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Preface to the Fourth Edition

The Nobel Prize awarded to Albert Fert and our colleague Peter Griinberg has
drawn the attention to the remarkable progress that has been achieved in the
field of magnetism concerning both its understanding and its applications. Add-
ing a section on the giant magneto resistance (GMR) effect was therefore neces-
sary. As the GMR-effect is observed in magnetic thin-film systems, it was nat-
ural to combine the treatise on the GMR- effect with a brief summary of the
specific magnetic properties of thin films; and we did so with a new panel. The
wealth of phenomena encountered in thin-film magnetism is intimately related
to the interplay of various sources of magnetic anisotropy. We therefore had to
pay attention to the most common source of magnetic anisotropy, the crystal-
line anisotropy and to the phenomena that go along with it, such as magnetic
hysteresis and domain walls.

The GMR-effect is only one of the many new effects that one encoun-
ters when the dimensions of solids shrink into the nanometer range. For
example, the semi-classical approach to electron transport fails in small
dimensions, and normal electric current flow is replaced by ballistic or
diffusive transport giving rise to quantum effects such as Aharonov-Bohm
oscillations, Altshuler-Aronov-Spivak-oscillations, weak localization, and
universal conductance fluctuations. A new section on quantum transport is
devoted to these phenomena.

One of the intellectually most appealing fields in the realm of dielectric
properties of matter is that of materials with negative index of refraction.
While no natural material with that property exists, composite materials
involving lattices of electric and magnetic resonance circuits, so called
metamaterials, have been made and exhibit most unusual optical properties.
With further progress in the preparation of artificial structures of nanometer
dimensions application of metamaterials for optics in the visual range is at
hand. We have devoted a new panel to this exciting field.

Here, as well as in nearly all other fields of current interest, progress lar-
gely depends on the progress in the preparation of nanostructures. We have
included a new panel on various preparation techniques. We have also up-
dated the panels on photoemission and neutron diffraction.

We gratefully acknowledge the many comments and suggestions by collea-
gues and students that have helped to improve this volume.

Jilich and Aachen, February 2009 H. Ibach - H. Liith



Preface to the Third Edition

Our German textbook “Festkorperphysik” has meanwhile appeared in its
6" edition, extensively revised and extended in comparison to the latest 2™
English edition. Presently, the book has been translated into Japanese, Kor-
ean and Polish and is used as a standard text in many universities around
the world. It is therefore high time to carefully revise the English text and
bring it up to par with the latest 6™ German edition. The sections on “High
Temperature Superconductors” as well as Panel XVI on “Shubnikov-de
Haas Oscillations and Quantum Hall Effect” are completely revised accord-
ing to the present deeper understanding of the phenomena. This 3™ English
edition has furthermore been expanded by several chapters to meet the edu-
cational requirements for recent fields of research. We let ourselves be
guided by the idea that modern teaching of solid state physics emphasizes
aspects of material science and its applications, in particular in solid state
electronics. Accordingly, deviations from the ideal periodic solid have
gained more weight in the text: we now consider phase diagrams of alloys,
some basics of defect physics and amorphous solids. Because of the impor-
tance of strained layer systems in device physics, inclusion of the fundamen-
tals of crystal elasticity theory seems (again) necessary, so a new chapter is
devoted to this topic. The additional chapter on the excitation spectrum of
a superconductor is intended to further the understanding of modern re-
search on superconductor/normal conductor interfaces as well as on applica-
tions in superconductor electronics. For similar reasons, sections on the me-
tal/semiconductor Schottky-contact and on the basic concepts of important
semiconductor devices have been included in the new edition. With all of
these additions we have tried to maintain the spirit of the book, namely to
put the phenomena into a general frame of an atomistically founded under-
standing of solid state physics.

We thank Dr. Klaus Dahmen, Dr. Arno Forster, Dr. Margret Giesen,
Dr. Michel Marso, Prof. Dr. Angela Rizzi and Dr. Thomas Schipers for
discussions on special topics and many suggestions for improving the pre-
sentation.

We express our thanks to Dr. H.J. Koelsch, Dr. T. Schneider and Mr.
C.-D. Bachem of Springer-Verlag for the pleasant collaboration.

Jilich and Aachen, January 2003 H. Ibach - H. Liith



Preface to the Second Edition

Our German textbook “‘Festkorperphysik” has become rather popular
among German-speaking students, and is currently produced in its 4" edi-
tion. Its English version has already been adopted by many universities in
the United States and other countries. This new 2"¢ edition corresponds to
the 4 edition in German.

In addition to correcting some typographical errors and making small
improvements in the presentation, in the present edition some chapters have
been revised or extended. Panel V, for example, has been extended to in-
clude a description of angle-resolved photoemission and its importance for
the study of electronic band structures. Section 10.10 on high-temperature
superconductors has been completely rewritten. This active field of research
continues to progress rapidly and many new results have emerged since the
publication of the first edition. These results shed new light on much of the
fundamental physics.

The new version of Sect. 10.10 has been developed in discussions with
colleagues who are themselves engaged in superconductivity research. We
thank, in particular, Professor C. Calandra from the University of Modena
and Dr. R. Wordenweber of the Institute of Thin Film and Ion Technology
at the Research Centre Jiilich.

The revision of the problems was done with the help of Dr. W. Daum,
Dr. A. Forster, A. Leuther and Ch. Ohler. We would like to thank them for
their efforts. We also thank Dr. Margret Giesen for numerous improve-
ments to the manuscript as well as Dr. Angela Lahee for the competent
translation of the revised or new sections.

Jiilich and Aachen, April 1995 H. Ibach - H. Liith



Preface to the First Edition

In recent decades solid state physics has seen many dramatic new develop-
ments and has become one of the largest independent branches of physics.
It has simultaneously expanded into many new areas, playing a vital role in
fields that were once the domain of the engineering and chemical sciences.
A consequence of this explosive development is that no single university lec-
turer can today be expected to have a detailed knowledge of all aspects of
this vast subject; likewise, it is impossible to conceive of a course that could
offer students a comprehensive understanding of the entire discipline and its
many applications.

In view of this situation, it is particularly valuable to have a textbook
that gives a concise account of the essential elements of the physics of solids.
In this book the fundamental aspects of solid state physics are presented ac-
cording to the scheme: Chemical bonding, structure, lattice dynamics, and
electronic properties. We believe that this sequence is the optimum choice
for tutorial purposes. It enables the more difficult concepts to be introduced
at a point where a basic understanding of fundamental ideas has already
been achieved through the study of simple models and examples. In addition
to this carefully structured exposition of classical solid state theory based on
the periodic solid and the one-electron approximation, the book also in-
cludes comprehensive descriptions of the most active areas in modern re-
search: magnetism, superconductivity and semiconductor physics.

The chapter on magnetism discusses the exchange coupling of both loca-
lized and delocalized electrons, and will even guide the reader to the point
when he or she can appreciate modern thin-film experiments. The standard
picture of superconductivity is elucidated by means of a simplified presenta-
tion of BCS theory. A section is also devoted to the novel high-temperature
superconductors. This field, however, remains in such a state of flux that it
was necessary to confine the treatment to some selected experimental results
and a few central ideas about this fascinating phenomenon. The chapter on
semiconductors contains, in addition to a general introduction to these ma-
terials and their properties, detailed descriptions of semiconductor hetero-
structures, superlattices, epitaxy, and the quantum Hall effect.

In solid state physics, the interaction between theory and experiment
has always played, and continues to play, a vital role. We have thus at-
tempted throughout this book to steer a middle course in which both theory
and experiment are adequately represented. Where a theoretical approach is
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helpful and not too cumbersome, we have not hesitated in challenging the
reader with the necessary abstract concepts. Furthermore, we have tried to
include theoretical methods and concepts, for example, those of group theo-
ry, that are indispensible for an understanding of contemporary original
publications dealing with solid state theory.

The concise presentation of the essential theoretical aspects is
complemented by the inclusion of selected experimental methods and exam-
ples, summarized in the form of self-contained panels. These offer the reader
the opportunity to test and consolidate the material already studied and may
prove helpful in stimulating further study in areas of particular interest.

Students will also benefit significantly from working through the exten-
sive series of problems that relate to each chapter. These examples are not
restricted to calculations based on the methods described in the text; in
many cases they lead into areas that lie outside the scope of the main pre-
sentation. All of the examples have been put to the test in our own lecture
courses. Nonetheless, the student may often need a helping hand or some
preparatory instruction from a lecturer. The problems will be useful to both
students and lecturers; they are designed to stimulate further study and to il-
lustrate the connections between different disciplines.

This book is a translation of the third edition of the original German
text. The authors consider it their immensely good fortune to have been
supported by Dr. Angela Lahee in the translation and editing of this work.
We are also grateful to numerous colleagues who over the years have
offered valuable suggestions about the presentation of the book or have
supplied the experimental material described herein. For her critical reading
of parts of the manuscript and the page proofs we thank in particular Dr.
Angela Rizzi. Other valuable contributions were made by Dr. W. Daum,
Mr. Ch. Stuhlman, Dr. M. Wuttig and Mr. G. Bogdanyi. The figures were
prepared with great care and patience by Mrs. U. Marx-Birmans and Mr.
H. Mattke. The German manuscript was typed by Mrs. D. Kriiger,
Mrs. Jirss-Nysten and Mrs. G. Offermann. We express our thanks to
Dr. H. Lotsch and Mr. C.-D. Bachem of Springer-Verlag for the pleasant
collaboration.

Jiilich, January 1991 H. Ibach - H. Liith
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1 Chemical Bonding in Solids

Solid-state physics is the physics of that state of matter in which a large num-
ber of atoms are chemically bound to produce a dense solid aggregate. The
emphasis in this statement is placed on the large number of atoms involved,
since that number is of the order of 10%* cm 2. At first sight it would seem
to be a hopeless task to try to apply traditional scientific methods for the
description of such a vast number of atoms. However, it is exactly the large
number of atoms involved that in fact makes a quantitative description possi-
ble by means of new models, applicable specifically to solids. A prerequisite,
though, for the success of these models, is that the participating atoms are
not simply chosen at random from the periodic table of elements; the solid
must be composed of a limited number of different elements whose atoms
are arranged in space with a certain order. Thus, for the solid state physicist,
the showpieces are the “elementary” crystals, i.e., three-dimensional periodic
arrangements of atoms of one type, or chemical compounds of two elements.
An understanding of solids and of their characteristic properties thus requires
that we first achieve a fundamental understanding of two particular phenom-
ena: the first is that of the forces that hold together the atoms of a solid, in
other words, the chemical bonding between atoms. The second important
aspect is the structural ordering of the atoms within the solid. A considera-
tion of these two basic questions forms the content of the first two chapters.
In both cases it will only be possible to give a short introduction and for a
more detailed discussion of these phenomena the reader is referred to text-
books on quantum chemistry and crystallography.

1.1 The Periodic Table of the Elements

By way of introduction to the topic of chemical bonding, we will take a
brief look at the construction of the periodic table of the elements.

The electronic states of an atom are classified according to the one-elec-
tron states of the radially symmetric potential. Thus we have 1s, 25, 2p, 35,
3p,3d,4s,4p,4d, 4f,... states where the numbers give the principal quantum
number, 1, and the letters s, p, d, f correspond to the values of the electron’s
orbital angular momentum (/= 0, 1, 2, 3,...). This classification stems from
the picture in which the potential for each electron includes the effect of all
other electrons by representing them as a continuous fixed charge distribution

H. Ibach, H. Liith, Solid-State Physics, 4th ed.,
DOI 10.1007/978-3-540-93804-0_1, © Springer-Verlag Berlin Heidelberg 2009



2 1 Chemical Bonding in Solids

Table 1.1. The build-up of the periodic table by successive filling of the electronic energy
shells. Indicated on the left of each column is the outer electron level that is being pro-
gressively filled, and in brackets is its maximum allowed occupation number. See also
cover page

1s (2) H, He 45 () K, Ca Sp (6) In - Xe

2s (2) Li, Be 3d (10) Transition metals Sc - Zn 6s (2) Cs, Ba

2p (6) B> Ne 4p (6) Ga -» Kr 4f (14) Rare earths Ce — Lu

3s (2) Na, Mg Ss (2) Rb, Sr 5d (10) Transition metals La — Hg

3p (6) Al > Ar  4d (10) Transition metals Y - Cd 6p (6) Tl > Rn

which, to a greater or lesser extent, screens the potential of the bare nucleus. In
addition to the principal quantum number » and the orbital angular momen-
tum quantum number /, there is also a magnetic quantum number m which can
take (2/+ 1) different values (ranging from —/ to +/). According to the Pauli
exclusion principle, each state can be occupied by at most two electrons of
opposite spin. As a function of increasing nuclear charge this then leads to
the periodic tables whose structure is outlined in Table 1.1. From the order
of the energy levels of the hydrogen atom, one would expect that after the
3 p-states are filled, the next states to be occupied would be the 34. But in
fact, as can be seen from Table 1.1, this is not the case; following the 3 p-levels
those next occupied are the 45. The subsequent filling of the 3 d-states gives
rise to the first series of transition metals (the 3d-metals). Similarly, one
also finds 4d- and 5d transition metals. The same effect for the f-states
leads to the so-called rare earths. The reason for this anomaly is that the elec-
trons in s-states have a nonvanishing probability of being located at the
nucleus thereby reducing for them the screening effect of the other electrons.
Hence the s-electrons possess lower energy.

If one considers a thought experiment in which several initially isolated atoms
are gradually brought closer together, their interaction with one another will lead
to a splitting of each of their energy levels. If a very large number of atoms are
involved, as in the case of a real solid, then the energy levels will lie on a quasi-
continuous scale and one therefore speaks of energy bands (Fig. 1.1). The width
of the band (i.e., the broadening) depends on the overlap of the wavefunctions
concerned. Thus for the deep lying levels the broadening is small, and these
“core levels” retain their atomic shell-like character even in the solid. For the high-
est occupied levels, on the other hand, the broadening is so large that the s-, p- and
where present, d-levels merge into a single band. It is the electrons in this upper-
most band that are responsible for the chemical bonding between atoms, and
hence one speaks of the valence band. The ultimate source of the chemical bond-
ing is the reduction in electronic energy which results from the level broadening.
This, despite the increase in repulsion between the nuclei, leads to a decrease in the
total energy as a function of atomic separation until the point where the equili-
brium separation is reached — i.e., the point of minimum total energy.

The type of bonding in a solid is determined essentially by the degree of
overlap between the electronic wavefunctions of the atoms involved. At the
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Fig. 1.1. Broadening of the energy levels as a large number of identical atoms from the
first row of the periodic table approach one another (schematic). The separation ry corre-
sponds to the approximate equilibrium separation of chemically bound atoms. Due to the
overlap of the 25 and 2p bands, elements such as Be with two outer electrons also become
metallic. Deep-lying atomic levels are only slightly broadened and thus, to a large extent,
they retain their atomic character

one extreme, this overlap may be limited to neighboring atoms; in other
cases the wavefunctions may be spread over many atoms. In the former
case, the degree of overlap, and thus the strength of the bonding, is depen-
dent not only on the separation of neighboring atoms, but also on the bond
angles. This is referred to as directional bonding or covalent bonding.

In its purest form, covalent bonding is realized between a few elements
of equal “valence”, i.e. elements with the same outer electronic configura-
tion. However, an equal electronic configuration is neither a necessary nor a
sufficient condition for covalent bonding. What is important is simply the
relative extent of the wavefunctions in comparison to the interatomic
separation. If the extent of the wavefunctions is large compared to the near-
est-neighbor distance, then the exact position of the nearest neighbors plays
an insignificant role in producing the greatest possible overlap with many
atoms. In this case, the packing density is more important than the position
of the next neighbors. Here one speaks of non-directional bonding. This
regime in which the wavefunctions spread over a distance that is large in
comparison to the atomic separation is characteristic of metallic bonding.

However, there is a further type of non-directional bonding with extre-
mely small overlap of wavefunctions; this is the ionic bond. It occurs in
cases where the transfer of an electron from one atom to another is sufficiently
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energetically favorable. A prerequisite for ionic bonding is thus a dissimilarity
of the atoms involved.

In the following sections we will explore the various types of bonding in
greater detail.

1.2 Covalent Bonding

We have characterized covalent bonding in solids as a bonding for which
the interaction between nearest neighbor atoms is of prime importance. It is
therefore possible to derive many of the essential properties of covalent
solids using the quantum chemistry of molecules. For our discussion we
shall refer to the simplest model for bonding, namely of a diatomic molecule
with a single bonding electron.

The Hamiltonian for this molecule contains the kinetic energy of the
electron and the Coulomb interaction between all partners (Fig. 1.2 a).

A FB
a Ze Z'e
A R B
(U
Bonding
ﬁk-.,_/q’)A
b =
\ e r
Ay ,/
\, /
\\ //
Antibonding \\ |,
v
Antibonding
i —
¢ > Haa \___ Hes
o \ ¥
o \ /
by Bonding

Fig. 1.2a—c. The simplest model of a covalent bond (the H>™ molecule). (a) Definition of the
symbols in (1.1). (b) Bonding and antibonding combinations of atomic orbitals. The bonding
combination leads to an accumulation of charge between the nuclei which in turn gives rise
to a reduction in the Coulomb energy. (¢) The splitting of the atomic energy level into the
bonding and antibonding states. The greatest gain in energy is achieved when the bonding
state is fully occupied — i.e., contains two electrons — and the antibonding state is empty
(covalent bonding)
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s Ze? Z'é z7'e?
2m drnegry 4dmeyrg 4meg R

W =

(1.1)

The appropriate molecular orbital y,,, for the electron would be the
solution to the Schrédinger equation

//l//mo = El//mo : (12)

However, even in this simple case, it is necessary to rely on approximate
solutions. The expectation value of the ground-state energy may be calcu-
lated using such an approximate solution, according to

B v 7 yar
- Jvrwar

The approximate solution y may be set equal to a linear combination of
states of the two separate atoms:

(1.3)

W=caWy +cpyp. (1.4)
Here the wavefunctions and their coefficients are real.

It is possible to show that any trial function such as y always leads to
an energy E’ that lies above the true value E (see Problem 1.8). The best
values for the coefficients ¢, and cp are those which lead to a minimum value
of E'.

With the abbreviations

S= [y, wpdr (overlap integral), (1.5a)
Hya= [y, 7y dr, (1.5b)
Hyp= [y 7 wpdr, (L.5¢)

one obtains the following expression for E’, which then has to be mini-
mized

_ ¢ Hyq+ A Hpp+2cqcpHayp

E A+ cE+2cqc8S (1.6)
For the minimum with respect to ¢4 and cp we require
! !
gf,q :gC‘EBZO7 (17)
which leads to the following secular equations
CA(HAA—E/)-i-CB(HAB—EIS):0, (1821)
CA(HAng,S)#*CB(HBB*E/):0. (18b>

Their solution is given by the condition that the determinant vanishes, i.e.,

(Hys— E'Y(Hps — E') — (Hyp — E' S)* = 0. (1.9)
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For simplicity, we consider a molecule with two identical nuclei (for exam-
ple, H5) for which we have H,, = Hpp. With the single atomic eigenvalue
H 44 = Hpp of the individual free atoms, we then obtain two new molecular
orbitals with the energies

;_ Haax Hyp

EL <E, = TS5 (1.10)
When the two nuclei are infinitely far apart we have S =0 on account of
(1.5a), whereas when the nuclear positions coincide, we have S = 1. From
(1.10) it follows that the spatial overlap of the wavefunctions w4 and yp
leads to a splitting of the original energy level H,, = Hpgp into a higher and
a lower molecular energy level (Fig.1.2c). The molecular orbital corre-
sponding to the higher energy level is known as antibonding, and the other
is bonding. In the molecule the electron occupies the lower-lying bonding
orbital thereby giving rise to a reduction in the total energy. This reduction
corresponds to the binding energy of the covalent bond.

From the foregoing discussion one sees that only partially occupied sin-
gle-atomic orbitals, i.e., those containing less than two electrons, can partici-
pate in covalent bonding: Since the bonding molecular orbital can contain
only two electrons (the Pauli principle allows two opposite spin states), any
further electrons would have to occupy the higher-lying antibonding orbital,
which would counteract the original gain in energy (cf. Problem 1.7).

For the diatomic molecules considered here the bonding molecular orbi-
tal consists of an additive combination of w4 and yp, i.e. Yo = W4+ w3 [in
(1.4) we have ¢, = cp for identical nuclei]. As shown in Fig. 1.2, this leads
to an increase in the electronic charge density between the nuclei. The anti-
bonding combination y,, = ¥ W, on the other hand, results in a decrease
of this charge density.

One sees that covalent bonding is associated with a “piling-up” of
charge between the atoms that form the molecule or solid concerned. It is
the spatial overlap of the wavefunctions that is responsible for this bonding
and which also determines the energy gain of the bonding orbitals of the
molecule or solid, and thereby the binding energy. As shown in Fig. 1.3, for
particular atomic orbitals (s, p, d, etc.) there are some orientations that
favor the overlap and others that are unfavorable. This is the underlying
reason for this strongly directional character of the covalent bonding, which
is particularly evident in the covalently bound crystals of diamond (C), Si
and Ge with their tetrahedral coordination (Fig. 1.4).

Let us take a closer look at this tetrahedral bonding for the example of
diamond. From a consideration of its electronic configuration 152, 252,
2p?, one would expect a carbon atom to be able to participate in only two
covalent bonds (corresponding to the two 2 p-orbitals each occupied by one
electron). However, when these atoms form part of a crystal it is clear that
a larger reduction in total energy is produced if four bonding orbitals can
overlap. In a one-electron picture this may be understood in terms of the
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Fig. 1.3a,b. Pictorial representation of the spatial overlap between an s- and a p-wave-
function of hydrogen. The “‘size”” of the wavefunction is illustrated by a surface of con-
stant wavefunction amplitude. (a) A situation in which the overlap cancels due to sign rever-
sal of the p_-wavefunction. (b) Nonvanishing overlap between s- and p.-wavefunctions

Fig. 1.4. The tetrahedral configuration of
nearest neighbors in the lattice of C, Si, Ge
and a-Sn. This structure is favored because
its periodic repetition fills three-dimensional
space, and because it enables the formation
of sp* hybrid orbitals from the s, p, p, and
p- states. The figure displays the orbitals of
diamond (C). The orbitals of Si, Ge, and a-
Sn possess additional nodes

following simplified description: One of the electrons from the 2s-orbital is
excited into the empty 2p-orbital. Each of the 2 p-orbitals and the single 2 s-
orbital now contains one electron and thus each of these can participate in
a covalent bond. The overlap with the wavefunctions of the nearest neigh-
bors is maximized if four new wavefunctions are formed by a linear combi-
nation of the original 2s, 2p,, 2p,, and 2p.-orbitals. These new molecular
orbitals are known as sp> hybrids and their creation is called hybridization
(Problem 1.9). The gain in energy that is produced by the overlap in the tet-
rahedral configuration is more than enough to compensate for the energy
needed to promote the 2s-electron into the 2 p-orbital.

If one now considers carbon atoms arranged in the diamond structure,
in which each atom is surrounded by four other atoms positioned at the
corners of a tetrahedron (Fig. 2.12), one finds that in the sp® hybridized
state all the available electrons can be shared with the neighbors such that
only the bonding orbitals are occupied. This leads to a fully occupied
valence band that is separated from the next highest (antibonding) band by
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an energy gap. Energy can only be supplied in large quanta that are suffi-
cient to promote an electron across this band gap. At low temperature such
covalently bonded solids are therefore nonconducting. If the bandgap is not
too large, however, electrons can be promoted by thermal excitation leading
to a measurable conductivity. In this case one speaks of semiconductors.
A more precise definition of these will be given in Chaps. 9 and 12.

Instead of the sp* hybrid orbital carbon can also form a planar hybrid
orbital from one 25 and two 2p functions (Problem 1.10). These orbitals
yield a planar 120° star called sp°. An additional p. orbital containing one
electron lies perpendicular to the plane of the star. The overlap between p.
orbitals of neighboring C atoms leads to a further bonding, the so-called
7 bonding. This type of bonding is found within the layers of the graphite
structure of carbon. The bonding between the covalently bound layers
of graphite is of the van der Waals type (Sect. 1.6) and is thus relatively
weak.

An interesting spatial structure involving sp? orbitals is that of the ful-
lerenes, whose most prominent member is Cgo (Fig. 1.5). Their structure
includes pentagons. For topological reasons, 12 pentagons are necessary to
produce a closed structure. In addition to the 12 pentagons, the Cgq cluster
also contains 20 hexagons. Even larger molecules can be produced by the
inclusion of more hexagons. Cgq clusters can also form the basis of three-
dimensional crystal structures, for example when other atoms such as alkali
or alkaline earth metals are included.

A complete saturation of the covalent bonding is possible for the group
IV elements C, Si, Ge and a-Sn in the three-dimensional space-filling tetra-
hedral configuration. The group V elements P, As, Sb, demand a three-fold
coordination for saturation; they form planar layer structures. Correspond-
ingly, the group IV elements Te and Se occur in a chain-like structure with
two-fold coordination.

Covalently bonded solids can, of course, also be produced from combi-
nations of different elements. As an example, we consider boron nitride.
The two elements involved have the electronic structure: B(2s%2p');

Fig. 1.5. The structure of Cg
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N(2s%2p?). These elements can also bind in the diamond structure with
tetrahedral coordination. Each boron atom is thereby surrounded by
four nitrogen atoms and vice versa. The shared bonding electrons are
comprised of five electrons from the nitrogen atom and three from boron.
The total number of electrons per atom is thus the same as in the case of
the carbon diamond structure. However, because two different elements are
involved, the bonding has an ionic character. This will be discussed in the
next section.

Typical examples of binding energy for purely covalently bonded crys-
tals are:

C (diamond): 7.30 eV per atom (712 kJ/mol);
Si: 4.64 eV per atom (448 kJ/mol);
Ge: 3.87 ¢V per atom (374 kJ/mol).

1.3 Ionic Bonding

To understand ionic bonding one needs to consider the ionization energies
and electron affinities of atoms. The ionization energy I is defined as the
energy that must be supplied in order to remove an electron from a neutral
atom. The electron affinity A is the energy that is gained when an additional
electron is added to a neutral atom. Ionic bonding is produced whenever an
element with a relatively low ionization energy is combined with an element
with a high electron affinity. As an example we consider the combination of
sodium and chlorine. The ionization energy of sodium is 5.14 eV, and the
electron affinity of chlorine 3.71 ¢V. Thus in order to transfer one electron
from a sodium atom to a chlorine atom requires an energy expenditure of
1.43 eV. The electrostatic attraction between the two ions leads to an energy
gain that increases as they approach closer to one another, with a minimum
separation that is determined by the sum of their two ionic radii. This elec-
trostatic attraction contributes an energy gain of 4.51 eV thus giving an
overall gain in energy of 3.08 ¢V. It is therefore possible for sodium and
chlorine to form a diatomic molecule with a strongly ionic character. Three-
dimensional crystals can also be produced in this way. In the structure so
formed, each chlorine atom is surrounded by sodium neighbors, and vice
versa. The exact structure is determined by the optimal use of space for the
given ionic radii, and by the condition that the Coulomb attraction between
oppositely charged ions should be greater than the repulsion between ions
of the same sign. Figure 1.6 shows two structures that are typical for two-
ion crystals; the sodium-chloride and the cesium-chloride structures.

The ionic radii are the essential factor in determining the minimum
separation because, if the ions were to approach still closer, a strong overlap
between the ionic electron clouds would occur. For fully occupied electron
shells such as these (Sect. 1.2), the Pauli principle would then require that
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Fig. 1.6. The two structures typical for ionic bonding in solids: (a) NaCl structure; (b)
CsCl structure

higher lying antibonding orbitals should become occupied. This should lead
to a steep increase in the energy and therefore a strong repulsion.

Whereas this repulsive contribution to the total energy, like the covalent
bond, can only be derived from a quantum mechanical calculation, the
attractive Coulomb contribution to the ionic bond can be described simply
as a sum over the Coulomb potentials ion sites. For the potential energy
between two singly charged ions i and j at a separation r; one writes

&2 B
Py = ;

dregry 1 ’

(1.11)

the second term describes the repulsion between the two electron clouds. It
is an heuristic term containing two free parameters n and B. It should, of
course, be possible to determine these parameters from an exact quantum
mechanical treatment of the problem. However, a commonly used approach
is to derive the values of these parameters from a fit to measured experi-
mental quantities (ionic separation, compressibility, etc.); this yields values
of n mainly in the range 6 to 10.

The form of a typical potential energy curve is depicted in Fig. 1.7. The
total potential energy due to all other ions j at the site of ion 7 is given by
the summation

pi=> 0y (1.12)
i
If r is the separation of nearest neighbors one can write
rij =rpij, (1.13)

where the p; depend on the particular crystal structure. If the crystal con-
tains N ion pairs, then its total potential energy is given by
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Fig. 1.7. Potential energy as a function of the separa-
tion of two ions
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For each possible structure one has the characteristic quantity
+1
A= — (1.15)
i# Pi

which is known as the Madelung constant. For the sodium-chloride structure
A = 1.748 and for the cesium-chloride structure 4 = 1.763.
Some typical binding energies are
NaCl:  7.95 eV per ion pair (764 kJ/mol);
Nal: 7.10 eV per ion pair (683 kJ/mol);
KrBr:  6.92 eV per ion pair (663 kJ/mol).

In ionic crystals, it is not possible for the electrons to move about freely
between ions unless a large amount of energy (~10eV) is supplied. Solids
with ionic bonding are therefore nonconducting. However, the presence of

Table 1.2. The electronegativity of selected elements [1.1]

H

2.1

Li Be B C N (0] F

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Na Mg Al Si P S Cl
0.9 1.2 1.5 1.8 2.1 2.5 3.0
K Ca Sc Ge As Se Br
0.8 1.0 1.3 1.8 2.0 2.4 2.8
Rb Sr Y Sn Sb Te 1

0.8 1.0 1.3 1.8 1.9 2.1 2.5
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Fig. 1.8. Density of valence electrons in a typical ionic crystal (NaCl) and in a typical
covalently bound crystal (Si) [1.2, 3]. One clearly sees the concentration of charge along
the bond between Si atoms, whereas in the ionic bonding, the electrons are almost spheri-
cally distributed around the ions

defects means that at high temperatures the ions themselves can move
around, giving rise to ionic conduction.

Ionic bonding and covalent bonding are two limiting cases, of which
only the latter can exist in solids composed of a single type of atom. In the
majority of cases the bonding is of an intermediate nature representing a
mixture of the two extremes. A qualitative measure of the ionicity of a bond
is made possible by the electronegativity scale. This scale was first developed
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by Pauling as a result of observations of bond energies. Subsequently Milli-
kan made use of the physical quantities ionization energy, /, and electron
affinity, 4, to derive the following definition of the electronegativity of an
element:

X=0184(I+A) . (1.16)

If the ionization energy and electron affinity are expressed in electron
volts one obtains the Pauling electronegativity scale of Table 1.2. The higher
the ionization energy and electron affinity of an atom, the greater is its ten-
dency to draw the electrons of a bond towards itself. In a bond between
two atoms it is therefore always the atom with the higher electronegativity
that is the anion. The difference in the electronegativity of the two atoms is
a measure of the ionicity of the bond.

The difference between ionic bonding and covalent bonding, in particu-
lar the different electron density distributions, is illustrated in Fig. 1.8. This
shows contours of constant electron density which may be deduced for
example from X-ray diffraction studies. For ionic bonding (NaCl) the elec-
trons are concentrated around the atoms, whereas for covalent bonding (Si)
there is an accumulation of electrons between the atoms.

1.4 Metallic Bonding

It is possible to regard metallic bonding as an extreme case of bonding in
which the electrons are accumulated between the ion cores. However, in
contrast to covalent bonding, the electrons now have wavefunctions that are
very extended in comparison to the separation between atoms. As an exam-
ple, Fig. 1.9 shows the radial part of the 3d and 45 wavefunction of nickel
in the metallic state. The 4s wavefunction still has significant amplitude
even at a distance half way to the third nearest neighbors; thus many neigh-
bors are involved in the bonding. This leads to a strong screening of the
positive ion core, and to a bonding that has certain similarities to covalent
bonding. However, due to the strong ‘“‘smearing out” of the valence elec-
trons over the whole crystal, the bonding is not directional as in the case of
covalent crystals. The crystal structure of metals is thus determined, to a
large extent, by the desire for optimum filling of space (Sect. 2.5).

Unlike the s-electrons, the d-electrons of transition metals are localized,
and the overlap is correspondingly smaller. The d-electrons form a kind of
covalent framework in transition metals and produce the main contribution
to the binding energy.

The valence band of metals, comprising the outer s-, p- and sometimes
d-electrons, is not fully occupied (Table 1.1). As a consequence of the quasi-
continuous distribution of states on the energy scale for a large number of
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Fig. 1.9. The amplitude of the 3d..-wavefunction and the 4s-wavefunction of Ni [1.4]. The
half-distances to the first, second and third nearest neighbors (r;,r, and r3) are shown for
comparison

atoms, one can supply energy to the electrons in infinitesimally small por-
tions; in particular, they can be accelerated by an externally applied electric
field. A particular feature of metals is thus their high electrical conductivity,
which is related to their similarly high thermal conductivity. In this sense,
the metallic bond is a feature that is peculiar to solids, i.e., to aggregates of
many atoms.

A glance at Table 1.1 indicates that the partially filled valence band of
metals can arise in various ways. The alkali metals (Li, Na, K, Rb, Cs)
clearly have the necessary prerequisite since the outer atomic s-state is only
singly occupied. For the alkaline earth metals (Be, Mg, Ca, Sr, Ba) one
might initially expect a full valence band formed from the doubly occupied
atomic s-states. However, because of the overlap in energy with the bands
stemming from the (empty) atomic p-states of the same shell, the net result
is a partially occupied joint sp-band. The transition metals represent a spe-
cial case. Here the s- and p-states again form a broad common band. As
mentioned previously, the d-electrons have a relatively small spatial extent
(Fig. 1.9) and, due to the correspondingly small overlap with the neighbor-
ing atoms, the d-band of the transition metals has a smaller energy width
than the sp-band.

The large spreading of the wavefunction of valence electrons in metals
makes it particularly difficult to theoretically predict their binding energy.
On the other hand, the valence electrons are free to move between the
atoms. This simplifies the description of the electrical conductivity and the
specific heat of the electrons, as will become clear in Chap. 6.
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1.5 The Hydrogen Bond

One speaks of a hydrogen bond when a hydrogen atom is bound to two
other atoms. At first sight, it is surprising that such a bond can exist since
hydrogen has only one electron. However, one can imagine the hydrogen
bond as follows: when hydrogen takes part in a covalent bond with a
strongly electronegative atom, for example, oxygen, its single electron is
almost completely transferred to the partner atom. The proton which
remains can then exert an attractive force on a second negatively charged
atom. Because of the extended electron cloud of the electronegative atom
and the extremely small size of the proton with its strongly reduced electron
screening, it is not possible for a third atom to be bound. The hydrogen
atom is thus always doubly coordinated in a hydrogen bond. Such bonds
are most common between strongly electronegative atoms, but are not lim-
ited to this case alone. They can be of a symmetric A—H-A type or of an
asymmetric A—H...B type. A criterion for the existence of a hydrogen bond
is that the observed separation of the atoms A and B is smaller than it
would be if only van der Waals bonding (Sect. 1.6) were present. A further
indication of the presence of hydrogen bonds may be obtained from infrared
spectroscopy, in which the band corresponding to hydrogen vibrations
shows a strong shift, and is often broadened, too. Generally, speaking, the
phenomena associated with hydrogen bonding are quite diverse, and this
type of bonding is harder to characterize than most other types. The binding
energies of hydrogen bonds are of the order of 0.1 eV per bond.

It is hydrogen bonds that are responsible for linking the two chains of
the double helix in the DNA molecule and, as such, these bonds play a cru-
cial role in the mechanism of genetic reproduction. The best-known example
from the realm of inorganic chemistry is water, in particular when it is in
the form of ice. Each oxygen atom in ice is surrounded by four further oxy-
gen atoms in a tetrahedral configuration and the bonding is provided by
hydrogen atoms. Hydrogen bonds are also present in the liquid form of
water, which leads, for example, to the anomaly in the expansion coefficient:
water has its highest density at 4°C. The reason for this is that the liquid
form of water also contains complexes of H,O molecules that are held
together by hydrogen bonds. In comparison to H,O molecules without
hydrogen bonds, the former occupy a larger volume. As the temperature
increases the hydrogen-bonded aggregates melt, leading to an increase in the
density. Above 4°C one finds the usual thermal expansion, i.e., the density
decreases with further increasing temperature.

1.6 The van der Waals Bond

This is an additional type of bond that, in principle, is always present.
However, the van der Waals bond is only significant in cases where other
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types of bonding are not possible, for example, between atoms with closed
electron shells, or between saturated molecules. The physical source of this
bonding is charge fluctuations in the atoms due to zero-point motion. The
dipole moments which thereby arise cause an additional attractive force.
Van der Waals forces are responsible for the bonding in molcular crystals.
The bonding energy is dependent on the polarizability of the atoms involved
and is mostly of the order of 0.1 eV. Typical atomic bonding radii for van
der Waals bonding are considerably larger than for chemical bonding. The
attractive part of the potential between atoms that interact only via van der
Waals forces varies as r °, where r is the separation of the atoms (or
molecules). This can be readily understood as a consequence of the
dipole interaction. A dipole moment p; resulting from a momentary charge
fluctuation gives rise to an electric field at distance r of strength  ~p,/r>.
A second atom of polarizability a situated at distance r is polarized by this
electric field and acquires an induced dipole moment of p,~ap;/r>. Since
the potential of this dipole in the field is proportional to ¢ and to p», it fol-
lows that the attractive part of the van der Waals interaction varies as r°
(Problem 1.11).

Problems

1.1 a) Calculate the Madelung constant 4 for a linear ionic chain.

b) Make approximate numerical calculations of the Madelung constant
(4 =1.7476) for the NaCl lattice. Use two different approaches: First,
a cubic geometry where 2ma is the length of a side of the cube and a
the separation of nearest neighbors, and, second, a spherical geometry
where ma is the radius of the sphere. In both cases the reference ion
is located at the center. Carry out the calculation for m-values of
m =97, 98, and 99 and compare the results. What is the cause of the
discrepancy?

1.2 Determine the isothermal bulk modulus

_ o (9p
= V(a—v)T

and the lattice energy per ion pair for NaCl using the expression for the lat-
tice energy of N ion pairs:

&2 B 1

dregr Z P

Using the value n =9, calculate B from the condition that U(r) is a mini-
mum at the equilibrium separation.
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1.3 It is well known that common salt (NaCl) is easily dissolved in water.
In the solution Na and CI atoms are present as positive and negative (‘‘sol-
vated’’) ions. Show that, due to the high dielectric constant of water and the
resulting screening of the Coulomb potential, the binding energy of a NaCl
crystal in water is smaller than the mean thermal energy of the free ions.
Calculate the equilibrium separation of the ions of a hypothetical NaCl
crystal in water and show that this separation is larger than the van der
Waals radius of a water molecule, thereby justifying the approximate ap-
proach used here to discuss the solubility of NaCl.

1.4 Discuss the ionicity of alkali halides with the help of Table 1.2.

1.5 Take the CsCI structure and assume that the cation radius becomes
smaller while the anion radius remains constant. What happens to the bind-
ing energy? Show that for small cations the NaCl lattice becomes the pre-
ferred structure. For an even smaller cation radius the ZnS lattice has the
largest binding energy (Madelung constant 4 = 1.638). Give examples.

1.6 Calculate approximately the zero-point entropy of ice. In the ice struc-
ture the oxygen atoms form a wurtzite lattice which is stabilized by hydro-
gen bonds between the nearest neighbor oxygen atoms. The zero-point en-
tropy results from the possible ways of distributing the two hydrogen atoms
per oxygen atom over the four bonds to the nearest neighbors.

1.7 Discuss the electron configuration of the oxygen molecule. Why is the
bond strength equivalent to a chemical double bond? Why is O, paramag-
netic? Give an argument to explain why O is a stable ion.

1.8 Prove that the estimate of the ground-state energy obtained with the
help of an approximate wavefunction using the Ritz procedure,

(v, 7 y)

(v, w)

is always greater than or equal to the exact eigenvalue E,. To do this, ex-
pand the approximate function in terms of the exact eigenfunctions y; (exact
eigenvalue E;).

1.9 The carbon atom in its tetrahedral bonding configuration in diamond
can be approximately represented by four 2sp> wavefunctions, which are lin-
ear superpositions of the four hydrogenic 2s, 2p,, 2p,, 2p. atomic wavefunc-
tions ¢;:

wi=Y_ aj¢;, with ij=1,234

J
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and where the possible functions ¢, appear in spherical coordinates as fol-
lows:

o=d(2s)=ce?(1—-9),
¢y = ¢ (2p:) = ce ?ocosl,
¢3 = ¢ (2pc) = ce %gsinfcosgp ,
¢y =¢ (2py) =ce?gsinfsing, and
Z;
= i (@ Bohr radius, Z=nuclear charge, here that of carbon).
0

One demands of the y; that, like the ¢;, they are orthonormal, i.e.

a)
b)

c)
d)

J wiwidr =0 .

Plot the contours of ¢ (¢ =const, 8, ¢) for the 25 and one of the 2p
states on a polar diagram.

Prove that the orthonormality requirement for the w,(2sp>) wavefunc-
tions leads to the condition

: *
E ajj Aij = 5,‘/€ with aj; = aﬁ .
J

Determine four possible y; functions which fulfill the orthonormality
requirement with a; =4 or a;=-1.

Show that the maxima of \1//,—|2 are located in tetrahedral directions and
draw these by means of vectors pointing to the corners of a cube whose
edges are parallel to the x,y and z axes.

Show that the electron density Z?: i |w:|* has spherical symmetry.
Discuss possible reasons why the real valence electron density in a dia-
mond crystal is nevertheless not spherical around a carbon atom but is
concentrated in tetrahedral bonding directions.

1.10 a) In analogy to the sp® hybridization of carbon in the diamond lat-

b)

tice, discuss the possibility of the carbon atom forming sp> hybrid orbi-
tals with three planar bonding directions. Plot a qualitative picture of
the three bonding sp? orbitals and the remaining unpaired p. orbital and
give their electron occupation.

Assuming sp? hybridization for the carbon atoms explain the chemical
bonding in the benzene molecule C¢Hg. What is the origin of the 7 bond-
ing system parallel to the hexagonal ring skeleton of the six carbon
atoms.

Assuming sp? hybridization explain the highly anisotropic properties of
the planar hexagonal graphite lattice of carbon (quasi-metallic properties
parallel to the carbon planes). How are these anisotropic properties
exploited in every-day life?
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1.11 As a simple quantum mechanical model for the van der Waals interac-

tion consider two identical harmonic oscillators (oscillating dipoles) at a se-

paration R. Each dipole consists of a pair of opposite charges whose separa-

tions are x; and x,, respectively, for the two dipoles. A restoring force f acts

between each pair of charges.

a) Write down the Hamiltonian 7, for the two oscillators without taking
into account electrostatic interaction between the charges.

b) Determine the interaction energy #; of the four charges.

¢) Assuming |x;| <R, |x,| < R approximate 77 as follows

2ex; x
Va %_71 2
1 R3

d) Show that transformation to normal coordinates

1
Xs = — (x1 + x2) ,

V2
\/IZ (x1 = x2)

decouples the total energy # = #,+ #, into a symmetric and an anti-
symmetric contribution.

e) Calculate the frequencies w and w, of the symmetric and antisymmetric
normal vibration modes. Evaluate the frequencies ws and w, as Taylor
series in 2¢%/(fR?) and truncate the expansions after second order terms.

f) The energy of the complete system of two interacting oscillators can
be expressed as U = f%h (ws + w,). Derive an expression for the energy
of the isolated oscillators and show that this is decreased by an amount
¢/R® when mutual interaction (bonding) occurs.

Xq =

1.12 Calculate how the van der Waals bonding of a molecule depends on its
distance, d, from a solid surface. For simplicity, choose a simple cubic lat-
tice. Show that the result does not depend on the structure of the crystal.
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When atoms are chemically bound to one another they have well-defined
equilibrium separations that are determined by the condition that the total
energy is minimized. Therefore, in a solid composed of many identical atoms,
the minimum energy is obtained only when every atom is in an identical
environment. This leads to a three-dimensional periodic arrangement that is
known as the crystalline state. The same is true for solids that are composed
of more than one type of element. In this case, certain “building blocks”
comprising a few atoms are the periodically repeated units. Periodicity gives
rise to a number of typical properties of solids. Periodicity also simplifies the
theoretical understanding and the formal theory of solids enormously.
Although a real solid never possesses exact three-dimensional periodicity, one
assumes perfect periodicity as a model and deals with the defects in terms of
a perturbation (Sect. 2.7). Three-dimensional periodic arrangements of atoms
or “building blocks” are realized in many different ways. Basic elements of
the resulting crystal structures are described in Sects. 2.1-2.5.

The counterpart to the crystalline state of solids is the amorphous state.
This is a state in which no long-range order exists; however, a degree of
short-range order remains. Examples of amorphous solids are glasses,
ceramics, gels, polymers, rapidly quenched melts and thin-film systems depos-
ited on a substrate at low temperatures. The investigation of amorphous
materials is a very active area of research. Despite enormous progress in
recent years, our understanding of amorphous materials still remains far from
complete. The reason is the absence of the simplifications associated with per-
iodicity. Nonetheless, from comparison of the properties of materials in a
crystalline and an amorphous state we have learned the essential features of
the electronic structure, and thereby also macroscopic properties, are deter-
mined by short-range order. Thus these properties are similar for solids in the
amorphous and crystalline state. In the context of this book we focus on a
few structural and electronic properties of amorphous solid in Sects. 3.1, 7.6
and 9.8.

Materials of practical use are nearly always composites. Examples, some
of them known to mankind since early ages, are the bronzes (alloys of
copper and tin), brass (copper and zinc) or steel (in its simplest form
iron with a few per cent of carbon). Modern material science has supple-
mented these classical, mostly binary alloys with many multi-component
systems including composite materials. In the framework of this textbook,

H. Ibach, H. Liith, Solid-State Physics, 4th ed.,
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particular attention will be paid to semiconductor alloys (Chap. 12). Alloys
typically do not exist as a homogenous crystalline phase; they rather consist
of microcrystallites, whose composition depends on temperature, pressure,
and the percentage of the constituting elements. Phase diagrams of simple
binary alloys are discussed in Sect. 2.6.

2.1 The Crystal Lattice

A two-dimensional lattice is spanned by two vectors @ and b. Every point
on the lattice can be reached by a lattice vector of the form

r,=nia+nb (2.1)

where n; and n, are integers. Depending on the ratio of the lengths of the
vectors @ and b, and on the angle y between them, lattices of various
geometries can be constructed. The most general lattice, with no additional
symmetry, is obtained when a#b and y#90° (Fig.2.1). A planar
crystal structure would be produced if every point of this “parallelogram lat-
tice” were occupied by one atom. In this case, each elementary (or unit) cell
with sides @ and b would contain one atom. Such elementary cells are termed
primitive. It is also possible for crystal structure to contain more than one
atom per unit cell. In such cases the lattice points of Fig. 2.1 correspond to
points in the crystal which all have identical environments. Such points may,
but need not necessarily, lic at the center of an atom.

Other planar lattices of higher symmetry are obtained when y, a and b
take on certain special values. The rectangular lattice is obtained when
y=90° (Fig. 2.2). When additionally a = b, this becomes a square lattice.
The two-dimensional plane can also be filled with a regular array of hexa-
gons. The unit cell is then given by ¢ =5b and y =60°. A hexagonal close
packing of spheres has this unit cell. The condition ¢ = b with y arbitrary also
produces a new type of lattice. However, this lattice is more conveniently
described as a “‘centered” rectangular lattice with a#b and y = 90° (Fig. 2.2).
One thereby obtains the advantage of an orthogonal coordinate system; the
lattice, however, is no longer primitive.

It is easy to see that the description in terms of a centered unit cell is
only useful for a rectangular lattice. If centering is introduced into a
square, parallelogram or hexagonal lattice, it is always possible to describe

. . . . Fig. 2.1. A plane oblique lattice
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Fig. 2.2. Further two-dimensional lattices: square, rectangular, centered rectangular and
hexagonal (y = 60°, a = b)

the new lattice in terms of an alternative set of smaller basis vectors. In
other words, the only result is that one has obtained a larger than necessary
unit cell.

The discussion so far has concerned two-dimensional lattices, but
the principles can be extended to lattices in three dimensions. Instead
of the five possible systems of basis vectors in the plane, one now has
seven possibilities (Table 2.1). These correspond to the seven distinct
crystal systems of crystallography. With the addition of centering, one
can construct from these basis vector systems all the possible lattices of
three-dimensional space. As well as face centering, one now has the
additional possibility of body centering (Fig. 2.3). As was the case in
two dimensions, one can readily convince oneself that only certain

Table 2.1. The seven different basis-vector systems or crystal systems. Most elements crys-
tallize in a cubic or hexagonal structure. For this reason, and also because of their high
symmetry, the cubic and hexagonal coordinate systems are particularly important

Basis vectors/crystal axes Angles Crystal system
a#b#c a#f#y#90° triclinic
a#b#c a=y=90°p#90° monoclinic
a#b#c a=pf=y=90° orthorhombic
a=b#c a==y=90° tetragonal
a=b#c a=pf=90°y=120° hexagonal
a=b=c a=pF=y#90° rhombohedral

a=b=c a=pf=y=90° cubic
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Fig. 2.3. The 14 three-dimensional Bravais lattices. The hexagonal lattice and the two cen-
tered cubic lattices are particularly important in solid state physics

centerings are useful. For example, it would not make sense to employ
a tetragonal base-centered lattice because this is equivalent to a primi-
tive tetragonal lattice with a smaller unit cell.
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2.2 Point Symmetry

Every point of the lattices just discussed represents an atom, or a more-or-
less complicated group of atoms, each of which has particular symmetry
properties. The symmetries and the corresponding notation will be presented
in the following.

Reflection in a Plane

This symmetry is expressed mathematically by a coordinate transformation.
For example, mirror symmetry about the yz-plane is represented by the
transformation y’' =y, z’ =z, x’ = —x. The presence of a mirror plane in a
crystal structure is indicated by the symbol m. An example of a molecule
possessing two perpendicular mirror planes is the water molecule (Fig. 2.7).
One of the mirror planes is the plane defined by the atoms of the molecule;
the other is perpendicular to this and passes through the oxygen atom,
bisecting the molecule.

Inversion
Inversion symmetry is described by the coordinate transformation x’ = —x,
y'=-y, z/ =—z Thus in a sense this might be described as reflection in a

point. The symbol representing inversion symmetry is 1. An example of a
molecule possessing inversion symmetry is cyclohexane (Fig. 2.4). Homonuc-
lear diatomic molecules also have inversion symmetry and, of course, mirror
planes.

Rotation Axes

Rotational symmetry is present if a rotation through a particular angle
about a certain axis, leads to an identical structure. The trivial case is, of

Cs

Fig. 2.4. The cyclohexane mole-
cule (CgHj,). The principal sym-
metry element is the 3-fold axis
of rotation C3. The molecule also
has a center of inversion, three
mirror planes and, perpendicular
to the main axis, three 2-fold ro-
tation axes at 120° to one an-
other. The point group is denoted
by D}d (Tdb]e 22)
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course, rotation by 360° which inevitably leads to the same structure. The
number of intermediate rotations that also result in indistinguishable
arrangements is called ‘“‘the order” of the rotation axis. Thus one can
have 2-, 3-, 4- and 6-fold rotation axes, corresponding to invariance under
rotations of 180°, 120°, 90°, and 60°. For single molecules it is also possi-
ble to have 5-fold, 7-fold, etc., axes. Small solid aggregates (clusters) may
also display 5-fold rotational symmetry. An example is the particularly
stable icosohedron composed of 13 atoms. Icosohedra are formed in the
rapid quenching of melts. The solid which is thus formed has a quasi crys-
talline structure and produces sharp X-ray diffraction spots that reflect
the local 5-fold symmetry [2.1]. For strictly periodic crystals, however,
only 2-, 3-, 4- and 6-fold rotation axes are possible. All other orders of
rotation are incompatible with the required translational symmetry. The
notation describing the possible axes of rotation is given simply by the
numbers 2, 3, 4 and 6.

The cyclohexane molecule shown in Fig. 2.4 has a 3-fold rotation axis.
A molecule with a 6-fold axis is benzene (CgHg), whose carbon skeleton
consists of a planar regular hexagon.

Rotation-Inversion Axes

Rotation with simultaneous inversion can be combined to give a new sym-
metry element — the rotation-inversion axis. It is symbolized by 2, 3, 4, or 6.
Figure 2.5 illustrates a 3-fold rotation-inversion axis. From this it is evident
that a 3-fold rotation-inversion axis is equivalent to a 3-fold rotation
together with inversion. The 6-fold rotation-inversion axis may alternatively
be represented as a 3-fold rotation axis plus a mirror plane.

)
LA\

- \,

S/ & N

O S T L g Fig. 2.5. Representation of a 3-fold rotation-inversion axis. The
effect can also be described by the combination of other symme-

try elements
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2.3 The 32 Crystal Classes (Point Groups)

The symmetry elements discussed in the previous section may be combined
with one another in various ways. Conversely, every crystal may be
described by a particular combination of point-symmetry elements. To be
complete, the description must satisfy a number of conditions. For example,
if two successive symmetry operations are applied, the result must be a
further symmetry element: 4® B = C. Three (or more successive symmetry
operations must obey the so-called associativity rule: (A®B)RC =
A® B®C). There is an identity element E, corresponding to no operation
or to a rotation about 360°, such that AQ E = 4. Furthermore, every sym-
metry element 4 possesses an inverse A4 ', which corresponds to the reverse
operation, so that 4 '®4 = E. These properties are the mathematical defi-
nition of a group. There are 32 distinct crystallographic point groups. If the
translational symmetry is also taken into account then one obtains the 230
possible space groups. Although not necessarily true in general, we should
note that for translations A® B = B® A (the property of Abelian groups).

The 32 crystallographic point groups are most commonly represented by
so-called stereographic projections. These projections were developed by crys-
tallographers in order to obtain a systematic classification of the exposed sur-
faces of naturally grown crystals. The point at which each surface normal
intersects a sphere is marked and then projected onto the plane perpendicular
to the highest order symmetry axis. Intersection points above this plane are
marked by a full circle, and those on the lower half sphere by an open circle
or a cross. Hence, in the systematic representation of the point groups, the
highest order axis lies in the center. Stereographic projections of two point
groups are shown in Fig. 2.6. A particular point group may be denoted in
three different ways:

1) by specifying a system of generating symmetry operations;
2) by specifying the international point group symbol;
3) by the Schonflies symbol.

The notation based on the generating symmetry operators is common in
crystallography, whereas the Schonflies symbols have largely been adopted
in group theory and spectroscopy. The Schonflies notation consists of a

Fig. 2.6. Representation in stereographic
projection of the symmetry elements of
two point groups. The symbols 0, A and
B denote 2-, 3-, and 4-fold rotation axes.
The full lines are mirror planes. When the
outer circle is also drawn as a full line, this
indicates that the plane of the drawing is
also a mirror plane
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Table 2.2. The Schonflies point group symbols

Symbol Meaning

Classification according G (j=2, 3,4, 6) j-fold rotation axis
to rotation axes and S; J-fold rotation-inversion axis
principal mirror planes D; j two-fold rotation axes L to a (j-fold) principal
rotation axis
T 4 three- and 3 two-fold rotation axes as in a tetra-
hedron
o 4 three- and 3 four-fold rotation axes as in an oc-
tahedron
C; a center of inversion
C, a mirror plane
Additional symbols for h horizontal = perpendicular to the rotation axis
mirror planes \Y vertical = parallel to the main rotation axis
d diagonal = parallel to the main rotation axis in

the plane bisecting the 2-fold rotation axes

main symbol that characterizes the axes of rotation (if any) of the system,
and a subsidiary symbol that gives the positions of the symmetry planes.
The symbols and their meanings are summarized in Table 2.2. As an exam-
ple, we consider the water molecule, for which the highest order rotation
axis is a 2-fold axis. The symmetry planes are vertical, i.e. they lie parallel
to the main axis of rotation. The corresponding Schonflies symbol is C,,. A
cube has three 4-fold rotation axes, four 3-fold rotation axes and symmetry
planes perpendicular to the 4-fold axes. Its Schonflies symbol is Oy,.

2.4 The Significance of Symmetry

To the uninitiated, the correct assignment and symbolization of symmetry
often seems complicated and confusing. It will thus be useful to give a brief
overview of the importance of symmetry in the description of a solid. For
this purpose, we base our discussion on quantum mechanics. As we have
seen, the water molecule, for example, has two mirror planes. The presence
of these two mirror planes must somehow be reflected in all the physical
properties of the molecule. When the electronic or vibrational properties of
the molecule are described by a Hamiltonian, then this has 2-fold mirror
symmetry, i.c., it remains invariant under the corresponding coordinate
transformation. This invariance can also be expressed in other ways. An
operator ¢ is assigned to the reflection. When ¢ operates on the Hamilto-
nian #, on an eigenstate y or on R, the result should describe 7, y or R
in the transformed (mirror image) coordinates.

Such operators are represented as matrices. Thus the reflection of coor-
dinates in the yz-plane is represented by the matrix operation
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This is a three-dimensional representation. The same operation can also be
expressed in terms of three one-dimensional matrices,

[(=D)x; (Dy; (2] = (=x3052)

each of which acts on only one coordinate component. In this case the
three-dimensional representation is known as ‘“‘reducible”’, whereas the cor-
responding one-dimensional representation is called “‘irreducible” since it
cannot be further simplified. It is easy to see that the irreducible representa-
tion of a rotation through 180° (a 2-fold rotation axis) is also one-dimen-
sional: for a suitable choice of coordinates, it can be expressed simply by a
sign reversal. However, for 3-, 4- and 6-fold rotation axes, except for the
case of a 360° rotation, the operations always involve two coordinate
changes. The irreducible representation is therefore two-dimensional.

If the Hamiltonian operator possesses a particular symmetry, for example
mirror symmetry, then it makes no difference whether the reflection operation
appears before or after the Hamiltonian operator, i.c., the two operators com-
mute. As is well known from quantum mechanics, such operators have a
common set of eigenstates. Thus the possible eigenstates of # can be classi-
fied according to their eigenvalues with respect to the symmetry operators. In
the case of mirror symmetry and that of a 2-fold rotation axis C,, one has
o>=1and C3=1 and thus the eigenvalues can only be =+ 1:

oV, =+",, QY =+Y%,, (2.3)

cY_=-V_ ., GV =-Y_.

The eigenstates of # may therefore be either symmetric or antisymmetric with
respect to these operators. This is often expressed by saying that the eigenstates
have even or odd “parity”. We have already met an example of even and odd
parity in our discussion of the chemical bonding between hydrogen atoms
(Sect. 1.2). The bonding state was a symmetric combination of atomic wavefunc-
tions and therefore a state of even parity. As seen in this example, the eigenstates
¥, and ¥ belong to distinct eigenvalues of 7. The corresponding energy
levels are thus nondegenerate. From this we may conclude, for example, that the
water molecule can possess only nondegenerate energy states (we ignore here
any accidental degeneracy of energy levels or normal mode vibrations).

To illustrate the above discussion we will apply these ideas to the nor-
mal mode vibrations of the water molecule. Accordingly, the atoms can
move symmetrically or antisymmetrically with respect to the two mirror
planes of the molecule. For atoms that lie in a mirror plane, antisymmetric
motion with respect to the plane implies motion perpendicular to the plane,
since only then can reflection reverse the motion. The corresponding sym-



30 2 Structure of Solid Matter

metric vibrations of such atoms must involve motion in the mirror plane.
One of the two mirror planes of the H;O molecule is the plane containing
the three atoms (Fig. 2.7). The motions that are antisymmetric with respect
to this plane are two rotations of the molecule and its translation perpendi-
cular to the plane. The six symmetric modes with motion in the plane of the
molecule are two translations, a rotation about an axis perpendicular to the
plane, and the three normal mode vibrations (Fig. 2.7). Of these vibrations
two are symmetric and one is antisymmetric with respect to the mirror
plane perpendicular to the molecular plane.

For more complex molecules too, it is possible to perform such a classi-
fication of the vibrational modes and/or electronic states. However, the pro-
cess becomes rather more involved for operators that have two-dimensional
irreducible representations, such as Cs;. If C3 commutes with #, then
together with the state ¥, the state C; ¥ is also an eigenstate of 7. There
are now two possibilities:

1) Apart from a numerical factor, which, for suitable normalization can
be made equal to 1, the state C; ¥ is identical to ¥. Thus, in this case
¥ is totally symmetric with respect to C3 and the operation C3 has a
one-dimensional (numerical) representation. The state ¥ is then — at
least with respect to the operation — nondegenerate.

2) (3% produces a new, linearly independent state ¥, which however,
due to the commutivity of C3 and #, must also be an eigenstate of
# with the same ecigenvalue E. The states ¥ and ¥’ are thus degener-
ate. Since the rotation Cz always affects two coordinates, its irreduci-
ble representation is a two-dimensional matrix. Every eigenstate of Cj
may then be constructed as a linear combination of two functions that

v, =3652 cm™
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|
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I
|
i
|
|
l
Fig. 2.7. The two symmetric and the antisymmetric
vs = 3756 cm™ s Y Y

vibrations of the water molecule. Together with the
| three rotations and three translations these give the nine
I normal modes corresponding to the nine degrees of
| freedom
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can be selected to be orthonormal. The energy levels are therefore 2-
fold degenerate. Such degenerate levels are found for all point groups
possessing more than a 2-fold rotation axis.

Particularly important in solid state physics are the diamond lattice and the
face-centered and body-centered cubic lattices. These belong to the point
groups T4 and Oy, respectively, the former displaying tetrahedral and the
latter octahedral symmetry (Figs. 2.8, 10, 12). The representations of such
symmetries affect three coordinates and thus 74 and Oy have three-dimen-
sional irreducible representations. They are associated accordingly with 3-
fold degeneracy. We will meet such states when we deal with the normal
modes of these lattices (Sect. 4.5) and their electron states (Sect. 7.4).

Besides symmetry-determined degeneracy, one also finds degeneracy that
results from the specific form of #. The degeneracy associated with the angu-
lar momentum quantum number / of the hydrogen atom is well known to be
a result of the 1/r potential, whereas the degeneracy with respect to the mag-
netic quantum number m stems from symmetry. The crystal symmetry also
determines the number of independent components of the tensors describing
macroscopic material properties. We note here for later use that second-rank
tensors, such as the thermal expansion or susceptibility, have only one
independent component in cubic crystals, and two in hexagonal crystals. The
symmetry of the fourth rank elastic tensor is discussed in Sect. 4.5.

2.5 Simple Crystal Structures

The Face-Centered Cubic Structure

The simplest crystal structures are those in which each point of the lattice is
occupied by one atom. In this case, the face-centered cubic lattice produces
a face-centered cubic crystal. Each atom in this structure is surrounded by
12 nearest neighbors. The number of nearest neighbors in a particular struc-
ture type is known as the coordination number.

The coordination number 12 represents the highest possible packing
density for spheres. In a single plane of close-packed spheres the number of
nearest neighbors is 6. In three dimensions there are an additional 3 nearest
neighbors in each of the planes below and above. If the lattice constant of
the face-centered structure is denoted by «, then the separation of nearest
neighbors is given by a/v2 as is readily seen from Fig. 2.8. The closest-
packed planes are sketched in Fig. 2.8 b. They lie perpendicular to the main
diagonal of the cube. If one moves away from a particular close-packed
plane along the main diagonal, another identical plane is reached only after
passing through two differently positioned close-packed planes. This packing
sequence is illustrated more clearly by Fig.2.9. A close-packed layer has
two sorts of hollow sites (visible in layer A). The second layer is obtained
by placing further spheres on one of the two possible sites, and the third-
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Fig. 2.8a,b. The face-centered cubic structure showing the primitive rhombohedral unit
cell (a). The close-packed planes are illustrated by dotted lines in (b). The number of near-
est neighbors (the coordination number) is 12

Fig. 2.9. The close-packed layers of the
fcc structure with the stacking sequence
ABCABC ...

layer spheres lie above the other type of site. Thus the face-centered cubic
structure is composed of close-packed layers in the stacking sequence
ABCABC... . Each of these layers alone has hexagonal (6-fold) symmetry;
however, stacked above one another in this manner the symmetry is reduced
to a 3-fold rotation axis (Fig. 2.9). The face-centered cubic structure there-
fore has four 3-fold rotation axes as well as a mirror plane perpendicular to
the 4-fold axis. It therefore belongs to the point group Oy. The face-centered
cubic structure is usually denoted by the abbreviation fcc. Examples of fcc
crystals are the metals Cu, Ag, Au, Ni, Pd, Pt and Al. Despite their rela-
tively high melting points these metals are fairly soft. The reason for this is
that the close-packed layers are able to slide over one another. This sliding
motion occurs in the plastic deformation of these crystals. However, it does
not involve an entire layer; it is limited to regions associated with disloca-
tions (Sect. 2.7).

Hexagonal Close Packing

The hexagonal close-packed (hcp) structure results when close-packed planes
are stacked in the sequence ABAB... . In contrast to the fcc structure, the
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smallest possible unit cell now contains two atoms. Thus the main axis of
rotation is again 3-fold rather than 6-fold. As can be seen by considering
only the layers A and B of Fig. 2.9, there exist three 2-fold rotation axes
perpendicular to the 3-fold axis. Furthermore, the close-packed layer also
lies in a mirror plane. The point group corresponding to these symmetry ele-
ments is Dszp. As with the fcc structure, the coordination number is 12.
Important metals that crystallize in the hcp structure include Zn, Cd, Be,
Mg, Re, Ru and Os.

The Body-Centered Cubic Structure

The body-centered cubic (bce) structure is shown in Fig. 2.10. For this struc-
ture the coordination number is only 8. Thus for nondirectional bonding
the bce structure would appear to be less favorable. Nonetheless, all alkali
metals as well as Ba, V, Nb, Ta, W, and Mo, are found to crystallize in this
structure, and Cr and Fe also possess bcc phases. At first sight this is hard
to understand. However, it is important to note that in the bce structure the
6 next-nearest neighbors are only slightly farther away than the 8 nearest
neighbors. Thus, depending on the range and the nature of the wave-
functions contributing to the bonding, the effective coordination number of
the bce structure can be higher than that of the fcc structure. Figure 2.11
shows the probability functions for the positions of the lithium electrons
relative to the atomic nucleus. Also shown are the half distances to the near-
est (r1), the next-nearest (r,) and the third-nearest (r3) neighbors for the
actually occurring bee structure and for a hypothetical fcc structure with the
same nearest-neighbor separation. When the next-nearest neighbors are
taken into account, it is easy to see that the bcc structure leads to a greater
overlap of wavefunctions and thus an increase in the strength of the chemi-
cal bonding. This effect is enhanced by the fact that the p-orbitals in a cubic
structure are oriented along the edges of the cube, thereby contributing sig-
nificantly to the bonding with the next-nearest neighbors. The picture

Fig. 2.10. The body-centered cubic structure with
coordination number 8
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Fig. 2.11. Absolute square of the radial part of the electron wavefunctions of lithium as a
function of distance from the nucleus. For the bec structure, both the 8 nearest and the 6
next-nearest neighbors lie in a region of relatively high density. Hence for non-directional
metallic bond it is possible for the bce structure to be energetically favorable with respect to
fcc. Examples of bec metals are the alkali metals Li, Na, K, Rb, Cs and Fr. This curve
may be compared with Fig. 1.9 which shows the wavefunction amplitude rather than the
probability density. The decay at large distances then becomes weaker

changes, however, when d-electrons become involved in the bonding. The d-
orbitals are directed both along the cube edges and along the diagonals of
the faces. Since the d-orbitals are localized relatively strongly on the atoms
(Fig. 1.9), they can only contribute to the bonding when they are directed
towards the nearest neighbors. The fcc structure enables exactly this, which

is the reason why metals with a large number of d-electrons often crystallize
in the fcc structure.

The Diamond Structure

The diamond structure belongs to the crystal class Ty4. It allows three-
dimensional covalent bonding (Sect. 1.2) in which every atom is surrounded
by four nearest neighbors in a tetrahedral configuration (Fig.2.12). Thus
the coordination number is 4. The diamond structure takes its name from
the structure of the carbon atoms in diamond. Other elements that crystal-
lize with the same structure are Si, Ge and a-Sn. The diamond structure can
be described as two interpenetrating fcc structures that are displaced relative
to one another along the main diagonal. The position of the origin of the
second fec structure, expressed in terms of the basis vectors, is (§,.4). This
leads to a nearest-neighbor distance of v/3a/4. Since the separation of close-
packed layers in the fcc structure is v/3a/3, the distance of a central atom

from the base of its tedrahedron of neighbors is % of the total height of the
tetrahedron.
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Fig. 2.12. The diamond structure. It con-
sists of two interpenetrating fcc struc-
tures which are displaced relative to one
another by 1/4 of the long diagonal of
the cube. This type of structure is typical
of the elements of group IV of the peri-
odic table (C, Si, Ge, a-Sn) and also for
II1I-V compounds in which the sites (000)
and (} 1) are occupied by different types
of atom (ZnS-type structure)

The Zinc Blende Structure

The zinc blende (ZnS) structure is closely related to the diamond structure,
but now the two interpenetrating fcc structures contain different atoms. The
ZnS structure is found in the most important of the compounds of group
IIT with group V elements. Examples are GaAs, GaP and InSb. The com-
pound ZnS which gives its name to this structure is of course also of the
“zinc blende structure”. The choice of name for this structure is actually
slightly unfortunate, since the compound ZnS also crystallizes in a hexago-
nal phase with the so-called wurtzite structure. This structure, in common
with the ZnS type, has tetrahedral coordination; however, the stacking
sequence of the close-packed (111) planes is no longer ABCABC..., but
ABAB..., thereby giving it a hexagonal structure. The wurtzite structure is
also adopted by other compounds between group II and group VI elements
(ZnO, ZnSe, ZnTe, CdS, CdSe). As well as the ordered packing sequences
ABAB... and ABCABC... it is also possible to find mixed forms with ran-
dom stacking or very long period repeats. The best-known example of these
so-called “polytypes” is SiC.

Ionic Structures

Typical ionic structures, exemplified by the CsCl and NaCl structures, have
already been introduced in Sect. 1.3 (Fig. 1.6). The CsCl structure is derived
from the bce structure by replacing the ion at the center of the cube by an
ion of a different element. The NaCl structure is the result of placing one
fce structure within another. The coordination numbers are 8 for the CsCl
structure and only 6 for the NaCl structure. As we have seen in Sect. 1.3,
for equal ionic separations, the Madelung constant and thus also the ionic
energy are greater for the CsCl structure. Although the differences are rela-
tively small, it is perhaps surprising that the majority of ionic crystals prefer
the NaCl structure. The explanation for this is as follows: In most cases, the
radius of the cations is much smaller than that of the anion. For example,
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"na =098 A, ro =1.81A.
The cesium ion however is a large cation:
res = 1.65 A.

As the cation becomes smaller, the anions of a CsCl-type structure app-
roach one another and eventually overlap. This occurs at a radius ratio of
r*/r-=0.732. For still smaller cations the lattice constant could not be
further reduced and the Coulomb energy would remain constant. In this
case the NaCl-type structure is favored since anion contact does not occur
until a radius ratio of r " /r~ = 0.414 is reached. Yet smaller radius ratios
are possible for the ZnS-type structure. Indeed, for ZnS itself, the ratio is
r*/r~=0.40. This can be regarded as the reason why ZnS does not crystal-
lize in the NaCl structure. This is a somewhat simplified view as it neglects
the strong covalent contribution to the bonding (see also Problem 1.2).

2.6 Phase Diagrams of Alloys

Modern functional materials consist of many elements in different phases.
The term phase denotes a domain of homogeneous concentration and struc-
ture on a length scale that is large compared to atomic dimensions. Separate
phases can be observed even with simple binary alloys. Figure 2.13 displays
the scanning electron microscope image of the polished surface of an Ag/Cu
alloy. The dark and light sections represent copper- and silver-rich
fcc-phases, respectively. As a rule, the various constituting phases of
modern composite materials are not in thermal equilibrium. Nonetheless,

Fig. 2.13. Scanning electron micro-
scope image of a polished specimen
of an Ag/Cu alloy with 30% Ag-
and 70% Cu-atoms. The dark and
light areas consist of fcc-phases
with about 95% Cu-atoms and
about 86% Ag-atoms, respectively
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the equilibrium properties are basic to the understanding. Equilibrium prop-
erties are described with the help of phase diagrams. In a phase diagram, the
temperature is plotted vs. the concentration of one component (at the
expense of another). For a particular temperature and composition, the
material possesses a particular equilibrium structure. The boundaries
between different structures are marked by lines. In the simplest case the
lines describe the boundary between the solid and the liquid state. Phase
diagrams for all important alloys have been determined experimentally by
thermodynamic measurements [2.2]. In the following, we consider only the
simple phase diagrams of substitutional binary alloys. A substitutional alloy
consists of two types of atoms A and B, which as pure materials crystallize
in the same structure. If in addition the chemical bonding is similar and the
lattice constants of the pure phases are not too different, atoms A and B
will assume the same lattice sites in the composite system. A number of dif-
ferent states exist even in this simple case: the liquid state with a complete
mixture of the two components, a mixture of liquid phase and a solid phase
in which atoms of either type A or B are enriched, a solid phase with
micro-crystals in which either A or B are enriched, or a continuously misci-
ble solid phase. Alloys that are continuously miscible in the solid phase
have the simplest phase diagrams. The SiGe alloy is an example. Its phase
diagram is displayed in Fig. 2.14. Depending on the temperature and the
relative Si-concentration, the alloy exists either as a homogeneous liquid
(¢ for liquidus), as a homogeneous solid (s for solidus) or as a two-phase
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Fig. 2.14. Phase diagram for the continuously miscible alloy Ge/Si. In the range bounded
by the liquidus and solidus curves a Ge-rich liquid phase coexists with a Si-rich solid phase
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system with liquid and solid parts (¢+s). The realms of existence are
marked by the so-called liguidus and solidus lines. Another substitutional
alloy is AgCu. Here, the phase diagram is much more complex (Fig. 2.15).
The reason is that the solid phase of AgCu is not completely miscible. Cu is
soluble in Ag only up to a particular percentage that depends on the tem-
perature (a-phase, left side of Fig. 2.15). Likewise is Ag in Cu only soluble
up to a temperature-dependent percentage (f-phase, right side of Fig. 2.15).
In the intermediate range in the so-called miscibility gap the solid phase con-
sists of microcrystalline domains of an Ag-rich a-phase and a Cu-rich f-
phase (see Fig. 2.13). In real systems, the size and shape of the microcrystals
are nearly always determined by kinetics rather than by thermodynamic
equilibrium. A defined equilibrium size of the crystallites nevertheless exists.
It is determined by the minimum of the interfacial energy between the differ-
ent crystallites and the elastic strain energy due to the mismatch of the lat-
tice constants between the crystals of different composition. The strain
energy decreases as the crystal size becomes smaller. On the other hand the
interfacial area and thus the interfacial energy increases so that one has a
minimum of the total energy for a particular crystal size.

In the course of this section we want to come to an understanding of
the origin of the different phase diagrams of the two substitutional alloys
SiGe and AgCu based on thermodynamic reasoning. As seen above, the
crucial difference between the two systems is the possibility, respectively
impossibility of a continuous mixture in the solid phase. Our thermody-
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Fig. 2.15. Phase diagram for the binary alloy Ag/Cu. The system is not continuously mis-
cible in the solid phase. Rather the alloy has a wide miscibility gap in which a Ag-rich
fce-phase (a-phase) co-exists with a Cu-rich fce-phase (f-phase) (see Fig. 2.13)
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namic considerations therefore focus on the free enthalpy associated with a
mixture. The free enthalpy of a system G is a linear combination comprising
of the internal energy U, the entropy S and mechanical (or other) work. In
the simple case of a homogeneous, liquid or gaseous matter G is

G=U-TS+pV, (2.4)

in which T is the temperature, p the pressure and V' the volume. In addition
to the work against the external pressure one needs to consider the mechani-
cal work associated with the internal degrees of freedom of the system (see
discussion above). This part is rather difficult to deal with (see also
Sect. 4.5). Fortunately, the contributions of energy and entropy of mixture
prevail. We therefore consider only those two contributions in the following
and neglect contributions of mechanical, electrical or magnetic work. In a
first step we likewise neglect thermal contributions. One further approxima-
tion is needed for the purpose of calculating the energy and entropy of
mixture: this is that we admit only homogeneously mixed phases, that is we
exclude spatial and temporal fluctuations. This corresponds to a mean field
approximation, an approximation that we encounter quite frequently in the
theory of solid matter. In the present context, the approximation is also
known as the Bragg—Williams approximation. The variation in the enthalpy
associated with mixing G, consists of a variation of the internal energy
Unix» Which is the heat of solution, and the variation of the entropy due to
mixing Spix

Gmix = Umix — TSmix . (25)

In a first step we calculate the variation of the internal energy under the
assumption that the binding energies of the involved atoms can be repre-
sented by nearest neighbor pair interactions. This simple ansatz does not
conform with reality but must suffice here. We denote the number of atoms
of type 4 and B as N, and Np, and the number of nearest-neighbor bonds
between atoms of type A, of type B, and between atoms 4 and B as N4,
Npp, and N ,p, respectively. Correspondingly, the binding energies of the
atom pairs 44, BB and AB are denoted as V,,, Vg and V5. The coordi-
nation numbers (number of nearest-neighbors) in the two structures of inter-
est here, the diamond structure (Si, Ge) and the fcc-structure of Ag and Cu,
are z = 4 and z = 12, respectively. The variation of the energy due to mixing
Umix is

Unix =— (Nga Vaa+ N Vs + Nap Vap)

1
3 (zN4Vaa+zNpVsp) . (2.6)

The sum of the first three terms is the energy after mixing and the sum of
the last two terms is the energy before mixing. The factor 1/2 occurs because

there are z/2 bonds per atom. Note that the definitions of binding energy
and internal energy imply an opposite sign: a higher binding energy
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corresponds to a lower internal energy! The numbers of atom pairs N g4,
Npp and N 4p can be expressed in terms of the concentrations

Xy = NA/N
Xp = NB/N with (27)
N =Ny4+ Np

and one obtains
Nys=Nyxqz/2 = inz/2
Npp = Npxpz/2 = Nx3z/2 (2.8)
Nyg=Nyxpz/2=Nxyxpz/2.

With that the energy of mixing U,,;x becomes

Unix = Nzx4 x5 Wag (2.9)
with
1
Wap = i(VAA + Vgg) = Vag. (2.10)

If W,p <0 then the alloy has a higher binding energy and the internal
energy of the alloy is lower than the sum of the internal energy of the con-
stituents. Since x4+ x5 =1 the energy of mixing has the form of a parabola.

Unix = Nzx4(1 = x4)Wap. (2.11)

Associated with a mixing of two components is always an enlargement of
the entropy. This is because microscopically a mixture can be realized in
many different ways. The different microscopic realizations originate from
the exchange of atoms 4 with atoms B. The number of possibilities for an
exchange of all atoms N = N,+ Np is N!. The exchange of atoms 4 and B
among themselves, however, does not constitute a discernibly different
microscopic state. The number of discernible states is thus N!/(N, Npg!).
With that the entropy of mixing becomes

N!

=<In¢ (2.12)

Nx ) (Nxg)! "

With Stirling’s approximation for large numbers NIn N~ Nln N— N, N> 1
one obtains

Smix = =N/ [xg In x5+ (1 — xp) In (1 — xp)]. (2.13)

The entropy Spmix 18 zero for xz = 0 and xz = 1 and positive for intermediate
xp. The free enthalpy of mixing is

Gmix = mix_TSmix
= N{ZXB(I—XB) WAB+/T [XB In XB+(] —XB) In (] —XB)]} . (214)
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The function has an extreme at xg = 0.5. Whether it is a minimum or a
maximum depends on the ratio of Wz and # T. One has

a minimum for z Wg//T < 0.5, (2.15)
a maximum for z W,p/#T > 0.5. (2.16)

Examples for zW 5/« T=0.5, 2.5 and 3 are displayed in Fig.2.16. For
negative values of Wz the free enthalpy of mixing is always smaller than
the sum of the free enthalpies of the separate components. In that case the
alloy is continuously miscible. The same holds for any system, only if the
temperature is high enough (2.14). The system becomes unstable if the free
enthalpy has a maximum at xp=0.5. It decomposes into two separate
phases, one with a concentration of the B-component x; < 1/2 and the
other one with x > 1/2. This is independent of the sign of the free enthalpy
of mixing. For the special case when G, (xp) is symmetric around xz = 1/2
(Fig. 2.16) it is easy to see that the instability exists not only at xz = 1/2 but
in the entire range between the two minima of G,x(xp). Figure 2.17 displays
the more general case of an asymmetric shape of G(xp). The two concen-
trations x%; and x% of the two phases into which the system separates are
determined by the condition that the system as a hole must remain in equili-
brium, that is, the chemical potentials of the two phases must be equal. The
chemical potentials of the atoms of type B in the two phases are
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Fig. 2.16. The free enthalpy of a solid mixture according to a simple model (2.14). The so-
lid line corresponds to the limiting case in which an intermediate maximum is not yet pre-
sent. If an intermediate maximum occurs, the system is unstable against phase separation
into two phases, one depleted of Ny atoms and one enriched with Ny atoms. Phase se-
paration occurs independent of whether the enthalpy of mixing is gained in the alloying
process (dotted line) or not (dashed line for concentrations around 0.5)
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Hence the system decomposes into two phases for which the slope of the
free enthalpy (Fig. 2.17) is equal. Of all (the infinite number of) points on
the curve G(xp) that fulfil the condition of an equal slope the total free
enthalpy is minimal for the particular pair of concentrations x and x%
through which a common tangent to G(xp) can be drawn. This common
tangent condition uniquely determines the two concentrations and x and
xp. A few simple geometrical considerations demonstrate that the system
indeed separates into two phases with concentrations x; and x%, and that
an alloy is unstable in the entire concentration range between x; and x7.
Consider an arbitrary intermediate concentration xgy. Conservation of mass
during the process of phase separation requires that the numbers of B-
atoms in the two phases Ny = N'x’; and N = N”x; obey the relation

N'x" 4+ N"x" = (N'+ N")xp . (2.18)

The ratio of the total number of atoms in the two phases becomes therefore
equal to the ratio of the concentration differences

N x%—Xxpo

= . 2.1
N XB()—)C/B ( 9)

Free enthalpy G
o
&
/
/

0 X5 Xgo X3 1
Concentration x,

Fig. 2.17. Free enthalpy of an alloy with an intermediate maximum and two minima of a
different depth. The system is unstable in the concentration range between the two points
of tangency at x; and x7, and the system separates into two phases with the concentrations
x’y and x. The free enthalpy of the two-phase system is described by the common tangent
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A corresponding relation holds for the component 4. This simple relation
resembles the lever principle in mechanics and is therefore known as the
lever rule of phase diagrams. It holds for any phase separation, regardless
of its nature. After phase separation the free enthalpy of the system
becomes

G(x% x3)=G(x3)N'/N+G(x3) N"/N. (2.20)

By substituting (2.20) into (2.19) and after a suitable rearrangement the
enthalpy can be written as

!/
G (¥ xp) = G (¥p) +[G (vf) = G (xp)] T—F . (2.21)
B~ Xp

which is precisely the equation describing the y-coordinate in x, of the com-
mon tangent. Thus, the common tangent is simply the free enthalpy after
phase separation. Between x; and x; all values of the common tangent are
below the free enthalpy of the system before phase separation (Fig.2.17).
The system is therefore unstable with respect to phase separation in the
entire gap between x% and x%. In the context of binary alloys this gap is
known as the miscibility gap. As can be seen from the phase diagram
(Fig. 2.15) a miscibility gap does exist for the Ag/Cu alloy. If a melt of
40 atom% silver and 60 atom% copper is cooled below the temperature of
solidification, the solid crystallizes in the f-phase containing about 95% Cu.
The remaining melt becomes enriched with Ag, until the Cu-rich a-phase
(95.1% Cu) and the silver-rich f-phase (85.9% Ag) solidify together at the
so-called eutectic point, which corresponds to 39.9% Cu in the melt at a
temperature of 779°C. Upon further cooling the concentrations of the two
solid phases should continue to vary in principle (Fig. 2.15). However, the
equilibrium state can be achieved only for an extremely low cooling
rate because of the low diffusivity of atoms in the solid phase. The
concentrations in the darker and lighter areas in Fig. 2.15 therefore
practically correspond to the equilibrium concentrations of the «- and
f-phase at the eutectic point.

Thermodynamic reasoning can also be applied to the phase transition
between the liquid and the solid phase in the case of a completely miscible
alloy. Consider the free enthalpy of such a system in the liquid and solid
phases (Fig. 2.18). The system is completely miscible since the free enthalpy
is now represented by a function with a positive curvature in the entire con-
centration range. Liquid and solid phases coexist if the minima of the free
enthalpies for the liquid and the solid state occur at different concentrations
which is generally the case. The curves in Fig. 2.19 approximately represent
the system Ge/Si. We consider first a high temperature 7> 1412°C. There,
the free enthalpy of the melt is below that of the solid for all concentrations.
This is because of the entropic contribution to the free enthalpy. At high
temperatures, the entropy of the liquid phase is higher than that of the solid
phase. The reason is that a liquid has more states of low quantum energy
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than a solid. Simply speaking, the degrees of freedom of the transverse
sound waves of the solid become free translations in the melt. At a tempera-
ture of 1412°C the free enthalpies of the melt and the solid become equal
for the concentration xg; = 1. Melt and the solid coexist: we have reached
the melting point of pure silicon. For even lower temperatures, e.g. at
1150°C, one has, according to the common tangent construction, a
coexistence of a Si-depleted, liquid phase with a Si-enriched solid phase.
Below 940°C finally, only the solid phase exists for all mixing ratios. If the
cooling process is performed using a melt with a mixing ratio of 50 atom%
Ge and 50 atom% Si, e.g., crystallites with 80% Si will solidify first at
a temperature of about 1270°C. In the temperature range between
the liquidus and solidus curve the equilibrium concentrations of Si in the
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liquid and the solid state are given by the corresponding values for the
concentrations of the liquidus and solidus curves. The ratio of the atom
numbers in the two phases obey the lever rule (2.19). With decreasing tem-
perature the solidified fraction of the melt increases, and the Si-concentration
in the crystalline phase decreases. It is therefore not possible for continuously
miscible alloys to grow a crystal out of a melt that has a homogeneous con-
centration ratio, unless one confines the crystallization to a small fraction of
the melt.

One can utilize, however, the different equilibrium concentrations in the
melt and the solid to purify a crystal of undesirable impurities. This is the
basis of purification by zone melting: One begins by melting a narrow zone of
a crystal rod at one end. In this molten zone the impurity concentration
necessarily is as it was in the solid. Then, the molten zone is slowly pulled
over the rod. If the liquidus and solidus curves are as in Fig. 2.14 with regard
to an impurity (with Si as the base material and Ge as an impurity) then the
re-crystallized rod in the cooling zone has a lower concentration of impurities
than the (respective) melt. Hence, the impurities are enriched at that end of
the rod that is molten last. A large section of the crystal can very effectively
be purged of impurities by repeating the process many times.

2.7 Defects in Solids

Mechanical and electrical properties of solids are largely controlled by
defects in the periodic structure. This section briefly reviews various known
defects. In the previous section we have already learned about a special
defect: In a diluted substitutional alloy, minority atoms may assume the
sites of the majority atoms. In the context of semiconductors replacing
majority atoms by atoms of another kind, preferably by atoms of a higher
or lower valence is known as “doping”. Doping varies the electrical conduc-
tivity of a semiconductor by many orders of magnitude (see Sect. 12.3).
Defects consisting only of one or a few atoms, as in the case of doping, are
known as point defects. Point defects do not necessarily involve foreign
atoms. The so-called Frenkel defect consists of an atom displaced from its
regular site to an interstitial site. The atom in the interstitial site and the
vacancy in the regular site together are named “Frenkel pair”. Since
the bond energy of the atom is lower at the interstitial site the formation
of a Frenkel pair requires energy. Nevertheless, Frenkel pairs do exist
in equilibrium at higher temperatures because the formation of a Frenkel
pair increases the entropy. That increase arises from the fact that the
atom as well as the vacancy may sit in any possible interstitial or lattice
site, respectively, thereby enjoying many distinguishable microscopic
realizations. The number of possibilities to distribute n, vacancies on N
regular atom sites is N!/[n,!/(N-n,)!]. Similarly, the number of possibilities to
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distribute n;, interstitial atoms on N’ interstitial sites is N'!/[Bine! (N’ — nint)!].
For a Frenkel pair the number of interstitial atoms n;,, necessarily equals
the number of vacancies n,. With n = n;,( = n, one obtains for the entropy
S (comp. 2.12)

7|

S—/1 N! | !
nn!(N—n)!+ nn!(N’—n)!

>/ [NInN+N'InN'—2nlnn—(N—n)In (N—n) (2.22)
—(N'=n)In(N'—n)] .

In equilibrium the system is in the state of lowest free energy F =nAFE —TS,
in which AF is the energy required to create a Frenkel pair. The correspond-
ing equilibrium concentration (n) is obtained by differentiating the free
energy with respect to n

dF (n)*

(2.23)

Since the concentration of defects is small ((n) < N,N') (n) is approxi-
mately

—AE/2/AT
e .

(n) = VNN’ (2.24)

Hence, the concentration rises exponentially with the temperature according
to an Arrhenius law. The activation energy in the Arrhenius law is half the
energy required for the creation of a Frenkel-pair. The factor of two in the
denominator of the exponent arises because vacancies as well as interstitial
atoms are distributed independently in the crystal. One therefore has two
independent contributions to the entropy. If the atom that is displaced from
the regular site diffuses to the surface or into an interface (“‘Schottky
defect”), the full energy of creation for the defect appears in the Arrhenius
law. The reason is that for a macroscopic solid the number of available sites
on the surface or in an interface are infinitely small compared to the number
of sites in the bulk. In that case only the vacancies in the regular crystal
sites contribute to the entropy.

Defects of the next higher dimension are line defects. A common intrin-
sic line defect is the dislocation. A simple example is shown in Fig. 2.20,
which displays a cross section of a crystal with a dislocation. Around the
core of the dislocation atoms are displaced from their regular lattice posi-
tions because of the elastic stresses. Most of the energy required to create a
dislocation is actually in the elastic strain that decays rather slowly as one
moves away from the core. Dislocations are described by the Burgers vector.
The Burgers vector is constructed by considering the positions of atoms
after completing a closed loop of an arbitrary size around the dislocation
core for a lattice with and without a dislocation (Fig. 2.20). If the Burgers
vector is oriented perpendicular to the dislocation line as in Fig. 2.20, the
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Fig. 2.20. Sectional drawing of a crys-
tal with an edge dislocation (sche-
matic). The dashed line represents a
loop around the core of the disloca-
tion. The loop begins with atom A. It
would close at atom B if the disloca-
tion were not present. The Burgers
vector b points from atom A4 to atom
B. The same Burgers vector is ob-
tained for any arbitrary loop that en-
closes the dislocation

dislocation is called an “edge dislocation”. If the Burgers vector is oriented
along the dislocation line, then the dislocation is called a “screw disloca-
tion”, since by moving along a closed loop around the dislocation one
climbs from one lattice plane onto the next. Edge dislocations and screw
dislocations represent two limiting cases of a general, intermediate form of a
dislocation. Furthermore, the angle between the orientation of the Burgers
vector and the dislocation line may vary as one moves along the dislocation
line. The modulus of the Burgers vector is equal to the distance of an
atom plane for the common screw or edge dislocations. However,
dislocations for which the modulus of the Burgers vector is only a fraction
of a distance between an atom plane also exist. Such a partial dislocation is
generated, e.g., if all atoms in a section of an fcc-crystal are displaced along
a direction in a densely packed plane so as to produce a stacking fault
(Fig. 2.9).

Dislocations play a crucial role in plastic deformation of crystalline
material. Consider a shear force acting parallel to an atom plane. It is not
feasible to make all the atoms glide simultaneously since the shear force
works against the atomic bonds of all atoms in the glide plane at once. A
step wise glide is energetically much more favorable. Firstly an edge disloca-
tion is generated at the surface and then the dislocation is shifted through
the crystal. Then gliding is effectuated by displacing the atoms row-by-row
until the dislocation line has moved through the entire crystal. The required
forces are much lower since fewer atoms are affected and bonds need not be
broken but must merely be strained and re-oriented. Plastic deformations of
a crystalline solid are therefore connected with the generation and wander-
ing of dislocations. In a pure, ideally crystalline material dislocations can
move easily, provided the temperature is not too low. For many metals,
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e.g., room temperature suffices. Such materials have little resistance to
plastic deformation. Examples are rods or wires consisting of annealed cop-
per and silver. If the material is polycrystalline, e.g., after cold working,
then the wandering of dislocations is hindered by the grain boundaries
between the crystallites, and the material resists plastic deformation more
effectively.

Problems

2.1 The phase transition from graphite to diamond requires high pressure
and high temperature in order to shift the equilibrium in favor of diamond
and also to overcome the large activation barrier. Suggest a method of pro-
ducing diamond (layers) without the use of high pressure.

2.2 Below 910°C iron exists in the bec structure (a-Fe). Between 910°C and
1390°C it adopts the fcc structure (y-Fe). Assuming spherical atoms, deter-
mine the shape and size of the octahedral interstitial sites in y-Fe
(a=3.64 A) and in a-Fe (a = 2.87 1&). Sketch the lattices and the interstitial
sites. For which phase would you expect the solubility of carbon to be high-
er? (Hint: The covalent radius of carbon is 0.77 A.) When molten iron con-
taining a small amount of carbon (<1%) is cooled, it separates into a
more-or-less ordered phase containing a-Fe with a small concentration of
carbon atoms on interstitial sites (ferrite) and a phase containing iron car-
bide (cementite, Fe;C). Why does this occur? Why does cementite strength-
en the medium against plastic deformation?

(Hint: Fe;C, like many carbides, is very hard and brittle.)

2.3 Copper and gold form a continuous solid solution with the copper and
gold atoms statistically distributed on the sites of an fcc lattice. For what re-
lative concentrations of copper and gold atoms do you expect ordered alloys
and what would they look like? Draw the unit cells of these alloys and iden-
tify the corresponding Bravais lattices. Can you suggest an experiment
which would determine whether the alloy is ordered or not?

2.4 Draw and describe the symmetry elements of all Bravais lattices.

2.5 Draw the primitive unit cell of the fcc lattice and determine the lengths
of the primitive lattice vectors a’, b’, ¢’ (in units of the conventional lattice
constant a) and also the angles a’, f, " between the primitive lattice vec-
tors. (Hint: Express the primitive lattice vectors as a linear combination of
the lattice vectors a, b, ¢ of the face-centered cubic lattice and use elemen-
tary vector algebra.) What distinguishes this unit cell from that of the rhom-
bic Bravais lattice?
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2.6 Determine the ratio of the lattice constants ¢ and a for a hexagonal
close packed crystal structure and compare this with the values of ¢/a found
for the following elements, all of which crystallize in the hcp structure:
He (¢/a =1.633), Mg (1.623), Ti (1.586), Zn (1.861). What might explain the
deviation from the ideal value?

2.7 Supposing the atoms to be rigid spheres, what fraction of space is filled
by atoms in the primitive cubic, fcc, hep, bee, and diamond lattices?

2.8 Give a two-dimensional matrix representation of a 2-, 3-, 4-, and 6-fold
rotation. Which representation is reducible?

2.9 Show that the rhombohedral translation lattice in Fig. 2.3 is equivalent
to a hexagonal lattice with two atoms on the main diagonal at a height of
¢/3 and 2c¢/3. Hint: Consider the projection of a rhombohedral translation
lattice along the main diagonal into the plane perpendicular to this main
diagonal. The main diagonal of the rhombohedral lattice is parallel to the
c-axis of the hexagonal lattice. How are the a and the ¢ axis of the corre-
sponding hexagonal lattice related to the angle a = f =7y and the length
a = b = ¢ of the rhombohedral lattice?

2.10 Take a piece of copper wire and anneal it by using a torch! Demon-
strate that the wire is easily plastically deformed. Then pull the wire hard
and suddenly or work it cold using a hammer. How is the plastic behavior
now? Explain the observations!



3 Diffraction from Periodic Structures

A direct imaging of atomic structures is nowadays possible using the high-
resolution electron microscope, the field ion microscope, or the tunneling
microscope. Nonetheless, when one wishes to determine an unknown struc-
ture, or make exact measurements of structural parameters, it is necessary
to rely on diffraction experiments. The greater information content of such
measurements lies in the fact that the diffraction process is optimally sensi-
tive to the periodic nature of the solid’s atomic structure. Direct imaging
techniques, on the other hand, are ideal for investigating point defects, dis-
locations, and steps, and are also used to study surfaces and interfaces. In
other words, they are particularly useful for studying features that represent
a disruption of the periodicity.

For performing diffraction experiments one can make use of X-rays,
electrons, neutrons and atoms. These various probes differ widely with re-
spect to their elastic and inelastic interaction with the solid, and hence their
areas of application are also different. Atoms whose particle waves have a
suitable wavelength for diffraction experiments do not penetrate into the so-
lid and are thus suitable for studying surfaces. The same applies, to a lesser
extent, to electrons. Another important quantity which differs significantly
for the various probes is the spatial extent of the scattering centers.
Neutrons, for example, scatter from the nuclei of the solid’s atoms, whereas
X-ray photons and electrons are scattered by the much larger (~10* times)
electron shells. Despite this and other differences, which will be treated in
more detail in Sect. 3.7, it is possible to describe the essential features of dif-
fraction in terms of a single general theory. Such a theory is not able, of
course, to include differences that arise from the polarization or spin polar-
ization of the probes. The theory described in Sect. 3.1 below is quasi classi-
cal since the scattering itself is treated classically. The quantum mechanical
aspects are treated purely by describing the probe particles as waves. For
more detailed treatments including features specific to the various types of
radiation, the reader is referred to [3.1-3.3].

3.1 General Theory of Diffraction

In our mathematical description of diffraction we will make the assumption
of single scattering: the incoming wave induces the emission of spherical

H. Ibach, H. Liith, Solid-State Physics, 4th ed.,
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waves at all points r of the target material. A fixed phase relationship is ass-
umed between the primary wave and each of the emitted spherical waves
(coherent scattering). Further scattering of the spherical waves, however, is
neglected. This is also known as the “kinematic” approximation and corre-
sponds to the first Born approximation of the quantum mechanical scatter-
ing theory. The approximation is valid for neutrons and X-rays, and within
certain limits also for the scattering of high energy electrons. For highly per-
fect single crystals, it is possible to observe “‘nonkinematic” (“‘dynamical”)
effects in the scattering of X-rays.

For the derivation of the scattering amplitudes we make use of Fig. 3.1.
Here Q is the location of the source of radiation, P is the position of the
scattering center, and B the point of observation. As an example of a source
we shall take the spherical light waves emitted in conjunction with an elec-
tronic transition in an atom. At sufficiently large distances from the source
the spherical waves can be approximated as plane waves. The amplitude (or
for X-rays more accurately the field strength vector) at position P and time
t may thus be written

Ap = Ay eik0~(R+r)—i(uot ) (31)

If we follow this wave back to the source Q (R + r = 0), then its amplitude
here as a function of time behaves as ~exp (—iwgt), i.c., it has a well-defined
phase at all times. The reasoning, however, can only be applied to a single
emission process. In real light sources photons are emitted with uncorrelated
phases from many atoms (an exception to this is the laser). For other types
of incident particle the phases are likewise uncorrelated. Thus, when we use
expression (3.1), we must keep in mind that the result for the observed
intensity arises by averaging over many individual diffraction events.

Fig. 3.1. Schematic representation of scattering indicating the parameters used in deriving
the scattering kinematics. The source Q is assumed to be sufficiently far away from the
target that the spherical waves reaching the target can be well approximated by plane
waves. The same condition is assumed for the point of observation relative to the scatter-
ing centers
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The relative phases of the wave at points P at time ¢ are given by the
position-dependent factor in (3.1). We now allow the primary wave to be
scattered by the material. Every point P in the scattering material is caused
by the primary wave to emit spherical waves, whose amplitude and phase
relative to the incident (primary) wave are described by a complex scattering
density ¢(r). The time dependence of these spherical waves is determined by
the time dependence in (3.1) (forced oscillation). The spherical waves ob-
served at B are therefore described by

eik\R’—r\

Ag=Ap(r, 1)¢ (")m :

(3.2)

For a fixed position P, the wave vector k is in the direction R'—r. Thus we
can also write

oik-(R'—r)
A=A t —_ . 3.3
B P(r’ )Q(V) |R/—V| ( )
At large distances from the scattering center A4 p is then given by
| Ry
Ap = Ap (1, 1) (1) 77 F & (3.4)

R/
where k now has the same direction for a// positions P in the target material.
Inserting (3.1) into (3.4) we obtain

Ay N A )
Ag = R_O/ el (ko Rk R') o—i oot 0 (I‘) el (ko—k)-r (35)
The total scattering amplitude is given by integration over the entire scatter-
ing region:

Ap (t)oce ™ [o (r) et koR)rgyp (3.6)

For scattering from a rigid lattice, o(r) is time independent and the time
dependence of 4z only contains the frequency wg. In the quantum mechani-
cal picture this corresponds to energy conservation. We thus have elastic
scattering. This form of scattering is important for structural analyses. If
instead we allow the scattering density o(r) to vary with time, then we also
obtain scattered waves with w # wq. This inelastic scattering will be dealt
with in Sect. 4.4.

In diffraction experiments for structure determination, it is not the am-
plitude but the intensity of the scattered waves that is measured:

I(K)oc |Ag] o< [ o (r) e K dr > (3.7)

In this equation we have introduced the scattering vector K = k—k,,.

We see that the intensity is the absolute square of the Fourier transform
of the scattering density o(r) with respect to the scattering vector K. From
this we establish an important fact: The smaller the structures to be resolved
in the diffraction measurement, the larger is the required value of K, and thus
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also of the k-vector of the incident radiation. In studies of the atomic struc-
tures of solids the wavelengths should thus roughly correspond to the lattice
constants. For such waves it is impossible to measure their amplitude as a
function of position and time — only the intensity can be measured. This leads
to considerable complications in structural analysis. If it were actually possible
to measure the amplitude instead of the intensity, then one could make use of
inverse Fourier transformation to obtain the spatial distribution of the scatter-
ing density directly from the diffraction pattern. However, since in reality one
can only observe the intensities, the information about the phases is lost and
the scattering density cannot be calculated directly. To determine a particular
structure it is therefore necessary to do the calculation in reverse: One chooses
a feasible model structure, calculates the diffraction pattern that it would pro-
duce, and then compares this with the experimentally observed diffraction pat-
tern. The structural parameters of the model are varied until optimal agree-
ment with experiment is found.

The analysis of unknown structures is facilitated by invoking the so-
called Patterson function, which is the Fourier transform of the intensity. In
order to elucidate the meaning of the Patterson function we rewrite (3.7) for
the intensity

I(K)x [o(r)e K dr[o(r')e & dr' . (3.8)

Since both integrals extend over the entire space the variable r' in the second
integral can be replaced by r + r'. Hence, one obtains

(K)o [ 5 dr'[ o (r)o(r' +r)dr. (3.9)
The auto-correlation function of the scattering density
P(r')y=[o(r) o (r'+r)dr (3.10)

is the Patterson function. The function has its peaks where r’ corresponds to
a vector between two atoms of the crystal structure. A peak is particularly
strong if the vector connects two atoms with a large scattering cross section.
The interatomic distances in an unknown structure are therefore easily
obtained by inspection of the Patterson function.

Scattering from disordered systems, i.e. liquids and amorphous solids is
most suitably described with the help of the Patterson function P(r'). We de-
compose the scattering density o(r) into contributions from individual
atoms. For simplicity we assume that the material is made up of a single
type of atoms. The scattering density centered at the position r; is denoted

as Qu(rr,).
o(r) =D ou(r—r). (3.11)

i
The Patterson-function P(r') can be split into two contributions: one

describing the correlation of one atom with itself and the other one describ-
ing the correlation of an atom with all other atoms.
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Z Jou(r = ri)ou (r — v +v')dr
_ZJQat - thr—r,—&—r dF+ZJth - f)

XZQatr—k/+l’ )dr . (3.12)
J#i

The second term in (3.12) contains the information on the structure. We
assume now that the scattering density is localized at the centers of the
atoms. This assumption is particularly well fulfilled for neutron scattering
(see also Sect. 3.7 and 1.3). In that case, the first integral in (3.12) contributes
only at ' = 0. The integral can therefore be replaced by f25,, where &,
denotes the Kronecker symbol and f the “atom factor”, which is a measure
of the magnitude of the scattering amplitude of an atom. The sum over all
(identical) atoms i in the first term can be replaced by a multiplication with
the number of atoms N. The second integral in (3.12) vanishes for ' =0
since the probability to have a second atom j at the position of any other
atom i is zero. We assume the system to be disordered, but homogeneous
on a coarse scale. Because of the disorder, the mean scattering density around
each atom is identical and independent of angle. Thus, the mean value of the

sum
~ Soalr- )

depends only on the distance r from the atom whose environment is being
considered.
The Patterson function is then

P(r') = Nf?6o, + Nfo(r)o(r+1)dr . (3.13)

3l
—~

It is useful to introduce a function g(+') that is a measure of the pair
correlation of atoms, independent of their scattering amplitude and
density. The limiting value of g(+) for ' — oo is one. For large distances
away from any particular atom considered the scattering density is
lim o(r + 1) = Nf/V with V' the volume. We therefore define the function
r—00

g(r') by
S0 = [ear+r)dr. (314

After inserting (3.14) and (3.13) in (3.9) one obtains for the scattering inten-
sity I(K)

I(K)x S(K):1+§J"g(r)em’"dr. (3.15)

S(K) is known as the structure factor. The pair correlation function g(r) can
be calculated from the Fourier transform of S(K) — 1. Here, however, one
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Fig. 3.2. Pair correlation function for amorphous silicon and liquid iron at a temperature
of T=1833K [3.4, 3.5]. The distances of the nearest, next-nearest, and third nearest-
neighbors for crystalline silicon are marked as r(Si), r»(Si) and r;(Si), the corresponding
distances for crystalline iron (fcc structure) as ri(Fe) and r,(Fe)

encounters a technical difficulty: The contribution to g(r) that arises from
the homogeneous part of the scattering density at large r leads to a forward
scattering at K = 0. This contribution cannot be separated from the primary
beam. One therefore extracts a function A(r) = g(r) — 1 from the experimen-
tal data that does not include the forward scattering. The function h(r) is
therefore the Fourier transform of the structure factor without the forward-
scattering contribution (see Problem 3.7). Figure 3.2 shows two examples
for the pair correlation function g(r). The dashed and full lines represent
g(r) for liquid iron and amorphous silicon, respectively. The first peak cor-
responds to the distance of nearest-neighbors. The sharpness of the peak
indicates that the distance to the nearest-neighbor is well defined even for
structurally disordered systems. The mean distances of further neighbors are
likewise discernible. Here, we encounter a characteristic difference between
the amorphous state and the liquid state of matter. In the amorphous state,
the distance to the next nearest-neighbor is nearly the same as in the crystal-
line state. The lower density of the amorphous state is reflected only in the
distance to the third nearest-neighbor. In liquids, the second peak is
approximately at twice the distance of the nearest-neighbor peak, hence at a
significantly larger distance than, e.g., in a close-packed solid. This larger
distance of second nearest-neighbors is an essential feature of the liquid
state. Only with a larger distance of second nearest-neighbors can a liquid
state be realized, as is easily demonstrated in a model in which the atoms
are represented as hard spheres (see also Problem 3.7b).
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3.2 Periodic Structures and the Reciprocal Lattice

For periodic structures, o(r) can be expanded in a Fourier series. We first
consider a one-dimensional example in which g(x) repeats with period a

o(x)=0(x+na) n=0,+£1,+£2,.... (3.16)

The corresponding Fourier series then reads

0(x) =3 g &2/ (3.17)

It is readily seen that a displacement by an arbitrary lattice vector x,, = ma
leads to an identical g(x), hence satisfying the required translational invar-
iance. The extension to three dimensions is straightforward and yields

o(r)=> 0s¢7". (3.18)
G

The vector G' must fulfill certain conditions in order to preserve the transla-
tional invariance of ¢ with respect to all lattice vectors

r,=nia;+ma +nyas . (3.19)
The conditions are expressed by

G r,=2mm (3.20)

where m is an integer for all values of n,n,,n;. We now decompose G in
terms of three as yet undetermined basis vectors g;,

G=hg +kg,+1g (3.21)

with integer h,k,/. The condition (3.20) now implies for the example of
Ny = n3y = 0

(hg, +kg, +lgs)ma =2am. (3.22)
For an arbitrary choice of n; this can only be satisfied if

g-ag=2n and g,-a;=g3-a;=0. (3.23)
Expressed in general terms this requirement becomes

gi-ai=2mo;. (3.24)

The basis set g, g,,g3 that we have thus defined spans the so-called recipro-
cal lattice. For every real lattice there is a corresponding and unambiguously
defined reciprocal lattice. Its lattice points are denoted by the numbers
h,k,l. The rules for constructing this lattice are given directly by (3.24): the
reciprocal lattice vector g, lies perpendicular to the plane containing @, and
as and its length is 27/a; [cos J(g,a;)]. Figure 3.3 shows a planar oblique
lattice and its corresponding reciprocal lattice. It should be noted however
that, although the reciprocal lattice is drawn here in real space, its dimen-
sions are actually m .



58 3 Diffraction from Periodic Structures

. ) . .
. ) ] . °
5’ . ’
. . .
ai
. . . . ° 9

Fig. 3.3. A plane oblique lattice and its corresponding reciprocal lattice. The vectors g,
and g, lie perpendicular to a, and a; respectively

A useful expression for the basis vectors of the reciprocal lattice is the
following

a X a3

————— and cyclic permutations. 3.25
@ (@ X a3) yclic p (3.25)

g1 =2n
It is easy to show that (3.25) satisfies the condition (3.24).

It follows from the one-to-one correspondence of the lattice and its reci-
procal lattice that every symmetry property of the lattice is also a symmetry
property of the reciprocal lattice. The reciprocal lattice therefore belongs to
the same point group as the real-space lattice.

3.3 The Scattering Conditions for Periodic Structures

We now proceed to insert the Fourier expansion of ¢(r) into the equation
(3.7) for the scattering intensity. With the notation K = k — ky we obtain

2
| Ao | Z 06 [ gy
G

R'2
If the crystal consists of many identical unit cells, the only significant contri-
butions to the integral in (3.26) arise when G = K. Expressed in its compo-
nents, this integral would be, for an infinite volume, a representation of the
respective d-functions. Its value is then equal to the scattering volume V

: Vo ofir G=K
HE=K)r gy — : 3.27
Je ’ {N 0 otherwise (3:27)

2

1(K) (3.26)

Scattering from lattices thus leads to diffracted beams when the difference
between the k vectors of the incident and scattered waves is equal to a reci-
procal lattice vector G. This condition is named the “Laue condition” after
Max von Laue. The measured intensity is
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The apparent proportionality to ¥ needs further comment. An exact analy-
sis of the integral shows in fact that the width of the intensity distribution
around a diffraction beam maximum decreases as V' ~'. Thus, as expected,
the total intensity is proportional to the scattering volume.
The vector G is unambiguously defined by its coordinates 4, k&, with re-
spect to the basis vectors g; of the reciprocal lattice. Thus the indices #,k,!/
can also be used to label the diffraction beams. Negative values of h,k,[ are

denoted by 4, k,1

It o< | oy | - (3.29)

If no absorption of radiation takes place in the target material, o(r) is a real
function and on account of (3.18) we then have

oGP V2. (3.28)

Qnkt = Qi (3.30)
This means that the intensities obey
Iy = I (Friedel’s rule) . (3.31)

The above rule has an interesting consequence. The X-ray pattern always
displays a center of inversion, even when none is present in the structure
itself. For structures containing a polar axis, the orientation of this axis can-
not be determined from the X-ray diffraction pattern. An exception to this
statement is found when one works in a region of strong absorption, i.c.,
when the above condition of a real scattering density does not hold.

We now devote some more attention to the interpretation of the Laue
condition

K=G. (3.32)

This condition is of fundamental importance for all diffraction phenomena
involving periodic structures, regardless of the type of radiation employed.
It can be represented pictorially by means of the Ewald construction
(Fig. 3.4). One selects an arbitrary reciprocal lattice point as the origin and
draws the vector ko to point towards the origin. Since we are assuming elas-
tic scattering we have k = ko = 2n/1 where 4 is the wavelength of the radia-
tion. All points on the sphere of radius k = k(y centered around the starting
point of the vector ko describe the end points of a vector K =k — ky. The
condition G = K is satisfied whenever the surface of the sphere coincides
with points of the reciprocal lattice. At these points diffraction beams are
produced and they are labeled with the indices (4kl) corresponding to the
relevant reciprocal lattice point.
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(040)

(030) Fig. 3.4. The Ewald sphere of
the reciprocal lattice illustrating
the Laue condition k—Fky=G.

(020) Diffraction beams are produced
whenever a reciprocal lattice point

(010) coincides with the surface of the
sphere. For arbitrary values of the

(000) magnitude and direction of kq this

(10) (20) (30) will generally not be the case. In

x % % order to observe diffraction one
must either use a continuum of
incident wavelengths or vary the
orientation of the crystal

3.4 The Bragg Interpretation of the Laue Condition

Any three lattice points that do not lie on a straight line can be seen (Fig. 3.5)
to define a so-called lattice plane. Such lattice planes may be labeled in a man-
ner that leads to a particularly simple interpretation of the diffraction from the
lattice. We assume that the lattice plane intersects the coordinate axes at values

Fig. 3.5a,b. Sets of crystal lattice planes. The planes illustrated here have the values m =1,
n =72, o = 2. The corresponding Miller indices are derived for the triplet (1/m,1/n,1/0) by
multiplying this by an integer p = 2 to give (hkl) = (211). Between the planes with indices
m,n,o there lie additional planes (dotted lines). These contain the same density of atoms
as can be seen from Fig. 3.4b, and are thus completely equivalent to the original planes.
The perpendicular separation of equivalent lattice plane is exactly a factor of p smaller than
the separation of the original planes (full lines) constructed from the positions of atoms lying
on the coordinate axes
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m,n,o0, where each of these numbers denotes an integer multiple of the
corresponding basis vector. One then takes the reciprocal values
W =1/mk' =1/n,I' =1/0 and multiplies /', k',/ by an integer p so as to
obtain a triplet of coprime integers (%, k,/). The numbers h,k,/ are known
as the Miller indices of the lattice plane (hk/). Parallel to the planes that inter-
sect each axis at a lattice point (full lines in Fig. 3.5) one can also draw other
equivalent lattice planes. The number of these planes is such that every lattice
point on each of the three axes lies in one of these lattice planes. This is a con-
sequence of the required translational symmetry (Fig. 3.5b). The total number
of equivalent lattice planes is now exactly p times as many as the number of
original planes (full lines). The reciprocal values of the axis intersection of
these planes (dotted and full lines in Fig. 3.5) directly supply the required
index triplet (hk/) of coprime integers.

We now prove an important relation: The reciprocal lattice vector G
with components (/kl) lies perpendicular to the lattice plane with the same
indices (nkl). The length of the vector Gy, is equal to 2z times the recipro-
cal distance between neighboring (Ak[) planes.

We begin by proving the first part of this statement. The vectors
a a . a3 a

T T TR

span the lattice plane. Their vector product

a @ a a 1 1
) N\T T ) T e @ e) gy (e a)
|
“wr
is normal to the plane (hkl). On multiplying this vector by
—27l'k'l'/|a; - (ay X a3)] one obtains

Zn(h' LXB g BXU Ly G XD ) (3.34)
al-(az X a3) al-(ag X a3) a - (az X a3)

a X al) (333)

This however, apart from the numerical factor p, is equal to Gy, [see (3.21)
and (3.25)]. Thus we have demonstrated that G, lies perpendicular to the
plane (hkl).

We now show that the separation of the planes, dj,,, is equal to 27/Gy.
The perpendicular distance of the lattice plane (hkl) from the origin of the
basis a;,a», a3 is

a
et = h—l, cos (ai, Gy) (3.35)

aya - th/ 2w h 2n
h' ay Gy Gua b’ G

The distance to the nearest lattice plane is therefore djy = d;,/p = 21/ G

(3.36)
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(hkl) point of the reciprocal
lattice

(hkl) lattice plane of the
real-space lattice

Fig. 3.6. The Bragg interpretation of the scattering condition. Since the vector Gy lies
perpendicular to the lattice planes (hk/) in real space, the scattering appears to be a mir-
ror reflection from these planes. It should be noted that real space and reciprocal space
are shown here superposed

With the help of the lattice planes it is possible to obtain an intuitively
clear interpretation of the scattering conditions. We take the modulus of the
equation G = K:

2 . .
Gt = =2 = 2kq sin @ (Fig. 3.6) (3.37)
dpri
and thereby obtain the Bragg equation
A= 2dhk1 sin O . (338)

This equation implies that the waves behave as if they were reflected from
the lattice planes (hkl) (Fig.3.6). It is from this interpretation that the
expression “‘Bragg reflection” stems. The scattering condition then amounts
to the requirement that the path difference between waves reflected from
successive lattice planes should be an integer multiple of the wavelength of

the radiation, such as is needed to produce constructive interference
(Fig. 3.7).
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Fig. 3.7. Derivation of the Bragg condition. The path difference of the two reflected waves
is 2d/,k/ sin @

3.5 Brillouin Zones

The condition for the occurrence of a Bragg reflection was k — ko = G-
The end points of all vector pairs k, ko that satisfy this condition lie on the
perpendicular bisector of Gy, (Fig. 3.4). The smallest polyhedron centered
at the origin and enclosed by perpendicular bisectors of reciprocal lattice
vectors is called the Brillouin zone (also first Brillouin zone). The construc-
tion of the Brillouin zone is best demonstrated for the case of an oblique
planar lattice (Fig. 3.8).

The Brillouin zones for a few simple three-dimensional lattices are
shown in Fig. 3.9. The symbols denoting points in the Brillouin zone origi-
nate from group theory and characterize the symmetry. Like the reciprocal
lattice, the Brillouin zone also possesses the same point symmetry as the re-
spective lattice type.

The points on the zone boundary are special because every wave with a
k-vector extending from the origin to the zone boundary gives rise to a
Bragg-reflected wave. In the case of weak scattering and small crystals this
wave has only a small intensity. For large single crystals however, the
intensities of the primary and Bragg-reflected waves may be equal. These
interfere to produce a standing wave field. The position of the nodes and
antinodes is determined by the relative phases of the two waves and can be
varied by changing the angle of incidence of the primary beam. This effect

J Vi J
[{] (10) M)

(io) (00) (o1 Fig. 3.8. Construction of the first Bril-
louin zone for a plane oblique lattice.
Further zones can be constructed
from the perpendicular bisectors of
7(#) 7(i0) 7@ larger reciprocal lattice vectors
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Fig. 3.9. The Brillouin zones of the face-centered cubic, body-centered cubic and hexago-
nal lattices. Points of high symmetry are denoted by I, L, X etc. The surfaces enclosing
the Brillouin zones are parts of the planes that perpendicularly bisect the smallest recipro-
cal lattice vectors. The polyhedra that are produced by these rules of construction can be
drawn about every point of the reciprocal lattice. They then fill the entire reciprocal
space. The cell produced by the equivalent construction in real space is known as the
Wigner-Seitz cell. It can be used to describe the volume that one may assign to each point
of the real crystal lattice

can be used, for example, to determine the position of impurity atoms in a
lattice via the observation of their X-ray fluorescence. The production of
two waves of equal intensity and a fixed phase relation can also be used to
construct an X-ray interferometer with which individual lattice defects can
be imaged (Panel II).

For the case of electrons in a periodic solid, the production of Bragg-
reflected waves and their significance for the electron bands of the solid will
be discussed at greater length in Chap. 7.

3.6 The Structure Factor

The scattering condition (3.27) predicts only the positions at which diffrac-
tion beams appear. To obtain their intensity from (3.26) we first need to cal-
culate the Fourier coefficients g, of the scattering density
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Qnk1 = L J o (r)e™9 " dr. (3.39)
Ve
cell

In this the integral extends over the unit cell. By substituting the Fourier
expansion (3.18) of ¢(r) one can convince oneself of the validity of this equa-
tion. The scattering of X-rays is due to the electrons of the atoms. Except in
the case of light elements, the majority of the solid’s electrons (the core elec-
trons) are concentrated in a small region around the atoms. Scattering from
the valence electrons, which extend into the region between the atoms, can
be neglected in comparison. The integral over the scattering density o(r) can
therefore be divided into single integrals over the individual atoms: these
must then be added together with the appropriate phases. For this it is conve-
nient to divide the position vector r into a vector r, that gives the position of
the origin of the nth unit cell, a vector r, defining the position of each atom
within the unit cell, and a new position vector r’ which points away from
the center of each atom: r = r, + r, + ¢ (Fig. 3.10). With this notation, the
Fourier coefficients of the scattering density can be expressed as

1 —iG-r —iG-r
Okl = 7 Ze Gt f Qa (J‘/) ¢ ¢ dr'. (340)
C

The integral now extends only over the volume of a single atom. It is evi-
dent that it describes the interference of the spherical waves emanating from
different points within the atom. This integral is known as the atomic scat-
tering factor.

Since the scattering density is essentially spherically symmetric about
each atom, the integral can be further evaluated by introducing spherical
polar coordinates

Fig. 3.10. Definition of the vec-
tors r,, r, and . The vector r,
points to the origin of the nth
unit cell, which is described by
the triplet n = ny,ny, n3, r,, points
to the center of an atom within
the cell, and » from the center
to a point within the atom
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So=Joa(r)e O dr' =—[o,(r") eV 1 2 d (cos 9) dyp . (3.41)

Here ¢ is the polar angle between G' and r’. On integrating over ¢ and ¢
one obtains

, sin Gr'
P (3.42)

If we denote the angle between k and kg as the scattering angle 2 @ (forward
scattering: ® = 0) then on account of the relation

G = 2kosin 6, (3.43)

Ja :47TIQQ (rl)r

it follows that

p sinfdnr’ (sin®/1)]

fa:47'(an(V/)r 4nr’ (sin @/ 1)

dr’ . (3.44)

Thus the atomic scattering factor is a function f(sin ©@/4) which has its max-
imum value for forward scattering. For @ =0 we have f= 4= [ o(r)r?dr,
ie. it is equal to the integral of the scattering density over the atomic
volume. For X-ray scattering this is proportional to Z, the total number of
electrons per atom.

The summation over « in (3.40) leads to the so-called structure factor
Sy This describes the interference between waves scattered from the differ-
ent atoms within the unit cell,

Shkt = fore G (3.45)

For primitive lattices, i.e., those with only one atom per unit cell, S=f.
Other special cases arise for centered lattices. To show this we describe the
vector r,, in units of the basis vectors of the lattice

Fo = Uy @1 + Vo @) + Wo a3 . (3.46)

Since r,, is within the unit cell, we have u, v, w < 1. Using the definition of
the reciprocal lattice vectors (3.24) the structure factor may be written

Shkl — Zfa e—2 i (hug+k va+iw,) ) (347)

As an example we consider the body-centered cubic lattice. The two atoms
in the unit cell occupy the positions

1 =1(0,0,0) and r=(1/2,1/2,1/2).

Both have the same atomic scattering factor f.
For S it follows that

0 forh+k+/! odd

2f forh+k+1 even’ (3.48)

St = f(1 4 e k) = {
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This lattice therefore gives rise to systematic extinctions. For example
there is no (100) reflection. The (100) planes form the faces of the unit cell
and the reason for the destructive interference is the presence of the addi-
tional intermediate lattice planes containing the atoms in the body-centered
position (Fig. 2.10). A prerequisite for the complete extinction of the Bragg
reflections is that the central atom is identical to the corner atoms, in other
words, one must have a true body-centered Bravais lattice. The CsCl struc-
ture, for example, does not produce extinctions, except in the case of Csl
where the electron numbers of Cs™ and I are identical.

It is easy to show that other centered lattices also lead to systematic ex-
tinctions.

Even when the complete extinction produced by centered lattices is not ob-
served, the intensities of the diffraction beams are nonetheless modulated by the
presence of additional atoms within the unit cell. This fact enables one to deter-
mine the positions and types of atoms in the unit cell. We summarize by stres-
sing an important point: the shape and the dimensions of the unit cell can be de-
duced from the position of the Bragg reflections; the content of the unit cell, on
the other hand, must be determined from the intensities of the reflections.

3.7 Methods of Structure Analysis

Types of Probe Beam

For structure investigations one can employ electrons, neutrons, atoms and
X-ray photons. In each case, the wavelength must lie in a region that allows
Bragg reflections to be produced. It is this condition that determines the
respective energy ranges of the beams (Fig. 3.11). These are

10eV - 1keV  for electrons,
I0meV — 1eV for neutrons and light atoms,
l keV — 100keV  for photons.

The actual uses of these various probes in structure analyses are determined
by the cross sections for elastic and inelastic scattering, and also by the
availability and intensity of the sources.

For electrons between 10 eV and 1 keV the scattering cross sections are
so large that only 10-50 A of solid material can be penetrated by the beam.
Thus electrons are frequently employed to gather information about the
atomic structure of surfaces. Diffraction experiments with atoms offer a
further method of investigating surfaces (Panel I).

In the case of photons, depending on the nature of the target material
and the type of radiation, it is possible to investigate the bulk structure of
targets up to several mm in thickness. As a source of radiation one generally
employs the characteristic X-ray lines emitted by solids under electron bom-
bardment (X-ray tubes). Such sources also produce a continuous brems-
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Fig. 3.11. The de Broglie wavelength of photons, electrons, neutrons and helium atoms as
a function of the particle energies. The arrow shows the energy for a thermal beam at
room temperature (eV scale)

strahlung spectrum. The spectrum of characteristic lines is caused by the ioni-
zation of atoms, which is followed by the emission of light when electrons from
higher energy levels fall into the vacant state. Another excellent source of
X-rays possessing high intensity and strongly collimated beams with 100% po-
larization is the electron synchrotron (e.g., “DESY” in Hamburg, “BESSY” in
Berlin, ESRF in Grenoble, NSLS in Brookhaven, or ALS in Berkeley; see
Panel V). Because of the ready availability of X-ray sources, the majority of
structure investigations to date have been carried out with X-ray beams.
However, there are a number of questions that cannot be answered with X-ray
studies. We have seen that the atomic structure factors are proportional to the
nuclear charge Z. Thus the scattering intensities vary as Z>2 Therefore, when
hydrogen, for example, occurs in combination with heavy elements, it is very
difficult to detect it with X-rays. Here it is better to use neutron beams. The
scattering cross section for neutrons lies within a single order of magnitude for
all elements. On the other hand, the neutron cross sections for elements with
adjacent atomic numbers, which are difficult to distinguish with X-ray diffrac-
tion, are quite different. Hence it is possible, for example, to easily distinguish
iron, cobalt and nickel in neutron scattering (Panel I). A difficulty with
neutrons, however, is that intense beams can only be obtained from nuclear
reactors or, more recently, also from so-called spallation sources. Furthermore,
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the cross sections are small and the detection of the beams is less straightfor-
ward. Thus the necessary experimental effort is far greater than for X-ray or
electron scattering. Neutron beams are utilized particularly in circumstances
where one can take advantage of their specific properties, e.g., for investigating
the structure of organic materials and polymers.

Procedures for Determining Structure

The incidence of a monochromatic plane wave on a crystal does not, in gen-
eral, lead to any diffracted beams. We can see this immediately from the
Ewald construction (Fig. 3.4). Only for particular choices of the wavelength
(i.e. the magnitude of k), or for particular angles of incidence, will a point
of the reciprocal lattice fall on the Ewald sphere. The various procedures
for determining structures differ in the method by which this condition is
obtained. One can, for example, simply turn the crystal (preferably about a
principal axis oriented perpendicular to the incident beam). Since the reci-
procal lattice is associated in a fixed manner to the real crystal lattice, a
rotation of the crystal corresponds to a rotation of the reciprocal lattice
through the Ewald sphere (whose position in space is defined by the incident
beam and is therefore fixed). One after another the points of the reciprocal
lattice pass through the surface of the Ewald sphere. Thus, for particular
rotation angles diffracted beams emerge in certain directions and these can
be imaged by placing a photographic film around the crystal. This is the so-
called rotating crystal procedure. To obtain an unambiguous indexing of
the beams, the crystal is in addition translated along the axis of rotation
(Weissenberg method). Together, these two procedures can be used to deter-
mine unknown crystal structures.

Using the powder method developed by Debye and Scherrer, it is possi-
ble to measure the lattice constant to an accuracy of five decimal places. In
this technique the beam is directed at a powder composed of tiny single
crystals whose random orientation ensures that all possible reflections are
produced. In terms of the Ewald construction in reciprocal space (Fig. 3.4)
one can determine the allowed reflections by imagining the reciprocal lattice
to be rotated about the origin through the Ewald sphere. Since all orienta-
tions are present in the powder, a reflection is produced for every lattice
point that passes through the sphere in the course of the rotation. In other
words, one observes all reflections that lie within a radius of 2k, from the
origin of the reciprocal lattice. The powder method can be used, for exam-
ple, to measure the change of lattice constant with temperature or with
varying composition of an alloy.

The simplest method of producing diffraction is to use an incident beam
containing a continuous spectrum of wavelengths, for example, the X-ray
bremsstrahlung spectrum. In this case one observes all reflections whose lat-
tice points lie between the Ewald spheres corresponding to the minimum
and maximum k, values of the incident radiation.
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This so-called Laue method has the advantage that, for a suitable orien-
tation of the crystal, one can determine the crystal symmetry directly from
the diffraction pattern. For instance, if the incident beam is directed along
an n-fold symmetry axis, then the diffraction pattern also displays n-fold
symmetry. Thus the Laue method is often used to determine the orientation
of crystals of known structure and plays an important role in the prepara-
tion of crystals that are to be used as targets in other investigations. It can-
not be applied, however, for the determination of structure.

Problems

3.1 a) Show that the reciprocal lattice of the reciprocal lattice is the origi-
nal real-space lattice:
Hint: let G =m g, + mag, + m3g; be reciprocal lattice vectors of the
real-space lattice and the g; the corresponding basis vectors. Then, by
definition, the reciprocal lattice vectors of the reciprocal lattice
G* = n, gy +n, g5 +ny g5 must satisfy G* - G = 2k, where k is an integer.
82 X8

This is the case for gf = 27
& (8% 83)

and for cyclic permutations of the
indices.

b) Let the function f{r) be lattice periodic. Show that the vectors k occur-
ring in the Fourier series f(r) = 3" fi exp(ik - ¥) are reciprocal lattice vec-
tors G. k

3.2 a) Calculate the structure factor Swy =>_ fo exp (—iG-r,) for the

face-centered cubic structure. For which in(iyices hkl does one find extinc-
tion of the diffracted beams?

b) The fcc structure arises as the result of an appropriate superposition of
four interpenetrating primitive simple cubic (sc) structures, all of which
have the same lattice constant as the fcc structure. Interpret the result of
part (a) for the case of the (001) diffraction beam (extinction compared
with sc), and for the (111) beam (enhancement compared with sc). To do
this, consider the Bragg reflection from the corresponding lattice planes
of the sc and the fcc structures, making use of relevant sketches.

3.3 Calculate the structure factor for the diamond structure.

3.4 Show that the reciprocal lattice of a two-dimensional lattice can be re-
presented by rods. Discuss the Ewald construction for diffraction from a
two-dimensional lattice and determine the diffracted beam for a particular
orientation and magnitude of ky. Why does one observe a diffraction pat-
tern of electrons from a surface for all values and orientations of ky above a
critical value? Calculate the critical energy at which the first diffracted beam
appears, when the electrons are incident perpendicular to a (100) surface of
a Cu crystal.
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3.5 Calculate the diffraction intensities from a rectangular lattice formed
by the lattice vector r, = 2ane, + ame, with a basis of atoms at (0, 0) and
(%, 0). Where do you find (glide plane) extinctions? Discuss the result with
regard to the dependence on .

3.6 Consider the matrix element for the absorption of an X-ray photon by
an atom (i|x|f) where (i| is the initial localized state of an electron residing
on the atom and (f] is the final s-wave ¥ =e'*"/r with %%k?/2m = hv—Ej,
where Ep is the threshold energy for ionization. Now assume that the atom
is surrounded by a shell of nearest neighbor atoms that scatter the emitted
wave. The final state thus consists of the emitted spherical wave plus spheri-
cal waves scattered from the ensemble of nearest neighbor atoms. What do
you expect for the X-ray absorption above threshold? Describe a method to
determine the distance of nearest neighbors in an amorphous material from
the oscillations in the absorption coefficient of X-rays above threshold
(Extended X-ray Absorption Fine Structure: EXAFS). What type of light
source is needed? Why does the method require the investigation of the os-
cillatory structure at photon energies considerably above the threshold?
Why is it (experimentally) difficult to determine the local environment of
carbon in an amorphous matrix?

3.7 a) Show that the contribution of large r to the correlation function g(r)
(3.14) leads to forward scattering! How can one determine the correla-
tion function g(r) from the experimentally observed intensity I(K) even
when the intensity of the forward scattering I(K = 0) is not known?

b) Liquids are characterized by vanishing shear forces. By virtue of the Pau-
li-principle atoms behave nearly as hard spheres. Demonstrate with the
help of hard spheres (e.g. tennis balls) that the distance of next nearest
neighbors in liquids must be on the average at least 2rv/3 with r the ra-
dius of the spheres, or half the distance to the next neighbors. Compare
this result to Fig. 3.2! Why do these considerations not apply to water?

3.8 Calculate the scattered intensity from a linear chain of atoms with or-
dered domains of N atoms. Assume that there is no phase correlation be-
tween atoms in different domains.

3.9 Discuss qualitatively the atomic scattering factor (as a function of scat-
tering angle) for electron, X-ray, and neutron diffraction by a crystalline
solid.

3.10 Elastic scattering by an infinite periodic crystal lattice yields infinitely
sharp Bragg reflection spots according to (3.26). Discuss, on the basis of the
Fourier transform representation of the scattered intensity (3.26), diffraction
from crystallites of finite size. How can the average size of a crystallite be
estimated from the diffraction pattern?
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Panel 1
Diffraction Experiments with Various Particles

1.1 Electrons

We describe here an experiment in which low energy (10-1000 eV) electrons
are diffracted (LEED — Low Energy Electron Diffraction). In solids, low
energy electrons are absorbed before they have penetrated more than a few
atomic lattice planes. Thus diffraction experiments can only be performed in
a reflection mode and they deliver information about the structure of the
topmost atomic layers of a crystal. The first electron diffraction experiment
was carried out by Davisson and Germer [I.1] in 1927, and served to
demonstrate the wave nature of electrons. An experimental arrangement
that conveniently enables the diffraction beams to be imaged on a fluores-
cent screen is shown in Fig. I.1. Because of the surface sensitivity of the
method, it is necessary to perform LEED experiments in ultra-high vacuum
(p<10®Pa) and on atomically “clean” surfaces. An example showing the
diffraction pattern obtained from a (111) surface of nickel is given in

Direction
of observation

—

Sample

+3kV

Fig. I.1. Schematic of the experimental arrangement used to observe LEED reflections
from the surface of a single crystal
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Fig. 1.2. (a) LEED diffraction pattern from a Ni (111) surface at a primary electron en-
ergy of 205 eV, corresponding to a wavelength of 0.86 A. The position of the spots can be
used to determine the lattice constant. Of perhaps greater interest are adsorption experi-
ments since adsorbates often form a variety of overlayer structures. (b) The diffraction
pattern observed after the adsorption of hydrogen. The extra spots indicate the formation
of a so-called (2x2) adsorbate superstructure, i.e., the elementary mesh of the adsorbate
structure is, in both directions, twice as large as that of the nickel substrate

Fig. 1.2. The strong absorption of the electrons means that the third Laue
condition for the constructive interference between electrons scattered from
the atomic planes parallel to the surface is of little importance. As a result it
is possible to observe diffraction at all electron energies. It should be noted
that the diffraction pattern of Ni(111) displays the true 3-fold symmetry of
the body of an fcc crystal since the scattering is not only from the surface
layer but includes contributions from deeper layers. Figure 1.2b shows the
diffraction pattern of the same surface after the adsorption of hydrogen.
The additional diffraction spots indicate that the hydrogen — like many
other adsorbates on surfaces — creates an overlayer with a new structure. In
this case the elementary mesh of the hydrogen overlayer is exactly twice the
size of that of the Ni(111) surface. The additional spots therefore lie halfway
between those of the nickel substrate.

1.2 Atomic Beams

The diffraction of He and H, beams from solid surfaces was first detected
in the experiments of Estermann and Stern [I.2]. At the time, this result pro-
vided vital confirmation of the validity of quantum mechanics! From a
modern viewpoint it must be judged a very lucky chance that Estermann
and Stern chose to work with alkali halide crystals (NaCl and LiF). Indeed
most other surfaces, especially those of metals would not have led to the
observation of the diffraction phenomenon. The reason is that He atoms
with an appropriate wavelength (Fig. 3.11) only interact with the outermost
surface of the solid where the interaction potential is very smooth and thus
they are hardly sensitive to the atomic structure of the crystal. Furthermore,

Panel 1
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Fig. 1.3. Diffraction of a He beam from a stepped platinum surface [I.3]. The Miller in-
dices of this surface are (997). As for an optical echelon, one obtains maximum intensity
in the diffraction orders that correspond to specular reflection from the contours of the
interaction potential. In this case it should be noted that these potential contours are not
exactly parallel to the terraces

diffraction experiments on metals and most other materials could never
have been successful prior to the development of ultra-high vacuum technol-
ogy, which today allows us to prepare extremely clean surfaces.

We show here as an example the diffraction of He atoms from a stepped
platinum surface (Fig. 1.3) as measured by Comsa et al. [I.3]. Surfaces with
regularly spaced monatomic steps can be produced by cutting the crystal at
the appropriate angle and annealing in vacuum. The atomic beam used in
the diffraction experiments is produced by a supersonic expansion of the gas
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from a nozzle. The interaction between the atoms in the expanding gas pro-
duces a velocity distribution that is significantly sharper than the Maxwell
distribution present before the expansion. Here one can make an analogy to
vehicles traveling on a crowded freeway that have to adjust their forwards
velocity to that of the other vehicles.

In Fig. 1.3 the diffracted intensity is shown as a function of scattering
angle. The angle of incidence is 85° to the surface normal of the macro-
scopic surface. The intensity maxima correspond to the diffraction orders of
the periodic lattice of terraces (and not the lattice of individual atoms!). As
is the case for an optical echelon grating, the direction corresponding to
specular (mirror) reflection from the terraces is favored in the intensity
distribution. Here, however, there is a slight bump in the otherwise flat
potential of the terraces near to the step edge. This leads to a slight shift in
the intensity maximum towards smaller angles.

1.3 Neutrons

The first diffraction experiments with neutrons were carried out as long
ago as the 1930s. However, only since about 1945, when high neutron
fluxes became available with the advent of nuclear reactors, has it been
possible to employ neutron beams for structure investigations. The major-
ity of the neutrons produced are so-called thermal neutrons (7' ~400 K).
As can be seen from Fig. 3.11, the de Broglie wavelength then falls in a
favorable range for atomic structure studies. Two methods are commonly
used to obtain neutrons of a defined de Broglie wavelength. The crystal
monochromator exploits the wavelength dependence of the Bragg-reflection.
Monochromaticity is achieved by selecting a small range of reflection
angles. Alternatively, time-of-flight-spectrometers are used. A sequence
of at least two rotating slits selects neutrons of a particular velocity, hence
a particular de Broglie wavelength. Today more and more pulsed neutron
sources (spallation sources) become available. In that case, the total
white spectrum of a pulse can be used for structure analysis as in the
Laue-method. Contrary to the classical Laue-method however, the velocity
and hence the wavelength of the scattered neutron can be determined
afterwards by measuring the time of flight between the sample and the
neutron detector. A particular Bragg reflex is thereby attributed to the
particular wavelength that generated the reflection, as is required for struc-
ture analysis.

The most important applications of neutron diffraction are the determi-
nation of the location of hydrogen atoms in solids and biological systems,
the investigation of magnetic structures, and the study of order-disorder
phase transitions [I.4]. We will discuss an example from the field of phase
transitions. The alloy FeCo composed of an equal number of Fe and Co
atoms crystallizes in the bcc structure. At high temperatures and for rapidly
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Fig. 1.4. (a) The disordered and ordered phases of FeCo. (b) Neutron diffractogram of the
ordered and disordered phases; after [1.5]. Note the low count rates which are typical for
neutron diffraction experiments. To obtain good statistics it is necessary to measure for
long periods of time

quenched samples, the Fe and Co atoms are distributed randomly among
the sites of the bcc lattice (Fig. I.4a). If, however, the crystal is cooled
slowly, an ordered phase is produced in which the corner and body-center
positions are each occupied by only one of the two elements. This arrange-
ment corresponds to a CsCl lattice. Similar ordering phenomena are also
found for other alloy systems and also include other lattice types. They can
be detected and studied by means of diffraction experiments.
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In Sect. 3.6 we met the systematic extinctions of the face-centered cubic
lattice. These extinctions affect all diffraction beams for which the sum
h+k+1is odd, ie., the (100), (111), (210) etc. For this disordered alloy
phase (Fig. 1.4a, left) these beams are thus absent. For the ordered phase,
however (Fig. .4a, right), the beams are present since the atomic scattering
factors of Fe and Co are not equal. In principle, this behavior is to be
expected for every type of radiation. For X-rays, however, the atomic
scattering factors of Fe and Co only differ slightly since the two elements
are neighbors in the periodic table and since the atomic scattering factor for
X-rays varies systematically approximately in proportion to the nuclear
charge Z. As is readily seen from (3.47), the intensity of the (100) reflection
of the CsCl structure (ordered phase) is proportional to (fre — ch)z. The
degree of order in the alloy is thus generally hard to determine from X-ray
diffraction. Quite different is the case of neutron scattering: Here there is a
factor 2.5 difference between the atomic scattering factors of Fe and Co.
Figure 1.4b shows neutron diffraction scans from powders of ordered and
disordered FeCo. The forbidden reflections in the bec structure, (100), (111),
(210), are clearly visible for the ordered phase with the CsCl structure.
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X-Ray Interferometry and X-Ray Topography

X-ray beams may be used not only to determine the structural parameters
of single crystals, but also to determine deviations from periodic structure
and to observe defects in the structure. With X-ray interferometry it is pos-
sible, for example, to image even slight strains within a crystal.

As is well known, interference phenomena can be observed in the super-
position of waves of equal frequency and with a fixed phase relation to one
another. In optics, this is achieved by the division and subsequent recombi-
nation of a light beam. It is possible to proceed analogously with X-rays.
To do so one makes use of an arrangement such as that shown in Fig. I1.1.
The blocks labeled S, M and A represent perfect single crystals that are
aligned exactly parallel to one another. In the scatterer S a suitable incident
angle gives rise to Bragg reflection from the lattice planes. As described in
Sects. 3.4 and 7.2, two types of waves are induced in the crystal, one which
has intensity nodes at the atomic sites, and a second for which the nodes lie
between the atoms (see also Fig.7.4). For large crystals, only the first
type of wave survives, whereas the second is strongly absorbed (anomalous

(TP A

d

/ AN

AN /

LTI I s
Fig. II.1. An arrangement for measuring X-ray
N interference [I1.1]. The length d (not to scale!)
represents the separation of lattice planes
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Fig. I1.2. An X-ray interferometer

made from a single crystal silicon
disk

Fig. I1.3. Moiré topography of the
silicon interferometer. The vertical
lines are due to the fact that the
pattern is recorded in strips
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transmission and absorption). What emerges from the crystal are two beams
of equal intensity, one being the transmitted beam and the other the Bragg
reflected beam. These beams are recombined by means of a further Bragg
reflection at the “mirror” M. The nodes and antinodes of the standing
wave have the same positions here as in the scattering crystal. If the lattice
planes in the analyser A have the same position relative to the nodes as
those in S, then the beams are transmitted by A and we observe brightness.
If, however, the analyser A is displaced by half a lattice constant the wave
is strongly absorbed and we observe darkness. When the lattices of S and A
are not identical this gives rise to a Moiré pattern.

Figures I1.2 and 3 illustrate an example taken from Bonse by [II.1]. The
interferometer (Fig. I1.2) is carved from a single silicon crystal of diameter
8 cm. The corresponding Moiré topograph (Fig. I1.3) indicates that the crys-
tal contains extended distortions.

The alternating bright and dark conditions that are obtained when A is
gradually displaced relative to S (Fig. II.1) can also be used to provide a
direct determination of the lattice constant. One simply needs to divide
the total mechanical displacement by the number of bright/dark phases
observed and thereby obtains the lattice constant without needing to know
the wavelength of the X-rays. This procedure can be used to achieve an
exact relation between the X-ray wavelength scale and the definition of the meter
by way of the red emission line of **Kr. Whereas X-ray interferometry produces

X-ray source

Slit

Sample
380 mm

Fig. I1.4. X-ray topography
Aperture for the direct imaging of lat-
tice defects [I1.3]. The crystal
——_— is situated in an oven with
Fluorescent screen  beryllium windows. Beryl-
lium, on account of its small
nuclear charge, displays only
K1 L weak X-ray absorption. The
Objective oven can be heated by
22 mm means of graphite rods. Lat-
tice defects appear as bright
TV monitor \‘D patches on the fluorescent

Be ) .
screen and their develop-
J ment in time can be fol-

lowed using a TV monitor
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a Moiré pattern of lattice strain and defects, X-ray topography further enables
one to make direct obervations. We consider here the experimental arrangement
of Hartmann [I1.2] (Fig. I1.4). The X-rays from a Mo-K,, source are incident on
a crystal and after being Bragg reflected are made visible on a fluorescent
screen. For an ideal point source, only the two beams illustrated in Fig. I1.4
would satisfy the Bragg condition. For a source of finite extent, however, one
obtains bright patches on the screen. By a suitable choice of the size of the
source these patches can be made sufficiently large that the areas of illumination
of K, and K,, just overlap. For fixed wavelengths of the radiation, this
arrangement implies that a single point on the screen corresponds to a single
point of the source. If, however, the crystal contains imperfections, then the
Bragg condition for a point on the screen is satisfied not for a single point on
the source, but for a large area or even for the entire source. Thus crystal
imperfections lead to additional brightness on the screen. Figure I1.5a illustrates
this for the case of a silicon crystal upon which an indentation has been made

PMO??P?20874 70

Fig. IL.5. (a) X-ray topograph of a silicon crystal damaged by pressure from a diamond
[IL.3]. (b) After annealing at 1130°C the formation of dislocations is observed. Two dislo-
cations (arrow) have an intersection. (¢) The intersection has wandered to the surface.
The temperature is now 1234°C. (d) The dislocations have separated and continue to
move away from one another
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with a diamond. At high temperatures it is possible for lattice defects to be
partially repaired. Dislocations, however, remain in the crystal. A schematic
representation of a dislocation is shown in Fig. 2.20. A dislocation gives rise to
a strain field along a line and this, too, can be imaged by topography. Figure
I1.5b shows such dislocation lines produced after annealing of the silicon crys-
tal. At even higher temperatures the dislocations become mobile and move
away from one another (Fig. I1.5¢).
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4 Dynamics of Atoms in Crystals

The physical properties of a solid can be roughly divided into those that are
determined by the electrons and those that relate to the movement of the
atoms about their equilibrium positions. In the latter category are, for
example, the sound velocity and also the thermal properties: specific heat,
thermal expansion, and — for semiconductors and insulators — the thermal
conductivity. The hardness of a material is also determined, in principle, by
the movement of the atoms about their equilibrium positions. Here, however,
structural defects generally play a decisive role.

The division of solid properties into atom dynamics and electronic prop-
erties is qualitatively easy to justify: the motions of atomic nuclei are, due
to their high mass, much slower than the motions of the electrons. If the
atoms are displaced from their equilibrium positions, then the electrons
adopt a new distribution (with higher total energy). The electron system,
however, remains thereby in a ground state. If the initial positions of the
nuclei are restored, then the energy expended is recovered in full and there
remains no excitation of the electron system. The total energy as a function
of the coordinates of all atomic nuclei thus plays the role of a potential for
the atomic motion. This approach is, of course, only an approximation.
There are also effects for which the interaction between the atom dynamics
and the electron system become significant (Chap. 9). The so-called ‘““‘adia-
batic” approximation to be discussed here was introduced by Born and
Oppenheimer [4.1].

Since the potential for the motion of the atomic nuclei is given by the
total energy and thus, in essence, by the properties of the electron system,
one might try initially to describe all the details of the electronic properties
and derive from these the potential for the atomic motion. Finally, one
could deduce from this all those properties of the solid that are determined
by the atomic motion. This approach is indeed possible, but for our pur-
poses in this text book it involves excessive mathematical effort. Fortu-
nately, it is possible to obtain many important predictions about the thermal
behavior of solids and their interaction with electromagnetic radiation with-
out needing to know the explicit form of the potential for atomic motion.
One simply needs a general formalism which enables equations of motion to
be formulated and solved for an arbitrary potential. We will deal with such
a formalism in the following sections. The concepts presented here will be a

H. Ibach, H. Liith, Solid-State Physics, 4th ed.,
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necessary prerequisite for an understanding of Chap. 5 in which we discuss
the thermal properties of solids.

4.1 The Potential

First of all we require a suitable indexing system to refer to the individual
atoms. Unfortunately, this is rather complicated due to the many degrees
of freedom present. As in the past, we number the unit cells by the triplets
n = (ny,n,n3) or m = (my,my, m3) and the atoms within each cell by «, . The
ith component of the equilibrium position vector of an atom is then denoted
by r,«: and the displacement from the equilibrium position by u,,; (Fig. 4.1).
We now expand the total energy of the crystal @, which is a function of all
nuclear coordinates, in a Taylor series about the equilibrium positions r,;

1 0D
2 ot 61‘,,0,'81‘,"/3]‘
mfj

@(rn(yH’ unai):dj(rnai)‘F UnailmpBj--- - (41)

The terms that are linear in u,,,; disappear since the expansion is about
the equilibrium (minimum energy) position. The summation indices n,m run

nth elementary cell
n= (n1, Ny, ng)

Fe=rh+1,

r,=n;a; + nya + nzaz

(0,0,0)

Fig. 4.1. Explanation of the vector nomenclature used to describe lattice vibrations in a
three-dimensional periodic crystal: The lattice vector r, extends from an arbitrarily chosen
lattice point (0,0,0) to the origin of the nth unit cell n = (n,n2,n3), from which the posi-
tions of the atoms « are described by the vector r,. The displacement from equilibrium of
atom « in cell # is then u,,. Thus the time-dependent position of this atom relative to
(0,0,0) is r, o+ u, o () Where 1, =r, + r,
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over all unit cells; «,f over the atoms in the cell; and 7,j over the three
spatial coordinate directions. Higher terms in the expansion will be neglected
for the time being. Equation (4.1) then represents an extension of the
harmonic oscillator potential to the case of many particles. The neglect of the
higher order terms in (4.1) is therefore known as the ‘““harmonic’ approxima-
tion. Effects that can only be described by the inclusion of additional terms
(e.g., the thermal expansion of solids; Chap. 5) are referred to as anharmonic
effects.
The derivatives of the potential

PO

noi

- = 4.2
8”",},'87’,"/;]' ( )

are called ““‘coupling constants”. They have the dimensions of spring constants
and serve to generalize the spring constants of the harmonic oscillator to a
system with many degrees of freedom. The quantity —® /7y, s is thus the
force exerted on atom « in the unit cell # in the i-direction when the atom f in
unit cell m is displaced by a distance u,, 4, in the j-direction. For positive values
of ®™#7 the force acts in the direction opposite to that of u. We see that this
description allows for interactions between all atoms regardless of their
separation from one another. In simple models, one often includes only the
interaction between nearest neighbor atoms.

The coupling constants must satisfy a number of conditions that arise
from the isotropy of space, the translation invariance, and the point group
symmetry [2.2]. The translation invariance upon displacement of the lattice
by an arbitrary lattice constant implies, for example, that the quantity @™//
can only depend on the difference between m and n:

ol = i (4.3)

nai

4.2 The Equation of Motion

For the displacement u of atom « in cell n in direction i, the sum of the
coupling forces and the force of inertia must be equal to zero (Newton’s law):

Mgiinai + Y Opll thp; =0 . (4.4)
mpj

For N unit cells each with r atoms, this gives rise to 3r N differential equations
which describe the motion of the atoms. Fortunately, for periodic structures, it
is possible to use a suitable ansatz in order to achieve a significant decoupling.
This involves writing the displacements u,,; in terms of a plane wave with
respect to the cell coordinates:
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1
Unai = Wauai(q)e

In contrast to a normal plane wave, this wave is only defined at the lattice
points r,. On substitution of this form into (4.4) one obtains an equation for
the amplitude u,,;:

i(q-r,,—(ul). (45)

Pt Dl )y (g) = 0. (46)

+ZZ\/_

i
D.(q)

Due to the translational invariance, the terms of the sum depend, as in (4.3),
only on the difference m-n. After performing the summation over m, one
obtains a quantity D’/ (g) that is independent of . It couples the amplitudes to
one another in a manner that does not depend on n. This justifies the fact that
the amplitudes in the ansatz (4.5) were written without the index n. The
quantities D?/.(¢) form the so-called dynamical matrix. The system of equations

—’uyi(q —&—ZDﬁJ q)upi(q) =0 (4.7)

is a linear homogeneous system of order 3r. In the case of a primitive unit cell
we have r = 1 and for every wave vector ¢ we have a system of merely three
equations to solve. This is a convincing demonstration of the simplifications
brought about by the translational symmetry.

A system of linear homogeneous equations only has solutions (eigenso-
lutions) if the determinant

Det {D”(q) —w’1} =0 (4.8)

vanishes. This equation has exactly 3 r different solutions, w(q), for each ¢g. The
dependence w(q) is known as the dispersion relation. The 3 r different solutions
are called the branches of the dispersion relation. It is possible to make a number
of general statements about these branches. However, rather than deriving these
mathematically from (4.8) for the general case, we will discuss the special case of
a diatomic linear chain. We can then make use of the results to present an
overview of the dispersion branches of a three-dimensional crystal.

4.3 The Diatomic Linear Chain

The formalism developed above can be illustrated most readily in terms of the
diatomic linear chain model. Although this model has little in common with a
real solid, it is frequently discussed because of its simple mathematics. We
consider a linear chain in which all nearest neighbors are connected by
identical springs with force constant f. The unit cell contains two atoms of
masses M, and M, (Fig. 4.2).
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Fig. 4.2. The diatomic line-
My Mz oMy M

ar chain model

The indices a, f in (4.4) thus take on the possible values 1 and 2; the in-
dex i has only one value, since the system is one dimensional, and can there-
fore be omitted. Since it is assumed that only nearest neighbors interact, the
index m in the sum in (4.4) can take only the values n + 1, n, n—1. One thus
obtains the following equations

. n—1,2 1 2 —
Myl + D up—12 + Dt + D =0,
. 1 2 nt1,1 .
Mol + Ppun + Ppuy + Py ty11 =0 (4.9)

The values of these remaining coupling constants are
@) = O =@ = = —f and (4.10)
Dy = D3 = +2f .
Thus we obtain
Miiy + fQuys — tyy — ty—12) =0,
=0.

Miip +f(2un2 — Upl — un+l,l) (4] 1)

The plane-wave ansatz (4.5) then reads

1 .
Uy = \/7& Uy (C]) el(qa”_w,) . (412)

We insert (4.12) into (4.11) to give

<2f - a)2> ) —fﬁ(l +e Yy, =0,
(4.13)

i 2f 2
(] 4 el g _ =0.
f Mle( +e )u1+<M2 w)uz

The dynamical matrix Dﬁjl(q) is therefore
2f -/ -
— ——— (1 +e™
M, MM, I+ )

—f A 2f
(] 4 clda 4
Mle( ) M,

(4.14)

Setting the determinant of the system (4.13) equal to zero leads to the
dispersion relation
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11 11\ 4 2
2 . 244
=fl—+—)f||—+—) — = . 4.15
@ f<M1+Ab) f{(wl+ﬂb) MM, 2] (4-15)
This dispersion relation is clearly periodic in ¢ with a period given by
9a_,
2 - )
2n
=—. 4.16
q= (4.16)

The periodic repeat distance in ¢ is thus exactly one reciprocal lattice vector. It
can in fact be shown that this property holds for all lattices. To do so we
simply need to go back to the definition of the dynamical matrix. We see that
on account of (3.15)

D¥q)=DP(q+G) with G-r,=27m. (4.17)
Thus the eigensolution (4.7 or 4.8) must satisfy the condition

o(q) =ow(qg+G) . (4.18)
Furthermore we have

w(—q) = o(q) (4.19)

since u (—q) represents a wave identical to u(g) but propagating in the opposite
direction. However, the forward- and backward-propagating waves are related
to one another by time reversal. Since the equations of motion are invariant
with respect to time reversal, it follows that the eigenfrequencies for +¢ and —
¢ must be equal. It is also possible to derive the inversion symmetry of w in g¢-
space (4.19) from the corresponding symmetry of the dynamical matrix (4.6).
If in (4.6) one replaces g by —¢, then this corresponds in the definition of the
dynamical matrix merely to a renaming of the indices m and n. However, the
dynamical matrix is not dependent on these indices. Taking these facts
together we see that it suffices to represent w(q) in the region 0<¢<G/2. The
point ¢ = G /2 lies precisely on the edge of the Brillouin zone introduced in
Sect. 3.5. Thus the function w(q) can be fully specified by giving its values in
one octant of the Brillouin zone.

For the example of the diatomic linear chain, Fig. 4.3 shows the two
branches of the dispersion relation for a mass ratio of M;/M,=15. The
branch that goes to zero at small g is known as the acoustic branch. For this
branch, at small g(¢ < 7/a) the angular frequency w is proportional to the
wave vector ¢. Here the acoustic branch describes the dispersion-free propa-
gation of sound waves.

The branch for which w(g)#0 at ¢ =0 is called the optical branch. Its
frequencies at ¢ = 0 and ¢ = n/a have a simple interpretation. For ¢ = 0 the
displacements of the atoms in every unit cell are identical. The sublattices of
light and heavy atoms are vibrating against one another. In this case the
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Fig. 4.3. Dispersion curve of a
diatomic linear chain with a mass
ratio M{/M, = 5. With increasing
T mass ratio, the optical branch be-
a comes progressively flatter

problem can be reduced to a system of two masses with force constant 2f
and the reduced mass 1/u = 1/M+ 1/M,. At ¢ = n/a, one or other of the two
sublattices is at rest and thus the two frequencies at this wave vector are
(2//M)"” and 2/ M))"".

The diatomic linear chain model is a popular tool for describing vibrations
in ionic crystals, in which neighboring sites are occupied by ions of opposite
charge. If an optical mode is present at ¢~0 then the positive ions within
the unit cell move in the opposite direction to the negative ones, i.e. an
oscillating dipole moment is created. This can couple to an external oscillating
electric field (e.g., infrared radiation) which means that such vibrations are
“infrared active”, i.e. they cause infrared light to be absorbed (Chap. 11).

For the diatomic linear chain we only allowed displacements of the
atoms along the direction of the chain. Such waves are called longitudinal
waves. For a three-dimensional crystal there are two additional transverse
waves. However, the clear separation of the vibrational modes into longitu-
dinal and transverse is only possible in certain symmetry directions of the
crystal. For an arbitrary direction the waves have a mixed character. Every
crystal has three acoustic branches. For small ¢ values (long wavelengths)
these correspond to the sound waves of elasticity theory (4.5). For every ad-
ditional atom in the unit cell one obtains a further three optical branches.
Here the enumeration of the atoms must be referred to the smallest possible
unit cell. For the fcc structure, in which many metals crystallize, the conven-
tional unit cell contains four atoms, but the smallest possible cell contains
only one atom (Fig.2.8). Such crystals therefore possess only acoustic
branches. The same is true for the bce structure.
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Although a crystal may be said to have three acoustic branches, this
does not necessarily mean that these must everywhere have different
frequencies. In cubic structures for example, the two transverse branches are
degenerate along the [001] and [111] directions. This also holds for the dia-
mond structure (Fig. 4.4). In the latter case, the smallest possible unit cell
contains two atoms and thus, along with the acoustic branches, there are
also optical branches.
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It should be noted that “optical” is the term used to describe all
branches that have a non-zero frequency at ¢ = 0. It does not necessarily
imply optical activity, as can be demonstrated for the case of the diamond
structure. At ¢ =0 in the optical branch the two fcc substructures of the
diamond structure vibrate against one another. However, since these two
substructures are occupied by identical atoms, this vibration does not give
rise to a dipole moment and hence it cannot interact with light. The optical
modes are 3-fold degenerate at ¢ =0. In Sect. 2.4 we saw that such 3-fold
degeneracy is only possible for the point groups of cubic structures.

In contrast to the diamond structure, the zinc-blende structure consists of
two substructures that are occupied by different atoms. “Optical” vibrations
of this structure do lead to an oscillating dipole moment, which in turn gives
rise to the absorption of electromagnetic radiation in this frequency range. In
Chap. 11 we will see that this also lifts the degeneracy between the longitudi-
nal- and transverse-optical waves.

4.4 Scattering from Time-Varying Structures —
Phonon Spectroscopy

The solutions of the equations of motion for the atoms have the form of plane
waves. In analogy to the wave-particle dualism of quantum mechanics, one
might ask whether these waves can also be interpreted as particles. Any such
particle aspect would manifest itself, for example, in the interaction with other
particles, i.e., electrons, neutrons, atoms and photons. Thus we shall now
extend the scattering theory developed in Chap. 3 to the case of structures that
are time varying. The problem will again be treated in a quasi-classical
framework. Later on, when we consider electron-phonon scattering (Chap. 9),
we shall also meet the quantum-mechanical formalism.
We return to the scattering amplitude A4z derived in (3.6):

Ap oce ™ [o(r(1))e K gy . (4.20)

d
|

Fig. 4.4. (a) Phonon dispersion curves of Si. The circles and triangles are measured points and
the solid lines are the result of a model calculation by Dolling and Cowley [4.3]. Instead of the
wave vector ¢, one often uses the reduced wave vector § = ¢ /(2n/a) as the coordinate for such
plots. The relative lengths of the abscissae correspond to the actual separation of the points in
the Brillouin zone. The branches of the dispersion curves carry the notation TA (transverse
acoustic), LA (longitudinal acoustic), TO (transverse optical) and LO (longitudinal optical).
Along the [100] and [111] directions the transverse branches are degenerate. Concerning the
degeneracy of LO and TO at I, see also Sect. 11.4. (b) A sketch of two neighboring Brillouin
zones showing that by moving along [110] from /" to K one can arrive at X by continuing along
the adjoining Brillouin zone boundary. Thus the point X can be described either by the wave
vector ¢ = 2x/a [001] or by ¢ = 27/a [110]. By studying the fcc lattice (Figs. 2.8, 12), one can
convince oneself that these two g-vectors describe the same atomic motion
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To simplify the mathematics we consider a primitive structure and assume the
atoms to be point-like scattering centers situated at the time-dependent
positions r, (7). Thus we write o (r, 1) oc >0 (r—r,(?))

n

Ay ox ot S e (4.21)
n

We separate each of the time-dependent vectors r,(t) into a lattice vector r,
and a displacement from the lattice site u, (t)

Pa(t) = rn +u(2) . (4.22)

With this one obtains

A x Ze’iK‘ rn g 1K (1) g =it (4.23)
n
For small displacements u, () we can make the expansion
Aoy el —iK-u,(1).. Je ™" . (4.24)
n
With the most general form of the expansion in terms of plane waves
| R,
u, HN=u e ilg-ra—(q)1] 4.25
() =u e (4.25)
we obtain, besides the familiar elastic scattering, the terms
. 1 A
Ajnel < e KT iy emllntolalr (4.26)
2 it

Thus there are scattered waves for which the frequency w differs from that of the
primary wave by exactly the frequency of the crystal vibration. These scattered
waves must obey a further condition relating to the wave vector since the sum over
n only yields contributions when K7 ¢ is equal to a reciprocal lattice vector G

w=w)twlq),
k—koFq=G. (4.27)
On multiplying both equations by 7:
hio — 1 h =0
w — hawo F ho(q) =0, 4.8)

Ik — Tiko F hig — HG =0,

one sees that the first of these classical equations can be interpreted quantum
mechanically as the conservation of energy. The plus sign corresponds to the
excitation of a crystal vibration by the scattered particle; the minus sign
applies to processes in which a crystal vibration loses energy to the scattered
particle. The latter possibility can of course only occur if the crystal vibration
has sufficient initial energy (amplitude of excitation); see (5.8). The second of the
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conditions in (4.28) can be interpreted as the conservation of quasimomentum, if it
isassumed that 7 ¢ is the quasimomentum of the wave-like crystal vibration. Thus,
in the sense of the conservation equations (4.28), one can regard these waves as
particles. The term commonly used to describe such “particles’ is phonons. The
quasimomentum of phonons, however, is unlike a normal momentum because it is
only defined to within an arbitrary reciprocal lattice vector. Furthermore, it has
nothing to do with the momentum of the individual atoms. For these we have
> m;v; = 0 at all times because of the nature of the solutions of the equations of
motion (Problem 4.2). Hence the term “quasimomentum” for the quantity 7 4.

It should be emphasized that the derivation of the conservation equations
(4.28) proceeded via a purely classical treatment of the motion of the crystal
atoms. Thus the particle model of phonons that emerges here is not a quantum
mechanical result. It can, however, be quantum mechanically justified if one
begins with the general quantization rules for equations of motion.

The momentum and energy conservation laws that govern the inelastic
interaction of light and particle waves with phonons can be used to advan-
tage for the experimental determination of phonon dispersion curves. We
first discuss the interaction with light.

The inelastic scattering of light in and around the visible region is
known either as Raman scattering, or, when the interaction is with acoustic
waves, as Brillouin scattering. The scattering is produced by the polarization
of the atoms in the radiation field and the subsequent emission of dipole ra-
diation. In the frequency range of visible light the maximum wave vector
transfer is

2ko = 47” ~2-1073A",

i.e., approximately 1/1000 of a reciprocal lattice vector. Thus Raman
scattering can only be used to study lattice vibrations near to the center of
the Brillouin zone (i.e., around ¢ = 0) (Panel III).

This would not be the case for the inelastic scattering of X-rays. With
X-rays, as we saw in the discussion of diffraction, one can readily have wave-
vector transfers of the order of reciprocal lattice vectors. The photon energy
of such X-rays is around 10%eV. The natural width of characteristic X-ray
lines is about 1 eV, whereas phonon energies lie in the range 1-100 meV. To
perform phonon spectroscopy one would therefore have to monochromate
the X-rays to within about 1 meV; for this, one could use a crystal monochro-
mator. The energy selection is achieved, as with an optical grating (Panel XII),
by making use of the wavelength dependence of the diffraction. If one differ-
entiates the Bragg equation

A=2dsin0
AL = 2Adsin 0 + 2dAfOcos 0,

(4.29)
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one obtains an expression for the monochromaticity of the beam as a function
of the angular aperture Af and the deviation Ad of the lattice constant from its
mean value (Panel II)

AL AE Ad

T T E 4 + Afctgf . (4.30)
For X-rays one would require AA/i~10"7. The corresponding angular
aperture would be so small that only the use of X-rays from synchrotron
sources (Panel XI) would provide sufficient intensity. Furthermore, it is very
difficult to find crystals that are sufficiently perfect and stress-free to fulfill the
condition Ad/d~10" (Panel II). Using synchrotron beams, however, it is
possible to obtain an energy resolution of just a few meV.

For neutrons and atoms, however, the prerequisites for phonon spectro-
scopy are far more realistic. The primary energies needed to give the re-
quired wave-vector transfer now lie in the range 0.1-1 eV (AL/A~102-10).
Such neutrons are readily available in the form of the thermal neutrons
produced by reactors (Panel I). Inelastic neutron scattering has been used to
determine the phonon dispersion curves of most materials. As an example,
Fig. 4.4 shows the dispersion curves for Si.

4.5 Elastic Properties of Crystals

In the limit of long wave length (¢ — 0) the frequency of phonons in the “‘acoustic
branches” is proportional to the wave vector ¢. For these acoustical phonons of
long wave length, the sound waves, the displacement vectors in neighboring unit
cells are nearly equal. The state of deformation of the crystal can be therefore
described in the framework of a continuum theory. We consider the transition
from atom dynamics to the continuum theory of elasticity for a particular
example, namely a simple cubic crystal with nearest-neighbor bonds in the form of
springs (Fig. 4.5). The model is an unrealistic representation of the elastic
properties of a real solid since it has no stability with regard to shearing. However,
it suffices for a general consideration of longitudinal waves along a cubic axis. The

Fig. 4.5. Generalization of the linear chain
spring model into three dimensions to re-
present a cubic primitive crystal. While the
model with springs to nearest-neighbors is
e i — lacking stability against shear it suffices for
a simple ansatz for longitudinal sound
n— waves along a cubic axis
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coordinate along the cubic axis and the components of the displacement vectors
in the nth elementary cell in the direction of the axis are denoted as x; and u,,,
respectively. For a longitudinal wave along a cubic axis all displacement vectors
perpendicular to this axis are equal. Furthermore, only the springs connecting
atoms along the axis of propagation are strained. The equation of motion
therefore becomes one-dimensional as for the linear chain (4.11).

Mi/inl :.f(u(n+l).l - unl) 7‘/{(1/{”1 - u(n—l),l) . (431)

If the displacements vary little from cell to cell the differences can be replaced
by the differential quotients.

(u Unt) — (U — u ) aaul a@ul
.1~ Unl ) — Ul — -1),1) = d5— B
(n+1), (n—1), X1 [y—ur12)a OX1 [y—(um1/2)a
2
L (4.32)
axl X=na
The derivative
8141
_ Oum 4.33
=2, (433)

which is called the strain, is already a continuum quantity. The strain describes
the change in the displacements of the atoms per length, hence a stretch and a
compression of the material for &;; > 0 and &; < 0, respectively. From (4.32) we
see that the restoring elastic force in the x;-direction is proportional to the
derivative of the local strain ¢;; with respect to the coordinate x;. If, furthermore,
the masses of atoms are replaced by the mass density ¢ = M/a’, then the
continuum equation of motion for a longitudinal sound wave is obtained.
2
Qiil = Clla—u with ¢ :j—[ . (434)
Oxy a
The quantity ¢;; is an elastic modulus that describes the force per unit area in
the x;-direction in response to a deformation along the same axis. The sound
velocity of the longitudinal wave is

C11
o= 4.35
L . (4.35)

The continuum equation of motion (4.34) for the longitudinal sound wave
along a cubic axis is valid for all cubic crystals. Only the relation between the
elastic modulus and the interatomic potential is specific for the structure and
the interatomic force field. Thus, the relation is different for fcc, bee, or the
diamond structure.

Up to now we were interested in the forces along the cubic axis that
occurred in response to a deformation along the same axis. Now general
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deformations and forces are considered. We begin with a generalization of
(4.33), the definition of a deformation
8u,~

L= 4.36
6] axl_ ( )

The quantity ¢; is a second rank-tensor. As a matter of convenience the
components of the tensor are expressed in terms of particular cartesians that
are chosen to agree as much as possible with the crystallographic axes. The
diagonal elements of the tensor ¢; describe infinitesimal distortions
associated with a change in volume (Fig.4.6a). The magnitude of the
(infinitesimal) change in the volume is given by the trace of the deformation
tensor

AV
=D i (4.37)
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Fig. 4.6. Illustrations to elucidate the terminology in the theory of elasticity. (a) Strain along
the x;-axis; (b) shear along the x,-axis, without separation of the rotational part of &;; (c)
the same shear after splitting off the rotational component by symmetrizing the strain tensor
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The nondiagonal elements ¢;; describe the deformation of a volume element in
the i-direction as one moves along the j-direction and hence correspond to a
shear distortion (Fig. 4.6b). It is useful to split ¢; into a symmetric and an
antisymmetric part with respect to an exchange of i and ;.

Ou; 1 (0u; Ou; 1 (Ou; Ou;
B i A R e A 4.38
9=, = 2 <8x_, Ton) T3\oy, o (4.38)
The antisymmetric part ((Ou;/0x;) — (Ou;/0x;)) describes a rotation whereas
the deformation of the material is given by the symmetric tensor (Fig. 4.6¢)

1 au,- 8uj

A solid resists deformations, hence deformations generate forces. For a
homogeneous material the forces in response to a strain or shear are
proportional to the area upon which the deformation is acting. One
therefore relates all forces to the areas upon which they act. For a definition
of these area-related forces, the “‘stresses’, one considers a section through
the crystal perpendicular to the x;-axis and removes, in thought, the material
on the right hand side of the intersection. The forces per area in the direction
k that are necessary to keep the crystal in balance without the removed
material are the components of the stress tensor 7, (Fig. 4.7). The stress
tensor is symmetric just as the strain tensor: the antisymmetric part of the
stress tensor represents a torque, and in equilibrium all torques must vanish
inside a solid.

To first order the relation between stress and strain is linear (Hooks law).
In its most general form Hooks law reads

m
Tkt

T

R N

P ] Fig. 4.7. Definition of the shear
stress 75, and the normal
stress 7
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Tkl = Z Crlijij (4.40)
ij

with the components of the elastic tensor (modules) cy;;. Because of the
symmetry of the stress and strain tensors 73 and ¢; one has the relations
Cklij = Clkij = Cklji - (4.41)

The number of independent components of the elastic tensor is further
reduced by the requirement that the elastic energy be a unique function of the
state of strain [4.2]. The energy density u is

u=_ [wads =4 cueien - (4.42)

ki ikl

This equation yields the same result independent of the chosen indices for the
axes if

Cklij = Cijkl - (4.43)
The relations (4.41) and (4.43) permit a short-hand notation introduced by

Voigt. In this notation a number between | and 6 is attributed to each pair of
indices i and j. The assignment follows the scheme

11—-1 234
252 1355 (4.44)
3353 1256,

Components of the stress and strain tensor can also be denoted using Voigt’s
notation. In order to ensure that all non diagonal elements of the strain and
stress tensor in the energy density (4.42) are properly accounted for (i.e. ¢; and
&;) a complete transition to Voigt’s notation requires the introduction of
redefined elastic modules. For our purpose here it is easier to use Voigt’s
notation only as an abbreviation for the indices in the elastic modules and stay
with the standard tensor notation and summation otherwise. In the short-
hand notation the elastic tensor becomes a 6 x 6 symmetric tensor with 21
independent components, at most. The number of independent components is
further reduced by the crystal symmetry. For crystals with cubic symmetry the
elastic tensor has only three independent components

cir ¢z cp 00 0
c2 ¢cp ¢ 0 0 O
c2 ¢ ocp 00 O
0 0 0 c 0 O (4.45)
0 0 0 0 Ca4 0
0 0 0 0 0 Caq

It is easy to see that the elastic tensor must have this form, even without a
formal proof. For example, the cubic axes are equivalent. Therefore, the
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diagonal components for normal and shear distortions must be equal
(c11 = c» =33 and cq4q = c55 = Cg6). A shear strain along one cubic axis
cannot give rise to forces that would cause a shear along another cubic axis
(cs45 =0, etc.). Furthermore, a shear cannot cause a normal stress (¢4 =0,
etc.), and finally the forces perpendicular to a strain along one cubic axis must
be isotropic (¢15 = ¢13, etc.).

For a hexagonal crystal the elastic tensor has the components

ci ¢z ez 00 0

c2 ¢ ci3 0 0 0

c13 €13 €33 0 0 0
0 0 0 ¢y O O (4.46)
0 0 0 0 Caq 0
0 0 0 0 0 Co6

A hexagonal crystal is elastically isotropic in its basal plane. The tensor
component that describes the stress-strain relation for a shear distortion in the
basal plane, cg, is therefore related to the tensor components ¢;; and ¢y, by
the ““isotropy condition” (see also 4.65)

2066 =C11 —C12 . (4.47)

With the help of the elastic tensor we can now generalize the wave equation
(4.34). As noted before, we keep the standard double indices for the stress and
strain tensors. The force that acts upon an infinitesimal cubicle of the volume
dV =dx1dx,dx; in a direction k can be expressed in terms of the forces acting
upon the faces of the cubicle

dFk = (rkl(xl —+ dxl) — Tkl (Xl))dede,
+ (tra(x2 + dx2) — Th2(x2) ) dx1dxs
+ (tr3(x3 + dxz) — w3 (x3) )dxidxs

Otk
= dVZ,:c‘)—x; (4.48)

0% %,
dVZ Ck/l] 2 ( 18)»1 + 8)618)6,’)

= dVZ Cklij A A a

ijl

The sum of the elastic forces and the force of inertia odVii, must be zero.
Hence, the generalized equation for the propagation of elastic waves in a
crystalline solid of arbitrary symmetry is:
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) O u; 4.49
il = ; Chlij o, (4.49)
In general (4.49) represents three coupled equations with three independent
solutions. The equations decouple for particular high-symmetry orientations
where entries in the elastic tensor vanish. A simple example are the sound
waves along the axis of a cubic crystal. The solutions of (4.49) are a
longitudinal and two degenerate transverse sound waves. If one chooses the
xp-axis as the direction of propagation and considers the motion along the x,-
axis the only non-vanishing derivative is

62142
0, 4.50
8x18x1 7& ( )
and one obtains the equation of motion for the transverse sound wave:
82142 62u2
i) =l = = Caa——> 4.51
Qu 2121 8x% 44 8x% ( )

with the sound velocity

Ca4
cT=4/—. 4.52
=4/ . (4.52)

In many cases it is useful to work with the inverse of the elastic tensor c;;;. The
inverse tensor s;y; is defined by the equation

&ij = ZS{fk[Tk[ . (453)
kil

The relations between the tensor components of ¢ and s can be calculated by a
formal tensor inversion, but also by describing certain states of strain.
Consider, e.g., an isotropic deformation of a cubic crystal

8,:/' = 86,‘]' . (454)
Because of the cubic symmetry the stresses must likewise be isotropic

Tij = ‘L'éij . (455)
In that case, the elastic equations (4.43 and 4.53) reduce to

T = (C]] —+ 2612)8 s

4.56

&= (s11+ 2s12)7, (4.56)
and one obtains the relation

(C]] + 2612)(S11 + 2S12) =1. (4.57)

We learn from (4.57), that a measurement of the volume change of a cubic crystal
under hydrostatic pressure yields the combination of the elastic constants
c11 + 2¢1p and sy + 2s1,, respectively.

A second relation between the elastic modules ¢ and the elastic constants s
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(11 —c2)(si —s2) =1 (4.58)

is obtained by an analogous consideration of the strain state &;; = —&5,,
e33 = 0, with ¢; = 0 for i#j. By combining (4.57) and (4.58) one obtains

) 1< 1 N 2 )
T3\ +2en e —en)’ (4.59)
1 1 1

Sip == - .
3 (Cn +2c12 e — Cn)

Because of the diagonal form of the elastic tensor for shear stresses and strains
(4.45) one has furthermore

C44 = 1/844 . (4.60)

The relations (4.58) and (4.60) hold also for hexagonal and the most important
tetragonal crystals. Equation (4.57) is replaced by the set of equations

(e +cn) = s33s7 ',

c13 = —si35 ", (4.61)

c33 = (811 +S12)571 )

with s = S33(S11 + 312) - 25‘%3 .

Furthermore, one has cgs = Sge..

Despite its high symmetry, a cubic crystal is not elastically isotropic. The
stress arising from a deformation along a cubic axis differs from the stress
arising from a deformation along the diagonal. In order to be elastically iso-
tropic the elastic constants of cubic crystals must fulfill a particular condition.
In order to derive this isotropy condition we consider a cubic crystal that is
strained along an arbitrarily oriented x-axis by the amount ¢, and com-
pressed along the perpendicular y-axis by ¢,, = —e&,,. If the cubic axes x; and
X, are parallel to x- and y-axes, one obtains for the stress 7

Txx = (Cll - 012)8,\1\' . (462)

If the cubic axes are rotated with respect to the x- and y-axis by 45° then the
deformation corresponds to a shear deformation in the cubic axes (Fig. 4.8).
By writing the components of the strain tensor in the cubic axes and in the x-
and y-axis in terms of the displacement vector s, (Fig. 4.8), it is easy to see that
&3 = &xc. We thus obtain for the stress

T23 = C44823 = C448xx - (4'63)

We now express 723 by 7. On a cube with an edge length a the stress 7, exerts
the force
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== —7771

Exx = —&yy &, =0 €11 = Exx £ = &y

T = T2 = (€11 — C12)Exx

&

Fig. 4.8. For the derivation of the condition for elastic isotropy one considers a volume-
conserving deformation of a material under the assumption that (a) the deformation is
along the cubic axes and (b) that the strain directions form an angle of 45° with the cubic
axes. The deformation (b) corresponds to a shear in the cubic axes. For an isotropic mate-
rial the resulting stresses must be identical in both cases. This condition yields the isotro-
py relation between the elastic constants (4.66)

fo=tad V2. (4.64)

Projected into the direction x, one has the force

fz = T23a2 fo/\/i = rxxaz/Z . (4.65)
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Table. 4.1. Elastic constants for several cubic crystals at 20°C (after [4.6]). The moduli ¢;
are in 10'© N/m? and the constants (compliances) 5 in 10> m?/N. The numbers refer to
the cubic axes. For a transformation into arbitrarily rotated axes see [4.4, 4.5]. The relia-
bility and accuracy of the data differs for the various materials because of the different
quality of available crystals. The temperature dependence of the elastic constant is parti-
cularly large for potassium and sodium. These materials become significantly stiffer at
low temperatures. The condition for elastic isotropy, 2cas/(c11 — ¢12) = 1, is fulfilled only
in exceptional cases. Many metals are surprisingly anisotropic (see last column)

Material S11 Sa44 S12 1 Ca4 12 uffjwz
K 1225 530 =560 0.37 0.19 0.31 6.3
Na 590 240 -270 0.74 0.42 0.62 7.0
Ta 6.86 12.1 -2.58 26.7 8.25 16.1 1.56
Cr 3.05 9.9 —0.495 35.0 10.0 6.78 0.71
Mo 2.8 9.1 -0.78 45.5 11.0 17.6 0.79
W 2.53 6.55 -0.726 50.1 15.1 20.5 1.0
Fe 7.7 8.9 -2.8 23.7 11.6 14.1 2.4
Ir 2.28 391 —0.67 58.0 25.6 24.2 1.5
Ni 7.7 9.0 -3.0 24.4 11.2 15.4 2.5
Pd 13.6 13.9 -5.95 22.7 7.17 17.6 2.8
Pt 7.34 13.1 -3.08 34.6 7.64 25 1.44
Cu 15.0 13.3 -6.3 16.8 7.54 12.1 3.2
Ag 22.9 21.7 -9.8 12.4 4.6 9.35 3.0
Au 23.3 23.8 -10.7 18.6 4.2 16.3 3.7
Al 15.7 35.9 -5.8 11.2 2.8 6.6 1.2
C 1.48 1.74 -0.517 107.6 57.6 12.5 1.21
Si 7.68 12.56 2.14 16.57 7.96 6.39 1.56
Ge 9.75 14.9 -2.66 12.9 6.71 4.83 1.66
GaAs 12.6 18.6 —4.23 11.9 54 6.0 1.83
LiF 11.35 15.9 -3.1 11.1 6.3 4.2 1.82
NaCl 22.9 79.4 —4.65 4.87 1.26 1.24 0.69

With (4.63) and (4.65) and by comparison to (4.62) one obtains the condition
for elastic isotropic behavior

2044 =C11 —C12 . (466)

Because of this condition an elastic isotropic solid has only two independent
constants that are denoted as

A= Cl2 M =Cq4 . (467)
Hooks law (4.40) then becomes
Tik = ik Zgii + 2uep . (4.68)

In mechanical engineering Young’s modulus Y (also denoted by F) and the
Poisson number v are commonly used. Young’s modulus describes the change
in length of a rod in response to a pull and v describes the relative contraction
perpendicular to the direction of pull. The constants Y, v, 4 u, and the elastic
constants s; in the cubic system are related by:
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A 2u+ 34 1
__ A sy plurd) 1 (4.69)
200+ s u+ A s1
Note that Y is merely the inverse of s1; and not a component of the inverse
tensor of modules ¢, although it has the dimension of a modulus!

Problems

4.1 Localized vibrations in a crystal can be represented by a superposition
of phonon modes with different wave vectors. Show that the center of grav-
ity of such a wave packet moves with the group velocity v, = dw/dq.

4.2 Write down the dynamic equation for a one-dimensional linear chain of

N (large number) atoms (atomic distance a, restoring force f, atomic mass

m) and solve this with an ansatz u, (t) = u(q) exp[i(gna—wt)].

a) Compare the obtained dispersion w(g) with that of the diatomic linear
chain (4.15).

b) Show that the total momentum Z mi,(t) of a phonon vanishes.
n=1

c) Show that for long wavelengths (¢ < a~!) the dynamic equation for the
chain transforms into a wave equation for elastic waves when the displa-
cements u,(t) = u(x =na,t), u,+(t) and u,_;(¢t) are evaluated in a Tay-
lor series.

4.3 Calculate the eigenfrequency of a mass defect M # m in a linear chain
at the position n = 0 by invoking the ansatz u, = uyexp (—« |n|-iwt) for the
displacements. For which range of M do localized vibrations exist?

4.4 Calculate the dispersion relation for longitudinal and transverse pho-
nons along the [100] direction of a fcc crystal whose atoms are joined to
their nearest neighbors by springs. Using symmetry arguments, first identify
any possible degeneracy. In which other high-symmetry direction does a si-
milar consideration apply?

Then try to describe the phonons such that the equation of motion for a
linear chain becomes applicable. For this it is important to be aware of the ef-
fect of the position of the phase planes on the displacements of the atoms.

Draw the displacements of the atoms for various phonons at the edge
of the Brillouin zone.

4.5 Calculate the sound velocity of longitudinal and transverse acoustic modes
along the [100] direction of a fcc crystal using the model of problem 4.4.
According to crystal elasticity theory the sound velocities are ciong = (c11/
o)l/ 2and Cirans = (c44/o)1/ 2 where 0 is the density. Calculate the elastic constant
¢11 and the shear elastic constant c44 in terms of the nearest neighbor force con-
stant. Make the force constant such that the maximum vibrational frequency
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corresponds to 8.85 THz (representative of nickel) and calculate the numerical
values of the sound velocities. The experimental values are 5300 m/s and
3800 m/s for the longitudinal and transverse waves, respectively.

4.6 Calculate the frequency of the surface phonon with odd parity (with re-
spect to the mirror plane spanned by the wave vector and the surface nor-
mal) at the zone boundary of a (100) surface of an fcc crystal in the [110] di-
rection using the nearest neighbor central force model. What makes this cal-
culation so easy? Can you find another strictly first-layer mode on the same
surface?

4.7 Derive the wave vector conservation for inelastic phonon scattering
from a 2D periodic layer of atoms. Do the same problem for inelastic scat-
tering from a surface when the incoming wave is damped inside the solid ac-
cording to exp(—z/A), with A the effective mean free path. Assume a primi-
tive lattice for simplicity. Develop an Ewald construction for the wave vec-
tor conservation law when the lattice has 2D periodicity.

4.8 Carry the expansion (4.24) one step further and calculate the time aver-
age of the scattered amplitude. Rewrite the expansion

1= 1K u,)), ~ e dEm)),

By equating the time average with the ensemble average, calculate the scat-
tered intensity for a primitive lattice.

In the prefactor exp(—((K- u,,)2>, the quantity W= 1((K- u,)?) is
known as the Debye-Waller factor. For a harmonic lattice the result is cor-
rect even for arbitrarily large values of ((K - u,)?). The proof, however, is
not straightforward. Calculate the temperature dependence of the Debye-
Waller factor assuming that all atoms vibrate as independent oscillators of a
frequency /iw by using (5.2 and 5.15). Carry out the same calculation based
on the Debye model.

4.9 Calculate the elastic constants ¢y, ¢1» and ¢4 of a face-centered cubic
crystal under the assumption of spring forces to the nearest-neighbors. Show
that the model crystal is not elastically isotropic! Show that ¢;, = c44! This
is the Cauchy-relation for cubic crystals. Cauchy relations among the elastic
constants hold if the interatomic force field involves only central forces
(forces acting between pairs of atoms along the bond direction). In reality,
non-central forces such as angle bending valence forces and many-body
forces cause deviations from the Cauchy relation. For which materials is the
Cauchy-relation approximately fulfilled (see Table 4.1)?

4.10 Calculate the elastic energy per area in a thin epitaxial, pseudomorphic
Cu film that is deposited on the (100) surface of Ni! Hint: the strain in the
film ¢, is the misfit between the lattice constants, &, = (ani — acy)/ani- The
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elastic energy density is u = le'j (f”’ 7;de;, with ¢ the film thickness. Why is
there a limit to the thickness of epitaxial, pseudomorphic film growth and
what happens, once a critical film thickness is reached?

4.11 Electric analog to the phonon-modes of the monatomic linear chain:

a) The equivalent circuit of a loss-free double line is a series of inductances L,

and capacitances C, connecting the lines. Show that current and voltage
on the double line propagate as plane waves that possess the same dis-
persion w(k) as phonons of the linear chain (4.15) with M= M.
Hint: Use Kirchhoff’s rules to calculate the current difference 1,-1,_, as
function of the voltage difference U,—U,_; for an element of length a of
the double-line consisting of the inductance L, in series and the parallel
capacitance C,,.

b) Consider now a double-line with a continuously distributed inductance L’
per length and a continuously distributed capacitance C’ per length. Set up
the differential equation for the relation between current and voltage and
show that the dispersion w(k) of the wave-like solution is @  k as in the
continuum limit for phonons in a linear chain.
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Raman Spectroscopy

Since the development of the laser, Raman Spectroscopy [III.1] has become
an important method for investigating elementary excitations in solids, for
example, phonons and plasmons. In this type of spectroscopy one studies
the inelastic scattering of light by the elementary excitations of interest. This
inelastic scattering was already mentioned in Sect. 4.5 in connection with
scattering from phonons. As for all scattering from time-varying structures
(e.g. vibrations of atoms in a crystal), energy must be conserved and, to within
a reciprocal lattice vector G, wave vector too, i.e. we have

hiwg — hiw £ hiwo(q) =0, (I11.1)
hiky —hk £ hg+ G =0, (111.2)

where wg, ko and w, k characterize the incident and scattered light waves re-
spectively; w(gq) and ¢ are the angular frequency and the wave vector of the
elementary excitation, e.g. phonon. For light in the visible region of the
spectrum, |ko| and |k| are of the order of 1/1000 of a reciprocal lattice vector
(Sect. 4.5), which means that only excitations in the center of the Brillouin
zone (|q|~0) can take part in Raman scattering.

The interaction of visible light with the solid occurs via the polarizabil-
ity of the valence electrons. The electric field &, of the incident light wave
induces, via the susceptibility tensor y a polarization P, i.c.

P=cox& or Pi=e» 170 (IT1.3)
J

The periodic modulation of P leads, in turn, to the emission of a wave — the
scattered wave. In a classical approximation, the scattered wave can be re-
garded as dipole radiation from the oscillating dipole P. From the laws of
electrodynamics one obtains the energy flux density in direction s, i.e. the
Poynting vector S, at distance r from the dipole as

w*P?sin® ¥ |

S(1) = 1672¢eyr2c3 s

(I11.4)
Here 9 is the angle between the direction of observation § and the direction
of the vibration of P. The electronic susceptibility y in (II1.3) is now a func-
tion of the nuclear coordinates and thus of the displacements associated
with the vibration [w(g),q]. Similarly, y can also be a function of some
other collective excitations X[w(q),q], for example, the density variations
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associated with a longitudinal electron plasma wave (Sect. 11.9), or the
travelling-wave-like variations of magnetization in an otherwise perfectly
ordered ferromagnet (magnons). These “displacements” X[w(g),q] can be
regarded as perturbations in a formal expansion in X. It suffices to retain
the first two terms:

x=2"+0g/0x)X . (I11.5)

As we only need to consider excitations with ¢~0, we can simplify matters
by writing X = X, cos [@(q)¢] and, if the electric field &, of the incident
wave is described by & = &, cos w,.1, we obtain from (II1.3) the polarization
appearing in (I11.4) as

N 0 .
P = &1°&, cos wyt + soa—i{/ Xo & cos|w(q)t] cos wyt

0

X 1 0 N
:602(02’000560()[4—5608—%{( Xo &v{cos[wo+w(q)]t+cos[wo—w(q)]t}. (111.6)

The scattered radiation expressed by (III1.4) therefore contains, along with the
elastic contribution of frequency w, (the Rayleigh scattering), further
terms known as Raman side bands with the frequencies wq + w(q) (Fig. II1.1).
The plus and minus signs correspond to scattered light quanta that have,
respectively, absorbed the energy of, and lost energy to, the relevant elementary
excitation [w(q),q]. The lines with frequency smaller than w, are called the
Stokes lines; those with higher frequency are the anti-Stokes lines. For the
latter lines to be present it is necessary that the elementary excitation, e.g. pho-
non, is already excited in the solid. Thus at low temperatures the intensity of
the anti-Stokes lines is much reduced because the relevant elementary excita-
tion is largely in its ground state. The intensity of the inelastically scattered ra-
diation is typically a factor of 10° weaker than that of the primary radiation.

A prerequisite for the observation of a Raman line is that the
susceptibility y (II1.5) has a non-vanishing derivative with respect to the coor-
dinate X of the elementary excitation. On account of the crystal symmetry
and the resulting symmetry properties of the elementary excitation that
determine the vanishing or nonvanishing of the quantities (dy;/0X), the
observability of the corresponding Raman lines depends on the geometry of
the experiment. This is illustrated for the example of two Raman spectra
measured from a Bi,Se; single crystal (Fig. II1.2). Bi,Ses; possesses a trigonal
c-axis along which the crystal is built up of layers of Bi and Se. This crystal
symmetry means, among other things, that the normal susceptibility tensor
has the following form when referred to the principal axes:

K 0 0
A=10 0 of. (I11.7)
0 0 X
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Fig. III.1. Schematic representation of the mechanisms of elastic (a) and inelastic (b) light
scattering (Raman scattering): (a) if the electronic susceptibility is assumed to be constant
in time, the polarization P oscillates with the frequency w, of the incident light and, in
turn, radiates only at this frequency (elastic process); (b) if the susceptibility itself oscil-
lates with the frequency w(q) of an elementary excitation (e.g. phonon), then the oscilla-
tion of the polarization induced by the primary radiation (frequency wg) is modulated
with frequency w(g). This modulated oscillation of the polarization leads to contributions
in the scattered light from the so-called Raman side bands of frequencies wq+ w(q)

Scattered intensity (arb. units)
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Fig. Ill.2a—c. Raman spectra of
phonons of types 4, and Eé mea-
sured from a single crystal of
Bi,Se;. The c-axis of the crystal lies
parallel to the z-axis of the coordi-
nate system. (a) The displacement
patterns of the 4, and Eé pho-
nons for one of the three basis
atom configurations in the nonpri-
mitive unit cell. Arrows and + /-
signs give a snapshot view of the
atomic displacements. (b) Raman
spectrum taken in the geometry
z(xx)Z, i.e., the primary wave is
incident in the z-direction and is
polarized in the x-direction; the
Raman scattered light is detected
in the —z (or Z) direction, and ana-
lysed for its x-polarized compo-
nent. (¢) Raman spectrum taken in
the geometry z (xy)Z [111.2]
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In the measurements of Fig. III.2 the beam was incident along the c-axis
(z-axis of the coordinate system), and the scattering was analyzed in the
backscattering direction, i.e., also along the z-direction. If a polarization of
the x-direction is present for both the incident and scattered radiation, then
one will observe the phonons denoted by A {g,A%g and Eé (Fig. II1.2b). If,
however, one measures scattered light with a polarization in the y-direction,
then only E é will appear in the Raman spectrum (Fig. I11.2¢). This can be
understood by considering the nature of the atomic displacements associated
with the two types of phonon (Fig. IIl.2a): if a phonon of type A4, is ex-
cited, the symmetry of the crystal remains unchanged; thus the change in
the susceptibility y; induced by the phonon displacement, i.e., (9y;/0X)
leads to a tensor that has the same form as )(3 (IT1.7). Such a tensor implies
that the polarization induced by the incident electric field &) = (<o, <0, 0),
has the same direction as &. In other words, for phonons of the type 4;,
one has (Jy,,/0X) = 0.

According to Fig. I1I.2a, a general phonon of the type E, possesses dis-
placements in both the x- and y-directions. The trigonal crystal symmetry is
therefore broken by this phonon. The phonon-induced modification of the
susceptibility in the x-direction is coupled to a modification in the y-direc-
tion. An incident electric field o thus induces polarization changes in both
the x- and y-directions. The scattered light that results contains polarization
components in both these directions, i.e., (Oy,,/0X)= 0, (Jx,,/0X)F0.

For crystals with centers of inversion (e.g. the NaCl and CsCl struc-
tures) there is a general exclusion principle which states that infrared-active
transverse optical (TO) phonons (Sects. 4.3, 11.3, 11.4) are not Raman ac-
tive and vice versa.

As a further example of an experimental Raman spectrum, Fig. III.3
shows the spectrum measured for an n-doped GaAs crystal with a free elec-
tron density of 7 =10'cm > (Sect. 12.3). Besides the strong lines between
wavenumbers 250 and 300 cm ' (wavenumber v = A°') attributable to the
excitation of TO and LO phonons, one also observes a structure at 40 cm!
very close to the elastic peak (v=0). This structure is essentially the result
of excitation of collective vibrations of the “free” electron gas, so-called
plasmons (Sect. 11.9). A weak coupling between the plasmons and the LO
phonons leads to a small frequency shift in both these peaks.

Also of interest is the dependence of the Raman spectra on the primary
energy fiwy. If the incident photon energy 7wy is exactly equal to the energy
of an electronic transition, i.e. if it corresponds to a resonance in y or in the
dielectric constant ¢(w), then one observes an enormous enhancement of the
Raman scattering cross section, or so-called resonant Raman scattering. By
varying the primary energy in order to find such resonances in the Raman
cross section, it is also possible to study electronic transitions.

From (II1.4) it follows that, for frequencies below the electronic
resonance, the intensity varies as w* or 2 * as a function of the frequency
or wavelength of the incident light; it is thus desirable to use as short a



Panel III Raman Spectroscopy 111
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Fig. II1.4. Schematic of ex-

perimental arrangement used
to observe the Raman effect.
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due to internal scattering in
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wavelength as possible. Today, high-power lasers (neodymium, krypton, ar-
gon-ion, etc.) are used for this purpose. For resonance Raman spectroscopy
in particular one can employ tunable dye lasers. Emission powers of up to
several watts in the violet and near-UV spectral range are applied. To detect
the scattered radiation in the visible and near-UV one uses highly sensitive
photomultipliers. High demands are made of the spectrometer used to ana-
lyse the scattered radiation: whereas the primary photon energy is in the
range 2-4 eV, i.e. has a frequency v of the order of 10'° Hz, one needs to
measure frequency differences between this and the Raman side bands that
lie anywhere from a few Hertz to 10" Hz (= 3000 cm ). For scattering from
sound waves in particular, a resolution of wy/Aw = 10® is desirable. This
can be achieved with Fabry-Pérot interferometers. In this case the method is
commonly known as Brillouin scattering. Because of the low intensity of the
Raman lines, it is important that there is no background intensity in the
region close to primary line produced by primary light that has been scattered

Panel 111
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within the instrument, i.e. high contrast is an important prerequisite. Modern
experiments often employ double or triple spectrometers (Fig. 111.4). The grat-
ings used are produced holographically in order to avoid spurious diffraction
peaks (ghosts) in the spectral background intensity. Figure I11.4 shows a mod-
ern experimental setup for Raman spectroscopy.
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5 Thermal Properties

In Sect. 4.2 we saw how the 3rN equations of motion of a periodic solid
can be largely decoupled by means of the plane-wave ansatz and the
assumption of harmonic forces. With (4.7) we arrived at a system of equa-
tions that, for a given wave vector ¢, couples the wave amplitudes of the
atoms within a unit cell. It can be shown mathematically that within the
harmonic approximation the equations of motion, even for a nonperiodic
solid, can be completely decoupled by means of a linear coordinate transfor-
mation to so-called normal coordinates. We thereby obtain a total of 3rN
independent forms of motion of the crystal, each with a harmonic time
dependence and a specific frequency which, in the case of a periodic solid, is
given by the dispersion relation w(q). Any one of these ‘“‘normal modes™
can gain or lose energy independently of the others. The amount of energy
that can be exchanged is quantized, however, as for a single harmonic oscil-
lator:

E11:<n+;>hw n:0’1a2’--- . (51)

Classically, the quantum number n corresponds to the amplitude of the
vibration according to

Mo (s%), = <n+%)hw. (5.2)

where (s?), denotes the time average. If, for example, one wishes to calculate
in the harmonic approximation the thermal energy per unit volume of a
solid, one needs to know firstly the eigenfrequency spectrum of the solid,
and secondly the energy of a harmonic oscillator in equilibrium with a heat
bath. We begin by considering how to obtain, in principle at least, the fre-
quency spectrum of the solid.

5.1 The Density of States

The 3rN equations of motion (4.4) have exactly 3rN, in general distinct,
solutions. In contrast, the plane-wave ansatz (4.5) for the periodic solid
would appear to give a continuous manifold of solutions. This contradiction
stems from the assumptions, on the one hand, of complete translational

H. Ibach, H. Liith, Solid-State Physics, 4th ed.,
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symmetry, i.e., an infinitely extended lattice, and, on the other hand, of a
finite number N of unit cells. We can overcome this problem by considering
a finite crystal of volume V' containing N unit cells, which, however, we ima-
gine to be part of an infinitely extended periodic continuation of the same.
In this way we obtain a finite crystal while simultaneously preserving the
full translational symmetry that is a prerequisite for the plane-wave solu-
tions. If we were to consider only the finite crystal, this would lead to com-
plications due to the additional localized solutions that are produced by its
surfaces. For very small crystals, where the number of surface atoms is com-
parable with the number of bulk atoms, it is indeed necessary to consider
such localized solutions when calculating the thermal properties.

The requirement that all properties of the lattice should be repeated in
each direction after every N unit cells means that the displacements of the
atoms s, must also repeat. According to (4.5) this leads to the condition

eiNl/3q'(a|+tl2+a3) =1. (53 a)

If the wave vector ¢ is separated into components in terms of the basis vec-
tors of the reciprocal lattice g; (3.21), the individual components ¢; must
satisfy the equation

n=0,1,2,... N'/3 -1
n;=0,+1,+2,... with the condition G-¢<3G*. (5.3b)

The series of integers n; can either be chosen so that ¢ takes values within
the unit cell of the reciprocal lattice, or such that it always lies within the
first Brillouin zone introduced in Sect. 3.5, which indeed has the same
volume as the unit cell. In the latter case the maximum values of n; are
determined by the condition G - ¢ <1 G* (Fig. 3.8). This procedure of intro-
ducing a finite lattice while retaining the full translational symmetry thus
leads to discrete g-values. The total number of g-values is equal to the num-
ber of unit cells N. The density of allowed g¢-values in reciprocal space is N
divided by the volume of the unit cell of the reciprocal lattice g;-(g> X g3).
On applying (3.25) one obtains the density of states in reciprocal space to
be ¥/(27)>. In a cubic lattice the separation of allowed g-values is thus sim-
ply 27/L (=g/N'?) where L is the repeat distance in real space. This result
can also be deduced directly from (5.3) (Fig. 5.1).

For the large N, the states in g-space are densely packed and form a
homogeneous quasicontinuous distribution. The number of states in a
frequency interval dw is then given by the volume of g-space between the
surfaces w(q) = const and w(q) + dw(q) = const, multiplied by the g¢-space
density of states
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wlgl =const

-
T A

Fig. 5.1. Allowed values of ¢ in reciprocal space for a square lattice. L is the repeat dis-
tance in real space

w+dw

dq . (5.4)

The function Z(w) is also called the density of states. The density of states
is a concept of central importance in solid-state physics, also for electronic
properties (Sect. 6.1). We separate the wave vector volume element dg into a
length perpendicular to the surface w(g) = const and an element of surface
area

dq = dfw qu_ .
With dw = |grad, w|dg, one obtains
Z (o) dw :L3dw J o . (5.5)
(27) lgrad, ol

w=const

The density of states is high in regions where the dispersion curve is flat.
For frequencies at which the dispersion relation has a horizontal tangent,
the derivative of the density of states with respect to frequency has a singu-
larity (van Hove singularity; Fig. 5.2). For the case of a linear chain, even
the density of states itself is singular. We note that the concept of density of
states does not presuppose a periodic structure. Amorphous solids also have
a density of states, which is usually not very different from that of the corre-
sponding periodic solid. However, in the case of amorphous solids there are
no van Hove singularities.

As an example we shall calculate the density of states for an elastic
isotropic medium with sound velocity c¢; for longitudinal waves and ¢t for
the two (degenerate) transverse branches. For each branch the surface
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Silicon

Fig. 5.2. Phonon density of

states of Si [5.1] (Fig. 4.4).
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@ (q) = const is a sphere. Thus |grad,w| is equal to the sound velocity c; for
each branch i and is independent of ¢. The surface integral in (5.5) is there-
fore simply the surface area of the sphere 47g°. For each branch we then
have the result

Vg - — V w?
S 2nt¢  2nmt el

Zi(w) dow do (5.6)

and for the total density of states

V /1 2
z = (2 + 2 )0t dw. .
(w) dw > <C3L + c%) do (5.7)

Thus the density of states for an elastic isotropic medium, and likewise for a
crystal at small frequencies and wave vectors, increases quadratically with
frequency. With increasing frequency it would become ever larger. However,
using the example of the linear chain (Fig. 4.3), we can see that for every
solid there is a maximum possible frequency. This is also true for nonperio-
dic structures.

5.2 The Thermal Energy of a Harmonic Oscillator

We now consider an oscillator in equilibrium with a heat bath at temperature
T. The oscillator cannot be assumed to be in a fixed and known quantum state
n with energy E, = (n +%)h . Instead one can only state the probability P,
that the oscillator is found in state n. The appropriate probability is given
by the Boltzmann distribution (known also as the canonical distribution)

e—E,,//T (

P, x /: Boltzmann constant) . (5.8)
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The constant of proportionality is given by the condition that the oscillator
must be in one of the possible states

(o)
dop,=1,

n=0

00 00
Z e—E,,//T _ e—hw/z/TZ(e—hm// T)n
n=0 n=0

o e—hw/Z/ T(

= 1—e " (5.9)
Therefore we have

—nhw/t T( efhw// T) .

P,=¢ 1 -

The average energy &(w, T) is thus given by
G “holt G I\, —hous
fo,T) =Y E,P,=(1-¢ "7 hw;(n+§> "y (s11)

By differentiating the summation formula for the geometric series

= 1
WL,
d o= T (5.12)
n=0
to give
- X
nx'"=———, 5.13
n; (1—x) (319
it can be shown that the mean energy is
1 1
g, T)=holz+——— . (5.14)
2 ehw//T 1

This expression has a form similar to the energy levels (5.1) of a single oscil-
lator. Thus one can write

1

<”)T:WT (5.15)
e -1

for the expected value of the quantum number » of an oscillator in thermal
equilibrium at temperature 7.

As was discussed in Sect. 4.3, it is possible to regard the wave-like
motion of the atoms as noninteracting particles (phonons) whose state is
determined by the wave vector ¢ and the branch j. The number n then cor-
responds to the number of particles in a state ¢,j, and (n); is the expected
value of this number. The statistics of such noninteracting particles for
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situations where there is no limit on the number of particles in a given state
is called Bose statistics. The wave quanta therefore behave as Bose particles
(bosons).

It should be noted that the two different statistical distributions P, in
(5.8) and (n), in (5.15), i.e., the Boltzmann and the Bose distributions, result
from two different ways of examining the problem: the Boltzmann distribu-
tion gives us the probability that a single particle occupies a certain state;
Bose statistics, on the other hand, tells us the average number of noninter-
acting particles to be found in a certain state that can be occupied by any
number of particles.

5.3 The Specific Heat Capacity

We now know the thermal energy ¢(w, T') of an oscillator with frequency w.
This also gives us the energy content of a normal vibration of the solid of
frequency w. The total energy of the solid in thermal equilibrium, i.e., the
internal energy U(T), is obtained by summing over all the eigenfrequencies.
Using the density of states Z introduced in Sect. 5.1, the internal energy
may be written

oo

u(r) :Il/JZ(w)s(w, T do> . (5.16)
0
The derivative of the internal energy with respect to temperature is the spe-
cific heat capacity. We should immediately remark that, in the harmonic
approximation, the specific heats at constant volume and at constant pres-
sure are identical, and thus it is not necessary to consider any additional
parameters in the derivatives.

The thermal energy of a crystal and its corresponding specific heat capa-
city can thus be calculated from the density of states Z(w) using (5.16). In
turn, the density of states can be deduced, in principle, from the coupling
matrices. In order to understand the qualitative behavior of the specific heat
as a function of temperature, it is sufficient to consider a simple model for
the density of states. For this we will take the previously calculated density
of states of the elastic isotropic medium. The dispersion relation is then sim-
ply w = c¢q and the typical dispersion due to the discrete lattice is neglected.
Using (5.7) and (5.16) this model leads to

@p
1 1 2 d

The Debye cutoff frequency wp is determined by the requirement that the
total number of states is equal to 37N, i.e.,
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wp
V /1 2
. ‘1

0

The imposition of a common cutoff frequency for all three acoustic modes
represents a certain inconsistency of the model. Nonetheless, it actually
leads to a better agreement with the experimental values of ¢,(7) than is
obtained by the introduction of separate cutoff frequencies for the longitudi-
nal and two transverse branches.

From (5.14, 5.17) we have

9rN 1 dT ho?® do

SV aRdT ) it 1)
Introducing the Debye temperature @ according to the definition
hop =46 (5.20)
we obtain, with the integration variable y = iw/s T,
3rN< (T s yerdy
=]

The form of ¢, (7) is depicted in Fig. 5.3. As is readily seen from (5.19), for
4 T > hwp, the specific heat is given by

10}
X
Zl>
o™
S~ o5t
1 A 1 1
0 05 1.0 15 2.0
Y

Fig. 5.3. The specific heat capacity per unit volume according to the Debye model. The
specific heat is normalized to the Boltzmann constant /4, the density of unit cells N/} and
the number of atoms in the unit cell r. In this model different materials are only distin-
guished by their values of Debye temperature &
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Table 5.1. Debye temperatures of selected materials in K [5.2]

Cs 38 In 108 ZnS 315 C 420 Fe 467
Hg 72 Te 153 NaCl 321 Ir 420 Cr 630
Se 90 Au 165 Cu 343 LiCl 422 Si 640
K 91 KCl 235 Li 344 Al 428 LiF 732
Ar 93 Pt 240 Ge 370 Mo 450 Be 1440
Pb 105 Nb 275 w 400 Ni 450 C 2230
1
¢y = —=3rN/
V

and is thus temperature independent. In relation to the density it is also
identical for all solids since the characteristic temperature @ is no longer
involved. This is only true however within the framework of the harmonic
approximation. Experimentally, one observes an additional slight increase in
the specific heat roughly proportional to 7. For low temperatures the inte-
gration limit @/T in (5.21) can be replaced by + co and one obtains the
result
1 47t (T’

ey (T) = V3 N/ 5 (@) T<KO. (5.22)
Since at sufficiently low temperatures only elastic waves are excited, for
which the density of states in real solids actually varies as ocw?, the T>-law
is valid for the vibrational contribution to the specific heat for all solids.
The temperature range for which the 7°-law holds can however lie below
1 K.

Within the Debye approximation, the specific heat of a solid is completely
determined at all temperatures by the characteristic temperature @. Thus to
compare various materials with one another a knowledge of their Debye tem-
peratures is useful (Table 5.1). Since in reality the specific heat deviates from
that of the Debye model, it is not quite clear how best to define ©. It is usual to
determine @ according to (5.22) using the experimentally measured value of ¢,
at low temperatures. This @-value, however, can differ markedly from the
value obtained for higher temperatures from (5.20).

5.4 Effects Due to Anharmonicity

Until now we have only considered the atomic motion within the harmonic
approximation. Higher terms in the expansion of the potential (4.1) have
been neglected. However, many important properties of the solid are not
described by this approximation. Some examples are the thermal expansion,
the temperature dependence of the elastic constants, and the (weak) increase
in the specific heat above @. A perfectly “harmonic’ solid would also have
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an infinitely large thermal conductivity. This arises from the fact that a
wave packet of elastic waves, once created, would have an infinite lifetime.
The associated heat transport would thus proceed unhindered.

Unfortunately, the description of anharmonic effects is not simple. An
exact treatment as in the harmonic case is not possible since one no longer
has the nice decoupling of the equations of motion with the plane-wave ansatz.
Thus in the anharmonic case one considers the solutions for the harmonic
potential, the phonons, as a first approximation to the true solution. The pho-
nons, however, are now no longer the exact eigensolutions to the equations of
motion. Even if one could describe the state of motion of the crystal at a par-
ticular time by a plane wave (a phonon), this description would, in contrast to
the harmonic case, become progressively less accurate with time. Instead, one
would have to describe the time development by introducing a spectrum of
other phonons. This feature is also known as “phonon decay”.

A phonon can decay into two or more other phonons. An exact quan-
tum mechanical treatment of this problem using perturbation theory shows
that the decay of one phonon into two phonons, and also the corresponding
inverse process, derive from the inclusion of the third term in the expansion
of the potential. Processes that involve four phonons stem from the next
highest term, and so on. Since the magnitude of higher terms generally
decreases monotonically, the probability for such multiphonon processes
also becomes very small. This is important for example in the inelastic
interaction of phonons with light or particle waves (Sect. 4.4): the largest
inelastic cross section is that for the excitation of a single phonon. The
first anharmonic term of the expansion allows the simultaneous excitation
of two phonons. Absorption involving the excitation of three phonons is
very weak in comparison. It is only because of this that is it possible to
make measurements of dispersion curves such as those shown in Fig. 4.4;
these measurements rely on the predominance of single phonon excitation
and absorption.

Another interesting question in this context is whether stationary solu-
tions are also possible for nonlinear force laws. In certain special cases it
is indeed possible to find such stationary solutions, known as solitons.
Solitons are important particularly for the electrodynamics of nonlinear
media [5.3].

In the following two sections we discuss the two most important anhar-
monic effects, the thermal expansion and the thermal conductivity due to
phonons, and present models to describe these.

5.5 Thermal Expansion

All substances change their volume or dimensions with temperature.
Although these changes are relatively small for solids, they are nonetheless
of great technical importance, particularly in situations where one wishes to
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permanently join materials with differing expansion coefficients. In order to
arrive at a definition that is independent of the length / of the sample, one
defines the linear expansion coefficient, «, by

1 dl
=-—. 5.23
“=Tar (523)
For isotropic substances and cubic crystals, « is equal to one-third of the

volume expansion coefficient
ay=3a=——:. (5.24)

Typical values for linear expansion coefficients of solids are of the order of
10 ° K '. The expansion coefficient can clearly only be measured if the sam-
ple is kept in a stress-free state. Thermodynamically, this means that the
derivative of the free energy with respect to the volume, i.e., the pressure p,
must be equal to zero for all temperatures:

() -0, 529

This equation can be used to calculate the thermal expansion coefficient:
Provided one can express the free energy as a function of the volume, then
the condition of zero stress for every temperature yields a relation between
volume and temperature and thus the thermal expansion. We will use this
approach and begin by considering the free energy of a single oscillator.
The generalization to a lattice is then straightforward.

The free energy of a system can be expressed in terms of the partition
function Z

—EJ/T

F=—/TInZ with Z=) e (5.26)
i

The index i runs over all the quantum mechanically distinct states of the
particular system. For a harmonic oscillator we have

—(hw |4 T))2

—hwn+1/2) /4T €
Z = = 5.27
Z ¢ —hw//AT ( )
n 1—e
The vibrational contribution to the free energy is therefore
1 —haw/A4
Fo=3ho+/Th(l—e o1y (5.28)

The total free energy also includes the value @ of the potential energy in the
equilibrium position

1 .
F=®+3ho+/Th(l-e oA Ty (5.29)
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For a harmonic oscillator it is easy to convince oneself that the frequency w
is unaffected by a displacement u from the equilibrium position. Corre-
spondingly, one finds that application of the equilibrium condition (5.25)
yields no thermal expansion.

We now proceed to the case of the anharmonic oscillator in that we
allow the frequency to change with a displacement from the equilibrium posi-
tion. We assume that the energy levels are still given by E, = (n+ %hw) This
procedure is known as the quasi-harmonic approximation. For a single oscil-
lator it is easy to express the frequency change in terms of the third coefficient
of the potential expansion (4.1). The actual calculation need not be performed
here (Problem 5.6). For the simple calculation of the derivative (5.25) we con-
sider the free energy expanded about the equilibrium position. The position
of the potential minimum will be denoted by ¢q. In the anharmonic case, the
time-averaged position of the oscillator is no longer equal to @y, and will be
denoted a. Then, with force constant f, we obtain for the expansion

@z@o(ao)—l—%f(a—ao)z,

OF;
Oa

Fy = Fy(ao) + (a—ap) . (5.30)

a=dy

The equilibrium condition (5.25), together with (5.29), then yields

1 dw
f(a—ao)—l—awe(w,T):O. (53])
With this equation we already have the relation between the average displa-
cement and the temperature. The displacement is proportional to the ther-
mal energy &(w, T) of the oscillator. Thus, for the linear expansion coeffi-
cient, we obtain

1 da 1 Olnw 0
o) =297 2f0Ina a7t (@ 7) (5:32)
To generalize this to solids we simply need to replace o = a;' (da/dT) by
a, = V=1 (dV/dT) and to sum over all phonon wave vectors ¢ and all
branches j. In place of ajf one has Vi, where x = V(dp/dV) is the bulk
modulus of compressibility

1.av(T) 1 Olnw(g)) 0

This is the thermal equation of state of a lattice. One can immediately
recognize that in the low- and high-temperature limits, the expansion coeffi-
cient shows the same behavior as the specific heat capacity, i.e., it is propor-
tional to 7° at low temperatures, and is constant (within this approxima-
tion) at high temperatures. For many lattice types, even the “Griineisen
number”
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Fig. 5.4. Linear expansion coefficient of silicon as a function of temperature [5.4]
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shows only weak dependence on the frequency w(q,j). The Griineisen num-
ber can then be assigned an average value and taken out of the sum in
(5.33). The expansion coefficient thereby becomes approximately propor-
tional to the specific heat at all temperatures. Typical values of this average
Griineisen parameter (y) are around 2, and are relatively independent of the
material. On account of the bulk modulus appearing in the denominator of
(5.33), one can claim, as a rule of thumb, that soft materials with their
small bulk moduli have a high thermal expansion coefficient.

The proportionality between «j and the specific heat does not hold,
however, for all crystal classes. For structures with tetrahedral coordination,
the expansion coefficient changes sign at low temperatures. The expansion
coefficient of silicon shown in Fig. 5.4 serves as an example.

We have implicitly assumed in our derivation of the thermal equation of
state that we are dealing with a cubic structure. Hexagonal structures have
different expansion coefficients parallel and perpendicular to the c-axis.
These coefficients can even have different signs as is the case for tellurium:
with increasing temperature a tellurium crystal expands perpendicular to the
c-axis, but shrinks — albeit only slightly — in the direction parallel to the
c-axis. Crystals with triclinic, monoclinic and rhombic lattices have three
different expansion coefficients.

y:

5.6 Heat Conduction by Phonons

In solids, heat is transported by phonons and by free electrons. For metals,
it is the electronic contribution that dominates the thermal conductivity.
However, this does not mean that insulators are necessarily poor conductors
of heat. At low temperatures the thermal conductivity of crystalline Al,O;
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and SiO, is higher than that of copper. This juxtaposition of properties —
electrical insulation together with good thermal conductivity — makes these
materials useful for experiments in low-temperature physics.

In contrast to the thermal properties discussed so far, thermal conduc-
tion is a nonequilibrium phenomenon. A thermal current only arises in a
temperature gradient and the thermal current density Q is proportional to
the temperature gradient

Q=—-Jgrad T (5.35)

where 4 is the thermal conductivity.

The fact that we are dealing with deviations from thermal equilibrium
and with spatially varying temperatures complicates the description some-
what: the thermal quantities &(w,7) and mean phonon number (n)
(Sect. 5.2) have, until now, been defined only for systems at a single tem-
perature. We must therefore assume that the spatial variation of 7 is small,
such that in a sufficiently large region (i.e., one containing many atoms) the
temperature can be considered homogeneous and the phonon number (1)
can be defined. Neighboring regions will then have a slightly different tem-
perature. In this way the phonon number now becomes a function of posi-
tion. To calculate the thermal conductivity we must first express the thermal
current density Q in terms of the properties of the phonons. As illustrated
in Fig. 5.5, the thermal current passing through the area A4 in the x-direction
in a time 7 is equal to the energy density times the volume of the cylinder of
length v,7. Here v is the energy transport velocity of the phonons. This is
not equal to the phase velocity w/q of the phonon waves but, as is shown in
electrodynamics text books for light and in quantum mechanical texts for
electrons, it is given by the velocity of a wave packet dw/0q (Sect. 9.1)

1 ow
O, :I—/; ho(n)ve, ve= 9. (5.36)

Fig. 5.5. Schematic representation of the thermal current
through a cross-sectional area 4. In the time interval 7 all pho-

X nons travelling in the x direction within the cylinder of length
—— vy T pass through the surface 4
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Here and in the following we shall drop the indices ¢ and j in w, (n) and v,
for the sake of brevity. In thermal equilibrium the thermal current density
Q is of course zero. This can also be seen from the expression (5.36) for Q
since, in equilibrium, the phonon occupation numbers (n) are equal for
positive and negative g-values. And because of the symmetry of the disper-
sion curve, we have vy (q) = —vy (—¢). Thus the summation gives a vanishing
thermal current. A thermal current can therefore only arise when the pho-
non number (n) deviates from the equilibrium value (n)°. This gives us a
further expression for the thermal current in terms of the deviation in pho-
non occupation numbers from their equilibrium values:

0. = lVZ iw ((n) — (n)°) vy . (5.37)

A time variation of (n) in a particular region can arise in two ways: More
or fewer phonons may diffuse into than out of the region from neighboring
regions, or phonons may decay within the region into other phonons:

d(n) 9(n) 9 (n)
B diff.Jr ot

5.38
dt ot (5:38)

decay

This is a special form of the so-called Boltzmann equation, which is also
applicable to problems concerning electron transport (Sect. 9.4). We shall
consider the particular case of steady-state thermal currents in which the
temperature is constant in time and thus also the phonon number. The total
time derivative d(n)/dt is therefore zero.

For the time variation due to phonon decay, one can introduce a relaxa-
tion time 7 such that

om| )
i - _ - . (5.39)

decay

According to this expression, the more the phonon number deviates from its
equilibrium value, the greater its time variation. The diffusion term is related
to the temperature gradient. In a time interval Ar all the phonons that were
originally within the region x—wv,Af, will arrive in the region of interest
around x. We thus have

om| 1
o diff. “amo Af [(n (x = v A2)) = (n(x))]
— n) _ an)’ oT
T Moy T T ax (5.40)

Because we have supposed steady-state conditions and local thermal equili-
brium, having introduced the temperature gradient, we have replaced (n) by
(n)°. If we now substitute (5.38-5.40) into (5.37), we obtain
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Ox = V;hw(%ﬂf(‘l D)) = (5.41)
For cubic or isotropic systems we have, in addition,
1
() =30 (5.42)

Comparing this with the phenomenological equation (5.35), we obtain for
the thermal conductivity

. ;VZ V(@) A @) el a,]), 7] (5:43)

Here A4 = vt is the mean free path of a phonon. An analogous relation
holds for the thermal conductivity of a gas and of the electron gas
(Sect. 9.7). As expected, the specific heat capacity of the individual phonons
plays an important role in heat transport. A further significant quantity is
the group velocity: phonons close to the zone boundary and optical pho-
nons contribute little to the thermal current. However, the temperature
dependence of 1 is also determined by the mean free path. Here, according
to the temperature range of interest, one has to consider a variety of pro-
cesses. These will be discussed in more detail in the following.

We must firstly take a closer look at phonon decay. For the decay due
to anharmonic interactions that was described in Sect. 5.4, one has conser-
vation of quasimomentum and energy:

G =9@+q:+G6, hoy=hoy+hos. (5.44)

At low temperatures, where only sound waves are thermally excited, the
momentum and energy conservation can be satisfied with G = 0. Such pro-
cesses are illustrated in Fig. 5.6a. One sees that the projections of ¢, and of
¢>» + g3 onto an arbitrary direction are in this case equal. Since for elastic
waves the magnitude of the group velocity is independent of ¢, the thermal
current is not disturbed by the decay process. Therefore, at low temperatures
(in practice those below ~ 10 K) the anharmonic interaction does not influ-
ence the mean free path in (5.43). In this case only processes for which g-con-
servation does not hold contribute to the thermal resistivity. These processes
include the scattering of phonons by crystal defects, or — for a highly perfect
single crystal — their scattering at the surface of the crystal. We then have
the seemingly improbable, but nonetheless observed, phenomenon of the ther-
mal conductivity that depends on the external dimensions of the crystal and
the condition of its surface. The temperature dependence of A is determined
here by the specific heat and is thus proportional to 7°.

At higher temperatures, momentum and energy conservation may also
involve a reciprocal lattice vector. Such processes can reverse the direction
of energy transport (Fig.5.6b). They are therefore also known as
“Umklapp” processes (from the German term for “folding over”). The con-
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Yy
a,
a, q; q
a
Gy
G
a3 q
- Fig. 5.6. A normal decay process (a)
qa; 9 and an umklapp process (b) in g¢-
space. In case (b) the vector ¢; is
split with the help of the vector G
into two vectors ¢, and g3, for which
the group velocity is in the negative
gy-direction. This causes a reversal of
b the direction of energy flow

dition for their occurrence is that phonons with sufficiently large g-vectors
are excited. The decaying phonon must have a wave vector ¢g; of roughly
half the diameter of the Brillouin zone and therefore possesses an energy of
~# ©/2. The probability for this is proportional to exp (—@/bT), with
b = 2. The mean free path A thus obeys

A o /T (5.45)

This strong exponential dependence on temperature determines the behavior
of / in the region of intermediate temperatures.

At high temperatures 4 only drops slowly with temperature (oc 7).
The full characteristic behavior of the thermal conductivity of a (non-con-
ducting) single crystal is shown in Fig. 5.7 for the example of SiO, (quartz).
For comparison the figure also displays the totally different behavior
observed for the same material in the amorphous state (quartz glass). Here
the scattering from defects is dominant even at the Debye temperature, and
A drops rapidly with decreasing temperature without showing the intermedi-
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ate maximum typical for single crystals. Radiation damage and other defects
also significantly reduce the thermal conductivity of single crystals.

Problems

5.1 Calculate the density of states and the specific heat at high and low tem-
peratures for a one-dimensional and a two-dimensional elastic continuum.
Are there physical realizations of such systems?

5.2 Calculate the thermal energy and specific heat for

a) a system of two harmonic oscillators,

b) a system with two energy levels.

Explain the difference in the two results. Are there any physical realizations
of case (b)?

5.3 Assume a tetragonal lattice with a base of two atoms at (0, 0, 0) and (0,

0, %) carrying equal charges of opposite sign.

a) Calculate the static polarization of the lattice.

b) How large a surface charge is needed in order to compensate the static
polarization?
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¢) Calculate the piezoelectric constant 0P3/0t; where 73 is the stress along
the polar c-axis and assuming central forces to nearest neighbors.

d) For which direction of the ZnS and the wurtzite structures do you expect
a longitudinal piezoeffect?

5.4 Calculate and plot the phase and group velocity of phonons for a dia-
tomic linear chain with a mass ratio of 1:5. Estimate the contribution of
the optical mode to the thermal conductivity.

5.5 Show that the equation of motion for an anharmonic oscillator
.. |
Mii + fu — S8 = 0

is solved by an approximate solution involving multiples of the harmonic
frequency wj = f/M:

0 .
U= § anelnwot .
n=1

Discuss the result in relation to phonon decay. What is the analogy to elec-
trical circuits and to signal transmission in nonlinear media?

5.6 Calculate the thermal expansion of an anharmonic oscillator following
the procedure of Sect. 5.5. The frequency shift for a displacement ug,, can
be found by evoking the ansatz u () = ug, + u; sin wt.



Panel 1V
Experiments at Low Temperatures

In the history of solid state physics, advances in the production and mea-
surement of low temperatures have often been associated with the discovery
of new physical phenomena. For example, in 1911, shortly after the first
successful production of liquid “He in 1908, Kamerlingh Onnes discovered
superconductivity [IV.1]. Indeed, it is a feature of the many-particle systems
that we know as “‘solids’, that they possess elementary excitations with very
small energies. However, the quantum character of the excitation spectrum
only becomes particularly noticeable when # T is small compared to the
quantum energies. In the endeavor to produce ever lower temperatures,
modern research has reached the micro-Kelvin region (12 uK [IV.2]). To ob-
tain such temperatures requires the simultaneous application of many so-
phisticated techniques. For example, the heat flow to the cold sample must
not exceed 10 W. It is even necessary to avoid incident electromagnetic ra-
diation in the radio frequency range and mechanical vibrations. Besides the
application of liquid *He (7 = 4.2-1.2 K) and *He (T = 3.2-0.3 K) for preli-
minary cooling, the chief method for the production of the lowest tempera-
tures is the so-called “‘adiabatic demagnetization” of nuclear spin systems.

In this cooling process one begins with a set of nuclear spins in the
milli-Kelvin range, which are split in energy by the presence of a magnetic
field. The removal of heat causes the spins to adopt lower energy states.
The magnetic field is then gradually reduced, which causes a corresponding
reduction of the energy level splitting of the spin system. Eventually, at the
appropriate temperature, a few of the spins are able to enter higher energy
states of the nuclear spin system. The energy required in this process is sup-
plied as heat from the electron and (at not too low temperatures) phonon
systems of the solid.

As in all frontier areas of physics, not only the production, but also the
measurement of the lowest temperatures, presents a problem. Even the equi-
libration of nuclear spin and electron temperatures can take hours.

In this experimental section we will introduce the reader to two experi-
mental arrangements that allow one to measure the specific heat capacity
and thermal conductivity of solids down to about 0.3 K. Compared to the
work in the pK region, these are simple experiments. Nonetheless, they
serve to illustrate the essential elements of low-temperature techniques.

Figure IV.1 depicts a so-called Nernst calorimeter [IV.3] used for the
measurement of specific heat capacity. The calorimeter consists of an evacu-
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Fig. IV.1. An adiabatic Nernst calorimeter [[V.3]

ated vessel to prevent heat conduction by gas, which is submersed in the he-
lium bath of a conventional cryostat. The helium bath in turn is surrounded
by a mantle at liquid nitrogen temperature which serves to reduce thermal
radiation. The principle of the specific heat measurement is to record the
temperature rise of the sample upon supplying a known amount of energy,
usually in the form of electrically produced heat. The main problem is the
undesired extraneous heat reaching the sample. This stems from three
sources: thermal conduction by the background gas in the calorimeter, ther-
mal radiation, and conductivity of the leads. Heat conduction by the back-
ground gas can be largely avoided by evacuation, preferably at high tem-
peratures. The influence of radiation is kept to a minimum by surrounding
the sample with a radiation shield whose temperature is maintained close to
that of the sample (the so-called “adiabatic” calorimeter). The sample itself
is held by cotton or nylon threads which provide good thermal isolation.
The conduction of heat through the leads cannot be totally avoided, but
can be minimized by careful choice of materials and by ensuring good ther-
mal contact between the leads and the outer radiation shield. To establish
the desired sample temperature, particularly for cooling, one can use a heat
switch. In the calorimeter of Gmelin shown in Fig. IV.1, this heat switch is
a pneumatically switched heat bridge, with which the sample can be coupled
to the temperature of the helium bath. The temperature of the sample is
measured by the resistance of carbon resistors, or, even more reproducibly,
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T1+AT7

Fig. IV.2. Typical temperature varia-
tion of a sample in an experiment to
measure specific heat from the tem-

Temperature T

LT\ perature rise produced by supplying a
known amount of heat. To determine
the true temperature rise, the curves

> before and after the measurement must
Time t be extrapolated as shown in the figure

by the resistance of a doped germanium crystal which falls exponentially
with increasing temperature (Chap. 12). Such resistance thermometers must
be calibrated against the thermodynamical fixed points of *He and “He or,
better still, against a vapor pressure thermometer with these gases. As a
small example of the sophistication involved in the experiment of Fig. IV.1,
one should note how the special form of the vacuum lead prevents the
300 K radiation from escaping from the lead into the calorimeter.

Despite careful screening, it is not possible to avoid a slight temperature
drift of the sample (Fig. IV.2). After supplying a quantity of heat AQ one
must therefore determine the true temperature rise by extrapolation
(Fig. IV.2). The specific heat capacity can then be calculated from

_1AQ

PTMAT
With a calorimeter of the type shown in Fig. IV.2 it is also possible, in prin-
ciple, to measure the thermal conductivity of a sample. A somewhat differ-
ent set-up, from the laboratory of Pohl [IV.4], developed especially for ther-
mal conductivity measurements, is shown in Fig. IV.3. The entire apparatus
can again be submerged in a bath of *He (4.2 K at atmospheric pressure),
which in turn is shielded by a radiation shield at liquid nitrogen tempera-
ture. The apparatus of Fig. IV.3 possesses in addition a tank for *He. By
pumping down this tank one can exploit the latent heat of evaporation of
*He to obtain temperatures of about 0.3 K. This apparatus for measuring
thermal conductivity contains two heating elements. One serves to set the
temperature of the sample and the other sends a stationary thermal current
through the crystalline sample from its upper end. The temperature differ-
ence is registered by the two carbon resistors. The thermal conductivity can
then be calculated from

_LQ
A= FAT

(IV.1)

(IV.2)
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Fig. IV.3. Apparatus for the measurement of thermal conductivity (simplified) [IV.4]

where L is the distance between the carbon resistors, 4 is the cross-sectional
area of the sample, and Q is the power of the heating element.
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6 ‘““Free” Electrons in Solids

To a good approximation, the properties of solids can be divided into vibra-
tional dynamics and electronic properties. This so-called adiabatic approxi-
mation (Chap. 4) is based on the fact that for the dynamics of the heavy nu-
clei, or of the nuclei together with their strongly bound core electrons (this
combination is known as the “atomic core”), the energy can be expressed as
a function of the nuclear or core coordinates in terms of a time-independent
potential: the electron system, because of its very much smaller mass, fol-
lows the motion of the nuclei or cores almost instantancously. From the
viewpoint of the electron system this also means that for the electron dy-
namics one can regard the nuclear or core motion as extremely slow and, in
the limiting case, as nonexistent. Within the adiabatic approximation one
can then determine the excitation states of the electron system in the static
potential of the positively charged, periodically arranged nuclei or atomic
cores. In doing so, one neglects any interactions between the moving atomic
cores and the remaining electrons of the crystal. In order to treat electronic
transport phenomena (Sects. 9.3-9.5) in crystals, one has to reintroduce
these so-called electron-lattice interactions in the form of a perturbation.

Even the adiabatic approximation of stationary nuclei or cores does not
enable a quantitative treatment of the excitation states of eclectrons; one
would still have to solve the Schrédinger equation for about 10%* electrons
(which also interact with one another) in a periodic, static core potential.
The problem must therefore be further simplified:

One considers just a simple electron in an effective periodic and time-
independent potential. This potential is the one produced by the stationary
nuclei in their equilibrium positions and by all the other electrons. These elec-
trons shield the nuclear charge to a large extent and one obtains a potential
which, in a section through an atomic row of the crystal, appears qualitatively
as shown in Fig. 6.1 (full line). In this so-called one electron approximation one
neglects all electron-electron interactions that cannot be represented as a local
potential for the single electron under consideration, for example interactions
arising from the exchange of two electrons. However, such correlations
between electrons are important, for example, for understanding magnetism
and superconductivity. We will thus be returning later to the subject of elec-
tron correlations. For the time being, however, we shall confine ourselves to
the assumption of a local periodic potential and will solve the Schrédinger
equation for a single electron in this potential. For this electron we shall find

H. Ibach, H. Liith, Solid-State Physics, 4th ed.,
DOI 10.1007/978-3-540-93804-0_6, © Springer-Verlag Berlin Heidelberg 2009
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a series of one electron quantum states that will be successively filled with the
available electrons. In this procedure the Pauli principle demands that each
state contains only a single electron.

6.1 The Free-Electron Gas
in an Infinite Square-Well Potential

An even simpler model, first considered by Sommerfeld and Bethe in 1933
[6.1], also ignores the periodic potential within the crystal. Despite its simpli-
city, this model yielded a much improved understanding of many of the
electronic properties of solids, in particular those of metals. In this model a
metal crystal (a cube of side L) is described by a three-dimensional potential
box with an infinite barrier at the surfaces (Fig. 6.1); in other words, the
electrons are unable to leave the crystal, which is clearly a gross over-simpli-
fication given that work function values lie in the region of 5eV (Sect. 6.6).
The time-independent Schrodinger equation for the electron in the one-elec-
tron approximation in the infinite square well is

2
_;_mAz//(r)+V(r)y/(r):E’W(r), (6.1)

where the potential V' (r) is given by

V(x,y,Z)—{VOZCOHSF for 0<x,y,z<L (6.2)
oo otherwise .
With E = E’ — V} this yields
2
LAY = Ev (). (6.3)

2m

Since the electrons, due to the infinite barrier at the surfaces (x,y, z =0 and
L), cannot leave the crystal, we have so-called fixed boundary conditions (cf.
the periodic boundary conditions adopted in Sect. 5.1). These read
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w=0 for x=0and L; for y,zbetween(and L ;
y=0and L; for x,zbetweenOandL;
z=0and L; for x,ybetweenOandL . (6.4)

The electron is certain to be found somewhere within the potential box and
thus the normalization condition for y (r) is written

J dry*(ry(r)=1. (6.5)
box

The Schrédinger equation (6.3) together with the boundary conditions (6.4)
yield the solution

3/2
w(r) = (L) sink,xsink,ysink.z . (6.6)
The possible energy states are found by substituting (6.6) into (6.3) as
i
== (K 4+ +E). :
2m  2m ( xHh Z) (6.7)

The energies are, as expected, those of a free electron (de Broglie relation),
where, however, the condition w =0 at x,y,z= L (6.4) leads to the follow-
ing constraints on the wave vector k,,k,,k.:

T
kx = an s
T
ky = Zi’ly y (68)

kzz%nz with ny,n,,n.=1,2,3, ... .

Solutions with n.,n, or n. = 0 cannot be normalized over the volume of the
box and must therefore be excluded. Negative wave vectors give no new lin-
early independent solutions in (6.6). The possible states of an electron in a
three-dimensional infinite square well (standing waves, Fig. 6.2) can be listed
according to their quantum numbers (ny,n,,n.) or (ky,k,,k.). A representa-
tion of the allowed values in three-dimensional wave-vector space yields
constant energy surfaces, E = /i*k?/2m = const, that are spherical.

For the fixed boundary conditions described here, the possible k-values
are confined to the positive octant of k-space. In comparison with the case
of periodic boundary conditions (Sect. 5.1), however, the states are twice as
dense in every axis direction. Thus every state corresponds to a volume
Vi = (n/L)’. For macroscopic dimensions L one can again consider the
states to be quasi-continuous, so that for many purposes one can replace
sums over k-space by integrals.

As in the case of phonons, we can calculate a density of states. We
simply take the volume of a thin shell of the octant bounded by the energy
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surfaces E(k) and E(k)+dE and divide this by the volume V. associated
with a single k-point:

1
dzZ' = §4nk2dk/(n/L)3 . (6.9)
Since dE = (h*k/m)dk, we have for the number of states per unit volume of
the crystal:

3/2
=" _FE'4E . (6.10)

In Schrodinger’s wave mechanics as used up to now, no provision has been
made for the intrinsic angular momentum, i.e. the spin, of the electron. As
can be seen from the construction of the periodic table (Sect. 1.1), one must
attribute a spin to the electron, such that it has two possible orientations in
an external magnetic field. In the absence of an external field, the energy le-
vels of these two orientations are degenerate. This means that every k-space
point in Fig. 6.3 describes two possible electron states when one takes the
electron spin into account. Thus, for the density of states D (E) = dZ/dFE of
the free electron gas in the infinite potential well, we finally obtain

em)*? 2
D(E) = E/*. 6.11
(B) =<2 (611)
D (E) is usually expressed in units of cm > eV !. The same density of states

(Fig. 6.4), and thus the same expressions for the macroscopic properties of
the crystal, are obtained if one uses periodic boundary conditions:

WX+ Loy+ L z+L) = p(x,p2) . (6.12)

These conditions yield propagating electron waves as the solutions of (6.3):

w(r) = (%) Vanr,
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a Kx b

Fig. 6.3a,b. Representation of the states of an electron in an infinite square well by means
of a lattice of allowed wave vector values in k-space. Because of the two possible spin or-
ientations, each point corresponds to two states. (a) For fixed boundary conditions the
states all lie in one octant and have a linear separation of n/L. (b) For periodic boundary
conditions the allowed states span the whole of k-space, but with a linear separation that
is now 27/L. The figure shows a cross-section perpendicular to k, (cf. Fig. 5.1). For both
(a) and (b) spherical surfaces of constant energy E(k) are also shown

—D(E'YdE=
Number of states
in dE per cm?®

E Fig. 6.4. Density of one-particle states D(E) for a
E E'+dE free electron gas in three dimensions

In this case, positive and negative k-values represent linearly independent
solutions and, furthermore, the solution with kX = 0 can be normalized. Thus
the possible states now extend throughout k-space and possess the k-values

ky=0, £2n/L, t4n/L,..., X2nn,/L,...
k,=0, £2n/L,..., £2zn,/L,... (6.13)
k.=0, £2n/L,..., £2zan./L,... .

The separation of neighboring points is now 27/L, and the volume asso-
ciated with each point (= two electron states because of spin) is

(2n/L)* =8V .

However, instead of an octant in k-space we must now consider the full so-
lid angle of 47 when calculating the density of states. This leads to the same



140 6 “Free” Electrons in Solids

expression, (6.11), for D(FE) as was obtained for the case of fixed boundary
conditions.

If the model is modified to allow for a finite potential barrier at the crystal
surface (finite work function), the resulting expressions are also modified: the
electron waves now decay exponentially outside the crystal, i.e., there is a non-
vanishing probability of finding electrons in the vacuum just outside the crys-
tal surface. It is also possible for certain localized surface states to occur. Here,
however, we are interested in the bulk properties of relatively large crystals,
and for these one may neglect such surface effects.

6.2 The Fermi Gas at T=0K

The states that an electron can occupy within the one-electron approxima-
tion for the square well potential are distributed along the energy axis ac-
cording to the density of states D(E). The occupation of these states by the
available electrons of the crystal must be such that their total energy corre-
sponds to the mean thermal energy of the system. In other words there has
to be a temperature-dependent occupation probability f(T, E) that governs
the distribution of the available electrons among the possible states. The
electron density per unit volume can therefore be expressed as

n= JD(E)f(T, E)dE . (6.14)
0

For a gas of classical particles this distribution function f{7, E) would be
the familiar Boltzmann exponential, which would require that at tempera-
tures T— 0K all electrons should occupy the lowest available states.

However, for all fermions, i.e., particles with half-integral spin such as
electrons, the Pauli principle applies. Within the one-particle approximation
for noninteracting particles this can be formulated as follows: in an atomic
system no two fermions may possess identical sets of quantum numbers.
This exclusion principle therefore demands that in the lowest energy state,
i.e., for T— 0K, the available electrons occupy successive energy levels start-
ing with the lowest and ending at some upper limit. This limiting energy,
which, at T— 0K, separates occupied from unoccupied states, is known as
the Fermi energy EY for zero temperature. In the free-clectron-gas model
with a square-well potential, this energy corresponds to the spherical surface
EY(kg) = h?k$/2m in k-space with the Fermi wave vector kp as its radius.

The occupation probability for electrons in the potential well at 7= 0K
is a step function with =1 for E < E¥ and /=0 for E > EY (Fig. 6.5). The
spherical form of the Fermi surface E¥(k) at T — 0K leads immediately to
a simple relationship between the electronic density n and the Fermi radius
kg or Fermi energy Ey:
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Fig. 6.5a—c. Description of the quasi-free valence electrons of a metal at 7= 0. (a) f(E) is
a step function. (b) The concentration n of valence electrons is given by the area under
the density of states curve up to the Fermi energy EP. (c¢) In k-space the Fermi sphere
E (k) = EY. separates occupied from unoccupied states

L3k
3 F
nL’ = 32 (6.15)
EO h2 2.12/3

The magnitude of the Fermi energy can thus be estimated by using the num-
ber of valence electrons per atom to determine the electron concentration 7.
A few values of EY are listed in Table 6.1. From these we see that at normal
temperatures the Fermi energy is always very large compared to # 7. To
make this more obvious one can define a Fermi temperature Tg = E%// ; this
temperature lies about two orders of magnitude above the melting point of
the metals.

Table 6.1. Fermi energy EY, radius of the Fermi sphere in k-space kg, Fermi velocity
vp = likg/m, and Fermi temperature Tg = E%/« for a few typical metals. n is the concen-
tration of conduction electrons deduced from the structural data of the elements [6.2]. It
should be noted that the electron configuration of Cu, Ag and Au is 3d'4s' and so
every atom contributes one free electron (Fig. 7.12). The characteristic radius rg is also
often used in this context. It is defined via the volume of a hypothetical sphere containing
one electron, 47rd/3 =ay’n™', where ay is the Bohr radius so that r, is dimensionless.
Values for rg lie between 2 and 6 for typical metals

Metal n (102 em™) ke (108em™)  vp (10%cm/s)  ER (eV) Tw (10*K)
Li 4.62 3.27 1.11 1.29 4.70 5.45
Na 2.53 3.99 0.91 1.05 3.14 3.64
Cs 0.86 5.71 0.63 0.74 1.53 1.78
Al 18.07 2.07 1.75 2.03 11.65 13.52
Cu 8.47 2.67 1.36 1.57 7.03 8.16
Ag 5.86 3.02 1.20 1.39 5.50 6.38

Au 59 3.01 1.20 1.39 5.52 6.41
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An interesting consequence of the Pauli exclusion principle is that the
Fermi gas, in contrast to a classical gas, has a nonvanishing internal energy
at T=0K. It is well known that the internal energy density U of a system
is the average value over all states; thus at 7= 0K we obtain

E

F

U= J D(E)EdE

=nEp . (6.17)

As has already been established, this value lies many orders of magnitude
above the internal energy of a classical gas at 7'=300 K. In order to treat
the conduction electrons in a metal it is therefore sufficient for many pur-
poses to use a zero-temperature description (Fig. 6.5).

6.3 Fermi Statistics

We now move on to consider the Fermi gas at finite temperatures. We shall
need to derive the distribution function or occupation probability f{E, T) for
non-zero temperatures. This is a thermodynamical problem, since we are in-
quiring about the distribution that arises when various quantum mechanical
states are in equilibrium with one another. To derive the distribution f(E, T)
we must therefore apply some basic concepts of thermodynamics.

We consider an atomic system with single-particle energy levels E;. We
assume that the energy levels E; lie very close to one another as in a solid.
We can then consider new energy levels E; each of which consists of many
E;. The degeneracy of these new levels is denoted by g; and their occupation
number by n; where both g; and n; are large numbers. On account of the
Pauli principle we must have n;<g; From thermodynamics we know the
conditions that the system must fulfill in order for all energy levels to be in
equilibrium: the free energy F of the total system must be stationary with re-
spect to a variation in the relative occupation numbers of the levels. In
other words we must have

OF

OF = i o0 =0 (6.18)

with the subsidiary condition of conservation of particle number
> oni=0. (6.19)
i

For the specific case of exchange of electrons between two arbitrary levels &k
and / the equilibrium conditions read
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oF oF

—_— —_— = .2
ankénk + 8n;5n1 0, (6.20)
oni +on;=0. (6.21)

From this it follows immediately that the derivatives of the free energy with
respect to the occupation numbers must be equal

OF _OF
8nk_6n1'

Since the two levels were selected at random, at equilibrium all OF/On; must
be equal and we denote this quantity by a new constant, x, defined as the
“chemical potential” of the electrons.

We will now calculate the free energy of the system of electrons. From
thermodynamics we have the relation

F=U-TS (6.23)

(6.22)

with the internal energy U

U=> nk (6.24)

and the entropy S. The entropy is given by
S=/InP, (6.25)

where P represents the number of possible ways of distributing the electrons
among the states. The number of ways of accommodating one electron in
the level E; is g;. For a second electron, also in level E;, the number of possi-
bilities is g;—1, and so on. There would therefore be

gi!
gilgi—D(gi—2)...(gi—nm+1) (@ —n)! (6.26)
possible ways of accommodating n; electrons at definite positions within the
energy level E;. However, arrangements which differ only in the exchange of
electrons within the energy level are not distinguishable. Since there are n;!
such possibilities, the total number of distinguishable ways of accommodat-
ing n; electrons in the level E; is given by

gi!
I’l,‘!(g,‘ — }’li)! '

The number of ways P of realizing the total system is then the product over
all possibilities for occupying each level:

r=1] nf!(;i! - (628

(6.27)

Thus the entropy can be expressed as
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S=/> [Ing!—1Inn! —In(g — n)], (6.29)
i

where the factorials can be replaced by using Stirling’s approximate formu-
la

Inn! ~nlnn—n (forlarge n) . (6.30)

It now becomes a straightforward matter to calculate the chemical potential,
i.e., the derivative of the free energy F with respect to the occupation num-
ber of an arbitrary level i:

oF n;
=—=E +/Tl . 6.31
# on; - ngi —n; ( )
We can rearrange this expression to obtain the occupation number #;:
=g ) (6.32)

The probability that a quantum mechanical state (degenerate states are also
considered distinct here) is occupied is given by the distribution function
S(E, T), which, from (6.32), can be seen to be (Fig. 6.6)

NET) =—

= 6.33
E/AT ( )

+1
This function is also known as the Fermi distribution. It is the distribution
function for particles, only one of which may occupy each quantum state.

For electrons and all particles with half-integral spin, i.e., fermions, this dis-
tribution function guarantees that the Pauli principle is obeyed. However, it

20 T T T T T T —T T T
A

o T=E/k=5x10"K
= 15f .
©
Q
[
o
c 10 —_— 4
kel
T
Q
3 05F .
3]
(©)

0 | |

0 1 2 3 L 5 6 7 8 9 10
Energy per Boltzmann const E/k (x 104K)
Fig. 6.6. The Fermi distribution function at various temperatures. The Fermi temperature

Te = E(ﬂ«// has been taken as 5x 10* K. The tangent at the point of inflection (—-—) intersects
the energy axis at 2/7 above Ep at all temperatures
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would be wrong to claim that the Fermi distribution is only valid for
particles with spin %; it is equally valid for atoms or molecules that are dis-
tributed among predetermined fixed positions, whenever only one atom or
molecule can occupy such a position. Corresponding situations arise in the
thermodynamics of defects (Sect. 2.7), the solubility of gases in solids, and
adsorption processes.

The significance of the chemical potential # in the Fermi distribution is
most readily seen in the limiting case of 7'=0K. At zero temperature the
Fermi function becomes identical with the step function introduced pre-
viously. It has a value of 1 for £ <y and of 0 for £> u. Thus at T=0K
the chemical potential of the electrons is equal to the Fermi energy:

w(T=0K)=EL. (6.34)

Because of this equality, one often speaks of the “Fermi level” in place of
the chemical potential and uses the symbol Er. This Fermi level, however, is
then a temperature-dependent quantity!

At higher temperatures the sharp edge of the Fermi distribution be-
comes more rounded; states below Ep have a finite probability of being un-
occupied, while those slightly above Er may be occupied (Fig. 6.6). The size
of the region, over which the Fermi function deviates significantly from the
step function, is of the order of 2/ T to each side, as shown by the tangent
to f(T,E) at Er drawn in Fig. 6.6. One sees that as the temperature is
raised, only a small fraction of the electrons is able to gain energy. This has
important consequences, e.g., for the specific heat capacity of the electron
gas (Sect. 6.4).

If one is interested in the occupation probability for energies or tem-
peratures in the range |[F—Eg|>2/ T, it is possible to use approximations to
the Fermi function (6.33).

The condition E-Ex > 2/ T is often fulfilled, for example for the conduc-
tion electrons in semiconductors (Sect. 12.2). In this regime, with energies F
far above the Fermi edge, the Fermi function f{E, T) can be approximated by
the classical Boltzmann distribution, f{E, T) ~ exp(Er — E)/# T, see (12.5).

6.4 The Specific Heat Capacity of Electrons in Metals

The application of the square-well potential model to the conduction elec-
trons allows a very simple description of the specific heat capacity ¢, of
these metal electrons. In fact this is an age-old problem, and one which
seemed insoluble prior to the development of quantum mechanics. For a ty-
pical conduction electron density of # = 10?> cm * one would have expected,
in addition to the lattice specific heat, an electronic contribution according
to the equidistribution law of ¢ = 3nk/2, at least at elevated temperatures.
Experiments on metals, however, showed no deviation from the Dulong-Petit
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value. The reason is simple: electrons, in contrast to a classical gas, can
only gain energy if they can move into free states in their energetic neighbor-
hood. The number of such electrons, expressed as a fraction of the total
density n, is only of the order of 1/100, as demonstrated by the following
simple estimate:

The “smeared out” region of the Fermi function has a width on the or-
der of 44T, i.e., according to Fig. 6.7, the Pauli principle dictates that only
a fraction of about 4/ T/Eg of all “free” electrons (density n) can absorb
thermal energy. The energy per electron is around # T and so the total en-
ergy of these thermally excited electrons is on the order of

U~ 4(+T)n/Eg . (6.35)

With Tg = Eg/# as the Fermi temperature, one obtains the following order
of magnitude estimate for the specific heat of the electrons

¢y =0U/OT ~ 84nT/TF . (6.36)

As seen in Table 6.1, the Fermi temperatures are typically on the order of
10° K and this, on account of the factor 7T/T% in (6.36), explains the vanish-
ingly small contribution of the conduction electrons to the specific heat ca-
pacity.

The exact calculation to determine the specific heat capacity of the gas
of free electrons is as follows:

Upon heating the Fermi electron gas from 0K to a temperature 7, the
internal energy per unit volume is increased by an amount U given by

B

U(T) = JdE- ED(E)f(E, T) — J dE - ED(E) . (6.37)
0 0
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Fig. 6.7. Explanation of the specific heat capacity

of quasi-free metal electrons. The effect of raising

the temperature from 0K to 7 is to allow elec-

0 DIEF) ﬁD‘f trons from <2/T below the Fermi energy to be
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We also have the relation

Ep-n=Egp J dED(E)f(E, T) , (6.38)
0

where n is the total concentration of free electrons. Differentiating (6.37)
and (6.38) yields

¢ = OU/OT = J ED(E)(9f/0T)dE , (6.39)
0

0 = Ep(9n/dT) = J ErD(E)(9f/dT)dE . (6.40)
0

Subtracting (6.40) from (6.39), the specific heat capacity ¢, of the electrons

is obtained as
o0

¢y = OU/OT = J dE(E — Er)D(E)(9f/0T) . (6.41)
0

The derivative Jf/OT (Fig. 6.7) has significant values only in the “smeared
out” region of + 2/ T about Er. The density of states D (E) does not vary a
great deal in this region and may be approximated by D (Eg), i.e.,

c. % DIEr) [ dB(E - Ex)(@//0T) (6.42)
0

where the temperature derivative of the Fermi function (6.33) is given by

O _E—Er  expl(E— Er)/eT]

= . 6.43
OT /T {exp|(E — Ep)/<T| + 1}’ (643
With the abbreviation x = (E — E¥)/#T we then have
ey = /2 TD(EF) J dxx?expx(expx+1)72. (6.44)
—Eg /AT

Since the factor of exp x in the integrand is negligible for x <—Eg/< T, the low-
er integration limit can be extended to minus infinity. The resulting integral
J dxx*expx(expx + 1) = 7%/3 (6.45)

is a standard integral whose value can be found in tables.
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One thus has the following general result for the specific heat capacity
of the “free” electrons in metals:

77'.2
ey R ?D(EF)/ZT. (6.46)

In deriving (6.46) no use has been made of the explicit form of the density
of states D(FE). Equation (6.46) is therefore also valid for cases where the
density of states deviates from that of the free electron gas, as indeed is ex-
pected in the majority of cases. For metals, measurements of the electronic
heat capacity are therefore used as a method of determining the density of
states D(ER) at the Fermi level.

In the free electron gas model D(Eg) can be very simply expressed in
terms of the electron concentration. In the case of metals, the validity of the
relation 7T« Tk implies

n= J D(E)dE, (6.47)
0

and the density of states for this case can be written
D(E) = D(E¢)(E/Er)"* . (6.48)

It follows that

2
n= §D(EF)EF 5 (649)

and from (6.46) we have

nt AT 7z T
~—nst =—ns —. 6.50
R R e (6.50)

Thus the only difference between this exact calculation and the previous
rough estimate (6.36) is the appearance of the factor 72/2 in place of the
factor 8.

The predicted linear dependence of the electronic specific heat capacity
on temperature is well confirmed experimentally. For low temperatures,
where the phonon contribution to ¢, displays the Debye T° dependence,
one expects to observe

e =yT+ BT, 7y, = const. (6.51)

The experimental results in Fig. 6.8 show the linear dependence expected
from (6.51) for a plot of ¢,/T against 7>

For the transition metals in particular, the experimentally determined
values of y bear little resemblance to those calculated from the electron gas
model, as is seen in Table 6.2.
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Fig. 6.8. Plot of ¢,/T against T for copper. The experimental points (O and CJ) stem
from two separate measurements [6.3]

Table 6.2. Comparison of experimentally determined values of the coefficient y of electro-
nic specific heat with values calculated using the free-electron-gas model. At low tempera-
tures one has ¢, = yT+ BT for the combined electronic (oc T) and (oc T7) contributions
to the specific heat

Metal Vexp (1073 J/M01 Kz) yexp/ylheo
Li 1.7 2.3

Na 1.7 1.5

K 2.0 1.1

Cu 0.69 1.37
Ag 0.66 1.02

Al 1.35 1.6

Fe 4.98 10.0

Co 4.98 10.3

Ni 7.02 15.3

Fig. 6.9. Qualitative behavior of the
density of states D(E) for the con-
duction band of a transition metal.
The strong contribution of the d-elec-
trons in the vicinity of the Fermi le-
vel lies on top of that of the s-band
Energy (eV) (partially dashed)

Density of states D(E)
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The large deviations for Fe, Co, and Ni are attributed to the partially
filled d-shells of these transition metals, whose d-bands thus lie at the Fermi
energy. Because of the strong localization of the d-electrons at the atoms,
the overlap of their wavefunctions is small. This means that the correspond-
ing energy band is relatively narrow and therefore yields a large contribu-
tion to the density of states as shown in Fig. 6.9.

6.5 Electrostatic Screening in a Fermi Gas —
The Mott Transition

If an electric charge is introduced into a metal, e.g. by the inclusion of a
charged defect, then in the vicinity of this charge there is a perturbation in
the otherwise homogeneous electron concentration which compensates or
screens the electric field of the charge.

This problem can be treated approximately using the model of a quasi-
free electron gas in a potential well:

A local perturbation potential 6U (assumed to obey |edU| < Ef) pro-
duces a local raising of the density of states parabola D(E) by an amount
eoU (Fig. 6.10). If one imagines the perturbation potential to be switched
on, it is clear that some electrons must immediately leave this region in or-
der for the Fermi level to remain constant throughout the crystal. This
homogeneity is necessary since the Fermi level is a thermodynamic function
of state (equal to the electrochemical potential). For not too large oU the
change in the electron concentration is given in terms of the density of states
at the Fermi level (in analogy to the specific heat capacity) by

on(r) = D(Ep)|e|loU(r) . (6.52)
Except in the immediate vicinity of the perturbation charge, one can assume

that U (r) is caused essentially by the induced space charge. Thus Jn(r) is
related to dU via the Poisson equation:

w
>
2
o
&

Fig. 6.10. Effect of a local perturbation potential

oU on the Fermi gas of “free” electrons. Immedi-

56U ately after the perturbation is switched on, dn

0 0 7 electrons must move away such that the Fermi

. level Ef is homogeneous throughout the crystal
Density of states D in thermal equilibrium
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-5 2
P200) = 22 = “on =< D(Ep)U , (6.53)
&0 &0 &0
where ¢ is the dielectric constant.

With /% = ¢% D (Er)/eo, this differential equation for the screening poten-
tial 0U has a nontrivial solution in spherical coordinates

(Vz(éU) = ’iz % 1‘2%(5U)):
oU(r) =ae™/r. (6.54)

Spherical coordinates are the obvious choice when dealing with a point-like
defect. For a point charge ¢ one would have o = e/(4mey) since for 1 — 0
the screening effect would disappear and one must obtain the Coulomb po-
tential of this point charge (Fig. 6.11). The quantity rrg = 1/4 is known as
the Thomas-Fermi screening length:

rre = [ D(Er) /e0] /. (6.55)
For the special case of the free electron gas model, (6.49) and (6.16) give
D(Eg) = gn/EF and Ep = h—2(37z2n)2/3
2 2m ’
ie.
D(Ep) = — = (37%n)'* . (6.56)
T

For the Thomas-Fermi screening length in the square-well model it follows
that

s 3 4 1/3 n'/3
== == (32— (6.57)
't n2h &0 T ap

Fig. 6.11. Screened (——) and unscreened (—-—)
Coulomb potential of a positive unit charge in a
Fermi gas of free electrons. The distance r is
given as a multiple of the Thomas-Fermi screening
length rrg

Potential energy V(r)
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1 1/6 -1/6
—=~2% o rE 05 (%) , (6.58)
ITE ao/ dy

where ag = 47 /(meé?) is the Bohr radius. Copper, for example, with an
electron concentration of n=28.5x10*?cm >, has a screening length of
rrp = 0.55 A.

The screening process described here is responsible for the fact that the
highest energy valence electrons of a metal are not localized. These electrons
cannot be held in the field of the ion core potential. As the electron density
decreases, the screening length rrr becomes even larger.

Using arguments related to screening, it is possible to understand the
sharp transition between metallic and insulating or semiconducting proper-
ties known as the Mott transition [6.4].

Above a certain critical electron density n. the screening length rrg be-
comes so small that electrons can no longer remain in a bound state; this pro-
duces metallic behavior. Below this critical electron concentration the potential
well of the screened field extends far enough for a bound state to be possible.
The electron is then localized in a covalent or ionic bond. Such localized states
correspond, by definition, to insulating properties where the highest occupied
states form localized bonds. To make a simple estimate of when a bound state
becomes possible in a screened potential, we assume that the screening length
must be significantly larger than the Bohr radius ay, i.c., that the potential well
of a positive center extends sufficiently far to bind an electron:

1 ap
r%l: ~ FRRYE > a% ) (6.59)
Le.
n 13> day . (6.60)

This estimate, originally proposed by Mott, predicts that a solid will lose its
metallic character when the average electron separation n '/? becomes signif-
icantly larger than four Bohr radii. One then expects an abrupt transition to
insulating properties.

It is today believed that sharp jumps observed in the conductivity of
transition metal oxides, glasses, and amorphous semiconductors, may be ex-
plicable in terms of the above mechanism.

6.6 Thermionic Emission of Electrons from Metals

If a metal is made sufficiently hot it is found to emit electrons. This phe-
nomenon is exploited in all electron tubes.

In the circuit shown in Fig. 6.12a one observes a saturation current j; in
the current-voltage characteristic (Fig. 6.12b) that is dependent on the cath-
ode temperature 7.
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it
U
a b Applied voltage

Fig. 6.12. (a) Schematic drawing of a diode circuit for observing thermionic emission of
electrons from the heated cathode C (A = anode). (b) Qualitative behavior of the current-
voltage curve at two different temperatures 77 and 7> > T;. As a consequence of their ther-
mal energy, electrons can even overcome a countervoltage (A negative with respect to C)

The existence of this effect demonstrates that the assumption of an infi-
nite square well to describe metal electrons is too simple. The potential well
clearly has only a finite barrier height. The energy difference E,,—FEr = @ is
known as the work function. This is the energy barrier that an electron must
overcome in order to reach the energy level of the vacuum (far away from
the metal) from the “Fermi sea”. If the electron also possesses a sufficient
momentum perpendicular to the surface, it can leave the metal and will con-
tribute to the saturation current j.

We will calculate the temperature-dependent saturation current for the
free-clectron-gas model. If the drift velocity v of the charge carriers is homo-
geneous, the current density is given by j = n e v, where n is the concentration
of charge carriers. (Strictly speaking a minus sign is also required, but this can
be omitted for our present purposes.) We can generalize this expression to the
case where the electron velocity is a function of the wave vector k:

e e
O k) = J ve (k) dk 6.61
h= Y = 0 (6.61)
E>Ep+®
vy (k)>0

This form includes the fact that the density of states in k-space is V/(27)>.
Both the summation and the integral extend only over occupied states, as
dictated by Fermi statistics. This condition can be included explicitly by
multiplying by the occupation probability given in (6.33). Thus

k:ﬁij%mjﬁ%mmn. (6.62)
(2m)'m . o

Here we have written mv, = fik,, and have taken into account that for a
free-clectron gas all states are doubly degenerate. Since the work function @
is large compared to 47T, we can approximate the Fermi statistics by Boltz-
mann statistics:
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—00

1Pk /2m/TeEF JAT

x J dk ke (6.63)

kx min

The integrals are thus factorized and can be readily evaluated. In the third
integral we must also take into account that the kinetic energy in the + x-di-
rection must be greater than Ep + @:

1212 [2m A / 1 —12K2 [ 2m A /
J dk ke I/ omAT Fe /AT _ J Edk,zxe I/ 2mAT Fe /AT
Ky min (EH—(D)Zm/hz
mAT _g/07

One thus arrives at the so-called Richardson-Dushman formula for the sa-
turation current density:

. dmme
Js = I3

The universal factor 4zme~2/h has the value 120 A/(K? cm?). In this deri-
vation we have made the simplifying assumption that electrons arriving at
the surface with an energy hzki /2m= Ex + @ have a 100% probability of es-
caping from the solid. Even in the free-electron-gas model this assumption
is not correct. The well-known quantum mechanical treatment of the reflec-
tion and transmission of electrons at a potential step tells us that electrons
whose energy exactly equals the energy of the potential step have zero prob-
ability of transmission. The effect of the potential step can be included by

(T2 T (6.65)

introducing a factor /n/T/(Ep + @), which significantly reduces the

saturation current density. The Richardson-Dushman formula can also be
applied to the ballistic transport of charge carriers in semiconductor multi-
layer structures (cf. Sect. 12.7).

In the particular case of thermionic emission, it is also necessary to con-
sider the dependence of the work function on the external field .

The appropriate correction is the replacement of the constant @ in the
exponent by the field-dependent quantity

3

o= =0 - AD. (6.66)

47r &0
The correction term A@ is derived simply by assuming that essential contri-
butions to the work function stem from the Coulomb force due to the image
charge of an electron lying outside the surface and the effect of the external
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Fig. 6.13. Schematic representation of the thermionic emission of free electrons (density
n) from a metal. An electron in the potential well must overcome the work function barrier
® = EyEr in order to reach the energy level E,. of the vacuum and escape from
the crystal. An important part of the work function is assumed to be the Coulomb
potential between the escaping electron and its positive image charge in the metal (image
potential —-—). If an external electric field is applied, then @ is reduced by an amount A®.
Reductions of the work function of ~1 eV as shown here can only be achieved with extre-
mely strong external fields of 10’-10% V/em

field in reducing the potential barrier. This is illustrated by the superposition
of the external applied potential < x and the Coulomb image potential as
shown in Fig. 6.13.

The Richardson-Dushman formula can be used in this extended form to
determine the work functions of metals. In order to do this, one must first
determine the saturation emission current jgo for # = 0 by extrapolating the
measured current j; at finite fields . A semi-log plot of jso/T* against 1/T
yields the work function.

Work functions of the elements (polycrystalline) are listed in Table 6.3.

Table 6.3. Work functions of elements in eV (polycrystalline samples, after Michaelson [6.5])

Li Be B C
29 498 445 5.0

Na Mg Al Si P S
275 3.66 428 485 — -

K Ca S¢ Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se
230 287 3.5 433 43 45 4.1 45 50 515 4.65 433 42 50 3.75 59

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te
2.16 2.59 3.1 4.05 43 46 - 471 498 5.12 426 4.22 4.12 442 4.55 495

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po
214 277 35 39 425 455 496 483 527 5.65 5.1 449 3.84 425 422 -
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As a concluding remark we note that the work function depends
strongly on the crystallographic orientation of the surface and on the degree
of contamination.

Problems

6.1a) Calculate the density of states for a two-dimensional gas of free
electrons in a so-called quantum well. The boundary conditions for the
electronic wavefunction are: y (x,y,z) = 0 for |x| > a, where a is of atomic
dimensions.

b) Calculate the density of states for a one-dimensional gas of free electrons
in a so-called quantum wire with the boundary conditions: w (x,y,z) =0
for |x| > a and |y| > b, where a and b are of atomic dimensions.

¢) Can such electron gases be realized physically?

6.2 Calculate to lowest order the temperature dependence of the chemical
potential for a gas of free electrons whose electron concentration remains
constant.

Hint: Write down an expression for the electron concentration at finite tem-
perature. You will encounter an integral

o0

F(X):J%.
0

For x>1.5
32 n’
F(x)~=2/3 14+-—
o223 (14 )
is a good approximation.

6.3 The bulk modulus x is given by the second derivative of the total energy
E,o with respect to the volume: x = V' 9% E,,/0V*. Estimate the bulk moduli
of alkali metals by assuming that the total energy is equivalent to the kinetic
energy of the Fermi gas. What has been neglected in this estimate?

6.4 At what temperature T, does the specific heat of the free electrons be-
come larger than the specific heat of the lattice. Express this temperature in
terms of the Debye temperature @ and the electron concentration. Calculate
T, for copper.

6.5 The benzene molecule C¢Hg exhibits characteristic optical absorption
bands near to the wavelengths 180, 200 and 256 nm. These are explained in
terms of 7 — n* transitions of the carbon ring skeleton. The occupied 7 or-
bitals in the LCAO picture have, respectively: one and the same sign around
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the C-ring (Ist = orbital); one node line through two opposite C—C bonds
(2nd 7 orbital); and one node line through two opposite C atoms (3rd =
orbital). From the equal C—C bond length around the ring (~1.39 A) it is
inferred that the 67 electrons are not localized in a particular bond but de-
localized around the ring. As a simple model for the electronic properties of
the n-system a closed, ring-like, one-dimensional electron gas consisting of
the 67 electrons is assumed (periodic boundary conditions). Calculate the
possible energy eigenvalues E,, for this 7 system.

a) Successively fill the states with six electrons and determine the optical ab-
sorption as the transition between the highest occupied and the lowest
unoccupied state. Compare the result with the experimental absorption
bands.

b) Sketch the wavefunctions of the free electrons in the n-orbitals and
match these to the LCAO orbitals.

¢) Discuss reasons why the calculated optical absorption deviates from ex-
perimental values.

6.6 A free electron plasma fills the half-space (z <0) up to the surface
z =0, where it is bounded by vacuum. Show that the surface wave

¢ = ¢o exp(—kz[) exp [i (kx — wi)]

is a solution of the Laplace equation A¢ = 0 and that the Maxwell bound-
ary conditions for the  and D fields can be fulfilled at the surface z = 0,
thus giving the condition ¢(wy,) = —1 for the existence of the surface plasma
wave with frequency w,. Derive the dielectric function &(w) for the un-
damped free electron plasma and find a relation between the frequencies w,
and o, of the bulk and surface plasmons.

6.7 Normal (main sequence) stars are stabilized by a balance between gravi-
tational pressure and radiation pressure arising from nuclear fusion
processes occurring in the interior. After burn out and exhaustion of the
nuclear fuel a new equilibrium state, that of a white dwarf, can be reached
following some loss of mass and a gravitational contraction of the residual
star. This contraction is accompanied by the production of a large amount
of heat, which causes disintegration of atoms. A plasma of free electrons
and positive H and He nuclei is formed whose internal (Fermi) pressure
counteracts further gravitational contraction.

a) Calculate in the non-relativistic limit (electron velocity < c¢) the average
energy of an electron and the average pressure in the electron plasma as
a function of electron density n.

b) Making use of the equilibrium between Fermi pressure and gravitational
pressure, calculate for the non-relativistic case the mass spectrum M(p)
of possible white dwarfs (¢ is the density of the star).

Hint: Tt is easy to see that the gravitational energy is proportional to

G M?/R where G is the gravitation constant. However, since the distribu-
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tion of density in a star is very inhomogeneous, a better approximation

for the gravitational pressure at the center of the star is pgr(R =0) ~

213G M2,

¢) Investigate whether white dwarfs for which the mass-density relationship
of part (b) holds are stable. Plot the total energy for a fixed mass and
particle-number against the radius. At which masses is the white dwarf
stable?

d) With decreasing radius, the Fermi velocity of the electrons increases. For
the relativistic case (v = c¢) calculate the average energy per electron and
the pressure of the electron plasma as a function of the electron density.

Hint: When the kinetic energy becomes significantly larger than the rest-

mass energy, then £ = pc=hkec.

e) For the relativistic case calculate, in analogy to part (b), the equilibrium
between Fermi pressure and gravitational pressure and determine the
mass M, for which this is possible. How does M,;; compare to the
mass of the sun M, =2 x 10°° kg?

f) Describe explicitly what happens to stars that have masses M > M,
M= M, and M < M. For each of the three cases plot the total
energy at fixed mass and particle number as a function of the radius.

g) Calculate the electron density n. at which the non-relativistic approxima-
tion must be replaced by the relativistic. This can be achieved with good
accuracy by equating the relativistic and non-relativistic electron momen-
ta at the Fermi edge:

P (ne) = )

Compare the mean separation of electrons at this density with their
compton wavelength A. = /i/mc. What star mass (expressed as a multiple
of the sun’s mass, M) corresponds to this density?
Remark: Realistic calculations give an upper limit for the mass of white
dwarfs of M. ~ 1.4 M,. This upper limit is named the Chandrasekhar limit
after the Indian-American astrophysicist Subrahmanyon Chandrasekhar
(Nobel prize 1984).

6.8 When the gravitational collapse of a burnt out star leads to even higher
interior temperatures, inverse f decay processes (¢ +p —n) cause the
generation of neutrons (). In its final state such a star consists only of
neutrons (mass #1,). These form a Fermi gas similar to that of the electrons
in a white dwarf. Apply the stability criterion derived in Problem 6.7 (Chan-
drasekhar limit) to the neutron Fermi gas of a neutron star and estimate the
critical mass M., the critical density g, and the critical radius R of a
neutron star. Compare these with the values for the sun.
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Despite the success of the free-electron-gas model in describing electrons in
crystals (Chap. 6), it must be recognized that the assumptions of the
one-electron approximation and of a square-well potential, are oversimplifi-
cations. Thus one cannot expect this model to explain, for example, the fun-
damentally important optical and electronic properties of semiconductors. If
one imagines, as discussed briefly in Chap. 1, that a solid is created by
allowing initially free atoms to gradually approach one another, then the
discrete nature of the energy levels of the isolated atoms should clearly be
reflected in the properties of the solid. Indeed, discrete energy levels must be
present in order to explain, e.g., the sharp resonance-like structures observed
in the optical spectra of solids. An explanation of such features is beyond
the scope of the free-electron-gas model. Furthermore, this model is unable
to shed any light on the nature of semiconductors and insulators. To make
further progress one has to take into account that the electronic states in
solids form so-called bands. One can think of these as deriving from the
states of the free atom.

In our present approximation, all deviations from perfect periodicity, be
they static perturbations of the lattice or dynamic vibrations of the atoms,
will be neglected. The assumption of an infinitely extended potential also
means the neglect of all surface effects. To arrive at a finite crystal, i.e., one
with a finite number of degrees of freedom, that is compatible with the infi-
nite periodicity, one again makes use of the periodic boundary conditions
introduced in Sect. 5.1.

7.1 General Symmetry Properties

We are now faced with the task of solving the time-independent Schrédinger
equation for a single electron under the assumption that the potential V(r)
is periodic:

’ n
i) = |- 55+ V0 o) = Evl) ()
where
V(r) = V(r+r); ra=ma +may + nza; . (7.2)

H. Ibach, H. Liith, Solid-State Physics, 4th ed.,
DOI 10.1007/978-3-540-93804-0_7, © Springer-Verlag Berlin Heidelberg 2009
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As in Sect. 3.2, r, represents an arbitrary translation vector of the three-
dimensional periodic lattice, i.e., r, consists of multiples (ny,n,,13) of the
three basis vectors ay, a,, a3 of the real-space lattice.

Since the potential V(r) has the same periodicity as the lattice, it can be
expanded in the following Fourier series:

Vi)=Y Ve, (7.3)
G

where the vector G must be a reciprocal lattice vector
G = hg, + kg, + gy, hk,[integers. (7.4)

(in the one-dimensional case G — G = h2n/a). The most general plane-wave
expansion of the required wavefunction y (r) is

p(r) =Y Cpe*r. (7.5)

Here k is a point in reciprocal space that is compatible with the periodic
boundary conditions (Sects. 5.1 and 6.1). Substituting the expansions (7.3)
and (7.5) into the Schrédinger equation (7.1) we obtain:

h2k2

TR ekt N g e ® O — ENT ek 7.6
o ; Ve ; k (7.6)

After renaming the summation indices this becomes

ik-r h2k2
Ze 2——E CkJrZ VeCr_g
% m G

Since this condition is valid for every position vector r, the expression in
brackets, which is independent of r, must vanish for every k, i.e.,

12k2
(W — )Ck + ZG: VGCk—G =0. (78)

This set of algebraic equations, which is simply a representation of the Schro-
dinger equation (7.1) in reciprocal space, couples only those expansion coeffi-
cients Cy of w (r) (7.5), whose k-values differ from one another by a reciprocal
lattice vector G. Thus Cy is coupled to Ci_g, Cr_g» Ciq'» --- -

The original problem thus separates into N problems (N = number of
unit cells), each corresponding to a k-vector in the unit cell of the reciprocal
lattice. Each of the N systems of equations yields a solution that can be
represented as a superposition of plane waves whose wave vectors k differ
only by reciprocal lattice vectors G. The ecigenvalues E of the Schrodinger
equation (7.1) can thus be indexed according to Ej; = E(k), and the wave-
function belonging to Ej is

=0. (7.7)
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vi(r) =) Crge™ 9" (7.9)
G

or

w(r) = Z Crge ' Orelkr =y (r)elkr, (7.10a)
G

The function u (r) introduced here is a Fourier series over reciprocal lattice
points G and thus has the periodicity of the lattice. The wave vector k,
which, for periodic boundary conditions, can take the values (Sect. 6.1)

ky=0, £2n/L, +4n/L,..., £27n./L
k,=0, £2n/L, +4n/L,..., *¥27an,/L (7.10b)
k.=0, £2n/L, +4=n/L,..., +27n./L

(L = macroscopic dimension of the crystal), yields the correct quantum
numbers k., k,, k. or ny,n,, n., according to which the energy eigenvalues
and quantum states may be indexed. In other words, we have shown that
the solution of the one-electron Schrédinger equation for a periodic poten-

tial can be written as a modulated plane wave

wi(r) = w(r) et r (7.10¢)
with a modulation function
ug(¥) = ug(r + 1) (7.10d)

that has the periodicity of the lattice. This result is known as Bloch’s theo-
rem, and the wavefunctions given in (7.10a—d) are called the Bloch waves or
Bloch states of an electron (Fig. 7.1).

The strict periodicity of the lattice potential has further consequences
that follow directly from the properties of the Bloch states. From the gen-
eral representation of a Bloch wave (7.10a), and by renaming the reciprocal
lattice vectors G = G'—G, it follows that

Yisg(r) = E Crg g e @ "elkrer
G/

B (Z oo eiGM) ek =y (r), (7.11a)

G//
i.e.

Vira(r) = vi(r) . (7.11b)

Thus Bloch waves whose wave vectors differ by a reciprocal lattice vector
are identical. The Schrodinger equation (7.1):

7y =E (k) yy (7.12)

and that for the same problem displaced by G-
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p-type lattice-periodic function uy (x)

ANANNANWANEA
VERVERVERVARY|

Wavefunction cos (kx + &)

—— e —

Real part of v

Bloch wave u, (x) cos (kx + 0)

AN A NYA
AVER VARV

Distance x

Fig. 7.1. Example of the construction of a Bloch wave w, (r) = u(r)e*" from a lattice-per-
iodic function uy (r) with p-type bonding character and a plane wave

7 Wi =Ek+ Gy (7.13)
together with (7.11b) then yield

7y, =Ek+G)y, . (7.14)
Comparing (7.12) with (7.14) we see that

E(k)=Ek+G). (7.15)

Thus the energy eigenvalues E (k) are a periodic function of the quantum
numbers k, i.e., of the wave vectors of the Bloch waves.

Similar to the case of phonons, whose w(gq) can be described by disper-
sion surfaces in reciprocal g-space, the one-clectron states of a periodic
potential can be represented by energy surfaces E = E (k) that are a periodic
function of the wave vector (quantum number) in reciprocal k-space. Taken
together, these energy surfaces form the electronic bandstructure of the crys-
tal. Since both w(r) and E(k) are periodic in reciprocal space, one only
needs to know these functions for k-values in the first Brillouin zone
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(Sect. 3.5). A periodic continuation of the functions then provides the values
throughout the whole of k-space.

7.2 The Nearly Free-Electron Approximation

To understand the general concept of electronic bands it is particularly
instructive to consider the limiting case of a vanishingly small periodic
potential. We therefore imagine that the periodic potential starts at zero and
is gradually*‘switched on”. What happens then to the energy states of the
free electrons which, in the square-well potential, were described by the
energy parabola E = /i* k%/2m? In the extreme case where the potential is still
zero, i.e., where all Fourier coefficients V¢ (7.3) vanish, one must nonetheless
consider the symmetry requirements of the periodicity, since the requirements
will be a decisive factor even for the smallest nonvanishing potential. This
general demand of periodicity immediately implies, from (7.15), that the pos-
sible electron states are not restricted to a single parabola in k-space, but can
be found equally well on parabolas shifted by any G-vector:
i )

E(k)=Ek+G) =5 |k + G| . (7.16)
For the one-dimensional case (G — G = h2n/a) this is depicted in Fig. 7.2.

Since the behavior of E (k) is periodic in k-space, it is sufficient to repre-
sent this in the first Brillouin zone only. To achieve this one simply displaces
the part of the parabola of interest by the appropriate multiple of G = 27/a.
This procedure is called “Reduction to the first Brillouin zone™.

In three dimensions, the E (k) bands are already more complicated, even
in the case of a vanishing potential, since in (7.16) one now has G contribu-
tions in all three coordinate directions. Figure 7.3 shows the E (k) curves
along k. in the first Brillouin zone for a simple cubic lattice with vanishing
potential.

The effect of a finite but very small potential can now be discussed with
reference to Figs. 7.2 and 7.3.

In the one-dimensional problem of Fig. 7.2 there is a degeneracy of the
energy values at the edges of the first Brillouin zone, i.e., at +G/2 = n/a

Fig. 7.2. The parabolic energy curves of a

free electron in one dimension, periodi-

cally continued in reciprocal space. The

periodicity in real space is a. This E (k)

dependence corresponds to a periodic lat-

_bn _2n o2n % i k  tice with a vanishing potential (“empty”
a lattice)
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Fig. 7.3. Bandstructure for a free electron gas in a primi-
\ tive cubic lattice (lattice constant @), represented on a sec-
tion along k, in the first Brillouin zone. The periodic po-
Y. tential is assumed to be vanishing (“‘empty” lattice). The

\ various branches stem from parabolas whose origin in re-
ciprocal space is given by the Miller indices hkl. (——)
000; (- — -) 100, 100; (---) 010, 010, 001, 001; (---) 110,
101, 110, 101, 10, i01, if0, T01

Ve
A

N
/|
- I
a 0 a kx

and —G/2 = —x/a, where two parabolas intersect. The description of the state
of an electron with these k-values is necessarily a superposition of at least
two corresponding plane waves. For a vanishing potential (zeroth-order
approximation) these waves are

CiGx/2 i[(G/2)~Glx _ =iGx/2 (7.17)

and ¢
Equation (7.8) implies that waves with G-values larger than 27/a must also
be taken into account. However, on dividing (7.8) by [(h°k>/2m)-E], it fol-
lows that Cy is particularly large when Ej and E;_g are both approximately
equal to #2k>/2m, and that the coefficient C4_¢ then has approximately the
same absolute magnitude as Cj. This is precisely the case for the two plane
waves at the zone boundaries (7.17), and thus, to a first approximation, one
can neglect contributions from other reciprocal lattice vectors. The appro-
priate expressions for a perturbation calculation of the influence of a small
potential are therefore of the form

W~ (02 47102y cosng ) (7.184a)
W~ (02— eT10N2) sinz> . (7.18D)
a

These are standing waves possessing zeros at fixed positions in space. As
seen in the discussion of diffraction from periodic structures (Chap. 3), these
standing waves can be represented as a superposition of an incoming wave
and a counter-propagating ‘“Bragg-reflected”” wave. The probability densi-
ties, corresponding to w . and y_,

X
Q+:y/jy/+~coszn2, (7.19a)

Q,zl//’ﬁl//,~sin2n§ ; (7.19b)
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" ¢l
f\ ~ s s s A Fig. 7.4. (a) Qualitative form of the
NN NN N NS N x  potential energy ¥ (x) of an electron
in a one-dimensional lattice. The
i, positions of the ion cores are indi-
(b) cated by the points with separation
INNNSIDNSNSN\S . a(attice constant). (b) Probability

density ¢, = yw*y, for the standing
wave produced by Bragg reflection
at k = +n/a (upper edge of band @
in Fig. 7.5). (¢) Probability density
o_ = w*y_ for the standing wave
at the lower edge of band @ (Fig.
7.5) atk = +n/a

are depicted in Fig. 7.4 together with a qualitative sketch of the potential.
For an electron in the state y ., the charge density is maximum at the posi-
tion of the positive cores and minimum in between; for y_ the charge den-
sity is maximum between the cores. In comparison with the travelling plane
wave e'**, which is a good approximation to the solution further away from
the zone boundary, . thus has a lower total energy (particularly potential
energy), and w_ a higher energy than that of a free electron on the energy
parabola (zero potential case). This increase and decrease in the energy of
the states at the zone boundary represents a deviation from the free-electron
energy parabola (Fig. 7.5).

Having gained insight into the problem from this qualitative discussion,
it is now easy to carry out a formal calculation of the magnitude of the so-
called band splitting or energy gap shown in Fig. 7.5.

Starting from the general representation of the Schrédinger equation in
k-space (7.8), translation by a reciprocal lattice vector yields

-
"~

Fig. 7.5. Splitting of the energy parabola of the

free electron (— — —) at the edges of the first

/ \ Brillouin zone k= +=m/a in the one-dimen-

N g 21V sional case). To a first approximation the gap

/] \8 N T is given by twice the corresponding Fourier

coefficient V' of the potential. Periodic conti-

_% 0 % % k  nuation over the whole of k-space gives rise to

continuous bands @ and @, shown here only
a in the vicinity of the original energy parabola

o['g’
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hZ
(E - % |k - G|2) Cka - %: VG/Ck_G_G/

- Z VG’*GCka/ 5 le (720 a)
G/
Z Ve -6Cr-c'
Crg=-2 = . (7.20b)
E—— k-G
5] |

For small perturbations, a first approximation to the calculation of Cy_g
can be made by setting the true eigenvalue E that we are seeking equal to
the energy of the free electron (5°k?2/2m). Furthermore, in this first approx-
imation, only the largest coefficients Cj_¢ are of interest; in other words, we
expect the greatest deviation from free-electron behavior when the denomi-
nator in (7.20b) vanishes, i.e., for

K~ k-G . (7.21)

This is identical to the Bragg condition (3.32). The strongest perturbations
to the energy surface of the free electron (spheres in k-space), produced by
the periodic potential, occur when the Bragg condition is satisfied, i.e., for
the k-vectors at the edge of the first Brillouin zone. It follows from (7.20b),
however, that besides Cj_g, the coefficient Cy, is equally important. Thus, in
the system of (7.20a), for this approximation we only need to consider two
relations (Vy = 0):

hZ
(E - 2mk2> Cr — VgCig=0

2 (7.22)
(E — |k — G|2) Crog—V_gCk =0.
2m
We thus obtain the secular equation for the energy value
2
(;— K~ E) Ve

" e =0. (7.23)

V_g (—> lk —G|* — E
2m

With EY ¢ = (h2/2 m)| k-G |? as the energy of the free electrons, the two
solutions to this secular equation may be written

1/2
E* = L(E) g+ ED) % [} (B — EQ +1Val] . (7.24)
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Fig. 7.6. Energy dispersion curves E(k) for a one-dimensional lattice (lattice constant a)
in the extended zone scheme. As can be seen, the quasi-free-electron approximation gives
rise to forbidden and allowed energy regions due to the opening of band gaps, as shown
in Fig. 7.5 (cf. the vanishing potential case of Fig. 7.2). The parts of the bands corre-
sponding to the free-electron parabola are indicated by the thick lines

Therefore, at the zone boundary itself, where the contributions of the two
waves with Cy and Cy_q are equal — see (7.21) — and where Ef_g = EY, the
energy gap has a value

AE=E,—E =2|Vg|, (7.25)

i.e., twice the G'th Fourier component of the potential.

Near to the zone boundary, the form of the two energy surfaces that
are separated by this gap is described by (7.24) (in which one again sets
Ef = h?k?*/2m). Figure 7.5 illustrates this for the one-dimensional case near
to the zero boundary at k = G/2.

The correspondence between the energy parabola of the free electrons
and the periodic bandstructure, with its energy gaps due to the realistic
potential, is depicted in Figs. 7.5 and 7.6, in both cases for the one-dimen-
sional problem.

7.3 The Tight-Binding Approximation

The electrons that occupy the energetically low-lying core levels of a free
atom are strongly localized in space. They naturally retain this strong locali-
zation when the atom participates in the formation of a crystal. It thus
appears that the description of a solid’s electronic structure in terms of
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quasi-free electrons must be inadequate. Since these core electrons largely
retain the properties that they had in the free atom, an obvious approach is
to describe the crystal electrons in terms of a linear superposition of atomic
eigenfunctions. This procedure, also known as the LCAO method (Linear
Combination of Atomic Orbitals), was already discussed qualitatively in
Chap. 1 in relation to chemical bonding, in order to explain the existence of
electronic bands in solids.

In formulating the problem, one assumes that the solutions to the
Schrédinger equation for the free atoms that form the crystal

T 4(r — 1) (v — vy) = Eip;(r —ry) (7.26)

are known. #4(r-r,) is the Hamiltonian for a free atom at the lattice posi-
tion r, =nya; + nya, + nzaz and ¢,(r —r,) is the wavefunction for an elec-
tron in the atomic energy level E; One imagines the entire crystal to be
built up of single atoms, i.e., the Hamiltonian for an electron (one-electron
approximation!) in the total potential of all the atoms can be written:

. i
/'/:/‘/A+v:—%zl+VA(r—r,,)Jrv(r—r,,). (7.27)

The influence of atoms in the neighborhood of r,, where the electron of
interest is relatively strongly localized, is described by a perturbation
v(r — r,) to the potential V4 of the free atom. This perturbation can thus be
expressed as

vr—rn) =Y Valr —rm) (7.28)
m+n

i.e., as a sum over the potentials of all atoms apart from that at r,, at the
position r of the electron (Fig. 7.7).
We now seek solutions of the Schrodinger equation

7 yi(r) = E(R)y(r) (7.29)

where 7 is the Hamiltonian of (7.27) for the crystal electron and y (r) are
Bloch waves with the general properties discussed in Sect. 7.1.

Multiplying (7.29) by wj and integrating over the range in which y; is
defined, one readily obtains

. (wiel 7 lwi)
ER) = v (7:30)

where (i lwy) = [dryiw, and (w7 |wy) = [dryf 7wy (cf. Sect. 1.2
and Problem 1.8). If, instead of the true wavefunction, one inserts a trial

wavefunction @ into (7.30), then one obtains an energy E’ that is always
larger than E (k). The better @, approximates the true wavefunction, the
closer E’ (k) lies to E (k). This circumstance provides the basis for the Ritz
procedure.
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Fig. 7.7. Cross section of the potential used in the tight-binding approximation along the
x-direction. The lattice potential ¥}, (——) is obtained by summing the potentials V4 of
the free atoms (— — —). The perturbation potential v(r — r,) used in the approximate calcu-
lation is given by the dash-dotted line in the lower part of the figure

In the present case, when we want to calculate the crystal electron
energy states E (k) that derive from the energy level E; of the free atom, we
assume that a good approximation to w; is provided by a linear combina-
tion of atomic eigenfunctions ¢, (r — r,), i.e.,

W~ O = Za,,%(l' — ) = Zeik' i (r —ra) . (7.31)
n n

The expansion coefficients are determined as a, = exp (ik-r,) by the require-
ment that @, should be a Bloch wave. It can easily be shown that @ in
(7.31) possesses all the required properties of Bloch waves (Sect. 7.1), e.g.,

Brog=» ek g (r—r,) = By . (7.32)

An approximate calculation of E (k) can now be made by inserting in (7.30)
the trial function of (7.31); the denominator in (7.30) becomes:

(@ltg) = 3 i) j G (7 = ru) i — Fa)dr (7.33)

n,m
For a sufficiently localized electron, ¢ (r — ry,) only has significant values in

the vicinity of r,. Thus, to a first approximation, we only retain terms in
(7.33) with n = m, and obtain



170 7 The Electronic Bandstructure of Solids

(Dr| D) = J 0 (r —ra)p,(r — 1y)dr = N | (7.34)

n

where N is the number of atoms in the crystal.
Making use of the fact we know the solutions to (7.26) for the free
atom, we write

BR) =, S [ = B+ ol = o — e (139

where E; is the energy eigenvalue of the isolated atom. In the term contain-
ing E; we have again neglected the overlap between nearest neighbors (i.c.,
only terms with n = m are considered). For the term containing the pertur-
bation v(r —r,), overlap is included only up to nearest neighbors. In the
simple case when the relevant atomic state ¢; possesses spherical symmetry,
i.e., s-character, the result can be readily represented with the help of the
following two quantities:

A== [fr —ra)v(r — ra)o;(r — ru)dr , (7.36a)

B =~ [¢f(r — rm)v(r — ra)gi(r — ry)dr (7.36b)
and reads

E(k)~ E;—A—BY» ekt (7.37)

The sum over m includes only values for which r,, denotes a nearest neigh-
bor of r,.

In the present case, A is positive since v is negative. Equation (7.37),
applied to the case of a primitive cubic lattice with

Fo—¥Fm = (£a, 0,0); (0,%a, 0); (0,0, +a),
gives, for an atomic s-state,
E(k) = E; — A — 2B(cos kya + cos kya + cosk.a) . (7.38)

When the atoms are brought together to form a crystal (with primitive
cubic lattice), the atomic energy level E; therefore becomes an electronic
band whose center of gravity is reduced by an amount A4 with respect to E;
and whose width is proportional to B. This situation is illustrated in
Fig. 7.8.

The important consequences can be summarized as follows:

i) Since the cosine terms vary between +1 and —1, the width of the energy
band is 12 B;. For small k-values, the cosine terms can be expanded
such that near to the I™-point (center of the first Brillouin zone at k = 0)
one obtains

E(k) = E; — A — 6B+ Bd*k* (7.39)
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Fig. 7.8 a—c. Qualitative illustration of the result of a tight-binding calculation for a primi-
tive cubic lattice with lattice constant a. (a) Position of the energy levels E; and E, in the
potential ¥(r) of the free atom. (b) Reduction and broadening of the levels £, and E, as
a function of the reciprocal atomic separation r'. At the equilibrium separation a the
mean energy decrease is A and the width of the band is 12 B. (¢) Dependence of the one-
electron energy E on the wave vector k(1,1,1) in the direction of the main diagonal [111]

where k2 = k2 + ki + k2. This k>-dependence corresponds to that which
results from the quasi-free-clectron approximation (Sect. 7.2).

ii) From (7.36b) it follows that the energy width of the band becomes
greater as the overlap between the corresponding wavefunctions of neigh-
boring atoms increases. Lower lying bands that stem from more strongly
localized states are thus narrower than bands originating from less
strongly bound atomic states whose wavefunctions are more extended.

iii) In the framework of the present one-electron approximation, the occu-
pation of the one-electron band states is obtained by placing two of the
available electrons of every atom into each band, beginning with the
lowest energy band, until all electrons have been accommodated. The
Pauli principle allows the double occupation because of the two possible
spin states of the electron.

If a crystal with a primitive cubic lattice contains N atoms, and thus N
primitive unit cells, then an atomic energy level E; of the free atom will
split, due to the interaction with the other (N-1) atoms, into N states. These
then form the corresponding quasi-continuous band. This band can thus be
occupied by 2N electrons. We obtain the same result by considering this
problem in terms of the quasi-free-clectron model: In k-space each electron
state corresponds to a volume (27)°/V (where V is the macroscopic crystal
volume). The volume of the first Brillouin zone, however, is (27)°/V,



172 7 The Electronic Bandstructure of Solids

(where V. is the volume of the unit cell). Thus the part of the band within
the first Brillouin zone contains V/V, = N states, which, when the two spin
states are considered, yields 2N states available for occupation by elec-
trons.

The existence of a bandstructure arising from the discrete energy levels
of isolated atoms upon their joining together to form a crystal was illus-
trated qualitatively in Fig. 1.1. For sodium, for example, the atomic 3s- and
3p-levels give rise, in the crystal (equilibrium atomic separation ry), to
bands that overlap. Since the occupied levels of atomic sodium are
1522522 P 35! the atomic 3s-level only contributes one electron per unit
cell to the 3s-band of the crystal, which could, however, accommodate two
electrons per unit cell. Thus, even without the 3s5-3p overlap (analogous to
the 2s5—2p overlap in Fig. 1.1), the 35 band of Na would only be half full.
In Sect. 9.2 we will see that this partial occupation of a band is the source
of the metallic conductivity of Na. Qualitative arguments concerning the
conductivity have already been presented in Sect. 1.4.

It is well known that isolated carbon atoms have the electronic configura-
tion 152,252 2p>. However, in the diamond crystal, as a result of the forma-

Electron energy

Number of available
quantum states

per atom

Interatomic distance

Fig. 7.9. Schematic behavior of the energy bands as a function of atomic separation for
the tetrahedrally bound semiconductors diamond (C), Si, and Ge. At the equilibrium se-
paration rq there is a forbidden energy gap of width E, between the occupied and unoccu-
pied bands that result from the sp* hybrid orbitals. For diamond, the sp® hybrid stems
from the 2s and 2p3 atomic states, for Si from the 35 and 3p3, and for Ge from the 4s
and 4p°. One sees from this figure that the existence of a forbidden energy region is not
tied to the periodicity of the lattice. Thus amorphous materials can also display a band
gap. (After [7.1])
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tion of the sp* hybrid (a mixture of 25 and 2 p wavefunctions with tetrahedral
bonding; Chap. 1), there is a modification of the s- and p-levels which mani-
fests itself in a further splitting of the sp* hybrid band into two bands, each
of which (including spin) can accommodate four electrons (Fig. 7.9).

The four electrons of the atomic 2s- and 2 p-states thus fill the lower
part of the sp® band, leaving the upper part unoccupied. Between the two
sp* subbands there is a forbidden energy gap of width E,. This is the origin
of the insulating property of diamond, as will be shown in Sects. 9.2 and
12.1. The semiconductors Si and Ge are similar cases (Chap. 12).

The form of the bandstructure shown in Fig. 7.9 cannot be derived
using the simple approach outlined here. More complex methods are neces-
sary for this calculation and these require the use of modern computing
facilities. For further information about such calculations the reader is refer-
red to theoretical reviews and more advanced text books.

7.4 Examples of Bandstructures

In the preceding sections, the origin of the electronic bandstructure, i.e., the
existence of allowed and forbidden energy regions for a crystal electron, was
attributed to the presence of Bragg reflections, which cause certain regions
of the continuous spectrum of free-electron states to become forbidden. The
alternative, but equally important, approach starts from the discrete energy
levels of the free atom and explains the evolution of bands as a quasi-con-
tinuous splitting of the atomic levels due to the interaction with the other
atoms of the crystal. In this picture, each band corresponds to an energy
level of the free atom and may thus be classified as an s-,p-, or d-band etc.
Having given a qualitative picture of a typical metal and a typical insulator
in the examples of Figs. 1.1 and 7.9, in this section we will examine a few
further examples of realistic bandstructures. Figure 7.10 shows how the
highest occupied bands of the ionic crystal KCl can be imagined to evolve
from the energy levels of isolated K and Cl ions as they approach one
another until they reach the equilibrium separation in the crystal. Even at
this equilibrium separation, which is known from X-ray diffraction data, the
occupied bands are extremely narrow. This indicates that there is relatively
little overlap between the charge clouds of the individual ions. If theoretical
results such as those shown in Fig. 7.10 are in good agreement with experi-
mental data, then they allow important conclusions to be drawn about the
form of the chemical bonding.

The entire information about the one-electron states in the periodic
potential is of course contained in a representation of the complete E (k)
surfaces in wave-vector space. In order to simply portray the often compli-
cated surfaces, one considers cross sections through the energy surfaces
along directions of high symmetry in the first Brillouin zone. This is illus-
trated in Fig. 7.11a for the example of an Al crystal. The definitions of the
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Equilibrium separation

0
Cl"3p—»
10 F
20 b Cl™ 3s —»
S
2 e
&
o 30 - K*3p —»
c
o
4
:g -40 -~
-50 | Fig. 7.10. The four highest occu-
K*3s —» pied energy bands of KClI calcu-
lated as a function of the ionic
A | . \ | ( separation in Bohr radii (ag =
-60 L 6 8 10 5.29 x 10~ cm). The energy levels

in the free ions are indicated by
lon separation in Bohr radii arrows. (After [7.2])

symmetry directions and symmetry points in the first Brillouin zone of a
face-centered cubic lattice are indicated in Figs. 3.8 and 7.11b.

A striking feature of the Al bandstructure is that it can be described
very well by the parabolic dependence of a free-clectron gas (dotted lines).
The energy gaps at the Brillouin zone edges are relatively small and the

Energy (eV)

r X W r U X
a Reduced wave vector

Fig. 7.11. (a) Theoretical bandstructure E (k) for Al along directions of high symmetry (I
is the center of the Brillouin zone). The dotted lines are the energy bands that one would
obtain if the s- and p-electrons in Al were completely free (“empty” lattice). After [7.3].
(b) Cross section through the Brillouin zone of Al. The zone edges are indicated by the
dashed lines. The Fermi “sphere” of Al (——) extends beyond the edges of the first Bril-
louin zone
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complexity of the bandstructure stems largely from the fact that the energy
parabolas are plotted in the reduced-zone scheme, i.e.,”“folded” back into
the first Brillouin zone. This type of bandstructure is characteristic for sim-
ple metals. The similarity to the free electron gas is particularly pronounced
for the alkali metals Li, Na and K.

The filling of the bands with the available electrons continues up to the
Fermi energy Ef (indicated in Fig. 7.11). It can be seen that the correspond-
ing constant energy surface, the so-called Fermi surface E(k) = Ef, inter-
sects several bands. Thus, even for Al, the Fermi surface is not a simple
continuous surface: whereas the Fermi surfaces of the alkali metals are
almost spherical and are contained wholly within the first Brillouin zone,
the “Fermi sphere” of Al extends just beyond the edges of the first Brillouin
zone. The Bragg reflections occurring at these edges cause a slight deviation
from the spherical form in these regions. This is shown qualitatively in
Fig. 7.11b in a cross section through three-dimensional k-space.

In comparison to the simple metals, the band structures of the transition
metals are considerably more complicated, due to the significant influence

Energy (eV)

1 1 1

8 6 A 2 0 L r X K r
Density of states (Arb. units) Wave vector

Fig. 7.12. Bandstructure E(k) for copper along directions of high crystal symmetry (right).
The experimental data were measured by various authors and were presented collectively
by Courths and Hiifner [7.4]. The full lines showing the calculated energy bands and the
density of states (left) are from [7.5]. The experimental data agree very well, not only
among themselves, but also with the calculation
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of the d-bands. Together with the bands that originate from s-levels and
resemble the parabolic form of the free-electron gas, there are also very flat
E (k) bands, whose small energy width (low dispersion) can be attributed to
the strong localization of the d-electrons. This is readily seen for the exam-
ple of copper, whose bandstructure is illustrated in Fig. 7.12. For transition
metals such as Pt, W, etc., where the Fermi level intersects the complex d-
bands, the Fermi surfaces possess particularly complicated forms.

Other interesting phenomena, such as semiconducting properties
(Chap. 12), occur when the bandstructure possesses an absolute gap, i.c., a
so-called forbidden region: in this particular energy range and for all
k-directions in reciprocal space, there are no available eclectron states.
A typical bandstructure of this type is that of germanium (Fig. 7.13). Like
diamond and silicon, germanium crystallizes in the diamond structure,
whereby the tetrahedral bonding of the individual atoms is a consequence of
the formation of sp> hybrid orbitals. As was mentioned at the end of
Sect. 7.3, the formation of sp® hybrids leads to the existence of sp> sub-
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Fig. 7.13. Theoretically derived bandstructure E(k) for germanium along directions of high
symmetry (right), and the corresponding electronic density of states (leff). A number of criti-
cal points, denoted according to their position in the Brillouin zone (I, X, L), can be seen to
be associated with regions of the bandstructure where E (k) has a horizontal tangent. The
shaded region of the density of states corresponds to the states occupied by electrons [7.6]
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bands. The lower of these (below the forbidden gap) are fully occupied
whereas the higher-lying sp> subbands above the gap are unoccupied. The
Fermi energy must therefore lie within the forbidden gap, a fact that will be
important when we come to discuss the semiconducting properties of this
crystal in Chap. 12.

7.5 The Density of States

In analogy to the thermal properties of the phonon system (Chap. 5), one
finds also in the case of electronic states, that a knowledge of the density of
states is sufficient to describe e.g. the energy content of the electron system.
For certain electronic excitation mechanisms (e.g. non-angle-resolved photo-
emission spectroscopy; Panel V), in which the experiment effectively inte-
grates over all k-directions, one can often interpret the spectra simply in
terms of the number of electron states per energy interval dE.

Once the energy surfaces E (k) of the bandstructure are known, then in
analogy to (5.4), the density of states is obtained by integrating over an
energy shell {E (k), E(k) + dE} in k-space:

E+dE

”
dZ:W J dk | (7.40)

where V/(27)® is the density of states in k-space. If the volume element dk
is separated into an area element dfr on the energy surface and a compo-
nent dk, normal to this surface (Fig.5.1), i.e., dk = dfgdk,, then with
dE = |grad, E|dk, one has

1 dfe
D(E)dE =—— J —
“ (2n)’ |grad, E(k)|
E(k)=const

dE . (7.41)

This density of states D(E) is given here in relation to the real volume V
of the crystal in order to obtain a crystal-specific quantity. It should be
remembered that, due to spin degeneracy, each state can accommodate two
electrons.

The main structure in the function D (E) is again yielded by those points in
k-space for which |grady E| vanishes, i.e., where the energy surfaces are flat.
These points are known as van Hove singularities or critical points. In three
dimensions D(E) does not become singular near to these critical points
because an expansion of E(k) about the extremum (E ~ k%) implies that
\grad; E| " has a k' singularity. Thus the integration of the E(k) surface
(7.41) yields a linear k& dependence. In three dimensions the density of states
near to a critical point therefore has the form shown in Fig. 7.14. For one-
dimensional bandstructures, which, to a good approximation, can be used
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Fig. 7.14. Form of the density of states D(E) in the vicinity of the four possible types of
critical point in three dimensions. The energy of the critical points is denoted by E. and
the corresponding k-space position by k¢; (i = 1,2,3). In the parabolic approximation, the
energy band has the form E(k)=E,+ Ziai-(kﬁk(.,-)z in the vicinity of a critical point,
where «; = const. The quantities Dy and C in the figure are also constants

to describe one-dimensional organic semiconductors, the density of states
diverges at the critical points, although its integral remains finite. (See discus-
sion of density of states of lattice vibrations for a linear chain; Sect. 4.3.)

Theoretical densities of states may be obtained by integrating in k-space
over the first Brillouin zone for a calculated bandstructure, and may then be
compared with experimental data, for example from photoemission spectro-
scopy (Panel V). As such, they provide an important point of connection
between calculated bandstructures and the experimental data. In the integra-
tion over k-space the main contributions to the density of states are derived
from the critical points. Since the critical points usually occur along lines of,
or at points of high symmetry in k-space, this lends further justification for
the preferred representation of bandstructures along lines of high symmetry,
e.g., I'K,I'X,I'L, etc. In the intermediate regions one can expect only minor
contributions, and it is sometimes possible to make use of simple mathema-
tical interpolation to obtain the bandstructure there.

The relationship between a calculated bandstructure and the corre-
sponding density of states is nicely demonstrated by the case of the semicon-
ductor germanium as shown in Fig. 7.13. Important contributions, i.c., max-
ima in the density of states, are clearly correlated with flat portions of the
E (k) curves along directions of high symmetry. Also evident is the absolute
band gap between the fully occupied valence band states and the (at low
temperatures) unoccupied conduction band states. This forbidden region has
a width of about 0.7 eV for germanium.

As an example for a transition metal, Fig. 7.12 shows the calculated
density of states for copper. The density of states is obtained by integrating
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over the bandstructure E(k), which is also shown in the figure. The sharp
structures seen between —2 and —6 eV below the Fermi level can be readily
attributed to critical points of the relatively flat d-bands. In the E(k)
plot (Fig. 7.12) one can also recognize the parabola-like shape of the s-band
with its minimum at the [I-point. This s-band is responsible for the
structureless contribution to the density of states beginning at about
-9.5eV. Below —6 eV one cannot fail to notice the distinct similarity to the
“free-electron-gas’ parabolic density of states. At the Fermi level it is again
the s-clectrons that produce the density of states. This explains why the
model of a free-electron gas in a box (Chap. 6) yields relatively good results
for copper.

However, as shown in Sect. 6.4, this is far from true for Fe, Ni,Co and
the other transition metals. For these metals the Fermi level intersects the
high density of states of the d-bands, which are therefore only partially
filled. For the ferromagnets Fe, Ni and Co there is an additional complica-
tion, which will be dealt with in detail in Sect. 8.3. In these metals there is a
ferromagnetic phase at 7 < T¢ (Curie Temperature) in which the atomic
spins are aligned. One then has two distinct densities of states — one for elec-
trons whose spin is parallel to the spontaneous magnetization M and one
for the electrons with antiparallel spin orientation. Figure 8.6 shows these
two densities of states for Ni. To derive such densities of states requires a
calculated bandstructure E (k) in which the electron—electron interaction is
explicitly included.

7.6 Density of States in Non-Crystalline Solids

A crystalline solid is translationally invariant with respect to a lattice vector
and the electronic states can be classified according to the components of
the wave-vector k., k,, and k.. Only then are the eigen-values of the electro-
nic states described by a band structure E(k). However, the concept of a
density of states per energy and volume and of allowed and forbidden
bands does not require translational invariance. Thus, a non-crystalline
solid possesses a defined density of states, just as the crystalline solid, pro-
vided that the non-crystalline solid is sufficiently homogeneous in composi-
tion and structure on a mesoscopic length scale. Many materials exist in a
crystalline as well as non-crystalline phases, as under-cooled melts (glasses).
Examples are SiO, and Al,Os. As is well known, these two materials are
optically transparent in either phase. Both phases must therefore have an
energy gap between occupied and unoccupied states larger than 3 eV. Thus
it seems that the magnitude of the energy gap does not depend on the exis-
tence of crystalline order. The amorphous phases of SiO, and Al,O3, and
likewise the amorphous phases of Si and Ge differ from the crystalline
phases only by the missing long-range order. The nearest and next nearest
neighbor configuration is rather similar. In Si and Ge the local order is
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determined by the sp’-bonding to the nearest-neighbors. Since the electronic
structure is dominated by the local bonding, the magnitude of the energy
gap is nearly equal for the crystalline and the amorphous phases. Likewise
the densities of states for other electron energies are rather similar. Only the
sharp features in the band structure resulting from the critical points
(Fig. 7.13) are absent in the amorphous phases.

Amorphous phases of Si and Ge can be fabricated by growth at (rela-
tively) low temperatures. At these temperatures long-range order, which
requires diffusion of material, is not established and the state of lowest free
enthalpy which is the crystalline phase, is not reached. In order to saturate
nevertheless as many bonds as possible the sp’-tetraeders of the local bond-
ing configuration must be slightly distorted. Hence, instead of defined near-
est-neighbor bond angles and bond distances the amorphous phase possesses
a (narrow Gaussian) distribution of bond angles and distances. As shown in
Fig. 7.9 the magnitude of the energy gap depends on the distance between
the nearest-neighbors. The fuzzy distribution of bond distances in amor-
phous solids therefore leads to a fuzzy band gap: the density of states
acquires exponential tails that extend into the forbidden zone (Fig. 7.15).
The magnitude of the density of states at any energy reflects the probability
for the realization of a particular bond distance and bond angle. States that
reach far into the forbidden zone (forbidden in crystals) are due to struc-
tural configurations that are realized only rarely. The mean distance
between such configurations is therefore large and consequently the wave
functions of these states do not overlap. Electronic states deeper in the for-
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Fig. 7.15. Schematic density of states of an ideal amorphous material with saturated tetra-
hedral bonds to the nearest-neighbors (full line). The numbers for the density of states
correspond to amorphous silicon. Compared to crystalline silicon (dashed line) the density
of states possesses exponential tails into the band gap. Non-saturated bonds in the amor-
phous network lead to additional states in the forbidden zone. For practical applications

of amorphous silicon (e.g. in solar cells) one attempts to reduce the number of unsatu-
rated bonds by adding hydrogen
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Fig. 7.16. Calculated energy terms below the Fermi level for cubic Ni-clusters consisting of
13, 43, and 79 atoms and non-cubic clusters of the symmetry Dy, with 20 and 28 atoms [7.7].
The energy scale refers to the vacuum level. States displayed as thick lines consist of several,
nearly degenerate states. The work function of the solid (5.2 eV [6.5]) as well as the high den-
sity of d-states at the Fermi level is quite well represented by the cluster with 79 atoms

bidden zone are therefore localized in space. Electrons in these states are not
free to move about, unlike the electrons in Bloch states (see also Sect. 9.8).

The calculation of electronic states in “amorphous” solids is signifi-
cantly more difficult than for crystalline solids. This is in part due to the
fact that the characterization of a solid as being amorphous is not a well-
defined one. While the atom positions in a crystal are unique, an infinite
number of different realizations of an amorphous solid exist. A calculation
of the electronic density of states of an amorphous solid requires the input
of a particular distribution of bond angles and distances. With that input,
one may compose a structure of an amorphous solid and treat this agglom-
eration of atoms as a large molecule. Such molecules consisting of many
atoms or atomic units of the same type are named ‘“‘clusters”. The electronic
states of clusters are discrete because of the finite number of atoms that
make up the cluster. With increasing number of atoms in the cluster a con-
tinuous density of states can be defined. Technically, a density of states is
frequently calculated by broadening the individual states artificially
(Fig. 7.16). Theoretical methods to extend clusters into all three dimensions
in a non-periodic way have also been developed.

Initially, clusters were merely a construct of the theorists to calculate
the electronic properties of amorphous solids. Since the experimental reali-
zation of clusters with a defined size and composition [7.8], research on clus-
ters has become a field of its own, situated between Moleculer Physics,
Solid State Physics, and Material Science.
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Problems

7.1 Solve the Schrodinger equation for the potential

o0, x<0
V(xayaz){o x>0

and calculate the charge density

Q(xv Vs Z):(—2C) Z ‘Wk‘za

s T

where the maximum k value is determined by the Fermi energy Egr. Sketch
0(x) and discuss the result (Friedel oscillations). Consider the cases of a ty-
pical metallic electron density of 10> cm > and of a weakly doped semicon-

ductor with a density of 10'® cm 2.

7.2 A two-dimensional electron gas is described in reciprocal space by a

two-dimensional lattice whose Brillouin zone is a primitive square.

a) Show that the kinetic energy of a free electron in a corner of the first
Brillouin zone is a factor of two larger than that of an electron with k
vector in the middle of the Brillouin-zone edge.

b) How large is the corresponding factor for a primitive lattice in three di-
mensions?

¢) Show that band overlap can occur even in a two-dimensional lattice. Do
this by drawing the following dispersion relations for the case of free
electrons that are perturbed by a weak periodic potential:

E(ky) for k,=0,
Elk,) for k= g ,
E(k) for ky=k,.

7.3 As a simple model of a crystal consider a one-dimensional chain of 2N
atoms at distances ag from each other. Let ¢;(x—nag) be the correct wave-
function for an electron with energy E; at the atom located at na, (eigen-
value for a single-isolated atom). Under what conditions can the one-elec-
tron wavefunction ¥ (x) for an electron delocalized over the whole chain
of atoms be approximated by a linear combination of atomic orbitals
(LCAO)

N

Y (x) = Z n0;(x —mnap) ?

n=—N

Choose the coefficients ¢, such that for N — oo the wave-function ¥ (x) is a
Bloch wave.
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7.4 a) Consider points in the vicinity of the minimum of an electronic
band at sufficiently small k& values that E(k) can be written in parabolic
approximation as

Pk kKR
Ek)=E. +——=>*+—2+—2],
2 \my m, m.

with m., m, and m. as positive constants. Show that the density of states
D(E) is proportional to (E-E,)"? around the critical point E.(k = 0).
b) Consider the density of states in the neighborhood of a saddle point,
where
°k2 kR
E(k) = Ec +— <—>‘+—}——‘

2 \my my, m;

with positive my, m,, m.. Show that the density of states can be written
near E; as
const for E > E,
D(E) o {DO—C(EC—E)‘/2 for E<E, .

Sketch D (FE) in the vicinity of (a) a minimum and (b) a saddle point of
E (k).

7.5 On the basis of the electronic bandstructure and corresponding density
of states, explain why copper, in contrast to many other metals, appears co-
lored, i.e., exhibits pronounced spectral structure in its optical constants in
the visible spectral range.

7.6 Explain why and how, for diamond and silicon, the energy of the for-
bidden band E, changes with increasing temperature.

7.7 Consider an angle resolved UV photoemission spectroscopy (ARUPS)

experiment, where UV photons of energy 40.8 eV are incident on the (100)

surface of a cubic transition metal with a work function of 4.5eV. Photo-

emitted electrons from d-states at 2.2 eV below the Fermi level are detected

at an angle of 45° to the surface normal and in the [100] azimuth.

a) Calculate the wave vector k of the emitted electrons.

b) What problem arises in deriving the wave vector k; of the electronic state
from which the electron is released. Consider the components k| and k.
(parallel and normal to surface) separately.



Panel V

Panel V
Photoemission Spectroscopy

Experiment

Photoemission electron spectroscopy is the most important experimental
method to acquire information on electronic states in solids [V.1]. The possi-
bility to vary energy, incident angle and polarization of the incident photon
and to observe kinetic energy and angle of emerging electrons provides
means to probe for all occupied electronic states of solids and characterize their
properties. Here we focus on experiments concerned with the valence band
structure. A typical experimental setup consists of a combination of an energy
analyzer and a lens system as shown in Fig. V.1. The sample is mounted on a
goniometer that defines the polar and azimuthal angles of electron emission
with respect to the surface orientation. Energy analysis is performed with a
hemispherical electrostatic deflector. When equipped with corrections for the
fringe fields at the entrance and exit apertures by a suitable grading of the
aperture potential (Fig. V.1), energy resolutions down to 1 meV can be rea-
lized. To keep the resolution constant during energy scans the analyzer oper-
ates at constant pass energy while a lens system provides energy retardation
or acceleration to match the kinetic energy of photoemitted electrons to the
pass energy. The lens system also defines the angular aperture. The com-
bination of exit slit and electron multiplier as shown in Fig. V.1 is frequently

Rotatable Fringe field
sample Lens system correction
e

n

hv Hemispherical
deflector

Electron
multiplier

Fig. V.1. Experimental setup for photoemission spectroscopy
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replaced by a position-sensitive detector for parallel detection of electrons of
different energy. Special analyzers even combine (moderate) energy analysis
with a display of emission angles on a position-sensitive detector.

Light Sources

Depending on the photon energy of the light sources, one distinguishes
between Ultraviolet Photoemission Spectroscopy (UPS) and X-ray Photoemis-
sion Spectroscopy (XPS). The distinction between these two regimes is
according to the traditionally available light sources. Ultraviolet radiation is
provided by open, differentially pumped gas discharge lamps. Mostly used
are the sharp and intense spectral lines of helium at photon energies of
21.22 eV (Hel) and 40.82 eV (Hell). Less common but occasionally also
used are neon and argon at 16.85/16.67 eV (Nel), 26.9 ¢V (Nell), 11.83 eV
(Arl) and 13.3/13.48 eV (Arll). Standard laboratory sources for X-rays are the
Mg-K,1» and Al-K,;, emission lines at 1253.6 eV and 1486.6 eV, respec-
tively. The traditional sources have lost some of their importance as synchro-
tron sources became available for the entire spectral range between 10 eV and
several keV. The advantage of synchrotron sources, in particular of undulator
beam lines is that they combine high photon fluxes with tunability in a wide
spectral range. By varying photon energy and pass energy of the analyzer
simultaneously, one can e.g. optimize the cross section for photoemission out
of particular electron states and even learn about the unoccupied parts of the
band structure. Synchrotron light is polarized, linear-horizontal in the synchro-
tron plane, left circular and right circular below and above the plane of the
ring, respectively, if electrons in the ring circulate clockwise in top view.

The polarization offers additional possibilities. By using selection rules,
the symmetry of electron orbitals can be determined with linear polarized
light, and with circular polarized light, one can distinguish between spin-up
and spin-down states via the effect of magnetic circular dichroism. Fig. V.2
displays the experimental set-up at one of the undulator beam lines (beam
line 7) of the Advanced Light Source (ALS) at Berkeley, USA [V.2]. With
three different gratings, the monochromator covers the photon energy range
between 60 and 1200 eV. The resolving power of the monochromator E/AFE
is about 8000. The energy resolved photon flux is between 10'* and 10" s7'.
As far as UV-light is concerned these figures of merit are not much better
than for the Hel-lamp (=~10'? photons per second, AE = 3 meV, hence
E/AE = 7000). Thus, the Hel discharge lamp is still competitive in perfor-
mance, and orders of magnitude lower in operational cost, if a fixed photon
energy of 21.2 eV suffices and polarization is not required.

The Photoemission Process

A simple although not exact way of looking upon photoemission is to consider
photoemission as a three-step process: Absorption of electromagnetic radiation
and the resulting photoexcitation of an electron from an occupied into an
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Fig. V.2. The set-up of a the undulator beam line 7 at the Advanced Light Source (ALS)
at Berkeley, USA that is commissioned to extended UV- hght and soft X-rays. The syn-
chrotron is not drawn to scale. (After Warwick et al. [V.2])

unoccupied state, transport of that electron to the surface, and crossing the po-
tential barrier at the surface (Fig. V.3). In the latter process, the electron looses
an a priori unknown amount of momentum perpendicular to the surface, where-
by information about the perpendicular component of the wave vector is lost.

The valence band regime is mostly probed with ultraviolet light and occa-
sionally with soft X-ray light. The kinetic energy of photo-excited electrons is
therefore between a few eV and about 1-2 keV. The information depth of
photoemission spectroscopy in solids is given by the mean free path of those
electrons and ranges between 3A and 30A depending on the energy. Photoe-
mitted electrons therefore carry information on bulk electronic states as well
as on electronic states that are localized to the surface atoms.

The wavelength of photons in the UV-regime amounts to a few hundred
Angstroms. All atoms within the information depth therefore experience
electromagnetic radiation of nearly the same phase. An alternative way of
expressing this fact is that the light contributes nearly no momentum and
the transitions between the initial and final electron states E(k) are vertical
(Fig. V.3a). The photon energy is furthermore outside the regime of collec-
tive excitations of the electron gas and outside the regime of extremely
strong absorption. The modifications of the electromagnetic field at the
surface may then be disregarded. In that case, the absorption of the electro-
magnetic radiation and therefore the intensity of the photoemission current
is proportional to the square of the matrix element of the dipole moment
ex, i.e. the vector x  parallel to the electric field with the initial and final

*Most treatments here formulate “momentum operator p* which is correct; leads how-
ever, save for a factor, to an identical result in the case of a homogeneous electric field.
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Fig. V.3. Illustration of the photoemission process. (a) A photon of energy hv excites an
electron from the initial state Eﬁ)(k) to the final state Em(k) above the vacuum level E,.
The kinetic energy of the photoemitted electron is Ey;, = E(D(k) — Eyac. (b) The wave vec-
tors of the electron inside A1 and outside £*V have the same parallel components since
the spatial phase ir k) has to be identical to make the wave function continuous at any
given point r) of the surface

state (see Sect. 11.10). The current carried by electrons of a pdrt1cu1ar k1-
netic energy Ey;, into a particular direction given by the wave vector kH
proportional to:

]ph( Ekm Z ZK},kH,k | x|, kH, >‘

X 8(Exin + Evac — EC (kH’k ) - hu)é(k\\ - kl(\d))'

(V.1)

Here, i, j denote the initial and final bands, k|, k. are the components of
the wave vector in the initial and the final state, and EY, E,,. are the
energies of the initial state and the vacuum level. The matrix element is an
integral over the unit surface cell and over the information depth along the
z-coordinate. The kinetic energy of the photoemitted electron therefore car-
ries the information on the energy of the initial state by virtue of the energy
conservation term in (V.1),

Exin = —FEyac + EC (kH’ ) + hv. (V2)

The parallel component of the k-vector is conserved for periodic surfaces, as
the electron wave function inside has to phase-match to the wave function
outside in order to have the wave function continuous at the surface. The
ky-vector of surface states is therefore fully determined by the k;-vector of
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the photoemitted electron (Fig. V.3b). The vertical component of the k-vector
of bulk states which is lost in the transgression of the surface potential
barrier may be recovered by special techniques.

One technique is triangulation as illustrated with Fig. V.4. A series of
photoemission spectra from a Cu(110) surface in the [110] zone as function
of angle 6 with respect to surface normal is compared to the emission
spectrum in the [111] direction on a Cu(111) surface. In the latter case, the
internal k vector of the emitting electron states is along [111] because of k|,
conservation. While on the Cu(110) surface the [111] direction makes an
angle of § = 35.2° with the surface normal, peaks at the same initial state
energies as on Cu(l11) are found at § = 52.5° (Fig. V.4) because of the
refraction of the electrons when they traverse the surface (insert in Fig. V. 4)
We now calculate the modulus of the k vector of the initial states k\I
making use of the conservation of the parallel component of the wave
vector (Fig. V.3, insert in Fig.V.4):

k™ = k™) = k() sin 35° = k(Y sin 52.5°. (V.3)
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The moduli of the wave vectors outside k" are calculated from the kinetic
energies of the photoemitted electrons. Thus, the peaks observed at —2.7eV
and —3.7eV binding energy belong to different k;; vectors.

Selection Rules in UPS

The photoemission process obeys certain selection rules that follow from the
matrix element in (V.1). Consider for example a surface with a mirror plane.
The electron cigenstates belong to either the odd or the even representation.
The final state of electrons with trajectories in the mirror plane is even. The
matrix element in (V.1) is then nonzero for s-polarized light (polarization in
plane of incidence) and even initial electron states and for p-polarized light
(polarization perpendicular to the plane of incidence) and odd initial elec-
tron states. Hence, by orienting the sample with respect to the polarization
plane of the synchrotron light and by observing electrons emitted in the mir-
ror plane one can immediately determine the symmetry of the initial state.

For atomic orbitals with vector character, the p-states, one can further-
more determine the orientation of the orbitals in space from the intensity
profile with reference to the polarization of light. Since the vector x in the
matrix elements is oriented as the electric field & of the UV-light at the
surface, the photoemission intensity from a p.-orbital is proportional to
“©2 from a p.-orbital proportional to 17912 and from a p,-orbital pro-
portional to \(’y(s)\2. By changing the polarization such that either |/®%
\/}(,S)\z or | ®] become zero and looking for the disappearance of the
intensity, the orientation of p-orbitals is easily determined.

The flux of electrons that are photoemitted from localized orbitals also
shows an interesting dependence on the energy of the final state, which fol-
lows directly from the matrix element. If, for example, the initial state is an
s-orbital the intensity goes through a minimum when the wavelength of the
electron in the final state matches approximately the spatial extension of the
initial state since positive and negative contributions to the matrix element
cancel. Such minima have been discussed first by J. W. Cooper [V.4] and
are therefore named Cooper minima.

e
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8 Magnetism

In our previous discussions of the electronic structure of materials we have
assumed the one-electron approximation. The energy levels and the band-
structure were calculated for an electron in an effective potential consisting
of the potential of the ion cores and an average potential due to the other
electrons. Within this model quite acceptable bandstructures can be calcu-
lated. However, another aspect of the one-electron model is more important
than the qualitative agreement with experiment and the (in principle) simple
calculational method: Within the one-electron model it is also possible to
understand conceptually the excited states of the electronic system, resulting
for example from the interaction with photons and other particles or from
thermal excitation. Just as the energy levels of the hydrogen atom serve as a
model for describing the energy levels of all elements, so the one-electron
model is the basic model for our understanding of the solid state. Further-
more, there are phenomena associated with the collective behavior of the
electrons which can nonetheless be tackled within this framework; for exam-
ple, Thomas-Fermi screening (Sect. 6.5) or the excitation of charge density
waves (Sect. 11.9).

In the case of magnetic phenomena in solids, in particular ferromagnet-
ism and antiferromagnetism, the one-electron and many-electron aspects are
mixed in such a way that it is difficult to formulate a simple basic model.
We will consider, for instance, excited states in which one electron spin is
flipped but in which all valence electrons take part (spin wave). In addition,
the electronic theory of magnetism is complicated by the fact that it con-
tains both collective and local aspects. A particularly important topic in this
chapter is the ferromagnetism of the 3d metals Ni, Co and Fe, which exists
due to the exchange interaction between the largely delocalized 3 d electrons.
A local description is suitable for most magnetic compounds and particu-
larly for the 4f transition metals and their compounds. Antiferromagnetism
and spin waves can also be described relatively easily in terms of an
exchange interaction between localized electrons.

8.1 Diamagnetism and Paramagnetism

The physical quantities magnetic field strength, H, and magnetic induction,
B, in vacuum, are related by the equation

H. Ibach, H. Liith, Solid-State Physics, 4th ed.,
DOI 10.1007/978-3-540-93804-0_8, © Springer-Verlag Berlin Heidelberg 2009
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B=u,H (8.1)

where 1o =47 x 107 Vs/Am is the permeability of free space. The magnetic
state of the system (Sommerfeld system) will be specified by the magnetiza-
tion M, which is related to B and H by

B=yuy(H+M). (8.2)

It is bewildering that the magnetization M and the magnetic field H
have the same dimensions in the SI-system although they are conceptually
different quantities. One awkward consequence is that the conversion
factors from Gaussian units are different: For Hgaussian 1into Hgp it is
10e = 1G = 1000/4n Am'; for MGaussian into Mgy it is 1 emu cm > =
1 G = 1000 A m'. This may cause confusion since nearly all material
constants are tabulated in Gaussian units. Furthermore, original papers
concerning the physics of magnetism nearly always refer to the Gaussian
system. For the conversion between SI units and Gaussian units an article
of Arrot is quite useful [8.1].

The magnetization M of a solid may be understood as the density of
magnetic dipole moments m,

N
M=m—. 8.3
m (53)
Because of the conceptual problem discussed above it is useful to replace the
magnetic field H by the magnetic flux density By = poH and call B,
the (external) magnetic field. By has the units Vs/m?> = T (Tesla). In most cases
there is a linear relation between the “field” By and the magnetization M:

oM = yBy (8.4)

where y is the magnetic susceptibility. If y is negative, then the induced mag-
netic polarization is opposite in sign to the applied field. Such behavior is
denoted diamagnetic, while the reverse behavior is termed paramagnetic,
and is characterized by y > 0. In general, the susceptibility of atoms, and
therefore of solids, comprises a dia- and a paramagnetic component, which
we will denote as y4 and y,. The paramagnetic component is related to the
orientation of intrinsic magnetic moments, which originate from the angular
momentum and the spin of the electrons. For instance, the magnetic dipole
moment of an electron due to its angular momentum is

e
m:—%zi:rixpiz—,uBL (8.5)

with AL =3;r;xp; and the Bohr magneton ug = (efi/2m) (= 5.7884-10°°
eV/T =9.2741-10 ** J/T; 1 T =1 Tesla = 1 Vs/m?).

The negative sign in (8.5) follows from the fact that the electric current
has the opposite sense to that of the particle current because of the negative
charge of the electron. (The elementary charge e is treated throughout this
book as a positive number.) Besides a magnetic moment due to angular
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momentum, the electrons also possess a magnetic moment due to spin, and
these add up to give the spin moment of the whole atom

m :ﬂBgOZSi = Up&osS . (8.6)

Here gy is the electronic g factor (g = 2.0023) and s; are the (negative) electron
spins. As already stated (8.5, 6), L and S can, without further ado, be treated as
operators. The choice of sign of the spin operator is best made so that the spin
operator and the magnetic moment have the same sign. By evaluating the
expectation values of the operators L and S for atoms, it can be seen that a non-
vanishing expectation value results only for open shells. For closed shells the sum
of the angular momentum and spins is 0. In solids, we have open shells for tran-
sition metals and rare earths. Paramagnetic behavior is thus expected for both.
Besides this paramagnetism due to the electrons, one must also consider dia-
magnetism. The latter results from the induction of eddy currents by an external
magnetic field. According to Lenz’s rule, the magnetic moment of these induced
currents is opposed to the applied field. The susceptibility thereby acquires a
negative, diamagnetic contribution. To calculate this diamagnetic contribution,
we must replace the momentum operator in the Schrodinger equation, f, by
o T eA. Here A is the vector potential, which is related to the field By by

By=rot4 and divd=0. (8.7)
For a homogeneous field By, a possible choice of vector potential is
A:—%FXBO. (88)

It is easy to show that (8.8) fulfills the conditions (8.7). We can now write
the kinetic component of the Hamiltonian as

7 kin :ﬁZ(ﬁﬂ‘eAi)z :ﬁZ(/”'_g"" X 30)2

e

1 e ZBZ
= EZ Pt EZ(W Xpi)- - Bo, + Snj’ Z(x,2 +7) . (89)

i

In the second step of the calculation we have assumed that B is parallel to
the z axis, and have used the commutation rule to exchange terms in the tri-
ple product. The sum index runs over all electrons. The second term in the
above expression is nothing other than the paramagnetism due to the angu-
lar momentum, which was discussed above.

By comparing (8.9) with (8.5), one sees that the expectation value of the
magnetic moment in a state ¢ is

me 2l 7o) (
- 83() = —HB\®

z

L.

6,2
0) =B ol Y (3 +0Dlp) . (810)

The first term in (8.10) represents a magnetic moment that exists even in the
absence of a magnetic field. This term, together with the occupation statistics
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of the energy levels for different orientations of the magnetic moment in an ex-
ternal magnetic field, yields the temperature dependence of the paramagnetism.

The second term is responsible for diamagnetism. Due to the spherically
symmetric charge distribution of atoms, we can set

(plxle) = (olyilo) = 3 (olrlo) | (8.11)
and therefore for the susceptibility we obtain (in the SI system)
e’n 5
X = —@/‘0 Z<(ﬂ|ri o) (8.12)

where 7 is the number of atoms per unit volume. In the sum over the matrix
elements the electrons in the outer shells are naturally of greatest impor-
tance because their mean square distance from the nucleus is largest. If the
number of outer electrons is Z,, and we insert in place of r? the square of
the ionic or atomic radius r,, then we obtain
e? 5
Y~ ———UgnZyr; . 8.13
X 6m1u0 ala ( )

The measured values of the diamagnetic susceptibility for atoms and ions
with closed shells are indeed found to be in good agreement with Z,r2
(Fig. 8.1). However, the values indicate that the above estimate should be
multiplied by a prefactor of approximately 0.35. From Fig. 8.1 we can see
that for typical solid state densities of 0.2 mol/cm’, the susceptibility is
about 107 (SI), i.e. small compared with 1. A similar order of magnitude re-
sults for paramagnetic contributions. We therefore find that, apart from the
case of ferromagnetism, to be discussed below, the magnetic susceptibility of
solids is small. In contrast, the electric susceptibility is of the order of one
or larger. This explains why, in solid state spectroscopy with electromagnetic
radiation, which is one of the most important experimental methods, one
usually considers only electric effects (Chap. 11).

So far we have treated only electrons that are bound to atoms. For free
electrons in a metal, (8.10) is not applicable. To calculate the diamagnetism
of free electrons, one must solve the Schrédinger equation for free electrons
in a magnetic field (Panel VIII), and from the energy levels, one can then
calculate the free energy in a magnetic field, and from that the susceptibility.
This last part, however, is mathematically rather tedious and brings few new
insights, and in any case the free electron gas model is only a very crude
approximation. It should nonetheless be remarked that the diamagnetism of
free electrons does represent a genuine quantum effect. For a classical gas of
free electrons, the free energy does not depend on the magnetic field, and
thus the diamagnetic susceptibility vanishes. This is already evident in (8.9):
the magnetic field shifts the momentum by e A. If one then integrates over
all states, and thus over all momenta, the result does not depend on A4, and
is therefore independent of the magnetic field.
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Fig. 8.1. Molar diamagnetic susceptibility (in cgs units) of atoms and ions with closed shells
as function of Z,r2. In order to obtain the susceptibility of a material, e.g. a gas composed
of these atoms or ions, one has to multiply by the density in mol cm . If one inserts the
value of the ionic radius r, in [A], then the value of Z,r2 immediately provides an estimate
for y in units of 10 cm?®/mol. To convert y to SI units one must simply multiply by 47

Besides diamagnetism due to their angular momentum, free electrons
also exhibit paramagnetism (Pauli paramagnetism). This part is easy to cal-
culate and we do not even need to involve the free energy. In the absence of
a magnetic field, states with different spin quantum numbers have the same
energy (they are degenerate). In a magnetic field the spins adopt one of two
alignments. Electrons with spins parallel to the field lines of B, are in states
whose energy is lowered by %go,uBBo with respect to the field-free condition.
Electrons with spins antiparallel to the field lines have an energy raised by
lgoun Bo. The energy parabola D(E) (Fig. 6.4) splits into two parabolas
(Fig. 8.2), which are separated on the energy axis by goup By. From Fig. 8.2
it follows that, in the approximation # T« EF, the volume density of elec-
trons with uncompensated spins is approximately %D(EF)gO,u 5By (cross-
hatched region in Fig. 8.2). Each of these electrons contributes a magnetic
moment of %go,uB, and the resulting magnetization is

M =1 D(Er)goug Bo’ gouy - (8.14)

We thereby obtain a temperature-independent paramagnetic susceptibility y,
given by

2
g
Xp = to ") #5D(Er) ~ pouD(EF) (8.15)
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If we include the diamagnetic component, which we have not calculated
here, we find

r=nup(En)|1 -5 ()] (8.16)

Here m™ is the so-called effective mass of the charge carriers, which takes
account of the fact that the electrons are moving in a crystal lattice and not
in vacuum (Sect. 9.1). According to the value of the effective mass, the
charge carriers may show paramagnetic or diamagnetic behavior.

We can also estimate the order of magnitude of the susceptibility of
the conduction electrons. Values of the density of states at the Fermi level can
be obtained from the electronic specific heat (Table 6.2). If m™ = m, then we
obtain, e.g. for the molar susceptibility of sodium, y, = 1.96 x 10 * cm?/mol or
7=28.6x10° when one multiplies by the density of metallic sodium. Thus
even Pauli paramagnetism does not lead to large values of the susceptibility. It
is of the same order of magnitude as the diamagnetism of closed shells. One
could now close the chapter on magnetic effects in solids and “file it away”,
were it not for the phenomenon of the collective coupling of electron spins
which will now be addressed.

8.2 The Exchange Interaction

To describe the exchange interaction between localized electrons we return
to the hydrogen molecule as the prototype of covalent bonding. The one-
electron approximation has already been discussed in Sect. 1.2. Considering
both electrons (labelled 1 and 2), the Hamiltonian operator -# (1,2) can be
decomposed into three parts

7 (1,2)= 7 (1) + 7 (2)+ 7y (1,2) . (8.17)

Here # (1) and # (2) are the Hamiltonian operators as in (1.2) expressed
in terms of the coordinates of electrons 1 and 2 respectively, and #,.(1,2)
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describes the residual interaction between the electrons. We can recover the
one-electron approximation from (8.17) if we neglect 7, (1,2) and set the
total wavefunction (without spin) equal to the product of the one-electron
solutions. For the ground state this would be

P(1,2) = [p4(1) + op(D)][04(2) + 9p(2)] (8.18)

where ¢4 and ¢y are the atomic wavefunctions. It is immediately clear that
the eigenvalue problem is separable and the calculation proceeds as in
Sect. 1.2. Carrying out the multiplication, (8.18) reads

P(1,2) = 04(1)ep2) + 05(1)p4(2) + 04(1)p4(2) + o()pp(2) . (8.19)

One sees that states in which both electrons are located on one atom (“‘ionic
states’’) are equally represented. This is quite acceptable provided we neglect
the repulsive Coulomb interaction or at least absorb it into an effective po-
tential of the ions. For a Hamiltonian with electron-electron interactions,
(8.19) is a poor postulate, particularly for nuclei which are far from one an-
other. It is then better to omit the ionic states completely. This leads to the
Heitler-London approximation

P(1,2) = 04(Dgp(2) + 05(1)p4(2) . (8.20)

This formula is symmetric with respect to the coordinates of the electrons.
Because the total wavefunction, including the spin function, must be
antisymmetric (generalized Pauli principle), the spins in this state must be
antiparallel (singlet state). A triplet state with parallel spin orientation is
described in space coordinates by the antisymmetric wavefunction

V(1,2) = p4(1)gp(2) — 0p(1)94(2) . (8.21)
With these two electron wavefunctions we can calculate the expectation va-

lue of the energy and, after a few intermediate steps, we obtain:

(P(1,2)| 7 |P(1,2)) C+4
E= ((1,2)[¥(1,2)) =2h+ s

(8.22)

where Ej is the ionization energy of the hydrogen atom, C the so-called
Coulomb integral, A4 the exchange integral, and S the overlap integral.
The + sign in (8.22) corresponds to the singlet state.

i e
azjﬁamfgwn—%mu)wuwn, (8.23)
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5= jq)z(lm (2)05(1)p}(2)drdry (8.26)

The result for the energy levels in the two-electron model (8.22) is quite dif-
ferent from that in the one-electron model. The interpretation of the energy
levels (8.22) is also different. We shall examine these differences with the aid
of Fig. 8.3. In the one-electron model, the energy levels can be occupied by
either two or one electron(s). Within this model, an excited state corre-
sponds, for instance, to the occupation of the lowest level with one electron
and the next higher level with the second electron. The excited state can be
a singlet or a triplet state, and the energies are necessarily degenerate. The
degeneracy of these two states is easy to see in the formula by neglecting the
electron-electron interaction and forming the expectation value of the Ha-
miltonian (8.17). In the two-electron picture, however, the energy of a single
electron is not defined, only a total energy for both. The ground state is, as
in the one-electron model, a singlet state but the first excited state is neces-
sarily a triplet state. We see from this example that the energy levels of the
calculated band structures in Chaps. 6 and 7 only have meaning within the
one-electron picture. In a many-body model the energy of the ground state
can only by symbolized by a single total energy, or single eigenvalue. This
difference between single-body and many-body models will be met again in
Chap. 10.

The energy difference between the triplet and singlet state is obtained
from (8.22) as

CcS—4

1—82
The quantity J gives the separation of the energy levels for parallel and anti-
parallel spins and is called the exchange constant. For the hydrogen mole-
cule it is always negative and the singlet state is therefore the lower energy

state. Using the exchange constant, a model Hamiltonian can be introduced
which only affects the spin functions and produces the same splitting be-

E—E =-J=2 (8.27)

One-electron model Two-electron model

ronasme 5 >
N

4
First excited _CD_
state

Fig. 8.3. Energy levels for a pair of electrons in the one-electron and two-electron models
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tween the energy levels for parallel and antiparallel orientations (for proof
see e.g. [8.1], or textbooks on quantum mechanics)

Vpin= —2J01 - 03 . (8.28)

The operators o can be represented by the Pauli spin matrices. Ferromag-
netic coupling between the electrons is obtained for J > 0. This Heisenberg
Hamiltonian is the starting point of many modern theories of magnetism, in
so far as the magnetism can be understood within a model that treats only
pairwise coupling between electrons. This is not always the case, however,
and particularly for typical ferromagnetics such as the 3d transition metals
Ni, Co and Fe, this model is insufficient. Besides the Heisenberg Hamilto-
nian, we require a description of the collective exchange interaction. As an
example we will study the free electron gas.

8.3 Exchange Interaction Between Free Electrons

Although the exchange interaction for an electron pair in a bond is negative,
for free electrons it is positive. This can be shown by considering two free
electrons i and j and their pair wavefunction ¥;. For electrons with the
same spin, the pair wavefunction must be antisymmetric in space coordi-
nates. From this requirement we obtain

Y. — elk,~r,-elk,~r,- _ elk,ur,-elk,ur,v
q \/E v ( )
1 . .
— _— ilkiritkpr) 1 — —i(kj—kj)-(ri—r;) 8.29
€ (5] . .
T ( ) (5.29)

The probability that electron i is to be found in volume element dr; and that
electron j is to be found in volume element dr; is then equal to
|\l dr;dry:

|¥I,'j|2dl’,'dlf]‘ = % [1 — COS(ki — k]) . (l‘,‘ — ;f,-)]dr,—dt{,— . (830)
This expression shows all of the crucial features: the probability of finding
two electrons with the same spin at the same place vanishes for every k; and
k;. As a result, for a particular spin-up electron, the other electrons with the
same spin cannot screen the Coulomb potential of the ion cores so well lo-
cally, which leads to a reduction of the energy of the spin-up electron. This
energy reduction is reinforced if the highest possible percentage of all the
electrons have the same spin as the spin-up electron. The net effect is thus a
gain in the electronic energy for parallel spins and a collective exchange in-
teraction with positive sign.

Before we expand these ideas into a model description of ferromagnet-
ism, it is quite useful to consider the spatial correlation (8.30) further. From
(8.30), we can obtain a k-averaged probability if we integrate over the
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Fermi sphere. We introduce relative coordinates between the electrons i and
Jj with r = r~r;. We then ask what is the probability that a second spin-up
electron is at a distance r in a volume element dr. This probability is then

P(r) dr = nydr[l — cos(k; — k;) - r] (8.31)

with n; the concentration of electrons with the same spin, which is half as
large as the total concentration n of electrons. Instead of the probability
we can also speak of an effective electron density acting on the spin-up
electron, we denote this by ., (), because of its origin in the exchange in-
teraction

0 (1) = % [ —cos(k; — k) -r] with ny =n/2. (8.32)
If we now take the average over the Fermi sphere, we obtain
en
Qex(”) =5 [1 - COS(kj - kl) ’ l‘]
en 1 1 i(ki—k;) r | —i(ki—k)-r
=— |l = ———5 | dk; | dk;5 (""" + e
2 47Z 3 72
(7s
(8.33a)
1 A 4
0o (r) = pizjdkie'kﬂ‘Jdk,e”‘r” . (8.33b)
2 4 4 '
E
These integrals may be solved analogously to (3.40):
en (sin kpr — kgrcos /cFr)2
r)=—1[1-9 . 8.34
o) =5 ( G (8.34)

The total charge density seen by a free electron is the sum of the charge
density of electrons with the same spin and the homogeneous charge density
en/2 of the electrons with opposite spin, for which the spatial part of the
wavefunction remains symmetric and thus unaltered,

9 (sinkgr — kgrcos kgr)?

Qeir(r) = en (1 ~3 (eer)® ) : (8.35)

This charge density is plotted in Fig. 8.4. The charge density at r =0 is re-
duced as a result of the exchange interaction. This creates an “‘exchange
hole”, whose size is approximately equal to twice the reciprocal Fermi
vector. According to Table 6.1 the radius is about 1-2 A. We can use the
effective charge density ger(r) to form a new (“renormalized’) Schrédinger
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Fig. 8.4. Effective charge density seen by an electron in an electron gas. Due to the ex-
change interaction, the density of electrons with the same spin orientation in the neigh-
borhood of a particular electron is reduced (‘“exchange hole”). If this electron moves, it
must drag the exchange hole with it and thus its effective mass is raised. Furthermore, the
existence of an exchange hole implies a positive exchange coupling. From this we can ob-
tain a model for the ferromagnetism of band electrons

equation for the free electron gas and this leads us to the Hartree-Fock ap-
proximation. We note that (8.35) does not properly reproduce the electron-
electron correlation because the Coulomb interaction in fact forbids the pre-
sence of two electrons with the same spin at the same place. Furthermore,
the correlation (8.30) between two electrons that are arbitrarily far apart is
an unrealistic result of the assumption of plane waves.

8.4 The Band Model of Ferromagnetism

We now wish to construct a simple band model of ferromagnetism using the
qualitatively derived renormalization of the one-electron levels due to corre-
lation of electrons bearing the same spin. The model is due to Stoner and
Wohlfarth. For the renormalized electron energies we make the ansatz

E;(k) = E(k) = Iny /N,

E|(k)=E(k)—1In|/N , (8.36)

E (k) are the energies in a normal one-electron bandstructure, n; and n; are the
number of electrons with corresponding spin, and N is the number of atoms.
The Stoner parameter I describes the energy reduction due to the electron
correlation. Its dependence on the wave vector will be neglected in this model.
We now introduce the relative excess of electrons of one spin type
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N .

This quantity is, apart from a factor ug(N/V), equal to the magnetization
M (8.3). Furthermore, to simplify the formula, we subtract I(n; + n))/2N
from the one-electron energies and obtain, in place of (8.36),

Ey() = Ek) ~ TR/2 } with E(k)
E (k)= E(k) + IR)2

R= (8.37)

= E(k) — I(HT + I’ll)/2N. (8.38)

The pair of equations (8.38) corresponds to a k-independent splitting of the
energy bands with different spin. The k-independence of the exchange
splitting is, of course, only an approximation. Theory nevertheless indicates
that it holds to within a factor of about two. The value of the splitting de-
pends on R, that is on the relative occupation of the sub-bands, which in
turn is given by Fermi statistics. We therefore arrive at the self-consistency
condition:

S ONIUE

1
S— . (8.39)
GERIFTRI2-ER/AT

Ze E(k)—TR/2— EF]//T+1
Under certain conditions this equation has a non-zero solution for R, that is
to say, a magnetic moment exists even in the absence of an external field,
thus leading to ferromagnetism. It is possible to find a criterion for the ap-
pearance of ferromagnetism. For this purpose we expand the right-hand side
of the equation for small R. Making use of the relation

f(x - %> —f(x +%> =~/ (x)Ax — 31 (A;) " (x) (8.40)
we obtain
Ll o), 1 I PSR s
- Nzk:aE(k)IR 24 Nzk:ag(k),% (IR)". (8.41)

In this formula, the first derivative of the Fermi function is negative, while
the third derivative is positive. The condition for ferromagnetism (R > 0) is
therefore

I — Of(k)
-1- Nz,;—aE(k) >0. (8.42)

The derivative of the Fermi function —df/dE obviously has its largest value
for T — 0 (Fig. 6.6). If the condition (8.42) is to be fulfilled at all, then it
will be easiest at 7= 0. For the case of 7= 0 it is a straightforward matter
to perform the summation over all k values:
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Here we have taken account of the fact that at 7= 0, the Fermi function is
a step function and the first derivative —9f/0E is equal to the J-function
0(E — Er). The factor 1/2 originates from the fact that, according to (8.39)
and (8.41), the sum over k and also the integral over the electrons is taken
over only one spin type, while the usual definition of the density of states
considers the number of electrons with positive and negative spins per unit
volume. The sum is thus equal to half the density of states for electrons at
the Fermi level, in relation, however, not to the volume but to the number
of atoms. We introduce the density of states per atom and spin as

Jdké(E Er) = % %D(EF) . (8.43)

D(Eg) = %D(EF) (8.44)

The condition for ferromagnetism to occur at all is then simply
ID(Eg) > 1. (8.45)

This is the so-called Stoner criterion for the existence of ferromagnetism.
Under the assumption that this criterion is fulfilled, (8.42) also yields the
temperature at which the magnetic moment disappears (Curie tempera-
ture). The Curie temperature is the point at which (8.42) becomes an
equality instead of an inequality. This will be considered in the next sec-
tion. Figure 8.5 shows the Stoner parameter, the density of states and their
product from a theoretical treatment by Janak [8.2]. The theory correctly
predicts that ferromagnetism exists only for the elements Fe, Co, and Ni.
For the elements of the 4d series, the density of states and the Stoner
parameter are too small to achieve the ferromagnetic state. Nevertheless,
there is a considerable enhancement of the magnetic susceptibility due to
the positive exchange interaction of the band electrons. For an external
magnetic field By, (8.39) contains, in addition to the exchange splitting of
IR/2, a splitting of ug By. In a first approximation for R at 7= 0, (8.41)
then becomes

R = D(Eg)(IR +2upBy) . (8.46)

For the magnetization M one thus obtains

N < N

» N D(Er)

M = ——=——
MY T 1D(Er)

By . (8.47)
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The numerator is just the normal Pauli susceptibility of band electrons
(8.15), which is now considerably enhanced, however, by the denominator.
If we denote the Pauli susceptibility by yo, we obtain

o
=% 8.48
AT Z1D(Er) (8.48)

Janak [8.2] has calculated the factor y/yo and obtained values as large as 4.5
(Ca), 6.1 (Sc) and 4.5 (Pd). Thus, together with the rather high density of
states, one also finds relatively large values for the susceptibilities of these
elements. A direct comparison with experiment, however, must also take
into account the magnetism due to angular momentum. It turns out that
the previous assertion that y<1 always remains valid.
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8.5 The Temperature Behavior of a Ferromagnet
in the Band Model

We now turn to the temperature dependence of the saturation magnetiza-
tion of a ferromagnet. For this purpose one could, in principle, evaluate
(8.39) with the aid of a one-clectron bandstructure calculation. However,
the associated mathematical effort would not be rewarded: the k-indepen-
dent and delocalized treatment of the exchange interaction does not provide
any quantitatively significant results. A qualitative, but for our purposes
quite sufficient, picture of the temperature behavior can be obtained from a
highly simplified density of states model, which keeps the amount of mathe-
matics to a minimum. Let us look at the density of states of Ni (Fig. 8.6a),
taken from a bandstructure calculation by Callaway and Wang [8.3]. The

L b
ra T
2r s-electrons 12
L ~ A A
s 0 A LEF— 0
L I
S -2+ — q1-2
5 | d-electrons .
g - -4
L i
-6 Ni 16
-8 -8
b
0 e 0
>
2
()
C
i | i

< Density of states —»

Fig. 8.6. (a) Calculated density of states of nickel (after [8.3]). The exchange splitting is cal-
culated to be 0.6 eV. From photoelectron spectroscopy a value of about 0.3 eV is obtained.
However the values cannot be directly compared, because a photoemitted electron leaves a
hole behind, so that the solid remains in an excited state. The distance 4 between the upper
edge of the d-band of majority spin electrons and the Fermi energy is known as the Stoner
gap. In the bandstructure picture, this is the minimum energy for a spin flip process (the s-
electrons are not considered in this treatment). (b) A model density of states to describe the
thermal behavior of a ferromagnet
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largest contribution to the density of states at the Fermi level is provided by
the d electrons, firstly because of their high number (9 per atom, or, more
precisely, 9.46 per atom; see below), and secondly because the d band is only
4 eV wide (in contrast to the s band). In addition, the exchange splitting for
s electrons is small. It is thus the differing occupation of the d bands for ma-
jority and minority spins that leads to the magnetization. For nickel at
T =0, this is given simply by the number of unoccupied  states in the min-
ority band. From the measured magnetization at 7 =0, the number of d
holes is found to be 0.54 per atom in the case of nickel, i.e., the effective
magnetic moment is ug  ~0.54 up  per atom. The variation of the magneti-
zation with temperature and the existence of the Curie point at which the
magnetization vanishes, result from the interplay of the exchange splitting,
the Fermi statistics and the density of states near the Fermi level, according
to (8.39). For a qualitative discussion of (8.39), we do not need the actual
functional behavior of the density of states, and it is sufficient to replace the
sharp peak in the density of states at the upper edge of the d band with a -
function in energy (Fig. 8.6b). If, in addition to the exchange splitting, there
is also a field splitting as in (8.46), our model density of states would be

D(E) = ’;i 0(E — Er — upBo — IR/2) +3(E — Ex+u5Bo+1R/2)] .
B

(8.49)

Since the states for majority and minority spin have equal weight in this
model, the Fermi level always lies midway between these two levels, a fea-
ture that is already included in the above expression. In place of (8.39) we
obtain

. 1 1
R =B - . (8.50)
MB e(—#BBo—”?/2)//TJr 1 e(/13190+1R/2)//T +1

We now look for ferromagnetic solutions to this equation, i.e., solutions
with R>0 at By = 0. With the abbreviations T, = Iug_ /ug47 and R = ug/
ug_, R, equation (8.50) becomes

1 1 RT.

e 2RTJT 1|  @t2RTT {1 tanh T.

R=

(8.51)

In limiting cases this equation has the solutions R =1 for T=0 and R =0
for T=T,. Thus T, is identical to the previously introduced Curie tempera-
ture, above which the spontancous magnetization vanishes. The behavior
over the whole temperature range is shown in Fig. 8.7. Because the magneti-
zation M is proportional to R, Fig. 8.7 should reproduce the temperature
dependence of the spontaneous magnetization of a ferromagnet. The agree-
ment with the experimental observations is quite acceptable (Fig. 8.7). For
the limiting cases T< T, and T~ T,, the right-hand side of (8.51) can be ex-
panded to give



8.5 The Temperature Behavior of a Ferromagnet in the Band Model 207

R “'TT’% o
c ig. 8.7. Magnetization of a

Fig. 87. M f
ferromagnet below the Curie

0 05 I ! temperature 7. Experimental
T values for nickel from [8.4, 8.5]
R=1—2e2T/T T< T, (8.52)

_ T\ /2 _ 1
R:\/§<1—7> T~T., R<1 with tanhxmx—gx?.”
C

(8.53)

However, neither of these equations is confirmed by experiment. The critical
exponent in the vicinity of the Curie point is 1 (Fig. 8.8) and not 1. The be-
havior at low temperature is likewise incorrectly described by (8.52). This is
due to the fact that, in addition to the spin-flip accompanying the excitation
from one band to another, other elementary excitations with smaller quan-
tum energy are possible in a ferromagnet, and these can also cause spin-flip
(Sect. 8.8).

Above the Curie temperature, (8.50) yields a magnetization only when
the field By is non-zero. We can expand the Fermi function for small R and
By to give

5 MB T. 5

R=LBpB,+ R 8.54
Bt R oor (8.54)

gt g (8.55)
4 T—T,

As T approaches T, from above the paramagnetic susceptibility should thus
diverge according to the law
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Fig. 8.8. Magnetization in the vicinity of the Curie temperature. The experimental values
for nickel are from [8.4, 8.5]. The critical exponent in the vicinity of the transition to the
paramagnetic phase above the Curie temperature is 1/3 and not 1/2 as predicted by the
simple model
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T T-T.°

x (8.56)
This is the so-called Curie-Weiss law in which C is the Curie-Weiss constant.
The Curie-Weiss law is experimentally fulfilled for 7>>T.. As T, is ap-
proached, one observes deviations from this law, and a better description is
a decrease proportional to (7-7,)*>. According to our model the Curie-
Weiss constant C is related to the saturation magnetization at 7= 0. This
interrelation, however, gives a value for C which is too small. We could also
try to use the relationship between the Stoner parameter / and the Curie
temperature 7, (in this model T, = Iup_/4up~) to estimate a value of T,
from the measured values of the exchange splitting. This approach yields
values of T, that are much too large. The failure of our simple model in
these respects does not, however, lie in the simple bandstructure. It is due to
the fact that the model does not correctly treat excited states.

The Curie-Weiss law and the temperature dependence of the sponta-
neous magnetization are often derived in a mean field approximation,
in which the exchange interaction is replaced by an average ‘“‘internal”
field. The derivation chosen here, whose principles are due to E.C. Stoner,
is equivalent to the mean field approximation in that it allows no spatial
variation of the spin distribution. Our treatment illustrates the role of
the bandstructure more clearly than the conventional mean field
approximation.
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8.6 Ferromagnetic Coupling for Localized Electrons

Whereas the magnetic behavior of d-band transition metals is well described
in the band model, the approach developed in Sect. 8.2 based on the ex-
change interaction between two localized electrons is particularly well suited
to the rare earths with their partly filled f shells and to many ionic com-
pounds of the d and f transition metals. The starting point is the Heisenberg
Hamiltonian introduced in (8.28) for the exchange interaction between two
electrons. In the following model treatment of ferromagnetism, we assume a
primitive lattice of atoms each having one unpaired electron with zero angu-
lar momentum. This model of a spin lattice illustrates the essential conse-
quences of the exchange interaction in a lattice. Taking into account an ad-
ditional external magnetic field By, we obtain the Hamiltonian

W= —ZZJiJSi‘Sié_g:uBBO Zsi : (8.57)

The index i runs over all atoms and the index ¢ over all the neighbors of an
atom that participate in the exchange interaction. Unfortunately, the Hei-
senberg operator is a non-linear operator. Solutions can only be found in
special cases or by introducing a linearizing approximation. One such ap-
proximation is the mean field approximation which will be discussed now.

In the mean field approximation the operator product in (8.57) is
replaced by the product of the spin operator S; and the expectation value of
the spin operators of the neighbors (S;s). In the mean field approximation
the Hamiltonian therefore becomes

== S (Z Ji5(Sis) +gﬂBBo> : (8.58)
i 0

The exchange interaction thus acquires the character of an internal field
1
BMF = —ZJI'5<SI'($> . (859)
gUgp S

For homogeneous systems (without a surface), (S;s) is the same for all
atoms. The average value (S;5) = (§) can be expressed in terms of the mag-
netization

M= gy (8) (8.60)

with N/V the number of atoms per unit volume. We therefore obtain for the
mean field Byg

V

By = —5—
NePug

vIM , (8.61)
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where the exchange interaction is restricted to the v nearest neighbors. The
Hamiltonian in the mean field approximation (8.58) is now mathematically
identical to the Hamiltonian of N independent spins in an effective magnetic
field B.g = Bmr + By. Its eigenvalues are

E = +1gugBey (8.62)

for each electron spin. We denote the number of electrons in states with spin
parallel and antiparallel to the B-field by N; and N|.
In thermal equilibrium one has

N| —gupBeiy /AT
— = ¢ 8.63
v (5.63)
and the magnetization is thus
1 N -N 1 N 1
=gy ——— = =~ g g — = /T . .
M =5gus—; 5§ Hp 7 tanh (zgﬂBBeff/ T) (8.64)

This equation together with (8.61) has non-zero solutions for the magnetiza-
tion (even without an external magnetic field) provided J > 0, i.e., whenever
there is ferromagnetic coupling of the spins. With the abbreviations

N1
Ms = I_/ Eg,uB and (865)
T, =lvi/s (8.66)

we obtain from (8.61, 8.64), and with no external magnetic field B,

T. M
This equation is equivalent to (8.51). It means that the temperature behavior
of the magnetization in the band model and in the model of localized elec-
trons is the same. Therefore, for 77— 0 and T ~ T, one finds

M(T) = My(1 — 2 2T/Ty | T< T (8.68)
T /2

M(T) /M ~ \/5(1 —7) , T~T.. (8.69)
C

T, is therefore the critical temperature at which the spontaneous magnetiza-
tion vanishes. It depends on the strength of the exchange coupling and on
the number of nearest neighbors. Interestingly, the critical exponent in
(8.69) does not depend on the dimensionality of the system. A planar lattice
has the same critical exponent in the mean field approximation as a 3d
lattice, but its 7 is smaller because of the reduced number of nearest neigh-
bors. This leads to an interesting behavior for the magnetization near the
surface of a ferromagnet.
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In the mean field approximation not only the magnetization, but also
the short-range order of the magnetic moments vanishes at 7. In reality a
certain degree of short-range order survives. The Curie temperature is
merely the temperature at which the magnetic order vanishes on a large
length scale.

For temperatures above 7., we can once again derive the Curie-Weiss
law for the susceptibility. With an external field By, and using the series
expansion (8.68), we obtain from (8.64)

22N 1

By . 8.70
ave T—To 0 (8.70)

8.7 Antiferromagnetism

Up until now we have assumed ferromagnetic coupling of the electron spins,
ie., J> 0. A number of compounds, for example, the oxides of Fe, Co and
Ni, display antiferromagnetic coupling between the transition metal d elec-
trons. They possess the NaCl lattice structure, i.e., the lattices of the para-
magnetic d metal ions and of the O® ions each form a face-centered cubic
sub-lattice. In the antiferromagnetically ordered structures, the metal ions
form a magnetic elementary cell which is no longer face centered, but pos-
sesses a complicated magnetic superstructure. The magnetic behavior of an
antiferromagnet will be treated within the mean field approximation for a
simple magnetic superstructure. This superstructure should be constructed
in such a way that all nearest neighbors have antiparallel spins (Fig. 8.9). In
a model treatment with antiferromagnetic coupling (J < 0) we can now ap-
ply (8.60-8.64) to each magnetic sub-lattice separately. We note that the
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Fig. 8.9. (a) A model crystal with antiferromagnetic orientation of the nearest neighbor
spins. (b) An equally simple spin structure, but with a tetragonal lattice, is observed for
the compounds MnF,, FeF, and CoF,. In this case the atoms along the ¢ axis are the
nearest neighbors. If the transition metal ions form a face-centered cubic lattice, it is topo-
logically impossible to have only antiferromagnetic orientation between nearest neighbors.
The magnetic superstructures become correspondingly more complex
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mean field for the sub-lattice with positive spin orientations is created by
the sub-lattice with negative spins, and vice versa. For the antiferromagneti-
cally ordered state we therefore obtain the pair of equations

L 1 Nt V _
M" =-guyg—tanh( ——vJ M |, (8.71)
2 vV 2/TN-gug
1 N~ vV
M~ =—gug—tanh| ———vJM™" |, (8.72)
2 4 2/TN*tgug

where M © and M~ are the magnetizations of the two spin sub-lattices and
N = N is the number of metal ions in each of the sub-lattices. In the anti-
ferromagnetic state M © = —M and we obtain, in analogy with (8.67),

. 1 Nt 4 .
M" =-gug—tanh| -—————vJ M (8.73)
2 Vv 2/TN*gug

and a corresponding equation for M . The magnetization of the sub-lattice
vanishes above a critical temperature which is called the Néel temperature.
It is analogous to the ferromagnetic case

_1vJ
NT e

(8.74)

The Néel temperature is positive since we now have J < 0.

In calculating the susceptibility we must differentiate between the cases
of parallel and perpendicular orientation of the external field relative to the
direction of the spins, at least for temperatures smaller than 7. We first
treat the case in which the external field B, is parallel or antiparallel to the
spins. The external field causes only minor changes in the magnetization of
the two spin sub-lattices; these we denote by AM* and AM . Instead of
(8.71) and (8.72), we now obtain, with an additional field B,

1 N* 1 1
M+ AM?* :§g,u37tanh{—g,u3—

28HB T

x {%22% (M~ +AM) + Bo} } , (8.75)
M-+ AM- Z%gﬂBN—I;tanh { %gﬂB/iT

« {%22% (M* + AMY) + Bo} } . (8.76)

Taking into account that M" =-M and N = N = N/2, and expanding
(8.75) and (8.76) as series for small AM ™, By, we find
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252
AM — AM* + AM- — ;2(0 <ZigT]z 0 — T}“AM) with  (8.77)
COS
Tn M*(T
g:% M& ) and (8.78)
1 Nt
M =3gu— (8.79)

where M7 is the saturation magnetization of one spin sub-lattice.

For temperatures above the Néel temperature, the magnetization of the
sub-lattices vanishes and { is equal to zero. No particular direction in the
crystal is any longer distinguishable and the susceptibility is isotropic:

2,2
gugN 1
T) = . 8.80
KD =ty T T (8:30)

We thus obtain a temperature dependence similar to the Curie-Weiss law
(8.70), but the critical temperature now appears with a reversed sign. At the
Neéel temperature itself, the susceptibility remains finite. For temperatures
far enough below the Néel temperature M * (T) = M ;" and we obtain

gugN 1

T) ~ , 8.81
2T~ 4Vs Tcosh?(Tn/T) + Tn (8.81)
which for low temperatures can further be approximated by
2,2
&N o /T
T) ~ uy =——¢ °'N T TN . 8.82
Xu( ) = W % N ( )

This expression for the susceptibility and the equations (8.75, 8.76) are valid
only for an external field oriented parallel to the polarization of the spin
sub-lattice. For the direction perpendicular to the spin orientation, the Ha-
miltonian (8.58) should be interpreted as a classical energy equation. In an
external field, each spin sub-lattice rotates its magnetic moment by an angle
« in the direction of the field By. The energy of an elementary magnet in
the field By is then

E, = —igugBysina+ivJcosa . (8.83)

The magnitude of the second term can be derived by considering that the
energy needed to reverse an elementary magnet is vJ (8.27). The equilibrium
condition

OE, /9o = 0 (8.84)

leads, for small angles «, to
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gugpBo
== 8.85
@ vJ ( )
With the magnetization
M=M"+M =3gugaN/V (8.86)

one obtains for the susceptibility below Ty the (approximately) tempera-
ture-independent value

SugN _ gupN (8.87)
2vJV 2|V '

1L =

which is equal to the value of y at the Néel temperature. The overall beha-
vior is sketched in Fig. 8.10. It should be noted that the difference between
x and y, is only measurable experimentally if a single magnetic domain is
present. This is not the case, for instance, in lattices with many equivalent
crystallographic directions for the possible magnetic orientation. Further-
more, the characteristic temperature in the equation for the susceptibility,
(8.80), is only equal to the Néel temperature if the exchange interaction is
confined to nearest neighbor metal ions. If an additional exchange coupling
J> between next nearest neighbors exists, then 7 in (8.80) is replaced by a
characteristic temperature §# T. For a simple rock salt type lattice one ob-
tains

o= T
Ji—
Thus @ is larger than Ty when the coupling between next nearest neighbors
is antiferromagnetic and smaller than Ty if the coupling is ferromagnetic.
Both cases are actually observed. It should also be noted that in lattices
containing several different kinds of transition metal ions, or transition me-

(8.88)

A
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tal ions in different valence states, the magnetic moments are not equal.
Even if the coupling between the spins is antiferromagnetic, there will be a
residual magnetization. This kind of magnetism is called ferrimagnetism, be-
cause is was first identified in ferrites.

8.8 Spin Waves

The energy necessary to reverse the spin of a particular electron is given by
the exchange interaction. This is true in both the localized and band models.
In the band model, the reversal of the spin of an electron means an inter-
band transition of an electron into the corresponding exchange-shifted band.
The minimum energy necessary to flip a spin in the band model is the en-
ergy separation between the upper edge of the majority spin band and the
Fermi level, the so-called Stoner gap (4 in Fig. 8.6). We will now learn
about another excitation, in which one spin is also reversed, but only as an
average over the whole crystal. In other words, we are dealing with a collec-
tive excitation of all spins. The necessary energy is considerably smaller and
may even become zero. To derive this excitation we begin again with the
spin Hamiltonian (8.57) consider, however, explicitly the properties of the
spin operator in (8.57). The x-, y-, and z-components of the spin operators
can be represented by the Pauli spin matrices

01 0 o 1(0 1) o 1[0 i
o _§<0 —1)’5 _5(1 0>7s _E(i 0)' (8.89)

Instead of the cartesian components $™ and S”, it is more convenient to use
the spin reversal operators

S+:S“‘+iS—":<8 (1)) and (8.90)
e e (00
s :s«—lse(l 0). (8.91)

The effect of these operators on the spin states

la) = (é) and |f) = ((1)) is (8.92)

Sta) =0, STIf) =la), STIF) =0, S"|a) = |p) . (8.93)
The operators S © and S~ therefore switch the spin to ““+ or “~, and give
zero if the spin is already in the state “+” or “~”. The operator S* “pre-

pares” the eigenvalues in the usual way:

Sla) = +3lo), S7IB) = —31B) - (8.94)
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Armed with these equations, we can begin to rewrite the Hamiltonian of a
spin lattice in terms of the new operators. For a zero external field and an
exchange coupling J between nearest neighbors (index J), substitution of
(8.90, 8.91) into (8.57) yields

SN S SE (S S+ 8 S (8.95)
i )

We assume ferromagnetic coupling between the electron spins (J > 0). In
the ground state all spins are therefore oriented. Such a state is described by
the product of the spin states of all atoms

0) =TIle); - (8.96)

It is immediately clear that this state is an eigenstate of the Hamiltonian
(8.95), since the operators S* S and S S vyield zero and the S compo-
nents leave the state unaltered with the corresponding eigenvalue of §° as a
prefactor

710y = =1J10) >3 1 = —LvJINJO) . (8.97)
i 0

A state with a reversed spin on atom j can be obtained by applying S to
the ground state

L) =S H ), - (8.98)

This state, however, is not an eigenstate of # because applying the opera-
tors S;" S, s inside # would shift the reversed spin to the atom j + & and
create a different state. On the other hand, the linear combination

k) = %N;ei"""lm (8.99)

is an eigenstate. This state represents a spin wave. The eigenvalues of S7
and (S7)? + (S¥)? are conserved quantities with expectation values indepen-
dent of the atom i. The expectation values of S7 and S7 vanish. The spin
therefore precesses around the z axis with a phase shift between atoms that
is determined by the wave vector k (Fig. 8.11). We now apply # to the
spin wave state and obtain

G PP @

j€———— Wavelength 1 >

Fig. 8.11. Schematic representation of a spin wave
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7 k) :ﬁZe‘k ! [—ZVJ(N— 2)1L) +§VJ|lj>
J

. (8.100)

1
- §JZ L) +11-6)
5
By shifting the index j in the last two terms we can also express this result as

1 1 ers i
7 k) = l—4vJN+ Jv— 5]2(671]“‘5 + e"‘"")]
0

1 iker:
X —=Y e ). 8.101
Jn 2t (5.101)
The state |k) is therefore an eigenstate with the eigenvalue
! —ikers | aikers
E:EO+J<V_§§6:e thrs 4 gl ) (8.102)

where Ej is the energy in the ferromagnetic ground state. As we will imme-
diately see, this result is particularly significant for small k values. When k&
is small, (8.102) can be approximated by

Ex Ey+ L3Ik 1) (8.103)

This is the characteristic dispersion relation for ferromagnetic spin waves.
According to this relation, the energy required to flip a spin vanishes for
small k. In Fig. 8.12a, the dispersion relation is plotted together with the
spectrum of one-electron excitations which also reverse a spin. These so-called
Stoner excitations require an energy vJ for k = 0. For k # 0 there is a whole
spectrum of possibilities resulting from the dispersion of the one-electron
states (Fig. 8.12b). In the region of the one-electron excitations, spin waves
can decay into electron excitations. This reduces the lifetime of the spin waves
and also affects the dispersion. Spin waves can be excited thermally and also
by energy and momentum exchange with neutrons. Neutron scattering there-
fore allows an experimental determination of the dispersion curve of spin
waves. The results for nickel are displayed in Fig. 8.13.

The thermal excitation of spin waves has an influence on the behavior
of the magnetization at low temperature. We recall that the excitation of a
spin wave flips on average one spin and hence reduces the magnetic
moment. The magnetization of a spin lattice thus becomes

1 1
M:Ms_ig:uBI_/Zn(k) ’ (8104)
k

where n(k) is the number of excited spin waves with wave vector k. If we
neglect the fact that the Heisenberg operator is actually non-linear and



218

>

o

—

[

5

c v

9

=

©

=

3]

x

w A
0

a

8 Magnetism

Stoner excitations

_

Electron energy

. ]
~Spin waves!
H

kmin

Wave vector of excitation

b

Electron wave vector

Fig. 8.12. (a) Spin wave dispersion relation and the spectrum of single electron excitations
with spin reversal in a model ferromagnet. (b) Model band structure with an exchange
splitting 7 = vJ and a Stoner gap 4

Ni
[111]-direction

Ld 1 1 1 1

200
3
£ 150+
o
>
©
2
k=
&
& 100 -
£
©
>
>
2
o S0
£
2
[
]
3
€]
0
0

1 1
04 06 08 10
Wave vector k (A™")

12

Fig. 8.13. Experimental dispersion rela-
tion for spin waves in nickel along the
[111] direction [8.6]. The measurements
were made at 7 =295K. The dashed
line shows a dependence of the quan-
tum energy proportional to k2. Devia-
tions from this line are due firstly to
the exchange interaction between more
distant neighbors, and secondly to the
onset of one-electron excitations. The
latter cause a reduction in the lifetime
of the spin waves, leading to a lifetime
broadening of the spectra (shaded re-
gion)



8.9 Crystalline Anisotropy 219

proceed as though the spin waves could be superposed, then the energy eigen-
values would be the same as for a harmonic oscillator

E(k) = n(k) - 17 Y (k - 1) (8.105)

and the occupation statistics would likewise correspond to the harmonic
oscillator. The temperature dependence of the magnetization at low tem-
perature can be calculated as in Sect. 5.3 and we obtain

M(T) — M(0) ~ -T2 (8.106)

This is the 7%? Bloch law, which replaces the exponential dependence
(8.52), appropriate for a ferromagnet without spin wave excitations. The
spin wave excitation is also observable in the specific heat where a T%/? term
appears in addition to the 7" term due to phonon excitation.

8.9 Crystalline Anisotropy

Magnetization of a Specimen

As demonstrated in previous sections, the basic physics of magnetism can
be understood without specific reference to a crystal structure. The structure
becomes important when the (average) magnetization of a specimen as func-
tion of an applied external field is considered since the magnetization de-
pends on the orientation of the magnetic field with respect to the crystal
axes. This crystalline anisotropy is caused by the spin-orbit coupling which
couples the spin orientation to the orientation of the electron orbitals.
Thereby, the magnetic energy of a ferromagnetic crystal depends on the
orientation of the magnetization relative to the crystal axes. Although the
energies associated with a rotation of the magnetization are relatively small,
the resulting anisotropy is all-important. Without magnetic anisotropy, even
the venerable macroscopic manifestation of magnetism, the compass
needle, would not exist, and neither the possibility to store information in
the orientation of magnetic moments that has become an indispensible part
of today’s life.

The orientation of the magnetization that leads to the lowest energy is
called the easy orientation and the corresponding crystal axis is the easy
axis. A ferromagnetic crystal in thermal equilibrium has its magnetization
along the easy axis. For hcp-cobalt e.g., this is the hexagonal c-axis. The
magnetization is therefore oriented in one of the two directions parallel to
the c-axis. A homogeneous magnetization of an entire specimen leads to a
large external field (and to a depolarization field to be discussed later).
In order to minimize the energy associated with those fields, the magnetiza-
tion breaks up into two or more domains of opposite magnetization. If
the crystal is heated above the Curie temperature and cooled down again,
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(average) Magnetization M

Magnetic field H

Fig. 8.14. Schematic plot of the magnetization M of a ferromagnet with a single easy axis
versus the magnetic field H. Dashed line: initial magnetization starting from zero, H par-
allel to easy axis. Solid lines: magnetization hysteresis, H parallel to easy axis. Dash-dotted
line: H perpendicular to easy axis

the number and size of the two types of domains is about equal, so that the
average magnetization of the sample is nearly zero. In an external magnetic
field oriented along the c-axis, the total magnetization rises by merely mov-
ing the boundaries between the domains to let one type of domain grow at
the expense of the other (left insert in Fig. 8.14). Since external fields need
not work against the magnetocrystalline anisotropy, the average magnetiza-
tion of the sample rises steeply with the applied field and saturates at com-
parably small fields with only a single domain orientation surviving
(Fig. 8.14). This domain type still prevails after the external field has been
removed. The remaining average magnetization is called the remanence M..
To bring the magnetization of the sample back to zero one needs to reverse
the external field up to a value —H,. which is called the coercive field. With
increasing magnetic field in the reverse direction, the magnetization even-
tually saturates again, now in the reverse direction. In total one runs
through a hysteresis loop (solid line in Fig. 8.14). The loop is symmetric if
the system is symmetric with respect to the H-axis, which is the case for
typical ferromagnets. Manufactured systems that feature a polar axis are
discussed in Panel VII. The area of the hysteresis loop is the energy per
volume required to move the boundaries between the domains through a
full cycle. The energy and thus the remanence M, and coercive field H.
depends on nature of the material, mostly on the concentration of defects,
which tend to pin the domain walls, thereby increasing the friction forces
involved in their rearrangement. Materials with a large hysteresis, preferably
with a remanence near saturation, are ideally suited for permanent magnets
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and magnetic data storage media. In other technical applications, e.g. in
transformer cores, one wants no remanence at all to keep the energy losses
low. Perfect crystals and certain alloys (u-metal, permalloy, ferrites) feature
small or no remanence.

A magnetization perpendicular to the easy axis in response to an exter-
nal field turns the magnetization out of the easy direction (insert on the
right in Fig. 8.14). Turning the magnetization away from the easy direction
requires work. Accordingly, the magnetization rises but rather gradually
with increasing external field. When the field is removed the magnetization
inside the domains snaps back to become parallel to the c-axis. Hence, there
is no remanent magnetization of the sample as a whole. Rotating the mag-
netization does not require work against friction forces, so that there is no
significant hysteresis.

Anisotropy of Cubic and Hexagonal Crystals

The magnetic anisotropy is specific for the crystal structure. To express the
change of the energy per volume versus the orientation of the magnetization
quantitatively one expands the energy per volume u in terms of the power
of the cosines of the direction j with the crystal axes i

a; = cos(j, i), (8.107)

and keeps the lowest and second lowest non-vanishing terms. Only even or-
ders have nonzero coefficients because of time reversal symmetry; inversion
of time reverses the orientation of the spin, and hence of the magnetization,
and the energy is invariant with respect to time reversal. For a cubic crystal
the expansion up to fourth order would formally be

Uenb = (@ + a3 + a3) + us(af + a3 + o). (8.108)

Because of the identity
> ai=1, (8.109)

the first term in (8.108) is constant and can be omitted. The second term
can be rearranged with the help of (8.109) to read

Uenb = —2ug(@d 03 + 23 + ajad). (8.110)

One sees from this result that there is no need to include mixed terms of
the type a7aj into the formal expansion (8.108) as they are automatically
included. With the fourth order expansion (8.110) the ratio of the energies
along the space diagonal and the area diagonal is fixed to 4/3. To allow for
a deviation from that ratio one needs to include a sixth order term. The for-

mally simplest way to do that is by writing the anisotropy as

Ueup, = K (a%a% + a%a% + a%a%) + Kza%agag, (8.111)
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in which K; and K, are the anisotropy constants. For iron K; = 4.2x10% Jm™
and K, = 1.5x10* Jm® at room temperature. The easy directions are
therefore (100), the hard directions (111). The difference in energy between an
easy and a hard direction is 1.5x10% Jm>. For nickel the constants K; and
K, are negative (K; = —5.7x10°Jm >, K, = —2.3x10* Jm ), which makes
(111) the easy direction.

For hexagonal crystals such as hcp-cobalt, the second order term in the
expansion does not vanish. When the hexagonal axis is denoted by the
index 3, the expansion up to forth order is formally

Uhex = uzuag + uu(oz% + a%) + u4a§. (8.112)

There is no fourth order term in a; and a, because of the hexagonal sym-
metry. The second term in (8.112) is equal to uz; (1 — «3) and can be inte-
grated into the first term. The anisotropy can therefore be expressed in
terms of a single angle, the angle 6 with the c-axis

Upex = u2a§ + u40/31 = —K>cos? 0 — K4 cos* 0, (8.113)

with K, and K, the anisotropy constants. The negative signs are chosen to
be in keeping with the conventional notation. For cobalt, the constants are
K>, = 4.1x10° Jm > and K4 = 1.0x10° Jm>. The c-axis is therefore the easy
axis. Changing the orientation of the magnetization from the easy to the
hard direction costs the energy 5x10° Jm >, which is 33 times more than for
iron. The large energy difference is due to fact that the second order effects
do not vanish as for cubic symmetry.

Domain Walls

As illustrated in Fig. 8.14, a ferromagnet consists of domains in which the
magnetization is oriented along one of the easy axes. The transition region in
which the orientation changes from one easy orientation to another is called a
domain wall. Different types of domain walls are distinguished, depending on
the orientation of the magnetization inside the wall with respect to the orien-
tation in the adjacent domains. Fig. 8.15 shows two types of walls between re-
gions in which the orientation of the magnetization differs by 180°. In
Fig. 8.15a, the transition from one domain to the next is by rotation of the
magnetization about an axis perpendicular to the domain wall. Such a wall is
called a Bloch-wall (here a 180°-Bloch-wall). Another possibility is to rotate
the magnetization planar to the magnetization inside the domains as shown in
the upper part of Fig. 8.15b. This type of wall is known as a Néel-wall (here a
180° Néel-wall). Inside a Neéel-wall, the magnetization has a nonvanishing
divergence VM, while one has VM = 0 inside a Bloch-wall. A nonvanishing
divergence generates a magnetic depolarization field Hge, and the scalar pro-
duct of that field with the magnetization M - Hg., contributes to the wall
energy (see eq. (VIL.1)). Inside the bulk of a magnetic material, the Neéel-wall
is therefore energetically less favored than a Bloch-wall. The situation changes
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(a) (b)
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Fig. 8.15. (a) 180°-Bloch-wall: inside the wall, the magnetization rotates around an axis
perpendicular to the wall. At a surface, the Bloch-wall may convert into a Néel-wall in or-
der to minimize the depolarization energy (b). In a Néel-wall, the magnetization rotates in
the plane spanned by the magnetization inside the domains and the normal of the wall

when a Bloch-wall meets a surface. Then, the Néel-wall may be energetically
favored since the Bloch-wall creates a divergence of the magnetic field at the
surfaces and therefore costs depolarization energy (Fig. 8.15a). Bloch-walls
therefore frequently convert into Néel-walls at a surface (Fig. 8.15b).

The thickness of a domain wall results from the interplay between aniso-
tropy energy and ferromagnetic exchange energy. Exchange energy is mini-
mized if the angle of rotation between neighboring spins is small, hence the
wall thickness large. Anisotropy energy is minimized if the volume in which
the orientation of the magnetization differs from the easy axis, hence the
thickness of the wall is minimal. We now consider the rotation of the
magnetization inside a 180°-Bloch wall for the simple case of a primitive
tetragonal structure with the c-axis as the easy axis and nearest-neighbor
coupling between the spins. Since the thickness of the wall is large compared
to interatomic distances the spins change orientation only little by little from
one atomic plane to the next. In this case, we may interpret the Heisenberg
operator (8.57) as a classical equation. The spin operators S become
conventional vectors, and the product between the spin operators becomes a
scalar product. Since all spins within an atom plane n parallel to the wall
have the same orientation a single variable, the angle ¢, between the spins
and the c-axis suffices (comp. Fig. 8.14). The angle ¢, varies from zero to n
across the wall. In this notation the classical discrete Heisenberg equation
becomes

H=-JS Z:cos(qb,H_1 —¢,) — KS? Z:cos2 O (8.114)

with S, the scalar value of the spin operator and K the anisotropy constant.
The terms in (8.114) correspond to the energy of an elementary cell. Because
of the smallness of the changes of the angle from one cell to the next, we
may write H as

| 1
H= 3 s? z”: (Pt — Pn) — 5 s? Z:cos 2¢,, + const. (8.115)
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The Bloch-wall is in equilibrium if 0H/d¢, = 0 for all planes n:
OH/0¢, < J(2¢, — ¢, 1 — ¢,_1) + Ksin2¢, = 0. (8.116)

We may consider ¢,, to be a continuous variable ¢(n). The bracketed term (8.116)
then becomes equal to the negative second derivative of ¢ with respect to n,

¢ K .
This is the so-called Sine-Gordon-equation. The equation is solved by firstly
multiplying with d¢/0n

op (*¢p K 0
af{@_(b__ 2(]5} 8n2{<8_¢> 70052(1)} (8.118)

whereby the solvable first-order differential equation

o
(611) 7cos2qb Cy (8.119)

is obtained. The constant C; is determined by the condition that the deriva-
tive J¢/0n must vanish deep inside the two domains, i.e. when ¢ =0, 7. It
follows that

2
(g—f) zg( cos2¢) = —Ksm ¢ (8.120)

Taking the square root and after integration one obtains for n(¢)

\/— /smdb \/;J]; In(tan(¢p/2)), (8.121)
moreover

¢(n) = 2 tan™! (exp(n 2K/J)) (8.122)

Experiments usually refer to the components of the magnetization parallel
and perpendicular to the wall. These components are

M) occosp = (:os{2tan*l (exp(n 2K/J)>} = tanh(n+/2K/J),
(8.123)
M, xsing = sin{2tan’1 (exp(n 2K/J)>} = 1/cosh(n\/2K/J).

The functional dependence of M| and M, versus n is shown in Fig. 8.16,
together with the standard definition of the thickness of a wall

w=+/(8J/K) (8.124)

If depolarization energy is neglected, the mathematical formalism is transfer-
rable without alterations to the case of Néel-walls. The angle ¢ is then the
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Fig. 8.16. Magnetization versus a reduced coordinate n(2K/J)"? perpendicular to a Bloch-
wall. The solid and dashed lines are the components of the magnetization parallel and
perpendicular to the magnetization inside the domains, respectively (8.123). The conven-
tional definition of the wall thickness w is likewise indicated

rotation around the axis perpendicular to the magnetization inside the
domains and parallel to the Néel-wall (Fig. 8.15b). 90°-walls are obtained by
replacing the argument of the cosine 2¢, in (8.115) by 4¢,. The formalism
describes quite generally transitions from one phase to another that can be
represented by single scalar parameter. The best-known case is the so-called
Frenkel-Kontorova model for walls between structural domains (see e.g. [8.7]).

Problems

8.1 Calculate the diamagnetic susceptibility of the hydrogen atom using
(8.12) and the ground state wavefunction y = (agn)_l/ Ze~r/a where aq is
the Bohr radius, ay = 4n iey/ (me®) = 0.529 A.

8.2 Calculate the entropy of N spins in a magnetic field using the principles
of statistical thermodynamics. Describe the process of adiabatic demagneti-
zation and discuss this method for cooling a paramagnetic salt. How much
heat can one extract from the lattice in the process of adiabatic demagneti-
zation (cf. Panel 1V)?

8.3 Calculate the anisotropy energy of iron and nickel in the directions
[001], [011] and [111] at 300K by using equation (8.111)! Plot the anisotropy
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energy versus the angle to the [001]-axis. The anisotropy constants for iron
and nickel are

K(Fe) = 4.2x10%* Jm >, Kx(Fe) = 1.5x10* Jm™?
Ki(Ni) = —5.7x10° Jm 3, K»(Ni) = —2.3%x10° Jm>.
What are the easy and hard axes? How many of them exist?

8.4 a) Calculate the magnetization versus distance across a 90° Néel wall,
disregarding the depolarization energy! Compare the thickness of the wall
with a 180° wall and discuss the result!

b) Calculate the depolarization energy of a Néel wall! Does the result de-
pend on the thickness of the wall? Would you expect the wall thickness
to depend on the depolarization energy?

8.5 Why does the magnetization in the iron double-layers in Fig. VII.1 al-
ternate between inward and outward orientation?



Panel VI
Magnetostatic Spin Waves

In the absence of an external magnetic field, the quantum energy for spin
waves in a ferromagnet vanishes for small k. This is because the difference
in spin orientation from atom to atom becomes smaller and smaller for in-
creasing wavelength, and the exchange interaction therefore provides an ever
smaller contribution to the energy. The exchange coupling eventually be-
comes comparable to the energy of magnetic dipoles in an external field, i.e.
the dispersion of the spin waves is dependent on the magnetic field. In the
following we treat such spin waves with small k values in an external field.
The k value is assumed to be small compared to a reciprocal lattice vector
but large compared to w/c, where w is the spin wave frequency. This condi-
tion allows us to neglect the explicit interaction with the electromagnetic
field (Sect. 11.4) and to assume that

VxH=0 (VL1)
and also of course
V- (H+M)=0 (VL.2)

Spin waves of this kind are called magnetostatic spin waves. They can be
handled with the classical equations of motion, which relate the rate of
change of the angular momentum of an electron to the torque. If the mag-
netic dipole moment of the electron is p;, then

Wi _ip % B) with y—SHB (VI1.3)
dt h
In the following, instead of the dipole moments of single electrons, it is con-
venient to introduce a space- and time-dependent magnetization M(r,?),
which can be constructed from a (local) average over the dipole moments
per unit volume. In (VI.3) p, can be replaced by the local magnetization
M (r,t). The magnetization is essentially the saturation magnetization M, of
the ferromagnet, which is oriented by the external field H, along the z axis,
with small space- and time-dependent deviations m, and m,, in the x and y
components. We make the ansatz

my(r)e i
M(r,1) = | my(r)e @ |,
M;

Panel VI
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(hy + lnx)e’?(“f
B(l‘7 l) = Uy (hy + m},)e_l‘m (VI4)
(HO + Ms)

and by noting that m,,m,< M and h,,h,< H,, we obtain from (VI.3) the
pair of equations

()= (5 ) G) wis)
with

K= )" MsBo/ () By — o)

v = pgwyMs/(y* By — ©*) , By = p,Ho .
According to (VI.1), the two component vector & can be written as the gra-
dient of a potential

h=Vp, (VIL.6)

where for ¢ we insert as a trial solution a wave propagating in the y direc-
tion, i.e.,

9 = w(x)eh (VL.7)
Application of (VI.2) then leads us to
V-(h+m)=Ap+V-m=0, (VI.8)

from which, using (VI.5, 7), we obtain an equation resembling a wave equa-
tion for the potential

2
(1+K)(£Cz—k§>¢:0~ (VLY)

A possible solution of this equation is obviously obtained when x = —1. This
condition yields a spin-wave frequency of

w =1/ B2+ ugMBy . (VL.10)

The frequency is thus independent of k if the exchange coupling is comple-
tely neglected, as is the case here. It is interesting to look for solutions for
special geometries of the sample. The expression (VI.7) can also be applied
to the case of a slab in a B field or, simpler still, to the half space x <0.
Equation (V1.9) then has further solutions with x == —1 when

V(%) = K2y (x) (VL11)
i.e., for y(x) of the form

w(x) = Aetlhl (VL.12)
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This solution is evidently localized at the surface of the half-space and is a
surface spin wave. The condition that the normal component of B is contin-
uous across the surface yields the eigenfrequency of this mode

By +my| oo = hel oo » (VL.13)
(1 + 1) |ky| — vk, = —|k, | . (VL14)

We can differentiate between the two cases k, = £|k,|, that is, the two dif-
ferent directions of propagation:

Case I Case 2:

ky = +ky| ky = —lky|

v=rK+2, v=—(x+2) (VI.15)
1 = —y(3ugMs + Bo), wy = y(30Ms + By) . (VL.16)

/L
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Fig. VI.1. Snapshot of the magnetization in a Damon-Eshbach spin wave on the two
surfaces of a (thick) slab. The external magnetic field B, points out of the page. The
Damon-Eshbach waves then propagate in a clockwise direction. For smaller values of the
slab thickness d, or larger wavelengths, the waves on the two surfaces interact and a cou-
pling dispersion is obtained w = w(k,d)
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Clearly, only the second case yields a positive frequency. We thus have a
curious situation in which a wave exists in one direction but not in the
opposite direction. This is a particularly interesting demonstration of the
break-down of time-reversal invariance by a magnetic field. Corresponding
solutions are obtained if the sample has the form of a thin plate with the B,
field in the plane of the plate. The spin waves then propagate in opposite di-
rections on the two surfaces (Fig. VI.1). Because of the coupling between
the two surfaces the frequency becomes dependent on k, when k,d<1.
These magnetic surface waves are known as “Damon-Eshbach™ waves after
their discoverers [VI.1]. They were first identified in the absorption of mi-
crowaves [VI.2].

A very nice demonstration of the unidirectional nature of Damon-Esh-
bach waves, and at the same time of the conservation of wave vector (in-
cluding its sign) during scattering (4.28), is provided by the Raman effect
(Panel III). Coupling of the light occurs in this case via the (weak) magne-
tooptic effect. Figure VI.2 shows the experimental setup of Griinberg and
Zinn [VI.3]. The sample is illuminated with a laser and the Raman effect is
observed in backscattering. The frequency of Damon-Eshbach waves lies in
the GHz region. A spectrometer with high resolution is required, for exam-
ple, a Fabry-Pérot interferometer. To reduce the background due to elastic
diffuse scattering at the sample, the beam passes through the interferometer
several times (twice in Fig. VI.2). A frequency spectrum is obtained by mov-
ing the Fabry-Pérot mirrors relative to one another.

Figure VI.3 shows a Raman spectrum for two different positions of a
EuO sample relative to the light beam. The surface spin wave can only tra-
vel in the direction labelled g|. In the geometry shown above, one thus has

(ko — k) =qy -

Laser Monitor

@ Lens
Lenses Aperture Q Detector

Interferometer Prism

Fig. V1.2. Experimental setup to measure Raman scattering from spin waves [VI.2]. The
multiple passes of the light through the Fabry-Pérot spectrometer reduces the background
so that very weak inelastic signals can be observed
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Energy conservation (4.28) demands

wy —w = w(qH) .

Fig. VI.3. Raman spectrum
from EuO [VI.2]. According
to the orientation of the sam-
ple one observes the Damon-
Eshbach spin waves (labelled
as M,) as a Stokes line
(above) or as an anti-Stokes
line (below), while the volume
spin waves appear with equal
intensity in both geometries,
although higher intensity is
observed for the anti-Stokes
line [VI.3]

The associated Raman line is shifted to smaller w. We thus obtain the Stokes
line, whereas the anti-Stokes line for the surface wave does not exist. For the
scattering geometry sketched at the bottom of Fig. V1.3, we have

(ko — k) = —qy

and therefore

wy — = —a(q|) .

Correspondingly, only the anti-Stokes line is observed for surface waves. For
the bulk wave, one observes both the Stokes and anti-Stokes lines, but cur-
iously the anti-Stokes line has higher intensity: the number of contributing
bulk waves with the same frequency is different for the two scattering geome-
tries.
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Panel VII
Magnetism in Thin-Film Systems and GMR-Effect

Magnetic Anisotropy in Thin-Film Systems

Magnetic thin-film systems are of great importance in data processing and
sensor technology. Moreover, they provide a fascinating playground for fun-
damental research where astounding discoveries have been accomplished.
The versatility of magnetic phenomena in thin-film systems is largely owed
to the great variety of competing anisotropies. A first source of anisotropy
is the specific shape of thin films. Consider for example a homogenously
magnetized thin film. If the film is magnetized perpendicular to the film
plane then the jump in the magnetization M at the boundaries gives rise to
a depolarizing field Hy = —-M (Hy = —4nM in Gaussian units)*. If the film
is polarized parallel to the plane then there is no depolarizing field because
of the (practically infinite) lateral extension of the film. If the direction of
the magnetization is turned from parallel to perpendicular, the perpendicu-
lar component builds up gradually. To calculate the energy associated with
the depolarization effect one makes use of the differential form of the mag-
netostatic energy density u

du=—poM dH, . (VIL.1)

With dH = —dM and 6 the angle between the orientation of the magnetiza-
tion and the axis perpendicular to the film one obtains after integration

1
u= §M0M2 cos® 6. (VIL.2)

In Gaussian units, (VIL.2) assumes the form u = 2m M?cos? 6. For cobalt
the depolarization energy is 1.23x10° Jm> at room temperature, about a
factor of two larger than the crystalline anisotropy energy of 5.1x10° Jm>.
A Ni(100) film would have a magnetocrystalline anisotropy energy of
—2x10* Jm ™ in favor of the [111] direction. The depolarization energy is
1.5%10° Jm 3. The easy axis should therefore be always in the surface plane,

* The magnetic depolarization field is the analog of the clectrostatic depolarization field.
In the electrostatic case, the field is caused by the polarization charge density of the sur-
face arising from the termination of the polarization (see Ch. 11.7). In analogy, ones
speaks of magnetic polarization charges although a real magnetic charge does not exist.
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if it were not for the two other sources of anisotropy, the strain-induced ani-
sotropy and the surface and interface anisotropy. Elastic strain in thin-films
arises from a mismatch between the lattice constants of a film and the sub-
strate on which the film is deposited. If the genuine structure of the film
was cubic with a (100) axis perpendicular to the substrate then the lateral
strain breaks the symmetry into a tetragonal one. The quantitative descrip-
tion of the strain-induced anisotropy in terms of forth rank magneto-elastic
tensors becomes somewhat sophisticated because of the change in the struc-
ture and it is therefore not discussed here (see [VII.1] for details).

The source of surface and interface anisotropy is the modified spin orbit
coupling or the exchange coupling at the surface and the interface. The en-
ergy associated with that asymmetry is proportional to the film area, not
the volume. If one still considers the energy per volume, as is conventionally
done, then the surface and interface contributions to the anisotropy are
proportional to the inverse of the thickness . We consider the technically
simple case of a cubic film with (100) surfaces and the rotation of the mag-
netization from the perpendicular orientation to the parallel orientation in
the [100] zone. From (VIIL.2) and (8.110), we obtain the anisotropy energy

K + K; .
M}cosze + Kjcos?0sin6 . (VIL.3)

U= {% o M?* —
Here, 6 is the angle between the magnetization and the surface normal, and
K, and Kj,; are constants describing the surface and interface anisotropy. A
positive value of K+ K;,, means that the interface and surface anisotropy
favor the perpendicular orientation. Beyond a critical thickness ., the shape
anisotropy prevails and the magnetization rotates into the film plane:

te = 2(Ks 4 Kin) /o M>. (VIL4)

Since the magnetization M depends on temperature the energy balance in
(VIL.3), and thus the orientation of the magnetization also depends on tem-
perature.

While an in-plane magnetization is the most common case, the reverse
case, a magnetization perpendicular to the film plane, may also occur in epi-
taxially grown films because of a strain-induced anisotropy. An interesting
example, may it be due to strain, may it be due to interface and surface ani-
sotropies, is the magnetization in one and two monolayer thick iron-films
deposited on W(110). The magnetization turns from parallel into perpendi-
cular upon deposition of the second layer. On a stepped W(110) surface, the
iron film nucleates at the steps. For a nominal coverage of 1.5 monolayers,
the magnetization alternates between perpendicular and parallel orientation
(Fig. VIL.1).
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Fig. VIL.1. Epitaxially grown monolayer and bilayer stripes of Fe(110) on stepped
W(110) [VIIL.2]. The magnetic orientation changes between parallel and perpendicular to
the plane

Exchange Bias

In 1956, Meiklejohn and Bean discovered that the magnetic hysteresis curve
of a sample of cobalt nanoparticles each coated with a cobaltous oxide shell
was shifted on the H-axis after cooling to 77 K in a strong magnetic
field [VII.3]. The phenomenon was attributed to the interaction between the
antiferromagnetic cobaltous oxide and the ferromagnetic cobalt and was
termed as exchange anisotropy by Meiklejohn and Bean. Today, in particu-
lar in connection with technical applications to be discussed shortly, the
effect is usually called exchange bias.

We consider the example of an antiferromagnetic substrate, e.g. NiO,
which is covered with a ferromagnetic film. By cooling below the Curie
temperature in a strong magnetic field, one first prepares a single domain
state in the iron film. An ordered antiferromagnetic state of the NiO
substrate is obtained upon further cooling below the Néel-temperature of the
NiO substrate. The exchange coupling at the interface imposes the orientation
of the magnetization in the iron film onto the first NiO layer and thereby
causes a particular order in the entire NiO substrate (upper right insert in
Fig. VIL.2). To reverse the magnetization in the iron film requires now a high-
er magnetic field as its magnetization is stabilized by the exchange interaction
to the NiO substrate. The hysteresis loop is therefore shifted to the left (solid
line in Fig. VII.2). Above the Néel-temperature the spins are disordered in
NiO and the magnetization curve is symmetric around H = 0 (dashed line in
Fig. VIL.2).

We see that the exchange bias provides means for shifting the hysteresis
loop back and forth on the magnetic field axis. Consider e.g. the four-layer
system in Fig. VII.3. It consists of an exchange-coupled ferromagnet
(ECFM) on an antiferromagnetic substrate (AF), a nonmagnetic layer
(NM) and a second ferromagnetic layer (FM) on top. The FM-layer is as-
sumed to have an in-plane easy axis. The external magnetic field is parallel
to the layers. The magnetization in both the ferromagnetic top layer and the
ECFM-layer changes direction if the magnetic field is cycled between large
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Magnetization M

Magnetic field H

Fig. VIL.2. Hysteresis loops for the magnetization of a ferromagnetic film that is ex-
change-coupled to a disordered and ordered antiferromagnet substrate (dashed and solid
lines, respectively). Ordering of the antiferromagnetic substrate as indicated is achieved by
annealing the system above the Néel temperature of the substrate and subsequent cooling
in a magnetic field parallel to the film plane

Magnetization M

Magnetic field H

Fig. VIL.3. Hysteresis curve of a sandwich structure consisting of an exchange-coupled fer-
romagnet (ECFM) on an antiferromagnetic substrate (AF), a nonmagnetic layer (NM)
and a second ferromagnetic layer (FM) on top. The hysteresis loop marked by the solid
line is for magnetic fields large enough to rotate the magnetization in the ECFM-layer.
For smaller fields one stays inside the small loop around zero fields (dotted line) as only
the magnetization in the FM-layer changes orientation. The dash-dotted line is for an
FM-top layer made of a soft magnetic material (e.g. NiFe permalloy)
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negative and positive values. The corresponding hysteresis loop is the solid
line in Fig. VIL.3. If the magnetic field cycles with small amplitude, then
only the magnetization in the top layer changes sign and follows the loop
indicated by the dotted line. By applying small magnetic fields, one can
therefore switch the sandwich between a state where the two ferromagnetic
layers have the same orientation of the magnetization and where the magne-
tizations have the opposite direction. Both states are stable in zero magnetic
fields. In this configuration, the system represents a storage device. If the
ferromagnetic top layer consists of a soft magnetic material such as permal-
loy or -metal, the magnetization follows the dash-dotted line. Hence, for
positive and negative fields the magnetization on both sides of the
non-magnetic layer is parallel and antiparallel, respectively. Together with
the magnetoresistance effect to be discussed in the following, a sensor for
magnetic fields is obtained.

Giant Magneto-Resistance (GMR-Effect)

In 1988, the Giant Magneto-Resistance (GMR) effect was discovered indepen-
dently by two groups. In recognition of their achievement, Albert Fert and
Peter Griinberg were awarded with the Nobel Prize in 2007. Both groups
found that the electric conductance of a layer system consisting of ferromag-
netic and nonmagnetic layers would depend on the relative orientation of the
magnetization in neighboring ferromagnetic layers. The resistance was smal-
ler (larger) when the magnetization was parallel (11) (antiparallel (1]))
oriented. The magnetoresistance defined as

AR/R = (R;, — R;;)/R (VILS)

amounted to 1.5 for a trilayer [VII.4] and 50 for a multi-layer system at low
temperatures [VIL5].

The trilayer system of Binasch et al. [VII.4] consisted of a Fe-Cr-Fe-
sandwich (Fig. VII.4) that was grown epitaxially on a GaAs(110)-substrate.
The 12 nm thick iron films grow epitaxially with (110)-orientation so that
both the easy [100]-axis and the hard [l110]-axis lie in the film plane. The
thickness of the chromium layer amounted to 1 nm. With that particular
thickness, the magnetizations in the two iron layers assume an antiparallel
orientation in the absence of an external field (see [VII.1] for the nature of
that coupling]. In a strong magnetic field parallel to the [100] direction in
the film plane the magnetizations in the iron films turn parallel (Fig. VII.4
right and left). The electrical resistance measured parallel to the layer is 1.5
smaller in that case. The reason for the smaller resistance is that conducting
(Fermi-energy) electrons traversing the chromium layer from one iron layer
into the other carry their spin orientation along. If the magnetization of
both iron films points in the same direction, a spin-up electron originating
in one iron layer easily finds matching states concerning its k-vector and
energy in the second to continue its path without being scattered (save for a
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Fig. VIL.4. Magnetoresistance in a three layer sandwich after Binasch et al. [VIL.4]. In
zero field, the magnetizations in the two iron layers are held antiparallel via interlayer
coupling through the antiferromagnetic chromium. The magnetizations are forced to be-
come parallel by applying an external field. The electrical resistance is lower for that state.
This effect is called Giant Magneto-Resistance (GMR)

small interface scattering). In case of an antiparallel orientation, the spin-up
states in the second layer are shifted by the exchange energy (Fig. 8.6). In
general, there will be no matching states for the electron in the second iron
layer. The electron is therefore scattered to loose its preferential direction,
which increases the electric resistance (see also Chap. 9). Note, that the
GMR-effect does not require the center layer to consist of a ferromagnetic
material. In present GMR-devices the center layer is made of copper
(Fig. VIL.S)

The trilayer system in Fig. VII.4 is not suitable as a sensor for small
magnetic fields since the effect vanishes for small fields. A sensitive sensor is
created in combination with the exchange anisotropy. Fig. VIL.5 displays a
technical realization following Paul et al. [VII. 6]. The magnetization in the
upper permalloy (NiFe) layer rotates easily in an external field. Beneath the
permalloy layer, lies a copper-layer sandwiched between two cobalt layers.
These cobalt layers act as a spin-valve and increase the magneto-resistance
effect. The orientation of the magnetization in the lower NiFe-layer is fixed
via exchange coupling to the antiferromagnetic FeMn-layer.

Fig. VII. 5 shows the magnetization of the entire package (solid line)
together with the change of the resistance (dashed line). Due to the ex-
change coupling, the relation between the external field and the resistance is
now linear in the field with a steep slope. Even tiny changes in the field re-
sult in measurable changes of the resistance. The high sensitivity of the sen-
sor and the fact that it can be manufactured in small dimensions, has made
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7.0 nm NiFe }free M + 8
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Fig. VIL5. Magnetization (solid line) and magnetoresistance (dashed line) of a complex
layer system (schematic after Paul et al. [VIL. 6]). The magnetic field is in Oerstedt (10e
for H is 1000/4x Am™)

the GMR-sensor indispensable in magnetic storage devices as well as in
many other technical applications.
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9 Motion of Electrons
and Transport Phenomena

A number of important phenomena such as electrical and thermal conduc-
tivity are based on the motion of electrons in solids. The description of elec-
tron motion goes beyond our previous considerations since it involves a
time-dependent Schrodinger equation; previously we have discussed only the
time-independent Schrodinger equation and results for thermodynamic equi-
librium (Fermi statistics, etc.). The present chapter deals with the question
of how electrons in bands behave, if, for example, an external electric field
is applied, so that thermodynamic equilibrium is disturbed. The simplest
case is that of the stationary state, where the external forces, an electric field
or temperature gradient for example, are independent of time.

9.1 Motion of Electrons in Bands and the Effective Mass

In describing the motion of an electron in a solid, one is confronted with
the same problem that appears when the motion of a more-or-less localized
free particle is to be described from a wave theory point of view. The mo-
tion of a free electron with fixed momentum p can be described by an infi-
nitely extended plane wave. An exactly defined value of the wave vector k,
however, implies complete uncertainty about the electron’s position in real
space, since the plane wave extends along the entire x-axis. If, on the other
hand, the electron is localized to within an interval Ax, e.g., due to a mea-
surement of its position, then the momentum, i.e., wave vector, becomes un-
certain. Mathematically, localization can be described by expressing the
state of the electron as a wave packet, i.e., a linear superposition of waves
with wave vector in the interval {k—Ak/2,k + Ak/2}:

k+Ak/2
w(x, 1) ~ J a(k)e!lF—Wi g (9.1)
k—Ak/2
where w(k) is determined by a special dispersion relation. As an example,
Fig. 9.1 shows a wave packet in a real space representation.

From the Fourier representation (9.1) one obtains the uncertainty rela-
tion of wave mechanics:

Ap-Ax =hAk -Ax ~ T . (9.2)

H. Ibach, H. Liith, Solid-State Physics, 4th ed.,
DOI 10.1007/978-3-540-93804-0_9, © Springer-Verlag Berlin Heidelberg 2009
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The translational motion of a wave packet may be described by the group
velocity:
ow

v=or (9.3)
The group velocity is the velocity of the center of gravity of the spatially
localized wave packet (which is to be distinguished from the phase velocity
c=w/k of a plane wave). We note that Schrédinger’s wave mechanics
already contains a dispersion w = c¢(k)k for a free electron, as a result of
which the wave packet “spreads out” as a function of time, and also
changes its shape, as shown in Fig. 9.1.

In a crystal, electrons are described by Bloch waves, which represent
spatially modulated, infinitely extended waves with wavevector k. To
describe localized crystal electrons it is therefore appropriate to introduce
wave packets of Bloch waves (also known as “Wannier functions™). The
localization in real space implies, via the uncertainty relation, an associated
uncertainty in the momentum or k-vector. The velocity of a crystal electron
in this semiclassical picture is given by the group velocity of the Bloch wave
packet:

v =V ok) = %Vk E(k) . (9.4)

Here, E(k) is the wave-vector dependence of the energy in the band from
which the electron originates. This description naturally includes the case of

b+ Re y or |y|
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—Rey
‘ﬂ—VfO ——'N)|
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Fig. 9.1. Real space representation of the wave packet describing the motion of a spatially
localized free electron at times ¢ = 0,1y,2¢%...(Re{yw}: ——; |w|: — — —). The center of the
wave packet, i.e., in the particle picture the electron itself, moves with the group velocity
v = Ow/0k. The halfwidth of the envelope increases with time. As the wave packet spreads, the
wavelength of the oscillations of Re {} becomes smaller at the front and larger at the rear



9.1 Motion of Electrons in Bands and the Effective Mass 243

the free electron, for which E = 7%k?/2m. From (9.4) it then follows that
v=kh/m=p/m.

Following the Correspondence Principle we are led to the semiclassical
equations of motion for a crystal electron. A crystal electron described by a
wave packet with average wave vector k in the presence of an external elec-
tric field gains, in a time, J¢, an additional energy

0E = —e&-vot, 9.5)

where v represents the group velocity (9.4), of the wave packet. From (9.4,
9.5) it follows that:

OE =V, E(k) - 0k = hv - ok , (9.62)
hok = —e&ot (9.6b)
hk = —e&. (9.6¢)

This equation of motion, which for free electrons can be deduced immedi-
ately from the Correspondence Principle, states that the wave vector k of an
electron in the crystal changes according to (9.6c) in an external electric
field. From the time-dependent Schrodinger equation, it can be shown that
(9.6¢) applies quite generally to wave packets of Bloch states, provided cer-
tain conditions hold: Namely, the electromagnetic fields must not be too
large compared with atomic fields, and they must be slowly varying on an
atomic length and time scale.

The equations (9.6) enable us to write down a semiclassical equation of
motion for crystal electrons in the presence of an external field, with the in-
fluence of the atomic crystal field appearing only phenomenologically in the
form of the bandstructure E(k). From (9.4) and (9.6), it follows that the
rate of change of the group velocity component v; of an electron is:

1 d

i Ei= hzakak 7o (9-7a)

0=

b = hzzakak —e ) (9.7b)

This equation is completely analogous to the classical equation of mo-
tion 9 = m~!(—e&) of a point charge (—e) in a field &, if the scalar mass m
is formally replaced by the so-called effective-mass tensor m;k . The inverse of
this mass tensor

1 1 PE(k)
(ﬁ) ;I Ok, (©-8)

is simply given by the curvature of E (k). Because the mass tensor m,}'E and also
its inverse (1)) ! are symmetric, they can be transformed to principal axes.
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Fig. 9.2a,b. Schematic behavior of the effective mass m™*(k) for a one-dimensional bandstruc-
ture E(k): (a) for strong curvature of the bands, i.e., small effective masses; (b) for weak cur-
vature, i.e., large effective masses. The dashed lines denote the points of inflection of E(k)

In the simplest case in which the three effective masses in the principal
axes are equal to m*, we have

h2

This is the case at the minimum or maximum of a “parabolic”” band where
the dependence of E on k can be well approximated by

2
2m*

In the vicinity of such a critical point, the so-called effective-mass approxi-
mation is particularly useful, because here m™ is a constant. On moving
away from this point along the band, the deviation of the E(k) surface from
the parabolic form (9.10) means that m* depends on k.

Figure 9.2 shows two one-dimensional bands E (k) with strong (a) and
weak (b) curvature at the top and bottom of the bands. The effective mass
is correspondingly small (a) and large (b) at these points. At the Brillouin
zone boundary (top of the band), where the curvature is negative, the effec-

E(k) = Eo +

(ky + 1k +K2) . (9.10)
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tive mass is also negative. Here it can clearly be seen that the effective-mass
concept conveniently describes the effect of the periodic potential in terms
of the k-dependent quantity m*.

It should be remarked with respect to the above description that one can still
retain all the results derived in Chap. 6 for the free electron gas in metals. This is
true so long as we consider only electrons in bands E(k) that can be described
by the parabolic approximation (9.10). Near to the band extrema the free elec-
tron mass m is simply replaced by the effective mass m* which is a constant.

9.2 Currents in Bands and Holes

Since the effective mass in a band can vary over a wide range of values,
such that electrons at the upper band edge move in the opposite direction to
those at the bottom, the question arises of how electrons with different
k-vectors, that is in different band states, contribute to an electrical current.
A volume element of dk at k contributes to the particle current density j,

) dk 1
A = vik) 873 8m3h
since the density of states in k-space is [V//(27)’] (or [1/(27)°] when related
to the volume V of the crystal). We have taken into account that spin-de-
generate states must be counted twice.

Taken together, the electrons in a fully occupied band therefore make
the following contribution to the electrical current density j:

Vi E(K) dk (9.11)

. —e

J =357 J Vi E(k) dk . (9.12)
Ist Br.z.

Because the band is fully occupied, the integral extends over the whole of

the first Brillouin zone. Thus, for each velocity w(k) = Vi E(k)/hi there is

also a contribution from wv(—k). Since the reciprocal lattice possesses the

point symmetry of the real lattice (Sect. 3.2), for crystal structures with in-

version symmetry one has

E(k) = E(—k) . (9.13)

If we denote the two possible spin states of an electron by two arrows (T
and |), then for crystal structures without an inversion center (9.13) can be
generalized to

E(kT) = E(—k) . (9.14)

The proof of (9.14) follows from the time-reversal invariance of the Schro-
dinger equation when the spin variable is taken into account. For simplicity,
we assume spin degeneracy here, and obtain for the electron velocity asso-
ciated with &
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1

o(~k) = 2V AE(-K) = —

7 ViE(k) = —v(k) . (9.15)
It thus follows, as a general consequence of (9.12), that the current density
carried by a full band is zero:

j (full band) =0 . (9.16)

If we now imagine a band which is only partially filled with electrons, then
an external electric field & will, according to (9.6¢), redistribute the elec-
trons from states symmetric about k = 0 to states which are no longer sym-
metric about £ = 0. The distribution of the occupied states is then no longer
symmetric under inversion because & distinguishes a direction, and thus the
current is different from zero

J (partially filled band) +0 . (9.17)

The integral now extends only over the occupied states and not over the
whole Brillouin zone, so that using (9.12) and (9.16) we obtain:

J v(k) dk

k occupied

. —e
1= 30

—e

= J o(k) dk — J (k) dk |, (9.18)

Ist Br.z. k empty

=5 J v(k) dk .

k empty

The total current calculated as an integral over the occupied states of a par-
tially filled band may thus be formally described as a current of positive
particles, assigned to the unoccupied states of the band (empty k). These
quasiparticles are known as /holes, and they can be shown to obey equations
of motion analogous to those derived in Sect. 9.1.

Holes also behave like positive particles with regard to their dynamics
in an external field. If a band is almost completely filled, then only the high-
est energy part in the vicinity of the maximum contains unoccupied states.
In thermodynamic equilibrium electrons always adopt the lowest energy
states, so that holes are found at the upper edge of the band. Near to the
maximum, the parabolic approximation for E(k) applies

k2

Ek)=Ey — — .
(k) e

(9.19)

m’ indicates that we are concerned with the effective mass at the top of the
band, which is negative. Using (9.6¢), the acceleration of a hole in one of
these states under the influence of an electric field is
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1d 1 . e

b= = [VE(K)] = nk (9.20)

CmETT mE T

Here, according to (9.18), VixE and k are assigned to the unoccupied
electronic states. The equation of motion (9.20) is that of a positively
charged particle with a positive effective mass, i.e., holes at the top of a band
have a positive effective mass.

From the fact that a fully occupied band cannot conduct current, it im-
mediately follows that a crystal with an absolute gap between its highest oc-
cupied and lowest unoccupied bands is an insulator. This is true, however,
only for a temperature of absolute zero. Because the Fermi function is finite
for E> EF, even at very low temperatures, there are always at least a few
thermally excited electrons in the lowest almost unoccupied band (the “con-
duction band’’), which produce a current flow when an electric field is ap-
plied. Thermal excitation also creates holes in the highest occupied band,
the so-called ““valence band”, and these can likewise produce a current. At
non-zero temperature, the current is therefore carried by both electrons and
holes. This behavior is typical of semiconductors and insulators (note that
the distinction between a semiconductor and an insulator is not necessarily
clear-cut). How well a material conducts at room temperature, for example,
depends mainly on the energetic width of the band gap over which the elec-
trons must be thermally excited (Chap. 12).

From the above, it is clear that a material with a partially filled electron
band is a metal, having an essentially constant number of free carriers at all
temperatures. The electrons in a partially filled band have already been trea-
ted in the framework of the potential well model (Chap. 6).

9.3 Scattering of Electrons in Bands

In our treatment so far, we have neglected the important fact that electrons
moving under the influence of an external field in a crystal undergo colli-
sions, which restrict their movement. If this were not the case, there would
be no electrical resistance; once created by a temporarily applied electric
field, a current would continue to flow indefinitely according to the semi-
classical equations of motion (9.7b, 9.20). This phenomenon of ‘“‘supercon-
ductivity” has indeed been observed for many materials (Chap. 10). Normal
conductors, however, have a finite, often high electrical resistance. What,
therefore, are the important scattering processes for electrons accelerated in
external fields?

Drude (1900) [9.1] assumed that the electrons scatter from the positive
cores that form the periodic lattice. This model implies a mean free path be-
tween collisions of 1-5A. In obvious contradiction to this prediction, most
metals are found to have a mean free path at room temperature which is
about two orders of magnitude higher (Sect. 9.5).
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The explanation of this discrepancy came with the recognition that an
exactly periodic lattice of positive cores does not cause scattering. This is
immediately apparent within the one-electron approximation, because Bloch
waves travelling through the lattice are stationary solutions of the Schrodin-
ger equation. Since w*y is time independent, these solutions describe the
unperturbed propagation of electron waves. These results naturally apply
also to packets of Bloch waves which describe localized electrons. Devia-
tions from this undisturbed propagation, i.e., perturbations of the stationary
Bloch states can only occur in two ways:

I) Within the one-electron approximation, where interactions between elec-
trons are neglected, the only sources of electron scattering are deviations
from strict periodicity in the lattice. These may be:

a) defects in the lattice that are fixed in time and space (vacancies, dislo-
cations, impurities, etc.),
b) deviations from periodicity that vary in time, i.e., lattice vibrations.

II) The one-electron approximation neglects interactions between electrons.
Electron-electron collisions, which are not contained in the concept of a
non-interacting Fermi gas, can in fact perturb the stationary Bloch
states. As we will see, this effect is usually much less significant than
those noted in (I).

The decisive quantity for the description of an electron scattering process is
the probability wy, that the electron will be scattered from a Bloch state
wi(r) to a state yy (r) under the influence of one of the previously described
imperfections. According to quantum mechanical perturbation theory, this
transition probability is

2

i ~ |17 P = [ drir) 7 (o) ©0.21)
where 7' is the perturbation to the Hamiltonian. Because of the “Bloch
character” of yy (r) we have

W] ) = Jdru*,;,e-ik“r 7 ek (9.22)

If the perturbing potential /' can be written as a function of real-space co-
ordinates, then (9.22) becomes comparable to the Fourier integral (3.6) de-
scribing diffraction amplitudes from periodic structures, when (ujy 7 uy) is
identified with the scattering electron density ¢(r) in (3.6). By comparing the
calculations for diffraction from static and moving scattering centers (Chap. 3
and Sect. 4.4) we can immediately dr