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Preface

Preface to the 2nd Edition

The impetus for the 2nd Edition of this monograph was given by the emergence of
the new method of experimental data processing in indirect measurements — the
method of enumeration. This method applies to multiple indirect measurements
with independent arguments. The 1st Edition suggested the method of transforma-
tion for this class of measurements. The method of transformation is better than the
traditional method because it removes the need for Taylor series for linearizing
nonlinear measurement equations and calculating the random error. However, when
the number of arguments is greater than two, the method of transformation still
resorts to Taylor series in computing the systematic error. Thus, while better than
the traditional method, the method of transformation still has not removed
completely the usage of the Taylor series, leading to certain inaccuracy in error
estimation.

The method of enumeration completely removes the need for Taylor series in
calculating both the random and systematic errors. Further, similar to the method of
reduction for dependent indirect measurements, the method of enumeration for
independent indirect measurements does not require any assumptions regarding
distribution functions of the experimental data and utilizes full information contained
in the experimental data in estimating the measurand and measurement inaccuracy.

Therefore, with the inclusion of the method of enumeration, the 2nd Edition
presents a complete theory of indirect measurements. In contrast to the traditional
theory, the new theory gives a theoretically grounded and maximally accurate
estimate of the accuracy of an indirect measurement. This result is another outcome
of the physical theory of measurements laid out in this book.

There are a number of other noteworthy additions to the 2nd Edition. The new
edition includes the analysis of the reliability of traditional methods of estimation of
variance and standard deviation of the measurement result and a deepened analysis
of the foundational documents of metrology: International Vocabulary of Metrology
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(VIM) [1] and Guide to the Expression of Uncertainty in Measurement [2]. Fully
re-written are the sections devoted to the Monte Carlo method and to accuracy of
measurements performed with a chain of measuring instruments. The annotation of
book chapters below describes the additions and changes to this edition in more
detail. Besides these changes, this edition also corrects a number of typographical
and other errors throughout the book.

The book contains nine chapters. Chapter 1 gives the general introduction
to measurements and metrology and outlines major changes that occurred in
metrology during the last two decades. Although this chapter is of introductory
nature, it presents some important general perspectives on the subject. In particular,
it includes a classification of measurements and measurement inaccuracy and
formulates postulates of the theory of measurements.

Chapter 2 is devoted to measuring instruments. It describes conventional
methods of representing their metrological characteristics as well as the methods
of controlling these characteristics through calibration or verification. The chapter
also analyzes errors of large numbers of instruments of several types and shows that
the distribution functions of these errors are usually non-stationary.

Chapter 3 contains basic statistical methods of experimental data processing.
These methods are directly applicable to the idealized multiple measurements.
They are also necessary when using statistical models of elementary measurement
errors and for obtaining confidence intervals in the course of measurement uncer-
tainty calculations. New to this edition are Sects. 3.6 and 3.7, which contain the
analysis of the reliability of estimates of the variance and standard deviation of the
measurement result.

Chapter 4 is devoted to direct measurements. It presents a step-by-step proce-
dure for the calculations of the inaccuracy of single measurements. The calculation
of uncertainty of a multiple measurement is then derived as a summation of the
inaccuracy of the underlying single measurement with the random error of the
multiple measurement, which is estimated from the repeated single measurements.
The chapter describes a general summation method and the advantages of this
method over the common empirical methods of summating systematic and random
errors. Finally, the chapter briefly describes nonparametric and robust methods for
processing direct measurement data. In this edition, the old Sect. 4.8 is split into
three sections to improve the clarity of presentation. The first of these new sections
describes the estimation of accuracy of multiple measurements, the second
considers the universal method for the summation of random and systematic errors,
and the third contains analysis of the accuracy of that method.

Chapter 5 presents the theory of indirect measurements. In particular, it
describes three new methods. The first one is the method of reduction, which
handles indirect measurements with dependent arguments. This method, which
we proposed previously but which is not yet widely known, is the first to produce
reliable estimates of uncertainty of these types of measurements. At the same time,
it eliminates the need to calculate the correlation coefficients — a major stumbling
block in these measurements. The second method is the method of transformation
for indirect measurements with independent arguments, which complements the
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traditional method. The third method — new to this edition — is the method of
enumeration. Along with the method of transformation, the method of enumeration
results in a more accurate and grounded theory of indirect measurements. This
chapter also applies the new general method for the summation of systematic and
random errors from Chap. 4 to indirect measurements, thus removing the need to
use the Monte Carlo method with its known limitations (the reliance on unknown
distribution functions and the complexity of implementation) for this purpose.
The current edition adds two new sections, Sects. 5.3 and 5.8, to describe and
justify the method of enumeration. Section 5.12, devoted to the applications of the
Monte Carlo method, is completely re-written.

Chapter 6 treats simultaneous and combined measurements, using the well-
known least-squares method, which is commonly applied for these measurement
types.

Chapter 7 contains methods for combining measurement data or measurement
results. This problem arises when the same measurand is measured in different
laboratories, and the final result should reflect all these measurements. Along with a
traditional solution, which takes into consideration only random errors, Chap. 7
includes a method accounting for the systematic errors as well.

Chapter 8 includes a number of concrete examples of measurement data
processing and evaluating measurement accuracy. The book is targeted for practical
use, and these examples can serve as specific blueprints for addressing typical
measurement data processing needs faced by experimenters. In the 2nd Edition,
Sect. 8.1.3 is expanded to show how one can account the interaction of the
measuring instrument with the object under measurement. A new Sect. 8.6.3,
“Application of Method of Enumeration,” is added.

The current edition adds a new Chap. 9, which is devoted to the newly published
International Vocabulary of Metrology (VIM) [1] and Guide to the Expression of
Uncertainty in Measurement [2]. This chapter highlights the need for these
documents but at the same time shows that they in the current form are unsuitable
to practice and scientifically ungrounded. The chapter further formulates
recommendations for a revision of these documents and sketches directions toward
reorganization of the framework for preparation of similarly important documents
in the future.

The Conclusion presents some of my thoughts on the past, present, and future of
the science of measurements. It has been expanded in the current edition, while the
sections discussing VIM and GUM were moved from it to the new Chap. 9.

This edition was again translated and edited by my son, Dr. Michael Rabinovich
of Case Western Reserve University. Thank you, Misha!

Cleveland Hts, OH, USA Semyon G. Rabinovich
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viii Preface
From the Preface to the 1st Edition

The goal of this book is to present methods for estimating the accuracy of real
measurements, that is, measurements performed in industry, trade, scientific
research — wherever the production process, quality control decision, or the inter-
pretation of an experiment depends on measurement accuracy. The necessity for
this book arises from the fact that the existing theory of measurement errors
contains significant gaps. In particular, the current theory focuses exclusively on
multiple measurements and overlooks single measurements. Meanwhile, single
measurements are the ones most commonly used in practice. Moreover, the current
theory is incomplete even within the scope of multiple measurements. For example,
it does not provide answers to such fundamental questions as how to translate the
inaccuracy of a measuring instrument into the inaccuracy of a measurement
utilizing this instrument, or how to find the full uncertainty of a measurement
result, i.e., the uncertainty that reflects both systematic and random errors.

The science of measurements — metrology — entered a period of rapid develop-
ment several decades ago, prompted by the growth in international trade, globali-
zation of industrial production, demands of medicine and pharmacology, the
increased attention to food quality and environment, and other needs of the modern
society. However, metrology will not fulfill these needs without removing the blind
spots mentioned above. I devoted many years of research filling these gaps. This
book generalizes and puts into a coherent whole the results of this effort.

The book develops the general theory of processing experimental measurement
data, which addresses the need to obtain the value of a quantity being measured and
the accuracy of this estimate. For the first time, this book presents the postulates of
the theory of measurements. It introduces the term measurement inaccuracy as a
general term that reflects measurement uncertainty in some situations and limits of
error (or even errors themselves) in others. The book shows the relationship
between the accuracy of measuring instruments and measurements utilizing these
instruments. It presents methods of estimating the accuracy of both single and
multiple measurements. Moreover, it formulates these methods in a systematic
and unified way by formulating and utilizing a new perspective that single
measurements are the basic type of measurements and multiple measurements
represent a series of repeated single measurements. This approach, besides being
logical and intuitive, makes accounting for the measuring instruments inaccuracy
an inherent part of the calculations of the inaccuracy of the measurement. The book
offers well-grounded and practical methods for combining the components of
measurement inaccuracy. In particular, it describes how to combine the limits of
elementary systematic errors and how to estimate the overall measurement uncer-
tainty accounting for both the systematic and random errors.

As part of the general theory of measurements, the book develops the theory of
indirect measurements. For dependent indirect measurements, the book proposes
the method of reduction in place of the traditional method based on the Taylor
series. This method is more accurate, simpler, and most importantly allows to
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calculate the confidence limits of the inaccuracy of these measurements, rather than
just standard deviation of the measurement result as in the traditional methods. At
the same time it removes the need to account for the correlation coefficient, which
had been a thorny issue in this area. The book also proposes a new method of
transformation for independent indirect measurements. The book further includes a
discussion of the applicability of the Bayes’ Theorem and Monte Carlo methods in
measurement data processing, the topics that have been actively discussed in the
metrological research papers.

As aresult, this book can serve as a comprehensive reference for data processing
of all types of measurements, including single and multiple measurements, depen-
dent and independent indirect measurements, and combined and simultaneous
measurements. It includes many concrete examples that illustrate typical problems
encountered in measurement practice. Thus, the book encompasses the entire area
of measurement data processing, from general theory to practical applications.

<...>

This book is intended for anyone who is concerned with measurements in any
field of science or technology, who design technological processes and chooses
instruments with appropriate accuracy as part of their design, and who design and
test new measuring devices. This book should also be useful to university students
pursuing science and engineering degrees. Indeed, measurements are of such
fundamental importance for modern science and engineering that everyone in
these fields must know the basics of the theory of measurements and especially
how to evaluate their accuracy.

<...>

In conclusion, I would like to thank Dr. Abram Kagan, Professor at the Univer-
sity of Maryland, College Park, for many years of collaboration and friendship. This
book benefited from our discussions on various mathematical problems in metrology.
I would also like to thank Dr. Ilya Gertsbach, Professor at the Ben Gurion University
of Beersheva (Israel), for our discussions over the theory of independent indirect
measurements. I would like to express my special gratitude to my son, Dr. Michael
Rabinovich, Professor at Case Western Reserve University. He provided support and
assistance throughout my work on this book from editing the proposal for publication
to discussing new results and the presentation to editing the whole book. This book
would not be possible without his help.

Basking Ridge, NJ, USA Semyon G. Rabinovich
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Chapter 1
General Concepts in the Theory
of Measurements

1.1 Basic Concepts and Terms

The theory of measurement accuracy is a branch of metrology — the science of
measurements. In presenting the theory we shall adhere, whenever possible, to the
terminology given in the International Vocabulary of Metrology — Basic and
General Concepts and Associated Terms [1]. We shall discuss the terms that are
most important for this book.

A measurable quantity (briefly — quantity) is a property of phenomena, bodies, or
substances that can be defined qualitatively and expressed quantitatively. The first
measurable quantities were probably length, mass, and time, i.e., quantities that
people employed in everyday life and these concepts appeared unconsciously. Later,
with the development of science, measurable quantities came to be introduced
consciously to study the corresponding laws in physics, chemistry, and biology.

The term quantity is used in both the general and the particular sense. It is used in
the general sense when referring to the general properties of objects, for example,
length, mass, temperature, or electric resistance. It is used in the particular sense
when referring to the properties of a specific object: the length of a given rod, the
electric resistance of a given segment of wire, and so on. The principal feature of
quantities in the context of this book is that they can be measured. A measurand is a
quantity intended to be measured.

Measurement is the process of determining the value of a quantity experimen-
tally with the help of special technical means called measuring instruments.

The value of a quantity is the product of a number and a unit adopted for these
quantities. It is found as the result of a measurement. This definition can be
expressed in the form of the equation:

0 =q(0],

Electronic Supplementary Material The online version of this chapter (doi:10.1007/978-1-
4614-6717-5_1) contains supplementary material, which is available to authorized users.
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2 1 General Concepts in the Theory of Measurements

where Q is the value of the measurand, [Q] is a unit adopted for the kind of quantity
represented by the measurand, and ¢ is the number showing how many of these
units constitute the magnitude of the measurand. This equation is sometimes called
the basic measurement equation. Note that the unit is not indicated if the measurand
is dimensionless.

The basic measurement equation reflects the general objective of a measure-
ment: to express with a number a property of an object or natural phenomenon.
Thus measurements allow us to use mathematics in our practical activities and in
the exploration of nature.

The definitions presented above underscore three features of measurement:

1. The result of a measurement must always be a concrete denominated number
expressed in sanctioned units of measurements. The purpose of measurement is
essentially to represent a property of an object by a number.

2. A measurement is always performed with the help of some measuring instru-
ment; measurement is impossible without measuring instruments.

3. Measurement is always an experimental procedure.

The true value of a measurand is the value of the quantity, which, if known,
would ideally reflect, both qualitatively and quantitatively, the corresponding
property of the object according to the purpose of the measurement.

Measurement accuracy reflects the closeness between the measurement result
and the true value of the measurand. Measuring instruments are created by humans,
and every measurement on the whole is an experimental procedure. Therefore,
results of measurements cannot be absolutely accurate.

Accuracy is a “positive” characteristic of the measurement, but in reality it is
expressed through a dual “negative” characteristic — inaccuracy — of the measure-
ment. The inaccuracy reflects the unavoidable imperfection of a measurement. The
inaccuracy of a measurement is expressed as the deviation of the measurement
result from the true value of the measurand (this deviation is called the measure-
ment error) or as an interval that covers the true value of the measurand. We will
call the half-width of this interval uncertainty if it is obtained as a confidence
interval (i.e., the interval that covers the true value with a certain probability) and
limits of error if it has no relation with probabilities. We shall return to these terms
many times later in this book.

The true value of a measurand is known only in the case of calibration of
measurement instruments. In this case, the true value is the value of the measure-
ment standard used in the calibration, whose inaccuracy must be negligible com-
pared with the inaccuracy of the measurement instrument being calibrated.

A measurement error can be expressed in absolute or relative form. The error
expressed in the absolute form is called the absolute measurement error. If A is the
true value of the measurable quantity and A is the result of measurement, then the
absolute measurement error is { = A — A. The absolute error can be identified by
the fact that it is expressed in the same units as the measurable quantity. Absolute
error is a quantity and its value may be positive or negative. One should not
confuse the absolute error with the absolute value of that error. For example, the
absolute error —0.3mm has the absolute value 0.3.
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The error expressed in relative form is called the relative measurement error.
The relative error is the error expressed as a fraction of the value of the measurand:
e = (A — A)/A. Relative errors are normally given as percent and sometimes per
thousand (denoted by %). Very small errors, which are encountered in the most
precise measurements, are customarily expressed directly as fractions of the
measured quantity, given in parts per million (ppm).

However, the true value of the measurand is unknown, and the inaccuracy is
expressed as an interval covering the true value. As mentioned above, the
boundaries of this interval are the uncertainty or limits of error, depending on
whether or not the interval was calculated using a probabilistic approach. The
interval limits are specified as the offsets from the measurement result; just like
measurement errors, these limits can be expressed in the absolute or relative form.

We should note that the above-mentioned equation for the absolute error is
often presented as the general definition of measurement error [1, 2, 6, 10]. From
our discussion, it should be clear that this definition narrows the meaning of the
term measurement error.

The absolute measurement error or uncertainty, depends in general on the value of
the measured quantity, and for this reason, it is not a suitable quantitative characteristic
of measurement accuracy. Relative errors or uncertainties do not have this drawback.
For this reason, measurement accuracy can be characterized quantitatively by the
inverse of the relative error or uncertainty expressed as a fraction (not as a percentage)
of the measured quantity. For example, if the limits of error of a measurement are
42 x 1073% = 42 x 107>, then the accuracy of this measurement will be 5 x 10,
Note that the accuracy is expressed only as a positive number.

Although it is possible to introduce in this manner the quantitative characteristic
of accuracy, in practice, accuracy is normally not estimated quantitatively and it is
usually characterized indirectly with the help of the measurement error or the
uncertainty of measurement.

The quality of measurements that reflects the closeness of the results of
measurements of the same quantity performed under the same conditions is called
the repeatability of measurements. Good repeatability indicates that the random
errors are small.

The quality of measurements that reflects the closeness of the results of
measurements of the same quantity performed under different conditions, i.e., in
different laboratories (at different locations) and using different equipment, is
called the reproducibility of measurements. Good reproducibility indicates that
both the random and systematic errors are small.

Uniformity of measuring instruments refers to the state of these instruments in
which they are all graduated in the established units and their errors and other
relevant properties fall within the permissible limits. Unity of measurements refers
to a common quality of all measurements performed in a region (in a country, in a
group of countries, or in the world) such that the results of measurements are
expressed in established units and agree with one another within the estimated
limits of error or uncertainty.
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Uniformity of measuring instruments is a necessary prerequisite for unity of
measurements. However, the result of a measurement depends not only on the
quality of the measuring instrument employed but also on many other factors,
including human factors (if measurement is not automatic). For this reason, unity
of measurements in general is the limiting state that must be strived for, but which,
as any ideal, is unattainable.

1.2 The Basic Metrological Problems

Comparison is an age-old element of human thought, and the process of making
comparisons lies at the heart of measurement: Homogeneous quantities
characterizing different objects are identified and then compared; one quantity is
taken to be the unit of measurement and all other quantities are compared with it.
This is how measures, i.e., objects that exhibit quantities of unit size (or the size of a
known number of units) came about.

At one time, numerous independent units and measures were used in different
regions; even different cities each had their own units and independent measures.
Then it became necessary to know how different measures of the same quantity
type were related, in order to unify measurements across regions. This problem
gave birth to the study of measures, which later turned into the science of
measurements — metrology.

But the content of metrology, as that of most sciences, is not immutable.
Especially profound changes started in the second half of the nineteenth century,
when industry and science developed rapidly and, in particular, electrical technol-
ogy and instrument building began. Measurements were no longer merely a part of
production processes and commerce; they became a powerful means of gaining
knowledge — they became a tool of science. The role of measurements has increased
dramatically today, in connection with the rapid development of science and
technology in the fields of nuclear research, space, electronics, and so on.

The development of science and technology, contacts among peoples, and
international trade has prompted many countries to adopt the same units of physical
quantities. The most important step in this direction was the signing of the Metric
Convention [(Treaty of the Meter), 1875]. This act had enormous significance not
only with regard to the dissemination of the metric system, but also with regard to
unifying measurements throughout the world by means of the creation of interna-
tional measurement standards. The Metric Convention and the institutions created
by it — the General Conference on Weights and Measures (CGPM), the International
Committee of Weights and Measures (CIPM), and the International Bureau of
Weights and Measures (BIPM) — continue their important work today. In 1960,
the General Conference on Weights and Measures adopted the international system
of units (SI) [1, 3]. Most countries now use this system.

The range of topics encompassed by modern metrology is shown in the block
diagrams in Fig. 1.1.



1.2 The Basic Metrological Problems

a | Metrology |

: Specialized metrology
General (theoretical) (various fields of Applied metrology
metrOIOgy measurements)
b Applied metrology

substances

Certification of reference materials and
Compilation of certified reference materials

Calibration and verification of measuring
instruments

data

Compilation of standards and
recommendations

Measurements of mechanical quantities

Measurements of light and optical quantities

Measurements of time and frequency

Measurements of electric and magnetic
quantities

NN

Specialized metrology
(Fields of measurements)

Measurements of thermal and temperature-
dependent quantities

Measurements in chemistry

Measurements in biology

Et cetera
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Fig. 1.1 (continued)

While many of the listed topics are self-explanatory, several warrant further
examination. We expand on these topics below, beginning with some blocks in the
diagram of Fig. 1.1d.

1. The Study of Measurable Quantities and their Units
Measurable quantities are introduced in different fields of knowledge, in physics,
chemistry, biology, and so on. The rules for introducing and classifying them
and for forming systems of units and for optimizing these systems cannot be
addressed in any of these sciences, and already for this reason, they must be
included among the problems addressed in general metrology. An important
result in this direction was the creation of the International System of Units SI.
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2. General Theory of Measurement Standards
The units of quantities are reproduced with the help of primary measurement
standards, which play an exceptionally important role in supporting the unity of
measurements. The measurement standard of each unit is physically created
based on the laws of specific fields of science and technology. Therefore, general
metrology cannot answer the question of how a measurement standard should be
constructed. But metrology must determine the criteria when a measurement
standard must be created and how it should be maintained and used. It must also
study the theory and methods of comparing measurement standards and moni-
toring their stability, as well as methods for expressing their inaccuracy. Practice
raises many such purely metrological questions.
3. Theory of Transfer of the Sizes of Units into Measurement Practice

In order for the results of all measurements to be expressed in established units,
all means of measurement (measures, instruments, measuring transducers, mea-
suring systems) must be calibrated with respect to primary measurement
standards. However, it is obviously infeasible to calibrate all these devices
against primary standards directly. This problem is solved with the help of a
system of secondary measurement standards, i.e., standards that are calibrated
with respect to the primary standard, and working measurement standards, i.e.,
standards that are calibrated with respect to secondary standards. Thus the
system of measurement standards has a hierarchical structure. The entire proce-
dure of calibrating measurement standards and, with their help, the measuring
instruments is referred to as transfer of the sizes of units into measurement
practice. The final stages of transferring the sizes of units consist of calibration
of the scales of the measuring instruments, adjustment of measures, and deter-
mination of the actual values of the quantities that are reproduced by them, after
which all measuring instruments are checked at the time they are issued and then
periodically during use.

The procedures involved in the transfer of the size of units into measurement
practice raise a number of questions. For example, how many gradations of
accuracy of measurement standards are required? How many secondary and work-
ing standards are required for each level of accuracy? How does the inaccuracy
increase when the size of a unit is transferred from one measurement standard to
another? How does this inaccuracy increase during the transfer from a measurement
standard to a working measuring instrument? What should be the relation between
the accuracy of a measurement standard and a measuring instrument being
calibrated (verified) with respect to this standard? How should complex measure-
ment systems be checked? Metrology should answer these questions.

The other blocks in the diagram of Fig. 1.1d do not require any explanations. We
shall now turn to Fig. 1.1a.

Specialized metrology is comprised from specific fields of measurement.
Examples of fields of measurements include linear-angular measurements,
measurements of mechanical quantities, measurements of electric and magnetic
quantities, and so on. The central problem arising in each field of measurement is
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the problem of creating conditions under which the measurements of the
corresponding quantities are unified. For this purpose, in each field of measure-
ment, a system of measurement standards is created, and methods for calibrating
and checking the working measuring instruments are developed. The specific
nature of each field of measurement engenders many problems characteristic of
it. These problems are the domain of specialized metrology. However, there also
arise many problems that are common to several fields of measurement. The
analysis of such common problems and the development of methods for solving
them belong to general metrology.

Applied metrology incorporates the metrological service and legislative metrol-
ogy, and it is of great importance for achieving the final goals of metrology as a
science. The metrological service checks and calibrates measuring instruments and
certifies reference materials; in other words, it maintains the uniformity of measur-
ing instruments employed in the country. The functions of legislative metrology are
to enact laws that would guarantee uniformity of measuring instruments and unity
of measurements. One aspect of legislative metrology concerns the system of
physical quantities and the units to be employed uniformly across a country,
which can only be established by means of legislation. Another aspect legislates
the rules giving the right to manufacture measuring instruments and to check the
state of these instruments when they are in use.

This is a good point at which to discuss the development of measurement
standards. A measurement standard is always a particular measuring device: a
measure, instrument, or measuring system. Such measuring devices were initially
employed as measurement standards arbitrarily by simple volition of the institution
responsible for correctness of measurements in the country. However, there is
always the danger that a measurement standard will be destroyed, which can
happen because of a natural disaster, fire, and so on. An arbitrarily established
measurement standard, which is referred to as a prototype measurement standard,
cannot be reproduced.

As aresult, scientists have for a long time strived to define units of measurement
so that the primary measurement standards embodying them could be reproducible.
For this, the units of the quantities were defined based on natural phenomena. Thus,
the second was defined based on the period of revolution of the Earth around the
sun; the meter was defined based on the length of the Parisian meridian, and so on.
Scientists hoped that these units would serve “for all time and for all peoples.”
Historically, this stage of development of metrology coincided with the creation of
the metric system.

Further investigations revealed, however, that the chosen natural phenomena are
not sufficiently unique or are not stable enough. This, however, did not undermine
the idea to define units based on natural phenomena. It was only necessary to seek
other natural phenomena corresponding to a higher level of knowledge of nature.

It was found that the most stable or even absolutely stable phenomena are
characteristic of phenomena studied in quantum physics; it was further found that
the physical constants can be employed successfully for the purpose of defining
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units and the corresponding effects can be employed for realizing measurement
standards. The meter, the second, the ohm, and the volt have now been defined in
this manner.

Based on achievements in quantum physics, the second is reproduced now by
the cesium atomic standard. According to NIST, it is so accurate that it takes
almost 20 million years to accumulate the drift of 1 s. One needs to only recall that
when the distance between two markings on a platinum—iridium rod was adopted
for the meter, for the most accurate measurement of length, the inaccuracy was
not less than 107°. When the meter was later defined as a definite number
(1,650,763.73) of wavelengths of krypton-86 radiation in vacuum, this inaccuracy
was reduced to 10771078, Today, the definition of the meter is based on the
velocity of light in vacuum, which now considered as exactly known physical
constant. As a result, the inaccuracy in measuring length has been reduced by
another order of magnitude (and can be reduced even more). Since 1990, the
primary standard of the volt has been based on the Josephson constant and
quantum Josephson effect. Its inaccuracy, expressed as one standard deviation,
is 0.6 ppm. From the same time, the primary standard of the ohm has been based
on the Von Klitsing constant and quantum Hall effect. Its inaccuracy is 0.2 ppm
(one standard deviation). The accuracy of the standards of volt and ohm can
further increase with the improvements in the accuracy of measuring the constants
mentioned above.

It is interesting to consider the situation with the standard of ampere — one of the
base units in SI. Its definition is based on the force between two wires through the
current flows. It is unknown how to reproduce this unit according to this definition
with sufficient accuracy. For example, NIST has achieved reproducing ampere in
this way only with the standard deviation of 15 ppm, and even this accuracy can be
maintained for 5 min. At the same time, ampere can obviously be reproduced using
Ohm’s law, from the standards of volt and ohm, thus obtaining the accuracy of
around 0.7 ppm. In other words, one can create a standard of ampere that would be
20 times more accurate than what is possible through the absolute method (using
direct measurements) according to its definition. In other words, the primary
standard of ampere became unnecessary for measurements! Note that ampere still
remains a base unit of system SI and it is still needed for dimensional equations.

The numerical values of the basic physical constants are widely used in various
calculations, and therefore, these values must be in concordance with each other.
To this end, all values of fundamental physical constants obtained by experiments
must be adjusted. The most recent adjustment was carried out in 2002 and the
results were published in 2005 [40].

As one can see from the problems with which metrology is concerned, it is an
applied science. However, the subject of metrology — measurement — is a tool of
both fundamental sciences (physics, chemistry, and biology) and applied
disciplines, and it is widely employed in all spheres of industry, commerce, and
in everyday life. No other applied science has such a wide range of applications, as
does metrology.
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We shall return once again to specialized metrology. A simple list of the fields of
measurement shows that the measurable quantities and therefore measurement
methods and measuring instruments are extremely diverse. What then do the
different fields of measurement have in common? They are united by general or
theoretical metrology and, primarily, the general methodology of measurement,
methods for processing measurement data, and evaluating the inaccuracy of
measurements. For this reason, the development of these branches of metrology
is important for all fields of science and for all spheres of industry that employ
measurements. The importance of these branches of metrology is also indicated by
the fact that a specialist in one field of measurement can easily adapt to and work in
a different field of measurement.

1.3 New Forms of International Cooperation in Metrology

Modern development of metrology is driven, on one hand, by the ever-increasing
role of measurements in chemistry, biology, laboratory medicine, food production,
environmental protection, and monitoring, with ever-higher requirements for accu-
racy and, on the other hand, with the expansion of international trade and industry
globalization.

The accelerated development of international trade began with the emergence of
the European Union (EU), which resulted in the tariff-free trade zone encompassing
all its member countries. Then other regional trade agreements, such as North
American Free Trade Agreement (NAFTA), appeared, targeting the removal of
barriers in international trade.

Besides international trade, another trend in modern economy is globalization of
industrial production. It is now common that a factory producing a certain product
is situated in one country but uses components from suppliers in other countries, has
research and development divisions yet in other countries, and maintains corporate
and administrative services still elsewhere.

This expansion of international cooperation dramatically increased the demand
for metrology and metrological services. It became obvious that the international
unity of measurements, i.e., when measurements of the same quantities in different
countries would agree with each other, can bring enormous cost savings.
Just considering trade, Kaarls [31] notes that “. . . global trade in commodities
amounts to more than 12 trillion USD, of which 80% affected by standards and
regulation. The compliance costs are estimated to be about 10% of the product
costs. The global markets of clinical chemistry and laboratory medicine and
pharmaceuticals have a value of some 300 billion USD per year. Annual savings
as a consequence of comparable, more accurate measurements results. . . will easily
amount up to many billions of USD.”

Alongside traditional measuring instruments, there emerged a tremendous
internationally distributed bank of reference materials and substances. Their prepa-
ration and usage need to be regimented to ensure the unity of measurements in
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chemistry, laboratory medicine, and other areas with wide reliance on these
materials. In principle, methods of solving these issues are similar to those in
traditional areas of measurements, except for the extremely large number and
variety of these materials.

The current stage of metrology development reflects the emergence of new
international and regional metrological agreements. These agreements are espe-
cially important for developing nations, since every region usually includes at least
one country with a well-established metrological service and a modern metrological
scientific center.

New agreements can be divided into general and targeted. The former include
EUROMET (European Collaboration in Measurement Standards) and NORAMET
(North and Central American Cooperation in Metrology). Among the latter, we
should especially point out EURACHEM/CITAC. EURACHEM is a network
of organizations in Europe having the objective of establishing a system for
traceability of chemical measurements and the promotion of good quality practice,
which was initially organized by the EU. Subsequently, in 1993, the Cooperation of
International Traceability in Analytical Chemistry (CITAC) was created as an
international addition to EURACHEM. Thus, EURACHEM/CITAC have the mis-
sion to improve traceability in chemical measurements made anywhere in the
world; in other words, they aim at providing unity of chemical measurements on
the global scale.

Several targeted agreements focus on bringing order to the process of assigning
rights to various laboratories to carry out certain types of important measurements,
that is, to regiment laboratory accreditations. These agreements include ILAC
(International Laboratory Accreditation Cooperation) and APLAC (Asia — Pacific
Laboratory Accreditation Cooperation). The work on regimenting laboratory
accreditation is being carried out under the slogan “Measured or tasted once —
everywhere accepted!”

Other targeted agreements have the goal of facilitating the cooperation between
laboratories engaged in measurements in different countries, resolving disputes,
etc. When necessary, the laboratories establish working groups, which focus on
specific issues and issue clarifications of methodological and terminological nature.
But the most important role of regional bodies is the establishment of the procedure
for the comparison of standards of the member countries. These regional
comparisons avoid the direct comparison of national standards of all countries
that joined the Metric Convention with international standards in BIPM, which
would be physically impossible.

In addition to government-level agreements, successful nongovernment
organizations in developed countries are also expanding their international cooper-
ation. For example, National Conference of Standard Laboratories, which used to
be a US organization, became international (NCSLI).

Many of these organizations often face common problems, and they form joint
working groups to address them. CIPM provides support to these groups, and in
turn, members of these groups often serve as members of CIPM’s Consultative
Committees. We should also mention that BIPM organized a Joint Committee for
Guides in Metrology (JCGM), with BIPM’s Director serving as the Chair of the
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Joint Committee. This committee has two working groups whose tasks include the
improvement of terminology and the development and advocating of the Guide to
the Expression of Uncertainty in Measurement (GUM) [1, 16].

GUM represents the first recommendation for the estimation of inaccuracy of
measurements developed under the auspices of BIPM. Such a recommendation had
been long overdue and the need for is obvious: a uniform solution to this problem is
necessary to correlate different measurement results regardless of where and when
they were obtained. Consequently, this recommendation found an enthusiastic
acceptance by the metrological community and became an unofficial international
standard. It turned out, however, that the recommendation had a number of
drawbacks [13, 16, 32, 42, 44], and Working Group 1 of JCGM set out in 2006 to
prepare its new edition.

In summary, the activities described above indicate vigorous development of
metrology and metrological service at the present time. The role of metrology in the
modern society was the subject of an extensive report by Dr. Quinn, Director of
BIPM, titled “Metrology, Its Role in Today’s World.” This report was included as
the introductory chapter of monograph [36].

1.4 Postulates of the Theory of Measurements

Measurements are so common and intuitively understandable that one would think
there is no need to identify the foundations on which measurements are based.
However, a clear understanding of the starting premises is necessary for the
development of any science, and for this reason, it is desirable to examine the
postulates of the theory of measurements.

When some quantity characterizing a specific object is being measured, this
object is made to interact with a measuring instrument. Thus, to measure the
diameter of a rod, the rod is squeezed between the jaws of a vernier caliper; to
measure the voltage of an electric circuit, a voltmeter is connected to it; and so on.
The reading of the measuring instrument — the sliding calipers, voltmeter, and so
on — gives an estimate of the measurable quantity, i.e., the result of the measure-
ment. When necessary, the number of divisions read on the instrument scale is
multiplied by a certain factor. In many cases, the result of measurement is found
by a mathematical analysis of the indications of an instrument or several
instruments. For example, the density of solid bodies, the temperature coefficients
of the electric resistance of resistors, and many other physical quantities are
measured in this manner.

The imperfection of measuring instruments, the inaccuracy with which the sizes
of the units are transferred to them, as well as some other factors that we shall study
below cause measurement errors. Measurement errors are in principle unavoidable,
because a measurement is an experimental procedure and the true value of the
measurable quantity is an abstract concept. As the measurement methods and
measuring instruments improve, however, measurement errors decrease.
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The introduction of measurable quantities and the establishment of their units
lay at the foundation of measurements. Any measurement, however, is always
performed on a specific object, and the general definition of the measurable quantity
must be formulated taking into account the properties of the object and the objective
of the measurement. The true value of the measurable quantity is essentially
introduced and defined in this manner. Unfortunately, this important preparatory
stage of measurements is usually not formulated.

To clarify this question, let us consider a simple measurement problem — the
measurement of the diameter of a disk. First, we shall formulate the problem. The
fact that the diameter of a disk is to be measured means that the disk, i.e., the object of
study, is a circle. We note that the concepts “circle” and “diameter of a circle” are
mathematical, i.e., abstract, concepts. The circle is a representation or model of the
given body. The diameter of the circle is the parameter of the model and is a
mathematically rigorous definition of the measurable quantity. Now, in accordance
with the general definition of the true value of the measurable quantity, it can be stated
that the true value of the diameter of the disk is the value of the parameter of the model
(diameter of the disk) that reflects quantitatively the property of the object of interest to
us; the ideal qualitative correspondence must be predetermined by the model.

Let us return to our example. The intended usage of the disk predetermines the
permissible measurement error and the choice of an appropriate measuring instru-
ment. By bringing the object into contact with the measuring instrument, we
perform the measurement and obtain the measurement result. But the diameter of
the circle is, by definition, invariant under rotation. For this reason, the measure-
ment must be performed in several places. If the difference between the results of
these measurements is less than the permissible measurement error, then any of the
obtained results can be taken as the result of measurement. After the value of the
measurable quantity, a concrete number, which is an estimate of the true value of
the measurand, has been found, the measurement can be regarded as being
completed.

But it may happen that the difference among the measurements in different
places exceeds the permissible error. In this situation, we must conclude that within
the required measurement accuracy, our disk does not have a unique diameter, as
does a circle. Therefore, no concrete number can be taken, with prescribed accu-
racy, as an estimate of the true value of the measurable quantity. Hence, the adopted
model does not correspond to the properties of the real object, and the measurement
problem has not been correctly formulated.

If the object is a manufactured article and the model is a drawing of the article
(including all the dimensions and tolerances), then any disparity between them
means that the article is defective. If, however, the object is a natural object, then
the disparity means that the model is not applicable and it must be reexamined.

Of course, even when measurement of the diameter of the disk is assumed to be
possible, in reality, the diameter of the disk is not absolutely identical in different
directions. But as long as this inconstancy is negligibly small, we can assume that
the circle as a model corresponds to the object and therefore a constant, fixed true
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value of the measurable quantity exists, and an estimate of the quantity can be
found as a result of measurement. Moreover, if the measurement has been
performed, we can assume that the true value of the measurand lies somewhere
near the obtained estimate and differs from it by not more than the limits of the
measurement error.

Thus the idealization necessary for constructing a model gives rise to an
unavoidable discrepancy between the parameter of the model and the real property
of the object. We shall call this discrepancy the threshold discrepancy.

As we saw above, the error caused by the threshold discrepancy between the
model and the object must be less than the total measurement error. If, however, this
component of the error exceeds the limit of permissible measurement error, then it
is impossible to make a measurement with the required accuracy. This result
indicates that the model is inadequate. To continue the experiment, if this is
permissible for the objective of the measurement, the model must be redefined.
Thus, in the example of the measurement of the diameter of a disk, a different
model could be a circle circumscribing the disk.

Another example, the measurement of the thickness of a sheet of a material, is
given in GUM (Sects. D.3.2 and D.3.4). Without additional clarifications, the
problem statement assumes that the sheet has constant thickness. Then, the model
of the object comprises two parallel planes, and the distance between them is the
model parameter that defines the measurable quantity and its true value.

Now let us turn to the measurement. By choosing an appropriate measurement
instrument and bringing it in contact with the object, we obtain the value of the
measurand, i.e., the sheet thickness. To verify the appropriateness of the model, we
need to repeat the measurement in several points of the sheet. If the difference
between the readings turns out to be significant, that is, greater than the limits of
permissible measurement error, then the assumed model or the chosen model
parameter do not correspond to the properties of the object. Hence, the model or
its parameter must be redefined. Depending on the intended use of the sheet, a new
parameter could be the maximum thickness or the thickness in certain given points.
In either case, the model remains the same but the model parameters are different.
In the former case, the parameter is the maximum thickness, and in the latter case
there are different parameters in each point. Thus, in the latter case, we must view
thickness measurements in each point as separate measurements, each with its own
true value.

Similar to the example of disk diameter, different results of measurement of the
sheet thickness indicate a discrepancy between the model and the object and hence
the need to reconsider the model and/or the definition of the true value. In fact, as
we just saw, the new definition may introduce multiple true values and conse-
quently replace a single measurement with several separate measurements. More-
over, the new definition may lead to the necessity to use different measurement
instruments, for example, instruments with a reduced contact area in the sheet
thickness scenario.

One important corollary from the above discussion is that the concept of the true
value is necessary to understand the process of measurement. The above discussion
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also suggests that there is a single underlying true value in every measurement.
We consider this to be a fundamental principle of measurement and include it into
the postulates below. It also reflects a different understanding of the concept of the
true value from VIM [1]. We will carefully examine the VIM position on the
concept of true value in Sect. 9.3.

The above examples are simple, but they exhibit features present in any mea-
surement, although these features are not always so easily and clearly perceived as
when measuring lineal dimensions.

The foregoing considerations essentially reduce to three prerequisites of a
measurement:

1. A model must be specified that corresponds to the object under study, and some
parameter of the model must be defined to correspond to the measurand.

2. The model of the object must permit the assumption that during the time
required to perform the measurement, the parameter of the model corresponding
to the measurand is constant.

3. The error caused by the threshold discrepancy between the model and the object
must be less than the permissible measurement error.

The above prerequisites do not include a basic assumption behind any measure-
ment that the general definition of the measurable quantity (e.g., length, time,
electrical resistance, or whatever quantity is being measured) has been already
introduced, and the corresponding measurement standards exist. The issues of
measurable quantity definitions and the availability of standards are not directly
related to the problem of estimating measurement accuracy, and for this reason,
they are not studied here. These issues are investigated in several works; we in
particular refer the reader to the book by B.D. Ellis [24] and the work of K.P.
Shirokov [50].

Generalizing all three prerequisites, we formulate the following principle of
metrology:

A measurement of a measurable quantity of an object with a given accuracy can
be performed only if it is possible to associate, with no less accuracy, a determinate
parameter of the model with that measurable quantity.

We note that the value of the parameter of the model of an object introduced in
this manner is the true value of the measurable quantity.

The foregoing considerations are fundamental, and they can be represented in
the form of postulates of the theory of measurement [46, 52]:

(@) The true value of the measurable quantity exists.

(P) There is a single true value in each measurement.

(y) The true value of the measurable quantity is constant.
(6) The true value cannot be found.

The threshold discrepancy between the model and the object was employed
above as a justification of the postulate (6). However, other unavoidable restrictions
also exist on the approximation of the true value of a measurable quantity.
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For example, the accuracy of measuring instruments is unavoidably limited. For
this reason, it is possible to formulate the simple statement: The result of any
measurement always contains an error.

We shall now discuss some examples of models that are employed for specific
measurement problems.

Example 1.1 Measurement of the Parameters of Alternating Current
The object of study is an alternating current. The model of the object is a
sinusoid

i = Iy sin(wf + @),

where t is the time and I,,,, @, and ¢ are the amplitude, the angular frequency, and
the initial phase, and they are the parameters of the model.

Each parameter of the model corresponds to some real property of the object and
can be a measurable quantity. But, in addition to these quantities, several other
parameters that are functionally related with them are also introduced. These
additional parameters can also be measurable quantities. Some parameters can be
introduced in a manner such that by definition they are not related with the “details”
of the phenomenon. An example of such a parameter is the effective current

where T = 27n/w is the period of the sinusoid.

A nonsinusoidal current is also characterized by an effective current. However,
in designing measuring instruments and describing their properties, the form of the
current, i.e., the model of the object of study must be taken into account.

The discrepancy between the model and the object in this case is expressed as a
discrepancy between the sinusoid and the curve of the time dependence of the
current. In this case, however, only rarely it is possible to discover the discrepancy
between the model and the object under study by means of simple repetition of
measurements of some parameters. For this reason, the correspondence between the
model and the object is checked differently, for example, by measuring the form
distortion factor. If the discrepancy is detected, the model is usually redefined by
replacing the sinusoid with a sum of a certain number of sinusoids.

Example 1.2 Measurement of the Parameters of Random Processes

The object of the study is some randomly changing quantity. The usual model is
a stationary ergodic random process on the time interval 7. The constant parameters
of the process are the mathematical expectation E[X] and the variance V/[X].
Suppose that we are interested in E[X]. The value of this parameter in the mathe-
matical model of the process is the true value of the measurand in this case. It can be
estimated, for example, with the help of the formula
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T

where T is the observational time interval, x; are the estimates of the realizations of
the random quantity, whose variation in time forms a random process at times ¢; € T,
and 7 is the total number of realizations obtained.

Repeated measurements on other realizations of the process can give somewhat
different values of x. The adopted model can be regarded as corresponding to the
physical phenomenon under study, if the differences between the obtained
estimates of the mathematical expectation of the process are much smaller than
the permissible measurement error. If, however, these differences are close to the
error or exceed it, then the model must be redefined, which is most simply done by
increasing the observational interval 7.

It is interesting to note that the definitions of some parameters seem, at first
glance, to permit arbitrary measurement accuracy (if the errors of the measuring
instrument are ignored). Examples of such parameters are the parameters of sta-
tionary random processes, the parameters of distributions of random quantities, and
the average value of the quantity. One would think that to achieve the required
accuracy in these cases, it is sufficient to increase the number of observations when
performing the measurements. In reality, however, the accuracy of measurement is
always limited, and in particular, it is limited by the correspondence between the
model and the phenomenon, i.e., by the possibility of assuming that to the given
phenomenon, there corresponds a stationary random process or a random quantity
with a known distribution.

When a true value cannot be defined, then a measurement is impossible. For
example, in the last few years, much has been written about measurements of
variable and random quantities. However, these quantities, as such, do not have a
true value, and for this reason, they cannot be measured.

For a random quantity, it is possible to measure the parameters of its distribution
function, which are not random,; it is also possible to measure the realization of a
random quantity. For a variable quantity, it is possible to measure its parameters
that are not variable; it is also possible to measure the instantaneous values of a
variable quantity.

We shall now discuss in somewhat greater detail the measurement of instanta-
neous values of quantities. Suppose that we are studying an alternating current, the
model of which is a sinusoid with amplitude /,,,, angular frequency w, and initial phase
@. At time ¢, there is an instantaneous value in the model, i = I, sin(wt; + @),
which corresponds to an instantaneous current. At a different time, there will be
a different instantaneous value, but at each moment, it has some definite value.

Thus, there always exists a fixed parameter of the model corresponding to the
measurable property of the object.
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Measurement, however, is not instantaneous. The measurable quantity (the
current in the above example) will change while the measurement is taken, and
this will generate a specific error of the given measurement. The objective of the
measurement determines a permissible level that the measurement error, including
its component caused by the change in the measurable quantity during the mea-
surement time, must not exceed. If this condition is satisfied, then the effect of the
measurement time can be neglected, and one can assume to have obtained an
estimate of the measured instantaneous current, i.e., the current strength at a
given moment in time. In the literature, the expressions “measurement of a variable
quantity” and “measurement of a random quantity” often refer to, respectively,
measurement of instantaneous values and measurement of a realization of a random
quantity. Such usage of these expressions is obviously incorrect.

Measurable quantities are divided into active and passive. Active quantities are
quantities that can generate measurement signals without any auxiliary sources of
energy; i.e., they act on the measuring instruments. Such quantities are the EMF, the
strength of an electric current, mechanical force, and so on. Passive quantities
cannot act on measuring instruments, and for measurements, they must be
activated. Examples of passive quantities include mass, inductance, and electric
resistance. Mass is usually measured based on the fact that in a gravitational field, a
force proportional to the mass acts on the body. Electric resistance is activated by
passing an electric current through a resistor. When measuring a passive quantity of
an object, the object model is constructed for the active quantity (or quantities) that
arises from the activation of passive quantities.

1.5 Classification of Measurements

In metrology there has been a long-standing tradition to distinguish direct, indirect,
and combined measurements. In the last few years, metrologists have begun to
divide combined measurements into strictly combined measurements and simulta-
neous measurements [12].

Direct measurements are measurements in which the object of study is made to
interact with the measuring instrument, and the value of the measurand is read from
the indications of the latter. Sometimes the instrumental readings are multiplied by
some factor or adjusted by applying certain corrections.

In the case of indirect measurements, the value of the measurable quantity is
found based on a known functional dependence between this quantity and other
quantities called arguments. The arguments are found by means of direct and
sometimes indirect measurements, and the value of the measurand is calculated
according to the known dependence. For example, the density of a homogeneous
solid body is found as the ratio of the mass of the body to its volume. To obtain the
density, the mass, and volume of the body — the arguments — are measured directly,
and the density is then computed from their measured values.

Sometimes direct and indirect measurements are not easily distinguished.
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For example, an AC wattmeter has four terminals. The voltage applied to the
load is connected to one pair of terminals, whereas the other pair of terminals is
connected in series with the load. As is well known, the indications of a wattmeter
are proportional to the power consumed by the load. However, the wattmeter does
not respond directly to the measured power and its operation is based on the
transformation of the strengths of two electric currents into a mechanical rotation.
Given the principle of operation of the instrument, measurement of power by a
wattmeter should be regarded as indirect.

In our case, it is important, however, that the value of the measurable quantity
can be read directly from the instrument (in this case, the wattmeter). In this sense, a
wattmeter is in no way different from an ammeter. For this reason, in this book, it is
not necessary to distinguish measurement of power by a wattmeter and measure-
ment of the strength of current by an ammeter: We shall categorize both cases as
direct measurements. In other words, when considering a specific measurement as
belonging to one or another category, we will ignore the internals of the measuring
instrument employed.

A similar confusion may arise in the case of measurements performed with a
measuring system or a chain of measuring instruments. A simple example of such
measurements is the measurement of temperature with thermocouple and
millivoltmeter. The thermocouple produces for each temperature the corresponding
electromotive force (EMF) and the voltmeter measures this EMF. From the indica-
tion of the millivoltmeter and knowing the characteristics of the thermocouple, one
can determine the temperature being measured.

The last instrument in the chain from which the measurement result is read (the
millivoltmeter in our example) may be graduated directly in units of the measurand
(the temperature) or in other units (for instance, one could just use a general purpose
millivoltmeter in our example). In the former case, we would like to stress that the
entire chain should be viewed as a single (albeit complex) instrument, and it should
be calibrated as such. In particular, its intrinsic and additional errors should be rated
for the entire unit. Inaccuracy of the measurements in this case is estimated using
the methods for measurements with a single instrument as described in Chap. 4. In
the latter case, that is, if the last measuring instrument is graduated in different
units, this becomes an indirect measurement, and its inaccuracy is estimated
according to the methods presented in Chap. 5.

Simultaneous and combined measurements are rather similar types of
measurements. In both cases, their distinguishing property is that the objective of
the measurement is to obtain values of several quantities rather than a single
quantity as with direct and indirect measurements. Also, in both cases, measurable
quantities are found by solving a system of equations, whose coefficients and
certain terms are obtained as a result of measurements. Finally, in both cases, the
method of least squares (see Chap. 6) is usually employed. But the difference is that
in the case of combined measurements, several quantities of the same kind are
measured, whereas in the case of simultaneous measurements, quantities of differ-
ent kinds are measured at the same time. For example, a measurement, in which
both the electric resistance of a resistor at temperature +20°C and its temperature
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coefficient are found using the direct measurements of the resistance and
temperature performed at different temperatures, is a simultaneous measurement.
A measurement, in which the masses of separate weights in a set are found based on
the known mass of one of them and by comparing with it the masses of different
combinations of weights from the same set, is a combined measurement.

Depending on the properties of the object of study, the model adopted for the
object, the definition of the measurable quantity given in the model, as well as on
the method of measurement and the properties of the measuring instruments, the
measurements in each of the categories mentioned above are performed either
with single or with repeated observations. The method employed for processing
the experimental data depends on the number of observations — are many
measurements required or are one or two observations sufficient? If a measurement
is performed with repeated observations, then, to obtain the result, the observations
must be analyzed statistically. On the other hand, statistical methods are not
required in the case of measurements with single observations. For this reason,
we argue that the number of observations is an important classification criterion.

We shall term measurements performed with single observations as single
measurements and measurements performed with repeated observations as
multiple measurements. These terms have a natural intuitive meaning in direct
measurements but need clarification for indirect measurements. An indirect mea-
surement, in which the value of each of the arguments is found as a result of a single
measurement, must be regarded as a single measurement. If, on the other hand, the
values of the arguments were obtained by multiple measurements, the whole
indirect measurement is considered a multiple measurement.

Measurements are also divided into static and dynamic measurements. Adhering
to the concept presented in [51], we shall classify as static those measurements in
which the measuring instruments are employed in the static regime and as dynamic
those measurements in which the measuring instruments are employed in the
dynamic regime. The static regime of a measuring instrument is a regime in
which the output signal of the instrument can be regarded as constant. For example,
for an indicating instrument, the regime is static if the signal is constant for a time
sufficient to take the reading. A dynamic regime is a regime in which the output
signal changes in time, so that to obtain a result or to estimate its accuracy, this
change must be taken into account.

According to these definitions, static measurements include, aside from trivial
measurements of length, mass, and so on, direct measurements of the average
and effective (mean-square) values of alternating current by indicating instruments.
A typical example of dynamic measurements is tracking the value of a quantity
as a function of time by a recording instrument. Note that one can view such
measurement as an infinite set of single instantaneous measurements; in this case,
each instantaneous measurement would be considered static. Other examples of
dynamic measurements are measurement of the magnetic flux by the ballistic
method and measurement of the high temperature of an object based on the initial
portion of the transfer function of a thermocouple put into contact with the object
for a short time (the thermocouple would be destroyed if the contact time was long).
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Static measurements also include measurements performed using digital
indicating instruments. According to the definition of static measurements, for a
measurement to be considered static, it is not important that the state of the
elements in the device changes during the measurement. The measurement will
also remain static when the indications of the instrument change from time to time,
but each indication remains constant for a period of time sufficient for the indication
to be read or recorded automatically.

A characteristic property of dynamic measurements is that to obtain results and
estimate their accuracy in such measurements, it is necessary to know a complete
dynamic characteristic of the measuring instrument: a differential equation, transfer
function, and so on. (The dynamic characteristics of measuring instruments will be
examined in Chap. 2.)

The classification of measurements as static and dynamic is justified by the
difference in the methods employed to process the experimental data. At the present
time, however, dynamic measurements as a branch of metrology are still in the
formative stage.

The most important characteristic of the quality of a measurement is accuracy.
The material base, which ensures the accuracy of numerous measurements
performed in the economy, consists of measurement standards. The accuracy of
any particular measurement is determined by the accuracy of the measuring
instruments employed, the method of measurement employed, and sometimes by
the skill of the experimenter. However, as the true value of a measurable quantity is
always unknown, the errors of measurements must be estimated computationally.
This problem is solved by different methods and with different accuracy.

In connection with the estimation of measurement accuracy, we shall distinguish
measurements whose accuracy (or, more commonly, inaccuracy) is estimated
before and after the measurement. We shall refer to them as measurements with a
priori estimation of inaccuracy and measurements with a posteriori estimation of
inaccuracy.

Measurements with a priori inaccuracy estimation must be performed according
to an established procedure. Measurements of this type include all mass
measurements.

Mass measurements (also called industrial measurements in [1]) are common.
Their accuracy is predetermined by the types (brands) of measuring instruments
indicated in the procedure, the techniques for using them, as well as the stipulated
conditions under which the measurements are to be performed. Note that, in mass
measurements, procedure for the a priori inaccuracy estimation is implicitly
reflected in the overall measurement procedure: the person performing the mea-
surement is interested only in the result of measurement, simply assuming that the
accuracy will be adequate as long as he or she follows the procedure.

A posteriori estimation of inaccuracy is characteristic for measurements when it
is important to know the accuracy of each result. We shall further divide
measurements with a posteriori estimation of inaccuracy into two groups:
measurements with universal estimation of inaccuracy and measurements with
individual estimation of inaccuracy.
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Measurements with universal estimation of inaccuracy are measurements in
which the manufacturer specifications (rather than actual properties) of the measur-
ing instruments employed are taken into account. These properties hold for all
instruments of a given type; thus universal estimates remain valid when an instru-
ment is replaced with another instrument of the same type.

Measurements with individual estimation of inaccuracy are measurements in
which the inaccuracy estimation takes into account actual properties of the specific
measuring instruments employed. These properties are usually established by
calibration laboratories and are listed in calibration certificates.

In both cases, the conditions under which the measurements are performed are
taken into account; this is done by obtaining and applying the influence quantities of
the measurement conditions. In many cases, the influence quantities are measured,
in other cases, they are estimated. We will refer to the measurements of influence
quantities as supplementary measurements. Distinguishing supplementary measure-
ments is useful for metrological purposes.

Here we would like to call attention to a fact whose validity and significance will
become obvious from further discussion. Suppose that several measurements are
performed using the same measuring instruments but with different methods of
inaccuracy estimation. Although the same instruments are employed, these
measurements will have different accuracy. The inaccuracy established by individ-
ual estimation will be less than the inaccuracy found by universal estimation.

The results of measurements with a priori and a posteriori inaccuracy estimation
will be only rarely equally accurate. However, when measurements employ mea-
suring instruments with different accuracy, the above conclusion will no longer be
true. For example, measurement of voltage with a potentiometer of accuracy class
0.005, performed as a mass measurement, i.e., with a priori inaccuracy estimation,
will be more accurate than measurement with an indicating voltmeter of class 0.5
and individual inaccuracy estimation.

Returning to the discussion of various measurement types, measurements are
often performed during the preliminary study of a phenomenon. We shall call
such measurements as preliminary measurements. The purpose of preliminary
measurements is to determine the conditions under which some characteristic of
the phenomenon can be observed repeatedly, so that its regular relations with
other properties of the object, systems of objects, or with an external medium can
be studied. As the objective of natural sciences is to establish and study regular
relations between objects and phenomena, preliminary measurements are impor-
tant in these fields. In particular, the first task of a scientist who is studying some
phenomenon is usually to determine the conditions under which the phenomenon
can be observed repeatedly in other laboratories and can be checked and
confirmed.

Preliminary measurements are also required to construct a model of the object
under study. For this reason, preliminary measurements are important in metrology
as well.
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Enormous literature exists on different aspects of measurements. As just one
example, we can refer the reader to the book by Massey [38], which considered a
number of these aspects.

1.6 Classification of Measurement Errors

Measurement accuracy is characterized by measurement error, limits of error, or
uncertainty. A measurement of a quantity whose true value is A gives an estimate A
of that quantity. The absolute measurement error { expresses the difference between
Aand A: 4 =A— A. However, this equation cannot be used to find the error of a
measurement for the simple reason that the true value of the measurable quantity is
always unknown.

As mentioned previously, only in calibration of measuring instruments can one
assume that the true value of the measurand is known, by taking the value of the
measurement standard (often called “reference standard” in this context) as the true
value of the measurand. Even then, strictly speaking, one finds the error of the
device being calibrated and not of the measurement itself. The error of the mea-
surement device found during calibration is called a point estimate.

In all other cases, the measurement accuracy is characterized by either limits of
error or uncertainty, that is, by intervallic estimates. The calculation of these
estimates is based on estimating errors contributed by various individual sources
of inaccuracy; the latter are called elementary errors of the measurement.

The necessary components of any measurement are the method of measurement
and the measuring instrument; in addition, measurements are often performed with
the participation of a person. The imperfection of each component of measurement
contributes to the measurement error. For this reason, in the general form,

§:§m+§i+§p7

where  is the measurement error, {;, is the methodological error, {; is the instru-
mental error, and {, is the personal error.

Each component of the measurement error can in turn be caused by several
factors. Thus, methodological errors can arise as a result of an inadequate theory of
the phenomena on which the measurement is based and inaccuracy of the relations
that are employed to find an estimate of the measurable quantity. In particular, the
error caused by the threshold discrepancy between the model of a specific object
and the object itself is a methodological error.

Instrumental measurement errors are caused by the imperfection of measuring
instruments. Normally the intrinsic error of measuring instruments, i.e., the error
obtained under reference conditions regarded as normal, is distinguished from
additional errors, i.e., errors caused by the deviation of the influence quantities
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from their values under reference conditions. Properties of measuring instruments
that cause the instrumental errors will be examined in detail in Chap. 2.

Human participants are responsible for personal errors. The individual
characteristics of the person performing the measurement give rise to individual
errors that are specific to that person. For example, in a measurement of high
temperature using an optical pyrometer, a human must detect the moment when
the image of a filament vanishes on the screen of the pyrometer. This moment (as
detected) will depend on the person’s perception. Another typical example includes
incorrect reading of an instrument indication when it falls in-between graduation
marks of the instrument scale.

Thanks to improvements in the reading and regulating mechanisms of measuring
instruments, personal errors are usually insignificant for modern measuring
instruments. In particular, they are virtually nonexistent for digital instruments.

The foregoing classification of measurement errors is based on the cause of the
errors. Another important classification of measurement errors is based on their
properties. In this respect, systematic and random errors are distinguished.

A measurement error is said to be systematic if it remains constant or changes in
a regular fashion in repeated measurements of one and the same quantity. The
observed and estimated systematic error is eliminated from measurements by
introducing corrections. However, it is impossible to eliminate completely the
systematic error in this manner. Some part of the error will remain and then this
residual error will be the systematic component of the measurement error.

To define a random measurement error, imagine that some quantity is measured
several times. If there are differences between the results of separate measurements
and these differences cannot be predicted individually, then the error from this
scatter of the results is called the random error.

The division of measurement errors into systematic and random is important,
because these components are manifested differently and different approaches are
required to estimate them. Random errors are discovered by performing
measurements of one and the same quantity repeatedly under the same conditions,
whereas systematic errors can be discovered experimentally either by comparing a
given result with a measurement of the same quantity performed by a different
method or by using a more accurate measuring instrument. However, systematic
errors are normally estimated by theoretical analysis of the measurement
conditions, together with the known properties of a measurand and of measuring
instruments. Other specifics of the terms systematic and random errors are
discussed in Sect. 4.2.

In speaking about errors, we shall also distinguish gross or outlying errors and
blunders. We shall call an error gross or outlying if it significantly exceeds the error
justified by the conditions of the measurements, the properties of the measuring
instrument employed, the method of measurement, and the qualifications of the
experimenter. Such measurements can arise, for example, as a result of a sharp,
brief change in the grid voltage (if the grid voltage in principle affects the
measurements).
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Outlying or gross errors in multiple measurements are discovered by statistical
methods and are usually eliminated from analysis.

Blunders occur as a result of errors made by the experimenter. Examples are a
slip of the pen when writing up the results of observations, an incorrect reading of
the indications of an instrument, and so on. Blunders are discovered by nonstatisti-
cal methods, and they must always be eliminated from the analysis.

Measurement errors are also divided into static and dynamic. Static errors are
exhibited by static measurements. Dynamic errors are present in dynamic
measurements and are caused by the inertial properties of measuring instruments.
For example, if a varying quantity is recorded with the help of a recording
instrument, then the difference between the obtained function and the actual
quantity as it changes with time (taking into account the necessary scale
transformations) is the dynamic error of the given dynamic measurement. In this
case, the dynamic error is also a function of time, and the instantaneous dynamic
error can be determined for each moment in time.

We shall now study the case when the process is recorded by measuring
individual instantaneous values. It is clear that if within the time of a single
measurement, the measurable quantity does not change significantly and the
instantaneous values of the process are obtained at known times and sufficiently
frequently, then the collection of points ultimately obtained gives an arbitrarily
close approximation of the continuous recording. Thus, there will be no dynamic
error here.

The inertial properties of an instrument can be such, however, that the changes in
the measurable quantity during the time necessary to perform a point measurement
will lead to a definite error in the measurements of the point values. In this case, the
obtained collection of point values will deviate from the measurable quantity as it
changes in time, and their difference, exactly as in the above case of a recording
instrument, will give the dynamic error. It is natural to call the errors of separate
point measurements as instantaneous dynamic errors.

1.7 General Approach to Evaluation of Measurement
Inaccuracy

Measurements are regarded metrologically to be better the lower their inaccuracy
is. However, measurements must be reproducible, because otherwise they lose their
objective character and therefore become meaningless.

The reproducibility of a measurement depends on proper estimates of its inac-
curacy. For example, consider a measurement of the length of a certain object.
Assume an experimenter measures this length to be 3,000 m with proper limits of
errors (as warranted by the measurement instruments and procedure) to be
£0.3 cm. If the experimenter estimates the limits of error too conservatively to
be 0.5 cm, then the accuracy of this measurement will be unnecessarily low, but it



26 1 General Concepts in the Theory of Measurements

will be reproducible: it will be confirmed if someone else measures this length with
higher accuracy. However, if the first experimenter erroneously estimates the limits
of error to be £0.01 cm, this measurement will no longer be reproducible. A more
accurate measurement will refute it.

Thus, correctly estimated measurement inaccuracy permits comparing the
obtained result with the results obtained by other experimenters. The fact that the
correctness of a given estimate is later confirmed in a more accurate measurement
attests to the high skill of the experimenter. But the above argument exposes
contradictory tendencies. On one hand, every experimenter wants to present his
or her measurement as being as high quality as possible; on the other hand, the
measurement result must be reproducible, and this suggests conservative estimation
of the accuracy.

With regard to the above contradiction, we stress that while high quality of a
measurement is desirable, the reproducibility (or, said differently, reliability) of the
measurement is mandatory. Thus, it is better to err on the side of caution and be
biased toward reliability, that is, conservative inaccuracy estimations. This conclu-
sion should be considered as the following principle of the estimation of measure-
ment inaccuracy:

The estimate of the inaccuracy of measurement must be an upper-bound
estimate.

The inaccuracy estimation for any measurement result is based on the estimates
of elementary errors of this measurement. Therefore, to satisfy the above principle,
the estimates of the elementary errors must also be upper-bound estimates. At the
same time, combining the elementary errors into the overall inaccuracy estimate of
the measurement should be done without introducing unwarranted additional inac-
curacy exaggeration, so that the overall inaccuracy estimate is only minimally
exaggerated.

We should also stress that the correctness of an estimate of inaccuracy of a
measurement cannot be checked based on data obtained in that same measurement.
In any given measurement, all obtained experimental data and other reliable
information, for example, corrections to the indications of instruments, are
employed to find the measurement result, and the error must be estimated with
additional information about the properties of the measuring instruments, the
conditions of the measurements, and the theory. There is no point in performing a
special experiment to check or estimate the measurement error or uncertainty. It
would entail organizing in parallel with the given measurement a more accurate
measurement of the same measurable quantity. Then the given measurement would
be meaningless: Its result would be replaced by the result of the more accurate
measurement. The problem of estimating the error in the given measurement would
be replaced by the problem of estimating the error of the more accurate measure-
ment; i.e., the basic problem would remain unsolved.

The correctness of estimates of errors and uncertainty is nonetheless checked.
It is confirmed either by the successful use of the measurement result for the
purpose intended or by the fact that the measurement agrees with the results
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obtained by other experimenters. As in the case of measurement of physical
constants, the correctness of the estimates of uncertainties is sometimes checked
with time as a result of improvements in measuring instruments.

1.8 Presentation of Measurement Results

If A is the result of a measurement and Ay and A, are the upper and lower limits of
the error in the measurement, then the result of the measurement and the measure-
ment inaccuracy can be written in the form

A, Ay, Ap.

For example, a measurement result and its inaccuracy could be represented
as A = 1.153 cm, Ay = +0.002 cm, and 4, = — 0.001 cm. Often, | Ay| =
| AL| = A. Then, the result and the inaccuracy are written in the form A + A.

But more often, the inaccuracy is expressed as uncertainty. In this case, the
corresponding probability that the error is within the specified limits must be given.
For uniformity, it is recommended that the probability be given in parentheses after
the value of the uncertainty or a symbol of a measurand.

For example, if a measurement gives the value of the voltage, 2.62V, and the
uncertainty of this result, u = £2%, was calculated for the probability 0.95, then
the result will be written in the form

U=262V, u==42%(0.95)
or, in the more compact form,
Ujos = (2.62 £ 0.05)V.

The compactness remark refers to the method for indicating the probability and is
unrelated to the fact that the uncertainty is given in the relative form in the first case
and in the absolute form in the second case. If the confidence probability is not
indicated in the measurement result, then the inaccuracy must be assumed to have
been estimated without the use of probability methods. Although an inaccuracy
estimate obtained without the use of probability methods can be reliable, it cannot
be associated with any probability value. Thus, the probability should not be
indicated. To repeat, in this case, we have the limits of error of a measurement
rather than the uncertainty.

The above representations of inaccuracy are desirable for the final result,
intended for direct practical application, for example, in quality control. In this
case, it is usually convenient to express the total inaccuracy estimation. In many
cases, however, it is desirable to know not the total inaccuracy estimation but the



28 1 General Concepts in the Theory of Measurements

characteristics of the random and systematic components separately. Such a repre-
sentation of the inaccuracy makes it easier to analyze and determine the reasons for
any discrepancy between the results of measurements of the same quantity
performed under different conditions. An analysis of this kind is usually necessary
in the case of measurements performed for scientific purposes, for example,
measurements of physical constants. It is also desirable to record the components
separately in those cases when the result of a measurement is to be used for
calculations together with other data that are not absolutely precise. For example,
in indirect measurements, when the arguments are measured directly, separate
recording of the random and systematic errors of the measurements of the
arguments makes it possible to estimate more accurately the uncertainty of the
result of the overall indirect measurement. We will see this in Chap. 5.

For scientific measurements, apart from the inaccuracy expressions given above,
it is helpful to describe the basic sources of error together with an estimate of their
contribution to the total measurement uncertainty. For a random error, it is of
interest to present the form and parameters of the distribution function of the
observations and how the distribution function was determined (the method
employed for testing the hypothesis regarding the form of the distribution function,
the significance level used in this testing, etc.).

The inaccuracy in the results of mass measurements is usually not indicated at
all, because it is estimated beforehand, and the estimation is known prior to the
measurement. In mass measurements, the number of significant digits in the result
of a measurement reflects the accuracy of the measurement.

In other measurements, the inaccuracy must be estimated and expressed
explicitly.

As measurement inaccuracy determines only the vagueness of the result, the
inaccuracy need not be known precisely. For this reason, in its final form, the
inaccuracy is customarily expressed with only one or two significant digits. Two
digits are retained for the most accurate measurements if the most significant digit
of the number expressing the inaccuracy is less than 3. However, in intermediate
calculations, depending on the computational operations performed, one or two
significant digits more than will be needed for the result should be retained so that
the rounding error would not accumulate and distort the result.

The numerical value of the measurement result must have the last decimal digit
of the same rank as the last digit in its inaccuracy estimation. There is no point in
including more digits, because this will not reduce the inaccuracy of the result. But
fewer digits, which can result from further rounding off the number, would increase
the inaccuracy thus artificially reducing the accuracy of the result below that
provided by the measurement employed.

For example, if the result of the measurement is 85.6342 and the limits of error
are +0.04, then the result should retain only four significant digits: 85.63. If the
same result has limits of error +0.012, then it should be expressed as 85.634.

If the rules presented above are used, then the number of significant digits in the
measurement result makes it possible to judge approximately the accuracy of a
measurement: the inaccuracy can reach at most three units in the next-to-last digit
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of the result. Returning to the above example, if we only know the result of 85.634,
we can tell that according to the rules, the worse inaccuracy could have been
40.003. Indeed, any higher inaccuracy would have caused one to retain fewer
digits in the result.

When retaining a proper number of significant digits in observations and mea-
surement results, one must round the numbers involved. The rounding should be
done according to the following rules:

1. The last retained digit is not changed if the adjacent digit being discarded is less
than 5. Discarded digits in the whole part of the number are replaced by 0’s and
dropped in decimal fraction part.

Examples Rounding the number 32,453 to four significant digits results in the
number 32.45. Rounding the number 165.245 to four significant digits results in
the number 165.2.

2. The last digit retained is increased by 1 if the adjacent digit being discarded is
greater than 5 or if it is equal to 5 and there are digits other than O to its right.

Examples If three significant digits are retained, the number 18.598 is rounded
to 18.6 and the number 152.56 is rounded to 153.

3. If the digit being discarded is equal to 5 and the digits to its right are unknown or
are equal to 0, then the last retained digit is not changed if it is even and it is
increased by 1 if it is odd.

Examples 1If two significant digits are retained, the number 10.5 is rounded to 10
and the number 11.50 is rounded to 12.

4. If the decimal fraction in the numerical value of the result of a measurement
terminates in 0’s, then the 0’s are dropped only up to the digit that corresponds to
the rank of the least significant digit of the numerical value of the inaccuracy
estimation.

The foregoing rules were established by convention, and for calculations
performed by humans, they are entirely satisfactory. In the case of calculations
performed with the help of computers, however, rounding depending on the even-
ness or oddness of the last retained digit [rule (3)] is inconvenient, because it
complicates the algorithm. It has been suggested that this rule be dropped and the
last retained figure not be changed, irrespective of whether it is even or odd. This
suggestion, however, has not been adopted. The main objection is that such
rounding, if applied consecutively to intermediate results, can significantly distort
the final result.

We shall now estimate the relative rounding error, based on the observation that
the limits of error caused by the rounding are equal to one-half the last digit in
the numerical value of the result of the measurement. Assume, for example, that the
measurement result is expressed as a number with two significant figures. Then the
minimum number will be equal to 10 and the maximum number will be equal to 99.
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Therefore, the relative rounding error &, of a result with two significant digits will
be 0.5% < &, <5%.

If the result of a measurement is expressed with three significant figures, this
error will fall in the range 0.05% < &3 <0.5%, and so on. Thus, the limits of error
obtained above show the effect of rounding off the result on the measurement error.



Chapter 2
Measuring Instruments and Their Properties

2.1 Types of Measuring Instruments

Measuring instruments are the technical objects that are specially developed for
the purpose of measuring specific quantities. A general property of measuring
instruments is that their accuracy is known. Measuring instruments are divided
into material measures, measuring transducers, indicating instruments, recording
instruments, and measuring systems.

A material measure is a measuring instrument that reproduces one or more
known values of a given quantity. Examples of measures are balance weights,
measuring resistors, measuring capacitors, and reference materials. Single-valued
measures, multiple-valued measures, and collections of measures are distinguished.
Examples of multiple-valued measures are graduated rulers, measuring tapes,
resistance boxes, and so on. Multiple-valued measures are further divided into
those that reproduce discrete values of the corresponding quantities, such as
resistance boxes, and those that continuously reproduce quantities in some range,
for example, a measuring capacitor with variable capacitance. Continuous
measures are usually less accurate than discrete measures.

When measures are used to perform measurements, the measurands are com-
pared with the known quantities reproduced by the measures. The comparison is
made by different methods, but so-called comparators are a specific means that are
used to compare quantities. A comparator is a measuring device that makes it
possible to compare similar quantities and has a known sensitivity. The simplest
comparator is the standard equal-armed pan balance.

In some cases, quantities are compared without comparators, by experimenters,
with the help of their viewing or listening perceptions. For instance, when measur-
ing the length of a body with the help of a ruler, the ruler is placed on the body and

Electronic Supplementary Material The online version of this chapter (doi:10.1007/978-1-
4614-6717-5_2) contains supplementary material, which is available to authorized users.

S.G. Rabinovich, Evaluating Measurement Accuracy: A Practical Approach, 31
DOI 10.1007/978-1-4614-6717-5_2, © Springer Science+Business Media New York 2013


http://dx.doi.org/10.1007/978-1-4614-6717-5_2
http://dx.doi.org/10.1007/978-1-4614-6717-5_2

32 2 Measuring Instruments and Their Properties

the observer fixes visually the graduations of the ruler (or fractions of a graduation)
at the corresponding points of the body.

A measuring transducer is a measuring instrument that converts the measurement
signals into a form suitable for transmission, processing, or storage. The measurement
information at the output of a measuring transducer typically cannot be directly
observed by the experimenter.

One must distinguish measuring transducers and the transforming elements of
a complicated instrument. The former are measuring instruments, and as such, they
have rated (i.e., listed in documentation) metrological properties (see below). The
latter, on the other hand, do not have an independent metrological significance and
cannot be used separately from the instrument of which they are a part.

Measuring transducers are diverse. Thermocouples, resistance thermometers,
measuring shunts, and the measuring electrodes of pH meters are just a few
examples of measuring transducers. Measuring current or voltage transformers
and measuring amplifiers are also measuring transducers. This group of transducers
is characterized by the fact that the signals at their inputs and outputs are a quantity
of the same kind, and only the magnitude of the quantity changes. For this reason,
these measuring transducers are called scaling measuring transducers.

Measuring transducers that convert an analog signal at the input into a discrete
signal at the output are called analog-to-digital converters. Such converters are
manufactured either as autonomous, i.e., independent measuring instruments, or as
units built into other instruments, in particular, in the form of integrated
microcircuits. Analog-to-digital converters are a necessary component of a variety
of digital devices, but they are also employed in monitoring, regulating, and control
systems.

An indicating instrument is a measuring instrument that is used to convert
measurement signals into a form that can be directly perceived by the observer.
Based on the design of the input circuits, indicating instruments are just as diverse
as measuring transducers, and it is difficult to survey all of them. Moreover, such a
review and even classification are more important for designing instruments than
for describing their general properties.

A common feature of all indicating instruments is that they all have readout
devices. If these devices are implemented in the form of a scale and an indicating
needle, then the indications of the instrument are a continuous function of the
magnitude of the measurable quantity. Such instruments are called analog
instruments. If the indications of instruments are in a digital form, then such
instruments are called digital instruments.

The above definition of digital instruments formally includes two types of
devices. The first type, which includes automatic digital voltmeters, bridges, and
similar instruments, performs all measuring transformations in a discrete form; in
the second type, exemplified by induction meters for measuring electrical energy,
all measuring transformations of signals occur in an analog form and only the
output signal assumes a discrete form. The conversions of measurement informa-
tion into a discrete form have several specific features. Therefore, only instruments
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in which the measurement conversions occur in a discrete form are usually consid-
ered to be digital instruments.

The indications of digital instruments can be easily recorded and are convenient
for entering into a computer. In addition, their design usually makes it possible to
obtain significantly higher accuracy than the accuracy of analog instruments.
Moreover, when digital instruments are employed, no reading errors occur. How-
ever, with analog instruments, it is easier to judge trends in the variation of the
measurands.

In addition to analog and digital instruments, there also exist analog-discrete
measuring instruments. In these instruments, the measuring conversions are
performed in an analog form, but the readout means are discrete (but not digital).
Analog-discrete instruments combine the advantages of both analog and digital
instruments. Mentioned above induction meters for measuring electric energy are
examples of such hybrid instruments.

In many cases, measuring instruments are designed to record their indications.
Such instruments are called recording instruments. Data can be recorded in the
form of a continuous record of the variation of the measurand in time, or in the form
of a series of discrete points. Instruments of the first type are called automatic-
plotting instruments, and instruments of the second type are called printing
instruments. Printing instruments can record the values of a measurand in digital
form. Printing instruments give a discrete series of values of the measurand with
some time interval. The continuous record provided by automatic-plotting
instruments can be regarded as an infinite series of values of the measurand.

Sometimes measuring instruments are equipped with induction, photo-optical,
or contact devices and relays for purposes of control or regulation. Such instruments
are called regulating instruments. Regulating units typically lead to some reduction
of the accuracy of the measuring instrument.

Measuring instruments also customarily include null indicators, whose primary
purpose is to detect the presence of a nonzero signal. The reason for them to be
considered measuring instruments is that a null indicator, such as a galvanometer,
can often be used as a highly sensitive indicating instrument.

A measuring system is a collection of functionally integrated measuring, com-
puting, and auxiliary devices connected to each other with communication
channels.

2.2 Metrological Characteristics of Measuring Instruments

We shall divide all characteristics of measuring instruments into two groups:
metrological, which are significant for using a measuring instrument in the manner
intended, and secondary. We shall include in the latter such characteristics as mass,
dimensions, and degree of protection from moisture and dust. We shall not discuss
secondary characteristics because they are not directly related with the
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measurement accuracy, even though they sometimes influence the selection and
application of an instrument.

By metrological characteristics of a measuring instrument, we mean the
characteristics that make it possible to judge the suitability of the instrument for
performing measurements in a known range with known accuracy. A simple
example of a metrological characteristic common to all measuring instruments
except single measures (i.e., measures reproducing a single value of a quantity) is
the measurement range of the instrument. We will call metrological characteristics
that are established before or during the design and development of the instrument
as nominal metrological characteristics. Examples of such a characteristic are the
nominal value of a measure (10 Q, 1 kG, etc.), the measurement range of an
instrument (0-300V, 0-1,200°C, etc.), the conversion range of a transducer, the
value of the scale factor of an instrument scale, and so on.

The relation between the input and the output signals of indicating instruments and
transducers is determined by the transfer function. For indicating instruments, this
relation is determined by the instrument scale, whereas for measuring transducers, it is
determined by a graph or an equation. If this graph or equation had been determined
and specified before the transducer was developed (or during its development), then
the graph or equation represents a nominal metrological characteristic.

The real characteristics of measuring instruments differ from the nominal
characteristics because of fabrication inaccuracies and changes occurring in the
corresponding properties in time. These differences between nominal and real
metrological characteristics lead to the error of the instrument.

Ideally, a measuring instrument would react only to the measured quantity or to
the parameter of the input signal of interest, and its indication would not depend on
the external conditions, such as the power supply regime, temperature, and so on. In
reality, the external conditions do affect the indications of the instrument. The
quantities characterizing the external conditions affecting the indications of a
measuring instrument are called influence quantities.

For some types of measuring instruments, the dependence of the output signal or
the indications on a given influence quantity can be represented as a functional
dependence, called the influence function. The influence function can be expressed
in the form of an equation (e.g., the temperature dependence of the EMF of standard
cells) or a graph. In the case of a linear dependence, it is sufficient to give the
coefficient of proportionality between the output quantity and the influence quan-
tity. We call this coefficient the influence coefficient. Influence coefficients and
functions make it possible to take into account the conditions under which measur-
ing instruments are used, by introducing the corresponding corrections to the
obtained results.

The imperfection of measuring instruments is also manifested because when the
same quantity is measured repeatedly under identical conditions, the results can
differ somewhat from one another. If these differences are significant, the
indications are said to be nonrepeatable.

The inaccuracy of a measuring instrument is usually characterized by its error.
Taking an indicating instrument as an example, let the true value of a quantity at the
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input of the instrument be A, and the instrument indication be the value A,. The
absolute error of the instrument will be

L=A—A,.

If the indications of the repeated measurements of A, are somewhat different,
(but not enough to be considered nonrepeatable), one can talk about a random
component of instrument error. For analog instruments, the random component of
instrument error is normally caused by friction in the supports of a movable part of
the instrument and/or by hysteresis phenomena. The limits of this error component
can be found directly if the quantity measured by the instrument can be varied
continuously, which is the case with, e.g., the electric current or voltage. The
common method involves driving the indicator of the instrument continuously up
to the same scale marker, once from below and once from above the marker.
To compensate for friction (and/or hysteresis), the input signal that drives the
indicator to the marker from below needs to be higher than what it would have
been without friction; the input signal that drives the indicator to the same marker
from above will be smaller. We will call the dead band the absolute value of the
difference between the two values of the measurand that are obtained in such a test
corresponding to a given scale marker of the instrument. The dead band gives the
range of possible values of the random component of instrument error, and one half
of this length is the limiting value of the random error.

There are also several instrument types, notably, weighing scales, whose
indications cannot vary continuously. The random error of weighing scales is
usually characterized by the standard deviation [7]. This characteristic of an
instrument is calculated from the changes produced in the indications of the scales
by a load with a known mass; the test is performed at several scale markers,
including the limits of the measurement range. One method for performing the
tests and the computational formula for calculating the standard deviation of
weighing scales are presented in [7].

Measuring instruments are created to bring certainty into the phenomena studied
and to establish regular relations between the phenomena. Thus, the uncertainty
created by the nonrepeatability of instrument indications interferes with using an
instrument in the manner intended. For this reason, the first problem that must be
solved when developing a new measuring device is to make its random error
insignificant, i.e., either negligibly small compared with other errors or falling
within permissible limits of error for measuring devices of the given type. We
should note here that because uncertainty of instrument indications represents only
a random component of its inaccuracy, the term “uncertainty” cannot replace the
term “limits of error” as applied to measuring instruments.

If the random error is insignificant and the elements determining instrument
accuracy are stable, then by calibration, the measuring device can always be “tied”
to a corresponding measurement standard and the potential accuracy of the instru-
ment can be realized.
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The value of the measurand corresponding to the interval between two neighboring
markers on the instrument scale is called the value of a scale division. Similarly, the
value of the least significant digit is the value of the measurand corresponding to one
increment of the least significant digit of a digital readout device.

The sensitivity of a measuring instrument is the ratio of the change in the output
value of the measuring instrument to the corresponding change in the input value of
the quantity that causes the output value to change. The sensitivity can be a nominal
metrological characteristic or an actual characteristic of a real instrument.

The discrimination threshold is the minimum change in the input signal that
causes an appreciable change in the output signal.

The resolution is the smallest interval between two distinguishable neighboring
discrete values of the output signal.

Instability (of a measuring instrument) is a general term that expresses the
change in any property of the measuring instrument in time.

Drift is the change occurring in the output signal (always in the same direction)
in the absence of the input signal over a period of time that is significantly longer
than the time needed to perform a measurement with a given measuring instrument.
The presence of drift entails the need to reset the zero indication of the instrument.

The drift and the instability do not depend on the input signal, but they can
depend on the external conditions. The drift is usually determined in the absence of
the signal at the input.

The metrological characteristics of measuring instruments should also include
their dynamic characteristics. These characteristics reflect the inertial properties of
measuring instruments. It is necessary to know them to correctly choose and use
many types of measuring instruments. The dynamical characteristics are examined
below in Sect. 2.5.

The properties of measuring instruments can normally be described based on the
characteristics enumerated above. For specific types of measuring instruments,
however, additional characteristics are often required. Thus, for the gauge rods,
the flatness and degree of polish are important. For voltmeters, the input resistance
is important. We shall not study such characteristics, because they refer only to
individual types of measuring instruments.

2.3 Rating of the Errors of Measuring Instruments

Measuring instruments can only be used as intended when their metrological
properties are known. In principle, the metrological properties can be established
by two methods. One method is to find the actual characteristics of a specific
instrument. In the second method, the nominal metrological characteristics and
the permissible deviations of the real characteristics from the nominal characteristics
are given.

The first method is laborious, and for this reason, it is used primarily for the most
accurate and stable measuring instruments. Thus, the second method is the main
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method. The nominal characteristics and the permissible deviations from them are
given in the technical documentation when measuring instruments are designed,
which predetermines the properties of measuring instruments and ensures that they
are interchangeable.

In the process of using measuring instruments, their real properties are checked
to determine whether these properties deviate from the established nominal
characteristics. If some real property deviates from its nominal value by an amount
more than allowed, then the measuring instrument is adjusted, refurbished, or
discarded and no longer used.

Thus, the choice of the nominal characteristics of measuring instruments and the
designation of permissible deviations of the real characteristics from them —rating of
the metrological characteristics of measuring instruments — are of great importance
for measurement practice. The practice of rating the metrological characteristics of
measuring instruments has evolved over time, and we will examine it next.

Both the production of measuring instruments and the rating of their
characteristics initially arose spontaneously in each country. Later, rules that
brought order to the rating process were established in all countries with significant
instrument production. The recommendations developed at this time by interna-
tional organizations, primarily Publication 51 of the International Electrotechnical
Commission (IEC) and a number of publications by the International Organization
of Legal Metrology (OIML), were of great importance for standardizing the
expression of rated characteristics [8, 9]. The terminological documents are also
extremely valuable for developing rating procedures [1, 10, 12].

We shall now return to the gist of the problem. The values of nominal metrolog-
ical characteristics, such as the upper limits of measurement ranges, the nominal
values of the measures, the scale factors of instruments and so on, are chosen from a
standardized series of values of these characteristics. A more difficult task is to rate
the accuracy characteristics: errors and instability.

Despite the efforts of designers, the real characteristics of measuring instruments
depend to some extent on the external conditions. For this reason, the conditions are
determined under which the measuring instruments are to be calibrated and
checked, including the nominal values of all influence quantities and the ranges
of their permissible deviation from the nominal values. These conditions are called
reference conditions. The error of measuring instruments under reference
conditions is called the intrinsic error.

In addition to the reference conditions and intrinsic errors, the rated operating
conditions of measuring instruments are also established, i.e., the conditions under
which the characteristics of measuring instruments remain within certain limits and
the measuring instruments can be employed as intended. Understandably, errors in
the rated operating conditions are larger than errors under the reference conditions.
This change is characterized by specifying the limits of the additional error
(the additional error the instrument can have due to deviation of the corresponding
influence quantity from the reference condition), the permissible value of the
corresponding influence quantity, or by indicating the limits of the permissible
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error under the rated operating conditions (the overall possible error of the
instrument).

The errors of measuring instruments are expressed not only in the form of
absolute and relative errors, adopted for estimating measurement errors, but also
in the form of fiducial errors. The fiducial error is the ratio of the permissible limits
of the absolute error of the measuring instrument to some standardized value —
fiducial value. The latter value is established by standards on separate types of
measuring instruments; we discuss these rules later in this section. The fiducial
error is somewhat similar to relative error but, since it is normalized to a constant
standardized value, the fiducial error is constant across the entire measurement
range of the device. The purpose of fiducial errors is that they make it possible to
compare the accuracy of measuring instruments that have different measurement
ranges. For example, the accuracy of an ammeter with a measurement limit of 1A
and permissible absolute error of 0.01A has the same fiducial error of 1% (and in
this sense, the same accuracy) as an ammeter with a measurement limit of 100A and
permissible absolute error of 1A.

For measuring transducers, the errors can be represented relative to either the
input or output signals. Let us consider the relationship between these two error
representations.

Figure 2.1 shows the nominal and, let us assume, the real transfer functions of
some transducer. The nominal transfer function, as done in practice whenever
possible, is assumed to be linear. We denote the input quantity by x and the output
quantity by y. They are related by the dependency
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x =Ky,

where K is the nominal transduction constant.

At the point with true values of the quantities x, and y,, the true value of the
transduction constant will be K; = x; /y,. Calculations based on the nominal con-
stant K, however, result in an error.

Letx, = Ky,and y, = x, /K be determined based on y, and x, (see Fig. 2.1). Then
the absolute transducer error with respect to the input will be

Ax=x,—x, = (K — K;)y;.

The error with respect to the output is expressed analogously:

1 1
Ay =y, — v = | ——— |x,.
Y =Ya =Wt (K K{)M

We note, first, that Ax and Ay always have different signs: If (K — K;) > 0, then
(1/K-1/K,) < 0.

But this is not the only difference. The quantities x and y can also have different
dimensions; i.e., they can be physically different quantities, so that the absolute
input and output errors are not comparable. For this reason, we shall study the
relative errors:

Ax v K-K,
Y= = K—K —_—=—,
€ Xy ( t)x, K;

Ay (Ki—K)x, K —K

£y =
Y KK, y K

As K, # K, we have | le # | 8,| .
We denote the relative error in the transduction constant at the point (x;,y,) as &,
where g, = (K — K,)/K,. Then

€x
“_ .
. (1+e)

However, ¢, < 1, and in practice relative errors with respect to the input and
output can be regarded as equal in magnitude.

In measures, the rated error is determined as the difference between the nominal
value of the measure and the “true value” of the quantity reproduced by the
measure; the “true value” is obtained by another, known to be much more precise,
measurement. This is analogous to indicating instruments if one considers the
nominal value of a measure as the indication of the instrument.

It is interesting to note that single measures that reproduce passive quantities, for
example, mass, electric resistance, and so on, have only systematic errors. The error
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of measures of active quantities (electric voltage, electric current, etc.) can have
both systematic and random components. Multiple-valued measures of passive
quantities can have random errors introduced by the switching elements.

To summarize, when the errors of measuring instruments are rated, the permissible
limits of the intrinsic and all additional errors are specified. At the same time, the
reference and rated operating conditions are indicated.

Of all forms enumerated above for expressing the errors of measuring
instruments, the best is the relative error, because in this case, the indication of
the permissible limit of error gives the clearest idea of the level of measurement
accuracy that can be achieved with the given measuring instrument. The relative
error, however, usually changes significantly over the measurement range of the
instrument, and for this reason, it is difficult to be rated.

The absolute error is frequently more convenient than the relative error. In the
case of an instrument with a scale, the limit of the permissible absolute error can be
rated with the same numerical value for the entire scale of the instrument. But then
it is difficult to compare the accuracies of instruments having different measure-
ment ranges. This difficulty disappears when the fiducial errors are rated.

Let us now consider how the limits of permissible errors are expressed. For our
discussion below, we shall follow primarily [9]. The limit of the permissible
absolute error can sometimes be expressed by a single value (neglecting the sign):

A = *a,
sometimes in the form of the linear dependence:
A =+(a+bx), (2.1)

where x is the nominal value of the measure, the indication of a measuring
instrument, or the signal at the input of a measuring transducer, and a and b are
constants, and sometimes by a general equation,

A =f(x).

When the last dependence is complicated, it is given in the form of a table or
graph.
The fiducial error y (in percent) is defined by the formula

y = 100A /xy,

where x, is the fiducial value.
The fiducial value is assumed to be equal to the following:

1. The value at the end of the instrument scale.
2. The nominal value of the measurand, if it has been established.
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3. The length of the scale, if the scale graduations narrow sharply toward the end of
the scale. In this case, the error and the length of the scale are expressed in the
same units of length (e.g., centimeters).

The rules above are in accordance with Recommendation 34 of OIML [9].
However, Publication 51 of IEC [8] foresees that if the zero marker falls within
the scale, the fiducial value is equal to the span of the scale, which is a sum of the
end values of the scale (neglecting their signs). This is controversial and we will
discuss it in detail below.

A better between these two recommendations is the one by OIML. Indeed,
consider, for example, an ammeter with a scale —100—0—100A and with a permis-
sible absolute error of 1A. In this case, the fiducial error of the instrument will be
1% according to OIML and 0.5% according to IEC. But when using this instrument,
the possibility of performing a measurement with an error of up to 0.5% cannot be
guaranteed for any point of the scale, which makes the interpretation of the fiducial
error confusing. An error not exceeding 1%, however, can be guaranteed when
measuring a current of 100A under reference conditions.

The tendency to choose a fiducial value such that the fiducial error would be
close to the relative error of the instrument was observed in the process of
improving IEC Publication 51. Indeed, in the previous edition of this publication,
the fiducial value for instruments without a zero marker on the scale was taken to be
equal to the difference of the end values of the range of the scale, and now it is taken
to be equal to the larger of these values (neglecting the sign). Consider, for example,
a frequency meter with a scale 45-50-55 Hz and the limit of permissible absolute
error of 0.1 Hz. According to the previous edition of EIC Publication 51, the fiducial
error of the frequency meter was assumed to be equal to 1%, and the current edition
makes it equal to 0.2%. But when measuring the nominal 50 Hz frequency, the
instrument relative error indeed will not exceed 0.2% (under reference conditions),
while the 1% error has no relation to the accuracy of this instrument. Thus, the
current edition is better. We hope that IEC will take the next step in this direction
and take into account the recommendation of OIML for setting the fiducial value of
instruments with a zero marker within the scale.

The limits of permissible relative error are rarely listed as rated but can be
computed. If the rated error is expressed as the fiducial error y (in percent), the
permissible relative error for each value of the measurand must be calculated
according to the formula

X
5:)/—1\/.
X

If the rated error is expressed as the limits of absolute error A, the limit of
permissible relative error ¢ is usually expressed in percent according to the formula

~100A
===

o +c.
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For digital instruments, the errors are often rated in the conventional form
+ (b+q), (2.2)

where b is the relative error in percent and ¢ is some figure of the least significant
digit of the digital readout device. For example, consider a digital millivoltmeter
with a measurement range of 0 — 300mV and with the indicator that has four digits.
The value of one unit in the least significant digit of such an instrument is 0.ImV.
If this instrument is assigned the limits of permissible error + (0.5% + 2), then
figure 2 in the parentheses corresponds to 0.2 mV. Now the limit of the relative
error of the instrument when measuring, for example, a voltage of 300 mV can be
calculated as follows:

0.2 x 100

0= j:(O.S—I— 300

) = 4+0.57%.

Thus, to estimate the limit of permissible error of an instrument from the rated
characteristics, some calculations must be performed. For this reason, although
the conventional form (2.2) gives a clear representation of the components of
instrument error, it is inconvenient to use.

A more convenient form is given in Recommendation 34 of OIML: According to
this recommendation, the limit of permissible relative error is expressed by the
formula

5:j:[c+d(%—l>], 2.3)

where x, is the end value of the measurement range of the instrument or the input
signal of a transducer and ¢ and d are relative quantities.

In (2.3), the first term on the right-hand side is the relative error of the instrument
at x = x,. The second term characterizes the increase of the relative error as the
indications of the instrument decrease.

Equation (2.3) can be obtained from (2.2) as follows. To the figure ¢, there
corresponds the measurand gD, where D is the value of one unit in the least
significant digit of the instrument’s readout device. In the relative form, it is
equal to gD/x. Now, the physical meaning of the sum of the terms b and ¢gD/x is
that it is the limit of permissible relative error of the instrument. So,

D
5:<b+q>.
X

Using identity transformation, we obtain

D D D D D /x,
5—b+2 q_q:(bﬂ)ﬂ(x_l).
X

X Xe X Xe

If we denote
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D D
c=b+T, a=L,
Xe Xe
we obtain (2.3).
In application to the example of a digital millivoltmeter studied above, we have

5= 1[0.57 + 0.07(% - 1)}

It is clear that the last expression is more convenient to use, and in general, it is
more informative than the conventional expression (2.2).

Note that for standardization of analog instruments, the error limits are
established for the total instrument error and not for the separate components. If,
however, the instrument has an appreciable random component, then permissible
limits for it are established separately, in addition to the limits of the total error. For
example, aside from the limits of the permissible intrinsic error, the limits of the
permissible variation are also established for analog electrical instruments.

Additional errors (recall that these are errors due to the deviation of the
corresponding influence quantities from their values falling within the reference
condition) of measuring instruments are rated by prescribing the limits for each
additional error separately. The intervals of variation of the corresponding influence
quantities are indicated simultaneously with the limits of the additional errors.
The collection of ranges provided for all influence quantities determines the rated
operating conditions of the measuring instrument. The limits of permissible addi-
tional errors are often represented in proportion to the values of their corresponding
influence quantities or the deviation of these quantities from the limits of the intervals
determining their reference values. In this case, the corresponding coefficients are
rated. We call them the influence coefficients.

In the case of indicating measuring instruments, additional errors are often
referred to by the term variation of indications. This term is used, in particular,
for electric measuring instruments [8].

The additional errors arising when the influence quantities are fixed are system-
atic errors. For different instruments of the same type, however, systematic errors
can have different values and, moreover, different signs. For this reason, the
documentation for the overwhelming majority of instrument types sets the limits
of additional errors as both positive and negative with equal numerical values. For
example, the change in the indications of an electric measuring instrument caused
by a change in the temperature of the surrounding medium should not exceed the
limits +0.5% for each 10°C change in temperature under rated operating conditions
(the numbers here are arbitrary).

If, however, the properties of different measuring devices of a given type are
sufficiently uniform, it is best to standardize the influence function, i.e., to indicate
the dependence of the indications of the instruments or output signals of the
transducers on the influence quantities and the limits of permissible deviations
from each such dependence. If the influence function can be standardized, then it
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Fig. 2.2 Two variants of rating limits of additional errors of measuring instruments. The interval
(x2, x3) corresponds to reference conditions; the interval (x;, x4) corresponds to the rated operating
conditions; d is the absolute value of the limits of permissible intrinsic error; c is the absolute value
of the limits of permissible error in the rated operating conditions; and (c—d) is the absolute value
of the limits of permissible additional error

is possible to introduce corrections to the indications of the instruments and thereby
to use the capabilities of the instruments more fully.

Figure 2.2 shows how the instrument errors depend on the values of an
influence quantity, assuming two basic alternatives for rating the additional errors.
The upper figure represents the case where the documentation lists the limits of the
intrinsic and additional errors. Such rating stipulates that the instrument accuracy is
determined by the limits of the intrinsic error as long as the influence quantity is
within reference condition and by the sum of the limits of the intrinsic and constant
limits of the additional errors if the influence quantity is within rated operating
condition. The lower figure depicts the case when the documentation lists the limits
of the intrinsic error and the influence coefficients for the additional errors. Here,
when the influence quantity is outside the reference condition, the limits of the
additional error expand linearly with the deviation of the influence quantity from
the reference condition (as long as the influence quantity stays within the rated
operating conditions).

It should be emphasized that the actual additional errors that can arise in a
measurement will depend not only on the properties of the measuring instrument
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but also on the accuracy of obtaining the values of the corresponding influence
quantities.

Often a measuring instrument has an electrical signal on its input. This input
signal can be characterized by several parameters. One of them reflects the
magnitude of the measurand. This parameter is called the informative parameter:
By measuring its magnitude, we can find the value of the measurand. All other
parameters do not have direct connections with the magnitude of the measurand,
and they are called noninformative parameters.

Measuring instruments are constructed with the goal to make them insensitive to all
noninformative parameters of the input signal. This goal, however, cannot be achieved
completely, and in the general case, the effect of the noninformative parameters can
only be decreased but not eliminated. But, for all noninformative parameters, it is
possible to determine limits such that when the noninformative parameters vary
within these limits, the total error of the measuring instrument will change
insignificantly, which makes it possible to establish the reference ranges of the
noninformative parameters.

If some noninformative parameter falls outside the reference limits, then the
error arising is regarded as another additional error. The effect of each
noninformative parameter is rated separately, as for influence quantities. Further-
more, rating the additional errors arising from noninformative parameters is done
based on the same assumptions as those used for rating the additional errors caused
by the influence quantities.

The errors introduced by changes in the noninformative parameters of the input
signals are occasionally called dynamic errors. In the presence of multiple
parameters, however, this term is not expressive. It is more intuitive to give each
error a characteristic name, as is usually done in electric and radio measurements.
For example, the change in the indications of an AC voltmeter caused by changes in
the frequency of the input signal is called the frequency error. In the case of the
measurements of the peak variable voltages, apart from the frequency errors, the
errors caused by changes in the widths of the pulse edges, the decay of the flat part
of the pulse, and so on are called the shape errors.

Another property of measuring instruments that affects their accuracy and is also
rated is stability. Stability, like accuracy, is a positive quality of a measuring
instrument. Just as the accuracy is characterized by inaccuracy (error, uncertainty),
stability is characterized by instability. An important particular case of instability is
drift. Drift is usually not rated. Instead, when it is discovered, the zero indication of
the instrument is reset.

The first method of rating the instability involves stipulating the time period after
which the instrument must be checked and calibrated if needed. The second method
consists of indicating different limits for the error of the instrument for different
periods of time after the instrument was calibrated. For example, the following
table (taken with modifications from [18]) can be provided in the specifications of a
digital instrument:
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Time after calibration 24 h 3 months 1 year 2 years
Temperature 23 £ 1°C 23 £ 5°C 23 £ 5°C 23 £ 5°C
Limits of error +(0.01% +(0.015% +(0.02% +(0:03%

+ 1 unit) + 1 unit) + 1 unit) + 2 units)

In the last line entries, the first number in the parentheses specifies the percent of
the instrument indication and the second is a figure of the least significant digit
(from O to 9). The second number lists the absolute error in units of the least
significant digit of the instrument. To find the corresponded part of the limits of
error of that instrument, one must calculate the value of this number in units of
measurement. For example, if the above table is given in the documentation of a
millivoltmeter with the range of 300mV and 4-digit readout device, then the value
of the least-significant digit is 0.ImV. Assume that a user utilizes this instrument
2 years after calibration and the readout is 120.3mV. Then, the limits of error of
this instrument for this measurement are & (120.3x0.0003 + 0.2) = £ 0.24mV.
The second number is constant for a given instrument range. It was called the floor
error in [18].

Obviously, specifying how instrument accuracy changes with time since calibra-
tion conveys more information about the instrument characteristics than simply rating
the interval between calibrations, and this extra information is beneficial to the users.

Below is another example of specification of a digital multirange voltmeter, also
from [18] (the specification for only two ranges is shown).

The last two rows in the above table give the limits of error of the instrument
depending on the time from the calibration. The numbers in parentheses specify
limits of two additive parts of the error in ppm. A confusing aspect here is that the
first part is expressed as a relative error since the first number gives the limits of
error relative to the indication of the instrument for a given measurement, while the
second number specifies the error relative to the instrument range, the same as the
floor error in the previous example.

Time after 24 h 90 days 12 months Temperature
calibration coefficient
Temperature 23 £ 1°C 23 + 5°C 23 £+ 5°C 0-18 &28-55°C

Per 1°C
10.00000 V - - +(35ppm + +(5ppm + 1ppm)
Sppm)
1000.000 V + (20ppm +(35ppm +(45ppm +(5ppm + 1ppm)
+ 6ppm) + 10ppm) + 10ppm)

The last column specifies the limits of the additional error due to temperature
deviation from reference conditions. These limits are rated in the form shown in the
lower graph of Fig. 2.2: the limits of the additional error grow by the specified
amount for each 1°C of temperature deviation.

We provide examples of using this table in Sect. 4.6 for a measurement under
reference temperature conditions and in Sect. 4.7 for a measurement under rated
conditions.


http://dx.doi.org/10.1007/978-1-4614-6717-5_4
http://dx.doi.org/10.1007/978-1-4614-6717-5_4
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The above excerpts of instrument specifications show the importance of under-
standing conventions used by the manufacturer of the instrument in specifying the
instrument accuracy in its certificate. This is especially true if the manufacturer
does not follow recommendations for rating the accuracy of instruments that have
been issued by organizations such as OIML.

Rating of errors predetermines the properties of measuring instruments and is
closely related with the concept of accuracy classes of measuring instruments. The
purpose of this concept is the unification of the accuracy requirements of measuring
instruments, the methods for determining them, and the accuracy-related notation in
general, which is certainly useful to both the manufacturers of measuring
instruments and to users. Indeed, such unification makes it possible to limit, without
harming the manufacturers or the users, the list of instruments, and it makes it easier
to use and check the instruments. We shall now discuss this concept in greater
detail.

Accuracy classes were initially introduced for indicating electric measuring
instruments [8]. Later this concept was also extended to all other types of measuring
instruments [9]. In [1], the following definition is given for the term accuracy class:
The accuracy class is a class of measuring instruments or measuring systems that
meet certain stated metrological requirements intended to keep instrumental errors
or uncertainties within specified limits under specified operating conditions.

Unfortunately, this definition does not entirely reflect the meaning of this term.
Including measurement systems into the definition is incorrect because systems are
usually unique and thus are not divided into classes. Further, instrumental errors
and uncertainties are properties of measurements — not instruments — and hence
should not be used to define instrument classes. A better definition is given in the
previous edition of VIM: The accuracy class is a class of measuring instruments
that meets certain metrological requirements that are intended to keep errors within
specified limits.

Every accuracy class has conventional notation, established by agreement — the
class index — that is presented in [8, 9]. On the whole, the accuracy class is a
generalized characteristic that determines the limits for all errors and all other
characteristics of measuring instruments that affect the accuracy of measurements
performed with their help.

For measuring instruments whose permissible limits of intrinsic error are
expressed in the form of relative or fiducial errors, the following series of numbers,
which determine the limits of permissible intrinsic errors and are used for denoting
the accuracy classes, was established in [9]:

(1, 1.5, 1.6, 2, 2.5, 3, 4, 5, and 6) x 10",
where n = +1,0,—1,—2,...; the numbers 1.6 and 3 can be used, but are not

recommended. For any one value of n, not more than five numbers of this series
(i-e., no more than five accuracy classes) are allowed. The limit of permissible
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Table 2.1 Designations of accuracy classes

Designation of the

Limit of permissible error accuracy class (for

Form of the expression for the error (examples) the given example)
Fiducial error, if the fiducial value y = £1.5% 1.5

is expressed in units

of the measurand
Fiducial error, if the fiducial y = £0.5% 0.5

value set equal to the scale \/

length
Relative error, constant §=40.5%
Relative error, increasing as the 5=+ [0'02 1001 <ﬁ _ 1>] 9% 0.02/0.01

measurand decreases X

intrinsic error for each type of measuring instrument is set equal to one number in
the indicated series.

Table 2.1 gives examples of the adopted designations of accuracy classes of
these measuring instruments.

In those cases when the limits of permissible errors are expressed in the form of
absolute errors, the accuracy classes are designated by Latin capital letters or roman
numerals. For example, [41] gives the accuracy classes of block gauges as Class X,
Y, and Z. Gauges of Class X are the most accurate; gauges of Class Y are less
accurate than Class X, and gauges of Class Z are the least accurate.

If (2.3) is used to determine the limit of permissible error, then both numbers ¢
and d are introduced into the designation of the accuracy class. These numbers are
selected from the series presented above, and in calculating the limits of permissible
error for a specific value of x, the result is rounded so that it would be expressed by
not more than two significant digits.

In conclusion, we shall formulate the basic rules for rating errors of measuring
instruments:

1. All properties of a measuring instrument that affect the accuracy of the results of
measurements must be rated.

2. Every property that is to be rated should be rated separately.

3. Rating methods must make it possible to check experimentally, and as simply as
possible, how well each individual measuring instrument corresponds to the
established requirements.

In some cases, exceptions must be made to these rules. In particular, an excep-
tion is necessary for strip strain gauges that can be glued on an object only once.
Since these strain gauges can be applied only once, the gauges that are checked can
no longer be used for measurements, whereas those that are used for measurements
cannot be checked or calibrated.

In this case, it is necessary to resort to regulation of the properties of a collection
of strain gauges, such as, for example, the standard deviation of the sensitivity and
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mathematical expectation of the sensitivity. The sensitivity of a particular strain
gauge, which is essentially not a random quantity in the separate device, is a
random quantity in a collection of strain gauges. Since we cannot check all the
gauges, a random sample, representing a prescribed p percent of the entire collec-
tion (which could be, e.g., all gauges produced in a given year), is checked. Once
the sensitivity x, of every selected gauge has been determined, it is possible to
construct a statistical tolerance interval, i.e., the interval into which the sensitivity
of any random sample of p percent of the entire collection of strain gauges will fall
with a chosen probability a. As @ # 1 and p # 1, there is a probability that the
sensitivity of any given strain gauge falls outside these tolerance limits. For this
reason, the user must take special measures that address such a case. In particular,
several strain gauges, rather than one, should be used.

2.4 Dynamic Characteristics of Measuring Instruments

The dynamic characteristics of measuring instruments reflect the relation between
the change in the output signal and an action that produces this change. The most
important such action is a change in the input signal. In this case, the dynamic
characteristic is called the dynamic characteristic for the input signal. Dynamic
characteristics for various influence quantities and for a load (for measuring
instruments whose output signal is an electric current or voltage) are also studied.

Complete and partial dynamic characteristics are distinguished [28].

The complete dynamic characteristics determine uniquely the change in time of
the output signal caused by a change in the input signal or by other action.
Examples of such characteristics include a differential equation, transfer function,
amplitude-and phase-frequency response, and the transient response. These
characteristics are essentially equivalent, but the differential equation is the basic
characteristic from which the other characteristics are derived.

A partial dynamic characteristic is a parameter of the full dynamic characteristic
(introduced shortly) or the response time of the instrument. Examples are the
response time of the indications of an instrument and the transmission band of a
measuring amplifier.

Measuring instruments’ can most often be regarded as inertial systems of first or
second order. If x(¢) is the signal at the input of a measuring instrument and y(#) is
the corresponding signal at the output, then the relation between them can be
expressed with the help of first-order (2.4) or second-order (2.5) differential
equations, respectively, which reflect the dynamic properties of the measuring
instrument:

! The rest of this section requires familiarity with control theory. The reader can skip this portion
without affecting the understanding of the rest of the book.
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Ty'(1) + y(1) = Kx(r), (2.4)
%%Y”(f) + i—/jy’(f) +y(1) = Kx(t). 2.5)

The parameters of these equations have specific names: 7T is the time constant of
a first-order device, K is the transduction coefficient in the static state, w, is the
angular frequency of free oscillations, and f is the damping ratio. An example of a
real instrument whose properties are specified by the second-order differential
equation is a moving-coil galvanometer. In this instrument type, ®, = 2n/T,,
where T, is the period of free oscillations (the reverse of the natural frequency)
and g is the damping ratio, which determines how rapidly the oscillations of the
moving part of the galvanometer will subside.

Equations (2.4) and (2.5) reflect the properties of real devices, and
for this reason, they have zero initial conditions: for ¢ < 0, x(f) = 0 and y(¢) = 0,
y(t) = 0 and y'(r) = 0.

To obtain transfer functions from differential equations, it is first necessary
to move from signals in the time domain to their Laplace transforms, and then to
obtain the ratio of the transforms. Thus,

¥(s),
Sy(S), ‘C[y//(t)] = Szy(s)7
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Lly'(1)]

where s is the Laplace operator.
For the first-order system, in accordance to (2.4), we obtain

Wis) x(s)  (1/a})s® + (2B/wo)s +1° 2.6)

Let us consider the second-order equation in more detail. If in the transfer
function the operator s is replaced by the complex frequency jo (s = jw), then
we obtain the complex frequency response. We shall now study the relation
between the named characteristics for the example of a second-order system.
From (2.5) and (2.6), we obtain

K
(1- coz/a)(z)) +j2pw/wy’

W (jo) = 2.7)
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where @ = 2zf is the running angular frequency.
The complex frequency response is often represented with its real and imaginary
parts,

W(jw) = P(w) +j Q (w).
In our case,
K- (@)
(1= (02/a}))” +4p° (w?/})
2B(w/wo)K .
(1= (@?/@}))” +4p* (? /})

P(w) =

O(w) =

The complex frequency response can also be represented in the form
W(jw) = A(w)e”,

where A(w) is the amplitude-frequency response and @(w) is the frequency
response of phase. In the case at hand,

A@) = VP@) + 0%@) = = ’
V= @)+ @for)
_ Q@) _ 2p(w/a0)
@(w) = arctan Plw) arctanl_(wiz/;%).

Equation (2.8) has a well-known graphical interpretation using the notion of
transient response. The transient response is the function /(f) representing the
output signal produced by a unit step function 1(7) at the input. (The unit step
function, which we denote 1(z), is a function whose value is O for t < 0 and 1 for
t > 0.) As the input is not periodic, A(t) is calculated with (2.4) or (2.5). Omitting
the technical but, unfortunately, complicated calculations, we arrive at the final
form of the transient response of the instrument under study:

- 1 . / V1-p .
l—e’"——sin(7 l—ﬁz—i—arctani if f<1,
V1-p ( p )

hit)=<X 1—e*(r+1) ifp=1,

1 / VA -1
1-— €_/jfa\/ﬂ2t sinh <T ﬂz -1+ arctanh ﬂT) if /)) > 1.
—1

(Note that the last case utilizes hyperbolic trigonometric functions.) In this
expression, T = @t is normalized time, and the output signal is normalized to
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Fig. 2.3 The transient B<1

response of an instrument h(?) 1

described by a second-order

differential equation; f is the 1

damping ratio B=1
p>1

make its steady-state value equal to unity, i.e., h(t) = y(¢)/K. Thus, the formulas
above and the corresponding graphs presented in Fig. 2.3 are universal in the sense
that they do not depend on the specific values of @, and K.

It should be noted that some types of measuring instruments do not have
dynamic characteristics at all; these include measures of length, weights, vernier
calipers, and so on. Some measuring instruments, such as measuring capacitors
(measures of capacitance), do not have an independent dynamic characteristic by
themselves. But when they are connected into an electric circuit, which always has
some resistance and sometimes an inductance, the circuit always acquires, together
with a capacitance, definite dynamic properties.

Measuring instruments are diverse. Occasionally, to describe adequately their
dynamic properties, it is necessary to resort to nonlinear equations or equations with
distributed parameters. However, complicated equations are used rarely, and it is
not an accident. After all, measuring instruments are created specially to perform
measurements, and their dynamic properties are made to guarantee convenience of
use. For example, in designing a recording instrument, the transient response is
made to be short, approaching the steady state level monotonically or oscillating
insignificantly. In addition, the scale of the recording instrument is typically made
to be linear. But when these requirements are met, the dynamic properties of the
instrument can be described by one characteristic corresponding to a linear differ-
ential equation of order no higher than second.

Rating of the dynamic characteristics of measuring instruments is performed in
two stages. First, an appropriate dynamic characteristic to be rated must be chosen,
and second, the nominal dynamic characteristic and the permissible deviations from
it must be established.

For recording instruments and universal measuring transducers, a complete
dynamic characteristic, such as transient response, must be rated: Without having
the complete dynamic characteristic, a user cannot effectively use these instruments.

For indicating instruments, it is sufficient to rate the response time. In contrast to the
complete characteristics, this characteristic is a partial dynamic characteristic. The
dynamic error is another form of a partial dynamic characteristic. Rating the limits of a
permissible dynamic error is convenient for the measuring instruments employed, but
it is justified only when the shape of the input signals does not change much.
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For measuring instruments described by linear first- and second-order differential
equations, the coefficients of all terms in the equations can be rated. In the simplest
cases, the time constant is rated in the case of a first-order differential equation, and
the natural frequency and the damping ratio of the oscillations are standardized in the
case of a second-order differential equation.

When imposing requirements on the properties of measuring instruments, it is
always necessary to keep in mind how compliance will be checked. For dynamic
characteristics, the basic difficulties have to do with creating test signals of
predetermined form (with sufficient accuracy), or with recording the input signal
with a dynamically more accurate measuring instrument than the measuring instru-
ment whose dynamic properties are being checked.

If adequately accurate test signals can be created and used to obtain the dynamic
characteristic, i.e., a transient response as a response of a unit step function signal
and frequency response as a response of a sinusoidal test signal, then in principle
the instrument can be checked without any difficulties.

But sometimes the problem must be solved with a test signal that does not
correspond to the signal intended for determining the complete dynamic character-
istic. For example, one would think that tracing of signals at the input and output of
a measuring instrument could solve the problem. In this case, however, special
difficulties arise: small errors in recording the test signal and reading the values of
the input and output signals often render the dynamic characteristic obtained from
them physically meaningless and not corresponding to the dynamic properties of
the measuring instrument. Such an unexpected effect occurs because the problem at
hand is a so-called improperly posed problem. A great deal of attention is currently
being devoted to such problems in mathematics, automatics, geophysics, and other
disciplines. Improperly posed problems are solved by the methods of regulariza-
tion, which essentially consist of the fact that the necessary degree of filtering
(smoothing) of the obtained solution is determined based on a priori information
about the true solution. Improperly posed problems in dynamics in application to
measurement engineering are reviewed in [28].

A separate problem, which is important for some fields of measurement, is the
determination of the dynamic properties of measuring instruments directly when
the instruments are being used. An especially important question here is the
question of the effect of random noise on the accuracy with which the dynamic
characteristics are determined.

This section, then, has been a brief review of the basic aspects of the problem of
rating and determining the dynamic properties of measuring instruments.

2.5 Calibration and Verification of Measuring Instruments

Every country wishes to have trustworthy measurements. One of the most impor-
tant arrangements to achieve this goal is to have a system for keeping errors of all
measuring instruments within permissible limits. Therefore, all measuring



54 2 Measuring Instruments and Their Properties

instruments in use are periodically checked. In the process, working standards are
used either to verify that the errors of the measuring instruments being checked do
not exceed their limits or to recalibrate the measuring instruments.

The general term for the above procedures is calibration. But one should
distinguish between a real calibration and a simplified calibration.

Real calibration results in the determination of a relation between the indica-
tions of a measuring instrument and the corresponding values of a working mea-
surement standard. This relation can be expressed in the form of a table, a graph, or
a function. It can also be expressed in the form of the table of corrections to the
indications of the measuring instrument. In any case, as the result of real calibra-
tion, the indications of the working standard are mapped to the instrument being
calibrated. Consequently, the accuracy of the instrument becomes close to the
accuracy of the working standard.

Real calibration can be expensive, complex, and time-consuming.

Therefore, calibration is mostly used for precise and complex instruments. For
other instruments, the simplified calibration suffices.

The simplified calibration (also called verification) simply reveals whether the
errors of a measuring instrument exceed their specified limits. Essentially, verifica-
tion is a specific case of quality control, much like quality control in manufacturing.
And because it is quality control, verification results do have some rejects.

Further, verification can take the form of a complete or element-wise check.
A complete check determines the error of the measuring instrument as a whole. In
the case of an element-wise check, the errors of the individual elements comprising
the measuring instrument are determined. The overall error of the measuring
instrument is then calculated using methods that were examined in [44].

A complete check is always preferable as it gives the most reliable result. In
some cases, however, a complete check is impossible to perform and one must
resort to an element-wise check. For example, element-wise calibration is often
employed to check measuring systems when the entire system cannot be delivered
to a calibration laboratory and the laboratory does not have necessary working
standards that could be transported to the system’s site.

The units of a system are verified by standard methods. When the system is
verified, however, in addition to checking the units, it is also necessary to check
the serviceability of the system as a whole. The methods for solving this problem
depend on the arrangement of the system, and it is hardly possible to make
general recommendations here. As an example, the following procedure can be
used for a system with a temperature-measuring channel comprising a
platinum-rhodium—platinum thermocouple as the primary measuring transducer
and a voltmeter.

After all units of the system have been checked, we note the indication of the
instrument at the output of the system. Assume that the indication is +470°C. For
the most common types of thermocouples, there exists known standardized transfer
function, while specific brands of thermocouple products have rated limits of
deviation from the standardized function.
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From the standardized transfer function of the primary measuring transducer, we
obtain the output signal that should be observed for the given value of the measured
quantity. For our thermocouple, when the temperature of +470°C is measured, the
EMF at the output of the thermocouple must be equal to 3.916 mV. Next,
disconnecting the wires from the thermocouple and connecting them to the voltage
exactly equal to the nominal output signal of the thermocouple, we once again note
the indication of the voltmeter. If it remains the same or has changed within the
limits of permissible error of the thermocouple and voltmeter, then the system is
serviceable.

Of course, this method of checking will miss the case in which the errors of both
the thermocouple and voltmeter are greater than their respective permissible errors
but these errors mutually cancel. However, this result can happen only rarely.
Moreover, such a combination of errors is in reality permissible for the system.

Let us now consider complete check verification in more detail. Here, the values
represented by working standards are taken as true values, and the instrument
indication is compared to these values. In fact, a working standard has errors.
Therefore, some fraction of serviceable instruments, i.e., instruments whose errors
do not exceed the limits established for them, is rejected in a verification — false
rejection — and some fraction of instruments that are in reality unserviceable are
accepted — false retention. This situation is typical for monitoring production
quality, and just as with quality control, a probabilistic analysis of the procedure
is useful to understand the extent of a potential issue.

Without loss of generality, suppose for simplicity that the complete check
verification is performed by measuring the same quantity simultaneously using a
working standard (which in this case is an accurate measuring instrument) and the
instrument being checked. Accordingly, we have

A=x—C=y-v,

where A is the true value of the quantity, x and y are the indications of the
instrument and working standard, and ¢ and y are the errors of the instrument and
working standard. It follows from the above equation that the difference z between
the indications of the instrument and the standard is equal to the difference between
their errors,

z=x—y=C§—y. 2.9)

We are required to show that | 4 | < A, where A is the limit of permissible error
of the instrument. From the experimental data (i.e., from the indications), we
can find z; because y is supposed to be much smaller than £, we shall assume that
if | z| < A, then the checked instrument is serviceable, and if | z| > A, then it is
not serviceable.

To perform probabilistic analysis of when the above assumption is wrong, it is
necessary to know the probability distribution for the errors of the checked and
standard instruments. Let us suppose we know these distributions. The probability
of a false rejection is
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p1= P{|C—}’| > A|\§\§A}7

and the probability of a false retention is

P2 =P{|C— vl < A||§|>A}'
A false rejection is obtained for | {| < A when | { —y| > A, ie.,
C—r>47, {—r<-A,
or
y<Z—A4A, y>{+A.

If the probability density functions of the errors of the instrument and working
standard are f({) and ¢(y), respectively, then

p1= J:f(éf) (JM p(r)dy+ Jm @(7) dy) dc.

—00 {+A

A false retention is possible when | C| > A,i.e.,when{ > +A and { < —A.
In this case, | - y| <A, ie.,

or

{—A<Ly<{+A

Therefore,

po= | r0([oar) ac+ [ o[ ot ar) ac

Thus, if the probability densities are known, then the corresponding values of p;
and p, can be calculated; one can furthermore understand how these probabilities
depend on the difference between the limits of permissible errors of the instrument
being checked and the working standard.

If, in addition, cost considerations are added, then one would think about the
problem of choosing the accuracy of the working standard that would be suitable
for checking a given instrument. In reality, when the accuracy of working standards
is increased, the cost of verification increases also. A rejection also has a certain
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cost. Therefore, by varying the limits of error of working standards, it is possible to
find the minimum losses, and this accuracy is regarded as optimal.

Mathematical derivations aside, it is unfortunately difficult to estimate the losses
from the use of instruments whose errors exceed the established limits, when these
instruments pass the verification. In general, it is hard to express in monetary terms
the often-significant economic effect of increasing measurement accuracy. For this
reason, it is only in exceptional cases that economic criteria can be used to justify
the choice of the relation between the limits of permissible error of the working
standard and the checked instruments.

In addition, as has already been pointed out above, the fundamental problem is to
determine the probability distribution of the errors of the instruments and standards.
The results, presented in Sect. 2.7 below, of the statistical analysis of data from the
verification of a series of instruments showed that the sampling data of the instru-
ment errors are statistically unstable. Therefore, the distribution function of the
instrument errors cannot be found from these data. However, there are no other
data; it simply cannot be obtained anywhere.

Thus, it is impossible to find a sufficiently convincing method for choosing the
relation between the permissible errors of the working standard and the instrument
to be checked. For this reason, in practice, this problem is solved by a volitional
method, by standardizing the relation between the limits of permissible errors. In
practice, the calibration laboratories accept that the accuracy of a working standard
must be four times higher than the accuracy of the checked instrument [18, 26]. This
means that some instruments that pass the verification may have errors exceeding
by 25% the permissible level. Yet more aggressive ratios between the limits of
permissible errors of the standard and the instrument, such as 1:10, are usually
technically difficult to achieve.

It turns out, however, that a change in the verification process can eliminate this
problem. Let us consider this method.

By definition, a serviceable instrument is an instrument for which | X— A| <A
and an instrument is unserviceable if | X — A| > A. Analogous inequalities are
also valid for a working standard: | y—A | < A,, if the instrument is serviceable and
| y- A| > Ay if it is not serviceable.

For x > A, for a serviceable instrument, x —A < A.Buty—-A; <A <y + A,
For this reason, replacing A by y — A, we obtain for a serviceable instrument,

x—y < A—-A, (2.10)
Analogously, for x < A, for a serviceable instrument,
x—y>—(A—Ay). (2.11)

Repeating the calculations for an unserviceable instrument, it is not difficult to
derive the corresponding inequalities:

x—y>A+A, (2.12)
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Figure 2.4 graphically depicts the foregoing relations. Let the scale of
the checked instrument be the abscissa axis. On the ordinate axis, we mark the
points + A and —A, and around each of these points, we mark the points displaced
from them by + A and —A,. If A and A remain the same for the entire scale of the
instrument, then we draw from the marked points on the ordinate axis straight lines
parallel to the abscissa axis.

Region I corresponds to inequalities (2.10) and (2.11). The instruments for
which the differences x — y fall within this region are definitely serviceable
irrespective of the ratio of the errors of the standard and checked instruments.
Inequalities (2.12) and (2.13) correspond to regions II and III. The instruments for
which the differences x — y fall within the regions II or III are definitely
unserviceable.

Some instruments can have errors such that

A—A;<|x—y <A+A;

These errors correspond to regions IV and V in Fig. 2.4. Such instruments
essentially cannot be either rejected or judged to be serviceable, because in reality,
they include both serviceable and unserviceable instruments. If they are assumed to
pass verification, then the user will get some unserviceable instruments. This can
harm the user. If, however, all such doubtful instruments are rejected, then in
reality, some serviceable instruments will be rejected.

For instruments that are doubtful when they are manufactured or when they are
checked after servicing, it is best that they be judged unserviceable. This tactic is
helpful for the users and forces the manufacturers to employ more accurate
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standards to minimize the rejects. But this approach is not always practical. When
the percentage of doubtful instruments is significant and the instruments are
expensive and difficult to fix, it is best to check them again. Here, several variants
are possible. One variant is to recheck the doubtful instruments with the help of
more accurate working standards. When this is impossible, the verification can also
be performed using other samples of working standards that are rated at the same
accuracy as those used in the initial check. As different working standards have
somewhat different errors, the results of comparing the instruments with them will
be somewhat different. Thus, some doubtful instruments will move to the regions in
Fig. 2.4 that allow definitive verification outcomes.

Ideally, the best way to deal with the doubtful instruments is to increase the
accuracy of the working standard. However, the question then arises as to how
much the accuracy of the standard instruments should be increased. If there are no
technical limitations, then the accuracy of the working standard can be increased
until the instrument can be judged as being either serviceable or unserviceable.
However, the limits of permissible error of the standard instrument rarely need to be
decreased beyond about 10 times less than the limit of permissible error of the
instrument: The errors of instruments are usually not stable enough to be estimated
with such high accuracy.

Rejection of instruments under verification is eliminated completely if instead of
verification the instruments are recalibrated. The accuracy of the newly calibrated
instrument can be almost equal to the accuracy of the working standard, which
makes this method extremely attractive. The drawback of this method is that the
result of a calibration is most often presented in the form of a table of corrections to
the indications of the instrument, which is inconvenient for using the instrument.

2.6 Designing a Calibration Scheme

Calibration is a metrological operation whose goal is to transfer decreed units of
quantities from a primary measurement standard to a measuring instrument. To
protect the primary standards and to support calibration of large numbers of
instruments, this transfer is performed indirectly, with the help of intermediate
standards. In fact, intermediate standards may themselves be calibrated against
primary standards not directly but through other intermediary standards. Thus, the
sizes of units reproduced by primary standards are transferred to intermediary
standards and through them to measuring instruments.

The hierarchical relations of standards with each other and with measuring
instruments that are formed to support calibration can be represented as a calibra-
tion scheme. Note that the discussion in this section also fully applies to verification
and verification schemes, which are the analog of calibration schemes in the context
of verification. The standards at the bottom of the calibration schemes, which are
used to calibrate measuring instruments, are called working standards; the interme-
diate standards, situated between the primary and working standards in the scheme,
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are called secondary standards. For the purpose of the discussion in this section, we
will refer to secondary standards, working standards, and measuring instruments
together as devices.

Measurement standards belonging to a calibration scheme are divided into ranks.
The rank of a standard indicates the number of steps included in transferring the size
of a unit from the primary measurement standard to a given standard, i.e., the
number of standards on the path from this standard to the primary standard in the
calibration scheme.

One of the most difficult questions arising in the construction of calibration
schemes is the question of how many ranks of standards should be provided. Three
main factors play a role in deciding this question: accuracy, cost, and capacity. As
the number of ranks increases, the error with which the size of a unit is transferred
to the measuring instrument increases, because some accuracy is lost at every
calibration step. For this reason, to obtain high accuracy, the number of ranks of
standards should be reduced to a minimum. On the other hand, the more the number
of ranks the greater the overall capacity of the scheme in terms of the number of
measuring instruments it can calibrate. In addition, the higher the accuracy of
standards, the more expensive they are, and the more expensive they are to use.
Thus, from the cost perspective, it is desirable to reduce the number of high-
accuracy standards by increasing the number of ranks in the scheme.

One would think that it should be possible to find an economically optimal
number of ranks of the calibration scheme. Such optimization, however, would
require information about the dependence between the cost of the equipment and
labor and the accuracy of calibration. This information is usually not available. For
this reason, in practice, the optimal calibration schemes cannot be determined, and
calibration schemes are commonly constructed in an ad hoc manner. However, a
method proposed below allows designing a calibration scheme in a methodical way
at least to satisfy its capacity requirements with the minimum number of ranks, and
hence with the highest possible calibration accuracy. Accuracy constrains permit-
ting; one can always then increase the number of ranks in the resulting scheme to
reflect specific economic considerations.

Figure 2.5 shows a typical structure of a calibration scheme. In the simplest case,
when all measuring instruments in the calibration scheme have similar accuracy, a
calibration scheme can be represented as a chain; for example, the entire calibration
scheme on Fig. 2.5 would consist of just branch 1. The chain has the primary
standard at the root, then certain number of secondary standards of the rank 1 below
that are periodically calibrated against the primary standard, followed by a larger
number of secondary standards of rank 2, each periodically calibrated against one
of the standards of rank1, and so on until the measuring instruments at the leafs of
the hierarchy.

However, some measuring instruments may be more accurate than others and
cannot be calibrated by working standards at the bottom of the chain. These
instruments must be “grafted” to the middle of the first branch, at the point where
they can be calibrated by a standard of sufficient accuracy. These instruments form
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Fig. 2.5 A typical calibration Primary Standard
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branch 2 on Fig. 2.5. The standard at the branching point in the calibration scheme
acts as a secondary standard for one branch and a working standard for another.

Finally, there may be instruments of significantly different type than those in
other branches, whose calibration requires some auxiliary devices between them and
their working standards (such as scaling transducers in front of high-accuracy
voltmeter for high voltage). The auxiliary devices introduce accuracy loss in cali-
bration, and therefore they require the working standard to have a higher accuracy to
account for this loss. In other words, if normally the accuracy ratio of the measuring
instrument to working standard must be at most 1:4, (see Sect. 2.5 for the discussion
on this accuracy relationship), this ratio must be lower (e.g., 1:10) for these
instruments. To avoid the confusion, we place these instruments, along with the
auxiliary devices, into distinct branches in the calibration scheme (such as branch 3
in Fig. 2.5). Such a branch can be grafted to another branch at an intermediary
standard such that the ratio of its accuracy to the accuracy of the instruments
corresponds to the requirement specific to the instruments’ branch.

Secondary standards are usually calibrated with the highest possible accuracy, so
that they can be also used as working standards for more accurate types of
measuring instruments if needed. However, there is inevitable loss of accuracy
with each calibration step. Consequently, different types of secondary standards are
typically used for different ranks, and calibration at different ranks has different
performance characteristics, such as time required to calibrate one device or time to
prepare a standard for calibration (see below). At the same time, the types of
devices that can be used at a given rank are usually known in advance, and it is
only necessary to decide how many of them to procure and how to arrange them in
an appropriate calibration scheme. Therefore, one can assume that the calibration
frequency of secondary and working standards of a given rank, and how long each
calibration takes, is known. Furthermore, we assume that the calibration frequency
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and time required to calibrate are known for all measuring instruments. Finally, the
keepers of primary standards typically impose their own usage limits (e.g., they
limit the number of calibrations that can be performed against the primary standard
in one year). We assume that these limits are known as well.

We begin by considering the branch leading to the least accurate instruments as
if it were the only branch in the scheme (e.g., branch 1 in Fig. 2.5). We call this
branch a stem.

In such a single-branch calibration scheme, if the jth rank has N; standards, then
the maximum number of devices in the rank (j + 1) that can be supported will be

T,
Njwr = N, 2L (2.14)

fit1

where T}, is the time interval between calibrations of a device of rank j + 1, #;,; is
the time necessary to calibrate one device in the rank (j + 1), and n; is the utilization
factor of the standards of rank j, considered below. Note that at the first calibration
step, the number of secondary standards of rank 1 is determined as the minimum
between the number given by (2.14) and the restrictions imposed by the keepers of
the primary standards as mentioned earlier.

The utilization factor n; reflects the fraction of time a corresponding standard can
be used for calibration. In particular, n; reflects the fact that the standard may only
be used during the work hours; any losses of work time must also be taken into
account. For example, if some apparatus is used 8h per day and 1h is required for
preparation and termination, and preventative maintenance, servicing, etc. reduce
the effective working time by 10%, then

8 —

1
=" x 0.9 = 0.2625.

Applying (2.14) to every step of the chain, we determine the capacity of the
stem, which is the maximum number of standards of each rank and ultimately the

number of measuring instruments N *) that can be supported by this calibration
chain:
(max) () T, L
a max max max -+
N = NGPIN U j t’ : (2.15)

where m is the total number of steps in transferring the size of a unit from the
primary standard to the measuring instrument, inclusively and N;max) is the
maximum number of devices at each rank that a “full” calibration scheme can have.

On the other hand, to design a calibration chain, that is, to decide on the number
of ranks in the calibration chain that can support a given number N, of
instruments, one can use the following procedure.
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To protect the primary standards, they are never used to calibrate the working
standards directly. Thus, at least one rank of secondary standards is always needed.
We compute the maximum number of the secondary standards of rank 1 Ny, which
could be calibrated against the primary standard in our calibration chain, using (2.14).
Next, we check using (2.14) again, if N; secondary standards can support calibration
of N, instruments. If not, we know that we need more ranks in the calibration
scheme.

In the latter case, we first check if the accuracy of the secondary standards of the
new rank will still be sufficient to calibrate the instruments, given the instruments’
accuracy. If not, we have to assume that the calibration of the given number of
instruments is impossible with the required calibration frequency (this outcome is
extremely rare in practice). Otherwise, we apply (2.14) again to compute the
maximum number of secondary standards of rank 2, N,, which can be supported
by N, standards of rank 1. [Note that we apply (2.14) twice because the calibration
time of a measuring instrument and secondary standard can be — and typically is —
different]. We continue in this manner until we find the smallest number of ranks of
secondary standards that can support N;,,;,, measuring instruments.

We should mention that, after each iteration of the above algorithm, if the
resulting capacity of the calibration scheme is close to required, an alternative to
increasing the number of ranks is to raise the efficiency of calibration. This could be
achieved by either increasing standard utilization #; or by reducing the calibration
time #;. If the desired number of supported instruments cannot be achieved by
increasing calibration efficiency, we proceed to increment the number of ranks.

Once we have determined the required number of ranks in the scheme, we
compute the actual necessary number of standards at each rank in the bottom-up
manner, starting from N, and computing the number of the next rank up by a
resolving (2.14) relative to N;:

[.
N; =Ny —2 (2.16)

Once we are done with the stem of the calibration scheme, we can add remaining
branches one at a time as follows. Let j .., be the rank of the lowest-accuracy
secondary standards on the stem suitable to calibrate the instruments of the new

N(max)

branch, and e 1

be the maximum number of devices that could be serviced by

standards at this rank according to (2.15). Then, N(/ak) = N }:‘:‘ﬁl = Njuaer+1 g1VES

the number of devices that could be added.

If the number of instruments at the new branch according to (2.16) does not
exceed N we attach the new branch at rank /s, add the necessary number of
standards at rank j,;..;, and, moving from this rank up one step at a time, add the
necessary number of standards at each rank (we are guaranteed that there will be
enough capacity at each higher rank because the total number of devices at rank

X (max)
Jattache+1 does not exceed N; - ).
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Otherwise, that is, if the existing slack is insufficient, we must increase the
capacity of the stem by adding an extra rank to add capacity. Accordingly, we
recompute the number of devices at each rank of the stem in the bottom-up manner
using (2.16), for the new number of ranks. After that, we repeat an attempt to attach
the new branch from scratch.

If at some point we are unable to increment the number of ranks of the stem
because the standard at the newly added rank would have insufficient accuracy, we
would have to conclude that the given set of instruments is impossible to calibrate
with the required accuracy using the available types of standards and the limitations
on the use of the primary standard. However, given that the capacity of calibration
schemes grows exponentially with the number of ranks, this outcome is practically
impossible.

As the number of ranks increases, the capacity of the calibration network,
represented by the checking scheme, increases rapidly. The calibration schemes
in practice have at most five of ranks of standards, even for fields of measurement
with large numbers of measuring instruments.

The relations presented above pertained to the simplest case, when at each step
of transfer of the size of the unit, the period of time between calibrations and the
calibration time were the same for all devices. In reality, these time intervals can be
different for different types of devices. Taking this into account makes the
calculations more complicated, but it does not change their essence. We consider
these calculations next.

First, it is necessary to move from different time intervals between calibrations
of different types of devices to one virtual constant time interval T, and to find the
number of measuring instruments of each type N} that must be checked within this
period. This is done using the obvious formula:

Ty
N} =N ==
k kT,
Next, it is necessary to find the average time 7" required to check one device for
each step of the checking scheme:

n
> iNje
_ k=1

v
t]a ~ n :
ve
>Ny
k=1

2.17)

Here n is the number of different types of devices at the j th step of the checking
scheme.

We shall give a numerical example. Suppose it is required to organize a
calibration of instruments of types A and B and the following data are given:



2.6 Designing a Calibration Scheme 65

1. Instruments of type A: Ny = 3 x 10% the time interval between calibrations
Ta1 = 1 year for Na; = 2.5 x 10* and T» = 0.5 year for Nap, = 5 x 10%; the
calibration time 74, = 5 h.

2. Instruments of type B: Ng = 10°; Ty = 1 year; the calibration time t5 = 2 h.

3. Primary measurement standard: Four comparisons per year are permitted, and
the utilization factor of the primary standard is n, = 0.20.

4. Secondary standards: the frequency of the calibration of secondary standards of
rank 1 is 2 years; i.e., T} = 2 years; the time to perform one calibration is 60 h,
and utilization factor #; = 0.25. For the devices of rank 2, T, = 2 years,
t; = 40h, and n, = 0.25. The calibration parameters of higher-rank standards
are the same as those of the rank-2 standards.

The possible number of first-rank standards in this case is limited by the
restrictions on the primary standards use and can be found as

N™) = Nof T, =8

because N, = 1 ; f = 4 is the maximum number of comparisons with a reference
standard per year, and T, = 2. Obviously, eight standards are not enough to check
130,000 measuring instruments. We shall now see how many ranks of standards
will be sufficient.

As the time between calibrations is different for different instruments, we pick
the illusory constant time interval T, = 1 year and find the number of instruments
that must be checked within this time period. Conversion is necessary only for
instruments of type A with T, = 0.5 years, since the calibration interval of the rest
of the instruments matches T.:

T,. 1
NS =Npp—S=5x 10> x — = 10 x 10>
A2 =M 0.5

Therefore,

> N =Nap = Nay + Njy +Np = 135 x 10°
k=A.B

instruments must be calibrated within the time T;.
Different amounts of time are required to calibrate instruments of types A and B.

The average calibration time # = of these working instruments, in accordance with

(2.17), is
Nat +N')ta +Notg 35 x 103 x 5+ 100 x 10° x 2
f?’,fs,r:(Al io)ta Nty 35 % 10° x5 +100 X 10° X2 _ ) 40y
NAB 135 x 103

Now, using (2.14), we shall find the maximum number of second-rank standards:
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= 600.

(max) T 0.25 x2 x 6 x 10°
N. =N =8 x
2 ! 15 40

The maximum number of instruments that can be calibrated with the above
number of rank-2 secondary standards is

T, 2 24
% — 600 X 0.25 x 365 x 24 _ 472661

(max) (max)
N, =N
? instr 278

instr

Here, T,. = 365 x 24 = 8.76 x 10° because 1 year = 365 days and 1, was
calculated for 24h. The above number exceeds the total number of instruments
Ny4p to be calibrated; we thus conclude that two ranks are sufficient.

Next, we perform bottom-up calculations to find the necessary number of
standards at each rank. The number of rank-2 standards is

LeAd 2.78
N :N mnstr — 135 103 =% 171.
2T X X025 % 365 x 24

Similarly, one can check that all eight rank-1 secondary standards are needed,
thus concluding the design of this calibration scheme.

Calculations similar to those in the above example allow one to choose in a
well-grounded manner the structure of a calibration scheme and to estimate the
required number of secondary standards of each rank. Calibration schemes in
practice usually have extra capacity, which makes it possible to distribute sec-
ondary and working standards to limit their transport, to maximize the efficiency
of calibration.

2.7 Statistical Analysis of Measuring Instrument Errors

A general characteristic of the errors of the entire population of measuring
instruments of a specific type could be their distribution function. An important
question then is if it is possible to find this function from experimental data. The
studies in [47, 54] have addressed this question using the data provided by calibra-
tion laboratories on instrument errors they observed during calibration. These data
thus reflected the sample of instruments that were calibrated; because it is impossi-
ble to obtain the errors of all instruments of a given type that are in use, the use of a
sampling method is unavoidable.

To establish a property of an entire group (general population) based on a
sample, the sample must be representative. Sample homogeneity is a necessary
indicator of representativeness. In the case of two samples, to be sure that the
samples are homogeneous, it is necessary to check the hypothesis Hy: F; = F»,
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Table 2.2 The homogeneity hypothesis testing for samples of six types of measuring instruments

Samples Result of hypothesis testing
Tested point
Instrument type Year collected Size on scale Wilcoxon Siegel-Tukey
2 59 Ammeter 1974 160 30 divisions  + -
60 divisions 0 -
1976 160 80 divisions 0 —
100 divisions + +
D 59 Voltmeter 1974 120 70 divisions — 0
1976 108 150 divisions + +
J1 566 Wattmeter 1974 86 70 divisions  + +
1976 83 150 divisions + +
TH-7 Thermometer 1975 100°C 0 —
150°C — +
1976 200°C + +
Standard spring manometer 1973 250 9.81 kPa
1976 250  9.81 kPa + +
P331 resistance measure 1970 400 10kQ 0 -
400 100 Q 0 —
1975 400 10Q 0 -

where F| and F, are distribution functions corresponding, respectively, to the first
and second sample.

The results of a calibration, as is well known, depend not only on the error of
the measuring instrument being calibrated but also on the error of the standard.
For this reason, measuring instruments calibrated with not less than a fivefold
margin of accuracy (i.e., using a standard at least five times more accurate than
the instrument) were selected for analysis.

In addition, to ensure that the samples are independent, they were formed either
based on data provided by calibration laboratories in different regions of the former
USSR or, in the case of a single laboratory, on the data separated by a significant
time interval. The sample sizes were maintained approximately constant. Errors
exceeding twice the limit of permissible error were deemed outliers and eliminated
from the analysis.

The test of hypothesis Hy was performed using the Wilcoxon and Siegel-Tukey
criteria with a significance level ¢ = 0.05. The technique of applying these criteria
is described in Chap. 3. Table 2.2 shows the result of these tests obtained in the
study of [47]. The table includes two samples, obtained at different times, for each
instrument type. Rejection of the hypothesis is indicated by a minus sign, and
acceptance is indicated by a plus sign. The symbol 0 means that a test based on the
given criterion was not performed.

The Wilcoxon and Siegel-Tukey criteria are substantially different: The former
is based on comparing averages, and the latter is based on comparing variances. For
this reason, it is not surprising that there are cases when the hypothesis Hj is
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rejected according to one criterion but accepted according to the other. The
hypothesis of sample homogeneity must be rejected if even one of the criteria
rejects it. Both samples of instruments of a given type were found to be homoge-
neous only for the JI566 wattmeters and standard manometers. For other measuring
instruments, the compared samples were often found to be nonhomogeneous. It is
interesting that the samples can be homogeneous on one scale marker, and inhomo-
geneous on another (see 359 voltmeters and ammeters). TH-7 thermometers had
homogeneous samples in one range of measurement and inhomogeneous samples
in a different range. The calculations were repeated for significance levels of 0.01
and 0.1, but the results were generally the same in both cases.

The above experiment was formulated to check the stability of the distribution
functions of the errors, but because the instruments in the compared samples were
not always the same, the result obtained has a different but no less important
meaning: It indicates that the samples are inhomogeneous. It means that the
parameters of one sample are statistically not the same as these parameters of
another sample of the same type of measuring instruments. Thus, the results
obtained show that samples of measuring instruments are frequently nonhomoge-
neous with respect to errors. For this reason, they cannot be used to determine the
distribution function of the errors of the corresponding instruments.

This result is also confirmed by the study of [54], which compared samples
obtained from the data provided for 359 ammeters by four calibration laboratories
in different regions of the former USSR. The number of all samples was equal to
150-160 instruments. The errors were recorded at the markers 30, 60, 80, and 100
of the scale. The samples were assigned the numbers 1, 2, 3, and 4, and the
hypotheses Hy: Fy =F,, F,=F;, F3;=F4 and F,=F, were checked
(the pairs of samples to compare were selected arbitrarily). The hypothesis testing
was based on the Wilcoxon criterion with ¢ = 0.05. The analysis showed that we
can accept the hypothesis Hy: F'; = F, only, and only at the marker 100. In all other
cases, the hypothesis had to be rejected.

Thus, sampling does not permit finding the distribution function of the errors of
measuring instruments. Moreover, the fact that the sampling data are unstable could
mean that the distribution functions of the errors of the instruments change in time.
There are definite reasons for this supposition.

Suppose that the errors of a set of measuring instruments of some type, at the
moment they are manufactured, have a truncated normal distribution with zero
mean. For measures of mass the weights, a measure with a too large positive error
makes this measure impossible to repair (one could fix a weight whose mass
exceeds the target by removing some material but one cannot repair a weight
whose mass is too low). Furthermore, as measures age, their errors trend toward
positive errors (e.g., weights lose some material due to polishing off with use).
This is taken into account when manufacturing measures. For example, if in the
process of manufacturing of a weight its mass is found to be even slightly less
than the nominal mass then the weight is discarded. As a result, the distribution of
the intrinsic errors of measures as they leave the factory is usually asymmetric.
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7/t

Fig. 2.6 Examples of possible changes in the probability densities of the errors of measuring
devices in time. The figure on the /eft shows an example of changes in error distribution of a batch
of measurement instruments; the figure on the right shows a possible change in error distribution of
a batch of weights

Instrument errors change in the course of use. Usually the errors only increase. In
those cases in which, as in the case of weights, the direction of the change of the
errors is known beforehand and is taken into account during manufacturing, the
errors can at first decrease, but then they will still increase. Correspondingly,
changes in the instrument errors deform the distribution functions of the errors.
This process, however, does not occur only spontaneously. At the time of routine
checks, measuring instruments whose errors exceed the established limits are
discarded, which again affects the distribution function of the errors of the remaining
instruments.

The right-hand side of Fig. 2.6 shows the approximate qualitative picture
of the changes occurring in the probability distribution of errors of a batch
of weights in time. It shows the initial distribution of errors with all the errors
being negative. With time, as the measures wear off, their errors decrease, with
some positive errors starting to appear. As this trend continues, at some point some
instruments start being discarded (which is shown in the figure by a vertical cut-off
line at + A error limit). The process ultimately terminates when the measuring
instruments under study no longer exist: either their errors exceed the established
limits or they are no longer serviceable for other reasons.

The left-hand side of this figure shows an example of changes in error distribu-
tion in a batch of measuring instruments. In this example, the errors generally
increase in time but the change is not biased toward positive errors.

There are other evident reasons for the obtained above result. One reason is that
the stock of instruments of each type is not constant. On the one hand, new
instruments that have just been manufactured are added to the stock. On the other
hand, in the verification, some instruments are rejected, and some instruments are
replaced. The ratio of the numbers of old and new instruments is constantly chang-
ing. Another reason is that groups of instruments are often used under different
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conditions, and the conditions of use affect differently the rate at which the instru-
mental errors change.

The temporal instability of measuring instruments raises the question of whether
the errors of measuring instruments are in general sufficiently stable so that a
collection of measuring instruments can be described by some distribution function.
At a fixed moment in time, each type of instruments without doubt can be described
by distribution function of errors. But the problem is how to find this distribution
function. The simple sampling method, as we saw above, is not suitable. Moreover,
even if the distribution function could be found by some complicated method,
after some time, it would have to be redetermined, because the errors, and the
composition of the stock of measuring instruments, change. Therefore, we have to
conclude that the distribution of errors of measuring instruments cannot be found
based on the experimental data.

The results presented above were obtained in the former USSR, and instruments
manufactured in the former USSR were studied. However, there is no reason to
expect that instruments manufactured in other countries will have different statisti-
cal properties.



Chapter 3
Statistical Methods for Experimental Data
Processing

3.1 Methods for Describing Random Quantities

The presence of random errors in measurements leads to the wide usage of the
concept of random quantity as a mathematical model for random errors and,
equivalently, for measurement results. The realization of the random error in a
given act of measurement is called the random error of a separate measurement, and
the word “separate” is often omitted for brevity. Where it can cause confusion
between a separate measurement and a complete measurement (which may com-
prise multiple separate measurements), we will refer to the results of separate
measurements as observations.

Random quantities are studied in the theory of probability, a well-developed
field of mathematics. The properties of a random quantity are completely described
by the distribution function F(x), which determines the probability that a random
quantity X will assume a value less than x:

F(x) = P{X < x}.

The distribution function is a nondecreasing function, defined so that
F(—o00) = 0 and F(4o00) = 1. It is said to be cumulative or integral.

Continuous and discrete random variables are distinguished. For continuous
random variables, together with the cumulative distribution function F(x), the
differential function, usually called the probability density f{(x), is also widely
employed:
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Fig. 3.1 (a) Cumulative distribution function of a normally (/eft) and uniformly (right) distributed
continuous random quantity and (b) Corresponding probability density functions

We call attention to the fact that the probability density is a dimensional
function:

. !
dim f(x) = dlm}—(.

In the practice of precise measurements one most often deals with normal and
uniform distributions. Figure 3.1a shows integral functions of these distributions,
and Fig. 3.1b shows the probability densities of the same distributions.

For the normal distribution, we have

1 25 2

—(x=A4)" /20

X) = e ,
e oV2rx

1 * 2
F(x)= e A 1262 d,
) o2 /—oo /

The parameter o° is the variance, and A is the mathematical expectation of the
random quantity. A normal distribution is fully determined by its mathematical
expectation and variance, and is often denoted as N(A, 62).

The value of F(x) for some fixed x; gives the probability P {X < x;} = Py

When the graph of f{x) is used to calculate this probability, it is necessary to find
the area under the curve to the left of the point x.. The left side of Fig. 3.1 illustrates
finding Py from cumulative distribution and density functions.

To avoid tabulating functions (3.1) for every specific values of ¢ and A,
calculations widely rely on the standard normal distribution, which is obtained
by transforming the random quantity X to Z = (X — A)/o. Random variable Z is

(3.1
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normally distributed with mathematical expectation 0 and variance 1. Its probabil-
ity distribution and density functions are:

1 2 1 z 2
) =P FE) = / Py, (3.2)

Customarily, calculations related to normal distribution are based on the func-
tion ®(z) below, instead of (3.2):

1 [F
@(z):\/—z_ﬂ /0 e Pdy (3.3)

Function @(z) is called the standard Gaussian function, and its values are given
in Table A.1 in the Appendix.
It is obvious that for z > 0

F(z) =054 ®(z).
The branch for z < 0 is found based on symmetry considerations:
F(z) = 0.5 — ®(z).

The normal distribution is remarkable in that according to the central limit
theorem, the sum of a number of random quantities with arbitrary distributions
tends to a normal distribution as the number of random quantities grows to infinity.
In practice, the distribution of the sum of a comparatively small number of random
quantities already is found to be close to a normal distribution.

The uniform distribution is defined as

0, x <d,
1
=S ——, d>x<b
f(x) b—d’ X )
0, x> b,
(34)
0, x <d,
x—d
F(x) = d>x<b
(x) b—d’ X )
1, x>b

We shall also use the uniform distribution often.

In addition to continuous random variables, discrete random variables are also
encountered in metrology. An example of an integral distribution function and the
probability density of a discrete random variable are given in Fig. 3.2.
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Fig. 3.2 (a) The probability distribution and (b) the probability density of a discrete random
quantity

Distribution functions are complete characteristics of random quantities, but
they are not always convenient to use in practice. For this reason, random quantities
are also characterized by their numerical parameters called moments. The initial
moments n;, (moments about zero) and central moments y; (moments about the
mean value) of order k are defined by the formulas

— /_ (),

e ¢}

0 (3.5)
m, = E[X*] = fopi,
=1
and
=B~ EX) = [ (e B
e (3.6)

he = EX — BN = 3 (5 — B

In the relations (3.5)—(3.8), the first formulas refer to continuous and the second

to discrete random quantities.
Of the initial moments, the first moment (k = 1) is most often employed. It gives
the mathematical expectation of the random quantity

m =EX] = [:xf(x)dx,

n (3.7
mp = E[X] = Z)C,‘pl‘.
i=1

It is assumed that ), p; = 1; i.e., the complete group of events is considered.
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Of the central moments, the second moment (k = 2) plays an especially impor-
tant role. It is the variance of the random quantity

Mf:wm:Eﬁx—my}:K:u—mgﬁumL

. (3.8)
Hy = V[X] = E[(X - ml)z} = Z (xi — m1)’pi.

i=1

The square root of the variance is called the standard deviation of the random
quantity

6=+ V[X] (3.9)

Correspondingly, V[X] = ¢°.

The third and fourth central moments are also used in applications. They are
used to characterize the symmetry and sharpness of distributions. The symmetry is
characterized by the skewness a = p./o°, and the sharpness is characterized by the
excess ¢ = /14/64. The latter is sometimes defined as e’ = /44/0'4 — 3 because normal
distribution has e = 3.

The normal distribution is completely characterized by two parameters: m; = A
and . For it, characteristically, a = 0 and ¢’ = 0. The uniform distribution is also
determined by two parameters: m; = A and [ = d — b. It is well known that

_d+b
-2,

@d-b> P

X] = =,
viXl 12 12

m (3.10)

Instead of [, the quantity A = //2 is often used. Then V[X] = h2/3 and
olX]=h/ V3.

3.2 Requirements for Statistical Estimates

As mentioned in the previous section, the probability distribution function and the
probability density fully describe the properties of a random quantity. Unfortu-
nately, they are rarely available. Consequently, one has to estimate parameters of a
random quantity from statistical data, that is, from the observations of the random
quantity.

Given a specific sample of observations, any estimate derived from this sample
is a specific number. However, across different samples, the estimate will be
different, and it is a random variable for a random sample. Thus, one can talk
about statistical properties of the estimates.
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The estimates obtained from statistical data must be consistent, unbiased, and
efficient.

An estimate A is said to be consistent if, as the number of observations
increases, it approaches the true value of the estimated quantity A (it converges
probabilistically to A):

Axy, ..., x,) — A

n—oo

The estimate of A is said to be unbiased if its mathematical expectation is equal
to the true value of the estimated quantity:

In the case when several unbiased estimates can be found, the estimate that has
the smallest variance is, naturally, regarded as the best estimate. The smaller the
variance of an estimate the more efficient it is.

Methods for finding estimates of a measured quantity and indicators of the
quality of the estimates depend on the form of the distribution function of
the observations. For a normal distribution of the observations, the arithmetic
mean of the observations, as well as their median (which is the point x,, such that
P{X < x,,} = P{X > x,,}) can be taken as an estimate of the true value of the
measured quantity. The ratio of the variances of these estimates is well known [20]:

o2/c% = 0.64,

where ¢ is the variance of the arithmetic mean and o2, is the variance of the
median. Therefore, the arithmetic mean is a more efficient estimate of A than
the median.

In the case of a uniform distribution, the arithmetic mean of the observations or
the half-sum of the minimum and maximum values can be taken as an estimate of A:

~ 1 & ~ Xmin 1 Xmax
R ST Ry

VIA]] (n+1D(n+2)
VIA] 6n

For n = 2, this ratio is equal to unity, and it increases for n > 2. For example,
for n = 10, it is already equal to (2.2), making the half-sum of the minimum and
maximum values in this case a more efficient estimate than the arithmetic mean.
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3.3 Evaluation of the Parameters of the Normal Distribution

If the available data are consistent with the hypothesis that the observations belong
to a normal distribution, then it is sufficient to estimate the expectation E[X] = A
and the variance ¢ to describe fully the distribution. We will discuss methods of
obtaining these estimates in this section.

When the probability density of a random quantity is known, its parameters can
be estimated by the method of maximum likelihood. We shall use this method to
find the estimates above.

The elementary probability of obtaining some specific observation x; in the
interval x; &= Ax;/2 is equal to f; (x;, A, o) Ax;, where f; is the value of the probability
density function with parameters A and the o for point x;. Assume that all
observations are independent. Then, the probability of encountering all experimen-
tally obtained observations with Axy,, Ax, is equal to

P, =[[fixi.A,0)Ax, ... Ax,.

The idea of the method is to take for the estimate of the parameters of the
distribution (in our case, A and o), the values that maximize the probability P;.
These values are found, as usual, by equating to zero the partial derivatives of P;
with respect to the parameters being estimated. The constant cofactors do not affect
the solution, and for this reason, only the product of the functions f; is considered;
this product is called the likelihood function:

L(xy,..., x5 A,0) = Hf,-(xl,...,x,l; A, o).

We now return to our problem. For the available group of observations xy,. . ., X,,,
the values of the probability density will be

1
oV 2rx

o —A)* /267 '

f,‘(X,',A,G) =

Therefore,

1 n 1 n 2
L= exp| —=—= X, —A .
(0 27r> p< 2‘72;( ) )

To find the maximum of L, it is convenient to investigate In L:

1nL_—E ln277:—— In 62 02 Z

i=1
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The maximum of L will occur when OL/0A = 0 and OL/9c6> = 0 :

oL 1 &
IE:;;(M—A)ZQ

6[4 n 1 1 2
000?202 T30 2T A =0

i=

From the first equation, we find an estimate for A:
A=%X ! Z (3.11)
=X = — X;. .
n= I

The second equation gives the estimate &> = (1/n) Y., (x; — A)*. But A is
unknown; taking instead of A its estimate X, we obtain

i=1

Let us now check to see whether the obtained estimates are consistent and
unbiased. Because all x; are drawn from the same distribution, the mathematical
expectation of the ith observation in a random sample is equal to A for every i:
E(x;) = A." For this reason,

E[A] = % iE(xi) = A.

Therefore, A is an unbiased estimate of A. It is also a consistent estimate, because
as n — oo, A— A, according to the law of large numbers.

We shall now investigate 2. In the formula derived above, the random quantities
are x; and X . For this reason, we shall rewrite it as follows:

L 1

U*ZZZ()Ci—A—}—A_jf
=23 [l - AP - 2005~ A) - 4) + (7 47
Iy 2 2 B 1 B s
A (x; —A) _;Z(x,—A)(x—AH-ZZ(x—A)
:% y (XI—A)Z_(X_A)Z,

! With a slight abuse of notation, we use x; to denote the i th observation in both a specific sample
(where it is just a number) and in a random sample (where it is a random variable).
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because
P E- A = (3 -a)
and
2 < _ 2 1 _ 2
;Z(xi—A)(x—A) :;(x—A)Z(x,-—A) =2(x—A)%.

We shall find E[&i] . To this goal, the following relations must be used. By
definition, according to (3.8), we have E(x; — A)2 = ¢2. Therefore,

2

E =o0".

% i: (xi — A)Z] = %E li (x; — A)?

i=1 i=1

For the random quantity ¥, we can write analogously E(¥ — A)* = V/[x]. We can
express V[¥] in terms of ¢ as follows

V) = V[% in] = % S Vi) = %V[X] = ‘%
=1 i=1

Therefore, the obtained estimate &2 is biased. But as n — oo, E[5%] — o2, and
therefore, this estimate is consistent.

To correct the estimate, i.e., to make it unbiased, 63 must be multiplied by the
correction factor n/(n — 1). Then we obtain

= > (i —x)7 (3.12)

This estimate is also consistent, but, as one can easily check, it is now unbiased.
Some deviation from the maximum of the likelihood function is less important for
us than the biasness of the estimate.

The standard deviation of the random quantity X is ¢ = 1/V[X], and it is not a
random quantity. Instead of 6° we must use the estimate of the variance from (3.12)
— a random quantity. Extracting the square root is a nonlinear procedure; it
introduces bias into the estimate a. To correct this estimate, a factor k,,, depending
on n as follows, is introduced:

n 3 4 5 6 7 10
ky 1.13 1.08 1.06 1.05 1.04 1.03
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So,

N 1 ,
a:kn\/nIZ(x,-—x)z. (3.13)

While the correction factor can improve the accuracy of the standard deviation
estimate, taking it into account is usually not important in multiple measurements
with 3-5 observations as these measurements typically cannot produce high accu-
racy anyway. Moreover, for n > 5, the error of the standard deviation estimate due
to the square root extraction is already insignificant. For this reason, in practice,
the correction factor k, can usually be neglected. Thus, instead of (3.13), the
estimate of the standard deviation is commonly found as the square root of
the variance given by (3.12). Therefore, the estimate of the standard deviation is
calculated as follows:

(3.14)

We have obtained estimates of the parameters of the normal distribution, but
they are also random quantities: When the measurement is repeated, we obtain a
different group of observations with different values of x and 6. The spread in these
estimates can be characterized by their standard deviations ¢(x) and o(5). We
already obtained above that V[x] = 6> /n. Therefore,

o(x) =/ V[x] =—. (3.15)

By replacing ¢ in (3.15) with its estimate from (3.14), we can obtain an estimate
of 6(X), denoted as &(¥) or, more commonly, S; or S(X):

(3.16)

Uncertainty of the estimates given in (3.14) and (3.16) depends on the number of
measurements # and on the confidence probability a. The method of computing this
uncertainty is described in Sect. 3.6 and 3.7.
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3.4 Elimination of Outlying Data

If in the group of observations, one or two differ sharply from the rest, and no slips
of the pen, reading errors, and similar blunders have been found, then it is necessary
to decide whether they are extreme events that should be excluded. This problem is
solved by statistical methods based on the assumption that the distribution from
which the observations are drawn is normal. The methodology for solving the
problem is presented in the standard [4].

The solution scheme is as follows. An ordered series x; < x, <...< X, IS
constructed from the obtained observations. The candidate to be tested for outlier
is obviously x; or x,,. From all x;, we calculate ¥ and, using (3.14), the estimate of the
standard deviation of this group of observations, S. We next compute how much the
potential outlier candidates deviate from the mean value:

X — X1
Hh = S

(3.17)

and

ty =22, (3.18)

Now we select the candidate to be tested that has the bigger deviation among the
two above. Let us assume that it is x;. We resort to the Table A.3 reproduced in
Appendix, which is read as follows. For a given number of observations n and
chosen percentage ¢ (referred to as significance level) and corresponding value T, g
is the probability that #; exceeds T.

In other words, if the value of #; is greater than T for a selected significance level,
then the corresponding value of x; can be discarded: The probability that a “legiti-
mate” observation (i.e., an observation belonging to the distribution) would produce
t > T is less than or equal to the adopted significance level. Thus, the significance
level gives the probability that we erroneously discard an observation that in fact
belongs to the distribution.

If we want to estimate probability of encountering an outlier in a future similar
measurement, we must take into account that the outlier can be either too big or too
small. Either observation can occur with an equal probability, due to the symmetry
of the normal distribution. Thus, the probability of encountering either of them is
equal to 2qg.

The described procedure is quite useful and is widely employed in statistical data
processing. But one could say that an “abnormal” observation may actually reflect
some unknown feature of the subject under study and thus should not be discarded
lightly. Let us consider this issue in more detail.

Imagine a measurement in which an observation occurred that seems atypically
different from others. What will an expert performing this measurement do?
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First, he or she will check if any physical properties of the object under study, or
any other physical reasons, might have caused the unusual observation. If this
check does not lead to an explanation for this observation, the expert will analyze
all the aspects of the measurement procedure, measurement conditions, and
records documenting the measurement execution. If there is still no rational
explanation for the unusual observation, the expert will conduct a statistical
analysis using methods described earlier in this section, to check if this observa-
tion could be an outlier. If this analysis confirms that the observation is an outlier,
it can be discarded. However, in especially important cases, such as when the
decision can affect public safety, the expert may chose to continue the experiment
collecting more observations. More observations may reveal physical or other
reasons behind the abnormality. If not, the expert will repeat the statistical
analysis, this time using all the accumulated data, and based on its result, will
make the final decision on accepting or discarding the observation. When will the
expert stop collecting more data? Only his or her experience and intuition will tell.
Unfortunately, there is no prescribed procedure here to follow. However, there are
the following two general reasons to discard the observation detected as an outlier
by statistical analysis:

1. A real measurement as a rule consists of a small number of observations, and
the probability of them including more than one outlier is extremely small.
Therefore, this outlier cannot be compensated with another one having the
opposite sign.

2. Because the outlier deviates significantly from the rest of the results, it skews the
average value of the set of data. In other words, not only does it increase the
inaccuracy of a measurement, but also affects the measurement result.

Thus, if there are no physical reasons for the outlying result, it must be discarded.

Example 3.1 Assume ten repeated measurements of the current strength in mA
gave the following results: 10.07, 10.08, 10.10, 10.12, 10.13, 10.15, 10.16, 10.17,
10.20, and 10.40. The value 10.40 differs sharply from the other values. We shall
check to see whether or not it can be discarded. We shall use the criterion presented,
though we do not have the data that would allow us to assume that these
observations satisfy the normal distribution.

The mean and standard deviation of this group of observations are ¥ = 10.16mA
and § = 0.094mA. According to the procedure, we compute

10.40 — 10.
:( 0.40 — 10 16):2.55.
0.094

o

Let us select significance level of 0.5%. Turning to Table A.3, we find

critical value T for n = 10 and ¢ = 0.5%. This value is T = 2.48. Since t,o > T,

we conclude that assuming this observation to be an outlier would be incorrect only
with probability at most 0.5%.
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3.5 Construction of Confidence Intervals

Having obtained the estimate A, it is of interest to determine by how much it can
change in repeated measurements performed under the same conditions. This
question is clarified by constructing the confidence interval for the true value of
the measured quantity.

The confidence interval is the interval that includes, with a prescribed
probability called the confidence probability, the true value of the measurand.
The concepts of confidence interval and confidence probability can be interpreted as
follows. Imagine a quantity that is measured multiple times under the same conditions,
where each measurement can itself comprise multiple observations. Assume that we
use the data obtained from each of these measurements to build the confidence
interval corresponding to the same confidence probability 0.95. Then, 95% of the
obtained confidence intervals will cover the true value of the measured quantity.

Confidence intervals are often expressed as (x £ Ax) or (x £ 6%), where x is
the center of the interval and Ax and 6% represent the half-length of the interval in
the absolute or relative form. The latter values define the limits of the confidence
interval. We will, therefore, refer to the half-length of the confidence interval as the
confidence limit.

In principle, the confidence interval could be constructed based on the
Chebyshev’s inequality [20]:

1
P{|X — A| > to} gt—z
where ¢ is a parameter dependent on the confidence probability, which will be

explained shortly.
For the random quantity X, we obtain, using (3.15):

P{|xA| > t—"} <1 (3.19)

Let us transform the inequality (3.19) so that it would determine the probability
that a deviation of the random quantity from its true value is less than a certain
value. After simple transformations, we obtain

o 1
Px—Al < t—) >1——=.
{|X = ﬁ} r

Without knowing anything about the distribution of the random errors, the
coefficient ¢ can be calculated based on a prescribed confidence probability a
from the right-hand side of the above inequality, which gives
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Then, the confidence interval for a follows from the above inequality and is:

{x-r\%,xw%}

If the distribution of the random errors can be assumed to be symmetric relative
to A, then the confidence interval can be narrowed somewhat [20], using the
inequality

where

In either case, the standard deviation of the results of measurements ¢ can be
estimated with (3.15) and then the confidence interval can be found.

Using Chebyshev’s inequality is attractive because it does not require one to
know the form of the distribution function of the observations. It uses the arithmetic
mean as the estimation of the measured quantity, which can practically always be
done (although in the case when the distribution differs from a normal distribution,
the estimate will not be the most efficient estimate). However, the confidence
intervals constructed in this manner are only approximate, because the effect of
replacing the standard deviation by its estimate is not taken into account. More
importantly, the intervals obtained with the help of the Chebyshev’s inequality are
too wide for practice, and so this method is rarely (if ever) used.

If the distribution of the observations can be regarded as normal with a known
standard deviation, then the confidence interval is constructed based on the
expression

P{|X—A| < Z%%} =a.

where a is the selected confidence probability and z114 is the quantile of the standard
2

normal distribution for probability H—Ta (By the quantile of a distribution with

cumulative distribution function F for probability p we mean the value x such that
F(x) = p).
For example, let a = 0.95. With this probability, the interval

_ o _ (o2
X — Zita y X + Zita
2

Vit T
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should include the true value of A. The probability that A falls outside this interval is
equal to 1 —a = 0.05. As the normal distribution is symmetric, the probabilities that A
falls beyond either limit of the interval are the same and equal to (1 — a)/2 = 0.025.
It is obvious that the cumulative probability of the upper limit of this interval is
(1 -0.025) = 0.975. It can be calculated as

1—a 1+a
2

P=1-

We shall now show how to find the value of Z1+a, using the standard Gaussian
2

function, whose values are given in Table A.1 of the Appendix. The standard
Gaussian function ®(z) is related to the standard normal distribution function
F(z) by the relation F(z) = 0.5 + ®(z), or ®(z) = F(z) — 0.5. Therefore, the
quantile of F(z) for probability 1+a = 0.975 is the same as the quantile of ®(z)
for probability 0.975-0.5 = 0.475. Using Table A.1, we find the quantile
Zo.975 = 1.96 corresponding to the argument 0.475.

Often, on the other hand, the value of the quantile Zita is given and the

corresponding probability a needs to be found. For example, for Zita = 1, we

see from Table A.1 that @ (z(144)/2) = 0.3413 and thus F(z(114)2) = P(2(14a)2)
+0.5 = 0.841. Then F(z(114)/2) = 5% = 0.841 and a = 0.682. Analogously, for
zie =3, we find @ (z(144)2) = 049865, , F(z(14a)2) =15%=0.99865 and

2

a = 0.9973.
So far we explained how we could build the confidence interval from the
quantile Zita assuming we know the standard deviation c. In practice, however,

the standard deviation is rarely known. Usually we know only its estimate S and,
correspondingly, Sz = S/+/n. Then, still assuming that the observations can be
viewed as belonging to a normal distribution, the confidence intervals are
constructed based on Student’s ¢ distribution. The applicability of Student’s distri-
bution is based on the property that if a random quantity x is normally distributed,
then the random quantity

obtained from random samples of size n, belongs to Student’s distribution with (n — 1)
degrees of freedom. In the above formula, Sk is the estimate of the standard deviation
of the arithmetic mean x, calculated from (3.16). Then, the confidence interval
[X — 1, S, % + 1, S¢| corresponds to the probability

P{lx—A| < 1,5} =a,

where ¢, is the ¢ th percentile of Student’s distribution with the degrees of freedom
v = n — 1. Traditionally, tables for Student’s distribution list percentiles for
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probability function P{z > ¢,}. We present such a table as Table A.2 in Appendix.
Thus, given a, we obtain the significance level g —1 — a, then look up ¢, in Table A.2
for this significance level and the degrees of freedom v — n — 1, and finally compute
the confidence interval above that corresponds to a. The confidence interval is
commonly represented by confidence limits:

U= 1,5 (3.20)

In measurement practice, the confidence probability is increasingly often set to
0.95. Further, confidence intervals are in practice constructed almost always based
on Student’s distribution as just described. This method is widely applicable
because experimental data are typically symmetrical around the mean, and in this
case, this method is used even when the distribution of the underlying random
quantity x deviates from normal. Indeed, as seen from what was described above,
Student’s distribution is determined by X and S5, and is not directly dependent on x
and therefore is robust.

Sometimes confidence intervals are constructed for the standard deviation.
In these cases, the y? distribution is employed. This method relies on the property
that if a random quantity x is normally distributed, then the random quantity

) (n— 1)6*

){ - 62 .
obtained from random samples of size 7, belong to y? distribution. Unlike Student’s
distribution, y? distribution is asymmetrical, and we must use different quantiles to
compute lower y; and upper Y limits of the confidence interval. Consequently, the
confidence interval for the confidence probability is

p{ <\/m>5 <o< <\/m>6} =a (3.21)

XL Xu

is found as follows. Table A.4 gives percentiles of the probability function
P{ 7> ;((21 } Given confidence probability a, we find the probabilities corresponding
to the lower and upper limits of the confidence interval: p;, = (1 —a)/2 and
pu = (1 + a)/2. We then, conceptually, obtain significance levels ¢, = 1 — p,.
and gy = 1 — py. Next, from Table A.4, we look up the p; th and py th
percentiles (denote them, respectively, as ;(% and ;(%]) for the probability function

P{){2 > ;(5} Again, we use the degree of freedom v = n — 1 because there is an

unknown quantity ¢ in the expression for y2. Finally, we use y7 and y7, to compute
the confidence interval for ¢. Because ¢ has inverse dependence on y, )(%
determines the upper limit of the confidence interval and ;(%/ the lower limit.

For example, let 6 =1.2 x 107> and n = 10. Take a = 0.90. Then
Py=(1+0.9)/2=0.95 and P; = (1-0.9)/2 = 0.05. The degree of freedom
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v=10 - 1 =9. From Table A.4, we find )(%] =3.325 and )(% =16.92 The
confidence interval will then be

VIO —1 s V101
x12x107°, X —x

- , x12%x107°|;
V16.92 V/3.325

[0.88 x 107> < 6 < 2.0 x 107].

When constructing confidence intervals for standard deviation, the confidence
probability can be taken to be less than the confidence probability in the case of
constructing the confidence interval for the true value of the measured quantity.
Often a = 0.80 is assumed to be sufficient. However, this low confidence
probability is considered sufficient not because higher confidence is unnecessary
but because the confidence interval based on the Pearson distribution seems unnat-
urally wide, and it would be even wider for higher confidence probabilities.

We should note that the confidence interval for standard deviation of the mean is
not used in computing the confidence interval for the mean (i.e., the estimate of the
measurand) because a possible change of the estimate of the standard deviation
from one experiment to another is already accounted for through a significance
level when utilizing Student distribution, or simply through confidence probability
in other cases. But if we consider the confidence interval for standard deviation of
the mean to be an indicator of reliability of the estimate of the standard deviation of
the mean, then the wide confidence interval makes this indicator unreliable. We
revisit the reliability of the estimates of both the variance of a distribution and the
standard deviation of its mean in Sects. 3.6 and 3.7.

Confidence intervals should not be confused with statistical tolerance intervals
(first mentioned at the end of Sect. 2.3). The statistical tolerance interval is the
interval that, with prescribed probability @, contains not less than a prescribed
fraction po of the entire collection of values of the random quantity (population).
Thus, the statistical tolerance interval is the interval for a random quantity, and this
distinguishes it principally from the confidence interval that is constructed to cover
the value of a nonrandom quantity.

If, for example, the sensitivity of a group of strain gauges is measured, then the
obtained data can be used to find the interval with limits /; and /5 in which, with
prescribed probability a, the sensitivity of not less than the fraction po of the entire
batch (or the entire collection) of strain gauges of the given type will fail. This is
the statistical tolerance interval. Methods for constructing this tolerance interval
can be found in books on the theory of probability and mathematical statistics.

One must also guard against confusing the limits of statistical tolerance and
confidence intervals with the tolerance range for the size of some parameter.
The tolerance or the limits of the tolerance range are, as a rule, determined before
the fabrication of a manufactured object, so that the objects for which the value of
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the parameter of interest falls outside the tolerance range are unacceptable and are
discarded. In other words, the limits of the tolerance range are strict limits that
are not associated with any probabilistic relations.

The statistical tolerance interval, however, is determined by objects that have
already been manufactured, and its limits are calculated so that with a prescribed
probability, the parameters of a prescribed fraction of all possible manufactured
objects fall within this interval. Thus, the limits of the statistical tolerance interval,
as also the limits of the confidence interval, are random quantities, whereas the
tolerance limits or tolerances are nonrandom quantities.

3.6 Reliability of Estimation of the Variance of a Sample
from a Normal Distribution

As mentioned in Sect. 3.5, the estimates of the variance of a distribution and of
standard deviation of the mean of a sample play an important role in methods for
evaluating measurement accuracy. Thus, it is important to understand how reliable
these estimates. More precisely, consider a sample of observations from the normal
distribution and the estimate of some parameter of this distribution computed from
this sample. If we took another independent sample from the same distribution, how
different can we expect the new value of the estimate of the same parameter will be?
We refer to this aspect of an estimate as the “reliability” of the estimate. Recalling
that the values of an estimate computed from different independent samples are a
random variable, the reliability of the estimate is characterized by the standard
deviation of this random variable. We now consider the question of how estimate
reliability depends on the number of observations. This section considers the reliabil-
ity of the estimation of the variance of a sample from the normal distribution while the
next section focuses on the estimation of the standard deviation of the mean.

The book [20] gives a general solution to the problem of finding this depen-
dency. For the variance of the variance estimate, it obtains the formula

Vim] = (ua = 13) /n =2 = 203) /1 + 3 (s = 3u3) /1,

where

my is an estimate of the variance of a group of n observations (sample of size n);

1 1s the second central moment of the distribution (the true value of the variance of
the distribution);

U4 is the forth central moment of the distribution.

For normal distribution, it is known that y, / /,L% = 3. Given this relation, the above
equation becomes

Vima) = 2u3(n— 1) /n’.
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Using the notations from Sect. 3.3, my = af and p, = 6%, we have
V(6] =26 (n—1)/n?,
or
V[&l]/o* =2(n—1)/n*.

We can transform the above expression from variance V[&ﬂ to standard

deviation |/V [62] = s[62] since the latter is more intuitive. Obviously,

s[62] /o> = \/2(n— 1)/n.

We showed previously that estimate ?73, while efficient, is biased, and that the
following somewhat less efficient but unbiased estimate is commonly used in its
place: S*(x) = [62]n/n — 1. The variance of this unbiased estimate is

V] =V () = ot

From this formula, we have s[S?(x)] = 6%4/-2;.

As an indicator of reliability of the variance estimate s? (x) in relation to the
number of observation we will use

e=s[S*()]/o* = V2/(n—1).

We illustrate the above dependency with values of ¢ computed for some arbi-
trary numbers of observations 7:

n 3 5 7 10 15 20 30 40 50 100 200
g, % 100 71 58 47 38 32 26 23 20 14 10

3.7 Reliability of Estimation of the Standard Deviation of the
Mean of a Sample from a Normal Distribution

Analogously, consider reliability of the estimate of the standard deviation of the mean.
The mathematical expression for the variance of the standard deviation is as follows:

2
Hy — K3 1

Vv =—=40(—=].

[v/ma s + (nz)
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In our case, py, = 3;4%. Thus, neglecting the residual term and because y, = 62,

we obtain

VIvm] = (313 — 13) [4npy = pp /2n = &* [2n.

Recall that /m, = o, is a biased estimate of the standard deviation of a sample.

Therefore, V[5.] = 6 /2n. From this, we arrive at the expression for the standard
deviation of a sample:

slyma] = o/v/2n.

Let us now turn to the standard deviation of the unbiased estimate of the standard
deviation of a sample S(x) = 6.+/n/(n — 1). The variance of this estimate is

VIS(x)] = V[g.|n/(n—1) = 6*/2(n — 1).
However, we are interested in the reliability of the unbiased estimate of the

standard deviation of the mean rather than the sample, i.e., of S(X).
As shown earlier, S(¥) = S(x)/+/n. Therefore,

S(x) :5*7\/’1\//(;_1)_ G,/

The variance of this expression is

(n—1).

Vgl _[/(=1 o,

[
N CES R

Since 6*(X) = 6*/n, we obtain the following expression for the estimate of the
standard deviation of the estimate of the standard deviation of the mean of a sample:

SIS@)] = o(x)//2(n — 1).

Let us express the reliability of the estimate of the standard deviation of the mean
as the ratio of this estimate over its true value, which we denote with symbol ¢ :

0 = sIS(D)/o(®) =1 /200 = 1).

VIS()] = v[&*/m} _

Comparing the expressions for ¢ and &, one can easily observe that

@ =—¢.
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Thus, the standard deviation of the estimate of the standard deviation of the
mean of a sample of, say, size 10 from a population with the normal distribution
may reach a quarter of the estimate itself, and of course the estimate itself of another
sample of the same size could differ from the estimate of the first sample by an even
greater amount. A more specific limit on possible differences between estimates of
the standard deviation can be obtained with the help of a confidence interval
constructed using Pearson’s distribution y?. An example of constructing such an
interval is given above in Sect. 3.5. We should emphasize that this significant
source of uncertainty of the estimate of the standard deviation of the mean of the
sample is typically not taken into account in practice.

3.8 Testing Hypotheses About the Form of the Distribution
Function

The problem is usually posed as follows: For a group of measurement results, it is
hypothesized that these results can be regarded as realizations of a random quantity
with a distribution function having a chosen form. Then this hypothesis is checked
by the methods of mathematical statistics and is either accepted or rejected.

For a large number of observations (7 > 50), Pearson’s test (y* test) for grouped
observations and the Kolmogorov—Smirnov test for nongrouped observations are
regarded as the best tests. These methods are described in many books devoted to
the theory of probabilities and statistics. For example, see [20, 49, 53]. We shall
discuss the y? test, and for definiteness, we shall check the data on belonging to a
normal distribution.

The idea of this method is to monitor the deviations of the histogram of the
experimental data from the histogram with the same number of intervals that is
constructed based on the normal distribution. The sum of the squares of the
differences of the frequencies over the intervals must not exceed the values of >
for which tables were constructed as a function of the significance level of the test g
and the degree of freedom v =L — 3, where L is the number of intervals and minus 3
is because the measurement data have two unknown parameters (the mathematical
expectation and variance) and y? distribution has one more unknown parameter
(its degree of freedom).

The calculations are performed as follows:

1. The arithmetic mean of the observations and an estimate of the standard
deviations are calculated.

2. Measurements are grouped according to intervals. For about 100 measurements,
five to nine intervals are normally taken. For each interval, the number of
measurements @; falling within the interval is calculated.

3. The number of measurements that corresponds to the normal distribution is
calculated for each interval. To accomplish this, the range of data is first centered
and standardized.
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Let x,,;, = ap and x,,,.,. = by, and divide the range [ay,by] into L intervals of
length iy = (by — ap)/L. Centering and standardization are then achieved with
the formula

For example, the transformed limits of the range of the data for us will be as
follows:

¥ by — X
a(‘:a()~ X, bC: ()~ )C.
o o
The length of the transformed interval h. = (b, — a.)/L. Then we mark the

limits {z;},i=0, 1,...,L, of all intervals of the transformed range [a,, b_]:

20 = d¢, 21 = ac + he, 22 = ac + 2he, - -z = ac + Lhe = b,.

Now we calculate the probability that a normally distributed random quantity
falls within each interval:

After this we calculate the number of measurements that would fall within each
interval if the population of measurements is normally distributed:

@; = pin.

. If less than five measurements fall within some interval, then this interval in both
histograms is combined with the neighboring interval. Then the degree of
freedom v = L — 3, where L is the total number of intervals (if the intervals
are enlarged, then L is the number of intervals after the enlargement), is
determined.

. The indicator y? of the difference of frequencies is calculated:

2 ((7"*4")2 2 - 2
= =D
?i i=1

. The significance level of the test ¢ is chosen. The significance level must be
sufficiently small so that the probability of rejecting the correct hypothesis
(committing false rejection) would be small. On the other hand, too small
value of ¢ increases the probability of accepting the incorrect hypothesis, that
is, of committing false retention.
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From the significance level ¢ and a degree of freedom v in Table A.4, we find the
critical threshold 7, so that P{;{z > ;(fl} = g. The probability that the value

obtained for y? in step 5 above exceeds ;(5 is equal to ¢ and is small. For this
reason, if it turns out that y> > ;(5, then the hypothesis that the distribution is normal
is rejected. If y? < )(fl, then the hypothesis that the distribution is normal is accepted.

The smaller the value of ¢, the larger is the value of )(3 for the same value of v,
hence the more easily the condition y? < ;(f] is satisfied and the hypothesis being
tested is accepted. But, in this case, the probability of committing false retention
increases. For this reason, ¢ should not be taken to be less than 0.01. For too large a
value of ¢, as pointed out above, the probability of false rejection increases and, in
addition, the sensitivity of the test decreases. For example, for ¢ = 0.5 the value of
x> may be greater or less than ;(fl with equal probability, and therefore it is
impossible to accept or reject the hypothesis.

To achieve a uniform solution of the problem at hand, it would be desirable to
standardize the significance levels ¢ adopted in metrology.

It should be noted that the test examined above makes it possible to check the
conformance of the empirical data to any theoretical distribution, not only a normal
distribution. This test, however, as also, by the way, other goodness-of-fit tests, does
not make it possible to establish the form of the distribution of the observations; it
only makes it possible to check whether the observations conform to a normal or
some other previously selected distribution.

3.9 Testing for Homogeneity of Samples

Measurements with large random errors require careful attention. One must make
sure that the obtained results are statistically under control, stable, i.e., that the
measurement results cluster around the same central value and have the same
variance. If the measurement method and the object of investigation have been
little studied, then the measurements must be repeated until one is sure that the
results are stable [25]. This process determines the duration of the investigation and
the required number of measurements.

The stability of measurements is often estimated intuitively based on prolonged
observations. Mathematical methods exist that are useful for assessing the stability
of measurements, so-called methods for testing homogeneity. A necessary condi-
tion for measurement stability is that the data passes the homogeneity tests.
However, this is not sufficient for homogeneity in reality, because of a possibility
of an unfortunate choice of groups of measurements.

Figure 3.3 shows the results of measurements of some quantities, presented in
the sequence in which they were obtained. Consider three groups of measurements
performed in the time intervals t,—t;, t3—t, and t4—t3. They apparently will be
homogeneous. Meanwhile, subsequent measurements would differ significantly
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Fig. 3.3 Example of a sequence of single-measurement results obtained in an unstable measurement

from the first measurements. On the whole, the results obtained from the first group
of measurements will give a picture of a stable, statistically under control, mea-
surement, which is actually not the case.

The choice of groups for monitoring homogeneity remains a problem for the
experimenter. In general, it is best to have on the order of ten measurements in a
group, and it is better to have several such groups than two groups with a large
number of measurements. Once the groups have been reliably determined to be
homogeneous, they can be combined and later regarded as one group of data.

We shall consider first the most common methods for testing homogeneity that
assume the normal distribution of a population. These methods are called
parametric; before using these methods, each group of data must first be checked
for normality.

The admissibility of differences between estimates of the variances is checked
with the help of Fisher’s test in the case of two groups of observations and Bartlett’ s
test if there are more than two groups. We shall present both methods.

Consider two groups of observations, and let the unbiased estimates of the
variances of these groups be S and S3, where 7 > S2. The number of observations
in the groups is n; and n,, so that the degrees of freedom for these groups are,
respectively, vi = n; — 1 and v, = n, — 1. We form the ratio

SZ
F= S—;
2

Next, from Tables A.5 and A.6, which present the probabilities P{F > F q} =q
for different degrees of freedom v; and v, and for two values of ¢ (1% and 5%), we
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choose the value F, for a chosen value of g. The hypothesis is accepted, i.e.,
estimates of the variances can be regarded as corresponding to the same variance,
if F < F,. The significance level of the test, i.e., the probability of the wrong
decision, is equal to 2g.

Now assume that there are L groups. Assume unbiased estimates of the variances
of groups of observations are known, S3,...,S? (L >2), and each group j has
v; = n; — 1 degrees of freedom; in addition, all v; > 3. The test of the hypothesis,
that the variances of the groups are equal, is based on the statistic

1 S 2 S 2
M:NI]’I(NZVJ‘SJ->—ZV]IHS],
J= J=

where

NN
= =1 Vj.
If the hypothesis that the variances are equal is correct, then the ratio

M

an= -
1 1_1
1+3(L71) < ]\T,-_N>
J=

is distributed approximately as y* with v = L — 1 degrees of freedom.
Given the chosen significance level g, from Table A.4, we find )(3, such that

P{ 7> ;(3} = g. If the inequality )(% < )(3 is satisfied, then differences between the

estimates of the variances are admissible, i.e., they could be due to randomness of
the data.

The admissibility of differences between the arithmetic means is also checked
differently in the case of two or more groups of observations. We shall first examine
the comparison of the arithmetic means for two groups of observations, when there
are many observations, so that each estimate of the variances can be assumed to be
equal to its variance.

We denote by X, O'%, and n, the parameters of one group and by x,, 6%, and n, the
parameters the other group. We form the difference X; — X, and estimate its
variance:

2 2
O O

(¥ —x) =—1+-2.
n ny

Next, having chosen a certain significance level ¢, we find @ = 1 —¢, and from
Table A.1, we find the quantile Ziza of the Gaussian function corresponding to
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the probability 1;—" A difference between the arithmetic means is considered
admissible if >

|x — %] < Ziza o(X) — X2).

If the variances of the groups are unknown (e.g., if the number of observations is
not sufficient to take variance estimations for the true values of variances), then the
problem can be solved only if both groups have the same variances (the estimates of
this variance &% and &% can, naturally, be different). In this case, the statistic

t=

|X1 —)22| I’llnz(l’ll + ny —2)
V(i = 1)63 + (np — 1)53 n +n

is distributed approximately according to Student’s distribution.

Then, given the significance level g, from Table A.2 for Student’s distribution
with v = ny+n, — 2 degrees of freedom, we find ¢, such that P{r > #,} = q. The
difference between the arithmetic means is regarded as admissible if ¢ < 7,,.

If the number of groups is large, the admissibility of differences between the
arithmetic means is checked with the help of another variant of Fisher’s test. The
first step in Fisher’s test includes a check that all groups have the same variance,
using the methods above. Then, Fisher’s method involves comparing estimates of

the intergroup variance S? and the average cariance of the groups S2:

1 & . e
Si:man(xj—x) ;
=

where
L
Z:lnjxj L
— J=
X = N N = an
j=1
and
_ 1 L % 5
§* = N_L 2 (o — X5)°

j=1 i=1

Both estimates of the variances have a y? distribution with v = L — 1 and v, =
N — L degrees of freedom, respectively. Their ratio has Fisher’s distribution with
the same degrees of freedom.
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The spread of the arithmetic means is admissible if F = S? / S for the selected

probability a lies within the interval from F; to F:
P{FL < F < FU}:(X

The upper limits of Fisher’s distribution F, are presented in Tables A.5 and A.6;
the lower limits are found from the relation F;, = 1/F, .If the significance levels in
finding F, and F, are taken to be the same ¢; = ¢, = ¢, then the overall signifi-
cance level of the test will be 2¢ and

a=1-2q.

A method for checking the admissibility of the spread in the arithmetic means of
the groups when the variances of the groups are different has also been developed,
but it is more complicated.

It should be noted that a significant difference between the arithmetic means
could indicate that systematic errors exist in the observational results of some of the
groups, and these errors are different in different groups. Therefore, measurements
cannot be performed with the required accuracy.

We shall now discuss nonparametric methods for testing homogeneity. These
methods do not require any assumptions about the distribution function of the
population and are widely used in mathematical statistics.

We begin with Wilcoxon rank sum test for checking if two groups of observation
belong to the same probability distribution. More formally, assume that we have
two samples: {x;;},i = 1,..., n;, of random quantity X, and {y;},j = 1,..., no, of
random quantity Y, and let n; < n,. We check the hypothesis Hy: F'; = F,, where
F; and F, are the distribution functions of the random quantities X and Y,
respectively.

The sequence of steps in checking Hy is as follows. Both samples are combined,
and an ordered series is constructed from N =n; + n, elements; ie., all
observations x; and y; are arranged in increasing order, irrespective of the sample
to which these observations belong. Next, each element is assigned a rank as
follows. Elements with unique values receive the rank equal to their order number
in the series. All elements sharing the same values (which will obviously always
appear next to each other in the series) receive the same rank equal to the arithmetic
mean of their position numbers.

For example, the series (2.3, 2.5, 2.5, 2.6, 2.6, 2.6) will have ranks (1, 2.5, 2.5, 5,
5,5). Indeed, the first element has a unique value so it receives its order number as its
rank. The next two elements are equal and they get rank 2.5 equal to their average of
their order numbers (2 and 3) in the series. The last three elements are also equal and
receive the rank 5, which is the average of their positions (4, 5, and 6).

Next the sum of the ranks of all elements of sample {x;} is calculated. The sum T
obtained is then compared with the critical value T, for a selected significance level
q. For small values of n; and n,, tables listing T,(n, n,) are given in most modern
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books on statistics. (These tables usually list values of T, only for n; < n,, which is
why we compute T for the smaller sample.) For n;, n, > 25, the critical value T,
can be calculated using the normal distribution N(m,, 02):

T, =m+ z1_40,
where

~ m(N+1) 62_n1n2(N+1)
2 T 12

and z,_, is the quantile of the standard normal distribution N(0,1) for probability
(1 — g). The hypothesis H,, is rejected with significance level g against the alterna-
tive and it means that X is stochastically greater (i.e., has greater mathematical
expectation) than Yif T > T,. For a two-sided alternative, Hy is rejected against the
alternative that X is stochastically different from Y with significance level 2¢ if
T>T,orif T <m(N+1)-T,.

Another nonparametric method for checking homogeneity is the Siegel-Tukey
test, which also considers two samples, {x;} and {y;}, where n; < n, and tests the
hypothesis Hy: F'; = F,. The Siegel-Tukey test assumes that both distributions have
the same mathematical expectation. All N = n; + n, values of the two samples are
again arranged into one sequence in the increasing order, and each element is
assigned a rank based on its position in the sequence. However, the procedure for
rank assignment is different. First, preliminary ranks are assigned as follows: rank 1
is given to the first element, rank 2 to the last (Nth) element, rank 3 to the (V — 1)st
element, rank 4 to the second element, rank 5 to the third element, rank 6 to the
(N = 2)nd element, and so on. Then, all neighboring elements with equal values
receive the same final rank equal to the average of the preliminary ranks of all these
elements.

Next, we compute the sum R of the ranks of the elements of sample {x;}. Assume
for simplicity that samples are sufficiently large (n, n, > 25). From R, we calculate
the standardized variable z, defined as
’ R_M (N+l)‘

zZ =
mny(N+1)
12

For significance level ¢, the hypothesis Hy is rejected if z > z;_,, where z;_, is a
quantile for probability (1 — g) of the standard normal distribution N(O 1).

The Wilcoxon’s test is based on comparing the average values of two samples,
whereas the Siegel-Tukey test is based on estimates of the variances. Indeed, in
Wilcoxon’s test, if the two expectations were dissimilar, observations of one
sample would tend to group toward one side of the combined sequence. Then its
rank sum 7 would tend to be either large or small. In contrast, ranks in Siegel-Tukey
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Table 3.1 The example of rank determination for nonparametric homogeneity testing

Number of Wilcoxon’s test Siegel-Tukey test
in.strume.nts Sum of ranks Sum of ranks
with agtven Average rank  for a given Average rank  for a given
error mn of a given value of the of a given value of the
Value of % value of the error in the value of the error in the
the error  x ¥ X +y error sample x error sample x
—0.50 1 1 2 1.5 1.5 2.5 2.5
—0.40 3 0 3 4.0 12.0 7.3 22.0
—0.30 3 0 3 7.0 21.0 13.7 41.0
-0.25 1 0 1 9.0 9.0 17.0 17.0
—0.20 13 5 18 18.5 240.5 36.5 474.5
—0.15 2 2 4 29.5 59.0 58.5 117.0
—0.10 10 8 18 40.5 405.0 80.5 805.0
—0.05 3 2 5 52.0 156.0 103.6 310.8
0.00 15 28 43 76.0 1,140.0 151.5 2,272.5
0.05 5 5 10 102.5 512.5 204.5 1,022.5
0.10 26 35 61 138.0 3,588.0 573.5 7,108.4
0.15 7 4 11 174.0 1,218.0 293.5 2,054.5
0.20 34 41 75 217.0 7,378.0 207.5 7,055.0
0.25 1 3 4 256.5 256.5 128.5 128.5
0.30 17 11 28 272.5 4,632.5 96.5 1,640.5
0.40 13 11 24 298.5 3,880.5 44.5 578.5
0.45 1 1 2 311.5 311.5 18.5 18.5
0.50 4 2 6 315.5 1,262.0 10.5 42.0
0.60 0 1 1 319.0 0.0 3.0 0.0
0.80 1 0 1 320.0 320.0 2.0 2.0

test are assigned so that elements away from the middle of the sequence receive
smaller ranks than those close to the middle. If one sample had lower variance, its
elements would tend to be clustered around the middle of the sequence. Thus, the
sum of their ranks R would be high.

For this reason, these two tests supplement one another.

As an example of the complimentary nature of these tests, consider again the
experiment from Sect. 2.7 that checked the homogeneity of two batches of the same
types of measuring instruments. Table 3.1 gives calculation data for homogeneity
checking of two batches of 160 ammeters for a moving-iron instrument 959 with
respect to the error at marker 30 of the graduated scale [47].

For the Wilcoxon’s test, we obtain T = 25403. Let ¢ = 0.05. Then zg.05 = 1.96,

and
160 x 321 160 x 160 x 321
quiz +1.96y 0 = X2 27620

As 25403 < 27620, the hypothesis that the samples are homogeneous is
accepted based on Wilcoxon’s test.
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Consider now the Siegel-Tukey test. According to the data in the table,
R = 23713. We thus obtain

_ ’23713 _ 16();321{ _

160x160x321
12

Let us take ¢ = 0.05 and therefore zg 95 = 1.96, the same values we used in the
Wilcoxon’s test. As z > zq 95, the hypothesis that the samples are homogeneous is
rejected based on the Siegel-Tukey test. Thus, the two tests bring different
outcomes.

2.3.

z

3.10 Robust Estimates

The distribution function by its nature is a mathematical concept. It is used in
measurements as a theoretical model for a set of measurements. As always, a
complete conformance between the model and the real set of data is impossible.
Therefore, different models can be chosen for the same data. A small difference
between the models may lead to significantly different estimation of the measurand.
A solution to this problem was offered by so-called robust estimations [30, 33].
Among the earliest known robust estimations, the most popular are the truncated
means, the Winsor’s means, and the weighted means [33]. These methods assume
that measurement observations are arranged in an ordered series; i.e.,

Xy Sxp < <.

e The Truncated Means. Given the ordered series above, the method of truncated
means discards k values from the left and the right ends of this series.
The number £ is obtained as k = |np |, where 0 < p < 0.5 and the notation |np |
means that £ is the greatest integer number that is equal to or smaller than np
The rest of the series provides the robust estimate of the measurand by
the formula

1 n—k

n—2k Z o

i=k+1

Ar =

Note that the truncating procedure is similar to the usual practice of eliminating
the outlying result from the sample, which is described in Sect. 3.4.

e The Winsor’s Means. Rather than discarding extreme items in the ordered series,
the Winsor’s method replaces them with the neighboring items. The robust
estimate of the measurand is calculated by the formula:
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~ 1 n—(k+1)
Ay = { Z Xi + (k+ 1) (et +Xn—k)}-

L v

o The Weighted Means. The weighted means method obtains a robust estimate by
computing a linear combination of the measurement data. There are numerous
variations in this method [30, 33]. Here we present one such variation, which
uses the weighted average of the median of the series and two items symmetri-
cally located around the median in the series [33].

Median M is determined by the formula:

) X ifn=2k+1;
- %(xk + xpy1)  ifn=2k.

The robust estimate of the mean according to this method is then given by the
following formula:

Ac=(1 —25)M+25W,

where (1 —2¢) and 2¢ are the weights, e << 1, and 1 and (n —/ + /) are the positions
of the two symmetrical items chosen for the estimation.

Numerous other robust estimates were also proposed. Thus, it is not clear which
method to choose for a given measurement. Hogg [30] addressed this difficulty as
follows. His method takes advantage of the natural assumption that all density
distributions are symmetrical, the assumption on which all other robust estimates
are based anyway. Symmetrical distributions can be characterized by one parameter
— the excess e (see Sect. 3.1):

Hy
e=—.
ot

Hogg proposed to divide all distributions into several classes depending on the
value of e, in such a way that for all distributions in the same class, the mean value
can be calculated with the same formula. Thus, the estimate of the measurand for
each class will not depend on the distribution function. The estimate of the excess
e is found from the formula:

The price this method pays for the robust estimate is the loss in the efficiency of
the estimate. Therefore, a desired solution would find a compromise between the
number of classes and the loss of the efficiency. Hogg studies the system of four
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Table 3.2 Classes of distribution functions and formulas for estimation of their mean values after
Hogg

Distribution class ® Formula for the measurand estimation
A ® <2 Aa=%(xl+xn)
B 2<e<4 Ah:f:%éxi
Cc 4<e<S5 ~ 117 n—[n/4]
T n—2[n/4] i=[nja)+1 .
D 55<@ Ag=M

Table 3.3 Classes of distribution functions and formulas for estimation of their average values
after Mechanikov

Distribution class £ Formula for the measurand estimation
1 4<e Apn=M
2 25 <ae <4 - 1
AZm =X=- in
D
3 18 <& <25 i XX,
3m — P

classes named classes A, B, C, and D. The range of values of @ for each class and the
corresponding formulas for estimating the mean value of the data are given in
Table 3.2. Hogg found that the four classes he proposed lead to loss in efficiency of
no more then 20%, which is acceptable.

Another system of classes was proposed later by Mechanikov [39]. This system
contains only three classes, which are also determined by the values of &. These
classes and the corresponding formulas for the estimation of the mean are shown in
Table 3.3. As one can see, the formulas in Table 3.3 are the same as those used in
the Hogg system: Class 1 uses the same formula as Class D, Class 2 as Class B, and
Class 3 as Class A, but Class C is eliminated.

The estimations of variances of robust estimates are calculated in a common way,
but constructing confidence intervals presents a difficult problem that is generally
not discussed in the robust estimates literature. A simple nonparametric (i.e., not
relying on a particular probability distribution) method to construct these intervals
has been proposed in [29]. In this method, the confidence interval is defined by two
elements located symmetrically about the median in the ordered series.

For a given confidence probability a, the symmetrical positions / and r, which
define the confidence interval [x;, x,], are found as follows>:

2 As usual, | x| denotes the greatest integer equal to or smaller than x and [x] stands for the smallest
integer equal to or greater than x.
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l:\é(n+ﬂn—n¥V%)Jandr::{%(n+in+n¥v%)w

where Zite is the corresponding quantile of the standard normal distribution.

For example, for the ordered series of size n = 49 and a = 0.95, A=M= X5
and / = 19 and r = 31. The confidence interval is thus [x;9, x31].

The inverse calculation was proposed in [39]. Here, we first choose the symmet-
rical elements in the ordered series as the confidence interval boundaries and then
calculate the corresponding confidence probability for this interval. Let k be the
distance of the boundary elements from their corresponding ends of the sequence,
so that the interval is [x, x,,_.1]. The confidence probability that the true value A is
covered by that confidence interval is computed according the formula:

1 n—k+1 i
P{x; SASXn—k-H}:E Z .

In particular, for

n+1
k:2, P{XQ<A<)C”,1}21—F7
2
2
k=3, PQ@<A<%4}:1—£i£i—.

For k > 3, the formulas become much more complicated. But for k = 4 and 5,
one can use approximate relations presented in [39]:

0.17n°
k:4, P{X4<A<Xn_3}%1_2n7_1,

0.037n*
k:5, P{X5<A<Xn,4}%1—?.

Nonparametric methods are widely used in statistical analysis. However, to
construct confidence intervals, they require many more observations than
parametric methods.

Another way to build confidence intervals is made possible by a bootstrap
method [23]. This method uses a computer to produce a large number of indepen-
dent replicas of the obtained experimental dataset. For each replica, we compute an
estimate of the measurand as the arithmetic mean for the replica. We produce so
many of these estimates that they allow us to construct the distribution function of
the estimates. Then, we can use this distribution function to compute the final
estimate of the measurand and its confidence interval with usual methods.
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3.11 Application of the Bayes’ Theorem

The Bayes’ Theorem is well studied in the probability theory. Also widely held
among mathematicians has been an opinion that this theorem allows one to utilize a
priori information about the measurand and in this way to improve the accuracy of
the measurement. Further, it is appealing to consider a measurement as a process of
increasing the amount of acquired information and, correspondingly, of increasing
the accuracy of the obtained results.

The initial or a priori information in the Bayes’ Theorem is usually considered to
be the probability density function of the measured quantity [22]. Unfortunately,
this information is not, and cannot be, available. Perhaps for this reason the Bayes’
Theorem did not find practical usage in measurement data processing until recently.

A real possibility to use Bayes’ Theorem in metrological practice was opened by
research based on the concept of likelihood [32, 36]. Following the monograph [36],
the propositions of interest in metrological applications are usually (a) the
measurand Q belongs to an infinitesimal interval (¢, g + dg) and (b) d is the data
obtained in the result of the measurement.

Let f(q) be the PDF of measurand Q before the measurement; it represents a
priori knowledge about Q, and f(g|d) be the conditional PDF of Q given the
measurement data d. Then, according to Bayes’ Theorem,

fl@)rdlq)
flgld) =———+—"
f(d)
Integrating both parts of the above equation by ¢, under the assumption that f{(d)
+00
is constant, and after applying the normalization condition that [ f(g|d)dg = 1,

we can obtain

f(d) = / Flald)f (q)dg.

It is suggested to consider f(d|q) as the PDF of variable d assuming Q takes
given values g, if d is referred to the possible values of some random quantity D.
To return to the original meaning of notations d and ¢, a function !/ is introduced.
Function / differs from fin that its arguments d and ¢ switch places; furthermore, / is
defined so that

f(dlq) = l(q|d).

Function [ is called likelihood. With its introduction, Bayes’ Theorem takes the
form
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flgldy = LA

T sty

Monograph [36] points out that the new function cannot be considered as a PDF
but it represents a new concept, which is called likelihood. This concept is then
applied to a direct multiple measurement and several indirect measurements.

Let us consider the direct measurement. Its a priori information is that the
measurement method employed produces observations that belong to a normal
distribution. The monograph compares the results obtained using the modified
Bayes’ Theorem with the results produced by a traditional method of maximum
likelihood with the same normal distribution of the observations.

It turned out that while both methods produce the same estimate of the measur-
and, their estimates of the variance are different. The estimate produces using the
modified Bayes’ Theorem is

$4q) = V/(n—1)/(n—3) x 8,

where n is the number of observations in the multiple measurement, $? is the
variance estimate produced by the maximum likelihood method and S?(g) is the
same estimate produced by the new method based on the modified Bayes’ Theorem.

The increase in the variance estimate is small but significant, and this discrep-
ancy requires an explanation. First, it is noteworthy that while the primary motiva-
tion for using the Bayes’ Theorem was to extract more accuracy from the
measurement data, the variance estimate it produced turned out to be higher,
meaning the opposite outcome. Moreover, long practice of utilizing the maximum
likelihood method has not given reason to suspect that it produces results with
artificially overestimated accuracy. Second, both methods cannot be correct given
that they produce different variance estimates. These issues must be resolved before
one can recommend applying the Bayes” Theorem in practical measurements.



Chapter 4
Direct Measurements

4.1 Relation Between Single and Multiple Measurements

The classical theory of measurement errors is constructed based on the well-
developed statistical methods and pertains to multiple measurements (we refer
the reader back to Chap. 1 for the introduction of basic terms such as multiple
and single measurements, uncertainty, error, and limits of errors). In practice,
however, the overwhelming majority of measurements are single measurements,
and however strange it may seem, for this class of measurements, there is no
accepted method for estimating their inaccuracy [43].

In searching for a solid method for estimating errors in single measurements, it is
first necessary to establish the relation between single and multiple measurements.
At first glance, it seems natural to regard single measurements as a particular case of
multiple measurements, when the number of measurements is equal to 1. Formally
this is correct, but it does not serve any purpose, because statistical methods do not
work for single observations. In addition, the question of when one measurement is
sufficient remains open. In the seemingly natural approach above, to answer this
question — and this is a fundamental question — it is first necessary to perform a
multiple measurement and then, analyzing the results, to decide whether a single
measurement was possible. But such an answer is in general meaningless: A
multiple measurement has already been performed, and nothing is gained by
knowing, in the hindsight, one measurement would have sufficed. Admittedly, it
can be countered that such an analysis will make it possible not to make multiple
measurements when future such measurements are performed. Indeed, that is
how the above approach is used, but only when preliminary measurements are
performed, i.e., in scientific investigations when some new object is studied. This is
not done in practical measurements.
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When one needs to measure, for example, the voltage of some source with a
given accuracy, they choose a voltmeter with suitable accuracy and perform the
measurement. If, however, the numbers on the voltmeter indicator dance about,
then it is impossible to perform a measurement with the prescribed accuracy, and
one must reexamine the measurement task and objective rather than performing a
multiple measurement.

For practical applications, we can state the opinion that single measurements are
well grounded in experience, distilled in the construction of the corresponding
measuring instruments, and measuring instruments are manufactured so that single
measurements could be performed.

From the foregoing assertion, a completely different point of view follows
regarding the relationship between single and multiple measurements. Namely,
single measurements are the primary, basic form of measurement, whereas multiple
measurements are derived from single measurements, and in essence, they are
simply repeated single measurements. Multiple measurements are performed
when necessary, based on the formulation of the measurement problem. It is
interesting that measurement problems that require multiple measurements are
known beforehand; they can even be enumerated. Namely, multiple measurements
are performed in the following cases:

1. When investigating a new phenomenon or a new object and relationships
between the quantities characterizing the object, as well as their connection
with other quantities, are being determined; in other words, when preliminary
measurements, according to the classification given in Chap. 1, are performed.

2. When measuring the average value of some parameter, according to the goal of
the measurement problem.

3. When the effect of random errors of measuring instruments must be reduced.

There is another point of view, namely, that any measurement must be a multiple
measurement, because otherwise it is impossible to judge the measurement process
and its stability and to estimate its inaccuracy. We cannot agree with this opinion.
First, it contradicts practice, where single measurements dominate. Second, it also
does not withstand fundamental analysis.

Imagine that the same constant quantity is measured first using a multiple and
then a single measurement. In both cases, the measurements are performed with the
same analog instrument whose response time is ¢,. In Fig. 4.1a, the dots show the
results of individual measurements comprising the multiple measurement, and
the curve in Fig. 4.1b represents a continuous photorecording of the indications
of the instrument in the single measurement. The single measurement makes it
possible to obtain the value of the measurand immediately after the instrument
response time #,, while the multiple measurement takes at least this time multiplied
by the number of individual measurements.

If it is desirable to check the stability of the measurement, then one can continue
the observation using the single measurement. The measurement process is stable if
the readings of the instrument over a chosen time AT do not change appreciably.
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Fig. 4.1 Results of measurements in the case of (a) a multiple measurement and in (b) a single
measurement with continuous photorecording of the indication

Furthermore, it is possible to estimate the inaccuracy of the result of a single
measurement. Methods for calculating errors and uncertainty of the results of
single measurements are given later in this chapter. Thus, in this case, a single
measurement is sufficient to obtain the measurement result, to estimate its inaccu-
racy, and to assess the stability of the measurement process. In fact, a single
measurement allows one to make a better judgment than a multiple measurement
because the latter represents only separate moments of the process, whereas the
former gives the whole continuous picture.

The above example does not say that a single measurement is better than a
multiple measurement. It says only that a multiple measurement should not be
performed when a single measurement is possible. But when a multiple measure-
ment is necessary, a single measurement cannot possibly replace it, and in this case
and in this sense, a multiple measurement is better than a single measurement.

Yet the above example supports our argument that single measurements must be
regarded as independent and the basic form of measurement. Correspondingly, the
problem of developing methods for estimating the accuracy of single measurements
must be regarded as an independent and important problem of the theory of
measurements.

This is a good point at which to discuss another aspect of the question at hand.
In many fields of measurements, modern digital measuring instruments can operate
so fast that over the time allotted for a measurement, say, ls, hundreds of
measurements can be performed. By carrying out these measurements and averag-
ing their results, we utilize all of the time allotted for measurement, and, thanks to
this, we reduce correspondingly the effect of interference and noise.

Consider now an analog instrument having the same accuracy as a fast measur-
ing device, but with the response time equal to the time allotted to the measure-
ment, i.e., in our case, 1s. From the time constant of the instrument, the effect of
interference and noise will be suppressed to the same degree as for discrete
averaging in the first case; i.e., we shall obtain the same result.

In other words, the measurement time is of fundamental importance, and there is
no significance in how the interference and noise are filtered — in the discrete or
analog form — over this time. In practice, discrete averaging is often more conve-
nient, because in this case, the averaging time can be easily changed.
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4.2 C(lassification of Elementary Errors

The classification of measurement errors presented in Chap. 1 also applies, of
course, to elementary errors. Continuing the analysis, this classification must be
further developed as it applies to elementary errors. The main two types of
elementary errors are systematic and random errors.

Taking into account and eliminating systematic errors is an important problem in
every accurate measurement. In the theory of errors, however, little attention has
been devoted to systematic errors. In most books on methods of data processing, the
question of systematic errors is either neglected or it is assumed that these errors
have been eliminated. In reality, however, systematic errors cannot be completely
eliminated; some unexcluded residuals always remain. These residuals must be
taken into account to estimate the limits of the unexcluded systematic error of
the result.

In addition, many measurements are performed without special actions taken to
eliminate systematic errors, because either it is known a priori that they are small or
the measurement conditions make them impossible to be eliminated. For example,
in measurements of the mass of a body, corrections are often not made for the
values of the balance weights employed, either because the corrections are small or
because the errors of the weight values are unknown (only their limits are known).

Sometimes the unexcluded residuals of the systematic errors are assumed to be
random errors based on the fact that their values are unknown. We cannot agree
with this point of view. When classifying errors as systematic or random, attention
should be focused on their properties rather than on whether their values are known.

For example, suppose that the resistance of a resistor is being measured and a
correction is made for the influence of the temperature. The systematic error would
be eliminated if we knew exactly the temperature coefficient of the resistor and the
temperature. But we only know both quantities with limited accuracy, and for this
reason, we cannot completely eliminate this error. An unexcluded residual of the
error will remain. It can be small or large; this we can and should estimate, but its
real value remains unknown. Nonetheless, this residual error has a deterministic
value, which remains the same when the measurement is repeated under the same
conditions, and for this reason, it is a systematic error.

Errors that have been eliminated are no longer errors. Therefore, the unexcluded
residuals become the systematic error in the measurement if they cannot be
neglected.

The error in a measurement can be both systematic and random, but after the
measurement has already been performed, the measurement error becomes a
systematic error. Indeed, the result of a measurement has a definite numerical
value, and its difference from the true value of the measured quantity is also
constant. Even if the entire error in a measurement was random, for a measurement
result, it becomes systematic; i.e., it seemingly freezes.

We shall now discuss the classification of systematic errors. Our discussion on
systematic errors classification is based on the work of M.F. Malikov, and following
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this work, we shall distinguish systematic errors according to their sources and
properties [37].

The sources of systematic errors can be three components of the measurement:
the method of measurement, the measuring instrument, and the experimenter.
Correspondingly, methodological, instrumental, and personal systematic errors
are customarily distinguished.

Methodological errors arise from imperfections of the method of measurement
and from the limited accuracy of the formulas used to describe the phenomena on
which the measurement is based. We shall also classify as methodological errors
the errors arising as a result of the influence of the measuring instrument on the
object whose property is being measured.

For example, the moving-coil voltmeter draws current from the measurement
circuit. Because of the voltage drop on the internal resistance of the source of the
voltage being measured, the voltage on the terminals of the voltmeter will be less
than the measured value. The indications of the voltmeter, however, reflect the
voltage on its terminals. The error that arises — a methodological error — should be
insignificant or eliminated by a correction.

A methodological error can also arise in connection with the use of the measur-
ing instrument. For example, the gain of a voltage amplifier is determined by
measuring the voltages at the input and the output. If these voltages are measured
successively using the same voltmeter, as is often done in practice, then, aside from
the voltmeter error, the measurement error will include the error from some
uncontrollable change in voltage at the amplifier input over time. This error does
not arise when two voltmeters are employed to measure the input and output
voltage at the same time. (Of course, in the case of the two voltmeters, the overall
measurement error is impacted by the instrumental errors of both of the voltmeters,
so the choice of the measurement method must depend on the particular
circumstances. For instance, if the input voltage was known to be stable, the one-
voltmeter method would be preferable.)

We note that the error from the threshold discrepancy between the model and the
object (see Sect. 1.4) is also a methodological error.

Instrumental systematic errors are errors caused by imperfections of the mea-
suring instrument. One example of such errors is errors caused by imprecise
calibration of the instrument scale. Other examples include the inaccuracy of
balance weights and the error of a resistive voltage divider from the inaccurate
adjustment of the resistances of its resistors.

Another group of such errors is additional and dynamic errors. These errors also
depend on the imperfections of the measuring instruments, but they are caused by
influence quantities and noninformative parameters of the input signal (see Sect.
2.3) as well as by the change in the input signal in time. Most often the additional
and dynamic errors are systematic errors. When the influence quantities and the
forms of the input signal are unstable, however, they can become random errors.

Setup errors, i.e., errors arising from the arrangement of the measuring
instruments in conducting the measurement and their effect on one another, are
also instrumental errors.
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Personal systematic errors are systematic errors caused by the individual
characteristics of the observer. Specifically, we shall discuss the errors in the
reading of the indications of indicating instruments. Such errors were investigated
by H. Bikstrom [17]. He studied the question of how people estimate tenths of the
graduations of an instrument scale when reading the instrument indication.
Although Békstrom’s work simulated real devices by drawings depicting the
edges of a scale graduation and the indicator of the instrument, the results obtained
are plausible.

In his study, Béikstrom presented the drawings to human subjects and asked them
to estimate the tenths of the graduation given by the indication. He found that the
systematic errors made by every observer when estimating tenths of a graduation of
an instrument scale can reach 0.1 of the graduation and are much larger than
random errors. These systematic errors are manifested by the fact that for different
positions of the indicator within the graduation, different observers characteristi-
cally produce estimates with different frequencies, and in addition, the distribution
characteristic of the estimates for every observer remains constant for a long period
of time. This phenomenon can be explained by the conjecture that one observer
tends to refer indications relative to the lines forming the edges of graduation and to
the middle (fraction 0.5) of a graduation. Another observer refers indications to the
fractions 0.4 and 0.6 of a graduation. A third observer prefers fractions 0.2 and 0.8
of graduations and so on.

The error in estimation of tenths of graduations depends on the thickness of the
markers — the lines forming the scale. The optimal thickness of these markers is 0.1
of the length of a graduation. The length of a graduation also significantly affects
the error in reading tenths of a graduation. Instrument scales for which tenths of a
graduation can be read are usually made so that the length of a graduation is equal to
about 1 mm (not less than 0.7 mm and not more than 1.2 mm). On the whole, for a
random observer, the distribution of systematic errors in the readings of tenths of a
graduation can be assumed to be uniform with limits of £0.1 graduations.

Let us now consider types of systematic errors according to their properties. In
this regard, constant systematic errors are distinguished from regularly varying
systematic errors. The latter, in turn, are subdivided into progressing and periodic
errors and errors that vary according to a complicated law.

A constant systematic error is an error that remains constant, and for this reason,
it is repeated in each observation or measurement. For example, such an error will
be present in measurements performed using the same instruments and devices that
have a systematic error: balance weights, measuring resistors, and so on. The
personal errors made by experienced experimenters can also be classified as
constant (for inexperienced experimenters, they are usually of a random character).

Progressing errors are errors that increase or decrease with passing of time, so
every later observation will have a higher or lower error. Such errors are caused, for
example, by the change in the working current of a potentiometer from the voltage
drop of the storage battery powering it.

Periodic errors are errors that vary with a definite period. In the general case, a
systematic error can vary according to a complicated aperiodic law.
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The detection of systematic errors in a measurement is a complicated problem.
It is especially difficult to detect a constant systematic error. To solve this
problem, several measurements (at least two) should be performed by fundamen-
tally different methods. This method is ultimately decisive. It is often realized by
comparing the results of measurements of the same quantity that were obtained
by different experimenters in different laboratories.

It is easier to discover variable systematic errors, which can be done with the
help of statistical methods, correlation, and regression analysis. But nonmathemat-
ical possibilities also should not be avoided. Thus, in the process of performing a
measurement, it is helpful to employ a graph on which the results of the
measurements are plotted in the sequence in which they were obtained. The overall
arrangement of the points obtained makes it possible to discover the presence of a
systematic change in the results of observations without mathematical analysis. If a
regular change in observational results has been found and it is known that the
measured quantity did not change in the process, then this indicates the presence of
a regularly varying systematic error. The human capability of perceiving such
regularities is widely employed in metrology, although this capability has appar-
ently still not been thoroughly studied.

It is also helpful to measure the same quantity using two different instruments
(methods) or to measure periodically a known quantity instead of the unknown
quantity.

If the presence of a systematic error has been discovered, then it can usually be
estimated and eliminated. In precise measurements, however, this often presents
great difficulties and is not always possible.

In most fields of measurements, the most important sources of systematic errors
are known and measurement methods have been developed that eliminate the
appearance of such errors or prevent them from affecting the result of a measure-
ment. In other words, systematic errors are eliminated not by mathematical analysis
of experimental data but rather by the use of appropriate measurement methods.
The analysis of measurement methods and the systematization and generalization
of measurement methods are important problems, but they fall outside the scope of
this book, which is devoted to the problem of analysis of experimental data. For this
reason, we shall confine our attention to a brief review of the most widely
disseminated general methods for studying such problems.

Most constant systematic errors are estimated analytically before the measure-
ment and not from the experimental data obtained during the measurement. These a
priori estimates usually produce definite (nonprobabilistic) limits for these errors.
We shall further divide constant systematic errors into absolutely constant and
conditionally constant errors.

By absolutely constant errors, we mean errors that, although they are specified
by definite limits, remain the same in repeated measurements performed under the
same conditions with every instance of measuring instrument of a given type. These
measurements will all contain the same absolutely constant elementary errors.
Consider for example a thermocouple. The errors of thermocouples of each type
are rated by specifying their standard characteristic (the dependency of the output
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EMF on the temperature difference at input). Every point of this characteristic has
its own error, which is constant for this point. There are known limits of error for the
thermocouple characteristic as a whole, so that the error at any point of the
characteristic falls within these limits. This information should be taken into
account when estimating the inaccuracy of the measurement of temperature.

By conditionally constant errors, we mean errors that have definite limits but
can vary within these limits due to the individual properties of particular measuring
instruments used in the measurement. A typical example of such an error is the
measurement error caused by the intrinsic error of the measuring instrument.

The intrinsic error, by its nature, can be a purely systematic error, but it can also
have a random component. For example, for weights, the intrinsic error does not
have a random component, but the actual magnitude of the intrinsic error varies from
one weight to another. The intrinsic error of an electric measuring instrument with an
indicator needle has both systematic and random components, but on the whole, the
intrinsic error has definite limits that are the same for any instrument of a given type.

A conditionally constant error can even be purely random. Examples are the
rounding error in reading the indications of analog instruments and the error caused
by the limited resolution of digital instruments.

In summary, a fundamental property of conditionally constant elementary errors
is that although they have definite limits, they can vary within these limits.

Let us now turn to random errors. Before we proceed, it is interesting to note that
the random errors are usually not classified into categories based on their causes,
because a random error occurs in the course of a multiple measurement and is not
predicted from an a priori analysis like systematic errors.

The random error is estimated using data obtained in the course of the measure-
ment. If the random error is significant, then the measurement is performed many
times. The primary characteristic of a random error is usually the standard devia-
tion, which is calculated from the experimental data. The entire standard deviation,
and not its separate components, is estimated directly. For this reason, there is no
need to qualify the term random measurement error with the additional word
elementary.

When performing an analysis, it is important to distinguish purely random and
quasirandom errors. Purely random errors can arise from different reasons. For
example, they can arise from noise or small (regarded as permissible) variations in
the influence quantities or the random components of the errors of the measuring
equipment.

Quasirandom errors appear in measurements of quantities that are by definition
averages, when the quantities being averaged are constant. As the simplest (albeit
artificial) example, one could measure a side of a (assumed to be) square object as
the average of its all four sides. Each side will be somewhat different from the
others, but will remain constant.

With quasirandom errors, the differences between individual quantities being
averaged are not random but are regarded as random. Using this assumption, the
quasirandom error of the measurement result can be characterized, just as in
the case of a purely random error, by an estimate of the standard deviation.
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4.3 Modeling of Elementary Errors

Ultimately, elementary errors are needed to assess the overall inaccuracy of the
measurement, which usually means estimating the uncertainty of the measurement
result. In other words, the measurement uncertainty is calculated from the elemen-
tary errors that are components of the overall measurement inaccuracy; i.e., this is a
problem of synthesis, performed mathematically. Correspondingly, elementary
errors must be represented by mathematical models. We shall examine the most
common types of elementary errors (according to their properties) from this
viewpoint: absolutely constant errors, conditionally constant errors, purely random
errors, and quasirandom errors. We will not consider models of the variable,
progressing, and periodic systematic errors because it is impossible to specify
general models for these types. Thus, these errors should be taken into account
differently in each particular case.

4.3.1 Absolutely Constant Errors

An absolutely constant error has the same value in any repeated measurement,
although this value is unknown. Only the limits of these errors are known. Modeling
of these errors depends on how one intends to estimate the accuracy of the
measurement that employs a measuring instrument with these errors.

If universal estimation of measurement accuracy is planned, then the estimation
must apply no matter what particular measuring instrument instance of a given type
is utilized. Then, over the entire set of these instrument instances, their absolute
constant errors should be modeled mathematically as a random variable. It is well
known that among distributions with given limits, the uniform distribution has the
highest uncertainty (in the sense of information theory). As an analogy, the
rounding error also has known limits, and in mathematics, this error has for a
long time been regarded as a random quantity with a uniform probability distribu-
tion. For this reason, we shall also assume that the model of such errors will be a
random quantity with a uniform probability distribution within prescribed limits.

One can also imagine a situation where the error of the measuring instruments
remains the same in all instruments of a given type and thus the probabilistic model
cannot be used. Let us go back to the example with measuring thermocouples from
Sect. 4.2. For all thermocouples of a given type, the same transfer function is
specified in their documentation as a standard characteristic of this type of
thermocouples. If we assumed that the thermocouples were made from ideally
pure materials, all the thermocouples of this type would have exactly the same
transfer function. The function listed as their characteristic would still include the
approximation error as discussed in Sect. 4.2. But since this error is constant within
the known limits for all devices, the probabilistic model is not suitable in this case.
A mathematical model of such errors should rather be considered a deterministic
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quantity whose magnitude has a deterministic interval estimate; i.e., it lies within an
interval of known limits. We discuss this model in more detail later in this section,
and show how to combine this deterministic quantity with other errors in Sect. 4.7.

Obviously this deterministic model only applies to idealized scenarios. In our
example, real thermocouples use materials with impurities, and their characteristics
will not be identical from one device to the next. Thus, deterministic model in
universal estimation of measurement accuracy has limited applicability.

If individual estimation of measurement accuracy is planned, then the accuracy
estimation must account for the properties of the specific measuring instrument
instance used. For instance, assume that an electrical resistor with nominal
resistance 10 Q and the limits of error + 0.01% is used in a measurement with
individual accuracy estimation. The actual resistance of the resistor is unknown,
and all we know is that it cannot differ from the nominal value by more than 0.01%.
Yet its resistance is constant in all measurements using this particular instrument,
hence its deviation from the nominal value is an absolutely constant error. In
contrast with the universal accuracy estimation, we should model this error as a
deterministic quantity with a deterministic interval estimate. Unlike our earlier
idealistic thermocouple example, this case is often encountered in practice.

However, with individual accuracy estimation, the error of the given device is
often removed by an appropriate correction. The correction is determined from the
data in a calibration library, which also specifies the inaccuracy of the calibration.
Thus, instead of the model for the instrument error, we now need to find a model for
the error of the calibration of the instrument. The model of this error is always a
random variable, and its distribution function should in principle be specified in the
certificate from the calibration laboratory. But if the certificate does not provide it,
the model for the calibration error needs to be selected based on what is known
about the inaccuracy of the calibration. If the calibration inaccuracy is given in the
form of the limits, then, for the information-theoretic reasons mentioned earlier, a
random variable with uniform distribution should be taken as the model. If the
inaccuracy is given in the form of standard deviation, then based on the information
theory again, a random variable with the normal distribution must serve as
the model. In both cases, the mathematical expectation of the distribution is taken
to be zero.

Returning to our example with the electrical resistor, assume that this resistor has
undergone attestation and as the result has received the value 10.0003 Q and the
limits of inaccuracy =+ 0.001%. The deviation from the nominal value (0.0003 Q)
is strictly speaking no longer an error since the corresponding correction can
be applied. The calibration error (represented by the limits == 0.001%) should
be considered a conditionally constant error, and its model should be a random
variable uniformly distributed within the specified limits.

In addition to the cases (as in our first resistor example) where the absolutely
constant error is not known due to lack of calibration, there are situations where
calibration is not feasible. For example, the measurement may utilize a unique
measuring instrument, such as an etalon of a measurement unit, for which the value
of its uncorrected systematic error is unknown although the limits covering this
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error are known. Again, a mathematical model of such errors should be considered
a deterministic quantity with a deterministic interval estimate, i.e., the error lies
within an interval of known limits.

We can foresee an objection to this model. There is an opinion that if the value of
the error is unknown, then it can be regarded as a random quantity. However, this is
not correct. A model of an object can be constructed only based on what we know
about it and not based on what we do not know.

There is another objection. If the deterministic model above is adopted, then
when several absolutely constant errors are summed, their limits must be added
arithmetically. This process is equivalent to the assumption that all terms have
limiting values and the same sign, which is unlikely. The objection then is that the
deterministic model leads to overestimation of the overall measurement inaccuracy.
This objection also is invalid. First, the argument “unlikely” is not correct here,
because we are not using a probabilistic model. Second, the fact that we do not like
the result — the answer seems exaggerated — is also not an argument. In mathemat-
ics, precisely the same situation arises in methods of approximate calculations and
the limits of errors are added arithmetically in those methods.

Fortunately, in a measurement, rarely more than one or two absolutely constant
errors exist, and they are, as a rule, insignificant. Thus, summing their limits
arithmetically does not usually lead to overly exaggerated uncertainty in practice.

4.3.2 Conditionally Constant Errors

The values of these errors characteristically vary from one measurement to another
and from one measuring instrument to another, and they are different under
different conditions. In all cases, however, in each such error, the limits of the
interval containing any possible realization of the error remain unchanged and are
typically known to the experimenter.

As a mathematical model of conditionally constant errors, one would like to use
a random quantity. To specify this model, however, it is necessary to know the
probability distribution function of this random quantity. Ideally, one would like to
find this function based on the experimental data. Such an attempt was made for the
intrinsic error of measuring instruments. The results of such an investigation were
presented in Chap. 2. Unfortunately, they showed that the distribution function of
the intrinsic error and, of course, the distribution function of the additional errors
could not be found from sample data.

Thus, to adopt the probabilistic model for conditionally constant errors, the
distribution function must be prescribed. Using the same information-theoretic
considerations discussed in Sect. 4.3.1, we assume that the model of conditionally
constant errors will be a random quantity with a uniform probability distribution
within prescribed limits. This suggestion was made a long time ago [48]. At
the present time, this model is widely employed in the theory of measurement
errors [2, 5, 11].
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An overwhelming majority of instrument errors belong to the conditionally
constant errors. Absolutely constant errors are rarely encountered in measurement
data processing. Furthermore, as we have seen, in most cases where absolute
constant errors do arise, they are modeled in the same way as conditionally constant
errors — as uniformly distributed random variables. Thus, for simplicity, in what
follows we will refer to both these types of errors as conditionally constant. We will
distinguish the absolutely constant errors only when we need to use the determin-
istic model in accounting for these errors during data processing.

4.3.3 Purely Random Errors

Such errors, often referred to as just “random errors” for short, appear in multiple
measurements. They are characterized by the standard deviation that is computed
from the experimental data.

The form of the distribution function of random errors can, in principle, be found
based on the data from each multiple measurement. In practice, however, the
number of measurements performed in each experiment is insufficient for this.
Thus, every time measurements are performed, it is assumed that the purely random
errors have a normal distribution, relying on the implicit assumption is that the
hypothesis of the normal distribution was checked in a preceding experiment.
Unfortunately, the normal distribution hypothesis is rarely directly checked. Yet
the results obtained using these assumptions are not inconsistent with the practice so
that this assumption is evidently justified. Thus, we shall assume that the mathemat-
ical model of random errors is, as a rule, a normally distributed random quantity.

4.3.4 Quasirandom Errors

As noted above, these errors occur when measuring quantities that are averages by
definition, and the value of each separate quantity being averaged remains constant.
These quantities are essentially not random, but can sometimes be regarded as a
random sample from a general population of quantities. Whether or not such an
assumption is justified depends on the goal of the measurement, and it is a judgment
call based on agreement of experts. If one does assume the randomness of the
underlying quantities, the parameters to be used to characterize their distribution
should also be determined by agreement. Most often the standard deviation is
chosen as this parameter.

We will conclude this section with a discussion on the question of interdepen-
dence and correlation of elementary errors. Mathematically, it is preferable to
regard these errors as correlated quantities, because this approach is extremely
general. However, such an approach complicates the inaccuracy estimation, and
most of the time it is not justified. Under reference conditions, all elementary errors



4.4 Composition of Uniform Distributions 119

are independent and thus are uncorrelated. Exceptions can be encountered in
measurements performed under rated operating conditions, especially in the case
of indirect measurements and measurements performed with the help of measuring
systems, when the same influence quantity causes appreciable additional errors in
several instruments or components in the measuring channel of the system. An
example is a measurement in which a measuring transducer, amplifier, and
automatic-plotting instrument are employed. A change in the temperature of the
medium can cause these devices to acquire an additional temperature-induced error.
Obviously, these additional errors will be interrelated. Accounting for the depen-
dency between additional errors is considered in Chap. 5.

4.4 Composition of Uniform Distributions

In Sect. 4.3, we have adopted the uniform distribution as the mathematical model of
conditionally constant elementary errors. Given several conditionally constant
elementary errors that contribute to the overall measurement error, how can we
assess the overall error? As already mentioned, this is a problem of synthesis of the
overall error from its components. To solve this problem, one must know how to
construct the composition of uniform distributions. The theoretical solution of this
problem is well known and is presented, for example, in [53]. However, our applied
problem at hand allows us to construct a simplified solution. We will consider this
solution in the current section, and then, in subsequent sections, use the described
apparatus to estimate the inaccuracy of both direct and indirect measurements.
Consider n random quantities x;(i =1,...,n), each of which has a uniform
distribution centered at zero in the interval [—1,+1], and denote 9 = £ |x; The
probability density function of the sum of these random quantities has the form

n—1

) :ﬁ ('9+g>' - <T> («9+g— 1)"71

+(§)(,9+;2)'”...

where the sum must include only the terms in which power bases, i.e.,d +5, 8 +7 — 1,
and so on, are nonnegative. Note that the number of terms therefore depends on both
the number of components being summed, n, and the argument d. For example,
if n = 2, then

07 9 S - 17

9+1, —-1<I9<L0,

1-9, 0<9<1,

0, 1 <4

L@ =0O+1)-29=
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The probability density function of the sum of two terms has the form of a
triangle. For n = 3, the graph of f3(9) consists of three segments of a quadratic
parabola and looks very much like the curve of a normal distribution. For n = 4,
this distribution is almost indistinguishable from the normal distribution.

Given the above equation for the probability density, it is not difficult to find the
probability distribution function

Ao = |(05) = () (or5-1)"+ (5) (45-2)" =] @

In practice, however, it is desirable to have a simpler and more convenient
solution. Such a solution can be found by observing that we only need to find the
confidence interval for the combined error and not its full distribution function. In
other words, we are interested in limits +6, for the sum of the components such
that the probability

P{|9] < 0,} = a, a > 0.90.
Bearing this in mind, we shall examine the distribution function F,(8) in
the extreme intervals of its argument range with nonzero probability density,

[-n/2,—n/2 + 1] and [n/2 — 1,n/2].
For these intervals, (4.1) assumes the form

1 n
(9+5)" tor—S<o< -,

Fgy=d MV 2 2 2
' 1—1(8—f)" for - 1<9<2
P 2 2 2

The composition of the distributions is symmetric relative to the ordinate axis.
We shall discuss how to calculate, given the probability distribution, the limits of
the confidence interval corresponding to a fixed value a of the confidence
probability.

The limits of the confidence interval corresponding to a are +6,,.

By definition, the probability that the true value of a quantity & lies within the
confidence interval [—6,, +0,] is a. Therefore, the probability that the quantity does
not lie in the confidence interval is (1 —a). If the distribution is symmetric relative
to 0 (and we are studying a symmetric distribution), then the probability that the
quantity will take on a value less than —@, will be equal to the probability that it
will take on a value greater than +6,. These probabilities are obviously equal to
(1—a)/2.

Consider first the left-hand branch of the distribution function. The probability
corresponding to the point —@,, is equal to P{9 < —6,} = (1 — a)/2. Considering
now the right-hand branch, the probability that 9 < 46, will obviously be equal to
L-[(1-a)/2] = (1 +a)/2.
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We shall now return to our problem. Given F,(9) and a, we are required to find
the quantiles —0, and +6,, (recall that the quantile of a distribution function for a
given probability level is the argument on which the distribution function takes the
value equal to the specified probability level). Since these quantiles have equal
absolute values, we shall only calculate —6,,.

Since the confidence probability is usually high (e.g., 0.95), quantile —6,, is
likely to fall into the left extreme interval [—n/2, —n/2 + 1] (we can check if that is
indeed the case once we calculate it, or even beforehand as we will see shortly).
Then, we have

P{9<0,) = Fo(—6,) = % (~0 +g) _ —. 4.2)
from which 6, can be calculated.

For example, let @ = 0.99 and n = 4. Then (1 —a)/2 = 0.005. Let us check
whether the value (—6,) corresponding to this probability falls within the left
extreme interval [—2, —1]. To do so, we can simply find the value of the cumulative
distribution function for the upper limit of this interval, i.e., —1:

1 ‘. 1

P =g+ 2 =555

1 = 0.041.

As 0.005 < 0.041, and because the cumulative distribution function is a mono-
tonically growing function, we know that the value (—6,) is less than (—1) and
hence lies in the interval [—2, —1].

We shall represent 8, found from formula (4.2) in the following form:

On=ky|> 0, 4.3)
i=1

where 0; represents the range of each component error x;, (—6; < x; < + 6;), and k

is a correction factor. In the case at hand, 6;, = 1/2 foralli = 1,...,n; i.e,
0, = kg, k = 20,//n. (4.4)

Formula (4.3) is convenient for calculations, and for this reason, we shall
investigate the dependence of the coefficient k on @ and n. The calculations are
performed as follows. Given a and n, we find 6, from (4.2). Next, the correction
factor k is found for the given values of a and n from formula (4.3).

Continuing with our example of @ = 0.99 and n = 4, we find 6, by substituting
these values into (4.2):

1
21 (—0at 2)* =0.005, 6,=2—v24x0.005=1.41.
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Table 4.1 Values of the coefficient k for various number of component errors and confidence
probability

Values of the coefficient k for confidence probability a

Number of component errors, 1 0.90 0.95 0.99 0.9973
2 0.97 1.10 1.27 1.34
3 0.96 1.12 1.37 1.50
4 a 1.12 1.41 1.58
5 a a a 1.64
o0 0.95 1.13 1.49 1.73

“These values are not calculated because critical values —9, and +8, fall outside the through
extreme intervals of the cumulative distribution function domain.

Having found 6, we obtain from formula (4.4):

_2x141
Rz

Table 4.1 presents the values of k for other values of a and #; these values were
calculated similarly to the method above. The value of k£ for n — oo was found
using the fact that by the central limit theorem, the resulting distribution can be
assumed normal.

Recalling the notation 9 = Zf-\': 1Xi, we can obtain the standard deviation of 9 as
follows:

k = 1.41.

V[lg} =V in = ZV[XI]
i=1 i=1

But, as is well known, V[x;] = 67 /3. Therefore

> 6;
_ =l

UUES (4.5)

Furthermore, the mathematical expectation of 9 is zero because the mathemati-
cal expectation of each x; is zero. Thus, if » — 0o, we have random quantity § with
a normal distribution N(0, ¢). We can then now calculate the absolute value of the
limits of the confidence interval as 8, = 7,0, where z, is the quantile of the standard
normal distribution N(0, 1) corresponding to the probability p = (1 + a)/2 (see
above for the explanation of computing probability p). Thus, we obtain

Z n
0, = % 0? 4.6
ﬁ,/; : (4.6)
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Table 4.2 . Average values « 0.90 0.95 0.99
for coefficient k k 0.95 1.10 1.40
k
1.5
n=4
- N
1.4 N
n=3 7\ 0=0.99
1.3
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Fig. 4.2 Coefficient £ as a function of the change in limits of one of the component errors relative
to the other component errors (the number of components n = 2, 3, 4)

Comparing (4.6) with (4.3), we find

Z

k = .
n—oo \/§

For example, for @ = 0.9973, we obtain z, = 3 and thus, when the number of
component errors is large, k = 1.73.

Considering Table 4.1, one can observe that the correction factor k has the
interesting property that for & < 0.99, it is virtually independent of the number of
components. We can make use of this property and take for k the average values in
each column. These values of k are given in Table 4.2.

The error caused by using the average values of &, as one can see by comparing
them with the exact values given in Table 4.1, does not exceed 10% for a = 0.99
and 3% for a = 0.95.

The small effect of the number of components indicates indirectly that it is not
always necessary to assume, as was done above, that all §;, are equal. For instance,
assume that one of the limits, ), is gradually reduced. The effect on factor £ will be
negligible because even in the extreme, when 6, is reduced all the way to zero and
the /th component disappears, the values of k for (n — 1) and » components are
virtually the same. If, on the other hand, 6, is gradually increased, then the factor £
will decrease.

Figure 4.2 depicts the dependence of k on the ratio ¢ = 6,/6, for @ = 0.99, where
6y is the absolute value of the remaining terms, which are assumed to be equal.
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This figure can be used to find k more precisely than using Table 4.2. The figure also

shows that for every n, coefficient k is at the maximum when all §; are equal.
Factor k can also be calculated using formulas approximating the curves

presented in Fig. 4.2. For @ = 0.99 and n = 4, a good approximation formula is

0,
k=1.45-0.05—.
0

o

Formula (4.6) can be used instead of (4.3) to calculate 6, when the number of
terms is large. However, as follows from the above-presented estimate of the
error of calculations based on formula (4.3), the accuracy cannot be increased by
more than 10% (for @ = 0.99). At the same time, formula (4.3) is also useful for
summing a small number of terms. For this reason, for practical calculations,
relation (4.3) is preferable.

With a confidence probability @ = 0.99 and n < 4, it could turn out that our
approximate calculation of 6, would produce 6, > X! ,6;. But this obviously
cannot happen. In this case, one can take

Ou = Z:‘; 0.

Of course, a more correct alternative in using the above value would be to obtain
a more accurate value of the coefficient k from the curves in Fig. 4.2.

There arises, however, the question of how well founded the confidence proba-
bility choice a = 0.99 is. In most cases, this limit does not correspond to the
reliability of the initial data, and the limit @ = 0.95 is more appropriate. For
a = 0.95, Table 4.2 gives k = 1.1, and formula (4.3) assumes the form

OoosV = 1.1, |> 67
i=1

In this case, 6, < X! ,6;, always holds. To see this, first let n = 2 and assume
without loss of generality that 8; < 8,. It is not difficult to verify that the inequality

Op = 1.1,/67 + 03, < (0; + 6>) holds as long as 0,/0, > 0.11. But the last condi-

tion is always satisfied in practice because an elementary error that is about ten
times smaller than any other elementary error can be neglected.

Consider now three components, and assume 63 > 6, > 6. Denoting T = 65 +
6,, we obtain an equivalent inequality

1.14/T2 + 6% — 2050, < (T + 6,).

The term 26036, > 0, and therefore it is enough to prove the above inequality
without this term under the square root (indeed, if the simplified inequality holds,
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the original inequality will only be stronger). Then, similar to the case with two
components we have just studied, we can show that the simplified (and hence the
original) inequality holds as long as

0,
—— > 0.11.
0, + 65

It is obvious that this condition holds easier than for two components and is
always satisfied in practice. On the whole, as the number of component elementary
errors increases, the inequality 6, < Z}_,6; is satisfied only more easily. Since we
showed that this inequality is satisfied in practice even for two components, we can
conclude that it always holds in practice for an arbitrary number of components.

4.5 Methods for Precise Measurements

Methods for precise measurements attempt to eliminate systematic errors. They
also reduce random errors by means of repeating the measurement many times and
statistical processing of the obtained results. The most common methods for precise
measurements are the following.

Method of replacement. This method involves replacing the quantity to be
measured with a known quantity in a manner so that no changes occur in the
indication of all measuring instruments employed. Then, we can assume that the
measured quantity is equal to the known quantity that replaced it. The method of
replacement is the most accurate method of measurement.

Consider, for example, Borda’s method for weighing. The method is designed to
eliminate the systematic error from the inequality of the arms of the balance. Let x
be the measured mass, P be the mass of the balancing weights, and /, and /, be the
lengths of the arms of the balances. The measurement is performed as follows. First,
the body being weighed is placed in one pan of the balance and is balanced with the
help of a weight with mass 7. Then,

123
=-=T.
x=q

Next, the mass x is removed and a known mass P that once again balances the
pans is placed in the empty pan:

As the right-hand sides of both equations are the same, the left sides are also
equal to one another, i.e., x = P, and the fact that /; # /5 has no effect on the result.



126 4  Direct Measurements

The resistance of a resistor can be measured in an analogous manner with the
help of a sensitive but inaccurate bridge and an accurate magazine of resistances.
Several other quantities can be measured analogously.

Method of contraposition. The measurement is performed with two observations,
and it is performed so that the reason for the constant error would affect the results
of observations differently but in a known, regular fashion.

An example of this method is Gauss’s method of weighing. First, the body being
weighed is balanced by balance weights P;. Using the notation of the preceding
example, we have

Next the unknown weight is placed into the pan that previously held the
balancing weights and is again balanced by the balance weights. Now we have

We now eliminate the ratio /,//; from these two equalities and find

X = \/P1P2.

The sign method of error compensation. This method involves two measurements
performed so that the constant systematic error would appear with different signs in
each measurement.

For example, consider the measurement of electromotive force (EMF) x with the
help of a DC potentiometer that has external wires with a parasitic thermo-EMF.
One measurement gives E;. Next, the polarity of the measured EMF is reversed, the
direction of the current in the potentiometer is also reversed, and once again the
measured EMF is balanced. This process gives E,. If the thermo-EMF produces
error 9 and E; = x+ 9, then £, = x — 9. From here,

x—E1+E2
===

Elimination of progressing systematic errors. The simplest and most frequent case
of a progressing error is an error that changes linearly in proportion to time. An
example of such an error is the error in the measurement of voltage with a
potentiometer, if the voltage of the storage battery, generating the working current,
drops appreciably.

Formally, if it is known that the working current of the potentiometer changes
linearly in time, then to eliminate the arising error, it is sufficient to perform two
observations at known times after the working current along the standard cell is
regulated. Let
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E, =x+Kt, E, =x+Kt,

where #; and ¢, are the time intervals between regulation of the working current and
the observations, K is the coefficient of proportionality between the measurement
error and the time, x is the voltage being measured, and E and E, are the results of
the observations. From the above equations, we obtain

Eit, — B>ty
X=—" "
h—h

For accurate measurements, however, it is best to use a somewhat more compli-
cated method of symmetric observations. In this method, several observations are
performed equally separated in time and then the arithmetic means of the pairs of
symmetric (i.e., the first and last, the second and the second-to-last, etc.)
observations are calculated. Theoretically, with linearly changing systematic errors,
these averages must be equal, which makes it possible to control the course of the
experiment and to eliminate these errors.

4.6 Accuracy of Single Measurements Using a Measuring
Instrument Under Reference Conditions

The great majority of measuring instruments were created for single measurements.
Some of these instruments are so simple that the inaccuracy of corresponding
measurements can be estimated without calculation. For example, the inaccuracy
of the length measurement performed with a ruler is determined simply by rounding
the readings on the ruler. Also, calculating the inaccuracy is not necessary when it is
known beforehand that the accuracy of that measurement will be “good enough” for
the goal of this measurement. This includes most of the household measurements,
such as measuring the voltage of a car battery with an industrial tester or weighing
the ingredients for a cooking recipe. In other measurements, the inaccuracy must be
calculated.

Under reference conditions, the inaccuracy of single measurement is determined
by the limits of the intrinsic error: there are no additional errors by definition. The
limits of the intrinsic errors of measuring instruments are known; they are listed in
the documentation provided by the manufacturers or in the certificates from the
calibration laboratories. The problem is only to recalculate these limits, if neces-
sary, for a given indication of the instrument, i.e., for the measurement result.

If the limits of the intrinsic error are given in the form of absolute or relative
errors and are the same for the whole range of the instrument, then recalculations
are not required and these limits are the limits of the given elementary error. But
often the limits of intrinsic error of a measuring instrument are given in the form of
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a fiducial error, i.e., as a percentage of the fiducial value. The conversion into
relative error is then made using the formula

S =y 4.7)
X

where §;, is the limit of the intrinsic error in relative form, y is the limit of the
fiducial error, xy is the fiducial value, and x is the reading of the instrument in the
corresponding units. Conversion into the form of absolute errors is done according
to the formula

Ajp = OinX = yxn. (4.8)

It was mentioned in Sect. 2.3 that the fiducial errors are expressed in percents.
Therefore, to obtain A;, in proper form of absolute errors, it must be divided by 100.

When the estimate of inaccuracy of a single measurement is obtained using the
limits of intrinsic errors listed in the manufacturer’s documentation, the estimate
remains correct even if the instrument used in the measurement is replaced with
another instrument of the same type. Indeed, the limits of the intrinsic error listed
in the manufacturer’s documentation apply to all instruments of this type. Recall
that measurement inaccuracy estimates obtained from such data were termed
universal in Chap. 1. In contrast, the estimates obtained using data from a certifi-
cate of a calibration laboratory that applies to a specific instrument were called
individual.

In some cases, a measurement error may arise from the interaction between the
object of study and the measuring instrument employed. For instance, when mea-
suring an electric voltage with an indicating voltmeter, the voltmeter reacts on the
strength of the electric current it consumes, and as it was mentioned above in
Sect. 4.2, its indication shows not the voltage being measured but the voltage on the
voltmeter’s terminals. This creates a systematic error, which depends on the relative
values of the input impedance of the voltmeter and the internal impedance of the
source of the voltage being measured. Most often, this error is negligibly small. But
in some cases it needs to be taken into account and be compensated with a
correction. Then only the error of the correction will remain as a contributing factor
in the inaccuracy of the measurement. We consider in detail an example of this kind
of error in Sect. 8.1.

We shall now consider several examples of calculating the universal estimates of
the inaccuracy of single measurements.

1. Industrial tester WV-531A (RCA). This is a multifunctional instrument, and its
accuracy is different for different measurement ranges. Let us assume, for
example, that we need to measure the AC voltage using the 150V range. The
manufacturer specification says that the instrument’s inaccuracy in this range for
AC voltage measurements is 4% of the full-scale value.
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Table 4.3 A fragment of specification of a multirange voltmeter

Time after Temperature
calibration 24 h 90 days 12 months coefficient
0-18 and 28-55°C
Temperature 23 £ 1°C 23 + 5°C 23 + 5°C per 1°C
10.00000 V — — +(35 ppm + (5 ppm
+ 5 ppm) + 1 ppm)
1000.000 V + (20 ppm +(35 ppm +(45 ppm + (5 ppm
+ 6 ppm) + 10 ppm) + 10 ppm) + 1 ppm)

So, we have here the limits of fiducial error y = +£4% and the fiducial
value xy = 150V. Assume the instrument indication in our measurement
was 117.5 V. In accordance with (4.7), the limits of error of this measurement
result are

150
5—:|:4%><m_:|:5%.

In the form of absolute error, these limits are

4% x 150

= +6V.
100%

Thus, the result of this measurement must be presented as

118V + 5% or (118 £ 6)V.

2. Fluke 5700 A [26]. Assume we need to perform a measurement at the scale range
of 11V. The limits of intrinsic error at this range are £(5 ppm of output +4 pV).
If the indication of the instrument in our measurement is 10.000463V, then

the limits of error of this measurement will be

A = £(10.000463 x 5 x 107V + 4pV) = £54pV.

Since this can be considered a precise measurement, we can retain both signifi-
cant digits in the inaccuracy above and present the measurement result as
(10.000463 4 0.000054)V.

3. Consider the digital multirange voltmeter example from Chap. 2 with
specifications listed in Table 4.3.

We refer the reader to Chap. 2 for the clarifications on the meaning of the entries
in this table. We will only recall here that when the error of an instrument is listed
using two terms as in this table, the first term expresses the error relative to the
instrument indication, while the second term, even though it is expressed in the
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relative form, is not a relative error. As explained in Chap. 2, this term is a fiducial
error and is expressed relative to the value that corresponds to the end of the
measurement range of the instrument; this error is therefore the same for any
indication in the entire range even when recalculated to the absolute form.

Assume the voltmeter is used to measure 500.0 V immediately after calibration
and then again 12 months later, both times under reference conditions. Using the
above specification (in particular, the columns corresponding to 24 h and 12 months
since calibration), we shall evaluate the limits of absolute measurement error in
both cases. Note that since the instrument is used under reference condition, the last
column of the specification is not considered.

For the first measurement, we have:

A; = %(500 x 20 x 107 41000 x 6 x 107%)V = £16mV.
After 12 months, the limits of error become:

Ay = £(500 x 45 x 107 41000 x 10 x 107°)V = +32.5mV.

4.7 Accuracy of Single Measurements Using a Measuring
Instrument Under Rated Conditions

When measurement is performed under rated operating conditions, the measure-
ment result, as before, is given by the instrument indication. However, the calcula-
tion of the measurement inaccuracy turns into a more complex problem. Solving
this problem starts with estimating the elementary errors of the measurement.

Itis difficult to formulate a single method for estimating elementary errors, because
these errors are by their nature extremely diverse. The general recommendations
for solving this problem can nonetheless be formulated.

To estimate elementary measurement errors, it is first necessary to determine
their possible sources. If it is known that some corrections will be (or have been)
introduced, then the errors in determining the corrections must be included among
the elementary errors.

All elementary measurement errors must be estimated in the same manner, i.e.,
in the form of either absolute or relative errors. Relative errors are usually more
convenient for a posteriori error estimation, and absolute errors are more conve-
nient for a priori error estimation. However, the tradition of each field of measure-
ment should be kept in mind. Thus, for lineal-angular measurement, absolute errors
are typically used, whereas for measurements of electromagnetic quantities, rela-
tive errors are preferred.

An unavoidable elementary error in any measurement is the intrinsic error of the
measuring instrument. We presented the methodology of recalculating the intrinsic
error of the instrument into the elementary error of the measurement in Sect. 4.6.


http://dx.doi.org/10.1007/978-1-4614-6717-5_2

4.7 Accuracy of Single Measurements Using a Measuring Instrument Under Rated. . . 131

Additionally, the environmental conditions, characterized by the temperature,
pressure, humidity, vibrations, and so on, also affect the result of a measurement.
Each influence quantity, in principle, engenders its elementary error. To estimate it,
it is first necessary to estimate the possible value of the corresponding influence
quantity and then compare it with the limits of the range of values of this quantity
concerning the reference condition. If the influence quantity falls outside the limits
of reference values, then it causes a corresponding additional error; this error is also
an elementary error.

Consider an error due to the temperature. Let the temperature of the medium
exceed its reference values by AT. If, according to the rated operating conditions,
the limit of the additional error due to AT is the same for an interval T; < AT > T,
then this limit is the limit of the given additional error. If, however, for this interval,
the upper bound of the temperature coefficient is given, then the limits of tempera-
ture error are calculated according to the formula

(ST = :|:6()TAT7

where d7 is the limit of additional temperature error in the relative form and wy is
the upper bound of the absolute value of the temperature coefficient of the instru-
ment expressed as the percentage of the instrument indication.

In general, for influence quantity i, the dependence of the limit of additional
error §; or A; on the deviations of the influence quantity outside the limits of its
reference values can be given in the form of a graph or expressed analytically. In
either case, the manufacturer’s specifications of the instrument sometimes pro-
vide the influence function in the form of two components — the nominal
influence function and an admissible deviation from it. This form allows one to
take into account the deviation from the reference range by the corresponding
correction to the measurement result. In the process, the elementary error
decreases significantly, even if the influence function is specified with a large
margin of error.

Suppose, for example, instead of the upper bound of the temperature coefficient
wr, the temperature coefficient is listed in the form w'; = (1 + &) wry, where wy y
is the nominal temperature coefficient and € is the admissible deviation from it,
expressed in the relative form as a fraction of wy . For temperature deviation AT
from the upper limit of reference range, T, the additional error will be

67" = WT3NAT + Ea)T"NAT. (49)

Because the first term in the above equation reflects a deterministic nominal
dependency, we can account for it with the help of the correction

Cc = —WT7NAT X b7
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where b is the instrument indication. There then remains the temperature error
8'r = tewr yAT. (4.10)

Even if the influence function is listed comparatively inaccurately, for example
e = 0.2 (20%), the temperature error still decreases greatly, by a factor of 4-6 in
this case:

5r 1402
Or _ 222 fore.
5y 02 or

Finally, one should keep in mind that if the influence quantity itself is estimated
with an appreciable error, then this error must also be taken into account when
calculating the corresponding additional error.

In many cases, the input signal in a measurement is a function of time and
therefore the measurement result may have a dynamic error. This error is also an
elementary error that needs to be taken into account. Unfortunately, although the
treatment of dynamic elementary errors has been discussed in research literature
(e.g., [28]), the proposed methods are not mature enough to include here.

Once the errors of a single measurement have been analyzed, we have an
estimate of the limits of all elementary errors of the measurement. We now proceed
to the problem of synthesis, that is, the calculation of the overall inaccuracy of the
measurement. In general, this calculation can be done using the following step-by-
step procedure.

1. Identify all possible sources of elementary errors. The list of elementary errors
always includes the intrinsic error of instrument involved and additional errors
due to influence quantities whose values fall outside the limits of the reference
condition. Also, the interaction between that instrument and the object whose
parameter is being measured, the discrepancy between the object and its model,
and so on, must be taken into consideration.

2. Estimate the limits of all elementary errors. General recommendations to accom-
plish this step were described earlier. If point estimates have been obtained for
some elementary errors, then one must apply the corresponding corrections to
the instrument indication. In this case, the inaccuracy of the corrections must be
taken into account along with the other elementary errors. We gave an example
of a correction and of accounting for its inaccuracy earlier in this section, when
considering the nominal temperature coefficient of an instrument. Another
example can be found in Sect. 8.1.

3. Express the estimates of all elementary errors in the same form, either absolute
or relative. Note that, as discussed in Sect. 4.6, the intrinsic error is often
expressed as fiducial error. In this case, the fiducial error must be recalculated
to the absolute or relative error of the measuring instrument reading in the actual
measurement in question.

4. Calculate the inaccuracy of the measurement result. The procedure for this
calculation is described next.
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When one comes to step 4, all elementary errors have been estimated with their
limits. Further calculations will require us to distinguish conditionally constant errors,
absolute constant errors, and random errors. In single measurements, the vast majority
of elementary errors are conditionally constant errors. Random errors are usually
insignificant and can be accounted for as part of those conditionally constant errors in
which they manifest themselves. Absolute constant errors occur infrequently.

We will begin with the conditionally constant errors. Among them, let {, be
the intrinsic error of the measuring instrument and ;, i = 1,...,m, be the other
elementary errors.

We now need to combine, or “sum up” these errors:

(=G+> L 4.11)
i=1

where £ is the overall conditionally constant error. We know the limits 6, and 6, of
the elementary errors:

ICo| < 6o and [¢;| < 6.

Combining the elementary errors is often done by summing up their limits
arithmetically. This is obviously the safest estimate, reflecting the worst-case
scenario that all conditionally constant errors simultaneously reached their upper
or lower limits. However, unlike in the case of absolute constant errors (where the
errors are what they are and thus the question about the practicality of a particular
combination of error values is invalid), the above scenario is unacceptable in the
case of conditionally constant errors. A more realistic solution to this problem is
provided by a probabilistic approach. To this end, we can utilize the mathematical
model that we accepted for conditionally constant errors, which is to consider them
as random variables uniformly distributed within their limits. If we in addition
assume that these random variables are independent,' we can apply the discussion
from Sect. 4.4 to calculate the measurement uncertainty as follows.

According to Sect. 4.4, the measurement uncertainty can be calculated using
simple formula (4.3), which in our case is more convenient to rewrite to form:

4.12)

! This assumption in fact follows naturally from the way instrument’s additional errors are rated
separately for individual influence quantities. However, further discussion on the validity of this
assumption is outside the scope of this book.
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The analysis of Sect. 4.4 showed that for the most common confidence proba-
bility @ = 0.95, coefficient ky 95 = 1.1 and, remarkably, its value is independent of
the number of components n = m +1. The inaccuracy of using (4.12) with this
constant value for k is less then 3%. For a = 0.99, if we assume kg 99 = 1.4, the
inaccuracy of the calculation using (4.12) ranges from +10% for n = 2 to —6%
for n tending to infinity.

One can increase the accuracy of this calculation in the last case by utilizing
Table 4.1 or the graph on Fig. 4.2 to select the specific value of coefficient & for the
measurement at hand. However, when the number of component errors is five or
higher, it is justified in practice (and more convenient) to follow the analysis from
Sect. 4.4 for the case of a large number of variables, which assumes that the
combined variable has a normal distribution.

According to (4.5), the variance 6 of the resulting error can be obtained as

1 m
o> =0%/3 +3 ;95. (4.13)

Knowing the variance and the shape of the distribution function, one can
construct the confidence interval that covers the true value of the measurand with
a given confidence probability a, i.e., to calculate the uncertainty of the measure-
ment result as follows:

Uy = 2,0, (4.14)
where z, is the quantile of the standard normal distribution for probability p = (1;0;) .

For a = 0.95, (4.14) brings a well-known result uy 95 = 1.960, and for ¢ = 0.99
Upg9 = 2.580.

We would like to conclude the discussion of combining conditionally constant
errors with an important practical recommendation. As we mentioned in Sect. 4.4,
when the number of component errors is particularly small, i.e., four or less, and
a > 0.99, it is possible that the probabilistically combined error could produce an
exaggerated estimate, which can even exceed the arithmetic sum of the component
errors. Thus, for small number of components, it is advisable to combine the
elementary errors in both ways, arithmetically and probabilistically, and use as
the result the smaller of the two uncertainty values produced. Note that this does not
contradict the principle of upper-bound error estimates because the error can never
exceed the arithmetic sum of its components.

Now consider the case where the measurement also has an absolutely constant
error, in addition to conditionally constant errors we just examined. As we already
mentioned, absolutely constant errors are relatively rare. In any case, one instru-
ment can introduce only one absolutely constant error component to the overall
measurement inaccuracy. If the absolutely constant error has limits H, then the
overall measurement uncertainty will be

U[:H+I/l(l.
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Because absolutely constant errors are the same in all instruments of the same
type, these errors cannot be described using a probabilistic model. Thus, we have no
choice but to add the limits of these errors arithmetically to the probabilistic sum of
the conditionally constant errors.

It could happen that m of the n conditionally constant errors have asymmetric
limits:

0; <9, <0,j=1,...,m,

where 6, is the left-hand limit and 6, is the right-hand limit of component error j.
The remaining (n — m) conditionally constant errors are symmetric:

For calculations, asymmetric limits must be represented as symmetric limits
around center a;, where

0+ 0;
aj = 7'11 —"2_ J .

The limits of the interval that is symmetric relative to a;, are calculated
according to the formula

Note that the above calculation cannot be used to transform asymmetric errors
into symmetric by introducing corrections into the measurement results: The error
estimates are too unreliable to change the measurement result.

Next, the limits of the overall conditionally constant error must be calculated
from the following formulas:

Ga:id,‘-i-k i Z
=

j=1 Jj=m+1

.

(4.15)

9,,a:iaj—k ieju zn: 0;.
j=1

j=1 j=m+1

(We do not combine the two sums under square roots above to stress that one
sum contains originally symmetric errors and the other — the errors that were
originally asymmetric but which have been recomputed to become symmetric.)
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The absolutely constant elementary error must now be taken into account, and it
too can have asymmetric limits. Again, these limits must be summed arithmetically
with the limits 6,., and 6,,,:

Ur',a = Hr + 9/',(1

(4.16)
Uog=H;+ 0,4

As an example of estimating the inaccuracy of a single measurement under
rated conditions, consider the measurement of voltage using, again, a digital
multivoltmeter whose errors are rated in Table 4.3. Assume it is known (from other
parts of the documentation) that this instrument’s indication has six and a half digits:
if the seventh, invisible, digit is less than 5, then the sixth digit will not increase
whereas if the seventh digit is 5 or greater, the sixth digit will increase by 1. Thus, the
random rounding error is limited to half the value of the sixth digit.

Assume the measurement occurs 12 months after the last calibration of the
instrument and the voltmeter is used in the range of 10V. Assume further
the voltmeter is mounted in an automated test rack with internal temperature of
32°C and is indicating 5.00135V. We need to calculate the uncertainty of this
measurement.

Using the 12-month specifications, the limits of the intrinsic error of this meter
are (5.00135 V x 35 x 107°+ 10V x 5 x 10~°) = 0.225 mV. Since the instru-
ment works in temperature outside the reference conditions, the temperature
coefficient, according to the last column, is (5.0135V x 5 x 107%+ 10V x 1
x 107 per 1°C, or 35 x 107° V/°C. Thus, with the operating condition being
4°C over 28°C, the additional error is 4 x 35 X 107° = 0.14 mV. The rounding
error does not exceed 5 x 107° V = 0.005 mV.

We now combine the elementary errors in two ways. The arithmetic sum of the
obtained limits is 4+ (0.225 + 0.14 + 0.005) mV = 4 0.37 mV. Probabilistic sum-
mation according to (4.3) with @ = 0.95 gives £1.1 x 0.265 mV = £+ 0.29 mV.
Because the probabilistic result is smaller, we should take as uncertainty of the
measurement + 0.29 mV or, after rounding, + 0.3 mV.

Another example of estimating the inaccuracy of a single measurement under
rated condition is given in Sect. 8.1.

4.8 Accuracy of Multiple Measurements

Multiple measurements are a classic object of mathematical statistics and the theory
of measurement errors. Under certain restrictions on the starting data, mathematical
statistics give elegant methods for analyzing observations and for estimating the
measurand and measurement errors. Unfortunately, the restrictions required by
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mathematics are not often justified in practice.2 Then these methods cannot be used,
and practical methods for solving the problems must be developed. But even in this
case, the methods of mathematical statistics provide a point of reference and a
theoretical foundation.

Usually, the estimate of the measurand is taken as the arithmetic mean of the
results of the repeated measurements that constitute the multiple measurement.
These repeated measurements are called observations in the context of multiple
measurements. As noted previously (Sect. 3.2), the mean gives an unbiased,
consistent, and efficient estimate of the true value of the measured quantity only
if the observations, or equivalently the measurement errors, have a normal distri-
bution. In fact, irrespective of the form of the distribution of the measurement
errors, the arithmetic mean has three important properties:

1. The sum of the deviations from the arithmetic mean is equal to 0. Let x;, . .., x,
be a group of observations whose arithmetic mean is X. We construct the
differences x; — x for all i = 1, ..., n and find their sum:

n

Z(X,‘ —)f) = ;X,‘ — ;i.

i=1
As both X7 x; = nX and £ X = n¥x,
n
> (xi—x=0.

i=1

This property of the arithmetic mean can be used to check the calculations.

2. The sum of the squares of the deviations from the arithmetic mean is smaller
than the sum of the squares of the deviations from any other estimate A of true
value A. Consider the function

n -2
Q = Z (x,‘ — A) .
i=1
We shall find A that minimizes Q. To this end, we find

@_ —Zi(xi—/i)

A TG

2 An example where these restrictions are met is when a new object is being studied and the task is
to determine conditions under which the characteristic being measured is stable enough to
be measured in another laboratory. Such measurements are called preliminary measurements
(see Sect. 1.5)
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and set it to zero; hence, we obtain

n

Z(xi*A)ZO, Xn:x,-:nfi, and A=x=21—
i=1

i=1

As dQ/dA <0 if A < x and dQ/dA > 0 if A > x, the value A = X minimizes
function Q.

3. According to the central limit theorem, the sum of independent random
quantities, regardless of their distribution functions, tends to a normal distribu-
tion as the number of the random quantities grows to infinity. Equivalently, the
arithmetic mean of independent observations tends to a normal distribution
when the number of observations grows to infinity. In practice, a relatively
few random quantities lead to a sum that can be viewed as normally distributed.
In particular, in the context of measurement accuracy, one can consider the sum
— or the arithmetic mean — of five random quantities with uniform distribution
function to be normally distributed.

A drawback of the arithmetic mean is its high sensitivity to outlying observations.
Another popular estimate of the measurand is the median. The median is less
sensitive to the outliers, but it is also less efficient: its variance exceeds the
variance of the arithmetic mean. Indeed, let m- be the sample median and A be the
true value of the measured quantity. It is known [20] that m, has asymptotically
normal distribution with mathematical expectation A and standard deviation

o(m,) = /)2 x (%) = 1.256(),

where o(¥) is standard deviation of the arithmetic mean. Since the median is a less-
efficient estimate, one needs more data to obtain the same confidence interval for
the measurement result using the median than arithmetic mean.

Although the arithmetic mean produces the minimum sum of the squares of the
deviations, this only means that it is the most efficient estimate of the measured
quantity in the class of estimates that are a linear function of the observations. This
estimate becomes most efficient among all possible estimates if the errors are
distributed normally. For other distributions, as pointed out in Chap. 3, estimates
exist that are more efficient.

From now on, we will assume that we use the arithmetic mean for the estimate of
the measured quantity:

n

DX

=1
n

A= 4.17)

Because of random errors, the measurement results are also random quantities; if
another series of measurements is performed, then the new arithmetic mean
obtained will differ somewhat from the previously found estimate. Thus, the
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arithmetic mean of a set of measurement results is a random quantity. The spread of
the arithmetic means is characterized either by the variance of the arithmetic means
or by the standard deviation. In accordance with (3.12) and (3.16), they are
estimated from the experimental data as follows:

n

1
2—7 ._72 =
Sfin(n—l) 2 (x; —X)” or Sg

(4.18)

In addition, it is possible to construct the confidence interval for A for confidence
probability a, which is determined by the inequalities

AV, <A<A+ Y,

where ¥, = 1,5z and ¢, is the percentile of Student’s distribution for the significance
level ¢ = 1—a and the degree of freedom v = n — 1 (see Table A.2). Thus, the
random error y has the limits £%, with the confidence probability a.

We previously argued for a position that a multiple direct measurement is in
essence a series of repeated single measurements. From this perspective, the
inaccuracy of a single measurement comes into fore, and the need to account
for systematic error becomes obvious. Thus, our problem is to sum random and
systematic errors. A solution of this problem is described below in Sect. 4.9.

We should note that the random error of the single measurement that forms the
basis of the multiple measurement is also included into the random error of the
multiple measurement. For this reason, the random error of the single measurement is
accounted for twice. It would have been better to deduct this error from the error of
the multiple measurement, but that would require knowing the random component of
the measuring instrument, besides its intrinsic error.

4.9 Universal Method for Summation of Systematic
and Random Errors

Our starting data comprises inaccuracy of the underlying single measurement, 8, or
ug, and the series of the result of repeated single measurements {x;}, i = 1,...,n.
In the general form, the error of a measurement result has three components:

C=n+d+y,

where 7 is the absolutely constant error, 9 is the conditionally constant error, and y
is the random error. Therefore, the variance of measurement result is

VIE] = V9] + VIwl.
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Note that V[{] has only two terms because V[y] = 0. The absolutely and
conditionally constant errors are determined by the error of the base single mea-
surement, while the random error depends also on the instability of measurement
conditions.

Estimates of V[9] and V[y] can be found using formulas (4.5) and (4.18). Denote
them Sé and S?(. Denote also the estimate of the combined variance S(z,. Then the
combined standard deviation S, is

Se=1/8%+ S2. (4.19)

Given S, the uncertainty of the measurement result could be calculated from the
formula

Ue = 1.5, (4.20)

if the coefficient #. was known; unfortunately, this coefficient is unknown. We will
now consider how to estimate it.

As the initial data, i.e., the data on the components of the uncertainty are not
known accurately, an approximate estimate of the coefficient 7. can be used. In [48],
the following formula was proposed for this purpose:

| _¥ato,
¢ Sy + Sy’

where 6, is the confidence limit of the conditionally constant error and ¥, is the
confidence limit of the random error y (determined using Student’s distribution as
described earlier).

This formula was constructed based on the following considerations. The coef-
ficient ¢, determining the ratio of the confidence limit and the standard deviation of
the random error, is determined by Student’s distribution and is known. Given
estimates for the confidence limit 8, and standard deviation Sy of the conditionally
constant error, we can introduce an analogous coefficient #y as their ratio:

tg = 04/Sg 4.21)

It is natural to assume that the coefficient sought 7. is some function of ¢, and ty,
and that the computed 7, corresponds to the same confidence probability. If we take
a weighted average of ¢, and 7y for the weights Sy/ (S5 + Sg) and S¢/(Sx + Sy),
respectively, for this function, we obtain the proposed formula:

 1,Sc+ 198y Wat O,
TS+ Sy Si+ Sy

4.22)
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Fig. 4.3 Computing limits of confidence interval for uniformly distributed random error

If the base single measurements are performed under rated conditions for the

n
used measuring instrument, then 6, = u,. Recall that u, =k, 49,42 , and
\/ i=1

koos = 1.1, and kg.99 = 1.4 for n < 5. More accurate values of this coefficient can
be found using Table 4.1 and Fig. 4.2. For n > 5, one can calculate u, using (4.6).

Under reference conditions, 6, is determined by the limits of error 6, of the
single measurement and the given confidence probability & according to a method
illustrated in Fig. 4.3. The figure shows the CDF of error uniformly distributed
in [—6y, +60]. The confidence limit for confidence probability « is the quantile 6,
for probability p = 1—-(1—a)/2 = (1+a)/2. We can compute this quantile by con-
sidering two similar triangles highlighted in the figure with dotted lines, one with a
side of size 26 and the other with the corresponding side of size (6 + 6,). From the
similarity of the triangles follows the equality 1/(20y) = (1 + a)/2(6y + 6,), which
gives

0, = ab. (4.23)

4.10 Analysis of the Accuracy of the Universal Method
for Summation of Systematic and Random Errors

To use formula (4.22), its accuracy must be estimated. The extreme cases are those
when the conditionally constant error 9 has a normal or uniform distribution.
The distribution of the random error ¥, of the arithmetic mean can be assumed to
be asymptotically normal.

If both conditionally constant and random errors have a normal distribution, then
ty = ty, and as follows from formula (4.22), t. = t,. As the composition of normal
distributions gives a normal distribution, the obtained value of ¢, is exact.
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If the conditionally constant error is uniformly distributed, the results of
calculations based on the approximate formula (4.22) must be compared with the
results obtained from the exactly constructed composition of normal and uniform
distributions. The expression for the distribution density of the composition of
centered uniform and normal distributions is known from the theory of probability:

h

1 1 .y
1e =% / e T ay, (4.24)
—h

where / is equal to one-half the interval in which the uniform random quantity is
distributed and o is the standard deviation of the normal random quantity.

The variance of this distribution is
1 /h\*
14+-= (—) ] . (4.25)
3\o

The above distribution depends on both the ratio (%#/c) and 6. We will analyze it
for 6 = 1. In addition to simplifying the calculations, this will make the composed
distribution universal, in the same way the standard normal distribution is universal.
Transforming the density to the probability distribution and setting ¢ = 1, we
obtain

2
0',262—&——:02

z h
1 2
F(z) =05+ —— / / e~ U2 aydh. 4.26
8 ) ' 0
The variance of this distribution becomes
1 (h\?
o =143 (;) : 4.27)

The starting distributions are symmetric relative to 0. Hence, the resulting
distribution is also symmetric. For this reason, the limits of the confidence interval
corresponding to the probability a are quantile z, of distribution (4.26) for
probability p and quantile z;_, for probability (1—p), where p = (1—a)/2. Indeed,
|z,| = lz;_,| because the distribution is symmetrical, and the amount of probability
covered by this interval is 1—2p = a. Because confidence probability « is always
taken to be more than 0.5, p < 0.5 and therefore quantile z, gives the left limit and
zy_p, the right limit of the confidence interval.

Table 4.4 gives values of z,_, calculated using formula (4.26) for confidence
probability a = 0.90, 0.95, and 0.99. As mentioned above, z, _, represents the exact
confidence limit of the combined error that corresponds to o.;. If we instead
compute the overall uncertainty u,.; for the same o, and confidence probability
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Table 4.4 Quantiles for the composition of centered normal and uniform distributions

hlo 050 10 20 30 40 S50 60 80 10
Zoos (@ =090) 171 190 249 322 400 481 565 734  9.10
Zoovs (@ =0.95) 2.04 225 290 3.67 449 534 622 800 981
Zooos (0 = 0.99)  2.68 294 366 449 536 626 717 9.02  10.90

using formulas (4.22) and (4.20), the relative error introduced by the use of the
approximate formula (4.22) will be
Uel — Z1—p

6:
Z1—p

Although the above confidence limits were calculated for ¢ = 1, it is easy to
recompute them for other values of 6. Since the distribution functions for ¢ # 1 and
o = 1 differ only in their scaling factor o, on the abscise axis, recomputation can be
done in a way completely analogous to how one uses quantiles of the standard
normal distribution with ¢ = 1 to obtain quantiles of normal distributions with
o # 1. Specifically,

Z1—p,c = OcZl—p; (428)

where z;_,,, is the quantile of the combined distribution for an arbitrary ¢. For
example, consider a measurement where Sy = 2 and 8y = 2. This corresponds to

c=2,h=2and o, =,/4 —|—% =2.31. Thus, h/c = 1. If we take confidence

probability 0.9, we obtain from Table 4.4 the quantile z,_, = 1.90 and the quantile
Z1—p,o — 4.4,

Again, the quantile z,_,, , represents the precise value of the confidence limit of
the combined error having variance ag for confidence probability a. Then, the
inaccuracy of the approximate confidence limit u, in the case of an arbitrary ¢
becomes:

5 — Ue —OcZ1—p U —Zlpgo

(4.29)

OcZl—p Z1-po

To estimate the inaccuracy of formula (4.22) we should contrast the empirical
formula (4.20) with the corresponding theoretical formula z,_, , = f,6.. The com-
parison should be done for S, = o, bringing (4.20) to the form u. = t.0.. Then, by
dividing the nominator and denominator of the right-hand side of (4.29) by o,
we obtain

. —1

0= .
t

Thus, we can analyze the accuracy of (4.22) by considering the accuracy of
coefficient 7. relative to its “true value” #,. We proceed with this analysis next.
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Table 4.5 Values of the combined standard deviation o, and of the coefficient ¢, as a function of
the parameters of the normal and uniform distributions

hlo 05 1 2 3 4 5 6 8 10

ol 1.04 1.15 1.53 2.00 2.52 3.06 3.51 4.72 5.85
t (@ = 0.90) 1.65 1.64 1.63 1.61 1.59 1.58 1.57 1.56 1.55
t, (@ = 0.95) 1.96 1.95 1.90 1.84 1.78 1.75 1.72 1.69 1.67
t (@ =0.99) 2.57 2.54 2.40 2.24 2.13 2.05 1.99 1.91 1.86

Table 4.6 Values of the coefficient 7. as a function of the parameters of the normal and uniform
distributions

hlo 0.5 1 2 3 4 5 6 8 10

t1. (a = 0.90) 1.63 1.61 1.60 1.59 1.58 1.58 1.58 1.57 1.57
te (@ = 0.95) 1.89 1.84 1.79 1.76 1.74 1.73 1.72 1.70 1.69
t3. (@ = 0.99) 2.38 2.26 2.11 2.03 1.97 1.94 1.91 1.87 1.84

We can compute a series of values of coefficient ¢, from the data in Table 4.4.
These values are presented in Table 4.5, which also gives the corresponding
values of o, ;.

We shall now compute coefficient #. using the approximate formula (4.22). The
limits of the confidence interval of the conditionally constant error, determined
based on the uniform distribution in accordance to (4.23), give 6,. Because in this
case h = 6y, we have

0, = ah.

The limit of the confidence interval for the normal distribution with the same
confidence probability will be

lf’a = Z14a0,

where Zita is the quantile of the standard normal distribution for probability 1# .
Expression (4.22) assumes the form

—
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Z11a0 + ath Ziza + ag

The values of ¢, calculated for the same ratios /o and confidence probabilities
as were used for calculating ¢,, are presented in Table 4.6.

We now can compute the errors 6 calculated based on the data given in Tables 4.5
and 4.6; these errors are summarized in Table 4.7.

Overall, as Table 4.7 shows, the errors from using the approximate formula
are in all cases negative and their absolute magnitude does not exceed 12% for
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Table 4.7 Deviations of coefficient ¢, from ¢, (in %)

hlo 0.5 1 2 3 4 5 6 8 10
01 (=090 —-12 -1.9 -1.8 —-1.1 -0.6 0.0 0.8 0.6 1.2
6 (=095 3.6 —5.5 =57 —-41 =22 13 0.0 0.5 1.0

o03(@=099) -74 -110 -121 -94 -73 =55 —-40 -22 -11

o = 0.99, 6% for « = 0.95 and 2% for oo = 0.90. Further, these errors are the
highest when 4 is between ¢ and 20; they decrease for 4 less than ¢ or greater
than 2¢.

Observe that Table 4.7 lists the inaccuracy of ¢, in the extreme case when this
inaccuracy is the highest. Moreover, for this case, when one of the component
errors is uniformly and the other normally distributed, we have obtained the exact
solution, so that the case with the highest inaccuracy can be avoided by using ¢,
from Table 4.5. But even the worst-case error is acceptable. We would like to repeat
that these errors decrease as the distribution of the systematic errors approaches the
normal distribution.

In summary, the above scheme presents a general method for estimating the
uncertainty of a measurement that contains both random and systematic
components. Our analysis (with results summarized in Table 4.7) shows that even
in the worst case, when the conditionally constant systematic error is uniformly
distributed, this scheme is sufficiently accurate to be used in practice.

4.11 Comparison of Different Methods for Combining
Systematic and Random Errors

The above method for combining systematic and random errors is not the only
method that has been proposed. In this section, we describe four other methods,
compare all the methods on a specific example, and discuss the applicability of
these methods and other issues.

1. The US National Institute of Standards and Technology (NIST) in publication
[21] presents the following formula (reformulated according to our notation) for
combining the component errors (this formula is also mentioned in [6]):

u==60+"¥,, (4.30)

where 0 = /> " 07 if {6;}i=1,...,m, are independent systematic compo-
nents, and 6 = Zlm:l 0;, if they are dependent, and ¥, = 1,Sx.

This method is justified when the absolutely constant elementary errors
predominate the overall error. This is often the case in measurements performed
in the context of checking and calibrating measuring instruments, which is an
area of a particular interest to NIST as an organization. But this method cannot
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be applied to arbitrary measurements, because in most cases, it results in
overestimation of the uncertainty.
It is necessary to note that NIST issued in 1994 Guidelines where the com-
bined uncertainty is calculated in accordance with the method from GUM [2].
2. The standard reference [6] and the manual [14] preceding it give two different
formulas for calculating the uncertainties with confidence probabilities of 0.95
and 0.99:

2 2
U099 = 0 +1095S%, Uco9s = /0" + (t0.955%)".

The coefficient t, 95 is chosen according to Student’s distribution in both cases
for the confidence probability 0.95 (¢ = 0.05) and degrees of freedom
v=mn— 1.

The formulas appear to be ad hoc. They are not grounded in probabilistic
reasoning, and yet they assign a stated confidence probability of 0.99 or 0.95 to
the result.

3. Another method appeared in the Fourth Draft of the Guide to the Expression of
Uncertainty in Measurements issued by working group ISO/TAG4/WG3 before
the guide itself was published. In this method, the elementary systematic errors
are regarded as uniformly distributed random quantities. However, the limit of

their sum is calculated with the formula @ = /Y7, 67, i.e., without using the

indicated model.

The systematic and random errors are combined with a formula that is almost
the same as (4.20). The only difference lies in the coefficient #.. Here, the
coefficient is found from Student’s distribution corresponding to the selected
confidence probability and the effective degrees of freedom v.¢. The following
formula is given to calculate veg:

st IR\’
= (3)

Veff i—1

It is assumed here that the random component of uncertainty has a degree of
freedom v = n — 1, and each component of the systematic error has a degree of
freedom equal to one. However, the notion of a degree of freedom is not
applicable to random variables with a fully defined distribution function. There-
fore, it is unjustified to assume that a quantity with uniform distribution within
given limits has a degree of freedom equal to one (or to any other finite number).
Thus, the formula under discussion is not mathematically grounded.

4. GUM [2] presents a method that is similar to the method of the Fourth Draft (and
in other drafts), but without the ungrounded computation of coefficient ¢,.
Instead, GUM assumes 7. to be constant: . =2 for @ = 0.95 and ¢/ = 3 for
a = 0.99. As we will see later, this method is good if the systematic error is
small relative to the random error but can be deficient in other cases.
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5. Finally, this book proposes a method with the resulting formulas (4.20)
and (4.22).

We shall compare all the methods above using two numerical examples.

Consider a multiple measurement comprising » = 16 single measurements.
Suppose that as a result of some measurement, the following indicators of its errors
were obtained:

Suppose also that the random errors have a normal distribution and that the
(conditionally constant) systematic errors have a uniform distribution. Then for the
exact solution we can take the confidence limits presented in Table 4.4. As usual,
we shall take @; = 0.95 and a, = 0.99. Then

ur099 = 4.49, uropos = 3.67.

There is a slight inaccuracy in viewing the above as “exact solution” as we
assumed that Sy = 0. But for n = 16, any discrepancy from this assumption is
insignificant, and we shall neglect it.

When applied to this measurement, the considered methods give the following
results.

1. The coefficients of Student’s distribution with v =n — 1 = 15 and the
indicated values of the confidence probabilities will be as follows:

t0A99(15) =2.95, [095(15) =2.13,
Wooo = 2.95 x 1 =295, ¥oos = 2.13 x 1 = 2.13.

Therefore, 1999 =3 +2.95 = 5.95 and u; 995 = 3 + 2.13 = 5.13.
2. We shall make use of the calculations 7y 95 and ¥ o5 that were just performed:
Uz099 = 34213 x1=5.13, U30.95 32 4 (213)2 = 3.68.
3. We will need the following values to apply this method,

$2=9/3=3, Sy=1.73,
$2=1+3=4, S.=2.

We shall calculate the effective number of degrees of freedom:

42 1 16
— =—+32, — =907, and v =2.
Vegp 15 Vett
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Table 4.8 Errors of different
methods of uncertainty
calculation for the case where
0h=3,8S:=1,n=16

Table 4.9 Errors of different
methods of uncertainty
calculation, for the case where
0h=05S8;=1,n=16

4 Direct Measurements

(u; —up)/ur x 100%

Method of computation o = 0.99 o = 0.95
1 32 39

2 14 0.3

3 340 132.0

4 34 6.0

5 3 0.8

(u; —up)fur x 100%

Method of computation o = 0.99 o = 0.95
1 29 30
2 2 7
3 13 8
4 12 2
5 4 3

Next, we find from Student’s distribution #3999 = 9.9 and #3995 = 4.3. Corre-

spondingly, we obtain

U3 0.99 = 99 x2= 1987

uz o5 = 4.3 x2 = 8.6.

4. We have, in this case, S, = /52 + S5 = /1 + 3 = 2.0. Because #5099 = 3 and

.05 = 2, we obtain

Ugp99 =3 X2 =06,

Ug095 = 2x2=4.

5. Formulas (4.20) and (4.22) give Sy = 1.73 and S, = 2.0. Then,

15099 =

15,095 =

usog9 = 2.17 x 2 = 4.34,

2.95x1+099x3 592

1+1.73

=—=2.17
2.73 ’

213 x1+095x3 498

1+1.73

Us 095 = 1.82 x 2 = 3.64.

Let us compare the estimated uncertainties with the exact values ur g9 and
urpos. The errors of these computations as compared to the exact values are
summarized in Table 4.8. Furthermore, Table 4.9 presents these errors for the
case Oy = 0.5 and the same values Sy = 1 and n = 16, calculated similarly.

In comparison with the previous example, method 4 and especially method 3 in
this case show a significant decrease in error. It is not surprising because now the
systematic component is insignificant relative to the random component. We can
make the following observations from these examples:
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1. Asexpected, method 3 cannot be used when the systematic error is significant, as
in the first example. This method shows a significant decrease in error in the
second example, where the systematic component is relatively small.

2. Method 2, irrespective of the remarks made earlier, gave almost satisfactory

results in both examples.

. Method 1, as expected, produced estimates that were too high in both examples.

. Method 4 is acceptable for a = 0.95 only.

5. Our proposed method 5 gave the best results in both examples.

B~ W

Examples are not, of course, proof, but they nonetheless illustrate well the
considerations stated earlier.



Chapter 5
Indirect Measurements

5.1 Terminology and Classification

As introduced in Chap. 1, indirect measurement is a measurement in which the
value of the unknown quantity sought is calculated using measurements of other
quantities related to the measurand by some known relation. These other quantities
are called measurement arguments or, briefly, arguments.

In an indirect measurement, the true value of a measurand A is related to the true
values of arguments A; (j = 1,..., N) by a known function f. This relationship can
be represented in a general form as

A=Ff(Ar,...,Ay). 5.1)

This equation is called a measurement equation. The specific forms of measure-
ment equations can be considered as mathematical models of specific indirect
measurements.

Various classifications of indirect measurement are possible. We shall limit
ourselves to classifications that will be useful for our purposes.

From the perspective of conducting a measurement, we shall distinguish single and
multiple indirect measurements. In single measurements, all arguments are measured
once. In a multiple measurement, all arguments are measured several times.

Multiple indirect measurements differ in a subtle but important way from
multiple direct measurements. Whereas the latter involves obtaining a measurand
estimate in every constituent single measurement and then processing these
estimates to obtain the overall measurement result, the former typically involves
estimating arguments from the corresponding multiple argument measurements and
then obtaining the overall indirect measurement result (except for the method of
reduction considered later in this chapter). Thus, the indirect measurement itself
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is not repeated: the estimate of the measurand is obtained once all argument
measurements are completed. This is why, unlike direct measurements, single
indirect measurements cannot be considered as a base form of multiple indirect
measurements.

According to the form of the functional dependency (5.1), we shall distinguish
linear and nonlinear indirect measurements. In the case of a linear indirect mea-
surement, the

N
A=by+ Y b, (5.2)

j=1
measurement equation has the form where {b;} (j =0,..., N) are constant

coefficients. Nonlinear indirect measurements are diverse, and therefore, it is
impossible to represent all of them with one general form of measurement equation.

The physics of the processes of indirect measurements gives us another impor-
tant classification criterion. To motivate this classification, let us compare the
accurate measurement of the density of a solid with the measurement of the
temperature coefficient of the electrical resistance of a resistor.

To measure the density of a solid, its mass and volume should be measured
independently, with consistent accuracy. In the temperature coefficient measure-
ment, the resistance of the resistor and its temperature are measured simulta-
neously, which means that the measurements of these arguments are not
independent. Thus, we shall distinguish dependent and independent indirect
measurements.

Indirect measurements, like any measurements, are divided into static and
dynamic. Recall that we call a measurement dynamic if it utilizes a measuring
instrument in the dynamic regime [51]. According to this definition, a multiple
indirect measurement should be considered dynamic if any of its arguments are
measured with instruments in the dynamic regime. Such measurements are theoret-
ically possible but hardly encountered in practice. For this reason, multiple indirect
measurements are usually static; only single indirect measurements can be either
static or dynamic.

5.2 Correlation Coefficient and Its Calculation

The traditional methods for estimating the uncertainty of indirect measurements
include the calculation of the correlation coefficient.

Later in this book, we shall develop a new theory, which obviates any need for
the correlation coefficient. However, given the traditional importance of the corre-
lation coefficient and a great deal of confusion in metrology with its calculation, it
makes sense to describe here a clear procedure for calculation of the correlation
coefficient.
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The mathematical foundation and methods of the correlation coefficient
calculations can be found in many books on the probability theory and mathemati-
cal statistics, for example, [53]. Consider two random quantities X and Y with
mathematical expectations equal to zero and finite variances. Denote their variances
as V[X] = 0% and V[Y] = 63.

The variance of a random quantity Z = X + Y can be calculated using the
equation

VIZ] = E[(X +Y) — EX + Y]))] = E[(X + Y)?]
= E[X?| 4+ E[Y?] 4 2E[XY]. (5.3)

The last term E[XY] is named second mixed moment or covariance.
The covariance divided by the square root of the product of variances 0')2(612, gives
the correlation coefficient pyy:

E[XY]

Pxy = —
OxOy

The value of the correlation coefficient always lies within [—1, +1], and if
|oxy| = 1, then there is a linear functional dependency between X and Y. When
pxy =0, X and Y are uncorrelated, although it does not mean that they are
independent. Otherwise, when 0 < |pxy| < 1, the nature of the dependency
between X and Y cannot be determined unambiguously: It can be stochastic as
well as functional nonlinear dependency. Therefore, in the last case, if the knowl-
edge about the nature of the dependency between X and Y is required, it can only be
obtained based on physical properties of the problem rather than inferred
mathematically.

From the above formulas, we obtain

05 = 0y + 0y + 2pyyox0y. (5.4)

In practice, we have to work not with the exact values of parameters of random
quantities but with their estimates. So, instead of variances ¢%,0%,07 and the
correlation coefficient pxy, we have to use their estimates $7,5%,S7 and rxy.
(We will also use interchangeably $*(X) to denote an estimate of the variance of
random quantity X). If n is the number of measured pairs (x;, y;,) of random
quantities X and Y (i = 1,..., n), and X and y are averages over n observed values
of X and Y, then
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The estimate of E[XY], which we denote as mxy, will be

Then, I'sy = me/SX Sy.
Thus, the calculation formulas for the correlation coefficient of two random
quantities and the variance of their sum are as follows:

n

2 (i =90 =)

== 5.5
XY = 1SSy (5.5)

S2 = §% + 82 + 2rxySxSy. (5.6)
The estimates of the variances of the average values X and y are known to be

2 2
S%ZS—X and S%:S—Y.
n ) n

Then, by dividing (5.6) by n, we obtain the estimate of the variance of the mean
value of Z:

S5 = ST+ 87 + 2rxySiSy. (5.7)
The correlation coefficient estimation here is the same as in (5.5). One can also

use Sy and S for the calculation of the correlation coefficient estimation using the
fact that SxSy = nSzSy. Then, (5.5) will change to the following:

-

(xi = %) (yi —¥)

1
= . 5.8
Xy n(n — 1)SzSy (5-8)

It is necessary to stress that, in order to compute the correlation coefficient
between random quantities X and Y, the number of realizations of X and Y (e.g., the
number of measurements of X and Y) must be the same. Moreover, each pair of
these realizations must be obtained under the same conditions, for example, at the
same time, at the same temperature, and so on.

The theory of correlations says that realizations x;, and y;, must belong to the
same event i. A clear illustration of this statement is given by the classic example of
the accuracy analysis of firing practice. Here, each event is one shot. Each shot i is
described by a pair of values x;, and y;, that express the deviation of the bullet from
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the center of the target in orthogonal coordinates. In the case of an indirect
measurement, one event is the set of matched measurement results of all arguments.
This event corresponds to a point in the multidimensional space with arguments as
coordinates. We shall call this set of coordinates a measurement vector.

In the above-mentioned example of the measurement of the temperature coeffi-
cient of the electrical resistance of a resistor, each pair of measurements of the
resistance and temperature is a measurement vector.

5.3 Method for Constructing the Composition of Histograms

In the general case, to combine random quantities, it is necessary to construct the
composition of the distributions of the component quantities. If the distribution
functions are given analytically, then their composition is found either by direct
integration of the derivatives of the functions, or by using the characteristic
functions, which usually simplifies the solution, or by the Monte Carlo method.

In practice, however, the analytical form of the distribution functions is usually
unknown. Based on the experimental data, one can only construct a histogram, and
moving from the histogram to the distribution function unavoidably introduces an
error. For this reason, we shall study the summation of independent random
quantities whose distribution is given by histograms and not by distribution
functions [27].

Suppose we need to find the distribution function of random quantity { = {;
+ -4 ,, where {; is a random quantity given by a histogram with m; intervals in
the range of possible values of {;, with the boundaries a; and b; (see Fig. 5.1).

Denote the m; intervals as [y, ..., lip,.
Thus,
lai, bil =l +lp+ -+ lim, i=1,...,n
Zonm
Wyl — — —
Wy —
%
0 ¢ l b &

Fig. 5.1 Histogram of the distribution of a random quanity



156 5 Indirect Measurements

We shall assume that the probability that the random quantity falls within a
given interval of the histogram is equal to the area of the part of the histogram that
corresponds to this interval (the area of the corresponding bar of the histogram):

P{¢; € ly} = pix,

where k = 1,..., m; is the number of the interval of the histogram.
Figure 5.1 shows as an example a histogram with five intervals of equal length
l; =1, so that b; — a; = 5I. For this histogram,

pit = Wil, po=Wal,..., pis = Wsl,

where Wy, ..., W5 are the heights of the columns of the histogram; by construction,

the area of the entire histogram is equal to unity; i.e., 22:1 pir = 1.

We recall that in constructing histograms (which is done based on empirical
data), the height of each bar is found by dividing the relative frequency with which
the values fall within the corresponding interval by the length of this interval. This
frequency is an empirically obtained estimate of the probability of the
corresponding event.

Next, we shall represent continuous random quantities {; by corresponding
discrete random quantities #; as follows. Let a;; be the center of each interval /.
Then random quantity #; assumes the value a;; with probability p;.. Note that this
construction defines a proper discrete distribution because the probabilities of all
possible discrete values add to unity:

Zpikzl for all i=1,...,n
k=1

It is useful to represent each random quantity #; by a table:

i apn dap cee Aim;
Pi1 Pi2 e Pim;

We shall now study the random variable n =5, + 7, + - -- 4+ 7,. We obtain all
its possible values by enumerating all combinations of realizations a; of all
components #;.

For the calculations, it is convenient to list all possible values of all the random
quantities in a single table of the form

m apy fe Alm,
N (2551 cee Qmy

Mn n1 s Anm,, -
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Next we calculate the values a, of the random quantity # that correspond to each
possible combination of realizations of the random quantities #;:

a; = ay, + ax, + ...+ ay,

where each k;(i=1,...,n) iterates from 1 to m; and the corresponding
probabilities, which can be found from the formula

pe=P{n =aw, m=au, ...} =[[ru. (5.9)
=1

The number of these combinations will be []"_, m; but because some combined
values may be equal, the total number of realizations N of the combined random
quantity is

N <][m (5.10)

Adding up the probabilities of all the combinations (computed from the (5.9)
above) that correspond to the same combined realization, we obtain the probability
of random quantity # assuming each possible combined value ay, . .., ay.

The obtained data makes it possible to construct the step distribution function
F1(x) of random quantity #:

N
Fi(x) = ZP{n =a}, a<nx
=1

The curve F(x) is the first approximation to the distribution function sought,
F(x). The obtained step function can be smoothed by the method of linear interpo-
lation as follows (an example of applying this procedure is given later in this
section). We find the center of the intervals [a,, a,;] witht =1,... N — 1:

ﬂt:a’“T—i_a’. (5.11)

From the points j,, we raise perpendiculars up to the step line F';(x). We obtain
points with the coordinates (f3,, F';(x)) fort = 1,... ,N — 1. To these points, we add
points at which the distribution function assumes the values F{(fy) = 0 and

Fi(py) = 1

fo= a,  By=) b (5.12)
i=1
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Joining the N + 1 points so obtained with straight lines, we arrive at the function
F>(x), which is the approximation sought.

The method presented above gives a solution of the problem using all available
information and does not introduce any distortions. In the general case, however,
VI¢:] # VIn,] and the variance of the random quantity with the distribution F{(x) or
F>(x) can differ from the variance of the random quantity {. For this reason, if the
component random variables are independent, the variance of their sum must be
calculated in the standard manner using the formula

vigl=V li 51‘1 = z": V(&)
i=1 i=1

It should be noted that the method presented above for constructing a composi-
tion of histograms is also useful in the case when the distributions of the random
quantities are given in analytic form. The smooth curve expressing the density of
the distribution of the random quantity ¢; is replaced by a step curve with m; steps,
in a manner so that the area it bounds is equal to unity. If the tails of the original
distribution density function approach the abscissa axis asymptotically, this distri-
bution is replaced by a truncated distribution. The rest of the approach follows the
steps described above for the histograms. It is also obvious that this method is useful
both for the case of discrete quantities ; and for the mixed case. In general, the
presented method is essentially an algorithm for constructing numerically the
composition of distributions and can be easily implemented as a computer program.

We shall illustrate the method with an example. Let { = {; + {5, where {; has a
normal distribution with the density

1 2
_ —(x=2)7/2
X)=——e¢ ,
fl( ) /—2

and ¢, has a distribution with a uniform density f>(x) = 1/6 over interval [—3, 3].

The parameters of the above distribution of random quantity {; are A = 2 and
o = 1, and we shall truncate the domain of {; to be [A — 35, A + 30] = [—1, 5].
We divide this interval into five intervals (m; = 5), symmetrically arranged relative
to the point 2 — the mathematical expectation:

[—1,5] = [~1,0.5] 4+ [0.5, 1.5] + [1.5,2.5] 4 [2.5,3.5] + [3.5,5].

For the random quantity ¢, we assume m, = 3, dividing its domain into three
intervals:

[-3,3] = [-3,—1] + [-1,1] + [1,3].

Next we calculate the probability that the random quantities fall into the
corresponding intervals. For the normal distribution, we have
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0.5
1= Le*("’”z/zdx = 0.067,

-l
1.5

pi2 = J L2 — 0042,
0.5 \/ﬂ
2.5 1

pi3z= | ——¢e x = 0.382.
J\/ﬂe =272y = 0.382

In view of the symmetry of the normal distribution,
pia =pi2 = 0242, p;s =p; = 0.067.

For the uniform distribution,

- 1 3
1 1 1 1 1
P21 Jéx 3’ P22 J X 3’ P23 J6X 3
-3 -1
Next we find the centres of the constructed intervals:
—1+0.5 05+ 1.5
apy :T:—O.ZS, aIZ:T:I,
15425 25435 35+5
ay =222 o g =2 g 2y
2 2
-3-1 —-1+1 1+3
an =—y = -2, an =—7 =0, azs—T—Z-

This process dtermines #,, which assumes values a; with probabilities pi, where
k=1,...,5, and n,, which assumes values ay; with probabilities py;, where k = 1,
2, and 3. As a result of the calculations we have obtained

ay —025 1 2 3 4.25,
1 pie 0.067 0.242 0.382 0.242 0.067,

ay. —2 0 2,
n
px 0333 0333 0.333.

Next we transfer to the random quantity # = 1; + 7. We estimate the number of
distinct values N of random quantity # from formula (5.10). In our case, m; = 5,
m, = 3,and N < 15.
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Table 5.1 Computing

realizations of the combined 1 P
random quantity # and their —-0.25-2 = -2.25 0.067 x 0.333 = 0.022
probabilities —025+0=-025
—025+2=1.75
1-2=-1 0.242 x 0.333 = 0.081
1+0=1
1+2=3
2-2=0 0.382 x 0.333 = 0.127
24+40=2
2+42=4
3-2=1 0.242 x 0.333 = 0.081
3+40=3
3+2=5
425-2 =225 0.067 x 0.333 = 0.022
425+ 0 =425
425 +2=6.25

We shall represent the values obtained for #7; and 7, in the form of a table:

n -0.25 1 2 3 4.25
Ha -2 0 2 — —

Based on this table, we find the sums of all possible combinations of the values
of the component random quantities and their corresponding probabilities, as
illustrated in Table 5.1. Two pairs of the combinations produce the same values
(values 1 and 3 are encountered twice in Table 5.1.), thus we add up their
corresponding probabilities, obtaining the following list of all distinct values of
n and their probabilities:

a —225 -1 -025 0 1 1.75 2 225 3 4 425 5 6.25
p, 0.022 0.081 0.022 0.127 0.162 0.022 0.127 0.022 0.162 0.127 0.022 0.081 0.022

Based on the data obtained, we can construct F;(x). The values of this function
are presented in Table 5.2, and the corresponding graph is given by the stepped line
in Fig. 5.2.

We find g, fort = 1,..., 12 from (5.11), and Sy and S5 from (5.12). Using these
calculations as well as the data of Table 5.2, we construct the distribution function F»(x).

The function F,(x) is plotted in Fig. 5.2 as a broken line connecting the points
s, F1(p,)) for t = 0,..., 13. The numerical values of F,(x) for x = f,, where
t = 0,...,13 are presented in Table 5.3. Figure 5.2 also shows points belonging to
the combined distribution function precisely constructed using the Monte Carlo
method. One can see that all these points are close to the linear approximation
F>(x). Note that this high approximation accuracy was obtained despite the fact that
we used just three points to represent the uniform distribution and only five points to
represent the normal distribution.
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Table 5.2 Stepped

approximation of the al
distribution function of the From To F1(x)
combined random quantity 7 —00 —2.25 0.000
-2.25 —1.00 0.022
—1.00 —-0.25 0.103
-0.25 0.00 0.125
0.00 1.00 0.252
1.00 1.75 0.414
1.75 2.00 0.436
2.00 2.25 0.563
2.25 3.00 0.585
3.00 4.00 0.747
4.00 4.25 0.874
4.25 5.00 0.896
5.00 6.25 0.978
6.25 +00 1.000
1 ﬁﬁ
¢
0.8 "
0.6 ]
o )
© 0.4 ;:‘j.
0.2 £
X Actual function  *
'3 Step approximation -F;(x)
0 u,—lg(ﬁF&l Br(iken line approximation - F(x) =
-4 -2 0 2 4 6 8

X

Fig. 5.2 Stepped and linear approximations of the distribution function

Obviously, the approximation of the distribution function of the combined
random quantity by F,(x) can be improved by making finer grained subdivisions
of the domains of the component random quantities, e.g., in our example, by
dividing the domain of 7, into 10 intervals instead of 5 and the domain of 7, into
6 intervals instead of 3.

We should stress that the key aspect of the presented method of constructing the
composition of histograms is that the probability of each combination of data points
is computed as the product of probabilities of the component data points. This
works for an arbitrary composition function used to combine the input quantities,
not just the summation as we consider here for simplicity.
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Table 5.3 Linear

: . ¢ ﬁr F2 (X)
approximation of the

distribution function of the 0 —4.00 0.000

combined random quantity 1 —1.62 0.022

2 —0.62 0.103

3 -0.14 0.125

4 0.50 0.252

5 1.14 0.414

6 1.87 0.436

7 2.12 0.563

8 2.62 0.585

9 3.50 0.747

10 4.12 0.874

11 4.62 0.896

12 5.62 0.978

13 8.00 1.000

Let us consider another example. Take the case when random quantities have
distribution functions such that there is a known closed form for the distribution
function of the combined random quantity. For instance, we know that the distribu-
tion density function of the composition of two identical uniform distributions has
the form of an equilateral triangle with easily computed parameters.

Thus, let us consider two random quantities £, and {, both uniformly distributed
on the interval [—0.5,0.5]. Let us replace the distribution density function of each
quantity (which has value 1 within and 0O outside the interval) by a histogram with
five equal-width bars. Since the overall interval length is 1, each bar in either
histogram has width I, =1, = 0.2, and the height of all the bars remains 1. Hence
the area of each bar — which gives the probability of the quantities {; and ¢, to fall
into that bar —is 0.2.

In this way, the interval of possible values of each random quantity [—0.5,0.5]
is divided into five equal-sized segments: [-0.5,-0.3],[-0.3,—-0.1],
[-0.1,0.1],]0.1,0.3],[0.3,0.5].

For either random quantity ¢;(i = 1,2), denote the midpoints of the bars as a;
(k=1,...,5) and introduce, as described earlier, a discrete random quantity #; that
takes values a;; with probability p;. equal to the area of bar k. In our case, p;; = 0.2
for all i and k. As before, let us represent the values of a;; in the tabular form:

m ai| apn a3 a4 ais
—-04 —0.2 0 0.2 0.4
Up) [ a a3 x4 ars
- 04 —0.2 0 0.2 0.4

Since the probabilities of all values a;; are the same, we omit them from the
tables above.
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Table 5.4 Possible values a, of random quantity n =, + 1,

a; ap +ay =—-08 ap+an=-06 a+ay=-04 a1 +au=-02 a;;+a5=0
ap +az —0.6 app+ap=-04 ap+ap=-02 ap+aus=0 ap +as =0.2
ap+ay =—-04 a3 +an=-02 a;3+a3=0 a3 +ay =02 aj3+ays=04
ag+axy =—02 ay+an=0 aiy+ay3 =02 ay+ay=04 ays+as=06
ais +a =0 ais+axn =02 a;s+ap;=04 ais +axy =06 a5 +ay; =038

Table 5.5 The distinct values a, of random quantity # and their probabilities

a -08(1) -062 —-04@3) -024) O0(¢5) 024 043) 0.6(2) 08(1)
Di 0.04 0.08 0.12 0.16 020 0.16 0.12 0.08 0.04

Let us now move to the random quantity n = #, + n,. Its possible values a,
represent combinations of the possible values of ; and , and are given in Table 5.4.

Because all values of 77; and 7, have equal probability pi; = pyx = 0.2, all values
a, of the combined quantity have probability p, = pix - pax = 0.04.

As seen from Table 5.4, most of the combined values repeat multiple times. The
probability of each distinct value is obviously the sum of the probabilities of all the
occurrences of this value in Table 5.4, with each occurrence having the probability
0.04 in our case. Table 5.5 lists, for the combined random quantity #, all distinct
values a, and their probabilities p,. The number of occurrences of each distinct value
is listed in parentheses after the value.

Table 5.5 represents a stepped approximation of the distribution function of the
combined random quantity { we are seeking. At this point, we could apply (5.11)
and (5.12) to find linear approximation of this distribution function. Instead, we will
build an approximation of the density function of ¢ by applying essentially
numerical differentiation to the function specified in Table 5.5.

The discrete random quantity 7 represents a histogram of random quantity &, with
values a, representing midpoints of the histogram bins and probabilities p, the
probabilities that realizations of £ will fall into the corresponding bin (i.e., the areas
of the corresponding histogram bars). The boundaries of the histogram bins are
computed using (5.11) and (5.12) and in our case, the bins all have the same width
0.2. The areas of the bins are given in Table 5.5 as probabilities p;. Dividing these
probabilities by the width 0.2, we obtain the heights of the histogram bars W,:

a —-08(1) -06(2) -04(3) -024) 0(5) 02@ 043) 0.6(2) 08()
W, 02 0.4 0.6 0.8 1.0 08 0.6 0.4 0.2

The resulting histogram, along with the exact density function, is depicted in
Fig. 5.3. The ordinates corresponding to the midpoints of the histogram bins fall
onto the exact density function.

In general, the points obtained through enumeration of combinations as
described here cannot be used to compute the parameters of the obtained distribu-
tion because these points do not represent independent observations. Nonetheless, it
is interesting to see how the estimate of the variance computed on these points
would differ from the actual variance. This is easy to do in our example.
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Hist'ogram
Bar midpoints
0.8 —* - Actual density e 7]
w 06
@)
Q04
0.2 o
0 = ~
-1 -0.5 0 0.5 1

X

Fig. 5.3 The probability density function of the composition of two uniform distributions
obtained by the numerical integration method

The variance of the random variable uniformly distributed on interval [—0.5,
0.5] is known: 021,2 = 0.5%/3 = 0.083. Thus the variance of the sum of these two
distributions will be 6> =267, , = 0.166. The combined distribution is symmetrical
around zero. Thus, using the points obtained,

N
$*=> alp, =2(0.87-0.04+0.6*-0.08 + 0.4 - 0.12 + 0.2> - 0.16) = 0.160.

t=1

The difference with the actual variance is not very significant, especially con-
sidering the small number of data points.

5.4 Traditional Method

The processing of experimental data obtained in a measurement consists of two
steps. In the first step, we estimate the value of the measurand, and in the second
step, we calculate the inaccuracy of this estimate.

In an indirect measurement, the first step traditionally is based on the assumption

that the estimate A of the measurand A can be obtained by substitution of A/ for A;in
(5.1):

A=f(Ai_Ay) (5.13)

The second step is commonly solved by expansion of the function (5.1) in a
Taylor series. Usually the Taylor series is written in the form of an approximate
value of the given function, which is brought to its true value with the help of
corrections. We want, however, to work with errors rather than with corrections.
Thus, we shall therefore write the series in such a form that the approximate value
of the function is expressed by adding something to its true value. To simplify
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further calculation, suppose that the number of arguments N = 2. Then, we have
the Taylor series in the form:

~ ~ a a
P, d2) = 42)+ (o4 € )1, )
1/ 0 ) 2
+2!<(%471+3A262)f(f\1, Ay) + - (5.14)

1 0 0 "
+M (%Cl +8—A2c2) f(Ar, A2) + Ruy1,

where Ay = A, + {1, Ay = Ay + & (¢ and &, the errors of A, and Ay), R, is the
remainder term, and partial derivatives are computed at the point Ay, A,).
The remainder term can be expressed in the Lagrange form:

1 8 a m—+1
Ry = CES] <%C1 +8—AZCZ> fAL + 1, A+ 120y), (5.15)

where 0 < vy, < 1.

If the indirect measurement is linear, all terms, except the linear one, are equal
to zero.

The general form of the error of an indirect measurement is

(=A-A=f(Al, A)—f(A1, A).

Turning to the Taylor series, one obtains

0 0
¢ :<8—A1C1 +8—A252)f(1417 A)
| (5.16)

- i( +i§ 2f(A A)) 4 +R
) 6141 1 8A2 2 1, A2 m+1-

In practice, however, only the first linear term is used for error calculations:

Thus, the estimation of inaccuracy of nonlinear indirect measurements is done
through linearization of the measurement equation. We will call the partial
derivatives above argument influence coefficients (not to be confused with influence
quantities and coefficients considered in single measurements under rated
conditions). We shall denote them as follows:

o

= j=1,...,N.
wj aAjv J ) )
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Now the above equation can be written in the general form:
N
L= wi (5.17)
J=1

We emphasize again that all partial derivatives are calculated at the estimates

point (A,, A,) because the true values A;, A, are unknown.
Now, we can write

where 9, and y; are conditionally constant and random components of the error,
respectively. So, (5.17) takes the form:

N N
C= widi+ Y wy,. (5.18)
=1 =1

J

The last formula says that, in indirect measurements, not only the systematic
error consists of components, but so also does the random error.

The traditional method considers the random errors only, which means there
are no systematic errors in the argument estimation, that is, that E[{;] = 0 and
E[{,] = 0. (A method capable of accounting for systematic errors is considered
later, in Sect. 5.9.)

The most important characteristic of a random error is its variance. In accor-
dance with the mathematical definition of the variance, we obtain from (5.17), for
N =2,

v[¢] = E[(wi8) + wal,)?] = WiE[ST] + W3E[G] + 2wimaE[S X &)

This formula is different from (5.3) only in the notations. Therefore, one can
write

6t = wfa% + w%a% +2p, ,w1W20102, (5.19)
where
=V =E) ot =E)
o=E[Q], and p,= L%l:fﬂ :

We should like to point out that the variance of a random error of the measure-
ment result is identical to the variance of the measurement result:
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Also note that (5.19) has three terms, which correspond to the case when N = 2.
When N = 3, we shall have six terms. So, with the number of arguments increasing,
the complexity of calculations increases rapidly.

In (5.19), the values of variance 612 and correlation coefficient p;; are unknown
and, in practice, their estimations Sf and r;; are used instead. Taking into account
this substitution and assuming the general case of N arguments, (5.19) becomes

N
§? = Z wiS(A)) +2 Z rewiwiS(AL)S(A)) (5.20)
j=1 k

For estimating the variance of the estimation of an argument and correlation
coefficient between pairs of arguments, we have the formulas

. 1 n
2 _ G2(A) = %)
§;=S§ (4)) Tatn—1) ?:1 (i = X;)"

(i — X)) (i — Xp)

-

13

Tkl =

Here, n is the number of measurement vectors, and x;; is the realization of
argument A; from measurement vector i. In particular, in the formula for the
correlation coefficient, the fact that realizations x;; and x; have the same subscript
i means that these realizations must be taken from the same vector i. Having the
estimates S} and r;, one can use (5.20) to obtain the estimate of variance s2.

If measurements of all arguments are independent, i.e., py; = 0, then (5.20) is
simplified:

N
$2 = WS (4)) (5.21)
j=1

This equation gives the following expression for the standard deviation:

S = \/W%SZ(AI) + - W S2(Ay) (5.22)

The last two formulas are often called the error propagation formulas, although
in reality they express the propagation of variances.

Although (5.22) was derived for the random errors only, it has a wide use as
universal formula for the summation of all kinds of errors. This way of error
calculation even has a specific name: the square-root sum method.

The next problem is to calculate the confidence interval for the true value of the
measurand, and hence the uncertainty of the measurement. Within the framework
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of traditional methods, this problem can only be solved in a mathematically
grounded way for linear indirect measurements, although even in this case, the
solution is only approximate. For nonlinear measurements, this problem can be
solved by linearization of the measurement equation, which leads to additional
inaccuracy. However, for dependent indirect measurements the traditional method
does not provide any solution, because in this case it is impossible to obtain the
probability distribution of the measurement error and to find the appropriate
number of degrees of freedom.

Let us consider this simplest case of a linear indirect measurement with normally
distributed argument errors. In this case, in principle, one could use Student’s
distribution, but an exact expression for the degrees of freedom is not known. An
approximate solution, which gives an estimate of the degrees of freedom, called the
effective number of degrees of freedom, is given by the well-known Welch-
Satterthwaite formula [6]:

2
N .
Z% b2S*(A))
j=
Veft == . b ) (5.23)

>
=1

where v; is the number of degrees of freedom for argument A;, determined by the
number of measurements #; of A;: v;j—z = n;—1. The uncertainty in this case can be
calculated as

Ue = 1,5,

where t, is found from Student’s distribution table for the degrees of freedom
ver and the significance level g = 1—a (recall that « is the chosen confidence
probability). The obtained uncertainty is approximate because, not knowing the
actual degree of freedom, we used its estimate — the effective degrees of freedom.

For nonlinear independent indirect measurements, as already mentioned, the
problem of constructing confidence intervals can be solved using linearization of
the measurement equation. Linearization is done using the expansion of the mea-
surement equation into Taylor series. In this method, one estimates the standard
deviation of the measurement result using (5.22), computes the effective degree of
freedom from (5.23) (replacing coefficients b; with w;), and then finds the quantile
of Student’s distribution corresponding to the just-found degree of freedom and
chosen confidence probability. Having obtained the quantile, one can calculate the
confidence interval for the measurement result, that is, the measurement uncertainty
in the same way as for a linear indirect measurement.

This solution, as is the case with linear indirect measurements, is approximate.
But its more significant drawback is that it retains only the first, linear, term in the
Taylor series. Therefore, the probability distribution of the result of the indirect
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measurement is unknown and thus the confidence probability assigned to the
measurement uncertainty is unlikely valid.

In practice, instead of linearization, the uncertainty is often calculated simply by
summation of measurement uncertainties of the arguments using the following
formula, which is based on (5.22):

(5.24)

where u; is the uncertainty of the measurement of jth argument and w; is its
influence coefficient. Along with (5.22), formula (5.24) is also often called the
square-root sum formula. But this square-root sum formula is correct for summing
variances, not confidence limits or uncertainties, and it is unclear if one can call the
result a confidence interval or uncertainty.

The next problem is how to calculate the systematic error of an indirect mea-
surement result, and how to combine it with the random error to obtain the overall
uncertainty of the indirect measurement result. A reasonable solution of this
problem will be discussed below in Sect. 5.9.

5.5 Merits and Shortcomings of the Traditional Method

The traditional method has been used in measurement practice for a long time. It is

based on the Taylor series expansion, which allows one to transform input data of

an indirect measurement (data obtained from arguments’ measurements) into

output data, that is, the data about the measurand. This method is universal but,

as the analysis presented in [44, 45] showed, it has a number of shortcomings.
First, for a nonlinear function f

E[f(X1,...,Xn)] #f(E[X1],...,EXy]),

where X1, ..., Xy are random quantities. Therefore, the estimate of the measurand
given by (5.13) is incorrect when the measurement equation is nonlinear. Let us
evaluate this incorrectness.

Go back to (5.14) and now retain not only the first term but the second one also.
Again, assuming N = 2 for simplicity, we get

(O of 1/ 0 o . \*
L= (8—141§l +8—A2§2> +§<%C1 +8—Ag€2> f(A1, Ap).

Assume, as before, {; and {, to be free from systematic errors: E[{;] = 0 and
E[{>] = 0. Then, the mathematical expectation of the first term is equal to zero:
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But the variances of the errors {; and ¢, are
Vgl =061 >0 and V(5] =05 >0,

and therefore the mathematical expectation of the second term in the above Taylor
series is not equal to zero. Indeed,

Eg = £ (e 20 fean A

C_ 2 8A] 1 BAQ 2 1, 2
L ey 1O ey O O
2047 Y 2 943 OA; " 0A,
CLPf , 1PF L, o o
T2 oAl oA, oA,

E[&] + E[¢) x &) (5.25)

P120102-

As a% > 0, 0% > 0and Ip; ol < 1, E[{] = B # 0.

Thus, for nonlinear indirect measurements, the estimate of the measurand given
by the traditional method is biased! The bias of the measurement result can be
reduced by correction C:

C=-B.

But even after correction, the estimate of a measurand will not be exact because
it takes into account only two terms, whereas the Taylor series may have an infinite
number of terms.

This is the first deficiency of the traditional theory of indirect measurements.

It must be considered as an essential disadvantage for it affects the results of
measurements.

The second deficiency is that the estimate of the variance of the measurement
result, given by (5.20), is imperfect because it is derived using only one linear term
in the Taylor series. In other words, the traditional method does not use all of the
information contained in the results of measurements of arguments.

The next disadvantage of the traditional method is the problem of the confidence
intervals. As we already mentioned, this method does not provide a grounded
foundation for constructing the confidence intervals in the case of dependent
indirect measurements because in this case it is impossible to obtain the probability
distribution of the measurement error and to find the appropriate number of degrees
of freedom.

A further drawback is the above-mentioned problem of estimating correlation
coefficients that are an inherent part of the traditional method.
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As we mentioned earlier, the traditional method allows one to construct a
confidence interval for linear—or linearized with Taylor series—indirect measure-
ments. We also said that for nonlinear independent indirect measurements, the
most commonly used method is not linearization but the method using the
square-root sum formula. However, the justification of applying the square-root
formula in this situation has not been proven. Let us investigate this question.

Consider two samples of independent observations of a measurand, each of size
n, from the same normal distribution. Let the estimates of their variances be Sf and
S%. The confidence limits of the true value of the measurand, according to Student’s
distribution are

up =t,-1S1 and up = 1,_1S.

Coefficient ¢,_; for both samples is the same since they have the same degree of
freedom and the same confidence probability. Let us now combine these samples
into one. The combined sample is also from the same normal distribution but with
2n observations. The estimate of variance of this sample is

2 _ @2 2
So =87 +55,

and the confidence limit is
up = t7,-1S50-

Compare the above confidence limit with the one obtained from (5.24):
M/O = \/l/l% + Ll% = t,-150.
Obviously, uy # u).

Let us further look at how big the difference between the two can be. Forn = 10
and confidence probability « = 0.95, we have uly = 2.26 x Sgand uy = 2.10 x S,
Thus, in this case, (5.24) exaggerates the inaccuracy by 8%. We can find in a similar
way that with n = 10 and three arguments, the difference will be 11%, and with
four arguments, 13%. For n = 5 and two arguments, the difference reaches 25%
and for four arguments, 35%. When n = 20, the inaccuracy of (5.24) is 5% and
does not depend on the number of arguments.

We can conclude that using (5.24) can be generally acceptable when the number
of measurements of each argument is around 20 or more. At the same time, the above
analysis reveals several rules one should follow in using (5.24). First, one must keep
in mind that this formula exaggerates the uncertainty of the measurement, and the
fewer the number of argument measurements the greater the amount of overestima-
tion. Second, to use this formula, one must make sure that measurement uncertainty
of each argument has the same degree of freedom. In other words, each argument
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must be measured the same number of times. Finally, the measurement uncertainty
of every argument must be computed for the same confidence probability.

The above analysis also suggests a possibility of introducing a corrective factor
W, = t2,_1/t,_1. In the particular example we considered,

W, = top1 /ta_1 = 2.10/2.26 = 0.93.

However, an important point to keep in mind is that the entire analysis is
conducted for the case when argument measurement errors are normally
distributed. Generalizing the above analysis, a natural suggestion would be to use
(5.22) in place of (5.24) for the estimate of combined standard deviation, and then
use Student’s distribution to build the confidence interval. The degree of freedom in
this case is, as we have seen, v = 2n—1.

In summary, both methods — linearization and square-root sum — of calculating
the uncertainty (i.e., confidence intervals) of independent indirect measurements
are approximate. The premise behind these calculations, which is that errors of
measurements of the arguments are normally distributed, often does not hold. And
only because confidence intervals based on Student’s distribution are not highly
sensitive to the shape of the distribution functions, these intervals are satisfactory in
practice.

Nonetheless, as the analysis of Sects. 5.4 and 5.5 showed, the traditional method
and the square-root sum formula (with the enhancements discussed above) still
allow one to estimate the uncertainty of independent indirect measurements assum-
ing that the conditions for the applicability of this formula we established do hold.

5.6 Method of Reduction

As we discussed above, the traditional method of experimental data processing
allows one to estimate the uncertainty of the measurement result for independent
indirect measurements. But for dependent indirect measurements, this problem
remained unsolved. For this reason, in measurements in physics, chemistry, and
other scientific disciplines, the uncertainty of a measurement result is taken to be
not a confidence interval but the standard deviation. The following method of
reduction fully solves this problem [35, 44-46].

Assume that xj;, Xo;,..., Xy; are measurement results of arguments from a
measurement vector i. Recall that a measurement vector compiles measurements
of all arguments performed under the same conditions and at the same time. Each
dependent indirect measurement always consists of a definite number of measure-
ment vectors.

So, let n be the number of measurement vectors obtained. These vectors can be
represented as a set:

{-xli,x2i7 e ,xNi},i =1,...,n.
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Substituting the results from the ith vector into the measurement equation,
we obtain the ith value of the measurand. Denote it by y;. This transformation is
obviously justified because it reflects the physical relationship between the
measurand and the measurement arguments.

In the same way, n measurement vectors give us a set of n values of the
measurand:

{ihi=1,...,n

This set does not differ from a set of data obtained by direct measurements of the
measurand A. Hence, we can now use all simple and well-understood methods of
direct measurements, which immediately provides an estimate of the measurand

- 1 &
A=y =— i 5.26
y=+ iE:I Yy (5.26)
and an estimate of the variance
S =S (-5 (5.27)
]’l(n _ 1) g )’1 y .

The method of reduction also solves the problem of the calculation of confidence
intervals, because we now have the set of n values of the measurand. The confi-
dence limits and therefore the uncertainty of the measurement result are

g = 145(A) (5.28)

where ¢, is found from Student’s distribution for the chosen confidence probability
o and the exact number of degrees of freedom obtained, v = n—1.

One might think that the method of reduction imposes special requirements for
performing the measurement, namely that the measurements of arguments be
performed so that the results can be represented as a number of measurement
vectors. However, the traditional method imposes this requirement as well. Indeed,
if we have a dependent indirect measurement, all arguments must be measured
under the same conditions for the traditional method also, because, otherwise, it is
impossible to calculate the correlation coefficients and therefore impossible to
estimate the variance of the measurement result.

Thus, the method of reduction has some important advantages over the tradi-
tional method:

1. It eliminates the need for linearization of a measurement equation and therefore
produces an unbiased estimate of the measurand.

2. It uses all of the information obtained in the course of the measurement.

. It gets rid of the correlation coefficient in the measurement uncertainty calculations.

4. Tt gives the exact degree of freedom and allows one to calculate the confidence
intervals for the true value of the measurand.

(O8]
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These advantages lead us to conclude that the method of reduction is the
preferable method for all kinds of dependent indirect measurements.

It is important to emphasize here that data processing in independent indirect
measurements does not require correlation coefficients. As the method of reduction
eliminates the need for correlation coefficients in the case of dependent indirect
measurements, the concept of the correlation coefficient is no longer necessary in
measurement data processing.

To conclude, I would like to note that I first proposed this method of reduction
approximately in 1970. It found immediate application in national and international
comparisons of standards of unit radium mass and in measurements of other
radioactive quantities carried at All-Union State Research Institute of Metrology
named under Mendeleev in the former Soviet Union. With the reports of these
measurements, the information about the method of reduction spread outside that
Institute and outside the country. The first formal publication describing this
method appeared in 1975 [35]. By now this method has became well known; it is
mentioned in the GUM [2] under the name “Approach 2.” However, while
containing a note that this approach is preferable to “Approach 1” (which is the
traditional method), GUM does not explain what the advantages of Approach 2 are.

5.7 Method of Transformation

The method of reduction described in Sect. 5.6 replaces the traditional method for
processing data obtained from dependent indirect measurements. Unfortunately,
this method is inapplicable to independent indirect measurements, because it is
unclear how to group argument measurements into measurement vectors. The
traditional method is applicable but has several drawbacks. In the case of a
nonlinear measurement equation, the traditional method involves linearization of
the equation, which entails some loss of information obtained from the measure-
ment. The traditional method combines measurement errors of the arguments under
the assumption that these errors are all normally distributed. The traditional method
used to suffer from the general problem of indirect measurements, namely, the lack
of a grounded method for combining the random and systematic errors. While the
methods presented in this book allow one to combine these errors, the uncertainty of
the result is calculated using an approximate estimate of the degree of freedom
leading to loss of accuracy in these calculations.

Consequently, we are presenting a new method for independent indirect
measurements, which we call the method of transformation. As we will see, this
method reduces and in some cases eliminates most of the above drawbacks. A still
better method — method of enumeration — is presented in Sect. 5.8. However, the
method of transformation may sometimes be preferable because it is simpler: it can
be applied using a simple calculator while the method of enumeration requires
computer processing.
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The essence of the method of transformation can be understood intuitively if one
considers a black box with the arguments as its input and values of the measurand as
its output. If we applied fixed argument estimates of all but one argument to the
black box’s inputs, the black box would transform every observed value of the
remaining argument into the corresponding value of the measurand, producing a
group of measurement data. Using each argument in this manner, we can obtain a
set of these groups, which together provide the basis for the estimate of the
measurand along with its uncertainty for a chosen confidence probability.

Turning to a more detailed description, let A;, j = 1,...,N be the arguments of
an independent indirect measurement of a measurand x:

_X:f(Al,...,AN). (529)

We will consider the case when function f in above equation can be separated
into multiplicative terms, each depending on one argument':

x:f(Al,...,AQ) :fl(Al)'-~~'fN(AN) (530)

Assume that all arguments but one in (5.30) are fixed to certain values. Let A, be
the remaining argument and let A,; (i = 1,..., n,) be its observed values. Each
value A,; of the variable A, together with the fixed values of all other arguments,
produces one value of the measurand. Thus, (5.29) can be presented in the new form

Xai =fi(Ar) - fac1(Aar) - fa(Agi) - farr(Aasr) - n(An),  i=1,... 0.
This formula can be written also as a product of two functions,
Xa; = WalAr, ..., Aa—1, Aatr, .. AN)fa(Aas),
where function f; depends only on the measurement data of argument A, and

function W4 depends only on the chosen values of the remaining arguments.
It will be convenient to rewrite the above as

Xai = Cafa(Aai) (5.31)
where
Ca=Ya(4)), j#d (5.32)

The term C,, is determined by values of A; (j # d) and therefore is the same for
all values A,;. It is called the transformation coefficient for argument A,. We use

" One should be able to apply the ideas described here to the case with additive terms as well,
although the specific formulas will change.
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the estimate of arguments A; (j # d), that is, the means A_,- of their measurements,

in (5.32) to compute an estimate of C,, Cy. Then, using (5.31), a set of nq
measurements of A, is transformed into the set of the corresponding values of the
measurand {x;;}, i =1,..., ny. The same calculations are performed for each
argument, producing N sets of values of the measurand. We call the argument A,
used to produce the corresponding group of the measurand data {x,;} the deriving
argument, and the rest of the arguments nonderiving arguments. The groups of
argument measurement data are called the input groups; the derived groups of the
measurement data are called the output groups.

In this way, the input group of measurements of each argument is transformed
into an output group of measurement data of the measurand of the overall measure-
ment. Combining all N resulting groups, one can find an estimate of the measurand
and its accuracy. However, formally, the output groups are dependent because the
transformation coefficient used to produce a given output group is determined by
the averages of the input groups of its nonderiving arguments.

Statistical analysis involving dependent random quantities is generally difficult.
However, ours is a specific case. It is easy to see that if we had precise values of the
arguments, the transformed groups would be independent. Therefore, the depen-
dence between the transformed groups has to do with the inaccuracy of estimates of
the arguments, and this inaccuracy can be taken into account.

Assume for a moment that the indirect measurement has only two arguments, A;
and A,. From (5.32), if the error of the estimate of the second argument is & (Az), the
error of coefficient C, is

~ d¥ _
5(Cy) = (dA;)A . 5(A,). (5.33)

Because of this error, the obtained value of the measurand, x;,; will also have an
error, which can be estimated as follows:

8(xi;) =6(Ci)fi (Ar)-

Dividing the above expression by X, ; and substituting the latter with its expres-
sion (5.31) in the right side, we obtain:

8(xi)  S(Cfi(AL) 5(?1)_

X1,i Cifi(Ary) Ci

Thus, we have obtained an important equation:

8()(17,') :S(Cl), (534)

where e(x; ;) is the relative error of observation x;; due to the inaccuracy of the
transformation coefficient and ¢(C,) is the relative errors of the transformation
coefficient.
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Note that the error e(x; ;) is the same for all members of the input group {x;} of
the deriving argument measurements, and that it is caused by the measurement
inaccuracy of the nonderiving argument A,. Because this error is the same in all
observations of the output group, the mean of the output group will have same error
also. With just the data from a given indirect measurement, a point estimate of this
error is impossible to find. However, having the estimate of the limits of error of the
measurement of argument A, one can estimate the inaccuracy of the corresponding
transformation coefficient C 1. Then, with the latter, one can estimate the bounds on
the possible changes of the mean of the output group in the case the indirect
measurement is repeated. In other words, these bounds represent the limits of a
possible change of the systematic error of the output group of data in the case of the
repeated indirect measurement. Such an error belongs to the class of conditionally
constant systematic errors. Observe that in the method of transformation, the
conditionally constant systematic error in question occurs even if the measurements
of the arguments have only random errors. This is because in each output group, the
random errors of the means of all the nonderiving arguments are “frozen” and thus
become constant.

It follows from the above discussion that accounting for the conditionally
constant systematic error that arises in the method of transformation is equivalent
to accounting for the dependency between the output groups of data. The estimation
of the limits of this error and combining it with the random error of the measure-
ment result is done in a usual way; it will be elaborated below.

Considering an arbitrary number of arguments now, (5.33) will take the form:

i) =3 (i) o)

#d A1, Adsr, AN=AL .. Ad_1 Ay .. Ay

where all the partial derivatives are evaluated in the point {A;},jq..
Generalizing the results obtained for two arguments, we can write:

e(vay) = e(Cy) = Z% % 8(A}), (5.35)
j#d =

where w; is the influence coefficient of argument A; and is equal to w; = 0¥ /0A;
computed in the point {A_j}, Jj#d. Tt follows from (5.35) that the confidence
interval of the conditionally constant error will need to be estimated using the
traditional method. Note, however, that while the traditional method here will have
all the drawbacks we mentioned in the beginning of this section, these drawbacks
now only apply to conditionally constant errors, while before they applied to the
entire errors. Thus, while the drawbacks are the same, their effect is now reduced.
With two arguments, the confidence interval for the conditionally constant error
will be more accurately since in this case (5.35) has only one item.
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We are now ready to estimate the measurand and its inaccuracy. All output
groups of data represent “observed” values of the measurand. Therefore, as
discussed later in Chap. 7, they can be combined into one large group, with its
mean used as the estimate of the measurand:

N ng
Z Z Xd,i
F=d=t=l (5.36)

N
> g
d=1

Note that because in transforming input groups of argument data into output
groups of the measurand data we do not use Taylor’s series, in our case,

ER = E[f(Ay,...,AN)].

We can now estimate the variance and standard deviation of the mean, using
(4.18) for direct measurements. But as we know, it is desirable to estimate these
characteristics in relative form. Thus, we have:

z

2l = /8%, a(x 5.37
Sira(¥) =5 Zz Swra(¥) \/m’ (5.37)

Y rel Z(z-1) >
N
where Z = > ny is the number of items in the combined output group, and x;(k =
d=1
1,..., Z) are the items in this combined group. Knowing the estimate of the

standard deviation, we can calculate the uncertainty due to random error.

Accounting for systematic error is a bit more complex. First, we need to find the
confidence intervals for each output group of data. This does not present a difficulty
because usually the arguments are measured by direct measurements. Then, the
variance and standard deviation for each group d are estimated using formula (4.18)
— again in relative form. The degree of freedom is known precisely: v, = n,—1.
Confidence probability a must be selected the same for every group. Then, we find
quantiles 74,9 of Student’s distribution corresponding to the chosen confidence
probability. If the number of measurements of each argument is the same, the
quantiles will also be the same for each output group: ¢, 9 = ty. From this quantile,
we can find the confidence limits 6, for each output group. But to do that, we
need to find standard deviation Slgm(f" ).

Using (5.35), we can calculate the variance of the measurand estimate in each
group d due to the conditionally constant error. In relative form, this variance is as
follows:

. 2 _
NENEDY <W’> S2.(4)) (5.38)
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Having found the variance estimate above, and hence the standard deviation,
the corresponding confidence limit is as follows:

O ret = 14,989 re1(Fg)- (5.39)

If each output group had the same “frozen” (constant error), the same error
would be present in the mean of the combined group. However, one cannot count on
these errors to match among all the groups. Thus, it is reasonable to compute the
conditionally constant error of the combined mean, 0,.;, as a weighted mean of the
conditionally constant errors of individual output groups, with weights g, equal to
the ratio of the number of items in each group over the total size of the combined
group. In other words,

N

Oret = Y 8dOdrer  8a = Na/Z. (5.40)
a=1

The same weights allow us to compute the standard deviation of the condition-
ally constant error of the measurement result (which is the mean value of the
combined output group of data):

N
Soret(X) = 8aSorer(¥a) (5.41)
a=1

Now, following the procedure described in Sect. 4.9, we can compute the
confidence interval of the measurement result. The calculations involve several
steps.

First, we compute the combined standard deviation according to (4.19):

SC = \/ S\%J‘Gl + S\zu,rel'

Next, using (4.22), we find coefficient 7. as weighted mean between 7, and 7.
Coefficient ¢, is found using Student’s distribution with the degree of
freedom v = Z—1. Coefficient ¢4 is obtained either from (4.21), in which case it
is tg = 6,01/Sg.re1, OF, if all arguments were measured the same number of times #,
from Student’s distribution with v = n—1. We should stress again that in using
Student’s distribution, one must select the same confidence probability in all cases.

Finally, we obtain the uncertainty of the measurement result in relative form:

Uerel = tcch
which provided the solution to the problem.

We should note that measurements of the arguments could have their own system-
atic errors, in most cases conditionally constant ones. They must be taken into account.
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To this end, for each argument, we must combine its conditionally constant and
random errors. This task is accomplished using the general scheme considered in
Chap. 4 and which we just used in combining errors of the overall result.

As already mentioned, our calculation procedure has a drawback: to compute the
error of the transformation coefficient, we use the traditional method, which
reduces somewhat the accuracy of the method although not as much as if we used
the traditional method to estimate the error of the entire indirect measurement. But
if measurement has only two arguments, this drawback disappears: in this case the
estimation of the conditionally constant errors in each group do not require summa-
tion. Thus, this drawback can be removed if we combined the output groups in a
pairwise manner rather than all together at once. We describe this modified
procedure next.

Referring to the measurement equation expression of (5.30), the calculations for
the indirect measurement processing can be accomplished by a series of successive
argument substitutions. Each step of this process substitutes a pair of arguments
with one new argument. After (N—2) steps, the original equation with N arguments
will be transformed into an equivalent measurement equation having only two
arguments. The processing at each step, as well as handling of the final equation,
uses the same simple calculations based on the method of transformation for a
measurement with two arguments.

To illustrate the main idea of this method, consider an indirect measurement
with four arguments:

x = f1(A1)ef2(A2)ef3(A3)e fu(As).

We start by substituting the first two arguments, A; and A,. To this end,
we replace the corresponding terms with a new argument B = fi(A;) * f>(A>).
The measurement equation now becomes

X = B/'f?, (A3)of4 (A4)

We now apply the method of transformation to the expression for B above.
Since we only have two arguments, this method is more precise due to precisely
known degree of freedom of both arguments. According to this method, we use
the measurement data for arguments A; and A, to obtain the data set for B’, {B’},

i=1,..., (n; + ny), and from it the estimate B’ and its standard deviation, to be
used in the next step.

Continuing the substitution process, we substitute the first pair of arguments in
the equation that resulted from the previous step, B’ and A3, with a new argument
B" = B’  f3(A3). Similar to the first step, we use the data set for B’, along with its
estimate and standard deviation (from the previous step), as well as the measure-
ment data for As, to produce the set {B";}, i = 1, ..., (n; + ny + n3) for argument

. . 11 . L
B”, its estimate B , and its standard deviation.
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The measurement equation after the last step contains only two arguments:
X = B”cf4(A4).

Using the data set and estimate for B and the measurement data for Ay, We can

now obtain the data set for the measurand x, {x;}, k= 1,..., Zf’z , ;. This last set,

along with the standard deviation of B”, allows us to obtain the estimate of the
measurand and its uncertainty.

A detailed example of using the method of transformation is presented later in
Sect. 8.6.2.

5.8 Method of Enumeration

Method of enumeration is an alternative method for experimental data processing in
independent indirect measurements. It represents a particular case of the universal
method of constructing the composition of histograms of independent random
quantities considered in Sect. 5.3. Recall that according to that method, each
histogram is transformed into a series of realizations of random quantity. Then all
combinations of these realizations are considered and for each combination,
the corresponding combined realization is obtained by substituting component
realizations into the equation that defines the composition. The probability of
each combined realization is computed as the product of the probabilities of the
component realizations. From these combined realizations and their probabilities,
the distribution function approximation is finally constructed.

Section 5.3 also pointed out that this method for combining histograms is
applicable to any dependency that relates of the combined quantity with the input
quantities. Thus, this method can be used in metrology for processing experimental
data obtained in indirect measurements. In its application to metrology, an espe-
cially attractive feature of this method is that it removes the need for any
assumptions about the kinds of distribution functions of the observations obtained
during measurement of the arguments. Moreover, these observations of the
arguments can be viewed as realizations of distribution functions of these
observations, and these realizations can be used directly to construct the combined
distribution function sought, without resorting to either distributions of the input
data or their histograms.

The obtained distribution function will be the distribution function of the
observations of the indirectly measured quantity. However, these observations
were never obtained in reality. Therefore we will call them virtual observations.
We should also note that the method we are considering is only needed for indirect
measurements with independent arguments because indirect measurements with
dependent arguments are transformed, using method of reduction, to direct
measurements for which data processing methods are well developed.
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If all arguments are measured the same number of times n and observations in
measuring each argument are independent, then the probability of each observation
is 1/n. Furthermore, because the arguments are independent of each other, the
probability of each virtual observation of the measurand then becomes 1/N, where
N is the number of virtual observations. Clearly, N = n™, where m is the number of
arguments and 7 is the number of measurement observations of the arguments (we
will discuss the general case where the number of observations of different
arguments may be different later). Sorting all virtual observations in the increasing
order and summing up their corresponding probabilities, we can obtain the experi-
mental cumulative distribution function sought.

With the probability function found, we can now obtain its parameters — the
mathematical expectation and variance — and estimate the measurand uncertainty.
To obtain the parameters of the distribution, we can obtain a sample of independent
realizations from this distribution. The simplest way is to choose the desired sample
size K, then go sequentially through the probability interval [0, 1] with step 1/K and
take realizations of the measurand corresponding to each probability. These K
virtual realizations are independent, and they will allow us to estimate the
parameters of the distribution function. By choosing sufficiently large K, we can
assume that we obtain precise values of these parameters.

We take the mathematical expectation as the estimate of the measured quantity.
The calculation of uncertainty, however, has an important subtlety.” Namely, we
must compute it based on the real number of measurement observations of the
arguments (and not based on the size of the virtual sample K) since repeated
measurements of the arguments can lead to somewhat different results. Thus, the
uncertainty is computed as follows.

Having precise value of variance, we can also obtain precise value of the
standard deviation. Since the number of virtual realizations is always high, the
distribution of the estimate of the measurand as parameter of the distribution
function can always be considered normal. Thus, we can find the uncertainty of
the measurement result using tables for the standard normal distribution as
described in Sect. 3.6:

P{I¥ = Al < 2010/ Vi) = @

where z(;4)/, is the quantile of level (1 + a)/2 of the normal distribution.
From this, it follows that

[¥ = 2010/ V] <A< [¥ 4201020/ V]

2 As a historical note, when I originally proposed this method long time ago, I missed this subtlety,
and we computed the uncertainty of the result based on the number of virtual realizations [34].
This led to an apparent paradox of obtaining confidence interval of the result that was 2-3 times
narrower than that of the arguments. This problem forced me to reject this method until recently,
when I finally resolved this issue and arrived at the solution described here.
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The uncertainty of measurement result them is computed according to formula

Ug = Z(11a)/20/ /N

In general, the number of measurement observations of different arguments can
be different. We can still construct the experimental CDF of the virtual observations
as demonstrated in Sect. 5.3. However, a question arises, how to find the averaged
number of real observations of arguments to be used in constructing the confidence
interval for the measurement result. We believe that this question can be resolved in
a similar way to the solution to the problem of calculation of the effective degree of
freedom of an indirect measurement, which we discussed in Sect. 5.4. However, we
do not pursue this question further.

In summary, the schema of calculations of uncertainty of measurement result
using method of enumeration is as follows.

1. Substituting into the measurement equation all combinations of the measure-
ment data of the arguments, obtain the series of N virtual observations of
the measurand. With independent arguments, the probability of each value
is 1/N.

2. Sort the above series in the increasing order and construct point approxi-
mation of the cumulative distribution function of the virtual observations
of the measurand. Connecting these points, obtain the linear approximation of
the CDF.

3. Choose the desired number of realizations K of the measurand and, going though
the probability interval [0,1] with step 1/K, obtain K independent virtual
realizations.

4. Compute the estimates of mathematical expectation, variance, and standard
deviation of the distribution using the above sample of K virtual realizations.
Calculations use standard formulas.

5. Take the estimate of the mathematical expectation as the measurement result.

6. Compute the uncertainty of the measurement result as the confidence interval
using the formula given above, based on the normal distribution, selected
confidence probability, and the actual number of observations n that were
obtained during measurement of the arguments. Note that we assume that all
arguments are measured an equal number of times.

A detailed example of applying this method is given in Sect. 8.6.3.

In closing, we stress that the method of enumeration does not require any
assumptions on the form of the distribution functions, nor approximations of any
functions as a truncated Taylor series. In other words, this method makes use of all
the information contained in experimental data. Because of these advantages, the
method of enumeration can be recommended instead of the traditional method or
method of transformation, or for verification of these latter methods.


http://dx.doi.org/10.1007/978-1-4614-6717-5_8

184 5 Indirect Measurements
5.9 Total Uncertainty of Indirect Measurements

The preceding sections of this chapter considered multiple indirect measurements
that did not have systematic errors. But the systematic errors cannot be ignored —
they have to be taken into account when computing the overall inaccuracy of
indirect measurements.

Systematic errors are not apparent in the process of measurements, and there-
fore, they must be evaluated, taking into account the possible causes of them: first,
the systematic errors in the measurements of arguments. The calculations for
estimating these errors are the same for the dependent and independent indirect
measurements.

The relationship between the measurement errors of arguments and the error of
the indirect measurement is represented by (5.17). This equation reflects the
transformation of the errors in measurements of arguments into the error of an
indirect measurement.

In addition to the error from the measurement errors of arguments, the indirect
measurements have an additional source of error. It is the inaccuracy of the
measurement equation. The next example will illustrate this error.

Suppose that we are required to measure the area of a plot of land that is depicted
by a rectangle on a sketch. Here, the rectangle is the model of the object. Its area
is S,, = ab where a and b are the lengths of the sides of the rectangle. The
discrepancies between the model and the object can in this case stem the fact that
the angle between the sides will not be exactly 90°, that the opposite sides of the
area will not be precisely identical, and that the lines bounding the area will not be
strictly straight. Each discrepancy can be estimated quantitatively and then the error
introduced by it can be calculated. It is usually obvious beforehand which source of
error will be most important.

Suppose that in our example the most important source of error is that the angle
between adjoining sides differs from 90° by $, as shown in Fig. 5.4. Then the area of
the plot would have to be calculated according to the formula S; = ab cos .
Therefore the error from the threshold discrepancy in this case will be

Sm— S =ab(1 —cos p).

Fig. 5.4 Rectangle and parallelogram as the models of a plot of land
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The admissible angle B, must be estimated from the required accuracy in
determining the area of the plot. If ft § > f,, then the model must be redefined
and the measured quantity must be defined differently. Correspondingly, we must
use a different formula for calculating the measured area.

We should note that the inaccuracy of the measurement equation, or the thresh-
old discrepancy between the model of an object to be studied and the object, is a
methodological error and it is an absolutely constant systematic error.

The random errors of indirect measurements were analyzed previously in this
chapter. Let us now begin the analysis of the systematic errors of indirect
measurements.

The general approach to the problem of the estimation of systematic errors is
similar to the one developed for direct measurements. Still, indirect measurements
have some specifics. One difference has to do with the existence of argument
influence coefficients w;. Usually their values are calculated by substituting the
estimates of arguments for their true values. In other cases, these coefficients are
found from special experiments. Either way, they are obtained with some errors.
These errors can be avoided if the measurement equation has the form

A=AlAy LAY (5.42)
In this case, the influence coefficients are determined by the expressions

0A

I =1 41 ]
WIZEZIIA] A22A[<\,/
0A I3 hL—1 ]

w1 :%:Alle; AI(’V
0A Lgly In—1
WN:%:AlAQ_lNA[Cl/

The absolute error is determined by (5.17). We shall now transfer from the
absolute error to the relative error:

CA-A LAY AR LAY VAl AL Al

N

Cy
Substituting (5.42) for A, we obtain

Cl cZ CN
=Ll 2y 2
€ 1A1 2A2 NAN

Thus, the influence coefficients for the relative errors in the measurements of the
arguments are equal to the powers of the corresponding arguments: w'| = [,
wh =1b,...,wx = ly. The coefficients [,l,. . .Iy are known exactly a priori, so
that the error of influence coefficients noted above does not arise.
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This result can be obtained without use of (5.17), in other words, without the use
of Taylor series. Indeed, moving from (5.42) to the differentials on both sides, we
obtain:

dA =LAV ALY ANdA + LAV AR AldAy - 4 IvAL A Al aAy.

Dividing both sides by A, and replacing A with its expression (5.42) on the right
side of the above equation, we get:

dA  dA; | dA dAy
o 2y Y
A g, Tho v

Because measurement errors are small, the differentials above can be replaced
by increments — measurement errors. This brings the above equation to the same
expression for the combined error € that was obtained above.

So, relative form of errors provides the uncertainty calculations with exact
values of influence coefficients. This is another advantage of expressing the mea-
surement errors in the form of relative errors.

The systematic error of the measurement of each argument consists of elemen-
tary components. As always, they can be divided into two categories: absolutely
and conditionally constant errors.

Absolutely constant errors are deterministic quantities. However, we cannot find
their exact values and can only estimate their limits. These limits are estimated
differently in every specific case. In general, these estimations are based on the
experience of the person performing the measurement. Usually, there are very few
such errors and they are small. But it is necessary to keep them in mind. One
example of absolutely constant errors is the error in a measurement equation
considered above, such as the linearization error of the standardized characteristic
of a thermocouple.

Conditionally constant errors can be computed using the first term of (5.18):

N
9= wd;
=1

where 8 is the conditionally constant error of an indirect measurement, and 9, is the
conditionally constant error of estimate of jth argument. This formula can be
represented in the form

N
9= " wd; (5.43)

where k; is the number of conditionally constant errors in the measurement of the
Jjth argument.
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We previously considered one difference between estimating systematic errors in
the case of direct and indirect measurements, namely the existence of the influence
coefficients of the arguments. But there is also another difference: In the case of indirect
measurements, some elementary errors in the measurements of different arguments
may be caused by the same influence quantity. When such a quantity grows, some
of these errors can grow also while the rest of them go in the opposite direction.

For example, assume that two measuring instruments used in an indirect mea-
surement have temperature errors. When the temperature changes, these errors will
also change, and both of them can change either in the same direction or in opposite
directions. Thus, the additional errors caused by the same influence quantity can to
some degree cancel each other. In order to take advantage of such error cancella-
tion, one must combine the additional errors caused by the same influence quantity
before summing up the squared limits of the elementary errors. Let us consider
these calculations.

For simplicity, we will consider an indirect measurement with four arguments
(N = 4). We will further assume that the measurements of arguments 1 and 2 have
additional errors caused by a change of influence quantity ¢, for example, tempera-
ture. Denote these additional errors d;, and &,, respectively. They cause the
resulting measurement error J;,,, equal to

8120 = w1y +wady (5.44)

Taking into consideration that 9, and 9,, are just two of the errors of arguments
1 and 2, and that we have four arguments altogether, (5.43) becomes as follows:

ki—1 ky—1

9 =912 +wi 21911+W221921+W3ZI931+W421941 (5.45)

As was discussed in Chap. 4, it is possible to assume all conditionally constant
errors to be random quantities with a uniform distribution, and the confidence limits
of the conditionally constant error of an indirect measurement 6, can be calculated
from the limits of the conditionally constant elementary errors using the same
method that was discussed in Sect. 4.9. The main difference is that now we have
to account for influence coefficients of the arguments. So, adding these coefficients
to (4.3), we get

ki—1 ky—1

4 ky
Ou=hy| Y Wi, +0] o+ Z‘%;*‘W 2921+W3Z‘931+W T
i=1 i=1
(5.46)

and

012 = w101, + w0y, (5.47)
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where (5.47) is computed while preserving the signs of 8, and 6,,.

The values of k are given in Sect. 4.4. In particular, for the confidence probability
a=0.95k=1.1.

If the indirect measurement is performed under reference conditions for all
instruments involved, or if no influence quantity causes additional errors in more
than one instrument, then (5.46) has the form

(5.48)

While all conditionally constant errors in computing #, were taken to be
uniformly distributed random quantities, their sum will have normal distribution.
Thus, 6, can also be computed using the quantile of order @ of the normal
distribution:

Ou = Z(14+a)/259

where Sy is the standard deviation of the normal distribution. We can use this last
formula to compute the standard deviation of the total error as

where 6, is calculated using formulas (5.46) or (5.48).

Now let us return to the absolutely constant errors. Adding up their limits, we
obtain the overall limits H of the absolutely constant error of the result of an indirect
measurement:

N
H=H,+» wH
j=1

where H, is the limit of an error of the measurement equation; H; is the limit of the
absolutely constant error of the measurement of j th argument.

Thus, we have the estimate of the variance of conditionally constant errors S%,
and the limits of the absolutely constant error H. We also have the estimate of the
variance of the random error S% So, we can now obtain the total uncertainty of
indirect measurement result. These calculations are exactly the same as those used
for the uncertainty calculation in Chap. 4 for direct measurements. Therefore, in the
same way, we can now calculate the uncertainty of indirect measurements. The
resulting formulas are repeated below.

The combined standard deviation S, can be calculated using (4.19):

Se=1/82 482 (5.49)
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The combined uncertainty can be found from (4.20):
Ue = tcSm (5.50)
and the coefficient ¢, is calculated by (4.22):

0, + 1,5 S S
= +ledr tg—20 +ty——.
So + S¢ So + S So + S

(5.51)

If N > 5, tg depends only of confidence probability a. For a = 0.95, g = 1.96,
for a = 0.99, tg = 2.56 and so on. V If N<:

O
=— 5.52
ty S, (5.52)

5.10 Accuracy of Single Indirect Measurements

Single indirect measurements are very important in practice but unlike direct
measurements, they cannot be viewed as the base form of multiple indirect
measurements. As we discussed, this is due to the fact that in multiple indirect
measurements, it is the arguments that are measured multiple times rather than the
indirect measurement being repeated.

Among examples of single indirect measurements, we can list measurement of
the area of a plot of land, measurement of wattage dissipated by a resistor under
high-frequency current, and measurement of temperature using separately
calibrated thermocouple and millivoltmeter.

In single indirect measurements, the estimate of the measurand is obtained by
putting the estimates of all the arguments into the measurement equation. The
estimates of the arguments and their inaccuracy are typically obtained using
direct measurements. We have described the methods to accomplish these tasks
in Chap. 4.

The estimation of inaccuracy of single indirect measurements is in principle
analogous to that of direct measurements; the only difference is that in
measurements under reference conditions, the inaccuracy of direct measurements
is determined by the intrinsic error of a single measuring instrument while in
indirect measurements, of several instruments. Therefore, inaccuracy of indirect
measurements involves summation of errors even under reference conditions
whereas in direct measurements, this is only needed under rated conditions. The
summation methods themselves remain the same. The fact that errors of argument
measurements must be viewed as elementary errors (even though each argument
has its own elementary errors) and that the number of elementary errors in the case
of indirect measurements is typically greater is not principally significant.
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However, the calculation formulas take a different form because the meaning of
influence coefficients changes. Consequently, we rewrite these formulas below.

1. Measurements under reference conditions for all instruments involved. The
inaccuracy of measurements of the arguments is expressed in the form of limits
of error A, for each argument A; (j = 1,. .., N). These limits are transformed into
the limits of elementary error of indirect measurement 6; as follows:

0; = wjAj,

where w; = 5)7{( is the influence coefficient of argument A; computed at the point
J

with coordinates (4;),j =1,..., N.

We should note that the above expressions for influence factors represent
the first-order terms in the Taylor series expansion of the measurement equation.
We earlier strived to avoid using the Taylor series as it leads to imprecision in
the estimation of measurement accuracy. We were able to achieve this goal fully
with the methods of reduction and enumeration and partially with the method
of transformation (which reduced but did not eliminate completely the use of
the Taylor series). However, all those methods become possible thanks to the
information contained in multiple observations of the arguments. Single
measurements do not provide this information, and for them the less precise
solution based on the Taylor series remains natural.

As explained in Chap. 4, we can take a uniform distribution for the model of
elementary errors with given limits. Further, in Sect. 4.4, we proposed and
analyzed a method for summation of the limits of uniform distributions, and
we applied this method for summation of the elementary errors of single direct
measurements under rated conditions in Sect. 4.7. Thus, we will utilize the
recommendations formulated in Sect. 4.7, taking into account that the measure-
ment errors of the arguments, multiplied by the corresponding argument influ-
ence coefficients, become elementary errors of the indirect measurement.
Accordingly, (4.3), which expresses the uncertainty of a single measurement,
becomes

N N
e =k | Y WIA? =k, | > 0} (5.53)
=1 j=1

One must remember that the argument influence coefficients obtained from
calculations have certain inaccuracy. This inaccuracy can often be avoided by
representing the errors in relative form (see Sect. 5.9). Thus, expressing errors in
relative form is preferable.

From the discussion in Sect. 4.7, it follows that with confidence probability
a = 0.95, (5.53) can be used with any number of component errors, and with
the same value of ky9s = 1.1. With a = 0.99, the calculations depend on the
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number of components and are the same as with direct measurements under
rated conditions (see Sect. 4.7).

2. Measurements under rated conditions. When some of the instruments are used
under rated conditions, one must account for additional errors besides the
intrinsic errors. There are two ways to combine them. One method involves
estimating the measurement uncertainty of each argument and then combining
them. The other combines elementary measurement errors of all the arguments.
The latter method appears preferable because all errors being combined become
homogeneous in a sense that they all are specified by their limits. Therefore, they
can be combined according to the same recommendations that were described in
Sect. 4.7 for direct measurements. The one peculiarity arising in indirect
measurements is due to the fact that additional errors in different instruments
can be caused by the same influence quantity and therefore can be mutually
dependent. Accounting for this dependency is considered in Sect. 5.9.

5.11 Accuracy of a Single Measurement with a Chain
of Instruments

Single measurements are often performed using several measuring instruments
connected in a chain. A chain of serially connected instruments is also commonly
called a measurement system. When using an instrument chain, the measurement
result is given by the indication of the last instrument. Thus, from the physical
nature of the measurement process, a measurement using an instrument chain
should be considered a direct measurement. However, these measurements always
involve a measurement equation in the same form as (5.42) typical of indirect
measurements. For example in the measurement of temperature with thermocouple
and millivoltmeter, the thermocouple produces for each temperature T, the
corresponding electromotive force (EMF) U, and the voltmeter measures this
EMEF. The measurement equation is

T, = KU,

where K is the thermopower of the thermocouple.

Since the measurement equation has the same form as in indirect measurements,
the estimation of measurement accuracy in this case is done with the methods used
for indirect measurements. As we will see later, the measurement errors of the
arguments in this case are naturally represented in the form of relative errors, in
which case the influence coefficients of the arguments become equal to the powers
of the corresponding arguments in the measurement equation. Therefore these
coefficients are known exactly a-priori, and the error of influence coefficients
does not arise.
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An example of a serial connection of several instruments is described in detail in
Chap. 8 (Sect. 8.2), where we consider a measurement of voltage with a potentiom-
eter, a voltage divider, and a standard cell.

5.12 Monte Carlo Method

The Monte Carlo method is a numerical method of obtaining a composition of
independent random quantities with known distribution functions. In the old days
of manual computations, this method used to be too laborious to be used in
measurements, but thanks to modern computers, it can be employed widely. The
wide adoption of the Monte Carlo method in measurements should be facilitated
by the book [36] and recommendation [13].

The essence of the Monte Carlo method can be explained as follows. For
simplicity, let us consider random quantity Z related with a known dependency
f with only two independent quantities X and Y, each having a known distribution
function:

Z=f(X,Y).

Imagine that our goal is to find the distribution function of Z. This task can be
accomplished as follows. The first step is to choose the number of realizations K
of quantity Z that would allow us to construct the distribution function in question.
The second step is to transform continuous random variables X and Y into sequences
of numeric values. To this end, we go thought the probability range [0,1] with stride
p= % In each iteration i, the cumulative distribution functions of X and Y give
realizations x; and y;. Using these pairs as arguments of function f, we obtain K
realizations of the output quantity Z. Since K is chosen to be large (usually
10-10°), we can now approximate closely a probability density function or cumu-
lative distribution function of the random quantity Z.

It may seem that the Monte Carlo method would directly apply to accuracy
estimation of indirect measurements if we assume that the above equation
corresponds to the measurement equation (5.1). However, the application of the
Monte Carlo method to accuracy estimation of multiple indirect measurements is
not straightforward. A key complication is that experimental data in a multiple
measurement provide not a distribution function but a set of observations. Thus, a
crucial step before the Monte Carlo method can be utilized becomes a transition
from the discrete series of observations obtained from measurements of the
arguments to their distribution functions. Unfortunately, this step has no precise
solution as the distribution function can only be approximated from the discrete
series. Furthermore, these approximations are often obtained subjectively to a
large degree, as in the case of the recommendation from [13], which specifies a
menu of distribution functions from which to select ones used for subsequent
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calculations. This fundamental drawback limits the applicability of the Monte Carlo
method in metrology, especially that the problems of experimental data processing
in multiple indirect measurements with independent arguments are successfully
solved using the methods of enumeration, transformation, and the traditional
method.

The above concern does not apply, however, to the one particular metrological
application of the Monte Carlo method, namely, for verifying the accuracy
of methods for estimating uncertainty of measurement that are used in practice.
The Monte Carlo method is valuable in this application because it allows one to
investigate theoretical scenarios with precisely specified distribution functions.
It may also be possible that such investigations would lead to discovery of new
approaches, which would be more accurate than the existing practical methods.



Chapter 6
Combined and Simultaneous Measurements

6.1 General Remarks About the Method of Least Squares

Combined and simultaneous measurements, as pointed out in Chap. 1, are
measurements performed to find values of several quantities related by a known
equation. In either case, a measurement experiment involves multiple
measurements, with each individual measurement producing one equation instance.
Typically, the number of measurements is such that there are more equations than
the unknowns (the parameters and measurands). Because of measurement errors,
it is impossible to find values of the unknowns such that all equations would be
satisfied simultaneously. Under these conditions, the estimated values of the
unknowns usually are found with the help of the method of least squares.

The method of least squares is a widely employed computational technique that
makes it possible to handle the inconsistency of experimental data. This method is
easily implemented with the help of computers, and good least-squares software is
available.

There is extensive literature on the method of least squares, and it has been well
studied. It is known that the estimates obtained with this method satisfy the
requirements for estimates from Sect. 3.2 only if all the errors in the measurements
are random and normally distributed. Nevertheless, the method of least squares is
widely employed, because it is simple and in general, the biasness of the estimates
obtained is usually not significant even when the above condition does not hold.
Moreover, in measurement practice, the least-squares method is also used to reduce
the systematic errors if the measurement experiment can be organized in such a way
that different measurements of the same quantities have different systematic errors.

An alternative to the least-squares method is the method of minimizing the sum of
absolute deviations. This method is even more intuitive than the method of the least
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squares although it involves more complex calculations. While the advent of
computers has made the complexity of calculations irrelevant, it is still seldom used.

An example of simultaneous measurements is finding the parameters of the
equation that expresses the temperature dependence of an accurate measuring
resistor:

R = Ry + a(t — 20) + b(t — 20)?,

where R is the resistance of the resister, ¢ is its temperature, R, is the resistance of
the resistor at t = 20°C, and a and b are the temperature coefficients. By measuring
simultaneously R and ¢ and by varying the temperature, we obtain several equations,
from which it is necessary to find R, and the temperature coefficients. When the
number of measurements exceeds three, we cannot find an unambiguous solution,
and the least-squares method can be used to find the estimates of the parameters.

Because both combined and simultaneous measurements utilize the method of
least squares, and the technique is exactly the same in both cases, for brevity, we will
use the term “combined measurements” in this chapter to refer to both these types of
measurements. We shall now discuss the method of least squares because of its
importance to combined measurements and because understanding its basic ideas is
necessary to use this method properly.

We can write the basic measurement equation of the combined measurement in
the general form

F(A,B,C,....x,y,2,...) =1, (6.1)

where x, y, z, and / are directly measured quantities, and A, B, and C are the
unknowns to be determined.

Substituting the experimentally obtained numerical values of x;, y;, z;, and /; into
(6.1), we obtain a series of equations of the form

F(A7 B, Ca <oy Xiy Viy Zi) = lia (62)

which contain only the unknown quantities A, B, and C to be estimated and the
numerical values of the measured quantities. The quantities sought are found by
solving the obtained equations simultaneously.

An example of a combined measurement is finding the capacitances of two
capacitors from the measurements of the capacitance of each one of them sepa-
rately, as well as when the capacitors are connected in parallel and in series. This
method for measuring the capacitances of the capacitors could be chosen to reduce
somewhat the systematic error of the measurement, which is different at different
points of the measurement range — reducing the random component of the error
could be accomplished by simply measuring each capacitance multiple times.

Each measurement is performed with one observation, but ultimately, we shall
have four equations for the two unknown capacitances C; and C;:

CiCy

Ci=x1, Co=x,C1 +Cp =x3, ————— = x4.
1 =X, Cr=x2, C1 + (2 X3C1+C2 X4
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Substituting into these equations the experimentally found values of x;, we
obtain a system of equations analogous to (6.2).

As we have already pointed out, the number of equations in the system (6.2) is
greater than the number of unknowns, and because of measurement errors, it is
impossible to find values of the unknowns such that all equations would be satisfied
simultaneously. For this reason, (6.2), in contrast to normal mathematical
equations, is said to be conditional equation. Because of the inaccuracy of
measurements, when some estimates of the unknowns, A , 13;, and C , are substituted
into the conditional equations (6.2), we do not obtain exact equalities:

FA,B.C...)—li=r #0.

The quantities r; are called residuals. The values of the unknowns that mini-
mize the sum of the squares of the residuals are generally recognized as the
solution of the conditional equation. This proposition was first published by
Legendre and is called Legendre’s principle. He further proposed a method of
finding the solution according to this principle; this method is now called the
method of least squares.

6.2 Measurements with Linear Equally Accurate
Conditional Equations

We will first consider the case when each conditional equation is obtained under the
same conditions and either with the same instruments or the instruments of the same
accuracy. Thus, each equation can be viewed as equally accurate and be given equal
consideration in the calculation procedure.

To simplify the presentation, we shall consider the case of three unknowns. Let
the system of conditional equations have the form

Ax; + By; + Cz; = [;, (i:l,...,n,n>3), (6.3)

where A, B, and C are the unknowns to be estimated, and x;, y;, z;, and /;, are the
results of the i th series of measurements and known coefficients.

In the general case, the number of unknowns m < n; if m = n, then the system
of conditional equations can be solved uniquely, although the obtained results are
burdened with errors.

If some estimates of the unknowns, A , B, and C , are substituted into (6.3), then
we obtain the residuals

ri = AX,' +éy, -+ éZ,' — l,'.
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Because all equations are given equal consideration, we shall find estimates of A,
B, and C from the condition

n
0= E "1'2 = min.
i=1

To do so, we consider the estimates to be chosen as variables and find the values
of these estimates that minimize Q in a standard way using derivatives:

0Q_00 90 _,
DA OB OoC

We shall find these particular derivatives and equate them to O:

9] LN 5 5
8—%:2;(Axi+3yi+czi—li)xiZO,
o0 N = ~

= =2 Ax; + By; + Cz; — I;)y; = 0,
— ;(x yi 4+ Czi — 1)y
00

n
% = 2; (A)Ci +Byi + CZ,' — li)Z,' =0.
From here, we obtain a system of so-called normal equations:
~ n _ n ~ n n
AZXIZ +B Z)Cl'yl' + CZX,’Z,’ = ZX,’I,’7
i=1 i=1 i=1 i=1
_ n B n ~ n n
AY yii+BY i +CY yvz=) yili
i=1 i=1 i=1 i=1
~ n _ n ~ n n
A ZZ,'.X,‘ —l—BZZ,'y,' + CZZ,2 = ZZ,'[,’.
i=1 i1 i1 i—1
The normal equations are often written using Gauss’s notation:
n n
Zx,-z = [xx], Zx,y,- = [xy], and so on.
i=1 i=1

It is obvious that

inyi = Zy,-xi and therefore [xy] = [yx].
i=1 i=1
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In Gauss’s notation, the normal equations assume the simpler form

[ex]A + [xy]
[y]A + [y)B
[xz]fi + Lyz}é + [zz]é =zl

_|_
+ 1, 6.4)
].

We call attention to two obvious but important properties of the matrix of
coefficients of the unknowns in the system of equations (6.4):

1. The matrix of these coefficients is symmetric relative to the main diagonal.
2. All elements on the main diagonal are positive.

These properties are general. They do not depend on the number of unknowns,
but in this example, they are shown in application to the case with three unknowns.

The number of normal equations is equal to the number of unknowns, and solving
these equations by known methods we obtain estimates of the measured quantities.
The solution can be written most compactly with the help of the determinants:

- D, 5 D, ~ D.
A=>, B=7, C=7, (6.5)
where
o oyl ]
D= [l [P
2] [zy]  [z7]

and the determinants D,, Dy, and D are obtained from the principal determinant D
by replacing, respectively, the first, second, and third columns with the column of
free terms. For example, the determinant D, is obtained as:

K ol K]
D=l [w] D]
2] [zy] [z2]

Now we must estimate the errors of the obtained results. We can do it as follows.
Each conditional equation has its own residual. The entire set of these residuals,
similar to the errors of repeated direct measurements, can be characterized by its
own variance. This variance can then serve as an indication of the accuracy of the
obtained results.

The estimate of the above variance is calculated from the formula

n
>t
== (6.6)

n—m
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where r; is the residual of conditional equation i, n is the number of conditional
equations, and m is the number of unknowns. Then the estimates of the variances of
the values found for the unknowns can be calculated using the formulas

Dy
D

Dy
D

Ds s2 6.7)

S2(A) =——8%, S§*B)=-=82, S*(C)=
where D11, D55, and D33 are the algebraic complements of the elements [xx], [yy],
and [zz] of the determinant D, respectively (they are obtained by removing from the
matrix of the determinant D the column and row whose intersection is the given
element).

The confidence intervals for the true values of the measured quantities are
constructed in a standard way, based on Student’s distribution. In this case, the
degree of freedom for all measured quantities is equal tov = n — m.

Sometimes unknowns are related with a strict known dependency. For example,
in measuring the angles of a triangle, we know that their sum is equal to 180°. Such
a dependency is called a constraint. If we have n conditional equations, m
unknowns, and k constraints, and n > m — k and m > k, then k unknowns can be
eliminated from the conditional equations by expressing these unknowns by the
remaining unknowns. Next, using the method of least square, we find the estimates
of the values of m — k unknowns and the estimates of their standard deviations. The
degree of freedom in this case willbe v = n — (m — k). We obtain the remaining k
unknowns using the constraint equations.

To find the standard deviations of these remaining unknowns, strictly speaking,
one must perform another cycle of calculations with the conditional equations, in
which the & previously excluded unknowns are retained and the other unknowns are
excluded. However, this is rarely (if ever) done, because usually a specific problem
at hand allows for a simpler method. We will see this in an example in Sect. 6.5.

6.3 Measurements with Linear Unequally Accurate
Conditional Equations

In Sect. 6.2, we studied the case in which all conditional equations could be
assumed to be equally accurate and thus were given equal weight in the
calculations. In practice, there can be cases in which the conditional equations
have different accuracy, which usually happens if equations reflecting the
measurements are performed under different conditions. For instance, some
measurements might be performed at one temperature while others at a different
temperature, leading to different additional errors.

For unequally accurate conditional equations, the estimates of the unknowns A,
B, C, ... are obtained by minimizing the expression
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n
§ 2

Q = 8ili
i=1

where g; is the weight of the i th conditional equation.

The immediate question then arises: how to assign weights to the conditional
equations. Currently, the specialists conducting the measurement assign these
weights from their personal experience. Obviously, such an approach is objection-
able because of its subjectivity. It would be desirable to have a systematic solution
using objective indications of the accuracy of measurements.

One could in principle imagine such an objective method along the following
lines. If we view the residual of each conditional equation as its error, we could use
the variance of the residual as the indication of its accuracy. Let us refer to the
variance of the residual of a conditional equation as the variance of the conditional
equation for short.

Pretend for a moment that the variances o7 of the conditional equations are
known. Then the weights of these equations could be obtained from the conditions:

E ;;lgi:L
14
5"
1

8§18 " &n=—>5
O

I\)QI\)| —-

n

(The notation in the second line means that the pair-wise ratios of the weights
should be equal to the ratios of the reverses of the corresponding variances.) Thus,
the weights are

1/o?
> 1/o}
i=1

8i =

Unfortunately, the variances of the conditional equations are unknown. One can
resolve this situation when there are a large number of conditional equations. In this
case, one can often divide them into groups of equations with equal accuracy.
Assume that each such group has more equations than there are unknowns. Then,
for each group in isolation, one can obtain the estimate of the variance of their
residuals as we did in Sect. 6.2 [see formula (6.6)]. Note that, in applying (6.6), the
number of unknowns remains the same as in the overall system of equations and
the number of conditional equations # is the number of equations in the group. Once
the variance of the residuals in a group is found, this variance is assigned to all
equations in the group.

We now assume that the weights are known. The introduction of weights is
equivalent to multiplying the conditional equations by ,/g;. Further, the cofactors g;
will appear in the coefficients of the unknowns in the normal equations.
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For example, the first equation of the system of normal equations (6.4) will assume
the form:

[gxx] A + [gxy] B + [gxz] C + [gx]] = 0,
where each coefficient in the above equation is a sum of terms of the form

[gxy] = g1X1)1 + 82X2Y2 +---+ EnXnYn-

The remaining equations in the system (6.4) will change analogously. After
these transformations, the further solution of the problem proceeds in the manner
described in Sect. 6.2, and finally we obtain estimates of the measured quantities
and their standard deviations.

6.4 Linearization of Nonlinear Conditional Equations

For several fundamental reasons, the method of least squares has been developed
only for linear conditional equations. Therefore, the cases with nonlinear
conditional equations require transformation of the conditional equations into a
linear form.

The general method for doing this task is based on the assumption that the
incompatibility of the conditional equations is small; i.e., their residuals are small.
Then, taking from the system of conditional equations as many equations as there
are unknowns and solving them, we find the initial estimates of the unknowns A,
By, Cy. Next, assuming that

AZA()—F(Z, B :Bo-i-b, C=C0+C,
we substitute these expressions into the conditional equations. Let
F(AQ—I—(I, By + b, C0—|-C) =1

be the resulting conditional equations. We expand these equations in Taylor series
and, retaining only terms with the first powers of the corrections «a, b, and c, obtain

OF OF
F(Ao,Bo, Co) — I + (—) xXa+ <_> x b
8A (A().B[).C()) aB (A(),B(),C(])

+ <8F> X 0
— c=0.
ac (Ao, Bo,Co)

In the above equation, the partial derivatives are found at point (A, Bg, Co): we
differentiate the functions F(A, B, C) with respect to A, B, and C, respectively, and
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substitute Ag, Bg, and C, into the obtained formulas to find their numerical values.
In addition,

F(Ao,By,Co) — i =1i #0.

Thus, we have a system of linear conditional equations for a, b, and c. We can

now use the method of least squares to find their estimates, a, b, and &, and standard
deviations. Then

A=Ao+da, B=By+b, C=Cy+¢.

As Ao, By, and C, are nonrandom quantities, S>(A) = $%(a), S?(B) = S?(b), and
SZ(C’) = §2(¢). In principle, once A, B, and C have been obtained, we can repeat the
above calculations with these values, instead of Aq, By, and Cy, as the current
estimates to construct the second approximation, and so on.

In addition to the above method of linearization of the conditional equations, one
can also use the method of substitutions. If, for example, a conditional equation has
the form

yi=x;sin A+ z; e_ZB,
where x, y, and z are directly measured quantities, and A and B must be determined,
then the substitution

U=sinA, E=¢28
can be made. Then we obtain the linear conditional equation
yi=x;U+zE.

The solution of these equations gives U and E and the estimates of their
variances, which can then be used to find the required quantities A and B.

The method of substitutions is convenient, but it is not always applicable. In
principle, one can imagine one other general method for solving a system of
equations when the number of equations is greater than the number of unknowns.
This method is as follows.

Take from the available conditional equations a group of equations such that
their number is equal to the number of unknowns. Such a group gives a definitive
value for each unknown. Next, replacing in turn the equations in the group by each
of the other equations that were not in the group, we obtain other values of the same
unknowns. For each possible combination, the values of the unknowns can be
found. As a result of such calculations, we produce a set of values for each
unknown, which could be regarded as the group of observations obtained with
direct measurements.
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This method seems intuitive and attractive, but, unfortunately, it is incorrect.
The problem is that the sets of values obtained for the unknowns are not indepen-
dent. This presents difficulties in estimating the variances of the obtained estimates
for the unknowns.

6.5 Examples of the Application of the Method
of Least Squares

The examples below are presented to demonstrate the computational technique as
well as the physical meaning of the method. For this reason, these examples were
chosen so that the calculations would be as simple as possible. The initial data for
the examples are taken from [37]. Note that, strictly speaking, the examples
presented here are not combined or simultaneous measurements because all the
parameters in the equations involved are known. These are rather examples where
one uses the least square method to reconcile multiple measurements of several
measurands whose values are constrained by known dependencies.

Example 6.1 Determine the angles of a trihedral prism. Each angle is measured
three times. The measurements of all angles are equally accurate. The results of all
single measurements are as follows:

X1 = 89°55, y, =455, 2, = 44°57,
X = 89°59, y, =45°6/, z; = 44°55,
X3 = 89°57', y3 =45°5, 23 = 44°58/,

We have three unknowns — the angles — and each measurement produces one
conditional equation, relating one of the unknowns to its measurand. Thus, denoting
the unknown angles as A, B, and C, we have the system of nine conditional
equations:

A =89°55, B=45°5, C =44°57,
A =89°59, B =456, C =d44°55,
A =89°57. B=45°5. C =d44°58.

If each angle is found as the arithmetic mean of the corresponding observations,
then we obtain

Ag = 89°57, By =45°5.33, C,=44°56.67

The sum of the angles of the triangle must satisfy the constraint A + B + C
= 180°. However, we obtain Ay + By + Co = 179°59’. This discrepancy is the
result of measurement errors. The values of the estimates must be changed so that
the constraint is satisfied.
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We now proceed to the solution of the problem. To simplify the calculations, we
shall assume that

A=Ay+a, B=By+b, C=Cy+c,

and we shall find the values of the corrections a, b, and c.
The system of conditional equations transforms into the following system:

a=-2, b=-033, c¢=+033,
a=+2" b=+40.67, ¢=-1.67,
a=0. b=-033. ¢=+1.33.

The constraint equation will assume the form
Ap+a+Byg+b+Cy+c=180°.
Therefore
a+b+c=180°—-179°59 =1".
We exclude ¢ from the conditional equations using the relation
c=1—-a-b,
We thus obtain the following system of conditional equations:

Ixa+0xb=-2, Oxa+1xb=-033 1xa+1xb=+0.67,
Ixa+0xb=+42", Oxa+1xb=4+067, 1xa+1xb=+2.67,
Ixa+0xb=0, Oxa+1xb=-033, 1xa+1xb=-033.

We now construct the system of normal equations. Its general form will be

[ex]a + [xy]b = [x1],
[xy]a + [yylb = [yI].

Here, we obtain:

k)

=1+14+14+1+1+1=6,

R
=,
Il

|
I
99
©2

+
o
o
~
|
©

39

2

+

o

o)

~

+

N

o)

~
|

©

w

©2

I

+

©2



206 6 Combined and Simultaneous Measurements
Therefore, the normal equations will assume the form
6a+3b=3, 3a+6b=73.

In accordance with the relations (6.5), we calculate

6 3

D= =36-9 =27,
3.6
3/

D, =18 -9 =9
3 6
6 3

D, = =18 -9 =9,
3 3

and we find

Therefore, ¢ = 0.33 also.
Substituting the obtained estimates into the conditional equations, we calculate
the residuals:

ry = 233/ Fg = 067/ r7 = 0
Iy = 1.67/ rs = —0.33/ rg = 2/
r3 =033 16 =0.67 rg = —1

From (6.6), we calculate an estimate of the variance of the equations:

n P A'z
¢ LR

= p— p— —2- .
n—m+k 9-2 7 05

Now D; = 6, Dy; = 6, and (6.7) give

-6
$2(a) = S*(b) = 57 X 2.05 = 0456, S(a) = S(b) = 0.675.

The conditional equations are equally accurate and the estimates a, b, and ¢ are
equal to one another. Therefore, we can write immediately S(¢) = 0.675. Finally,

we obtain A = 89°57.33', B = 45°5.67', C = 44°57.00, and S(A) = S(B) =

S(C) = 0.68'.
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We now construct the confidence interval for each angle based on Student’s
distribution. The number of degrees of freedom in this case is equal to 9 — 2 = 7,
and for ¢ = 0.95, Student’s coefficient ty9s = 2.36. Therefore, 1y 95 = 2.36 x 0.68
= 1.6'. Thus, we obtain finally

A(0.95) = 89°57.3' £ 1.6/, B(0.95) =45°5.7' + 1.6/,
C(0.95) = 44°57.0' + 1.6..

In the above, the notation A(0.95) means the value of A with confidence

probability 0.95, the same for B and C.

Example 6.2 We shall study the example, which was presented at the beginning of
this chapter, of combined measurements of the capacitance of two capacitors. The
results of the direct measurement for the individual capacitors and for the two
capacitors connected in parallel and in series are as follows:

x1 = 02071 uF, xp =0.2056 uF,
X = 04111 uF, 22

= 0.1035 uF.
X1 + X3

The last equation is nonlinear. We expand it in a Taylor series, for which we first
find the partial derivatives

E_CZ(CI +C2)—C1C2_ C%
aC, (€1 +C)° (C1+ )
and analogously
o __ G

0C, N (C1 + Cz)z.
As C| = x; and C, =~ x,, we can write
C, =02070+¢;, C,=0.2060 + e;.

Note that the above expressions use 0.2070 and 0.2060 instead of original
values of 0.2071 and 0.2056. This simplifies the number manipulations without
sacrificing the accuracy: because the values are close, we simply allocate the small
discrepancies to e; and e,, respectively.

The expansion into Taylor series is done for the point with the coordinates
Ci10 = 0.2070 and C, o = 0.2060. We obtain
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C10Cop
020 0.10325
Cio+ Capo
9 0.206>
(—f ) = =0.249
IC1) ¢rocne (0.207 +0.206)
9 0.207>
(—f> = =025l
IC2) ¢, co (0.207 40.206)

Thus, the nonlinear equation is thus linearized into 0.10325 + 0.249¢; + 0.251
e, = 0.1035, and, setting x; = C; and x, = C,, the system of conditional equations
becomes

1 xe; +0 xe; =0.0001,

0xer+1xe =-0.0004,

1 xe +1xe =-0.0019,
0.249¢, + 0.251¢, = 0.00025.

We now calculate the coefficients of the normal equations

o] = 1+ 1402492 =2.062, [xy] = 1+0.249 x 0.251 = 1.0625,

[yy] = 141402512 =2.063, [xI] =—0.0004—0.0019 + 0.249
% 0.00025 = —0.001738,

[yl] = —0.0004 — 0.0019 + 0.251 x 0.0005 = —0.002237.

The normal equations will be

2.062¢; + 1.0625¢, = —0.001 738,
1.0625¢; + 2.063¢, = —0.002237.

We now find the unknowns e; and e,. According to (6.5), we calculate

2062 1.0625
D= =3.125,
1.0625  2.063
—0.001738  1.0625
D, = = —0.00122,
~0.002237  2.063
2062 —0.001738
D, = = —0.00275.
> 11.0625 —0.002237

From here we find

D, D,
1 = —* = —0.00039, e, =—2 = —0.00088.
D D
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Therefore,

C1 = 0.2070 — 0.00039 = 0.20661 uF,
C, = 0.2060 = 0.00088 = 0.20512 4F.

We find the residuals of the conditional equations by substituting the estimates
obtained for the unknowns into the conditional equations:

r1 = 0.00049, ;3 = —0.00063,
rs = 0.00058, r4 = 0.00048.

Now we can use formula (6.6) to calculate an estimate of the variance of the
conditional equations:

-2
o 2 10x 10

4-2 2

=6x 107",

The algebraic complements of the determinant D will be D;; = 2.063 and
Dzz = 2.062. As Dll ~ Dzz,

. .. D 2.063
S(C) =$%(C) = 58" = 55

S(Cy) = 8(C2) = 6.3 x 1074 uF.

6x107 =4x10",

6.6 General Remarks on Determination of the Parameters
in Formulas from Empirical Data

The purpose of almost any investigation in natural science is to find regularities in
the phenomena in the material world, and measurements provide objective data for
achieving this goal.

It is desirable to represent the dependencies between physical quantities deter-
mined from measurements in an analytic form, i.e., in the form of formulas. The
initial form of the formulas is usually established based on an informal analysis of
the collection of data obtained. One important prerequisite of the analysis is the
assumption that the dependence sought can be expressed by a smooth curve;
physical laws usually correspond to smooth curves. Once the form of the formula
is chosen, its parameters are then found fitting the corresponding curve into the
empirical data, and this is most often done by the method of least squares.

This problem is of great importance, and many mathematical and applied studies
are devoted to it. We shall discuss some aspects of the solution of this problem that
are related to the application of the method of least squares. The application of this
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method is based on the assumption that the acceptable optimality criterion for the
parameters sought is that the sum of squares of the deviations of the empirical data
from the curve obtained be minimized. This assumption is often justified, but
not always.

For example, sometimes the curve must be drawn so that it exactly passes
through all prescribed points; this is a natural requirement if the coordinates of
the points are known to be exact. The problem is then solved by the methods of the
interpolation approximation, and it is known that the degree of the interpolation
polynomial will be one less than the number of fixed points. Sometimes the
maximum deviation of the experimental data from the curve, rather than the sum
of the squares of the deviations, is minimized.

As we have pointed out, however, most often the sum of the squares of the
indicated deviations is minimized using the least squares method. For this purpose,
all measured values for the quantities (in physically justified combinations) are
substituted successively into the chosen formula, resulting in a system of conditional
equations. The conditional equations are then used to construct the normal equations;
the solution of the latter gives the values sought for the parameters. Next, substituting
the values obtained for the parameters into the conditional equations, the residuals of
these equations can be found and the standard deviation of the conditional equations
can be estimated from them (assuming the equations are of equal accuracy).

It is significant that in this case, the standard deviation of the conditional
equations is determined not only by the measurement errors but also by the
imperfect structure of the formula chosen to describe the dependence sought. For
example, it is well known that the temperature dependence of the electric resistance
of many metals is reminiscent of a parabola. In engineering, however, it is often
found that some sections of this dependence can be approximated by a linear
function. The inaccuracy of the chosen formula, naturally, is reflected in the
standard deviation of the conditional equations. Even if all experimental data
were free of any errors, the standard deviation would still be nonzero. Thus, in
this case, the standard deviation characterizes not only the error of the conditional
equations, but also that the empirical formula adopted does not correspond to the
true relation between the quantities.

It follows from this discussion that the estimates of the variances of the
parameters obtained by the above method become virtual in the sense that they
characterize not only the random spread in the experimental data, as usual, but also
the inaccuracy of the approximation, which is nonrandom.

6.7 Construction of Transfer Functions
of Measuring Transducers

We now turn to one particularly important application of the least squares method,
the construction of the transfer functions (sometimes also referred to as calibration
curves) for measuring transducers and instruments. These curves are a common
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way in which the results of the calibration of these devices are presented. We shall
discuss the problem of constructing linear transfer functions, which are most often
encountered in practice.

In a linear transfer function, the relation between a quantity y at the output of a
transducer and the quantity x at its input is expressed by the dependence

y =a-+ bx. (6.8)

When calibrating the transducer, the values of {x;}, i = 1,...,n, in the range
[*min» *max] are applied to its input, and the corresponding output values {y;} are
found. Using these data, we have to estimate the coefficients a and b.

Let us start with the least-squares method. Equation (6.8) gives a system of n
conditional equations

bxi+a—y; =r;.

Following the least-squares scheme presented above, we obtain the system of
normal equations

bi:x?—l-ai:xizzn:xiyi, bzn:x,‘-i-i’la:zn:yi. (6.9)
i=1 i=1 i=1 i=1 i=1

The principal determinant of the system (6.9) will be

n
DOEDPEY n n

2

_ |i=1 =1 | _ 2 § A

D=5, —nE Xj — Xi| -
>ox n i=1 i=1

The determinant D, is given by

n n
inyi in n n n
A LD DI ED DI

D, = n
S n i=1 =1 =1
i=1

From here we find an estimate of the coefficient b:

n n n n
nYXYi = X Xi)LYi QL Xiyi—nxy
joDe_ i i1 =1 i=1
D

n

e <z) ST

i=1 i=1
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It is not difficult to show that
Zx,-y,-—n)?)_): Z(x,-—)?)(y,-—}_)) (6.10)
i=1 i=1

and that

ﬁéx}—nﬁ::iéur—@? 6.11)

bh="= . (6.12)

n 2 n
Xi inYI n
i=1 i=1 = 2
D, B p =ny g X; — nx E X Vi
Suo o vy|  H

Therefore,

n n

— 2 —

ny > x; —nx Yy Xy
i=1 i=1

[Q
I

IR

. 2
n>x} — n?(x)
i=1

Using the identity (6.11), we put the estimate @ into the form

YoX =X Yo xiyi
i=—— (6.13)
> (i — %)

Relations (6.12) and (6.13) solve the problem of determining the transformation
function

y =d+ bx. (6.14)
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Line of the upper
uncertainty limit

y=(b+u)xt(d+u,)

Line of the
transfer function
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Line of the lower
uncertainty limit
y=(b=uy)x+(@-u,)
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Fig. 6.1 Linear transfer function for the range [Xnin, Xmax] and its band of uncertainty

We now evaluate the uncertainty of the above solution. From the experimental
data and the obtained estimates @ and b, we find the residuals of the conditional
equations

r,-:d—l—l;x,-—y,-.

Next, according to the general scheme of the least-squares method, we calculate
the estimate of variance of the conditional equations using (6.6),

and estimates of the variances of gand b using (6.7). Finally, we find the confidence
limits u, and u;, which represent the uncertainty of the two parameters. As pointed
out above, the confidence limits are constructed based on Student’s distribution
with n — 2 degrees of freedom in our case, because the confidence limits of two
parameters are being determined.

The above confidence limits allow one to construct the so-called uncertainty
band for the transfer function of the transducer. This band is depicted in Fig. 6.1.
The band of uncertainty determines the range of possible transfer functions for
the transducer.
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It can be used to determine the accuracy of measurements obtained with the
measuring transducer as follows.

When working with measuring transducers the dependence x = f(y) and not
y = @(x) is typically required: we need to obtain the value of the input signal by the
observed value of the output signal. Consider a transducer with the band of
uncertainty in Fig. 6.1 and let the observed signal be y,,. Assuming that the observed
output value could be read precisely, the confidence interval for the input signal,
[X,.5 Xo,r), 1s determined by the intersections of the horizontal line y = y, with the
boundaries of the band of uncertainty.

If the output value itself is read with an uncertainty, y, £ u,, then the confidence
interval can be conservatively obtained as [x[ ;,x, ] in Fig. 6.1. This confidence
interval is conservative because is it not likely that both the output signal and
the transfer function reach their respective boundary values simultaneously.

Note that the confidence intervals for the input value obtained above are not
symmetrical around the “middle” value x, given by the line of the transfer function.
In practice, however, the band of uncertainty is narrow, and for narrow bands this
asymmetry is negligible.

The least-squares method is not the only technique to construct a linear depen-
dency between two measured quantities. In many cases, one can also build a linear
dependency and its uncertainty band using the theory of indirect measurements. We
discuss this last approach below.

During the calibration of transducers, it is common to obtain the output signal for
the zero value of the input signal; this often corresponds to marking the initial value
of the output indication of the transducer when no input signal is applied. Further-
more, this measurement can usually be viewed as precise compared to the other
measurements: while other values of the input signal must be obtained from some
device with certain accuracy, the absence of the signal corresponds to the true zero
value. Then, for x =0, (6.8) gives a=y,, where y, is the corresponding
output value.

Consider that we now have an estimate a of the coefficient a. Then (6.8) can be
transformed into the form

p=2"¢
X

This equation can be viewed as the measurement equation for the indirect
measurement of the measurand b using the measuring arguments x and y. Because
the values of y depend on the values of x, it is a dependent indirect measurement.

Calibration provides us with n pairs of x;, y;. Using the method of reduction, we
transform this set of {x;, y;} into a set {b;},i = 1,...,n, which allows us to obtain
the estimate of the coefficient b, b = b, and its variance S (b). The uncertainty of
coefficient b is determined using Student’s distribution:

uq(b) = t,5(b),
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where 7, is the Student coefficient for a given confidence probability and the degree
of freedom n — 1. With this uncertainty, one can draw the transfer function and its
band of uncertainty similar to Fig. 6.1. The only difference in this case is that
the curves are constructed for interval [0, x,,,x] and all three curves converge to the
same point y = a on the y-axis.

We should note that the above application of the method of reduction assumes
that all conditional equations are of equal accuracy, that is, all values of the input
signal, {x;}, are set with the same relative accuracy, and all values of the output
signal, {y;}, are measured also with the same relative accuracy. Otherwise
calculations of the estimate b and its variance would be more complex and less
accurate (one would have to calculate b as a weighted average of {b;}; we omit
further details).

Finally, it is useful to mention that during calibration, one should utilize diverse
values of the input signal rather than perform repeated measurements of the output
signal at the same value of the input. Indeed, in the latter case, the observed spread
of values {b;} would characterize only one point in the transfer function and would
not reflect the properties of the device in its entire range.



Chapter 7
Combining the Results of Measurements

7.1 Introductory Remarks

Measurements of the same quantity are often performed in different laboratories
and, therefore, under different conditions and by different methods. Sometimes
there arises the problem of combining these measurement data to find the most
accurate estimate of the measured quantity.

In many cases, in the investigation of new phenomena, measurements of the
quantities involved take a great deal of time. By grouping measurements performed
over a limited time, intermediate estimates of the measurand can be obtained in the
course of the measurements. It is natural to find the final result of a measurement by
combining the intermediate results.

These examples show that the problem of combining the results of
measurements is of great significance for metrology. At the same time, it is
important to distinguish situations in which one is justified in combining results
from those in which one is not justified in doing so. It is pointless to combine results
of measurements of quantities that in their essence have different magnitude.

We should note that when comparing results of measurements, the data analysis
is often performed based on the intuition of the experimenters without using
formalized procedures. It is interesting that in the process, as a rule, the correct
conclusions are drawn. On the one hand, this indicates that modern measuring
instruments are of high quality and on the other hand that the experimenters, who by
estimating the errors determine all sources of error, are usually highly qualified.
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7.2 Theoretical Principles

The following problem has a mathematically rigorous solution. Consider L groups
of measurements of the same quantity A. Estimates of the measurand Xi,...,x,
were made from the measurements of each group, and

E[x] = ... = E[x ] = A.
The variances of the measurements in each group 7, ..., ¢7 and the number of
measurements in each group nj,...,n; are known. The problem is to find an

estimate of the measured quantity based on data from all groups of measurements.
This estimate is denoted as X and is called the combined average. Because the
combined average is commonly obtained as a linear combination of group averages,
it is often referred to as the weighted mean.

We shall seek ¥ as a linear combination of {X;}, that is, as their weighted mean:

=1l

L
= g (7.1)
j=1

Therefore, the problem reduces to finding the weights g;. As E[%;] = A for all j,
and we obviously want E[X] = A, we obtain from (7.1)

Therefore,

L
> gi=1 (7.2)

Next, we require that X be an efficient estimate of A; that is, V[X] must be
minimum. V[x] can be found using the formula

(7.3)

We shall now find the weights g; under which V[¥] reaches a minimum. Using
the condition (7.2), we substitute g =1 —g; —g» —---— gy into (7.3), and
then differentiate the resulting expression with respect to each g; and equate each
derivative to 0:
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2g10%(x1) —2(1—g1 — g — - — gL-1)0*(x) =0,
2820% (%) —2(1—g1— g — - — g-1)0*(x) =0,
2g1-16% (% -1) —2(1 —g1 — g2 — -+ — gr-1)0° (L) = 0,

As the second term is identical in each equation, we obtain

8102()?1) = g202(22) == gL—lﬁz(fL—l)

Furthermore, if instead of g; we eliminated another weighting coefficient from
(7.3), we would have included the similar term with g; into the above relation.
Thus, we arrive at the following condition:

816° (X)) = 820° (%) = - - - = gLo” (%),
or equivalently,
1 1
tgy gL = : Do . 7.4
81:8 8L 2@ 2 205 (7.4)

The relations (7.2) and (7.4) represent two conditions for the weights to compute
the combined average. To find weight g;, it is necessary to know either the variances
of the arithmetic means or the ratio of the variances. If we have the variances 6 (%),
then we can set g'; = 1/6%(x;). We then obtain

/

8

A
Zg,j
=

8 = (7.5)

As the weights are nonrandom quantities, it is not difficult to determine the
variance forx. According to relation (7.3), we have

. > () Vil Y (o) @)
VIF] = Zé’%v[}?j} _ Al ( ) _ ( (_)) _ 1 1.6)

2 L 2 L .
1 =
(En) () E

Let us now consider an important particular case when the variances (7.6) of
the measurements are the same for all groups, although their estimates might
still be different because the number of observations in the groups may be
different. In this case, one can combine the measurements of all groups into one
large group of measurements. The number of measurements in the combined

M=

<
Il

group is N = Zle n; and the combined average will be



220 7 Combining the Results of Measurements

L nj

2D X
== 1.7)
N

Expanding the numerator gives

= _ (X” +X12+...+X1nl) +(.X21 +X22+...+X2n2) + ...

=

_ — L

nmxy +nmx, + ...+ npxg

= =2_&%:
N :

where g; is the weight of the j th arithmetic mean:
g =ni/N. (7.8)

The variance of the weighted mean in this case (i.e., when measurement results
in each group have equal variances) can be estimated by considering the weighted
mean as the average of the combined group of all the measurements:

> (97
 NN-1)

We gather the terms in the numerator by groups

L n
2 2 (i %)’
PR =
W == ~n-1
and perform simple transformations of the numerator to simplify the calculations:

L

ZZ(Xﬁ —X) :ZZ Yji — X+ X; —5%?

Jj=1 i=1 Jj=1 i=1

The second term in the last expression is equal to zero, because by virtue of the
properties of the arithmetic mean, ) .’ (x; — X;) = 0. For this reason,

1 L n; - L nj - _
= m (ZZ (x,-j 7XJ')2 + Z (Xj x)2> .

Jj=1 i=1 Jj=1 i=1

$* (%)
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Note that

nj

> (i —5)* = ni(n; — DS (%),

i=1

where $2 ()?j) is the estimate of the variance of arithmetic mean of the jth group, or,

equivalently,
nj
(i — %)

):nj(nj_l) i—1

Further,

J=1

L L
SAX) = N [Z DS (%) + Y ni(x; —x)zl. (7.9)
j=1

Equation (7.9) can be expressed differently. Moving N in the denominator inside
the square brackets, we have

Finally, using (7.8), we obtain:
L

Z — 1)$*(%) +Zg, )2]. (7.10)

S2(x

The first term in the above formula characterizes the spread in the measurements
within groups, and the second term characterizes the spread of the arithmetic means
of the groups.

7.3 Effect of the Error of the Weights on the Error
of the Weighted Mean

Looking at (7.1) determining the weighted mean, one would think that, because the
weights g; and the weighted values of X; appear in it symmetrically, they must be
found with the same accuracy. In practice, however, the weights are usually
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expressed by numbers with one or two significant figures. How is the uncertainty of
the weights reflected in the error of the weighted mean?

We shall consider weights g;in (7.1) to be fixed, constant values. In addition, as
usual, we shall assume that the weights add up to one [that is, condition (7.2) holds].
This condition is also satisfied for the inaccurately determined weight estimates,
that is, for gj. Therefore,

L
> Agi =0,
J=1

where Ag; is the error in determining the weight g;.
Assuming that the exact value of the weighted mean is y, we estimate the error of
its estimate:

L L L
Ay=>"g%—> g%=> Ag.
=1 =1 =1
We shall express Ag; with the other errors:
Agr = —(Agr+ ...+ Ag)
and substitute it into the expression for Ay:
Ay = (¥ — X1)Agy + (¥3 — X1)Ags + - - + (¥ — X1)Agr
or in the form of relative error

g2 — X)) g (g — )

A 8L
L .

> 8%

j=1

=
y

The errors of the weights Ag/g; are unknown. But let us assume that we
can estimate their limits, and let Ag/g be the largest absolute value of these limits.
Replacing all relative errors Ag;/g; with Ag/g, we obtain the upper limit of the
relative error of the weighted mean:

A lg2(X2 — X1) +g3(3 — %) + -+ + gr(% — %)
8

3

A,
= < n
y _
> 8%
=1
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The numerator on the right-hand side of the inequality can be put into the
following form:

& — X)) + g3 —Xp) + -+ gr(X — Xip)
=g +gX+ - +gx —(g+g+ - +g)x.

Butg, + g3+ -+ g, =1 — gy, sothat
L
2% — X))+ g X — )+ (B —F) =) gf—X =y—X.
Jj=1

Thus,

A
=<
X
Itis obvious that if the entire derivation is repeated, but in so doing the error not in
the coefficient g; but in some other weight is eliminated, then a weighted value other

than x; will appear on the right-hand side of the inequality. Therefore, the above
inequality holds for every X;; the obtained result can be represented in the form

=i

< — |

><H| EH

Ag
g X
This inequality shows that the error introduced into the weighted mean as a result

of the error of the weights is many times smaller than the error of the weights itself.
The cofactor |X — X;|/.x can be assumed to be of the same order of magnitude as the
relative error of the measurement results X; produced by each group. Thus, if this

error is of the order of 0.01, then the error introduced into the weighted mean as a
result of the error of the weights will be at least 100 times smaller than the latter.

7.4 Combining the Results of Measurements with
Predominately Random Errors

We shall now study a scenario of combining measurement results where
measurements in each group have negligibly small systematic errors. Each result
being combined in this case is usually the arithmetic mean of the measurements in
the corresponding group, and the differences between them are explained by the
random spread of the averages of the groups.

Before attempting to combine these results, one must verify that the same
quantity is measured in each case and there are no systematic shifts between the
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measurement results produced by each group. This verification is equivalent to
checking that the true value of the measured quantity is the same for all groups and
is accomplished by the methods presented in Chap. 3.

It is important to note that this verification can fail for two reasons: different
quantities could have been measured in different groups or there are systematic
shifts between the means of the groups. In the former case, it is pointless to combine
the measurements. In the latter case the measurements can still be combined but
with the help of another method, which we will discuss in the next section. The
distinction between these two causes of verification failure must be clear from the
physical essence of the measurement and its purpose; one cannot draw this distinc-
tion from statistical methods.

Only if the data pass the above verification can we combine the measurements by
applying the approach from Sect. 7.2. Indeed, the absence or negligible size of the
systematic errors is a necessary condition for the validity of this approach. One may
notice that our verification only checks for the absence of the systematic shift
between the groups, not the absence of the systematic errors themselves. This is
inevitable; if measurements in all the groups have the same systematic error, this
error is impossible to detect with statistical methods and it will also be present in the
combined measurement result. Fortunately, this situation rarely occurs in practice.
Recall that different groups of measurements are typically collected in different
laboratories. Any systematic error that is so pervasive that it is the same across all
the laboratories is likely to have been eliminated during calibration of the
instruments involved.

The theory of calculating the weighted mean of several groups of measurements
that we considered in Sect. 7.2 assumes that the variance of the measurement results
in each group is known. However, the experimental data only allow one to obtain
the estimates of these variances. Thus, one has to use the estimates in places of true
variances throughout the calculations. In particular, the variance estimate of the
weighted mean is computed by the following formula, modified from (7.6):

S2(%) = L (7.11)

L

1
£~ §2(%)

1

~

In the case of equal variances in all the groups, (7.9) and (7.10) already contain
estimates of the group variance, and so these formulas can be used directly. Note
that one can check if the estimates of the variances of measurement groups are the
estimates of the same variance using the methods from Chap. 3.

Given this variance estimate, the uncertainty of the weighted mean can be
calculated by considering the combination of the group averages as a linear indirect
measurement and thus by applying (5.23) to calculate the effective degrees of
freedom.

Example 7.1 The mass of some body is being measured. In one experiment, the
value m; = 409.52¢ is obtained as the arithmetic mean of n; = 15 measurements.
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The variance of the group of measurements is estimated to be $? = 0.1g>. In a
different experiment, the value m, = 409.44g was obtained with n, = 10 and
83 =10.03g>. It is known that the systematic errors of the measurements are
negligibly small, and the measurement results in each experiment can be assumed
normally distributed. It is necessary to estimate the mass of the body and the
variance of the result using data from both experiments.

We shall first determine whether the unification is justified, that is, whether an
inadmissible difference exists between the estimates of the measured quantity in
each group. Following the method described in Sect. 3.9,

2 0.1 0.03
=20 = 00067, S2(x) =—— = 0.003
n 15 SR =5 :
S2(x%) — %) = §(%)) + S*(x2) = 0.0097,

S(X; — %) = 0.098,

X1 — Xy =m —my = 0.08.

=

§*(x1)
1 —X2)

Assuming that the confidence probability a = 0.95, Table A.1 gives Zita = 1.96.
Then, ZloﬁS()?] —X2) = 1.96 x 0.098 = 0.19. As 0.08 < 0.19, the unification is

possible.

To decide if we can use the simpler method based on (7.8), (7.9), and (7.10), we
shall check whether both groups of observations have the same variance. We do so
using Fisher’s test from Sect. 3.9. We compute:

F=57/8{=0.1/0.03 =3.3.

The degrees of freedom are v; = 14 and v, = 9. We shall assume the signifi-
cance level of 2%. Then, ¢ = 0.01 and F, = 5 (see Table A.5). As F < F, it can
be assumed that the variances of the groups are equal.

We shall now find the weights of the arithmetic means. According to (7.8), we
have g; = 15/25 = 0.6 and g, = 10/25 = 0.4. The weighted mean is m = 0.6 X
409.52 + 0.4 x 409.44 = 409.49 g. Next we find S(n). In accordance with (7.9),
we have

2= 1 2 2
S”(m) =75 ><24(14><0.1+9><0.03+15 x 0.03” 4+ 10 x 0.05%)
=28 x 107%g?,

S@) = 5.3 x 10g.
Having found the variance of the combined result, we can now calculate its

uncertainty using Student’s distribution with the effective degrees of freedom
obtained from (5.23).
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7.5 Combining the Results of Measurements Containing
Both Systematic and Random Errors

In a general case, measurements within groups have not just random but also
systematic error. The latter is typically a conditionally constant error or a sum of
several conditionally constant errors. However, occasionally one may encounter
absolutely constant systematic errors, such as methodological errors, as well. Let us
start with considering measurements that do not have absolutely constant system-
atic errors.

Let us assume again that a quantity A is measured in L laboratories. Each
laboratory produces the result X; with error {;(j = 1,...,L):

N=A+

The error {; is the sum of the conditionally constant error §; and random error y;
errors: §; = 9; + ;. As discussed in Chap. 4 (Sect. 4.3), the conditionally constant
error is modeled as a uniformly distributed random quantity with limits &;, which
are estimated analytically from the specifications of the instruments and measure-
ment conditions: |9;| < ;. We will assume that the mathematical expectation of this
error is zero: E[9;] =0. We will also assume that 6, is symmetrical about X;.
Occasionally, one can encounter cases of asymmetrical limits; the methodology
of handling this asymmetry is given in Chap. 4.

The random error Wi is assumed to be a centered quantity; that is, E [l//_,-] =0.
Thus, when there are no absolutely constant errors, we have £ [)Zj} =A.

To allow the unification of measurement results, each laboratory must report the
result itself, X;, along with the estimates of the variance of this result that is due to
the random error, Sz(l//j), and the limit of the conditionally constant systematic error
0; The former is calculated in the normal way:

ﬂ/‘ 2
> (i — %)

Ty

The latter is equivalent to providing an estimate of the variance of this error,
$%(8)) since S2(9;) = 67 /3.

Similar to the case without systematic errors considered in Sect. 7.4, we will
follow the theory of combining the results of measurements using the weighted
mean while replacing variances with their estimates. As shown in Sect. 4.9, the
estimate of the combined variance of the measurement result &; is

S*(x) = S*(9)) + S*(w;). (7.12)
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Now, the weights of the results being combined can be derived from (7.2) and
(7.4) by substituting the variances appearing in these relations with the estimates of
these variances:

1
- ©)+5(w) 7.13)
1
$0,)+55(w))

M-

J=1

Knowing the weights, we can calculate the estimate of the combined result as the
weighted mean of the results from each lab.

We shall now estimate the uncertainty of the weighted mean. In solving this
problem, because the errors of the weights are insignificant (see Sect. 7.3), we shall
assume that the weights of the combined measurement results are exact. A neces-
sary prerequisite to find the uncertainty is to estimate the standard deviation. In
principle, we accomplish this by replacing variances in (7.5) with their estimates
from (7.12). However, for subsequent calculations we will need the components of
the combined standard deviation contributed by the random and conditionally
constant systematic errors, denoted respectively as S, (x) and Sy(x). Thus, we will
compute these components and then obtain the overall standard deviation by
combining these components rather than from (7.5) and (7.12).

Following the calculation procedure of Sect. 4.8, and taking into account the
weights, S, (¥) and Sy(X) are computed as follows:

(7.14)

Now we can find the combined standard deviation of the weighted mean:

SE) = 1/S2() + 3. (7.15)

To move from the combined standard deviation to the uncertainty of the
weighted mean, according to (4.20), we must obtain coefficient .. This coefficient
can be found from (4.22), which requires the coefficient ¢ty for the systematic
component of error and the quantile ¢, of Student’s distribution for the random
component. To find 7y we must first calculate the uncertainty of the systematic
component. The easiest way to do it is by using (4.3) with weights:
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Coefficient k is determined by the desired confidence probability and is found
from Table 4.1. Now we can find ¢y according to (4.21):

Quantile ¢, of Student’s distribution can be found given the effective degrees of
freedom using (5.23), which in this case obtains the form:

2

L
[2:1 81252(‘//,')

Veff )

=~

> (gt w)m)

J=1

where v; = n; — 1. Note that both 73 and 7, must be obtained for the same confi-
dence probability.
Now we can apply (4.22) to compute coefficient ¢,
_ 1aSy() +195s()
‘ Sy (X) + Se(x)

and, finally, obtain the uncertainty of the weighted mean:
u. = t.S[x).

We should say a few words on the possibility of absolutely constant systematic
error. If among the groups being combined there is a group with such error, then the
limit of this error must be re-calculated by taking into account the weight of this
group. For instance if the only group with such error is group number 2 and its
absolutely constant error is H, then the absolutely constant error of the weighted
mean will be H(X) = g,H,. If more than one group has such errors, their respective
limits (again recalculated according to their groups’ weights) are summed up
arithmetically as in direct and indirect measurements. Then, the resulting limit is
again summed up arithmetically with the confidence limit of the weighted mean
computed using the methodology described here.

An example of a measurement where a weighted mean is used as the estimate of
the measurand is a precise measurement of the activity of a source of alpha
particles. A detailed treatment of this example is given in Chap. 8 (Sect. 8.8).

As a final note, when the results of measurements must be combined, it is always
necessary to check the agreement between the starting data and the obtained result.
If some contradiction is discovered, for example, the combined average falls
outside the permissible limits of error of some group, then the reason for this
must be determined and the contradiction must be eliminated. Sometimes this is
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difficult to do and may require special experiments. Great care must be exercised in
combining the results of measurements because in this case information about the
errors is employed to refine the result of the measurement and not to characterize its
uncertainty, as is usually done.

7.6 Combining the Results of Single Measurements

Let us now consider an important special case when each group contains only a
single measurement. In this case, the starting data include the estimates of the
measurand and their inaccuracy. The inaccuracy can be given in the form of the
limits of error or the uncertainty (confidence intervals) of the estimates. Our goal is
to produce the weighted mean estimate of the measurand and its inaccuracy.

We begin with the case when the inaccuracies of individual measurements are
given as limits of error. The error of each individual measurement is typically a
conditionally constant systematic error, which, as discussed in Sect. 4.3, can be
modeled as a random quantity with uniform distributions within its limits &; Thus,
its variance is related with the square of the limit of the distribution by a constant
factor (the former is one-third of the latter). Therefore, the weights of these
measurements can be computed to be reverse-proportionate to the squares of
the corresponding limits of error 6, rather than variances as in (7.4). Following
the derivation of (7.4), we obtain:

1 g
/
§j = and g; ==
gj E :j:1 g/j

Having found the weights, we compute the weighted mean in the normal way.
The inaccuracy of the weighted mean can be found using (4.3) while accounting for
the weights of the terms, that is,

0, =

We now turn to the case when the inaccuracy of individual measurements is
represented in the form of uncertainties, or confidence intervals. Let 8, be the
uncertainty of j-th single measurement. We will assume that all the uncertainties
were calculated for the same confidence probability a. Assume that uncertainty 6,
had been obtained from combining the m; elementary errors involved in the j-th
measurement using (4.3):

= (7.16)
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Formula (4.5) gives the expression for the variance of j-th measurement:

Replacing the sum with its expression given in (7.16), we obtain the estimate of
the variance of j-th measurement:

nj
§2 — e _i=l (7.17)
Y 3

This formula indicates that all confidence limits are equally proportional to their
corresponding variances. Then, the weights of the measurements can be computed to
be reverse-proportionate to the squares of the corresponding confidence limits,
analogously to the previous case when we used limits of error. And as in the previous
case, we can now compute the weighted mean as the estimate of the measurand.

To calculate the inaccuracy of the weighted mean, note that its standard devia-
tion can be computed from the standard deviations of its component as follows:

L
S® = 4| 2 &S}
j=1

or, utilizing (7.17)

S
S® =7 > g b (7.18)

To transition from the standard deviation to the confidence interval, note that the

error of the weighted mean is a linear combination of all the elementary errors across
L

all the single measurements. If the total number of the elementary errors, > m;,
=1

exceeds 4, which is practically always the case, we can consider the distribution of

the weighted mean to be normal. Then, as we have seen multiple times already, the

confidence limit of the overall result will be

Ug = Z1+ S()?)

2(1
In particular, ZHTa = 1.96 for a = 0.95 and ZHTG: = 2.58 for a = 0.99.

We shall now discuss a particular case of single measurements when one
quantity is measured independently with several instruments. We need to produce
the combined measurement result and its inaccuracy.
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-
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X.

min

2A
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Fig. 7.1 The highest (x,.x) and lowest (x,;,) indications of the group of the instruments used to
measure the same quantity; the interval of possible error of the combined measurement result is
hatched

Let the random errors of the instruments be small compared with the limit of
permissible errors. First we consider the case when the permissible errors are the
same and equal to A for all instruments. In this case, the problem can also be solved
as follows. We choose the maximum and minimum indications of the instruments:
Xmax and xpni,. We verify that

(xmax - xmin) < 2A. (7.19)

If inequality (7.19) is not satisfied, then one of the instruments has an
inadmissibly large error or the variation of some influence quantities is too large.
The reason for this phenomenon must be determined and eliminated; that is,
inequality (7.19) must be satisfied.

It is natural to take for the estimate of the measured quantity the center of the
interval Xax — Xmin:

A" _ Xmax 7+ Xmin
—

Figure 7.1 illustrates the indications ..« and Xx.;, and shows the intervals
corresponding to the limits of permissible errors £A of the corresponding
instruments. The true value of the measured quantity must lie in the intersection
of these two intervals; in the figure, this section is hatched. We will refer to this
intersection as the folerance field.

It follows from this figure that when the left boundary of the error interval of the
upper device only abuts the right boundary of the error interval of the lower device,
Xmax = Xmin + 2A. This is one extreme case. The other extreme case is when
Xmax = Xmin- 1t 18 €asy to see that in both cases the error limits of the mean will
be equal to £A. Only when X;,,x = Xmin + A will the limit error be £A/2.
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The likelihood of getting into this point is small. Furthermore, no matter how
many instruments are used, the tolerance field is fully determined by the two
instruments with the indications x,,x and x,,;,. Thus, the parallel use of multiple
equal accuracy instruments is not advisable.

Now we will show on a concrete example that there is no reason to measure the
same quantity in parallel by several instruments of different accuracy. This will
illustrate a well-known assumption of metrology that the accuracy of the measure-
ment result is determined by the most accurate measuring instrument. Assume that
the voltage of some source was measured simultaneously with 3 voltmeters having
different accuracy but the same upper limit of the measurement range 15V. The
measurements were performed under reference conditions. Also, the voltage source
has sufficient power for the consumption of the voltmeters to be considered
negligible. The following results were obtained.

1. Class 0.5 voltmeter: U; = 10.05V; the limit of permissible intrinsic error
A; = 0.075V.

2. Class 1.0 voltmeter: U, = 9.9V; the limit of permissible intrinsic error
A, = 0.15V.

3. Class 2.5 voltmeter: Uz = 9.7V, the limit of permissible intrinsic error
Az = 0.375V.

As the measurements were performed under reference conditions, we shall
assume that the limits of permissible intrinsic error of the instruments are equal
to the limits of the errors of measurement.

Assume that the errors of the instruments of each type have a uniform distribu-
tion. Then

O; = A,/\/g

We will now combine these individual measurements into the overall result. We
shall find the weights of the individual results based on the limits of intrinsic error
of the instruments:

1 1 1 1 1
/ :—:—:4 ! :—:1 ! :—:—:0.16.
S17A27 025 7 S2T 2T 3T A2 T 625
From here,
_ g _ 4
g1 =5 ,mfo.w,
;g,i
d 0.20 d 0.16
82 = g2 =——=0.20, g3= £s =m=003
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I & { class 2.5 voltmeter
F———-=a—1 class 1.0 voltmeter
H—&— class 0.5 voltmeter

9.5V 10.0V

Fig. 7.2 The possible indications of voltmeters accuracy classes 2.5, 1.0 and 0.5 obtained in
measurements of the same voltage and the intervals of their permissible errors; the weighted mean
value is shown by the vertical line

Now we find the weighted mean

w

U= gU: =077 x10.05+0.2 x9.9+0.03 x 9.74 = 10.01V.

i=1

The confidence limits of the error in the weighted mean can be found from (4.3)
with added weights:

= k\/o.772(7.5 x 10-2)% 4 0.22(15 x 10-2)* + 0.032 x 0.3752
=ky/(33+9+ 1.3) x 104 = 0.066k.

Assuming, as usual, @ = 0.95, we take k = 1.1 and find AU = 0.07V.

Figure 7.2 plots the indications of all three instruments, with the limits of
permissible error of the instruments marked. The vertical line indicates the value
obtained for the weighted mean. This value remained in the error interval of the
most accurate result, but it was shifted somewhat in the direction of indications of
the less accurate instruments; this is natural. As we see the limits of error of the
result decreased insignificantly compared with the error of the most accurate term.
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Chapter 8
Examples of Measurements and Measurement
Data Processing

8.1 Voltage Measurement with a Pointer-Type Voltmeter

Our first example concerns a measurement of voltage with a pointer-type voltmeter.
Such a measurement clearly represents an example of a direct measurement. We
shall study several examples of such measurements with a Class 1.0 pointer-type
DC voltmeter that operates using the energy of the source of the voltage being
measured. Note that the energy consumption by the voltmeter causes interaction
between the voltmeter and the object under study.

Let the voltmeter have the following characteristics:

. The upper limits of measurement ranges are 3, 7.5, 15, 30, and so on, up to 300V.
. The scale of the instrument has 75 graduations and starts at the 0 marker.
. The limits of permissible intrinsic error are ==1.0% of a span (it is a fiducial error).
. Full deflection of the pointer corresponds to the current of 15 x 10 °A £ 1%.
. Reference conditions include temperature of +20 &+ 5°C and the requirement
that the measurement be performed with the instrument positioned horizontally.
6. Additional errors are as follows. A deviation of the temperature from the
reference range causes the indications of the instrument to change by not more
than £1.0% for each 10°C change in temperature. Inclination of the instrument
by 5° from the horizontal position changes the indications by not more than
£1% of the measurement range employed.

DA W=

8.1.1 A Priori Estimation of Measurement Inaccuracy

Suppose that quality assurance of a piece of equipment involves measuring the
voltage on certain pairs of points in its electrical schema. We can represent this unit
as an equivalent source of voltage with EMF E and output resistance R connected
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serially to the voltmeter. The source resistance R in one case is equal to about 10 kQ
and in all other cases does not exceed 1 kQ. The temperature of the medium can
change from +10°C to +25°C. The slope relative to the horizontal position does not
exceed 5°. We are required to estimate the measurement uncertainty. The uncer-
tainty must be expressed in the relative form.

Before the measurement, the value of the measured quantity is unknown. It will
supposedly be less than 3V. Considering the measurement ranges of the voltmeter,
we note that there is an overlap of 0.4—0.5 between any two consecutive ranges. For
example, the smallest range (3V) represents 0.4 of the next higher range (since 3V/
7.5V = 0.4); the next range (7.5V) represents 0.5 of the next range, and so on.
Thus, whenever the voltmeter indication drops below 0.4—0.5 of a given range limit,
one should switch to the preceding, lower, range. Following this logic, we shall
assume that if the measured voltage is less than 0.4 x 3V = 1.2V, then a different
voltmeter must be used.

Assume that the 3V range is to be used (other ranges are treated similarly). In
this range, the largest relative error will occur when a voltage at the low end of this
range, or around 1.2V, is being measured. The error will have to be estimated for
this worst case.

The sources of error are as follows:

. The intrinsic error of the voltmeter

. The reading error

. The temperature error

. The error introduced by the inclination of the instrument

. The error from the limited internal resistance of the voltmeter

| R O R N R

The error from the limited resistance of the voltmeter is absolutely constant for
each unit being tested. The other errors listed above are conditionally constant. We
shall now estimate these errors.

1. Intrinsic error 6;,. Its limits will be
1
Hin = il% X 0—4 = i25%, |9m| = 25%

2. Reading error 6,. This error does not exceed 0.25 of a graduation. When
measuring 1.2V at the limit 3V, and with 75 graduations of the scale, this gives

3 x 100%

= 4025 x 0%
0r =025 X270

= +0.83%, |6, = 0.83%.

3. Additional temperature error f7. The maximum deviation of the temperature
from the normal value is (20 — 5) — 10 = 5°C. Therefore,

5
Or = £1% x 75 = £0.5%,  [0r] = 0.5%.
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4. The additional error ;. Because of the 5° inclination of the instrument, the
additional error when measuring 1.2V will be

3
9] = il% X ﬁ = iZ.S%, |91| = 25%

5. The error Hy from the limited internal resistance of the voltmeter. The internal
resistance of the voltmeter at the limit 3V is

3

=10 =2 10°Q.

Ry

The indications of the voltmeter correspond to the voltage on its terminals. This
voltage U is less than the EMF F in the circuit:

ve-Rv_p
"Ry +R

The error then is

U-E -R
Hp=——=—"
E Ry +R

The worst case occurs with the source resistance R = 10 k€, in which case this
error becomes

—10 x 10°
Hp = 100 = —4.8%.
R=10x 105 42 x 105 i’
If the source resistance is 1 kQ, then Hy = — 0.5%.

Let us now add all conditionally constant errors. We shall use (4.3), and we shall
assume that @ = 0.95:

Uoos = 1.11/2.52 + 0.832 + 0.52 4 0.25% = 4%.
We now take into account the absolutely constant error. Its limits are
Hg = —4.8%, Hg = —0.5%,

but they are not known accurately enough to eliminate them by introducing
the correction. Therefore, in accordance with (4.16), we obtain the overall limits
of error:

Aroos = —0.5+4 =+43.5%, Ajpos = —4.8 —4.0 = -8.8%

Thus, the absolute value of error of the planned measurement will not
exceed ~10%.
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8.1.2 Universal Estimation of Measurement Inaccuracy

We shall now estimate the measurement error in the example examined above,
assuming that the measurement has already been made. The significant difference
from the previous case is that now we have an estimate of the measured quantity.
Assume the case with source resistance R = 10 kQ and let the indication of the
voltmeter be 62.3 graduations. Hence, the voltage indicated by the voltmeter is

3
U=623_—_=2492V.
75

Suppose we found out that R = 10kQ £ 0.5%. The error Hz was calculated
above: = —4.8%. Now we can introduce the correction Cg:

Cr = +4.8 x 1072 x 2.492 = +0.120V.
Taking the correction into account, we obtain
U =U-+ Cr=2.612V.

The error of the correction is determined by the errors of the values of the
voltmeter resistance Ry and the source resistance R. We shall establish the relation
between them.

R R Ry . __ R/Ry

Cr=-HpU= U= X =
k K" TR+R T R+Ry R+Ry (1+R/Ry)>

To simplify the notation, let x = R/Ry. Then

We now construct the differential relations:

1 R dR dR
dx=—dR ——dRy =x(— — ="},
Ry R2

dCo — E de  2x(1+x)dx £ 1—x
TR0+
x(1—x (dR a’Rv).

dCp = E———~
k R Ry

(1+x)°
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In the relative form, transforming from differentials to increments, we obtain

Oc =

ACk 1—x (AR ARy
Ck 1+x\R Ry )

The above formula suggests that there are two components in the correction
error due to R and Ry, respectively. We can express these components in a relative
form as:

1—x 1 —x
Cl 1+X R» Cc2 1+X Ry»

where 0 and g are the relative errors of the outside resistance and voltmeter input
resistance. As AR and ARy are independent, we shall regard each component of
error of the correction as an elementary error of measurement. Obviously, both
components are conditionally constant.

Recall that the limits of the error of the source resistance R are known to be
+0.5%. Therefore, because x = 5 x 102 for the values of R and Ry,

1 —

0c1| = ( x) 0.5% = 0.9 x 0.5% = 0.45%.
1+x

The limits of error of the internal resistance of the voltmeter are determined

by the voltmeter class. Since ours is a voltmeter of Class 1, these limits are equal to
+1%. Therefore,

1—x
0| = 1% = 0. 1% = 0.9%.
|0ca| <1+X) % =09 x 1% = 0.9%

The limits of the remaining errors are as follows:

0] = 1% x 75/62 = 1.2%
0.25 x 100%

0, =—"""""_04

16| & %

07| = 0.5%

16/ = 1% x 75/62 = 1.2%.

These elementary errors can be assumed to be conditionally constant. According
to (4.3), for a = 0.95, we obtain

uoos = 1.11/0.92 +0.452 + 122 + 042 +0.52 + 1.22 = 2.3%.
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When the result of the measurement is written in accordance with its uncertainty,
only three significant figures can be retained:

U=261V, u=+23%(0.95).
Alternatively, the result can be represented as follows:

Uopos =2.61V £2.3%, or Upgs = (2.61V £ 0.06)V.

8.1.3 Individual Estimation of Measurement Inaccuracy

The largest elementary errors in the previous section were 0, 6;,, and 6, How can
they be reduced? The first two can be reduced by taking into account the individual
properties of the voltmeter, if the voltmeter has a table of corrections from a recent
calibration test. Assume that, for the 3V measurement range, the correction is +0.3
graduations at marker 60, and +0.2 graduations at marker 70. It can then be assumed
that the correction to the indication at 62.3 graduations is also equal to +0.3
graduations. Therefore,

3
Cin = +0.3 x —— = +0.012V.
+0.3 X 75 +

Taking this correction into account, the voltmeter indication gives
U =2.492+0.012 = 2.504V.

We shall assume that the limits of error in determining the correction, i.e., the
calibration errors, are known and are equal to £0.2%. Converting to the indication
of the instrument, we obtain

16| = 0.2 x 75/62 = 0.24%.

With this correction, we have eliminated the systematic component of the error
of the voltmeter. The random component, however, remains, and it must be taken
into account. The dead band in indicating electric measurement instruments can
reach a value coinciding with the class designation of the instrument. In our
case, this value is 1% of 3V. The random error does not exceed half the dead
band. Thus, the limits of random error are equal to

75
¥ = 0.5 x 1% x = 0.6%

The distribution of the random error in our case, once its limits have been
estimated, can be assumed to be uniform, as also the distributions of other condi-
tionally constant elementary errors.
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The input resistance of the voltmeter can be measured. Assume that this
measurement has been done, and Ry = 201.7 kQ £ 0.2%. Then

—10 x 10° x 100
Hyg = = —4.72%.
=10 +201.7) x 10 %

The correction will then be
Cr = +4.72 x 1072 x 2.504 = +0.118V.
Taking the correction Cy into account, we obtain
U" =2.504+0.118 = 2.622V.

The limits of the elementary error O¢; do not change, but 8-, will now become
smaller due to more knowledge about the input resistance of the voltmeter:

0c1| = 0.45%, |0ca| = 0.9 x 0.2% = 0.18%.

Note that 6, concerns only the specific instance of the voltmeter and thus is an
absolutely constant error.

The error 6, can be reduced by taking greater care in positioning the instrument
horizontally. Assume that the deviation from the horizontal position does not
exceed £2°. Then

16/ =1 x2/5%75/62 =0.48%.
The temperature error and the reading error will remain the same.

Let us now calculate the uncertainty due to conditionally constant errors, again
for a = 0.95:

Up95 = 1.1\/0.242 +0.62 + 0.452 + 0.482 + 0.52 + 0.4 = 1.13%.

We now account for the absolutely constant error 6., = 0.18% according
to (5.52):

I/l/(),gs =0.18+1.13 = 13%
Finally, we write the result of the measurement as follows:
U=262V, u=+13%(0.95),

or alternatively,


http://dx.doi.org/10.1007/978-1-4614-6717-5_5

242 8 Examples of Measurements and Measurement Data Processing

Uoos = 2.62V £ 1.3%, or Ugoes = (2.62V = 0.03)V.

This example illustrates clearly how the measurement uncertainty decreases as
one moves from a priori to a posteriori estimation and then from universal to
individual error estimation.

8.2 Voltage Measurement with a Potentiometer
and a Voltage Divider

Potentiometers with manual control are highly accurate and universal. For these
reasons, they are frequently used in scientific laboratories, although they have
started to be displaced by digital multirange voltmeters in recent years. The latter
are in essence automated potentiometers.

A voltage measurement with a potentiometer requires a two-phase measurement
procedure. First, a standard cell is connected to the potentiometer, and the current
through the potentiometer is adjusted using the potentiometer’s set of accurate
measuring resistors so that the voltage drop on the section of the circuit with these
resistors would balance the EMF of the standard cell. Next, a special potentiometer
switch is used to disconnect the standard cell, and we connect the voltage to be
measured to the potentiometer circuit.

When the voltage to be measured exceeds the range of the potentiometer, a
voltage divider can be used, which allows only a known fraction of the voltage to be
applied to the potentiometer. We should point out that a voltage divider contains
electrical resistors and thus consumes a certain amount of power from the voltage
source to which it connects. For this reason, a voltage divider can only be used if the
power it consumes is so low that the resulting affect on the measured voltage is
negligible. We assume that this is the case in our example.

The measurement of voltage with a potentiometer is a direct measurement.
However, when the errors of the potentiometer and the errors of the standard cell
are rated separately, and when a voltage divider is involved, the error produced by
such a chain of measuring instruments is estimated with methods that are specifi-
cally designed for indirect measurements. We discussed these methods in Chap. 5.
Here, we shall consider an example of a single measurement with individual
inaccuracy estimation.

To be specific, we will consider the measurement of voltage using a class 0.005
potentiometer, a class 0.005 voltage divider, and a standard cell with voltage
accuracy of £10 pV. In particular, we will consider a P309 potentiometer and
P35 voltage divider, which were manufactured in the former USSR. The measuring
resisters in P309 potentiometer are organized in six blocks called decades. Each
decade produces certain decimal digits in the measurement result. For example, if
the measured voltage is 1.256316V, the digits “1.2V” are produced by indication
“12” of decade “x100 mV,” the digit “0.05V” by indication “5” of decade
“x10 mV,” and so on.
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Let the current through the potentiometer be /,, and the resistance of the section
of the circuit with the accurate resistors after the adjustment in the first phase be R,.
Since the voltage drop on the section of the circuit with the resistance R, balances
the EMF of the standard cell, U, we have in this case:

I, = Us /R
When the standard cell is disconnected and a certain voltage, U, is connected to
the potentiometer circuit, a fraction of the resistors of the potentiometer is

introduced into the comparison circuit such that the voltage drop on their resistance
R, would compensate U,; i.e., U, = I,R,. Then

R
Up =L USC7
Ry

and knowing the EMF of the standard cell and the ratio R,/Ry., we can find U,,.
Finally, assuming that the division coefficient of the voltage divider is equal to K,
the voltage to be measured, U, is determined from the formula U = K,U,,. There-
fore, we can write the measurement equation in this measurement in the form:

U=K;-"Us. (8.1)

The indications of the potentiometer are proportional to R, but its error is
determined not by the errors of the resistances R, and R, but by the error of the
ratio R,/R,.. The uncertainty associated with the operations of comparing the
voltages can be neglected, because the smoothness of the resistance regulation in
the potentiometer and the sensitivity of its zero indicator were designed specifically
to keep this uncertainty extremely small compared to other errors.

The potentiometer has six decades and a built-in self-balancing amplifier. The
limit of permissible error as a function of the measured voltage U, is calculated
using the formula (given in the manufacturer’s documentation):

AU, = £(50U, 4 0.04) x 107°V.

The error of the potentiometer does not exceed the above limits if the ambient air
temperature ranges from +15°C to +30°C and differs by not more than 2.5°C from
the temperature at which the measuring resistors of the potentiometer were adjusted
(the P309 potentiometer has built-in calibration and adjusting systems).

The EMF of the standard cells can be determined with an error of 10 pV that in
relative form is =1 x 107 >%. The effect of the temperature is taken into account
using a well-known formula, which describes accurately the temperature depen-
dence of the EMF in a standard cell. Thus, temperature does not introduce addi-
tional errors to the EMF of the standard cell.
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Assume that in three repeated measurements of certain voltage, performed using
a voltage divider whose voltage division ratio was set to 1:10, the following
potentiometer indications were obtained:

x; = 1.256316V, x; = 1.256321V, x3 = 1.256318V.
The limit of permissible error of the potentiometer in this case is
AU, = £(50 x 1.26 +0.04) x 10° = £63 uV.

For this reason, the difference of 5pV between the results of the three
observations above can be regarded as resulting from the random error of the
measurement, and the magnitude of this error is negligible. In the calculation,
therefore, any one of these results or their average value can be used.

Assume that in the process of adjusting the measuring resistors before the
measurement, the corrections of the higher order decades were estimated. Let the
correction for the indication “12” of the decade “x 100 mV” be +15 x 107°V, and
the correction for the indication “5” of the decade “x10 mV” be —3 x 107° V.
Each correction is determined with an error of 5 x 107 V.

The corrections for the other decades are so small that they are of no interest.
Indeed, the indication of all the remaining decades is 0.0063 V; the limit of
permissible error corresponding to this indication in accordance with the formula
given above is

AU, = £(50 x 0.0063 +0.04) x 107% = +£0.32 x 10°° V.

This error is already two orders of magnitude smaller than the permissible error
of the higher decades, and it can be neglected without further corrections.

Further, it is necessary to take into account the possible change in the air
temperature in the room. If this change falls within permissible limits, then
according to the specifications of the potentiometer, the error can change approxi-
mately by one-forth of the permissible limit, i.e., by 16 pV.

We shall take for the result the average value of the observations performed,
correcting it by the amount C = (15 — 3) x 107° =12 x 10°°pV:

U, =x=1.256 318 + 0.000 012 = 1.256 330V.

The errors of the potentiometer, which enter into this result, include the error due
to temperature (£16 x 107°V), the error of correction of the higher decades
(£5 % 10_8V), and the error due to the lower decades (4+0.32 x 107 V). Clearly,
these errors are dominated by the error due to temperature, and the remaining errors
can be neglected. Thus, the limits of error of the potentiometer are

0, = +16 x 10°°V.
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Next, we must estimate the errors from the standard cell and the voltage divider.
The error of the class 0.005 voltage divider can reach 5 x 10%. But the actual
division coefficient of the divider can be found and taken into account, which is
precisely what we must do in the case at hand. In the given measurement, assume
that this coefficient has been found to be K; = 10.0003 and the error in determining
K, falls within the range +2 x 1073%.

Finally, the discrepancy between the real and the nominal value of the EMF of
the standard cell falls within the limits of error of the standard cell (10 puV).

We estimate the voltage being measured U as

U=K, U, = 10.0003 x 1.256330 = 12.56368V.

To estimate the measurement error, we shall use the standard trick. First, we
shall take the logarithm of the measurement (8.1). Then we find the differentials of
both sides of the equation, and neglecting errors that are second-order
infinitesimals, we replace the differentials by the increments. This process gives

AU _AKy ARy/Re) AU
U Kd Rp/Rsc USC .

For the terms on the right side of the above formula, we only have estimates of
the limits, and not the values of the errors. Thus, we shall estimate the limits of the
measurement error on the left side. We can use formula (4.3) for this purpose. First,
all components must be represented in the form of relative errors. The limits of the
relative error of the potentiometer, in percent, will be

16 x 1076 x 100

_ -3
126 ==+13 x 107°%.

0, = +

The limits of the relative error of the voltage divider were estimated directly as
Ox = £2 x 1073%. The limits of error in determining the EMF of the standard cell
in the form of a relative error are known:

Oy = +1 x 1073%.
We now find the limit of the measurement error according to (4.3):
Op = k\/1.32 +22 412 1073 = k x 2.6 x 1073%.
Let a = 0.95. Then k = 1.1 and

Goos = 1.1 x2.6x103=29x1073 ~3 x 107°%.
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Finally, we must check the number of significant figures in the result of
measurement. To this end, we shall express the above limit 8y 95 in the absolute
form:

Goos = £2.9 x 107 x 1072 x 12.6 = +37 x 107 V.

As this is an accurate measurement, the error of the result is expressed by two
significant figures (see Sect. 1.8), and there are no extra figures in the obtained
result to be rounded off. The final result is (omitting alternative representations
from now on) as follows:

U = (12.56368 £+ 0.00037)V (0.95).

If the measurement was performed with universal estimation of the errors, then
the errors of all components would have to be set equal to 5 x 10™>% and the limit
of the measurement error would be

0095 = 1.1 x 1073V3 x 52 = 0.01%.

Then, in absolute form, & 95 = £0.0013 V and the result of measurement would
have to be written with fewer significant figures:

U = (12.5637 £ 0.0013)V (0.95).

Here, two significant figures are retained in the numerical value of the measure-
ment error because the value of its most significant digit is less than 3 (see Sect. 1.8).

8.3 Comparison of Mass Measures

Let us consider the calibration of a 1-kg mass measure by comparing it with the
reference standard measure of mass with the same nominal value using a balance.
Assume that the comparison was repeated ten times. Column 1 of Table 8.1 lists the
measurement results obtained from the comparison of the measures. Our goal is to
produce the final measurement result and estimate its inaccuracy.

Assume that the measurement was performed by the methods of precise
weighing, which eliminated the error caused by the arms of the balance not having
precisely equal length. Thus, it can be assumed that there are no systematic errors.

Table 8.1 presents the input and intermediate data involved in producing the
final measurement result and estimating its inaccuracy. Since the systematic errors
were eliminated, the measurement results in column 1 can be viewed to be random
independent quantities {x;},i,=1,...,nand n = 10, and therefore, the probability
of all x;, is the same and equal to 1/n. To simplify the computations, column
2 presents only the varying last three digits of x;, denoted as x;,.


http://dx.doi.org/10.1007/978-1-4614-6717-5_1
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Table 8.1 Input measurement data and intermediate processing steps in the measurement of the
mass of a weight

X; & Xip X 107° g Xio — %o x 10°¢ (Xip — %) x 1072 g°
999.998738 738 +17 289
999.998699 699 -22 484
999.998700 700 =21 441
999.998743 743 +22 484
999.998724 724 +3 9
999.998737 737 +16 256
999.998715 715 —6 36
999.998738 738 +17 289
999.998703 703 —18 324
999.998713 713 -8 64
Sum 7,210 0 2,676

Their mean value is
I 1 » i
x,-o:Z;xio:m-nlelO =721 x 10 °g.

Thus, the estimate of the value of the mass is
X = 999.998000 + xip = 999.998721 g.

We can now obtain the estimate of the variance
1 n 2
$2(x;) = —— Xio — Xo)~.
( 1) n— 1 ; ( i0 ())

Hence, the standard deviation is

2
S(x) = \/? x 10712 =17 x 107 g.

An estimate of the standard deviation of the obtained value of the mass measure is

o 17x10°
V10

We shall find the uncertainty of the result using Student’s distribution for
confidence probability a = 0.95; then, from Table A.2, we find the coefficient 7,

=5x107%g.


http://dx.doi.org/10.1007/978-1-4614-6717-5_BM1
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for the degree of freedomv = 10 — 1 = 9andg =1 — a = 0.05: tp o5 = 2.26. In
accordance with formula (3.20), we obtain the uncertainty of measurement result:

Upos =226 x 5x 107° =11 x 10~ °g.

Thus, with the confidence probability a = 0.95, the mass m of the measure
studied lies in the interval

999.998 710g <m < 99.998 732 ¢g.

The result obtained can be written more compactly as

mogs = (999.998 721 £ 11 x 107%) g.

Note that if the data above were processed by the nonparametric methods, the
estimate of th