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Preface

Organic electronics has been extensively studied for over 50 years, and is now still
a rapidly developing area. Charge carrier mobility is at the center of these elec-
tronic devices. This book describes recent progresses in developing computational
tools to assess the intrinsic carrier mobility for organic and carbon materials at the
first-principles level. According to the electron—phonon coupling strength, we
classify the charge transport mechanism into three different categories, namely, the
localized hopping model, the extended band model, and the polaron model. For
each of them, we develop a corresponding theoretical approach and implement it
to typical examples. A lot of successes have been achieved and the outlook is
given. The authors are deeply grateful to the following collaborators: Dr. Mengqiu
Long and Dr. Ling Tang, postdoctoral fellows in Shuai’s group, working on
developing deformation potential theory applied to organic and carbon materials;
Dr. Shiwei Yin, Dr. Guangjun Nan and Dr. Xiaodi Yang, former PhD students in
Shuai’s group, working on developing intermolecular coupling quantum chemistry
method, random walk simulation, and quantum nuclear tunneling effects within
hopping scheme, respectively. The financial supports come from the National
Natural Science Foundation of China, the Ministry of Science and Technology of
China, the Chinese Academy of Sciences, the European Union sixth Framework,
and Solvay. We are glad to receive any helpful suggestions and comments from
the readers.

Beijing, September 2011 Z. G. Shuai
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Chapter 1
Introduction

The charge mobility, p, which characterizes the ability of a charge to move in a
bulk semiconductor, is the essential parameter in determining the overall perfor-
mance of electronic devices [1]. By definition, it is the charge drift velocity, v,
acquired per driving electric field, F, i.e., u = v/F, usually expressed in unit of
cm?/Vs. In the absence of scattering, the field-induced momentum gain for an
electron, Ag = —eFt, should increase linearly with the time period 7. However,
according to the classical Boltzmann transport picture, due to the scattering with
impurities, defects, and lattice vibrations, the electron momentum is restored to its
original value after the mean scattering time, 7, i.e., the average time between two
consecutive scattering events. Therefore, in the steady current condition, the
acquired momentum is a finite value of Aq = —eF'r. If the charge has an effective
mass m*, the velocity becomes v = —etF/m*, and thus the prefactor is the
mobility, u = —et/m*. Traditional inorganic semiconductors, especially silicon
single crystals, possess a room-temperature mobility ranging from a few hundreds
to a few thousands cm®/Vs [2]. Such large mobility, as well as natural abundance
and stability, makes silicon the most prominent electronic material. New carbon
materials, such as single-walled carbon nanotubes and graphene sheets, are very
promising for the next generation of electronics because their intrinsic mobility
can reach up to a few hundred thousand cm?/Vs [3]. Generally, organic materials
have much lower mobility and poorer stability, and thus they are not destined to
replace silicon. However, they can play an important role in next-generation
electronic applications, such as large area and flexible devices, due to their pro-
cessability and flexibility, among other advantages [4]. Designing new organic
materials with large mobility has been a formidable task in the past two decades
and now a variety of new molecular materials have been synthesized with room
temperature mobilities between 1 and 10 cm?/Vs in thin films [5] and even larger
values in single crystals [6].

On one hand, the charge transport in ideal molecular crystals has been a subject
of theoretical interests for almost sixty years. In 1959, Holstein proposed the small

Z. Shuai et al., Theory of Charge Transport in Carbon Electronic Materials, 1
SpringerBriefs in Molecular Science, DOI: 10.1007/978-3-642-25076-7_1,
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2 1 Introduction

polaron model, which depicted a general scheme for studying charge transport in
organic solids [7]. However, there are at least three reasons for the recent
renaissance in theoretical interest: (1) in recent years, there have been great
advances made both in synthesis of better performed molecules and in materials
processing for good single crystals; (2) tremendous advances in electronic struc-
ture theory and computational technology have allowed a quantitative description
for the electronic properties, e.g., intermolecular electronic couplings and elec-
tron—phonon couplings, and thus charge mobility in molecular crystals; and (3)
despite the numerous theoretical studies made in the past, the comparison between
experiment and theory had been always extremely difficult due to the lack of
quantitative calculations as well as ultrapure single crystals in the absence of
structural disorder and chemical impurity. Thus, it is difficult to judge the appli-
cability of the different levels of approximation to solve the Holstein model
Hamiltonian. These facts have hindered our understanding of the intrinsic transport
mechanism. On the other hand, the charge transport in real organic devices has
often been described by phenomenological disorder models. The most successful
one was developed by Bissler and coworkers, assuming Gaussian random site
energies with uncorrelated static disorder and that charge hops between sites
through absorbing or emitting phonons [8]. This model was later modified using a
correlated energetic disorder to account for more realistic situation with charge—
dipole interaction [9]. With such model, both temperature and field dependence for
the mobility in organic devices have been successfully described.

Nevertheless, from the material design point of view, a microscopic model for
the charge transport property is highly desirable. Approximately, different scat-
tering relaxation times arising from optical phonons, acoustic phonons, defects,
and impurities can be added up as: 1/t = 1/7,, + V4 + Vtger + Uiy + ...,
and thus the shortest relaxation time contributes the most to the overall mobility.
Since defects and impurities are extrinsic features that can be minimized through
molecular design and material processing, strong interest has been given to
determine the intrinsic mobility arising from scattering with phonons for a given
material. There are two widely used transport pictures: the band model for delo-
calized electrons [10] and the hopping model for localized charge [11]. In
oligoacenes and rubrene single crystals, experimental evidence has shown that a
band picture is more appropriate. In recent years, significant progresses have been
achieved in a number of areas, for example: (i) through first-principles calcula-
tions, Brédas and coworkers have systematically explored the molecular param-
eters relevant to charge transport based on the semiclassical Marcus electron
transfer theory [12], e.g., the intermolecular electronic couplings, the molecular
reorganization energy, and the polarization energy in the bulk [13]; (ii)) Munn and
Silbey developed a variational approach to solve the Holstein model and compared
the local and nonlocal electron—phonon coupling contributions to band and hop-
ping transport [14]—they concluded that the nonlocal terms tend to enhance the
hopping behavior; (iii) Kenkre and coworkers derived a working expression for
mobility and presented a unified quantitative explanation of the temperature
dependence of mobility in naphthalene crystal by assuming a direction-dependent
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local electron—phonon coupling constant [15]; (iv) Bobbert and coworkers gen-
eralized the Holstein model to the Holstein-Peierls model by including the non-
local electron—phonon coupling terms while keeping molecule rigid [16]. We later
extended such model to incorporate both inter- and intra-molecular vibration
modes, with all the parameters evaluated by DFT [17]; and (v) a time-dependent
Schrodinger equation with a Su—Schrieffer—Heeger Hamiltonian has been solved
numerically for the charge diffusion process with local electron—phonon coupling
by Hultell and Stafstrom [18] and with nonlocal electron—phonon coupling by
Troisi and Orlandi [19], where phonons are both treated classically.

In this book, we present our recent progresses toward better understanding of
charge transport in organic materials and quantitative predictions of carrier
mobility through first-principles calculations. We classify the charge transport
mechanism into three categories according to electron—phonon coupling strength,
for each of which we have developed a corresponding theoretical method. The
purpose is to develop a computational tool for assessing the intrinsic charge
mobility of the organic and carbon materials. In the first category, the electron
interacts strongly with intramolecular vibrations, namely, the intermolecular
electron coupling is much less than the molecular reorganization energy. In this
case, the electron is fully self-localized, i.e., each molecule acts as a trap, and the
charge transport can be viewed as an intermolecular hopping process [11, 20-26].
It is appropriate to apply the Marcus theory to calculate the intermolecular charge
transfer rates, and a more elaborate and appropriate description is to incorporate
nuclear tunneling effects to account the quantum nature of molecular vibration,
which we found is essential since the intramolecular vibration is generally of high
frequency, invalidating the classical charge transfer theory [25]. The charge dif-
fusion can be modeled through a random walk numerical simulation, much as in
the phenomenological disorder model. Since the molecular parameters enter
explicitly into evaluation of the charge diffusion coefficient, this approach can be
used for molecular design toward high charge mobility. In this picture, it is found
that the dynamic disorder is very much dependent on the space dimension, and
sometimes, it leads to the phonon-assisted current, namely, dynamic disorder
enhances the charge mobility [26]. Applications have been performed to a variety
of molecular materials, e.g., siloles [20], triphenylamines [21, 22], oligothi-
ophenes [24], and oligoacenes [25, 26]. In the second category, the transfer
integral is comparable to the reorganization energy, and the localized picture
should not be imposed at first-hand. We consider the Holstein-Peierls polaron
model, where both intra- and inter-molecular vibrations are considered to be
locally and nonlocally coupled with the electron. The vibrations are treated as
optical phonons [16]. All the parameters in the Hamiltonian are evaluated through
DFT calculations, allowing us to establish quantitative structure—property rela-
tionship and prediction. The approach is applied to naphthalene crystal [17, 27,
28]. Both the temperature and pressure dependence of mobility have been sys-
tematically studied, considering the thermal expansion and press compression of
the lattice [28]. In the third category, the coherent length of electrons is assumed to
be very long, matching the wavelength of acoustic phonons, much as in inorganic
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semiconductors. In this case, the scattering process is modeled by a deformation
potential formalism, which is the band model including only the lattice scatterings
by the acoustic deformation potential. With the mobility formula based on the
Boltzmann transport equation and the effective mass approximation, the role of
acoustic phonons in naphthalene crystal is reexamined with DFT calculations [29].
Typical examples are also shown for the graphene [30] and graphdiyne [31] sheets
and nanoribbons.
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Chapter 2
Hopping Mechanism

Abstract In the limit of strong electron—phonon coupling and weak intermolec-
ular electronic coupling, a charged molecule undergoes a large geometry relaxa-
tion, which eventually traps the charge. In this case, the charge transport can be
viewed as an intermolecular hopping process. With the known electron transfer
rates between neighboring molecules, the charge carrier mobility can be evaluated
through the Einstein relation from random walk simulations. In general, the
classical Marcus electron transfer theory, which works well in the high-tempera-
ture limit. For a better understanding, we incorporate the nuclear tunneling effect
arising from the intramolecular high-frequency vibrations to characterize the
transport behavior at room temperature. Dynamic disorder effect arising from the
intermolecular low-frequency vibrations is found to be very much materials
structure or space-dimension dependent, which may give rise to the phonon-
assisted current.

Keywords Hopping mechanism - Marcus electron transfer rate -+ Random walk
simulation - Temperature dependence of mobility - Nuclear tunneling - Dynamic
disorder

In Sect. 2.1, we describe the general methodology to simulate the hopping mobility
using the electron transfer rate formalism. This approach is applied to different
organic materials and discussed in Sects. 2.2, 2.3, 2.4. Section 2.5 investigates the
nuclear tunneling effect of the intramolecular vibrations, and finally Sect. 2.7 is
about the dynamic disorder effect of the intermolecular modes. For each of these
improvements, application examples are presented in Sects. 2.6 and 2.8,
respectively.

Z. Shuai et al., Theory of Charge Transport in Carbon Electronic Materials, 7
SpringerBriefs in Molecular Science, DOI: 10.1007/978-3-642-25076-7_2,
© The Author(s) 2012
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2.1 General Methodology

This chapter deals with strong electron—phonon interaction limit that the charge is
regarded as localized in a single molecule. The charge transport consists of suc-
cessive hopping from molecule to molecule, overcoming the trap caused electron
scatterings with intramolecular vibrations. In the hopping picture to evaluate the
charge mobility, there are two important rate processes at different spatial scales,
namely, the electron transfer within molecular dimers and the electron diffusion in
organic solids. The previous process can be characterized by the intermolecular
electron transfer rate at the atomistic level, while the latter can be simulated at the
molecular level by the random walk technique, regarding each molecule as a
lattice site. When the intermolecular electronic coupling, also called electron
transfer integral, V, is much smaller than the reorganization energy of the electron
transfer process between a molecular dimer, A, the electron transfer rate at high
temperature, 7, falls well into the hopping regime. For organic materials, the
intermolecular interaction is of van der Waals type. In general, V is smaller than 4,
and thus the Marcus rate is usually adopted to evaluate the room-temperature
mobilities.

2.1.1 Marcus Electron Transfer Rate

The Marcus formula for electron transfer rate reads [1]

V2 [x (AG® 4 /)*
=Ty ikBTeXp{_ 47kyT 21)

Here, 7 is the reduced Planck constant, kz is the Boltzmann constant, and AGP is
the free energy difference between the initial and final molecular sites. For
molecular crystals with only one type of molecules, 4G° is generally zero since all
molecules in the crystal are equivalent. In Eq. 2.1, V and 1 are the two most
important parameters, both of which are related to the material itself. Various
approaches have been proposed to calculate these two parameters in the literature,
as presented below.

2.1.2 Transfer Integral

The intermolecular transfer integrals can be calculated through various numerical
methods. Three of them, including the direct method [2], the site-energy correction
method [3], and the band-fitting method [4], have been widely used in the liter-
ature, and thus will be detailedly discussed below.
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2.1.2.1 Direct Method

The direct scheme to obtain the intermolecular transfer integral was proposed by
Fujita et al. in modeling scanning tunneling microscopy [2] and later adopted by

Troisi and Orlandi to study the charge transport in DNA and pentacene crystal [5].
At the Hartree-Fock (HF) level, the transfer integral reads:

_ 0,sitel 0| 40,site2
Ve/h - <¢LUMO/HOMO‘F ‘¢LUMO/HOMO>

0,site2
h core ¢LUMO/ HOMO >

_ 0,sitel
- LUMO/HOMO

0,sitel 0 0,site2 0
+ (<¢LUMO/HOM0¢1 ‘ ¢LUMO/HOM0¢1>
I(occ.)

0,sitel 0,site2 0,0
B < LUMO/HOMO¢LUMO/HOMO ‘ ¢; ¢1>) (2.2)
Here, (,i)gé'ﬁlo JHOMO and ¢g§ﬁé /Homo Tepresent the highest occupied molecular

orbital (HOMO) and lowest unoccupied molecular orbitals (LUMO) of the two
adjacent molecules when no intermolecular interaction is present. F° is the Fock
operator for the dimer, which is calculated with the unperturbed molecular orbitals.

It has been shown that the HF bandwidth for a polymer is always about 20-30%
larger than the experimental results [6]. Moreover the coupling calculated from density
functional theory (DFT) is usually about 20% less than that from HF [7]. Therefore, in
Eq. 2.2, itisbetter to adopt the Kohn-Sham—Fock operator instead of the Fock operator:

F' =SCeC™! (2.3)

Here, S is the intermolecular overlap matrix, and C and ¢ are the Kohn-Sham
molecular orbital coefficients and eigenenergies of the non-interacting dimer,
respectively. In practice, the molecular orbitals of the two individual molecules are
calculated separately by the standard self-consistent field procedure. These non-
interacting orbitals are then used to construct the Kohn—Fock matrix. After one-
step diagonalization without iteration, the orbital coefficients and eigenenergies,
and thus the Fock operator for the non-interacting dimer can be calculated.

2.1.2.2 Site-Energy Correction Method

When the self-consistent field is performed to construct the Kohn-Sham-Fock
operator in Eq. 2.3, Valeev and coauthors noticed that the site-energy difference
should be taken into account when the dimer is not cofacially stacked [3]. For
example, assuming that HOMO and HOMO-1 of the dimer result only from the
interaction of the monomer HOMOs, {¥;}, the dimer molecular orbitals and the
corresponding orbital energies follow the secular equation:

HC — ESC = 0 (2.4)
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Here, H and S are the Hamiltonian and overlap matrices of the system:
er Jn
H= 2.5
<J 12 e ) (2:3)

S = (S1|2 Sf) (2.6)

The matrix elements above are

e; = (Wi|H|'Y;) (2.7)
Jj = (VilH|';) (2.8)
Sy = (Vil'¥;) (2.9)

Since the basis sets, namely the HOMOs of the adjacent individual molecules, are
not orthogonal with each other, a Lowdin’s symmetric transformation can be
applied to get an orthonormal basis set, which also maintains as much as possible
the initial local character of the monomer orbitals. With such a symmetrically
orthonormalized basis, we have the effective Hamiltonian:

eff eff
J
1 S A g 2.1

< Jtlegf egff ( 0)

Here, the off-diagonal term is the effective transfer integral which has considered
the site-energy correction: [3]

eff
J12 -

Ji2 — 3 (e1 4+ €2)S12 (2.11)
. .

2
- S12

2.1.2.3 Band-Fitting Method

Within the tight binding model, if the site energies of all molecules are equivalent,
the energy band can be expressed as:

e(k) =eo+ »_gze ™R (2.12)

Here, i is any molecule in the unit cell which has been chosen as a reference, j runs
over all the chosen neighbors of molecule i, k is the wavevector, and R;; is the
spatial vector between molecules j and i. A first-principles density functional
theory band structure can be projected to Eq. 2.12 through fitting all the transfer
integrals for the corresponding molecular dimers [4].
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Fig. 2.1 Schematic
representation of the potential
energy surfaces of the neutral
and charged molecules. Q is
the reaction coordinate, and
the sum of the two relaxation | Xc-m-m- - -
energies AV and /™ isthe | N {-
internal reorganization
energy. Reproduced from
Ref. [14] by permission of
The Royal Society of
Chemistry

Charged

Neutral

2.1.3 Reorganization Energy

The reorganization energy is composed of two parts, the internal reorganization
(4;) and the external polarization (/) [8]. The former term 4, reflects the change in
molecular geometry associated with going from the neutral state to the ionized
state, and vice versa. And the latter term A, describes the change in electronic
polarization of the surrounding molecules. The external contribution is difficult to
evaluate theoretically, and thus is normally neglected during discussion. In some
cases, a magnitude of 0.2-0.6 eV is assumed for /. as will be seen in Sect. 2.2 for
general understanding of the role of A,. In the following, we will only discuss the
calculation of the internal reorganization energy at the first principle level.

2.1.3.1 Diabatic Potential Surface

If we obtain the diabatic potential surfaces of the neutral and charged molecules, as
shown in Fig. 2.1, we can easily calculate the reorganization energy of the charge
transfer reaction between a molecular dimer, which is a sum of two relaxation
energy terms: (i) the difference between the energy of the neutral molecule in its
equilibrium geometry and in the relaxed geometry characteristic of the ion and
(i1) the difference between the energy of ion in its equilibrium geometry and in the
neutral relaxed geometry.

2.1.3.2 Normal Mode Analysis
The normal mode analysis provides an approach to obtain the total relaxation
energy from the contributions of each vibrational mode: [9]

X = %AQ? = lw;S; (2.13)
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= Zi L (2.14)

Here, i runs over all the vibrational normal modes (NM), k; and w; are the cor-
responding force constant and frequency, 4Q; represents the displacement between
the equilibrium geometries of the neutral and charged molecules, and S; denotes
the Huang-Rhys factor measuring the electron—phonon coupling strength for the
ith normal mode.

2.1.4 Mobility Evaluation

With the knowledge of the charge transfer rates between neighboring molecules,
one can evaluate the charge mobility simply from the information of one single
hopping step, or more accurately through random walk simulation for the charge
diffusion trajectories.

2.1.4.1 Single-Step Approximation with Electric Field

In principle, the charge carrier mobility (¢) can be obtained from its definition as
the ratio between the charge drift velocity (v) and the driving electric field (F): [7]

n= (2.15)

Assuming that the charge transport is a Boltzmann hopping process and one path-
way with only one single hopping step can characterize the whole diffusion prop-
erties, v can be approximately calculated from the nearest inter-site distance (a) and
the hopping time (t), which is actually the reciprocal of the charge transfer rate (k):

vaalt=ak (2.16)

Note that within this approach, an additional contribution from the electric field
should be added to the free energy part of Eq. 2.1:

V2 T (AG® + eFa + /1)2
=Ty Wexp{‘ 4ikyT (2.17)

2.1.4.2 Single-Step Approximation with Einstein Relation

The Einstein relation sets up the relationship between the mobility and the dif-
fusion constant (D): [10, 11]

p=-——D (2.18)
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_ 1w

Here, [(¢) is the distance between the charge position at time ¢ and its starting point
at time zero. Earlier treatment for the hopping mobility was obtained as [12]

D =d’k (2.20)

where a is the intermolecular spacing and k is the charge transfer rate, namely, the
inverse of hopping time. Such an approach requires only a molecular dimer to
estimate the bulk mobility. Later, this model has been extended to average over all
the neighbors: [13]

1 2
D%ﬁZPi-rik,- (2.21)

Here, d is the space dimension, namely, d = 1, 2, 3 for 1D, 2D and 3D systems,
respectively. The index i covers all the hopping pathways out of a chosen reference
molecule with r; being the corresponding hopping distance, which is usually
expressed as the intermolecular center to center distance, and k; being the charge
transfer rate. P; is the relative probability to choose the ith pathway:

P = k; /Z] k; (2.22)

2.1.4.3 Random Walk Monte Carlo Simulation

The mobility is a bulk parameter, therefore it should be strongly related to the long
range molecular packing, which may provide entirely different transport networks
and give different results compared with the simple estimations in previous two
sections considering only one single hopping step, especially for inhomogeneous
system [14]. To solve this problem, we should model the Brownian motion of
charge transport explicitly. Thereby, we propose a random walk scheme to sim-
ulate the charge diffusion using the Monte Carlo technique. First, we take the
experimental measured crystal structure exactly for simulation and choose an
arbitrary molecule within the bulk as the starting point for the charge. The charge
is only allowed to hop to its nearest neighbor molecules. To decide which the next
site is for the charge to land in, a random number r uniformly distributed between
0 and 1 is generated. Then the charge is allowed to go along the ith specified
direction when >\ |P; < r < 3i_ |P,, where P; is the relative hopping prob-
ability given by Eq. 2.22. The hopping distance is taken to be the intermolecular
center distance of the corresponding pathway and the hopping time is set to
173 jk;. Such Monte Carlo simulation keeps going until the diffusion distance
exceeds at least 10°~10° times the lattice constant. Following the same process,
thousands of simulations should be performed to get a linear relationship between
the mean-square displacement and the simulation time to get the diffusion
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Fig. 2.2 A typical time-
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coefficient according to Eq. 2.19 (see Fig. 2.2). The mobility is finally calculated
through the Einstein relation in Eq. 2.18. It has been shown that two thousand
simulations are enough to get converged results of mobility [9]. Note that organic
crystals generally have layer-by-layer ordered structures with weak electronic
couplings between layers and much larger electronic coupling within each layer,
thus the isotropic diffusion assumed in Sect. 2.1.4.2 is generally not valid, but the
Monte Carlo procedure can be used to simulate the anisotropic mobilities when the
charge trajectories are projected to a specified lattice direction.

2.2 Application I: Siloles

The silicon containing cyclic m-conjugated system silole (silacyclopentadiene) is a
promising emissive material because of its notable aggregation-enhanced emission
[15, 16] and high PL efficiency [17, 18] in thin solid films. Siloles are also believed
to be excellent electron transport materials because the presence of the silicon
atom lowers the LUMO energy level relative to that of pure hydrocarbon mole-
cules and this facilitates electron injection. The lowering of the LUMO has been
ascribed to the interaction between the ¢* orbital of two exocyclic g-bonds on the
silole ring and the ©* orbital of the butadiene moiety [19, 20]. Here, we apply the
methods described in Sect. 2.1 to investigate the charge transport properties in two
silole-based compounds, i.e., 1,1,2,3,4,5-hexaphenylsilole (HPS) and 1-methyl-
1,2,3,4,5-pentaphenyl-silole (MPPS), as shown in Fig. 2.3.

2.2.1 Computational Details

We adopt the single crystal structures of HPS [21] and MPPS [22] from experi-
ment and generate a variety of possible intermolecular hopping pathways. The unit
cells of both HPS and MPPS contain two inequivalent molecules, namely, type A
and B. As a result, there are two kinds of pathways, i.e., A—A, and A-B, if we take
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R\Si/R1 ; 5
R 2 ! : R 4
\ |
4 3 2 3
R R R, ——CH,
HPS MPPS

Fig. 2.3 Chemical structure of HPS (leff) and MPPS (right). Reprinted with permission from
Ref. [7]. Copyright 2006 American Chemical Society

molecule A as the reference. The first occurs only between cells, while the latter
can occur both within and between cells. Using the primitive cell (0, 0, 0) as a
reference, all the pathways can be defined with their cell indexes (h, k, [) and
molecule types. The intermolecular transfer integrals are calculated based on the
direct method according to Eq. 2.2. The internal reorganization energies are cal-
culated with the diabatic energy surface approach as shown in Sect. 2.1.3.1. All
these calculations are performed with the Gaussian 03 package [23]. The external
reorganization energies are set to be 0.2-0.6 eV. The mobilities are calculated with
the simple model introduced in Sect. 2.1.4.1.

2.2.2 Results and Discussion

2.2.2.1 Transfer Integral

The calculated transfer integrals for HPS and MPPS crystals are listed in
Tables 2.1 and 2.2, respectively. For HPS, the largest transfer integral for electron
and hole are found to be 17.69 meV and 14.10 meV, respectively which are quite
close with each other. For MPPS, the situation is quite similar (33.47 vs.
43.97 meV), but the transfer integrals are generally much larger than HPS. This
can be easily understood by their difference in intermolecular distances (see
Table 2.3). For the most important pathways, the inter-carbon distances in MPPS
are around 6.71-6.86 A, which are much smaller than those of HPS within the
range of 9.16-11.74 A. This is due to the fact that the phenyl group presents larger
hindrance than the methyl group and thus MPPS has greater n—n overlap. Besides,
we can find that there exist channels where electron transfer is much larger than
that for the hole, e.g., channels I, VI, and X for HPS and channels I, VIII, and IX
for MPPS, while there are just few channels that hole transfer integral is larger
than electron. This can be explained by the charge distributions of the frontier
orbitals. Taking HPS as an example, the LUMO wave function is mainly localized
on the silole ring, especially on the 2-, 1-, and 5-positions (see Fig. 2.4), and there
is also considerable electron density on the 1’-position of the silicon exocyclic aryl
ring, which is due to the interaction between the ¢" orbitals of the two exocyclic ¢
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Table 2.3 Interatomic distances (in A) in the molecular dimers for HPS and MPPS

Channel Sil1-Sil C2-C2 C5-C5 C3-C3 C4-C4
HPS-1IV 7.61 9.63 9.63 11.74 11.74
HPS-VI 8.78 9.16 9.16 10.26 10.26
MPPS-V 7.48 6.71 6.71 6.86 6.86
MPPS-IX 6.10 8.48 8.48 10.82 10.82

Fig. 2.4 HOMO and LUMO 2 & i

of HPS molecule. Reprinted h, e

with permission from Ref.

[7]. Copyright 2006 ‘ ’ 9

American Chemical Society 2, .‘ B,
3 3

HOMO LUMO
Fig. 2.5 HPS dimer 2%,

]
structures, including frontier m m
molecular orbitals of (0, 0, 0) Py
A (down) and (0, —1, 0) B g ¢ 2 5
(up) molecules. The left panel m‘ m
shows the HOMOs and the 3.3

right panel shows in LUMOs. ?
Reprinted with permission

from Ref. [7]. Copyright 2006
American Chemical Society

Table 2.4 Calculated
internal reorganization

Neutral to ion Anion to ion Total

energies (in eV) for MPPS MPPS Electron 0.18 0.16 0.34
and HPS Hole 0.14 0.13 0.27
HPPS Electron - - 0.32

Hole - - 0.27

orbital on the ring silicon and the 7" orbital of the butadiene moiety [24]. On the
other hand, the HOMO (hole) is primarily located on the C2=C3 and C4=C5
double bonds in the silole ring as well as on the 2- and 5-positions in the aryl rings.
The different contribution of the LUMO and HOMO orbitals may induce different
relative strength of overlap between molecules for different pathways. For
example, in the configuration of channel VI (see Fig. 2.5), the distances between
silole rings at the 1-,2-, and 5-positions of the (0, 0, 0) A molecule and the (0, —1,0) B
molecule are smaller than those at the 3- and 4-positions, which eventually make the
intermolecular overlap for LUMOs larger than that for HOMOs.

2.2.2.2 Reorganization Energy

The calculated internal reorganization energies are given in Table 2.4. We can find
that the total reorganization energies for MPS and HPS are similar, and the
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reorganization energy for the hole is slightly smaller than that for the electron in
both MPPS and HPS.

2.2.2.3 Room-Temperature Mobility

The largest transfer rates (channel IV for both HPS and MPPS) are used to cal-
culate the mobilities. In Fig. 2.6, we show the room-temperature mobility as a
function of the external reorganization energy for an electric field of F = 10° V/
cm, which is a typical value for organic light emitting diode devices. An inter-
esting discovery is that, although in most cases, electron mobility is observed to be
much smaller than hole mobility in organic materials, the calculated mobilities of
electron and hole are about the same in HPS and MPPS. This can be explained by
the fact that the reorganization energy of hole is smaller than electron and more
transport channels exist for electron than hole. Such balanced electron and hole
mobilities in siloles should be one of the reasons for the high electroluminescence
efficiency. Besides, the mobility of MPPS is generally one magnitude larger than
that of HPS because the transfer integral of MPPS is larger than HPS and their
reorganization energies are quite close.

2.3 Application II: Triphenylamine Dimers

Triphenylamine (TPA) derivatives have been widely employed as hole transport
materials in molecular electronics applications [25, 26]. However, their perfor-
mances have been found to be unsatisfactory due to their amorphous nature in the
solid state [27-29]. In order to improve the mobility of TPA, a design strategy of
making dimers of TPA, either in the form of a macrocycle or a linear chain
(see Fig. 2.7), has been performed [30, 31]. This part tends to understand the origin
of their mobility-structure relationship from bottom up.
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2.3.1 Computational Details

The crystal structures are taken from experimental X-ray analyzed crystallographic
data [30]. The transfer integrals are evaluated within direct scheme of Kohn-
Sham-Fock operator as described in Sect. 2.1.2.1. The reorganization energy is
obtained with the diabatic potential surfaces. And the mobility is calculated from
single-step approach with Einstein relation introduced in Sect. 2.1.4.2. All quan-
tum chemistry calculations are performed within Gaussian03 package [23].

2.3.2 Results and Discussion

2.3.2.1 Transfer Integral

The chosen pathways are shown in Figs. 2.8 and 2.9 for compound 1 and 2,
respectively. And the corresponding transfer integrals are given in Tables 2.5 and
2.6. Since there are two molecules in the unit cell of compound 2, two sets of data
are given corresponding to choosing either of them as the reference molecule. It is
found that the calculated two sets of transfer integrals do not differ much, e.g., the
largest transfer integral is 8.65 x 107> and 6.26 x 107 eV, respectively. Besides,
the magnitude of the transfer integrals for both compounds is also quite close.
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Fig. 2.9 Hopping pathways
for compound 2. Reprinted
with permission from Ref.
[30]. Copyright 2006
American Chemical Society

Table 2..5 Calculated ' Pathway Distance (A) VoY)
transfer integrals for eight
pathways in compound 1 1 5.133 4.86E-3
2 5.328 8.65E-3
3 13.502 2.50E-3
4 13.974 7.43E-3
5 15.927 1.36E-7
6 15.406 1.21E-8
7 10.642 4.09E-3
8 10.642 4.09E-3
Table 2.6 Calcplated two Set Pathway Distance (A) VeV
sets of transfer integrals for
compound 2 1 1 11.334 4.35E-3
2 12.491 9.97E-5
3 19.102 2.19E-4
4 5.312 5.64E-3
5 13.575 3.03E-3
2 1 11.334 6.26E-3
2 12.491 1.68E-3
3 19.102 3.08E-3
4 5312 5.67E-3
5 13.575 3.03E-7

2.3.2.2 Reorganization Energy

For compound 1, the reorganization energy is calculated to be 0.173 eV, which is
much smaller than that of compound 2, 0.317 eV. This difference in internal
reorganization energy can be explained through the structure difference between
optimized neutral molecule and cation (see Table 2.7). From the difference in bond
lengths, bond angles, and the torsions, we can find that the change in geometry
from neutral molecule to cation is smaller in compound 1 than compound 2, since
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Table 2.7 The optimized geometrical parameters for the neutral and cation structures of com-
pounds 1 and 2, including bond lengths, bond angles, and dihedral angles values

Neutral Cation A
Compound 1 CyC;, 135 A 1.36 A 0.01 A
C5Cy 148 A 146 A —0.02 A
N;Cs, N;C; 142 A 141 A —0.01 A
C,Cg 1.40 A 141 A 0.01 A
CsCo 1.40 A 139 A —0.01 A
C10Ci11, C10C12 141 A 1.40 A —0.01 A
C1oN,C7, C1oN,Cg 121.3° 121.1° —0.2°
CeN,C, 117.4° 117.9° 0.5°
C11CioN;C, 35.1° 40.7° 5.6°
CsCeN;C; 44.0° 40.2° —3.8°
CsC-N Co 46.1° 41.3° —4.8°
Compound 2 C,Cs, 135 A 137 A 0.02 A
C5Cy 1.46 A 143 A —0.03 A
C4Cs, C4Co 141 A 142 A 0.01 A
CsCq, CsCo 1.39 A 138 A —0.01 A
CeC7 141 A 1.42 A 0.01 A
C,Cq 1.40 A 142 A 0.02 A
N;C, 142 A 138 A —0.04 A
NiCio, NiCi» 142 A 1.43 A 0.01 A
C4N,Cs 120.1° 121.3° 0.2°
C4N,C, 119.7° 117.5° —2.2°
C,N,Cs 120.2° 121.2° 1.0°
C11C1oN;Cy 42.2° 51.2° 10.0°
C15C12N Cyo 42.5° 51.2° 8.7°
Ce¢C/NCio 39.6° 24.0° —15.6°

the closed ring structure restricts the rotation of the phenyl groups. As a result,
lower reorganization energy is obtained.

2.3.2.3 Room-Temperature Mobility

The average room-temperature hole mobilities are calculated tobe 2.7 x 1072 cm?/
Vs for compound 1 and 1.9 x 10~ ¢cm?/Vs for compound 2. These values compare
quite well with the experimental results of 0.5-1.5 x 1072 cm*/Vs for 1 and
2 x 107* em?/Vs for 2, respectively, except that the theoretical value for 2 is about
one order of magnitude larger than the experimental value. It seems that the
experimental mobility for 2 can still be improved by subsequent processing and
optimization of the material. Since the two compounds are similar in transfer inte-
grals, the difference in mobility can be attributed to their difference in reorganization
energy. Therefore, material with macro-cyclic structure is more favorable for charge
transport than linear structure due to smaller reorganization energy during charge
transport processes.
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2.3.2.4 Temperature Dependence of Mobility

The temperature dependence of mobility is an important topic to understand the
charge transport mechanism in organic materials. Here, we show how Marcus
theory describes this temperature dependence, using compound 1 and 2 as exam-
ples. We assume that both the transfer integrals and the reorganization energy do not
change with temperature, but we note that the impact of such change will be
detailedly investigated for another organic material in Chap. 3. Combining Egs. 2.1,
2.18, and 2.20, it is easy to see that the mobility should have a temperature
dependence of T~>"*exp(—/4kgT). The exponential law, exp(—//4kzT), dominates
at low temperatures and the power law, T2 , dominates at high temperature after
the barrier is fully overcome, namely, the mobility increases with the increase of
temperature at low T and decreases with temperature at high 7 (see Fig. 2.10). The
maximum of mobility is directly related to the barrier height of A/4. It should be
noted that Marcus theory can only be applied at high temperature since the quantum
tunneling effect of the nuclear motions, which is very important at low temperatures,
has been neglected. The improvement of adding quantum effects inside the hopping
picture will be discussed in Sect. 2.4. In Chaps. 3 and 4, the temperature dependence
of mobility will also be discussed in-depth using other theoretical models.

2.4 Application III: Oligothiophenes

Oligothiophene (nT) is one of the earliest organic materials for organic thin film
field-effect transistors (FETSs) [32, 33]. Thiophene-based materials exhibit a variety
of intra- and intermolecular interactions originating from the high polarizability of
sulfur electrons in the thiophene rings [34]. Therefore, thiophene oligomers can be
regarded as a versatile building block for organized structures. The crystals of
oligothiophenes exhibit a herringbone structure with different number of mole-
cules in the unit cell (Z), depending on the sublimation temperatures (see
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Fig. 2.11 Crystal structures of a-nTs. Reprinted with permission from Ref. [9]. Copyright 2008
American Chemical Society

Fig. 2.11). For the high-temperature (HT) phase, Z = 2 for 2, 4, and 6T, while for
low temperature (LT) phase, Z = 4 for 4, 6, 7, and 8T. In addition, for 3T, Z = 8.
Using nT as a series of model systems, hereby, we discuss the influence of crystal
structure and molecular size on mobility.

2.4.1 Computational Details

The transfer integrals are calculated within the direct scheme and the reorgani-
zation energies are obtained through the NM analysis. The Huang—Rhys factors are
evaluated through the DUSHIN program [35]. After obtaining the Marcus transfer
rates, the mobility is calculated with a random walk simulation, which is intro-
duced in Sect. 2.1.4.3.

2.4.2 Results and Discussion

2.4.2.1 Transfer Integral

The oligothiophenes with the same Z has very similar crystal structures. Thus we
only show the chosen hopping pathways for 4T/HT (Z = 2), 4T/LT (Z = 4), and
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3T (Z = 8) in Fig. 2.12. The calculated transfer integrals are given in Tables 2.8
and 2.9. There, we can find that the transfer integrals are not influenced by the
oligomer length within the same group of packing. Besides, the largest transfer
integral for Z = 2 crystals is about 34—40 meV, which is about twice as much as
that for the Z = 4 phase, which is only about 18 meV. To understand this phe-
nomenon, we illustrate explicitly the packing structures for the dimer along the
principal pathway for the HT and LT phases of 4T and 6T, as well as their HOMO
coefficients (see Fig. 2.13). As is known, the transfer integral is increased if both
are bonding or antibonding interactions between the m-atomic orbitals and
decreased when there occurs a cancelation between bonding and antibonding
overlap. It is noted that for the LT phase, there exists a displacement of about half
a thiophene ring width, while for the HT phase, the displacement is about one
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Table 2.8 Calculated transfer integrals (V, in meV) and intermolecular distances (d, in A) for all
pathways for 4T/LT, 4T/HT, and 6T/HT at the DFT/PW91PW91/6-31G* level

Pathway 2T 4T/HT 6T/HT

Vv d Vv d Vv d
1 34 5.34 40 5.31 36 5.38
5 6 5.90 4 5.75 3 5.68
7 1 10.00 0.7 17.82 0.4 25.68
9 12 8.31 2 15.81 0.7 23.38

Table 2.9 Calculated transfer integrals (V, in meV) and intermolecular distances (d, in A) for all
pathways of other than Z = 2 crystal phases for 3, 4, 6, 7, and 8T at the DFT/PW91PW9
1/6-31G* level

Pathway 3T 4T 6T 7T 8T
Vv d 1% d \% d \% d \% d
1 7 4.67 12 4.93 18 4.98 18 4.81 17 4.92
2 13 5.06 17 5.01 16 4.92 14 4.97 17 4.96
3 13 4.72 17 5.01 16 4.92 17 4.82 17 4.96
4 13 5.06 12 4.93 18 4.98 18 497 17 4.92
5 04 5.64 18 6.08 10 6.03 13 5.95 9 6.00
6 0.4 5.64 18 6.08 10 6.03 13 5.95 9 6.00
7 2 12.16 5 1649 2 24.18 04  28.82 1 31.88
8 4 13.25 3 17.63 2 2534 04 2967 O 30.73
9 4 1320 4 15.55 3 23.16 1 27.68 05 32.95
10 19 1229 0.0 1696 0.0 2451 0.3 2884 0 32.13
11 0 14.87 5 1649 2 24.18 1 29.17 1 31.88
12 4 1320 02 15.41 0.1 23.04 2 27.05 1 33.05
13 4 13.25 2 17.46 1 2522 0 28.37 1 30.82
14 0.3 1453 0 1696 0 24.51 2 2807 O 32.13

thiophene ring. Combined with the HOMO orbital charge distributions, one can
easily rationalize that the molecular packing in the HT phase favors hole transfer
better than the LT phase. And their transfer integral can differ about 2-3 times
even though the intermolecular distances are almost the same.

2.4.2.2 Reorganization Energy

From Table 2.10, it is easy to find that the calculated reorganization energies from
the adiabatic potential surface method are very similar with those from the normal
mode analysis. This indicates that the molecular reorganizing process can be well-
described by the harmonic oscillator model as assumed in Marcus theory. It is also
seen that the reorganization energy decreases as the chain is elongated. To under-
stand the reason, we display the partition of the relaxation energies of 4T and 8T
into the contributions of each normal mode, which is shown in Fig. 2.14. We can
see that the contributions from the high-frequency parts (1,200-1,600 cm™")
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Table 2_'10. Calculat.ed Molecules Reorganization energy
reorganization energies by _ _ i
adiabatic potential surfaces of Adiabatic potential Normal mode
the neutral and cation species 2T 361 364
and by NM analysis at the 3T 316 323

5T 265 274

6T 244 255

7T 224 238

8T 203 212

decrease remarkably when going from 4T to 8T, which means that the C—C single
and double stretching modes are influenced by the conjugation length [36].

2.4.2.3 Mobility

The calculated mobilities are shown in Fig. 2.15. Within the group of nT crystals
with the same Z, the mobility increases with the number of thiophene rings, n,
since they have close transfer integrals, but the reorganization energy decreases
with the chain length. Besides, the HT phase (Z = 2) leads to a larger drift
mobility than the LT phase (Z = 4). This is because the former has larger transfer
integral than the latter, while the reorganization energy is the same.

2.5 Incorporate Nuclear Tunneling Effect in the Hopping
Picture

The Marcus charge transfer rate works for extreme high-temperature regimes. At
room temperature, kg7 is about 200 cm_l, which is much smaller than some of the
high-frequency vibrations, e.g., the single and double bond stretching modes with
frequency 1,200-1,600 cm™"' (as shown in Fig. 2.14). Therefore the nuclear



28 2 Hopping Mechanism

(a) (b)
40 1 40
30 ol 30 | 8T
S ool S o)
2 g
< <
101 101 l
0 | ‘ |I i ‘ l . | 0+l | ‘ L. ‘ I J
0 500 1000 1500 0 500 1000 1500
o) o, (c’)

Fig. 2.14 Contribution of the vibrational modes to the cationic relaxation energy for 4T (a) and
8T (b). Reprinted with permission from Ref. [9]. Copyright 2008 American Chemical Society
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tunneling effect of these modes needs to be taken into account in calculating the
charge transfer rate. In following, we will use the Fermi’s Golden rule to obtain the
charge transfer rate, and show the role of nuclear tunneling on charge carrier
mobility.

2.5.1 Fermi’s Gold Rule

The charge transfer rate formula considering the quantum effects was derived by
Jortner [37] and Lin et al. [38] It starts from the general Fermi’s Golden rule for
the transfer rate from the initial state, |i), to the final state, |f):

2n
k=5 V6 (hag) (2.23)
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Here, Vj; and 7wy are the coupling and energy difference between the final and
initial state. If we write the contributions of the electronic state and the nuclear
vibrational state separately, we get

2
k= ;;TVZ ZPiUK@fU’

v,V

®iv> |25(hwfl)/,il)) (224)

Now V is the transfer integral described previously in Sect. 2.1, i.e., the coupling
between the final and initial electronic states, v (u/) is the quanta of the nuclear
vibration in the initial (final) state, P;, is the distribution function of vth vibrational
quanta in the initial state, ®;,(, is the wave function of the initial (final) nuclear
vibration, and /iwy, ;, is the energy different between the final and initial vibronic
states. If the nuclear vibration consists of a collection of independent harmonic
oscillators, we have

©i, = [ 1, () (2.25)
J
Oy = H x5! (Qj-) (2.26)
J
Piu = HPin (227)
J

1 1
Wry iy = Of + Z Z I:(UJI + E) U)jl — (Uj + E) wj:| (228)

v; U/’_
where

1,(0)) = (B/va2wt) ", (8,0;) exp (4702 /2) (2.29)

-1
_Eiu _Eil)
Piv = ——
Soo(i)] ()
N
. hw; 1
= H2smh ZkB"Texp <—hw_,- (v_; +§> /kBT> (2.30)

with f§; = (a)/h)” % and H,; are the Hermite polynomials. Expressing the J function
as a Fourier integral in time, Eq. 2.24 becomes

[o¢]
V2 :
k=1s de™r [T G;(0) (2.31)
J

—00
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2 1 1
G(t) = Z ZP"W <;(fuj/_ Xiuj> exp (it{ <!>j’- + 5) ) — (Uj + 5) co,}) (2.32)

After employing the Slater sum and the displaced harmonic oscillator approxi-
mation [39], Eq. 2.32 can be evaluated as:

Gj(l) = eXp [—Sj{ (21’[, + 1) — nje_i"”fwj — (l”lj + 1>€itwj}] . (233)

where n; = 1/(exp(hwi/kgT)—1) and S; = Aj/hw; are the population and the Hu-
ang—Rhys factor of the jth normal mode. Substituting Eq. 2.33 into Eq. 2.31 yields
the quantum charge transfer rate expression:

2

oo
k= % dt exp{itwﬁ - ZSj[(2nj + 1) — e — (nj + l)emvj]} (2.34)
J

—00

Finally, we take the real part of the integration of Eq. 2.34 and get:

) [o¢]
k= %/ dt exp{ Xj:Sj(an + 1) (1 — cos w;t) } cos (Zj: S; sin wﬂ) (2.35)
0

2.5.2 Short-Time Integration in Fermi’s Golden Rule

We notice that the integral function in Eq. 2.35 is actually a periodic function, and
thus it does not make any sense to calculate this integration up to infinite time
range. However, in real materials, there always exist various external scattering
mechanisms like defects and additional interaction with the environment, both of
which have not been considered in the dimer model for the charge transfer rate
here. Therefore the time range for integration in Eq. 2.35 is always limited.
In practice, when the electron—phonon coupling is large and/or the temperature is
high enough, the integral function in Eq. 2.35 can decay very quickly and remain
negligible for a long time which is comparable with the period of the function.
Therefore it is a quite reasonable to calculate the integration just within the first
period. If it is not the case, namely, the integral function oscillates with time and
does not really decay to very small values, one needs to make a kind of cutoff to
the integral time. One advisable approach is to choose the most important mode for
the charge transfer process, i.e., the mode with the most significant Huang—Rhys
factor, and apply the short-time approximation exp(itw;) ~ 1+itw; + (itwj)2/2,
where the last term provides an overall decay factor in the integrand and guar-
antees the convergence for Eq. 2.35.
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2.5.3 From Fermi’s Golden Rule to Marcus Rate

In the strong coupling limit (i.e., Y ;S; > 1) and/or the high-temperature limit
(kgT > hw;), we can use the short-time approximation automatically for all the
vibrational modes, namely, keeping only the three leading terms in the infinite

expansion exp (itwj) =1+itw; + (itwj)2/2 + .-+, and then Eq. 2.34 becomes

2
it ((Dﬁ + Z Sj@j) — %Z S]CL)]2 (271]' + 1)
J J

[o.¢]

V2
k= 7z / dtexp

—00

(2.36)

or

2
D% 2n (c0n + 33, Sj0)

k=—, | ——MM —
m\[ Y2, 87 (20 + 1) i > Sjw? (2n; 4+ 1)

(2.37)

In the high-temperature regime, we have n; = kgT/hiw; > 1, and Eq. 2.37 reduces
to the Marcus formula, Eq. 2.1, with AG? = howg and 4 = Zj Sihow;.

2.6 Application: Oligoacenes

Oligoacenes such as tetracene, rubrene, and pentacene (see Fig. 2.16) are among
the most promising classes of organic semiconductors for (opto)electronic appli-
cations [40]. The planarity and rigidity of tetracene and pentacene molecules
facilitate good intermolecular ordering, and their extended m-conjugation over the
whole molecule enables large intermolecular electron overlap. Ruberene is a star
derivative of tetracene with additional four phenyl side groups, which further
enhance tight crystal packing. Here, we use tetracene and ruberene as model
systems to investigate the role of nuclear tunneling effect on charge transport
properties.

2.6.1 Computational Details

Transfer integrals are obtained with the direct scheme with Kohn-Sham-Fock
operator described in Sect. 2.1.2.1. Normal mode analysis is performed to get all
the intramolecualr vibrational frequencies and the corresponding Huang—Rhys
factors. The mobility is obtained through random walk simulation with the
quantum charge transfer rate in Eq. 2.35. Tetracene and Ruberene form layer-by-
layer crystals. The chosen hopping pathways within the layer are shown in
Fig. 2.17.
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Fig. 2.16 Chemical
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Fig. 2.17 Chosen intra-layer pathways for tetracene crystal (left) and ruberene crystal (right).
Reprinted from Ref. [39] by permission of APS

2.6.2 Results and Discussion

2.6.2.1 Transfer Integral

The largest transfer integral calculated for rubrene comes from the a direction (see
Fig. 2.17), 102.4 meV, which is much larger than that for tetracene which is about
40 meV. This can be understood from their molecular packings. Both rubrene and
tetracene have a herringbone motif in the ab plane where the most significant
electronic couplings are found. However, due to the phenyl side groups, the long
molecule axes lie in the ab plane in rubrene, while in tetracene, they come out of
that plane. This modulation leads to no short-axis displacement along the
a direction and cofacial n-stack with some long-axis displacement.

2.6.2.2 Normal Mode Analysis

The contribution of individual vibrational modes to the total reorganization energy
is shown in Fig. 2.18. For tetracene, it is found that high-frequency C—C bond
stretching modes present dominant electron—phonon couplings. And rubrene dif-
fers strongly with tetracene in the low-frequency region due to the twisting
motions of the four phenyl groups being strongly coupled with the charge transfer
process, similar with the results for oligothiophenes shown in Fig. 2.14. As a
result, the reorganization energy of rubrene (150 meV) is much larger than that of
tetracene (105 meV).
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Fig. 2.18 Contribution of the individual vibrational modes to the relaxation energies for neutral
and cationic molecules, (a) neutral rubrene, (b) cationic rubrene, (c¢) neutral tetracene, and
(d) cationic tetracene. Reprinted from Ref. [39] by permission of APS

2.6.2.3 Temperature Dependence of Mobility

We calculate the temperature-dependent charge transfer rate with both the Marcus
theory and the Fermi’s golden rule (see Fig. 2.19a). It is found that the quantum
transfer rate is nonzero and almost constant below 10 K due to the quantum
tunneling nature of the nuclear vibrations at low temperatures. It then increases
with temperature and reaches a maximum at about 130 K and finally decreases
gradually. This behavior is significantly different with the classical Marcus rate.
For the transition point of the charge transfer rate at higher temperatures, which
corresponds to the thermal activation over a barrier, the classical Marcus theory
gives A/4 = 37.5 meV ~ 435 K, while the nuclear tunneling reduces this height
to only 130 K. The corresponding temperature dependence of mobility for rubrene
is shown in Fig. 2.19b. The mobility decreases rapidly from 1 to 10 K, then
increases slowly until 30 K, and decreases slowly again at higher temperatures.
These can be fully explained by the general k(T)/T behavior within the hopping
picture. For tetracene, the charge transfer rate remains constant up to room tem-
perature (see Fig. 2.20) since the contributed vibrations are all high-frequency
modes and the nuclear tunneling effect is extremely strong. Accordingly, the
mobility decreases with temperature throughout the whole temperature range,
showing a band-like behavior.



34 2 Hopping Mechanism

(a) (b)
5
100
Rubrene
Rubrene
= 10 L'\
q’n 'E' 107,
E. ‘E 71" \
= ©, 1 NE 10%;
ER 1=
%% @ 0 0 7 BW‘L\‘
P TIK]
_______ —— quantum —+«—quantum
Of-rmmmmmm77 ----classical —-—classical
T T T T - 0.1 : : : - - :
0 50 100 150 200 250 300 0 50 100 150 200 250 300
TIKI TIK]

Fig. 2.19 a Hole transfer rate as a function of temperature for the rubrene dimer with the largest
transfer rate. The insets shows quantum CT rate below 5 K; b 3D averaged hole mobilities as a
function of temperature. The inset shows the mobility from Marcus theory in low temperature.
Reprinted from Ref. [39] by permission of APS
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2.6.2.4 Anisotropy of Mobility

Notice that the results shown above are averaged over all directions in 3D and
thus are isotropic mobilities. Considering that the real molecular crystals are
highly anisotropic, the comparison between the calculated data here and the
experiment along each direction is not reasonable. To investigate the strength of
anisotropy, one can also perform the 2D-averaged simulations within the layer
plane of the crystals. It is found that the mobility is reduced by a factor of
2.5-2.8 for tetracene and rubrene from 2D to 3D structures due to the weaker
interlayer couplings.
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2.7 Incorporate Dynamic Disorder Effect in the
Hopping Picture

2.7.1 Two-Step Approach

In both the general hopping description described in Sect. 2.1 and the improved
approach with nuclear tunneling effect introduced in Sect. 2.5, only the local
electron—phonon couplings are considered, namely the site energies are modulated
by nuclear vibrations while the intermolecular electronic couplings are kept fixed.
However, at room temperature, it is obvious that the relative orientation of mol-
ecules fluctuates all the time since the intermolecular interaction is van der Waals-
type weak, and thus the transfer integrals are also strongly modulated by nuclear
motions. We notice that the nonlocal electron—phonon couplings are dominated by
low-frequency intermolecular modes [41] with period (about 600 fs) much larger
than the time of a single charge transfer process (a few to tens of femtoseconds) for
good organic semiconductors [42]. Therefore one can perform a two-step approach
to include the nonlocal electron—phonon couplings inside the hopping picture,
namely, the transfer integrals are kept constant during the charge transfer pro-
cesses and they are updated after each hopping step.

2.7.2 Multi-Scale Simulation

It is mentioned above that the nuclear vibrations which are important for modu-
lating the transfer integrals are low-frequency modes, thus it is quite straightfor-
ward to introduce molecular dynamics (MD) to describe their classical manner.
One can build a supercell containing enough number of investigated molecules,
and perform MD simulations to get the trajectory of the nuclear dynamics. At each
snapshot, the intermolecular transfer integrals can be calculated with the dimer
methods quantum chemically described in Sect. 2.1.2. To get real time evolution
of the transfer integrals, a discrete Fourier transformation is performed to these
discrete data points:

N/2 N/2
Vi () = (Vi) + Z ReVy cos(wit + @) + Z ImVy sin(wgt + ¢g)  (2.38)
=0 =0

Here, N is the total number of MD snapshots, ReV and ImV are the amplitudes of
cosine and sine basis functions, on the basis of which the contributions of different
phonons to the transfer integral fluctuation can be achieved. The same type of
molecular dimers in the crystal should have the same Fourier coefficients with
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different phase factors ¢o. The phase factors can be chosen randomly because
there’s hardly any fluctuation correlation between transfer integrals of different
pairs [42]. Therefore, one can deal with several typical dimers to get the Fourier
coefficients, and the time-dependent transfer integrals between all molecular
dimers can be realized according to Eq. 2.38 with different phase factors. Random
walk Monte Carlo simulation technique can be carried out to investigate the charge
carrier mobility after slight modifications. For example, initially for each molec-
ular dimer, a phase factor ¢y is chosen randomly as raytgm,, Where r is uniformly
distributed in [0, 1] and tg,, is the total MD simulation time. And the transfer
integrals are updated using Eq. 2.38 for the new time after each hopping step.

2.8 Application: Pentacene

The chemical structure of pentacene is already shown previously in Fig. 2.16. The
thin-film phase of pentacene is a substrate-induced polymorph, commonly existing
in pentacene thin-film transistors with hole mobility exceeding 5.0 cm*/Vs [43],
and has thus received a lot of attention. Here, we perform a multi-scale approach
proposed above, namely, MD simulations to achieve the time evolution of mol-
ecule geometries, quantum chemical calculations for the transfer integrals at each
MD snapshot, and Monte Carlo method to simulate charge carrier diffusion, to
study the charge transport mechanism in the thin-film phase of pentacene crystal.

2.8.1 Computational Details

We choose a 3 x 3 x 3 supercell for molecular dynamics based on the experi-
mental crystal structure (see Fig. 2.21) [44]. The MD simulation with fixed lattice
constants is carried out at five constant temperatures, i.e., 100, 150, 200, 250, and
300 K with COMPASS force field within the Materials Studio package [45]. The
simulation time is set to be 100 ps with a time step of 2 fs, and the dynamic
trajectories are extracted every 30 fs after thermal equilibration of 40 ps with a
total number of 2,000 snapshots. Within one layer, each molecule has six nearest
neighbors. From the symmetry, we only calculate the transfer integrals for typical
molecular dimers A, B, and C (see Fig. 2.21). The transfer integrals at each
snapshot are calculated with site-energy correction method in Sect. 2.1.2.2 at the
PWO91PW9I1/6-31G* level within Gaussian 03 package [23]. The simulation time
for a single Monte Carlo is 10 ps and 5,000 simulations are performed to get the
carrier mobility.
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Fig. 2.21 (Left) A

3 x 3 x 3 supercell structure
of pentacene crystal of thin
film phase; (right) an ab
plane extracted from the
supercell. The three arrows
indicate three typical dimers
A, B, and C. Reproduced
from Ref. [42] by permission
of the PCCP Owner Societies
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Fig. 2.22 a Thermal fluctuation of the transfer integral (dimer A) at 300 K; (b) distribution of
the transfer integrals at different temperatures; ¢ square of the standard deviation of transfer
integral versus temperature, where gy is set to zero at zero temperature in classical limit;
d Fourier transformation of thermal deviation amplitude at 300 K. Reproduced from Ref. [42] by
permission of the PCCP Owner Societies

2.8.2 Results and Discussion

2.8.2.1 Transfer Integral Fluctuation

A typical calculated time evolution of the transfer integral is shown in Fig. 2.22a.
The thermal fluctuation is of the same order of magnitude as the average value,
which agrees with observation in other polymorph of pentacene crystals [41]. They
follow the Gaussian distributions with almost temperature independent mean
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values (see Fig. 2.22b), and the square of the standard deviation oy is a linear
function of temperature (see Fig. 2.22¢). This can be understood by the combined
effects of Boltzmann distribution of intermolecular distances and the widely
assumed linear electron—phonon coupling. Accordingly, the Fourier coefficients,
ReV and ImV, should also follow the 7° law. From Fig. 2.22d, we reproduce that
the major contribution to the transfer integral fluctuation comes from low-fre-
quency modes (<50 cm™"), belonging to intermolecular vibrations.

2.8.2.2 Mobility in 1D and 2D Cases

We investigate the 1D (i.e., a molecular chain along a direction of the crystal) and
2D (i.e., the molecular layer within the ab plane) temperature-dependent hole
mobility both with and without thermal fluctuation of the transfer integrals (see
Fig. 2.23). For the 1D case, due to the fluctuating nature of the transfer integrals,
the charge transfer rates between some of the molecular dimers become less than
those at the equilibrium geometry and the charge becomes oscillating between
dimers with larger charge transfer rate, becoming bottle necks for charge transport.
It is noted that even at low temperature (100 K), the disorder effect is remarkable.
This is due to the fact that the dominant intermolecular mode is around 50 cm ™!,
which can be converted to about 72 K. The ratio between the simulated mobility
with and without dynamic disorder decreases with temperature due to the larger
fluctuation of transfer integrals and thus more pronounced “bottleneck effect” at
higher temperatures. For the 2D case, it is interesting to see that the temperature
dependence of mobility does not depend on the dynamic disorder of the transfer
integrals. In 2D systems, there are much more hopping pathways than in 1D case.
If the transfer integral of one path is small, the hole can always choose another
pathway with larger transfer integrals, thus the mobility is less affected. Note that
here the charge transfer rates are temperature independent below room tempera-
ture, similar with the case of tetracene shown in Fig. 2.20. As a result, the “band-
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like” behavior of temperature dependence of mobility is solely a nuclear tunneling
effect. In an extreme case, when the fluctuation in transfer integral is larger than its
average, the dynamic disorder can even increase the hole mobility for 2D (see
Fig. 2.24). This indicates an intrinsic transition to the phonon-assisted transport by
dynamic disorder. More details about the role of such non-local electron—phonon
couplings will be talked about in Chap. 3 within the polaron picture.

2.9 Conclusion

In this chapter, we have talked about the general methodology of the hopping
mechanism as well as two improvements incorporating the nuclear tunneling effect
from the high-frequency modes for the local electron—phonon couplings and the
dynamic disorder effect from the low-frequency modes for the nonlocal electron—
phonon couplings. Applications of these approaches have been performed to
various star organic semiconducting materials, e.g., the siloles, triphenylamines,
oligothiophenes, and oligoacenes. Several clear conclusions can be drawn: (1) The
transfer integrals between neighboring molecules and the reorganization energy
during the charge transfer processes are key to determine the charge transport
efficiencies in molecular crystals. The former requires tight crystal packing and
nice intermolecular matching between frontier molecular orbitals, while the latter
favors long conjugated, planer, and rigid molecules with less flexible degrees of
freedom. (2) At low temperatures, the nuclear tunneling effect can be very
important for charge transport. Because of this, the “band-like” temperature
dependence of mobility is possible within the hopping picture when the major
contribution comes from the high-frequency modes. We note that when the
external reorganization, which is mostly of low-frequency environment mecha-
nisms, is very strong, the overall temperature dependence may be changed
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completely, and then the high-frequency modes will only generally reduce the
mobility, without any impact on temperature dependence. (3) The dynamic dis-
order coming from the thermal fluctuation of the transfer integrals is very
important for one-dimensional systems. For higher dimensions, the effect becomes
significant only when the fluctuation is larger than the mean transfer integral itself.
Therefore this effect should be considered for loosed packing crystals and high
temperatures. There, a phonon-assisted term will be added to the temperature
dependence of mobility, and can be of great importance to the overall transport
behavior. In Chap. 3, we will talk about the Holstein—Peierls polaron model, which
is principally more general than the present hopping model. More basic under-
standings concerning the role of different electron—phonon couplings on the
temperature dependence of mobility will be revealed.

References

1. R.A. Marcus, Rev. Mod. Phys. 65, 599 (1993)

2. T. Fujita, H. Nakai, H. Nakatsuji, J. Chem. Phys. 104, 2410 (1996)

3. E.F. Valeev, V. Coropceanu, D.A. da Silva Filho, S. Salman, J.-L. Brédas, J. Am. Chem. Soc.
128, 9882 (2006)

4. K. Hannewald, V.M. Stojanovi¢, J.M.T. Schellekens, P.A. Bobbert, G. Kresse, J. Hafner,
Phys. Rev. B 69, 075211 (2004)

5. A. Troisi, G. Orlandi, J. Phys. Chem. B 106, 2093 (2002)

6. J.M. André, J. Delhalle, J.-L. Brédas, Quantum Chemistry Aided Design of Organic
Polymers, An Introduction to the Quantum Chemistry of Polymers and its Applications
(World Scientific, Singapore, 1991)

7. S.W. Yin, Y.P. Yi, Q.X. Li, G. Yu, Y.Q. Liu, Z.G. Shuai, J. Phys. Chem. A 110, 7138 (2006)

8. J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 104, 4971 (2004)

9. X.D. Yang, L.J. Wang, C.L. Wang, W. Long, Z. Shuai, Chem. Mater. 20, 3205 (2008)

10. A. Einstein, Ann. Phys. 17, 549 (1905)

11. M. von Smoluchowski, Ann. Phys. 21, 756 (1906)

12. L.B. Schein, A.R. McGhie, Phys. Rev. 20, 1631 (1979)

13. W.Q. Deng, W.A. Goddard III, J. Phys. Chem. B 108, 8624 (2004)

14. L.J. Wang, G.J. Nan, X.D. Yang, Q. Peng, Q.K. Li, Z. Shuai, Chem. Soc. Rev. 39, 423 (2010)

15. 1.D. Luo, Z. Xie, JJW.Y. Lam, L. Cheng, H. Chen, C. Qiu, H.S. Kwok, X. Zhan, Y. Liu, D.
Zhu, B.Z. Tang, Chem. Commun. 18, 1740 (2001)

16. B.Z. Tang, X. Zhan, G. Yu, P.P.S. Lee, Y. Liu, D. Zhu, J. Mater. Chem. 11, 2874 (2001)

17. L.C. Palilis, A.J. Makinen, M. Uchida, Z.H. Kafafi, Appl. Phys. Lett. 82, 2209 (2003)

18. H. Murata, Z.H. Kafafi, Appl. Phys. Lett. 80, 189 (2002)

19. M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Silbey, M.E. Thompson, S.R. Forrest,
Nature (London) 395, 151 (1998)

20. M.A. Baldo, M.E. Thompson, S.R. Forrest, Nature (London) 750, 403 (2000)

21. J.W. Chen, C.C.W. Law, J.W.Y. Lam, Y.P. Dong, S.M.F. Lo, 1.D. Williams, D.B. Zhu, B.Z.
Tang, Chem. Mater. 15, 1535 (2003)

22. G. Yu, S.W. Yin, Y.Q. Liu, J.S. Chen, X.J. Xu, X.B. Sun, D.G. Ma, X.W. Zhan, Q. Peng, Z.
Shuai, B.Z. Tang, D.B. Zhu, W.H. Fang, Y. Luo, J. Am. Chem. Soc. 127, 6335 (2005)

23. MLJ. Frisch et al., Gaussian 03, revision A. 1 (Gaussian, Inc, Pittsburgh, 2003)

24. D. Beljonne, AJ. Ye, Z.G. Shuai, J.L. Brédas, Adv. Funct. Mater. 14, 684 (2004)

25. Y. Shirota, J. Mater. Chem. 10, 1 (2000)


http://dx.doi.org/10.1007/978-3-642-25076-7_3

References 41

26
27

28.
29.

30.

31.
32.
33.

34.
35.
36.

37.
38.

39.
40.
41.
42.
43.

44
45

. Y. Shirota, J. Mater. Chem. 15, 75 (2005)

. A. Cravino, S. Roquet, O. Aleveque, P. Leriche, P. Frere, J. Roncali, Chem. Mater. 18, 2584
(2006)

T.P.I. Saragi, T.F. Lieker, J. Salbeck, Adv. Funct. Mater. 16, 966 (2006)

M. Sonntag, K. Kreger, D. Hanft, P. Strohriegl, S. Setayesh, D. de Leeuw, Chem. Mater. 17,
3031 (2005)

Y.B. Song, C.A. Di, X.D. Yang, S.P. Li, W. Xu, Y.Q. Liu, L.M. Yang, Z. Shuai, D.Q. Zhang,
D.B. Zhu, J. Am. Chem. Soc. 128, 15940 (2006)

X.D. Yang, Q.K. Li, Z.G. Shuai, Nanotechnology 18, 424029 (2007)

D. Fichou, Handbook of Oligo- and Polythiophenes (Wiley-VCH, New York, 1999)

W.A. Schoonveld, J. Wildeman, D. Fichou, P.A. Bobbert, B.J. van Wees, T.M. Klapwikj,
Nature (London) 404, 977 (2000)

G. Barbarella, M. Zambianchi, A. Bongini, L. Antolini, Adv. Mater. 5, 834 (1993)

P. Weber, J.R. Reimers, J. Phys. Chem. A 103, 9830 (1999)

G. Zerbi, H.W. Siesler, I. Noda, M. Tasumi, S. Krimm, Modern Polymer Spectroscopy
(Wiley, New York, 1999)

J. Jortner, J. Chem. Phys. 64, 4860 (1976)

S.H. Lin, C.H. Chang, K.K. Liang, R. Chang, Y.J. Shiu, J.M. Zhang, T.S. Yang, M. Hayashi,
F.C. Hsu, Adv. Chem. Phys. 121, 1 (2002)

G.J. Nan, X.D. Yang, L.J. Wang, Z. Shuai, Y. Zhao, Phys. Rev. B 79, 115203 (2009)

J.E. Anthony, Chem. Rev. 106, 5028 (2006)

A. Troisi, G. Orlandi, J. Phys. Chem. A 110, 4065 (2006)

L.J. Wang, Q.K. Li, Z. Shuai, L.P. Chen, Q. Shi, Phys. Chem. Chem. Phys. 12, 3309 (2010)
T.W. Kelley, D.V. Muyres, P.F. Baude, T.P. Smith, T.D. Jones, Mater. Res. Soc. Symp. Proc.
771, L6.5 (2003)

. S. Schiefer, M. Huthm, A. Dobrinevski, B. Nickel, J. Am. Chem. Soc. 129, 10316 (2007)

. H. Sun, J. Phys. Chem. B 102, 7338 (1998)



Chapter 3
Polaron Mechanism

Abstract The intrinsic charge transport in organic semiconductors is an electron—
phonon interacting process. Due to the “soft” nature of organic materials, the
existence of an electron can cause significant deformation of local nuclear
vibrations, which moves together with the electron itself, and thus the effective
diffusing quasiparticle is composed of the electron and its accompanying phonons.
This is the basic idea of the polaron mechanism. In principle, it is a more general
description for charge transport since it does not presume that the charge is
localized within one molecule as in the hopping mechanism described in Chap. 2.
In this chapter, we adopt the general Holstein-Peierls Hamiltonian coupled with
first-principles calculations to investigate the fundamental aspects concerning
charge transport. All kinds of electron—phonon couplings, including both local and
nonlocal parts for inter- and intra-molecular vibrations, have been taken into
considerations. Detailed studies are performed to study their contributions to the
total electron—phonon coupling strength and the temperature dependence of
mobility, especially the band-hopping crossover feature. We also investigate the
pressure- and temperature-dependent crystal structure effects on the charge
transport properties.

Keywords Polaron mechanism - Holstein-Peierls Hamiltonian - Electron—phonon
coupling - Band-hopping crossover - Pressure and temperature dependence of
mobility - Thermal expansion of lattice

In Sect. 3.1, we discuss the derivation for the mobility expression from Holstein-
Peierls Hamiltonian with polaron transformation and linear response theory.
Application to naphthalene crystal is presented in Sect. 3.2 to investigate the role
of inter- and intra-molecular vibrations on the temperature dependence of
mobility. In Sect. 3.3, the temperature dependence is improved after including the
thermal expansion of the lattice. Finally, the pressure dependence of mobility is
studied in Sect. 3.4.
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3.1 Holstein-Peierls Model

In 1959, Holstein proposed the local electron—phonon interaction model for the
small polaron transport in one-dimensional molecular crystals, and derived the
analytical result by means of the perturbation theory [1]. The Holstein model
provides the origin of band to hopping crossover transport behavior, and depicted a
general scheme for studying charge transport in organic solids [2]. An attempt to
generalize the Holstein model to the Holstein-Peierls model by including the
nonlocal electron—phonon couplings was made by Munn and Silbey [3]. It is found
that nonlocal couplings in general tend to increase scattering, thereby reducing
band and increasing hopping contributions to the mobility. Kenkre et al. has
applied the Holstein model to high dimensions, and given a unified quantitative
explanation of the mobility behavior in naphthalene crystal for the first time, by
assuming directionally dependent local electron—phonon coupling constants [4].
Recently, Hannewald and coauthors reexamined the charge transport in naphtha-
lene crystal based on the Holstein-Peierls Hamiltonian with parameters calculated
at the ab initio level [5]. The experimental temperature dependences for electron
and hole mobility as well as the spatial anisotropy have been qualitatively
reproduced by taking only three intermolecular vibrations into considerations. The
process to derive the mobility formula for Holstein-Peierls polaron is technical,
and has been described in detail by Hannewald et al. [6, 7]. Here we only list the
most important steps during the derivations.

3.1.1 Holstein-Peierls Hamiltonian

The Holstein-Peierls Hamiltonian is composed of three parts: the electronic part
(H.), the phonon part (H,), and the electron-coupling part (H._):

H=H,+H,+H._,

:E}mﬁ%+§ym(@m+9+§ymmm@ﬁwiﬁﬁn (3.1)
mn A

mni

Here, the operator '’ represents annihilating (creating) an electron at the lattice

site m with energy &,,, and b$" represents annihilating (creating) a phonon with
frequency w;. ¢,,, is the transfer integral between molecules m and n. g,,,, is the
local (m = n, Holstein model) or nonlocal (m # n, Peierls model) dimensionless
electron—phonon coupling constant which characterizes the interaction strength
between phonon A and the onsite energy ¢, or the transfer integral ¢,,,.

3.1.2 Polaron Transformation

In order to get an effective Hamiltonian to characterize the properties of the
polaron, one generally starts from the following canonical transformation [6]
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with

S= Zgimn (bj - a mAn = Z Cmna Ay
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After insertion of several factors 1 = e_SeS, it is easy to check that
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Then the transformed Hamiltonian becomes [6]

- B - 1
H=¢He ™ = %;Emna;an + XA: ho, (bﬂu + 2)
where

Eyn = (e“Ee™©)

mn

Epn = ey — Zhwi(gi.gf/l)mn
A

By means of the Baker-Campbell-Hausdorff theorem,

A= ikl L[C,A]L ]

k=0

k commutators

where A is any operator, Eq. 3.10 becomes [6]
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(3.2)
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3.1.3 Some Major Approximations

When comparing Eqgs. 3.1 and 3.9, it seems that the electron—phonon coupling
term has been removed in the transformed Hamiltonian. Actually this is not the
case. The phonon operators still exist in the electronic part of Eq. 3.9 as seen in
Eq. 3.13. Normally, it is assumed that the thermal average of Eq. 3.13 can be used
to average out the phonon operators and get the approximated polaron Hamilto-
nian, where the polaron term and the remaining phonon term are completely
decoupled. Analytically, we can get [6]

<Enm>=§:l (—l>kz (82, [8-71s---[80 [8—2 EN). - )], (14205,)...(1 4205
k:0k| 2 1 1 "k k mn L1 k

Al

(3.14)

where n, = 1/(exp(hw,/kgT)—1) is the phonon occupation number of phonon A. If
we just take the most important contributions to Eq. 3.14, it has a very simple and
clear form [7]:

<Emm> = Emm (3 15)
- 1
<Emn> =Eu exXp <_ E Z G),mn(l =+ 2?1))) (3 16)
where
G).mn = (g).mm - g).nn)2+ Zgimk + Zg%nk (317)
k#m k#n

Finally, as discussed by Mahn [8], one can just keep the diagonal terms of
thermal averaged electronic Hamiltonian, which means that the finite polaron
bandwidth effect is partially neglected [7]. one can get

. 1
H, = Emm + m h y) b+b/l = 3.18
zm: a, ay, + z/: w( ;05 + ) ( )
which is diagonal in both the electron and phonon operators, and thus is quite
helpful for us to perform their thermal averages.
3.1.4 Linear Response Theory

Generally, the electron mobility can be obtained from the Kubo’s conductivity
formalism based on linear-response theory [8],
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My =

———lim | de’ <j,(1)j,(0) > 3.19
e lim [ dre <. (17.0) (3.19)
where o is a lattice direction, e, is the charge of an electron, ng is the electron
density for charge transport, and the bracket indicates thermal average. The current
operator, j, is defined as the time derivative of the polarization operator, P,

ap, 1
=—_[P,,H 3.20
et et el (3.20)
Within the tight-binding formalism, we have P, = e _,,Rymma,,. Considering
the Holstein-Peierls Hamiltonian, Eq. 3.1, we have

Jo =

. €o
Jo = =%

D (Run = Ron) Epnaa = —Z Ry, El, 050 (3.21)
1

where the matrix notation R, only has diagonal terms R,,, expressing the coor-
dinate of lattice site m along « axis. Similar with the transformation of the
Hamiltonian, j can be also transformed into

~ €o

= (e“[Ry,Ele™ ), atay (3.22)

mn-—m

At this point, the current—current correlation function in Eq. 3.19 can be cal-
culated with

(2 (12(0)) = < UDLTIN (/h)Hth(>H: <e(i/h)Htj“e—(i/h)Ht}“>H (3.23)

Note that the thermal average is based on different Hamiltonians agreeing with
that for the time-dependent current operator. In Eq. 3.23, the time-dependent
current operator is difficult to evaluate analytically when the Hamiltonian is not
diagonal. If the approximated transformed Hamiltonian, Eq. 3.18, is used, namely,

G0 0)) = (MG MG (3.24)
then the problem becomes much easier, since we have the identity

e(i/h)ﬁ]/tf( an bt ,bﬁ) (i/m)i' f<a;e(i/h)Emmt7ane_(i/h)E,,,lz’breiw,;t,bzle—iw,—,,t)
(3.25)

for any operator function f.

3.1.5 Polaron Mobility Formula

After evaluating the thermal average in Eq. 3.24 together with Eq. 3.19, we can
finally get the mobility formula [9]:
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1 (T

Z amn/dt‘lz —2%,G; 142, - ®;(1)] o ~I?? (3.26)

2
2kBTh pomd

where R,,, is the distance between lattice sites m and n in the oth
direction, J* = (&pn—Amn)* + Zq(hwngmn)zd)q(t)/l the second term of which is
an inherent phonon-assisted contribution originated from nonlocal electron—
phonon COl]plil’lgS, Amn = Zihwl[glmn(glmm + glnn) + Zk#m,ng/lmkg/lkn]/za
G, = gﬁmm —i—zk#m,ng%m,{/Z is the effective coupling constant of phonon mode 4,
which includes both the local and the nonlocal parts, n, = 1/(exp(hw,/kgT)—1)
denotes the phonon occupation number, @,(f) = (1 + ny)exp(—imt) + nexp(io,t)
describes incoherent scattering events caused by phonon number changes, and I is a
phenomenological parameter for inhomogeneous line broadening.

3.1.6 Decomposition of Mobility Contributions

As discussed above, J* contains a normal intermolecular electronic coupling term
and a phonon-assisted term induced by nonlocal electron—phonon couplings, and
thus Eq. 3.26 can be naturally decomposed as [9]

1,(T) = Af(T) + 3 Bughy(T) (3.27)

where

OC

ZRymn Emn — mn)2 (328)

n#m

2
th 2k h2 Z Rotmn 2 ngmn (329)

2k3h2

1 2
f(T) = ?/ dt621—2G2(1+2nz(T))(l—cos w;1)-T?t cos (Z 2G, sin wﬂ) (330)

1
hq(t) E? (1 —|—nq(T)) /dl‘ei‘.,;fZG;,(1+2n,;(T))(lfcosa),;t)*l"%2 cos (ZZGA sinco)vt—kwqt)
2

+%nq(T) /dtezi*mi(1*2"2(T))(1*coswﬂ>*r2’2 cos (ZZG;_sinam—wqt>
7

(3.31)

We notice that both A, and B,, are constants relying only on the intrinsic
parameters of the investigated material as given in the Hamiltonian, Eq. 3.1, while
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A(T) and h,(T) are temperature-dependent functions. If the temperature dependence
of AT) and h,(T) are different, then the temperature dependence of the mobility
will be determined by the relative magnitudes of A, and B,, which may be
different in different lattice directions.

og

3.1.7 Decomposition of Electron—Phonon Coupling
Contributions

In Eq. 3.26, the effective coupling constants, {G,}, are central to determine the
magnitude of the charge carrier mobility. In order to characterize the contributions
from each mode, we define the total effective electron—phonon coupling constant
as the sum of the effective coupling constants of all the phonons:

Go =Y _G; (3.32)
A

Since each G has both local and nonlocal contributions, we also decompose
G into four parts [9]:

1 1
Glot = Z gimm + E Z g%mk + Z g%mm + E Z g%mk

A€inter k#m,J.€inter A€intra k#m,J€intra (3 33)

= Ginlerflocal + Ginterfnonlocal + Gintraflocal + Gintrafnonlocal

3.2 Application: Naphthalene

Generally, there are two extreme charge transport mechanisms, i.e., band model and
hopping model. At low temperature, the charge is believed to move coherently in
single crystals, and the mobility decreases with temperature due to electron—phonon
scatterings. At high temperature, the charge transport occurs by phonon-assisted
hopping between localized states, and the mobility increases with temperature. The
transition between band and hopping mechanisms in organic crystals was first
observed in naphthalene crystal through the crossover in temperature dependence of
mobility [10]. Thus naphthalene is normally chosen as the model systems to inves-
tigate the charge transport mechanism in molecular crystals. Here, we investigate the
role of various electron—phonon couplings on charge mobility in naphthalene crystal.
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3.2.1 Computational Details

In Eq. 3.26, there are six basic physical quantities which are necessary to calculate
the mobility, namely, the temperature 7, the site distances {R,,,,}, the phonon fre-
quencies {w,}, the transfer integrals {¢,,,}, the electron—phonon coupling constants
{g4mn}, and the inhomogeneous broadening factor I'. At given temperature 7' and
pressure P, {R,,,,} can be acquired from experimental data, and {w,} can be eval-
uated through the diagonalization of Hessian matrix. In principle, phonon dispersion
should be considered. However, due to the computational complexity, calculations
are performed only at gamma-point. The transfer integrals are calculated with the
band-fitting method introduced in Chap. 2. The electron—phonon coupling constants
are obtained by definition, i.e., numerical differentiation of the transfer integral with
respect to the phonon normal coordinate (Q;), gm = 1/ (a);\/W) - 0&mn /00,
Finally, A/I" = 0.1 meV is chosen, which is a very small value, since we focus on the
conductivity in ultrapure crystals.

In practice, all calculations are performed with the Vienna ab initio simulation
package, which has proved to be a powerful tool for theoretical study of periodic
systems [11-13]. The lattice constants and atomic coordinates are taken from
experiment [14]. The Perdew—Burke—Ernzerhof (PBE) exchange correlation (XC)
functional [15] is chosen since it works well for weak intermolecular interactions
in molecular crystal [16]. A 4 x 4 x 4 grid in the corresponding Brillouin zone is
used to fit the transfer integrals by a least-squares minimization [9].

3.2.2 Results and Discussion

3.2.2.1 Transfer Integral

The calculated band structure for the optimized naphthalene crystal is shown in
Fig. 3.1. An arbitrary molecule in naphthalene crystal is chosen as reference since
the site energies for type o and type ff molecules in naphthalene crystal are the
same due to its monoclinic P2;/a symmetry [17]. All the nearest neighboring
molecules are chosen to fit the transfer integrals (see Fig. 3.2). They are denoted as
{mn} = {0, a, b, c, ac, ab, abc}, corresponding to R, = {0, £ a, £ b, &+ c,
+ (@ + ¢), £ (a/2 £ b2), £ (a/2 £ b/2 4+ ¢)}. To validate the tight-binding
band fitting method, we compare the DFT-calculated band energies with the fitted
tight-binding energies for the 64 selected points in the Brillouin zone, see Fig. 3.3.
It suggests that the band fitting approach works very well for naphthalene crystal
and the chosen neighbors are enough to reproduce the band structure [9]. For the
optimized geometry, the calculation onsite energies and transfer integrals for
electron and hole transport are listed in Table 3.1. It can be easily found that the
intra-layer transfer integrals (¢,, €, and ¢,;,) are of the order of several tens of meV,
which is about ten times larger than the inter-layer transfer integrals (e, &, and
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Fig. 3.1 Calculated band structure for optimized naphthalene crystal. The high symmetry points
in units of (2n/a, 2n/b, 27n/c) are I' = (0, 0, 0), Y = (0.5, 0, 0), B = (0, 0.5, 0), and Z = (0, O,
0.5). Reprinted with permission from Ref. [9]. Copyright 2007, American Institute of Physics

g

Fig. 3.2 The nearest intra-layer (left) and inter-layer (right) neighbors for of naphthalene crystal.
Reprinted with permission from Ref. [20]. Copyright 2008, American Institute of Physics

&ape)- This is the origin of the anisotropy of charge transport in such layer-by-layer
molecular crystals.
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Fig. 3.3 Comparison of the DFT-calculated and the fitted tight-binding band energies for the 64
selected k points. Reprinted with permission from Ref. [9]. Copyright 2007, American Institute of
Physics

Table 3.1 First principles calculated onsite energies and transfer integrals for hole and electron,
in meV

&0 Ea 23 Ec Eac Eab Eabc
Hole —835 -23 —42 =3 -1 22 -5
Electron 2510 7 24 -3 —1 —51 -2

3.2.2.2 Electron-Phonon Coupling Constants

The electron—phonon coupling constants are calculated for different normal modes,
and the relationship between the coupling constants and phonon energies is plotted
in Fig. 3.4. We can find that the low frequency phonon couplings are generally
much larger than high frequency phonons. Only several intramolecular phonons
seem to be important. Their frequencies are in good agreement with Kato and
Yamabe’s calculation on single naphthalene molecules [18]. It is found that there
exits only 13 modes with effective coupling constants larger than 0.01 [9].
Therefore, we list their detailed information in Table 3.2. From Table 3.3, we can
see that for nonlocal electron—phonon coupling, the intermolecular vibration is
much more important than the intramolecular modes, while for local electron—
phonon coupling, the case is exactly the opposite.

3.2.2.3 Temperature Dependence of Mobility

Here we fix the lattice constant, and examine the temperature dependence of mobility
for both electron and hole in a, b, and ¢’ directions (see Fig. 3.5), where ¢’ is per-
pendicular to the ab plane of naphthalene crystal. Hole is found to transport more
efficiently than electron in naphthalene. The calculated temperature dependence
agrees well with Karl’s experiment except for electron in a and b directions [9, 19].
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Kato and Yamabe [18] are
shown in the insets. Reprinted
with permission from Ref.
[9]. Copyright 2007,
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This is due to overestimated electron—phonon coupling constants related to the
difficulties of DFT in describing weak van der Waals interaction. In Figs. 3.6 and 3.7,
we show a detailed comparison between the calculated results and the experimental
data for hole transport in all directions and electron transport in ¢’ direction,
respectively. We can find that hole mobilities generally decrease with temperature
showing a band-like mechanism. Our calculated temperature dependence is in good
agreement with the experiment below 60 K; however, at higher temperatures,
the theoretical results show a slower decrease. For electron transport, we can clearly
see a band-hopping transition, agreeing with the experiment. However, we notice
that the calculated transition point is about 23 K, which is much lower than the
experimentally measured 100-150 K range. In Sect. 3.3, we will see that the
shortcomings can be overcome by using lattice constant changing with temperature.
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Table 3.2 Calculated electron—phonon coupling constants for the most important 13 phonons
through the first-principles-mapped tight-binding model

0 a b c ac ab abc
HOMO &1mn —0.27 —0.09 0.49 0.13 0.13 —0.12 0.08
g2mn 0.15 —0.29 —0.13 0.19 0.05 —0.02 0.08
&3mn —0.08 0.03 —0.12 0.03 0.08 —-0.19 0.03
Zamn 0.00 0.00 0.01 0.00 0.00 —0.01 0.00
g5mn 0.05 0.02 —0.06 —0.02 —0.03 0.05 —0.03
&6mn —0.05 0.00 —0.02 0.00 0.00 —0.01 0.00
&7mn —0.21 —0.01 0.00 0.01 0.00 0.01 0.00
g8mn 0.06 0.02 0.03 0.00 0.00 —0.02 0.00
&omn —0.15 —0.01 —0.01 0.00 0.00 0.00 0.00
&10mn 0.32 0.00 0.00 0.00 0.00 0.00 0.00
&11mn —0.10 0.00 0.00 0.00 0.00 0.01 0.00
g12mn 0.10 0.00 0.01 0.00 0.00 0.00 0.00
&13mn 0.24 0.00 —0.01 0.00 0.00 0.00 0.00
LUMO imn —0.23 —0.04 —1.31 —0.31 0.01 0.39 0.00
&omn 0.19 —0.04 0.20 0.66 —0.11 —0.86 0.10
3mn —0.09 —0.03 0.03 0.13 0.04 0.11 0.03
amn 0.10 0.01 —0.01 0.01 —0.01 —0.03 0.00
&5mn —-0.10 —0.01 0.04 —-0.01 0.01 0.04 0.00
&6mn 0.15 0.01 0.01 —-0.01 0.00 0.00 0.00
&7mn 0.49 0.00 0.00 0.01 0.00 0.01 0.00
&8mn 0.10 0.00 —0.02 0.00 0.00 0.00 0.00
&9mn 0.16 0.00 0.01 0.00 0.00 0.00 0.00
&10mn —0.41 0.00 0.00 0.00 0.00 0.00 0.00
&11mn 0.06 0.00 0.00 0.00 0.00 0.00 0.00
&12mn —0.05 0.00 0.00 0.00 0.00 0.00 0.00
&13mn —-0.16 0.00 0.01 0.00 0.00 —0.01 0.00

Table 3.3 The decompositions of the total effective coupling constant for HOMO and LUMO:
local-inter, nonlocal-inter, local-intra, and nonlocal-intra parts

HOMO LUMO
GImer-Local 0.103 0.095
GImer-Nonlocal 0.569 4.158
GImrafLocal 0.260 0.529
GInlra-Non]ncal 0.024 0.101

3.2.2.4 Origin of Temperature Dependence of Mobility

As discussed above, the calculated temperature dependence of mobility is quite
different for hole and electron in naphthalene. To understand the origin of the
temperature dependence of mobility, we refer to the decomposition of mobility
into a linear combination of various temperature- dependent functions, as proposed
in Sect. 3.1.6. The temperature behavior of AT) and h,(T) for electron and hole
transport is shown in Fig. 3.8. We can find that A(T) generally decreases with
temperature. For hole, the decrease is monotone, while for electron, after a sharp
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Fig. 3.5 Calculated charge-
carrier mobilities as a
function of temperature in
naphthalene crystal from 10
to 300 K. The top three
curves are for holes and the
rest are for electrons.
Reprinted with permission
from Ref. [9]. Copyright
2007, American Institute of
Physics

Fig. 3.6 The hole mobilities
versus temperature obtained
by calculation and
experiments [19, 27] in a, b,
and ¢’ directions. Reprinted
with permission from Ref.
[9]. Copyright 2007,
American Institute of Physics

Fig. 3.7 Band-hopping
transition for electron
transport in the ¢’ direction
(theory vs. experiment [10]).
Reprinted with permission
from Ref. [9]. Copyright
2007, American Institute of
Physics
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decrease at low temperatures, it increases a little bit and decreases again at high
temperatures. This behavior is because that the electron—phonon coupling strength
for electron is much stronger than hole, as found in Table 3.3 [9]. For h(T), it
increases first with temperature and then levels off, and finally decreases with
temperature, which is a typical character of classical Marcus hopping model as
shown in Chap. 2. Besides, it is found that /,(7) decreases rapidly with phonons


http://dx.doi.org/10.1007/978-3-642-25076-7_2
http://dx.doi.org/10.1007/978-3-642-25076-7_2

56 3 Polaron Mechanism

1.00E-013
9.00E-014 |-
8.00E-014 |-
7.00E-014 |-
6.00E-014 |-
5.00E-014 |-
4.00E-014 |-
3.00E-014 |-
2.00E-014 |-
1.00E-014 |-

0.00E+000 h T)/
-1.00E-014 L L L urd
0 50 100 150 200 250 300
Temperature [K]

f(T) anchq(T) [s/Kelvin]

1.00E-015 : T T T T
9.00E-016 |- LUMO -
8.00E-016 | R
7.00E-016 |- E
6.00E-016 | f(T) i
5.00E-016 | i
4.00E-016
3.00E-016
2.00E-016
1.00E-016
0.00E+000
-1.00E-016
0

(T) anchT) [s/Kelvin]

50 100 150 200 250 300
Temperature [K]

Fig. 3.8 The calculated temperature dependence functions f{7) and h,(T) for hole (HOMO) and
electron (LUMO). Reprinted with permission from Ref. [9]. Copyright 2007, American Institute
of Physics

frequencies, and thus only the lowest three modes from the intermolecular
vibrations are important in this part. From the different temperature dependence
behavior of A(T) and h,(T), we can phenomenologically tell that the band-like
contribution comes from fT) while the hopping contribution comes from h,(7).
Therefore the relative magnitude of coefficients A and B, determines the overall
temperature dependence of mobility. From Table 3.4, we can see that B, ranges
from 10'? to 10 (in cmzK/Vsz), which is much smaller than the range of A with
10'°~10"" ¢cm®K/Vs? for all directions. Therefore, the hole mobilities are mainly
determined by the band-like function f{T). For electron transport, we can find that
in a and b directions, A >B, however in ¢’, A is close in value to some of the B,
This explains why band-hopping crossover can be seen for electron transport in the
¢’ direction of naphthalene crystal. From the definition of A and B,, we can
conclude the band-like transport happens when the transfer integral is large and the
nonlocal electron—phonon coupling is relatively small, otherwise, band-hopping
crossover can be observed at a certain temperature range.
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Table 3.4 The calculated coefficients A and B, for hole (HOMO) and electron (LUMO) in a,
b and ¢’ directions (the unit is cm?K/Vs?)

HOMO LUMO

a b d a b d
A 2.66E17 3.80E17 1.78E16 4.53E17 3.37E17 6.62E15
B, 1.11E14 6.44E14 1.69E14 5.14E14 4.53E15 3.40E14
B, 8.63E14 9.41E13 3.64E14 4.85E15 2.05E15 3.28E15
B3 3.08E14 2.68E14 1.02E14 2.28E14 6.62E13 2.62E14
By 8.40E12 1.83E13 5.13E12 1.08E14 6.27E13 1.32E13
Bs 3.73E14 5.23E14 3.76E14 2.36E14 2.92E14 3.87E13
Bg 8.80E12 5.78E13 2.97E12 3.60E13 5.64E12 1.38E13
B, 4.85E13 4.12E12 2.76E13 1.93E13 1.09E13 8.55E12
Bg 5.46E14 4.90E14 1.23E13 1.26E13 1.58E14 2.04E13
By 6.13E13 3.16E13 6.89E12 4.67E13 2.59E13 441E13
Bio 4.41E12 2.16E12 2.07E12 2.63E13 7.20E12 6.21E12
B 8.38E13 3.99E13 1.54E13 1.61E13 2.07E13 2.21E12
B> 3.74E13 4.24E13 2.22E13 2.62E13 1.47E13 6.66E12
B3 2.47E13 1.55E14 3.89E13 1.59E14 3.82E14 6.49E13

3.2.2.5 Temperature Dependence of Mobility

From the mobility formula in Eq. 3.26, we can find that the contribution from each
phonon mode is determined by its electron—phonon coupling constant and phonon
occupation number. As seen from Table 3.3, the major contributions to the total
electron—phonon coupling constant come from intermolecular vibrations. Besides,
low frequency modes have much more population over high frequency modes.
Therefore, the intermolecular low frequency modes should determine the overall
temperature dependence of mobility. To prove this, we compare the temperature
dependence of mobility considering all phonons and that neglecting the intramo-
lecular contributions (see Fig. 3.9). A reduction of about 69-80% mobility for
electrons and 42-48% for holes has been observed from 10 to 300 K [9]. This
reduction is almost temperature independent, supporting that the intermolecular
vibrations are main contributions to the temperature dependence of mobility. The
reduced amounts for electrons are more than for holes since the electron—phonon
coupling constants of electrons are larger than those of holes.

3.3 Temperature Dependence of Mobility Considering
Thermal Expansion

In principle, organic molecular systems are soft materials. With the increase of
temperature, there is significant amount of lattice expansion, therefore the elec-
tronic properties and the charge mobility should change accordingly [20]. Here we
numerically investigate how much the temperature dependence of mobility can be
influenced by natural thermal expansion of lattice.
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Fig. 3.9 The ratio between
the calculated mobilities with
all the phonons and the
mobilities with only the
intermolecular vibrations as
function of temperature. The
top three curves are for holes
and the rest are for electrons.
Reprinted with permission
from Ref. [9]. Copyright
2007, American Institute of
Physics

Table 3.5 Lattice parameters of naphthalene
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crystal at different temperatures (atmospheric

Temperature [K] a [A] b [A] c [A] p[°]

5 8.0711 5.9272 8.624 124.661
50 8.0798 5.9303 8.6288 124.582
92 8.1080 5.9397 8.6472 124.379
109 8.1224 5.9430 8.6525 124.322
120 8.1279 5.9461 8.6546 124.258
131 8.1356 5.9486 8.6568 124.197
143 8.1433 5.9512 8.6594 124.128
153 8.1508 5.9536 8.6610 124.066
163 8.1577 5.9559 8.6627 124.001
173 8.1647 5.9582 8.6644 123.933
184 8.1686 5.9617 8.6654 123.860
195 8.1799 5.9632 8.6678 123.772
206 8.1875 5.9657 8.6695 123.684
217 8.1952 5.9682 8.6711 123.591
228 8.2028 5.9707 8.6727 123.493
239 8.2128 5.9727 8.6745 123.388
273 8.2425 5.9806 8.6814 123.042
296 8.2606 5.9872 8.6816 122.671

3.3.1 Thermal Expansion of Lattice Constants

The lattice constants at different temperature are listed in Table 3.5. The experi-
mental data of naphthalene crystal structures are available at temperatures 7 = 5,
50,92, 109, 143, 184, 239, 273, 296 K [21, 22], where the data for T = 5 and 50 K
is taken from the deuterated naphthalene, since it is found that its unit cell volume
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Fig. 3.10 Interpolating fits of crystal parameters a(T), b(T), ¢(T) and B(T) with available
experimental data [21, 22] over the range 50-239 K. Reprinted with permission from Ref. [20].
Copyright 2008, American Institute of Physics

is only about 0.3-1.3% smaller than C,oHg due to the deuteration effect [22]. To
get a smooth temperature dependence of lattice constant, we make appropriate
interpolation among the experimental lattice constants for the whole temperature
range by using analytic functions (see Fig. 3.10) [20]. It should be noted that due
to limited experimental data, such interpolation does not reveal the physical law.

3.3.2 Temperature Dependence of Mobility with Structure Factor

With the temperature-dependent lattice constants, mobility at each temperature is
recalculated with the same method as in Sect. 3.2. Here, we focus only on the hole
transport in the b axis and electron transport in ¢’ axis because the former has the
largest mobility and the latter has a band-hopping transition behavior as shown
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Fig. 3.11 The calculated and
experimental [10, 19, 27]
results of the temperature-
dependent mobilities of

a hole along b axis and

b electron along ¢’-axis. The
temperature-dependent
mobilities with fixed lattice
parameters are shown for
comparison. Reprinted with
permission from Ref. [20].
Copyright 2008, American
Institute of Physics
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Table 3.6 Lattice parameters of naphthalene crystal at different pressures (room temperature)

Pressure [GP] a [A] b [A] c [A] B 1°]
1.01325E—4 8.235 6.003 8.658 122.92
0.4 8.0348 5.8899 8.565 123.59
0.6 7.9948 5.8726 8.542 123.677
1.0 7.8523 5.8106 8.474 124.027
2.1 7.6778 5.721 8.395 124.55

previously. Calculated and experimental results are shown in Fig. 3.11. From hole
transport, we can find that better agreement with experimental temperature
dependence is achieved even within high temperature range. For electron trans-
port, the band-hopping crossover temperature is calculated as 153 K [20], which is
close to the experimental result of between 100 and 150 K [10]. Therefore we
point out that the thermal expansion of lattice for organic molecular systems,
which is generally neglected in theoretical studies for charge transport studies, can
be very important to get the correct temperature dependence of mobility.
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3.4 Pressure Dependence of Mobility

The lattice can be also strongly distorted at high pressures. In this section, we
systematically investigate the role of pressure on electronic properties and charge
mobility in naphthalene crystal.

3.4.1 Lattice Compression Under Pressure

Lattice constants under different pressure are listed in Table 3.6 [23, 24]. When the
pressure is increased from the atmospheric pressure to 2.1 GPa, the reduction of
lattice constant in a, b, and ¢ axis are about 0.56, 0.28, and 0.26 A, respectively,
which is about three times larger than the effect of lowing temperature from 296 to
5 K as seen in Table 3.5. Therefore, the effect of pressure should be much stronger
than that of temperature.
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Fig. 3.13 Mode-Griineisen parameter fit for the relationship between the phonon frequency and
the unit-cell volume. Reprinted with permission from Ref. [20]. Copyright 2008, American
Institute of Physics

3.4.2 Phonon Frequency

Under pressure, the lattice is more tightly packed, and thus the phonon frequencies
should be increased. In Fig. 3.12a, we show the calculated and experimental
pressure-induced phonon frequency change ratio between 2.1 GPa and 1 atm.
A more explicit pressure dependence of the three intermolecular vibrational modes
is shown in Fig. 3.12b. We can find that the most important changes occur at the
low frequency part, which indicates that the pressure makes the crystal more solid
and the intermolecular interaction is stronger.

Experimentally, the frequency change is usually related to the unit-cell volume
change according to the mode-Griineisen parameter:

fd(lnﬁ> d(ln ﬂ)
= (3.34)

d(ln vl) d(In)

For the most important intermolecular vibrational mode with frequency
48.8 cm™', we make a log—log plot to fit the constant 7, see Fig. 3.13. We get
y = 3.46 [20], which is in good agreement with the measured value y = 3.6 [25].

3.4.3 Transfer Integral

As shown in Fig. 3.14, both the interlayer and intralayer transfer integrals are
largely increased under pressure. Generally, the transfer integral is doubled when
the pressure is increased from 1 atm to 2.1 GPa [20]. For some of the interlayer
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Fig. 3.14 Pressure- (a)
dependent transfer integrals 80
of the a intralayer and

b interlayer nearest

neighbors. Reprinted with

permission from Ref. [20]. 60
Copyright 2008, American
Institute of Physics
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pathways, the increase of transfer integral can be even larger due to the weaker
interaction between layers and thus high sensitivity of pressure.

3.4.4 Electron—Phonon Coupling

The pressure dependence of the total electron—phonon coupling constant for
both electron and hole is plotted in Fig. 3.15. In both cases, the electron—
phonon coupling decreases strongly about 40% when the pressure increases
from 1 atm to 2.1 GPa. Since electron—phonon coupling constant for electron is
much larger than that of hole in naphthalene, the former decreases in a more
remarkable way.
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3.4.5 Pressure Dependence of Mobility

We finally calculate the pressure-dependent mobilities for hole and electron along
a, b, ¢’ directions (see Fig. 3.16). It is found that the mobility increases linearly
with pressure for holes, which is in good agreement with experiment [26]. For
electron, mobility increases faster than hole. This should be related to the more
significant drop of the electron—phonon coupling constant for electron than hole,
and close behavior of the transfer integral upon pressure. From Fig. 3.16, we can
see that the mobility is generally increased about one order of magnitude when a
pressure of 2.1 GPa is applied. This again tells us that organic molecular crystals
are very soft materials, and their charge transport properties are flexible with
environmental change.

3.5 Conclusions

In this chapter, we have discussed the charge transport mechanism within the
Holstein-Peierls polaron model. All kinds of electron—phonon coupling constants,
including both local and nonlocal contributions from inter- and intra-molecular
vibrations, have been taken into consideration through first-principles density
functional theory calculations. For each of them, the electron—phonon coupling
strength has been obtained, and their role on the temperature dependence of
mobility has been systematically studied. We further examine the softness of
molecular crystals, and its role on the reproduction of experimental temperature
dependence of mobility. The effect of pressure on electronic properties and charge
mobility has also been investigated. Overall, we find that (i) The low frequency
intermolecular vibrations contribute most to the nonlocal electron—phonon cou-
plings, while the high frequency intramolecular vibrations is important for local
electron—phonon couplings; (ii) When transfer integral is large and nonlocal
electron—phonon couplings are relatively weak, the charge transport is band-like,
otherwise, the band-hopping crossover behavior can be observed; (iii) The intra-
molecular vibrations generally do not contribute to the overall temperature
dependence of mobility; (iv) Thermal expansion of lattice is very important to get
the correct temperature dependence of mobility agreeing with the experiment;
(v) Mobility increases strongly with pressure. There are several points that we
need to point out concerning the characteristics of the intermolecular vibrations
which are of central importance. Firstly, these modes are generally anharmonic;
however, all vibrations are considered as harmonic oscillators in the present
studies. Secondly, the interaction between electron and phonon is assumed to be
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linear. Theoretical description including higher order interactions is also needed.
Finally, we only consider I'-point here, which is not enough to characterize the
phonon dispersion of the low frequency acoustic phonons. In the next chapter, we
will discuss another theory which is designed especially to study the acoustic
phonon contributions to charge transport.
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Chapter 4
Deformation Potential Theory

Abstract When the electron—phonon coupling is weak compared with the
intermolecular electronic couplings, charge transport can be described by the band
mechanism. Namely, the charge moves coherently in a wavelike manner and is
scattered by phonon. In this chapter, we introduce the deformation potential
theory, which is actually a band model including only the lattice scatterings by the
acoustic deformation potential. It is based on the Boltzmann transport equation and
sometimes, can be simplified using the effective mass approximation. Contrary to
Chap. 3, where only optical phonons are considered, the acoustic phonons are the
focus of this chapter. This approach is applied to a typical molecular crystal,
naphthalene, and covalently bonded functional materials, graphene and graphdiyne
sheets and nanoribbons.

Keywords Deformation potential theory - Band model - Boltzmann transport
equation - Effective mass approximation - Acoustic phonon - Graphene and
graphdiyne sheets and nanoribbons

In Sect. 4.1, we derive the mobility formula of the deformation potential theory
using the Boltzmann transport equation and the effective mass approximation and
discuss how the parameters in the mobility expression are calculated first princi-
pally. In Sect. 4.2, the above method is applied to oligoacenes to study the role of
acoustic phonons, acting as a complement to the studies in previous chapters.
Applications to graphene and graphdiyne are discussed in Sect. 4.3 and Sect. 4.4,
respectively.

Z. Shuai et al., Theory of Charge Transport in Carbon Electronic Materials, 67
SpringerBriefs in Molecular Science, DOI: 10.1007/978-3-642-25076-7_4,
© The Author(s) 2012



68 4  Deformation Potential Theory

4.1 Deformation Potential Theory

The deformation potential theory was proposed by Bardeen and Shockley about
60 years ago to investigate the role of acoustic phonons on electron and hole
mobilities in nonpolar inorganic semiconductors like silicon, germanium and
tellurium [1]. The basic argument is that for single crystal silicon, or other
inorganic semiconductor, the electron wave is coherent with a thermal wavelength
much longer than the lattice constant. Thus the primary scattering comes from the
long wavelength acoustic phonons, and the scattering can be approximated by a
uniform lattice dilation, or uniform deformation. Here we briefly describe the basic
ideas of this approach for studying charge transport properties in organic materials.

4.1.1 Standard Form of Boltzmann Transport Equation

The Boltzmann transport equation is a general tool to analyze transport phe-
nomena. It describes the time evolution of the distribution function f{rk,t) for
one particle in the phase space, where r and k are position and momentum of the
particle, respectively. Generally, the total time derivative of fir,k,t) can be
expressed as
ar 6f+6fdr+6fdk
dt 0ot Ordt Okdt
Since dr/dt = v is the velocity and idk/dt = F is the external force acting on
the particle, we have

(4.1)

a _of o
E_§+5v(k)+

o F(r)
ok ho

Here, we adopt a reasonable assumption that the velocity and the external force
are only related to momentum and position of the particle, respectively. If the
scattering between different electronic states is the only mechanism to balance
the distribution function change due to electron diffusion and external force,
we can set

(4.2)

a _of
dr Ot

(4.3)
scatt
Combining Eq. 4.2 and Eq. 4.3, we can derive the standard form of the
Boltzmann transport equation,

o

76f of
or +=v

oL SEO)

ot or (k) ok n (44)

scart
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4.1.2 Boltzmann Transport Function for Charge Transport

For an electronic system, the distribution function at equilibrium adopts the
Fermi—Dirac distribution,

1

fo= exp{[e(k) — Er] /ksT} + 1

(4.5)

where &(k) describes the energy band for the charge carrier, namely, the valence
band (VB) for hole and the conduction band (CB) for electron, and Ef is the Fermi
level (also called chemical potential) of the system. At weak electric field limit, the
distribution function f should be very close to fy. Therefore we normally assume
that f depends only on k, the same as f,, and then we can neglect the first and
second terms on the right side of Eq. 4.4. For charge transport, F(r) = —eoE,
where ¢y is the element charge of an electron and E is the electric field.
Considering that v(k) = 1/h x Oe(k)/0k is the group velocity, Eq. 4.4 becomes

%o
O¢

af o 6f eoE N 6f O¢ eoE N af
al T Ta T mk - obvl) g, —elv(k)

scatt

(4.6)

4.1.3 Relaxation Time Approximation

Normally, the scattering term can be expressed as

o

21 =S {OW R — 1) - O KW — K]} (A7)

scatt K

where O(k,k') is the transition probability from electronic state k to k’. At thermal
equilibrium, we have @(k'.k) = O(k,k’), and thus Eq. 4.7 can be simplified as

o

=Y ew K — 1K) (43)

scatt k'

When the relaxation time approximation is applied [2], the scattering term can
be also expressed as

o _ [k —fk)

4.
at scart T(k) ( 9)
Inserting Eq. 4.9 into Eq. 4.6, f(k) can be expressed with t(k) as
5
F#) ~ folk) + eorR)E - v(ie) L2 (4.10)

O¢
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From Egs. 4.8 and 4.9, we have

_ﬁ@R££9:§:@m¢quyﬁwn (4.11)
k/
Thus
1 nly o folk) =7 (k)
um‘%*“*ﬁ“&m—mm} 1

We assume that the scattering is elastic, which means that e(k) = &(k’) and thus
Jfok) = fo(k'), and then inserting Eq. 4.10 into Eq. 4.12, we can get

R N, T ek
rw”;muﬂldmwn}

where ey is the unit vector along the electric field. In principle, Eq. 4.13 can be
solved iteratively. Here we normally further simplify Eq. 4.13 as

%zZ@(k,k’) {1 _Vv(('l‘())—ﬂ (4.14)
-

(4.13)

4.1.4 Deformation Potential

According to the Fermi’s golden rule, the transmission probability can be
expressed as

Ok,k) = zh—” M (k,K')[*5[e(k) — &(k')] (4.15)

Here M(k, k') = <klAV(r)lk’>, where k> is the Bloch wave function of the
electron with wave vector k and AV(r) is the potential perturbation due to thermal
motions. The deformation potential theory assumes that AV(r) has a linear
dependence on the relative volume change, A(r), namely,

AV(r) = E/A(r) (4.16)

where E is named as the deformation potential constant. The acoustic phonon
with wave vectors {g} and the displacement for lattice site r is

1 . .
u(r) = \/—NZ e, [aqe’qr + a;eﬂ"'} (4.17)
q

where N is the number of lattice sites in the unit volume. e, and aq, are the unit
vector and amplitude of the acoustic phonon ¢, respectively. At high temperatures,
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when the lattice waves are fully excited, the amplitude of the wave is given by
Iaq,l2 = kBT/2Mq2v§ according to the uniform energy partition theory [1], where
M is the total mass of lattice in the unit volume, and v, is the velocity of the wave.
Then the relative volume change could be expressed as

A(r) E = l—Zq e, {aq - a:;e”"’ (4.18)

With Egs. 4.16 and 4.18, the electronic coupling element can be calculated
as [1]

kTE
M (k,K') = N"'E}g?a2 = Bc (4.19)
q

where g = £(k' — k), ¢, = 2NMV§ is the elastic constant or the strength modulus.
Then Eq. 4.15 becomes

2nkpTE}

OkK) ="
q

Hole(k) — e(k')] (4.20)

and correspondingly Eq. 4.14 can be expressed as [3]

1 ZﬁkBTE /
L L Z [1 _ W] 5le(i) — o(k)] (4.21)

4.1.5 Mobility Formula

By definition, the mobility (u,) is the ratio between the drift velocity, v,, and the
electric field, E,,

_ Va fv“(k)f(k)dk
My = B, W (4.22)

where o is the electric field direction. Substituting Eq. 4.10 into Eq. 4.22 and
considering that fy(k) is an even function, while v(k) is an odd function, we have

/ v, (k)f (k)dk = eoE, / r(k)vg(k)%dk (4.23)

If we consider all the energy bands for the charge carrier, Eq. 4.23 becomes

/ J(K)f (k)dk = eoE, Y / r(i,k)vi(i,k)%dk (4.24)

icCB(VB)
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for electron (hole), where t(i,k) and v,(i,k) are the relaxation time and the group
velocity of the ith band with wave vector k. Correspondingly, the integral on the
denominator of Eq. 4.22 for electron and hole can be expressed as

[t S [ i) - Erla (4.25)
and
[t S [ (1 plath) - Er))ak (4.26)

respectively. Normally the band gap is much larger than kg7, and thus for i € CB
exp{[ek)-Er)/kgT} >>1, we can replace the Fermi-Dirac distribution with the
Boltzmann distribution, fy &~ exp{— [¢;(k) — Er]/kgT}. Finally the electron (hole)
mobility can be expressed as [3]

> [x(i,k)v2(i, k) exp[Fei (k) /ksT)dk
o) _ €0 i€CB(VB)

b T > JexplFak)/ksTldk
i€CB(VB)

(4.27)

4.1.6 Effective Mass Approximation

The effective mass approximation can be used to simplify the mobility formulas.
In 1D systems, the energy band can be written in very simple form as

e(k) = &y + (B%/2m") (k — ko)’ (4.28)
where m* is the effective mass. Using v(k) = hik/m*, Eq. 4.21 becomes

1 2E{kgTm

el G i 4.29
(k) ki'e, (4.29)
Then the mobility can be calculated through [4]
eo [ t(k)f (k)dk eoh*c
Hip = f* = 1(;2 (4.30)
m* [f(k)dk  E2(2mkgT)"*m*3/2
Similarly, the mobility in the 2D and 3D cases can be derived as [1]
2eoh

Colt Cq (4.31)

o = Sy T
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202m) Peglitc,

= 4 432
3E} (kpT)* > S/ (432

Hap

In the 3D case, the temperature dependence of mobility in Eq. 4.32 follows a
power law with factor —1.5, in close agreement with experiment [5, 6]. Note that
the m* in Eq. 4.32 is an average over all directions, which is not appropriate to
describe the anisotropic behavior of mobility.

4.1.7 Numerical Parameterization

To obtain the mobility from Eq. 4.27, there are several parameters to be deter-
mined. The energy band ¢;k) can be calculated by the first principle density
functional theory. By following the work of Madsen and Singh [7], the group
velocities v,(i,k) are obtained through numerical differentiation in the k-space with
smoothed Fourier interpolation. The anisotropic relaxation time t(i,k) can be
evaluated with Eq. 4.21, with the known of the elastic constant, ¢, and the
deformation potential constant, E;. By fitting of the curve of total energy change
per volume, AE/V, to dilation Al/l, with formula AE/Vy = c,(Allly)*/2, we can
evaluate c, along the transport direction o. Here Vj is the cell volume at equi-
librium, and [, is the lattice constant along o direction. A typical example of the
fitting of ¢, is shown in Fig. 4.1a. E| is defined as E; = AV;/(Al/ly) where AV, is
energy change of the ith band with lattice dilation Al/l; along the direction of
external electric field. As shown in Fig. 4.1b, for the sake of simplicity, we gen-
erally take the energy change at conduction band minimum (CBM) and at valence
band maximum (VBM) for electron and hole, respectively. Besides, following the
approach proposed by Wei and Zunger [8], we assume that the localized 1s level is
not sensitive to slight lattice deformation and can be used as a reference to obtain
the absolute band energy changes for both VBM and CBM. In Eq. 4.30,
we also need the effective mass m*. It can be calculated through a quadratic fit in
the energy versus k-points for the bottom (top) of CB (VB) for electron (hole).

4.2 Application: Oligoacenes

Several oligoacenes have been investigated in Chap. 2 with the hopping mecha-
nism and in Chap. 3 with the polaron mechanism, both of which regard all nuclear
vibrations as optic phonons. Hereby, we discuss the role of acoustic phonon
scattering on the charge transport properties with deformation potential theory.
The crystal structures for the investigated oligoacenes, i.e., naphthalene, anthra-
cene, tetracene and pentacene, are shown in Fig. 4.2.
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Fig. 4.1 A typical plot to obtain a the elastic constants and b the deformation potential constants
through fitting a the total energy of unit cell with uniform dilation Al/ly and b the band energy of
VBM (EygMm) With respect to the closest level to the core level (E..) with uniform dilation. The
lines are the fitting parabola. The plot is taken from calculations for naphthalene along a and
b directions [3]. Reproduced from Ref. [3] with permission by Springer
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Fig. 4.2 Crystal structures of oligoacenes: a naphthalene, b anthracene, ¢ tetracene and
d pentacene. Reproduced from Ref. [3] with permission by Springer

4.2.1 Computational Details

The initial crystal structures of oligoacenes are taken from the Cambridge Struc-
tural Database [9-11]. The Vienna ab initio Simulation Package (VASP) [12-14]
is used to optimize the lattice and to obtain the energy bands together with LDA
exchange—correlation potential. The discrepancy in lattice constants between the
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Table 4.1 The calculated

lasti ¢ C [10'° Naphthalene Anthracene Tetracene Pentacene
elastic constants

dyn/cmz] and deformation C, 16.24 16.36 13.80 14.45
potential constants E [eV] C},: 21.10 19.93 19.86 19.83
of oligoacene crystals Eq 1.31 1.12 L.79 2.10
E} 1.39 1.38 0.47 0.79
E; 0.96 0.42 1.60 1.81
Ej 0.56 0.87 0.53 0.38

LDA results and the experimental values is within 5% [3]. The mobility formula
without effective mass approximation, Eq. 4.27, is adopted.

4.2.2 Results and Discussion

4.2.2.1 Elastic Constants and Deformation Potential Constants

The fitting procedure described in Sect. 4.1.7 is used to get the elastic constants
and deformation potential constants for all the investigated oligoacene crystals
(see Table 4.1). Only the results along a and b lattice axes are shown since it is
believed that the in-plane mobilities are more useful to the device applications.
Agreeing with the crystal symmetry, the properties of naphthalene and anthracene
are generally close except the deformation potential constants for electron.
Similarly, the values for tetracene and pentacene are also quite close.

4.2.2.2 Temperature Dependence of Mobility

The temperature dependent hole and electron mobilities in @ and b directions are
shown in Fig. 4.3. Overall, the mobility manifests the typical power law, owing to
the intrinsic band transport mechanism of the deformation potential theory.
The calculated temperature dependence can be approximated as y oc 7~ and the
deviation is the effect beyond the effective mass approximation.

4.2.2.3 Electron and Hole Mobilities of Oligoacenes

In Table 4.2, we list the calculated electron and hole room temperature mobilities of
all investigated oligoacene crystals. The mobility shows no apparent molecular
length dependence due to their different crystal packings. In Chap. 3, we only
consider optic phonon scattering processes and very small inhomogeneous external
scattering, the room temperature hole mobilities in naphthalene are calculated to be
about 150-200 cm?/Vs [15]. In contrast, here we only take acoustic phonons into
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Fig. 4.3 Temperature Naphthalene
dependence of hole and :
electron mobilities along o - h
a and b directions for . - IJ:
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Table 4.2 The calculated

’ SRR 3 Naphthalene Anthracene Tetracene Pentacene
carrier mobility in unit

h
em?/Vs at T = 300 K of ‘“Z 504 19.2 10.6 15.2
oligoacene crystals w744 422 92.5 55.6
u 39.8 245 24.5 27.7
1 353 154 87.6 295

account, and the hole mobilities are around 50-75 cmz/Vs, which are about three
times smaller than that with only optic phonons. In other words, the acoustic phonon
scattering mechanism is about three times as strong as that with the optic phonons in
naphthalene, suggesting the important role of acoustic phonon in charge transport.
Generally, organic semiconductors are of p-type in field effect transistors, which
means that the measured hole mobility is larger than electron mobility. This is
primarily due to the fact that (1) the electrode (e.g. gold) work function is closer to
the highest occupied molecular orbitals so that the charge injection consists of
mostly holes and (2) organic materials present much more electron traps than hole
traps [3]. Hereby, we find that the calculated intrinsic electron mobility
(e.g. anthracene in a direction and pentacene in b direction) can be even larger than
that of hole, as shown in Table 4.2. This is mostly due to their much smaller electron
deformation potential constants as shown in Table 4.1.

4.3 Application: Graphene

Graphene is a one-atom-thick planar sheet of sp®>-bonded carbon atoms which are
densely packed in a two-dimensional honeycomb lattice (see Fig. 4.4a). Individual
graphene sheets were first isolated by Novoselov and Geim et al. in 2004 [16].
After that, graphene has become a hot spot in condensed matter physics due to its
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(a)

Fig. 4.4 Schematic presentation of a the lattice packing and b the band structure of a single layer
graphene

Fig. 4.5 Structure of SLG
and BLG. The rectangular
unit cells are shown with
dashed lines and the lattice
vectors with arrows

special electrical features [17]. As shown in Fig. 4.4b, the valence band and the
conduction band only intersect at the K-point (also called the Dirac point). At this
point, the energy dispersion is linear, which indicates that the effective mass of
electrons is about zero, presenting a relativistic effect. The mobilities can exceed
15,000 cm?/Vs even under ambient conditions [16]. Quantum hall effect (QHE)
can be observed in graphene even at room temperature, extending the previous
temperature range for QHE by a factor of 10 [18]. All these make graphene a
candidate for new transport materials. Here, we study the charge transport in
graphene sheets (GSs) and Graphene nanoribbons (GNRs).

4.3.1 Graphene Sheet

We investigate two kinds of graphene sheets, i.e., single layer graphene (SLG) and
bi-layer graphene (BLG), as shown in Fig. 4.5. The geometry optimizations and
band structure calculations are performed within VASP [12-14] with PBE
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Fig. 4.6 Band structure of a SLG and b BLG. The fine structures near the Fermi level (expressed
with red dashed lines) are replotted in ¢ and d, respectively. The high symmetric points are
shown together with the Brillouin zone

exchange correlation functional [19]. Vacuum layer thickness is set to be 30A.
In Fig. 4.6, we can find that the band structure of SLG and BLG are similar. The
frontier w and 7* states intersect at K-point at the Fermi level, therefore both SLG
and BLG are gapless semiconductors with a pseudo-metallic property. When
comparing the band structure near the Fermi level, we find that the energy levels of
n and 7* states are split from SLG to BLG. We first calculate the mobility
explicitly according to Eq. 4.27. All the relevant results are presented in Table 4.3.
In SLG, electron and hole mobilities are very close, while the difference is more
significant in BLG. This is most probably due to the fact that the interaction
between the two sheets influences the symmetry of 7 and n* energy band structure.
The deformation potential constants in both systems are more or less the same,
however, the elastic constant of SLG is only half of BLG. Thus the mobility in
BLG is generally larger than that of SLG, which indicates that the charge transport
is benefitted from the double layer structure. We further apply the effective mass
approximation. As listed in Table 4.4, the mobility is about 2.0-2.7 times of that
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Table 4.3 Deformation potential constant E; [eV], elastic constant C [J/mz], mobility u
[10°cm?/Vs] and relaxation time T [ps] for SLG and BLG along x and y directions for both
electron (n*) and hole (m) transport

System Band E, C n T
SLG_x n 5.140 328.019 3.217 13.804
Tk 3.389 13.938
SLG_y b 5.004 328.296 3.512 13.094
¥ 3.202 13.221
BLG_x b 5.330 680.167 3.949 16.158
¥ 4.484 17.966
BLG_y n 5.334 681.172 4.178 16.206
Tk 4.636 18.019

Table 4.4 Effective mass fitted near the K-point m* (the unit is 0.01 m,, mass of an electron),
and the corresponding mobilities p* [10°cm?/Vs] and relaxation times ©* [ps]

System Band m* w* ¥
SLG_x n 1.594 6.971 6.303
¥ 1.597 6.914 6.277
SLG_y b 1.594 6.872 6.431
% 1.597 7.301 6.629
BLG_x bis 1.753 11.103 11.046
¥ 1.750 11.105 11.047
BLG_y b 1.753 11.103 11.046
¥ 1.750 11.105 11.047

calculated directly from Boltzmann transport equation. However, the ratio of
mobility between BLG and SLG remains the same. The result validates that the
effective mass approximation can give reasonably good mobility values and nice
relative trends.

4.3.2 Graphene Nanoribbon

Graphene can be cut into one-dimension nanoribbons in two different ways,
namely, armchair graphene nanoribbons (AGNRs) and zigzag graphene nanorib-
bons (ZGNRs), as shown in Fig. 4.7. We are mostly interested in the influence of
ribbon width, i.e., the number of carbon atoms along the side edge, N, on charge
transport in both cases.

4.3.2.1 Armchaired Graphene Nanoribbon

Geometry optimization and band structure for AGNRs are computed at the same
level as for the graphene sheets. The calculated energy band structures with
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Fig. 4.7 Structure for
graphene nanoribbons:

a armchair and b zigzag.
The ribbon width is N. The
top and bottom edges were
passivated by hydrogens

Fig. 4.8 Band structure of 3

3 357 7 7. |
AGNRs (N = 12, 13, 14). I -/ e
Reprinted with permission for 21,0075 e I SA St I
Ref. [20]. Copyright 2009 N 25
American Chemical Society i | ~“Lumo F~ Lumo oo
w 0 N=12 I N=13 N=14
|-|F| HOMO Es HOMO
Wk b t e
2L \ :
_a G o & ] S -
r X T X Tr X

different widths are shown in Fig. 4.8. All investigated AGNRs are semiconductors
due to the existence of the band gap. In Table 4.5, we show the parameters for AGNR
with different widths which are realized with the method introduced in Sect. 4.1.7
using effective mass approximation. Electron and hole possess very close effective
mass in the range 0.057-0.077m,, where m, is the charge of an electron. The elastic
constant increases steadily with the ribbon width of AGNRs because the rigidity is
enhanced. The deformation potential constant has a significant width dependence:
for N = 3k, E| for holes is about one order of magnitude larger than that for electrons,
while for N = 3k + 1 and 3k + 2, the situation is the opposite. To understand this
width dependence, we examine the frontier molecular orbitals (see Fig. 4.9).
For N = 12 (3k), itis noted that the bonding direction for the HOMO is perpendicular
to the ribbon direction, while for the LUMO, the bonding direction is along the
stretching axis, and thus HOMO is scattered more strongly by acoustic phonons than
LUMO. For N = 3k + 1 and N = 3k + 2, the electron distribution of HOMO
(LUMO) is close to the LUMO (HOMO) for N = 3k, and thus the deformation
potential constant is larger for electron than hole. The periodicity and the magnitude
change of the deformation potential constant result in an oscillating behavior in the
width-dependent mobility with two orders of magnitude difference in the mobilities
of electrons and holes (see Fig. 4.10) [20].

4.3.2.2 Zigzag Graphene Nanoribbon

The typical band structure of ZGNR is shown in Fig. 4.11. We notice that the
conduction and valence bands merge flatly near the Fermi surface. Thus the
effective mass approximation is not suitable any more. Instead we use Eq. 4.27 to
study the width-dependent charge mobility (see Fig. 4.12). We can find that the



4.3 Application: Graphene

81

Table 4.5 Calculated width of ribbon W (including the passivated hydrogen), effective mass m*,
deformational potential constant £, the elastic constants C, the electron and hole mobility y, and

the average value of scattering time t for AGNRs for N = 9-17, 33-35 and 4244

N W [nm] Type m*[0.01m,] E [eV] CI[10"eV/iem] pu[10*cm*Vs] t [ps]
9  1.176 e 721 1.11 3.24 108.11 4433
h 6.04 11.00 1.44 0.49
10 1.300 e 7.87 10.992 3.59 1.07 0.48
h 571 247 34.30 11.14
11 1.420 e 6.79 10.838 3.81 1.46 0.56
h 6.51 1.904 50.34 18.63
12 1.543 e 7.17 1.230 4.29 117.36 47.85
h 6.26 10.904 1.83 0.65
13 1.681 e 7.68 10.972 4.64 1.44 0.63
h 6.00 232 46.71 15.92
14 1792 e 6.88 10.892 4.84 1.80 0.70
h 6.65 1.870 64.14 24.26
15 1913 e 7.23 1312 5.35 127.26 52.29
h 6.43 10.960 2.17 0.79
16 2.036 e 7.63 10.954 5.70 1.79 0.78
h 6.23 221 59.74 21.15
17 2.156 e 6.99 11.158 5.87 2.03 0.81
h 6.81 1.842 77.35 29.96
33 41.19 e 7.02 1.77 12.70 172.84 69.02
h 6.68 19.2 491 1.86
34 4239 e 7.17 10.84 12.80 4.52 1.84
h 6.61 2.34 110.07 41.32
35 43.60 e 7.03 18.9 12.98 4.80 1.91
h 6.88 1.91 130.12 51.8
42 5224 e 6.94 1.81 17.11 212.16 90.66
h 6.69 11.19 6.28 2.39
43 53.48 e 7.07 10.96 17.34 6.11 2.46
h 6.62 221 165.95 62.42
44 5479 e 7.06 10.80 17.45 6.21 2.50
h 6.70 2.19 185.04 70.8

mobility in ZGNRs is about two orders of magnitude lower than that of the
AGNRs, which is due to the flat band near the Fermi surface suggesting a larger
effective mass [20]. Overall, hole mobility is several times larger than electron,
and there is no width-dependent carrier polarity as we have observed in AGNRs.

4.4 Application: Graphdiyne

Graphdiyne is one of the most “synthetically approachable” allotropes containing
two acetylenic (diacetylenic) linkages between carbon hexagons [21]. It has been
predicted to exhibit fascinating properties including extreme hardness, good
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Fig. 4.9 I'-point HOMO and
LUMO wave functions for
AGNRs with a N = 12 and
b N = 13. The red dashed
line stands for the direction
of stretching. Reprinted

with permission for Ref. [20].
Copyright 2009 American

Chemical Society (b) HOMO(12-AGNR) LUMO(12-AGNR)
HOMO (13-AGNR) LUMO (13-AGNR)
Fig. 4.10 Theoretically 250
predicted mobility 200
dependence on the width 150
of AGNRs for both electron & 1004
and hole. Reprinted with >
permission for Ref. [20]. NE
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stability, large third-order nonlinear optical susceptibility, high fluorescence
efficiency, high thermal resistance, nice conductivity or superconductivity and
through-sheet transport of ions [21-23]. In this section, we investigate the elec-
tronic structure and charge transport of graphdiyne sheet (GDS) and its various
graphdiyne nanoribbons (GDNRs) through first principles calculations.

4.4.1 Graphdiyne Sheet

The structure of a graphdiyne sheet is shown in Fig. 4.13. VASP [12-14] is used to
optimize the lattice and calculate the energy band at the DFT/LDA level [24].
In Fig. 4.14, a band gap of 0.46 eV is found at the I'-point which means that the
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Fig. 4.11 Band structure for
ZGNR (N = 8). Reprinted
with permission for Ref. [20].
Copyright 2009 American
Chemical Society

Fig. 4.12 Calculated
width-dependent mobility
for ZGNR. Reprinted with
permission for Ref. [20].
Copyright 2009 American
Chemical Society

Fig. 4.13 Schematic
representation of a single
graphdiyne sheet. The
rectangular supercell is
drawn with dashed lines and
the lattice vectors are shown
as arrows. Reprinted with
permission for Ref. [24].
Copyright 2011 American
Chemical Society
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Fig. 4.14 DFT-calculated band structure and density of states for a single graphdiyne sheet.
The Brillouin zone with the chosen high symmetric k-points is also shown. Reprinted with
permission for Ref. [24]. Copyright 2011 American Chemical Society

Table 4.6 Deformation potential E;, elastic constant C, carrier mobility x4 and the averaged
value of scattering relaxation time t at 300 K for electrons and holes along a and b directions in a
single graphdiyne sheet

Carrier type E, [eV] C [J/m?] u [10%m?/Vs] T [ps]
e’ 2.09 158.57 20.81 19.11
h* 6.30 158.57 1.97 1.94
e’ 2.19 144.90 17.22 15.87
n 6.11 144.90 1.91 1.88
Fig. 4.15 [-point (a)

degenerate HOMO and 2 @ 3 9,9
LUMO density distributions :.:.:’ :..0 o

for a graphdiyne sheet. e o® :
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graphdiyne sheet is a semiconductor. The deformation potential constants and elastic
constants are obtained through the fitting approach described in Sect. 4.1.7. The
mobility and relaxation time are calculated through Eqgs. 4.27 and 4.21, respectively,
without using the effective mass approximation. The results are listed in Table 4.6.
We notice that the in-plane mobilities along directions @ and b are close to each other
for both electron and hole. Besides, the room temperature electron mobility is about
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Fig. 4.16 Schematic
representation of five
different GDNRs. D1 and D2
are divan GDNRS (denoted
as DGDNR) with two and
three carbon hexagons in
width, respectively. Z1, Z2
and Z3 are zigzag GDNRs
(denoted as ZGDNR) with
two, three and alternating
width, respectively. D1
Reprinted with permission for
Ref. [24]. Copyright 2011
American Chemical Society
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Fig. 4.17 Band structures of the investigated five GDNRs. Reprinted with permission for Ref.
[24]. Copyright 2011 American Chemical Society

one order of magnitude higher than that of hole. Such difference in electron and hole
mobilities can be attributed to the deformation potential E;: E; for hole is three times as
large as that for electron. E is a characterization of the coupling strength of electron or
hole to acoustic phonons, and can be understood by checking the frontier molecular
orbitals responsible for transport. The highest occupied molecular orbital (HOMO) and
the lowest unoccupied molecular orbital (LUMO) at I'-point are shown in Fig. 4.15.
We can see that HOMO exhibits anti-bonding character between carbon hexagons and
diacetylenic linkages, whereas LUMO exhibits bonding feature. As a result there are
more nodes in HOMO than LUMO in either direction a or direction b. And thus the site
energy for hole is more prone to change, and its deformation potential is larger.

4.4.2 Graphdiyne Nanoribbons

Using graphdiyne sheet as a template, five different GDNRs are chosen, as shown
in Fig. 4.16. D1 and D2 are DGDNRs, while Z1, Z2 and Z3 are ZGDNRs with
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Fig. 4.18 a Deformation potential constants, b charge mobility, ¢ elastic constants, and
d effective masses for holes and electrons in five GDNRs. Reprinted with permission for Ref.
[24]. Copyright 2011 American Chemical Society
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Fig. 4.19 I'-point HOMO and LUMO electronic density distributions for GDNRs D1 and Z1.
Reprinted with permission for Ref. [24]. Copyright 2011 American Chemical Society

different widths. The DFT-calculated band structures are shown in Fig. 4.17.
All five nanoribbons are predicted to be semiconductors. The smallest band gap
of about 0.8 eV is found in D2. The deformation potential constants, elastic
constants, mobilities and effective masses are calculated. From Fig. 4.18a, we
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Table 4.7 Calculated band gap, effective mass (my, and m,), deformation potential constants for
VB and CB (Ey and E(), elastic constant C, carrier mobility p at 300 K for five GDNRs.

D1 D2 71 72 73

Band gap [eV] 0.954 0.817 1.205 0.895 1.015
my,* [mO] 0.086 0.087 0.216 0.149 0.174
m,* [mO] 0.081 0.086 0.281 0.174 0.207
Ey [eV] 7.406 6.790 4.386 4.786 4.776
Ec [eV] 2.006 1.730 1.972 2.000 2.054
C [10'° eV/em] 1.244 1.864 1.035 1.787 1.420
wy [10° cm?/Vs) 1.696 2.088 0.755 1.815 1.194
e [10% cm?/Vs] 18.590 34.241 2.692 9.127 5.329
¥ [10° cm?/Vs] 0.711 1.253 0.426 1.073 0.679
1 [10° cm?/Vs] 10.580 19.731 1.418 5.015 2.829

Note that u, and p, are calculated without effective mass approximation, while p;, and p. are
calculated with effective mass approximation

notice that E; for hole is much larger than electron for all the GDNRs, agreeing
with the graphdiyne sheet. The same antibonding feature between carbon hexagons
and diacetylenic linkages has been found for the HOMO, whereas the bonding
feature is found for the LUMO (see Fig. 4.19). As a result, the intrinsic electron
mobility is significantly larger than that of hole. It is seen that the DGDNRs is
more favorable than the ZGDNRs for electron transport since the LUMO for
DGDNRs is much more delocalized in the direction of ribbon axis than that for
ZGDNRs (see Fig. 4.19). Besides, the charge mobility increases with width within
the same class of GDNRs. We also adopt the effective mass approximation since
the mobility formula only has three parameters, i.e., the deformation potential
constant, the elastic constant and the effective mass, which are quite helpful to
better understand the observed transport phenomena. The results are shown in
Table 4.7. The results using the effective mass approximation are in good agree-
ment with that calculated without effective mass approximation. We find that the
elastic constant increases with the width in the same class of GDNRs as shown in
Fig. 4.18c, thereby the mobility has the same behavior. And the effective masses
of DGNRs are smaller than those of ZGNRs, suggesting that DGNRs should have
larger mobility than ZGNRs.

4.5 Conclusions

In this chapter, we have introduced the basic concepts of the deformation potential
theory based on the Boltzmann transport equation and the effective mass
approximation. We have applied this approach to oligoacences, graphene and
graphdiyne sheets and nanoribbons. We found that (1) the scattering intensity of
charge with acoustic phonons is about three times as large as that with optic
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phonons in molecular crystals; (2) the obtained temperature dependence of
mobility follows the power law; (3) the width of the ribbon plays an important role
in tuning the polarity of carrier transport in armchair graphene nanoribbons, while
there is no alternating size dependence for zigzag graphene nanoribbons;
(4) electron mobility is very high in both single graphdiyne sheets and graphdiyne
nanoribbons and the charge mobility increases with the width of nanoribbon.
We note that the present approach considers only the acoustic scatterings and
needs to be improved. To fully understand the role of electron—phonon couplings
on charge transport, optical phonons should be considered together with the
acoustic phonons at the same level of theoretical treatment. Accurate numerical
simulations are needed for benchmark studies on general models with wide
parameter range.
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Chapter 5
Outlook

Modeling the charge transport in organic materials is a formidable task due to the
complexity in dealing with various scattering mechanisms, which is intrinsically a
many-body problem [1]. In this book, we present three approaches, namely, the
localized hopping model, the extended band model, and the polaron model, to
compute the mobility for organic and carbon materials at the first-principles level.
We show that we indeed achieved some successes in, for instance, predicting the
intrinsic mobility values from given materials structures, or in rationalizing the
structure—property relationship. However, the story is far from complete. More
complicated treatments for the many-body effects remain a challenging issue. At
present, the picture is still fragmented in the sense that the hopping and the polaron
models consider only the optical phonons, while the band model only considers the
acoustic phonons under the deformation potential approximation. Therefore, better
descriptions rely on combining both phonon scatterings as well as the inclusion of
phonon dispersion. Besides, to go beyond the assumption that the charge is
localized or delocalized, direct quantum dynamics [2] and/or mixed quantum-—
classical dynamics [3] can also be used. Through solving the time-dependent
Schrodinger equation or the time-dependent Liouville equation for electron, one
can capture the essence of charge transport in electron—phonon interacting sys-
tems. Due to the expensive computational cost, current studies are limited to one-
dimensional molecular arrays with very few phonon modes. However, recent
studies confirmed that the feedback from electron dynamics to nuclear vibrations
can be fully neglected for molecular crystals with large mobility [4]. This approach
is quite promising for obtaining the absolute magnitude of the charge mobility for
organic materials, because the charge dynamics can be modeled “on the fly”
through a hybrid approach combining molecular dynamics simulations of nuclear
motion, quantum-chemical calculations of the electronic Hamiltonian at each
geometric configuration, and time-dependent electron dynamics. We expect that
these numerical approaches, as well as the three models described in this book,
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could be further developed and benchmarked at consistent parameter level, to get a
full understanding of the charge transport mechanism.

The crystal structure is indispensable to computational predictions of the
intrinsic charge mobility. Generally, this structure is taken from experimental
measurements, making computations impractical for new molecules when there is
no knowledge of the crystal packing structures. Besides, morphological informa-
tion is necessary to study the charge transport for less ordered realistic systems.
Thus it is highly desirable to develop computational methods to predict the crystal
structures and long range geometries, to meet the demands of molecular design in
organic electronics [5].

There is no doubt that, driven by the remarkable advances in materials and
devices and higher capacity of computational technique, our understanding of
charge transport is moving rapidly toward a quantitative description of charge
mobility through comprehensive consideration of electron—phonon scatterings and
more realistic molecular packings. It is a formidable and necessary task to get
quantitative description for charge transport in organic electronic materials, in
order to help materials design. There is still a long way to go.
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