary in the path update as the quadratic variation of both X™P and X ™P*
should be consistent with 6. Be aware that X ™P* has different definitions in the
two algorithms: In the parameter update, it is constructed as X ™P* = g(Z'™P_9*),
and in the path update as X'™P* = ¢(Z™P* ).
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In the remainder of this section, we will show for both the parameter and the path
update

(a) That the algorithms converge and
(b) That explicit formulas for the acceptance probabilities can be derived.

Assumptions

For the purposes of this section, we assume that the drift function g and the diffusion
coefficient o are bounded and that o is invertible with bounded inverse o ~*. We
generally consider time-homogeneous diffusions in this section, but in the following
some results will also be proven for time-dependent drift and diffusion coefficient.
In that case, p and o are not only supposed to be twice continuously differentiable
with respect to the state variable but also continuously differentiable with respect to
time. These derivatives are required to be bounded as well.

Parameter Update

The acceptance probabilities (7.53) and (7.54) have been formulated using a rather
informal generic notation where 7 denotes a collection of Lebesgue densities;
compare with Sect. 7.1.1. In the following, we will distinguish between the densities
of X™P and Z™P = ¢~ 1(X™P @) by writing

. dPg , _; : dZe ,,;
(X' |z, , 0) = d_]Le (lep) and  7w(Z™ |zg,x,0) = d_]LQ (Zlmp)7

where IL is Lebesgue measure. Define fg and fg to be the Lebesgue densities
under Pg and Py, respectively, i.e.

dPp = fodL.  and  dPg = fodL.
Then the acceptance probability (7.53) for the parameter becomes

(60— 1 Lo 27 fo-(@)p(0)0167) Lo

dZe(Z™") fo(x) p(0) q(07]0)

Two objectives are considered in the following: First, show that this acceptance
probability behaves nicely as part of the MCMC algorithm. Second, obtain explicit
expressions for (7.55) such that it is of practical use. We assume that p and q are
known, sufficiently regular and can be evaluated.

Corollary 7.1. The quotient (1Zg~ /dZ¢)(Z"™P) does not degenerate as described
on p. 231; both its numerator and denominator are finite.
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Proof. Introduce the probability measure Dg ¢ which is induced by a diffusion
fulfilling the SDE

-X
i L at

dXt:o'(Xt,O)dBt—l— T_1 y

XO = Xy. (756)

For an overview, Table 7.6 on p. 243 lists all measures defined in the context of the
innovation scheme. Dg ¢ defines a diffusion process which almost surely reaches the
state  at time 7" (Delyon and Hu 2006, Lemma 4). For X' = oo’ not depending on
the state variable, one has Dg ¢ = Wg. In particular, for ' = I the measure Dg o
reduces to W, that is the law of a d-dimensional Brownian (0,20, T, x)-bridge (e.g.
Karatzas and Shreve 1991, Sect. 5.6).

The function ¢ which connects X'™P and Z™P is chosen such that the
relationship between I~Pg and Zg is the same as the link between Dg g and Wiener
measure W, i.e.

Z ~Ze & g(Z,0)~Ty (7.57)
and
B~ W & g(B,0) ~Dgg. (7.58)

Consequently, the change of variables theorem yields

dZo / im im dPo im
and
ﬂ imp) __ imp dIDO,B imp
o (Z7) = I (9(2™0,6))| == (9(Z27.0)),  (7.60)
where .
i 99(Z™". )
J(g(Z"™P 0)) = | ——>—>
(g( )) azlmp
is the Jacobian determinant of g. Then
dZe- (Z™P)
dZe(Z™P)
Zo- e AP0y et AP (761
_dwW (Z P) . d]Dgyg* (g(Z 70 )) - dIDO,G* X )
e dPg dPg

P imp imp
dwW dIDO,G (g(Z 70)) dID()_]g (X )
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In the last expression, the numerator and denominator differ in both parameter and
imputed data. A situation as described on p. 231, where always either the numerator
or denominator of the acceptance probability is zero, does therefore not occur. Under
the assumptions on p. 246 regarding v and o, Delyon and Hu (2006, Theorem 6)
prove that Py is absolutely continuous with respect to Dg ¢ for all 8. Hence, both
the numerator and denominator of the last fraction in (7.61) are finite. a

We are now in the position to show the following two propositions which were
already mentioned earlier in this section.

Lemma 7.2. Zg is absolutely continuous with respect to W.

Proof. In the proof of Corollary 7.1 it was pointed out that Py is absolutely
continuous with respect to Dg g, where the latter is induced by the solution of (7.56).
As these two measures are linked with the measures Zg and W in the same
deterministic way—see (7.57) and (7.58)—, this also proves that Zg is absolutely
continuous with respect to W. a

Lemma 7.3. The back-transformation X* = g(g~ (X, 0),0%) for X ~ Pg hits
the required end point X = x.

Proof. Let Z ~ Zg and B ~ W. As Zgp < W, the process
X" = g(Z,0) induces alaw Qg g~ which is absolutely continuous with respect to
the law Do g+ of g(B, 8). More precisely, Dg - (X ™) = 0 implies Qg o+ (X *)=0.
Under Dy g+, the diffusion process almost surely hits the desired end point .
Consequently, this must be true also under Qg ¢+. Hence g(g~'(x, 0),0") = x as
was to be shown. ad

Be aware that the imputed data X ™P consists of all values X, for t € (0, 7). It
is crucial that X 7 does not belong to X mp The starting value x( is formally not
included in X ™™P either. This value is however inherent in all measures considered
in this section (compare with Table 7.6) and does not depend on 6. It is hence
reasonable to incorporate the initial value in the integrals on the following pages.
For convenience, let X"™ = (X t)te(0,7—<) for a small but positive constant .
This is also abbreviated as X (o, 7_¢)-

The utilisation of the acceptance probability (7.55) in an MCMC algorithm
requires an explicit formula such that it can be evaluated in practice. Hence consider
the following corollary.

Corollary 7.4. An explicit expression for (dZg~/dZg)(Z™P) - (fo-/fo)(x) as
part of the acceptance probability (7.55) is available.

Proof. Consider the relationship between Py and Pg. These two measures differ by
the end point condition of IPg. Heuristically, one has

dng im 7 impy fo(w|Ximp)fe(Ximp)
a0 = e = fo(x)
_ Jo(@[X1c) dPg (x), (7.62)

fg (:I}) d]L



7.4 Improvements of Convergence 249

Hence

Zo-(Z™) fo- (z)

dZe(Z™7) fo(x)

dPg- dPs- e APee o )
(dIPg* dDg, 6+ ) (X ' )fo* @) g (X ’ )f9* (x| X7_.)

a _ dDge-
P T dp :
dPg dPg ; O (X'™P) fo(z|X
_— X 'mp o(x| X 1)
<le9 dlDo,B) ( ) fo(@) dDo.e

There is no analytically explicit form for fg (| X r—_.); that is the Lebesgue density
for the transition from X p_. to x within time ¢, where X ~ IPy. However,
for small €, an approximation via e.g. the Euler scheme should be possible. For
the calculation of dPPg/dDg ¢ = (dPg/dWyg)(dWe/dDg g), Girsanov’s formula
from Sect. 3.2.12 seems appropriate. The drift term (x — X;)/(T — t) under Do g,
however, explodes as ¢t — 1" and hence Novikov’s condition in Sect. 3.2.12 may not
be fulfilled. Nevertheless, Delyon and Hu (2006, Theorem 1) prove a generalisation
of Girsanov’s formula which holds under weaker conditions and which is applicable
in the present case. With this theorem, one obtains the same result as under uncritical
application of (3.25); that is

dIPG imp _ dIPG imp dWQ imp
log (d]Do,e (x )) =log (dWe (X )) + log (dIDo,G (x™P)

T—e

_ / (,L(Xt,e)— m{f?) > (X, 0)dX, (7.63)

0

_% / <“/(Xt79)21(xt79)“(xt79) -

0

(- X)X, 0)(x— X,)
o),

All integrands in this expression are explicitly known as functions of X and §. 0O

Corollary 7.1 proves that both the numerator and denominator of (7.61) are finite.
Since all other components of (7.55) are supposed to be sufficiently regular, this
property carries forward to the entire quotient in the acceptance probability (7.55).
A further desirable property would be that the numerator and denominator are even
bounded. Otherwise, for a bounded proposal density ¢, the Markov chain generated
by the Metropolis-Hastings algorithm with acceptance probability (7.55) may dwell
too long in single states and show bad mixing behaviour. For instance, Tierney
(1994) and Mengersen and Tweedie (1996) show that an independence sampler
with target density 7 and proposal density ¢ is uniformly ergodic if there exists a
constant ¢ > 0 such that ¢(y)/m(y) > cforall y in a possibly multi-dimensional real
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state space. Otherwise, the algorithm is not even geometrically ergodic. For details,
see the original papers or the book by Roberts and Tweedie (2012). Analogous state-
ments for the framework of this section are, however, beyond the scope of this book.

The proof of Corollary 7.4 provides an explicit formula for the critical part of the
acceptance probability (7.55); because of the term (7" — ¢)? in the denominator of
the last term of (7.63), it is however not evident whether the exponential function of
this expression, together with the factor fg(x|X r—_.), is bounded. In the following
we hence rearrange the above terms in an appropriate way. To that end, we follow
the line of the proof of Theorem 5 in Delyon and Hu (2006) who derive expressions
for dPg/dD,, ¢ and dPg/dDg g, where D, g is defined in Table 7.6 on p. 243 and
employed in the path update below.

Corollary 7.5. One has

~ T—e
dPg B Dy(X+,0)+Dy(X+,0)+D3(X,0)
aD,, ¢ X(0:7-c1) = exp / 2T 1)
0 (7.64)
_d(d—1) 1
<Z> > o(x |20, TX(x0,0)) | Z(x0,0)|"
e fo(x) | Z(X7c,0)|z
and
P  Da(X 1, 0)+ Dy(X,, )
] _ _ 2 tsy + 3 ty
dDo (X(01-e) = exp / 2T — 1)
0
T—e
. exp /u’(xt,e)z—l(xt,o)dxt
0 (7.65)
1 T—¢
-5 / 1 (X, 0)X (X, 0)u(X,,0)dt
0
o(x| 20, T(20,0)) | S(wo,0)]} (z)d“z”
fo(x) |Z(X 71,0z \€ ’
where

Di1(X+,0) = —2(x — X)X (X¢,0) (X1, 0)dt

D3(X¢,0) = (z — X¢) (dZ71(X1,0))(z — X1)
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y (az*(xt,e) X 1(X4,0)

’ d_d EE) : 2z ej) () 14 ()
5(Xe,0)=—> > T—¢ AXgTdXT

In these formulas, ¢(ylv, A) is the multivariate Gaussian density with mean v
and covariance matrix A evaluated at y, and |A| denotes the determinant of a
square matrix A. Furthermore, e; is the ith unit vector of dimension d, d X t(l) is the
ith component of d X, and 3/8:17<i) denotes differentiation with respect to the ith

component of the state variable.

Proof. The calculations are carried out using the heuristic approach (7.62). Due to
space restrictions, they are moved to Sect. B.7 in the Appendix. a

Remark 7.2. Under the regularity conditions from p. 246, Delyon and Hu derive
very similar expressions for dng /dD, ¢ and dng /dDg ¢. However, their results
are obtained in a different context than here; applied to X 7, the formulas are
provided up to proportionality constants which do not depend on X (o, ) but on 6,
xo and x. In particular, Delyon and Hu (2006, Theorems 5 and 6) show that

~ T
P (xu) e [ LUXLD L DX 1 DX 0
0

dDpy.6 2(T —t)
and
dP TD(X 0)+D3(X:,0)
) 2(Xt,0)+Ds3( Xy,
dDo o (Xpo.1) ox exp (_O/ 2T — 1) )

T T

, _ 1/, _

-exp (/u (X:,0)X (X:,0)dX,; — 5/“ (X:,0)% 1(Xt70)p,(Xt,0)dt>,
0 0

where proportionality constants contain 8, g and x. In this section, however, we
want to apply the Radon-Nikodym derivatives to X (o 7_] instead of X [g 7, which
leads to additional changes of the above formulas. In order to obtain all components
of the derivatives which are relevant in the present context, the derivations including
all constants were performed in this book.

The results in Corollary 7.5 require that ¢ is chosen arbitrarily small such that for
the transition from X 7_. to « one can simply assume a Gaussian increment

XT|XT7550 ~ N(XT,E,EZ(XT,E,O)).
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Otherwise, the multiplicative correction term

fo(iv | XT—E)
(b(m ’ XT,E,EZ(XT,E,O))

~ d)(m ‘ X7+ EP’(XT*& 0)752(XT*65 0))
(b(w ’ XT—Eu EE(XT—E7 0))

= exp (;/(XT_E, 0)X (X1 .,0)(x— X7 o — %H(XT_E, 0))) (7.66)

should be included. Respective results as in Corollary 7.5 also hold if i and o are
time-dependent. These are likewise derived and provided in Sect. B.7.
Overall, we arrive at the following concluding theorem.

Theorem 7.6. The parameter update can be performed by application of Algo-
rithm 7.4 on p. 245 with acceptance probability

d(ge** (9(Z™,6%)) fo- (x) p(67) a(66")
o0y =1 1 oo . (7.67)
Dy, 9(2"7.0) fo(z)p(8) 4(67|6)

An explicit formula for this probability is available due to Corollary 7.5. The accep-
tance probability is regular in the sense that both the numerator and denominator
of the quotient in (7.67) are bounded. A degenerate situation as described on p. 231
cannot occur.

Proof. Formula (7.67) is straightforward using (7.55) and (7.61). All constituents
of ¢ are known due to the derivative (7.65) obtained in Corollary 7.5. In particular,
the unknown functions fg(x) and fg«(x) cancel with respective corresponding
parts. All integrals in (7.65) are well-defined (Delyon and Hu 2006, Lemma 4),
and the quotient of determinants is bounded as X and X! are bounded. The
terms (7'/e)~%4=1/2 in (7.65) cancel when plugged in into the acceptance
probability (7.67). It follows from Corollary 7.1 that the acceptance probability is
non-degenerate. a

The implementation of the parameter update is described in the following
paragraph, and its performance is shown in a simulation study on pp. 260.

Remark 7.3. Equation (7.65) shows that the acceptance probability (7.67) is suf-
ficiently regular. An explicit form of this acceptance probability, however, would
also have been available without (7.65) but under consideration of (7.63). These
different representations lead to identical functions in the continuous case. They
however differ once discretised as will be seen on p. 255.
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Implementation of Parameter Update

The above considerations showed that the parameter update algorithm proposed
in this section converges in a continuous-time framework. In practice,
however, discretisations of the diffusion paths are considered. Suppose
one has a path segment with fixed starting value Xy, = g at time
to = 0 and observed end point X7 = « at time ¢,, = 7T. Assume that
data X,,..., X, ,attimes 0 < ¢ < ... < t—1 < T is imputed. During
the update mechanism, the variable X; will be tranosformed to a variable Z;.
For shorter notation, let X, = Y, and Z;, = Zj; forall k = 0,...,m.
As argued on p.248, include the starting value xy in the imputed data. Hence
define Y™ = {Y;,Y1,...,Y,, 1} and Y™P* = {Y{,Y;,...,Y" |} Then
Algorithm 7.4 adapted to the discretised data reads as follows.

Algorithm 7.6 (Parameter Update for Discretised Data). Given 6, Y™ and
Y., = x, perform the following steps:

1. Draw 6™ ~ ¢(67|0).

2. Successively compute for k =0,...,m — 2
o o 1 x—Y,
Zk+1 =Zp+o (Yk, 0) Yk+1 Y. — T—t, Aty R (7.68)

where Zy = 0, Yo = xg and Aty = tp1 — ti. Furthermore, obtain the back-
transformation with respect to the proposed parameter 0%,

* * * * =l 2 :B—Y*
Y=Y +0(Y,0)(Zr1 — Zi) + - t,f Aty (7.69)

fork=0,...,m—2 where Y =Y.
3. Accept 8 with probability

H(Y™",6")p(6")a(6]6")

OO =N T e 10)

)

where

log H(Y '™P @)
2 (- V) (TN (Yit1,0) — ZH(Y, 0)) (= — Y5)

1
:_52 T —tg

k=0

(7.70)
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0X (Y3, 0 0X Y3, 0
172 & (m_Y’“)/( 0 (o‘)k e, a(u)k )ej) D oG
=3 3 Y Y Ay Ay (1.71)
25 i,j=1 T—t
m—1 1
+ 0 B (¥ 0)Z T (Y1, 0) (AYL - S (Y, 0)At) (1.72)
k=0
1
+log ¢(x | @o, T X(0,0)) + 5(1og |2 (20,0)| —log | X (Ym-1,0)]) (7.73)

with ©yg = Yo and AY = Y11 — Yy with components AYk(i). Otherwise
keep 6. . '
4. If 0" was accepted, replace Y'™'P by Y'™'P*,

The function H equals the time-discretisation of Eq.(7.65) times fg(x) without
multiplicative constants but including the correction term (7.66). The latter corre-
sponds to K = m — 1 in line (7.72). Note that lines (7.70) and (7.71) disappear
when X does not depend on the state variable. The same holds for the second
summand in line (7.73).

It was required on p.246 that X! is differentiable. In case the derivatives
of X! are not analytically available, one can approximate them through difference
quotients, i.e. one uses in line (7.71)

02 (Y, 0) 0X (Y, 0) &) Ay ()
~ (27 (Y, 0) — Z7H (Y3, 0))e; AV,

HETH(Y,0) — (Y5, 0))e; AV,
where the components of Y, ;) are defined as Yk(_i[)j] = Yk(i) for i # j and
@ _ v
Yk,[j] =Y _ _

Because of X" dX = ¥,;(X,,0)dt as shown by Eq. (B.28) on p.405, the
term AYk(l)AYk(J ) in line (7.71) could furthermore be replaced by X;; (Y, 0) Aty,
where Y;; is the component in the ith row and jth column of X.

An alternative representation of the acceptance probability in Algorithm 7.6
follows the discretisation of (dPg/dDg g)(X"™?)fo(x|X_.) according to
Eq. (7.63); compare with the remark on p.252. Then
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log H(Y'"™P_ 0)

m—2 ’
w(Ye,0)— Z=YE) -1y, 9)AY, (7.74)
k=0 T =tk

imz< (Y5, 0) 2 (Y, 0) (Y, 0) — (—Yk)’Z‘l(Yk,e)(w—Yk)>Atk

(T —tg)?

+10g¢(m | mel + Atmfl“(ymfh9)7Atm712(ym7159))~

If the diffusion coefficient does not depend on the state of the process, this formula
yields the same acceptance probability as the one in Algorithm 7.6.

Path Update

We now turn to the path update, i.e. the imputation of the missing data. Algo-
rithm 7.5 on p.245 already proposed how to utilise the one-to-one relationship
between the target process X and the unit diffusion process Z in that context. At
the end, the following elaborations provide the mathematical proof that the modified
bridge proposal from p. 181, the diffusion bridge proposal from p. 182 and the
proposal by Delyon and Hu from p. 184 work in the continuous-time framework,
i.e. for an infinite amount of imputed data.

Recall the suggested Algorithm 7.5 which generates a proposal Z™P* with
unit diffusion and transforms this to a candidate X™P* = ¢(Z"™P* @) as an
alternative choice to the current data X'™P = ¢(Z™P @). We require that
the target measure Zg of the innovation process is absolutely continuous with
respect to the proposal measure for Z'™P*, i.e. the target measure Py of the
diffusion process is absolutely continuous with respect to the proposal measure for
X'mP* — g(Z™P* @), Only in that case all possible paths are (theoretically)
proposed and the acceptance probability is non-degenerate. An obvious choice is
to propose Z"™P* ~ W, i.e. to let ¢ = dW/dIL be the Lebesgue density under
Wiener measure.

Corollary 7.7. The path update can be performed by application of Algorithm 7.5
on p. 245, where the innovation process Z'P* is proposed from W and accepted
with probability

C(Zimp* ’ Zimp)

=1A <d(lili‘; (g(zimp*,e))>/<% (g(zimp,e))) (7.75)

This algorithm is non-degenerate.
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Proof. In terms of the probability measures introduced in this section, the accep-
tance probability (7.54) from p. 245 reads

dZe

imps* imp d]L
C(Z™P 2Py =1 A AZy
AL

(Zlmp*) (Zimp|Zimp>k7 xo, T, 0)

. ' (7.76)
(Z™P) q(Z"™P| 2™, @, , 0)

Change of variables as in (7.59) and (7.60) yields

dZO imps* _dZO ﬂ impx d]PO imps* dW impsx*
o &) (dW at, )2 ~ dDoye (9(Z,0)) g (27)
Zo impy  (AZe AW\ 00 dPe iy o dW
dIL (Z™) (dW E) (Z P) dDo ¢ (g(Z 7, 0>)E (Z p)

Plugging in ¢ = dW/dL into (7.76) yields (7.75). This acceptance probability is
non-degenerate as due to the construction in Algorithms 7.4 and 7.5 the quadratic
variation of both X'™P = ¢(Z"™P @) and X'™P* = ¢(Z™P* @) is consistent
with 8. An explicit formula for (7.75) is available using Eq. (7.65) on p.250. a

These considerations show that for suitable proposal measures the detour
around the innovation process Z is actually not necessary in the path update:
Instead of sampling Z mP* from a measure Qg and then deterministically calcu-
lating X'™P* = ¢(Z"™P* 0), one can directly obtain X ™P* from the resulting
measure ng —if this measure is known and simulation from it is possible. The only
requirement is that Zg < Qg, i.e. ]?9 < Qg(.

Two appropriate choices for ng are Dg ¢ and D, ¢; recall the definitions from
Table 7.6 on p. 243. As already mentioned before, these measures fulfil Py < Do
and Py < Do (Delyon and Hu 2006). Approximate simulation is possible via
e.g. the Euler scheme.

Theorem 7.8. The path update can be performed by application of Algorithm 7.5
with acceptance probabilities

imps impy dP@ impsk dIF)Q im
e

for proposals X™P* ~ Dg ¢ and

impx* impy __ d]PO impx* dPPg im
C(XMPE XMP) =1 A <dDM (X )>/<dﬂ)u9 (X' P)) (7.78)

for proposals X D,, 0. For both choices, the algorithm is non-degenerate.

Proof. Both equations are obvious if one considers the path update directly
for X without regarding Z'™P. The acceptance probability (7.77) is naturally
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also the same as (7.75). Section B.8 in the Appendix briefly shows the according
derivation for (7.78). Explicit expressions for (7.77) and (7.78) are available
with (7.64) and (7.65), in which all integrals are well-defined (Delyon and Hu 2006,
Lemma 4). The reasoning of the regularity of the above acceptance probabilities
follows the line of the proof of Theorem 7.6. O

The proposal measures Dg ¢ and D, ¢ have already been considered in Sect. 7.1
as the diffusion bridge proposal (p.182) and a proposal due to Delyon and Hu
(p. 184). The proposal measure Dg g is also covered by the limit of the modified
bridge proposal (p. 181) as the amount of imputed data tends to infinity. This section
hence proves that these proposals from the discrete-time framework also work in
continuous time.

The following paragraph describes the practical implementation of the path
update with the two options Dg ¢ and D, ¢ as proposal measures. Afterwards, the
entire modified MCMC algorithm is applied in a simulation study on pp. 260.

Implementation of Path Update

As in the implementation of the parameter update, consider a discrete path skeleton
consisting of observed and imputed data xop = X, X4y, ..., X, ., X¢t, =T
at time points 0 = ¢ < 1 < ... < tpmoa < t,m = T. Let
X, =Y foral k = 0,...,m and define Y™ = {Y,,Yy,...,Y,,_1} and
YU = (Y YS, Y

For the path proposal measure Dg g, the path algorithm 7.5 adapted to the
discretised data reads as follows.

Algorithm 7.7 (Path Update for Discretised Data I). Given 6, Y™ and
Y., = x, perform the following steps:

1. Draw an approximate discrete skeleton Y ™P* ~ Do,p, i.e. successively simulate
Yo=Y, + m At + o (Y, B)N(O, AtkI)

fork=0,...,m—2 where Y§ = Yo = xg and Aty, = ty11 — ty.
2. Accept Y'P* with probability

H(Y'™* 9)
H(Yimp7 0)

é—(},—imp*7 Yimp) =1 A ,
where
log H(Y'™P_9)

"‘iz (—Yr) (Z1(Yr41,0) — X 1(Yk, 0))(z — Yi)
T —tg

N | o=

(7.79)

k=0
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03X~ 1 (Y, 0 X1 (Y, 0
m—2 d (CC — Yk)/ ( 9 (<j>k7 ) e; + P ((1)1% ) ej> ] )
Z Z e Y AY, Ay, (7.80)
k=0 i,j=1 —lk

[\')lH

m—1

+ 3 W (¥, 0) 57 (Y, 0) (A - Su(Yi, 0)A0) - S log B (Y-1,0)]  (7:81)

with AY}, = (AYk(l), e AYk(d))’ =Y}11 — Y. Otherwise keep Yy imp,

The function H is the discretisation of Eq.(7.65) times fo(x) without constants
but again incorporating the correction (7.66). As in Algorithm 7.6, this correction
term corresponds to Kk = m — 1 in line (7.81), and lines (7.79) and (7.80)
disappear when X' does not depend on the state variable. The previous remarks
on possibly required approximations of the derivatives of X' naturally apply here
as well.

For the path proposal measure D, g, the algorithm includes the discretisation of
Eq. (7.64) and hence reads as follows.

Algorithm 7.8 (Path Update for Discretised Data II). Given 6, Y™ and
Y., = x, perform the following steps:

1. Draw an approximate discrete skeleton Y "™P* ~ 1D, g, i.e. successively simulate
*

“"T_ };’“ ) Aty + o (Y, 0) N (0, At 1)
— Uk

Yi =Y.+ (N(Yljae)"'

fork=0,...,m—2 where Y§ = Yo = xg and Aty, = ty11 — ty.
2. Accept Y'"P* with probability

imp= impy __ H(Ylmp*a 0)
H(Y'™9)
where
H(Ylmp 0)
_ NS E Y (Y, 0u(Yi,0)
= T — tg
1 (=Y (BTN (Yeg1,0) — (Y5, 0)) (x — Vi)
2 i—o T —tg
5 4 ((I} _ Yk)/ (6271(},]676) e+ 6271(Yk70) y
1 dy) oy () Ay (@)
-5 Z i AY,Y AY)

ES
Il
o
-
<.

=1
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Atmfl

1
~5 108 Z (Y1, 0) |1/ (Yin—1,0) 57} (Yin1,0) (@ = Vi1 = #(Yn-1,0))

with AY}, = (AYM ., AY DY = Yy — Y. Otherwise keep Y ™.

The performance of these two algorithms is shown and compared with one
another in a simulation study on pp. 260.

Generalisation to Several Observation Times, Latent Data
and Observation Error

The previously described methodology can easily be generalised to several obser-
vation times, latent data settings and observations with error. The first is briefly
described in the following.

In the above considerations, in order to ease notation, the initial and final times 0
and 7" and the initial and final states &y and & were not included in the symbol Py
of the conditioned measure of the target diffusion satisfying

dXt:[J/(Xt,B)dt—l—O'(Xt,B)dBt ,XT::B.

In case of several observations at possibly non-equidistant time points, this spec-

(0 o,

T
ification is however required. Hence use the notation ]P ®) for the measure

induced by the above SDE. Furthermore, let ]P(O o,
(0,20,T)

T) be the respective uncon-

ditioned target measure and fe
(0,20,T)
P, .

the Lebesgue density of the end point X p

under

Now suppose that for the target diffusion there are the fixed initial value .,
and M observations x,,,..., T, at times 79 < 7 < ... < Tp available.
Fori =0,..., M —1, impute auxiliary data X ;"' in the time interval [7;, 7;41]. The
posterior density of the parameter 8 with respect to Lebesgue measure then equals

(Ti, 7, Tig 1@y )
% i+1

dIP im Tiy L 5Ti
W(O}X[TO,TM])m<H i (XI®) fo +1>(%1>> p(6).

=0

The likelihood of 0 is most conveniently written as

M-1 dIP(Ti-,wri JTit1)

7T(X [T0,70]) ‘0) H HT (X(T'L,T'H»l])'
1=0

With this, the previously described algorithms for the path and parameter update are
easily generalised to several observation times. An extension of the parameter up-
date to latent data and observation errors as considered in Sect. 7.2 is straightforward
as well.
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Simulation Study

The simulation study in Sect.7.1.7 demonstrated the performance of the standard
MCMC algorithms from Sect. 7.1 on the example of a one-dimensional Ornstein-
Uhlenbeck process X = (X,);>¢ satisfying the SDE

dX, = (B — X,)dt + 0dB; , Xo = o, (7.82)

for parameters 8 € R, o, 02 € R, and initial value xo = 0. Based on an exactly
simulated realisation with 8 = (o, 3,02)" = (0.5,0.9,1.0)’, estimation was carried
out for B and o2 with « considered known. The simulated sample path is displayed
in Fig. 7.5 on p. 196.

The following simulation study revives the same example in order to evaluate the
proficiencies of the innovation scheme. Results are compared with the outcomes for
those schemes that worked best in Sect. 7.1.7; these are the modified bridge proposal
for the path update and the random walk proposal for the parameter update. Again,
all methods are implemented in R.

In all approaches in the present simulation study, the parameters 3 and o2 have
again a priori distributions

B~N(0,1) and o> ~1G(3,3).

Given the current values 3 and o2, new parameters 3* and o2* are proposed via a
random walk

B* ~N(B,0.025) and logo® ~ N (logo?,0.025).

The three competing MCMC schemes in the simulation study differ from each other
with respect to the path update and the acceptance mechanism of the parameter
update as follows.

e Standard Algorithm: The acceptance probability for the proposed parameter
0* = (B*,0%*) is as in Eq.(7.15) on p. 185. The diffusion path is updated via
the modified bridge proposal as described on p. 181.

* Innovation Scheme I: The proposed parameter 6 is accepted or rejected
according to Algorithm 7.6 on p.253. The path update employs Algorithm 7.7
on p.257.

* Innovation Scheme II: The proposed parameter 8 is accepted or rejected
according to Algorithm 7.6 on p.253. The path update employs Algorithm 7.8
on p.258.

The update intervals are chosen with Algorithm 7.3 on p.191 with mean
length A = 5. Different values for A have been investigated as well but have not
led to different conclusions.

Figures 7.28-7.41 and Tables 7.7 and 7.8 show the performance of the above
three schemes for an increasing amount of imputed data and 10° iterations.
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Fig. 7.28 Acceptance rates for the parameter update corresponding to the simulated Markov
chains displayed in Figs. 7.29 and 7.30 (M = 25, left graphic) and Figs. 7.35 and 7.36 (M = 250,
right graphic). The m-values are plotted on a log scale to the base 10

In particular, Figs.7.29-7.34 display trace plots, posterior density estimates and
autocorrelation plots for the MCMC procedure when observations of the diffusion
path are available at times 0,1,...,25. With the notation from Sect.7.1, this
corresponds to the maximum time 7" = 25 and M = 25 observations. Figures 7.35—
7.40 show these outcomes when the MCMC scheme conditions on observations at
times 0,0.1,...,25,1.e. T" = 25 and M = 250. All data is assumed to be measured
without error. Figure 7.28 displays the acceptance rates of the parameter update in
all experiments. Tables 7.7 and 7.8 summarise the posterior means and 95 %-hpd
intervals for 3 and o2. The hpd intervals are also shown in Fig. 7.41.

The simulation results clearly demonstrate that the standard algorithm struggles
when large amounts of data are imputed: The trace plots show poor mixing for
m € {100, 1,000}, high autocorrelation and crucially decreasing acceptance rates
in the parameter update. In those cases, the standard scheme experiences severe
difficulties to satisfyingly estimate the diffusion coefficient. The performance of the
innovation scheme, in contrast, remains equally satisfactory for all values of m.

Further empirical investigations, which are not shown here, yield similar results
for the MCMC scheme when the diffusion path is updated according to the modified
bridge proposal on p.181 or diffusion bridge proposal on p. 182 as long as the
parameter update follows Algorithm 7.6.

Conclusion

To summarise, this section seizes the general idea from Chib et al. (2004) to base
the MCMC algorithms considered in this chapter on an innovation process Z rather
than on the original diffusion process X. The innovation process is constructed
such that it has unit diffusion and hence does not obstruct the convergence of the
algorithms.
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Fig. 7.29 Estimation of parameters of the Ornstein-Uhlenbeck process (7.82) as described on
pp- 260. The MCMC scheme conditions on observed data at times O, 1, .. ., 25 and introduces m
subintervals in between every two observations. This figure shows the trace plots of 3. The
realisations of the Markov chains have length 10° but have been thinned by factor 50. The true
value for 3 equals 0.9 and is indicated by the red horizontal line
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Fig. 7.30 Estimation results as described in Fig.7.29. This figure shows the trace plots for o2.
The true parameter value for o2 equals 1 and is indicated by the red horizontal line
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Fig. 7.31 Estimation of the posterior density of 5 based on the results from Fig.7.29. Density
estimation takes into account the full Markov chain, i.e. without thinning, after having discarded a
10 % burn-in phase. The true value of the parameter is indicated by the vertical line
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Fig. 7.32 Estimation of the posterior density of o2 based on the results from Fig. 7.30. Density
estimation takes into account the full Markov chain, i.e. without thinning, after having discarded a
10 % burn-in phase. The true value of the parameter is indicated by the vertical line

This idea has already been investigated by Chib et al. (2004) for diffusion paths
that are not conditioned on an end point and by Golightly and Wilkinson (2008,
2010) for discrete path skeletons, i.e. on finite-dimensional state spaces. This book
considers conditioned diffusion paths on infinite-dimensional state spaces.

The important improvement in our approach is that we first assess the method-
ology in a continuous-time framework and then discretise resulting formulas for
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Fig. 7.33 Autocorrelation plots for 5 based on the results from Fig.7.29. Calculation of the
autocorrelation takes into account the full Markov chain, i.e. without thinning, after having
discarded a 10 % burn-in phase
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Fig. 7.34 Autocorrelation plots for o2 based on the results from Fig.7.30. Calculation of the
autocorrelation takes into account the full Markov chain, i.e. without
discarded a 10 % burn-in phase

thinning, after having

practical use. This is a more reliable method than starting from a discrete-time
framework and then investigating its behaviour for decreasing time step. The former
general concept is hence also favoured by Roberts and Stramer (2001) for MCMC
sampling and by Papaspiliopoulos and Roberts (2012) in the context of importance

sampling.
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Fig. 7.35 Estimation of parameters of the Ornstein-Uhlenbeck process (7.82) as in Fig. 7.29, this
time with the MCMC scheme conditioning on observed data at times 0, 0.1, . . ., 25. The procedure
introduces m subintervals in between every two observations. This figure shows the trace plots
of 3. The Markov chains have length 10° but have been thinned by factor 50. The true value for 3
equals 0.9 and is indicated by the red horizontal line

This section proves that the newly proposed innovation scheme for conditioned
diffusion paths on infinite-dimensional state spaces is non-degenerate. In short, our
algorithm for the parameter update works because of the following two reasons:
First of all, the construction in Algorithm 7.4 ensures consistency within {X, 8}
and {X™,0"}. Second, the innovation process Z induces a law Zg which is
absolutely continuous with respect to Wiener measure W for all values of 6.
Moreover, there exists a law Dg ¢ which dominates both the law INPg of X and
the law of the back-transformed process X ™ = ¢(Z, 6"). The justification of the
path update is based on similar arguments.



7.4 Improvements of Convergence 269

Standard algorithm Innovation scheme I Innovation scheme I
2.0 2.0 2.0
1.5 4 1.5 4 1.5 4
m=2 © o? o?
1.0 I 1.0 4 1.0 4
0.5 4 0.5 4 0.5 4
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
iterations iterations iterations
2.0 4 2.0 4 2.0 4
1.5 1 1.5 4 1.5 1
m=5 © o? o?
1.0 1 1.0 1 1.0 1
0.5 4 0.5 4 0.5 4
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
iterations iterations iterations
2.0 41 2.0 41 2.0 4
1.5 4 1.5 4 1.5 4
m =10 © o? o?
05 4 05 4 05 4
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
iterations iterations iterations
2.0 4 2.0 4 2.0 4
15 4 15 4 15 4
m =100 o? o?
1.0 W 1.0 A 1.0 4
0.5 4 0.5 4 0.5 4
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
iterations iterations iterations

Fig. 7.36 Estimation results as described in Fig.7.35. This figure shows the trace plots for o2
The true parameter value equals 2 = 1 and is indicated by the red horizontal line

For decreasing time steps, the modified bridge construct from p. 181 tends to
the Euler approximation of the SDE inducing Dg ¢. Hence, our considerations
eventually provide the proof that the parameter update proposed by Golightly and
Wilkinson (2008), described on p. 241, works also in a continuous-time framework
under the assumptions of this section when using the modified bridge transforma-
tion. This proposition is however not true for general deterministic links between the
original process and the innovation process. Different constructs or a violation of the
regularity conditions should carefully be investigated in a continuous-time setting.

In order to be able to apply the innovation scheme in practice, explicit formulas
for all involved acceptance probabilities are obtained. In particular, this comprises
the derivation of the Radon-Nikodym derivatives dPy /dDg ¢ and dPy /dD,.6
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Fig. 7.37 Estimation of the posterior density of 3 based on the results from Fig.7.35. Density
estimation takes into account the full Markov chain, i.e. without thinning, after having discarded a
10 % burn-in phase. The true value of the parameter is indicated by the vertical line

including all factors which depend on the model parameter and the imputed data.
These derivatives have also been utilised by Delyon and Hu (2006) and Pa-
paspiliopoulos and Roberts (2012), though in a different representation than in this
book, in the context of the simulation and importance sampling for conditioned
diffusions. These applications, however, require different knowledge about factors
which are proportional with respect to the parameter. Papaspiliopoulos and Roberts,
for example, evaluate the proportionality constants as shown in (B.30) and (B.31)
on p. 408 through Monte Carlo estimation. This measure would be impracticable in
the context of this chapter.

Applied to discrete-time skeletons of diffusion paths, the discretised innovation
scheme overcomes the convergence problems explained in Sect. 7.3 as the amount
of imputed data increases. It is hence possible to raise the number of imputed data
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Fig. 7.38 Estimation of the posterior density of o2 based on the results from Fig. 7.36. Density
estimation takes into account the full Markov chain, i.e. without thinning, after having discarded a
10 % burn-in phase. The true value of the parameter is indicated by the vertical line

points in between every two observations in order to reduce an estimation bias.
All algorithms have been implemented in R. A simulation study illustrates that the
innovation scheme initially improves as the number of imputed data points grows
larger and then remains stable. It clearly outperforms standard schemes with respect
to its mixing behaviour, serial correlation and acceptance rates.

To conclude, the innovation scheme on infinite-dimensional state spaces
presented in this book provides an efficient and widely applicable MCMC mech-
anism which is appropriate for the parameter estimation also of large-dimensional
diffusion processes. As it overcomes disturbing dependence structures which are
inherent in most diffusion processes, convergence is guaranteed and practitioners
are not restrained to bounded amounts of imputed data. The innovation scheme is
applied in Chaps. 8 and 9 to multi-dimensional applications in life sciences.
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Fig. 7.39 Autocorrelation plots for 5 based on the results from Fig.7.35. Calculation of the
autocorrelation takes into account the full Markov chain, i.e. without thinning, after having
discarded a 10 % burn-in phase

7.5 Discussion and Conclusion

This chapter introduces and comprehensively delves into the concept of Bayesian in-
ference for diffusion processes via the imputation of auxiliary data. The introduction
of this additional data reduces the distance between every two consecutive time
points where observed or imputed data is available. This way it enables the
approximation of the transition density of the diffusion process via the Euler
scheme. It is then possible to construct an MCMC algorithm which alternately
updates the imputed data and the model parameter. The resulting Markov chain
can be utilised to infer on the parameter.
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Fig. 7.40 Autocorrelation plots for o2 based on the results from Fig.7.36. Calculation of the
autocorrelation takes into account the full Markov chain, i.e. without thinning, after having
discarded a 10 % burn-in phase

Section 7.1 comprehensively reviews general concepts for the update of the
diffusion path and the update of the parameter and addresses related practical issues.
In short, the path update involves proposing a new path segment which bridges the
gap between given initial and final states. Naive proposal schemes ignore the end-
point information and are hence inefficient. Improved techniques condition on the
end point and respectively tie down the proposal distribution. For the parameter
update, problem-specific full conditional densities or more general random walk
proposals are employed. Empirical and analytical investigations show that for the
path update the modified bridge proposal and for the parameter update the random
walk proposal perform best.
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Fig. 7.41 95% highest probability density intervals for 3 (leftf) and o2 (right) as displayed in
Tables 7.7 (top) and 7.8 (bottom)

The considerations in Sect. 7.1 are based on the assumption of complete obser-
vations without measurement error. As these requirements are typically not met
in applications in life sciences, Sect.7.2 adapts the previously introduced update
schemes to the case of non-observed latent states and observations with error.
Formulas required for the practical implementation are provided in that section.

Certainly, the MCMC schemes from Sects. 7.1 and 7.2 can also be used without
introducing auxiliary time points. This has been done by Eraker et al. (2003),
Eraker (2004), Asgharian and Bengtsson (2006) and Jacquier et al. (2007) for
jump-diffusion processes in order to model prices at financial markets. In that
context, dense data is available, hence no augmentation is necessary. The MCMC
procedure then estimates the model parameters and latent variables. Kim et al.
(1998) likewise apply the scheme to infer on parameters and latent variables for
stochastic volatility models without imputing data; they however also touch the
introduction of missing values.
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Table 7.7 Estimation results as in Figs. 7.29 and 7.30, i.e. for 7" = 25 and M = 25. This table
displays the posterior means and posterior 95 %-hpd intervals after a 10 % burn-in phase. The latter
are computed according to Chen and Shao (1999). The true values of the parameters are 8 = 0.9

and 02 = 1. The hpd intervals are also shown in Fig. 7.41

Standard algorithm

Innovation scheme I

Innovation scheme II

m=2 3:0.90, (0.20,1.58) B:0.90, (0.19,1.61) B:0.89, (0.20,1.59)
52:0.88, (0.48,1.37) 02:0.87, (0.47,1.34) 02:0.87, (0.48,1.36)

m=5 /3:0.89, (0.15,1.62) 3:0.88, (0.11,1.59) 3:0.89, (0.16,1.62)
02:0.98, (0.52,1.52) 02:0.98, (0.53,1.51) 02:0.98, (0.54,1.52)

m =10 B:0.88, (0.14,1.62) B:0.88, (0.13,1.63) 3:0.89, (0.15,1.65)
02: 1.00, (0.52,1.55) 02: 1.02, (0.56,1.57) 02:1.02, (0.55,1.59)

m = 100 B:0.88, (0.15,1.66) B:0.88, (0.10,1.62) B:0.88, (0.13,1.65)
021 1.09, (0.66,1.61) 021 1.06, (0.56,1.65) 02:1.05, (0.57,1.64)

m = 1,000 :0.90, (0.24,1.60) £0.91, (0.16,1.65) £ 0.86, (0.12,1.63)

2:0.90, (0.73,1.02)

02: 1.05, (0.57,1.63)

a2:1.07, (0.57,1.65)

Table 7.8 Estimation results as in Figs. 7.35 and 7.36, i.e. for T' = 25 and M = 250. This table
displays the posterior means and posterior 95 %-hpd intervals after a 10 % burn-in phase. The true
values of the parameters are 3 = 0.9 and o2 = 1. The hpd intervals are also shown in Fig. 7.41

Standard algorithm

Innovation scheme I

Innovation scheme II

m =2 B8:0091, (0.27,1.57) 58 :0.89, (0.22,1.60) 8:0.90, (0.23,1.61)
2:0.80, (0.67,0.93) 2:0.92, (0.77,1.09) 02:0.92, (0.77,1.08)

m=25 £ :0.89, (0.16,1.54) £:0.90, (0.18,1.62) £:0.89, (0.17,1.59)
02:0.94, (0.77,1.11) 2:0.94, (0.78,1.10) 2:0.94,(0.77,1.10)

m =10 B£:0091, (0.18,1.57) £:0.88, (0.14,1.57) £:0.89, (0.19,1.60)
2:0.94, (0.78,1.10) 2:0.94, (0.78,1.11) 2:0.94, (0.79,1.11)

m = 100 B8:0.92, (0.38,1.55) 8:0.90, (0.19,1.62) 8:0.90, (0.21,1.65)

2:0.64, (0.55,0.78)

02:0.94, (0.79,1.12)

02:0.94, (0.79,1.12)

Improvements of the update procedures in Sects. 7.1 and 7.2 may for example
be obtained by replacing the Euler scheme, which is used for the approximation of
the transition density based on the augmented dataset, by any higher order numerical
scheme such as those presented in Sect. 3.3.2. For instance, Elerian (1998) considers
the application of the Milstein scheme. This measure, however, does not solve a
general conceptual convergence problem that appears as the amount of imputed
data increases: For a time-continuously imputed diffusion path, the imputed data
and the diffusion matrix are deterministically linked. Resulting difficulties for the
update mechanisms from Sects. 7.1 and 7.2 are described in detail in Sect.7.3. In
practice, data is certainly never imputed continuously. However, this corresponds to
the limiting case of steadily enhanced amounts of imputed data. The behaviour of
the MCMC algorithm on an infinite-dimensional state space is hence an appropriate
indicator for the behaviour of the MCMC scheme in the case where finite but
increasing amounts of data are imputed. The consequence is poor mixing of the
Markov chains, especially for those parameters determined by the diffusion matrix.
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Some authors mention that such convergence issues are not a relevant problem
in their practical applications when low numbers of auxiliary time points are
introduced (see e.g. Eraker 2001). A crucial amount of imputed data may however
easily be reached for low-frequency datasets or multi-dimensional diffusions.
Moreover, in real data applications, where the true values of the parameters are
unknown, it may be difficult to determine the threshold value for the number of
imputed data points beyond which estimates deteriorate. In any case, it is desirable
to have a reliable tool which guarantees that it does not break down as the amount
of imputed data grows.

Thus, starting from the convergence problems of naive MCMC algorithms
pointed out in Sects. 7.3 and 7.4 reviews and develops update techniques which are
neatly modified such that they circumvent the sources of poor convergence. These
methods are a change of factorisation of the dominating measure of the diffusion
process, time change transformations, particle filters and the innovation scheme on
infinite-dimensional state spaces. As the utilisation of the former three methods is
inappropriate for the applications in Chaps. 8 and 9, this book concentrates on the
innovation scheme. This method has been utilised before for unconditioned diffu-
sion paths by Chib et al. (2004) and on finite-dimensional state spaces by Golightly
and Wilkinson (2008, 2010). Its application to conditioned diffusions on infinite-
dimensional state spaces, as contributed by this book, is however notably different.

In particular, Sect. 7.4.4 designs the innovation scheme for conditioned diffusions
on infinite-dimensional state spaces and provides the mathematical proof that the
so-constructed MCMC scheme converges. Consequently, this algorithm is non-
degenerate also for arbitrarily large but finite sets of observed and imputed data.
For practical usability, explicit formulas for all involved acceptance probabilities are
derived. The modified parameter and path updates are described in algorithmic form
including the time-discretisations of these acceptance probabilities. All algorithms
are implemented and employed in a simulation study which certifies moderate
computing times and verifies that the innovation scheme does not break down as the
number of auxiliary data points increases. The enhanced innovation scheme hence
outperforms the techniques introduced in Sect.7.1.

To conclude, this chapter offers a detailed and critical inspection of Bayesian
inference methods for diffusion processes based on data augmentation. The consid-
ered techniques are suitable for large and irregularly spaced observation intervals,
multivariate diffusions with possibly latent components and for observations with
error. Throughout the chapter, importance was attached to an understandable
presentation of the update schemes and the convergence problems that arise in
standard algorithms when more and more data is imputed. For the first time, this
book surveys improved update schemes in Sect. 7.4 which aim to overcome the
previously described convergence difficulties. These methods are all appropriate
wherever their assumptions are true or where the considered diffusion process is
low-dimensional, respectively. They however cannot be used for fairly complex
and partly large-dimensional applications as investigated in Chaps. 8 and 9. In these
cases, the enhanced innovation scheme is required. Its convergence has been proven
and its practical implementation formulated in this chapter.
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Chapter 8
Application I: Spread of Influenza

Influenza is a contagious disease caused by the influenza virus that affects mammals
and birds. Human influenza morbidity and mortality is a major concern of public
health institutions. According to recent assessments, the annual number of infected
people lies between 5 and 15 % of the worldwide population, with 250,000-500,000
deaths every year (e.g. Russell et al. 2008).

This chapter deals with the statistical estimation of parameters in models for the
spread of human influenza. To that end, the standard and multitype SIR models,
which were introduced in Chap.S5, are applied. Out of the various mathematical
representations considered in that chapter, the diffusion processes are chosen as the
most appropriate ones here. Statistical inference is accomplished by means of the
innovation scheme developed in Chap. 7.

To start with, a simulation study with synthetic datasets is carried out in Sect. 8.1.
This gives an idea about the performance of the innovation scheme when applied to
datasets of certain sizes and levels of completeness. In Sect. 8.2, the standard SIR
model is applied to a dataset on an influenza outbreak in a British boarding school in
1978. Finally, in Sect. 8.3, the spatial spread of influenza in Germany is considered.
To that end, the multitype SIR model is utilised with clusters corresponding to
different geographic regions. Model parameters are estimated for a dataset on
influenza occurrences in the season 2009/10. This study aims to be an initial analysis
which can be extended in different directions in further investigations. Section 8.4
concludes and gives an outlook on such future work.

8.1 Simulation Study

This simulation study investigates three synthetic datasets: One dataset for the
standard SIR model and two datasets for the multitype SIR model with n = 3
and n = 10 clusters, respectively. Both models were introduced in Sects. 5.1
and 5.2. The most relevant properties of the resulting diffusion approximations are

C. Fuchs, Inference for Diffusion Processes: With Applications in Life Sciences, 281
DOI 10.1007/978-3-642-25969-2_8, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 8.1 Synthetic datasets used in the simulation study in this section. The top row shows the
fractions of susceptibles, the bottom row the fractions of infected individuals. Simulations have
been obtained by application of the Euler scheme from Sect. 3.3.2 with time step 0.025 and settings
as described in the main text. Observations are assumed to be available at equidistant time steps of
length 7 such that there are ten observations in the time interval [0, 63], (a) dataset 1, (b) dataset 2,
(c) dataset 3

summarised in Sects.5.1.4 and 5.2.4 on pp. 109,121, respectively. In particular, the
stochastic differential equations are given in (5.19) and (5.32) in these summaries.
The notation in this chapter is adopted from Chap. 5.

8.1.1 Data

The sample paths from the three just mentioned datasets are shown in Fig.8.1.
They are generated by application of the Euler scheme from Sect.3.3.2 with time
step 0.025 on the time interval [0,63]. In order to reflect the observation interval in
a real data situation, observations are provided only at time points 0,7, 14,...,63
in the simulation study. The model parameters and other variables are chosen as
follows:

e Dataset 1 (standard SIR model): The population size equals N = 1,000 with
initial state £y = (s0,%0)" = (0.99,0.01)" at time zero. The model parameter,
consisting of the contact rate o and the reciprocal length of the infectious
period 3, is chosen as 8 = («, )" = (0.325,0.15)". For consistent notation
with datasets 2 and 3, the standard SIR model is also referred to as a multitype
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SIR model with n = 1 cluster in the next section. The parameter « is then also
denoted as .

e Dataset 2 (multitype SIR model with n = 3 clusters): There are three clusters
with identical population sizes N; = 1,000, j € {1,2,3}. The state vari-
able of the diffusion process is @ = (s1, $2, 83,11, i2,i3)" with initial value
xo = (0.95,0.95,0.95,0.05,0.05,0.05)" at time zero, i.e. the initial fractions
of susceptibles and infectives are identical in all three clusters. Contacts between
clusters occur according to the network matrix

0.80 0.10 0.10
~Y =10.10 0.85 0.05 |,
0.10 0.05 0.85

where vV = 4% = ~/, which means that susceptible, infective and removed
individuals show equal contact behaviour. This matrix is considered known,
i.e. it is not statistically estimated in the following simulation study. The
contact rates «; are assumed to depend on the corresponding cluster j, while
the average infectious period 5! is assumed identical for the three groups.
The model parameter hence equals 8 = (ay, @z, a3, (). It is chosen to be
6 =(0.6,0.5,0.4,0.2)".

* Dataset 3 (multitype SIR model with n = 10 clusters): The assumptions
here are similar to dataset 2 but adopted to ten clusters. In particular, one
has population sizes N; = 1,000 for j € {I,...,10}, state variable
x = (s1,.-.,810,%1,- - -,410)" With initial value

xo = (0.97,0.93,0.97,0.93,0.97,0.93,0.97,0.93,0.97, 0.93,
0.03,0.07,0.03,0.07, 0.03,0.07,0.03,0.07, 0.03, 0.07)’

at time zero, contact matrix

0.80 0.05 0.05 0.03 0.03 0.02 0.01 0.01 0 0
0.05 0.85 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.05 0.03 0.85 0.03 0.02 0.02 0 0 0 0
0.03 0.01 0.03 0.90 0.01 0.01 0.01 0 0 0
N S I 0.03 0.01 0.02 0.01 0.85 0.03 0.02 0.02 0.01 0
0.02 0.01 0.02 0.01 0.03 0.75 0.06 0.05 0.05
0.01 0.01 0 0.01 0.02 0.06 0.75 0.08 0.01 0.05
0.01 0.01 0 0 0.02 0.05 0.08 0.80 0 0.03
0 0.01 0 0 0.01 0.05 0.01 0 0.80 0.12
0 0.01 0 0 0 0 0.05 0.03 0.12 0.79

and model parameter @ = (s, . . ., @19, 8)’ with

6 = (0.6,0.6,0.55,0.55,0.5,0.5,0.45, 0.45, 0.4, 0.4, 0.2)".
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8.1.2 Parameter Estimation

Chapter 7 presented methods for the Bayesian estimation of the parameters of
diffusion processes by means of data augmentation. Special emphasis was put on the
innovation scheme, which was presented and further developed in Sect. 7.4.4. This
scheme is now applied to the just specified synthetic datasets in order to estimate
the parameters «;, j € {1,...,n}, and 8. The notation is adopted from Chap. 7.

For all datasets, «; and 3 are assumed to be a priori exponentially distributed
with expected values 0.5. In the MCMC algorithm,

log of ~ N (log ;,0.0009) and log 3* ~ N (log 3,0.0009)

forj =1,...,n, where o; and j3 represent the current values.

Consider dataset 1 first. To start with, both the fraction s of susceptibles and the
fraction 7 of infectives are assumed to be given at the observation times. Figures 8.2
and 8.3 on p. 285 display trace plots, posterior density estimates and autocorrelation
plots for a and 8 produced by the innovation scheme. In particular, the parameter
update is performed according to Algorithm 7.6 on p. 253, and the diffusion path
is updated with a modified bridge proposal as described in Sect. 7.1. The simulated
Markov chains have length 10° but have been thinned by factor 50. The innovation
scheme imputes data such that there are m € {7,14} intermediate subintervals in
between every two observation times.

In practice, the fraction of susceptible individuals is typically unknown. Hence,
the above estimation procedure is carried out again with 7 observed and s considered
latent. The modified diffusion bridge update in the presence of latent components is
described in Sect. 7.2. Figures 8.4 and 8.5 on p. 286 show the obtained estimation
results. This time, because of a large burn-in, the simulated Markov chains have
length 105 and are thinned by factor 500. Table 8.1 lists the posterior means and
95 %-hpd intervals corresponding to the MCMC outputs from Figs. 8.2-8.5.

For datasets 2 and 3, parameter estimation is performed in an analogous manner
as for dataset 1. The outcomes are summarised in Tables 8.2 and 8.3. All results in
these tables are based on simulated Markov chains of length 10°. Due to space
restrictions, trace plots, posterior density estimates and autocorrelaton plots are
exemplarily displayed for the model with n = 10 clusters and observed fraction s
in Fig. 8.6.

Overall, the simulation study revealed that satisfactory estimation results for the
contact rates «; and the reciprocal infectious period 3 are obtained when both the
fraction s of susceptibles and the fraction ¢ of infective individuals are observed. All
derived hpd intervals contain the true parameters, and in case of multiple clusters,
the order of the estimated contact rates &; resembles the order of the true values.
In practice however, the component s is latent, which makes parameter estimation
more difficult. For the standard SIR model, estimation of both « and S is still
possible. In case of the multitype SIR model, however, the contact rates «; can
obviously not be distinguished. Instead, one obtains similar confidence intervals



8.1 Simulation Study 285

1.0
036 30 08
= 20 w 06
m=7 2 Q
3 0832 5] < o4
8 .
10
0.2
5
0.28 0 0.0
500 1000 1500 2000 0.28 0.30 0.32 0.34 0.36 0 50 100 150
iterations o Lag
1.0
0.36 30 08
%‘ 20 W 06
= 3 c O
m 14 0.32 3 Q o
10
0.2
5
028 o T T T T T 00 —
500 1000 1500 2000 0.28 0.30 0.32 0.34 0.36 0 50 100 150
iterations o Lag

Fig. 8.2 Bayesian estimation of parameters of the standard SIR model when applied to dataset 1
with both s and 7 being observed. Details of the estimation procedure are described in the main
text. The MCMC scheme introduces m € {7, 14} subintervals in between every two observations.
This figure shows the trace plots of « (left column) with corresponding posterior density estimates
(middle column) and autocorrelation plots (right column). The Markov chains have length 10°
but have been thinned by factor 50 in the trace plots. Red horizontal lines in the trace plots and
black vertical lines in the density plots indicate the true parameter values. Estimation of posterior
densities and autocorrelation takes into account the full Markov chain, i.e. without thinning, after
having discarded a 10 % burn-in phase
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Fig. 8.3 Estimation results as described in Fig. 8.2, this time for the parameter /3
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Fig. 8.5 Estimation results as described in Fig. 8.4, this time for the parameter /3

for all j = 1,...,n. These intervals cover a range which is approximately the
average of all true «; values. The parameter 3, on the other hand, is satistyingly
estimated even for multiple clusters and s being latent. This raises hope that the
infectious period can also be approximated precisely in the real data example in
Sect. 8.3. In order to improve estimation of the contact rates, further information on
the susceptible population is sought and might enter later work.
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Table 8.1 Estimation results for dataset 1 as in Figs. 8.2-8.5. This table displays the posterior
means and posterior 95 %-hpd intervals after a 10 % burn-in phase. The latter are computed
according to Chen and Shao (1999). The true values of the parameters are displayed in the second
column

s observed s latent
Parameter True value m=7 m =14 m=7 m =14
@ 0.325 0.317 0.318 0.306 0.315
(0.29, 0.34) (0.29, 0.34) (0.26, 0.35) (0.27, 0.36)
I3 0.15 0.145 0.144 0.143 0.144

(0.13,0.16) (0.13,0.16) (0.13,0.16) (0.13, 0.16)

Table 8.2 Estimation results for dataset 2 as described in the main text. This table displays the
posterior means and posterior 95 %-hpd intervals after a 10 % burn-in phase. The true values of the
parameters are displayed in the second column

s observed s latent
Parameter True value m="17 m =14 m="7 m = 14
aq 0.6 0.57 0.58 0.43 0.45
(0.52, 0.62) (0.53,0.63) (0.39, 0.48) (0.40, 0.49)
o 0.5 0.47 0.48 0.45 0.46
(0.43,0.51) (0.44, 0.52) (0.41, 0.49) (0.42, 0.50)
as 0.4 0.40 0.41 0.44 0.45
(0.37,0.44) (0.37,0.45) (0.40, 0.48) (0.41, 0.49)
B 0.2 0.20 0.20 0.20 0.20

(0.19, 0.21) (0.19, 0.21) (0.19, 0.21) (0.19, 0.21)

8.2 Example: Influenza in a Boarding School

In 1978, the British Medical Journal (BMJ News and Notes 1978) published a report
on an influenza outbreak in a boys’ boarding school in Britain, which occurred in
January and February 1978. The first case of influenza was introduced by a boy from
Hong Kong who returned to school from holidays. Out of the 763 boys visiting
the boarding school, 512 were infected within 14 days, while the approximately
130 teachers, house matrons and other adults remained unaffected with only one
exception. The boys were immediately confined to bed as soon as they showed any
symptoms of illness. As they furthermore lived in a closed community, where the
susceptible population did obviously not include the adults, this influenza outbreak
provides an ideal data situation. It has hence also attracted the attention of other
authors: For example, Murray (2002) and Keeling and Rohani (2008) approximate
the contact rate and infectious period in a deterministic SIR model by least squares
estimation. Chen and Bokka (2005) utilise the resulting values from that book for
the simulation of stochastic SIR epidemics. In this section, the influenza outbreak
is modelled by the standard SIR diffusion process, and the model parameters are
estimated by application of the innovation scheme. For comparison purposes, least
squares estimation for the deterministic model is carried out as well.
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Table 8.3 Estimation results for dataset 3 as described in the main text. This table displays the
posterior means and posterior 95 %-hpd intervals after a 10 % burn-in phase. The true values of the
parameters are displayed in the second column

s observed s latent
Parameter True value m="17 m =14 m="7 m = 14
aq 0.60 0.60 0.60 0.43 0.44

(0.55, 0.65) (0.54, 0.65) (0.39, 0.47) (0.40, 0.48)
g 0.60 0.64 0.63 0.39 0.41

(0.59, 0.69) (0.59, 0.68) (0.36, 0.42) (0.37, 0.45)
as 0.55 0.54 0.54 0.42 0.48

(0.50, 0.59) (0.49, 0.58) (0.39, 0.46) (0.44, 0.52)
ay 0.55 0.56 0.54 0.39 0.40

(0.51, 0.60) (0.50, 0.58) (0.36, 0.42) (0.37, 0.44)
as 0.50 0.54 0.53 0.45 0.44

(0.50, 0.58) (0.49, 0.57) (0.41, 0.49) (0.40, 0.48)
ag 0.50 0.49 0.48 0.42 0.41

(0.44, 0.54) (0.44, 0.53) (0.38, 0.47) (0.37, 0.45)
az 0.45 0.45 0.45 0.45 0.40

(0.41, 0.50) (0.41, 0.49) (0.41, 0.49) (0.36, 0.45)
asg 0.45 0.42 0.42 0.43 0.42

(0.38, 0.46) (0.38, 0.46) (0.39, 0.47) (0.38, 0.46)
ag 0.40 0.39 0.39 0.45 0.49

(0.35,0.43) (0.35,0.43) (0.41, 0.50) (0.45, 0.53)
a0 0.40 0.39 0.39 0.43 0.38

(0.35,0.43) (0.35,0.43) (0.39, 0.48) (0.33, 0.42)
8 0.20 0.20 0.19 0.19 0.19

(0.19, 0.20) (0.19, 0.20) (0.19, 0.20) (0.18, 0.19)

8.2.1 Data

The original paper (BMJ News and Notes 1978) graphically displays over a period
of 2 weeks the daily number of pupils confined to bed. The exact counts are not
available, but Table 8.4 shows numbers which are reconstructed from the graph.
The observed fractions of infected boys are plotted in Fig. 8.7 on p. 292.

8.2.2 Parameter Estimation

In the following, the contact rate « and the inverse infectious period [ are estimated
by application of the standard SIR model to the above dataset. The fraction of
susceptibles is considered latent.
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Least Squares Estimation

As mentioned above, Murray (2002) applies the deterministic model (5.21) from
p. 110 to the boarding school data and infers on the model parameters by least
squares estimation. Translated to the parameterisation of this chapter, he obtains
the estimates & = 1.66 and 3 = 0.44. For comparison purposes, least squares
estimation is also carried out here, yielding & = 1.67 and B = 0.45. The small
deviations are only natural as the original data is given graphically and the read
out numbers will most probably differ by small amounts. The estimated basic
reproductive ratio Ro = af f3 for the data from Table 8.4 equals 3.71, which
explains the observed major outbreak.

The above estimates have been obtained by application of the Nelder-Mead
algorithm (Nelder and Mead 1965). To that end, the trajectories of the deterministic
process described by (5.21) have been calculated with the standard Euler scheme
for ODEs with step length 0.02 and initial value (s, i9)" = (762/763,1/763)". The
estimated curve for the fraction of infectives is shown in Fig. 8.7, the corresponding
mean sum of squared residuals equals 5 - 10~%. The optimisation procedure yields
95 %-confidence intervals [0.065, 42.798] for « and [0.0002, 799.45] for /3. For their
derivation, the inverse Fisher information of log a and log /3 (approximated by the
Hessian of the function to minimise) has been evaluated at the point estimates, and
the resulting confidence intervals have been back-transformed to the original scale.
The term Fisher information is used here due to the analogy of least squares and
maximum likelihood estimation with i.i.d. Gaussian errors, although no probability
distribution has been specified above.

Bayesian Estimation

A more realistic model for the influenza outbreak than the just considered determin-
istic process is the diffusion approximation given by the SDE (5.19) on p. 109 since
this model accounts for random fluctuations. As in the simulation study in Sect. 8.1,
the innovation scheme is applied in order to estimate the parameters v and 3. Again,
these parameters are assumed to be a priori exponentially distributed with expected
values 0.5. New proposals o™ and 8* are drawn in the MCMC scheme according to

loga® ~ N (log o, 0.0009) and log 8* ~ N (log 3,0.0009)

with v and S denoting the current values. Figures 8.8 and 8.9 show resulting trace
plots, posterior density estimates and autocorrelation plots for « and 8. The simu-
lated Markov chains have length 10® but have been thinned by factor 500. In order
to decrease inter-observation time intervals, the innovation scheme imputes data
such that there are m intermediate subintervals in between every two observation
time points. Figures 8.8 and 8.9 show estimation results for m = 2 and m = 20.
An increase of m should reduce a potential estimation bias. Since the outcomes
for m = 2 and m = 20 are very similar, this variable is considered large enough.
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Fig. 8.6 Bayesian estimation of parameters of the multitype SIR model with n = 10 clusters
when applied to dataset 3 with both s and 7 being observed. Details of the estimation procedure
are described in the main text. The MCMC scheme introduces m = 14 subintervals in
between every two observations. This figure shows the trace plots of all parameters (left column)
with corresponding posterior density estimates (middle column) and autocorrelation plots (right
column). The Markov chains have length 10° but have been thinned by factor 50 in the trace plots.
Red horizontal lines in the trace plots and black vertical lines in the density plots indicate the true
parameter values. Estimation of posterior densities and autocorrelation takes into account the full
Markov chain, i.e. without thinning, after having discarded a 10 % burn-in phase
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Table 8.4 Daily number of

Number of b
boys confined to bed, umber of boys

Date confined to bed
reconstructed from the
graphic displayed in the 21 January 1
original publication (BMJ 22 January 3
News and Notes 1978). The 23 January 6
total number of boys visiting 24 January 25
the school was N = 763. 25 January 73
The fractions of infective 26 January 221
boys are plotted in Fig. 8.7 27 January 204
28 January 257
29 January 236
30 January 189
31 January 125
1 February 67
2 February 26
3 February 10
4 February 3
0.6
—— Simulation
0.5 4 X  Observation

fraction of infectives

time (days)

Fig. 8.7 The crosses show the observed fractions of infected boys in the boarding school as given
in Table 8.4, where day 0 corresponds to 21 January. The solid line is the fitted deterministic
course, based on the least squares estimates & = 1.67 and 8 = 0.45. This curve has been
calculated with the standard Euler scheme for ODEs with step length 0.02 and initial value
(s0,40)" = (762/763,1/763). The resulting mean sum of squared residuals equals 5 - 104

Table 8.5 lists the posterior means and 95 %-hpd intervals as obtained from the
innovation scheme with m = 2 and m = 20. While the point estimates of the
Bayesian and the least squares estimation approach are comparable, the Bayesian
confidence intervals are much smaller and seem more reasonable than the one
obtained through the inverse Fisher information. Thus, concerning the estimation of
variation in the two considered approaches, the application of the stochastic model
seems to be the more reliable approach.
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Fig. 8.8 Bayesian estimation of parameters of the standard SIR model as described in Sect. 8.2.2,
applied to the boarding school data. The MCMC scheme conditions on the observed data from
Table 8.4 and introduces m € {2,20} subintervals in between every two observations. This
figure shows the trace plots of « (left column) and the corresponding estimated posterior densities
(middle column) and autocorrelation plots (right column). The Markov chains have length 106
but have been thinned by factor 500 in the trace plots. Estimation of posterior densities and
autocorrelation takes into account the full Markov chain, i.e. without thinning, after having
discarded a 10 % burn-in phase
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Fig. 8.9 Estimation results as described in Fig. 8.8, this time for the parameter 3
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Table 8.5 Estimation results as in Figs. 8.7-8.9. The upper part dis-
plays the posterior means and posterior 95 %-hpd intervals of «
and S from the MCMC estimation with m € {2,20} imputed inter-
observation intervals after a 10 % burn-in phase. The hpd intervals
are computed according to Chen and Shao (1999). For comparison
purposes, the bottom part shows the least squares estimates of a and /3
with 95 %-confidence intervals as obtained from the inverse Fisher
information of log o and log [ evaluated at the point estimates

Innovation scheme m=2 a: 1.82,(1.63,2.02)
3:0.49, (0.45,0.52)
m = 20 a: 1.85,(1.63,2.07)
(3:0.49, (0.45,0.52)
Least squares a: 1.67, (0.06,42.80)

B3:0.45, (0.0002,799.45)

8.3 Example: Influenza in Germany

As an example for the application of the multitype SIR model, this section inves-
tigates the spatial spread of influenza in Germany. To that end, administrative divi-
sions of Germany are chosen to be represented by clusters. Contacts between geo-
graphical regions are approximated through data on daily commuter traffic from the
German Federal Agency for Work. The contact rates and infectious periods for each
cluster are statistically estimated based on available disease counts that were trans-
ferred to the Robert Koch Institute Berlin due to the German infection protection act.

The investigations in this section are intended to be a preliminary analysis for
future research. To start with, the statistical inference focuses on the geographical
area of Bavaria as one out of 16 states in Germany. Possible extensions are pointed
out throughout the entire section and in the conclusion in Sect. 8.4.

The choice of geographical regions, the setup of the contact matrix and the data
on cases of influenza are described in Sect. 8.3.1. Statistical inference on the model
parameters is carried out in Sect. 8.3.2.

8.3.1 Data

This section describes the spatial structure, network matrix and data which are used
for the statistical analysis in Sect. 8.3.2.

Geographical Regions

Germany is divided into the following administrative regions: At highest level, there
are 16 states (Bundeslinder). These are further partitioned into overall 40 counties
(Regierungsbezirke). At an even finer level, there are 439 rural and urban districts
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Table 8.6 IDs, names and

. . D Name Population size

population sizes of the seven
counties in Bavaria and of all 91 Oberbayern 4,138,402
remaining counties in 92 Niederbayern 1,185,467
Germany. A map of these 93 Oberpfalz 1,085,609
regions is shown in Fig. 8.10 94 Oberfranken 1,113,788

95 Mittelfranken 1,698,343

96 Unterfranken 1,340,912

97 Schwaben 1,767,193

— Other counties 68,036,193

Fig. 8.10 Map of the eight regions for which disease counts are analysed in Sect. 8.3.2: Consid-
ered are the seven counties in Bavaria (right graphic). Each region is labelled with an ID, and the
corresponding names are listed in Table 8.6. The eighth region is the union of all remaining states
in Germany (left graphic)

(Landkreise, Stadtkreise). In the datasets in this section, the island of Riigen
is generally excluded, leading to only 438 districts. Due to reforms concerning
the administrative organisation, the actual counties and districts of Germany are
different today. The commuter data and disease counts described below, however,
are available for the above mentioned regions.

As a proof of concept, the statistical analysis in Sect. 8.3.2 focuses on the seven
counties of Bavaria. These are listed in Table 8.6 together with their population
sizes. As an additional region, all remaining counties of Germany are summarised
in one compartment, yielding an overall number of n = 8 geographical areas. These
are illustrated in Fig. 8.10.

Connectivity Matrix

The connectivity matrix vV = ('Y%)j7k:1,___,n reflects the traffic across the
borders of the n geographical regions: 731'\12 stands for the average percentage of
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Fig. 8.11 Daily commuter
traffic between the rural and
urban districts of Germany.
The thickness of each line
represents the strength of
migration between two
regions

the population of region j travelling to region k per day. Row sums are equal to one
such that the entries on the main diagonal represent the rates with which individuals
stay in their home region. In order to account for different contact behaviour of
susceptible, infected and removed individuals, the multitype SIR model further
involves the contact matrices v° and ~'. This refinement is neglected here such
that vV = 45 = ~7.

The analysis in Sect. 8.3.2 requires such a network matrix representing the con-
tacts between individuals living in the seven counties of Bavaria and in the remain-
ing parts of Germany. Certainly, there is no exact data about daily migration between
the different regions available. However, the daily flow of commuters seems to be a
sensible indicator for such a network. This approach is especially meaningful on the
district level because it is typically the urban districts which attract many commuters
from surrounding suburbs, and it is also these urban regions which usually provide
social facilities such as educational institutions, extended medical infrastructure,
shopping areas and cultural events for people living in near rural areas.

In the following, we hence investigate data on commuter traffic which was
purchased from the German Federal Agency for Work. This dataset takes into
account the districts of residence and the locations of the employing companies as of
30 June 2006 for all employees who are subject to compulsory social insurance. The
dataset includes 26,207,317 persons, that is 31.8 % of the total German population.
Out of these, 9,896,745 people (37.8 %) are commuters, i. e. they work in a district
other than the one they live in. The resulting network on the district level is shown
in Fig.8.11. The contact matrix for the counties of Bavaria can easily be derived
from it by aggregation. Its entries are displayed in Table 8.7.
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Fig. 8.12 Weekly fractions of influenza A cases for week 40/2009 until week 5/2010 obtained
from SurvStat

Since the employment rates vary within Germany, the commuter dataset is
probably less representative for some regions than for others. Moreover, the
commuter data naturally involves only certain age groups. These imprecisions are
considered negligible here but may be refined in future work.

Disease Counts

Data about occurrences of influenza in Germany is taken from the Robert Koch
Institute: SurvStat, http://www3.rki.de/SurvStat, as of 29 July 2010. This database
contains weekly case counts on the district, county and state level since 2001.
However, contact and recovery rates typically vary between seasons (Dushoff et al.
2004) such that it is not always meaningful to base parameter estimation on a
collection of data from different seasons. The statistical analysis in Sect. 8.3.2
considers the counts from week 40 in the year 2009 until week 5 in 2010. This
influenza season is not only one of the latest available data; it has also started
uncommonly early in the year and attracted particular attention because of the
circulation of the ‘swine flu’ virus. The utilised dataset contains weekly counts
for the eight specified regions over the considered period of 19 weeks. Only cases
categorised as influenza A are considered since it was the influenza A virus that was
most responsible for the national influenza epidemic in that season. The resulting
fractions of infected persons are plotted in Fig. 8.12.


http://www3.rki.de/SurvStat
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The above data suffers from high underreporting. The dataset is hence not
immediately appropriate for the estimation of contact and recovery rates. It seems,
however, interesting to study the outcomes of a statistical analysis to the above data.
Such inference is accomplished in Sect. 8.3.2. Another point of interest concerns
the changes in the parameter estimates when modifying the underlying data. Just as
an example, assume that 10 % of the German population was affected by influenza
during the season 2009/10. That would correspond to approximately 8.2 million
infected people, but the SurvStat database contains only about 150,000 cases
between week 17/2009 and 16/2010. In order to correct for this, the original dataset
is multiplied by factor 55, and the statistical inference in Sect. 8.3.2 is repeated for
the modified dataset.

In practice, the multiplication with a uniform factor for each region is presumably
not appropriate as the levels of underreporting typically depend on region-specific
reporting behaviour and also on the severity of the epidemic in the respective area.
Advanced corrections may be investigated in future work.

Another difficulty, apart from the uncertainty in the numbers of infected indi-
viduals, concerns the number of susceptible persons. These numbers are generally
unknown. In case of influenza, an infected individual acquires immunity to the strain
he was affected by and can hence not become susceptible during the same wave of
influenza again. However, there are steadily new antigen mutants of the influenza
virus coming up (Stephenson and Nicholson 2001), which is why at the beginning
of the next epidemic the individual is typically susceptible again. A person might,
however, also have acquired partial immunity though. For simplicity, it is assumed
in the investigations in Sect. 8.3.2 that there are no removed individuals at the
beginning of the epidemic. The initial fractions of susceptibles in each region can
hence be calculated from the fractions of infected persons. Again, more refined
assumptions may be applied in the future.

8.3.2 Parameter Estimation

Inference on the parameters of the SIR diffusion model is now carried out as
described in the simulation study in Sect. 8.1. The estimation is based on the original
and modified datasets described in Sect. 8.3.1. The fractions of susceptibles are
treated as latent variables.

Table 8.8 displays resulting posterior means and 95 %-hpd intervals
for a, ..., ag and £ in the multitype SIR model. The underlying simulated Markov
chains have length 10°, and the innovation scheme introduces m = 7 intermediate
subintervals in between every two observations.

As expected, the results show substantial differences in parameter estimates
between the original and the modified dataset. This emphasises the need for more
precise data on influenza occurrences. While the estimated values for aq, ..., asg
are all at about the same range for the modified dataset, there is large variation
in the estimated contact rates for the original dataset. Concerning estimation of 3,
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Table 8.8 Estimation results for the parameters of the multitype SIR model
applied to the influenza datasets described in Sect. 8.3.1. The second column
contains estimates for the original dataset, the third column shows those for
the modified dataset, that is the original dataset multiplied by factor 55.
The table displays the posterior means and posterior 95 %-hpd intervals
after a 10 % burn-in phase. The underlying simulated Markov chains have
length 10°, and the innovation scheme introduced m = 7 subintervals in
between every two observation time points

Parameter Original dataset Modified dataset
aq 5.198 0.225

(3.784, 5.621) (0.221, 0.228)
Qs 0.735 0.236

(0.675, 0.768) (0.224, 0.244)
as 0.699 0.194

(0.450, 0.776) (0.188, 0.196)
Qg 0.180 0.201

(0.150, 0.198) (0.195, 0.207)
as 4.036 0.198

(2.035, 4.808) (0.193, 0.201)
a6 0.031 0.249

(0.028, 0.041) (0.244, 0.254)
az 0.144 0.261

(0.132, 0.156) (0.257, 0.262)
as 12.025 0.358

(11.769, 12.500) (0.356, 0.359)
8 8.230 0.343

(6.214, 8.741) (0.343, 0.344)

there is again a large difference between the two datasets. As the time unit is 1 day,
the value 0.34~! ~ 2.9 for the modified data seems much more plausible as an
approximation of the length of the infectious period than 8.237% ~ 0.12, which
results from the original data.

For comparison purposes, in a further experiment, the above applied influenza
dataset is aggregated over the eight distinct regions, yielding a one-dimensional
time series for the entire area of Germany. The standard SIR model is applied to
this dataset, again both in its original and a modified form, in order to evaluate the
differences in the resulting parameter estimates. The according posterior means and
hpd intervals are given in Table 8.9. There are again m = 7 subintervals introduced
by the innovation scheme, and the simulated Markov chains have length 5 - 10°.

Unsurprisingly, the estimates obtained from the multitype SIR model and the
estimates from the standard model do not match, neither concerning the cluster-
specific contact rates nor the global infectious period. The standard model cannot
imitate the outcomes of the multitype model. This motivates the application of the
more refined modelling approach.
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Table 8.9 Estimation results for the parameters of the standard SIR
model applied to the influenza dataset aggregated over all regions. The
second column contains estimates for the original aggregated dataset,
the third column shows those for the modified dataset, that is the
original dataset multiplied by factor 55. The table displays the posterior
means and posterior 95 %-hpd intervals after a 10 % burn-in phase.
The underlying simulated Markov chains have length 5 - 10, and the
innovation scheme introduced m = 7 subintervals in between every
two observation time points

Parameter Original dataset Modified dataset
a 1.106 0.109

(1.095, 1.125) (0.109, 0.110)
B 1.100 0.072

(1.092, 1.107) (0.071, 0.072)

8.4 Conclusion and Outlook

This chapter investigated the statistical estimation of parameters in epidemic dif-
fusion models. For carrying out these estimations, the newly developed techniques
from Chap. 7 were required.

In this chapter, parameters were both estimated in a simulation study with
synthetic datasets and in two applications with real data. The simulation study
served as a benchmark for the quality of parameter estimates. It turned out that
the contact and recovery rates in the standard and multitype SIR models can be
estimated precisely as long as information on the fraction of susceptible individuals
is provided. Otherwise, the estimates of the contact rates have to be considered with
care, but estimation of the average infectious period seemed reliable.

In real data situations, one faces multiple difficulties, some of them have
already been pointed out in the course of this chapter. These concern mainly the
data on infectious cases and knowledge about the susceptible population. The
solution of this problem requires the collaboration of data-collecting institutions
and statisticians. An interesting approach has recently been proposed by Ginsberg
et al. (2008) who utilise influenza-related queries to online search engines instead
of relying on notified visits to the doctor.

Geographic modelling of epidemic outbreaks requires the specification of the
spatial mixing of individuals. Possible advancements in the design of the connec-
tivity matrix might be achieved by combinations of different data sources. In the
literature, for example, there are several considerations of transportation networks:
Baroyan and Rvachev (1967) and Baroyan et al. (1977) analysed the Russian train
network for modelling the spread of influenza, and Rvachev and Longini (1985)
extended this work to worldwide considerations. More recently, Grais et al. (2003),
Brownstein et al. (2006) and Colizza et al. (2006a,b) worked out the impact of air
travel and other modes of transportation on the spread of diseases today. Crépey and
Barthélemy (2007) analysed influenza pandemics in the United States and France
with respect to transmission channels via air and train traffic. A different approach
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was implemented by Brockmann et al. (2006) who drew conclusions about the
travelling behaviour of humans within the United States from the dispersal of dollar
notes, tracked through the website http://www.wheresgeorge.com. For a recent
monograph on geographic models for the spread of diseases, see Sattenspiel (2009).

Future investigations of the influenza data in Sect. 8.3 will certainly involve
the incorporation of further external information in the parameter estimation. For
example, the contact rates are possibly correlated with the population densities
of the respective regions, so these densities could be used as a priori knowledge.
Alternatively, in order to reduce the number of unknown variables, administrative
regions could be categorised as rural or urban with identical contact rates within
each category. Concerning the contact matrix, the distinction between matrices v
and ~! for susceptibles and infectives are particularly meaningful for travel routes
of relatively large distances, i.e. contacts between non-adjacent regions. Further
extensions such as the consideration of age groups have been mentioned throughout
the chapter and in Sect. 2.2.3.

The ultimate objective of research on the spread of infectious diseases is
typically the development of efficient intervention policies; see for example the
discussion by Medlock and Galvani (2009) on control strategies like optimal vaccine
distributions or the review article by Cauchemez et al. (2009) on the various aspects
of school closure as part of an intervention plan. In case of a spatial multitype
model such as the one considered in this chapter, additional options arise which
correspond to modifications of the connectivity matrix. A change of connectivity
can for example be accomplished by restriction of travel connections such as airport
closures (e. g. Hufnagel et al. 2004).

Analysing epidemics using statistical inference techniques has shown the poten-
tial to provide more accurate estimates than available before. Several directions for
future work have been pointed out.
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Chapter 9
Application II: Analysis of Molecular Binding

The genetic material of humans and mammals is mainly contained in their cell nu-
clei, where most genome regulatory processes like DNA replication or transcription
take place. These processes are controlled by complex protein networks. Hence,
the comprehension of procedures like protein binding interactions in the nucleus
are of large interest, and their investigation is the subject of active research. See
for example Gorski and Misteli (2005) for an explanation of the importance of
understanding this field.

Many findings about the behaviour of chromatin-binding proteins are based on
in vitro experiments, i.e. on studies which are performed in an artificial environment
outside a living organism. In vivo experiments, on the other hand, are carried out in a
living cell and differ from in vitro settings with respect to, for example, binding sites
and environmental conditions. It is desirable, though more challenging, to analyse
data from in vivo experiments (Phair et al. 2004a; Mueller et al. 2008).

A suitable tool for the analysis of in vivo molecular binding is fluorescence mi-
croscopy. In this method, the protein of interest is labelled with a green fluorescent
protein (GFP). The spatio-temporal distribution of GFP-tagged molecules can then
be observed in the living cell.

This chapter analyses the cell cycle dependent kinetics of the particular protein
Dnmtl. Data is extracted by application of fluorescence microscopy. Kinetic
compartment models for the dynamics of the protein are established and translated
into stochastic and deterministic processes. Parameters of interest can then be
estimated by application of appropriate estimation techniques to the model and
the data.

In particular, the contents of this chapter are as follows: Sect.9.1 presents the
research questions of this chapter and tools for data acquisition. In Sect. 9.2, primary
characteristics of the data are analysed which form the basis for the subsequent
model construction. Based on biochemical principles, appropriate kinetic models
are developed and further extended in Sects. 9.3-9.5. In particular, all kinetic models
are initially designed as compartment models and then further approximated by
stochastic and deterministic differential equations. The stochastic approximation
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is particularly important as it accounts for the apparently present randomness in
the observed process. Simulation studies demonstrate the performance of suitable
parameter estimation techniques and model choice criteria. Before applying these
inference methods to real datasets, Sect.9.6 discusses and further develops the
preliminary preparation of the raw measurements from fluorescence microscopy
experiments. Finally, Sect. 9.7 investigates the research problems of this chapter by
means of the methodology from the previous sections applied to a variety of real
datasets. Section 9.9 concludes and outlines future projects.

So far, diffusion approximations or comparable stochastic models have not been
used in the literature for the analysis of observations from fluorescence microscopy
experiments. Instead, deterministic differential equations are employed, and model
parameters are approximated by least squares estimation. This approach, however,
does not account for stochasticity and furthermore violates some of the basic model
assumptions as outlined in Sect. 9.3.4. For comparison purposes, the latter procedure
is contained in this book as well. A number of formulas and properties of the
deterministic model are derived here. The emphasis of this work, however, lies on
the application of Bayesian estimation techniques as developed in Chap. 7.

The focus of this chapter is on the presentation of mathematical models and the
application of statistical estimation techniques to the collected data. Basic biological
background information is given to an extent that suits the motivation and basic
comprehension of the application. For details on biological aspects, the reader is
referred to Schneider (2009) and Schneider et al. (2012).

9.1 Problem Statement

An important cellular process is DNA methylation, which is a DNA modification
with diverse biological objectives. Proper cell function is only possible if the DNA
methylation pattern is maintained over many cell cycles. Otherwise, the formation
of tumor cells is one potential consequence. It has been shown that the protein
DNA (cytosine-5)-methyltransferase 1, in short Dnmtl, plays a central role in the
maintenance of DNA methylation patterns (see Kuch et al. 2008, and the references
therein). Despite its importance, the dynamics of Dnmtl is still unclear. In this
chapter, we investigate the kinetic behaviour of Dnmt1 in living mice.

The following paragraphs describe the data acquisition process and the research
questions that will be investigated in this chapter.

9.1.1 Data Acquisition by Fluorescence Recovery After
Photobleaching

A popular technique for the analysis of the dynamics of molecules is fluorescence
recovery after photobleaching (FRAP) (e.g. Sprague and McNally 2005), which
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Fig. 9.1 Series of images obtained in a fluorescence recovery after photobleaching (FRAP)
experiment: Initially, all chromatin proteins of interest in the cell nucleus are fluorescently labelled
(image A). Then, one part of the nucleus is irreversibly bleached by a short laser pulse such that
fluorescent emission of the proteins in that section becomes extinct (B). During a subsequent
recovery phase, the fluorescent and non-fluorescent proteins diffuse (C—F) until they are uniformly
mixed in the nucleus (G) (Modified from Schneider 2009)

is illustrated in Fig.9.1. In this experiment, all chromatin proteins of interest in
the cell nucleus are initially fluorescently labelled (image A). Then, one part of
the nucleus is irreversibly bleached by a short laser pulse such that fluorescent
emission of the proteins in that section becomes extinct (B). During a subsequent
recovery phase, the fluorescent and non-fluorescent proteins diffuse (C—F) until
they are uniformly mixed in the nucleus (G). The course of this diffusion and the
duration until complete recovery allow conclusions about the mobility of the protein
of interest.

All data was acquired in the context of a diploma thesis (Schneider 2009).
Materials and methods concerning the preparation of cell cultures, the acquisition
of images and subsequent image analysis are described in that work. General
overviews can also be found in Phair et al. (2004a) and McNally (2008).

9.1.2 Research Questions

The following questions arise in the context of analysing the dynamic properties of
Dnmtl and will be statistically investigated in this chapter.

Estimation of Kinetic Parameters

Dnmtl diffuses randomly through the cell nucleus until it binds to chromatin
at a likewise random time point. The protein remains at this binding site for a
stochastic time period until it unbinds and continues to diffuse. This procedure
recurs throughout the whole experiment.

In order to be able to characterise the dynamics of Dnmtl, a fundamental
issue is to determine the impacts of diffusion and binding on the recovery curves.
Furthermore, it is important to have an estimate of the affinity of Dnmt1 to enter
the bound state and of the average residence time that the protein remains at the
binding site.



308 9 Application II: Analysis of Molecular Binding

To that end, a preliminary analysis is performed in Sect.9.2 to clarify the
role of diffusion and binding. Kinetic models are formulated in Sects.9.3-9.5.
These incorporate the unknown measures as model parameters whose statistical
estimation is the purpose of Sect. 9.7.

Number of Mobility Classes

There is possibly more than one type of binding partner for Dnmtl, i.e. the protein
may sometimes associate to a partner of one type and sometimes to a partner of
another type. These partners may differ with respect to the affinity of Dnmt1 to enter
the bound state and the mean residence times in this state. All binding partners with
identical or similar kinetic properties are gathered in one mobility class. This term
seems more appropriate than classes of binding sites (e.g. Phair et al. 2004b) because
different sites with identical kinetic properties cannot be distinguished using FRAP
data (Schneider 2009). The number of mobility classes could hence be smaller than
the number of different binding partners.

The number of mobility classes for Dnmtl is of great interest. Related to that
is the question about associated binding affinities and mean residence times for
each class as well as the average fraction of free molecules and bound molecules
of each type.

To that end, the kinetic model for one mobility class is extended to several
mobility classes in Sect. 9.5. The identification of numbers of mobility classes from
the FRAP curves is approached by model choice criteria in Sect.9.7.

Cell Cycle Dependence

A eukariotic cell passes through a number of phases between every two cell
divisions. These are part of the cell cycle, which is composed of a first gap phase
(G1 phase) in which the cell grows, a synthesis phase (S phase) in which the DNA is
duplicated, a second gap phase (G2 phase) where the cell grows further, and finally
the mitosis phase (M phase) in which the cell divides. The S phase can further be
partitioned into an early S phase, a mid S phase and a late S phase. The G1, S and
G2 phases are again summarised as the interphase. Figure 9.2 depicts images of a
cell nucleus during a part of the cell cycle.

This chapter is concerned with the cell cycle dependent kinetics of Dnmtl. In
particular, FRAP data is collected during G1, early S and late S phases. The time
series are displayed in Fig.9.3. This chapter investigates whether Dnmtl shows
different binding behaviour depending on the phase, both with respect to binding
affinities and mean residence times and regarding the number of mobility classes.

To that end, models are estimated for time series from distinct phases in
Sect. 9.7, and the results are analysed with respect to cell cycle dependent statistical
differences.
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Fig. 9.2 Cell cycle dependent distribution of GFP-tagged Dnmt1 proteins (green) and replication
sites (red) in a nucleus (From Schneider 2009)
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9.2 Preliminary Analysis

The design of an appropriate kinetic model crucially depends on two factors: the
impact of binding and the impact of diffusion on fluorescence recovery. These issues
have to be clarified experimentally before formulating a mathematical model and
statistically inferring on its parameters. This will be investigated in the following.

9.2.1 Impact of Binding

In order to determine whether binding interactions affect the fluorescence recovery
dynamics of the protein of interest, Sprague and McNally (2005) suggest to compare
several FRAP curves of this GFP-tagged protein with those of unconjugated, non-
binding GFP. If recovery of the considered protein is substantially slower than
recovery of GFP alone, binding events obviously influence the dynamics.
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Fig. 9.4 Fluorescence
intensities of GFP (black) and
GFP-tagged Dnmtl (red)
measured in the bleached
section of the nucleus during
different phases of the cell
cycle. The data is processed
according to the triple
normalisation described in
Sect. 9.6.1 on pp. 348

intensities
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Figure 9.4 displays FRAP curves of unconjugated GFP and of GFP-labelled
Dnmtl. The difference in the speed of recovery is apparent. Hence, the kinetic
models developed in this chapter take binding transactions into account.

9.2.2 Impact of Diffusion

There are two basic scenarios that one usually proceeds from: diffusion-coupled
or diffusion-uncoupled FRAP (Sprague and McNally 2005). In a diffusion-coupled
situation, the molecules diffuse across the nucleus with a rate that is of the same
order as the rate with which binding occurs. In case of diffusion-uncoupledrecovery,
diffusion happens much faster than binding. Utilisation of the wrong pattern may
entail misleading interpretation of the results.

Intuitively, one may assume that slow recovery indicates slow binding compared
with the speed of diffusion, resulting in the diffusion-uncoupled case. However, as
Sprague and McNally (2005), Beaudouin et al. (2006) and Lambert (2009) point
out, a diffusion-uncoupled scenario is not necessarily implied by a long duration of
the recovery phase. Instead, fluorescence recovery should be observed in different
zones of the bleached section (Phair et al. 2004a) and for varying bleach spot
sizes (Sprague and McNally 2005). Diffusion-uncoupled FRAP can be assumed if
recovery is independent of the location of the zone and size of the spot.

For the application in this chapter, such control experiments have been carried
out but initially gave no definite answer (Schneider 2009); there are indications for
both scenarios. In the following sections, the mathematical models are based on
diffusion-uncoupled recovery dynamics. Such investigations are of course also of
interest for many proteins other than Dnmt1.
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To be on the safe side, however, the data should also be analysed under the
assumption of diffusion-coupled recovery. Respective kinetic models have mainly
been developed in the literature for circular and line bleaching (e.g. Mueller et al.
2008), but also for more general bleaching geometries (Carrero et al. 2004). The
data used in this chapter has been obtained by half-nucleus FRAP experiments, i.e.
by bleaching (approximately) one half of the nucleus rather than a circle or strip. An
according compartmental model is outlined in Sect. 9.8. Statistical analysis of this
model is the subject of ongoing work (Schneider et al. 2012).

9.3 General Model

In this section, a general kinetic model for the dynamics of a protein in a cell nucleus
is derived under the assumptions discussed in Sect.9.2. The same compartmental
model is utilised by, for example, Phair et al. (2004a,b) and Beaudouin et al.
(2006), who translate it into a set of ordinary differential equations. However, more
realistic models are achieved by the introduction of randomness. The importance of
incorporating stochasticity into models for natural phenomena in life sciences has
been emphasised throughout this book and in particular in Chap. 4. In the context of
the application in this chapter, the presence of uncertainty is obvious from the time
series displayed in Fig.9.3 on p.309 as the recovery curves clearly deviate from
each other even within the same cell cycle.

For that reason, after having defined the compartmental model in Sect.9.3.1, it
is approximated by a diffusion process in Sect.9.3.2 which mirrors the stochastic
nature of the recovery dynamics. So far, diffusion approximations have not been
applied to FRAP kinetics before. For the sake of comparability with the analyses of
other authors, the deterministic analogue is given in Sect. 9.3.3. In Sect. 9.3.4, the
virtues of the stochastic model are demonstrated in a simulation study.

9.3.1 Compartmental Description

The following model describes the behaviour of a protein of interest in a cell
nucleus which has partly been bleached by a laser pulse. For shorter notation, this
protein is simply referred to as molecule, ignoring all other types of molecules in
the nucleus that are not directly expressed in the model. Fluorescent molecules are
either fluorescent themselves or fluorescently labelled.

The molecule of interest has three properties:

1. It is bleached or unbleached.
2. It is located in the bleached section or in the unbleached section.
3. It is free or bound.
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Fig. 9.5 Compartmental representation of the general kinetic model: The unbleached molecules
in the nucleus are divided into three groups, namely into molecules that are free, molecules that
are bound in the bleached section and molecules that are bound in the unbleached section. Due to
the assumption of diffusion-uncoupled recovery (cf. Sect.9.2.2), the location of a free molecule
is not explicitly modelled. Four non-trivial transitions are possible: (/) A free molecule binds in
the bleached section with rate kon. (2) A bound molecule in the bleached section unbinds with
rate kofe. (3) A free molecule binds in the unbleached section with rate koy,. (4) A bound molecule
in the unbleached section unbinds with rate kof¢. fb1 and 1— fi,) express the fractions of molecules
in the bleached and unbleached sections, respectively

Property (1) is an unchangeable attribute, i.e. a bleached or unbleached molecule
remains bleached or unbleached, respectively, throughout the entire observation
period. Bleached and unbleached molecules are assumed to behave identically,
and therefore it suffices to focus on one type only. The following considerations
model the dynamics of the unbleached molecules as these are visible through their
fluorescence.

Properties (2) and (3) are changeable attributes, i.e. a molecule can change its
location among the bleached and the unbleached section, and it can change its
state among the free and the bound status: The cell nucleus is partitioned into a
bleached and an unbleached area, determined by the bleaching laser pulse. Each
molecule is located in either of these. When a molecule is free, it can diffuse
freely within the nucleus. While it is bound, its location is fixed. Binding sites
are assumed to be at fixed locations. Due to the diffusion-uncoupled scenario
assumed in Sect. 9.2.2, diffusion of the free molecules happens so rapidly that their
concentration is identical in the bleached and in the unbleached section. Hence, it is
not necessary to model the location of a free molecule.

The above considerations motivate a kinetic model whose variables and transi-
tions are described in the following. The model is illustrated in Fig. 9.5.
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Variables

The unbleached molecules are divided into three disjoint groups, whose sizes are
represented through

Ufree . the number of unbleached free molecules,
Uf;lo““d : the number of unbleached bound molecules in the bleached section,
Ufr‘fﬁl“d : the number of unbleached bound molecules in the unbleached section.

These three variables sum up to the constant system size parameter
Ny : the number of unbleached molecules.

Hence, it is sufficient to model the time-evolution of two out of the three above
quantities; the third variable is then easily obtained as the difference to Ny. The
proportion of bleached molecules is expressed by

fo1 : the fraction of bleached molecules with respect to all molecules.

The number of bleached molecules in the nucleus equals the number of molecules
in the bleached section at the time of bleaching. The number of molecules in the
bleached section is assumed approximately constant over time. Hence, fy,; is also the
fraction of (bleached or unbleached) molecules in the bleached section with respect
to all molecules in the nucleus. Moreover, f,1U free s the number of unbleached
free molecules in the bleached section at any positive time, and (1 — fi,))U® is
the number of unbleached free molecules in the unbleached section. The number
of unbleached molecules is Ny = (1 — fi,1) N, where N is the total number of
molecules in the nucleus.

Note that the structure of cell nuclei is such that the spatial distribution of the
molecules is non-uniform. Thus, the parameter fi,; does not exactly express the
fraction of the bleached area as measured in square micrometers.

Transitions and Parameters

We consider a kinetic model with the following non-trivial transitions (cf. Fig. 9.5):

. An unbleached free molecule binds in the bleached section.

. An unbleached bound molecule in the bleached section unbinds.

. An unbleached free molecule binds in the unbleached section.

. An unbleached bound molecule in the unbleached section unbinds.

BN =

Binding of a particular molecule occurs with association rate ko, € Ry,
unbinding with dissociation rate kog € R, irrespectively of the state of the
other molecules. In particular, it is assumed that there are always sufficiently many
binding sites available such that the occurrence of the first and third transition is
independent of their number. To be more precise, the association rate is the product
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of an actual binding rate and the concentration of available binding sites. This
product is assumed constant as the molecules are supposed to be in equilibrium
(cf. e.g. Sprague and McNally 2005).

The expected time until a free molecule enters the bound state and the mean
residence time of a molecule at a binding site are computed as 1/ko, and 1/kog,
respectively. The objective is to statistically estimate the parameters ko, and kog.
The fraction fy, is determined by image analysis via the loss of total fluorescence
after bleaching.

Representation as Markov Jump Process

As pointed out above, the dispersion of unbleached molecules in the cell nu-
cleus is completely described by two out of the three numbers Uee, Uf;lo““d
and Ufr‘fl‘jlnd. In the following, we model a homogeneous Markov process with
state (Uree, Upevnd) and state space

D= {(Uvﬁree7 U}l)alound)l c [0, NU]2 N IN(ZJ | Ufree + U]l;lound < NU}

Under the assumption that at most one event can occur within a small time interval
of length At, this process is subject to transitions

L (Ufree, Ufpmd) — (U — 1, U™+ 1) w. prob. Kon filU™*° At + o( At),
2. (Ufree, Ubpund) — (Uree4 1, UPP ™ — 1) w. prob. kegUp " At + o( At),
3. (Utree, Upeund)y — (Ufree— 1, UBC ) w. prob. kon (1= fol) U At + o( At),
4. (Utree, Upprnd) — (Uree+ 1, UPP"™4) w. prob. kogULgir At + o( At),

where o(At)/At — 0 as At — 0. If none of these events occurs within time At,
the process remains in state (Uree, Upeund),

9.3.2 Diffusion Approximation

So far, the considered dynamics in the cell nucleus has been modelled as a pure
Markov jump process with discrete state space. Chapter 4, however, comprehen-
sively motivated to alternatively use diffusion processes in case of large numbers of
particles as given here. This facilitates the interpretation, simulation and statistical
inference for the kinetic model. In the following, a diffusion approximation for the
jump process with the above transitions is derived.

The first step is to convert the extensive state variables U™e, Ubeund and
Ulﬁ’g’““d into intensive variables u"*¢ = U /Ny, ugf’““d = U&"u“d /Nu
and uﬁgg{ld Ulﬁ’l‘]’&“d /Ny . These sum up to one. The new state space

C = {(ufr007 ulglound)/ c [07 1]2 N ]Rg | ufrcc + ulglound S 1} (91)

is considered continuous.
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Section 4.3 introduced various techniques for the derivation of diffusion approx-
imations. Under regularity conditions, which are met here, all methods yields the
same result. In the following, we apply the Langevin approach from Sect.4.3.3.
According to this, the diffusion process with state variable (uf™¢, uP?und)’ solves
the stochastic differential equation (SDE)

free .
<di’(éound> _ H(uircc bound)dt+N 2 ( fYCC bound)dBt, (92)
bl

subject to an initial condition (ufF°e, Ef’““d) € C at time ¢y > 0. In this equation,

B = (Bi)t>1, is two-dimensional Brownian motion representing fluctuations in
binding and unbinding. In the Langevin approach, the drift vector p is obtained as

Tee oun Tee -1 oun 1
1 (u", up? ™) = ko foru” ( 1) + Kof upf d(_1>

Tee -1 oun 1
+I€on(1 - fbl)uf ( 0) + koﬁ‘ ugnbl d < 0>

_ < (kon+koff) free+k f‘[>

£ bound
kon fo1'™® — kog upy™

where ugf"“‘d + uﬁggf‘d has been replaced by 1 — !¢, The diffusion coefficient o
is a square root of the diffusion matrix X, i.e. ¥ = oo’, where

E(Ufree, ulgi)und) _ konfblufree(_l —1) + koﬂ? ugi)und< 1 —1)

1 1 -1 1
ree 1 0 oun 1 0
+kon(1 — fo)u' <0 0> + kot upont® (0 0)

(kon _koﬁ)ufmc + koﬁ" _konfblutrCC - koff l};i)und
_konfblufree —k o ul}gfund Onfblufree +k off ugound
The square root o of X is not unique. One possible candidate is

o (ufrcc7 ulglound)

\/kon ( 1— fbl)ufrcc+koﬁ' (1 _ufrcc _ugi)und) _ \/kon.fblufrcc_kkoﬁugi)und

b d
0 \/kon fblufree+koﬂubf)un

The particular choice of o has no impact on the distribution of the diffusion process,
cf. Sect.3.2.5.
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Observed Variable

The typical observation in a FRAP experiment is the mean grey value in the
bleached section, measured over time. The value zero corresponds to the bleached
section being completely dark, and the value one corresponds to it being completely
lucid. Light colour is caused by the fluorescent, i.e. by the unbleached molecules.
Hence, the observed value can be modelled as

number of unbleached molecules in the bleached section
total number of molecules in the bleached section

that is

fblUfree + U}l)alound _ fblufree + u}gfund _ fblufree + ugi)und (1 B f‘bl)
JuN forN/No fu |

This value would be equal to one if all molecules in the bleached section were
unbleached. In practice, this will not be the case: At the time of bleaching, the
number of unbleached molecules in the bleached section is zero. In the following
course, the bleached and unbleached molecules will diffuse and eventually reach a
state where the concentrations of bleached and unbleached molecules are identical
in the bleached and the unbleached section, namely

number of unbleached molecules in the nucleus
total number of molecules in the nucleus

=1- fu.

As a consequence, the final level of the observed value depends on the fraction fy,
of the bleached section. This value typically varies in each experiment and hence
complicates the comparison of distinct experimental outcomes. For this reason, the
measured mean grey value is divided by the normalising constant 1 — f,) such that
it will finally level off at value one, irrespectively of fi,;. Overall, one arrives at the
normalised observation
fblufree + ul}gfund

a o1 '

Note that the variable ¢ is subject to stochastic disturbances, i.e. it will finally

fluctuate around the value one, and this level is not an upper bound. Theoretically,
one rather has 0 < ¢ < r for some r < (1 — fbl)_l.

9.3)

Transformation of Diffusion Approximation

With ¢ being the only observed variable, both components of the pro-
cess (ur*e, uPPund) are latent. For statistical inference on the parameters Koy
and ko, it would be possible to, for example, estimate ufr® and then to calculate

a quasi-observed value of ugf"“‘d conditioned on the observed value of ¢ and
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the estimated value of u™° through Eq.(9.3). A more convenient approach,
however, is to take g as one out of two state variables. Hence, we in the following
consider a diffusion process with state (¢, u™¢)’ with observed component ¢, latent
component u{"°¢ and state space

C = {(q7ufree)/ | (ufree7 fbl(q _ ufree))/ c C}
with C defined as in (9.1). An SDE for this process can be obtained with Itd’s

formula from Sect. 3.2.10. Calculations have been moved to Sect.C.1.1 in the
Appendix. The result is

ko (1 — 1 -
( df(fee) = il .q) dt + —— (7” i’”) dB; (9.4)
du —(kon + Kot )u™®® + kot vV Ny \021 022

with

G11 = 521 = \[ Kot (1= ) + (hon— horr) (1 — fu)utres

G12=(fr;" = 1) \/koﬂfblq + (kon —Kott) forutree

o2 = — \JFoft o + (kon — ko) foruee

and initial condition (go, ur*®)’ € C at time t,. The diffusion matrix for (g, u'")’
reads

1 (ko (o' —2)q+ (kon — ko) (fi —1)u'™® + kog kot (1 — q)
NU koﬁ" (1 - (J) (l<3on_l<3oif‘[')uffrCc + koﬁ" '

This diffusion approximation can now be employed in order to statistically infer
on ko, and kog by application of the Bayesian estimation techniques described in
Chap. 7. Before analysing experimental FRAP data in Sect.9.7, the performance
of the procedure and its benefits compared to a deterministic approach are demon-
strated in a simulation study in Sect. 9.3.4.

Initial Conditions

Some remarks on the initial conditions for the process (g, u™*®)’ are expedient.
That is, on the one hand the number of unbleached molecules in the bleached
compartment is assumed to be zero at time ¢ = 0, i.e. at the time of bleaching.
In particular, the number of unbleached free molecules in the bleached section is
zero at time ¢ = 0. On the other hand, the number of unbleached free molecules in
the bleached part of the nucleus is modelled as f,;l/°® > 0 at any positive time.
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That means, one has u°¢(0) # lim,_,+ uf™°(t), i.e. uf® is not right-continuous
int = 0, and hence ¢(t) is not right-continuous in ¢ = 0 either.

Diffusion processes are processes with almost surely continuous sample paths,
and the deterministic differential equations in the next section refer to processes
with even continuous sample paths. It is hence reasonable to formulate the initial
conditions for all differential equations in this chapter for an initial time ¢y > 0.
This poses no restriction on the applicability of the models as the first postbleach
FRAP image is acquired at a positive time point, anyway.

9.3.3 Deterministic Approximation

For the purpose of comparing the performances of the diffusion approximation ap-
proach considered in this book and the deterministic approach generally employed
in the literature, the deterministic counterpart of the above model is given here
as well. That is, taking the limit Ny — oo in the stochastic differential equation
(SDE) (9.4), one obtains the ordinary differential equation (ODE)

ko (1 —
( dffcc> - - dt ©.5)
du _(kon + kof‘f)ufrCc + koﬁ"

as a deterministic description of the FRAP dynamics. The starting values are again
(qo, ufre®)’" € C. This model represents the macroscopic behaviour of the recovery
process but, however, does not incorporate stochastic fluctuations. For this reason,
the diffusion approximation model is clearly to be preferred.

Interestingly, the two-dimensional ODE (9.5) consists of two independent one-
dimensional ODEs

dg = ko (1 — g)dt 9.6)

and ' '
du™®® = (—(kon + kot )u™® + ko ) dt. (9.7)
Since uf*° is unobserved, Eq.(9.7) cannot directly be employed for estimation

purposes. Instead, the FRAP curves are fitted to simulations from Eq. (9.6). The
parameter k., does not appear in this equation. That means, it cannot be estimated
from recovery curves in the deterministic approach.

As a side note, Egs. (9.6) and (9.7) possess the explicit solutions

q(t) = 14 (g0 — 1) exp(—kos (t — t0)) 9.8)

and

k k
free _ off free off _ _
b (t) o kon + koff * (Uo kon + koﬁ) exp( (k(m * koﬂ)(t tO))7 (99)
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where t > ty > 0. As a consequence, for fitting the deterministic model to the
observed data, there is no need to employ computationally demanding schemes for
numerically solving the above ODE (9.6).

Equation (9.9) immediately allows an approximation of the deterministic frac-
tions fre® and fPound = 1 — ffree of free and bound molecules. That is, ¢ is the
limit of u™°¢(#) as t — oo, hence

ko kon
ffree _ - _:fk and fbound
on off

B kon + koff .

If the nucleus is in chemical equilibrium at the time of bleaching, then uf™¢ is
constant, and hence u¢(t) = kg /(kon + kog) for all £ > .

9.3.4 Simulation Study

Before applying estimation procedures to real datasets in Sect. 9.7, this section first
investigates the performance of the statistical methods in a simulation study. This
allows a direct comparison of parameter estimates with the true values used for the
generation of synthetic data.

We use two datasets for the process (9.4) which have been simulated with
initial value (go,u®)’ = (0.07,0.05)" and parameters (kon, kot) = (3.8,0.2)’
and (kon, ko)’ = (0.3,0.2)’, respectively. The sample paths of ¢ and ufe°
are displayed in Fig.9.6a, d. The same plots display empirical pointwise 95 %-
confidence bands for the trajectories of the diffusion process which have each been
obtained from 100 simulated sample paths. Observations in the synthetic datasets
are assumed to be given on the time interval [0.15,90] with an equidistant time
step equal to 0.15, i.e. there are 600 observations including the initial value of
the process. This roughly corresponds to the situation given in the real datasets in
Sect. 9.7. The fraction of the bleached area is chosen to be f1,; = 0.4, and the number
of molecules is set equal to 10,000. As the sample path for uf"° approximately
remains at the same level in the first dataset, i.e. in Fig. 9.6a, this dataset resembles
the real data situation most.

Bayesian Estimation

Chapter 7 introduced Bayesian methods for statistical inference on diffusion
processes by means of data augmentation. In particular, the innovation scheme was
presented and further developed in Sect.7.4.4. This scheme is now applied to the
two synthetic datasets in order to estimate the parameters k,, and kog. The notation
is adopted from Chap. 7.
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Fig. 9.6 Synthetic datasets used in the simulation study in this section. Simulations have been
obtained by application of the Euler scheme from Sect.3.3.2 with time step 0.025 and initial
value (qgo, ufr®)’ = (0.07,0.05)" at time to = 0.15. Observations are assumed to be
available at equidistant time steps of length 0.15 such that there are 600 observations on the
time interval [0.15, 90]. The fraction of the bleached area equals fi,; = 0.4, and the number of
molecules is N = 10,000. (a) Sample paths for ¢ and ufr® (black lines), simulated for ko, = 3.8
and kogr = 0.2. The grey areas represent empirical pointwise 95 %-confidence bands for the
trajectories. These have been obtained from another 100 realisations of the diffusion process.
(b) The same data as in (a), but as the component ufree is unobserved in practice, this dataset
does only contain the discretely sampled path for ¢ and the initial value of ufr®®. (¢) The same
data as in (b) but with additional information about the final value of ufree. (d) Sample paths
for ¢ and ufr®® (black lines), simulated for ko, = 0.3 and kogr = 0.2. The grey areas display
confidence bands as in (a). (e) The same data as in (d), but this dataset does only contain the
discretely sampled path for ¢ and the initial value of uf*®®. (f) The same data as in (e) but with
additional information about the final value of ufree

A priori, ko, and k.g are assumed to be exponentially distributed with
expected values (ko) = 4 and IE(kog) = 0.1 in the first dataset and E(kop, ) = 0.2
and E(kog) = 0.1 in the second dataset. In the MCMC algorithm, new

proposals k% and k> are drawn according to

log k2, ~ N (log kon, 0.0009) and  log kg ~ N (log kog, 0.0009),

where ko, and kog represent the current values. Figure 9.7 displays trace plots
for kon and kog produced by the innovation scheme. In particular, the parameter
update is performed according to Algorithm 7.6 on p. 212, and the partially latent
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Fig. 9.7 Estimation of parameters of the diffusion process (9.4) by application of the inno-
vation scheme based on the synthetic datasets displayed in Fig.9.6. The MCMC algorithm
introduces m = 5 subintervals in between every two observations. This figure shows the trace
plots of kopn and kegr. The Markov chains in (a)-(e) have length 10° but have been thinned by
factor 50; because of a large burn-in, the chain in (f) has length 106 and is thinned by factor 500.
The true value of ko, equals 3.8 in Fig. 9.6a—c and 0.3 in Fig. 9.6d—f. The true value of k¢ is 0.2.
These are indicated by the red horizontal lines
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Table 9.1 Estimation results as in Fig.9.7. This table displays the posterior means and posterior
95 %-hpd intervals after a 10 % burn-in phase. The latter are computed according to Chen and Shao
(1999). The true values of the parameters are displayed in the first column

True values Estimates from Fig. 9.7a/d Estimates from Fig. 9.7b/e  Estimates from Fig. 9.7¢c/f

kon = 3.8 kon:3.78,(3.59,3.97) kon: 0.66, (0.56,0.85) kon :3.55,(3.30,3.80)
kots = 0.2 kog: 0.20, (0.19,0.21) kogs 1 0.21, (0.20,0.22) kogr 1 0.20, (0.19,0.21)

kon = 0.3  kon :0.29,(0.28,0.31) kon :0.79, (0.68,0.93) kon :0.30, (0.28,0.32)
korr = 0.2 kog: 0.20, (0.19,0.20) kotr 1 0.19, (0.18, 0.20) kogr 1 0.20, (0.19,0.20)

diffusion path is updated with a modified bridge proposal as described in Sect. 7.2.
The simulated Markov chains in Fig. 9.7a—e have length 10° but have been thinned
by factor 50; because of a large burn-in, the chain in Fig.9.7f has length 105 and
is thinned by factor 500. For all estimations, data has been imputed such that there
are m = 5 intermediate subintervals in between every two observation times.

When applied to the complete datasets from Fig. 9.6a, d, the innovation scheme
estimates ko, and kog very precisely as shown in Fig.9.7a, d. In practice, however,
the component ¢ is unobserved and the datasets are as in Fig. 9.6b, e. When no
information on u°® is given apart from its initial value, the innovation scheme can
still roughly estimate kg but experiences severe difficulties in the estimation of k,,.
This is demonstrated in Fig. 9.7b, e. If, however, the endpoint of ufree is added to
the set of observations, as it is done in Fig.9.6c, f, it is again possible to obtain
satisfactory estimation results for both k., and kg, see Fig. 9.7c, f. In practice, one
expects u7°® to be approximately constant as the cell nucleus is supposed to be in
chemical equilibrium; approximations for the fraction ™ are therefore possible
also in real applications as explained in Sect.9.7. Table 9.1 displays the posterior
means and 95 %-hpd intervals for k., and kog corresponding to the trace plots in
Fig.9.7.

Parameter estimation by application of the innovation scheme requires knowl-
edge of the initial value of the latent component u™® and of the number of
molecules N. Wrong assumptions about these two measures bias the estimation
results as demonstrated in Table 9.2: First, the innovation scheme is applied based
on the data from Fig. 9.6a but presuming N = 5,000 and N = 20,000 instead of
the true value N = 10,000. Second, estimates are obtained based on the data from
Fig.9.6¢ with the starting value and endpoint of u{"¢ set equal to 0.025 instead of
approximately 0.05. Both modifications especially affect the estimates of kqy. It is
hence important to carefully choose the value of N and uf®® as also discussed in
Sect. 9.7.

Least Squares Estimation
An alternative approach to the Bayesian estimation procedures in combination with

a stochastic diffusion model is least squares estimation based on the deterministic
model from Sect.9.3.3. The latter approach is prevalent in the literature on the
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Table 9.2 Estimation results under modified assumptions. In the left table, estimates for kon
and ko are obtained based on the data from Fig. 9.6a but presuming N = 5,000 and N = 20,000
instead of the true value N = 10,000. In the right table, estimation is carried out based on the
data from Fig. 9.6¢ with the starting value and endpoint of u!*°® set equal to 0.025 instead of
approximately 0.05. The tables display the posterior means and posterior 95 %-hpd intervals after a
10 % burn-in phase of the MCMC algorithm with 10° iterations. The true values of the parameters
are kon = 3.8 and kogr = 0.2

Estimates for dataset Estimates for dataset
Modification  from Fig.9.6a Modification from Fig. 9.6¢c
kon :2.83,(2.64,3.02) Level of ufree kon :7.29, (6.53,8.12)

N =5000  kog :0.15, (0.14,0.16) setequal t0 0.025  Koge : 0.20, (0.19,0.21)
kon @ 4.37, (4.22,4.52)
N =20,000 ko : 0.23, (0.22,0.24)

analysis of molecular binding. For comparison purposes, it is also considered
here. It should however be emphasised that the least squares approach violates
two model assumptions which result directly from the original compartmental
formulation. These concern the correspondence between least squares estimation
and the assumption of independent and identically distributed deviations from the
deterministic course. Neither independence nor homoscedasticity is given in the
original model.

Let z(t) denote the observed fluorescence intensity at time ¢ and g, (t) its
simulated counterpart based on the parameter kg. As pointed out before, the value
of koy has no impact on the deterministic course of ¢. In order to estimate the
parameter kg, the function gy_, (¢) is computed from Eq. (9.8) for different values
of kog with ¢qo = 0.07 at time tg = 0.15. A least squares estimate for kg is
obtained as

- 1

2
kog = argmin mSSR, where mSSR = —— Qe (ti) — (2
argmin T 2 (O (1) = (1)
(9.10)
is the mean sum of squared residuals, and ¢y, . . ., ¢,, are the observation times. Such

an estimate kog can be determined by application of an optimisation method such
as the Nelder-Mead algorithm (Nelder and Mead 1965), which is also chosen here.
Applied to the datasets from Fig. 9.6a—c, the procedure yields ko = 0.20072. For
the data from Fig. 9.6d—f, the least squares estimate equals kot = 0.19443. In both
datasets, the true value is kog = 0.2. The resulting mean sums of squared residuals
are 0.00012 in both cases. Figure 9.8a displays the agreement between the first
synthetic curve ¢ and its estimated counterpart.

An alternative to keeping the starting value go = 0.07 fixed is to estimate
this parameter as well. The Nelder-Mead algorithm can then be applied to find a
tuple (Go, /Afog) such that the mean sum of squared residuals is minimised. For the
datasets from Fig. 9.6a—c, this procedure yields §o = 0.07542 and ko = 0.19953.
For the data from Fig.9.6d—f, the least squares estimates are gy = 0.06285
and ]Afoff = 0.19593. In both cases, the mean sum of squared residuals is decreased
by only less than 10~% compared to the model with fixed qq.



324 9 Application II: Analysis of Molecular Binding

a b
20 H
1.0 e
z /
2 0.8 1 / 15 4
2 /
£
o 0.6 1 c
2 53
8 10 4
2 04 |
‘o- |
2 |
T o024
| —— Simulation 51
0.0 4 Observation
T T T T T T T T T T T T
0 20 40 60 80 0.01 0.02 0.03 0.04 0.05 0.06 0.07
time ufree

Fig. 9.8 (a) Deterministic course of q for kogr = 0.20072 (black) compared to the (synthetic)
observation from the dataset in Fig.9.6a (green). The mean sum of squared residuals for this fit
equals 0.00012. (b) Estimation of koy, according to Eq. (9.11) for kogr = 0.20072 and different
values of ufree

As mentioned above, Eq. (9.7) cannot directly be used for parameter estimation
as u*® is unobserved. However, the nucleus is assumed to be in chemical equilib-
rium such that the fraction of free molecules (and also the fraction of unbleached
free molecules) is approximately constant. In the deterministic model, this refers

to dufr®®/dt = 0. Solving this equation yields

kon = kot (L - 1> . ©.11)

ufree

Hence, an approximation of k., is possible if estimates are available for kg
and u*°. For the least squares estimate ]%Off = 0.20072 and the true value ufomc =
0.05, one obtains indeed l%on = 3.81368, which is close to the true value k., = 3.8.
However, the value of 0 < ugm < qp is unknown in practice. Figure 9.8b shows
estimates for ko, according to (9.11) for kog = 0.20072 and different values
of ufrcc.

Conclusion

To summarise, both the Bayesian and the least squares estimation approaches
are capable to correctly estimate the parameter kog from the recovery curves in
a FRAP experiment. Estimation of k., is possible if information about ¢ is
available. Least squares estimation employs a deterministic model which does not
account for random fluctuations of the recovery curves and erroneously assumes
independence and homoscedasticity of the deviations between the observations and
the determinstic course. Point estimates are, however, comparable to the Bayesian
posterior means.

Before applying the estimation procedures to real datasets in Sect. 9.7, some

further improvements of the kinetic model are considered in the next two sections.
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Fig. 9.9 Due to rapidly diffusing molecules, the border of the bleached section is presumably
determined with error such that the actual bleached section is actually larger than the defined
bleached section. The actual fraction fi1 of bleached molecules is assumed to be correctly
identified. The size of the indefinite intermediate area is denoted by fin¢. The fraction of molecules
in the defined bleached section results as f7'; = fb1 — 0.5 fint

9.4 Refinement of the General Model

While the parameters ko, and k.g shall be estimated statistically, the fraction fi,
of bleached molecules is determined experimentally: It is measured via the loss of
fluorescence in the whole nucleus. We assume the value f},) to be identified correctly,
i.e. f) is indeed the fraction of bleached molecules with respect to all molecules.
However, there is good reason for believing that the contour of the bleached section
of the nucleus is determined with error: The free molecules diffuse very rapidly such
that unbleached molecules presumably invade the bleached section in the short but
nonzero time interval between the bleaching pulse and the first postbleach image. As
a consequence, there arises an intermediate area in the nucleus which neither clearly
belongs to the bleached section nor to the unbleached section. For this reason, we
in the following distinguish between the actual and the defined bleached section of
the nucleus. This is illustrated in Fig. 9.9.

The kinetic model can be adapted according to these considerations by introduc-
tion of a parameter

N 1
fbl = fbl - §fint )

where fiy, with 0 < fine << 2 fp) is a small positive constant called the intermediate
fraction. This parameter stands for the magnitude of the intermediate area and may
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be determined experimentally or estimated statistically. f;;; represents the number
of molecules in the defined bleached section with respect to all molecules in the cell
nucleus. The number of unbleached free molecules in the defined bleached section
is f{)klUfree'

The observed value ¢, given in Eq.(9.3) on p. 316, refers to spatially averaged
grey values in the defined bleached section, that is

number of unbleached molecules in the defined bleached section 9.12)

total number of molecules in the defined bleached section

9.4.1 Compartmental Description

In order to be able to adequately model the fraction (9.12), (re-)introduce the
following variables:

Ufree  : no. of unbleached free molecules,

Uﬁ’l"““d : no. of unbleached bound molecules in the actual bleached section,
Upbound : no. of unbleached bound molecules in the defined bleached section,
Ufr‘fﬁl“d : no. of unbleached bound molecules in the actual unbleached section,

Ul?gg{id : no. of unbleached bound molecules in the defined unbleached section.

One has Ufrcc—i_Ulta)lound—i_U};I?l];lnd — Ufrcc_'_U}l))l?kund_i_Ulll)sgﬁd — NU — (l_fbl)N,
where N is the total number of molecules in the nucleus. It is
hence reasonable to normalise the above numbers by dividing through
Ny to obtain ufree, ugf““d, ugf*““d, u‘ggg{’d and

bound (3 free bound bound __ , free bound bound __
Uynblx with u + Uy + Uynpl = U + U] + Uynblx — L.

9.4.2 Diffusion Approximation

The observed mean grey value can now be expressed as

* 7 7iree bound * , free bound * , free bound
JaU™ + U™ o™ +ug™  fow™ + ugy

P 7.7/ T TR

This value has been normalised by the experimenter by dividing through (1 — fy,).
Hence, the new target variable is represented by
fglufree + ul}gf*und

*= bl bl (9.13)
! B
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Similarly to the variable g, the observed values of ¢* will eventually level off at
value one, and the theoretical range of the target variable remains 0 < ¢* < r for
some r < (1 — fi)~ %

The modified target variable ¢* requires modelling the process (u'r®¢, yPound)!
instead of (uf°°, uPP"d)’ with unaltered state space C. A respective SDE can be
obtained from (9.2) on p. 315 by simply replacing uP?""d and fi,) by uP2"d and f;;,
respectively, in the drift and diffusion coefficients.

Analogously, a diffusion approximation can be set up from previous calculations

for (g*, u'r®)’ with state space
5* _ {(q*, ufrcc)/ | (ufrcc, ff;](q* _ ufrcc))/ c C},

where C has been defined in (9.1) on p.314. Now, if fi,; and hence f}; is to be
estimated statistically, the state space of the process is not anymore independent
of the unknown parameter. Independence has been one of the requirements
for the estimation techniques in Chap.7. In the present case, however, the
dependence of C* on fiy does not impose any practical restrictions: Because
of 0 < ubpund < 1 — yfree one has

ufree < q* < (fljl — 1)ufree + 1
i

This theoretical upper bound for ¢* is, for realistic values of ufree and fobs
much larger than its practical upper bound, which lies somewhat above one.
The admissible upper value for ¢* can hence confidently be replaced by the
smaller ((fp1 — 1)u'™®+1)/ fi,1, which is independent of the parameters to estimate.

An SDE for (¢*,u®®)’ then follows from Eq.(9.4) on p.317 by replacing ¢
and fp; by ¢* and f}, respectively. In particular, one obtains

< dg* > _ ko (1= ") dt s <5i‘1 5T2) dB; (9.14)
dufrcc _(kon + koﬂ)ufree + koﬂ' vV NU 5’;1 5';2

with an initial condition (g, uf°®)’ € C* at time t, > 0 and

01 =03 = \/koﬁ' (1 — fihq*) + (kon— kog) (1 — f)ufree

~ % 1 * *
712 = (f_* N 1) \/k"ﬁfblq* + (Kon — ko) fryulre
bl

— kot fiyq" + (hon— o) fiyutree

T2
The diffusion matrix for (¢*, uf*®)’ reads

1 (ko ((fi) ™" =2)q" +(Kon—Fotr) (fi1) ' =1) u™**+kogr kot (1—q")
Ny kot (1—q") (Kon—kog )u+kogs |
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9.4.3 Deterministic Approximation

Like in Sect. 9.3.3, the stochastic description in terms of a diffusion approximation
immediately allows to read out a deterministic model as its limit. Here, we obtain a
one-dimensional ODE with explicit solution

q"(t) = 1+ (g5 — 1) exp(—Fko (t — t0))- (9.15)

Once more, this equation does not contain the association rate ko, and it does
neither incorporate the intermediate fraction fi ;. These parameters can therefore
not be estimated by fitting the FRAP data to (9.15).

9.4.4 Simulation Study

The following considerations investigate the statistical estimation of the parame-
ter fint- As pointed out in the previous section, this is not possible by application
of the deterministic approximation as the underlying model for the recovery curve.
Hence, the diffusion model coupled with the innovation scheme is utilised.

A synthetic dataset is generated by application of the Euler scheme with all
settings as described in Sect.9.3.4. The parameters chosen for this simulation
are kon, = 3.8, kog = 0.2 and fi,y = 0.05, and the starting value of the
diffusion process equals once more (g3, uf®)’ = (0.07,0.05)". The innovation
scheme is applied to the data with the same preferences as in Sect.9.3.4. A
priori, the new parameter fi,; is assumed to be exponentially distributed with
expectation E( fint) = 0.05. It is updated according to

log fiie ~ N (l0g fine,0.0001).

As before, estimation is carried out for different subsets of the simulated data which
are shown in the top row of Fig.9.10. The remaining graphics in this figure display
trace plots for the parameters ko, ko and fins.

Briefly summarised, estimation of f;,; turns out to be difficult even if the
component u°° is considered observed as in the dataset in Fig.9.10a. On the
other hand, the introduction of the additional parameter fi,; does not seriously
obstruct estimation of k,,, and k.g in comparison to the results shown in Fig.9.7.
This is also demonstrated by the experiments in Figs.9.11 and 9.12: Here, the
general model (9.4), i.e. the model without the correction parameter f;,¢, is related
to the dataset from Fig.9.10a with fi,y = 0.05, and the other way round, the
refined model (9.14) is related to the dataset from Fig. 9.6a not incorporating the
parameter f;,;. In both cases, estimation of ko, and kg works well, and the value
of fint in Fig. 9.12 is correctly estimated to approach zero.



9.4 Refinement of the General Model 329

a b c
1.0 1.0 1.0 {
0.8 4 0.8 0.8 |
0.6 1 0.6 0.6
0.4 4 0.4 0.4 4
0.2 q e 0.2 0.2 {
0.0 0.0 17 . T T T 0017 T T T —
0 20 40 60 80 0 20 40 60 80
time time time

4.5 4 3.5 4.5
c 4.0 c 254 c 4.0 4
§ s s
X X | X
35 15 1 35 4
05 A T T T T T

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
iterations iterations iterations

0.21 4
0.19 4
0.17 4

1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
|terat|ons iterations iterations

T

o
o

0.21

Kot
Koft

0.19 A

Koft
o
=

o 4
o

0.25 4 0.25 - 0.25 -

0.05 WJ/.(\M

0 500 1000 1500 2000 0 500 1000 1500 2000 500 1000 1500 2000
iterations iterations iterations

0.15

0.05 W W \\// 0.05

f|n(
o
=
>
f|nl
finl
o
&

o]

Fig. 9.10 Top row: Synthetic datasets for the diffusion model (9.14), obtained by application
of the Euler scheme with time step 0.025 and initial value (gg,u®®)’ = (0.07,0.05)’
time to = 0.15. Observations are assumed to be available at equidistant time steps of length 0.15
such that there are 600 observations on the time interval [0.15, 90]. The fraction of the bleached
area equals fi,1 = 0.4, and the number of molecules is N = 10,000. (a) Sample paths for ¢*
and ufree, simulated for kon = 3.8, kogr = 0.2 and finy = 0.05. (b) The same data as
in (a), but as the component uf*®® is unobserved in practice, this dataset does only contain the
discretely sampled path for ¢* and the initial value of ufree . (¢) The same data as in (b) but with
additional information about the final value of ur®®. Remaining rows: Estimation of parameters of
the diffusion process (9.14) by application of the innovation scheme based on the synthetic datasets
displayed in the fop row. The MCMC algorithm introduces m = 5 subintervals in between every
two observations. This figure shows the trace plots of kon, kofr and fing. The Markov chains have
length 105 but have been thinned by factor 50. The true values are indicated by the red horizontal
lines
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Fig. 9.11 Estimation results for kon and ko, where the general model (9.4), i.e. the model
without the correction parameter fins, is related to the dataset from Fig. 9.11a with fint = 0.05.
Estimates are obtained by application of the innovation scheme. The MCMC algorithm intro-
duces m = 5 subintervals in between every two observations. The Markov chains have length 105
but have been thinned by factor 50. The true values equal kon = 3.8 and kogr = 0.2 and are
indicated by the red horizontal lines
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Fig. 9.12 Estimation results for ko, kogr and fint, where the refined model (9.14), i.e. the model
with correction parameter fint, is related to the dataset from Fig.9.6a without fin¢. Estimates
are obtained by application of the innovation scheme. The MCMC algorithm introduces m = 5
subintervals in between every two observations. The Markov chains have length 10 but have been
thinned by factor 50. The true values equal kon, = 3.8, kogr = 0.2 and fins = 0 and are indicated
by the red horizontal lines

Precise estimation of fi, is subject to current research but not further considered
in this book. In the application in Sect. 9.7, approximations for fi,; are obtained by
image analysis. In the statistical estimation of fi,¢, these can be employed as a priori
knowledge. If the correction by fiy is neglected, the parameter is simply set equal
to zero.

9.5 Extension of the General Model to Multiple
Mobility Classes

One of the research questions listed in Sect.9.1.2 was the investigation of the cell
cycle dependent number of mobility classes of binding partners for Dnmtl (cf.
p.308). If there is more than one mobility class, the protein binds and unbinds to
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different classes of binding partners with different association and dissociation rates.
The kinetic models in Sects.9.3 and 9.4 allow for one mobility class only. They
are hence extended to multiple classes in this section. The same compartmental
extension has been carried out by Phair et al. (2004a,b), who arrive at a system of
ordinary differential equations describing the dynamics within the cell nucleus.

9.5.1 Compartmental Description

Suppose there are M € IN classes of kinetically different binding partners for the

molecule of interest. Label these classes with numbers i € {1, ..., M} and refer to
a molecule that is bound to a partner from class ¢ as bound of type 1, type i-bound or
similarly. For¢ = 1, ..., M, define the following variables:

Ufree : no. of unbleached free molecules,

Usliund’i : no. of unbleached type i-bound molecules in the bleached section,
Ubound,i

unbls |- 0. of unbleached type i-bound molecules in the unbleached section.

For shorter notation, the terms bleached section and unbleached section now refer
to the defined areas detected by image analysis (cf. the distinction between defined
and actual areas in Sect. 9.4). The number of all unbleached molecules equals

M
Ufrcc + Z(U}la)lc;und,i + U[I]){c])};llr;d,i) =Ny = (1 — ,fbl)N

=1

with N again being the number of all bleached and unbleached molecules in the
nucleus. Let
f; bound,1 bound, M bound,1 bound, M\’
(U ree’ Ubl* ot Ubl* ’ Uunbl* ot Uunbl* )

be the state of a time-homogeneous Markov process with discrete state space. As
all components add up to Ny, one of them could actually be left out. However, the
following notation is more comprehensive with a state vector as defined above.

The following transitions are possible fori = 1,..., M. For M = 2, these are
illustrated in Fig.9.13.

71. An unbleached free molecule binds of type ¢ in the bleached section with
rate Ko j.

72. An unbleached type i-bound molecule in the bleached section unbinds with
rate Kofr ;.

73. An unbleached free molecule binds of type 7 in the unbleached section with
rate Kop q.

14. An unbleached type i-bound molecule in the unbleached section unbinds with
rate Kofr ;.
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Fig. 9.13 Compartmental representation of the kinetic model with M = 2 mobility classes: The
unbleached molecules in the nucleus are divided into five groups, namely into molecules that are
free, molecules that are type 1-bound in the bleached section, molecules that are type 1-bound in
the unbleached section, molecules that are type 2-bound in the bleached section, and molecules
that are type 2-bound in the unbleached section. Due to the assumption of diffusion-uncoupled
recovery (cf. Sect.9.2.2), the location of a free molecule is not explicitly modelled. Eight non-
trivial transitions are possible: (11) A free molecule binds of type 1 in the bleached section with
rate kon,1. (12) A type 1-bound molecule in the bleached section unbinds with rate ke 1. (13) A
free molecule binds of type 1 in the unbleached section with rate kon,1. (14) A type 1-bound
molecule in the unbleached section unbinds with rate ko¢f 1. (21) A free molecule binds of type 2
in the bleached section with rate kon,2. (22) A type 2-bound molecule in the bleached section
unbinds with rate ke 2. (23) A free molecule binds of type 2 in the unbleached section with
rate kon, 2. (24) A type 2-bound molecule in the unbleached section unbinds with rate kogr 2. f5
and 1— f¥ express the fractions of molecules in the defined bleached and unbleached sections,
respectively

The parameters ko, ; € R4 and kog; € R denote the association and
dissociation rates corresponding to the ¢th mobility class. The transitions correspond
to the following changes of the state variable:

-1

A, =1 e for transition i;, which occurs with rate  kop i fi U™,
0
1

A,;, = | —e; | for transition i3, which occurs with rate kog,iUEI‘iu“d’l,

0
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-1
A,=1| 0 for transition i3, which occurs with rate ko (1 — fg‘l)UfmC,
€;
1
A;, = 0 for transition 74, which occurs with rate kog,iUEI‘l’gﬂd’l,
—e;

where e; = (0,...,0,1,0,...,0) € RM denotes the ith unit vector and 0 € RM
the null vector. This expresses the compartmental kinetic model in terms of a pure
Markov jump process.

9.5.2 Diffusion Approximation

As motivated before, a desirable representation of the above model dynamics is by
means of a diffusion approximation. An according process shall be specified in this
section. . .

To that end, divide the numbers Ufree, U&‘;und’z and {Pornd by Ny to obtain the

unblx
: bound,i bound,i , :
fractions u™°¢, u """ and u op1 " for all i. These fractions sum up to one. The

observed variable in the FRAP experiment is the mean grey value in the bleached

compartment, that is
M

1 .
¢ = ufree 4 — N o (9.16)
fen i=1
This variable should be one of the components of the diffusion process. The
proceeding is therefore as follows: First, one derives a diffusion approximation for
the (2M + 1)-dimensional state variable

_ ( free  bound,1 bound,M  bound,1 bound, M\’
u=\u > Up 3oy Uply » Yunblx 2 Yunblx )

with state space

M
Car = e [0, 120 [ufree 4 3 (™ i) =15 ©9.07)
=1

The resulting diffusion process is then transformed to a process with 2M-
dimensional state variable

* free , bound,1 bound,M—1 _ bound,1 bound, M —1\/
(q ) U » Uplx y e Uy » Uynblx >+ > Uynblsx ) (918)
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with an appropriate state space resulting from (9.16) and (9.17). Due to space
restrictions, intermediate steps have been moved to Sect.C.1.2 in the Appendix.
The resulting drift vector and diffusion matrix for (9.18) are

4 yad yyaf yyab yyau
‘uf 1 Efq Eﬂ' Efb qu
Hb and N_U s7ba yobf yabb yabu
Hu Euq Zuf EUb Zuu

The components of the drift vector are

pteR  with

M-—1 boundl
b d,i bl
q_koffMl_q +§ oﬂ'z_ oﬂ',M) u o — :
i=1 fbl

pfeR  with

M M—-1
Mf =— <<Z kon,i) + koﬁ”,M) ufree+ koﬂ',]% + Z (koﬂ',i_koff,M)ubound)i

i=1 i=1

b b M-1 : b f b d,
124 (Mz) eR with My = kon,ift;klu e — koff lub;)*un ‘

M—1 f bound,i
H = (Mz ) € R with Mz kOﬂ,i(l - f{akl)u e — kOH luunbl* ’
where i = 1 M — 1 and yPoundsi — g Poundsi 4, boundsi ‘pp o hain diagonal
Tyt — Yblx unblx g

components of the diffusion matrix are

Y9 e R with

1
YU = koff,M ( PR 2) q* + koﬂ?,M + ( ) Zkon i oﬂ M ufrcc
fbl fbl
M-—1 ) 1 2
# 3 (o i—hona) b (1)
fbl
> e R with

M M—1 .
= <<Z k0n7i> - kOff,]W) ufree + koﬁ”,lw —+ Z (]goﬁg’i _ koff’M)ubound,z
i=1

i=1
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>bb (E;pjb) e RM-1x(M=1) i Ezbib _ kon,ifﬁlufree + koﬂ)iugﬁund,i
and Z‘Fjb =0 fori # j
2= (o) € RV with - S8 = Koy i(1— fi)u"™° + ko supepie
and X7 =0 fori # j,
where i, = 1,..., M — 1. The remaining components of the diffusion matrix are

yaf = yfa e R with

M-1

S = ko (1 - ¢*) + Z (Koti — Kot a1 (uﬁgg{f’i + <J%1 —1) ugf*““d’i)
i=1

2P = (2P e RM ! with X% = (fibl — 1) (kn frou®e + koﬁ-_,iug;;“nd-ri)

DW= (2 e RM 7 with 2P = —koni (1 — fi)u™*® — kogr ub o’

2P = (Z*y e RM! with Pf= 3PP

= () e RM! with X =5

P = (xvP) e RM-DXMD wighy 3 = 0.

For M = 1, these formulas simplify to those derived in Sect.9.4.2.

9.5.3 Deterministic Approximation

The drift function of the above diffusion approximation represents a deterministic
description of the model dynamics involving M mobility classes. One obtains a set
of 2M ODEs which are linear in each component, but other than in the case of one
mobility class, these functions are not mutually independent when M > 2.

Nevertheless, some simple modifications allow exact simulation of the fluo-
rescence intensity: In a deterministic setting, one can assume the nucleus being
in equilibrium and the fractions of unbleached type i-bound molecules constant
such that uP°odi — (1 — uf*®) for appropriate constants fi,..., fa with
i+ +fu=1

Plugging this in into the ODE for u'™¢, the function uf®(t) becomes
independent of the remaining components of the state variable. For given f;,

free
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i € {1,..., M}, and an appropriate initial condition, a realisation of u{**® can then
be obtained by calculating

’U,frcc(t) _ (uforcc _ g) exp(—A(t — to)) + E

A )
where
M-—1 M
A= koH,M + Z fi(koﬁ,i - koff,M) + Zkon,i
=1 =1

M—1
B = kot i + Z fi(kott,s — Kot 01 ).

i=1

Once more, assume that u'™*¢(t) = uff*® = B/A for all t > ;. Then the ODE
for ub"u“d * is explicitly solved by

ugi)*undﬂ (t) = (ugﬁjgdﬂ - kon ! fblufree> exp(_koff,i(t - to)) + k0n71 fglugreeu
off i off i

where ugf*ugd " denote suitable starting values. This equation is also true for i = M.

Finally, with (9.16), one obtains

koﬁ" i

bound i
* kon i ree
1+Z : frcc 2 : blf 0 ufo exp(—koﬁf,i(t—to))'
—. Noff i bl

This curve can be fitted to the observed data. For M = 1, it reduces to (9.15). Note

that the above formulas dispose of the state variables uﬁggf’d " but introduce the

additional parameters f;, ¢ € {1,..., M}. Algorithm C.1 on p. 415 in the Appendix

demonstrates how ¢*(¢) can be calculated when only kon 1, Koff,1,- - -, Koff, M,
Eﬁ“gd Y fi,...,fa—1 and the initial value ¢ are known and the nucleus is in
chemical equilibrium.

An alternative, though computationally more costly, proceeding to the just
described exact simulation of ¢* is of course to solve the set of 2M ODEs
numerically. This is especially applicable if the nucleus is not in equilibrium.

9.5.4 Simulation Study

Another simulation study is carried out in this section in order to evaluate the
Bayesian and least squares estimation procedures on the kinetic model with multiple
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fluorescence intensity

T T T T T
0 20 40 60 80

time

Fig. 9.14 Synthetic datasets used in the simulation study in this section. Simulations have
been obtained by application of the Euler scheme from Sect.3.3.2 with time step 0.025
to the diffusion model with M € {1,...,4} mobility classes. This figure displays
the sample paths for the fluorescence intensity ¢*. The model parameters and initial
values at time to=0.15 are (kon, korr)'=(3.8, 0.2)" and (g&,ufrec)’=(0.1,0.05)
for M=1 mobility class, (Kkon,1,kon,2,koff 1,koff,2) =(2.5,1.3,0.25,0.15)" and
(g5, ubree, upr ot uponie s )=(0.1, 0.05, 0.01, 0.45)’ for the model with M = 2 mo-
bility classes, (kon,1, Kon,2, Kon,3, Koff,1, Kott,2, Kott,3)'=(3, 2.5, 1.3, 0.5, 0.4, 0.2)" and
(g5, ufree, upy o b upp ot une i w2y = (0.1, 0.05,0.005, 0.005, 0.2, 0.45)’
for M = 3, and  (kon,1,Kon,2;kon,3, kon,4, Kott, 1, Kott, 2, Kotf,3, Kotr,4)”
=(1.9, 1.0, 1.8,0.2, 0.5, 0.2, 0.1, 0.01)" and (g5, uff*®, upp o upp o, uppi ™%,
upert o une 2 upei i) set equal to (0.1,0.05,0.004, 0.004, 0.004, 0.3,0.2,0.4)’

unbl*,0 » “unblx*,0 ’. \ T N
for M = 4. Observations are assumed to be available at equidistant time steps of length 0.15

such that there are 600 observations on the time interval [0.15, 90]. The fraction of the bleached
area equals fp) = 0.4, the intermediate fraction is set to fint = 0, and the number of molecules
is N = 10,000. Note that we do not assume the nucleus to be in chemical equilibrium here

mobility classes. To that end, another four synthetic datasets are generated by the
diffusion model with M € {1,...,4} mobility classes. The sample paths of ¢* are
displayed in Fig. 9.14. Details about the simulation, initial values and true parameter
values are given in the caption of this figure.

In order to ensure identifiability of the distinct mobility classes, the additional
restriction ko1 > ko2 > ... > kog,ar 1s introduced to the model. It is assumed
that the values of ko 1,. .., ko, ps are mutually different because otherwise the
model might be reduced to one with fewer mobility classes.
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Table 9.3 Prior expectations - B
Parameter Prior expectation

for koffyl, ey koff,M in the

model with M mobility M=1M=2M=3 M=41

classes assumed for the kott,1 0.2 0.3 0.3 0.30

Bayesian inference as Eotr 2 _ 0.1 0.3 0.20

described in the main text Eots. 3 _ _ 0.1 0.10
kott 4 - - - 0.05

Bayesian Estimation

Like in the previous simulation studies, the innovation scheme from Sect.7.4.4 is
applied to the synthetic datasets in order to estimate the parameters ko 1, - - - , kon, M
and Kof 1, - - ., Ko, ar. A priori, ko ; and ko ; are gamma distributed with expected
values E(kon ;) = 2 for all ¢ and E(kog,;) as specified in Table 9.3. The prior
variances are chosen to be one tenth of the respective prior expectation. The ko ;
are furthermore subject to the above restriction concerning their order.

The MCMC algorithm draws new proposals kg, ; and kg ; according to

on,i

log k%, i ~ N (10g kon,i, 0.0009) fori=1,...,.M

log kg1 ~ N (log ko, 1,0.0009)
logit (kg ;) ~ N (logit(min{ko i, ki ;1 }),0.0009)  fori=2,..., M,

where ko, ; and kog ; represent the current values. The logit function has been
defined in Eq.(7.19) on p.188. It is chosen here with boundaries v = 0 and
v = kjg ;1 such that the proposed kg ; values automatically fulfil the assumption
on their order.

For all estimations carried out in this section, the innovation scheme imputes
data such that there are m = 5 subintervals in between every two observations, and
it simulates Markov chains of length 10°. Due to space restrictions, the resulting
trace plots, empirical posterior densities and autocorrelation plots are not shown
here. Posterior means and 95 %-hpd intervals are presented in Tables 9.4 and 9.5:
Table 9.4 shows the results for the case where every model, i.e. each of the models
with M € {1,...,4} classes, is applied to the dataset which has been generated by
this model. Here, all components of the diffusion process are considered observed
at the specified time points. The figures in Table 9.5, on the other hand, result from
estimations where only the fluorescence intensity was considered observed and all
other components were latent. It is hence possible here to apply each model to
each dataset. Information on the end point of u°® was provided similarly to the
proceeding in the simulation study in Sect.9.3.4. The logarithm of the marginal
likelihood, log 7r(YObS |M M), in Table 9.5 is required for Bayesian model selection
and explained in Eq. (9.19) on p. 344.
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Table 9.4 Results of the Bayesian estimation procedure as described in the main text. More
specifically, the parameters of the kinetic model with M € {1,...,4} mobility classes are
estimated by application of the innovation scheme to the dataset which has been generated with
the same number of classes. All components of the diffusion process are considered observed.
The MCMC algorithm simulates Markov chains of length 10°. The rightmost column displays the
posterior means and 95 %-hpd intervals of the parameters after a 10 % burn-in phase

Model Parameter True value Estimate
M=1 kon,1 3.80 391 (3.72,4.11)
kogt, 1 0.20 0.21 (0.20, 0.22)
M =2 kon,1 2.50 2.54 (2.40, 2.67)
Kon,2 1.30 1.32 (1.26, 1.37)
kogt, 1 0.25 0.26 (0.24, 0.27)
kott,2 0.15 0.15 (0.15, 0.16)
M=23 kon,1 3.00 2.81(2.64,2.98)
Kon,2 2.50 2.41(2.28,2.55)
kon,3 1.30 1.52 (1.46, 1.58)
kott, 1 0.50 0.47 (0.44, 0.50)
kot 2 0.40 0.38 (0.36, 0.41)
kott,3 0.20 0.23 (0.22, 0.24)
M=4 kon,1 1.90 1.77 (1.72, 1.83)
Kon,2 1.00 1.48 (1.42, 1.56)
kon,3 1.80 4.75 (4.60, 4.86)
kon,a 0.20 2.49 (2.43,2.57)
kott, 1 0.50 0.45 (0.44, 0.47)
kott,2 0.20 0.29 (0.27, 0.30)
kott, 3 0.10 0.27 (0.26, 0.27)
kott, 4 0.01 0.27 (0.26, 0.27)

It turns out that satisfyingly precise estimation of the model parameters is
possible for M = 1 and M = 2 when all components of the diffusion process
are observed at discrete time points. For M = 3, estimates are more biased, and
for M = 4, inference proves to be problematic. For that reason, the model and
dataset with four mobility classes are omitted in the more challenging framework of
Table 9.5. In that table, estimation of the model parameters in the correct datasets
is still satisfactory although less information is provided than for the estimates in
Table 9.4. Interestingly, the posterior mean of k., 1 in the model with M = 1
mobility class approximately equals the sum of the true &, ; values for all datasets.
Moreover, the mean of all k. ; point estimates approximates the mean of all
true ko ; values, no matter which model is applied to which dataset. When applying
the model with M = 3 classes to the datasets with M = 1 and M = 2 classes,
one obtains adjoining or even overlapping hpd intervals for ko, 1 and ko, 2 and
for komr,1 and ko 2. This suggests that both datasets do not require the model with
three classes. Different model choice criteria are also considered later in this section.
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Table 9.5 Results of the Bayesian estimation procedure as in Table 9.4, but
this time with only the fluorescence intensity considered observed and all other
components of the diffusion process regarded to be latent. It is hence possible here to
apply each model to each dataset. The MCMC algorithm simulates Markov chains
of length 105. This table displays the posterior means and 95 %-hpd intervals for
each parameter after a 10 % burn-in phase. It furthermore shows the logarithm of
the marginal likelihood, log 7 (¥ °P%| M ar). This quantity is required for Bayesian
model selection and explained in Eq. (9.19) on p. 344

Parameter, Dataset
Model Marg. log-likelihood M =1 M =2 M =3
True kon,1 3.800 2.500 3.000
values kon,2 - 1.300 2.500
kon.3 - - 1.300
kott,1 0.200 0.250 0.500
kot 2 - 0.150 0.400
koft,3 - - 0.200
4.00 3.86 6.72
M=1 Fon,1 (3.60,4.43) (3.34,4.36) (5.99,7.59)
0.20 0.20 0.35
kotr,1

(0.19,0.21) (0.19,0.21) (0.33,0.37)
logm(Y'°PS|My) 1484722 1483548  14026.66

M—o Fom 1 2.29 2.52 3.63
(2.03,2.50) (2.22,2.87) (3.30, 4.04)
Fow o 1.93 1.65 1.84
o (1.74,2.11) (147, 1.81)  (1.66, 2.00)
0.23 0.26 0.43
kott,1
(0.21,0.24)  (0.23,0.29) (0.39, 0.46)
0.17 0.15 0.23
kott,2

(0.15,0.18)  (0.13,0.16) (0.21,0.25)
log T(Y°P5|My)  14841.64  14780.84  13994.29

M—3 kon.1 2.24 2.29 2.80
(1.92,2.53) (2.03,2.54) (2.38,3.35)

Kon 2 1.87 1.92 2.30
’ (1.63,2.01) (1.78,2.05) (2.04,2.51)

Kon 3 1.36 1.42 1.98
: (123,1.51) (127, 1.55) (1.78,2.18)

Koot 1 0.28 0.27 0.43
’ (0.25,0.32) (0.23,0.31) (0.36,0.54)

Kott 2 0.24 0.23 0.35
’ (0.22,0.25) (0.21,0.25) (0.32,0.38)

0.13 0.13 0.23

kot 3

(0.12,0.15)  (0.12,0.14) (0.21,0.25)
log m(Y °Ps| M3) 14719.6  14738.16  14035.09
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Table 9.6 Estimation results determined by least squares estimation applied to the deterministic
model from Sect. 9.5.3 in combination with the synthetic data from Fig.9.14. This table displays
estimates for kofr 1, . . . , korr, pr and the corresponding mean sum of squared residuals (mSSR) as
introduced in Eq. (9.10) on p. 323. For the models with M/ > 2 mobility classes, the output of the
Nelder-Mead algorithm depends on the initial guesses for the unknown variables. Hence, several
thousand initial guesses are randomly drawn and passed to the optimisation procedure. From the
resulting return values, that estimate is chosen which produces the minimum mSSR. The results in
this table have been obtained for g5 = 0.1 kept fixed. Table 9.7 contains estimates where ¢ is a
free parameter

Parameter, ~ Dataset

Model mSSR M=1 M =2 M=3 M =4
True kotr 1 0.200 0.250 0.500 0.500
values kott,2 - 0.150 0.400 0.200
kott,3 - - 0.200 0.100
Kott,4 - - - 0.010
M=1 Kott,1 0.198 0.200 0.338 0.179
mSSR 1.05-10~% 2.26-10-* 4.01-10-%* 3.17-103
M=2 Kott,1 0.286 0.244 0.521 0.343
Kott,2 0.158 0.108 0.169 6.71-10°
mSSR 9.33-107° 1.71-10~% 3.02-10~%* 7.08-10%
M=3 kote,1 0.795 0.245 0.523 0.312
Kott,2 0.334 0.238 0.521 0.266
kott,3 0.162 0.098 0.169 0.002
mSSR 9.23-10~° 1.70-10~* 3.02-10~* 6.60-10—*
M =4 Kott,1 0.297 0.262 0.5878 0.622
kott,2 0.288 0.246 0.4834 0.271
kott,3 0.176 0.239 0.4832 0.260
Kott, 4 0.156 0.117 0.1615 0.024
mSSR 9.33-10~° 1.71-10* 3.03-10~* 1.07-10"3

Least Squares Estimation

The parameters of the model with multiple mobility classes are now also approx-
imated by least squares estimation. As for the general kinetic model on pp. 322,
the Nelder-Mead algorithm is applied in order to find a combination of parameter
values which minimises the mean sum of squared residuals (mSSR) in Eq. (9.10).
For the model with M mobility classes, the parameters are kon1,...,Kon,Mm
and koff71, ey koff,M-

As distinguished from the case of one mobility class, the output of the Nelder-
Mead method depends on the initial guesses of all unknown variables when M > 2.
Hence, several thousand initial guesses are randomly drawn and passed to the
Nelder-Mead algorithm. Then, from the resulting return values, that estimate is
chosen which produces the minimum mSSR.

Table 9.6 displays such estimation results, where the model with M € {1,...,4}
mobility classes is applied to each of the datasets generated for M € {1,...,4}
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Table 9.7 Estimation results as in Table 9.6 but with gg being a free parameter

Parameter, ~ Dataset

Model mSSR M=1 M=2 M=3 M=4
True a 0.100 0.100 0.100 0.100
values ots,1 0.200 0.250 0.500 0.500
kott,2 - 0.150 0.400 0.200
kott,3 - - 0.200 0.100
kotr,4 - - - 0.010
M=1 @ 0.111 0.114 0.153 0.233
Kott,1 0.195 0.197 0.316 0.147
mSSR 1.03-10-% 2.23-10* 3.77-10~%* 291-103
M =2 @ 0.092 0.085 0.094 0.261
Kott,1 0.312 0.262 0.534 0.256
kott,2 0.161 0.117 0.170 0.006
mSSR 9.28-10"° 1.69-10~* 3.02-10~* 1.04-10"3
M =3 @ 0.092 0.083 0.094 0.193
ots,1 0.314 0.272 0.576 0.407
kott,2 0.164 0.241 0.504 0.194
kott,3 0.160 0.106 0.166 3.17-104
mSSR 9.31-107° 1.68-10-% 3.02-10~* 6.92-10"¢
M=4 @ 0.099 0.085 0.093 0.179
Kott,1 0.906 0.279 0.605 0.632
kott,2 0.312 0.255 0.573 0.276
kott,3 0.197 0.218 0.506 0.212
otf,a 0.134 0.101 0.180 0.019
mSSR 9.27-1075 1.69-10~% 3.02-10~%* 1.02-10"3

classes, and the initial value g = 0.1 is kept fixed. Table 9.7 contains according
estimates when ¢ is determined by the Nelder-Mead procedure. Combinations of
parameter values which produce similarly small values of mSSR as the optimal
estimate show that there is relatively small variation in the ko ; values but large
variability in the &, ; values. Hence, Tables 9.6 and 9.7 do not list approximations
of kon,i- Figure C.2 on p. 416 in the Appendix presents the fittings of the determin-
istic curves to the observed data according to the estimates in Table 9.6.

Two issues becomes apparent when considering the results in Tables 9.6 and 9.7:
The first is that, for any dataset, a model with M’ mobility classes should
theoretically produce a smaller mSSR than a model with M < M’ classes because
the former is a generalisation of the latter. For the same reason, the model with
g5 being a free variable should yield a smaller mSSR than the same model with
fixed g when applied to the same dataset. However, this is not always the case in
Tables 9.6 and 9.7, especially not for the model with four mobility classes. This
indicates that the optimal estimates have not always been found for the models with
larger numbers of mobility classes.
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The second issue is that some parameter estimates contain almost
identical kot i values, see for instance the estimate
(Koft 1 - - - » kofr.a)' =(0.5878,0.4834,0.4832,0.1615)" in Table 9.6 for the model
with four mobility classes applied to the dataset with three classes. In this example,
one may ask whether the parameters ko 2 and kom 3 should be summarised as
one parameter, yielding the (true) model with three mobility classes. An obvious
approach to answer this question is to investigate whether the confidence intervals
of the estimates of the single components overlap. However, in the considered
context, the mSSR is an extremely irregular function of the unknown variables such
that a first investigation by means of the inverse Fisher information evaluated at the
parameter estimates does not come to a practical conclusion. This issue is hence left
for future work. Model choice is carried out as described in the following.

Model Choice

So far, parameter estimates and resulting fits of the model to the data have been
considered for different numbers of mobility classes. Better agreement between
observed and predicted values is achieved when using models with larger numbers
of mobility classes (unless an appropriate estimate has not been found, as it is
obviously the case for some of the least squares estimates, see the above comments).
This is because the models are nested, i.e. the model with M mobility classes
is a special case of any model with M’ > M mobility classes. Furthermore,
an additional approximation of the initial value ¢§ yields improved fits because
once again this setting is a generalisation of the model with a fixed starting value.
However, the introduction of extra mobility classes or other variables involves an
increase of model complexity. Parameter estimation becomes computationally more
demanding in that case.

In what follows, well-established resources to balance between the accuracy of
the fit and the complexity of the model are applied to the estimation results. In
particular, Bayes factors (Jeffreys 1961) are utilised for selection of an appropriate
diffusion model, and Akaike’s information criterion (AIC) (Akaike 1973) and the
Bayesian information criterion (BIC) (Schwarz 1978) are employed for choosing a
deterministic model.

Bayes Factors

Let M, and M, denote two models which come into question to have generated a
set Y °P° of observations. The Bayes factor in favour of M, is defined as the ratio
of marginal likelihoods

7_‘_(}/—obs ‘ Mk)

B = — O
Kl 7_‘_(}/—obs ’ Ml)
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that is the posterior odds (M |Y°"*) /7 (M;|Y°™) in case of identical a priori
beliefs p(M},) = p(M;). This ratio reflects the evidence in the data in favour of
the model My, as opposed to M;. An indication for My, is given when By; > 1.
See, for example, Kass and Raftery (1995) for detailed interpretation schemes for
the value of By;.

Unfortunately, the marginal likelihood 7(Y °**| M) of the observed data Y °"*
given an underlying model M is not always available. Hence, Chib (1995)
investigates its approximation from MCMC output, also in the presence of imputed
data. The following considerations adopt these ideas; a similar approach has also
been chosen by Elerian et al. (2001).

Let 0 denote the vector of parameters in the model M. One has

W(YObS ‘ 9, M)w(e ’ ./\/l)

Yobs _
7T( |M) W(O‘Y()bs,/\/l)

: (9.19)

which holds for all values of @ (Chib 1995). This ratio is best approximated at a high
density value of . Hence, choose an appropriate value 8" such as the mode from the
empirical posterior density of 8 and evaluate the right hand side of (9.19) at 8*. To
that end, 7(0*|Y"°", M) can be obtained through kernel density estimation from
the MCMC output. The prior density 7(0*| M) has been chosen by the experimenter
in the MCMC procedure. Eventually, the likelihood can be approximated as

K
. 1 ;
obs * ~ obs imp(k *
(Y| 0%, M) ~ ?E_IW(Y YR | g ) (9.20)
for some large K € IN, where Y™y ™P(K) s imputed data from the

MCMC procedure. On the right hand side of this equation, the time grid of observed
and imputed data is dense enough such that an Euler approximation of the true
density is appropriate.

In the application in this chapter, different models refer to different numbers
of mobility classes and hence to different dimensions of the diffusion process.
Independently of the model, the only observed component of the process is the
fluorescence intensity, i.e. the number of latent components and hence the amount
of auxiliary data increases with each additional mobility class. In order to consider
comparable quantities of imputed data on the right hand side of Eq.(9.20), the
marginal likelihood 7(g*°", ¢*™*)|0* M) of the observed and imputed values
for ¢* is employed in the calculations below instead of 7T(Y0bs, y imp(k) | 6", M).
This is straightforward as the latter is a Gaussian density.

Polson and Roberts (1994) point out that, in case of two diffusion models My,
and M; with different diffusion matrices, the Bayes factor ; degenerates when
an infinite amount of data is imputed. This difficulty has the same source as the
convergence problems described in Sect. 7.3. In the context of the relatively small
amounts of imputed data in this chapter, however, this issue seems to be of no
practical concern.
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Table 9.5 on p.340 contains approximations of log7w(Y°*|My,) for
M € {1,2,3}, where M), denotes the model with M mobility classes. These
approximations are based on the parameter estimates from that table and the imputed
data which was simulated in the course of the according estimation procedures.

Consider the logarithm of the Bayes factor,
log Bi = log m(Y°**|M},) — logm(Y°"|M,) in favour of the model with k
classes. For the dataset generated by the model with one mobility class, one
has log B12 = 5.58, log B13 = 127.62 and log B33 = 122.04. That means that
for this dataset the Bayes factor correctly favours the model with one mobility class.
According to Kass and Raftery (1995), these values show very strong evidence in
favour of M against M5 and M3, and also very strong evidence in favour of M
against M. For the dataset generated by the model with two mobility classes,
however, the Bayes factors show the same ranking of models, i.e. the true model is
not chosen here. For the data simulated with three classes, the favoured model is
again the true model, i.e. the model with M = 3.

AIC and BIC

Let q};(t) denote the fluorescence intensity in the bleached region at time ¢ as
predicted by the deterministic model with parameter p, and let 2(¢) denote the value
attime t € {to,...,t,} that has actually been observed. The vector p does not only
contain the original model parameters kon 1, ..., kon,as and ko 1, - . ., Ko, as but
also all other unknowns upy o bt up e M far— 1 and possibly g
Assume that z(t) = ¢ (t) + &(t) for mutually independent (t) ~ N(0,2) with
unknown variance 2 > 0. Then, omitting additive constants, the AIC and BIC read

n

AIC = (n+1)log <ni+1 > (apti) - x(ti))2> +2dim(p) (9.21)

i=0
and

n

BIC = (n+1)log <%+1 Z(q;f,(ti) — x(tl))2> +log(n+1)dim(p) (9.22)
=0

(e.g. Fahrmeir et al. 2009). These indices evaluate the accuracy of the fit (measured
by a small first summand) against the complexity of the model (measured by a
large second summand). The latter is more pronounced in the BIC. At the end, one
chooses the model with smallest AIC or BIC.

Tables 9.8 and 9.9 list the AIC and BIC for the estimation results from Tables 9.6
and 9.7, where n + 1 = 600. The comparison is of course redundant for those cases
where no better agreement is found for a more complex model than for a simpler
model. The minimum AIC or BIC in each column is printed in bold, showing
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Table 9.8 AIC as defined in Eq. (9.21) for the estimation results from Tables 9.6 and 9.7. The
minimum AIC in each column is printed in bold, marking the model that is chosen by the AIC

Dataset
M q dim(p) M=1 M=2 M=3 M=4
1 fixed 1 —5,495 —5,035 —4,691 —3,450
free 2 —5,504 —5,041 —4,726 —3,500
2 fixed 6 —5,558 —5,192 —4,851 —4,340
free 7 —5,556 —5,197 —4,849 —4,107
3 fixed 10 —5,556 —5,188 —4,843 —4,374
free 11 —5,548 —5,193 —4,841 —4,344
4 fixed 14 —5,542 —5,176 —4,833 —4,077
free 15 —5,540 —5,181 —4,833 —4,102

Table 9.9 BIC as defined in Eq. (9.22) for the estimation results from Tables 9.6 and 9.7. The
minimum BIC in each column is printed in bold, marking the model that is chosen by the BIC

Dataset
M a5 dim(p) M=1 M =2 M =3 M =4
1 fixed 1 —5,491 —5,031 —4,687 —3,446
free 2 —5,496 —5,032 —4,717 —3,491
2 fixed 6 —5,531 —5,166 —4,825 —4,313
free 7 —5,525 —5,167 —4,818 —4,076
3 fixed 10 —5,512 —5,144 —4,799 —4,330
free 11 —5,499 —5,145 —4,793 —4,295
4 fixed 14 —5,480 5,115 —4,772 —4,016
free 15 —5,474 —5,115 —4,767 —4,036

that for all datasets the AIC and BIC consistently select the same model, but not
necessarily the one that was used for the generation of the respective dataset. It
should, however, be emphasised that the model choice is sophisticated by the fact
that optimal estimates for the model with four mobility classes have obviously not
been identified.

Conclusion

To summarise, this simulation study showed that estimation of kinetic parameters in
a FRAP experiment is possible even when a complex model with multiple mobility
classes is assumed. Bayesian estimates proved to be much more promising than
least squares estimates. In particular, it was not possible to determine reliable
approximations of the k., ; values by least squares estimation. Moreover, the
MCMC procedure applied in this section provided appropriate confidence intervals
for all parameters. This was not feasible for the least squares estimates by standard
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procedures due to the extremely wiggly character of the target function. When
combining a model and a dataset which involve different numbers of mobility
classes, the average of the estimated posterior means still correctly approximated
the average of the true values of the ko ;.

Model choice was carried out by application of Bayes factors, the BIC and the
AIC. These rules did not always select the correct model, indicating that differences
between models with different numbers of mobility classes are not substantial
as long as reasonable parameters are chosen. As another criterion, one should
investigate whether there are similar estimates for different k,,, ; or ko ,; parameters
and one could hence reduce the model by one class. In case of Bayesian estimation,
overlapping confidence intervals were obtained where the model involved more
classes than the dataset.

Overall, the kinetic model and estimation techniques are qualified for the
statistical analysis of experimental FRAP data in Sect.9.7. Before starting such
investigation, the following section explains the preprocessing of the measurements.

9.6 Data Preparation

The previously described kinetic models start from the assumption of an idealised
data situation in a sense that is particularised in what follows. In practice, this
presumption is typically not met. Therefore, the raw measurements are to be
normalised in an appropriate way before parameter estimation techniques are
applied to the data.

This section explains three different normalisation procedures: single normal-
isation and double normalisation as described by Phair et al. (2004a), and triple
normalisation as developed in Schneider et al. (2012). The single and double
normalisations are specialisations of the triple normalisation; hence, we start with
the presentation of the latter in Sect.9.6.1 and then proceed with the double and
single normalisations in Sects. 9.6.2 and 9.6.3, respectively. Comparisons between
the three approaches are drawn in the course of this section. In the application in
Sect. 9.7, all datasets are triple normalised. The impact of the triple normalisation
on statistical inference as opposed to double normalisation is briefly evaluated in
Sect.9.7.3.

Throughout this section, let I;', 12, IV and I tb ¢ denote the intensities measured
at time t in the total nucleus, in the bleached section, in the unbleached section and
in a background area. See Fig. 9.15a for an illustration. Define ¢ = 0 as the instant
when the nucleus is exposed to the bleaching pulse. Consequently, negative values
of ¢ represent the time before bleaching, and positive values of ¢ stand for the time
after bleaching. In the idealised mathematical description, the bleaching by laser
exposure is considered to be completed within a time interval of length zero. In
practice, bleaching lasts for a short but positive time span, but this difference does
not restrict the validity of the model. Figure 9.15b displays a dataset of unnormalised
intensities measured in the four considered regions.
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Fig. 9.15 (a) Illustration of the total, bleached, unbleached and background regions where the

intensities I, 1B, IV and I]® are measured, respectively (Modified from Schneider 2009).
(b) Dataset of unnormalised intensities in these four regions

9.6.1 Triple Normalisation

Briefly summarised, the triple normalisation procedure consists of five steps which
correct for

(T.i) the background intensity,
(T.ii) the gain or loss of fluorescence due to natural processes and bleaching by
acquisition,
(T.iii) the fact that not all proteins in the bleached section are bleached by the laser
pulse,
(T.iv) the heterogeneity of structure and binding site distribution within the nu-
cleus,
(T.v) the loss of fluorescence due to bleaching.

The above corrections are subsequently performed in the given order. They are
motivated and specified in what follows. To that end, it suffices to consider the
normalisation of the intensities in the total area and in the bleached section. The
intensities in the unbleached section are normalised analogously to those in the
bleached section, but for the sake of brevity, this is not shown here.

(T.i) Even in the absence of fluorescent proteins, the cell would not have zero
intensity. This is due to read out noise of the camera and autofluorescence of
the sample. The model, however, assumes that the mean grey value is zero
when there are no fluorescent proteins in a considered region. Hence, subtract
the background value from the measured intensities for all ¢:

¥ =1P-n® and LN =I"-1%
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Fig. 9.16 Illustration of triple normalisation: (a) Intensities in the total area and bleached section
before and after application of normalisation step (T.i). (b) Intensities before and after application
of step (T.ii). (c) Intensities before and after application of step (T.iii). Furthermore, replacing the
vertical axis on the left by the vertical axis on the right approximately corresponds to step (T.iv).

(d) Intensities before and after application of step (T.v)

(T.ii)

Here and in the following, each dash denotes one normalisation step that has
been applied to the original variable. Figure 9.16a displays a background-
subtracted dataset together with the original raw data.

While time elapses, there is variability in the total fluorescence due to flux
of fluorescent particles into or out of the analysed cellular compartment
and because of bleaching by acquisition. The model, in contrast, assumes
a constant total amount of fluorescence apart from the loss due to the
bleaching pulse at time zero. Therefore, all intensities are multiplied with
an appropriate factor such that for ¢ < 0 the total fluorescence equals some
prebleach reference value I};frlc, and for ¢ > 0 the total fluorescence equals a

postbleach reference value I, g(:st:
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, Igost T for ¢t > 0.
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Figure 9.16b illustrates the effect of this normalisation step.

The prebleach and postbleach reference values I, Er,c and [ pTc:sc have to be
chosen with care: During prebleach acquisition, an initial drop of intensity
is typically observed until a steady state is reached. This pattern is due to
the transition of a small fraction of GFP molecules to a non-fluorescent state
(triplet state, Garcia-Parajo et al. 2000) and visible in Fig. 9.16a. Hence, the
initial data points are discarded. To account for noise dependent intensity
fluctuations, the prebleach reference value is then chosen as the mean of the
last few prebleach values. In the application in this chapter, Igrlc is defined as
the mean of the last five background-subtracted total intensities 7," " before
bleaching.

Directly after bleaching, one usually observes a short increase of the
total intensity; compare with Fig. 9.16a. This phenomenon is due to a small
fraction of molecules that have been reversibly bleached by the laser rather
than irreversibly. Hence, the postbleach reference value should be chosen
around the maximum intensity within a short period after bleaching. In this
chapter, Ig ,St is set equal to the mean of the background-subtracted total

O

intensities in the 10th to 20th postbleach images.

Remark 9.1. Yet another modification is as follows: The just described
initial increase of the total intensity is caused by reversibly bleached
molecules that continue to fluoresce after a short interruption caused by the
bleaching pulse. Directly after bleaching, these molecules are all located
in the bleached section of the nucleus. Hence, the intensity curve for this
section should be corrected more extensively than the total intensity curve.
This holds for the time interval starting at the time 74+ of the first postbleach
image until a time point 7;,os; Where the total intensity reaches its maximum.
An appropriate rescaling is

Lot v(t)

1" ’
7B — B
t t ’
" fu

fort € [To+, Tpost)s

where v : [T+, Tpost] — [fo1,1] is a strictly decreasing function fulfill-
ing v(7p+) = 1 and v(Tpost) = fo1, for example

u(t) = fu1 exp (—10g(fb1) : <ﬂ)a>

To+ — Tpost
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(T.iii)

(T.iv)

(T.v)

for suitable @ € IN. This accounts for the progressive mixing of bleached
and unbleached molecules and ensures that the intensity curve I, tB” remains
continuous at t = T, In the present stage of the normalisation procedure,
the value fi,) is yet unknown as it will be determined in Eq.(9.23) below.
One might hence use an approximation of fi,) here as for example obtained
by double normalisation or triple normalisation without the just discussed
refinement. The normalisation variant described in this remark is not utilised
in this book.

A small fraction of proteins remains unbleached though being located in the
bleached section at the time of bleaching. Consequently, the variable uPund
is not zero at t = 0™, the time directly after bleaching. Moreover, the value
of uP?und at this time point differs in each experiment. In order to correct for
this, subtract I(]f;” from all intensities. The value I(})3+N is, however, unknown
due to the rapid invasion of unbleached free proteins into the bleached
section. Hence, let 130 be an estimate of I(])?’f. For the datasets considered
in this chapter, Z;O is measured in an appropriate subregion of the bleached
area, distral to the bleach border, in the first postbleach picture. The result is

" " " 1
P =18 —by and I} =TI —by

for all ¢. Figure 9.16c shows the changes in the data caused by this
normalisation step. It is important that it is carried out after the correction for
the loss of fluorescence in step (T.ii) because this loss also affects the proteins
that escaped the laser. In particular, the estimate bo has to be obtained from
the data which is already corrected according to (T.i) and (T.ii).

Due to structural heterogeneity in the cell nucleus, caused for example by
localised binding site clusters, the mean fluorescence in the bleached and
unbleached sections may differ even before bleaching. As a consequence,
their values also deviate from the intensity in the total area. The model, on
the other hand, assumes homogeneity. Hence, modify all intensities such that
their average levels before bleaching equal one, i.e.

1" 1"

B ItB d T I;F

t - IB/// an t - IT///
pre pre

for all ¢. As in step (T.ii), the reference values Igg and Igr/;/ are typically
chosen to be the mean of the last few prebleach values Ith and I,¥ ",
respectively. In Fig. 9.16c¢, this step approximately corresponds to replacing
the vertical axis on the left by the vertical axis on the right, where [ Er,cﬁ on
the left corresponds to the value one on the right.

The bleaching pulse abruptly decreases the fluorescence of the nucleus, but

the model assumes the total intensity being one throughout the experiment.
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Hence, normalise as follows:

B///// ItB//// T/////
It = W and t =1
for all ¢. This step is illustrated in Fig. 9.16d.
Altogether, one has fort > 0
T bg
(Igg _ I,})g) . Ipost - Ipost _ AO . .

B///// o I;F — Ilag Ig;c - Igrgc - bO
t - " 7 ’ 3 T

II]::D)re - bO Igost - Isgst - bo

The above considerations also make clear how to determine the size fi, of the
bleached section: The average postbleach level of total fluorescence after step (T.iv)
equals Ig(;;: The only adjustment remaining to be done at that point is to
correct for the intentional loss of fluorescence caused by the bleaching laser pulse.
Consequently, 1 — f,; corresponds to this level, i.e. one sets

1 IT”-lt
1— for = Loy = IPT—(’ : (9.23)
pre

In the subsequent application in Sect. 9.7, estimation techniques are applied to triple
normalised datasets, and the value fy,) is determined according to (9.23).

9.6.2 Double Normalisation

A simplification of the triple normalisation in the previous section is the double
normalisation as described for example by Phair et al. (2004a); see also McNally
(2008). This procedure is described here for the sake of completeness and because a
comparison of estimation results based on triple normalised and double normalised
data is carried out in Sect. 9.7.3. In short, double normalisation corrects for

(D.i) the background intensity as in step (T.i),
(D.ii) the heterogeneity of structure and binding site distribution within the nucleus
as in step (T.iv),
(D.iii) the loss of fluorescence due to bleaching and the gain or loss due to natural
processes as in steps (T.ii) and (T.v).

The order of these items slightly differs from that in the triple normalisation, but this
does not change the outcome as steps (D.ii) and (D.iii) both consist of multiplicative
operations. All corrections are motivated as in the triple normalisation. Hence, the
following description of the double normalisation merely displays the respective
formulas. For more details, turn back to Sect. 9.6.1.
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(D.i) Subtract the background intensity from all measured values for all ¢:
I =1P-n® ad 1N =1I"-1*

(D.ii) Modify all intensities such that their average levels before bleaching equal

one, i.e.
B/ ’
2 I 1" I
P=L and I =L
I I
pre pre

As before, the prebleach reference values Ige and Igrle are typically chosen

as the mean of the last few prebleach intensities ItB/ and I,1 ', respectively.
(D.iii) Scale all intensities such that the total fluorescence is equal to one for
all t, i.e.
B//
IB/// - It

T///

and p

Altogether, one has

B (IB —1P®)(I%, — Ibs)

pre pre

(I — Ipfe)(IF = 1%)

pre

h =

Similarly as for the triple normalised data, the above details indicate how to
determine the size fy) of the bleached section from the measured intensities:
Let Ig(;;t denote an appropriate reference value for the postbleach level of total
fluorescence. This may for example be the mean of I,F " as determined from the
10th to 20th postbleach images. Then, this reference level corresponds to 1— fi,1, i.e.

one sets

T
_ 7T __ “post

L= for =l = 7T
pre

Figure 9.17 displays a time series of the intensity measured in the bleached region,
modified according to the double and triple normalisation and the single normalisa-
tion explained in the next section. The curves for the double and triple normalisation
especially differ during the recovery phase until ¢ ~ 20. The first postbleach
intensities are 0.258 after double normalisation and 0.051 after triple normalisation.
The estimates for f,; are 0.605 and 0.663, respectively. Corresponding values for
other datasets are listed in Table C.1 in the Appendix.

9.6.3 Single Normalisation

This section explains the single normalisation according to Phair et al. (2004a),
which corrects for
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Fig. 9.17 Comparison of single, double and triple normalised data: The plot displays intensities
measured in the bleached region, modified according to the single (dark blue), double (red)
and triple (black) normalisation. The single normalised curve does not level off around one but
equalises with the single normalised intensity in the unbleached region (light blue). The double
and triple normalised curves especially differ during the recovery phase until ¢ =~ 20. The first
postbleach intensities are 0.258 after double normalisation and 0.051 after triple normalisation.
The estimates for fp) are 0.605 and 0.663, respectively

(S.1) the background intensity as in step (T.i),
(S.ii) the heterogeneity of structure and binding site distribution within the nucleus
as in step (T.iv).

In contrast to the double and triple normalisations, the single normalisation con-
siders the intensities in the bleached and unbleached sections rather than the
measurements in the bleached and total compartments. The modifications are
described in what follows. Once more, the reader is referred to Sect.9.6.1 for a
detailed explanation.

(S.1) Subtract the background intensity from the all measured values for all ¢:
IF=1P-1* and 1V =1V — 1'%

(S.ii) Modify the intensities in the bleached and unbleached section such that the
average levels before bleaching equal one, i.e.

P 4 PR 5
B” _ ft U’ ft
It = I? and It = IT

pre pre
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To that end, the reference values I 5;/0 and IpUrlc are determined as the mean of

the last few prebleach values of I tB/ and IV /, respectively.

Altogether, one has

b b
B _ ItB_Itg U’ _ ItU_Itg
;== and Iy = ——.
B _ pbs JU _ pbs
pre pre pre pre

Other than double and triple normalisation, single normalisation does not correct
for the intentional and unintentional loss of fluorescence over time, i.e. it does not
scale the data such that the average postbleach level in the total area equals one.
Hence, the data still contains information about the fraction of bleached molecules.
The kinetic models in this chapter assume that all intensities are scaled such that the
value in the bleached compartment will eventually level off around one. Thus, the
models are not directly applicable to single normalised datasets.

Figure 9.17 displays a single normalised time series of intensities measured in
the bleached and unbleached section of a nucleus.

In the following application in Sect. 9.7, all datasets are triple normalised as this
technique is the most accurate one. For comparison purposes, statistical inference is
also carried out for double normalised data in Sect.9.7.3.

9.7 Application

This section analyses the kinetic behaviour of the protein Dnmtl, which was
introduced in Sect.9.1, based on the observations from FRAP experiments (cf.
Sect.9.1.1).

In Sects.9.3-9.5, dedicated stochastic and deterministic models were con-
structed, and the performances of suitable estimation techniques were evaluated
for these models in several simulation studies. Section 9.6 investigated how to
appropriately process raw measurements from FRAP experiments such that the
considered inference methods can be applied to the resulting time series. With the
tools from Sects. 9.3-9.6 at hand, the present section deals with the investigation of
the research questions presented in Sect.9.1.2. These concern the estimates of the
model parameters and the number of mobility classes, both depending on the phase
of the cell cycle.

Section 9.7.1 describes the datasets that are available for statistical inference.
In Sects.9.7.2 and 9.7.3, Bayesian and least squares estimation in carried out.
Section 9.7.4 concludes.
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9.7.1 Data

There is a number of measurements from FRAP experiments available for the
statistical investigation of the research questions of this chapter. The data has
been acquired in the context of a diploma thesis (Schneider 2009) as described in
Sect.9.1.1. A protocol of the experimental setup is provided in that thesis.

In order to enable a cell cycle dependent analysis of the dynamic behaviour of
Dnmtl, data has been collected during different phases of the cycle. In particular,
there are 10 time series from G1 phase, 26 series from early S phase and 11 from
late S phase. Each time series contains the measured intensities ¢* in the bleached
section of the nucleus over time, but no information on any other components of
the multi-dimensional processes is provided. Unless otherwise stated, the data is
triple normalised as described in Sect.9.6.1. Figure 9.3 on p. 309 displays the 47
normalised recovery curves.

The observation times for the datasets are given by the exposure time of the
laser plus a delay time such that data is available at equidistant time intervals
of length 0.154. The number of measurements in each time series is typically
around 780; exact numbers are listed in Table C.1 on p.418 in the Appendix.
The same tables also display the starting values g of the recovery curves and
experimentally determined values of the bleached fraction fy,; and the intermediate
fraction fipt.

9.7.2 Bayesian Estimation

In the following, the kinetic models described in this chapter are estimated based
on the 47 provided datasets. The proceeding is as in the previous simulation
studies in this chapter, especially as in Sect. 9.5.4. Estimation based on the diffusion
model requires an approximation of the number N of molecules in the nucleus.
This number has not been determined experimentally, and hence a statistical
approximation is proposed in what follows. Estimation results for the parameters
are presented afterwards.

Numbers of Molecules

The strength of random fluctuations in the stochastic model is controlled by the
factor Ny, ! in the diffusion matrix, where Ny = (I — fu)N is the number of
unbleached molecules in the nucleus: Larger numbers of molecules correspond to a
smaller impact of stochasticity. It has been demonstrated in Sect.9.3.4 that wrong
assumptions about Ny may cause wrong estimates for kog and ko,. One hence
requires a careful approximation of Ny;.
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In the following, the number Ny is extracted from the measured fluorescence
intensities as follows: On the one hand, in the simplest case of one mobility class,
the entry of the diffusion matrix corresponding to the fluctuations of ¢* equals

1 _ * — Tee
g (ko (" =2)a" + (kon = Kort) (fiy" = 1)u"™* + Kort) (9.24)
as derived in Sect.9.4.2. On the other hand, for observations ¢/ ,...,q; at
times %o, . . . , t,, this part of the diffusion matrix can be approximated empirically by

2
‘Z (qt’“ G- ) , (9.25)

b — th—1

which is motivated by Eq.(3.17) on p.40. An estimate for (9.24) can be obtained
when focusing on those measurements of ¢* after the intensity has reached a stable
plateau. Then the variable ¢* in (9.24) may be replaced by the mean of all values on
this plateau. f}, can be obtained from image analysis, and ko, kog and ufree can be
estimated by application of the deterministic techniques as discussed in the previous
sections. Calculation of (9.25) should base on the same set of observations as (9.24)
does. Equating (9.24) and (9.25) then gives an estimate of Ny = (1— f)) N

Applied to the synthetic datasets from Sects.9.3.4-9.5.4, the just described
procedure approximates the number of molecules surprisingly well, yielding values
that deviate from the true value N = 10,000 by less than 2 %.

Table C.1 in the Appendix contains approximations of N for the real datasets
considered in this section. In practice, numbers of molecules typically lie between
10,000 and 100,000 per nucleus (Phair et al. 2004b). In Table C.1, notably smaller
numbers appear for some time series. The variation in the approximations is already
apparent from the recovery curves, see Fig.C.1 on p.416 for an example. Small
values of IV are most probably caused by measurement noise that is not corrected
for by the data normalisation presented in Sect.9.6. Hence, these numbers do not
really represent the amounts of molecules in the nucleus but rather a lower bound.
They however reflect the strength of fluctuations in the respective time series, and
hence these values are employed for the subsequent Bayesian inference procedures.

Results

The innovation scheme is applied to the FRAP data with all settings as specified in
Sect.9.5.4. In particular, for each time series the model with M € {1, 2, 3} mobility
classes is estimated. Table 9.10 exemplarily shows the results for two selected
datasets. More specifically, it presents the estimated posterior means and posterior
95 %-hpd intervals for kon1,...,Kkon,amr and ko 1, ..., ko, p- Furthermore, the
table displays the logarithms of the marginal likelihoods for each model as
introduced in Eq.(9.19) on p.344. Carrying out model choice by application of
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Table 9.10 Bayesian estimation results for two selected real datasets. The first two columns
specify the phase of the cell cycle and an index labelling the time series. Columns
four to six list the posterior means and 95 %-hpd intervals for the parameters defined
in the third column. Moreover, they contain approximated logarithms of the marginal
likelihoods log 7 (Y °P$| M) for each model M, M € {1,2,3}. These can be used
for model choice by means of Bayes factors; the respective selected models are shown in the
last column. For the upper dataset, the selected model M3 however estimates overlapping
confidence intervals for kon,1, Kon,2 and kogs, 1, koff, 2. As discussed in the main text, one
might hence exclude M3 and choose M instead

Model Chosen
Phase Index Parameter M=1 M =2 M =3 model
2.86 0.90 1.31
Gl ! kon,1 (2.51,3.19) (0.74, 1.06) (1.06, 1.61)
2.20 1.03
kon,2 -
(1.99,2.46) (0.85, 1.25)
ko s B B 2.25
: (2.01, 2.49)
I 0.20 0.37 0.18
’ (0.19,0.21) (0.32,0.40) (0.15, 0.20)
kot 2 B 0.13 0.16
’ (0.11,0.15)  (0.14,0.18)
kott,3 - - 013
: (0.12,0.14)
log m(Y°PS|Mps) 596952  5646.06 704444 Ms (My)
f 231 1.45 2.43
late S 3 on1 (1.93,2.72) (1.09,1.82) (2.13,2.72)
2.14 1.55
kon,2 -
(1.74,2.52) (1.31,1.87)
ko s B B 1.73
: (1.39,2.04)
bt 0.09 0.09 0.17
’ (0.08,0.10) (0.08,0.11) (0.15, 0.20)
Kot 2 B 0.07 0.09
’ (0.06, 0.08) (0.08,0.11)
kost,3 - - 0.04
’ (0.03, 0.04)

log m(Y°PS| Mpy) 1501927 521935  4965.65 M,

Bayes factors, one will clearly favour the model M3 with three classes for the
upper dataset and the model M for the lower dataset. However, considering the
confidence intervals for the upper dataset and M = 3, one notices that these
intervals overlap for both Koy 1, kon,2 and for ko 1, korr,2. Hence, the estimated
model may be reduced to two mobility classes and hence be excluded from the
range of appropriate models. In that case, again utilising the Bayes factor, one would
favour M.
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For a more concise representation, Fig.9.18 plots the estimated 95 %-hpd
intervals for a number of arbitrarily selected datasets. There are obviously several
time series where the confidence intervals overlap for some parameters. Table 9.11
on p. 361 lists the approximated logarithm of the marginal likelihoods for each of
the models and datasets. The table furthermore indicates for M = 2 and M = 3
the numbers of distinctly estimated association and dissociation parameters, derived
from potential intersections of the confidence intervals displayed in Fig. 9.18. When
taking this criterion into account, the model choice obtained through Bayes factors
is influenced only in two cases.

The representation of confidence intervals in Fig. 9.18 allows a direct comparison
of the locations of the intervals. A cell cycle dependent impact is especially obvious
for the parameter ko in the model M, indicating that molecules remain in the
bound state for a longer time period during G1 phase than in S phase.

9.7.3 Least Squares Estimation

In the following, the results of the least squares estimation are presented. The
estimation procedure is as in the simulation study in Sect. 9.5.4.

Figure 9.19 displays the least squares estimates for ko 1,. .., kofr,ns, based
on the triple normalised datasets with fi,; = 0 and fixed starting value ¢j as
displayed in Table C.1 on p.418 in the Appendix. These parameters are estimated
for the kinetic model with M € {1,...,4} mobility classes. The BIC, which
was introduced in Eq. (9.22) on p. 345, is used to select the model with the most
appropriate number of classes; results are listed in Table 9.12. This model choice is
also visible in Fig. 9.19, where the estimates for ko ; in a selected model are marked
with a cross, and with a circle otherwise. Figure C.3 in the Appendix presents the
fittings of the estimated to the observed recovery curve for one particular dataset
and M € {1,...,4}.

Concerning the estimated values of kog 1,. .., kofr, i, there is obviously a
difference between the phases of the cell cycle when considering the model with
M = 1 mobility class, especially between Gl phase and the two S phases.
This difference becomes less apparent for M = 2 and seems to disappear for
M € {3,4}. For none of the datasets, the BIC chooses the model with one mobility
class. For G1 phase, it typically selects M = 2 or M = 3, and for early S phase and
late S phase the BIC mostly distinguishes M = 3 classes.

In the previous sections, different variants of the above used datasets and estima-
tion settings were discussed: First, the triple normalisation from Sect. 9.6.1 could
be replaced by the double normalisation from Sect. 9.6.2. Second, the intermediate
fraction fi,¢ was introduced as a correction factor in Sect. 9.4. This variable could be
set equal to experimentally obtained values as listed in Table C.1 in the Appendix.
Third, the starting value g of the recovery curve could be fitted by least squares
estimation instead of being kept fixed to the first observed value.
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Fig. 9.18 Estimated 95%-hpd intervals for the parameters kon,1,.-.,Kon,M
and kot 1, . . ., kotf, pr in the kinetic models with M € {1, 2, 3} mobility classes. The labels
on the left indicate the phase of the cell cycle and an index marking the time series. (a) model
M, parameter koy (b) model M1, parameter ks (¢) model Mo, parameters kon,1, Kon,2 (d)
model Mo, parameters Kofr,1, kotr,2 (€) model M3z, parameters kon,1, kon,2, kon,3 (f) model
M3, parameters Koft, 1, Kotr, 2, Kotr, 3
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Table 9.11 Bayesian estimation results for real datasets. The first two columns specify the
phase of the cell cycle and an index labelling the time series. Columns three to five contain the
approximated logarithms of the marginal likelihoods log (Y °P$| M s ) for each model My,
M € {1,2,3}. These can be used for model choice by means of Bayes factors; the respective
selected models are shown in the last column. As discussed in the main text, however, some of
the estimated confidence intervals overlap, and hence the according model may be reduced to one
with fewer classes. Columns six to nine display the number of distinctly estimated association and
dissociation parameters, derived from potential intersections of the confidence intervals displayed
in Fig. 9.18. A model might be rejected when there are non-disjoint confidence intervals for both
the association and dissociation parameters. Taking this criterion into account, the model choice
obtained through Bayes factors is influenced only in two cases. The alternatively selected models
are shown in parentheses in the last column

Estimated class numbers

log (Y °P%| Mar) M M3

Phase Index M =1 M =2 M =3 kon:i kotf,i kon,i Kkorr,i Modelchoice
Gl 1 5969.5 5646.1 70444 2 2 2 2 Mz (M)
Gl 3 14699.1 15215.1 15050.2 2 1 2 3 Mo

Gl 5 15539.5 15954.3 172714 2 1 3 2 Ms

Gl 6 13050.5 13455.5 44552 2 2 2 2 Mo

Gl 7 14818.0  4828.1 5086.3 1 2 2 2 My

Gl 8 13892.1 14537.6 144158 2 1 2 2 Mo

Gl 9 15289.7 17004.1 161253 2 1 2 2 Mo

Gl 10 121404 122669  4067.0 2 2 3 3 Mo

early S 1 16352.3 16598.5 15850.7 1 2 1 2 Mo

early S 2 16372.4 159994 162714 1 2 1 2 My

early S 4 14956.2 15968.9  4988.7 2 1 2 3 Mo

early S 5 148959 14717.3 47979 1 2 1 3 My

early S 6 16381.8  5580.6 53189 2 1 1 2 My

early S 7 16050.2 52924 161142 2 2 2 2 Mz (M)
early S 9 5091.5 50935 49625 1 2 2 3 Mo

early S 10 134589 —658.3 1081.3 2 2 2 2 My

late S 1 15689.3 15574.0 54864 1 2 2 2 My

late S 3 15019.3 52194 49656 1 1 2 3 M

late S 5 15553.0 5271.2 52039 1 2 2 2 M

late S 6 15583.3  5122.6 53012 1 2 2 3 My

late S 8 15723.1  5306.6 5241.6 1 2 2 3 M

late S 9 14486.3  4764.0 49494 1 2 3 2 M

late S 11 14987.6  4962.2  4966.6 1 2 2 3 My

Figures C.4-C.6 on pp.421 in the Appendix show the changed estimates
for kof,1, - - -, komr,pmr due to these three modifications. Table C.2 displays the num-
bers of mobility classes chosen by the BIC with respect to these changes. It turns out
that the largest impact on all outcomes originates in the third modification, where
the starting value of the FRAP curve is estimated by least squares. Furthermore, for
all modifications, deviations are more apparent for M € {3, 4} thanfor M € {1, 2},
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Table 9.12 BIC as defined in Eq.(9.22) for the least squares estimates from
Fig.9.19. The first and second columns specify the phase of the cell cycle and a
consecutive index for each dataset. The next four columns list the BIC as defined in
Eq. (9.22) on p. 345 for the kinetic models with M € {1, ..., 4} mobility classes.
The last column states the number of classes that is chosen by the BIC

BIC

Phase Index M=1 M =2 M =3 M =4 Chosen model

Gl 1 —3,455 —4,225 —4,201 —4,136 2
Gl 2 —7,798 —-9,456  —9,603 -9577 3
Gl 3 —6,100  —7,965 —7916 7,846 2
Gl 4 -3,512 —4,380  —4,369 —4,316 2
Gl 5 —5,688 —8,340  —8,433 —8287 3
Gl 6 —6,299 7,199  -7.216 7,163 3
Gl 7 —5,875 —7,965 —8,118 -7959 3
Gl 8 —6,092 —-7,166  —7,302 -7,307 4
Gl 9 —6,571 —8,304 8,178 —8,009 2
Gl 10 —6,006  —6,875 —6,848 —6,800 2
early S 1 —5,126  —8,504  —8,686 —-8,602 3
early S 2 —4,743 -7,819  —7.812 —17,785 2
early S 3 —5,657 —-7,392  —7,366 -7,307 2
early S 4 —5480  —7,157 —17,434 —-729% 3
early S 5 —=5,177 —17,747 —17,986 —7,935 3
early S 6 —4,822 8,236  —8,478 —8,325 3
early S 7 —4,552 8,174 8,391 —8287 3
early S 8 —5,086  —7,747 —17,756 =7,729 3
early S 9 —5,089 7,760  —7,734 —7,689 2
early S 10 —4934  —9,091 —9,430 —9,261 3
early S 11 —5,805 —8,378 —9,168 -9,037 3
early S 12 —5,037 —17,485 —17,623 —17,581 3
early S 13 —4,448 —17,461 —7,774 7,747 3
early S 14 —5,028 —6,677 —6,789 —6,773 3
early S 15 —-5,154  —7,605 —17,578 7,470 2
early S 16 —4,565 —-8,174  —8,313 —8,216 3
early S 17 —5,887 —8,551 —9,168 —8864 3
early S 18 —5,741 —7,899 8,575 —8,407 3
early S 19 —4,903 —6,990  —7,207 —6,905 3
early S 20 —4,589 —6910  —7,084 =7,137 4
early S 21 —5452  —6,984  —7,432 —-728 3
early S 22 —5,637 —6,760  —6,907 —6,880 3
early S 23 —6,571 —7,942  —8,089 —-8,009 3
early S 24 —5446  —7,510 7,852 7,677 3
early S 25 —5,333 -7,350  —7,593 —-7,538 3
early S 26 —4,817 —7,650  —7,738 =7,711 3
late S 1 —5,198 —8,155 —8,362 —8,261 3
late S 2 —=5112 =7,200 —7,420 -7316 3
late S 3 —4,846  —7,127 —7,432 —7,275 3
late S 4 -5,127 —6986  —7,292 —-7338 4
late S 5 —-5,100  —7,691 —17,904 7,856 3
late S 6 —-5,072 —7,691 —8,128 —-799%4 3

(continued)
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Table 9.12 (continued)

363

BIC
Phase Index M=1 M =2 M=3 M=4 Chosen model
late S 7 —5,005 —7,707 —7,949 —7,687 3
late S 8 —5,302 —7,829 —8,046 —7,969 3
late S 9 —4,807 —-7,319 —7,468 —7,394 3
late S 10 —4,7771 —7,200 —7,375 —7,338 3
late S 11 —4,718 —17,754 —7,884 —17,756 3
a M=1 b M=2
X model chosen H— Kot 1 X model chosen H— Kot 1
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Fig. 9.19 Least squares estimates for k¢ ;, based on the triple normalised datasets with
intermediate fraction fint = O and fixed starting value g; as displayed in Table C.1. (a)~(d)

display the estimates for the parameters Kogr 1, - - -

,koee, s in the deterministic kinetic model

with M = 1,...,4 mobility classes. In each plot, the distinct time series are ordered according
to their phase and index as in Table 9.12, and the respective results are presented from the left
to the right. If a model is chosen by the BIC as listed in Table 9.12, the respective estimates are
represented by a cross; otherwise, they are marked by a circle

but this may be due to a generally larger variability in the estimates for larger M. In
practice, the third variation, i.e. estimation of ¢g, is probably not eligible as it seems
more important to find good agreement between the estimated and the observed
curve for the initial phase rather than for the final phase of recovery.
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9.7.4 Conclusion

The objective of this section was to investigate the research questions formulated in
Sect.9.1.2 on the cell cycle dependent binding behaviour of Dnmt1. To that end, the
kinetic models and estimation techniques from Sects. 9.3-9.5 were applied to real
datasets obtained from FRAP experiments.

Statistical inference on the model parameters was carried out both by Bayesian
and least squares estimation. Resulting estimates are presented in the tables and
figures in this section. The simulation studies in the previous sections demonstrated
that precise estimation is possible especially for the dissociation rates ko ;, with
more reliable outcomes being produced by the Bayesian techniques.

Cell cycle dependent differences in parameter estimates were especially observed
between G1 phase and the two S phases: Both the Bayesian and the least squares
procedure produce estimates for the dissociation rates which tend to be larger than
those in S phase. This difference is obvious for M = 1 from the graphics in
Figs.9.18 and 9.19 on pp. 360 and 363.

Concerning the numbers of mobility classes in the three cell cycles, the consid-
ered model choice criteria yield contradictory statements: While the Bayes factor
tends to choose more mobility classes in G1 phase than in early or late S phase, the
BIC behaves the other way round. Model choice already proved to be problematic
in the simulation studies carried out earlier in this chapter. Apart from that, a
possible explanation for the indefinite outcomes is that one might have diffusion-
coupled rather than diffusion-uncoupled FRAP for Dnmtl. This idea is pursued in
ongoing work Schneider et al. (2012). The kinetic model is briefly considered in the
following section.

9.8 Diffusion-Coupled FRAP

The role of diffusion of molecules in fluorescence recovery has been discussed in
Sect.9.2.2, where one has distinguished between diffusion-coupled and diffusion-
uncoupled FRAP. Throughout this chapter, diffusion-uncoupled dynamics has been
assumed for the construction of all kinetic models, because this scenario turned
out to be eligible in control experiments. For the sake of completeness, however,
one should also set up a model for diffusion-coupled recovery and estimate it for
the datasets in this chapter. Respective kinetic models have been developed in the
literature for circular and line bleaching (e.g. Mueller et al. 2008). This section
proposes an according model for half-nucleus FRAP, as required in the context of
this chapter. It is illustrated in Fig. 9.20. A similar approach has been taken by
Carrero et al. (2004). An extension of our model to multiple mobility classes is
shown in Sect. C.4.

In the diffusion-coupled model, one assumes that spatial diffusion of the GFP-
tagged molecules across the cell nucleus happens at a rate that is of the same
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bleached section unbleached section

free
molecules

bound
molecules

Fig. 9.20 Compartmental representation of the kinetic model for diffusion-coupled FRAP: The
unbleached molecules in the nucleus are divided into four groups, namely into molecules that are
free in the bleached section, molecules that are free in the unbleached section, molecules that are
bound in the bleached section and molecules that are bound in the unbleached section. As opposed
to the diffusion-uncoupled model in Fig. 9.5 on p. 312, the location of a free molecule is explicitly
modelled. Free molecules can diffuse from the bleached section to the unbleached section and the
other way round. Diffusion occurs with diffusion rate kqiss

order as the rates for binding and unbinding. In that case, other than in case of
diffusion-uncoupled FRAP, it is required to explicitly model the location of a free
molecule within the nucleus. An obvious approach is to divide the number Ure®
of unbleached free molecules into the number Ugrlcc of unbleached free molecules
in the bleached section and the number Ufr?{jlnd of unbleached free molecules
in the unbleached section. The state of all unbleached molecules in the nucleus
is then represented by Ugrlcc, Uﬁﬁfl, Uf;lo““d and Ufr‘l’t‘jl“d. As these variables
sum up to the number Ny of all unbleached molecules, complete information
is provided when considering a Markov process with three-dimensional state

vector (Uee, Ufree | ybound)’ in the state space
free free bound\/ 3 3 free free bound
UGS, Ugnpr, Up?™™9)" € [0, Ny J” N ING [ Upi®® + Uyt + Upt < Ny}

Binding and unbinding events are supposed to happen analogously to those in the
general diffusion-uncoupled model in Sect. 9.3. Diffusion of free molecules between
the bleached and unbleached section is assumed to occur with a diffusion rate kqif.
Every two molecules that are located at the same distance from the bleaching border
are supposed to cross this border within a certain time interval with the same
probability, no matter whether the direction of diffusion is from the bleached to
the unbleached area or the other way round. If, however, the bleached fraction f,; is
not equal to one half, the sizes of the bleached and unbleached sections differ. Then,
due to the geometry of the bleached area, several of the molecules in the larger
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section are located further away from the bleaching border than the molecules in the
smaller area. In order to account for this disbalance, the diffusion events in the two
possible directions are assumed to occur with the following rates:

f f b d f f b d . f
(U 1ee Uu;esl,U - ) (Ubliee—Fl, Uu;elfl , U - ) with rate kqisr fb1 Uu;elfh

(Uéﬁee’U‘igesl’ Ubound) (Uéliee_l’ Ui;el§l+1 Ubound) with rate kq;gs (1 fbl) Ufree.

The value of kq;g depends on the geometry of the cell and is hence not immediately
eligible for interpretation purposes. A diffusion approximation with the intensive

state variable (uftee, ulree, uPeund)’ results as the solution of an SDE with drift

—konulf®® + koerub ™ + kaige (forufeg, — (1— for) ultee)
iy o (1 5 w8 — ) — R (i, — (1) o)

konublee _ koffugound

and diffusion matrix

1 2 Yo —2X33
~ | 12222 0 |,
N,

U\=Z5 0 Iy

where

f bound f f
11 = Kontpr® + Kogupy ™™ + kair (forugs + (1= for) upr™)
f f bound f f
222 = konuunbl+koﬁ (1 Uy, ree u];r?gl Uy, oun ) +kd1ﬁ (fblul_:‘r?gl—i_(]‘_fbl) ubr]ee)
X33 = konuglee + kofru Ei)und
f
D10 = —kaigr (forulegy + (1— fo)ulse) .
The initial value for this SDE is an element of the state space
{(upr®, wimn, up?™™)" € [0,1)° VRG | up® + ungey + upf™™ < 1.
The observed variable is the fluorescence intensity

free bound
+ up)

_ Uy
fol

In case of kqig > kon, kost, 1.€. for diffusion-uncoupled FRAP, the drift function
can be approximated by
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aiee (forulree) — (1= for) ultee)
—kaifr (fblufur:le)l = (1—fu) U{)rlee)

0

until the process reaches a state where the elements of this vector are small,
that is fiu™e, ~ (1 — fu)ullee. This equality corresponds to ulle® ~ fijufre
and u'Tee) ~ (1—fi1)u'™e, where ufr®® = wftee +yfree  Thatis the basic assumption
of the diffusion-uncoupled scenario.

The consideration of an intermediate fraction f;,¢ is not meaningful in a
diffusion-coupled model, because there is no assumption of a rapid invasion
of unbleached molecules into the bleached area before acquisition of the first
postbleach image. On the other hand, the diffusion-coupled model may be designed
such that it can be applied to a more refined dataset containing the fluorescence
recovery in several slices instead of just two regions of the nucleus.

9.9 Conclusion and Outlook

This chapter showed a second application of diffusion models in life sciences.
It introduced a number of research questions concerning the binding behaviour
of proteins within cell nuclei and described the FRAP technique as a convenient
tool for data acquisition. Various stochastic and deterministic kinetic models for
the dynamics of fluorescence recovery were derived. The application of diffusion
models had not been considered in the FRAP literature before. The performances of
Bayesian and least squares estimation techniques were analysed based on synthetic
datasets in several simulation studies, and statistical model choice criteria were
evaluated. An enhanced processing of raw FRAP measurements was proposed, and
its impact on parameter estimation was investigated.

New insight could be gained especially concerning the cell cycle dependent
average residence times of Dnmtl remaining at binding sites, which were estimated
as the inverse dissociation rates for each mobility class. Improved parameter
estimates were achieved by utilisation of stochastic diffusion models in combination
with Bayesian inference techniques. These were newly introduced to the field of
FRAP analysis, where the application of deterministic models is prevalent.

Ongoing work Schneider et al. (2012) deals with the estimation of diffusion-
coupled models for the Dnmt1 data. An according model for diffusion-coupled half-
nucleus FRAP has been proposed in this book. In the diffusion-coupled scenario,
it is also meaningful to divide the cell nucleus into several slices with different
distances from the bleaching border and hence to apply the model to a richer dataset.
This could yield more accurate parameter estimates.
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Further analyses concern the biological interpretation of the estimation and
model choice results. To that end, fluorescence recovery curves are investigated
for mutants of Dnmtl, where certain binding interactions with DNA are possibly
disturbed (Schneider 2009).

The present chapter was focused on the cell cycle dependent kinetic behaviour
of the particular protein Dnmt1. Model derivations, statistical inference techniques
and data processing have, however, been formulated in a universal context. The
contents of this chapter hence provide a general framework for the kinetic analysis
of a multitude of proteins of interest.
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Chapter 10
Summary and Future Work

Stochastic modelling and statistical estimation are important tools for the un-
derstanding of complex processes in life sciences. This book motivated the use
of diffusion processes for both purposes and contributed to their applicability in
practice. The following section summarises the achievements of this book, oriented
towards the initially set objectives which were formulated in Sect. 1.1. Section 10.2
points out directions for future work.

10.1 Summary

Starting from a specific real-world phenomenon, one often requires a mathematical
Markov model which appropriately represents the time-continuous dynamics of the
considered system. To that end, many authors either choose a computationally costly
exact description in terms of stochastic jump processes or an over-simplistic state-
continuous deterministic model. A convenient trade-off between these two extremes
is provided by diffusion processes. These are both stochastic and state-continuous
but mathematically more sophisticated.

In particular, there are no general guidelines for practitioners which describe the
correct approximation of stochastic jump processes by diffusions. More specifically,
existing approaches are partly formulated for one-dimensional diffusions, and they
always assume systems whose dimension is sufficiently characterised by one single
size parameter. Both of these properties do not match the requirements of, for
example, the multitype susceptible—infected—removed (SIR) model considered in
this work. Chapters 2 and 3 of the present book motivate the application of diffusion
models in life sciences and provide a compact overview of their mathematical
background. Chapter 4 elucidates the derivation of diffusion approximations and
complements existing approaches by new formulations, multi-dimensional exten-
sions and the generalisation to systems which involve multiple size parameters.
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Importantly for practitioners, this chapter for the first time presents a systematic
procedure for the derivation of diffusion approximations in a universal framework.
The methodology is further exemplified in Chap. 5.

With a diffusion model at hand, which is represented in parametric form as the
solution of a stochastic differential equation, the next objective is to statistically
estimate its parameters based on time-discrete observations of the process. Chapter 6
investigates and reviews established frequentist methodology on this subject in a
multi-dimensional framework. It turns out that the application of such techniques
is problematic, if not impossible, in typical data situations in life sciences, which
can involve sparse and non-equidistant observations, measurements with error and
unobserved components of multi-dimensional processes. An appropriate alternative
to tackle this problem, however, is given by the application of a well-known
Bayesian approach which introduces auxiliary data points as additional observa-
tions. These are estimated by application of Markov chain Monte Carlo (MCMC)
techniques which alternately update the auxiliary data and the model parameter.
Chapter 7 reviews this idea in detail. Unfortunately, the procedure suffers from
convergence problems which originate in a deterministic relationship between the
model parameters and the quadratic variation of a continuously observed diffusion
path. A practical solution for this problem had not yet been proven for multi-
dimensional diffusion processes. Chapter 7 formulates a neat modification of the
Bayesian approach for conditioned diffusions on infinite-dimensional state spaces.
This book provides the mathematical proof that the so-constructed MCMC scheme
converges. Its performance is proven in several simulation studies.

In order to show the potential of modelling and estimation by means of diffu-
sions, Chaps. 8 and 9 utilise the theoretical insights gained in the previous chapters
for the statistical investigation of real problems from life sciences. Chapter 8
analyses the spread of influenza among humans, based on one dataset containing
the numbers of occurrences of influenza in a British boarding school in 1978 over
a period of two weeks, and a second dataset concerning one of the latest influenza
epidemics in Germany in 2009/2010. Spatial modelling is carried out in the latter
case by using an extension of the standard SIR model, developed in Chap. 5, which
allows for host heterogeneity. In another application, Chap. 9 explores the kinetic
properties of the protein Dnmt1 which is an important factor for DNA methylation.
Appropriate data is acquired by use of fluorescence microscopy. The statistical
investigations of Chap. 9 provide new insights into the understanding of the binding
behaviour of Dnmtl.

10.2 Future Work

Based on the contributions of this book, diffusion processes can more easily
and more efficiently be applied for modelling and estimation purposes in life
sciences. Future perspectives of this work mainly concern the utilisation of the
developed methods to further areas of applications, the variety of which is manifold.
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Practitioners should feel encouraged to dare apply diffusion processes in their
research areas: This book provides general guidelines for the setup of appropriate
diffusion models, and it supplies adequate information for their statistical infer-
ence. Thanks to the achievements in Chap. 7, the considered Bayesian estimation
approach is not limited by convergence problems anymore. For practical usability,
the proposed scheme has been formulated in algorithmic form. All algorithms have
been implemented in R.

Concerning the two fields of applications considered in this book, several
possible extensions have already been pointed out in the respective chapters, see
Sects.2.2.3,5.4, 8.4 and 9.9. Hence, only a few perspectives shall be commented on
here.

The utilisation of diffusion approximations coupled with statistical inference
techniques in the spatio-temporal modelling of the spread of infectious diseases is
new. Hence, research is in the early stages, and multiple enhancements are conceiv-
able. These could for example concern the choice of clusters and their connectivities,
the specification of model parameters and the quality of the underlying data. Such
advancements will help improving the comprehension and prediction of epidemic
outbreaks. This book provides a first step in that direction.

In the second application, diffusion models and their statistical inference have
also been newly introduced to the analysis of fluorescence microscopy data. One
direction of future research is to investigate diffusion-coupled recovery, which
was explained in Chap.9. Furthermore, in close collaboration with scientists from
molecular biology, comparisons between wild type proteins and appropriate mutants
can be drawn by application of statistical methods.

Overall, the combined application of diffusion modelling and statistical inference
promises to supply new insight in many exciting areas of life sciences in the future.
This book has demonstrated the potential of this approach.



Appendix A
Benchmark Models

This chapter briefly introduces well-known diffusion processes that serve as bench-
mark models in this book. In particular, for each process, the characterising
stochastic differential equation (SDE) and the transition density as defined in (3.14)
on p.39 are given. From that, it follows immediately how to simulate paths of
the processes.

A.1 Geometric Brownian Motion

One-dimensional geometric Brownian motion X = (X,);>¢ is defined through the
SDE
dXt = OéXtdt + UXtdBt, X() = X, (Al)

with parameters o € R, 0 € R4 and state space X = R for ¢ € R . In financial
mathematics, it generally serves as a model for asset prices with interest rate o and
volatility o and forms the basis of the famous Black-Scholes model (Black and
Scholes 1973; Merton 1973).

SDE (A.1) has the explicit solution

Xy = xgexp ((a — %O’Q)t + aBt)

for all ¢ > 0. The transition density reads

1 exp (_ (logy—logx—(a—502)(t—3))2>

2re(t — s)oy 202%(t — s)

p(s7 x7 t’ y) =
forz,y € X and t > s > 0; that is the density of a log-normal distribution, i.e.

X (X, = 2}~ LN (10g:v + (a _ 302) (t—s),02(t — s)> .
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The conditional expectation and variance of the state of the process are

E(X/| X, = 2) = 2e>~%) and Var(X,|X, = z) = 2%e2(¢=9) (ef’2<t*5> - 1) .

A.2  Ornstein-Uhlenbeck Process
The one-dimensional time-homogeneous Ornstein-Uhlenbeck process X = (X¢)1>0
with state space XY= is described by the SDE

dX, = a(f — X,)dt + 0dB, , Xo = o, (A.2)

for parameters 5 € R and a,, 0 € R.. It was first used by Uhlenbeck and Ornstein
(1930) to describe the movement of a diffusing particle, where 5 = 0, « is the
friction coefficient divided by the mass of the particle, and o stands for the strength
of the fluctuations. Vasicek (1977) applied this model later to interest rates with
long-run equilibrium value (3, speed of adjustment « and volatility o.

The solution of SDE (A.2) is

t
X; =mpe  + 5 (1—e ) + a/ e ="dB,
0

for all ¢ > 0. Due to the deterministic integrand, this is a Gaussian process with
transition density

p(57 z,t, y) = (b(,u(tfs;x),ﬂ(tfs;m))(y)

forall z,y € X and ¢t > s > 0; that is the normal density with mean
plt — s;2) = B(X| X, = ) = ze ) 4+ 8 (1 - e*a(tfs))

and variance

X(t — s;2) = Var(X¢| X, = —0—2 — g 2a(t=s)
yT) = t s—UC)—Za 1—e

evaluated at y.

A.3 Cox-Ingersoll-Ross Process

The one-dimensional Cox-Ingersoll-Ross (CIR) process, also called square-root
process, fulfils the SDE

dXt = CY(B — Xt)dt + o/ XtdBt, XQ = X0,
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with positive parameters «, 3,0, state space X = R and 9 € Ry. It was
introduced by Cox et al. (1985) to model a randomly moving interest rate, where the
model parameters are interpreted as in the Ornstein-Uhlenbeck model (Sect. A.2). It
is reasonable to assume 23 > o2 since then X = R..

Under this assumption the transition density of the process is

p(s,z,t,y) =c (%)fexp(—(u—i-v)) I, (2v/uv) (A3)
fort > s > 0, where
2 2
c=— w=cre =% y=cy, v= Lf—l.
o

0—2(1 _ efa(tfs)) ’

I, denotes the modified Bessel function of the first kind of order v, i.e.

O o 2k4v 1
La=3(3) wrareey

for z € R, where I is the Gamma function.

Formula (A.3) implies that Y; = 2¢X; conditioned on Y; = 2cx has the non-
central chi-square distribution with non-centrality parameter 2cz exp(—a(t — s))
and 4a3/0? degrees of freedom. The conditional expectation and variance of the
state of the original process are

E(XXs=2)=2 a_ﬁz 1 pe—olt—s)
co
and

2
Var(Xt|XS = ;C) = — (% + xe&(ts)) )
C
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Appendix B
Miscellaneous

This chapter contains several auxiliary definitions, proofs and calculations which
are required in the course of this book. They are not contained in the main material
because they do not stand at the core of this work.

B.1 Difference Operators

The following definitions and lemmas are used in the context of expanding the mas-
ter equation and infinitesimal generator of a Markov jump process in Sects.4.3.1,
4.3.2,4.4.1 and 4.4.2. The notation, proofs and further results are entirely new but
moved to the Appendix due to space restrictions.

Definition B.1. Let f : R™ — R be an infinitely often differentiable function
which is smooth enough such that the order of differentiation with respect to
different arguments does not matter. For fixed e = (e1,...,e,)" € R™, define
the difference operator Dy of order m with k = (k1,...,k,) € IN{} and
|k| = > k; = m recursively as follows:

Dof(x) = f(z), De f(x)= f(ztece)—f(x), DI f(z) = De Dy f(x)

i

form > 0, wheree; = (0,...,1,...,0) denotes the ith unit vector of dimension n
and uw o v = (uyv1,...,uyv,) for arbitrary u,v € R™. If the fixed parameter € is
ambiguous, attach it as a second subscript to the operator, i.e. write D ,Lk‘e

The difference operator allows the notation of difference quotients in correspon-
dence to according derivatives: As ¢; tends to zero forall: = 1,...,n,

Dpf@) | 0"f)

. (B.1)
51191 e Eﬁn ax]fl P 8:1;5”
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The following lemmas concern explicit formulas for these difference operators.

Lemma B.2. The difference operator can be expressed as

kn
Dy f(z Z Z i (];i) - (];T:)f(:cﬂoe) (B.2)
71=0 Jn=0
=> > (= < >"'(];:>f(w+j<>s), (B.3)
=0 jek,

where

={j=01,-...Jn) ENg||j| =land 0 < j; <k; foralli=1,...,n}

forl=0,...,mand fixed k.

Proof. Formula (B.3) follows directly from (B.2), whose validity in turn is proven
by complete induction on m = |k|: Eq. (B.2) trivially holds for m = 0 and m = 1.
Assume that it is true for any fixed m. Then, by definition and induction hypothesis,

Ditte f(x) = De, Dy f (=)

= i: i: zn: (=1)™~Eh=19n <k1> <kl> <I;:> fle+ (G +ei)oe)

; N N 1 )
j1=0  5;=0  jn=0 J Ji

kq ki kn
S3 Y S (T (’?1> . (’?f) . <"7n> f@+joe)

: ‘ k 1
J1=0 ;=0  jn=0 J Ji In

forany i € {1,...,n}. With an index shift of j; in the second line, this becomes
' .k ki1 (ki k
(_1)m+172h,¢i3h '1 ‘7, 1 .7,+1 ‘n
jlz;o jZ;oJ'i%::o jnzz:o (”1) <Ji*1) <J”1) <J”)
ki

X<f(931 +J1€1, - Tiy o T+ JnEn) + Z(_l)iji |:< _ki >+<k )} flx+joe)

Ji=1 -1

+ (1)~ D fey +grer, .. @i+ (ki + Deiy .o zn +jn5n)>7

which equals
k1 ki1+1

Yooy Z ’"*1‘2’5ljh(k.1>-~-<kif1>-~-(k.")f(awrjos).

J1=0  §i=0  jn=0 Ji Ji "

This proves the proposition. a
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Lemma B.3. Each expression of the form f(x + ko €) — f(x) can be expanded
as the sum of differences D} f(x) with |k'| = m’ < m = |k|. In other words, for
each k there is a set I, C IN[ with

k' €I = K| < |k

such that &
fle+koe)—f(x)= > DE'f

k'€l

Proof. The proposition is again shown by complete induction on m. The statement
is true form =1 as

fz+eioe) — f(z) = De, f(x)

forany i € {1,...,n}. Presume that it holds forall m’ < m.Letk = (ky,..., k)’
arbitrary but fixed with |[k| = m + 1 and

Ki={d=0....jn) €Ng|lgl=1 AN 0<ji <kiforalli=1,...,n} (B.4)
forl =0,...,m+ 1. Then, with Lemma B.2,
fl@+koe)— f(x)

o 1-—1 k kn .
- (S e (B) - () sen)
1=0 jeK, n
m+1 l k kfn . _
(e P R PR ECER RN BICY
1=0 jek,; n

— Dzwl <i: Z m+1 z<k ) <I;”> [f(m+j<>s) —f(m)]) (B.5)

=0 jeK, I "

<1 + Z Z m+1 l<]1> <I;:>>f(w) (B.6)
1=0 jekK,;

Line (B.5) is the sum of differences of order less than or equal to m + 1 due to the
induction hypothesis. Line (B.6) equals zero since

e g () B ()

JEK; In 1=0

using the generalised Vandermonde’s identity and the binomial formula. This
concludes the proof. O

The proof of Lemma B.3 already indicates how to expand an expression
f(x+ koe)— f(x) with |k| = m in order to obtain a representation as the sum of
differences Dy; .
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Algorithm B.1. This algorithm converts an expression f(x + k o e) — f(x) to
a sum of differences that can each be expressed by the difference operator from
Definition B.1. In the following, the variable C stands for the already converted part
of this expression, and R denotes the remaining part which still has to be converted.
At any time, the remainder R consists of terms f(x + j o €) with |j| < |k|, and
C+R=f(x+koe)— f(x).

Initially, one has C = 0 and R = f(x + ko ¢e) — f(x). While R # 0, execute
the following steps:

o Select the term af (x + k™ © €) of R which has highest order |k™|. If this choice
is not unique, choose any term of highest order. Set
a+ flx+k*oe)
and choose « € 7.\ {0} according to the prefactor of a in R.
e Set

B e (5) - (s

1=0 jeK; n

with m* = |k*| and K| defined as in (B.4) with k; replaced by k.
e Set

C+ C+ala+b)=C+aDp f(z)
and
R+ R—ala+b).

When R = 0, the variable C' has the desired form. This algorithm terminates in
finite time since the summands of b are of order less than |k*|.

Lemma B.3 does not ensure uniqueness of the expansion of f(x 4+ koe) — f(x).
If there is more than one possible representation, all of them are equally correct. In
the context of the expansions in Chap. 4, however, caution is advised: There, we are
not taking full limits but include in the result all terms up to a certain order of a
small parameter. To be more precise, terms of the form

Dy f(x) k
f( )_El ...Einaklk—]%,vall...a
1

kn o™ f(x)
s T

with e1,...,e, € {—£,&} for some small positive £ are considered. In order
to take limits of the difference quotients consistently, all differences should be
expanded over intervals [a1,b1] X ... X [ap,b,] with identical sums of lengths
|b1 — a1| + ...+ |bp — an|. According to Lemma B.2, D} f (x) covers an interval
with cumulated length k1 |e1| + . .. + ky|en| = mé, ie. D' f(x) and Dﬁf(:v) do
not fulfil the required uniformity for m # m/.

Example B.1. In Chap.5, the above expansions of terms of the form
f(x + koe) — f(x) are employed in order to derive diffusion approximations
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for Markov jump processes. There, we especially deal with models where |k| < 2
for all differences. In such cases proceed as follows: As proposed in Definition B.1,
attach the parameter € as a second subscript to the difference operator. Where both
difference operators Dy, _ and Dy, _, with |e;| = || forall j = 1,...,n appear,
the first order difference operator can again be expanded as

DX of@) = 3 [D f@) + DL _of(@)] + 5[Dh of(@) - DL, _of(@)]

1

1
= §Dgei,€f(m - 6) + §Déi,2€f(m - 6)

for arbitrary ¢ € {1,...,n}. The last row consists of expansions over intervals with
cumulated lengths identical to that of the one covered by Di,e/. The according
approximation is

512 D%ei,s (:B - E) + 2¢e; Dtlai,2ef(w - 6)

1 = —
Dei,ef(w) - 9 512 2 251_ (B 7)
LS @) df() '
Y9 022 T o

Proceed similarly even in the absence of second order differences (e.g. for the
expansion of the master equation of the Poisson process, which cannot satisfyingly
be approximated by a diffusion though).

Example B.2. Consider a jump process with state variable x = (z1,...,z,) and
possible jumps

{A=(4,....4,) | Ai € {—¢,0,e} foralli=1,...,nand Z|Al| € {e,2e}}

=1

for some fixed ¢ > 0. Section 4.3.1 describes how to approximate the so-
called master equation of this jump process by a partial differential equation. Let
f : R™ — R be a twice differentiable function. The occurring difference terms in
the approximation procedure are the following:

e For A =ce;:

(B.7)

flai =) = flxi) = De, _af(x) =

e Pf(x)  Of(x)
2 027 om

where only the component x; of interest is displayed as an argument of f.
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* For A = ¢(e; + e;), where i # j:
flxi — &, Xy — 8) - f(fﬂiwj)
[f(ﬂci —e,xj—¢) = fwi, x5 —¢e) = flwi —&,25) + f(fEi,fE_j)]
+ [f(wi,xj — ) = flawi,xy)] + [flai—e,a5) — fla, ;)]
= (DgiJre]'.fA + Déj,fA + Dli,—A) f(x)

- dx;0x; 2 Ox3 oxj 2 Ox? Ox; '

* Similarly, for A = ¢(e; — e;), where i # j:

0?2 2 92 0 2 9?2 0]
flri—e,zjte)—f(xi, x5) = < 2 + el + + = — > f(xe).
J

€
— — e — —&
Ox;0x; 2 Ox; 2 axf ox;

e For A = —ce; and A = —¢(e; + e;), replace € by —¢ above.

In Sect.4.3.1, the role of f is taken by the product of the scaled transition
rate w = cwy and the transition density p of the process. The above difference
terms are summed up, divided by € and rearranged such that one arrives at the partial
differential equation (4.20), that is

oplt,z) < Opi(m, thp(t, )] & <~ 9*[Xij(x,t)p(t, )]
D oz, +§1Z om0z,

i=1 g=1

The above jumps contribute to the unknown vector p(x,t) = (pi(x,t))i=1,....n and
matrix X(x,t) = (2 (2, t))i j=1,... » as follows:

.....

Jump Add to p(x,t) Add to X(x,t)
A = ce; e;w(t,x, Aq) e;elw(t,x, A1)
As = —ce; —e;w(t,z, Az) e;ew(t,x, As)

Az = e(ei+ej) (ei +ej)w(t, @, As) (ei +e;)(ei + e;) w(t,x, As)
Ay =—c(e;+ej) —(ei+ej)w(t,z, As) (e;i+ej)e+ej)w(t,x, As)

As = e(e; —ej) (es —ej)w(t,x, As) (e; —ej)(e; —ej) w(t,x, As)

This result coincides with the one that would have been obtained by application
of the Langevin approach or Kramers-Moyal expansion, which are introduced in
Sects.4.3.3 and 4.3.4. It is also valid for the approximation of the infinitesimal
generator, considered in Sect.4.3.2.
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B.2 Lipschitz Continuity for SIR Models

A most tractable way to prove the existence and uniqueness of a strong solution of a
given SDE is to verify Lipschitz continuity of the drift p+ and diffusion coefficient o
(cf. Sect.3.2.3). One thus has to show that there is a positive constant C' such that
for all ¢ in the time set and all «, y in the state space

where ||A||2 = tr(A’A) denotes the Euclidean norm. The solution is non-
explosive if
(O] + llo(z, )]* < D(1 + [|=]) (B.9)

for all ¢ and x. These two properties are investigated in the following for the
diffusion models derived in Chap. 5. The results are discussed in Sect. 5.3.

B.2.1 Standard SIR Model

Let 1 = (s1,¢1)" and @2 = (s2,i2) denote arbitrary elements of the state space
of the standard SIR model. Formula (B.8) is true if and only if there are positive
constants C7 and Cy such that for all ¢

(@1, )~ (@2, DIP<Ci [ —asl and o (@, )~ (@2, )| < Caller—wa|.

The first inequality is
2&2(81i1 — 52i2)2 — 20&5(811'1 — Sgig)(il — ZQ) —+ ﬂQ(il — i2)2
S Cl ((81 — 82)2 + (il — 22)2) .

In what follows, the three summands on the left are considered separately. First,
one has

(B.10)

. . . . . 2
(5101 — s2i2)® = ((s1 — s2)i1 + s2(i1 — i2))
< (81 — 82)2 + (il — i2)2 + 2i182(81 — Sg)(il — ig).

The product (s1 — s2)(i1 — i2) is either negative and can be ignored, or it is positive
and less than or equal to max{(s; — s2)?, (i1 — i2)?}. In any case, there is a
constant k1 > 0 such that

2&2(51i1 — 52i2)2 S K1 ((81 — 82)2 + (’Ll — 2-2)2)' (Bll)
For the second summand on the left of (B.10), one has

— (8111 —8212) (11 —i2) = —(81—82) (i1 —i2)i1 — 82 (i1 —i2)? < (s5—s51) (i1 —42)i1.
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The product is of importance only if (s2 — s1)(i1 — i2) is positive. In that case, one
has (82 — 81)(i1 — ig)il < max{(31 — 82)2, (il — i2)2}, and hence

—2a8(s111 — $212) (i1 — i2) < 52((51 —59)% + (i1 — Z'2)2)

for an appropriate k2 > 0. The third summand on the left of (B.10) can trivially be
bounded by the term on the right. Altogether, the inequality (B.10) is satisfied, i.e.
the drift vector p fulfils the required Lipschitz condition.

For Lipschitz continuity of the diffusion coefficient o, one needs to show

- (20(Vaii Vi) 5 (Vi —Viz)”) < O ((s1-52) +(1—i2)?) . (B12)

It is, however, well known that the function f(x) = +/x is not Lipschitz
continuous in * = 0. Hence, the inequality (B.12) cannot be true for any
of the variables si, s2,%1,72 being equal to zero. If, on the other hand, one
requires si, S2,1%1, %2 > € for some small but positive fixed ¢, Lipschitz continuity is
given as shown in the following. In that case, one has

. . 2
T e = <M>
( ) V8111 + V8212

: : V2

$101 — S219)~ (B.1D

< i = o) ©F
4e?

53((81 — 59)% + (i1 — i2)2)

for suitable k3 > 0. Similarly, there is some x4 > 0 such that

. . 2 . . \2
- —\ 2 11 — 12 (i1 —i2) ( 2 . . 2)
i1 — Vi = < < kgl (51 —82)" + (11 —1 .
(Vi v = () < B (- s 4 i)
That proves (B.12).

Provided that a solution of an SDE exists, it does not explode when (B.9) is true.
This condition is met for the considered SIR model as shown next: For = (s,7)’,
the inequality (B.9) reads

2asi + [Bi

2025%i% — 2a6si® + %% + N

<D (1+s*+1i%).
Because of s,i € [0, 1], the left hand side of this expression is bounded, and the
inequality is trivially fulfilled.

B.2.2 Multitype SIR Model

Instead of formally proving conditions (B.8) and (B.9) also for the multitype SIR
model, this section heuristically motivates why Lipschitz continuity must hold for
this model on the restricted state space, and why the solution does not explode. That
is because the components of the drift vector p and diffusion coefficient o in the
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multitype SIR model have the same structure as those in the standard SIR model.
In particular, all components of & and o contain the fractions of susceptibles and
infectives either linearly or as a product s;i,, with j,m € {1,...,n}. Hence, the
validation of (B.8) and (B.9) works as in Sect. B.2.1 but is definitely more elaborate.

B.3 On the Choice of the Update Interval

This section deals with the appropriate choice of an update interval for a sample
path in the context of the MCMC scheme introduced in Sect.7.1. The choice of the
update interval is discussed in Sect.7.1.6.

Assume we have S + 1 observed or imputed consecutive data points
Yo,Y1,...,Ys. Setting the update interval equal to (a,b) implies proposing
new values for {Y,41,...,Yp_1}. The interval (a,b) should be chosen in a way
such that a,b € {0,1,...,S} and b — a > 2. Furthermore, the number of points
in (a, b) shall be bounded by R < S — 1. Algorithm 7.1 on p. 191 presents a simple
procedure to randomly draw such an interval (a, b). However, this strategy updates
data points near the boundaries of the time interval less frequently than those in the
centre. This fact is elucidated in the following.

Let 1 < k < S — 1. The probability that & is included in the interior of (a, b)
equals

B
|
—

i
It
=
=
Il
[
>
S
Il
=

<
Il
N

+
=

P(k € (a,b)) =

B
|
—

|
I
-

Pla=i)P(b=j|a=1)

<
Il
N

+
=

— ZS: 1 1(i+2<j<min{i+R+1,5})
pr i S—1 min{i + R+ 1,5} — (1 +1)
1 k—1 min{i+R+1,S} 1 (B 13)
- S-1 min{i + R+ 1,5} —(i+1)"

i=0 j=k+1

where 1 denotes the indicator function, i.e. 1(A) equals one if A is true and zero
otherwise. The inner sum in (B.13) equals zero if min{i + R + 1, S} < k + 1, that
is ¢ < k — R. Hence, one has

min{i+R+1,5} 1 0 ifi <k—R,

T - = min{i + R+ 1,5} — k
. R+ 1,5t —i—1
joipa min{i+ R4S} -4 min{i + R+ 1,8} —i—1

otherwise.
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Overall,

i min{i + R+ 1,8} — k

S-1 i=max{0,k—R} mln{z + R+ 1,5} —7—1

This probability is constant for R < &k < S — R, that is where
max{0,k— R} = k— Randmin{i+ R+1,S} =i+ R+1foralli =0,...,k—1.
For k < Ror k > S — R, however, the probability is generally lower, because the
number of possible intervals (a, b) covering points near the boundaries of (0, S) is
less than the number of intervals covering points in the centre. To correct for this
disparity, extend both boundaries of (0,.5) by R — 1 and draw an interval (a*, b*)
within (1 — R, S + R — 1). If a*,b* ¢ {0,...,S}, adjust them respectively.
The corrected procedure is carried out by Algorithm 7.2. The achievement is
that P(k € (a,b)) is constant for k = 1,...,5 — 1.

B.4 Posteriori Densities for the Ornstein-Uhlenbeck Process

This section provides the calculation of the exact and approximate full conditional
densities for the model parameters of the one-dimensional Ornstein-Uhlenbeck
process. These are utilised in Chap.7 for the illustration of the MCMC scheme
considered there.

The Ornstein-Uhlenbeck X = (X );>¢ process is the solution of the SDE

dXt = Oé(ﬂ — Xt)dt + O'dBt, XO = X,

for parameters 8 € R, a,0 € R4 and initial value ¢ € R. This is a Gaussian
process; its explicit form and transition density are shown in Sect. A.2.

In the following we consider both proper and improper priors for the model
parameters. When improper priors are involved, the joint posterior density of all
parameters might be improper as well even if the full conditional densities are not.
In that case the posterior distribution is not well-defined. We hence start with the
joint posterior density and investigate for which priors its integral is finite.

Exact Posterior Density
Assume we have observations Yy, ...,Y,, of an Ornstein-Uhlenbeck process at

times to, ..., ¢, where Yy is the predefined initial value. Then the exact joint
posterior density of c, 3 and o2 is
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w(a,ﬁ,az ’Yo,...,Ym)
O(W(}/O,...,Ym‘Oé,ﬂ,0'2)p(04,ﬂ,0'2)
m—1
X (H ﬂ-(Yk+1 }kaavﬂvoz)) p(a7ﬂ702)

k=0

m—1
= (H ¢(Yk+l |,U(Atk,Yk,OZ,B),E(Atk,Yk,O[,U))> p(a,ﬂ,az),
k=0

where ¢ denotes the Gaussian density and

M(Atk, Y, ﬂ) = YkeiaAtk + 5 (1 — eiaAtk)

and
02 —2a At
E(Atk,Yk,a,a):%(l—e k)
The joint posterior density m(c,3,02|Yo,...,Y,,) of all parameters is hence

proportional to

m—1 —aAt —aAt 2
« Yk+1—Yke kb — B(l—e k))
p(aaﬂa eXp<_§ Z 1 _e*QQAtk
k=0 (B.14)

m/2 m—1

A /1 _ 6720‘Atk

k=0

7N
s;>|q

Suppose that a priori the model parameters are mutually independent. More
specifically, let

B~N(Bo,pz) and  o* ~1G(ko, ) (B.15)

for By € R, pg € Ry U {+oc} and (ko, 1) € R2 U{(—1,0),(0,0)}. With these
parameter ranges we explicitly include the improper priors p(3) o« 1, p(0?) < 1
and p(0?) o< 0~2. The choice of p(a) will be considered later.

We want to investigate if the joint posteriori density (B.14) is proper for our
choice of prior densities, i.e. whether the integral of (B.14) over all a, 3 and o2 is
finite. Consider first the joint marginal posterior density of o and /3,

7T(Oc7ﬂ|Yb7...7Ym) = 7r(oz7ﬂ7a2|Yo7...7Ym)da'2

=9
/ m +n0+1) exp <_ K -|-27/0> da_z7
g

m—
H 1— e 2&Atk 0

0\8

m
o2

K



390 B Miscellaneous

where

m—1 (Yk-i-l _ YkefaAtk _ 6(1 _ e*aAtk))2
K=o Z 1— e—20¢Atk
k=0

The integrand is the unnormalised density of an inverse gamma distribution with
parameters m /2 + kg and K + . As m is usually greater than two, both parameters
are positive. Hence,

7T(Oé,ﬂ|Y0,...,Ym) o (Vo—I—K)i(%jLKO)_

m—1

T[Vi_ean

k=0
Next, integrate out 3. One has

m(o| Yo,...,Ym) = /w(a7ﬂ‘Yo7...7Kn)dﬂ

The first factor in the integrand is less than or equal to one for all choices of [y
and pg. It can hence be omitted when we are interested only in an upper bound for
the posterior of a. The second factor can be rewritten as

m _(% RO)
(Vo-l—K)i(%Jmo) = (Vo—l—ozzl (B — Bi)® > + )

where
Yk-‘rl _ Yke—aAtk 1 + e—OtAtk
/Bk - 1 _ e—OtAtk -

Further rearranging yields

(vo + )~ (E+%0)

m—+2k,
2 (B.16)

14 1 m+ 2kg — 1 ( a2)2
m+ 2kg — 1 2 az _ a3 ai
al o ai af
with
m—1 m—1 m—1
1 X 2
ap = —, G = — and a3 = E A
c c c
k=0 * k=0 °F k=0 K

This is the unnormalised density of the univariate t-distribution with mean as/ay,

scale parameter \/m + 2Kg — 171\/u0/a1a +az/a; —a%/a? and m + 2k — 1
degrees of freedom. The scale parameter is well-defined as ajaz — a3 > 0 due to
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the Cauchy-Schwarz inequality. The integral of (B.16) over all 3 is proportional to
the scale parameter, i.e.

2
w(a}YO,...,Ym)gcp(a)< 1/ _zamk> ——Z—§ (B.17)

for some constant C' € R . For o € Ry fixed, i.e. p(a) = d(a — ag) being the
Dirac delta function with positive «, the integral of this expression is finite, that
means the joint posterior density of v, 3 and o is proper. Otherwise, a sufficient
criterion to obtain a proper posterior is that (B.17) is normalisable.

In the simulation study in Sect.7.1.7, the parameter « € IRy is considered
fixed. In that case, one obtains a proper posterior if 3 and o2 are chosen according
to (B.15). The latter explicitly includes improper priors.

Exact Full Conditional Densities

We now derive the full conditional densities for the three parameters of the Ornstein-
Uhlenbeck process. The existence of a proper full conditional density does however
not automatically imply a proper joint posterior distribution. That is why the
following formulas should only be applied in an MCMC algorithm after one has
confirmed that the chosen combination of prior distributions implies a proper
posterior.

All full conditional densities are proportional to the joint posterior density and
hence to the expression (B.14). They are obtained by dropping all multiplicative
terms which are constant with respect to the considered parameter. Suppose that
a priori the model parameters are mutually independent. Then the full conditional
density for the parameter 3 is

(8|, 0 Yo, .., Ym)

Yk+1 Yie™ aAty 5(1 _ efaAtk))Q
x p exp( Z 1 — e—2aAty

k=
m—1 7aAtk
o p(B) exp| — 5 52 (o)
o2 1 — e ZaAtk

m—1 a At —aAt
Yk+1 Yke k) (1 — € k)
2/3 E : — e 20aAty
k=0

7”271 Yk+1 _ YkefaAtk
m—1 _—adAty 1+ e—adty

2 0-2 Pt 1 + efaAtk m—1 1— e*aAtk
; 1 _|_efaAtk
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In case of a flat prior p(3) o 1 for 3 € R, this is an unnormalised Gaussian density,

m—1 —a
i e
P 1+ e~ oAty 2or
Bla,o, Yy, ..., Ym~N | 222 . (B.18)
’ ’ ’ ’ 1 Y m—1
—aAt —a At
k=0 1 +e g k=0 1 te i

For 8 ~ N (Bo, p%) with By € R and pg € R+, the full conditional density becomes

W(ﬁ‘a,aQ,YO,...,Ym)

g (L 20 1 - emodh
xexp|—= -+ = _—
Pl 72 p3 o2 1 +e—aat

k=0

m—1
B 2 Yii1 — Yke_aAtk
_2ﬁ 20 + 2 = —aAt
ps 0% g Ltemoon

1 < 1 2a mll—e—aﬂtk>
=exp| — — + = -

p% o2 — 1 4 e—a@Atk

—1 _
Bo 20~ Y1 — Yee @At

p% o2 Pt 1 4 e—@Atk

1 2071 e it

JE— _|_ J— J—
p% o2 prt 1+ e—aAtk

B —2p

The resulting density is again Gaussian, in particular

ﬁ}a7027§/07"'7ym

m—1

0'260 Z Yit1 — Yke_o‘At" o2
2opp g ltereanm 2a
~ o2 . mz—l 1 — o—0At, ’ o2 . mz_ll _ e—0At,
2ap7 =1 +emoAl 2apf 1 +emAl

Note that for pg = oo this expression equals Eq. (B.18). For the parameter o2, the
full conditional density fulfils
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(Uz‘aaﬁaybu'-'uym)

) . o m—1 (YkJrl_YkefaAtk _ [3(1 _ e*aﬂtk))Q
x p(o®) o™ exp —— o .
k=0

If one chooses a flat prior p(0?) oc 1 for 02 € R, the above is an unnormalised
inverse gamma density of

m—1 At —aAt 2
Yk Yie™ @ ’C—,B(l—e ’C))
2 +1— Yk
oo, B, Yo, .., Ym ~IG<——1,a vy :

=0
For 02 ~ 1G(ko, vp) for kg, 9 € R, the full conditional density is proportional to

im . m—1 Y i Ve —aAty 1— —aAt,\)2
C R <—U— (”OMZ el TR0 e TN,

k=0

that is

02|O‘7ﬂ7}/05"';ym

m—1 Y Y —aAt, 1— —aAty 2
~ IG < + Ko,y + @ Z an K 1_ezo¢BA(t;C - )) ’
k=0

For kg = —1 and 1y = 0, one again arrives at the result derived for the flat prior.
The full conditional density of «,

w(a‘ﬁ,02,Yo,...,Ym)

m—1 aAty —a Aty 2
) a (Vg1 —Yee @25 —B(1 —e )
p(@)a™? exp <_F =T
k=0
x m—1 ’
A/ 1 _ e—2o¢Atk
k=0

cannot be recognised to be of any standard distribution type.

Approximate Posterior Density

The exact transition density is usually unknown, but can for small At; be
approximated by application of the Euler scheme

Yiqr1 ~ N (Yk + Oé(ﬂ — Yk)Atk, O'2Atk)
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fork = 0, ..., m— 1. The approximate joint posterior density of c, 3 and o then is
2
F(Q,B,U |}/07 T 7Ym)

m—1
o (H ¢(Yes1 | Yi + (B — Yi) Aty U2Atk)> ple, B,0%)

k=0

m—1 2
ocp(a,ﬁ,oQ)omexp<—lZ (Ykﬂ_yk_a(ﬁ_yk)Atk) ) (B.19)

2 =0 (o 2 At k
The remarks on proper and improper posterior densities on p.388 naturally also
apply for the approximate densities. Thus, we first consider in which cases the ap-
proximate posterior is normalisable before deriving the approximate full conditional
distributions.
Choose the prior densities as in (B.15). Integrating the joint posterior density
over all o2 yields

T 1
oeﬂ’Yo,..., m ocpaﬁ/ +“°+1)exp<—;-(uo+K))d02
0
where )
lmzjl Vi1 — Vi — o — Yy,) Aty)
2 &~ Aty '

The integrand is an unnormalised inverse gamma density with parameters m /2 + kg
and vy + K. As in the consideration of the exact posterior density on p. 390, these
hyperparameters are usually well-defined. Therefore,

m+2k(q

BIYo,....Ym) x<pla, B)(vo+ K) 2

Now integrate this expression over all 3, that is

oo B ) .
m(@[Yo, ..., Yin) o pla) / exp (—%) (v +K) 7 dg.

— 00

The exponential function in the integrand is less than or equal to one for all
values of 3y and pg. Suppress this factor to obtain an upper bound of the integral.
Furthermore, rewrite

_ m+2rg
pl

m+2ng 2 m—1
(VO"’K)i 2 — <V0+_2Atkﬂ ﬂk) )
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with 8, = Y + (Yit1 — Yi)/aAty, and furthermore

_ m+2rg
2
_ m+2rg 1 m+2kg — 1 b\ 2
(VO+K) C= 1+m+2f<¢ 1 2w bf b3 .(ﬂ_bﬁ)
0 oy - # 1
with
m—1 m—1 m—1
=3 Aty, by=> AuBy and by= >  AtB;.
k=0 k=0 k=0

This is the unnormalised density of a univariate t-distribution with mean b2 /b1, scale
parameter \/WA /219 /b1a2 + b3 /by — b3 /b? and m + 2k — 1 degrees
of freedom. Once again, one can easily verify with the Cauchy-Schwarz inequality
that the scale parameter is well-defined. Thus there exists a constant C' € R4 such
that

21/0 b3 b%

w(a‘Yo,...,Ym)ng(a) il a_a

If p(«) is chosen such that the integral of this expression over all « is finite, the joint
posterior distribution of all model parameters is proper. In the simulation study in
Sect.7.1.7 this condition is fulfilled as « is considered fixed.

Approximate Full Conditional Densities
In case the prior densities are chosen such that the posterior distribution is proper, the
full conditionals are proportional to (B.19). Let the prior densities of all parameters

be independent. Then for the full conditional density of o one obtains

m(a|B,0°% Yo, ..., Ym)

m—1 m—1
x p(a) exp( % |:a2 ﬂ Yk Aty _ 9 Z (Y1 — Vi) (B — Yk):|>

0—2
k=0 k=0
m—1
Yk+1 5 Yk)
m—1 2
1 —Yi) At —
= p(a) exp ~5 <Z —(ﬂ ;2) k) o’ —2a k_om S
k=0 Z (5 — Yk)QAtk
k=0

If p(ar) ox 1 for o € R, this corresponds to the truncated Gaussian distribution
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a|ﬁ7027%7'-'7ym

m—1
(Vi1 = Yi) (B — i) o1 -1
k=0
~ Mrunc m_1 ) 02 (Z (6 - Yk)zAtk> 5
Z B —Yy)? Aty h=0
k=0
and for & ~ Niune (o, p2) one obtains
alB,0%, Yo, .., Ym
m—1
P2 (Vi1 —Yo)(B—Yi) + oo’
k=0 T P
NMrunc m_1 ) m—1
P2 (B—Yi) Aty +0° P2 (B —Yi) Aty + 0
k=0 k=0

For p, = o0, this is the result for a flat prior. The full conditional density of 5 equals

W(ﬂ‘a7027Y07...7Ym)
1

m—

x p(B) exp <—% o (ﬂ Yk) Aty — 2(Ye41 — Yi)a(B — Yk)>

k=0 g
1 m—1 m—1
x p(B) exp <_@ 52 Z Aty — 23 Z (Yit1 — Yi) + YkAtk):|>
k=0 k=0
B 1, 1 Yin — Yo
= p(,B) exp <— 252 « ( — t()) |:,3 — 2,8 " ( o + kz:o Ykﬂtk>:|>
With a flat prior p(8) « 1 for 5 € R, this leads to
m—1
Y., — Y.
om0 + ZYkAtk
2 Yore o Y o N | k=0 o
B’aaaa 0yecydm ™~ tm_to 7a2(tm—t0) )
for B ~ N (8o, p2) 1o
Blae,o® Yo, .., Ym
Ym _v m—1
052ng <—O + ZYkAtk> +U2ﬂo 9 9
« k=0 9 Ps

~N

azp%(tm —to) + o2
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Again, this expression yields the same result as for the flat prior when setting
pp = oo. Eventually, the full conditional density of o2 fulfils

W(Uz‘aaﬁaybu"'uym)

o p(o?) ™™ exp <__ nil (Yesn = Y — ol - Yk)Atk)Q) .

1
20’2 5—0 Atk

If p(0?) o< 1 for 0% € Ry, it follows immediately that

m—1 2
9 m 1 (Yk+1 -Y. — Oé(ﬂ — Yk)Atk)
o, B, Yo, ..., Y IG<2 1,22 v ,

k=0

and in case of 0 ~ IG(kg, 1) one obtains

m—1 2
02{07573/0,.. Yo NIG( + Ko, Yo + Z(Yk+l_Yk—a(B—Yk)Atk) )

Aty

N =

k=0

For 1o = —1 and 1 = 0, this expression is the outcome for a flat prior for 2.

B.5 Inefficiency Factors

In order to graphically represent the serial correlation of consecutive draws of an
imputed data point Yy, from MCMC schemes as in Chap. 7, Elerian et al. (2001)
utilise the inefficiency factor

(¥ = 1423 py(¥)
j=1

of according posterior estimates, where p;(Y7) is the autocorrelation of Y7, atlag j.
The inefficiency factor is the factor by which one has to multiply the length of an
MCMC chain in order to achieve equivalent results as fromi.i.d. draws. Elerian et al.

estimate ¢ as .
ZK ( ) pi (V).

where n is the length of the Markov cham, k is an appropriate bandwidth until
which the autocorrelation significantly contributes to the serial dependence, j; is an
estimate of p;, and K is the Parzen kernel, that is (Parzen 1964)

i(Yr) =
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L= 6u2 4 6fuf forful < 2
K(u)=¢2(1— |u|)? for 3 < |ul <1

0 otherwise.

B.6 Path Proposals in the Latent Data Framework

In this section, appropriate proposal densities for diffusion paths are derived as re-
quired in Sect. 7.2.1. The notation is adopted from there. In short, the following con-
siderations avail proposing a path segment {Y41,...,Y,—1, L, Y, 01,..., Yo 1},
where the vector Y, = (V/, L]) consists of an observed part V., € R% and a
latent part L, € R%.

For shorter notation, abbreviate pt,, = u(Y%,0) and Xy, = (Y}, 0) for all k.
Furthermore, decompose p and X into

v Zwv Zvl
n= <Zl> and 3= <2lv E”)
such that u? € R%, p! € R%, XV € R4 *d1 gnd X! € Rd2xd2

Approximation of £(L,.|Yy, V,., Yp,0) for k < r

Leta < k < r. Similarly to the derivation of the modified bridge proposal on p. 181,
one has

7T(YT|Y;€, Yb, 0) 0.6 7T(Yb | YT, G)W(YT|Y;€, 0)
~ (Y| Y+, Avp, X0 A0) -0V | Y + pp Ay, X1 Ay ),
where A,y = tp — t, and Ay, = t,. — tx. The Gaussian densities ¢ stem

from the Euler approximation (7.3). Approximate p, and X, by p, and 3.
Then 7(Y;|Y%, Y5, 0) is approximately proportional to

/2;1

SR EREE——

" (Yr — (Y, — ukArb))

+ (Yo - (Vi + ukAkr))' ifl (v - (vi+ ukAkr))D

o exp <—% [Y; ((A;; + A,;})z;l)Yr
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—2Y] 2k1< >

o (_1 Aro [Yﬁ 5 (YT ALY+ Arbykﬂ )

Yy, — o Ave + Y + oy, Apr
Arb Akr'

2 ArbAkr Akb

where Ay, = Ak, + Ay = tp — tg. This is the unnormalised density of the normal
distribution

Y, -Y] Ay Apere
leykquueNN<Yk+ ’ A, 2k Zk),

A Agp
ie.
V-V
Z0 Yk A,
v ’Y Y, 0 ~N Vit Ay " Ay, (3 37!
L) F" L, — Ly Aw \ZY B
Ly +———= Ay,
A

The conditional distribution of L, given V. (and Y}, Y3, 0) follows from this joint
distribution by application of multivariate normal theory. That is

L’r‘ |Yk; VT7Yb70 NN(T’k ) Ak)

with
B T T 7 1
M, = Lr + A, Apr + X0 (Z0Y) (Vr Vi o Akr)
and AA
Ay = —’Zkb’“’“ (zﬁj 5 (2;;”)’12;;1).

Approximation of £(Yy41|Y%, V., 0)fork <r —1
Leta < k < r — 1. Application of the Euler scheme yields

Yk+1 | Yk, 0~ N(Yk + HkAtk, Zkﬂtk)
Vil Yir1, Yi,0 ~ N (Vigr 4 1 Akr—, X051 Akr—),

where Aty = 41 — ty and Ay, = 1, — tp41. Approximate g, and Xy
by p;, and X'y, respectively, such that

Yk+1 |Yk, 0~ N(Yk + ,ukAtk, EkAtk)
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Vi | Yir1, Y, 0 ~ N (Viey1 + p Dr—, X7 Ajr ).

The joint distribution of Y1 and V. conditioned on Y}, and 6 is again Gaussian.
The conditional expected value and variance of (Y}, V,)’ can be obtained as
follows: The iterated expectation theorem yields

E(V,|Y:,0) =E(E(V,|Yit1)|Ys,0)
= E(Vk-i-l + HzAkr— ‘ Yk7 0) =V, + HZA/CM

where Ay, = Ay,— + Aty = t, — t. Furthermore, the variance decomposition
formula (law of total variance) leads to

Var((Y;;H, Vrl.)l { Y, 9)
= Var(E((Yi41, Vi)' | Yis) | Y, 0) + E(Var((Yiqr, V) | Vi) | Yie, 0)

Y 0 o
— Var ‘Y,G +E (Y.,e
<<Vk+1+”%’”> ' ) <<0 22%’”) ' )

o 2L AL D;Atk
- D Aty X700 Agre ’

where D), = (X0%, %), Altogether,

<Yk+1) ’Yk, 0~ N\ <<Yk + p,kAtk> 7 <2kﬂtk D;Atk >>  (B20)

V., Vi + uj Agr Dy Aty 370 Ay
This implies
Yii1|Ye, V., 0 ~ N(py, I'x)
with
o Atk ! vvy—1 v
P = Yi + p At + AL Dy (327N (Ve = Vi — i Akr)
Vr - Vk
Vi+ —— At
- k+ A k
a V.-V,
Ly + ph Aty + X0 (2001 <Tk - ug) Aty
and
At
I, = (Ek — A—kk D;(ZZU)_IDIC) Aty

[ Z A, SV A Aty
AV AL YA - B (ZV)TISY AL Ay
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Approximation of £(Yy41|Y%, Vi, Y5,0) fork < r — 1
Leta < k < r — 1. Application of the Euler scheme yields approximately

Yk+1 | Yk, 0~ N(Yk + ,UzkAtk, Ekﬂtk)

Vil Yi1, Y5, 0 ~ N (Vigr + pj Apr—, B30 Apr )

Yo |Yis1, Yk, 0 ~ N(Yig1 + g Apo, ZelApe—),
where Atk = tk+1 — tg, A]W, = t, — tk+1 and Akbf =ty — tk+1. As in
the preceding derivations, ;. and X1 have been replaced by p, and X
here. Conditionally on Y} and 6, the three random vectors Yj1, V,. and Y}
are jointly Gaussian distributed. The joint distribution of Y41 and V. is already
known from (B.20). The remaining distribution parameters can be achieved as above
by application of the iterated expectation theorem and the variance decomposition
formula. In particular,

E(Y,| Y% 60) =E(E(Ys|Yis1)| Y, 0)
=E(Yii1 + 1Ak | Y5, 0) = Yy + p Aps,

where Ay, = Aty + App— =t — tr, and

Var((Y;é+17 Yl:)/ ! Y, 9)
= Var(E((Yit1,Y3)' | Yis1) | Y, 0) + E(Var((Yiy1, Y3) | Yiir) | Y5, 0)

Y 0 o0
=V Y:,0 | +E Y%, 0
" <<Yk+1 + “kAkb> ‘ ’ ) <<0 2kAkb> ‘ ' )

_ EkAtk EkAtk
T\ LAl XA |

In order to derive the conditional covariance of V. and Y3, consider the approximate
distributions
Y, | Vi, 0 ~ N(Yi + p Arr, X Arr)
Y, |Y, Y5, 0 ~ N(Y, + pp A, D)
with A, = ¢, — t,. Then
Var (Y, Y3)' | Y2 0)
= Var(E((Y,,Y;) | Y,)| Y, 0) + E(Var((Y,,Y;) | Y,) | Y5, 0)

_ (2kAkr EkAkr>
WAV HWA VRS



402 B Miscellaneous

In summary,
Yii Y, +HkAtk XL AL, D;Atk XL AL,
\z Yi,0 ~ N | | Vi +plAg | 5 | DrAty X730 Ay Dy Ay,
Y, Yy + pp A XpAt, D Ag XAk

The resulting conditional distribution of Y} reads
Yk“rl | Yka V’r‘a Yba 0 ~ N(€k7 !pk)

with

—1
VU — — v
€, = Yi + ppAly, + (D) Aty, i Aly,) 2'3 Akr Dy Arr Ve = Vi~ pi Ak
DkAk'r ZkAkb Yb — Yk — lj'kAkb

and

—1
XA, DA D, At
U, = X, Aty — (D) Aty,, X At ko Sk kS Al I
o = 54t — (DLAL, 5, g(DMkaAkb e

B.7 Derivation of Radon-Nikodym Derivatives

This section provides the proof of Corollary 7.5 on p. 250. In particular, it derives ex-
plicit expressions for the Radon-Nikodym derivatives dINPG /dD,, ¢ and d]lsg /dDg,g,
where the measures I~P9, D, 0 and Dg ¢ are defined in Table 7.6 on p.243. These
derivatives are employed as parts of acceptance probabilities in Sect.7.4.4. The
notation is adopted from there.

Under the assumptions from p.246, Theorems 5 and 6 in Delyon and Hu
(2006) prove that ]139 < D, and I~P9 < Dg,p, i.e. the requested derivatives
exist. The assumptions are supposed to hold here as well. In particular, o is
assumed to be invertible and is hence a square matrix. Delyon and Hu also provide
explicit formulas for d]?g/d]Dmg(X[O’T]) and d]?g/dng_,g(X[O,T]), but these are
up to proportionality constants which depend on the parameter 6, the initial value
X = xp and the final value X = «. These constants are required in the context
of Sect.7.4.4. Furthermore, the derivatives shall be applied to X (7. instead
of X (0,7}, where € > 0 is a small but fixed time step. This causes further changes
in the resulting formulas.

In Chap.7, solely time-homogeneous diffusions are considered, i.e. the drift
function p, diffusion coefficient o and diffusion matrix X' of the target diffusion
do not depend on time t. The following results can however be obtained also
for time-inhomogeneous diffusions without relevant additional overhead. Hence,
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in this section, the time variable is included in the notation p(X¢,t), o(X¢,t)
and X (X, t). Dependence on the parameter 6, on the other hand, is suppressed be-
cause the parameter is considered fixed in the following derivations. The parameter
is however easily re-incorporated in the notation as an argument of p, o and X.

In the following, we will show that

dPg L D (X1 t)+ Dy (X 4 t)+ D (X st —dd-1)
e (Kiaroa) = oo | A s ) (1%
o(2] 20 TS @0.0) | z(@p0)
fo(@) |S(X .. T—2)|?
and
dPg
Xo1—
Do g X (©7—¢])
T—e¢ _d(d—1)
B / Do Xt, +D3(Xt7 t) Z :
B —t) £
0
T—e 1T*5
exp| WX 02 X0 0AX0 3 [1 (005X (X
0 0
¢(x |20, TX(20,0)) | Z(x0,0)|2
fo(x) | X(Xp ., T —¢)|z’
where
D1(X¢,t) = —2(x — X¢)' 7YXy, ) (X, t)dt
Do(X¢,t) = (z — X¢)' (dZ H( X4, t)) (2 — Xt)
-1 -1
Ds(Xe,t)=->.>" “’U - “’U axPax).
i=1j=1 -

In these formulas, fg(x) is the Lebesgue density of the final point @ under the
unconditioned law Py (defined in Table 7.6 on p. 243), ¢(y|v, A) is the multivariate
Gaussian density evaluated at 4y with mean v and covariance matrix A, e; is the ith
unit vector of dimension d, |A| is the determinant of a square matrix A, dth) is
the ith component of d X ¢, and 9/9x(?) denotes differentiation with respect to the
1th component of the state variable.
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We start with the derivation of dPg/dD, ¢(X (0,7—¢]) =
(dng/dIPg)(dIPg/dIDH_Vg)(X(QT_E]). First, investigate the relationship between
Pp and Pg. As already shown in Eq. (7.62) on p. 248, one heuristically has
_ Jo(@|X7-c)

E(X(O,Tfs]) =T @ (B.21)

So continue with the derivation of dIPg/dID u,6- Delyon and Hu (2006, Theorem 1)
provide a generalisation of Girsanov’s formula which holds under weaker conditions
than those in Sect.3.2.12 and which is applicable in the present case. With this
theorem, we however obtain the same result as under blind application of (3.25)
to (dPg/dWg)(dWe/dD, ¢), where Wy is the driftless analogue of Pg (cf.
Table 7.6); that is

dPg

()
T X\ —e X/

_ T — Ay -1 T — At 1

— /( - )2 (Xt,t)dXt—i-/( U )2 (X, (X, t)dt
0 0

T—e

1 .’B—Xt ! 1 CB—Xt

= — | X (Xt dt. B.22
0

The integral in (B.22) is now rewritten as in the proof of Theorem 5 in Delyon and
Hu (2006). This is as follows: Consider dg(t, X¢), where

g(t, X;) = % (x— X)X t)(x— Xy).

With the It6 formula from Sect. 3.2.10 we obtain
d

dg(t, X) = === dt + g o X
(B.23)
1 ?9(t, X1) 11 () 15 ()
with
dg(t, Xt)dt (- X)) Z (X t) (e — Xt)dt
ot N (T —t)?
—1
(@ — Xt)fw(w — X))

+ ot dt, (B.24)

Tt
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09(t, X1) () _ _2x— X' Z N (X t)ei ()
Toaw X7 = T e
—1
(m_xt)'azai((f“t)(m—xt) _
+ Tx_t dax;?, (B.25)
0X (X4, t)
2 ) . (- X j i
lwd)cﬁ”dxg” =- —0z) dx{Vdx{’
2 9z(1) 9z (d) T-1t
1
(w—Xt)laz (Xht) .
T—t ¢
82271 X ,t
(w_Xt),W(w_ D g5 )
+ 2T D) dx;”dx;” (B.26)
XN X ey j
peZ (Xebe o gx0), (B.27)

Tt

The following simplifications are possible: Summarise the expressions in
lines (B.24)-(B.26) including the summation signs as in (B.23) as

(z — X1) (XX 1) (z — X4)
T—t

according to It6’s formula. Furthermore, apply the mean-square rules (3.24) from
p. 44 to obtain

i j k k
axPax? = (Z oin(X 4, t)dB! >><Z o (X, t)d B! >>
K k (B.28)

= o X, o (X o, t)dt = Xy (X, t)dt,
k

where dBt(i) is the ith component of d By, and 0;; and Y;; denote the entries of o
and X in row 7 and column j. With this, line (B.27) simplifies to d¢ /(T —t). Overall,

(x — X,)' 2 Y X, t)(x— X,)

d
Tt

_ (@- X)X HX ) (x— X)) s (z— X)) (dZ X4 t)(z — Xy)

(T — 1) Tt
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d -1
2(113 — Xt)’E (Xt,t)ei (4) 2 dt
— dX d —_
; T—t et T—t
OX N X, t OX (X, t
- (w_Xt)/< 33:((j)t, e ax(<i>t7 )e]) () qx )
— § § — dx,”dx,”.
=1 j=1

The first summand on the right hand side of this equation equals the integrand
in (B.22). Hence use this expression to obtain

dP
e
T—e T—e

= v Xy lzfl(X nax, + [ (B /2*1(X (X, t)dt
- Tt " ' Tt R
0 0

1 [ (= X)) (X0, t) (@ — X
) /d T—1t

1 /E(w ~ X)) (AZ (X, 1) (@ — X0
2 T—1

T—e¢ T—¢

(x— X)) XXy, t) d2/ dt
+/ Tt dXe—5 | 7
0

-1 -1
ng(m _ Xt)l <82 (vat) e; + o (vat)

d - - €

1 9z Az ]> @ 33 ()

+§ZZ/ - dxPaxt.
0

T/—5<D1(Xt,t) +Jgi(TX_ttz;) +D3(Xt,t)> B d_ZIOg (T)

. (:c Xr_o) ¥ (Xr—o, T—e)(x—Xr_.) (B.29)

g

[N

(x—xp) X~ 1(:c0,0)(:c—m0)>
T
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with Dy, Dy and D3 as defined on p.403. The last line equals the logarithms of two
unnormalised Gaussian densities. That implies

dPe
m(waTfs])
T—e _d2
—ex B / Dl(Xt,t)+D2(Xt,t)+D3(Xt,t) Z 2
P 2T — 1) c
0
6 (x| @0, TX(0,0)) (T)3 |2 (20,0)|2
(x| X7, eX(Xr-e,T—¢)) \¢) |Z(X7r_o,T—¢)|3
As ¢ > 0 is typically  small, one can  assume
fo(@x|Xr_c) = ¢(x|X1-c,eX(X1_c, T — €)). Then, with Eq. (B.21),
dPe
dD,,.¢ (X(OvT—E])
e ~$@-1)
—ex B / Dl(Xt,t)—l—Dg(Xt,t)+D3(Xt,t) Z
e 2T — 1) e
0
. QZS(.’B‘:BO’TE(CE(),O)) |2($070)|%
fo(@) | B(X 7o, T —e)]*

This is the first of the two formulas which were claimed at the beginning of
this section. Utilise this result for the derivation of (dIPe/dIDo e )(X (9,7—<]): The
generalised Girsanov formula from Delyon and Hu (2006, Theorem 1) yields

T—e
dD _
log (d]Dl(?Z) (X01-¢) = / P (X, ) X (X, t)d X,
0

T—e T—e

_%/N’(Xt,t)Z'*l(Xt,t)u(Xt,t)dt+ / M
0

2(T —t)

Hence

dPg [ dPe dD,e
m(x(o,T—s]) = (d]Du,e d]DOﬁ> (X (0,7—¢1)

L B 75D2(Xt1t) + D3(X4,t) gb(m{ mo,TE(mo,O)) |E(m070)|%
P 2(T — t) fo(x) |Z(X 7o, T — )%
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T | Tre N —$a-1)
.cxp</ WX )T (X0 X — 5 / ;L’(Xt,t)Z‘I(Xt,t)p(Xt,t)dt> (?) SR

0 0

That was to be shown.

Remark B.1. Delyon and Hu (2006) utilise (B.29) with ¢ — 0 to perform a
transition from expectations with respect to P to expectations with respect to Pg.
This way they arrive at

dPg
X
d]D#,g( 0,7])
T
Dl(Xt,t)—I—Dg(Xt,t)-‘ng(Xt,t)
exp / 2T — 1) (B.30)
= T
ex /Dl Xt7 +D2(Xt7 )+D3(Xt7t)
P 2T — 1)
0
and
dPy
Doy X10.11)
T
Do(Xy,t)+D3(Xy, t) .
exp —/ 2T —1) + D*(X0,17) (B.31)
T )
Do(Xy,t)+Ds( Xy, t .
Epye | exp —/ 2 tQ(;_;;( . )+D (X10,17)
0
where
D*(X10,17)
T 1 T
:/u’(Xt,t)Efl(Xt,t)dXt—5/u’(Xt,t)Zfl(Xt,t)u(Xt,t)dt.
0 0

Be aware that the denominators of (B.30) and (B.31) depend on the parameter 6.
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B.8 Derivation of Acceptance Probability

This section aims to derive the acceptance probability (7.78) from p.256 as an
implication of Eq. (7.76). The notation here is the adopted from those formulas.

Let X ™P* ~ D, o. Then Z™P* = g~ 1(X™P* @) induces some law IHg. The
proposal density for Z"™P* is hence ¢ = dHg/dIL. Then

_ (dZg AW imps
N (dW d]HQ) (Z™)

_ ( dIPH d]D0,9> (Ximp*) _ dIP@ (Ximp*)'

(ng/d]L) (Zimp*) (ng dW dL ) (Zimp*)
q(Zimp*|Zimp7$07w70)

~ \dW dL dH,

dDge dD,, 6 ~ dDpe
The change of measures follows with the same argument as in (7.59) and (7.60) on

p. 247. Plug in the above equality into the acceptance probability (7.76) on p. 256 to
obtain

. . d]?g i dPG i
Zlmp* Zlmp :1 lep* v lep .
vz () /(3 )

That agrees with (7.78).
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Appendix C
Supplementary Material for Application IT

This chapter contains additional calculations, figures and tables for the analysis of
molecular binding in Chap. 9.

C.1 Diffusion Approximations

In this section, two diffusion approximations are derived which are utilised as kinetic
models in Chap. 9.

C.1.1 One Mobility Class

In Sect.9.3.2, the SDE

< dufree > _ (ﬂl) dt 4 1 (Ull —022> <dBl(t))
dulglound 12 vV NU 0 022 dBQ (t)

was derived, where

H1 = _(kon + koﬁ”)ufree + koff

f b d
//LQ — konfblu ree koﬁ'Ubfun
— (C.1)
11 = \/kon(l _fbl)ufree + koﬂ(l _ufree_ubfun )
099 = \/konfblufrcc + koﬁ,ulglound .
C. Fuchs, Inference for Diffusion Processes: With Applications in Life Sciences, 411
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In the following, this SDE is transformed into one for the process (q,u™¢)’ by
application of It6’s formula from Sect. 3.2.10, where

qg= ufree + i ubound

fo P

1t6’s formula yields

1
dq _ dufree 4+ dugi)und
Jo1

= <ILL1 + é ,u2> dt + \/;N_U (O’lldBl(t) + <i — 1> UQQdBQ(t)) .

Thus, one has

() = () oo oz (2 22) (i)

=) (o ) ()

Hence, the components of the drift vector and diffusion coefficient of the trans-
formed process (g, uf*®)" can easily be obtained from (C.1). In these formulas,
however, the variable uP""4 is to be replaced by fi,1(g — u°¢). Then

fi1 = kot (1 — q)

H2 = — (kon + koﬂ)uﬁee + kos

G11 = 521 = \[ Kot (1~ 1) + (hon— horr) (1 — fu)ulres

- 1 :
J12 = <f_ - 1> \/kofffblq + (kon_koﬁ) fblutrCC

bl

022 = — \/koﬁfblq + (kon —koft) froiufree .

The diffusion matrix of (g, u*®)" equals

L(?n 2)
Ny \ Y91 Yaa) '
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where

~ 1 1 .
211 = koﬁ" <E - 2) q+ (kon - koﬁ") (E - 1) uircc + koﬁ"

212 = 221 = kog (1 - (J)
222 = (kon_koﬁ")uferC + koﬁ'-

C.1.2 Multiple Mobility Classes

In what follows, the Markov jump model from Sect.9.5.1 is translated into a
diffusion process. To that end, a diffusion approximation for a process with (2M+1)-
dimensional state variable

free bound,1 bound,M  bound,1 bound, M/
(u™*, uy)y yees Upy 1 Unnble v+ s Uynpls ) (€2)

is formulated. Afterwards, this process is transformed to a diffusion approximation
for the 2/ -dimensional state variable

* free bound,1 bound,M—1 _bound,1 bound, M —1\/
(q JUT U yeeey Upp, s Uinble -+ Uynble ) . (C3)

The notation in this section is adopted from Sect. 9.5.2.
With the Langevin approach from Sect.4.3.3, one arrives at a diffusion process
for (C.2) with drift vector and diffusion matrix

ﬂt , Sff Efb Efu
ﬁb and N_ 2bf Ebb 2bu
S u U ~uf ~ub ~uu
H » Y X

M M
/lt» cR with ﬂf _ <Z kon,i) ufrcc + Z koﬁ,iubound7i

i=1 i=1
~b ~b M - ~b f; bound,i
o= (g;)) € RY with i = Konyi [ — Koft ity
~u ~u M - ~u * free bound,i
iu’ = (lu”L) € ]R’ Wlth lu”L = kon,i(l - fbl)u - kogyiuunb]* )
where i = 1 M and yPoundsi — g Poundsi ., boundii “ppe o nonents of the
A — “blx unblx * p

diffusion matrix are
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D M
ZN‘H cR with (Z 0n)i> ufrcc + Z kofhiubound,i

=1 i=1
ST (EP) e RMM with 5B = kg ™+ gl
and ZN‘%b =0 fori # j
2 = (2 e RMM with I8 = ko i (1 = fi)ul™ + ko jul o
and ZN‘EJ-“ =0 fori # j,
where 7,7 = 1, ..., M. Furthermore,

5P (BMY eRM with SPf= _5PP

~ fu ~uf

' =(Z)Y eRM with ypf=_xyu

S = (Y e RMM with £ = 0 foralld, j.

When proceeding from the state variable (C.2)-(C.3), the components ugi’*und’M
bound, M
andu, ..~ are to be replaced by
M-1
bound M * * free bound 7
Up = fbl(q —u ) - Up)
i=1
and
M-1
bound,M __ * % * free bound,i
Uynblx =1- fblq + (fbl - 1)“’ - Uynbls s
i=1
which implies
ubound,M free _ E ubound %

The above drift vector and diffusion matrix for (C.2) can then be transformed to a
drift vector and diffusion matrix

4 yraa yraf yrab yaqu
qu Efq Eﬁ" Zfb qu
b and Ny | xPa xbt b spbu
“u Euq Euf Zub Zuu

for (C.3). The lengthy calculations are not shown here, but the results are given in
Sect.9.5.2.
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C.2 Calculation of Deterministic Process

The following algorithm shows how the fluorescence intensity ¢* can be calculated
from knowledge of kon,1, Koff,1,- -, Koff, M> ugf*ugd Yand fi,..., fam—1. That
means that there are 2M +1 free parameters plus the initial value ¢; which may
either be kept fixed or estimated as well. The algorithm requires the nucleus to be in
chemical equilibrium.

Algorithm C.1. Assume that the variables kon 1, koff1,-- ., Kkoff, M, ugi’*ugd v

fis.-., frm—1 and the initial value qi are known. The fluorescence curve q (t) can
then be determined for all t > 0 as follows:

1. Calculate f]u =1- fl — .. — f]W—L
2. Fori=2,...,M, derive

bound B bound 1 fz

Up ,0 Upx, ,0 fl

3. Set

1 .
free __  x bound,i
Up =40 — 7 Uplx,0
fo1

4. Obtain the sum of all ko, ; through

M 1— ugree
Z kon,i =B free ’
i=1 "o
where
M—-1
B = ko, mr + g fi(kott,i — Kotr,nr).-
=1
5. Derive the values ugf)*ugg U= limy—y oo ugf)*und"z(t) as
bound,1 kon 1 free d bound,i __  bound,l1 . ﬁ
blk,co T k f Ug an blx,oo T Yblx,00
off,1 fl
fori =2 ... M.
6. Calculate
bound,? k
[ blx,c0 off i
on,i —
.fbl uircc

forv=2,... M.
7. Finally, determine the fluorescence intensity via

bound %

M
_ on,i free 2 : blx,0 kon,i free
- (1 +Zi:1 ka) " ( o )exp(_kom(t_m))'

koﬁ,z
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This section shows additional estimation results for the application in Sect.9.7.
These are integrated in the main text in that section.
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Fig. C.1 Two out of the 47 datasets used in the application in Sect. 9.7, namely the second dataset
in GI phase, (a), and the 14th dataset of early S phase, (b). The curves substantially differ
with respect to their roughness. Consequently, they produce notably different estimates for the
number N of molecules (cf. Sect. 9.7.2). These are 38,453 in (a) and 180 in (b) as also displayed

in Table C.1
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Fig. C.2 Fittings of the predicted deterministic curve (black) to the observed data (green)

according to the estimates in Table 9.6 on p. 341
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Fig. C.3 Fittings of the predicted deterministic curve (black) to the observed data (green) for the
11th dataset in late S phase. The data was triple normalised, the intermediate fraction fint set
to zero, and the starting value of the FRAP curve was kept fixed. Least squares estimation was
carried out for the kinetic model with (a) M = 1, (b) M = 2, (¢c) M = 3and (d) M = 4
mobility classes. The according mean sums of squared residuals (mSSR) from Eq. (9.10) on p. 323
are (a) 0.002, (b) 4.4 - 1072, (c) 3.6 - 102 and (d) 4.1 - 10~ 3. The BIC chooses M = 3

C.4 Diffusion-Coupled Model

In Sect.9.8, a kinetic model for diffusion-coupled FRAP was derived. In that
section, the dynamics is represented by a compartmental description, as a diffusion
approximation and as a deterministic process. The model can be extended to the
case of multiple mobility classes in the same manner as for diffusion-uncoupled
recovery in Sect. 9.5.
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Table C.1 Key figures for the real datasets in Chap. 9: The first and second columns specify the
phase of the cell cycle in which the FRAP experiment has been carried out and a consecutive index
for each dataset. The third column lists the number of observations in the respective time series.
Columns four to seven show some quantities for the triple normalised data, columns eight to eleven
display the same for the double normalised datasets. These figures are the estimated number N of
molecules in the nucleus (see Sect. 9.7.2 for details and further remarks), the starting value g of
the recovery curve, the fraction of bleached molecules fp,; and the intermediate fraction fins as

obtained by image analysis

#data  Triple normalised Double normalised

Phase Index points N q95 fo1 fint N q95 fo1 fint

Gl 1 390 11,702 0.074 0.623 0.027 13,303 0.152 0.603 0.026
Gl 2 778 38,453 0.106 0.493 0.059 45,828 0.127 0.426 0.059
Gl 3 778 2,059 0.093 0.613 0.035 2,334 0.171 0.596 0.034
Gl 4 480 784 0.106 0.585 0.039 1,017 0.251 0.552 0.038
Gl 5 778 3,727 0.062 0.707 0.015 5447 0.295 0.663 0.015
Gl 6 778 778 0.082 0.577 0.031 973 0.226 0.556 0.030
Gl 7 778 2,208 0.076  0.625 0.023 2,675 0.206 0.612 0.022
Gl 8 778 1,157 0.076 0.679 0.017 1,583 0.273 0.655 0.017
Gl 9 778 3,877 0.051 0.663 0.013 5411 0.258 0.622 0.013
Gl 10 778 446 0.077 0.631 0.026 632 0.286 0.592 0.027
early S 1 778 3,155 0.072 0.599 0.030 3,672  0.158 0.573 0.030
early S 2 778 1,709 0.031 0.506 0.017 1,989 0.095 0.468 0.016
early S 3 778 858 0.040 0.520 0.018 925 0.095 0.515 0.016
early S 4 778 1,688 0.085 0.667 0.029 1,907 0.163 0.650 0.029
early S 5 778 1,647 0.069 0.554 0.031 1,776  0.114 0.543 0.031
early S 6 778 3,038  0.048 0.591 0.019 3436 0.119 0.569 0.018
early S 7 778 2,105 0.040 0.487 0.020 2,391 0.107 0.464 0.020
early S 8 778 2,673 0.024 0.638 0.013 3,259 0.139 0.597 0.013
early S 9 774 962 0.028 0.611 0.012 1,083 0.095 0.585 0.012
early S 10 778 26,892 0.037 0.550 0.017 30,425 0.099 0.522 0.016
early S 11 778 33,914 0.050 0.622 0.020 39,914 0.136 0.586 0.019
early S 12 778 723 0.035 0.516 0.018 834 0.117 0.493 0.018
early S 13 778 1,016 0.056 0.530 0.028 1,181 0.145 0.510 0.028
early S 14 778 180 0.058 0.577 0.027 203 0.123  0.554 0.027
early S 15 778 4,038 0.054 0.642 0.057 4,920 0.173 0.608 0.057
early S 16 778 1,584 0.043 0.495 0.021 1,739 0.098 0.481 0.020
early S 17 778 11,799 0.055 0.606 0.007 13,392 0.121 0.578 0.007
early S 18 778 17,827 0.055 0.569 0.024 20,431 0.133 0.545 0.023
early S 19 778 233  0.014 0.628 0.011 283 0.133  0.593 0.011
early S 20 778 267 0.073 0.607 0.029 477 0365 0.524 0.026
early S 21 754 2,128 0.037 0.627 0.024 3470 0294 0.548 0.024
early S 22 778 6,443 0.040 0.656 0.017 7,931 0.136  0.602 0.017
early S 23 778 1,883 0.101 0.632 0.041 2,135 0.131 0.578 0.041
early S 24 778 1,076  0.080 0.532 0.029 1,429 0.259 0.513 0.026
early S 25 778 901 0.079 0.570 0.026 1,148 0.238 0.553 0.025
early S 26 778 1,105 0.085 0.575 0.031 1,376 0.232 0.560 0.031

(continued)
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Table C.1 (continued)
#data  Triple normalised Double normalised

Phase Index points N q; fol fint N a5 fol fint
late S 1 779 1,790 0.062 0427 0.032 1,875 0.095 0425 0.032
late S 2 779 402 0.052 0464 0.028 436 0.104 0456 0.028
late S 3 779 1,243 0.064 0.536  0.035 1,708 0.260 0.502 0.035
late S 4 779 476  0.033 0446 0.024 599 0.174 0427 0.024
late S 5 779 1,034 0.119 0.574 0.054 1,223 0.238 0.559 0.054
late S 6 779 2,097 0.089 0591 0.033 2,701 0.247 0.564 0.033
late S 7 779 1,650 0.054 0479 0.035 1,995 0.183 0.462 0.035
late S 8 779 1,111 0.097 0491 0.050 1,139 0.097 0.479 0.050
late S 9 779 967 0.121 0459 0.052 1,277 0311 0452 0.052
lateS 10 779 543  0.075 0.568 0.028 745  0.276  0.537 0.028
lateS 11 777 911 0.073 0554 0.093 1,164 0.229 0.527 0.093

Table C.2 Model choice by means of BIC as defined in Eq.(9.22) on p.345 for different
modifications of the least squares estimation in Sect. 9.7.3: First, the datasets may be either triple
normalised or double normalised as described in Sects.9.6.1 and 9.6.2, respectively. Second,
the intermediate fraction fing, introduced in Sect. 9.4, may be either set to zero or equal to the
experimentally obtained values from Table C.1. Third, the initial value g of the recovery curves
may either be kept fixed or treated as a free parameter. This table displays the number of mobility
classes chosen by the BIC

Phase

Index

fint

=0

fint >0

Triple

Double

Triple

Double

fixed

free

fixed

free

fixed

free

fixed

free
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Gl
Gl
Gl
Gl
Gl
Gl
Gl
Gl
Gl

early S
early S
early S
early S
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N=le I e N S S
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(continued)
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Table C.2 (continued)

fint =0 fint >0
Triple Double Triple Double
Phase Index fixed free fixed free fixed free fixed free
early S 6 3 3 3 3 3 3 3 3
early S 7 3 3 3 3 3 3 3 3
early S 8 3 2 3 2 3 2 3 2
early S 9 2 2 2 2 2 2 2 2
early S 10 3 3 3 3 3 3 3 3
early S 11 3 3 3 3 3 4 3 3
early S 12 3 3 4 3 3 3 3 3
early S 13 3 3 3 3 3 3 3 3
early S 14 3 2 4 2 3 2 3 2
early S 15 2 2 2 2 2 2 2 2
early S 16 3 2 3 2 3 2 3 3
early S 17 3 3 3 3 3 4 3 3
early S 18 3 3 3 3 3 3 3 3
early S 19 3 3 3 2 3 3 3 2
early S 20 4 3 4 3 4 3 3 3
early S 21 3 3 3 3 4 4 4 3
early S 22 3 2 3 2 4 3 3 4
early S 23 3 3 3 3 4 3 3 3
early S 24 3 3 4 3 3 4 3 3
early S 25 3 3 3 3 4 3 3 4
early S 26 3 3 3 3 3 3 3 3
late S 1 3 3 3 3 3 3 3 4
late S 2 3 3 3 3 3 3 3 3
late S 3 3 3 3 3 3 4 3 3
late S 4 4 3 3 3 3 3 3 3
late S 5 3 3 3 4 3 3 3 4
late S 6 3 4 3 3 3 4 3 3
late S 7 3 3 4 3 3 3 3 4
late S 8 3 3 4 3 3 3 3 3
late S 9 3 3 3 4 3 3 3 4
late S 10 3 3 3 3 3 4 3 3
late S 11 3 3 3 3 3 3 3 3

The following presents a deterministic description for diffusion-coupled FRAP
in case of M mobility classes. The proceeding in the derivation of this model
is analogous to that in Sect.9.5 and hence not shown here. The derivation of a
corresponding diffusion approximation is straightforward as well along the lines
of Chap. 4.
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Fig. C.4 Least squares estimates for kogr 3 With fing

late S

G1 early S

late S

= 0 and fixed starting value qg. The

underlying datasets are triple normalised (according estimates are marked with a cross) or double
normalised (estimates are represented by a circle). The figures display the estimates for the
parameters Koff 1,- .-, Korr, ps in the deterministic kinetic model with M = 1,...,4 mobility
classes. In each plot, the distinct time series are ordered according to their phase and index as in
Table C.1, and the respective results are presented from the left to the right

Let ufrCC denote the fraction of unbleached free molecules in the bleached

free ‘the fraction of unbleached free molecules in the

section of the nucleus and u; ;5
unbleached section. Furthermore, for i = 1,..., M, define ubound ¢ as the fraction
bound,i

of unbleached type :-bound molecules in the bleached section and u,, ;) as the
fraction of unbleached type i-bound molecules in the unbleached section. These
variables are non-negative and sum up to one. Given suitable initial values, their
dynamics can be described by the set of ODEs
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Fig. C.5 Least squares estimates for ko¢¢,;, based on triple normalised datasets with fixed starting
value q;. The intermediate fraction fin¢ is either set to zero (according estimates are marked with
a cross) or equal to the values from Table C.1 (estimates are represented by a circle). The figures

display the estimates for the parameters Kogr, 1, - - -
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, 4 mobility classes. In each plot, the distinct time series are ordered according to

their phase and index as in Table C.1, and the respective results are presented from the left to the
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Fig. C.6 Least squares estimates for ko¢f ;, based on triple normalised datasets with fing = 0.
The starting value g of the recovery curve is either kept fixed (according estimates are marked
with a cross) or free, i.e. determined by the optimisation procedure (estimates are represented

by a circle). The figures display the estimates for the parameters Koff 1,. ..
deterministic kinetic model with M = 1,...

,koff,M in the
, 4 mobility classes. In each plot, the distinct time

series are ordered according to their phase and index as in Table C.1, and the respective results are

presented from the left

where: = 1,

to the right

free + sz

, M. The observed variable is the fluorescence intensity

bound i

fol

The process is fully described by, for example, the state vector

free

free
(‘1 » Up)

» Uunbly Up) LA

bound,1
bl

bound, M —1

bound,1

bound,M—l)’
unbl 1t .

unbl



Index

A

absolutely continuous measure, see dominating
measure

acceptance probability, 175, 176, 186, 223,
224, 240, 241, 245, 246, 249, 250,
252-258, 409

acceptance rate, 198, 214, 229, 261

additive noise, 36

AIC, 343, 345-347

approximate maximum likelihood estimator,
138

approximation

of a jump process, 55-96
of an SDE, 46-50

Arrhenius, Svante, 20

association rate, 313, 332

assumptions, 13, 32, 50, 57, 133-134,
171-174, 217-218, 229, 240, 246, 248,
253, 402-403

autocorrelation, 199, 204, 205, 210, 211, 261,
266, 267, 272, 273, 285, 286, 290, 291,
293, 397

B

backward diffusion equation, see Kolmogorov
backward equation

base function, 151

basic reproductive ratio, 14, 16, 17, 124, 125,
289

Bavarian counties, see German counties

Bayes factor, 343-345, 347, 358, 364

Bayesian inference, see estimation for
diffusions

Bernoulli, Daniel, 12

Bessel function, 377

BIC, 343, 345-347, 359, 362, 364, 417, 419

C. Fuchs, Inference for Diffusion Processes: With Applications in Life Sciences,

binding, see molecular binding
biochemistry, 19
Black-Scholes model, 375
bleached molecule, see FRAP
bleached section, 311, 312, 331
actual, 325
defined, 325
block update, 175, 188, 190-191, 387-388
boarding school example, 287-292
bound molecule, 308, 311
of type ¢, 331
Brownian bridge, 33, 34, 50, 162, 164, 184,
234, 247
Brownian motion, 16, 23, 32-35, 110, 123,
133, 184, 234, 240, 245, 315
geometric, 39, 48, 375
multi-dimensional, 33
standard, 33
Brownian-driven process, 35

C

canonical form, 94

cell cycle, 308, 309

cell cycle dependence, 308-309, 330, 356,
359-361, 364, 418, 419

chain binomial model, 12

chemical equilibrium, see equilibrium

chemical reaction, 20

chemical reaction kinetics, see reaction kinetics

closed system, 10, 13

coloured noise, 91

commuter traffic, 112, 294-298

compartment model, 10-11, 102, 111-113,
312, 325-326, 332, 365

compensator, 154

connectivity matrix, see network matrix
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consistency, 47
contact matrix, see network matrix
contact number, 102
contact rate, 13, 112, 283
convergence
of MCMC scheme, 229-271, 344
of numerical approximation, see strong
convergence
Cox-Ingersoll-Ross process, 147, 376
Crank-Nicolson method, 143, 165, 166

D
data augmentation, see imputation
data preparation, see normalisation
degradation, 24
deterministic model, 9, 15, 17, 58, 59, 61, 110,
318-319, 328, 335-336, 415416, 420
difference operator, 65-71, 84-86, 104—108,
115-119, 379-384
difference quotient, 65-71, 84-86, 104—108,
115-119, 254, 379
differential Chapman-Kolmogorov equation
backward, 57
forward, 57
diffusion, see diffusion process, see molecular
diffusion
diffusion approximation, 55-96, 101-127,
314-317, 326-328, 333-335,411-414
diffusion bridge, 180
diffusion bridge proposal, 178, 179, 182-183,
197-215, 255, 257, 261
diffusion coefficient, 40
diffusion equation, see Kolmogorov equation
diffusion limit, 63, 93, 110
diffusion matrix, 40, 57
definiteness, 40, 51, 117
diffusion process, 17, 31-51, 55, 58, 59, 61,
62, 133-166, 171-276
diffusion rate, 365
diffusion-coupled FRAP, 310, 364-367,
417-423
diffusion-uncoupled FRAP, 310, 312, 364, 366
dimerisation, 11, 24
disease counts, 292, 298-299, 301
dissociation rate, 313, 332
Dnmtl, 305, 306, 308, 355, 367, 368
dominating measure, 46, 136, 161, 236, 248,
255, 256, 268
factorisation, 233-235, 276
double normalisation, see normalisation
double-sided Euler proposal, see Euler
proposal, 177
drift, 40, 57

Index

E
EALl, see Exact Algorithm
efficient method of moments, 160, 165
eigenfunction, 152
eigenvalue, 152
elementary reaction, 21
enzymatic reaction, 23
epidemic modelling, 11-19, 62, 217, 239
history, 12-13
equilibrium, 319, 322, 324, 335, 336, 415
equivalent measures, 46, 231, 234
ergodicity, 41-42, 134, 171, 249
geometric, 184, 250
ergodicity constraint, 230
Esson, William, 20
estimating function, 150-155, 165, 166
based on eigenfunctions, 152—153
linear, 152, 154, 155
martingale, 151-152, 152, 155
optimal, 154, 155
polynomial, 152
quadratic, 152, 155
simple, 153-154
unbiased, 150
estimation for diffusions
Bayesian, 171-276
frequentist, 133-166
Euler proposal, 176, 178, 179, 197-215
double-sided, 177-180, 197-215
Euler scheme, 48, 138, 147-149, 158, 160,
175, 176, 182, 186, 191, 219, 269, 275,
282
for ODEs, 289
Euler-Maruyama approximation, see Euler
scheme
Exact Algorithm, 160-165
existence of a solution, 38, 125-126, 385-387
expectation-maximisation algorithm, 173
extensive variable, 63, 314
external fluctuations, 63

F

first-order reaction, 21

fluorescence intensity, 309, 310

fluorescence microscopy, see FRAP

Fokker-Planck equation, see Kolmogorov
forward equation

forward diffusion equation, see Kolmogorov
forward equation

FRAP, 305-368, 411-423

free molecule, 308, 311, 318, 324

full conditional density, 194, 388-397

full conditional proposal, 186—187
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approximate, 186, 194-195, 197-215
exact, 186, 193-194, 197-215

G

G1 phase, see cell cycle

gain-loss equation, 66

Gaussian process, 192

Gaussian proposal, 178, 179, 183-184,
197-215

general stochastic epidemic, 14

generalised method of moments, 156-157, 166

genetics, 19

geometric Brownian motion, see Brownian
motion

German counties, 294-295

German infection protection act, 294

GFP, see green fluorescent protein

Gibbs sampling, see MCMC

Gillespie algorithm, 26, 61

Girsanov formula, 46, 136, 182, 231, 249, 404,
407

Goldberg, Cato Maximilian, 20

Gram-Charlier series, 139, 140

Graunt, John, 12

green fluorescent protein, 305, 309, 310

grey value, 316, 326, 333, 348

growth bound, 38, 126

H

half-nucleus FRAP, 311, 367

Harcourt, Augustus, 20

herd immunity, 18

Hermite expansion, 140, 166

Hermite polynomial, 140

high-frequency scheme, 137

highest probability density, see hpd interval

host heterogeneity, 18-19, 101

hpd interval, 213-215, 274, 275, 287, 288,
294, 300, 301, 322, 323, 358, 360

I
immunity, 299
importance sampling, 199
improper prior, see proper prior density
imputation, 146, 171-276
in vitro, 305
in vivo, 305
indirect estimator, 158
indirect inference, 158-160, 165
quasi, 159
inefficiency factor, 191, 199, 212, 397-398
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infected, 13

infection rate, 13, 60

infectious, 13

infectious period, 13, 102, 112, 283

infective, 13

inference, see estimation

infinitesimal generator, 43, 69-71, 85-86,
107-108, 118-119, 141, 152, 153, 156,
379, 384

influenza, 11, 281-302

innovation process, 245

innovation scheme, 233, 239-276, 284, 289,
319, 328, 338

instantaneous mean, 40

instantaneous variance, 40

intensive variable, 63, 314, 366

inter-observation times, 171

intermediate fraction, 325, 367

internal fluctuations, 63

interphase, 308

intervention strategy, 18, 302

invariant density, 42

inverse gamma distribution, 194

It1 formula, 149

1t6 calculus, 35-46

1t6 diffusion, see diffusion process

1t6 formula, 44, 234, 237, 317, 404, 405,
412

It6 integral, 37, 91-92

Ito process, 38

[t6-Taylor expansion, 47

J
jump moment, 79
jump process, 14-15, 17, 21-22, 55, 58, 59,
61, 103-104, 113-115, 314
simulation, 25-26
jump-diffusion model, 35, 59

K
Kalman filter, 225
Koch, Robert, 12
Kolmogorov equation, 55, 60, 61, 65-69,
75-82, 84-85, 87-91, 104-109,
115-121
backward, 43, 58
forward, 43, 58, 142-145
Kolmogorov operator, 43, 44, 71, 108
Kramers-Moyal expansion, 75-77, 87,
108-109, 119-120, 384
backward, 77
Kramers-Moyal moment, 76



428

L

Lévy process, 35, 59

Lamperti transform, 45, 140, 149

Langevin approach, 71-75, 86, 108-109,
119-120, 315, 384, 413

Langevin equation, 72

Langevin force, 72, 75

large-sample scheme, 137

latent component, 171, 217-229, 259, 284,
286, 288, 293, 299, 316, 320, 398-402

law of mass action, 20, 22

least squares estimation, 289, 322-324,
341-343, 359-363, 416, 417

Lebesgue measure, 135-137, 231, 236, 238,
246

likelihood function, 39, 46, 136—138, 145, 146,
159, 160, 174, 189, 231, 235, 259

Liouville’s equation, 58, 60, 61

Lipschitz continuity, 50, 68, 385-387

local linearisation, 149—-150

log-likelihood function, see likelihood function

log-normal distribution, 187

logit function, 188, 338

M
macroscopic equation, 72
macroscopic level, 61, 92
major outbreak, 14, 17, 289
marginal likelihood, 344, 358, 361
Markov chain Monte Carlo, see MCMC
Markov jump process, see jump process
mass action, 20
master equation, 55, 59-61, 65-71, 75-82,
84-91, 104-109, 114-121, 379
backward, 58, 68
forward, 58
mathematical model, see stochastic model
maximum likelihood estimation, 138—150
MCMC, 171-276
mean-square rules, 44
measurement error, 171, 191, 217, 225-229,
238, 259, 274, 357
mesoscopic level, 61, 92
method of moments estimator, 156
methylation, 306
Metropolis-Hastings, see MCMC
Metropolis-within-Gibbs, see MCMC
microscopic level, 61, 92
Milstein scheme, 48, 49, 148, 160, 275
missing data, see imputation
mobility class, 308, 330-347, 413414, 417
model choice, 343-346, 359, 364, 417
modified bridge, 148

Index

modified bridge proposal, 178, 179, 181-182,
190, 197-215, 218, 229, 230, 255, 257,
260, 261, 269, 273, 284, 322

molecular binding, 305-368, 411423

molecular biology, 19

molecular diffusion, 307, 364

moment conditions, 156

multiplicative noise, 36

multitype SIR model, see SIR model

mutually singular measures, see singular
measures

N
naive maximum likelihood estimator, 138
Nelder-Mead algorithm, 323, 341
network matrix, 112, 123-125, 127, 283,
295-298, 301
Newton-Raphson method, 183
next reaction method, 26
non-centred parameterisation, 233
normalisation, 316, 347-355
double, 347, 352-354, 359, 418, 419
single, 347, 353-355
triple, 309, 347-352, 354, 359, 418, 419
Novikov condition, 46, 249

(0]
observation
high-frequency, 171
incomplete, see latent component
low-frequency, 171
nonsynchronous, 171
time-continuous, 135-136, 229-271
time-discrete, 136137, 229
with error, see measurement error
ODE model, 15-17, 22-23, 61, 111, 289, 311,
318
simulation, 26-27
online estimation, 239
order of a reaction, 22
Ornstein-Uhlenbeck process, 178, 179, 185,
187, 192-199, 230, 232, 260-261, 376,
388-397
Ostwald, Wilhelm, 20

P

parameter update, 173, 185-188, 229-271

partial derivative, 78

partial differential equation, 43, 58, 142, 383,
384

particle filter, 233, 238-239, 276
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Parzen kernel, 397
Pasteur, Louis, 12
path update, 173, 175-185, 217-271, 387-388
pathwise uniqueness, 38
Pawula’s theorem, 76
PDE, see partial differential equation
phenomenological law, 72
Poisson process, 162, 163
Poisson representation, 83
positive recurrence, 41
posterior density, 173, 388-391
estimate, 202, 203, 208, 209, 264, 265, 270,
271, 285, 286, 290, 291, 293
prior density, 173, 284, 289, 320, 338, 388
conjugate, 193, 195, 389
flat, 193, 194, 389
proper, 192
product, 20
prokaryotic auto-regulatory network, 24
proposal density, 173, 175
protein binding, see molecular binding
pure jump process, see jump process

Q

quadratic variation, 34, 41, 135, 198, 216,
229-233

quasi maximum likelihood estimator, 138

quasi-indirect inference, 159

quasi-probability method, 83

R

Radon-Nikodym derivative, 46, 136, 146, 161,
183, 234, 251, 269, 402-408

random differential equation, 31

random walk proposal, 187-188, 195-215,
229, 230, 260, 273

rapidly increasing design, 137

rate constant, 22

reactant, 20

reaction equation, 20

reaction kinetics, 20-25, 217

reaction rate, 21

reciprocal average infectious period, see
infectious period

recovery curve, 309, 310

recurrence, 41, 42

positive, 41

regularity conditions, 32, 50

rejection sampling, 161

removal rate, 13

removed, 13

reporting, 127, 299
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repression, 24
residence time, 308, 314, 367
Runge-Kutta scheme, 48, 49

S
S phase, see cell cycle
scale function, 41
score function, 150, 151, 153-155
SDE, see stochastic differential equation
SDE model, 15-17, 23, 111, 289, 315,
375-377, 411
simulation, 26-27
second-order reaction, 22
SI model, 13, 56, 59, 68, 71-73, 75, 82
simulated maximum likelihood estimation,
145-148, 165, 166, 172, 176, 199
simulated moments estimation, 157, 165
simulated moments estimator, 157
simulation
of a Brownian bridge, 50
of a jump process, 25-26
of a Markov process, 25-27
of an ODE model, 26-27
of an SDE model, 26-27, 46-50
simulation study, 196-215, 260-261, 281-286,
319-324, 328-330, 336-347
singular measures, 234
SIR model, 10, 12-19, 56, 101-127, 281-302,
385-387
multitype, 84, 102, 111-125, 281-286,
294-300, 386-387
social contacts, 112
solution of an SDE, 38-39
existence, 38
non-explosive, 38, 126, 385
strong, 38
uniqueness, 38
weak, 38
speed measure, 41
square root process, see Cox-Ingersoll-Ross
process
stationarity, 171
stationary density, 42
stationary distribution, 41
stochastic calculus, see stochastic integral
stochastic differential equation, 31-51, 133
stochastic integral, 36-38, 91-92, 96
stochastic model, 9-27
stochastic simulation algorithm, see Gillespie
algorithm
StochSim algorithm, 26
stoichiometry, 20
Stratonovich integral, 37, 43, 44, 91-92
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strong consistency, 47

strong convergence, 47

strong solution, 38, 39

Student t proposal, 178, 179, 183-184,
197215

sum of squared residuals, 323, 341

SurvStat, 298

susceptible, 13

susceptible population, 299, 301

susceptible—infective-removed model, see SIR
model

system size, 63, 313, 356-357, 416, 418

multiple parameters, 83-91

T
t proposal, see Student t proposal
threshold theorem, 14, 16, 17
time change, 236
formula, 235
rate, 236
transformation, 233, 235-238, 276
time scheme, 137
time-continuous observation, 135-136
time-discrete observation, 136—137
total differential, 78
total variation, 33, 41
trace plot, 200, 201, 206, 207, 229, 230, 232,
262, 263, 268, 269, 285, 286, 290, 291,
293, 321, 329, 330
transcript, 24
transcription, 24, 305
transcription network, 24
transition density, 39, 42, 136, 173, 375-377
transition rate, 57, 103, 113, 314, 332

Index

translation, 24

triple normalisation, see normalisation
truncated normal distribution, 195
type-reproduction number, 124

U
underreporting, see reporting
uniquely identifiable, 150
uniqueness of a solution, 38, 125-126,
385-387

pathwise, see pathwise uniqueness
unit diffusion, 45, 140, 234, 236, 240
update interval, see block update

\'%

van Kampen expansion, 77-82, 88-91,
108-109, 120-121

van’t Hoff, Jacobus Henricus, 20

volatility, 33, 217

W
Waage, Peter, 20
weak solution, 38
weights in an estimating function, 151
well-timed diffusion approximation, 83
white noise, 32-35, 91, 110
Gaussian, 35
multi-dimensional, 35
‘Wiener measure, 33, 238, 245, 268
Wiener process, 32
Wilhelmy, Ludwig, 20
Wong-Zakai theorem, 91
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