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It is evident that without movement and change there is no time,
ARISTOTLE
(4th century B.C.)

..., in respect to its rdle in the equations of physics, though not with regard to
its physical significance, time is equivalent to the space co-ordinates (apart
from the relations of reality). From this point of view, physics is, as it were,
Euclidean geometry of four dimensions, or, more correctly, a statics in a four-
dimensional Euclidean continuum.

ALBERT EINSTEIN

(Nature, 1921)

We are familiar with the idea of the continuum, or we believe ourselves to be. We are
not familiar with the enormous difficulty this concept presents to the mind, unless
we have studied very modern mathematics (Dirichlet, Dedekind, Cantor). The
Greeks hit on these difficulties, became fully aware of them, were profoundly shaken
by them.

... S0, in brief, we do not belong to this material world that science constructs for us.
We are not in it, we are outside. We are only spectators.

ERWIN SCHRODINGER

(Nature and Greeks, 1954)
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Preface

There is a widespread belief that it is not space but time that in the end poses the great-
est challenge in science. It is according to Godel “that mysterious and seemingly self-
contradictory being which, on the other hand, seems to form the basis of the world’s and
our own existence”.

The basic scope of this monograph is to present the new view of time, termed natural
time y (from the Greek word “)p6vog” which means “time”), introduced by the authors
in 2001. In this new view, time is not continuous, thus being in sharp contrast with the
hitherto used conventional time ¢ which is modeled as the one-dimensional continuum %
of the real numbers.

The results deduced to date on the basis of this new domain reveal that novel dynamical
features hidden behind time series in complex systems can emerge upon analyzing them in
natural time, but cannot when the analysis is carried out within the frame of conventional
time. Furthermore, the analysis in natural time enables the study of the dynamical evo-
lution of a complex system and identifies when the system enters a critical stage. Hence,
it seems that natural time plays a key role in predicting impending catastrophic events in
general.

The present monograph comprises three Parts:

Part I (Chapter 1) provides a review of the so-called seismic electric signals (SES)
which are low-frequency (< 1Hz) electric signals that precede earthquakes. A sequence
of such signals, termed SES activity, constitutes the first example of a time series emitted
from a complex system, like the Earth, to which natural time analysis has been applied.

Part II, consisting of the Chapters 2 and 3, sheds light on the foundations of natural
time by providing the necessary mathematical background in each step. Furthermore, this
Part describes how the analysis of a time series is made in the frame of natural time and
explains how the entropy in natural time is introduced and calculated.

Part III, consisting of the six Chapters 4 to 9, presents examples of data analysis in
natural time that have appeared to date (mainly in Physical Review and Physical Review
Letters) in diverse fields, including Biology, Earth Sciences (Geophysics, Seismology),
Environmental Sciences, Physics (Condensed Matter, Statistical Physics, Physics of Com-
plex Systems) and Cardiology.

The contents of the nine Chapters can be summarized as follows.



XVIII Preface

Chapter 1 summarizes the mechanisms suggested to date for the SES generation as
well as the physical properties of SES including those that SES are observed only at
certain points of the Earth’s surface called “sensitive points” and that their amplitude is
interrelated with the magnitude of the impending earthquake. It is explained that these
physical properties can be theoretically understood on the basis of Maxwell equations if
we just consider that the earthquakes occur by slip on pre-existing faults, which constitute
conductive paths in the solid Earth’s crust. In addition, general background in Statistical
Physics is provided on the basis of which we show that the observed SES activities exhibit
scale invariance over four orders of magnitude. This is consistent with the pressure stim-
ulated currents SES generation model proposed by Varotsos and Alexopoulos in the early
1980s based on thermodynamical grounds which (motivated the SES research in general
and) suggests that SES are emitted when the stress in the focal region reaches a critical
value, thus SES should be governed by critical dynamics.

In Chapter 2, we first present aspects advanced by such giants as A. Einstein, E.
Schrédinger, W. Pauli, J. von Neumann, H. Weyl, and K. Godel, in order to shed light
on the crucial point that the continuity of conventional time is not demanded from any
fundamental principle. We then introduce the natural time ), which is not continuous, and
indicate that its values, as well as those of the energy, form countable sets by using the set
theory developed by Cantor. Furthermore, we demonstrate that natural time analysis is op-
timal for enhancing the signals in time-frequency space when employing the Wigner func-
tion and measuring its localization property. In other words, natural time analysis conforms
to the desire to reduce uncertainty and extract signal information as much as possible. The
normalized power spectrum IT(®) is introduced in natural time, and its Taylor expansion
leads, at low natural (cyclic) frequencies @ (@ — 0), to the expression IT(®) ~ 1 — kj ©?
where the coefficient kj is just the variance of natural time, i.e., k1 = (x?) — (x)?. This
quantity is useful in identifying the approach to a critical point as in the case of SES whose
k1 value is shown to be 0.070. In addition, natural time analysis enables the distinction be-
tween the two origins of self-similarity, which is a challenging point when analyzing data
from complex systems, i.e., whether self-similarity solely results from long-range tem-
poral correlations (the process’s memory only) or solely from the process’s increments’
infinite variance (heavy tails in their distribution).

In Chapter 3, we define the entropy S in natural time and show that the entropy S_
deduced from the natural time analysis of the time series obtained upon time reversal is
in general different from S, thus the entropy in natural time does satisfy the condition to
be “causal”. Furthermore, the physical meaning of the change AS =S5 — S_ of the entropy
in natural time under time reversal, which is of profound importance for the study of the
dynamical evolution of a complex system, is discussed. In addition, complexity measures
are introduced that quantify the fluctuations of the entropy S and of the quantity AS upon
changing the length scale as well as the extent to which they are affected when shuffling
randomly the consecutive events.

Chapter 4 deals with the natural time analysis of all the measured SES activities which
are shown to be characterized by very strong memory and their normalized power spectra
IT(®) versus o fall on a universal curve having k; value equal to 0.070. This curve coin-
cides with the one obtained on theoretical grounds when assuming that SES are governed
by critical dynamics. Concerning the distinction of SES activities from similar-looking
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“artificial” (man-made) noise, we find that modern techniques of Statistical Physics, e.g.,
detrended fluctuation analysis (DFA), multifractal DFA, wavelet transform, can achieve
such a distinction, but when they are applied in natural time. The entropy S in natural time
as well as IT(®) can also achieve such a distinction. Finally, the study of the fluctuations
Ay, of the average value of natural time under time reversal versus the window length /,
also achieves a distinction between SES activities and “artificial”” noises.

In Chapter 5, we investigate the effect of significant data loss on the identification of
a SES activity. In particular, the following two cases are treated. First, the effect of the
random removal of data segments of fixed length on the scaling properties of SES activ-
ities. Second, the appearance of a periodic noise like in Japan, where the electric field
measurements at some sites are seriously contaminated by high noise from 06:00 to 22:00
LT every day, i.e., around 70% data loss. We show that in both cases, when combining
natural time analysis with DFA, the identification of a long duration SES activity becomes
possible with probability around 70% even after severe data loss (e.g., 70-80%).

Chapter 6 is focused on the natural time analysis of the seismicity, a careful inspec-
tion of which reveals that the quantity x; may be considered as an order parameter. This
allows the determination of the constant b in the Gutenberg—Richter law for earthquakes,
N(> M) = 10“""M by applying the Maximum Entropy Principle. It leads to b ~ 1, which
agrees with real seismic data. Studying the order parameter fluctuations relative to the stan-
dard deviation of its distribution, the scaled distributions of different seismic areas as well
as that of the worldwide seismicity fall on a universal curve which also exhibits features
similar to those in several critical phenomena. This curve changes upon randomly shuf-
fling, which reflects that temporal correlations exist between the earthquake magnitudes
(M). This is confirmed by applying DFA to the earthquake magnitude time series and upon
employing either multifractal cascades in natural time or nonextensive statistical mechan-
ics combined with natural time analysis. Finally, the probability density function P(k)
versus K plot before mainshocks exhibits a significant bimodal feature. This is strikingly
similar to the bimodal feature of the order parameter when approaching (from below) 7,
in equilibrium critical phenomena.

In Chapter 7, assuming that the mainshock is a new phase, we show how natural time
analysis enables the determination of the occurrence time of an impending major earth-
quake. Considering that the detection of a SES activity signifies that the system enters in
the critical regime, the time series of the small earthquakes that occur in the candidate
region to suffer the mainshock after the SES detection are analyzed in natural time. It is
found that the variance k; becomes equal to 0.070 a few days to around one week be-
fore the mainshock. This behavior, which exhibits spatial as well as magnitude threshold
invariance, has been observed to date for all major earthquakes in Greece since 2001.
For example, the occurrence time of the M,,6.9 earthquake on February 14, 2008, which
was the strongest earthquake to occurr in Greece during the last 27 years, was publicly
announced as imminent on February 10, 2008. The procedure has been also ascertained in
the case of the volcanic-seismic swarm activity in 2000 in the Izu island region in Japan
as well as in the M;7.1 Loma Prieta earthquake in California in 1989.

In Chapter 8, we apply natural time analysis to the time series of the avalanches in
several self-organized criticality (SOC) models as well as to other dynamical models in-
cluding a simple deterministic version of the “train” model for earthquakes introduced
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by Burridge and Knopoff, the Olami—Feder—Christensen earthquake model, the 2D Ising
model when quenching at temperatures close to but below 7, which is qualitatively similar
with the pressure stimulated currents SES generation model, a deterministic version of the
original Bak—Tang—Wiesenfeld sandpile model and a generalized stochastic SOC model.
In all these dynamical models, we find that the value x; = 0.070 can be considered as
quantifying the extent of the organization of the system at the onset of the critical stage. In
addition, in this Chapter, we present the natural time analysis of the avalanches observed
in laboratory experiments on three-dimensional piles of rice getting progressively closer
to the critical state and on the penetration of the magnetic flux into thin films of high 7,
superconductors. The results reveal k| values around x; = 0.070.

Chapter 9 deals with the natural time analysis of electrocardiograms and basically aims
at identifying the risk of sudden cardiac death, which is a frequent cause of death and
may occur even if the electrocardiogram seems to be strikingly similar to that of a healthy
individual. Upon employing the fluctuations of the entropy in natural time, we find that
sudden cardiac death individuals (SD) can be clearly distinguished from the truly healthy
ones. Furthermore, by using complexity measures that quantify the change of the natu-
ral entropy fluctuations either by changing the time window length scale or by shuffling
the “pulses” (heartbeats) randomly, we can achieve the classification of individuals into
three categories: healthy, heart disease patients and SD. In addition, when considering the
entropy change under time reversal, not only the SD risk can be identified, but also an
estimate of the time of the impending cardiac arrest can be provided. Finally, a 1/f model
in natural time is presented which is consistent with the progressive modification of heart
rate variability in healthy children and adolescents. The model also results in complexity
measures that separate healthy dynamics from heart disease patients as well as from SD.

For the reader’s convenience, the figures and the tables that refer to others than
those included in this monograph, begin with small “f” and “t”. As for the Supple-
mental Material, cited as EPAPS document, it is freely available from
www.aip.org/pubservs/epaps.html. Furthermore, bold face symbols corre-
spond to vectors, as usual.

We would like to express our gratitude to the leading contemporary figure in Earth
Sciences, i.e., Professor Seiya Uyeda (Member of the Japan Academy), who has gone
through the text in several of our papers focused on natural time with meticulous care and
generously offered his advice by making very useful suggestions.

Athens P A. Varotsos, N.V. Sarlis and E.S. Skordas
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Seismic Electric Signals



1. Introduction to Seismic Electric Signals

Abstract. In the early 1980s, Varotsos and Alexopoulos showed that when the pressure
(stress) on an ionic solid reaches a critical value, a cooperative orientation of the electric
dipoles (that anyhow exist due to lattice defects) may occur, which results in the emis-
sion of a transient electric signal. This may happen before an earthquake since the stress
gradually increases in the focal region before rupture. Thus, a detailed experimentation
started in Greece in 1981, which showed that actually transient variations of the electric
field of the Earth, termed seismic electric signals (SES), are observed before major earth-
quakes. In the meantime, several other SES generation mechanisms have been proposed.
The field experiments revealed the physical properties of SES including those that SES
can be observed only at certain points of the Earth’s surface called “sensitive points” and
that their amplitude is interrelated with the magnitude of the impending earthquake. Each
sensitive station enables the detection of SES only from a restricted number of seismic
areas, a phenomenon termed “selectivity effect”, which provides the basis for the deter-
mination of the epicenter of an impending earthquake. These physical properties can be
theoretically explained on the basis of Maxwell equations, if we take into account that the
earthquakes occur by slip on pre-existing faults and that the faults constitute conductive
paths (electrical inhomogeneities) in the solid Earth’s crust. Finally, the observed SES ac-
tivities, which are series of SES observed within a short time, as well as the associated
magnetic field variations, exhibit scale invariance over four orders of magnitude. This is
consistent with the original model suggested by Varotsos and Alexopoulos for the SES
generation according to which SES should be characterized by critical dynamics which is
always accompanied by scale invariance.

1.1 Data collection and the telemetric network

The experimental study of seismic electric signals (SES) which are low frequency (< 1 Hz)
electric field variations that precede earthquakes (EQs), started almost thirty years ago in
Greece and was motivated by solid state physics aspects, namely the thermodynamics of
defects in solids. These have been developed by Varotsos and Alexopoulos during the

P.A. Varotsos et al., Natural Time Analysis: The New View of Time: Precursory Seismic Electric Signals, 3
Earthquakes and other Complex Time Series, Springer Praxis Books, DOI 10.1007/978-3-642-16449-1 1,
© Springer-Verlag Berlin Heidelberg 2011
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1970s in a series of publications (see Ref. [129] and references therein) and led to the
theoretical possibility that the earthquake rupture could be preceded by transient electric
signals(§ 1.6.2). In order to check its validity, continuous measurements of the electric
field of the Earth have been carried out in Greece since 1982 (note that temporary field ex-
periments had already started in 1981 by Varotsos, Alexopoulos and Nomicos [132], from
the initials of which this study is also known as the VAN method). A telemetric network
of eighteen measuring stations (via leased telephone lines) was completed in the end of
1983 [127, 128]. Data were transmitted to the central station located at an Athens suburb,
labeled GLY, on a real-time basis. Technical details on this data transmission system can
be found in Refs. [74, 75, 125]. The sites of the stations operating at that time are shown in
Fig. 1.1, while the present configuration of the telemetric network consists of the stations
depicted in Fig. 1.2.

100Km b

a6
% | = \ g‘ ! P E

Fig. 1.1 The sites of the 18 telemetric stations in Greece installed in 1983. The western shaded area
corresponds to the selectivity map of IOA, but a more updated version is given in Ref. [137]. The shaded
regions a, b and ¢ (that may be joined to a single larger area) refer to seismic areas from which SES have
been recorded at ASS. These selectivity maps need gradual completion (see the text). The boundaries of
the IOA selectivity map are yet uncertain. Taken from Ref. [138].

Experimental details were published in Varotsos and Lazaridou [140] and in Varotsos,
Alexopoulos and Lazaridou [131] which are reviewed in Varotsos [125]. Therefore, only
a brief description will be given here.
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Fig. 1.2 Map showing the sites of the stations
® Field Station of the real-time telemetric network currently
m Ceniral Statlon operating in Greece.

Non polarizable electrodes Pb/PbCl, at a depth of 2 m are used and the potential dif-
ference between two of them (that constitute a measuring electric dipole) is measured.
A minimum of eight (horizontal) measuring electric dipoles was initially installed at
each station; some of these dipoles have lengths (L) between 50 m and 400 m and are
called “short dipoles”, while others have appreciably longer lengths (usually between
2 and 20 km) and are called “long dipoles”.

A minimum of four short dipoles was installed in perpendicular directions (usually
along EW and NS), e.g., two parallel short dipoles with unequal lengths in the EW direc-
tion and two others in the NS direction. No common electrode should be used (§ 1.2.2).
As for the long dipoles, their sites were carefully selected (see Varotsos and Lazaridou
[140] and Appendix II of Varotsos, Alexopoulos and Lazaridou [131]), so as to allow the
distinction between true SES and “artificial” noises coming from man-made sources lying
up to several kilometers away from the station (see Section 1.2 and § 1.2.3).

In 1990, beyond the aforementioned real-time data collecting system, dataloggers
(Campbell 21X connected to a portable PC) were installed at several stations to collect
data with sampling rate fexp, = 1 sample/sec. These data were finally stored only during
SES collection, and during the period extending from several minutes before a significant
earthquake (EQ), until a few minutes after. The averages, taken every 20 seconds (note
that initially it was 1 sample/10 sec), were transmitted to the central station (once or twice
per day) through dial-up. Typical example of the configuration of the electrodes is given
in Fig. 1.3, for the station IOA in northwestern Greece. Furthermore, at each of the four
stations ZAK (which is located at Zakymthos island in western Greece, the closest island
to PIR), IOA, KER and ASS, the vertical electrotelluric component was also measured
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10A Station
Short Dipole Area

Fig. 1.3 Current configuration of the short (a) and long (b) dipoles at IOA, while (c) depicts a more
detailed view of the short dipoles array. In (a), the two solid triangles (bh50) stand for the two boreholes
(with depth 4 = 50 m). In (a) and (c), the short dipoles with subscripts a, b, ¢ are those located at the
sites termed “A”, “B” and “C”, respectively. In the real-time telemetric network the data of the following
8 (horizontal) electric dipoles are collected: the three long dipoles L, L" and L-1 depicted in (b) as well as
the five short dipoles lying between the sites “B” and “C” in (c), i.e., the two EW dipoles (with lengths
~50 m) and the three NS dipoles N50S50, N1goS100 and NjgaSis4 (with lengths around 50 m, 100 m, and
184 m, respectively). In the datalogger, the data of the 3 coil magnetometers (DMM) along EW, NS and Z
(vertical) together with the following 13 electric dipoles are collected: two short dipoles along EW and NS
at the sites “A”, “B” and “C” (labeled with subscripts a, b and c, respectively), two additional short dipoles
located at site “B” but rotated by 22° counterclockwise with respect to the EW and NS directions, respec-
tively, two vertical dipoles at the boreholes, and three long dipoles L, L’ and L-I (occasionally labelled
L:-I). Concerning the geology in (a): (1) alluvial deposits, (2) flysch of the Ionian unit, (3) limestones;
in (b): (1) quaternary sedimentary deposits, (2) alpine formation of the Ionian unit (mainly limestones).
Reprinted from Ref. [125], Copyright (2005), with permission from TerraPub.
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Fig. 1.4 Current configuration of the measuring short and long electric dipoles at the station VOL. Taken
from Ref. [151].

by using pairs of electrodes installed in each of two independent boreholes with depths
of around 50 m (e.g., see Refs. [1, 135, 125]). The variations of both fields, electric and
magnetic, are studied since the magnetic field was also continuously measured at four
stations, i.e., at IOA, LOU, ASS and VOL, using coil magnetometers. In 1995, beyond
the aforementioned two independent measuring systems (i.e., the real-time telemetric net-
work with 8 channels per station, and the dataloggers with 8 or 16 channels per station)
instrumentation was increased more (see Section 1.4 of Ref. [125]).

In particular, since 1995, beyond the coil magnetometers, several tens of short and long
measuring electric dipoles have been operating around each of the stations depicted in
Fig. 1.2.

As an example, Fig. 1.4 depicts the current configuration of the measuring short and
long dipoles at VOL (central Greece). Details for the low pass filters used for the electric
field measurements as well as for the calibration of the three component DANSK coil
magnetometers (DMM) can be found in the Appendix, see also pp. 1-2 and 24-29 of
Ref. [125], or in Refs. [149, 161, 157, 159].
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1.2 Distinction of SES from noise

The simultaneous operation of multiple short and long measuring electric dipoles at each
station is necessary for the SES recognition.

Frequent electric field variations, termed magnetotelluric (MT) variations appear (prac-
tically) simultaneously at all stations of the network because they are induced by small
variations of the geomagnetic field.

An electric disturbance is classified as a SES after it has met all of the following
four criteria [131, 140], which are currently applied in addition to those based on the
natural time concept that are summarized in Section 4.10 (the same holds in the case
of significant data loss, see Chapter 5):

(1) The SES can be distinguished from MT variations, because the latter appear at
all stations (practically) simultaneously, while the former do not (due to the “selectivity”
phenomenon that will be explained later in § 1.3.4).

(2) The SES must appear simultaneously on the short and long dipoles at the station(s)
concerned.

(3) The SES should obey the criterion AV /L = constant for the short dipoles oriented
in the same direction (if they are not located on locally inhomogeneous ground).

(4) The polarity and amplitude of the SES on the short and long dipoles must be com-
patible with a distant source assumption: the projection onto the long dipole of the AV /L
vector calculated from the short dipoles must have the same polarity and comparable am-
plitude with the observed signal on the long dipole. Thus, the criterion AV /L ~ const.
should (approximately) hold when considering two dipoles, a long dipole and a short one
that are parallel.

An independent confirmation of the objectivity of these four criteria was made by
Nagao, Uyeshima and Uyeda [73].

Furthermore, note that beyond the aforementioned four criteria, there are two addi-
tional ways of discriminating SES from “artificial” noise which make use of: (a) the
time-difference between the “arrivals” of the electric field and the magnetic field (see
§ 1.3.6.1), (b) the difference of the time evolutions (rise times) of the signal recorded
at two directions (see § 1.3.5; see also section 13.2 in Ref. [125]).

We now describe below how the SES are discriminated from noise of various sources.

1.2.1 Distinction of SES from magnetotelluric (MT) changes

When a network of several electrotelluric stations is operating, it is difficult for the MT
changes (which is alternatively called here “MT noise”) to be misinterpreted as SES. This
is so because, as mentioned, MT appear simultaneously at all the stations, in contrast to
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the SES which are recorded only at a restricted number of them [127] (in most cases, in a
non-dense network, the SES are recorded only at one station). The following procedures
for the distinction between SES and MT are also applied:

(A) (B)
%0 90
120 50 120 60

150 30 150 30

210 330 210 330

240 300 240 300

270 270

Fig. 1.5 The electric field polarization of the SES activity on April 19, 1995 (A), and that of the MT
variations (B) at the site “B” of IOA; the latter is almost directed along EW, as confirmed by long time
recordings as well. Attention is drawn to the point that the origin of the axes has been displaced to the
average value of the electric field. Reprinted from Ref. [125], Copyright (2005), with permission from
TerraPub.

(a) Conventional MT method: After having determined for each site, the impedance
tensor that interconnects the variations of the magnetic and electric field, a “real-time”
subtraction of the MT noise from the VAN records has been developed and tested with
satisfactory results (see chapter 2 of Ref. [125]).
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Fig. 1.6 The same as Fig. 1.5, but for the site “C” of IOA. Reprinted from Ref. [125], Copyright (2005),
with permission from TerraPub.

(b) Detection of a SES in the direction in which the MT noise is minimum: Let us
consider for example the case of the station IOA, at which Figs. 1.3(a) and (c) depict
the areas termed “A” ,“B” and “C” of the short dipoles arrays. At “B”, measurements
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of the electric and magnetic fields (see Fig. 1.5(B)) led to the conclusion that the MT
variations are least along the direction ~N22°W (cf. a highly anisotropic 2D regional
geoelectrical structure with a strike angle N40°W is found in Ioannina area, see section 2.5
of Ref. [125]). Thus, two more dipoles (labeled N, S, and E;;W,, ) have been installed
at “B”, which were oriented along to NS(—22°) and EW(—22°), respectively. (It will be
hereafter called site “B’”.) This reflects that an SES can be easily recognized at site “B”
on NS(—22°), in which direction the MT variations are least (provided of course, that
the polarization of the MT significantly differs from that of the SES under consideration;
see also § 1.3.3). By the same token two additional short dipoles had been installed in
the neighboring area “C” (see Figs. 1.3(a) and (c)), where the NS direction was found
experimentally (Fig. 1.6(B)) to be almost the direction at which the MT disturbances are
appreciably small.

Thus, in short, the SES recognition becomes easier in a direction in which the MT
noise is minimum.

1.2.2 Distinction of SES from noise of electrochemical origin

This type of noise, which is usually ascribed to a change in the contact potential between
the electrodes and the ground, e.g., due to rain, can easily be recognized when parallel
dipoles for each measuring direction are installed [127]. This noise is usually not recorded
simultaneously at the parallel dipoles, because, as mentioned, care is taken to have inde-
pendent electrodes. In the rare case that it is simultaneously recorded, the variations AV
of the potential difference do not scale (in a homogeneous ground) with the length of the
short dipoles in a given direction, i.e., with AV /L # constant. The long dipoles are less
affected by the electrochemical disturbances, when compared to the short dipoles (e.g., see
Ref. [129]).

1.2.3 Distinction of SES from “artificial” (man-made) noise. The AV /L criterion

The proper use of the AV /L criterion (see Section 1.2) can lead to the noise recognition.
In particular, depending on the location of the emitting noise source, the application of this
criterion can be made as follows:

(1) A noise source lying in the immediate vicinity of the short dipoles can be easily
recognized, because a cultural signal N does not generate the same field strength AV /L
in neighboring parallel (short) dipoles of different lengths. This also excludes any electro-
chemical noise, arising from electrode-instabilities, e.g., due to rain.

Multiple neighboring short dipoles exclude the electrochemical and the local “artifi-
cial” noise.
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Fig. 1.7 Configuration of short (unprimed) and long (primed) dipoles suggested by Varotsos and Lazari-
dou [140] for an easy recognition of noise. N = noise source.

(2) In the case of a noise source the location of which is known and lies a few km
(up to several km) away from the measuring site, the installation of a single long dipole
in combination with a short parallel dipole is usually sufficient for the noise recognition,
under the following condition: one of the two electrodes of the long dipole should be
located close to the measuring site, while the other, i.e., the remote one, should lie on
the same side (with respect to the measuring site) with the noise source. As for the exact
location of this remote electrode, the following two configurations are recommended:

(i) If the noise source N lies closer to the measuring site than the remote electrode as
in Figs. 1.7(a),(b), or case II of Fig. 1.8, the noise is easily recognized, because it gives
signals with opposite polarities on the long dipole and the parallel short dipole.

(ii) If the noise source lies close to the remote electrode, the noise is again recognized,
because the ratio (AV /L of the long dipole)/(AV /L of the short dipole) of the AV /L values
differs drastically from unity (e.g., we compare the long dipole E; W) and the short dipole
E; W in Fig. 1.7(c)).
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Fig. 1.8 Configuration of the signal strength of short and long dipoles as a function of distance suggested
by Varotsos et al. [131] for an easy recognition of noise. The electrodes e and w correspond to the short
dipole, while E and W to the long dipole. In configuration I, a disturbance from noise source N (or a SES)
is recorded on both dipoles ew and EW, with the same polarity. In II, a disturbance from the noise source
N give signals of different polarities on the dipoles ew and EW, in contrast to SES. Taken from [131].
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Fig. 1.9 The “optimal” configuration of a short dipole
AB and two long dipoles A" and AT, for an easy recog-
nition of noise; the emitting noise source is assumed to
lie within the elliptical area. Taken from Ref. [145].

(3) In the case of “artificial” sources (up to several km away from the measuring site),
the exact location of which is not known, two (parallel) long dipoles with non-equal
lengths should be installed (in addition to the short dipole array). One of the short dipoles
should be parallel to the long ones of which one of their electrodes has to be close to the
measuring site. If the candidate area of “artificial” sources can be roughly estimated, say
as an ellipse, care should be taken in order its major axis to coincide, if possible, with one
of the long dipoles (the other long dipole may have a smaller length, e.g., by a factor of
2, or so, see Fig. 1.9). For such a configuration, any noise originating from the candidate
area, cannot give equal AV /L values (within 50% or so) at both the long and the short
dipole(s).

Detailed calculations which explain the aforementioned recommended configurations
of the short and long dipoles are presented in chapter 7 of Varotsos [125], a review of
which is given here in § 1.7.7.

In the case of lateral inhomogeneities, however, the AV /L criterion may not be appli-
cable at all [140]. In this case, as well as in all other cases where the eventual inhomo-
geneities are not known beforehand, the SES activities (i.e., a sequence of SES within
a relatively short time, see below) can be distinguished from “artificial” (man-made)
noises by analyzing the signal in natural time and then applying the criteria summa-
rized in Section 4.10. These criteria stem from the fact that solely SES activities are
characterized by critical dynamics (infinitely ranged temporal correlations), while the
“artificial” noises do not.

We also note that if a noise source remains geographically fixed, the relevant noise on
the records can be permanently eliminated by applying a technique developed in Ref. [140]
(see also pp. 6, 7 in Varotsos [125]).

1.3 SES physical properties

Seismic electric signals are classified into two types: (a) single SES, i.e., a single transient
change of the electric field, (b) SES activity, i.e., many one-sided SES within a relatively
small time. Examples are given in Figs. 1.10 and 1.11. These examples, show SES activi-
ties of duration up to a few hours. During recent years, however, SES activities of appre-
ciably longer-duration, i.e., from several hours to 1 week have been recorded in Greece
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(see §1.4.3 and Section 4.11). These will be hereafter termed long duration SES activities.
In Japan, beyond several SES of duration comparable to that recorded in Greece, an SES
activity lasting for around 2 months has been also reported [119, 120] that was related with
volcanic-swarm activity; see Section 7.4. In addition, an SES activity lasting for more than
2 months [83] has been also recorded before the Guerrero-Oaxaca EQ (M, = 7.4) that oc-
curred on September 14, 1995, in southern Mexico at a measuring station lying close to
Acapulco, i.e., at a distance around 110 km from the EQ epicenter [83, 36, 84].
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Fig. 1.10 (a): SES activity at IOA (records from the real-time telemetric network) on Aug. 31, 1988,
which preceded the destructive EQs at Killini-Vartholomio (i.e., approximately at 38.0°N 21.0°E) that oc-
curred on Sep. 22 and Oct. 16, 1988. This SES activity provided the basis for the public warning issued by
Haroun Tazieff on September 3, 1988, the social impact of which has been studied in detail in Ref. [164].
Taken from Ref. [140]. (b): Excerpt of (a) taken from Ref. [131]. The corresponding directions and lengths
of the dipoles are as follows: red (EW, L = 47.5 m), green (NS, L = 48 m), orange (EW, L = 181 m). The
dipole N22 labeled IOA (blue) is the long dipole labeled “L” in Fig. 1.3(b); the apparently reversed po-
larity of the SES on the latter dipole is due to the connection of this dipole to the recorder, having been
intentionally reversed, as explained by Varotsos and Lazaridou [140]. The horizontal scale is in mV, while
the vertical is time in UT.

1.3.1 Lead time of SES. Other electrical precursors

The lead time of SES lies, in general, between several hours and several weeks. In partic-

ular:
(a) For single SES, the lead time is usually around 11 days [123] or smaller [127].
(b) For SES activities: the study of several cases observed until 2000 (compiled in Ref.

[125]) led to the following empirical rule [141]:
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A time period of at least 3 weeks elapses between the initiation of the SES activity
and the occurrence of a strong EQ (small shocks may start earlier), see Fig. 7.15. The
strongest EQ usually occurs during the fourth week, see the middle case in Fig. 7.15;
otherwise smaller EQ(s) with magnitude around 5-units appear during this week and
the strongest EQ occurs after an additional period of 2-3 weeks, see the upper and the
lowest case in Fig. 7.15.

Some later examples, however, e.g., the SES activity that preceded the M,,6.5 EQ in the
Aegean sea on July 26, 2001 (see § 7.2.3), revealed that the lead time At may occasionally
be longer. Upon the introduction of natural time in 2001, however, a methodology has
been developed which enables the determination of the time-window of an impending
mainshock with an accuracy usually around a few days to 1 week. Chapter 7 is reserved to
explain this methodology along with several examples.

weeks — e

—iminutes
l~{seconds

SES— l—————E'tctric Pulse
<+

Fig. 1.12 Schematic representation (not to scale) of the three types of electrical precursors (GVEF, SES
and electric pulses) observed in Greece. Modified from Ref. [131].

We clarify that, beyond the SES, two other types of electrical precursors have been
detected in Greece as summarized in Fig. 1.12. First, a gradual variation of the electric
field of the earth (GVEF) which is a transient anomaly of long duration (of the order of one
month) with an amplitude one order of magnitude larger than that of the SES [128, 129].
Second, electric pulses of short duration, labeled “electric pulse” in Fig. 1.12, which appear
some minutes before the earthquake occurrence [159, 129]; see also § 1.3.7.

1.3.2 Interrelation between SES amplitude and EQ magnitude

For SES registered at a given station and originating from a given seismic area, their am-
plitude expressed as AV /L (for a dipole with given orientation) scales with the magnitude
M according to the relation [127, 129, 140]

log;o(AV /L) = (0.32—0.37)M + . (1.1)
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Equation (1.1) reflects that when the EQ magnitude increases by 1-unit, the SES am-
plitude becomes almost double.

The plots for the dipoles of two different orientations have the same slope but different
intercepts. This is schematically shown in Fig. 1.13.

The following three comments are in order.

First, the AV /L value is of the order of 10 mV/km, for EQs of magnitude M ~ 6.0-6.5,
when measured at epicentral distances of around 100 km.

Second, the aforementioned relation, which was found empirically by Varotsos and
Alexopoulos [127] has the form:

log,o(AV /L) = aM+ 3, (1.2)

where the constant a is approximately a ~ 0.3-0.4 for all measuring cites (universal).

Third, let us now consider that the seismic energy E released during the EQ is propor-
tional to the seismic moment My and that My is interrelated with the moment magnitude
M,, through [35] (see also Section 6.1)

M o< 10°Mw (1.3)

where the constant ¢ = 1.5. Thus, the empirical relation (1.2), in view of Eq. (1.3), is in
fact a power law relation that interconnects AV /L with the energy E, thus pointing to the
conclusion that the future focal region has a fractal geometry (§1.5.1). This is consistent
with the early suggestion by Varotsos and Alexopoulos [127] (see p.92) that the universal
a-value stems from the geometry of the SES emitting source.

In addition, when considering (§ 1.5.2) that criticality is always associated with frac-
tality, Eq. (1.2) is consistent with the SES generation model of pressure stimulated
currents (§ 1.6.2) that motivated the SES research and assumes that SES is emitted
when the stress reaches a critical value in the future focal region. Note that a num-
ber of independent workers, e.g. Sornette and Sornette [102] (see § 1.6.9) and Surkov,
Uyeda, Tanaka and Hayakawa [109] (see § 1.6.8) have also provided a theoretical jus-
tification of Eq. (1.2) based on concepts of critical phenomena.

1.3.3 SES polarity and the ratio of the two SES components

For a given short dipole (e.g., EW or NS) a SES from a given seismic area always has the
same algebraic sign. For each pair “seismic area-station”, the ratio of the amplitudes in the
EW and NS directions, i.e. (AV/L)gw/(AV /L)ys, remains the same for EQs of different
magnitudes but from the same seismic area (Fig. 1.14).
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log ﬂ EW

NS

Fig. 1.13 Schematic representation of the variation of

log,o(AV /L) versus the magnitude M, for SES coming

from the same seismic area and recorded at a given sen-
M sitive station. Taken from Ref. [140].

The above property seems to hold when the EQ source parameters from the seismic
region under discussion remain the same. In the case that the EQ mechanism changes, a
reversal of the polarity may be observed [151].

AV

NS

Fig. 1.14 Schematic representation of the ratio of the two

AV SES components, for a given pair “seismic area — (SES
T sensitive) station”. It remains almost the same. Taken
EW from Ref. [140].

The ratio of the two SES components is, in general, different from that of the MT-
polarization. We present two characteristic examples. Let us consider the case for the SES
activities that preceded the M,,6.6 EQ of Grevena-Kozani. In Fig. 1.11(a), we give the
recordings of April 18, 1995, at IOA, at the sites termed “B” and “C” (see the maps in Figs.
1.3(a) and (¢)). An inspection of this figure reveals the difference between MT disturbances
and SES recordings. First, the MT disturbances in the NS direction (e.g., 09:30 UT on
April 18), measured at site “C”, are appreciably smaller than those in NS measured at site
“B” (the opposite holds for the EW direction), but the SES amplitude at NS, is larger than
that at N,,S,. Second, when comparing the recordings at the long dipoles L/-I and L’ (or
L), we find that they respond differently to MT disturbances than to SES activities.
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1.3.4 SES sensitive sites. Selectivity effect

SES cannot be observed at all points on the Earth’s surface but only at certain points
[127, 128, 130] called “sensitive sites” [140].

Therefore the installation of a station appropriate for SES collection should necessarily
be preceded by a tedious experimentation to find a sensitive site [131]. In short, a number
(e.g., 10) of temporary low-noise stations are installed and only after a long period, i.e.,
after the occurrence of several significant EQs from a given seismic area, can we select
the most appropriate site (if any). Although general rules cannot be drawn, it seems that
[131] the areas which are more likely to be sensitive are: (a) the vicinity of a major fault,
(b) regions of crystalline rocks close to large heterogeneities, such as geological contacts
with significantly different conductivities and (c) areas with strong local inhomogeneities.
The stations depicted in Fig. 1.2 have been selected to be SES sensitive after long exper-
imentation. As an example, the procedure we followed for the selection of IOA sensitive
site has been described in detail by Kondo, Uyeda and Nagao [53].

Selectivity effect. It refers to the experimental fact that a sensitive station is capable of
collecting SES only from a restricted number of seismic areas [140, 131].

The following may happen: a given station S4 situated at A may be able to record SES
originating from a seismic area B but not from an area C, even when the distance between
A and Cis significantly smaller than that between A and B [127, 128, 130]. A map showing
the seismic areas that emit SES detectable (for EQs above a magnitude threshold) at a given
station is called “selectivity map of this station”. In Fig. 1.1 the western large dotted area
corresponds to the selectivity map of IOA, while the shaded regions a, b and ¢ (which are
likely to be joined to a single larger area) refer to the selectivity map of ASS.

The construction of the selectivity map of a given station takes a long time. There
are, in principle, three categories of seismic regions with respect to a given SES station.
The first two categories refer to those regions at which strong EQs occurred during the
operation of the station: the one category refers to the regions which gave detectable SES
at the station (thus belonging to the selectivity map) and the other which did not. There
is, however, a third category, referring to those seismic regions that were not seriously
activated during the operation of the station. Thus, the completion of the selectivity map of
a station needs gradual improvement as more data are collected. For example, the seismic
region of Kozani-Grevena until 1995 was not initially included in the selectivity map of
IOA depicted in Fig. 1.1; however, after the M,,6.6 EQ on May 13, 1995, with an epicenter
at 40.2°N 21.7°E, it became included (see Refs. [141, 137]). Thus, the construction of the
selectivity map requires a long time operation of a (sensitive) station. The procedure is
described in detail in Ref. [131] (see also pp. 13—14 of Ref. [125]).

An explanation for the selectivity effect has been suggested by Varotsos and Alexopou-
los [129] (see Section 1.7 and Ref. [131]).
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This explanation is supported by analytical solutions of Maxwell equations (§ 1.7.4),
as well as by numerical ones (§ 1.7.5), and suggests that selectivity is a natural con-
sequence of the fact that EQs occur by slip on faults, which are appreciably more
conductive than the surrounding medium.

Moreover, a detailed experimentation summarized in section 1.4 of Ref. [125] has been
carried out in Greece aiming at a better understanding of the SES selectivity effect. This
experimentation included: (a) the additional installation of several tens of short and long
dipoles in order to determine the spatial extent of each of the SES sensitive sites, and (b)
a detailed magnetotelluric investigation around each SES sensitive station. For example,
the results showed [137] that the SES sensitive site at IOA extends to a zone with a width
of about a few km and a length of the order of ~10 km. These dimensions seem to be
compatible with the results obtained from analytical and numerical solutions of Maxwell
equations, e.g. see Fig. 1.38(c) and § 1.7.5.3.

1.3.5 Determination of the epicenter and magnitude of an impending mainshock
from the SES data

In a non-dense network, the SES of an impending EQ is recorded at one station only. In
this case, the following procedure is applied [140]:

The determination of the epicenter and magnitude of an impending EQ needs the
knowledge of the selectivity map of the station that recorded the SES. Then by consid-
ering the SES polarity and the value of the ratio (AV /L)gw /(AV /L)ns (see § 1.3.3)
obtained from the short dipoles array, we select the region(s) of the selectivity map
which might have emitted the observed SES. Subsequently, from the log,, AV /L vs
M plot (see § 1.3.2) that corresponds to this concrete pair: “candidate seismic area-
station”, we estimate the magnitude.

We clarify that the additional use of long dipole information may significantly improve
the epicenter estimation. Let us consider, as an example, one of the two (independent)
long dipoles (L or L) installed between the IOA station and the town of Perama, which
are oriented along an angle 6 = N30°E (see Fig. 1.3(b)). Let us denote the electric field
and potential difference by E and AV with relevant suffices. If we denote the NS and EW
components of electric field variation measured by the short dipole by Exs = AVis/Lsor
and Egw = AVEw /Lgior, the component of the electric field variation in the direction of
the long dipole, Ejpng = AVope / Liong, would be: Ej,,g = Eygcos 6 + Epw sin é, in the case
that the resistivity structure is assumed homogeneous and isotropic. Then:

(AVl(mg/AVNS) = (Ll()ng/Lshorz) [COS é + (EEW/ENS) sin é] . (1 4)
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As 6 and (Liong /Lghor) are constant, (A Viong /AVys) can be considered as a sensitive mea-
sure of (Epw /Eys), because it “amplifies” the latter almost by the ratio (Ljong/Lshors =
20) x (sin@ = 1/2) ~ 10. Since the underground structure is neither homogeneous nor
isotropic, the observed ratio (AVj,,e /AVys) is considered to be merely a parameter sen-
sitive to (Egw /Eys). (This ratio is termed “directional parameter” by Kondo, Uyeda and
Nagao [53], who independently checked this procedure.)

By summarizing, since the ratio AVj,,,/AVys is a sensitive measure for the ratio of
the two SES components, the use of the ratio Egyw /Eys deduced from the short dipoles
array together with the ratio AV, /AVys improves the epicentral determination.

By the same token, in some cases, the ratio AV, /AVl’mg of two long dipoles with
unequal lengths may help towards distinguishing one among different candidate epicentral
areas. This has been used for example in the text of the prediction of the EQ at Grevena-
Kozani (May 13, 1995), that will be discussed in § 7.2.1.

We also emphasize the following. If the two components of the electric field detected
on the Earth’s surface are measured along appropriate directions, i.e., by two short dipoles,
oriented along and perpendicular to the (local) current channeling [136, 152], they exhibit
markedly different time evolutions. This stems from the fact that the electric field obeys
diffusion type equations (in the low frequency range, see §1.8.1 and §1.8.3).

An analysis of the difference between the time evolutions of these two SES compo-
nents can then reveal the distance of the emitting source from the measuring station(see
Refs. [157, 151, 152]; see also pp. 275-280 of Ref. [125]).

1.3.6 Magnetic field variations associated with SES

The experiments show that small amplitude SES, e.g., those corresponding to magnitude
M ~ 5.5 EQs at epicentral distances of the order of 100 km, are not accompanied by
easily observable variations of the horizontal components of the magnetic field [141]. This
does not imply that SES are not accompanied at all by magnetic field (B) variations, the
existence of which is obligatory from Maxwell equations, but does imply that they are very
small compared to those which produce (comparable) magnetotelluric electric signals.

On the other hand, both theoretical calculations (see § 1.7.6 and chapter 10 of
Ref. [125]) and experiments (e.g., see Figs. 1.11(a),(b)) indicate that strong SES ac-
tivities and in particular those related with EQs of magnitude M 2 6.5 at epicentral
distances ~100 km, should be accompanied by detectable magnetic field variations,
e.g, B~ 107! nT.
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This was actually observed (details are given in subsection 1.6.3 of Ref. [125]) for the
SES activities detected at IOA before the occurrence of the M,,6.6 EQ at Grevena-Kozani
on May 13, 1995 [138, 150, 161], to which we now turn.

Figures 1.11(a),(b) depict the SES activities recorded at IOA on April 18 and April
19, 1995, respectively. All variations were collected with the Campbell X21 datalogger by
20 ms integration to avoid 50 Hz noise with f.,, = 1 sample/s. The following nine (out of
16) channels are shown in the figures: two for the horizontal coil magnetometers DMM
(see Section 1.1), labeled Bgw and By, four for the short electric dipoles at sites “B” and
“C” and three for the long electric dipoles L, L' and L!-I (see Fig. 1.3). Note that “1 Hz”
low pass filters were used in the measurements of the electric field variations of the three
long dipoles and “10 Hz” (see Appendix) for the short dipoles at sites “B” and “C”. An
inspection of this figure reveals that there are obvious magnetic disturbances at DMM,
which accompanied the SES activities. A part of the SES activities and the accompanied
DMM recordings is presented, but in a more expanded time scale, in Fig. 1.11(c). These
SES activities meet [138] the criteria for distinguishing true SES from noise (Section 1.2).

1.3.6.1 The time difference between the variations of the electric and magnetic fields

Varotsos et al. [161] studied in the aforementioned example of Figs. 1.11(a),(b) the cross-
correlation values, calculated between the following two time series versus their time-
difference At¢: one component of the electric field and one component of the horizontal
DMM. The results, either for the SES activity on April 18, 1995 (Fig. 1.11(a)), or for
that on April 19, 1995 (Fig. 1.11(b)), showed that [161]: the electric field variations pre-
ceded the magnetic ones (i.e., dB/dt since we used coil magnetometers) by a At of around
1-2 sec.

The fact that the SES electric field variations precede those of the magnetic field by
a measurable time difference, i.e., of the order of 1 sec (for epicentral distances of
the order of ~100 km), may be critical in distinguishing SES from “artificial” noises.
This is so, because for noises emitted from nearby “artificial” (man-made) sources, the
“arrivals” of the variations of the two fields are simultaneous at the measuring station
within experimental accuracy.

Such a distinction can be achieved, of course, when the epicentral distance is ~ several
tens of km. The value of the time-difference may also be used for the estimation of the
epicentral distance of the impending EQ, which when combined with the selectivity map
can significantly improve the epicenter determination.

1.3.6.2 The polarization of the electric and magnetic field variations of SES

The SES polarization differs [127, 128] from that of the MT as already mentioned in
§ 1.3.3. Let us recall, for example, the SES activity of April 19, 1995: the SES record-
ings at site “C” (Fig. 1.6(A)) indicate an almost linear polarization of the electric field
variations along NS, in contrast to that of the MT, which is almost directed along EW
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(Fig. 1.6(B)). A smaller directional difference was observed at site “B” (Fig. 1.5). Further-
more, the magnetic field recordings associated with this SES activity also show an almost
linear polarization as can be seen in fig. 1.6.17 of Ref. [125].

1.3.7 Magnetic field variations associated with the precursory short-duration
electric pulses

Figure 1.15(a) shows the electric and magnetic field variations associated with the short-
duration pulses (§ 1.3.1 and Fig. 1.12) that have been observed at the station IOA shortly
before the aforementioned M,,6.6 EQ which occurred at 08:47:13 UT on May 13, 1995.
Here, we present the electric field recordings of two horizontal short dipoles of length 50
m installed at site “C” (see Fig. 1.3) that are oriented along EW and NS. The magnetic
field variations were measured by two horizontal DMM, also oriented along EW and NS,
which act as dB/dt detectors. The details of the instrumentation are the same as described
in § 1.3.6.

The bottom panel of Fig. 1.15(a) reveals that five magnetic pulses marked “a” to “‘e” are
detected before the EQ occurrence. They started at 16 min before the EQ and the last one
was at 3 min before. They were identified also in the electric records, with varying defini-
tude. Note also that simultaneously with the arrival of the seismic waves, several seconds
after the origin time (OT), disturbances reminiscent of seismograms were recorded by
both, the electric field and magnetic field sensors. No “true” coseismic, i.e., cofracture sig-
nal, was observed at OT. Observation of such signals but no cofracture signal was reported
for several other cases [125, 98, 72].

Example pulses “c” and “e” of Fig. 1.15(a) are shown in Figs. 1.15(b) and 1.15(c)
in a more expanded time scale. It can be noted that the magnetic field disturbance was
recorded around 1 s after the electric field variation. These pulses cannot be attributed to
noise from a nearby source or to a magnetotelluric origin for the following reasons: (i)
the time difference between the arrivals of the electric field variations and the magnetic
field recordings should not be in the observable range in the case of emission from nearby
sources [161] (see also § 1.3.6) and (ii) in the case of MT disturbances, the magnetic
variations (dB/dr) are recorded before [161, 125] (not after) the electric field variations,
see the examples marked MT in Fig. 1.15(d).

In other words, the time difference of 1 s observed between the electric and magnetic
field recordings of the short duration electric pulses detected shortly before the afore-
mentioned M,,6.6 EQ, supports the view that they were not from a local man-made
source but from the same origin as the SES activities of Fig. 1.11 (see also § 1.3.6),
i.e., the EQ epicentral area lying ~100 km away from the measuring site.
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Fig. 1.15 Variations of the electric field (the upper two channels) and the associated magnetic field record-
ings (the lowest two channels) at IOA station. (a): For the time period from 22 min before, until 3 min after

IR IR

the occurrence of the M,,6.6 mainshock on May 13, 1995. The symbols “a e” mark the five pulses ob-
served before the earthquake occurrence, while the vertical broken line shows the earthquake origin time
(OT). (b) and (c): The pulses “c” and “e”, respectively, in an expanded time scale. (d): Excerpt from (a)
to show MT disturbances in an expanded time scale. For the scale in the vertical axis for the magnetome-
ters: 20 mV correspond to a constantly increasing magnetic field of 0.1 nT/s. In the middle channel of (d)
the amplitude of dB/dr in nT/s. Reprinted with permission from Ref. [159]. Copyright (2007), American
Institute of Physics.

1.4 Scale invariance of SES activities and their associated magnetic
field variations

Complex systems exhibit scale-invariant features characterized by long-range power law
correlations, which are often difficult to quantify due to the presence of erratic fluctua-
tions, heterogeneity and nonstationarity embedded in the emitted signals. This also hap-
pens when monitoring geoelectric (and geomagnetic) field changes aiming at detecting
SES activities and their associated magnetic field variations. Different types of nonstation-
arities appear in these measurements, such as random spikes and pseudo-sinusoidal trends,
that may affect the long-range correlation properties of signals. Since these nonstationar-
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ities may either be epiphenomena of external conditions or may arise from the intrinsic
dynamics of the system, it is crucial to distinguish their origin. This is attempted in the
present Section for both the magnetic and the electric field variations associated with SES
activities by employing the detrended fluctuation analysis (DFA) as a scaling method to
quantify long-range temporal correlations.

DFA, originally introduced by Peng et al. [80], has been established as an important
method to reliably detect long-range correlations in data effected by trends. Before pro-
ceeding to its description, some comments on the notion of long-range correlations are
forwarded below (e.g. Ref. [6] and references therein).

1.4.1 Long-Range Correlations. Background

Let us consider a record (x;) of i = 1,...,N equidistant measurements in which we are
interested in the correlation of the values x; and x;;; for different time lags s, i.e., corre-
lations over different time scales . In order to remove the constant offset in the data, the
mean X = % Zﬁ-vzl x; is usually subtracted, i.e.,

5=xi—Xx. (1.5)

[Tt}

Correlations between x values separated by “s” steps are usually defined by the auto-

correlation function:
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If the x; are uncorrelated, C(s) is zero for s > 0. Short-range correlations of the x; are
described by an exponentially decreasing C(s), i.e.,

C(s) ~exp(—s/1) 1.7

with a decay time 7 (cf. a convenient way to exclude short-range correlations up to a scale
s1 is downsampling the original data by the same factor s1). In the case of the so-called
long-range correlations, T = [;°C(s) ds diverges and the decay time 7 cannot be defined.
For example, in this case C(s) may decrease as a power law

C(s)~s7 (1.8)

with an exponent [51] in the range 0 <y < 1.
The determination of the correlation exponent y cannot be made by a direct computa-
tion of C(s) in view of the following:

The autocorrelation function C(s) strongly fluctuates around zero on large scales s,
making it extremely difficult to find the potential scaling (fractal) behavior of Eq. (1.8).

In addition, a direct calculation of C(s) is usually not suitable due to underlying
nonstationarities and trends of unknown origin. This also holds for the traditional
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method of power spectrum, because a power spectrum calculation assumes (e.g. see
Ref. [8]) that the signal is stationary and hence when applied to nonstationary time
series it can lead to misleading results.

Thus, a power spectrum analysis should be necessarily preceded by a test for the sta-
tionarity of the (portions of the) data analyzed.

1.4.2 Detrended fluctuation analysis (DFA)

Here, we summarize the detrended fluctuation analysis (DFA) [80, 111].

DFA is established, as mentioned, as a robust method suitable for detecting long-range
power law correlations embedded in nonstationary signals.

It has been applied to diverse fields such as DNA [79, 107], heart dynamics [81, 3], hu-
man locomotion [2, 5, 45], circadian rhythms [39, 44], meteorology [47, 110], MT during
magnetic storms [156], economics [58, 121, 4, 46] etc. A major advantage of DFA is the
systematic elimination of polynomial trends of different order [12, 51, 38, 6]. In addition,
as it will be discussed in § 4.6.1.1, DFA is the best estimator (compared to wavelet-based
estimators) of self-similarity or long-range dependence for short time series.

DFA is based on random walk theory and its brief description is as follows. We first
calculate the ‘profile’:

n
y(n) =Y (xi—%) (1.9)
i=1
of a time series (x;), i = 1,2, ..., N with mean X:
1 N
= v Zx,- (1.10)

where N is the length of the signal. In Eq. (1.9), y(n) can be considered as the position of
a random walker on a linear chain after n steps.

Second, the profile y(n) is divided into Ny = [N/s] (where the symbol [ ] here stands for
the integer part) non-overlapping segments of equal length (“scale”) s. Third, we estimate

)

a piecewise polynomial trend ys’(n) within each segment by least-squares fitting, i.e.,
yfvl) (n) consists of concatenated polynomials of order / which are calculated separately for
each of the segments. The degree of the polynomial can be varied in order to eliminate
linear (I = 1), quadratic (/ = 2), or higher-order trends [12] of the profile function. DFA is
named after the order of the fitting polynomial, i.e., DFA-1if /[ =1, DFA-2if [ =2,....
Note that, due to the integration procedure in the first step, DFA-/ removes polynomial
trends of order / — 1 in the original signal (x;). Fourth, the detrended profile function (n)
on scale s is determined by

55(n) = y(n) =" (n) (1.11)
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which, in other words, means that the profile y(n) is detrended by subtracting the local
trend in each segment. Fifth, the variance of §;(n) yields the fluctuation function on scale s

1
N

M=

F(s) = [Fs(n)]? (1.12)

n=1

which corresponds to the trend-eliminated root mean square displacement of the random
walker mentioned above. Sixth, the above computation is repeated for a broad number of
scales s to provide a relationship between F (s) and s.

A power law relation between F(s) and s, i.e.,

F(s) ~s* (1.13)

indicates the presence of scale-invariant (fractal) behavior embedded in the fluctuations
of the signal. The fluctuations can be characterized by the scaling exponent ¢, a self-
similarity parameter (see § 1.5.1):

If a = 0.5, there are no correlations in the data and the signal is uncorrelated (white
noise); the case o < 0.5 corresponds to anti-correlations, meaning that large values
are most likely to be followed by small values and vice versa. If o > 0.5, there are
long-range correlations, which are stronger [6] for higher ¢. Note that & > 1 indicates
a nonstationary local average of the data and the value o = 1.5 indicates Brownian
motion (integrated white noise).

For stationary signals with long-range power law correlations the value of the scal-
ing exponent « is interconnected with the exponent 8 characterizing the power spectrum
S(f) ~ f~B (f =frequency) through [79]

B=2a—1. (1.14)

Thus, the widely observed case of the so-called 1/f noise, where § = 1, corresponds to
o = 1. Furthermore, if 0.5 < a < 1, the scaling exponent ¢ is interconnected with the
correlation exponent Y (see Eq. (1.8)) through the relation:

y=2-2a. (1.15)

If the type of trends in a given data set is not known beforehand, the fluctuation func-
tion F(s) should be calculated for several orders / of the fitting polynomial.

If [ is too low, F(s) will show a pronounced cross-over to a regime with larger slope
for large scales [51, 38]. The cross-over will move to larger scales s or disappear upon
increasing /, unless it is a real cross-over associated with intrinsic fluctuations and not due
to trends [38].
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1.4.3 DFA of long duration SES activities

In several applications of DFA, long-range correlations have been revealed in SES activ-
ities of duration up to a few hours [154, 156, 155, 163] (these will be summarized later
in Section 4.4 along with the corresponding analysis in natural time). During the last few
years, however, as already mentioned in Section 1.3, SES activities of appreciably longer
duration, i.e., from several hours to a couple of days, have been collected (see § 7.2.4 to
§ 7.2.6). Since such long duration data enable the investigation of scaling in a wider range
of scales, we focus below on such a case.

Here, we analyze as an example the long duration SES activity at PIR that lasted from
February 29 until March 2, 2008. It was followed [93] by a M,,6.4 earthquake at 38.0°N
21.5°E on June 8, 2008 (see § 7.2.6). The time series of this electrical disturbance, which
is not of obvious dichotomous nature, is reproduced in the channel “a” of Fig. 1.16. The
signal, comprising a number of pulses, is superimposed on a background which exhibits
frequent small MT variations.
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Fig. 1.16 The long duration SES activity from February 29 to March 2, 2008, recorded at the station PIR.
Channel “a” :original time series, channel “b”: recordings at a measuring dipole which did not record the
SES activity, but does show MT variations, “c”: the angle of the resulting vector upon assuming that the 1 s
increments of channel “a” lie along the x-axis and those of channel “b” along the y-axis. Channel “d”: the
residual of a linear least-squares fit of channel “a” with respect to channel “b”; channel “e”: the same as
“d” but after eliminating the slight variations of the MT background. For the sake of clarlty, channels “a”
“b” and “d” have been shifted vertically. Reprinted with permission from Ref. [158]. Copyright (2009),
American Institute of Physics.
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1.4.3.1 The procedure to subtract the magnetotelluric background variations

In order to separate the MT background, the following steps are taken: First, we look into
the simultaneous data of another measuring dipole of the same station (PIR), i.e., the data
shown in channel “b” of Fig. 1.16, which has not recorded the signal but does show the
MT pseudo-sinusoidal variations. Second, since the sampling rate of the measurements
fexp 18 1 sample/sec, we now read the increments every 1 s of the two time series of
channels “a” and “b”. Placing the “1 s increments” of channel “a” along the x-axis and
those of “b” along the y-axis, we obtain increment vectors and plot in the middle panel “c”
of Fig. 1.16 their angles with dots. When a non-MT variation (e.g. a dichotomous pulse)
appears (disappears) in channel “a”, the angle in “c” abruptly changes to 0° (£180°).
Thus, the dots in panel “c” mark such changes. In other words, an increased density of
dots (dark regions) around 0° or +180° marks the occurrence of these pulses, on which
we should focus. To this end, we plot in channel “d” of Fig. 1.16 the residual of a linear
least-squares fit of channel “a” with respect to channel “b”. Comparing channel “d” with
channel “a”, we notice a significant reduction of the MT background but not of the signal.
The small variations of the MT background that still remain in “d” are now marked by the
light blue line. When this is removed, channel “d” results in channel “e”. Hence, channel
“e” provides the time series which should now be further analyzed.

1.4.3.2 The results of DFA

The DFA plot of the time series of channel “e” of Fig. 1.16 is shown in Fig. 1.17. It
reveals an almost linear log F(s) vs log s plot with an exponent o =~ 1 practically over
all scales available (approximately four orders of magnitude). Note, that this value of the
exponent remains the same irrespective of whether we apply DFA-1, DFA-2 or DFA-3
(see § 1.4.2). This result is in agreement with the exponents obtained [154, 156, 155, 163]
for SES activities of shorter duration (see Section 4.4). Furthermore, note that in order to
distinguish whether the signal “¢” in Fig. 1.16 is a true SES activity or a man-made electric
signal, its analysis in natural time has been employed as described in Section 4.11.

By summarizing, when DFA is applied to recent SES activities of long duration (sev-
eral hours to a couple of days) it reveals a scale-invariant feature with an exponent
a ~ 1 over all scales available (around four orders of magnitude)

1.4.4 DFA of the magnetic field variations that accompany SES activities

For major earthquakes, i.e., with magnitude M,, % 6.5, the SES activities are accompanied
[161], as mentioned above (§ 1.3.6), by detectable variations of the magnetic field B. These
variations, when measured by coil magnetometers, have the form of ‘spikes’ of alternating
sign. Here, we investigate whether these ‘spikes’ exhibit long-range temporal correlations.
This investigation, which is of major importance since only magnetic field data are usually
available in most countries [25, 52, 64] (because it is easier to conduct magnetic field
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Fig. 1.17 The DFA—! (I = 1, 2 and 3) for the lower channel labeled “e” of Fig. 1.16. Logarithm base 10
is used. Reprinted with permisson from Ref. [158]. Copyright (2009) American Institue of Physics.

measurements than electric field ones), was reported in Ref. [158] and is briefly described
here.

Figures 1.11(a),(b) provide the simultaneous recordings of the electric and magnetic
variations on April 18, 1995, and April 19, 1995, respectively, at the station IOA. As men-
tioned, a magnitude M,,6.6 earthquake with an epicenter at 40.2°N 21.7°E occurred almost
three weeks later, i.e., on May 13, 1995 (see also § 7.2.1). The recordings of the two hor-
izontal magnetometers oriented along the EW- and NS-directions labeled Bry and Bys,
are shown in the lower two channels. They consist of a series of ‘spikes’ of alternating sign
as more clearly seen in Fig. 1.11(c) which provides a 10 min excerpt of the recordings in
Fig. 1.11(b), but in a more expanded time scale. The ‘spikes’ are superimposed on a back-
ground which exhibits almost pseudo-sinusoidal MT variations of duration much larger
than 1 s. We now apply DFA to the original time series of the magnetic field variations and
focus our attention on the Bgw component where the intensity of ‘spikes’ is higher. We
find the corresponding log F () versus logs plot, shown in Fig. 1.18. This refers to the data
on April 18, 1995, i.e., Fig. 1.11(a). If we fit the data with two straight lines (which are
also depicted in Fig. 1.18) the corresponding scaling exponents are o = 0.52 +0.04 and
o = 0.89£0.03 for the short and long time lags (i.e., smaller than ~12 sec and larger than
~12 sec), respectively. The cross-over occurs at a time-lag At ~ 12 sec which is roughly
equal to the average duration (T') ~ 11.01 £ 0.03 sec of the electric pulses, corresponding
to the interval between two consecutive alternating ‘spikes’. Thus, Fig. 1.18 shows that, at
time-lags At larger than (T'), long-range power law correlations prevail (since o > 0.5),
while at shorter time-lags the o value is very close to that (o = 0.5) of an uncorrelated
signal (white noise). This is understood, if we consider the conclusions drawn in § 4.1.3
for the DFA of dichotomous time series.
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Fig. 1.18 The DFA for the Bgw channel of Fig. 1.11(a). Logarithm base 10 is used. Reprinted with per-
mission from Ref. [158]. Copyright (2009), American Institute of Physics.

In summary, DFA was used here as a scaling analysis method to investigate long-range
correlations in the original time series of the magnetic field variations. When using coil
magnetometers, these magnetic field variations have the form of ‘spikes’ of alternating
sign. We find a scaling exponent ¢ close to 0.9 for time-lags larger than the average
time interval (T') between consecutive ‘spikes’, while at shorter time-lags the exponent
is close to 0.5.

Electric field variations are interconnected, of course, with the magnetic field ones
through Maxwell equations. Thus, it is expected that when the former exhibit long-range
correlations (§ 1.4.3.2) the same should hold for the latter.

1.5 Ciriticality, complexity and fractals. An introduction

1.5.1 Introductory note on fractal dimension and self-similarity. Fractional
Brownian motion and fractional Gaussian noise

Fractals can be introduced in a simple way as follows [33]: Assume a reference volume V
which consists of N smaller elementary volumes Pie, N=V / rP. The smaller volume
rP is the reference volume used for measurement. For D = 1, a segment of unit length can
be decomposed into N smaller segments of length r, i.e., N = 1/r. In two dimensions, i.c.,
D =2, a surface of unit area can be decomposed into N smaller areas 1/ r?. Generalizing
this procedure, a dimension D can be defined through the relation:

D =1logN/log(1/r). (1.16)
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This definition allows a noninteger dimension, or fractional dimension. N is the number of
elementary elements necessary to cover the unit surface, curve or volume, N = 1/ P,

The latter can be equivalently formulated as r = N —(1/D), Therefore, when the fractal
curve has length L and is measured with a ruler of length €:

D =log(L/€)/log(1/€) (1.17)

and hence
Lg)=¢'"P. (1.18)

Obviously, if D =1 (Euclidean dimension), L is a constant independent of €. On the
other hand, if D # 1 the length of the curve depends on the choice of €. An example is
the so-called Von Koch’s curve, which is obtained by a process of repeated dissection as
follows:

A segment AB is dissected into four new segments, each being one-third of the orig-
inal length (see Fig. 1.19, where note that the length at Fig. 1.19(b) is 4/3 the length at
Fig. 1.19(a)). This is repeated at the next stage: each of the four segments obtained in the
previous step is dissected into four new segments each being one-third the length at the
preceding step, etc. Thus, if € denotes the length of the elementary segment at a stage n,
then the elementary segment at the stage n+ 1 will be of length £/3. Therefore, if L(€)
and L(g/3) denote the total lengths at the stages n and n+ 1 respectively, we have:

L(g/3) =4/3L(¢) (1.19)

If L(e) = &'~P, we obtain (¢/3)'P = (4/3)e' P with D = log4/log3 ~ 1.26. Von
Koch’s “curve” (which is continuous but not differentiable) is a fractal of dimension
D = 1.26. It is a self-similar curve, i.e., a curve invariant on a change of scale. The ra-
tio of self-similarity is 4/3.
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(b) Fig. 1.19 Von Koch’s curve. The segment
A B AB is replaced by four segments each of

length AB/3. This is repeated n fold. The
fractal dimension is D =log4/log3 ~1.26
and the ratio of self-similarity is 4/3 (see
the text). Reprinted from Ref. [125],

(C) Copyright (2005), with permission from

TerraPub.
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In general, we may say the following. Self-similarity of an object is equivalent to the
invariance of its geometrical properties under isotropic rescaling of lengths.

Furthermore, we clarify that:

A stochastic process X (7) is called self-similar with index H if it has the property
X(At) £ APX (1) (1.20)

where the equality concerns the finite-dimensional distributions of the process X (7) on
the right- and the left-hand side of the equation (not the values of the process).

In many physically relevant cases, the structure of the objects is such that it is invariant
under dilation transformation only if the lengths are rescaled by direction dependent fac-
tors. These anisotropic fractals are called self-affine (Vicsek [162]). Such examples are the
fracture surfaces.

In summary, a fracture surface z(x,y) is said to be a self-affine object in the sense that
it remains invariant under the transformation (x,y,z) — (o, o, agz), where ( is the
so-called roughness exponent.

1.5.1.1 Fractional Brownian motion and fractional Gaussian noise

Among the simplest models that display self-similarity and long-range dependence, one
can consider the example of the fractional Brownian motion (fBm), introduced by Mandel-
brot and van Ness [60]. Let B(¢) be an ordinary Brownian motion (or Wienner process, in
mathematical jargon), then the fractional Brownian motions of the exponent H (0 < H < 1)
denote [60] a family of Gaussian random functions (continuous-time stochastic processes)
By (1) which are the moving averages of dB(s) in which the past increments of B(r) are
weighted by the kernel (r — s)7~1/2,

More specifically, B() is called ordinary Brownian motion (or Wienner process) when

e The increments B(#) — B(s) are Gaussian.
e The increments B(#) — B(s) have zero mean:

&[B(t) - B(s)] = 0. (1.21)
e The increments B(t) — B(s) have variance:

Var[B(t) — B(s)] = |t — s]. (1.22)
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e The increments B(¢) — B(s) are independent if they correspond to non-overlapping in-
tervals, i.e., when [t1, ;] does not overlap with [r3,24], i.e., (fy < 13):

& {[B(t2) — Be)][B(ts) — B(13)]} = 0. (1.23)

e B(t) is almost surely continuous with B(0) = 0.

According to Mandelbrot and van Ness [60], the fBm By () for r > 0 is then given by

o [(e = )71 — (=) 12 dB(s) + [y (e — )" ~'/? dB(s)
r'(H+1)

By (1) — By (0) = (1.24)

where the integration is taken in the pointwise sense (as well as in the mean square sense)
by using the usual methods involving integration by parts. The symbol I'(H + %) is the
gamma function of the real argument H + 1 /2 and throughout this monograph we assume
B (0) = 0. Note that B ! (1) = B(t), thus fractional Brownian motions are divided into three

very different families corresponding, respectively, to 0 < H < %, % <H<land H = %
(see also § 4.3.1).

The function By (¢) has [60] the following important properties (that generalize those
of the Brownian motion stated above):

e The increments By (1) — By (s) are Gaussian.
e The increments By (1) — By (s) have zero mean:

&[Bu(t) —Bu(s)] =0. (1.25)
e The increments By (1) — By (s) have variance:
Var[By (t) — By (s)] = 62|t — 5| | (1.26)

where 62 = Var[By (s + 1) — By (s)] (e.g. see Ref. [57]).
e By (t) is (mean square) continuous, has all sample paths continuous but is not (mean
square) differentiable and it almost surely does not have differentiable paths.

The fBM process, Eq. (1.24), which is not stationary, has [60] two unique properties:
self-similarity and stationary increments (cf. Eqs. (1.25) and (1.26)). As mentioned
in Ref. [54], self-similarity can be understood in the sense that if a time segment is
taken from the fBm trajectory, after proper normalization, the segment has the same
behavior as any segments of other time scales (see also §1.5.1). Moreover, stationary
increments means that the distribution of the increments By (t) — By (s) depend only
on the time lag 7 —s.

According to Egs. (1.25), (1.26) and the fact that By (0) = 0, one has

&|By (1)) = Var[By (1)] = o?|¢|*". (1.27)
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as well as
Var[By () — Bu(s)] = & {[Bu(t) — Bu(s)]*} = 0|t — s|*". (1.28)

Expanding the square in Eq. (1.28) and using Eq. (1.27), one can obtain the autocorrelation
function (§ 1.4.1) of the fBm [60] (e.g. see also Ref. [57])

2
E1Bu(0)Bu ()] = S (P + |5 — e =), (1.29)

The fact that fBm, like ordinary Brownian motion, has no derivative is inconvenient,
but fractional Gaussian noise Gy (7;€) can be defined [60] through the random function

(>0
1 fi+e
PBu(t) = o r By (s)ds (1.30)
as
%H(I-FS)—%HU)

€

Gy(t:e) = (1.31)

The fractional Gaussian noise (fGn) Gy (z; €) is Gaussian with zero mean, stationary,
almost surely continuous, but surely nondifferentiable [60].

Note that it is not uncommon to call [57] fractional Gaussian noise simply the time
series of the increments of fBm, i.e., By (t +s) — By (¢), but it is actually in the sense of
Eq. (1.31) that fGn is applied [54] in physics.

Since fGn is stationary the autocorrelation function of fGn

Cul(t,s;€) = &[Gy (t;€)Gp(s;€)) (1.32)

depends solely in the time-lag T =1 —s, i.e., Cy(t,s;€) = r(7;€). Mandelbrot and Van
Ness [60] showed that
2H
1 . (1.33)

22H-2 2H
o’e t—
Cy(t,s;€) = 3 [(' SS‘ +1> -2

2H
t— r—
t—s lr=sl

The fGn is a generalization of the so-called “white Gaussian noise” and contains three
subclasses of time series [60]:

e When H = %, the fGn reduces to white Gaussian noise whose “integral” is the
Brownian motion.

e In the case of H € (0.5, 1), r(7;€) is positive and finite for all 7. Moreover, in this
case fGn exhibits long-range dependence (see § 1.4.1)

/Om r(7;€) dT = oo. (1.34)
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e For H € (0,0.5) the integral of r(7;¢€) in Eq. (1.34) is zero and r(0; &) diverges as
€ — 0; r(t; €) changes sign once, from positive to negative, as T approaches € from
below.

Mandelbrot and Van Ness [60] proposed that (verbatim) “/:f noises be relabeled as
fractional noises” this is indeed fully justified since the Fourier transform (considered
[56] in the sense of a generalized function over the Schwartz space of test functions, due
to Eq. (1.34)) of the autocorrelation function of Eq. (1.33), which corresponds to the power
spectral density S(; €) of the fGn Gy (¢; €), has the property [54, 56]

. sin(Hm)I'(2H + 1)
Su(w) = gl_r%S(a);E) e PR :

(1.35)

The power spectrum Sy (@) of fGn in Eq. (1.35), which has been rigorously proven in
Ref. [56], explains why the suggestion by Mandelbrot and Van Ness [60] provides a unique
Gaussian model for the ubiquitous 1/f# (8 = 2H — 1) noise in nature.

1.5.2 Critical phenomena and fractality

Critical points are for example temperatures ('), densities (p), etc. above which some
parameter describing, say, long-range order in a ferromagnetic, or the density change in
liquid—gas transition, vanishes. For example, spontaneous magnetization, M(T), is zero
above some critical temperature 7¢ in a ferromagnet.

Order parameters are quantities, which are nonzero below 7¢ and zero above it, and are
found to be a common feature associated with critical points in a large variety of physical
systems (see also § 6.2.1). For example, M(T), is the magnetic order parameter, whereas
pL — PG is the order parameter in the case of liquid—gas transition through a critical point
(the subscripts L and G stand for liquid and gas, respectively).

Correlation length & is the distance over which specific thermodynamic variables in
the system are correlated and is relevant in a system near a critical point.

As an example, we refer to the 2D Ising model (§ 8.4.1), where one can see correlations
of spins over larger and larger distances, as ¢ is approached. Above T¢, such correlations
of spins show short-range order (correlations over short distances), whereas just below
(and more precisely ar) T¢ the system exhibits (infinitely ranged, e.g., o<1/ /%) long-
range correlations. In other words, the physical meaning of & is the following: it is the
length scale up to which critical correlations have been established (see also § 1.5.3).

The power laws. Following Stanley [106], who hat an interesting discussion aimed at
providing a qualitative justification of power laws characteristic of critical phenomena, let
us consider the aforementioned example of a ferromagnet. The probability that a spin at
the origin O is aligned with a spin at a distance r is unity only at 7 = 0. For T > 0, we may



36 1. Introduction to Seismic Electric Signals

imagine intuitively that the spin correlation function C(r), in the sense of Eq. (1.6), would
decay exponentially with r. Thus, we might expect that C(r) < exp(—r/&), where &, the
correlation length, is the characteristic length scale above which the correlation function is
negligibly small. Calculations on mathematical models, confirmed by experiments, indi-
cate that actually correlations decay exponentially. However, if the system is at its critical
point 7 = T¢, then the rapid exponential decay “magically” turns into a long-range power

law decay
C(r) o 1/rP=2M (1.36)

where D denotes the system dimensionality and 7 is a critical exponent.

Scale-free systems. Many systems in nature are scale-free, meaning that their struc-
ture or behavior is represented by power laws over several orders of magnitude. The best
understood of these are critical systems, like thermodynamic systems at a critical phase
transition, or dynamical systems on the verge of the period-doubling transition to chaos.
Examples are the solid—liquid transition, which is a first-order (abrupt) transition (there ex-
ists latent heat), and those termed “dynamic phase transitions” (§ 1.5.4), which are second-
order (continuous) phase transitions, without latent heat. See also § 6.2.1 on this point.

Concerning the usual statement in the literature that, once a power law is found it reveals
a critical phenomenon, we emphasize that this should be considered with extreme care,
because it is not always valid.

In other words, criticality is always accompanied with fractality (power laws), but the
inverse is not always valid.

A characteristic example of such a case is the following: the SES activities and some
“artificial” noises of RTS shape bear as a common signature the power law behavior (e.g.,
see Section 4.4), but only the SES activities exhibit critical dynamics [156, 155].

1.5.3 Non-equilibrium critical dynamics. The scaling hypothesis

The approach to equilibrium, from a non-equilibrium initial state, in a system at its critical
point is usually described by a scaling theory with a single growing length scale, & (z) o<
1Y/%, where z is the dynamic exponent that governs the equilibrium dynamics. Such a case
is called the single growth model.

The simplest scenario consists of a system evolving at its critical point from a non-
equilibrium initial state in which the system was prepared at time r = 0 (e.g., see Bray
et al. [11]). The system evolves toward equilibrium through a non-equilibrium scaling
state. We consider, as an example of our discussion below, the equal-time pair correlation
function:

C(rt) = (o(x,1)9(x+1,1)) (1.37)

where ¢ is the order-parameter field. In the non-equilibrium scaling state, this function has
the following form:
¢

Cnt) = o f [é(rt)] (1.38)
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which holds in the limit r >> a, £ (¢) > a, with r/&(¢) arbitrary, where a is a microscopic
cut-off, e.g., a lattice spacing. In Eq. (1.38), the factor ¢/ yP—2+m (where ¢ = constant,
D is the dimension of space and 7 the usual critical exponent of Eq. (1.36)) denotes the
equilibrium correlation function (which holds for a < r < &(¢)). Requiring that this be
recovered for t = oo, forces f(0) = 1.

The physical meaning of &(t). This is, as mentioned, the length scale up to which
critical correlations have been established at time ¢.

Dynamic scaling, for large ¢, suggests:
E(r) o<t/ (1.39)

where z is the usual dynamic exponent characterizing temporal correlations in equilib-
rium.

First, we emphasize that Eq. (1.39) shows that relaxation fo equilibrium is governed by
the same exponent as correlations in equilibrium. Secondly, we note that this relation holds
independently of the non-equilibrium initial state, which can affect the scaling function,
f(x), but not the exponent z (since this is a property of the equilibrium renormalization
group fixed point, e.g., Ref. [11]).

The point that domain growth is a scaling phenomenon could be simply understood [10]
when considering the result of a Monte Carlo simulation of a 2D Ising model quenched
from Tjyjria1 = o 10 Tfines = 0 and then visualizing the time sequence of domain growth at
T = 0: We then see (e.g. fig. 2 of Ref. [10]) that the domain patterns at later times look
statistically similar to those at earlier times, apart from a global change of scale.

As for the scaling hypothesis, it states that a single characteristic length scale L(7)
exists, such that at late times the domain structure is (in a statistical sense) independent
of time when lengths are scaled by L(z).

1.5.4 Current aspects on the non-equilibrium driven dynamics.
Dynamic phase transitions

Several efforts have been devoted to understand how quenched impurities (i.e., time-
independent) influence the transport of charge-density waves (CDW), pinning of magnetic
flux in type-II superconductors, roughness of crystalline surfaces, propagation of inva-
sion fronts, etc. Many aspects of these systems can be described either by the model of
randomly-pinned CDWs or by the model of randomly-pinned directed manifold (RM).
The progress made in understanding the non-equilibrium driven dynamics of these sys-
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tems revealed that, in the extreme limit where thermal fluctuations can be neglected, a
driving force F exceeding a critical value F, is necessary to depin the system.

A (continuous) dynamic phase transition occurs at the depinning threshold, where the
dynamics exhibit complex stick—slip motion with “avalanches” of all sizes.

The current conclusion of thought on the dynamics of driven CDW/RM systems could
be summarized as follows. For F below some threshold F, the average velocity v is zero.
Upon approaching the threshold from below, the dynamics (e.g., response to perturbation)
becomes very “jerky”’; it consists of a series of “avalanches”, whose (linear) size / obeys a
power law distribution Prob(/ > s) = s~ *p(s/&) where & is the correlation length of the
system, p(x) is a scaling function, which is constant for x < 1 and drops off sharply for
x> 1. The correlation length diverges as & o (F, — F)~" when F — F, (for example, when
studying the dynamics of planar crack fronts in heterogeneous media we have v ~ 1.52;
the exponents v and x are interconnected through k = 1 —1/v, e.g., see Ref. [124]). For
F > F the motion becomes continuous due to overlapping avalanches. There, the interface
(e.g., in planar crack fronts in solids) acquires a finite velocity v o< (F — Fc)ﬁ, similar to
the emergence of the order parameter in a critical phenomenon.

1.6 Physical mechanisms suggested for the generation of SES
1.6.1 Introduction. Views on seismogenesis and classes of SES generation models

As already mentioned in Section 1.1, aspects related to defects motivated the SES research
and the pressure-stimulated currents (PSC) model [129, 133, 127, 128] was proposed for
the SES generation. Several others have been also proposed later. All these models can be
grouped into various classes depicted in Fig. 1.20.

The fact that a plethora of models have been suggested to explain the SES generation is
not surprising, especially if one considers that there is still a diversity of views on which
physical phenomenon, e.g., friction, fracture, etc. plays the prominent role in seismogene-
sis. This diversity could be summarized as follows.

In the standard rebound theory of earthquakes, elastic deformation energy is gradually
stored in the crust until a threshold is reached at which it is suddenly released in an earth-
quake. The traditional view of tectonics is that the lithosphere comprises a strong brittle
layer overlying a weak ductile layer, which gives rise to two forms of deformation: brittle
fracture, accompanied by EQs, in the upper layer, and aseismic ductile flow in the layer
beneath; thus, earthquakes are associated with strength and brittleness. Scholz [95] noticed
that although this view is not incorrect, it is imprecise and in ways this can lead to serious
misunderstandings. A different point of view has been suggested stating that [95]:

An EQ is a frictional, rather than a fracture, phenomenon, with brittle fracture playing
a secondary role in the lengthening of faults and frictional wear.
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Classes of SES generation models

N~

Solid State Earthquake Other processes, e.g.,
generation electrokinetic rupture as a magmatic origin of
mechanisms (defects) process critical point crustal earthquakes
881.6.2-1.6.7 §1.6.8 §1.6.9 §1.6.10
around the focal
in the focal close to the area, e.g., fluctuations at
area measuring coalescence of the measuring
station microfractures site
of foreshocks

Fig. 1.20 Schematic classification of the more than ten models proposed to date for the explanation of
the SES generation.

Within this frame, the seismogenic behavior of the fault is solely determined by its fric-
tional stability, and not by its strength. Brace and Byerlee [9] suggested that EQs must be
the result of a “stick—slip frictional instability” which could be interpreted as EQs in the
“slip” and interseismic period of elastic strain accumulation in the “stick”. This is consis-
tent with the observation that tectonic EQs seldom, if ever, occur by the sudden appear-
ance and propagation of a new shear crack (or “fault”), but instead they occur by sudden
slippage along a pre-existing fault or plate interface. This point of view suggests that prop-
erties traditionally thought to control EQ processes — strength, brittleness and ductility —
are subsumed within the overarching concept of frictional stability regimes. Furthermore,
there are aspects, which consider that the earthquake rupture is a mixed process between
frictional slip failure and a shear fracture of intact rock and conclude that a constitutive
law for earthquake rupture can be formulated as a unifying law that governs both frictional
slip failure and shear fracture of intact rock [76].

Another point of view focuses attention to the prominent role of water, both mechan-
ically (pore pressure) and chemically (e.g., recrystallization, texture) and their probable
interplay. Water was previously seen to have mainly the mechanical effect of decreasing
the normal lithostatic stress in the fault core on one hand, and to weaken rock materials via
hydrolytic weakening and stress corrosion on the other (e.g., see Refs. [103, 104]). Sor-
nette [103] pointed out that nowdays there is a growing recognition that mineral structures,
when in contact with water or in the presence of anisotropic strain and stress, can form and
deform at much milder pressures and temperatures than their pure equilibrium phase di-
agram would suggest: water in the presence of finite localized strain within fault gouges
may lead to the modification of mineral textures, involving dynamic recrystallization and
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(a) (b)

Fig. 1.21 (a) Schottky defect in an ionic crystal, e.g., Na™CI™: one cation migrates to the surface through
the consecutive jumps 3, 2, 1, thus leaving a cation vacancy at site A. For reasons of electrical neutrality
an anion also migrates to the surface (the corresponding jumps are not shown in the figure), thus leaving
the anion vacancy at site B in the interior of the crystal. These vacancies, cation and anion vacancies,
are free vacancies, i.e., they do not lie close to each other, so that they can freely move into the crystal
through jumps of the neighboring ions. (b) Production of a (bound) cation vacancy, when Ca*? enter into
Na™Cl™. This vacancy is attracted by the divalent cation, and hence it lies in its vicinity, thus forming an
electric dipole: “Ca*2-cation vacancy”, which can change orientation in space. Reprinted from Ref. [125],
Copyright (2005), with permission from TerraPub.

maybe phase transformations of stable minerals into metastable polymorphs of higher free
energy density.

Finally, we note that concepts on dynamic phase transitions (critical phenomena) and on
the physics of complex systems have been also forwarded for understanding the physics
of earthquakes (for a review see Ref. [89]). In addition, a model which generalizes the
Gutenberg-Richter law in the frame of nonextensive Statistical Mechanics has been pro-
posed (§ 6.5.1).

Note that SES generation models have been developed in the frame of all the aforemen-
tioned streams.

1.6.2 Pressure (stress) stimulated currents (PSC) model

This, as mentioned, is the model that motivated the SES research. Its description can be
found in Varotsos and Alexopoulos [129] (see also Varotsos et al. [147]) and its essence,
which also explains that SES activities exhibit critical dynamics, could be summarized as
follows:

In the focal area of an impending earthquake, which contains ionic materials, the stress
gradually increases. In ionic solids extrinsic defects (see Fig. 1.21(b)) are always formed
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(beyond the usual intrinsic lattice defects, see Fig. 1.21(a)), because they contain aliova-
lent impurities. Some extrinsic defects are attracted by the nearby impurities and hence
form electric dipoles (see Fig. 1.21(b)) the orientation of which can change through defect
migration. The stress increase may result in a gradual decrease of the relaxation time of
these dipoles and when the stress (pressure) ¢ reaches a critical value o, a cooperative
orientation of these dipoles occurs. This reflects the emission of a transient electric signal
which constitutes the SES. More details on this model are now given below.

We start with the electric dipoles caused by aliovalent impurities. As an example, we
refer to the presence of M*2 impurities in a crystal ATB~, which introduces an equiv-
alent number of cation vacancies in order to maintain charge neutrality in the bulk. A
portion of these cation vacancies are attracted by the divalent cations and form electric
dipoles that can change their orientation in space (the rest of cation vacancies remain
“free”, contributing to the d.c. conductivity of the crystal in a way shown by the arrows
in Fig. 1.21(a)). For simplicity, we may assume that this change of orientation can be
achieved only through jumps of the neighboring cations into the cation vacancies, which
are usually called “bound” cation vacancies. This bound () cation vacancy motion (m)
requires a migration Gibbs free energy g”-*. For example, when adding CaCl, to NaCl,
Fig. 1.21(b) shows that a Ca™? enters the lattice in a normal Na™ site and charge neutrality
results in a creation of a vacant cation site. This cation vacancy, being negatively charged,
is attracted by the divalent Ca*? and hence is located at one of its neighboring sites, usu-
ally at one of the 12 nearest neighboring sites, 4 in sites “a”, 4 in “b”, and 4 in “c”, depicted
in Fig. 1.21(b). Thus, an electric dipole “Ca*?-vacancy” is formed, which can change its
orientation through the vacancy jumps from one neighboring site to another (overcoming
a potential barrier, which regulates the migration Gibbs energy). The time needed for such
a dipole to change orientation is related to the so-called relaxation time 7":

= (Av) L exp (g'"’b /kT) (1.40)

where A denotes the number of jump paths accessible to the jumping species with an
attempt frequency Vv.

A solid containing electric dipoles, due to defects, can emit [129] PSC under isother-
mal conditions, as a result of either increasing or decreasing pressure. They can be clas-
sified into two categories [129]: “pressure-stimulated polarization currents” (PSPC) or
“pressure-stimulated depolarization currents” (PSDC). PSPC refers to the polarization that
arises under a gradual variation of pressure (pressure increase, if the migration volume v
is negative, or pressure decrease, if v > 0). In the PSDC category, the solid is initially
brought into a “fully” polarized state under the action of an external field for a time appre-
ciably longer than the relaxation time; if v"*? > 0, the pressure is increased to a final value
Py, thus increasing 7P so that the dipoles are practically immobilized and the electric
field is then switched off; the pressure is then gradually decreased, and a depolarization
current density j is liberated, the absolute value of which reaches a maximum jj;, sig-
nalling the cooperative reorientation of dipoles at a certain pressure Py. If v™? < 0, the
PSDC are emitted upon increasing pressure.
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Thus, in short, pressure stimulated polarization or depolarization currents are emitted
upon a gradual pressure increase if the migration volume v is negative, or pressure
decrease if v? > 0.

A general condition for the appearance of the maximum in the absolute value of the
current density j can be derived as follows (for the sake of convenience, the superscripts
m, b in the relaxation time t”* will be dropped hereafter).

Assuming the operation of a single relaxation time, the current density j is given by:

an_n)-1;

- r et (1.41)

j =
I1(¢) being the polarization each time, and I the isothermal saturation of polarization (cf.
ITp = 0 for PSDC, see Ref. [134]). This relation can be also written as: jt(¢) = IT(¢) — Iz,
which by differentiating with respect to time, for 7' = constant, gives:
dt | dj  d[II()— T
— 4T =—=—. 1.42
Tar T dr dr (142)
In the simple case of free-rotating dipoles, according to Langevin theory, we may write
I = u>NpE;,./3kT, where u is the dipole moment, Np is the dipole concentration and
Ej,. the local electric field. In materials for which Ej,. varies only slightly with pressure
[126], (and if u,Np are assumed independent of P) the quantity dITg/d¢ can be disre-
garded, at least in the pressure region where —dII(¢)/dt starts to become significant, and
hence the previous relation turns to
dr dj B

42 =, 1.43
]dtJert J (1.43)

The maximum value jj; occurs when 4 =0, and hence we find:
J ar li=im

dt

dr | =

=-1. (1.44)

This is the condition for the (cooperative rotation of dipoles and hence the) appearance
of a maximum in the absolute value of PSC.

It is exact for PSDC (because, in the above derivation, Il = 0, see also Ref. [134]), but
also holds for PSPC as long as the pressure variation of Ig is not significant.

The above relation, for any form of the pressure rate b = ‘(11—1: can be alternatively
written as:

T b
dP
dr

dt
— =1 1.45
P ; (1.45)

J=im

or
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d
b di -1 (1.46)
Plj=ju
which, after considering that [129, 134]
1 dt ymb
2 = 1.47
Tt dP|, kT (L47)
becomes: .
by'™ 1
- 1.48
kT T(PM) ( )

where 7(Py) denotes the relaxation time at the pressure at which jjy is detected. This rela-
tion holds either for PSPC or PSDC, without assuming that the pressure rate b is constant.

In short, PSC maximizes when a gradual pressure variation decreases the relaxation
time with a rate obeying the relation bv""*t = —kT. In particular: (a) a transient de-
polarization electric signal is emitted in absence of any external electric field (PSDC)
in a previously polarized solid, which contains electric dipoles due to defects; (b) a
transient polarization electric signal (PSPC) is emitted under either the action of an
electric field or an inhomogeneous stress deformation (see below) if the solid is not
initially polarized.

Let us now consider a material in which a pressure increase results in a decrease of the
relaxation time (see Fig. 1.22) and assume that at the initial pressure Py the relaxation time
T is very long. In view of the long 7, the dipoles, which have initially random orientations,
still retain their random orientation even after applying an external field. When the pressure
starts increasing, the relaxation time becomes gradually smaller, and when the pressure
reaches a critical value P, in the neighborhood of which the relaxation time becomes
sufficiently small so that the dipoles align from their initial random orientation into the
direction of the continuously applied electric field, a transient electric signal is emitted
(because the crystal is brought from a non-polarized state to a polarized one within a very
short time). When the pressure (stress) still continues to increase, it reaches at later times
the failure stress Py (see Fig. 1.22).

Therefore, the emission of this PSC signal can be considered as a precursor of the
failure of the solid.

The following point should be also noticed. Let us assume, for simplicity, an ellipsoidal
stressed volume in the EQ preparation area (cf. in p. 92 of Ref. [127], it was argued that this
volume cannot be spherical, because the slope of log AV /L versus M would then result
around unity, which disagrees with the experimental data, see § 1.3.2). In addition, upon
increasing stress, a simultaneous achievement of the stimulating stress o, at all points
of the stressed volume is not intuitively expected. The “points” obeying the condition
o = 0., should lie on a surface A (which may be very complicated in view of the existing
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(a)

()

(d)

(e

Fig. 1.22 The mechanism of
the emission of a transient
polarization current (PSPC) be-
fore the failure (f) at Py when
Vb < 0. The current is emit-
ted when the pressure (stress)
reaches a critical value P, (b)
at which the relaxation time of
the dipoles becomes sufficiently
short and hence a cooperative
orientation of the dipoles can
occur within a very short time
under the action either of an ex-
ternal electric field E shown in
(a) or an inhomogeneous stress
deformation (§ 1.6.2.1). The
time At shown in (c) elapsed
between the emission of this
current and the failure is the
lead time. The cartoon in (d)
shows, that the electric dipoles
at P ~ Py are randomly ori-
ented, while at P — P., become
oriented cooperatively(see the
text). (e): the “points” obeying
the condition P = P, or 6 = O,
lie on a surface A which sweeps
through the stressed volume

V. Reprinted from Ref. [125],
Copyright (2005), with permis-
sion from TerraPub.

Fig. 1.23 During the last preparatory stage before a seismic
event in the volume V, the stress field ¢ gradually changes.
However the critical value o, is not reached simultaneously
in the various sub-volumes Vi, V,, V3 etc., so that the
corresponding SES are not emitted from these sub-volumes at
the same time. Taken from Ref. [140].
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inhomogeneities) that sweeps through the stressed volume (Fig. 1.22(e), see p. 419 of
Ref. [129]).

Note that sweeping the whole stressed volume (presumably comprising several sub-
volumes, see Fig. 1.23) produces the SES activity, while each sub-volume corresponds
to a SES transient “pulse” [140, 129].

1.6.2.1 Comments on the pressure (stress) stimulated currents model

We now proceed to a number of comments, which aim at clarifying a few misunderstand-
ings of the model published in the literature:

(1) The negative sign in Eq. (1.44) comes from the following necessity: in order to
approach the critical pressure/stress, the relaxation time 7 should gradually decrease as the
time progresses (increases).

In the above frame, we can also understand the negative sign in Eq. (1.48), which is
equivalent to Eq. (1.44). Since the relaxation time T(Py) is always positive, the quantity
bv™? should always be negative. The latter means, for example (b > 0, v < 0), simply
that, when the time progresses (increases) in order for a dipole to rotate more easily, the
following possibility can be envisaged: upon increasing the stress (and hence b > 0) the
migration volume should be negative (v’""’ < 0); an alternative possibility is, of course,
upon decreasing the stress, if the volume v is positive (note that Eq. (1.48) was derived
in p. 403 of Ref. [129] with a positive sign since the absolute value of » was used there).

(2) Concerning the existence of an external electric field or of the piezoelectric inclu-
sions in the rocks, which was postulated at an earlier stage [133], we clarify that neither
of them are prerequisite for the PSC explanation of SES. This is so because in the case
of inhomogeneous stress deformation (which happens during the EQ preparation stage),
as emphasized long ago in Ref. [21] (see also § 1.6.4 and Ref. [139]): “the effect of the
applied stress gradient is similar to that of an electric field”.

Thus, neither external electric field nor piezoelectric inclusions in the rocks (to give
rise to an internal field “driving” the dipoles) are a prerequisite for PSC and hence for
the relevant explanation of the SES generation.

(3) The Maxwell-Wagner (MW) polarization mechanism, is very likely to occur in the
EQ preparation process, in view of the heterogeneities in the structure. This is [118, 70]
what usually appears in heterogeneous structures, in which the ratio of permittivity to
conductivity is different in the different phases. It is the result of: (i) the formation of
charge layers at the interfaces due to the different conductivity currents within the vari-
ous phases, or (ii) the migration of the carriers over microscopic distances and the sub-
sequent trapping. The relaxation time of this mechanism obeys again an equation of the
form: T & constant x exp(g?’ /kT), which finally leads to Eq. (1.44) or, equivalently to

Eq. (1.48), where v should be simply replaced by v = dﬁ—;dh (where the superscript
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“act” now refers to the corresponding quantities in the activation process of the MW mech-
anism). Thus, PSPC may well arise from the MW mechanism (without the necessity of any
external electric field, in view of the clarifications given above in point 2). In other words,
we emphasize that the PSPC model for the SES generation should not be necessarily con-
sidered as being connected solely with (re)orientation of electric dipoles of the simple type
of Fig. 1.21(b) (discussed at an early stage in Ref. [133] to exemplify the PSPC concept),
but may also include more complicated processes like that of the MW mechanism. The
latter mechanism may lead a PSPC amplitude drastically larger than that resulting from
the mechanism depicted in Fig. 1.21(b).

Putting the details aside, the basic spirit of the pressure stimulated currents (PSC)
model can be summarized as follows. During the EQ preparation stage, the stress &
gradually changes; when o reaches a critical value o, a transient current is emitted
associated with a (cooperative) reorientation of electric dipoles taking place through
motion of defects. This is a (second-order) dynamic phase transition (see also § 8.4.1).
Later the rupture occurs.

Note that PSC model is solely based on thermodynamical concepts and hence can
be applied to all cases that could be described by a single relaxation time.

1.6.2.2 Laboratory activation volumes in hydrated rocks

The basic prerequisite for the applicability of the PSC model to the SES generation, i.e.,
VP < 0, has been recently confirmed in laboratory measurements [77]. In particular, the
complex impedance spectra of as-received and hydrated rocks from Greece in the fre-
quency range 1072 Hz to 107 Hz were investigated at various temperatures (from room
temperature to 373 K) and hydrostatic pressures (from 1 bar to 3.5 kbar). In such a spec-
troscopic scheme, mechanisms with negative activation volume are shifted to higher fre-
quencies (smaller relaxation times T) on increasing pressure, i.e., the relaxation time of
a mechanism with negative activation volume decreases on pressurization and hence can
easily be detected at higher frequencies. So, a proper combination of temperature and pres-
sure is likely to reveal slow relaxation processes, which — having long relaxation time —
are activated in the low-frequency region (whereas dc conductivity and electrode polariza-
tion are strongly dominating masking any bulk relaxation process). Following this strat-
egy, Papathanasiou et al. [77], among different rocks measured (such as pelite, sandstone,
leukolite and limestone), were able to identify experimentally relaxation mechanisms with
negative activation volume in hydrated leukolite and hydrated limestone. For example, for
hydrated leukolite, at temperature 7" = 349 K, the relaxation time varies from 150 s at
ambient pressure to 1 s at 3 kbar.
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1.6.3 Charged dislocation mechanism

1.6.3.1 Dislocations. Background

The observed shear strength of crystalline materials is orders of magnitude smaller than
what is expected theoretically for a perfect crystal lattice structure, and can only be ex-
plained by the presence of imperfections that can act as sources of mechanical weakness.
These linear defects, called dislocations, are known to exist in almost all crystals.
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Fig. 1.24 Motion of an edge dislocation under a shear stress; the edge dislocation is indicated by an
upside-down “T” with the base representing the slip plane and the stem the end of the extra half-plane;
the upper surface moves to the right. Reprinted from Ref. [125], Copyright (2005), with permission from
TerraPub.

The movement of dislocations is responsible for slip at very low applied stress. In slip,
one part of the crystal slides as a unit across an adjacent part. There are several types of
dislocations, but we only refer here to the so-called edge dislocation, which is simply the
presence of an extra half-plane of atoms. The mechanism responsible for the mobility of an
edge dislocation is depicted in Fig. 1.24, where its motion is shown under a shear, tending
to move the upper surface of the specimen to the right. This reminds that a wrinkle moves
more easily than a whole rug. Points of particular interest along the edge dislocation are
the “jogs”, where the edge of the extra half-plane makes an abrupt step from one slip plane
to an adjacent, parallel one.

Electrical effects of dislocations. In an ionic crystal, a dislocation line, being a region
where the regular alternation of positive and negative ions is disturbed, may carry an elec-
trical charge, or, if the line as a whole is uncharged, jogs in it may carry charges. A line,
which is itself uncharged, may carry an atmosphere of charged point defects (e.g., see
Fig. 1.25).

Jogs which are charged, attract charged point defects. In view of the fact that the charge
of jogs is half-integral (see pp. 233-234 of Ref. [125]), they can never be neutralized.
Screw dislocations are uncharged [99].

As mentioned, the individual types of intrinsic point defects, such as cation and anion
vacancies, have effective electric charge (—e or +e respectively in a crystal like NaCl,
where —e stands for the electron charge). A jog may emit or absorb a vacancy; this causes
the jog to change electrical sign and to move along the dislocation by one interatomic
spacing. As the jogs must establish equilibrium with each of the species of point defects,
this results in the presence of more jogs of one sign than the other, so that the dislocations
carry a net charge.
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(a) .C-H.ARGE C.LOU’D

(b)

Fig. 1.25 (a): Schematic drawing of
a charged edge dislocation, with loop
length [, surrounded by a cylindri-
cal charge-cloud of effective radius
k. We consider the motion of the
dislocation in the x-y slip plane. The
displacement of the dislocation in
the x-direction from its equilibrium
position is given by &(y,t), where y
denotes the co-ordinate of the dislo-
cation; this displacement & is zero at
y=0and y = as the result of pinning
at dislocation nodes. (b): The upper
figure schematically shows the effec-
tive radius ¥~ of the charge cloud and
the next two depict the limiting cases
of w0, ie., w6 < 1and wO > 1 (see
the text). Reprinted from Ref. [125],
Copyright (2005), with permission
from TerraPub.

w =0

The linear charge density on the dislocations is compensated by an almost cylindrical
space charge around the dislocation, consisting of an excess of point defects — e.g.,
vacancies and heterovalent impurity ions — of opposite sign (Fig. 1.25).

lonic surface charge. Lattice defects in a simple ionic crystal only occur in pairs be-
cause the overall electrical neutrality of the crystal must be maintained. For example, in
NaCl vacancies of the Na™ sublattice must be compensated by vacancies of the CI~ sub-
lattice and vice versa (see Fig. 1.21(a)). The equality of the concentrations of the two
components of the appropriate defect pair holds only in the deep interior of a pure and
otherwise perfect crystal (where the net charge density is zero), but not near the surface.
The concentration of defects near the surface is governed by the energies of individual
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defects and one member of the defect pair can dominate. Thus, at steady state, there is
an ionic surface charge compensated by a space charge of opposite sign, which reflects
strong electric field reaching 107 V/m near the surface [99).

As for the spatial distribution of the potential within the sub-surface space charge, in
a very rough approximation it resembles an exponential decay, but with the curvature
suppressed for small depths. The decay distance, or Debye screening length, is given by:

1/2
A= (“OI‘T) (1.49)

2ne?

where ¢ is the (relative) dielectric constant and 7 is the number of Frenkel pairs (if we take
as an example silver halides) per unit volume deep inside the crystal. In simple words,
the screening length A is a quantity demanding that essentially all the space charge is
contained within a layer of thickness about 24. For example, in experiments in which thin
layers of two simple ionic crystals BaF, and CaF, were investigated [94], the value of A
was found to be around 15 nm.

Ionic crystals containing charged dislocations exhibit a type of (dynamic) piezoelec-
tric behavior (see below). This piezoelectric behavior has been attributed solely to the
movement of charged dislocations.

In simple words the following happens: Let us consider an ionic crystal which in its
undeformed state is not piezoelectric. In a crystal which becomes plastically bent, a pro-
duction of an excess of dislocations of one mechanical sign takes place to accommodate
the bend. These dislocations move away from the center of curvature of the specimen upon
the application of a compressive stress. If a segment 8y of a dislocation with a charge ¢
per unit length is displaced a distance 6% from the center of its immobile compensating
charge cloud (Fig. 1.25(a)), the resulting polarization 8 B, will be:

5Ph = 5;,6]6})‘ (150)

If the crystal is mechanically loaded, the total strain is the sum of the elastic and inelas-
tic components. The inelastic component is mainly governed by the mobility of structural
defects contained in the crystal. The main difference between the elastic and inelastic strain
components is the following:

Elastic deformation occurs “instantaneously”’, while inelastic deformation is a function
of time. The latter is due to the existence of a certain relaxation time 6 characterizing
the mobility of structure defects. The relaxation time 6 characterizes the rate at which
the defect concentrations in the charge cloud can adjust to a perturbation caused by
displacement of the dislocation.

Let us consider the motion in the x-y slip plane of a charged edge dislocation, which
is acted on by an oscillating stress 6 = 0y sin @t. The displacement of the dislocation in
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the x-direction & (y,7) is zero at y =0 and y = [ as a result of pinning at the dislocation
nodes.

In Fig. 1.25(a) a schematic drawing of a charged dislocation, with loop length /, sur-
rounded by a charge-cloud of radius k! is depicted. The displacement in the x-direction
from its equilibrium position is given by &(y,). Figure 1.25(b) shows the two limiting
cases of w0. In the lowest case, the frequency @ of the applied stress is far greater than
that associated with the relaxation of the charge cloud. This corresponds to a dislocation
oscillating within an almost immobile charge cloud. On the other hand, in the middle fig-
ure, @ is far less than the 6~!; the charge cloud, in this case, can remain in phase with
the dislocation and thereby keep the dislocation at its center. The experimental results are
usually obtained in the case of @6 > 1, i.e., the dislocation is oscillating within an almost
immobile charge cloud. The piezoelectric behavior (defect) therefore arises from the os-
cillating electric dipole formed by the separation of the dislocation from the center of its
charge cloud. This is the basis for the mechanism that has been proposed in Ref. [125]
as being responsible for the generation of the “oscillating” electric signals (reminiscent of
seismograms, see Fig. 1.15(a)) upon the arrival of seismic waves at a measuring site.

1.6.3.2 Description of the charged dislocation mechanism for the SES generation

Slifkin [100, 101] suggested the following mechanism for the production of electric
dipoles upon abrupt stress variation in materials with significant concentrations of im-
purities. Such is the case of geophysically interesting materials, as silicates, oxides and the
like, in which the space charge around an electrically charged edge dislocation consists
largely of aliovalent ions (note that vacancies and aliovalent impurity ions carry effective
charges; see § 1.6.2 and § 1.6.3.1).

Assume that a shear stress is applied to a slab; although all the dislocations may not be
able to move through large distances, segments of them can indeed bow out between the
points at which the dislocations are pinned. For example, the pins may be impurity ions
or points of intersection with other dislocations (see sections 11.3 to 11.5 of Ref. [125]).
The dislocation loops between the “pinning” points respond to applied shear stress as if
they were non-Hookean elastic bands (Fig. 1.25). Hence, at any abrupt change in stress,
the bowed loops will quickly respond; the space charge around them, however, cannot re-
spond so quickly, because it requires motion of ions. Thus, immediately after each abrupt
change in stress, the space charge distribution remains practically unrelaxed and hence
its center remains at the same site, no longer coinciding with the line of the disloca-
tion; see Fig. 1.25(b)-bottom (recall that the relaxation time of the charge cloud, e.g.,
at 100°C is very long, i.e., lies roughly between 10° and 10'? hours; see subsection 11.5.4
of Ref. [125]).

In other words, an electric dipole has been produced, the dipole moment of which lies
in the slip plane and is oriented perpendicular to the dislocation line. Note that these
dipoles do not have random orientations.
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Fig. 1.26 (a) Introduction of edge dislocations
(of the same mechanical sign) by plastic bend-
ing. If the angle 6 = 1°, the upper edge of the
block is longer by € = 20 mm than the lower.
(b) Mechanism of the production of a dipole

moment in a specimen which was previously

plastically bent (and hence extra edge disloca-
tions have been introduced). A shear stress is

applied parallel to the slip plane of the dislo-

cations. Reprinted from Ref. [125], Copyright
(2005), with permission from TerraPub.

This is due to the fact that the distribution of dislocations in most rock strata is not ran-
dom, because of the deformation they have undergone in earlier history. This can be un-
derstood from the fact that plastic bending of crystalline material is accomplished through
the introduction of a set of edge dislocations, all of the same “mechanical” sign, i.e., their
extra half-planes all come from above or all from below. Consider, for example, the spec-
imen shown in Fig. 1.26(a) (not in scale), a slab of edge length 1 m. If it has been bent
through a very small angle of 1°, the upper edge must be longer than the lower one by
20 mm. If we assume that the lattice spacing is around 5 A(1 A = 1071 m), the bending
must have resulted from the introduction of 20 mm/5 A = 4 x 107 new edge dislocations,
all of the same mechanical sign, as shown in the figure. This excess density of disloca-
tions (i.e., 4 x 107/m?) is a quite modest value, as noticed by Slifkin, and probably greatly
underestimates the dislocation densities in naturally occurring rocks. (For the sake of com-
parison, we note that most annealed simple crystals have dislocation densities in the range
103-10'9/m?, while heavily deformed material contains 103~10* times larger densities.)
Slitkin then proceeded to an estimate of the (total) electric dipole moment for a horizontal
block 100 m thick and 1000 m wide on the other two sides, that has been folded around
a horizontal axis perpendicular to one of the end faces (Fig. 1.26(b)). Assuming that the
angle through which the block has been bent is 1°, the excess dislocations must have a
density around 4 x 107/m? in order to achieve the aforementioned bending. This value led
Slifkin to a dipole moment of around 8 x 10~* Cb.m, after first estimating that the stress-
induced dipole moment per unit length of dislocation is 2 x 10~ Cb.m/m; in other words,
Slifkin based his estimation on the relation: (stress induced dipole moment of a block) =
(stress-induced dipole moment per unit length of dislocation) x (density of the excess dis-



52 1. Introduction to Seismic Electric Signals

locations) x (cross-sectional area) x (length of the dipole) (as will be discussed later in
§1.7.4.1, a typical seismic source of an EQ with magnitude M = 5 has a dipole moment
larger than that estimated by Slifkin [101] by a factor of the order of 10%).

In this example, Slifkin [101] found an electric field value E of 7 x 107® V/m at a
distance of 10 km from the dipole by assuming a 1/d> decrease.

By summarizing, Slifkin’s mechanism suggests that upon an abrupt change in stress,
the bowed dislocation loops will quickly respond, but the space charge distribution
remains unrelaxed. Thus, an electric dipole is produced, whose dipole moment lies in
the slip plane and is oriented perpendicular to the dislocation line.

Slifkin [101] also proceeded to the following remark: “The electric relaxation time
(the RC time constant) of wet soil and minerals is much shorter than the duration of the
observed signal. This suggests that the recorded signals may be due to the superposition
of many rapid, closely spaced, unidirectional pulses such as could be propagation of a
sequence of mechanical relaxations”. We shall return to this interesting point in § 1.8.4.

1.6.4 The deformation-induced charge flow mechanism

1.6.4.1 The phenomenon of deformation-induced charge flow. Background

Deformation-induced charge flow is the occurrence of a charge flow as a result of in-
homogeneous deformation; this takes place even in the absence of an electric field and
ceases abruptly when the stress increment producing it is removed. This phenomenon
is a current flow and not a voltage effect.

Fischbach and Nowick [22, 21] reported that when a single crystal of NaCl is plastically
deformed in an inhomogeneous fashion, a transient electric current flows through the crys-
tal, even when no external field is applied. The effect was observed when cleaned single
crystals of NaCl approximately 0.1 x 1 x 1 cm were deformed in compression (note that
the load was applied to a smaller area on the one face of the specimen than on the other) at
temperatures between room temperature and about 100°C. The greatest flow was observed
whenever a given stress was applied to the crystal for the first time.

The direction of the current flow was found to be governed solely from the deforming
stress gradient. In particular, negative charge flows from the crystal face to which the
higher compressive stress has been applied. In other words, the effect of the applied
stress gradient is similar to that of an electric field.
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The total charge flow produced by a stress increment of 1 kg/cm?, was of the order of
10~!2 Cb. Similar experiments in non-piezoelectric rock meterials have been performed
by Varotsos and coworkers (see section 3.7 of Ref. [125]).

If the deforming load increment is removed before the current has decayed to zero, the
residual current drops immediately to a value near zero. On reapplying the load increment,
the charge flow is resumed. An applied electric field has little influence on the effect. Even
under fields of the order of 10° V/m, the direction of the initial charge flow produced
by deformation is determined by stress gradient rather than the direction of the applied
electric field.

Fischbach and Nowick [21] concluded that the only suitable carrier to explain the afore-
mentioned characteristics appears to be the electrically charged dislocations as follows. As
mentioned in § 1.6.3.1, jogs on edge dislocation lines in NaCl may have an effective charge
+e/2, the sign depending on whether the jog occurs at a positive or negative ion. When a
dislocation, however, is in motion, vacancies may be “absorbed” at a jog, thereby changing
the sign of the charge at the jog. Thus, when a negatively charged jog generates a cation
vacancy, it becomes a positively charged jog. A dislocation in motion may be expected to
have equal numbers of negative and positive jogs if cation and anion vacancies are formed
with equal probability. This is not the case, however, because both theoretical and exper-
imental results show that the formation energy for an anion vacancy is somewhat larger
than that required to form a positive-ion vacancy. Therefore, a moving edge dislocation
may be expected to achieve a net positive charge due to the preferential loss of positive-
ion vacancies from jogs. Since these positively charged dislocations move into the crystal,
from regions of stress concentration (§ 1.6.3.1), leaving behind a net excess of (negatively
charged) cation vacancies, this model correctly predicts the sign of the observed charge
flow. The model explains all the other observed characteristics of the phenomenon (see
subsection 11.6.1 of Ref. [125]).

1.6.4.2 The model of the deformation-induced charge flow mechanism for the
SES generation

This model, suggested by Varotsos et al. [139], is based on the “deformation-induced
charge flow” phenomenon (hereafter called DICF) discussed above in § 1.6.4.1.

The DICF, as mentioned, is a current flow (as a result of inhomogeneous deforma-
tion) and not a voltage effect; thus, the RC time constant of the circuit does not have a
significant influence on the phenomenon. This implies that ionic materials, subjected to
inhomogeneous deformation, can still emit a current even when they are shorted through
the surrounding conductive material. Such a situation would exist in the focal area, where
the material undergoes inhomogeneous deformation before an EQ. In fact, the stress lev-
els involved in the laboratory experiments by Varotsos and coworkers on rocks, presented
in section 3.7 of Ref. [125], are of the same order of magnitude as those in the Earth at
the shallow depths of the earthquakes for which SES measurements have been reported.
Assuming that DICF is the likely mechanism for the SES generation, in what follows we
will interpret a few properties of the SES (for the explanation of other SES properties see
subsection 12.4.4 of Ref. [125]):
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Concerning the form of the signal recorded at remote sites, when Fischbach and Now-
ick [21] compared their DICF measurements between 30 and 90°C, they reported the fol-
lowing difference: “A ‘jerky’ type of charge flow often occurred in the crystal at 90°C,
i.e., instead of decaying smoothly with time, the current/time curve obtained at 90°C was
interrupted at random intervals by sudden brief rises in the current.”

These rises were in the same direction as the initial increase on application of the load
increment. This agrees with the field observations, because in the latter a multi-peak
occurrence (i.e., SES activity) was found to have the same direction (and hence is an
one-sided signal; see Section 1.3).

Concerning the amplitude of the signal, considering that DICF is a volume effect
(§ 1.6.4.1) and using the value 10~'3 A/cm? found in the aforementioned laboratory ex-
periments on rock materials (see section 3.7 of Ref. [125]), we expect a current intensity /
of the order of I = 10°-103 A to be emitted from a similarly stressed volume in the even-
tual focal area, which may be of the order of 1 to 10 km?3, e.g., a cross-sectional area of
~1 km? and a length [ of a few to several km. Such values of 7/, when the current source
is located inside a homogeneous medium with conductivity Gpos ~ 107 S/m would gen-
erate at d ~ 100 km an electric field Epog of the order of Epoq &~ 107! to 1 mV/km (see
§1.7.2,§1.7.4 and § 1.7.4.1). We now take into account that the current source lies close to
a fault, which is a conductive path having a conductivity (o) significantly larger than that
(Ohost) Of the surrounding medium. This, when the highly conductive path terminates (see
§ 1.7.4.1) within the host medium, gives rise to an electric field Eqyyige (measured within
the host medium but close to the edge of the path) which is around Epeg X (0 /Ghost ). Con-
sidering a reasonable conductivity ratio 6 /Chost = 102, we find Eoysige &~ 10~10% mV/km,
which agrees with the SES field experiments and in addition explains the existence of SES
sensitive sites.

We stress again, that in the above calculation we used the value 10~!3 A/cm? (per unit
load increment, see § 1.6.4.1) measured in rock experiments at stress levels comparable
to those occurred at faults. Interestingly this value is comparable to that obtained for
NaCl when a relatively small load increment is removed and reapplied, while the major
part of the total load still remains applied to the crystal.

The latter is reminiscent of the earthquake preparation process, and this is why the
value 10~13 A/cm? was preferred in the calculation above instead of the values 10! to
10~!2 A/em? deduced from the experiments by Fischbach and Nowick [21] in NaCl upon
the initial attainment of a 1 kg load increment (recall, see § 1.6.4.1, that the greatest flow
was observed whenever a given stress was applied to the crystal for the first time).

We now turn to the following important point about the explanation of the SES gener-
ation. Fischbach and Nowick [21] do not report any critical stress value above which the
charge flow is detectable. The following suggestion could be forwarded concerning the
stress critical value. In subsection 11.3.3 of Ref. [125], it was discussed that there exists
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a critical stress T, above which dislocation overcomes the second maximum of the so-
called Peierls relief, and continues to overcome the succeeding maxima dynamically, thus
moving forward a long distance. This could explain why the SES initiates when the stress
reaches a critical value o,

1.6.5 Teisseyre’s model on the precursory electric signals generation related with
dislocation dynamics

Teisseyre [116] reviewed the theory of stress and dislocation evolution, which is based on
the equation of motion for the self-stresses (dislocation stresses) on the slip-fault plane.
Furthermore, the effects of dislocation dynamics on the generation of electrical precursors
were reviewed [116].

Stress evolution. On a fault plane the fracturing processes produce a rapid increase of
the self-stress fields: formation of dislocations, dislocation arrays and cracks [114]. The
theory of the stress and dislocation evolution is developed on the basis of the interaction
between the dislocations and dislocation arrays of opposite signs [115]. This interaction,
which leads to stress accumulation and release, is governed by the so-called source/sink
function IT which describes the nucleation of new dislocations and coalescence processes
(mutual annihilation of dislocations with opposite signs, being equivalent to the coales-
cence of two neighboring dislocated elements or formation of a crack). The role of the
source/sink function IT is similar to that of the body forces acting in the zone of seismic
source and introduces an instability factor into the equation of motion; thus it is reminis-
cent of the friction weakening laws (see § 8.2.1) used in the fault-slip dynamics.

Based on the aforementioned concept on IT, Teisseyre [112, 113] suggested a model
that combines the dipole polarization and the motion of the charged dislocations under
the influence of the evolving field of stresses (this model was further discussed in Refs.
[117,71]). Finally, Teisseyre [116], after solving numerically the equations that govern the
evolution of IT versus the time, found the electric field values generated at the preseismic
zone.

The results show sharp increases of the electric current source intensities at the ex-
trema or zeros of the corresponding derivatives of the function IT, which leads to the
conclusion that electromagnetic phenomena precede the seismic event.

1.6.6 The peroxy defects model

Freund and coworkers studied the defects in oxide and silicate crystals and ran across
rather peculiar defects (e.g., see Refs. [27, 28] for brief reviews). They call them “peroxy
defects” because they arise from lattice oxygen that has been oxidized from its normal
O?~ state to the O~ or Si/?C\ Si. Valence changes between O>~ and O~ can introduce
electronic charge carriers into oxides. An O~ represents a defect electron on the 0>~
sublattice, which is called a positive hole. A similar concept has been earlier used in Ref.
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[122] to explain that the dc conductivity in LiD and LiH decreases upon X-irradiation as
follows: “molecular” H; is produced that (somehow) associates with a certain vacancy to
form a charge-compensated complex (a cation vacancy traps a positive hole).

Peroxy defects derive from small amounts of H,O incorporated as OH™ or Si-OH into
the matrix of nominally anhydrous minerals when they crystallize in H,O-laden environ-
ments [31, 29]. Upon cooling below 500°C, pairs of OH™ or Si-OH undergo [26] a redox
conversion to molecular H; plus peroxy defects (peroxy moieties; the word ‘moiety’ mean-
ing here one of the two parts into which something is divided). The peroxy moieties are
inconspicuous and inactive as long as they are spin-coupled and localized. However, they
are a dormant source of powerful charge carriers [30].

A tentative model for the generation of precursory electromagnetic signal goes as fol-
lows. We can conceive situations where mobile charge carriers might be generated at depth
through physical changes in the stress state of rocks. This may happen because of the very
short O~-O~ bond (which is [15] about 1.5 A, and hence very short compared to the nearly
3 A length of the regular O>~-0O%~ bond in MgO structure), thus the pressure increase sta-
bilizes peroxy moieties and pressure release destabilizes them.

If O™ charge carriers are generated, the resulting surge of mobile O~ is expected to
lead to an outflow of positive charges, and when the O~ outflow is asymmetrical, an
electric dipole will emerge. This in turn will generate an electromagnetic signal, which
propagates through the surrounding rock [30].

1.6.7 The model of the large-scale motion of lattice defects

It is alternatively called Lazarus’s model for SES generation since it has been suggested
by Lazarus [55]. This is based on a phase transition associated with large-scale motion of
lattice defects. An EQ is presumed to occur through a three-step process, arising from a
uniaxial stress across a pre-existing fault-plane. The phase transition region is confined to
a thin region immediately adjacent to and parallel to the fault plane. A likely candidate for
such a phase transition would be from a hydrous to an anhydrous form of a mineral. Nearly
all terrestrial minerals are formed with varying amounts of water crystallization in the lat-
tice; under sufficient compression, they must transform to anhydrous phases, expelling the
water. The compression of the lattice at this phase transition would cause large-scale (de-
formation and hence) motion of lattice defects, which would result in a large electrostatic
signal, roughly proportional to the length of the region transformed, in a similar fashion as
in the Slifkin’s model considered above in § 1.6.3.2. This phase transition is the first step in
the EQ generation; it occurs when the orthogonal stress component, in combination with
the overall hydrostatic stress caused by the overburden, reaches a threshold sufficient to
bring about the aforementioned phase transition in the material lying in the vicinity of the
fault plane. The second step may occur when the water (or any other low-density, low-
friction substance), released during the phase transition in microscopic amounts, diffuses
to the interface of the fault plane (where there is excess free volume). The third, and final,
stage may occur when the tangential component of the stress reaches a threshold suffi-
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cient to cause macroscopic rapid slip along the (possibly now “lubricated’) fault plane.
In this model, there is naturally a time delay between the first threshold, at which SES is
generated, and the third, at which the EQ occurs [55].

Thus, in short, this model suggests that SES are generated during a phase transition
(i.e., from a hydrous to an anhydrous form of a mineral) associated with large-scale
motion of lattice defects. This occurs within a thin region immediately adjacent and
parallel to the fault plane.

1.6.8 SES generation mechanisms based on electrokinetic phenomena

Several publications suggested that electrokinetic phenomena can provide the basis for
the generation of electrical precursors (e.g., see Refs. [61, 62, 23, 24, 42, 16, 65, 66, 32,
48, 49]). The electric field results from fluid flow through the crust in the presence of an
electric double layer at the solid-liquid interfaces. This fluid flow transports the ions in the
fluid in the direction of flow, thus leading to electric currents.

We present below some background material on the physics of the phenomenon, and
then focus only on those suggestions that are relevant with the explanation of the SES
generation.

These suggestions could be grouped broadly into two types: hypocentral and local. The
hypocentral mechanisms, e.g. Refs. [65, 63], consider electrokinetic phenomena in the
EQ preparation zone and transmission (diffusion) of electric field to the recording site.
On the other hand, the local mechanisms, e.g., Refs. [16, 32, 7], require electrokinetic
phenomena (in response to precursors of strain or stress) close to the SES measuring
site.

1.6.8.1 The physical basis of the electrokinetic effect

Permeability. Darcy’s law. From a physical point of view, the permeability of one sub-
stance in another is a transport property. In porous, permeable media, traversed by a fluid
in the +x direction, the permeability coefficient k (which, in reality, reflects an effective
cross-section for flow, see below) relates the fluid flux to the force (the fluid pressure gra-
dient): L
P

J= 7 dx (1.51)
where 1) denotes the viscosity of the fluid and J the fluid volume that crosses a section S
(perpendicular to the x-axis) per unit area and per unit time; note that Eq. (1.51) is usually
called Darcy’s law. Thus, J is a volume flux and although it is measured in m/s does not
reflect the real velocity v of the fluid. This can be understood on the basis of the simple
case depicted in Fig. 1.27(a), in which the fluid flow is taking place through N capillaries
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Fig. 1.27 Schematic diagram of (a): The fluid flow crossing the total section Sy through capillaries of
individual cross-section s; (the fluid volume Vjy that crosses the section Sy per unit time should be equal to
the sum of the (volume) fluxes flowing through each channel, and hence Vjy = JS). (b): The electrochem-
ical solid/solution interface; the absolute value of the ionic charge of the surface layer is equal to the sum
of the ionic charges in the Helmholtz layer and in the diffuse zone, thus leading to an electrically neutral
double layer, if the appropriate charge signs for each zone are considered. The plane H lies at a distance
from the zero surface of the solid, and corresponds to the beginning of the diffuse zone. Reprinted from
Ref. [125], Copyright (2005), with permission from TerraPub.

of individual cross-sections s;. In this case, assuming isotropic distribution of porosity ¢,
thus ¢ = (1/So) XY, s, and that the velocity v; in every channel i is equal to v, we find
that the quantities J and v are interconnected through: J = ¢v.

The origin of electrokinetic phenomena. An electric double layer is formed at a
solid/liquid interface (Fig. 1.27(b)). This is made up of a layer of ions (the Helmholtz
layer) adsorbed on the surface of the solid (e.g., the rock) and of a diffuse mobile layer of
ions (the Gouy—Chapman zone) which extends into the liquid phase.

When a fluid flows through a porous medium, a potential will be developed across the
(length of) sample, because of the relative motion between the solid and the liquid; this
is the so called streaming potential (which may be thought of as the reverse of electro-
osmosis). If S denotes the closest plane to the surface on which fluid motion takes place
(see Fig. 1.27(b)), the potential of this plane is defined as the { potential. (Note that this is
manifested in the streaming potential measurements. In other words, the zeta potential §
is the potential at the slipping plane; the latter is the plane where the fluid velocity goes to
zero.) In such cases, if V denotes the streaming potential, both forces VV and VP (while
in Eq. (1.51) only the second force, i.e., VP, was present) must be considered and then the
fluid flow becomes:
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29
= ——VP Vv 1.52
J= - VP (1.52)
while the electric current density j is given by:
i= COVP——VV (153)
nr

where o, € are the electrical conductivity and the dielectric constant of the fluid. F 0 is
the so-called formation factor (the ratio of the conductivities of the fluid and the porous
medium, e.g., 6/0;, the ratio of the fluid over the rock conductivity [33, 49]) when sur-
face conduction is absent, while F is the formation factor for the fluid conductivity being
studied (possibly with surface conductivity).

In a steady state, the absolute values of the two terms in the right-hand side of Eq. (1.53)
(i.e., the first term represents current resulting from mechanical energy being offered to the
system, while the second term corresponds to the conduction current) become equal; this
equality leads to the so-called Helmholtz—Smoluchowski equation [17]:

AV el F
AP~ 1o F0 (1.54)
(note that we again clarify that AP and AV are measured across the length of the sample).
The quantity C = AV /AP, i.e.,

_ AV &l F
=P 1o (1.55)

is called the streaming potential cross-coupling coefficient or simply the coupling coeffi-
cient. For a circular cross-section pore of radius r, we have [68]

F I
FO (1+%2)

where S; denotes the surface conductance. If surface conductivity is absent, F' = F, and
Eq. (1.55) simplifies to:

(1.56)

AV gL
C="5= o (1.57)

In other words, streaming potentials occur in a fluid when there is relative motion
between the fluid and a charged surface, for the latter recall § 1.6.3.1.

The electrical double layer, which as mentioned forms at the interface between the fluid
and the charged surface, has a charge density p which decays exponentially away from the
surface; the distance at which this charge density decays by 1/e is the so-called Debye
length (see § 1.6.3.1; see also subsection 11.4.1 of Ref. [125]). As the fluid moves tan-
gentially to the double layer, it pulls the ions of the double layer along a length /.
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These moving ions near the surface give rise to convection current: Iony = [ v(r)p(r) dr
= (wer’{AP)/(nl), where v(r) is the fluid velocity. The conduction current
Ieond = (072 /1)AV flows through the resistive bulk fluid to generate a potential referred
to as the streaming potential.
The electrokinetic current density averaged with respect to the cross-section is usually
written as [24, 16]:
€669

Nnor
where o, the electric conductivity of the rock. Alternatively the following relation is given
[109]:

j=-0,CVP, C~ (1.58)

j=-C\VP (1.59)

h
where 8C7¢

C, ~ (1.60)

The physical parameters (including the temperature and/or tri-axial stress) that influ-
ence the electrokinetic coupling coefficient (e.g., Refs. [68, 42, 48, 78]) and the frequency
dependence of permeability (e.g., Refs. [82, 85, 87, 86]) have been discussed in pp. 267—
268 of Ref. [125].

1.6.8.2 Electrokinetic phenomena in the hypocentral area of an impending
earthquake

Morgan et al. [68] and Morgan and Nur [67] suggested the following mechanism that may
have significant relevance to the generation of transient electric signals. Two-phase fluid
flow enhances cross-coupling properties; this enhancement originates from an increase of
resistivity at partial saturation which reflects an increase of C by a factor of 2 or more.
Partial saturation may result at the earthquake source region either by dilatancy or boiling
[59]. However, boiling is unlikely except as a coseismic phenomenon [78]. Morgan [65]
first presented a calculation showing that such electrokinetic phenomena in the source area
can account for the observed SES amplitudes. Beyond this suggestion, a few other more
recent publications [63, 43] appeared, the results of which will be summarized below.

Molchanov’s multifractures model [63]. The idea is that SES is generated during the en-
hanced fracturing that occurs a few weeks or a few days before the main shock. Molchanov
considered for the source current the electrokinetic mechanism (in the focal area), by as-
suming a water-induced relaxation of stress-drop just after the appearance of microfrac-
tures. A similar process was considered in Ref. [20] for the explanation of ULF magnetic
variations.

The following model was proposed [63]. Assume that many fractures with scale L; and
rate N(Ly) occur in a volume V ~ LS, where Ly is a length of the order of the large-scale
stress gradient. Before a large EQ with magnitude M, fracture occurrences are probably
intensified; the latter can be represented as foreshocks obeying the Gutenberg—Richter law
with the usual exponent b, e.g. see Eq. (6.1).

Considering that the electric field variations (due to the largest fractures from the region
Vo) recorded at the same site probably retain the same polarity, the electric field amplitude
E resulting from the overlapping (clustering) of a significant number of electric pulses,
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after assuming Poisson distribution (in time) for the occurrence of these electric pulses, is
found to be [63]:

2

Molchanov [63] assumed b = 0.89, and found that the slope of log;,E versus M is
0.305 which is very close to the experimental values, see Eq. (1.1). The empirical b values
are around unity (i.e., between 0.8 and 1.2, see Section 6.1), thus resulting in a slightly
different slope which is still in remarkable agreement with the SES observations.

Numerical simulation of electric field produced by fluid flow within a fault. The elec-
trokinetic potential on the ground surface, produced by the fluid flow within a vertical thin
fault zone, has been computed in Ref. [43]. “Dilatancy” or “over-pressure” was assumed
as a driving force of the fluid flow. It was found that, if the resistivity of the crust is of the
order of 10°~10* Qm and a high conductivity (vertical) channel exists between the fault
zone and the Earth’s surface, the electric field values in the peripheral area of the outcrop
of the channel reach values well above the detectability limit.

3 b
log o E = (4—)M—|—const. (1.61)

1.6.8.3 Electrokinetic phenomena close to the SES measuring station

Dobrovolsky et al. [16] and Gershenzon and Gokhberg [32] suggested that SES can be
explained by the electrokinetic effect resulting from strain changes that affect fluid dy-
namics close to the measuring site or around it. Moreover, they suggested that SES can be
better recorded on a vertical electric dipole as follows: at the surface the excess pressure
is always zero, but at points within the crust strain changes will produce pressure changes
and hence, a potential difference AV will result between an electrode located at the surface
and another at a depth & (e.g., in a well, provided that the latter electrode lies below the
water level and is covered by the Earth, making the pressure at the pore fluid around it
approximately equal to what it would have been if there were no well at all). We clarify
that AVdoes not have [16] to be proportional to 4.

A model slightly different from that of Refs. [16, 32] for detecting electrical anomalies
due to electrokinetic phenomena close to the measuring site has been suggested by other
authors [48]. Based on empirical observations of abrupt upheaval of the underground water
level measured postseismically (at distances of the order of 50 km from the epicenter), it
is assumed that there is a ground-water recharge during interseismic periods; this recharge
implies vertical fluid flows in shallow aquifers which could induce electrokinetic anoma-
lies.

Within such a scheme, a precursory electrical anomaly can be observed irrespective
of either the exact value of the coupling coefficient or whether a lateral heterogeneity
exists or not.

Note that the measurements of Jouniaux and Pozzi [48] show that a streaming potential
up to 30 mV could be produced by an underground water level change of 50 cm, for a fluid
resistivity of 10> Qm and a permeability of 10~!2 m?. In addition, Jouniax and Pozzi [49]
observed transient streaming potential variations with pulses of amplitude 15-40 mV and
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frequency 0.1 to 0.5 Hz under geochemical changes; they suggest that such geochemically
induced effects may possibly be responsible for the observation of electrical precursors in
this frequency range.

1.6.8.4 Electrokinetic phenomena in porous media with fractal structure

Fractal critical exponents of electrokinetic current parameters. Surkov, Uyeda, Tanaka
and Hayakawa [109] supposed that the EQ hypocenter is surrounded by water-saturated
porous rock with fluid-filled pore channels. The pre-earthquake stage was assumed to be
accompanied by the appearance of fresh cracks in the fracture zone. The scale of this zone
may vary from hundreds of meters up to several kilometers. It was assumed that the pore
space in the fracture zone exhibited fractal structure. Apparently, most of the fresh cracks
are closed when formed. Because of the pressure release due to cracking, they are under
lower pressure, so that water from the un-cracked outer region can penetrate into them as
soon as a network of connected channels or fractal clusters is formed. The closed fresh
cracks may be regarded as the sink of water from the surrounding higher-pressure areas.

(a)

Fig. 1.28 (a) The porosity ¢ at various distances r from
the fracture zone assumed in Ref. [109]; the percolation
threshold ¢, is exceeded only in the internal area r < L,
and non-fractal zone is situated at r < R;. The fractal
region is confined by the radii R; and Ry. (b) Schematic
picture of the fracture zone assumed in Ref. [109]. The
internal high permeability area is restricted by the radius
R;. The fractal region occupies the field from r = R; to
r =Ry =R;+ H. L denotes the distance where ¢ = ¢..
Reprinted from Ref. [109], Copyright (2002), with
permission from Elsevier.

Surkov et al. [109] assumed that the porosity ¢, after the cluster formation, decreases
from the center of the fracture zone towards the periphery according to a certain law, see
Fig. 1.28(a):

The percolation threshold ¢, is exceeded only in the internal area that has a typical
size L.
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Fractal properties, near the threshold, are governed by a correlation length(see § 1.5.2):

b
9(r) = ¢V

where v = 0.88 is the correlation length critical exponent [108]. This equation indicates
that an increase in the porosity in the internal area (r < L) is followed by a decrease of
correlation length. Thus, the central part of the internal area may lose its fractal properties,
because of a multiplex intersection of channels. This part with high porosity and high
permeability was called the non-fractal central zone, in contrast to the peripheral fractal
region. Let R; = L — H be the typical radius/size of the non-fractal central zone, as shown
in Figs. 1.28(a) and 1.28(b). The fractal region occupies a spherical shell confined by the
radii R; and Ry = L+ H. The typical size H of the fractal region was assumed to be of the
order of the correlation length, i.e., H o< & (R;) o< £(Ry), and the porosity near r = L was
written as a power series of the parameter H:

g (1.62)

¢)(r)m¢c+%H. (1.63)

Substituting the latter expression into Eq. (1.62) and using the approximation d¢ /dr ~
AQ/L, at r = L, where A¢ is the porosity variation, at » =0 and r = L, they obtained:

— ,
H (dd)> o< LV+T (1.64)
dr

which is valid if H < L. For this case, they supposed that the size of the fracture zone is of
the same order as that of the internal area, i.e., L, and so the H dependence on the fracture
zone size looks like Eq. (1.64). This dependence will be needed later to find the relation
between the SES amplitude and the EQ magnitude.

In the fractal peripheral region, the coefficient C, as well as the diffusion coefficient,
the permeability and other rock parameters, change with distance through power laws; the
coefficient C, (see Eq. (1.60)) was assumed to have the form:

G

Ce%p77

(1.65)

where G is a constant, p the distance between two points in the fractal region, and u
denotes an unknown critical exponent, which can be determined as follows. The coefficient
C, in the form of Eq. (1.60) cannot be applied, because the fractal geometry should be
taken into account. In the latter case, the average conductivity o, of the rock containing
pore channels and the permeability k depend on the porosity ¢ according to: G, o< k o<
(¢ — @), where ¢ & 1.6 is the transport critical exponent [108]. Using these dependencies,
Surkov et al. find C, o< H~*/V, which when compared to Eq. (1.65), leads to: u =1¢/v
~ 1.82 (where they used the values = 1.6 and v = 0.88 mentioned above).

The dependence of the current dipole source moment on the dimensions of the fracture
zone. At remote distances from the fracture zone, the low-frequency electromagnetic field
generated by a system of electrokinetic currents can be characterized by an effective short
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linear current element /A/l. Here I denotes the total source current and A/ is the effective
current length. To replace an extrinsic current system by a point current element, they
integrate the electrokinetic current density over the volume V' of the fracture zone, i.e.,

p:IAl:/Vje dv:—/vceVPdv (1.66)

According to Surkov et al. [109] there are two contributions to this integral: one (p.)
from the central non-fractal zone and a second one (py) from the external fractal region.
The first one was shown [109] to be

pe o< L? (1.67)

while the second contribution (py) is given by:
AP -
pfaceTLZH«LI*iTV (1.68)

Explanation of the empirical VAN relation of Eq. (1.1) or Eq. (1.2). The SES amplitude
E(=AV /L) must be proportional to the amplitude |p| of the current dipole source moment.
Furthermore, recall that the EQ focal dimension L is related to the EQ magnitude M,
through the empirical equation [50]:

where L is measured in km. Due to the perfect spherical symmetry of the non-fractal zone
the corresponding dipole moment p should be vanishingly small, thus its contribution to
the observed electric field value can be disregarded. Therefore, the leading contribution
comes from the fractal region, i.e. py > p., with E o« py, which when taking into account
Egs. (1.68) and (1.69), gives:

r—v

1
logioE = aM+b, == (1-—)~03l 170
ogip £ = M40, & 2( l+v> (1.70)

after using the critical exponents: r =1.6 and v = 0.88.

Thus, when assuming fractal geometry in the fracture region, Surkov et al. [109] find
a value of o in Eq. (1.2) very close to the one observed.

This is consistent with an early suggestion (see p. 92 of Ref. [127]), see also § 1.3.2,
that the o value stems from the geometry of the emitting source (where it is clear that when
the source enters the critical regime, it must be characterized by fractal geometry).

1.6.9 SES generation mechanisms when assuming the earthquake rupture as
critical point

Sornette and Sornette [102], based on the concept that rupture in EQs could be considered
as a critical point (CP), suggested a model for the SES generation. (Since percolation is a
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critical phenomenon, the model by Surkov et al. [109] discussed in § 1.6.8.4, as well as
the PSC model (§ 1.6.2), could have been classified in the same framework as the model
of Sornette and Sornette [102].) This model provides naturally an explanation of the SES
detectability at certain cites at long distances (selectivity effect; see § 1.3.4). In addition,
this model explains the experimental fact mentioned above that the logarithm of the SES
amplitude scales linearly with the magnitude M for a given focal area and a given SES
sensitive station, see Eq. (1.2), i.e., log;,(AV /L) = oM+ 3, where the experimental value
of a is around o = 0.32-0.37 for all measuring sites (universal).

The essence of the Sornette and Sornette [102] proposal is that SES is closely related
to a local piezoelectric effect, which does not average to zero in some places and thus
can be detected as the CP is approached.

In particular, they state [102] that as the CP is approached, the medium becomes more
and more fragile, ending eventually in rupture at the CP. Then they assume that an effective
control parameter “q” can be defined such that the CP is attained when g reaches some
threshold g.. As the CP is approached, the increasing fragility of the medium is reflected
in the “critical” behavior of the effective deformation modulus Y, which should decrease
eventually to zero at CP. As g approaches ¢., the material becomes very weak and hence a
finite stress creates a locally large strain, resulting in a large polarization and electric field.
Thus, one expects to measure an increasing potential difference between two points of a
piezoelectric system as the CP is approached. The small value of the measured SES can
be associated with the absence of a real macroscopic effect, but is more closely related to
a local piezoelectric effect which does not average to zero in some places and thus can
be detected [102]. In other words, the detectability of the potential difference variations is
related with the strong spatial variations in the polarization of the medium.

Sornette and Sornette [102] made use of the theory of critical piezoelectricity in
percolation [105] and derived an interconnection between its critical exponents and
Eq. (1.2). They finally obtained an & value comparable with the aforementioned one
obtained experimentally.

1.6.10 Other SES generation mechanisms

Beyond the mechanisms mentioned above, several others have been suggested. Two of
them are mentioned below:

(a) Pulsed charge model: lkeya et al. [41, 40] suggested a model, based on the piezo-
electricity of quartz, and raise the possibility that SES may come from the time averaged
evanescent ULF waves. In simple words, their model assumes an ensemble of emitting
dipoles in the fault area (due to the piezoelectricity of quartz-bearing rocks) and there-
from the SES are explained as being the envelopes of these electromagnetic pulse waves.
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This model seems to satisfactorily explain [40] the empirical relation found for SES:
log,o(AV /L) = oM+ 3, where o is around 0.35.

(b) SES generation based on the magmatic mechanism of shallow crustal earthquake
preparation: Rokityansky [88] forwarded a model, which is based on a suggestion of
Guterman and Khazan [34] that crustal seismic activity (or some parts of it) is a mani-
festation of contemporary magmatic activity. The model assumes a mantle chamber (that
can be a mantle plume head, for instance) and a crustal magma chamber. The latter is con-
nected to the former by a magma channel. Based on giant radiating dike swarms data [19],
Rokityansky also assumes secondary crustal chambers. Such a model can qualitatively ex-
plain several SES features: a SES-sensitive station is situated near a magma channel or
crustal magma chamber. Long-distance SES-sensitivity is observed when the station and
the focal area are situated at opposite ends of a (quasi-)radial chain of crustal chambers,
the station being near the first chamber, and the EQ near a peripheral one. The SES gener-
ation is attributed to magma flow or, more probably, to the beginning of magma flow, with
the opening of magma channel(s).

1.7 Explanation of the selectivity effect and other SES properties

When a current-emitting solid is surrounded by a medium of conductivity ¢’, the question
arises whether the signal can be observed at long distances (i.e., at distances appreciably
larger than the dimensions of the emitting source). Of special interest, for practical appli-
cations, is the case when the emitting source is located at a small distance from a “path”,
which has conductivity o, orders of magnitude larger than the conductivity ¢’ of the sur-
rounding medium. The study of this case is closely related to the SES transmission in the
Earth and the question of SES detectability at long distances. This is so, because, as will
become clear in this Section:

Maxwell equations can naturally explain the selectivity effect, if we consider that the
SES generation source lies in the future focal region and the earthquakes occur by slip
on faults, which are highly conductive paths in the Earth’s crust. This is the essence of
the model described below and was proposed by Varotsos and Alexopoulos [129] for
the explanation of the SES selectivity.

1.7.1 The model for the explanation of the selectivity effect

Varotsos and Alexopoulos [129] (see also Ref. [131]) suggested the following model for
the SES transmission from its source to the measuring station. When the SES is emit-
ted, the current follows the most conductive (neighboring) path through which most of
this current travels and the measuring station lies at a site on the Earth’s surface (see the
point “O” in Fig. 1.29, or Fig. 1.30) close to the upper end of the conductive path (and
preferably close to a high-resistivity anomaly, see fig. 25 of Ref. [131]). One can show
that the measured electric field is then appreciably stronger than in the case of a homoge-
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tation of the SES transmission
hi00m model suggested by Varotsos
A and Alexopoulos [129] (see also
Fig. 1.30). In general, the dipole
source may be parallel (B) or
perpendicular to the neighbor-
ing conductive path; the case of
perpendicular orientation (see
4 Fig. 1.32) is practically equiva-
d=100km____e—>" lent (as far as the amplitude of
Y 4 the electric field above the upper
4 ; ) ’ ’ ’ end of the channel is concerned)
4:"-—-—--~~~~~~~~~~~;/:7’ fffffff ‘ with the case A. Varotsos and
. Alexopoulos [129] (see also fig.
25 of Ref. [131]) suggested that
> D the case A is more probable
source than B; this seems to coincide
with aspects that there is always
a significant component of the
emitting dipole perpendicular to
B the conductive path (§ 1.7.3). The
symbol py stands for pp, used
in the text. Taken from Ref. [92]

neous or horizontally layered Earth. In particular, the consequences of the high conductiv-
ity path terminating inside the host medium discussed later (e.g. see § 1.7.2.3) conclude
that, for large conductivity ratios, the “edge effects” play a major role, leading to strong
electric field in the host medium close to the termination of the conductive path. In addi-
tion, we draw attention to the following case discussed in detail in sections 6.5 and 6.6 of
Ref. [125]:

The increase of the electric field value may reach a factor even larger than the conduc-
tivity ratio 0 /o’. This is termed over-amplification (see § 1.7.2.3).

The two configurations A and B of the electric dipole (with respect to the neighbor-
ing path) depicted in Fig. 1.29 can be in principle envisaged. However, Varotsos and
Alexopoulos [129] suggested a current source close to the bottom end of the path (e.g.,
see fig. 25 of Ref. [131], i.e., the case of Fig. 1.29(A) which can be better visualized in
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Fig. 1.30 Schematic model for the explanation of the selectivity effect suggested by Varotsos and Alex-
opoulos [129]. This is an enlarged version of Fig. 1.29, the caption of which applies also here, for better
visualization of the parameters. (a) and (b) correspond to the cases of Figs. 1.29(A) and 1.29(B) respec-
tively. Reprinted from Ref. [125], Copyright (2005), with permission of TerraPub.

Fig. 1.30(a)). This is the case, as explained in § 1.7.2.3, which is practically equivalent — as
far as the amplitude of the electric field values above the upper end of the channel is con-
cerned — with an electric dipole source being perpendicular to the neighboring conductive
path. We note that:

Only when there is a significant component of the emitting dipole source perpendicular
to the conductive path, the phenomenon of the “over-amplification” may become of
paramount importance (§ 1.7.2.3 and § 1.7.3).
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1.7.2 Analytical studies related to the explanation of the SES properties

All the analytical studies mentioned in this section have been made in the static approxima-
tion, but we draw attention to the point that, as summarized in Section 1.8 (and explained
in detail in chapter 8 of Ref. [125]), approximately the same conclusions hold for low
frequencies which are of interest for the case of SES (i.e., < 1 Hz).

The electric field due to a dipole source being oriented either parallel or perpendicular
to a neighboring high conductivity path of conductivity o embedded in a less conductive
medium of conductivity 6’ (occasionally also labeled O}, ), was investigated in chapter 6
of Ref. [125] (see also Refs. [147, 144]). Two ideal paths were considered: a cylindrical
channel (radius R) of infinite length, and a conductive layer (width w) of infinite extent,
see Figs. 1.31(a) and (b), respectively when the dipole source is parallel to the conductive
path, and Figs. 1.32(a) and (b), respectively when the dipole source is perpendicular. When

(a) (b) X

A w
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o
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X

B B w
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W

Fig. 1.31 (a) Current dipole lying inside (case A) or outside (case B) but parallel to the main axis of a
conductive cylinder (radius R and conductivity o) of infinite length embedded in a host medium with
conductivity 6'(6 > o). (b) Current dipole lying inside (case A) or outside (case B) but parallel to the
surface of a conductive layer of infinite extent (width w, conductivity o), which is embedded in a host
medium with conductivity 6'(¢ > ¢”). Note that the host medium conductivity ¢ is labeled 6}, in the
figure (and occasionally used in the text). Reprinted from Ref. [125], Copyright (2005), with permission
from TerraPub.
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W Fig. 1.32 A current dipole source
' D perpendicular to a conductive path.
/‘ ——————————— ~--=C -y The emitting dipole lies at a distance

A source D from a conductive cylinder of infi-

nite length and radius R (a) or from a
conductive layer of infinite extent and
: o width w (b). The host medium con-
ductivity, labeled oy, in this figure, is
alternatively label ¢’ elsewhere (while
. the conductivity of the path is always
2 a : labeled o). Reprinted from Ref. [125],
w Copyright (2005), with permission
' ‘ from TerraPub.
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the source lies outside the conductive path, the distance D between the source and the path
is also shown in Figs. 1.29 to 1.32.

The amplitude of the component of the electric field E, at points lying on the z-axis,
shown in Figs. 1.31 and 1.32, and thus inside the path is hereafter labeled E;;;ze-

As an example, we consider the case A of Fig. 1.31(a) and present in Fig. 1.33(a)
the amplitude E;,q. of the electric field component E, along the axis of the cylinder at
p = 0 versus the distance d = z from the dipole. The ratio of Ej, ;4. over the corresponding
amplitude of the electric field for a full space of conductivity ¢’ (labeled Ej,y) is shown
in Fig. 1.33(b). For a given conductivity ratio, the ratio Ej,sige/Epos reaches a maximum
value, larger than unity, at a certain (critical) reduced distance — labeled (d/R).,;| — and
then decreases approaching unity at larger distances. This reflects, if we recall that Ej,
varies with distance as 1/ d3, the following conclusion.

When studying at (reduced) distances smaller than (d/R).; |, the value of Ej,gq. de-
creases (versus distance) at a rate slower than 1/ d3.In particular for distances smaller than
the inflection point (d/R);, s, an almost parabolic increase of the ratio Ejygige/Epog is no-
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ticed in Fig. 1.33(b), and hence Ej,i4. o 1/d. Estimating the inflection point (d/R);, s of
the curves in Fig. 1.33(b), we find that (d/R).; | exceeds (d/R); s by a factor of around
2.5. At distances much larger than (d/R).; |, the value of Ejq, varies as 1/ d? approach-

ing Epost-
We now summarize below the main results deduced [125] for large conductivity ratios

c/ o’ and for distances (d), between the source and the measuring site, of practical interest.

1.7.2.1 Dipole source parallel to the path of infinite length

This is the case depicted in Fig. 1.31. The main conclusions are [125]:
(a) The amplitude Ej,q. of the electric field inside a cylindrical channel is found to
vary as 1/d, compared to an 1/d? behavior in an isotropic and homogeneous medium; this
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holds, as mentioned in the example of Fig. 1.33, almost up to a certain (reduced) distance
(d/R)ing1, which increases with the conductivity ratio 6 /o’

(b) The value of Ej,qe, inside a layer of width w, varies as 1/d?; this holds up to a
certain (reduced) distance, d/w, which is around (1/¢)(c/0").

(c) For conductive paths (cylinder or layer), and at distances d appreciably longer than
those mentioned above in (a) and (b), the amplitude of the electric field Ej;; ;s becomes
comparable to Ejp,, i.e., to the value that would be measured for a full volume of
conductivity ¢”.

This holds irrespective of the fact that the source lies inside the path or outside of
it (under the condition that the distance D of the dipole source from the path is much
smaller than d). It implies a high value of the current density inside the path, ji,side,
because jinside/jhost ~ O-/G/-

1.7.2.2 Dipole source perpendicular to the path of infinite length

This is the case depicted in Fig. 1.32. The main conclusions are [125]:

(a) The amplitude E;,;q4. of the electric field inside a cylindrical channel increases with
the distance d up to a certain distance from the source, and then, at larger distances, de-
creases. Furthermore, for long (reduced) distances d/R, the value of Ej,4., decreases
upon increasing the distance D of the source from the path, in a way approximately equal
to 1/D; this holds only up to a value of D which exceeds R by a factor of around 10. In
general, for long distances d /R, and for small values of D/R, the value of E;;;4. varies as

1/(D/R).

The value of Ej,q. at long (reduced) distances d /R becomes comparable to Ej, for
a dipole source relatively close to the path, e.g., D/R ~ 5-10 (which implies a high
value of the current density inside the path, because jinsize/jrost = 0/0’). At even
smaller distances, e.g., D/R ~ 2, E;,siq. may exceed Ej,s by a significant factor, e.g.,
by a factor of 10, thus implying that jisize/ jnos: 1S appreciably larger than 6 /0.

The ratio Ejnsige/Enosr versus d/R reaches a maximum at a certain value (d/R)crir. 1
which is approximately equal to that found (d/R).,;, for a dipole parallel to the path.
This maximum, which significantly exceeds unity when the dipole lies at a small distance
D/R =2 from the path, e.g., see Fig. 1.34, has a special importance for the effect of over-
amplification, see below.

(b) The amplitude E;,;q. of the electric field inside the conductive layer increases with
the distance d/w, reaches a maximum when d starts to become comparable with D, and at
larger distances (d /w), decreases reaching finally the 1/d> behavior.
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At very long (reduced) distances (e.g., d/w = 10?), the value of Ejyiq. does not prac-
tically depend either on D or w (for a dipole source relatively close to the path) and
becomes comparable to Ej,,, thus implying a high value of the current density inside
the path.

1.7.2.3 Dipole source close to a path terminating inside the host (more resistive)
medium. The case of over-amplification

If a conductive path terminates inside the host (more resistive) medium, then at some
points of the host medium close to the termination of the path the amplitude of the electric
field, labeled E,yige, exceeds Ejyg by a factor ~ 6 /6’ due to current conservation, e.g.
see Fig. 1.44. We focus, however, below on certain cases where the ratio Eyyysige/Enost be-
comes even larger than 6 /6’ which, as mentioned (§ 1.7.1), is called “over-amplification”.

In general, in order to have over-amplification, i.e., Epysige/ Enoss > 0 /0, the condi-
tion required is Ejygiqe/Enose > 1 along the perpendicular to the interface at the termination
point. Therefore, cases of conductive paths with infinite length that have been found to
fulfill, in a certain region of d/R values, the condition Ejg4./Enos: > 1, are candidates
for over-amplification when they happen to terminate (inside the more resistive medium)
approximately in this region. Such regions of d/R values have been noted above in both
cases, i.e., when the current dipole source is either parallel or perpendicular to a highly
conductive cylinder of infinite length, see Figs. 1.33(b) and 1.34, respectively. It was men-
tioned that, for a given conductivity ratio, the ratio Ej,4./Epos: versus d /R shows a max-
imum at a distance (d/R).,i. Comparing the corresponding values from these two figures
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and considering that the curves Ej, 4./ Enos versus d /R have a considerable full-width half
maximum (see Figs. 1.33(b) and 1.34), we may conclude that, for the same conductivity
ratio, they maximize almost at the same region of d/R values. This fact, i.e., (d/R)¢yir.1 is
almost equal to (d/ R)mz.” (already mentioned above), implies that the corresponding crit-
ical value (d/R).ri when the dipole source forms any angle between 0 and 90° is almost
the same, i.e.,

(d/R)crie = (d/R)cril.H ~ (d/R)crir. L (L.71)

It should be emphasized, however, that, when comparing the two orientations of the
dipole source, the corresponding critical values of the ratio Ejugige/Eposr» Which will be
labeled (Ejuside/Enost )crit» are quite different.

In particular, a current dipole source perpendicular to a conductive cylinder is in gen-
eral expected to show, for small values of D/R, a stronger over-amplification than
that of the parallel one when the termination occurs in the range of (d/R);. In other
words, the value of (Einside/Ehost )crir. L is markedly larger than (Eiside /Enost )crit. |-

Concerning the electric field E,,; 55, Wwhen a dipole source forms a certain angle with
a neighboring highly conductive path terminating inside the host medium, the following
points emerge [144] (see also section 6.4 of Ref. [125]).

(1) The direction of E,z. close to an edge is regulated by the angle between the
emitting dipole and the conductive path as well as by the distance from the source.

(2) The amplitude Ey;yiqe is usually larger than that of Ej,, by a factor of around 6 /07,
but there are also some cases of over-amplification, i.e., the value of E,sige / Enosr €xceeds
the conductivity ratio 6/6’. Such an over-amplification may also occur in the cases of
conductive paths that are not connected.

(3) The amplitude E, sz, versus the distance r from the edge varies only slowly, i.e.,
Eusside < 1/ r? where 0 is around (but smaller than) unity.

Concerning an elongated conductive spheroid, which may approximate an elongated
conductive body, the following conclusions hold as far as the over-amplification is con-
cerned [144] (see also pp. 149-153 of Ref. [125]):

(1) A dipole source produces over-amplification when lying either perpendicular to a
neighboring conductive path (terminating at a critical reduced length) or close to (and
lying on the major axis of) an elongated conductive spheroid (body).
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(ii) Elongated conductive spheroids “amplify” the remote electric fields by a factor of
around 6 /6’ at the most (see Fig. 1.35), while with a nearby emitting electric dipole source
(lying on the major axis) they may lead to over-amplification without requiring so much
elongation.

(ii1) An electric dipole of finite length that approaches perpendicularly an elongated
conductive body, may give rise to over-amplification provided that one pole of the
source is very close to the body.

As for the amplitude of the electric field, the following two properties have been proven
(see pp.150—151 of Ref. [125]).

When changing the distance D of a dipole source that lies on the major axis and ap-
proaches the one end of an elongated conductive spheroid, the amplitude of the electric
field surrounding the other end varies as ~1/D.

A dipole source at a small distance D from one end of an elongated conductive spheroid,
produces electric field values which vary with the distance r from the other edge as 1/r9,
where 6 < 1, in accordance to the point (3) mentioned above.

1.7.3 Direction of the maximum principal stress with respect to the neighboring
earthquake fault

In the late 1980s it was reported that the direction of the maximum horizontal principal
stress near the San Andreas fault is in general nearly perpendicular to the fault (see Ref.
[166] and references therein). However, Scholz [96] pointed out that the directions reported
to be nearly fault normal in central California do not correspond to regional stresses but
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are a result of active folding within folds that have been rotated 20°-30° clockwise from
their original orientations. A debate followed on this issue (e.g. see Scholz [97]), which
could be alternatively seen as diversity of views on whether the San Andreas fault is weak
(or strong) relative to the surrounding crust. Some details can be found in pp. 157-158
of Ref. [125], but here we keep as a conclusion that one could compromise the current
aspects as follows:

The maximum horizontal principal stress near the fault, is normally oriented at an an-
gle of 30°-60° with respect to the normal vector to the fault, but may be perpendicular
to the fault if the fault has a low coefficient of friction.

This, under the simplifying assumption that the emitting current dipole source is ori-
ented parallel to the maximum principal stress along a fault (which seems to be true, at
least, in the frame of either the pressure stimulated currents SES generation model (§ 1.6.2)
or the deformation-induced charge flow phenomenon (§ 1.6.4), implies the following: The
existence of a significant component perpendicular to the fault cannot be anyhow ignored,
because as explained above (§ 1.7.2.3) a dipole source perpendicular to a nearby conduc-
tive path may result in over-amplification.

Thus, we conclude that it is very likely that there exists a considerable current dipole
moment component perpendicular to the fault. This may be of major importance when
calculating the electric and the magnetic field at sites close to the upper end of the
channel, because it may give rise to over-amplification.

1.7.4 Explanation of the SES properties based on analytical studies

Earthquakes (EQ) occur by slip on faults which may have lengths of several tens of kilo-
meters and widths of a few to several hundred meters (for example, in the San Andreas
fault, the cataclasite fault core has a width of the order of 10-100 m, e.g., see Ref. [14]).
The resistivities of faults have been found to be around a few 2 m to 10 Q2 m, thus being
10% to 103 times more conductive than the surrounding medium, which, at a usual depth of
5-30 km, has a resistivity of 10% to 10* Q m. Thus, in the case of SES, the emitting source
(i.e., the EQ preparation zone, where stresses are “accumulating” before rupture) should
lie at a small distance D from a neighboring conductive path with a large conductivity
ratio, e.g., 0/ o’ =102 to 103 or so. The length of a fault, which is of the order of several
tens of km, is drastically larger than its other two dimensions. Therefore, the situation,
although in reality lies between the two ideal conductive paths discussed in § 1.7.2, may
be better approximated by a conductive cylinder (radius R) rather than a conductive layer
(width w).
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1.7.4.1 Explanation of the selectivity effect

We show below that, if the electric field measurements are carried out at a distance d
(e.g., d = 100 km) much longer than the distance D between the emitting source and the
neighboring conductive path, the SES detectability does not depend on the exact values of
the distance D or the width of the path.

Since d > D, w, R, the emitting source is usually assumed to be a point electric dipole.
A value of dipole moment p = 8 x 10~* Cb - m was estimated by Slifkin [100, 101], see
§ 1.6.3.2, assuming a modest value for the density of dislocations and considering a slab
with a length of L ~ 1 km and a cross-sectional area of 1,000 m x 100 m = 0.1 km?.
This equivalently results in a current dipole moment /I = 22.6 Akm when assuming

Prost = 4,00002 m and considering /] = & ;; - giving rise, as mentioned (§ 1.6.3.2), to

an electric field of 7 mV/km at distances of 10 km. A typical seismic source of an EQ with
(magnitude) M ~ 5, however, has a length of around 5 km [13] and a cross-sectional area
of around 1 km?.

Therefore, when disregarding — for the purpose of our calculation — factors of around
2, or so, we may estimate that the relevant emitting source for a M ~ 5 EQ should have
[147] a dipole moment two orders of magnitude larger than that estimated by Slifkin
[101], hence Il ~22.6 x 10> Akm.

This value will be used below (see also § 1.8.4), although we could have accepted larger
values due to a probably larger density of dislocations.

Estimation of the electric field at remote distances. For long distances of practical in-
terest, e.g., d/R ~ 200 or d/w = 200, if the dipole source is parallel to the path for any
value of D lying in the range from a few to 10 km, the amplitude of Ej ;4. is of the order
of Ep,g, see point (c) in § 1.7.2.1. This is of the order of 1 mV/km (= Ej,y ) at distances
d ~ 100 km, as can be seen for example in Fig. 1.36, see the asterisks. The same is true for
a dipole with an orientation perpendicular to the path; see § 1.7.2.2 (in cases where there
is no overamplification).

The electric field Ej,; (=1 mV/km) will be enhanced, as mentioned in § 1.7.2.3,
by a factor almost equal to the conductivity ratio /0’ (or even larger due to over-
amplification; see below) if the measurements are carried out in the vicinity of the ter-
mination of the conductive path. Thus, at certain sites lying at distances d ~ 100 km,
electric field values of the order of at least around 10 mV/km are expected which are
well above typical noise levels.

Hence, if we make reasonable assumptions, the SES detectability at certain remote sites
(sensitive sites) becomes clear as long as d > R (or d > w), and d > D.
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Fig. 1.36 The amplitude
Ejnside versus d /R, for various
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3,5, 10 km, see the inset)
of the emitting dipole from
a given conductive cylin-
der (R = 500 m). For values
d/R ~ 2 x 10% or larger, all
curves practically coincide.
The points with asterisks cor-
respond to d ~ 100 km. The
dipole moment is 10% times
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107! that estimated by Slifkin
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In other words, an explanation of the selectivity effect of SES becomes evident, if we
just consider the fact that the emitting current dipole source lies in the vicinity of a path
appreciably more conductive than the surrounding medium and that the measurements

are carried out in the more resistive medium close to the termination of the conductive
path.

The orientation of the emitting dipole source is likely to be around the normal to the
neighboring fault (see § 1.7.3) which may result in the over-amplification phenomenon,

thus strengthening the importance of the “edge effects” concerning the SES detectability
at remote sites.

Therefore, detectable electric field values are found in two regions (‘“‘sensitive sites”)
only: first, at sites in the region just above the source (e.g., d =~ 10 km, due to the
small attenuation if the source depth is not too large) and second, at those remote sites

(e.g., d = 100 km) of the Earth’s surface lying close to the upper end of a path (if it
terminates near the Earth’s surface).

We clarify, however, that when the depth of the source increases, the electric field in the
first region becomes smaller and hence (for appreciably large depths) may lie below the
detectability limit (see the electric field numerical calculations below in § 1.7.5.2); on the
other hand, the values in the second region remain practically unchanged provided that the
termination of the conductive path is close to the Earth’s surface.
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Hence, the electric field may reach measurable values at remote sites, but may be not
at shorter. This behavior has been experimentally observed (§ 1.3.4).

1.7.4.2 Explanation of the use of the ratio of the two SES components to determine
the EQ epicenter

As already mentioned in § 1.7.2.3, the direction of the electric field E, 4. close to the
termination of a conductive path (at sites lying in the more resistive medium) is regulated
by the angle between the emitting dipole source and the conductive path as well as by
the distance d of the source from the measuring site. Therefore, if we assume that, for a
given seismic area, the mechanism of the build up of stresses remains the same (which
of course does not always hold, e.g., see Ref. [125]), thus reflecting almost the same di-
rection of the emitting dipole source, the relevant earthquakes should give, at the same
measuring (remote) site, SES with the same direction, and hence the same ratio of the two
SES components. On the other hand, two different epicentral areas, which are likely to
have in general different directions of accumulating stresses as well as different epicentral
distances, should correspond to different ratios of the SES components (measured at the
same remote site).

This provides an explanation of the fact that the ratio of the two SES components has
been used (see § 1.3.5) for the estimation of the epicentral area of an impending EQ.

1.7.5 Electric field numerical calculations explaining the selectivity effect

1.7.5.1 The procedure for the numerical simulation of the selectivity model

We now explain how we simulate the model of Fig. 1.29 studied in Ref. [90]. Since we are
interested in the case where the focal depth is within the range of 5-50 km, we can safely
assume that the “host rock™ has a host resistivity between 10> 2 mand 10* Q m [147]. As
a first approximation, we select the value pj,, =4 x 103Q m. The surface layer with depth
50 m has a typical resistivity value pg = 200 £2 m. The resistivity py of a fault is known
to be around 10 2 m (or smaller see § 1.7.4), giving the conductivity o, of the channel,
o, = (1/py) =0.1 S/m (e.g., Ref. [145]). Concerning the width w of the channel, we may
assume values of the order of 100 to 1000 m (§ 1.7.4). Calculations have been made with
various w values, e.g., w = 500 m in Refs. [145, 90] or w = 800 m in Ref. [91], and it was
found that the essence of the main conclusions is not affected by the exact w value chosen.
A value Az =~ 500 m was assumed for the thickness Az and hence the channel conductance
T = 0.Az is 50 S. The same value of 7 results, if we alternatively consider for example
Pr=28m, Az=100 m or py =1 Qm, Az = 50 m, etc, thus the resistivity contrast
Phost /Py is of the order of 103.



80 1. Introduction to Seismic Electric Signals

For reasons explained in § 1.7.4.1, the dipole source associated with a M ~ 5.0 EQ
should be around /I = 22.6 x 10> A km and hereafter the calculations will be carried out
by using this value except otherwise stated. The current dipole is assumed to be oriented
along either the x-axis or the y-axis and its projection on the Earth’s surface lies at a
distance of 100 km from the point “O” (see Fig. 1.29) with coordinates (0,0,0). The latter
point represents the projection of the channel’s upper end on the Earth’s surface.

In summary, the conductivity structure involves a two layered Earth (with a 50 m sur-
face layer with resistivity pg =200 Q2 m, and a host with resistivity ps,s = 4000 2 m) and
a conductive channel with resistivity p. = 10 £ m. The dimensions of the channel were
taken either 500 m x 500 m x 100 km or 500 m x 500 m x 200 km for the cases A and B
of Fig. 1.29, respectively. The conductive channel was modeled by a thin sheet (depicted
in the insets of Fig. 1.29(A) and 1.29(B)) of conductance T = 50 S. In other words, the
conductive channel was modeled by a slightly dipping conductive thin sheet. The results
were obtained in a frequency range around 10~2 Hz by running the EMIDSH program
(Hoversten and Becker [37]), with two different rectangular grids of 6 x 150 and 5 X
200 cells, on HP 735 or a Sun Ultra Enterprise 450 digital computer (note that a larger
number of cells have been also used; see § 1.7.5.3). Only the electric field values that have
discrepancy less than 20% between the two discretizations were used for further analy-
sis; the error bars in the diagrams depict the extent of this discrepancy. The real problem
was studied by a scaled model L,, = 10~"L,,, following the “similitude relationship” (see
Refs. [145, 165]) that relates the corresponding frequency @, magnetic permeability p,
conductivity o, and length scale L of a real world (w) problem to a model () problem:

wm.umeL,zn = ww.uwchgv- (1.72)

Of course, the current source was scaled by the corresponding factor 10~7 mentioned
above.

1.7.5.2 Numerical results when assuming point dipole current source

Let us consider the case when the dipole source (oriented along the x-axis) is almost paral-
lel with a neighboring conductive sheet. Following § 1.7.5.1, Fig. 1.37 depicts the results
of the calculation for the case of a model shown in Fig. 1.29(B) (with D = 5 km and
w = 500 m, see Fig. 1.37(D)). All the values have been reduced by the magnitude Ej,
(—100,0,0) of the electric field (=700 mV/km) that would be measured just above the
source on the Earth’s surface in absence of the channel. The distribution of the absolute
values of the horizontal component E, of the electric field on the XZ plane, ¥ = 0 and
on the XY plane, Z = 0, i.e., at the Earth’s surface, is shown in Figs. 1.37(A) and 1.37(B)
respectively, while Fig. 1.37(C) depicts E), at the Earth’s surface. Since “artificial” noise is
usually of the order of 1 mV/km, Fig. 1.37(B) indicates that:

For a M =~ 5 earthquake, there are two regions on the Earth’s surface in which Ej is
detectable, i.e., larger than 10 mV/km: one region lies close to the channel’s upper end
and another one just above the source.
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Repeating the calculation for larger depths of the source and comparing the values in
these two regions, we find the following [90]: the electric signals may become stronger
close to the channel’s upper end than directly above the source at a depth z = 50 km. In
such cases a signal may be detected at larger epicentral distances, but not at shorter.

As for the case of Fig. 1.29(A), i.e., a dipole source close to the bottom of an almost
horizontal conductive sheet, the results can be found in Ref. [145].

1.7.5.3 Numerical results when assuming a current dipole source of finite length

In order to better approximate [91] the real situation, the emitting source is now assumed to
be an electric dipole of finite length, i.e., [ = 2 km, centered at x = —100 km, y = —1.5 km
at a depth z = 5 km with /] = 22.6 x 10> A km. The dipole is oriented either perpendicular
(i.e, along the y-axis) or almost parallel (i.e, along the x-axis) with respect to a 200 km
long conductive sheet of width w = 800 m. As in § 1.7.5.1, the sheet was buried in a two
layer Earth, with a surface layer having resistivity 200 £2 m and thickness 50 m and a host
medium with pj,s = 1/06" = 4000 Q m; the conductance of the sheet T = oA, was again
chosen to be 50 S. Discretizations of the order of 2,000 to 3,000 cells were used. The error
bars in Fig. 1.38(a) depict the standard deviation on the average result obtained for each
case after running several discretizations on a SUN Enterprise 450 digital computer.

Figure 1.38 depicts the results when the current electric dipole is perpendicular to the
conductive sheet. In Fig. 1.38(a), the ratio E/E},,, is shown at sites along the projection
of the channel on the Earth’s surface. At sites above the upper end of the sheet, the ratio
reaches appreciably large values, i.e., of the order of 10*. This is probably due to “over-
amplification” (see §1.7.2.3), if we recall that the electric field may reach values even one
order of magnitude higher than Ej,y(6/06")(= 400E.y, if p = 1/0 = 10 Q m). Figure
1.38(b) shows the electric field lines on the Earth’s surface in the region above the source.
In Fig. 1.38(c), we depict the logarithm of their ratio E/Ej, in the region around the
upper end of the channel; this figure (when also considering that Ej,;; ~ 1 mV/km, see
Fig. 1.36 and § 1.7.4.1) reveals the existence of a SES-sensitive region (E ~ 10 mV/km)
with dimensions of the order 20 km x 4 km elongated along the projection of the chan-
nel on the Earth’s surface. This compares favorably with experimental results at IOA
(§ 1.3.4).

Thus, the numerical calculations reveal that the extent of a SES sensitive site is of the
order: (a few tens of km) x (a few km), as the experiments show.

Note that the corresponding results when the extended dipole is oriented parallel with
the sheet show [91] that the values of the ratio E/E},,, are roughly one order of magnitude
less than those in Fig. 1.38(a), thus indicating that no “over-amplification” occurs in this
case.

The case of an “artificial” noise. The aforementioned numerical results reveal that
actually a dipole source perpendicular (and very close) to the path produces appreciably
larger electric fields compared to those of the parallel orientation. The situation changes
(see Fig. 1.39), however, when considering a source lying on the surface of the Earth,
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Fig. 1.38 The case of an electric dipole of finite length perpendicular (see the inset) to the conductive path.
(a): The ratio E /Ep, at sites along the projection of the sheet on the Earth’s surface. (b): The electric field
lines in the region above the source. (c): The quantity log,o(E /Epes ) in the region close to the projection
of the upper top of the channel on the Earth’s surface. Reprinted from Ref. [125], Copyright (2005), with
permission from TerraPub.
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Fig. 1.39 The case of the emission of an “artificial” noise, e.g., an extended electric dipole lying on the
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as in the case of an “artificial” (man-made) noise. In this case the results are depicted
in Figs. 1.39(a) and 1.39(b), which correspond to the same dipole source located either
perpendicular (a) or parallel (b) to the projection of the sheet on the Earth’s surface. They
show that the values of the ratio E /E},, are now almost independent of the orientation of
the source.

More importantly, a comparison of Fig. 1.39(a), or 1.39(b), with Fig. 1.38(a), reveals
that an “artificial” noise source produces appreciably smaller (=2%) electric field val-
ues than the SES-emitting dipole source.

1.7.5.4 Main conclusions of the electric field numerical calculations

The electric field numerical calculations reveal the following:

(1) The simple model of Fig. 1.29 (or Fig. 1.30) assumes that a dipole current source
lies in the vicinity of a conductive channel, which terminates below the Earth’s surface.
This results in electric field E that is significantly intensified (compared to the case with no
channel) in the region above the upper end of the channel (hereafter called AEC). Assum-
ing that AEC lies at epicentral distances of d ~ 100 km, this model can explain that: (a)
the electric field values (hereafter called E values) at AEC are larger than those measured
at points on the Earth’s surface that may lie at shorter epicentral distances (note that for
source depths larger than a certain value, the E values at AEC may even become larger
than those measured at the Earth’s surface just above the source); (b) assuming current
source dipole moments consistent with M ~ 5 EQ, the E values at AEC are detectable
(>10 mV/km).

(2) Comparing the numerical results when a dipole of finite length is oriented either
perpendicular to or parallel with a neighboring conductive path, we find that, in the former
case, the E values above the AEC are appreciably larger than in the latter.

(3) Current aspects (see § 1.7.3) reveal that a SES-emitting dipole source has probably
a significant component perpendicular to the neighboring fault. Therefore, in view of
the previous conclusion, the intensification of the E values above the upper end of
the conductive path is expected to be large (since over-amplification then occurs). In
this case, the numerical calculations show that the SES-sensitive region is an elongated
one, having dimensions of the order a few tens of km x a few km (e.g., see Fig. 1.38(c))
in agreement with the experimental findings.

1.7.6 Magnetic field calculations

Analytical studies of the magnetic field in the presence of highly conductive bodies, e.g.,
paraboloid, spheroid and cylinder, embedded in a less conductive medium can be found
in chapter 10 of Ref. [125] (see also Ref. [146]). Here, we solely focus on numerical
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simulations of the magnetic field related with the model described in § 1.7.1, that has been
suggested for the explanation of the SES selectivity effect. In particular, since the presence
of a conductive sheet may change both the horizontal and the vertical component of the
magnetic field, we will summarize below whether our modeling reveals that generally the
following two inequalities hold:

Bh/Bh,luyer < Bz/Bz,luyer (1 73)

and
By > Bz (1 74)

where the symbols Bj, and B, denote the horizontal (/) and the vertical (z) components of
the magnetic field in the presence of the conductive sheet, while the subscript “layer” refer
to the cases in the absence of the sheet. The inequality (1.73) is reminiscent of the well
known result [18] that near the edges of conductivity contrasts the vertical magnetic field
is enhanced for surface (or MT) sources.

We now summarize the main features of the results for the magnetic field near the upper
end of an almost horizontal conductive sheet:

(1) When the dipole source lies in the same vertical plane (xz plane) with the main axis
x of the elongated sheet as in Fig. 1.29(B), the presence of the sheet results in: (a) larger
(relative) increase of the vertical component of the magnetic field compared to that of the
horizontal one, i.e., the inequality (1.73) holds; (b) the By, value still remains larger than
B, i.e., the relation (1.74) holds (B;, > B;).

(2) When the dipole source lies almost in the same horizontal plane with the sheet (e.g.,
if the dipole depth in Fig. 1.29(B) is decreased to 5 km): (a) If the dipole is parallel to the
main axis of the sheet, the magnetic field is mainly horizontal as in the case of no sheet.
(b) With a dipole perpendicular to the main axis of the sheet, the magnetic field is tilted
leading to a dominant vertical component. Studying various orientations (see Fig. 1.40)
of the dipole with respect to the main axis of the sheet, we find that, when the dipole is
oriented around the normal to the sheet, the magnetic field near the upper end of the sheet
has a dominant vertical component.

(3) When the electric dipole is located close to the center of the conductive sheet (for
example, if in Fig. 1.29(B) the dipole lies 5 km deeper than the center of the channel, i.e.,
at a total depth of 10 km), and is oriented —52° to +53° with respect to the normal to
the sheet, the magnetic field has a dominant vertical component near the upper end of the
sheet.

In view of the aforementioned features, the magnetic field variations accompanying the
SES are likely to have a dominant vertical component, since the SES current dipole
source is expected to have a considerable component directed around the normal to the
fault (see § 1.7.3).

In order to get an insight into the amplitude of the magnetic field variations that accom-
pany SES for shallow (of ~5 km depth) earthquakes, we proceed below to the calculation
of the magnetic field for the current dipole source of finite length considered in § 1.7.5.3.
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m), are depicted. The spline curves have been drawn as a guide to the eye. Taken from Ref. [92].

Hence, the emitting source is assumed at a depth z = 5 km with 7/ = 22.6 x 10*> A km which
corresponds to a magnitude M ~ 5 earthquake (§ 1.7.4.1). Figure 1.41 depicts the results
when the current dipole source is perpendicular (i.e., along the y-axis) to the conductive
sheet, thus probably causing “over-amplification”, see also Fig. 1.38. Figures 1.41(a) and
1.41(b) show the amplitude of the total magnetic field B on the surface of the Earth, in the
region above the source (epicentral area) and above the upper end of the sheet, respectively.
The feature of the contours for the logarithm of the amplitude of the ratio B/Bj,,g, in both
regions, can be seen in Fig. 1.41(c). For both orientations of the emitting dipole source,
the calculated values of the ratio B,/B;, on the Earth’s surface, along the axis y = 2 km,
7 =0, are plotted in Fig. 1.40.

In view of these results, we now comment on the amplitude of the magnetic field vari-
ations accompanying SES. We clarify two cases:

(1) Epicentral area. A few km from the epicenter, the calculated B values are found
detectable, since they exceed 1 nT (see Fig. 1.41(a)).
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In addition we find that for current dipole moments related to stronger EQs (i.e.,
M 2 6.5), the B values at distances of the order of 10 km are well above 1 nT, thus
being clearly detectable.

This expectation, compares favorably with the experimental observations, e.g., those by
Fraser-Smith et al. [25].

(2) Upper end of the conductive path. When the measuring site is located at a reason-
able distance (e.g., about 1 km) from the projection of the conductive path on the Earth’s
surface: (a) for EQs of magnitude M = 5, the B values are of the order of 10711072 nT
(Fig. 1.41(b)) which are not readily detectable (because they are usually smaller than the
cultural noise); (b) if we repeat the calculation for larger current dipole moments, e.g., for
M = 6.5 (by applying Eq. (1.1)), we find B values, with a prominent B, component, of the
order of 1 nT.

It is therefore expected that at epicentral distances of ~100 km the B-variations are
detectable only for earthquakes with M = 6.5 or larger. This has been actually experi-
mentally observed (see § 1.3.6).

1.7.7 The physical background of the AV /L criterion to distinguish SES from noise

Here, we review the physical basis of the AV /L criterion (see Section 1.2 and § 1.2.3)
on the basis of which, if long dipoles and short dipoles are simultaneously operating, a
SES identification can be achieved. In § 1.7.7.1, the simple case of a homogeneous half-
space or a horizontally layered Earth is presented. The study is extended in § 1.7.7.2 to
the case of a conductive edge embedded in a homogeneous medium by making use of the
analytical solutions for the electric field in the following cases: a paraboloidal edge and a
spheroid. Numerical investigations are also presented in § 1.7.7.3 when studying the SES
transmission model discussed in § 1.7.1. Throughout this subsection, the measuring long-
and short-dipoles are assumed to be horizontal.

1.7.7.1 Homogeneous half-space or horizontally layered Earth

We first discuss below the case where a single long (measuring) dipole is operating, which
is collinear with the noise source and a short (measuring) dipole. This is the case (2)
mentioned in § 1.2.3.

Let us consider a short (measuring) dipole AB (e.g., L = 50 m) and a long (measur-
ing) dipole AI" (e.g., L =5 km) which lie on a straight line (Fig. 1.42). Although we
assume here, that these dipoles have a common electrode A, this never occurs in practice
(Section 1.1), because we use independent neighboring electrodes in order to avoid the
electrochemical noise, e.g., due to rain (see § 1.2.2). We designate with p the distance of a
current (point) dipole noise source N (grounded at the Earth’s surface) from the measuring
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Fig. 1.42 Definition of the angles ¢ and 0 (and the distance p
of the noise-emitting dipole N from the measuring site) with
two measuring dipoles: a long dipole AI" and a short dipole AB.
Taken from Ref. [145].

site (which, by definition, is the site of the short dipole’s deployment A-B), while ¢ de-
notes the angle between the position vector of the noise and the direction of the measuring
dipoles and 6 the angle between noise source dipole moment and the measuring dipoles.
We assume, as mentioned, that the two measuring dipoles and the noise source lie on a
straight line, i.e., ¢ = 0 or ¢ = 180°.

The calculations (static, since we are interested for frequencies f ~ 107>~103 Hz)
were performed by the method of images [165]. The series of image charges contribu-
tions was summed up numerically so as to obtain an accuracy of 1 ppm. The results were
compared to those obtained by the EM1DSH program (Hoversten and Becker [37]).

The AV /L value for the long measuring dipole is just [¢(A) — ¢ (I")] /L, where ¢ (A) —
¢(I") is the (electric) potential difference between A and I and L is the length (AI"). The
calculation was made in each case: (i) either by representing the Earth with a half-space,
having resistivity pp = 4 x 10> Q m, or (ii) with a two (horizontal) layer Earth having
a surface layer of thickness 50 m with resistivity p; = 200 2 m and a basement with
Po=4x 10 Q m. The detailed results can be found in Refs. [145, 143]. Here, we shall
present only some typical examples, in which we assume a current dipole noise source
with Il =1 Am.

The following three quantities are plotted in Fig. 1.43: the AV /L values recorded by
the short dipole (L = 50 m) and the long dipole (L = 5 km), as well as their ratio, i.e.,
“AV /L of the long dipole” / “AV /L of the short dipole”. The latter quantity labeled “Ratio
(Long/Short)” is depicted with a solid line (it corresponds to the left vertical scale). The
former two quantities, i.e., the AV /L values, are depicted with dotted and broken lines,
respectively (they correspond to the right vertical scale).

Case A (¢ =0). The noise source and the remote electrode of the long dipole lie on the
same side with respect to the measuring site.

Figure 1.43(a) depicts the results for the two-layer model, which show that at long
distances, the “Ratio (Long/Short)” is around unity. As we move from +co to the site of
the remote electrode I, the “Ratio (Long/Short)” increases (note that this is one of the
cases recommended by Varotsos and Lazaridou [140] for an easy recognition of noise; see
Fig. 1.7(c)).

At shorter distances from the measuring site, i.e., p < (AI'), Fig. 1.43(a) shows that
the “Ratio (Long/Short)” goes down to negative values, thus leading to an even easier
recognition of noise.

As mentioned, Fig. 1.43(a) shows the results when the dipole moment is parallel to
the measuring (long and short) dipoles, i.e., 8 = 0. The study was extended to various
values of 6, i.e., from 0 to 180°, and the results show [145, 143] that although the AV /L
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values vary from case to case, the “Ratio (Long/Short)” retains the same behavior as in
Fig. 1.43(a) (cf. both AV /L values, for the short and long dipole, are positive for 8 < 90°
and negative for 6 > 90°).

Case B (¢ = 180°). The noise source N lies at the other side, with respect to the mea-
suring site, of the remote electrode I' of the long dipole.

Fig. 1.43(b) shows that the “Ratio (Long/Short)” approaches unity at large distances
[i.e., p > (AI')]. This ratio never becomes negative (and this why such an electrode de-
ployment was not recommended in Refs. [140, 131]), but it becomes markedly smaller
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than unity when the emitting source approaches the measuring site, e.g., p ~ 2(AI'), and
hence the noise becomes recognizable.

The results in Fig. 1.43(b) hold when the dipole moment of the emitting source is
parallel to the measuring (long and short) dipoles, i.e., 0 = 0. The study was extended to
various values of 6 and the results (for a half-space with py =4 X 10° Q m) are shown in
figs. 7.1.6 and 7.1.7 of Ref. [125]. These figures indicate again that, although the AV /L
values change from case to case, the “ratio (Long/Short)” retains the same behavior as in
Fig. 1.43(b).

Recall that in all cases treated above, the middle point of the short dipole AB does not
coincide with the middle point of the long dipole AI". We shall call such cases asymmetric.
We emphasize that the asymmetric configuration plays a decisive role in recognizing easily
the noise emitted from nearby “artificial” sources.

In short, the configuration recommended for an easy recognition of noise is the follow-
ing: the noise source and the remote electrode lie on the same side of the measuring
site, or simply when the remote electrode is installed very close to the noise source.

The study of the case (3) of § 1.2.3 which applies to the general case where noise source
is not necessarily collinear with the measuring dipoles, can be found in Refs. [125, 145,
143].

1.7.7.2 Conductive edges embedded in a more resistive homogeneous medium

Detailed analytical results for a paraboloidal edge have been reported in Refs. [147, 144,
90] (see also subsections 6.4.1, 6.5.1 and 7.2.1 of Ref. [125]) and for an elongated con-
ductive spheroid in Ref. [144] (see also subsections 6.5.3, 6.6.1 and 6.6.2 of Ref. [125]).

Let us now summarize these results by starting from the case of a paraboloidal edge (see
Fig. 1.44). Consider a paraboloidal region of conductivity o embedded in a host medium
of conductivity 6’. We assume the paraboloidal coordinates [69]

= Apcos(d), y=Ausin(o), z:%(lz—uz), (1.75)
where ¢ € [0,27], u,A € [0,00). The surfaces of equal A and u are parabolic surfaces of
revolution, and the equal ¢ surfaces are planes that intersect each other along the z-axis.
The results show that just outside the edge, the amplitude of the electric field E,,;s;4. (along
é,, see Fig. 1.44(d)) close to the vertex (but not very close to it) varies as o< 1/8, where o
denotes the distance of the measuring site from the surface of the paraboloid (but along €;,).
This 1/6 behavior, which seems to be a general one for “edge effects” (e.g., Ref. [144]),
could be explained, in the frame of the accumulation of charges close to the interface
between two media with different conductivities. At distances 0 of the order of the (linear)
dimension of the edge, the electric field decreases with & slower than the field of a point
charge (which varies as 1/8?), giving an almost 1/8 dependence. As the distance becomes
appreciably larger than the (linear) dimension of the edge, the field dependence turns first
to 1/ 82, and finally, at even longer distances, to 1/ 53, see Fig. 1.44(b). Furthermore, a
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study of the equipotential surfaces surrounding a (paraboloidal) edge shows that, in order
to find significant (and hence measurable) values of the electric field, we should measure
along &,. Thus, in order to detect measurable values of the electric field, according to the
usual formula AV /L, the line connecting the two electrodes should be perpendicular to the
surface of the edge(i.e., oriented along €;,). Since the electric fields show a “slow” variation
like «< 1 /8 — we conclude that they should show a small variation when the measurements
are carried out at neighboring sites such that L < 8. This is the basis of the AV /L criterion.
Furthermore, the calculations show that, if two measuring dipoles have lengths around a
few tens of meters and a few km respectively, they both give comparable AV /L values, if
they are both directed perpendicularly to the paraboloidal edge; see Fig. 1.44(e) and (f).
The same conclusion is reached for other cases of conductive edges, such as the electric
field E,,;5i4. at one end of the major axis of an elongated spheroid; see point (3) in § 1.7.2.3.

By summarizing, the physical basis for the validity of the AV /L criterion for the SES
stems from the following fact: at long distances from a dipole source but close to an
“edge”, the amplitude of the electric field exhibits a slow 1/8-behavior (or, in general,
1/ r?, where 0 ~ 1; see §1.7.2.3). Hence, the main characteristic of the distant source
assumption (see Section 1.2), i.e., the slow variation of the amplitude of the electric
field versus the distance when measuring along a certain direction at sites close to each
other, practically remains.

1.7.7.3 Numerical investigation of the AV /L criterion in the model proposed for the
explanation of the SES selectivity

In § 1.7.1, we considered the model of a conductive path terminating close to the surface
of a two-layer medium and found that the SES are detectable in the region above the upper
end of the conductive path. One may wonder, if the AV /L criterion still holds in this region.
Thus, we now comment on its validity in the model shown in the insets of Figs. 1.29(A)
and 1.29(B) by examining whether the “Ratio (Long/Short)”, i.e., the ratio of the AV /L
values for the long and the short dipoles, markedly differs from unity.

The case of the model of Fig. 1.29(A) has been studied in Ref. [145] by considering
the “Ratio (Long/Short)” (see § 1.7.7.1) for the asymmetric configuration of a set of a long
dipole (5 km) and a short dipole (50 m) placed at various distances from the projection
“O” on the Earth’s surface of the top of the conductive path. These (collinear) dipoles
were assumed to be placed parallel to the projection of the conductive path on the Earth’s
surface (which is the direction of the dominant electric field). The results show that only
at short distances from the top of the conductive path (i.e., a few times its width) the “ratio
(Long/Short)” markedly deviates from unity, as expected. Otherwise, this ratio approaches
unity (it only differs from unity by 20%, or so).

We now proceed to the case of the model of Fig. 1.29(B): Figures 1.45(A),(B) show the
“Ratio (Long/Short)” for the asymmetric dipole configurations of a set of a long dipole and
a short dipole placed at various distances x as shown in the top part of each figure, x being
measured from the projection on the Earth’s surface of the upper end of the conductive
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path. These figures again show that only at very short distances from the upper end of
the conductive path, and at small y-values (i.e., y = 0, 0.5 km), the “Ratio (Long/Short)”
markedly differs from unity, but it otherwise remains close to unity.

1.7.8 Explanation of the difference between SES polarization and MT polarization

We explain below that when measuring the SES, arising from an emitting dipole source
that forms a certain angle with the neighboring conductive path, close to an “edge” the
ratio of the two SES components is different from that of the MT variations at the same
frequency range.

Consider the case of Fig. 1.29(B) or Fig. 1.30(b), i.e., a current dipole source lying at a
distance D from a channel of high conductivity whose projection on the Earth’s surface is
assumed along x-axis. We use the same parameters (as well as the procedure of calculation)
as in § 1.7.5.2. The electric current dipole source (ECD) is assumed to be oriented along
either the x-axis or the y-axis. For the sake of comparison, the calculation is repeated for
a source, which is considered as an incident plane electromagnetic wave (PEM) circularly
polarized on the x—y plane. The results of the calculations (as far as only the direction
of the field is concerned) are given in Figs. 1.46(a) and 1.46(b), which correspond to the
cases when the ECD is assumed either parallel or perpendicular to the projection of the
conductive channel on the Earth’s surface, respectively. The polarization of the measured
electrical variations due to PEM is depicted, at each site, by a red circle or ellipse, and the
direction of the signal due to ECD by a short blue line.

We first discuss the results of the variations due to PEM. An inspection of Figs.
1.46(a),(b) shows that at those sites which are relatively far from the projection of the
channel on the Earth’s surface, there is no preferred direction and hence the results are
represented by circles. As we approach the projection of the channel, the circles transform
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Fig. 1.46 Calculated directions (red circle or ellipse for PEM and blue lines for ECD) of the electric field
at various points close to the projection on the Earth’s surface (thick yellow line) of the conductive channel
shown in Fig. 1.29B with w = 500 m. Panels (a) and (b) correspond to different orientations of the ECD,
i.e., along x-axis or y-axis, respectively. Each square corresponds to 1 km x 1 km. The source is located
at the point x = —100 km, y = 0.5 km, z = 0.5 km. For the resistivity parameters used see § 1.7.5.1. Taken
from Ref. [144].

gradually to ellipses. These results are compatible with those intuitively expected: for a
homogeneous half-space or for a horizontally layered medium, at large distances from the
channel, the electrical measurements should not show any preferred (horizontal) direction;
on the other hand, at short distances from the conductive channel, the direction along the
(projection of the) channel should correspond to larger electric fields than that perpendic-
ular to the channel.

We now turn to the discussion of the results concerning the direction of the measured
electric field due to ECD. This is mainly regulated from the orientation of the emitting
dipole, as can be seen from a comparison of Figs. 1.46(a) and 1.46(b). Since we are mainly
interested for sites close to the edge, Fig. 1.46(b) shows that when ECD is along the y-axis,
the electric field measured at sites close to the edge is in general almost perpendicular to
the projection of the channel on the Earth’s surface. On the other hand, in Fig. 1.46(a),
where ECD is parallel to the x-axis, the electric field measured at sites close to the edge,
forms with the projection of the channel an angle appreciably smaller than 90°. In other
words, the “polarization” of the signal due to ECD is drastically different in Figs. 1.46(a)
and 1.46(b), thus indicating that:

The information related with the directionality of the current dipole source is not “lost”
when the transmission of the current is taking place mainly through the conductive
channel.

It is evident that when ECD forms any angle ¢ (0 < ¢ < 90°) with the conductive
channel, the direction of the signals measured at sites close to the edge can be found from
a combination of Figs. 1.46(a) and 1.46(b). By studying the difference in the direction of
the electric field, measured at sites close to the edge between the cases ECD and PEM, we
find that it minimizes when the emitting dipole is almost parallel to the conductive path
and maximizes when the emitting dipole is almost perpendicular to the path.
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Thus, a considerable difference between SES polarization and MT polarization seems
likely to happen in most cases, since in the case of ECD there exists a significant
current dipole component perpendicular to the path as explained in § 1.7.3.

In other words, the SES direction is governed by the angle of the dipole source
with the neighboring conductive path. Thus, it does not have to coincide with the MT
polarization coming from circularly polarized EM waves “traveling” vertically.

1.8 Transmission of electric signals in dielectric media: time- and
frequency-dependence

1.8.1 The propagation regime and the diffusion regime of electromagnetic fields.
Isotropic and homogeneous medium

Following subsection 8.1.2 of Ref. [125], we restrict ourselves below to the simple case of
a plane wave of angular frequency @ propagating along the z-direction in an isotropic and
homogeneous medium of conductivity o. The electric field E is assumed polarized in the
x-direction:

E, = E, e(@~ k) (1.76)

and the magnetic field H in the y-direction:

Hy = Eok itar-k) (1.77)
Uo®

The complex wave number k here is determined by the condition that the fields E, H
should satisfy Maxwell’s equations; by inserting Eqgs. (1.76) and (1.77) into the equation
for the propagation of an electromagnetic field (which results from Maxwell’s equations):
9’E,

JE,
V2E, = o 5 TEl— 5 (1.78)

we find the following relation between the wavenumber, angular frequency and the mate-
rial properties ¢, € = &' —ie”:

2_ (. O 21 )
k —(s zw)uow = (1 —itand) Hoe' ~, (1.79)

for tand see Eq. (1.86), below. This relation contains all the essential information con-
cerning the transmission of signals and leads to:

E, = Ege V% gil@r=K2) (1.80)

The imaginary part k" of k describes how the field strength decreases with distance,
7 . . . .. . . . .
Eo e %2 It is associated with energy dissipation. This quantity k" can be determined by
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measuring the amplitude at two locations z;, z» and applying the relation:

amplitude ratio = exp [—k"(z2 —21)] (1.81)

The induction skin depth is equal to 1/k” and simply denotes the distance over which
the field strength attenuates to 1/e of its original value.

The real part k' describes the propagation of the electric field and its oscillations

through the factor ¢/(®"~%<) where k' = 27/A and A is the wavelength. The quantity X

is experimentally determined through the relation:
phase shift = (z, —z1)k’ (1.82)

The quantities K/, k” are explicitly connected to the material properties through:
1 +cosd 1 —cosd
K = wo+\/toe'\| ———= and k" = ® & —F 1.83
Ho 2cos8 Ho 2cos0 (1.83)

Measurements of the amplitude ratio and the phase shift, lead as mentioned to the de-
termination of k', k”. The real €’ and imaginary €” parts of € are obtained from:

k/2 _ k//2
e = 7;10002 (1.84)
k/z _ k//2
=2 WK (1.85)
0] Uo®
and hence the loss tangent is given by [142]:
" k/k//
and= 2 4+ & o I (1.86)

we' el (klz _ k//2)

Low frequencies, i.e., ©€ < o. At low frequencies the displacement currents are neg-
ligible in comparison to the conductivity currents. In this case Eqgs. (1.78) and (1.79) take
the form:

0%E, JE,
EEER T (1.57)
ow 1/2
k= (14)( 2”0) (1.88)

Equation (1.87) shows that the electric field obeys the diffusion equation (and therefore
this frequency range is called the diffusion regime). The typical 1'/? dependence, which
characterizes a diffusion process, can now be presented as follows.
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For an electromagnetic pulse emitted at z = 0 at r+ = O: the electric field amplitude
measured at a fixed time ¢ versus the distance z, reaches a maximum at a distance z = z,,:

2\ /2

Im = <> . (1.89)
Uoo

This maximum of the pulse travels with a velocity:

o dz,
Vin = dar

= (2upot)~ /2 (1.90)

and its amplitude decreases versus the time as 1/¢. The phase velocity v, can be found by
inserting Eq. (1.83) into the relation v,, = o /k’:

1 2co0sd
= e’ V T+ cos s (L9

The electric field measured at a given distance z from the source varies with time, so that
the signal is detected over a long time interval; the maximum occurs after a time At¢:

_ LooZ*

At
6

(1.92)

This time At is appreciably larger than the time z/ VK (where k' = ¢’ /€o) correspond-
ing to the transmission of either a high-frequency signal in a conductive medium or of (any
frequency) signal in an insulating medium.

High frequencies, i.e., @€' > o. The conductivity currents are negligible in compar-
ison to the displacement currents. In this case Eq. (1.86) shows that tand = €” /¢’ (and
considering that €” /¢’ < 1), Egs. (1.78) and (1.79) take the form:

J’E, J°E,
N\ 1/2 .
k= o(uoe)'/? (1 —ii,) ~ o(uoe)'/? (1 —;‘;) (1.94)

Equation (1.93) shows that the electromagnetic field satisfies the wave equation so that
this high-frequency regime is known as the propagation regime. In this range (because
€ > €), the waves propagate without significant attenuation and dispersion. In absence
of all dissipation, i.e., 0 =0, Eq. (1.91) gives:

1 c
A = e—m—m—_— . ——
ok Viogok V!

We see that, for very high frequencies, there is no dispersion, i.e., all velocities are essen-
tially constant and they have a value lower than ¢ by a factor 1 /v k.

(1.95)
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Thus, in short, in a conductive medium at low frequencies, the electric field obeys a
diffusion type equation (diffusion regime), while at high frequencies, the electromag-
netic field satisfies the wave equation (propagation regime).

As a result, when considering low-frequency electric signals transmission in a con-
ductive medium as in the case of SES: (1) The velocity v is appreciably smaller than
the value ¢/ V&' (c the speed of light in vacuum), which only holds in absence of
dissipation. (2) The time At, that is necessary for the transmission to a distance z, is
appreciably larger than that expected from the usual rough guess Az = z/(c/Vx').
(3) The duration recorded at a remote site is appreciably longer than the emitted true
duration of a short-duration pulse.

1.8.2 Electric field from a dipole current source lying close to a conductive path.
Frequency dependence

The frequency dependence of the electric field produced by a current dipole source lying
inside or very close to a cylinder of infinite length (Fig. 1.31(a)) and high conductivity
(0), embedded in a significantly less conductive medium (¢”), was investigated in detail
in Ref. [148]. The study was also extended to the case when the dipole is located inside or
very close to a highly conductive layer (o), of infinite extent, embedded in a significantly
less conductive medium (¢”) (Fig. 1.31(b)).

The main conclusions were the following. At large distances d from the source and for
appreciably low frequencies, i.e., smaller than around f, = 1/(2zu oR?) for the case of the
cylinder or some fy = 1/(uow?) for the case of the layer, the electric field follows mainly
the properties of the outer (host) medium and hence its attenuation is governed by a skin
depth Sput of the outer medium, i.e., that for a full space of conductivity ¢’. For higher
frequencies, i.e., f > f. or f > fy for the case of the cylinder or layer, respectively, the
electric field is attenuated with a skin depth significantly smaller than dpur, with a lower
limit Oy, the skin depth in a full space of conductivity o. The static dependence is valid
as long as the distance d is appreciably smaller than the “wavelength” in the host medium,
but larger than the “wavelength” in the internal highly conductive medium.

An example of practical interest is given for a highly conductive layer in Fig. 1.47. It
depicts the electric field E, measured at the points in the middle of the conductive layer
versus d /w, for various distances D of the source from the layer (see the inset of Fig. 1.47).
The calculation of Fig. 1.47 was made for the frequency 0.1 Hz, for various D values and
for a certain width w = 500 m (the calculation was repeated at the same frequency, for a
certain D value, i.e., D = 5 km, but for various widths w = 100 to 1000 m and the results
are given in Ref. [148]). These results show that:
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At long distances, i.e. d > D, d > w, the amplitude of the electric field practically
does not depend either on the exact distance D from the conductive layer (or from
the exact value of its width w) and almost follows the properties of the external more
resistive medium.

1.8.3 The electric signal recorded at a remote site. Time domain

The characteristics (amplitude, duration) of the signal at remote distances d from a current
dipole source emitting with a time dependence of the form f(r) = ©(t)exp(—t/7) were
studied in detail in Refs. [160, 148]. The dipole source is located either inside a full volume
of conductivity 6’ or inside a conductive half-space at a depth h(< d):

(1) In the case of a homogeneous medium of conductivity ¢/, a certain time scale
To = uo'd> /4 exists (governed solely by the properties of the medium and the distance d
from the source), so that the following main conclusions hold: (a) If T < 7, the recorded
signal has an enlarged duration of around 7y and an amplitude orders of magnitude smaller
than that corresponding to the static case. (b) If T > 7o, the recorded signal has duration
almost equal to that of the emitted signal, it arrives after a time of around 7y (due to the
“diffusion regime”), and its amplitude approaches that of the static case. An example is
given in Fig. 1.48. This figure depicts the amplitude of the electric field measured along
the direction of the dipole for various values of the “relaxation time” T of an emitted sig-
nal. An inspection of this figure shows that, for long “relaxation times”, i.e., T > To (7o is
of the order of 1 sec if 6’ ~ 1073 S/m and d = 100 km), the maximum amplitude of the
recorded signal approaches the value expected from the static (i.e., if f(¢) = 1) calcula-



102

1. Introduction to Seismic Electric Signals

tion; on the other hand, for short “relaxation times”, i.e., T < Ty, the maximum amplitude
is smaller by order(s) of magnitude. In the latter case the amplitude is almost proportional

to the value of 7.

—1=1000s

mls

1=100s

/%ns\

Bl

10° 10’

t(s)

10

Fig. 1.48 Amplitude of the electric field versus time of a signal recorded at a distance d =100 km from a
current dipole source 110 (1) exp(—t/7), where Il = 1 A m, located in a homogeneous conductive medium
with resistivity p’(=1/0") = 1000 £ m. The curves correspond to various T values lying between 7 =1 ms
and 1000 s, as calculated in Ref. [160]. Note that for short values of 7, the maximum value of the signal
is almost proportional to 7. Taken from Ref. [148].
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Fig. 1.49 Schematic diagram that shows
how the signal (emitted from a horizontal
current dipole source at a depth / and
recorded at an observation point located
on the surface of a half-space) arrives

in two parts: “semi-diffusing” path h—d
(that arrives first), and “solely-diffusing”
direct path (that arrives second). Reprinted
from Ref. [125], Copyright (2005), with
permission of TerraPub.
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(2) In the case of the current source located within a conductive half-space, the re-
sults could be interpreted in simple words as follows. The signal recorded at a remote
observation site on the interface, arrives in two parts (Fig. 1.49): the first part “dif-
fuses” vertically from the source to the interface and then propagates horizontally to
the measuring site. It has a duration significantly smaller than the second part, which
“diffuses” directly from the source to the easuring site through the conductive medium.
The role of the second part is more important for larger conductivity ¢’ and becomes
dominant for cases of practical interest like SES transmission in the Earth.

For example, let us consider the case of a current dipole source of the form II(¢) =
11O (t) exp(—t/t) with I] = 1 Am located inside a conductive half-space with resistivity
p'(=1/c") = 1,000 2 m. The results of the calculation for short “relaxation times”, e.g.,
7 =10, 100 and 200 ms given in Ref. [148] show that the first part (arriving after almost
0.1 s in all cases) has an amplitude which is larger than the second part. On the other hand,
the second part becomes dominant at significantly longer “relaxation times”, e.g. T = 10
and 100 s, see Figs. 1.50(A),(B) and the amplitude of this solely diffusing part reaches the
static value. For example, the amplitude becomes 1.6 x 10~13 V/m and 2.4 x 10~'3 V/m for
7 =10 and 100 s respectively, which is comparable with the value of around 3 x 10~!3 V/m
in the static case.

1.8.4 Discussion on the explanation of the SES detectability and selectivity

We focus on the detectability at long distances of the low frequencies only. The results
mentioned in § 1.8.2 confirm the analytical results summarized in § 1.7.2 and § 1.7.4 in
the following sense: for appreciably low frequencies (e.g., smaller than around 1 Hz or
0.1 Hz as in the case of SES) and for distances d ~ 100 km in media with ¢’ in the range
10~4=1073 S/m, the electric field values approach those of the static case. Thus, we can
follow the same arguments as in § 1.7.4.1 and explain the SES selectivity.

We now turn to § 1.8.3, which concludes that for an emitted signal with T > 10 s, the
amplitude of the second solely diffusing part (which dominates, see Fig. 1.50) becomes
almost comparable to that of the static case. The overlapping of a considerable number
of such signals (in view of the results of the static calculation in § 1.7.2.3) may reach de-
tectable values at remote distances, a point to which we now turn. Let us assume a SES
generation mechanism like that of charged dislocations discussed in § 1.6.3. This mecha-
nism has a relaxation time [160] of T = 10-100 s. We consider a sequence of neighboring
blocks, each one emitting a signal with T > 10 s. Each block may have [101] a width, say, a
few hundreds of meters (§ 1.6.3) and the mechanical relaxation needs a time 7, < 0.1 s to
“travel” through each block (i.e., with a velocity of a few to several kilometers per second).
Hence, we may assume that every tenth of a second or so an electric signal is emitted and,
after taking into account the dimensions of the source (which, of course, for EQs depends
on the magnitude, and may reach several kilometers), we may consider a sequence of the
order of 107 such signals. So the electric field value at remote distances (d ~ 100 km) will
be equal to the number of blocks multiplied by the value emitted from each block. This
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alternatively justifies why in the static case of § 1.7.4.1 we used a value 10> larger than
that corresponding to each of the blocks considered by Slifkin [101], on the basis of which
we deduced significant electric field values, i.e., larger than 10 mV/km, at distances of
d =~ 100 km.

In other words, in the Earth, a sequence of signals emitted every ~0.1 s, with long
duration each (e.g., with 7 ~ 10-100 s), may lead to significant electric field values at
remote distances (d ~ 100 km) due to the overlapping of their “solely diffusing” parts.

1.8.5 Discussion on the time-difference between the SES electric field variation and
the associated magnetic field recordings

We first recall (see § 1.3.6.1) that the SES electric field variations before the M,,6.6
Grevena-Kozani EQ precede the associated magnetic (DMM) recordings (note that the lat-
ter correspond to dB/dt, not B) by a time of 1-2 sec. We also recall that (see § 1.8.3), the
time scale 7y = @ o’d? /4 calculated, for example, for a medium with resistivity 2000 £ m
at a distance 80 km (which is the distance between IOA and the Kozani-Grevena EQ epi-
center) is around 1 second.

If a dipole current source is located within a conductive half-space (with the afore-
mentioned resistivity) at a depth (say 5 to 10 km) appreciably smaller than the epicentral
distance, the signal arrives in two parts (see § 1.8.3 and Fig. 1.49). It is the second solely
diffusing part that dominates the recordings at epicentral distances of the order of 100 km
for the reasons discussed above in § 1.8.3 and § 1.8.4. Thus, we focus below our discus-
sion on this “solely diffusing” part. In view of the SES transmission model (i.e., a current
dipole source lying close to a highly conductive path, see § 1.7.1), we study below, in the
time domain, the case of a conductive cylinder embedded in a more resistive medium.

We solve the problem in the frequency domain and finally calculate the result in the time
domain by inverse Fourier transform. The detailed procedure for the latter calculation can
be found in Ref. [161]. As an example, we present in Fig. 1.51 the results for a cylinder
of infinite length with radius R = 500 m (having a small resistivity 2 £2 m, typical of a
fault) embedded in a more resistive medium (with resistivity 2000 Q m, typical of the
Earth’s upper crust). We assume that the main axis of the cylinder lies along the z-axis
of a cylindrical system of coordinates (p, ¢,z). The fields are studied at a distance z =
80 km far from a (point) current dipole source, which, for simplicity, is oriented along
the z-axis (a more realistic case should consider of course a current dipole source having
a considerable component perpendicular to the conductive path for reasons discussed in
§ 1.7.3). The observation point is taken at a distance p = 1 km from the cylinder axis, i.e.,
at p = 2R = 1 km. The current emitted i(z,7)[= 8(z)O ()@ (T, —1)], is a boxcar pulse with
duration 7; = 11 s comparable to the typical duration (see table I of Ref. [153]) of the
pulses in the corresponding SES activities.

Two main results emerge from this calculation. (1) Concerning the electric field compo-
nents: the component E,, (i.e., perpendicular to the surface of the cylinder, associated with
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Fig. 1.51 Results for a conductive cylinder of infinite extent (with its axis along the z-axis) embedded in
a less conductive medium. A point current dipole source (oriented along the z-axis) is located at the origin
(0,0,0) of cylindrical coordinates (p,¢,z). The fields E, and By at an observation point with p = 1 km,
z =80 km together with E, (p = 0, z = 80 km) are depicted versus time. The thick line depicts the emitted
pulse. Taken from Ref. [161].

the accumulation of charges on the cylinder’s surface) reaches detectable values earlier
than the component E, (which accompanies the high current density inside the cylinder).
(2) The magnetic field By (which is measured again at p = 2R = 1 km, z = 80 km) ap-
pears practically simultaneously with E (see Fig. 1.51) and their forms seem to coincide,
as expected.

In other words, the magnetic field By, which accompanies the high current density
flowing inside the cylinder, is “delayed” compared to the field E, that signifies the
accumulation of charges at the interface.

In the simple model of Fig. 1.51, no frequency dispersion of the dielectric constant (as
well as of the conductivities, inside and outside the cylindrical path) was assumed. The
results do show that the Ej-field “precedes” the B-field. However, a careful inspection of
Fig. 1.51 reveals that the model cannot explain that the E-field is recorded even before
dB/dt (note that the latter is not plotted), as the field experiments show (§ 1.3.6.1). At this
point, we recall the limitations of the Poynting theorem [161]: when considering non-linear
relations between the four vectors D, E, B, H and wave-vector dispersive interactions
discussed in section 8.5 of Ref. [125], the Poynting theorem does not apply. Maybe, such
nonlinear relations as well as wave-vector dispersive interactions should also be considered
together with criticality, in order to achieve a satisfactory explanation of the experimental
fact that the E-field markedly precedes dB/dr [161].
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Appendix

The instrumentation for the magnetic field measurements. The permanent recordings of
the magnetic field variations are carried out by three DANSK coil magnetometers (DMM)
directed along the directions EW, NS and Z. Furthermore, since 1996 the portable MT-1
system of Electro-Magnetic Instruments (EMI) has been also used for temporary mea-
surements. Concerning the calibration of DMM (details are given in Ref. [149]), beyond a
laboratory calibration, an in situ (i.e., at IOA station) calibration was performed by com-
paring the DMM recordings V,,(¢) to those of the EMI-magnetometers and relying on the
accurate laboratory calibration of the latter which has been reported by the manufacturer.
The DMM calibration led to a Heaviside (or unit step) response function H(t):

o dB

V)= [ HEG (-8 . (1.96)

that vanishes for ¢+ < 0, while forr > 0

T
3
Td t t
- 67(1(1—1,) (%) exp <_Tr> (1.97)

with 7; ~ 0.025 s and 7, ~ 0.007 s (see Ref. [149]).

In summary, this calibration showed that, for magnetic field variations with peri-
ods larger than around half a second, DMM magnetometers act as dB/dr detec-
tors. Furthermore, upon the “arrival” of a Heaviside unit step magnetic variation, i.e,
B(t) = BoO(t), their output is “neutralized” after 200 ms.

The instrumentation for the electric field measurements. Low pass “1 Hz” or “10 Hz”
filters have been used. They are fourth-order active low pass filters, having two symmetric
second-order poles in the complex f-plane with a frequency response:

Aexp(—2mifty)
(1= (/o +iV2(F /)P
where A is the amplification, f}, is the half-response frequency corner of the filter and 7, is

the time delay of the filter. The expression (1.98) was applied to the laboratory measured
data for both amplitude and phase, and a nonlinear least-squares fitting was performed (see

R(f) = (1.98)
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Fig. 1.52) using the constant chi-square (p = 95%) boundaries for the determination of the
errors in the fitting parameters which are also shown in Fig. 1.52.
Finally, Eq. (1.98) leads to an impulse response:

(1) :22) exp [—(Z_T:d)} {sin (t_T:d> - (t_TpTd> cos (t_TpTdﬂ O(r—1y). (1.99)

In the case of “10 Hz” filters, for example, 7, = 14.6 0.4 ms and 7; = 1.540.4 ms,
determined by the aforementioned laboratory calibration; see Fig. 1.52.
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Natural Time Foundations



2. Natural Time. Background

Abstract. Time and not space poses the greatest challenge to science. Conventional time is
modeled as the one-dimensional continuum % of real numbers. This continuity, however,
does not stem from any fundamental principle. On the other hand, natural time ), which is
a new time domain introduced by the authors in 2001, is not continuous and its values as
well as those of the energy form countable sets. Novel dynamical features hidden behind
time series in complex systems can emerge upon analyzing them in natural time, which
conforms to the desire to reduce uncertainty and extract signal information as much as
possible. The fluctuations, under time reversal, of the natural time can serve in time series
for the quantification of the long-range dependence. Natural time analysis also enables the
study of the dynamical evolution of a complex system and identifies when the system enters
a critical state. In particular, the normalized power spectrum IT(w) is introduced in natural
time, and its Taylor expansion leads, at low natural (cyclic) frequencies @ (@ — 0), to the
expression IT(w) ~ 1 — K 2. The values of the coefficient x;, which is just the variance of
natural time, i.e., k1 = (¥>) — (x)?, are useful in identifying the approach to a critical point
such as SES whose «k; value is shown to be 0.070. In addition, natural time analysis enables
the distinction between the two origins of self-similarity, i.e., whether self-similarity solely
results from long-range temporal correlations (the process’s memory only) or solely from
the process’s increments’ infinite variance (heavy tails in their distribution). In general,
however, the self-similarity may result from both these origins, a case that can be also
identified by natural time.

2.1 Introduction to natural time

In this Section, we follow Ref. [S0]. In reviewing the state of physics today, a consensus
seems to emerge that we are missing something absolutely fundamental, e.g., Refs. [2, 17].
Furthermore, there is a widespread belief that, it is not space but time that in the end poses
the greatest challenge to science (e.g., p. 18 of Ref. [71]) as it will be further discussed in
the next subsection.
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2.1.1 Time and not space poses the greatest challenge to science

Time, according to Weyl (see p. 5 of Ref. [67]) for example, is “the primitive form of
the stream of consciousness. It is a fact, however, obscure and perplexing to our minds,
that ... one does not say this is but this is now, yet no more” or according to Godel “that
mysterious and seemingly self-contradictory being which, on the other hand, seems to
form the basis of the world’s and our own existence” (p. 111 of Ref. [71]). The challenge
seems to stem from the fact that special relativity and quantum mechanics, which are the
two great (and successful) theories of twentieth-century physics, are based on entirely
different ideas, which are not easy to reconcile. (In general, the former theory, according
to Einstein [10], is an example of “principled theory” in the sense that you start with the
principles that underlie the theory and then work down to deduce the facts, while the latter
is a “constructive theory” meaning that it describes phenomena based on some known facts
but an underlying principle to explain the strangeness of the quantum world has not yet
been found.) In particular, special relativity puts space and time on the same footing, but
quantum mechanics treats them very differently, e.g., see p. 858 of Ref. [69]. (In quantum
gravity, space is fluctuating and time is hard to define, e.g., Ref. [70].) More precisely, as
far as the theory of special relativity is concerned, let us recall the following wording of
Einstein [11]:

“Later, H. Minkowski found a particularly elegant and suggestive expression . .., which
reveals a formal relationship between Euclidean geometry of three dimensions and the
space time continuum of physics ... . From this it follows that, in respect to its réle in the
equations of physics, though not with regard to its physical significance, time is equiv-
alent to the space co-ordinates (apart from the relations of reality). From this point of
view, physics is, as it were, Euclidean geometry of four dimensions, or, more correctly, a
statics in a four-dimensional Euclidean continuum.” — whereas in quantum mechanics, Von
Neumann complains [28]:

“First of all we must admit that this objection points at an essential weakness which
is, in fact, the chief weakness of quantum mechanics: its non-relativistic character, which
distinguishes the time t from the three space coordinates x,y, z, and presupposes an objec-
tive simultaneity concept. In fact, while all other quantities (especially those x,y, z, closely
connected with t by the Lorentz transformation) are represented by operators, there corre-
sponds to the time an ordinary number-parameter t, just as in classical mechanics.”

Note also that Pauli [33] has earlier shown that there is no operator canonically con-
jugate to the Hamiltonian, if the latter is bounded from below. This means that for many
systems a time operator does not exist. In other words, the introduction of an operator ¢
is basically forbidden and the time must necessarily be considered as an ordinary number
(but recall the long-standing question that Schrédinger’s equation, as well as Einstein’s
general theory of relativity, is symmetric under time reversal in contrast to the fact that
our world is not, e.g., Ref. [35]). These observations have led to a quite extensive liter-
ature mainly focused on time-energy (as well as on “phase-action”) uncertainty relation,
proposing a variety of attempts to overcome these obstacles. The discussion of this liter-
ature, however, lies beyond the scope of the present monograph. We just summarize here
that the (conventional) time t is currently modeled as the one-dimensional continuum %
of the real numbers, e.g., p. 10 of Ref. [70] (or p. 12 of Ref. [67] in which it is stated that



2.1 Introduction to natural time 121

“... the straight line ... is homogeneous and a linear continuum just like time”). It is the
consequences of this continuity that will be compared to the newly introduced concept of
natural time, in a sense that will be discussed later in Section 2.7.

2.1.2 Definition of natural time

In a time series comprising N events, the natural time

X = k/N @1

serves as an index for the occurrence of the k-th event [51, 52], and it is smaller than, or
equal to, unity (note that the symbol ) originates from the ancient Greek word yp6vog
(chronos), see the cover page, which means “time”).

In natural time analysis the evolution of the pair of two quantities ()}, Q) is consid-
ered, where y; = k/N, N being the total number of events, and Oy denotes in general a
quantity proportional to the energy of the individual (k-th) event [51, 52]. Equivalently
with Qy, one can consider the quantity

Dk = ZNLQ’ (2.2)
n=1<n

M=

pr=1, (2.3)

k=1

where py is the normalized energy emitted during the k-th event. In other words, the
evolution of the pair either (), Ox) or (Xx, Px) is considered in natural time analysis.

For example, to perform the analysis of dichotomous electric signals (Fig. 2.1(a)),
which is frequently the case of a SES activity (see Chapter 1), we consider Q. as being
proportional to the duration of the k-th pulse [51, 52, 55, 54]. As another example, we refer
to the analysis of seismic events (Fig. 2.1(b)): we then consider the evolution of the pair
(xx, Mo, ) where My, stands for the seismic moment of the k-th earthquake [51, 53, 61, 60],
since Mo, is proportional to the energy emitted in that earthquake (note that My, differs
essentially from the magnitude M, but they are interconnected [21] Mg, o< 10°M where
c ~ 1.5, see also Section 6.1). Other examples elaborated in this monograph are: first, the
analysis of electrocardiograms (see Fig. 2.2) which will be discussed in detail in Chapter
9. Second, the case of long-duration SES activities of non-obvious dichotomous nature,
which is treated in Section 4.11. Third, the analysis of various dynamical models (among
which a case of quasi-periodic Qy, see Fig.(8.4)) in natural time which is discussed in
detail in Chapter 8.
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2.1.3 The “uniform” distribution

Among the various applications of natural time that will be discussed throughout this
monograph, there is the fundamental paradigm of the “uniform” distribution that corre-
sponds for example to the case when the system under study is in a stationary state emitting
uncorrelated bursts of energy:

As a “uniform” distribution we consider the case when Oy are positive independent
and identically distributed (p.i.i.d.) random variables.

In this case, the expectation value &(py) of the point probabilities py is &(py) = 1/N
by virtue of Eq. (2.3).

Let us now consider the distribution

0= pd—1)=) 5(x-%) 04
)4 Pk k k=1pk N .

k=1
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that corresponds to the point probabilities p;. (Note that, 6(x) stands for the usual
Dirac delta function.)

As N — oo, p(y) for a “uniform” distribution tends to

p(x)=1, (2.5)

leading to an average value of natural time

W= [ =y 26)

2.2 Time reversal and natural time

In a time series comprising N events, the effect of the time-reversal operator 7' on Qy is
given by
TOr = On—k+1, 2.7

so that the first pulse (k = 1) is positioned last in the time reversed time-series, the second
becomes last but one, etc.

Thus, the time reversal operator 7" in natural time acting on py results in

T'pr = pN—rk+1 (2.8)
a conventional time ¢ reversed conventional time
R R B R R R R
X ~Jler I jee op I QP
ey )

Om Q,,, “m2 Oni2 Qpyy  9m

b natural time d reversed natural time
m+1 ‘m+1
Qm Qm
Qm+2 Qm+2

Fig. 2.2 (a) Schematic diagram (not to scale) of a four heartbeat excerpt of an ECG (for the notation of
the inflection points see § 9.1.1) in the usual (conventional) time domain. The durations Q,,, Oim+1, Om+2
of the three RR intervals are shown. (b) The RR interval time series of (a) read in natural time; the vertical
bars are equally spaced, but the length of each bar denotes the duration of the corresponding RR interval
marked in (a). In (c) and (d) we depict (a) and (b), respectively, but under time reversal. Reprinted with
permission from Ref. [57]. Copyright (2007), American Institute of Physics.
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Let us consider an example from the case of electrocardiogram (ECG) analysis dis-
cussed in detail in Chapter 9. Figure 2.2(a) provides a schematic diagram of a four-
heartbeat excerpt of an ECG in the conventional time domain. The durations Q,,, Quu+1
and Q1> of the three RR (beat to beat) intervals are marked in green, red and blue, re-
spectively. In Fig. 2.2(b), we show how the RR interval time series of Fig. 2.2(a) is read
in natural time: the vertical bars are equally spaced and the length of each bar denotes the
duration of the corresponding RR interval marked in Fig. 2.2(a). We now turn to the effect
of the time reversal: Fig. 2.2(c) depicts how the four heartbeat excerpt of Fig. 2.2(a) be-
comes upon reversing the conventional time (thus the sequential order of colors—durations
in Fig. 2.2(a) has been reversed) and Fig. 2.2(b) turns to Fig. 2.2(d). Time reversal may re-
veal important elements of the dynamics of the system as will become clear, for example,
in identifying the occurrence time of an impending cardiac arrest; see § 9.4.1.

2.2.1 Interconnection of the average value of natural time with the effect of a small
linear trend on a ‘“uniform” distribution

The way through which natural time captures the influence of the effect of a small linear
trend on a “uniform” distribution is studied on the basis [60, 58] of the parametric family
of probability density functions (cf. Eq. (2.5)):

p(x:e)=1+¢e(x—1/2), (2.9)

where the parameter € quantifies the linear trend. Such a family of pdfs shares the inter-
esting property
Tp(x:e) =p(x;—¢€), (2.10)

i.e, the action of the time reversal is obtained by simply changing the sign of €. A linear
measure of € in natural time is [58] the average of the natural time itself since:

! 1 €
= e)dy ==+ —. 2.11
(x) /()xp(% Jdx=35+15 (2.11)
In the following subsection, we shall show that if we consider the fluctuations of this
simple measure upon time reversal, we can obtain information on the long-range depen-
dence of Q.

2.2.2 Quantification of the long-range dependence from the fluctuations of the
average value of natural time under time reversal

As discussed in § 1.4.1, in order to study the long-range dependence in a time series,
e.g., O, we have to define a scale-dependent measure (for example, F(s) of Eq. (1.12)
constitutes such a measure in DFA; see § 1.4.2).
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We shall show that such a scale-dependent measure is the one that quantifies how the
average value of natural time fluctuates upon time reversal when considering a window
of length / (= number of) consecutive events sliding through the time series Q.

In a window of length [ starting from Q,,, (thus ending at Q,,,4;—1), the values of
natural time are ) = k/I for k =1,2,...,1 and correspond to the point probabilities p; =
Omo+k—1 /Zf=1 Omy+i—1- Since under time reversal we have Tpe= Pi—k+1, the fluctuations
of the average value of natural time under time reversal could be quantified by

Lk 2
Y 5 (e pz_k+1)] , (2.12)
k=1

where the symbol &[...] denotes the expectation value obtained when a window of length
[ is sliding through the time series Q. The evaluation of &7...] can be carried out either
by full computation or by Monte Carlo; the full computation refers to the case when the
window is sliding consecutively event by event, i.e., mg takes all the N —[+ 1 (mg =
1,2,...N —1+1) possible values, whereas in Monte Carlo evaluation my is selected ran-
domly. The argument of &'...] is computed by substituting py = Qug+k—1/ Lt Omo+i—1
and p;_i1 = Omy+i—k / Zle Omg+i—1- The sum of the resulting values over the number of
the selected segments (different my) is assigned to &7...].
By expanding the square in the last part of Eq. (2.12), we obtain

[

k\?2 k
Axf:l; (Z) 5[(Pk—P17k+1)2]+k§, TTéa[(pk—psz+1)(Pm—szm+1)]~ (2.13)

Equation (2.3) constitutes the basic relation that interrelates py, i.e., ):fc:l pr = 1 or equiva-
lently px = 1 =}, 4¢ pm- By subtracting from the last expression its value for k =/ —k+1,

we obtain py — pr—k+1 = — Lnzr(Pm — Pi—m+1) and hence
(Pk—Prks1)* = — Y (k= Pr-ks1)(Pm = Promi1) - (2.14)
m#k

By substituting Eq. (2.14) into Eq. (2.13), we obtain

I 2
Axi = — Y (f) Y, El(pk— Pi—k+1) (Pm — Pr—m+1)]

k=1 m#k
km
+ Y, 5 El(pk = Pr-xs1) (Pm = Pr-ms1))] (2.15)
l
k#m
which simplifies to
k—m)?
2zt =¥ I (o k) om— promen ). @.16)
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The negative sign appears because (py — pi—x+1) and (pm — p—m+1) are in general
anti-correlated in view of Eq. (2.14). We notice that the quantity —&[(px — pr—x+1)
(Pm — Pi—m+1)] in Eq. (2.16) is similar to the covariance Cov(py, pm) = &{[px — & (pr)]
[P — & (pm)] }, thus capturing the correlations between p; and p,, as they appear within
the window length / under time reversal. Hence, A x[z due to Eq. (2.16) may reveal non-
trivial correlations between the elements of the time series Q.

Let us now assume that Qy are long-range correlated, thus it may be justified to use the
ansatz (see § 1.5.1.1):

k — m)?xH
— &Pk = Pi—ks 1) (Pm = Pr-m1)] > % (2.17)

where yy is a scaling exponent and we divided by /2 because the probability py is expected
to scale with 1// in view of ch:l pr = 1. Substituting Eq. (2.17) into Eq. (2.16), we have

Axf o 14720 /4 (2.18)

Ay <z \/Axf) o [XH. (2.19)

so that

Equation (2.19) reveals that the scaling exponent )y can be determined from the slope
of the log A x; versus log!/ plot.

2.2.2.1 An example from fractional Brownian motion and fractional Gaussian noise
time series

In order to examine the validity of the above result of Eq. (2.19) when the quantities
Q) come from fractional Brownian motion (fBm) or fractional Gaussian noise (fGn) (see
§1.5.1.1), we employ the following procedure. First, we generate fBm (or fGn) time series
X;. (consisting of 2 x 10* points) for a given value of the self-similarity index H using the
Mandelbrot—Weierstrass function [25, 44, 13] of Eq. (3.37) described in detailed later in
§ 3.4.3; see also Ref. [60]. Second, since Oy should be positive, we normalize the resulting
X, time series to zero mean and unit standard deviation and then add to the normalized
time series NV a constant factor ¢ to ensure the positivity of Oy = Ny + ¢ (for the purpose
of the present study we used ¢ = 10). The resulting Qy time series is then used for the
calculation of the fluctuations of Ay; versus the scale / which are shown in Figs. 2.3(a)
and 2.3(d) for fGn and fBm, respectively. The upper three panels of Fig. 2.3 correspond to
fGn and the lower three to fBm. We observe that:
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For fGn we have the interconnection (see Fig. 2.3(b)) xu ~ H — 1 corresponding to
descending curves(see Fig. 2.3(a)).

For fBm the interconnection turns (see Fig. 2.3(e)) to yg ~ H corresponding to
ascending curves (see Fig. 2.3(d)).

In order to judge the merits or demerits of the procedure proposed here for the determi-
nation of the scaling exponent, we compare Figs. 2.3(b) and 2.3(e) with Figs. 2.3(c) and
2.3(f), respectively, that have been obtained by DFA (§ 1.4.2). This comparison reveals that
the results are more or less comparable for fGn, while for fBm the exponent )y deviates
less from the behavior of an ideal estimator of the true scaling exponent (drawn in dashed
green) compared to the exponent aprs obtained from the DFA method, especially for the
largest H values.

2.3 Characteristic function. Mathematical background

Here, we recapitulate some useful properties related to the notion of the characteristic
function in Probability Theory. These are given here without proofs, which can be found
in Ref. [12]. For further studies see Ref. [7].

2.3.1 Definition of the characteristic function

Definition 2.1. Let X be a random variable with probability distribution F. The character-
istic function of F (or of X) is the function ¢ defined for real { by

0(&)= [ FaX) = (@) + Q). (.20

—oo

where u(§) = R[@(¢)] and v() = S[e(S)].

For distributions F' with a probability distribution function f

00)= [ s ax. @21)

According to Ref. [12], we make the following terminological note. In the accepted
terminology of Fourier analysis @ is the Fourier—Stieltjes transform of F. Such transforms
are defined for all bounded measures and the term “characteristic function” emphasizes
that the measure has unit mass. (No other measures have characteristic functions.) On the
other hand, integrals of the form (2.21) occur in many connections and one can say that
Eq. (2.21) defines the ordinary Fourier transform of f. The characteristic function of F' is
the ordinary Fourier transform of the pdf f (when the latter exists), but the term Fourier
transform applies also to other functions.
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We now note that the function @ (), defined as

®(0) = Lic: Qeexp (i) Zpkexp< k) 2.22)
YN On =

is a characteristic function of py for all ® € %.

2.3.2 Properties of the characteristic function
Definition 2.2. The moments m,, and the absolute moments M,, of X are given by
~+oo
m, = / X"F{dx}, (2.23)

and oo
M, = / IX|"F{dX}. (2.24)

The following important theorem holds [12]:

Theorem 2.1. If M,, < oo, the n-th derivative of ¢ exists and is a continuous function given

b
Y o
") = i"/ X X"F{dX} (2.25)
leading to
¢'(0) = imy, (2.26)
0"(0) = —my, 2.27)
¢"(0) = —im3, etc. (2.28)

It is important to note that the converse in Eq. (2.27) is also true: If ¢”(0) exists, then
my < oo, For example, the function @y () = exp(—|&|%) is nor acceptable as a char-
acteristic function when o > 2, because the second moment of a distribution should be
non-vanishing (note that this fact is important for understanding the applications of Lévy
a-stable distributions in physics, e.g., see Refs. [27, 46, 47]).

Thus, the moments m,, of the distribution are calculated from the behavior of the char-
acteristic function as § — 0.

There exists [12] another important theorem which describes the behavior of the char-
acteristic function for large values of {: if F has a pdf f, then ¢({) — 0 as { — +oo. If f
has integrable derivatives f’, f”,..., f"), then |@(&)| = o(|]| ™) as || — oo.
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2.4 The normalized power spectrum I1(®) or I1(¢) and the variance
k1 of natural time

For the purpose of natural time analysis, the following continuous function @(), recall
Eq. (2.22), was introduced [51, 52]:

a) N N .
¢((D) Zk le eXP i Z Prexp <lwk) _ Z Dk ezka (229)
1 On k=1 N k=1
where
0 =2n¢, (2.30)

¢ standing for the frequency in natural time, termed natural frequency.

We then compute the normalized power spectrum IT(®) as

2

(w) = 2.31)

A k
=) pee'®N
k=1

which does not change of course under time reversal. The function @(®) should not be
confused with the discrete Fourier transform because @ is here a continuous variable.

Using Eq. (2.4), we have
1. N 1 . N .
| e ax =y, [ | por—myerax| = Y pen, @3
k=1 k=1

thus @ (@) can be written as
I N )
(@)= [ p(r)dy =Y. peer. 233)
0 k=1

If we regard p(x) in Eq. (2.33) as the probability density function of y, in analogy with
probability theory, its Fourier transform & (@) may be regarded as the characteristic func-
tion of j, representing the expectation value of e'®% (see Eq. (2.21) in § 2.3.1).

By differentiations at the origin, i.e., as @ — 0, &(w) gives (see Theorem 2.1) the
statistical properties of p() ), such as the mean, variance etc. In view of Eq. (2.31), we
now focus on the small @ values of IT(®) by considering [51] its Taylor expansion,
around @ = 0,

(o) =1-Kx0°+ Ko+ Ko’ + kol + ... (2.34)
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where IT(w)
1d°II (o
=—= . 2.
Ki 2 a0 |, (2.35)
We now consider
d’I(w) . d*P(w) dCo*(w) dP(w)dd* ()
o - Lo (a))W + P (o) o2 +2 o o (2.36)
and taking into account Eq. (2.29) along with the fact that @(0) = 1, we find:
| 2
ki =—3 =Y pixi = Y pixi +2 (Zl’klk)
k k k
= (%) - (0% (2.37)
where
N
" =Y rxi (2.38)
k=1

denote the moments of the natural time y ‘weighted’ by p.

Thus, the quantity k; corresponds to the variance of natural time:
2 S - k\? N\
k=) -’ =Y m (—) Y o - (2.39)
k=1 N =N

Since the normalized power spectrum IT(®) does not change under time reversal, the
same holds for k.

The remaining terms of Eq. (2.34) can be shown [51] to be equal to

A o0

Ky = i e A (2.40)
0 o) ) oAt

=36 T 60 360 24 241
O oA ahr A0 o)

M= 20160 T 720 516 360 2520 (2:42)

When considering the symmetric expansion of p() in the region [—1, 1] which is ob-
tained by selecting p(0) = limy o p(x) and p(—x) = p(x), we obtain that p(x) can be
expanded [51, 55] in a cosine Fourier series for y € (0,1]:
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p(x) =1+ Y pncos(nmy) (2.43)
n=1
where .
Py =2 /0 p(x)cos(nmx)dy (2.44)

are the cosine Fourier series expansion coefficients. Equation (2.43) could give insight into
what one should expect for the normalized power spectra IT(®).

We recall that the lowest frequency included in this expansion, in addition to ¢ =0, is
¢ = 0.5 corresponding to @ = 7.

Furthermore, II(®) for 0 < 7, or ¢ < 0.5, by virtue of the Taylor expansion (2.34)
and Egs. (2.39), (2.40), (2.41) and (2.42) resembles the properties of the characteristic
function @ () for p(y) since its Taylor expansion coefficients are explicitly related to the
moments of natural time . Of course, these moments do not appear in such a simple way
as they appear in Theorem 2.1.

The detailed study of the quantity x; shows that it exhibits (see Section 3.3) positivity,
concavity, experimental stability and reveals that it has interesting physical properties;
see Chapters 4 to 8.

By combining Eqgs. (2.33), (2.35), (2.43) and (2.44), the following interrelation between
k1 and the Fourier coefficients of p()) can be found [51]

2
1 .
K= (%) — ()= =5t zzpz—[ 7r2z nl:f1+/12 ] . (2.45)

We now calculate the limit for the variance kj in the case of a “uniform” distribution,
see § 2.1.3, for which p(x) = 1 and p, = 0. Thus, Eq. (2.45) leads to k; = 1/12. This
will be hereafter labeled k,, i.e.,

1
K= 35 = 00833 (2.46)

The x; value has been calculated in a variety of cases discussed in the present mono-
graph. In particular, for SES activities it is theoretically obtained in § 2.4.2 and given in
Table 4.6 for several experimental cases. The latter table also includes the x; value for
various “artificial” noises, and Table 4.4 the ionic current fluctuations in membrane chan-
nels. The k; value for the case when the increments of the time series of Qy are p.i.i.d.
random variables of finite variance is calculated in § 2.5.3 and for power law distributed
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(uncorrelated) energy bursts in § 2.5.4. For the case of fBm time series the k] value will
be discussed later in § 3.4.3 and for short-range correlated time series in § 3.4.5. As for
dichotomous Markovian time series the kj value will be treated in Chapter 4; see Fig. 4.22.
Moreover, the k7 value for long-term seismicity will be discussed in Chapter 6, while for
the seismicity that evolves after the initiation of SES activities and before the mainshock
occurrence will be treated in Chapter 7 for several cases. Finally, for various dynamical
models discussed in Chapter 8, the results for the k| value when the critical point is ap-
proached are compiled in Table 8.1. Note also that the k| values for a case when Oy are
quasi-periodic are depicted in Fig. 8.4.

The largest Kk value obtained either from experimental data or from theoretical models

is 0.25. A theoretical explanation of this fact is given in § 3.3.2.1.

2.4.1 The normalized power spectrum for the ‘“‘uniform” distribution

Using Eqgs. (2.31) and (2.33), we obtain

1 2 1,1 )
o) =| [ vt ar| = [ [ popw e iagay  an

After the transformation of variables: X = (y + ) /2 and 6 = () — ¥), the double integral
in Eq. (2.47) becomes

1 -3
(w) = 2/ cos(@8) / ) (x - 5) » <x+ 5) dx ds (2.48)
Jo J$ 2 2
Equation (2.48) can be also written as
1
M(w) =2 / cos(08)G(8) dé (2.49)
0
with s
1-3 o o
G(6):/5 2p(X—z)p<X+2) dx (2.50)
)

We can now estimate the normalized power spectrum IT,(®) for the “uniform” dis-

tribution. As already mentioned this is the case when Qy are p.i.i.d. random variables.

Thus, the pdf p(x) becomes p(x) =1 for all x € (0, 1]; Eq. (2.50) simply results in
s

G(8) = %1_7 dX = 1 — 6 leading, see Eq. (2.49), to the normalized power spectrum

sin(w/2)

@2y @51

1
(@) = 2/0 (1= 8)cos(w8) d6 =
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When expanding I, (®) of Eq. (2.51) around @ — 0, we obtain

I1,(0) ~ [1_%@)12%1_%(%)2:1—1—2@2 2.52)

When considering the expansion of Eq. (2.34), we observe that Eq. (2.52) results to
K1 = K, = 1/12 in accordance with Eq. (2.46).

2.4.2 The normalized power spectrum of seismic electric signals

Here, we focus on the normalized power spectrum of SES activities which are emitted
when criticality is approached [51, 52]. Thus, we rely on the physics behind their gen-
eration discussed in Section 1.6. We first consider the following two laboratory measure-
ments. (i) Indentation experiments even in simple ionic crystals showed that transient elec-
tric signals are emitted, without the action of any external electric field, due to (formation
and motion of) point and linear defects, e.g., see Ref. [62]. (ii) Independent measurements
[37] revealed that, as the glass transition is approached, a polarization time series is emitted
which probably arises from the reorientation process of electric dipoles; this process in-
cludes a large number of atoms (cooperativity). The feature of this polarization time series
is strikingly similar [48] to the measured SES activities. This similarity is reminiscent of
the pressure stimulated currents model [49] discussed in § 1.6.2, which suggests that upon
a gradual variation of the pressure (stress) P on a solid, when approaching the critical
pressure (stress) P,,, transient electric signals are emitted arising from the (re)orientation
of electric dipoles (formed due to defects). This emission occurs when the following con-
dition is obeyed (which is just Eq. (1.48) of § 1.6.2):

dp| b 1
bl IS , (2.53)
dt |, kT T(P.y)

where %—f 7 s the pressure rate and 7(F,) is the relaxation time of the dipoles at the crit-

ical pressure. It has been argued, see p. 404 of Ref. [49], that the values of the migration
volume v associated with SES generation should exceed the mean atomic volume by or-
ders of magnitude, and this entails that the relevant (re)orientation process should involve
the motion of a large number of “atoms” . Thus, the laboratory measurements fortify the
suggestion [48] that the emission of the SES activities could be discussed in the frame of
the theory of dynamic phase transitions (critical phenomena). The very stochastic nature
of the relaxation process has been repeatedly discussed in the literature (see p. 350 of Ref.
[19] and references therein; other suggestions have been reviewed in Ref. [31], while illu-
minating aspects have been forwarded in Ref. [66]). A stochastic analysis was based on the
concept of clusters, the structural rearrangement of which develops in time [19]. Accord-
ing to this analysis the exponential relaxation of the polarization is arrested at a random
time variable 7); and the instantaneous orientation reached at this instant is “frozen” at a
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value exp(—f;n;) where B; = b = constant (see fig. 11.19 of Ref. [19]). Assuming that
7; itself follows an exponential distribution, with a time constant 7y < T(P.,), an almost
constant current would be expected for as long as this unit “lives” (i.e., for a duration 7).
As a result of cooperativity, the duration Qy, of a SES activity pulse is envisaged as the
sum of ny such identical units, thus Qy = Z,ni 1 Ni. Under this assumption, the duration Oy
of the k-th pulse in a SES activity follows the gamma distribution with a mean lifetime
ny, 7o and variance nk’cg (e.g., see lemma 8.1.6.5. of Ref. [30]), i.e., the average duration is

given by:
E(0r) =mTo (2.54)

and its variance by:
E(Q) —nits = mg. (2.55)

As already mentioned (§ 1.6.2), the SES activity is emitted when the focal area enters
into the critical regime. The approach of a system to a critical point can be characterized by
a feature that events begin to be temporally correlated, which is equivalent to a persistent
avalanching. The condition for the persistent avalanching can be expressed as

E(Qrs1) = Ok (2.56)

which means that the average Q. value of the k + 1-th event is maintained at the level
already reached by the previous one. This is reminiscent of the aspect that the reorientation
of a spin in the random-field Ising Hamiltonian, will cause on average just one more spin
to flip at the critical point [23]. Since Q. is assumed to be distributed according to the
gamma distribution, we also have:

‘g){[QkJrl —@@(Qkﬂ)]z} = &(OQkt1)T0 =
E(071) = Quto+0; (2.57)

We now turn to the evaluation of the normalized power spectrum IT(w), see Egs. (2.49)
and Eq. (2.50), for the SES activities. We will first attempt to evaluate the average value
G(8)

1-9

G((S):/g Zg’[QX%QX%}dX (2.58)

as it results from all SES activities comprising N pulses. Note that G(&) is similar to
G(6) of Eq. (2.50) apart from the fact that it does not involve the normalized pdfs p(X —
g)p(X+ g) When for example X — g =k/N and X + g =1/N, we have

£10y_30y, 5] = Q0] :/.../QkQ, AP, 4Py dP,... dP, .. APy (2.59)
N

where &, %7, ... Py are the pdfs for the durations Qy,Q», ... Qy, respectively. Using the
normalization condition of the pdfs, we can eliminate the integrals over & to Py



136 2. Natural Time. Background

£0:01] :/.../QkQ, 4P, 4D, dP,... dP, (2.60)
1

and using Eq. (2.56) we can integrate over &7, down to &

100 :/.../Q,% d?,dP,... dP, (2.61)
k

Performing now the integration over % by using the recursive relation of Eq. (2.57) for
k=k—1, we obtain

£10:01] = /.../(Qk,lroJrQi_l) 42, dPs... 4P, (2.62)
k—1

whereas a second application of the recursive relations of Egs. (2.56) and (2.57) into
Eq. (2.62) results in

£10:01] = / / (200 2%+ 02 ,) 4P, dPs... APy s, (2.63)
N——
k—2
a third one to
100 :/.../(SQk_310+Q%_3)d91 d2,... dP_5, (2.64)
N——
k-3

and so on. Finally, we obtain
£10y_50y,3] = 510101 = / [(k—1)01%+ 03] 42 . (2.65)

Restoring k = (X — $)N into Eq. (2.65), we obtain

o
‘g)[Qx_ng.q_g] =0 (X - 2) +B, (2.66)
where a = [N7%Q; d2?) and B = [ (0] —%01) d2 = ([ O, d£,)*. Substituting Eq.
(2.66) into Eq. (2.58), we obtain

1-9

G(5) = /é ’

Y2

[a (X—g)—kﬁ} dXza@—kB(l—S). (2.67)

Equation (2.67) provides G(§) for the SES activities comprising N pulses. We note the
existence of two terms in the right-hand side of Eq. (2.67): The last term, which is simply
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proportional to (1 — §), originates from the positivity of Qy and is also present in the

2
case of the “uniform” distribution, see Eq. (2.51). On the other hand, the first term @
comes from the memory of the critical process as reflected in Eq. (2.66), which states that

the expectation & [QX_ 3 Oy, 3 ] depends solely on X — g, i.e., the natural time elapsed
since the initiation of the process.

In order to determine the normalized power spectrum for SES activities through a for-
mula similar to Eq. (2.49), e.g.,

M(w)=2 /O ' cos(08)7(5) ds (2.68)

we need also to average over all possible values of N to obtain an appropriate ¢(8). The
quantity of G(8) in Eq. (2.49), as well as ¢(5) in Eq. (2.68), is dimensionless since it
results from the pdf p(yx) in Eq. (2.49). Equation (2.67) was obtained, however, without
normalizing O, s and O, 3 by the appropriate factor ( [0y d%)z because the inclusion

of such a factor in the denominator would hinder the integration procedure followed. As
a first approximation, we construct a dimensionless quantity from Eq. (2.67), thus for
example we divide G(8) by a:

G(8) _ (1-8)
o 2

(1-8). (2.69)

RI™

The quantity ¢(9§) is expected to be a weighted sum of the right-hand side of Eq. (2.69)
for various values of N, thus it will be of the form

_&§2 7B\
G (8) o % + (g) (1-9), (2.70)

where (g) stands for the corresponding average — renormalized — value of the ratio

B_ (Jo d)’ _m
o J Nt Q) d2, N’ @71)

Let us now impose (natural time) scale invariance which should hold for criticality. This
means that the result should be independent of N. Hence, the time scale 7, so far arbitrary,
should be such that the results obtained from Eq. (2.71) for various N lead to a value
(labeled (g) in Eq. (2.70)) independent of N. This is satisfied when 7o = const. x Q1 /N as

itis evident from Eq. (2.71). Since when a single SES pulse is emitted the only reasonable
time scale to assume is that of the duration of the single pulse, we should impose 7y =

Q1 /N. Thus, we may write L
<B) (/Q1d2)°

)= e 2.72)

[03d2,
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Assuming that at the initiation of the SES activity, only one unit is available, i.e, n| = 1, the
duration Q; in Eq. (2.72) is exponentially distributed (see Eqs. (2.54) and (2.55)) leading

to
By 1

Equation (2.70) then reads

(2.74)

Inserting Eq. (2.74) into Eq. (2.68), we obtain that for the SES activities (critical dy-
namics) the normalized power spectrum equals to [51]

18 6cos® 12sinw

Expanding Eq. (2.75) around @ = 0 (see Egs. (2.34) and (2.35)), we get
()~ 1 -k o, (2.76)

where
k1 = 0.070. 2.77)

An inspection of Fig. 4.7 shows that for the region of natural frequencies 0 < ¢ < 0.5
(recall the shaded remark after Eq. (2.44)) the experimental results for the SES activities
agree favorably with Eq. (2.75). In addition, for the SES activities observed to date, see
Table 4.6, the validity of Eq. (2.77) has been confirmed.

An alternative derivation that k; ~ 0.070 for SES activities, can be given on the basis
of the Ising model if we also consider its qualitative similarity under certain conditions
with the pressure-stimulated currents model (§ 1.6.2) for the SES generation, as will be
explained in § 8.4.1.

Note that the relation k; = 0.070, i.e., Eq. (2.77), emerges for several dynamical mod-
els approaching criticality which are compiled in Table 8.1.

2.5 Distinction of the origins of self-similarity

A large variety of natural systems exhibit irregular and complex behavior which at first
looks erratic, but in fact possesses scale-invariant structure (e.g., see Refs. [34, 20]). As
explained in § 1.5.1, a process {X (¢) };> is called self-similar [24] with index H > 0, if it
has the property

X(Ar) L AHx(r) ¥V A>0. (2.78)
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Equation (2.78) means a “scale invariance” of the finite-dimensional distributions of X (¢),
which does not imply, in stochastic processes, the same for the sample paths (e.g., see
Ref. [65]). In this Section, following Ref. [59], we will explain how natural time enables
the distinction of the two origins of self-similarity.

2.5.1 The two origins of self-similarity. Background

Examples of self-similar processes are Brownian, fractional Brownian (fBm), Lévy stable
and fractional Lévy stable motion (fLsm). Lévy stable distributions (which are followed
by many natural processes, e.g., see Refs. [46, 47]) differ greatly from the Gaussian ones
because they have heavy tails and their variance is infinite (e.g., see Refs. [65, 38]).

An important point in analyzing data from natural systems that exhibit scale-invariant
structure is the following. In several systems this nontrivial structure points to long-range
temporal correlations; in other words, the self-similarity results from the process’s memory
only (e.g., the case of fBm discussed in § 1.5.1.1). Alternatively, the self-similarity may
solely result from the process’s increments’ infinite variance, e.g., Lévy stable motion.
(Note that in distributions that are applicable to a large variety of problems, extreme events
have to be truncated for physical reasons, e.g., finite size effects — when there is no infinity
[6] — and this is why we write hereafter “infinite”.) In general, however, the self-similarity
may result from both these origins (e.g., fLsm). It is the main aim of this Section to discuss
how a distinction of the two origins of self-similarity (i.e., process’s memory and process’s
increments’ “infinite” variance) can be in principle achieved by employing natural time
analysis.

Before proceeding, the following clarifications are necessary as far as the aforemen-
tioned two sources of self-similarity are concerned. Long-range temporal correlations,
which are quoted above as a first origin of self-similarity, are an immediate consequence of
Eq. (2.78) with H > % defining a self-similar process. We stress, however, that long-range
correlations do not automatically imply self-similarity of a process. Multifractal processes
provide a large class of counter-examples (note that the natural time analysis of multi-
plicative cascades is discussed in § 6.2.5). The second origin of self-similarity comes from
the statistical properties of the increments of the process. We emphasize, however, that
the statistics of these increments does not automatically lead to nontrivial self-similarity
of the process. Specifically, a process which is invariant under shuffling of the increments
has independent increments and is characterized by the self-similarity index %

2.5.2 The expectation value of x; when a (natural) time window of length ! is sliding
through a time series

Here, we focus on the expectation value &(kj) of the variance (kj) of natural time
when sliding a (time) window of length [/ through a time series of Q; > 0,k =1,2,...N
(while in § 2.2.2 we calculated the fluctuations of the average value of the natural time
itself under time reversal). In a window of length [/ starting at k = ko, the quantities
pj = Qko+j—1/):£n:1 Oky+m—1, J = 1,2,...,1 are obtained, which satisfy the necessary
conditions
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p; >0, (2.79)
[

Y pi=1 (2.80)

j=1

to be considered as point probabilities. We then define [51, 55] the moments of the natural
time y; = j/las (x7) = ljzl(j/l)qu and hence

£ ()5 [Ein] 28

J=1

Note that x; is a nonlinear functional of {p;}. Let us consider the expectation value
uj = &(pj) of p;. For the purpose of our calculation the relation between the vari-
ance of p;, Var(p;) = &[(p; — i;)?], and the covariance of p; and p,, Cov(pj,pm) =
E(pj— 1j)(pm — Um)], is important. In view of Egs. (2.79) and (2.80), the quantities ;,
Var(p;) and Cov(p;, pm) are always finite independent of the presence of heavy tails in
O Using the constraint of Eq. (2.80), leading to p; — ftj = ¥+ j(lm — pm), We obtain

Var(p;) == Y Cov(pj, pm)- (2.82)
m#j

We now turn to the evaluation of &(ki), and study its difference from the one that corre-
sponds to the average time series .# = {1} which is labeled k| 4,

L2 L 2
Ko = Z (z) H— [_leuj] . (2.83)
Jj=

Hence,

m=1 m=1

[ ! 2 ! 2
é‘a(Kl) — K.z = & Z ,77 (pm _”m) - (Z r;pm> + (Z r;.um> . (2.84)
m=1

In view of the definition of L, the first term in the right-hand side of Eq. (2.84) vanishes,
whereas the latter two terms reduce to the variance of ()):

2
[
m
g(Kl) — Kl-,vff =& Z 7 (pm — Ier)‘| . (285)
m=1
Expanding this variance, we get
Ky — &) = Z 5 Var (P +2Z Z J Cov(pj.pm).  (2.86)
j=lm= j+1

which, upon using Eq. (2.82), leads to
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Il o 2
s -0 =Y ¥ T covlprp =1 % ¥ I Covlppn.
J=lm=j+1 j=lm=1
(2.87)
This relation turns to
)2
E(K) =K g+ Z 7COV(pj,pm) (2.88)

2

all pairs

where Y1 pairs = z; 1 Lo 11 (compare Eq. (2.88) with Eq. (2.16) in which a term similar
to the covariance Cov(p;, p») has been discussed).

The case when Qy, do not exhibit temporal correlations: This is the case for example of
randomly shuffled data. As the window is sliding through the whole time series, Oy takes
of course every position j within the window of length /. Then, Eq. (2.80) leads to

1
&(pj) = 7 (2.89)
and Cov(p;, pm) becomes independent of j and m, thus Eq. (2.82) becomes
Var
Cov(pjspm) == 7; _(’l’g . (2.90)

Since Var(p;) is also independent of j, Var(p;) was merely substituted by Var(p). More-
over, k1, reduces to ki ., where ki . corresponds to the constant time series %~ = {x}:
xp=1/1,k=1,2,...1, which is given by

2

1 2 1

m m 1

Kl,c:Zp_<le> :Ku<1_12>7 (2.91)
m=1 m=1

where K‘u = 1/12 ~ 0.0833. Turning now to Eq. (2.86) and by adding and subtracting

Var(p)
-1 12 ’

we obtain that:

For shuffled data
E(Ki) = Ky <1—112> — K&, (l+1) Var(p). (2.92)

In view of Egs. (2.79) and (2.80), Var(p) < &(p?) < &(p) = 1/1, and thus the second
term in Eq. (2.92) remains finite for [ — co.
The I-dependence of Var(p) when Qy have a finite second moment is obtained from

10 )2
-1 |, 2.93
(zf” 0, ] 299

1
Var(pi) = 556
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where the quantity &[(1Qx/Y._, O, — 1)?] is asymptotically I-independent. The latter
arises as follows: if &(Qy) = p and Var(Q;) = 62(< ), as a result of the central limit the-
orem [12], we have &(Yi_, Ox/l) = u and Var(¥:_, Oy/I) = 62 /1. The latter two equa-
tions, for large enough [ imply that &[(1Qx/ Y. _; Oy — 1)?] =~ &[(Qx/p — 1)%] = 62 /u>.
Thus, Eq. (2.93) becomes (note that Var(py) is independent of k)

2

c
Var(p) = TR (2.94)

For O, which do not exhibit time correlations, e.g., randomly shuffled data:

If Oy do not exhibit heavy tails and have finite variance, Var(p) scales (Eq. (2.94))
as 1/1?, thus &(k), as [ increases in Eq. (2.92), converges to k. The same holds for
the most probable value ki, of k.

Otherwise, the expectation value &(k) differs from &, -pointing that ki , also
differs from x,, i.e., K1, # Kk, — thus identifying the presence of heavy tails in the
examined time series.

2.5.2.1 Comments on the expectation value of x| for a given window length /

Let us now comment on the expectation value & (k) of k] when a (natural) time window
of length [ is sliding through a time series of Q; > 0, which as mentioned (see Eq. (2.88))
is given by
; 2
—m
(ki) =K+ Z %

I COV(Pijm)a (2.95)
all pairs

Let us first discuss the case when Q; are shuffled randomly. Equation (2.95) then turns
to (see Eq. (2.92))

6 ktur) = (1= 33 ) =01+ 1) Var(p), (.96)

If Ox do not exhibit heavy tails and have finite variance, Eq. (2.96) reveals (see the
discussion above, § 2.5.2) that &(k; 7_yh,,f) rapidly converges to k. For example, this is
the case of the SES activities [60] discussed in Chapter 4, e.g., see § 4.7.1. Otherwise,
& (KL shu f) differs from «;, thus pointing to ki = K. This is the case, for example, of the
earthquakes discussed in Chapter 6.

Second, if Oy do exhibit time correlations, the difference between the ki, for the orig-
inal and the shuffled time series most likely originates from the difference of Egs. (2.95)
and (2.96), respectively. The extent to which the latter difference is nonzero accounts for
the time correlations irrespective if Q; exhibit heavy tails. For example, this is clearly the
case of aftershocks and the case of earthquake catalogs in general (both of which exhibit
heavy tails) discussed in detail in Section 6.3 (e.g., see Figs. 6.14 and 6.13, respectively).

The application of the above results to two important examples are given in the next
two subsections.
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2.5.3 The case when the increments of the time series of Q; are positive i.i.d.
random variables of finite variance

We first discuss the case when the increments of the time series of Qy are p.i.i.d. random
variables r,, of finite variance. In this case Q; = Zﬁzl 7, and hence Qy, is on average linearly
related to k. Thus, it is expected that the continuous distribution p(}), that corresponds to

pr see Eq. (2.4), is p(x) = 2x. Using

1 1 2
Ki = /0 p(0)x* dx( /0 p(x)xdx> : (2.97)

a direct calculation leads to the value k] = % ~2 0.056 which significantly differs from
that k, =~ 0.083 of the “uniform” distribution (see Eq. (2.46)). In view of the fact that the
increments have finite variance, the distribution of Qy for a given N has also finite variance.
Hence, as shown in the previous subsection, we expect that when Q; are shuffled randomly
the resulting k] values should scatter around x,. A numerical example for exponentially
distributed increments is shown in Fig. 2.4.

250 T T
P(c) ——

200 /

150 /

100 Fig. 2.4 The pdf of x; that
has been obtained by shuffling
the Qy randomly in the case of

50 exponential increments, i.e., 7,
are randomly drawn from an
exponential distribution. Here,
N =500 and the original time

0.075 0.08 0.085 0.09 0.095

series results in k7 = 0.055.

K See also Fig. 3.3.

2.5.4 The value of x; when a (natural) time window is sliding through power law
distributed energy bursts
We now study a case of self-similarity resulting from the process’s increments’ “infinite”
variance. Here, we restrict ourselves to (slowly driven) systems that emit energy bursts
obeying a power law distribution
PE)~E"Y (2.98)
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where 7 is constant. In a large variety of such systems in diverse fields, an inspection of
the experimental data reveals that the ¥ exponent lies in a narrow range 1.5 <y < 2.1
and mostly within even narrower bounds, i.e., ¥ = 1.5 to 1.8. To realize the diversity
of the phenomena that exhibit the aforementioned property, we compile some indicative
examples in Table 2.1, which are the following.

Table 2.1 Compilation of the experimental values of the power law exponent y determined in different
physical processes. Taken from Ref. [59].

Process / type of measurement Y References

Dislocation glide in hexagonal 1.6 [26]
ice single crystals (acoustic emission)

Intermittent plastic flow 1.6 [9]
in nickel microcrystals

Solar flares 1.5-2.1 [5, 32, 18, 29]

Microfractures before the 1.5 [14, 1]
breakup of wood (acoustic emission)

Microfractures before the 2.0 [14, 1]
breakup of fiberglass (acoustic emission)

Earthquakes 1.5-1.8 See Ref. [36]
and references therein

,Q.
S

Icequakes See p.212 of Ref. [64]

and references therein

First, crystalline materials subjected to an external stress, display bursts of activity ow-
ing to the nucleation and motion of dislocations. These sudden local changes produce
acoustic emission waves which reveal that a large number of dislocations move coopera-
tively in an intermittent fashion (e.g., see Ref. [22] and references therein). As a precise
example, we include in Table 2.1 the results of acoustic emission experiments on stressed
single crystals of ice under viscoelastic deformation (creep), which show that the proba-
bility distribution of energy bursts intensities obey a power law distribution with y = 1.6
spanning many decades (see fig. 1 of Ref. [26]). Second, the same exponent is found [9]
(i.e., Y= 1.60 £ 0.02) in the analysis of intermittent plastic flow observations (i.e., mea-
surements of discrete slip events for loadings above the elastic—plastic transition) on nickel
microcrystals (see fig. 2 of Ref. [9]). Third, we consider the case of solar flares that rep-
resent impulsive energy releases in the solar corona (e.g. see Ref. [29] and references
therein; see also Ref. [4] in which it is concluded that earthquakes and solar flares exhibit
the same distributions of sizes, inter-occurrence times, and the same temporal clustering).
This energy release is observed in various forms: thermal, soft and hard X-ray emissions,
accelerated particles etc. The statistical analysis of these impulsive events show that the
energy distribution exhibits, over several orders of magnitude, a power law with exponents
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Y ranging from 1.5 to approximately 2.1 (depending on the experimental procedure and the
geometrical assumptions adopted in the analysis). Other examples are: acoustic emission
from microfractures before the breakup of heterogeneous materials (wood, fiberglass), ice-
quakes and earthquakes.

The following procedure is now applied. We generate a large amount (500,000) of arti-
ficial data obeying Eq. (2.98) for a certain y value with energy E > 1 and randomly shuffle
them. This was repeated for various Y values by keeping the total number of events con-
stant (which implies that when changing ¥, the maximum energy involved in the calcula-
tion also changes). These randomized (“shuffled” [63, 56]) data are subsequently analyzed
[61] in the natural time domain: the calculation of the variance k; is made for an event
taking time windows for / = 6 to 40 consecutive events (i.e., while in § 2.5.2 the value of
[ was kept constant, here / varies within certain limits and no k; averaging is made). The
choice of the precise value of the upper limit of / is not found decisive, since practically
the same results are obtained even if the number of consecutive events was changed from
6-40 to 6-100. And second, this process was performed for all the events (for all the [

0.075 2
0.07 (%/Sﬁ/% W
0.065 %
>%
0.06
0.055 ¥f/

Kip

0.05 /
/ Fig. 2.6 The values of k1, as a func-
0.045 tion of y for power law distributed
Xx data. The continuous line has been
0.04 drawn as a guide to the eye. Note

that x1,, ~ 0.070 for y~ 1.87, see
Y also Fig. 2.5. Taken from Ref. [59].
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values, e.g. between [ = 6 to [ = 40) by scanning the whole dataset. In Fig. 2.5, we plot the
pdf P(ki) versus k; for several y values. The most probable value ki , (for ¥ = constant)
is also plotted in Fig. 2.6 versus the corresponding 7y value.

This curve interrelates k7 and y for the shuffled data (thus an eventual process’s mem-
ory is destroyed) and hence the plotted k7, values (which differ markedly from x;,)
correspond to the self-similarity resulting solely from the heavy-tailed distribution.

Note that the study of the origin of the self-similarity in real earthquake data will be
elaborated in Chapter 6.

2.5.5 Conclusions

In summary, the origin of self-similarity may be distinguished as follows:

If self-similarity exclusively results from the process’s memory, the k; value should
change to &, = 1/12 for the (randomly) shuffled data. This is the case of the SES
activities, e.g. see § 4.7.1.

On the other hand, if the self-similarity results from process’s increments’ “infinite”
variance only, the most probable value ki , should be the same (but differing from &;,)
for the original and the (randomly) shuffled data.

When both origins of self-similarity are present, the relative strength of the contri-
bution of the one origin with respect to that of the other can be quantified on the basis
of Egs. (2.95) and (2.96), e.g., see § 6.3.2.

2.6 Origin of the optimality of the natural time representation

Here we address the problem [3] of optimality of the natural time representation of time
series resulting from complex systems. For this purpose, we first study the structures of
the time-frequency representations [7] of the signals by employing the Wigner function
[68] to compare the natural time representation with the ones, either in conventional time
or in other possible reparametrizations. We shall see that significant enhancement of the
signal is observed in the time-frequency space if natural time is used, in marked contrast
to other time domains. To quantify this localization property, we examine the generalized
entropic measure proposed by Tsallis [45], which has been widely discussed in the studies
of complex dynamical systems (see also Section 6.5).
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In time series analysis, it is desired to reduce uncertainty and extract signal informa-
tion as much as possible. Consequently, the most useful time domain should maximize
the information measure, and hence minimize the entropy. We find that this can sta-
tistically be ascertained in natural time, by investigating a multitude of different time
domains.

Consider a signal {x(¢)} represented in conventional time, ¢. The normalized time-
frequency Wigner function associated with it is defined by

W(t,0) = A / dt e @Tx(t — 1/2)x(t +7/2), (2.99)

where A = [rr [dtx?(t)]~! is the normalization constant and @ is the frequency. Numeri-
cally, it is necessary to discretize and make finite both time and frequency, and the inte-
gral has to be replaced by a sum. To make comparison of the natural time analysis with
Eq. (2.99), it is convenient to rescale y; by Nyxi, which is precisely the pulse number,
k = t;.. The quantity, Qy , has a clear meaning for dichotomous time series (Fig. 2.1(a)),
whereas for nondichotomous time series, threshold should be appropriately applied (e.g.,
the mean value plus half of the standard deviation) to transform it to a dichotomous one.
The normalized Wigner function associated with Qy is now given as follows:

N—1
W(k,®) =B Y O iOx:icos[®(tyi— 1), (2.100)
i=0

where B =[x Y}, 0?]~! stands for the normalization constant and @ is the dimensionless
“frequency”. In the sum, Q; with k < 0 and k£ > N should be set equal to zero. Note that
Eq. (2.100) is a discrete version of the continuous Wigner function in Eq. (2.99) and unlike
the ordinary definition, the transformation in Eq. (2.100) is not orthogonal in general.

Figure 2.7 depicts the Wigner functions in the time-frequency spaces for the conven-
tional time (a) and the natural time (b). Remarkably, significant enhancement of the signal
is observed in the latter case, with the scale of enhancement being about 10 times. A local-
ized structure emerges in natural time, in contrast to a moderate profile in the conventional
time representation.

In the natural time domain, the time difference between two consecutive pulses (i.e.,
inter-occurrence time) is equally spaced and dimensionless, and is here taken to be unity:
tr+1 — tx = 1. However, for the sake of comparison, we will later consider various time
domains in which the occurrence time 7, = Nuy in Eq. (2.100) is made random. The con-
ventional time representation is characterized by a constant time increment Az (e.g., 1 sec),
and the occurrence of the i-th event is at t; = iAr. To generate the random time domains
artificially, we consider uniformly distributed u, so that the average inter-occurrence time
is again unity. Performing Monte-Carlo simulation, we have constructed more than 1,000
different time domains and integrated over @ (®) over O to & [rad/sec] ([rad]), which can
cover the regimes of interest (recall that when 7, = k, W (k,0 + 1) = W (k, ®)).
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Fig. 2.7 The plots of the Wigner functions
of the SES activity A of Fig. 2.8 given
below in (a) the conventional time domain
and (b) the natural time domain. Significant
enhancement of the signal is recognized

in the natural time domain at both edges
but mainly in the localized structures in the
intermediate region. Note that, instead of )y,
Ny = k is used (see the text). @ has the unit
[rad/sec], whereas has @ has [rad]. Taken
from Ref. [3].
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Fig. 2.8 Excerpts of 4 SES
activities, labeled K1, K2, A, U
and 6 “artificial” noises, labeled
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nl-n6, in normalized units, see
the caption of Fig. 4.2. Taken
from Ref. [3].
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To quantify the degrees of disorder in the time-frequency spaces with various time
domains, we employ as mentioned the Tsallis entropy [45] defined by

Sq:11q</dqu—1), (2.101)

where [du is the collective notation for integral and sum over the time-frequency space
and ¢ is the positive entropic index. In the limit ¢ — 1, this quantity tends to the form
of the Boltzmann—Gibbs—Shannon entropy S = — [ duW InW. This limit cannot however
be taken, since the Wigner function is a pseudo-distribution and takes negative values, in
general. The quantity S, is, however, well defined if ¢ is even. Thus, we propose to use the

value
q=2, (2.102)

which, by considering Egs. (2.100) and (2.101), results in:

N N—1 Sln (s —tg— g+t —t /)]
1 Y Y Y Okt Okt Qv Qs - S

tk+l t_j+t,  —t l)
Sy =1-— x ket "l

2m |:Zk 1(Qk +Zl 1 Qk IQ sm (st 1)]):|2

Tty r1—t—1)

SIN|TT(tgyg—tp—j—t, 1+t 1
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(2.103)

Table 2.2 The values of Prob(S, < $5%) together with the number of pulses N for the electric signals of
Fig. 2.8 with N > 50. The estimation error is at the most 1.6%.

Signal N Prob(S, < $5%)(%)
K1 312 37
K2 141 6.9
U 80 8.1
nl 216 5.7
n2 1080 <0.1
n3 259 27
n4 396 1.6
ns 432 2.8

To examine how the natural time representation is superior to other ones, in Ref. [3] we
made comparison of the values of S, for 10 different time series [54] of electric signals
(see Fig. 2.8, whereas Fig. 4.9 depicts their natural time representation): 4 SES activities
and 6 “artificial” noises. The results of 8 (out of the 10) signals comprising more than
50 pulses are compiled in Table 2.2 in which we give the values of Prob(S, < S5%), i.e
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the probability that S, calculated for a time domain different than the natural time domain
to be smaller than the value S5 calculated for natural time (note that this value comes
from Eq. (2.103) and should not be confused with the entropy S in natural time defined by
Eq. (3.1), see Chapter 3). This probability Prob(S, < §5%) was estimated as follows. For
each time domain produced by Monte—Carlo the corresponding S, value was calculated
through Eq. (2.103) and compared to S5%. For signals with a reasonable number of pulses,
e.g., larger than 50, Table 2.2 reveals that the quantity Sg‘”, in fact, tends to be minimum
compared to those of other representations attempted. In addition, it is mentioned that S5
is also appreciably smaller than S, in conventional time (see Fig. 2.7).

In conclusion, we investigated if natural time yields an optimal representation for en-
hancing the signals in the time-frequency space by employing the Wigner function
and measuring its localization property by means of the Tsallis entropy. For this pur-
pose, we compared the values of the entropy for various time series (being either SES
activities or “artificial” noises) represented in a multitude of different time domains.
We find that the entropy is highly likely to be minimum for natural time, implying the
least uncertainty in the time-frequency space. This explains why dynamical evolution
of diverse systems can be better described in natural time.

2.7 Is time continuous?

Natural time ), from its definition, is not continuous and takes values which are rational
numbers in the range (0,1]. (In these numbers, as the complex system evolves, the numer-
ators are just the natural numbers (except 0), which denote the order of appearance of the
consecutive events.) Hence, one of the fundamental differences between (conventional)
time and natural time refers to the fact that the former is based on the idea of continuum,
while the latter is not. Following Ref. [50], here we aim at raising some consequences of
this difference, and in particular those that stem from the set theory developed by Can-
tor, having in mind the following crucial remark made by Schrodinger (see pp. 62—63 of
Ref. [40]):

“We are familiar with the idea of the continuum, or we believe ourselves to be. We are
not familiar with the enormous difficulty this concept presents to the mind, unless we have
studied very modern mathematics (Dirichlet, Dedekind,Cantor).”

2.7.1 Differences between natural time and conventional time on the basis
of set theory

We clarify in advance that we do not tackle here the case (since it is inapplicable to our
universe [16]) raised by Godel in 1949 who discovered [15] unexpected solutions to the
equations of general relativity corresponding to universes in which no universal temporal
ordering is possible (see also Refs. [8, 71] and references therein). This solution acquires
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its simplest form (see p.86 in Ref. [39]) “with two of the coordinate-line-elements time-
like (the other two space-like)”. Interestingly, Schrodinger in an early version of Ref. [39],
which was published almost simultaneously with Godel’s work, had also emphasized that
“there is no necessity for just three of the four line-elements being space-like, one time-like

We now recapitulate some points of the Cantor set theory that are relevant to our present
discussion.

A transfinite number or transfinite cardinal is the cardinality of some infinite set,
where the term cardinality of a set stands for the number of members it contains,
e.g., see Ref. [43].

The set of natural numbers is labeled by .4, while the number of natural numbers is
designated by Xy, i.e., Xo = |.#7| (note that the cardinality of a set S is labeled |S|). In this
transfinite number, the zero subscript is justified by the fact that, as proved by Cantor, no
infinite set has a smaller cardinality than the set of natural numbers.

It can be shown that the set of rational numbers designated by 2 has the same cardi-
nality as the set of natural numbers, or |4 | = | 2] (e.g., Theorem 2 in Ref. [43]). In
other words, the rationals are exactly as numerous as the naturals.

Note that a set is countable iff its cardinality is either finite or equal to X and in
particular is termed denumerable if f its cardinality is exactly X (note that as usually, for
“if and only if” we write simply “iff”). A set is uncountable if f its cardinality is greater
than X(; see also below.

Hence, natural time takes values (which, as mentioned, are rational numbers) that form
in general a countable set; this becomes a denumerable set in the limit of infinitely
large number of events (see § 2.7.2).

Further, since in natural time analysis we consider the pairs (), Q). the values
of the quantity Oy should form a set with cardinality smaller than (or equal to) . In
other words, the values of the energy also form a countable set, which reflects of course
that the energy is not continuous, thus the quantization of energy seems to emerge.

The fact that |.4"| = | 2| is an astounding result in view of the following. The rational
numbers are dense in the real numbers, which means that between any two rational num-
bers on the real number line we can find infinitely more rational numbers. In other words,
although the set of rational numbers seems to contain infinities within infinities, there are
just as many natural numbers as there are rational numbers. This reflects the following
point.

Let us assume that we follow the evolution of a system with some (experimental) accu-
racy, in which, as mentioned, in the limit of infinitely large number of events the cardinality
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of the set of the values of natural time is X. Let us assume that we now repeat the mea-
surement with more sensitive instrumentation, i.e., counting events above an appreciably
smaller energy threshold (which should be constrained by the uncertainty principle, but a
further discussion on this point lies beyond the scope of the present monograph, as already
mentioned in § 2.1.1); hence between two consecutive events of the former measurement a
considerable number of appreciably smaller events may be monitored. The corresponding
cardinality, in contrast to our intuition, is again Xg. In other words, when considering the
limit of infinitely large number of consecutive events, the natural time takes values that
form a denumerable set and this remains so even upon increasing the accuracy (and hence
lowering the uncertainty) of our measurement. The inverse, i.e., when the instrumentation
becomes less sensitive, may correspond to a “coarse graining” procedure.

We now turn to the aspects of Cantor set theory related to the real numbers, which
as mentioned are associated with the conventional time. It is shown that the number of
points on a finite line segment is the same as the number of points on an infinite line (e.g.,
Theorem 13 in Ref. [43]). Considering the definition: the number of real numbers is the
same as the number of points on an infinite line (or in the jargon, the numerical continuum
has the same cardinality as the linear continuum), let “c” designate the cardinality of the
continuum — or equivalently the cardinality of the set of real numbers. (Hence ¢ = |Z|
by definition.) It is proven (e.g., Theorem 16 in Ref. [43]) that the set of real numbers is
uncountable, or |%Z| > X. (Equivalently, this theorem asserts that ¢ > Xo.)

Hence, the values of conventional time form an uncountable set, in contrast to that of
natural time which in general as mentioned is countable.

In order to further inspect this fundamental difference, we resort to the continuum hy-
pothesis (CH) which was formulated (but not proved) by Cantor.

Continuum hypothesis, after Euclid’s parallel postulate, was the first major conjecture
to be proved undecidable by standard mathematics [43].

We first clarify that the power set *S of a set S, which is the set of all subsets of S, has
a cardinality |*S| = 215 when § is finite. According to Cantor’s Theorem the cardinality of
the power set of an arbitrary set has a greater cardinality than the original arbitrary set,
ie., |*S| > || (e.g., Theorem 4 in Ref. [43]). This theorem is trivial for finite sets, but
fundamental for infinite sets. Hence, for any infinite cardinality, there is a larger infinite
cardinality, namely, the cardinality of its power set.

The continuum hypothesis asserts that there is no cardinal number o« such that
Np<a<ec.

Then it follows that the next largest transfinite cardinal after X (labeled X ) is c, thus
¢ = X;. Since Cantor proved (e.g., Theorem 17 in Ref. [43]) that X| = 2%0 CH leads to:
¢ = 2%0 (thus, this is the number of points on an infinite line).
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Hence, if we assume CH, the cardinality of the set of the values of natural time — in
the limit of infinitely large number of events — corresponds to X, while that of the
conventional time is 2%0.

The values of the former, as mentioned, are rational numbers, while almost all the
values of the latter are irrational, because, since 2¥0 > X, almost all reals are irrational
numbers. (On the other hand, without assuming CH we have essentially no idea which
transfinite number corresponds to ¢, and we would know the cardinality of the naturals,
integers, and rationals, but not the cardinality of the reals, e.g., see Ref. [43].) As for the
values of Oy, they are not necessarily rational, because in general when taking X (at the
most) out of 2%0 values they may all be irrational.

Hence, in the limit of infinitely large number of events, even upon gradually improving
the accuracy of our measurements, both sets { xx } and {Qy } remain denumerable, the
former consisting of rational numbers only.

2.7.2 Proof of the cardinality of the set of the values of natural time

We now indicate how in the limit of infinitely large number of events we conclude that the
cardinality of the set of the values of natural time equals to X. Let us tabulate the values
of natural time upon the occurrence of each event:

after the first event 1

after the second event % %

after the third event % % %

after the fourth event % % % %

after the Nth event % % % % ... %

This indicates that the cardinality of the set of the values of natural time |{;}| should
be greater than (or equal to) N(number of entries in the first column) and smaller than (or
equal to) N 2 (number of entries in the square N X N matrix), i.e.,

N < [{x}| < N% (2.104)

Thus, for N — o we have Xo < [{x}| < X3 and since X3 = X (see Theorem 22 of
Ref. [43]), we find that [{x;}| = Xo.

2.7.3 Is natural time compatible with Schrodinger’s point of view?

Schrodinger, in order to point out “the intricacy of the continuum”, used the following
example (see pp. 138—143 of Ref. [41]): Let us consider the interval [0,1], you first take
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away the whole middle third including its left border point, thus the points from 1/3 to
2/3 (but you leave 2/3). Of the remaining two-thirds you again take away “the middle
thirds”, including their left border points, but leaving their right border points. With the
remaining “four ninths” you proceed in the same way and so on. The cardinality of the set
that remains ad infinitum is no less than that of [0, 1] because it can be shown [41] that there
is a one-to-one correspondence between their elements. Moreover, since it is a subset of
[0,1], its cardinality is also no greater, so it must in fact be equal. In particular, Schrédinger
concludes [41] as follows: “The remarkable fact about our remaining set is that, although
it covers no measurable interval, yet it still has the vast extension of any continuous range.
This astonishing combination of properties is, in mathematical language, expressed by
saying that our set has still the ‘potency’ of the continuum, although it is ‘of measure
zero’.” In other words, the cardinality of the aforementioned remaining set considered by
Schrodinger exceeds drastically that of the set of the values of natural time.

Let us now comment on the common view that (conventional) time is continuous, keep-
ing in the frame that, as pointed out by Schrodinger (p. 145 of Ref. [42]) “our sense per-
ceptions constitute our sole knowledge about things”. In short, it seems that the continuity
of time does not stem from any fundamental principle, but probably originates from the
following demand on continuity discussed by Schrodinger (see p. 130 of [41]):

“From our experiences on a large scale ... physicists had distilled the one clear-cut
demand that a truly clear and complete description of any physical happening has to fulfill:
it ought to inform you precisely of what happens at any point in space at any moment of
time ... . We may call this demand the postulate of continuity of the description.”

Schrodinger, however, subsequently commented on this demand as follows (see p. 131
of Ref. [41]): “It is this postulate of continuity that appears to be unfulfillable!...” and
furthermore added: “We must not admit the possibility of continuous observation.”
Considering these important remarks, we may say that the concept of natural time is
not inconsistent with Schrédinger’s point of view.

2.7.4 Conclusions

Conventional time is currently assumed continuous, but this does not necessarily result
from any fundamental principle. Its values form an uncountable set, almost all of which
may be irrational numbers. On the other hand, natural time is not continuous, and its
values form a countable set consisting of rational numbers only; further, the values of
the energy also form a countable set but they are not necessarily rational. In the limit of
infinitely large number of events, the cardinality of the set of the values of natural time
is X (irrespective of whether we increase the accuracy of the measurement), thus being
drastically smaller than that of conventional time, which equals to 2¥0 if we accept the
validity of the continuum hypothesis.
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3. Entropy in Natural Time

Abstract. Entropy is a concept equally applicable to deterministic as well as stochastic
processes. An entropy S is defined in natural time, which exhibits positivity, concavity
and Lesche’s (experimental) stability. The entropy S_ deduced from analyzing in natural
time the time series obtained upon time reversal, is in general different from S, thus the
entropy in natural time does satisfy the condition to be “causal” (while the variance x; =
{(x*) — (x)* does not). The physical meaning of the change AS = S — S_ of the entropy
in natural time under time reversal, which is of profound importance for the study of
the dynamical evolution of a complex system, is discussed. For a fractional Brownian
motion time series with self-similarity exponent H close to unity, as well as for an on—
off intermittency model when the critical value is approached from below, both values of
S and S_ are smaller than the entropy S, ~ 0.0966 of a “uniform” distribution. When a
(natural) time window of length [ is sliding through a time series, the entropy S exhibits
fluctuations, a measure of which is the standard deviation 6S. Complexity measures are
introduced that quantify the 8S variability upon changing the length scale / as well as
the extent to which 85 is affected when shuffling the consecutive events randomly (for
| = const.). In a similar fashion, complexity measures can be defined for the fluctuations
of the quantity AS whose standard deviation is designated 6[AS]. For the case that Oy are
independent and identically distributed positive random variables, as in the case of data
shuffled randomly, their o /u value is interrelated with 6S and G[AS].

3.1 The entropy in dynamical systems and the advantages of its use

Before defining the entropy S in natural time time (see Section 3.2), we recapitulate some
background knowledge on the entropy in dynamical systems (see chapter 13 of Ref. [36]).

Following Eckmann and Ruelle [8] (see pp. 637, 638), we note that a system with
sensitive dependence on initial conditions produces information. This is because two initial
conditions that are different but indistinguishable (at a certain experimental precision) will
evolve into distinguishable states after a finite time. If p is an ergodic probability measure
for a dynamical system, the concept of the mean rate of creation of information, A(p),

P.A. Varotsos et al., Natural Time Analysis: The New View of Time: Precursory Seismic Electric Signals, 159
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also known as the Kolmogorov—Sinai (KS) invariant or entropy, was introduced. This,
which (is, in fact, an entropy per unit time and) will be hereafter labeled /gy, is not the
same physical quantity as the thermodynamic entropy when studying the dynamics of
dissipative physicochemical systems (see also below).

Grassberger and Procaccia [12] proposed a method to estimate a very good lower bound
for hgs directly from a time signal (see also Refs. [6] and [7] for other estimations and/or
relevant discussion). The value of /i is zero in an ordered system, and a constant different
than zero (but positive, see p. 649 of Ref. [8]) in a chaotic (deterministic) system.

The greater the hgg-value, the stronger are the chaotic features of the system in ques-
tion. In a random system /g is infinite (see p. 38 of Ref. [21]).

An interconnection between hgs (which is a single number characteristic of the chaotic
dynamical system under consideration) and the time evolution of the entropy of the second
law of thermodynamics, is not yet well established. The latter is a function of time; this
function depends on both (i) the particular dynamical system considered and (ii) the choice
of an initial probability distribution for the state of the system.

We now summarize [43, 36] the advantages when using the concept of the entropy
for the study of a dynamical system for which an agreement whether the system dynam-
ics (e.g., normal heart dynamics) are chaotic or not is lacking. The most commonly used
nonlinear complexity measures are fractal dimensions of various kinds (e.g., correlation
dimension, Rényi dimensions). We emphasize, however, that each of them measures dif-
ferent aspects of the statistics on the attractor. On the other hand, Liapunov exponents and
KS entropy and entropy rates are measures of the dynamics on an attractor.

Except for the KS entropy and the entropy rates, the other categories of complexity
measures assume a purely deterministic system. On the other hand, entropy is a con-
cept equally applicable to deterministic as well as stochastic processes.

Thus, in a time series that may be due to a mixed process, stochastic and deterministic,
the use of fractal dimensions can be criticized. Furthermore, the following point should
be stressed: complexity measures based on static entropy (e.g., Shannon entropy) quantify
statistical properties in the time series. The underlying key property of these complexity
measures is the probability distribution of the (dwell times in the) data analyzed; thus, the
result of such computations should be independent of permutations performed on the (se-
quence of the dwell times in the) time series as in surrogate (randomized) dataset obtained
by shuffling. On the other hand, the entropy S in natural time that will now be defined
(and the relevant complexity measures, see Section 3.6) considers the sequential order of
pulses (events); in other words, S is a dynamic entropy, i.e., it captures characteristics of
the dynamics of the system. We emphasize, however, that an interrelation between ks and
S still remains to be explored.
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3.2 Entropy in natural time. Definition

The derivative of the fluctuation function (x7) — ()7, with respect to g, i.e., {7 Iny) —
(x)? In(y) in the region around g = 1 leads [40] to the quantity () Inyx) — (x) In{)). The
latter is reminiscent of an excessive “entropy” (see pp. 26-28 of Ref. [37], but recall that
the usual expressions of the thermodynamic potentials, in terms of macroscopic variables,
break down [37] far from equilibrium and the behavior of entropy is still a matter of inten-
sive investigation). Thus,

Definition 3.1. The entropy in natural time is [38, 40]

S=(xInx)—(x) In(x) (3.1)

or equivalently

Sk [k & S m
— Zlnl = — — — 2
B (B)ofEa] oo
Note that S should not be confused with Cov(y, Iny) = (x Inx) — (x)(Iny) since in
general (Iny) # In(y).

The entropy S consists of two terms: Sy = —(y Inx) and S,y = —(x) In(x) and hence
S = —Sy +S(y). Upon employing p(x), Eq. (3.1) can be written as

S= /0 1 p(x)x Iny dy — < /0 1 (X)X dx> In [ /0 1 p(XX dx/} : (3.3)

Recalling that for the “uniform” (u) distribution p()) = 1 and () = § (see § 2.1.3), we find

that, since & [x? /4 — (x2/2) Inx] = —x Inx, the entropy S, of the “uniform” distribution has
the value m2 1
n
Sy = —— = 0.0966 34
=Ty (3.4)

3.3 Properties of the entropy in natural time

system (beyond positivity, e. g see Ref [16]) should be concave (e.g., pp. 52-53 of
Ref. [5]). For the central importance of this concavity on both the 0" and the 2" prin-
ciple of thermodynamics; see for example Ref. [33]. Another important issue which has
attracted a strong interest is the stability or experimental robustness of the entropies, e.g.,
see Refs. [31, 2, 16, 17, 15, 24, 33, 19]. In particular, this investigation is usually made
in terms of an early suggestion by Lesche [18] (Lesche stability criterion), which states
that an entropic measure is stable if its change upon an arbitrarily small deformation of the
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distribution (representing fluctuations of experimental data [31]) remains small. By means
of this stability criterion, Lesche [18] showed that the well known Boltzmann—Gibbs—
Shannon (BGS) entropy Spgs = —kp ny: 1 pi In p; is stable, while the Rényi-entropy [28] is
unstable. Abe later proved [2] that Tsallis entropy is also stable, while the escort-entropy
is not. Finally, the stability was also shown for the k-entropy [17, 31], while it became
clear [34] that the Landsberg—Vedral.-entropy does not obey this criterion.

To sum up, an entropic functional should exhibit positivity, concavity and Lesche sta-
bility.

The mathematical proofs concerning the positivity, concavity and uniform continuity
(or as usually called Lesche stability) for both the variance k] and entropy S in natural time
are now given below. In particular, we first present in § 3.3.1 some background material,
while §§ 3.3.2, 3.3.3 and 3.3.4 provide in detail the proof of the positivity, concavity and
Lesche stability of both the variance kj and the entropy S in natural time.

Despite this similarity of the properties of k; and S, however, we note that upon time
reversal they exhibit an essential difference, i.e., the former (k) always remains the
same while the latter (S) does not, see § 3.4.1.

Finally, § 3.3.5 is reserved for the presentation of a more general theorem.

3.3.1 Background material

Here, we review some of the basic properties of the real functions g(x) = x* and
f(x) = xInx defined on the closed interval [0,1] (more accurately we consider f(x) =
{xInx:V¥x e (0,1], 0:if x=0} ). These are depicted in Fig. 3.1, and note that the fol-
lowing two inequalities hold:

0<g(x)<1, (3.5)

0> f(x)>—-. (3.6)

(xX)=x? .
08 f(X%=x e —
0.6
04 ¢
0.2

02"

0 0.2 0.4 0.6 0.8 1 Fig. 3.1 The functions g(x) =22 and f(x) = x Inx
X in the closed interval [0,1].
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Equation (3.6) clearly means that
If)I <

We now proceed to two very simple Lemmas:

. (3.7

Q| —

Lemma 1 Both g(x) and f(x) are continuous in the interval [0,1].

Proof. For g(x) this is trivial; for f(x) it is also trivial for x € (0, 1] and since lim,_o f(x) =
0, f(x) is also continuous atx =0. O

Lemma 2 Both g(x) and f(x) are convex in the interval (0,1].
Proof. Ttis sufficient to show that the second derivatives of these twice differentiable func-

tions are positive. Indeed g”(x) =2 and f”(x) = 1/x which are both positive forx >0. 0O

3.3.2 The positivity of x; and S

We first recall Egs. (2.39) and (3.1) and that the symbol (F())) stands for

N
k
(F) =Y, pF () : (3.8)
k=1 N
Second, in order to prove the positivity of k; and S, we shall make use of the following
well known theorem [1] (see also 12.411 at page 1101 of Ref. [11]):
Theorem 3.1. (Jensen’s inequality) If F is a convex function on the interval [a,b], then
n n
F Z Aixe | < Z A (xg)
k=1 k=1
where 0 < A4 < 1, A+ A2+ + A, = 1 and each x; € |a,D).

Due to Lemma 2 both g(x) = x? and f(x) = x Inx are convex in (0,1]. Using in Jensen’s
inequality Ax = py, xx = k/N(> 0) and Eq. (3.8), we obtain:

< (3.9)

and
(x)In(x) < (xIny), (3.10)

respectively. Obviously, Egs. (3.9) and (3.10) imply the positivity of both xj and S.

3.3.2.1 Upper bounds of x; and S

Another important property of x; and S is that they are not only bounded from below by
zero, but also bounded from above by N-independent bounds. For k7, in view of Eq. (3.5),
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we have:
N k 2
0k =) - W <UD+ P L) F1<2 G

As for S, in view of Eq. (3.7), we get:

N kK| 1 2
0<8=(xIny)—(x)In(x) <[(x Inx)|+[(x Z ln*+ S <
- (3.12)
Thus, in summary
0<Kk <2 (3.13)
2
0<S< - (3.14)

Note that the usual values of k7 and S are much smaller than these upper bounds. For
example, since kj is the variance of the natural time ) that varies from 0 to 1, it is
expected to be maximum when p() has support only at the extreme points 0 and 1.
In such a case, kj = p—p*> and S = —pInp, where p=p(y = 1). Since 0 < p < 1,
the maximum value of kj is obtained when p = % and then k; equals }‘. Moreover, S =
—p In p maximizes for p = 1 /e taking the value 1/e ~ 0.3679. We note that the latter
value is the maximum value of S since, when using Eq. (3.6) we have S = (y Iny) —

(x)In{x) < —(x)In{x) < 1/e.

3.3.3 The concavity of x; and S

The concavity of k7 and S with respect to py is based on the fact that they both have
negative second derivatives:

82K1 kl
opdp;  N¥ ©.15)
d’s ki B
" . 3.16
Toom (,,121” ) (316

Thus, the matrix elements of the corresponding Hessians (Hy; = #{29”2[[)]) have the
form Hy; = —eViV;, where V = (1/N,2/N,...,1) and € = 1(> 0) when X[p] = Ky or
e=(Xh_i1rm) - (> 0) when X[p] = S. Such Hessians cannot have a positive eigenvalue
A, because Hye) = Ley = e;{HkJe;L =Aley|=A = —£€£VTV61 = —¢g|Ve, | <0, where
e (€ #") is any normalized eigenvector of the symmetric real matrix Hy;. Since they
cannot have a positive eigenvalue these Hessians are negative semi-definite and hence the
corresponding entropic measures kj and S are concave [11].
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3.3.4 Lesche stability (or experimental robustness) of x; and S

Lesche stability [18], as mentioned, is considered [3, 24, 15, 16] as an important property
to be satisfied by an entropic measure Z[p].

{Pi};_1 5 n- the corresponding entropic measures X[p| and X[p’] do not change drasti-
cally (and also in a uniform way, see below).

Mathematically
Elp]-Z[p
Ve>038 :|p-pll<d= ’M <e (3.17)
Emax
for any value of N, with the metric ||p|| = Y, |pi| and X is the maximum value of

Zlpl.

We note [24] that, for a fixed value of N, Lesche stability implies uniform continuity
which is a rather trivial statement, because a continuous function on a compact set is
automatically uniformly continuous (see Theorem 3.3 below).

It was pointed out [16] that Lesche condition is a definition of natural uniform metric
continuity.

The power of Lesche stability condition arises from the fact that uniform continuity
may not survive in the N — oo limit [15]. Thus, to avoid confusion, one should consider
[15] that the mapping X[p], where p € (%’*)N, taken as a function of N, converges to a
uniformly continuous function in a uniform manner, i.e., Ve > 0 there exists J; (which
depends only on &) such that V p, p’ € (%+)" and for every N € &+

/
I 7'l < & = [F2=2P]
i

ax

<e. (3.18)

In our case of kj and S, there is at least one distribution { pi}i=1,2,.‘. - the constant one
with all p; = 1/N, for which for all N the corresponding values ki . and S:

N k2 N k 2
KLe(N) =) ~5 = <Z 1\12> , (3.19)
K &k Ay
N> Yzl (Z 2) , (3.20)

lim ki (V) = K, = =, (3.21)

Jlim S(N) =8, = == 2. (3.22)
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reach well-defined finite and positive values. We note that both kj (N) and S.(N) are
monotonically increasing with respect to N and hence:
1
6= Ki.(2) < Kki1.(N), (3.23)
5In2—3In3
Z =

Since X, should be by definition greater or equal than each of these values for all N, we
can replace X,,,,, in the definition of Lesche stability by either 11—6 or M, respectively.
Then, these positive numbers can be absorbed in € and thus we retain the usual definition
of uniform metric continuity in a uniform manner (independent of N). This is what we

shall prove:

Se(2) < Se(N). (3.24)

Ve>0,Ne Zt38(e) : |lp—p|l < 8(e) = |X[p| - Z[p]| < e. (3.25)
Theorem 3.2. (Stability of k1) The variance K1 in natural time:

N K\ 2 N\
ki[p] = kg,lpk (N) - <Z NPk) (3.26)

k=1
satisfies the condition (3.25) and hence is Lesche stable.

Proof. For every € > 0, we can consider §(€) = &/3 so that if || p — p'|| < §(€) we have:

%1 [p] — K [p']]

1
™=
7N

Z| =
N———
o

<

bl

|

]

[

|
< N
™=
=Z| =

)

bl
N——
(3]

_|_

- =~
=
=] >

=
=
N———
(3]
[

k=1 k=1 k=1
N N
k k
— —(ph — <
+<I§1Npk>]§,1N(pk po)| <
N k 2 N k N k
< - _ - - _
< kZl(N> (P —Pi) |+ I;Npk k;N(Pk pi)|+
+ ﬁ‘, kp’ i k(p pr)| <
APk NPk Pk)| =
k:lN k:lN
N k 2 N k , N k
< — —ph |+ —(p}, — + —(p}, — <
< T (5) Inempil+ | L g 0i-p0|+ | 30k <
/ Al k / al k /
< Z\Pk—PkH‘Z ~ |Pk_Pk|+Z < | 1Pk—pil <
k=1 k=1 N k=1 N
N
<3Y Ip—ni (3.27)
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but since ||p — p'|| = X2, [Pk — p| < €/3, inequality (3.27) implies that
mlp] —rlp]| <e (3.28)

This relation shows that the condition (3.25) is obeyed for x;. O

Thus, the quantity k7 is Lesche stable.

Now, before proceeding to the final proof for the stability of the entropy S, we make
use of a well-known theorem [51]:

Theorem 3.3. (Heine 1870) If a function F(x) of a real variable x is continuous when
a < x < b, then F(x) is uniformly continuous throughout the range a < x < b.

In Lemma 1 we proved that f(x) = {xInx:Vx € (0,1], 0:if x=0} is continuous in
the closed interval [0,1], and hence it is also uniformly continuous in the same interval.
Uniform continuity implies that

v% > 0,x,y € [0,1]38(£/2) : [x—y| < 81(e/2) = |x Inx—yIny| < ; (3.29)

Now, we can show that S is Lesche stable.

Theorem 3.4. (Stability of S) The entropy S in natural time:

i Kok Z k mZ k (3.30)
“ kv Ny PkN PkN .

satisfies the condition (3.25) and hence it is Lesche stable.

Proof. For every € > 0, we can consider §(&) = min [£, 8 (¢/2)] so that if ||p — p/|| <
d(€) we have:

N k Nk al
STl —Sloll = / “o |1
NI k;(pk Py Ing = k;Npk nk;NpH
N N
k k
Jr(kZ’]N k> ;N k
< i(p P | 4 frinx— yIny). (3.31)
k=™ Pk) N M7 .
k=1 N N

where x =Y, Npk andy =YY, Npk We now consider that

N k k N
e—yl= Z x (Px = P) 5| 1P Pl < X Ipe—pil < 8(e) < die/2) (3.32)
= k=1

N
=)
k=1
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and hence (see condition (3.29))
xInx—ylny| < g (3.33)

Now, we return to inequality (3.31) to complete the proof:

N
k k
S[p] =S[P']| < |} (Pe—pi) In< |+ [xInx =y Iny| <
= N N
N
k k €
< 1 Z<
k;(Pk )N ngltys
N
k k €
< — n—|+=<
_kglpk il yIngl+s <
N €
<3 -+ 634

»
Il

since we assumed ||p— p'|| = L¥_, |px — pi| < 8(€) < £, the inequality (3.34) becomes:

, £ €
IS[p]—S[p]|<5+§—£- (3.35)

This relation shows that the condition (3.25) is obeyed for S. O

Thus, the entropy S is Lesche stable.

3.3.5 A more general theorem for entropic functionals in natural time

The following general theorem holds

Theorem 3.5. Let F(x) : [0, 1] — % which is:

1. uniformly continuous in [0,1]
2. strictly convex in (0,1]
3. twice differentiable in (0,1]

then the functional:
l k Nk
=Y mF () ~F (Zm)
k=1 N - N

is:

1. positive

2. concave

3. Lesche stable.

Proof. The proof of this Theorem is given in Section V of Ref. [49]. O



3.4 Entropy under time reversal 169

3.4 Entropy under time reversal

It is believed (e.g., see Ref. [20] and references therein) that in general there is a rela-
tion between the irreversibility of thermodynamic processes as expressed by the breaking
of time-reversal symmetry and the entropy production in such processes. An essential
characteristic of these processes is that the time-reversal invariance of the microscopic dy-
namics is apparently broken [20]. It means that out of equilibrium a particular sequence
of macrostates and its time reversal can have a very different plausibility (this, basically,
must be the reason for the positivity of entropy production [20]). Since in general we are
dealing with out of equilibrium processes, the above motivated us to investigate what hap-
pens when calculating the S values upon time reversal of the original time series. We find
that in general S is not invariant under time reversal [50].

3.4.1 Definition of the entropy in natural time under time reversal

The value of the entropy deduced upon analyzing in natural time the time series obtained
upon considering the time reversal 7' of the original time series, i.e., T py = py_i41 See
Eq. (2.8), is designated by S_. This differs from the S value which results from the analysis
of the original time series. On the other hand k; does not change upon time reversal —
since it results [39] from a power spectrum (see Section 2.4) — in a similar fashion as the
exponents obtained from DFA (see § 1.4.2) and Hurst [14] analysis (see Section 4.3). Since
the value of S_ is in general different [50, 48, 47] from S, the entropy in natural time does
satisfy the condition to be “causal” in the following sense (see Ref. [50] and references
therein):

When studying a dynamical system evolving in time, a “causal” operator should be
able to represent the evolution of the system according to the true time arrow, thus
such an operator can reveal the differences arising upon time reversal. This holds for
S but not for k.

3.4.1.1 A simple example clarifying the physical meaning of the entropies S and S_

Let us study the influence of a linear trend on the “uniform” distribution by consider-
ing the example of the parametric family of pdfs discussed in § 2.2.1, ie., p(x;€) =
14+ ¢e(x —1/2), for small (< 1), see Eq. (2.9). Such a family of pdfs shares the interest-
ing property of Eq. (2.10), i.e, the action of time reversal is obtained by simply changing
the sign of €. The calculation of the entropy S(€) = S[p(x;€)], as well as that of the en-
tropy under time reversal S_(¢) = S[Tp(x;€)] = S(—&), can be done analytically by using
Eq. (3.3). This yields

1 € 1 € 1 &
S(S)——4+72—(2+12> ln(2+12>. (3.36)
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0.09 - \\\ ] Fig. 3.2 The values of S (dashed) and S_
N (dotted) as a function of the linear trend
0.088 : : : : parameter €. The solid line corresponds to
0 0.1 0.2 0.3 0.4 0.5 S, and is drawn for the sake of comparison.
€ Taken from Ref. [48].

Figure 3.2 shows the values of S and S_ as a function of the linear trend parameter €.
We observe that they lie above and below §,,, respectively. In simple words:

A (small) linearly increasing (decreasing) trend superimposed on a “uniform” distribu-
tion leads to an entropy S smaller (larger) than S,,, while S_ is larger (smaller) than S,.

3.4.2 The case when the increments of the time series of Q; are positive i.i.d.
random variables of finite variance

In this case, as discussed in § 2.5.3, p(x) = 2. By using Eq. (2.97), we find xj = % ~

0.056 # K, (see § 2.5.3). Moreover, Eq. (3.3) leads to the value S = % In% — 2 ~ 0.048
and, in addition when considering 7p(x) = 2(1 — x), we get S_ = % In3 — 15—8 ~ 0.088.
Both S and S_ values significantly differ from S, ~ 0.0966 of the “uniform” distribution,
see Eq. (3.4). On the other hand, when Q. are shuffled randomly, in view of the fact that
the increments have a finite variance, the distribution of Q; for a given N has also finite
variance. Thus, the results for the shuffled case correspond [43] to those treated later in
§ 3.4.6, which lead (see Eqgs. (3.56) and (3.48)) to Sy, r — Sy and Ki g, p — &, as N — oo,

A numerical example for exponentially distributed increments of Qy is shown in Fig. 3.3.

3.4.3 Fractional Brownian motion time series

The fBm as mentioned in (§ 1.5.1.1) is H self-similar with stationary increments and con-
stitutes [29] the only Gaussian process with such properties for 0 < H < 1. This can be
simulated [23, 25, 30]; see also pp. 321-323 of Ref. [22], by randomizing a construction
due to Weierstrass, i.e., using the Weierstrass—Mandelbrot function [10]:

> sin(blt+d
W(t) = ch (blH l)) (337)
=1
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100 / Fo Fig. 3.3 The pdfs of k1, S and S_ that
!i \; have been obtained by shuffling the Oy
A ;'-.‘ randomly in the case of exponentially
50 i Y distributed increments (see also Fig. 2.4).
‘J.Jl ‘31 Here, N = 500 and the original time
0 Ne? e series results in k1 = 0.055, S = 0.048

0.075 0.08 0.085 0.09 0.095 0.1 0.105 and S_ = 0.088. Taken from Ref. [47].

where b > 1, ¢; normally distributed with mean 0 and standard deviation 1, and d; are uni-
formly distributed in the interval [0,27] (note that when using the increments of Eq. (3.37)
one can also produce fractional Gaussian noise of a given H, see the note after Eq. (1.31)).

By using Eq. (3.37), fBm for various values of H were produced [48], the one-sided
segments of which were analyzed in natural time (an example showing how the one-sided
segments of a fractional Brownian motion are read in natural time is given in Fig. 3.4). This
means that if we denote by w;, i =0,1,2,...N+ 1, some N + 2 consecutive fBm values
obtained from Eq. (3.37) with wow; < 0 and wywy+1 < O whereas all w,,n=1,2,...N,
have the same sign — thus constituting an one-sided segment — then the py, k =1,2,...N,
used in the calculation are given by pp = wy/ Zﬁ:’zl wy, and correspond to the “energies”
Qi = wy mentioned in § 2.1.2. A Monte Carlo calculation was made by analyzing a large
number of such segments in natural time. The results obtained for each one-sided segment
include the values of the entropies S, S_ (and the value of x; see below) together with
the exponent aprs of the DFA described in § 1.4.2. For segments of a small number of
points N (note that only segments with N > 40 were considered), the values of oprs may
vary significantly, but they scatter around that expected for a given value of H (see fig. 11
of Ref. [41]); in this sense, the DFA exponent oprs is consistent with the H-index used
to generate fBm by means of Eq. (3.37). The method of DFA was preferred, because it
is one of the few well-defined and robust estimators of the scaling properties for such
segments, see § 4.6.1.1. The results are shown in Fig. 3.5, in which we plot the S and S_
values versus Opps. Since, as will be explained later in § 4.4.2, the analysis of the SES
activities in natural time leads [41, 40] to DFA exponents opr4 around unity, we are solely
focused in Fig. 3.5 on the range 0.8 < apra < 1.5. An inspection of this figure reveals the
following conclusions. First, despite the large standard deviation, we may say that these
computations do not result in a definite sign for S —S_ and that both S and S_ are smaller
than S, (=0.0966) when aprs =~ 1. Second, S and S_ are more or less comparable. Third,
the computed S and S_ values are ~ 0.08 for oprs ~ 1. Interestingly, when plotting the
most probable value ki, of ki versus apra we find that K , ~ 0.070 when aprs = 1, see
Fig. 3.6.
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Fig. 3.4 An example showing how the one-sided segments of a fractional Brownian motion (upper panel)
are defined and then read in natural time (lower panel).
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Thus, the results deduced from a numerical simulation in fBm time series show that
when opra ~ 1 the corresponding values are k7 ~ 0.070 and S =~ S_ ~ 0.080.

3.4.4 An on-off intermittency model

We clarify that on—off intermittency is a phase-space mechanism that allows dynamical
systems to undergo bursting (bursting is a phenomenon in which episodes of high activity
are alternated with periods of inactivity). This mechanism is different from the well-known
Pomeau—Manneville scenario for the behavior of a system in the proximity of a saddle-
node bifurcation [27]. Here, we use the simple model of the driven logistic map

X1 =AY)X(1-X,) (3.38)

where we assume that the quantity A(Y;) is monotonic function of ¥; and that 0 <A < 4
(A is further specified below). The system has the invariant manifold X = 0 and the level
of its activity is measured by X;; see Ref. [32]. In order to have the on—off mechanism in
action, we specialize to the case of a noise-driven logistic map, with

A(Y) = Ao+ a, (3.39)

where Y; is d-correlated noise which is uniformly distributed in the interval [0,1] and Ag
and o are parameters. In order to have 0 < A < 4, we assume [32] Ap > 0,00 > 0 and
Ao + o < 4. The relevant parameter plane for the noise-driven system of Egs. (3.38) and
(3.39) (as well as the parameter range for which the fixed point X = 0 is stable) can be
found in fig. 1 of Ref. [32], while the description of the intermittent dynamics is given
in Refs. [26, 13, 4]. Bursting is observed in the temporal evolution of X; as the stability
of the fixed point X = 0 varies. Following Ref. [13], for Ag = 0 there is a critical value
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¢, > 1, below which the system asymptotically tends to the fixed point X = 0, without any
sustained intermittent bursting. For this case, i.e., Ag = 0, the value o, = e =2.71828...
leads to on—off intermittency [32]. In the intermittent system under discussion, both the
signal amplitude and the power spectrum resulted [32] in power law distributions (with
low frequencies predominating in the power spectrum).

Several time series have been produced for the above on—off intermittency model with
the following procedure [48]: The system was initiated at a time (#;, = —200) with a uni-
formly distributed value X;, in the region [0, 1], and then the mapping of Egs. (3.38) and
(3.39) was followed until N events will occur after t = 0. The results for X;, r =1,2...N,
were analyzed in natural time domain (i.e., py = X;/ Zf’: 1 X:, where X here corresponds
to the “energy” Qy mentioned in § 2.1.2) and the values of S and S_ have been determined.
This was repeated 103 times for a given number N of events and the average values of
S and S_ have been deduced. These values are plotted in Fig. 3.7(a) versus (o — e)N'/2

(the factor N'/2 stems from finite size scaling effects, since for large values of N, e.g.,
N > 15,000, a scaling — reminiscent of a first-order phase transition — was observed).

(@)o1t - ‘;& ‘! - ]

0.08 | 5?
5
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0.06 5
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40 -30 -20 -10 O 10

(0. -e) N2
0.07 T T T T T T T
(b) 0.06 i Fig. 3.7 Calculated results for the on—off
' intermittency model discussed in § 3.4.4:
0.05 The average values of (a) S (closed
S 004 symbols) and S_ (open symbols) and (b)
“g : the fluctuations 6S and 6S_ versus the
@ 003 finite size .scaling variable (ot — a.)N'/2.
The quantity N stands for the number of
0.02 the events considered in each sample time
0.01 series; N = 70000, 50000, 30000, 15000
correspond to squares, circles, triangles
oL and inverted triangles, respectively. The
-40 horizontal line in (a) corresponds to S,,.

Taken from Ref. [48].
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Figure 3.7 reveals that as the critical value for on—off intermittency is approached from
below, i.e., ¢ — e_, the entropy S is different from S_ (in contrast to fBm, see § 3.4.3)
and both S and S_ are smaller than S,,.

3.4.5 The case of signals that exhibit short-range temporal correlations

We now present results of modeling Oy by short-ranged temporal correlated time series.
Two examples are treated here by numerical simulation [46]. (i) A stationary autoregres-
sive process Oy = aQy—1 + gk + ¢, |a| < 1, where g, are Gaussian i.i.d. random variables,
and c stands for an appropriate constant to ensure positivity of Q. (ii) O = |aQr—1 + k|-
Figure 3.8(a) depicts the results for S, S_ and k; for the first example versus the number
N of Oy, whereas Fig. 3.8(b) refers to the second example.

In both cases S and S_ converge to S, while kj to the value k, = 1/12 corresponding
to the “uniform” distribution.

@ e SRR ()

0.08

0.07 + il
$ $ —
. — S — |
006 . oo %% e
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
N N

Fig. 3.8 The thick colored lines in (a) and (b) depict the average value of S (red), S_ (blue) and k; (green)
versus the number N of Qy for the two examples (i) and (ii), respectively, mentioned in § 3.4.5. The thinner
colored lines refer to the +o deviation from the average value. For the reader’s convenience, the values
of S, and K, are designated by the horizontal solid black lines. Reprinted with permission from Ref. [46].
Copyright (2008), American Institute of Physics.

3.4.6 Interrelation between 6S and ¢/ in the case of p.i.i.d.

This subsection is focused on the “uniform” distribution in the natural time domain (see
§ 2.1.3). We consider here the case when Qy are independent and identically distributed
positive random variables with finite second moment, i.e., Var(Q;) = 62(< o). This case
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naturally arises when an experimental time series, which does not exhibit heavy tails
(§ 2.5.2), is randomly shuffled [42, 43). Since Qy are i.i.d., for E(pr) = [Qk/z 101
we have: é”[zk le/Zl 101l =1=N&(px), thus & (pr) = N (see Eq. (2.89)). Using the
constraint Zk:l pr =1 (see Eq. (2.3)), leading to px — 1 /N = Y44 (1/N — p;), and the fact

that Qy are i.i.d., we obtain
1\2
Pk> (m)Z(m)]
(5 L

(Lo 10

Cov(p,p1) =& ka— ]1]) <P1 - ;,)} = —V;/I(_pf) (3-41)

which is analogous to Eq. (2.90). It then follows, when considering the central limit theo-
rem [9], that the N-dependence of Var(py) is (see Eq. (2.94):

Var[py] = &

Thus, we get

G2
Var(py) = 33 E (3.42)
We now turn to the statistical properties of (x7). Using & (px) = %, we have
S (kN1
Ely)] — Z) = 3.43
[ = X ( N) N (3.43)

which, since [11] Y2, k9 = N9t /(g+ 1)+ N?/2 + o(N9), reveals that &[(x9)] is again
asymptotically N-independent because it approaches the value 1/(g+ 1) with a “small”
1/(2N) correction. The variance Var[(x?)][= (8 (x%))?],

EG) (0]

after expanding the square and using Eqs. (3.41) and (3.42), becomes:

N k 2q 2
vl )= X () 3o

0-2 N k q N / q
et (v) L.(5) (345)

which, using Eq. (3.43), finally leads to:

Var[(z9)] = & , (3.44)

I
—_
—
*
=~

2

O 81 - )} (3.46)

Var[(x7)] = -2
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The expectation value of x; when Qy, are p.i.i.d. can be found on the basis of Eqgs. (3.43)
and (3.46):

(3.47)

Il
M=
Z| T

|

N
™=
2|~
N———
[\e)
—N—

—
=
R
: [
=
(3]
—

which by considering Eq. (2.91) leads to

&l = K, (1—]\12> [1—(1\]_(’;#2]. (3.48)

Note that, as expected, Eq. (2.92) leads to the above equation when Var(Qy) = 62(< ).
The proof of Eq. (3.46) can be generalized for all linear functionals of p; of the form

(f(x)) =X, f(k/N)py and yields:

S { SN - E* )]}
Var[(f(%))] = e : (3.49)
In Fig. 3.9, we compare the theoretical result of Eq. (3.46) with synthetic (Gaussian)
data which have values of , o and size (=1000) similar to those in 15 min ECG (see
Chapter 9). Note that when one uses the estimator (§X)? = ¥ (X —X)?/N, instead of the
unbiased estimator (§X)% = ¥(X —X)?/(N — 1), in order to find the sample variance, N
should replace N — 1 in Eq. (3.46).

0.16

‘6<k>

0.14 ¢ oS Fig. 3.9 Comparison of the theoretical
= 012 | estimations (solid lines) of () and 8S
B resulting from Egs. (3.46) and (3.63),
= 0.1 respectively, with the values obtained (plus
2 008} and cross, respectively) using a Gaussian
S 0.06 sample ha\./in.g values of u. o and size
S (=~1000) similar to those in the case of
. 0.04 1 15 min electrocardiograms (see Chapter 9).

0.02 | - ' 1 Here the estimator (6X)? = Y.(X —X)?/N

was used for the calculation of the sample

0 P variance of the synthetic data, and thus
0 10 20 30 40 50 60 70 80 90 100 N — 1 was replaced by N in Egs. (3.46) and

Number of beats (3.63). Taken from Ref. [43].
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We now proceed to the statistical properties of the entropy S = (x Iny) — (x) In{x);
see Eq. (3.1). To simplify the calculation of the expectation value &[S] and the variance
Var(S) of the entropy, we define the two linear functionals

N ok
; R (3.50)

k(K
)Ck, Z N < >-xka (3.5D)

and the constant time series % = {x;} :xx = /N, k=1,2,...N (cf. §§ 2.5.2 and 3.3.4).
Note that for both functionals m|x;] and L[x;, &], in view of their linearity, we have

e |

Moreover, we define ¥ = m[#] =YY _ k/N* = (1+1/N)/2.
The expectation value

Y (Y -y L (T Ly (3:53)
&N \N)TET N N '

k=1 =1

of the entropy S given by Eq. (3.2) can be evaluated as follows: we add and subtract the
term Zivzl % pr Inx, and then expand the resulting term In {1 +mlpy — % I/ 7} to get

) = 3 (Y iz by { ]
5(5);1\]21(1\,) ZIng—(1 2)5{ — }

+(;_;)5{W}_<;_i>g{W}+ (3.54)

Assuming that the contribution from the moments of m[p; — %] higher than the second
are negligible, we finally obtain (see Eq. (3.46) for g = 1).

Nok o? 2
9= L (v) w5 7). o

where 2 =Y  k*/N°> = (1+1/N)[141/(2N)]/3.
Equation (3.55) reveals that &(S) depends slightly on ¢/; upon increasing N the last
term of Eq. (3.55) decays as 1 /N (note that for the terms in parentheses limy_,.. ¥ = % and

limNHwP = %). Equation (3.55), after considering Egs. (2.91) and (3.20), leads to

N ok k o2 1 o2 1
HOEDY N In () — KMPN =S.(N)— KL,PN. (3.56)
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We note that Eq. (3.56) when combined with Eq. (3.22) shows that, as N — oo, &(S) — S
Using Eqgs. (3.50) and (3.51) the entropy can be written, in compact form, as follows:

S = L(pe,m[pe]] = L[px, 1] — m[pi] Inm[py], (3.57)
and its expectation value is written as

ol 1

ES) =LA N —m[A ) lnm[.A] — KMPN. (3.58)

The variance of the entropy Var(S) = (8S5)? can then be found by adding and subtracting
the term m[py| Inm[."] and expanding the logarithms in the expression

mpd e b mp—l |
’"[Pk]lnmui]""[Pk‘zv“n{Hmm}“M] IH{H’”['”]N}_

] () 2 () e

This procedure gives:

/ , , o> 1\’
{(me m[pi] Inm[py] — L[, 1]+ m[ K] lnm[c)i/]—i—KL,p}N) },
L 21\?
2 m?lp, — L :
=& (L ]}+Ku52;m[pk;]]lneM+...> ,

2 2 _ 1 2
or1l mip—yl, ) (3.60)

1
=& (L[pk_N’m[%]e]_FKu,uzN_Zm[c%/]

Expanding the square in Eq. (3.60), using Eq. (3.52) and keeping terms of order 1 /N, we
find

Var(S) = & <L2 [pk - ;],m[,%/]e]> , (3.61)

which can be explicitly written as follows

L G | S

k=1

Var(S) =&

The right side of Eq. (3.62) becomes similar to Eq. (3.44), if we replace x4 by x ln( =) (cf.
X = m[X]); thus after expanding the square and using Eqgs. (3.41) and (3.42), we ﬁnally
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obtain

2
G2 Nk ook N1 N k
Var(§) = —— Tin—) —— Zln— . .
ar(S) B 1; (N nexN) N (kZ’l N2 nexN) (3.63)

A comparison of Egs. (3.61) and (3.57) reveals the following: in order to find the entropy
fluctuation 85, one simply has to replace in Eq. (3.57) m[py] with m[# ]e(= Xe) and then
directly take its variance according to Eq. (3.49).

3.5 The change AS of the entropy in natural time under time reversal

As mentioned above in § 3.4.1, in general, S_ is different from S, and hence S shows the
breaking of the time reversal symmetry.

Definition 3.2. The difference S — S_ will be hereafter labeled AS, i.e.,
AS=S-S_ (3.64)

this may also have a subscript (AS;) meaning that the calculation is made (for each S and
S_) at a scale [ (= number of successive events). In such a procedure, a window of length
[ is sliding each time by one event through the whole time series. The entropies S and S_,
and therefrom their difference AS;, are calculated within a window of length / starting from
each event (see § 3.5.1 below). Thus, we form a new time series consisting of successive
AS; values.

3.5.1 Evaluation of AS; when a (natural) time window of length ! is sliding through
a time series

The value of S (and S_) calculated for a number of successive events varies within the time
series, i.e., when using a time-window of length / sliding each time by one event through
the whole time series (see § 2.2.2). Thus, for a window of length / when starting from the
mo-th event, we have

S(mo,1) = (x Inx)w— (X)w In{x)w (3.65)
where .
XIx)w =Y PowXiow I Yo, (3.66)
k=1
l
(Xw="Y PrwXiw (3.67)
k=1
with
Plow = Q1n0—1+k (3.68)

1
Zn:] ngfl+n
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and i, = k/1. Similarly, S_(myo,[) is calculated by Eq. (3.65) when py,, of Eq. (3.68) is
substituted by
Omg+i—k

-
Zn:l Qm0+17n

The time series of AS; is obtained by the differences AS;(mg) = S(mg,1) — S_(mp,1),
mo =1,2,...,N —1 and its variation is quantified by its standard deviation

G[AS)] = \/Var[AS]] = \/é”{(ASI —é”[ASZ])Z}. (3.70)

In Eq. (3.70), the symbol & {...} stands for the average obtained when all the N —/ values
(cf. mg=1,2,...,N —1) of its argument are considered.

Tpk,w = (3.69)

3.5.2 Interrelation of 6[AS;] and 6/ in the case of p.i.i.d.

In the previous subsection, § 3.5.1, the relevant expressions for evaluating S and S_, when
a window of length /(= N) is sliding event by event through a time series were given. Let
us first study & [S—TS] = &(S) — &(T'S) for which we intuitively expect that it equals
zero when Q. are positive i.i.d. random variables. Indeed, we have (see Eq. (3.53)) that

N ok k N ok N
Z N In (N) Pk — Z ﬁpk In <Z NPI)

k=1 k=1 =1

ES) =& 3.71)

and

=1

Yok Yok Sy
g‘ﬁ < >PN k1 — ENPN%H In ZNPN#H . @372

Since time reversal (see Eq. (2.8)) just “projects” px to py—_i+1, Eq. (3.72) is just a
reparametrization of Eq. (3.71) in the dummy variables where k is now N — k + 1. Both
Oy and Qy_j4 are p.i.i.d., thus the expectation values in both Egs. (3.71) and (3.72) are
equal to the result of Eq. (3.56), thus & [S —T'S] = 0.

We now turn to the variance 62[AS] = & { [S—TS—&(S— TS)]Z}. For the sake of

simplicity of the notation, from now on and until the end of this subsection, we use both
symbols (...) and &[...] to denote the expectation value &/...]. Having this in mind and
using the fact that 8% = ([S — £(S)]?) = Var[$] (see Eq. (3.63)) remains unchanged under
time reversal, for the same reasons as &(S) = &(7'S), we have that

o?[aS] = ({[S—&(8)] - [Ts—&(T9)]})
= <>]>+<[ E(T9))7) —2([S—ES)] [TS—E(FS)])

=2{88>—([s—&(3)] [TS E(T9)])} (3.73)
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The term ([S—&(S)] [T'S— &(T'S)]) can be evaluated in a way similar to the one used
in § 3.4.6. Namely, we add and subtract the term Zivzl % prIny from S and the term
Zf{\': 1 % PN—k+1Iny from TS. Then, we expand the resulting logarithmic terms
Il + X% 5 (pr— 3)/Z) and In[1 + XV, g (pn—141 — 5)/%) in terms of (p; — ) and
(PN—i+1— %) respectively (see Eq. (3.59)). This leads to (see Egs. (3.50), (3.51) in con-
junction with the terms in parentheses in Eq. (3.60)):

iﬁln LI R B O
AN \egnN)\PFN) T e

_Liﬁ 1 ii LY,
g =N\PFN) =N\ PN T

=1

£ 0, A
eYN PN—K'+1 N MuzN

N
1 i K 1 i I 1 N
7 =N PN-K+1 N) &N PN-1'+1 N

([S—&©S)] [TS—&(T8)]) = <

X

> . (3.74)

Restricting ourselves up to terms of order 1/N, Eq. (3.74) simplifies to

(56O [15- £(13)]) - <[z () (- h)

k=1

N k/ k/ 1
kglﬁ In (exN> <pN_k,+1 —N>]>. (3.75)

Now, using Egs. (3.41) and (3.42), we have

1 W o ___ o (3.76)
PEmN ) \PNHRATN ) )T NS N2 RN T SN

where 0, is Kronecker’s delta (equal to 1 if / = m and O otherwise). Substituting
Eq. (3.76) into Eq. (3.75), we find that

X

X

2 N

([S— &) [TS—&(TS)]) = (N—GW {kx % In <e)];N> x
=1

N—k+1 N—k+1\ 1

TN ln( XN )N

R
— Z Yo In{ —
o N exN

2
(3.77)
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Substituting Eq. (3.63) for 852 and Eq. (3.77) into Eq. (3.73), we finally obtain that

Nk k \N—k+1_ (N—k+1\1
~y S 1 - .
Ly n(e}(N) N n( XN )N (378)

In summary, for p.i.i.d., we observe that o[AS] is proportional to /i, which is a
behavior similar to the one, i.e., §S «< 6/, found in § 3.4.6 .

3.5.3 A simple example in which the meaning of the entropy change AS under time
reversal seems to emerge clearly

Here, we consider, as in § 2.2.1 and § 3.4.1, the parametric family p(y;€)=1+¢&(x—1/2)
for small £(< 1). In this case, as mentioned, the calculation of the entropy S(€) can be done
analytically and the result yields Eq. (3.36). An interrelation between AS(€) = S(g) —
S(—¢€) and the small linear trend parameter € can be obtained by expanding Eq. (3.36)
around € = 0 which leads to

AS(e) = <61“25

3
T3 >8—|—0(8 ) (3.79)

Since In2 < 5/6, Eq. (3.79) implies the following [45]:

From the physical point of view, a positive €, i.e., increasing trend, corresponds to
negative AS and vice versa.

Thus, in the ECG data for example the variation of AS; may be thought as capturing the
net result, at scale /, of the competing mechanisms that decrease or increase heart rate; see
Section 9.4. In particular, the AS; time series, at proper scales [/, can serve for specifying
the occurrence time of the impending sudden cardiac death, see § 9.4.1. Furthermore,
AS; can be used as a tool (see § 8.3.4) to investigate the predictability of a dynamical
model like the case of the Olami—Feder—Christensen model for earthquakes. Additionally,
the concept of AS; has been used in Environmental Sciences namely in the study of the
dynamical evolution of the ozone hole area over Antarctica [35].
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3.6 Complexity measures using the entropy in natural time

Complexity measures have been introduced [42, 43, 44, 45] to quantify the variability
of the natural entropy fluctuations upon changing either the (natural time window) length
scale or shuffling the consecutive events randomly. These are classified into two categories
depending on whether they make use of either the entropy S in natural time or the change
AS of the entropy in natural time under time reversal.

3.6.1 Complexity measures that make use of the fluctuations of the entropy S in
natural time

As a measure of the natural entropy fluctuations we consider the standard deviation 6S
(defined in § 3.4.6) when we calculate the value of S for a number of consecutive pulses
(events) and study how S varies when sweeping this time window (each time by one pulse)
through the whole time series. The following complexity measures for the 8S variability
have been suggested [42, 43, 44]:

When the natural time window length changes from a short value, e.g., 5 pulses (events),
to a shorter one, e.g., 3 pulses (events), the corresponding S value also changes. This
variation in the short (s) range is quantified by the measure

0Ss

AS:TS:;’

(3.80)

where the subscript in 85 denotes the time window length chosen. If a longer (L) range,
e.g., 60 pulses (events), changes to a short one, e.g., 3 pulses (events), the corresponding
variation is quantified by another measure

5560

A«L:TS?,.

(3.81)

Thus, the values of A; and A, quantify the 0S variability with the natural time window
length scale.

Considering the surrogate data obtained by randomly shuffling the durations Qy, of con-
secutive pulses (events), we can define the measure v as

v = OSshur
- 8s

(3.82)

where 65 and 65y, s denote the value of 65 calculated when a time window is sweeping
through the original and the shuffled time series, respectively. The following ratios have
been investigated [43]: v and v, for the following natural time window lengths: s = 3—4
pulses (events) and L = 50-70 pulses (events), respectively.
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The quantity v captures the extent to which the sequential order of pulses (events)
regulates the 0S value.

An alternative (but not equivalent) measure is 7L,(7S;mf (where k¥ = s, L refer to the short
and long-range, respectively), which is defined in a similar fashion as the measure A men-
tioned above, but is calculated after shuffling the Q) randomly.

The S values themselves in conjuction with the aforementioned complexity measures
Ak, Axshuy and Vi (where k = s, L), which are in fact ratios of the &S values, have been
found of prominent importance in the analysis of electrocardiograms (ECG) and allow
the distinction between healthy (H) humans and (otherwise healthy) sudden cardiac death
(SD) ones; see Chapter 9.

3.6.2 Complexity measures that make use of the change AS of the entropy in
natural time under time reversal

Complexity measures A and N can be defined [45], in a similar fashion with the measures
A and v defined above in § 3.6.1, by using the quantity AS instead of S. For example, we
can define the measure

olas™

N; = oTAS] (3.83)

The measure N; quantifies the extend to which the ordering of the events contributes
to the AS; values being equal to unity for a random process.

This finds application, for example, in the identification of SD risk; see Section 9.4.
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4. Natural Time Analysis of Seismic Electric Signals

Abstract. The natural time analysis of all the measured SES activities showed that they
are characterized by very strong memory and their normalized power spectra IT(®) versus
o fall on a universal curve having k(= (x*) — (x)?) value equal to 0.070. This curve
coincides with the one obtained on theoretical grounds when assuming that SES are gov-
erned by critical dynamics. Upon shuffling the events (pulses) randomly, the memory is
destroyed and the Kk value becomes equal to that &,(= 1/12 ~ 0.083) of a “uniform”
distribution. This shows that the self-similarity solely stems from long range temporal
correlations. Concerning the distinction of SES activities from similar looking “artificial”
(man-made) noises, we find the following. Modern techniques of Statistical Physics, e.g.,
detrended fluctuation analysis (DFA), multifractal DFA, wavelet transform, when applied
to the original time series cannot achieve such a distinction, but when they are applied in
natural time a clear distinction emerges. For example, for the SES activities the DFA expo-
nent in natural time is close to unity, i.e., & = 1, while for “artificial” noises it is markedly
smaller, i.e., ¢ < 0.85. Also the entropy § in natural time can achieve such a distinction:
For SES activities both S and S_ (where S_ stands for the entropy in natural time un-
der time reversal) are smaller than the entropy S, ~ 0.0966 of the “uniform” distribution,
which is not the case for the “artificial” noises where S is larger than (or equal to) S, and
S_ may either be smaller or larger than S,,. Upon “shuffling” the events (pulses) randomly,
both values of § and S_ in the SES activities turn out to be equal to S,,, which conforms
with the aforementioned conclusion that in SES activities the self-similarity originates
solely from long range temporal correlations. Finally, when investigating the dependence
of the fluctuations A); of the average value of natural time under time reversal versus
the window length /, we can also achieve a distinction between SES activities and “artifi-
cial” noises. In particular, when studying the log-log plot of Ay; versus [, the former give
ascending curves, in contrast to the latter that result in descending curves.

P.A. Varotsos et al., Natural Time Analysis: The New View of Time: Precursory Seismic Electric Signals, 191
Earthquakes and other Complex Time Series, Springer Praxis Books, DOI 10.1007/978-3-642-16449-1 4,
© Springer-Verlag Berlin Heidelberg 2011
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4.1 Dichotomous time series. Markovian and non-Markovian
processes

4.1.1 Difference between natural time analysis and earlier studies of dichotomous
time series. The Markovian process

The following point should be stressed concerning one of the key differences of the nat-
ural time analysis compared to the earlier procedures in the study of dichotomous time
series. For such time series, the quantity Qy (see § 2.1.2, Fig. 2.1(a)) coincides with the
so-called dwell time (for the high-level state only) and is one of the basic characteristics of
a dichotomous (i.e., on—off) process. The standard procedure consists of the determination
of the dwell times distribution P(Q): for a Markovian process P(Q) is exponential, i.e.,
P(Q) = e 2/C/Q (frequently the average dwell time Q is different for the high- and the
low-level states). For non-Markovian (which contain some “memory”) processes P(Q) is
non-exponential, e.g., stretched exponential, i.e., of the form e=(2/9” where 0 < b < 1, or
even algebraic. On the other hand, the natural time analysis is carried out in terms of the
couple (), Or), which takes into account the ordering of the pulses, and hence not solely
based on the statistics of their durations, i.e., P(Q).

We just mention here that ionic current fluctuations in membrane channels (ICFMC),
the long-range correlations of which have been studied in Ref. [21], can be also approx-
imated by dichotomous time series. Further, we clarify that (see Ref. [9] and references
therein) single ionic channels in a membrane open and close spontaneously in a stochastic
way, resulting in current and voltage changes which resemble the realizations of random
telegraph signals (RTS, dichotomous noise). The channel’s opening state can be deter-
mined [21] on the basis of the ion current: a low current corresponds to a closed channel
state, while high current values indicate an open state (see Fig. 4.1). It has been shown
[8] that the action of membrane-embedded enzymes depends critically on fluctuations of
the membrane potential, and that the main source of these fluctuations originates in the
fluctuations of ionic concentrations due to the action of ion channels. Recall that the SES
activities have also an RTS feature, e.g., see Figs. 2.8 and 4.2. These figures also depict
a number of “artificial” noises (see § 1.2.3) that have been intentionally selected to ex-
hibit a RTS feature similar to that of SES activities. Note that N1-N5 and NO of Fig. 4.2
correspond to n1-n5 and n6 of Fig. 2.8, respectively.

Hence, apart from a difference in the time-scales, the feature of all these electric sig-
nals is similar to that of the SES activities (RTS shape). This similarity instigated the
simultaneous study of SES activities, “artificial” noises and ICFMC by Varotsos et al.
[32, 34, 33], as will be explained below.
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5 501 502 503 504 505 506 507 508 509 5.1 (ICFMC) (fexp =10 kHz) studied in
time(s) Ref. [21] (see also Refs. [10, 9]).

4.1.2 Non-Markovian character of SES activities and ““artificial” noises

Varotsos et al. [32] showed, by means of the Smoluchowski—Chapman—Kolmogorov func-
tional equation (SCK equation), that the SES activities exhibit non-Markovian character
(i.e., contain some “memory”, see § 4.1.1). The stationarity of the signal was studied by
the quantiles procedure. Subsequently, Varotsos et al. [33], in order to further investigate
the non-Markovianity for both SES activities and “artificial” noises, proceeded to the study
of the non-Markovian quantitative global measure G. Furthermore, they studied the coef-
ficients of skewness and kurtosis.

The non-Markovian quantitative global measure G. Following Siwy and Fuliiski [23],
the definition of G can be summarized as follows: one of the properties of a Markov pro-
cess is that it satisfies the SCK equation (e.g., see Ref. [32]). The deviation from this
equation, i.e.,

M
Dyn(t,7) = P(m,t|n,0) — Z P(m,t|k,t — T)P(k,t — t|n,0), 4.1)

measures the degree of non-Markovianity. In Eq. (4.1), the indices k,m,n = 1,2,...M
number the electric field states (note that in our case we have M = 2 different states, labeled
“high”, m = 1, and “low”, m = 2, respectively; we consider as “high”-level states those
having the largest deflections of the electric field amplitude with respect to the background
level; see the arrows in Fig. 4.2). The P(m,t|n,s) stands for the field—field conditional
probability that the electric field E(¢) is in the state number m, under the condition that at
the earlier time s < 7 the field E(s) was in the state number n.
The integral measure (mean square characteristics) of the non-Markovianity is [9, 23]

1/2
G=0G(t,T L1 f 1)2 (t,7)dr 4.2)
B ’ TMzmn T e .
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4. Natural Time Analysis of Seismic Electric Signals

Fig. 4.2 Excerpts of: (a) four SES activities recorded
on April 18, 1995 (K1), April 19, 1995 (K2), March 17,
2001 (A) and February 5, 2002 (U); (b) nine “artificial”
noises recorded on November 14, 1997 (N1), November
15, 1997 (N2), November 16, 1997 (N3, N4 and N5),
July 13, 2001 (N6), August 4, 2001 (N7), March 22,
2001 (N8 and N9). The SES activity U was recorded
at IOA (see Ref. [34]), while for the SES activities K1,
K2 and A see the caption of Fig. 4.5. The “artificial”
noises were distinguished from SES activities according
to the criteria discussed in Section 1.2, and collected at
various stations (see the map of Fig. 1.2), i.e., N1 to N5
at VOL, N6 and N7 at IOA, N8 and N9 at LAG (this
is a station lying very close to ASS). The electric field
E is presented here in normalized units (1 and o stand
for the mean value and the standard deviation in each
case, respectively). The arrows on the right indicate the
polarity of the deflection from the background level to
the largest (in amplitude) electric field variations (i.e.,
from the “low”-level to the “high”-level states). Taken
from Ref. [34]. Note that N1-N5 and N9 correspond to
nl-n5 and n6 of Fig. 2.8, respectively.

where T is the range of the time 7 and 7 is the shift in the SCK equation. As an example,
for the SES activity K1 and the “artificial” noise N1 mentioned in Fig. 4.2, the calculation
for T = 100 s yields Gjuax(= sup,G(7,T)) = 0.107 £ 0.002 and 0.135 + 0.004, respec-
tively. For computer-generated Markovian dichotomous series of comparable length, the
corresponding G values are smaller by one order of magnitude, which also suggests the
non-Markovian character of the experimental data for both cases, i.e., K1 and N1, respec-
tively (this non-Markovianity has been also shown by employing the entropy fluctuations
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0S in natural time and the relevant complexity measures; see Table 4.5 and the last para-
graph of § 9.1.2).

Skewness and kurtosis. The coefficients of skewness (y;) and kurtosis (f3;) are (see
p- 928 of Ref. [1]):

Y = u3/o> and By = py/c* 4.3)

where (1, denotes the nth central moment, i.e., 1, = Y (x; — 1)" ps for randomly distributed
data x; with point probabilities p,. The symbol pt stands for the mean and o for the stan-
dard deviation. For Markovian processes, the durations of the “high”- (7},) and “low”-level
states (77) should follow exponential distributions p(T) = Aexp(—AT) (see § 4.1.1), for
which the values y; = 2, B> = 9 and 6% /u? = 1 are expected. The two coefficients y; and
B, are tabulated along with 62/u? in table II of Ref. [28], for both series of the “high”-
and “low”-level states’ durations of the “artificial” noises and the SES activities depicted
in Fig. 2.8. Comparing these values with those expected from an exponential distribution,
we find [33] the following: None of the time series of durations, corresponding to either the
SES activities or the “artificial” noises investigated, could be compatible with an exponen-
tial distribution. Moreover, the Kolmogorov-Smirnov test excludes for the SES activities
the Gaussian distribution.

In short, both the SES activities and the “artificial”’ noises exhibit non-Markovian char-
acter.

4.1.3 Markovian dichotomous time series. Spectral analysis and detrended
fluctuation analysis (DFA)

This was studied in Ref. [33]. Following Berezhkovskii and Weiss [6], in the case of a
Markovian dichotomous (M =2, m =1,2; these are the symbols used in § 4.1.2) time series,
the probability densities for the time spent in a single sojourn in the states “high” (m = 1)
and “low” (m = 2) respectively are both exponential, i.e.,

P1 (T) o< exp(_T/Thigh)a PZ(T) o< CXP(—T/T[OW) (44)
and lead to the following expressions for the field—field conditional probabilities

1 n exp(—1/Tep)

P(lt+7|1,1) =15 . : 4.5
low Thzgh
and
T
Pt +1|1,0) = =L [1 —exp(—1/75)] , (4.6)
Thigh

where 1/ T, = 1/Thigh + 1/ 710 and T is a time lag. Note that the expressions of Egs. (4.5)
and (4.6) for the conditional probabilities satisfy the SCK functional equation (see § 4.1.2).
The probability to observe the “high” state Pj is
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Thigh
P = -

_ _ Chigh 4.7)
Tiow T Thigh

and the joint probability Pj;(7) to observe the “high” state at both the times ¢ and 7 + 7,
due to the definition of the conditional probability, is

P (t) = PP(1,t+1|1,1). (4.8)

The power spectral density S() is the Fourier transform of the autocovariance € () =
[x(¢ + 7) —X][x(r) — X] of the stationary signal x(r) [25] with average value X:

€(1) =x(t+1)x(t) —3* = % /OOOS((D) cos(w7) dw. (4.9

If we assume that the states “low” and “high” have amplitudes 0 and AE, respec-
tively, we have X = (AE)P;, and x(¢ + 7)x(t) = (AE)*P;1(7), and using the expressions
of Egs. (4.5) and (4.7)—(4.9), we finally obtain

%(1) = (AE? —_exp (—T) (4.10)

Tiow + Thigh Teﬁ’

Equation (4.10), using the Wiener—Khinchin theorem, leads to the power spectral density
S(w)
4(AE) Ty

(Tlow + Thigh)(l + wZTeZﬂ)

S(@) =4 / %(1) cos(w7) dT = @4.11)
0
The last relation reveals that the high-frequency behavior of the spectrum becomes
S(®) < @2 if @ > (1/Thigh + 1/ Tiow), Which corresponds to a random walk-like behavior
in short time-scales. We will come back to this point below.

(a) — A (b);
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Fig. 4.3 Theoretical estimation of (a) the variability measure Fpp4(thick line) versus [/ Ty and (b) the

power spectral density S(w) (thick line) versus @/ @z, for a Markovian dichotomous signal (see § 4.1.3).

The thin solid and dotted straight lines correspond to the short and long time ranges in each case, i.e., they

are approached for I < 7,5 and [ > 7.4, respectively. Taken from Ref. [33].
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Following Talkner and Weber [25], the squared variability of DFA (§ 1.4.2) is given, in
terms of S(w), by:

l oo
Fppa(l) = 3 /O S(w/Drpra(w) dw (4.12)
where w denotes the dimensionless frequency and rpga (w) is given by the explicit form:
rpra(w) = [w* — 8w? — 24 — 4w? cos(w) +24 cos(w) 424w sin(w)]/w®. (4.13)

In Fig. 4.3(a), the Fppa(l) versus [/7.4 for a dichotomous Markovian process was
drawn using Egs. (4.11)—(4.13), while Fig. 4.3(b) depicts S(®) versus @/ @, where 0oy =
27/ 7,y, using Eq. (4.11). This figure shows that [33]:

— Concerning the DFA exponent o: (i) For short time-scales (high frequencies), i.e., At <
7.7, the DFA exponent approaches the value a = 1.5. (Note that such a behavior is
expected for any signal with a high frequency spectrum as given in Eq. (4.11); see also
below.) (ii) For long time-scales (low frequencies), i.e., At > Ty, we find o = 0.5,
as expected. (iii) For intermediate scales, comparable to (or shorter than) 7.z, DFA
exponents exceeding unity (e.g., 1.2 or so) naturally emerge.

— Concerning the power spectrum exponent 3 (see § 1.4.2): it approaches the values 2
and 0O for the aforementioned short and long time-scales, respectively. For time-scales
comparable to (or shorter than) 7., values of 8 around unity or larger (e.g. B = 1.4) can
fit the data. (In other words, data consisting, for example, of randomly distributed square
pulses, if analyzed in the range At < 7., may approximately obey S o o B, B~l1)
Note that, for a given (high) frequency range, upon increasing 1/7.5 the calculated
value of 3 becomes larger.

We now define for non-Markovian time series the quantity 7 in an analogous way with
the quantity 7,5 introduced above for the Markovian ones, i.e., 1/T = 1/T;+1/T;, where
T, and T; denote the average dwell time in the “high” and the “low” state, respectively.
The values of T for all SES activities and “artificial” noises mentioned in Fig. 2.8 (which
are non-Markovian, e.g., see § 4.1.2) can be found in table I of Ref. [28] and vary in the
range from 4 s to 20 s. In Fig. 4.4(a), we give examples of DFA plots of three Markovian
time series With Tjoy,/2 = Tjign/2 = Top =4 s, 10 s and 100 s; the first two (T =4 s and
Tofr = 10 s, upper two curves) have been intentionally selected to have 7, comparable to
the 7 of the SES activities and “artificial” noises. Comparing the DFA plots of the SES
activities (that will be discussed later in § 4.4.1) with the upper two curves of Fig. 4.4(a),
we find that a cross-over occurs at the same region At ~ 30 s (with almost the same o
exponents in the short scales only). In other words, in short time-scales, even Markovian
dichotomous time series (that have 7,y values comparable to T of the SES activities and
“artificial” noises) result in ¢« values in the range 1 < o < 1.5 with a cross-over at At ~
30 s. More generally, we can state [33] that not only signals of dichotomous nature, but
any signal with a high frequency spectrum as given in Eq. (4.11) will lead to the same
scaling behavior of Fppa (At) for small time lags At (irrespective of the particular shape of
the signal; for example, a Gaussian signal with this spectrum will be much smoother and
will display a continuity of values rather than only two steps).



198 4. Natural Time Analysis of Seismic Electric Signals

(@) 4 — () 3 -
= 3| 05 a
5 — 25 0%
~ L = \ 6
< 2 = Q.
[T <C 2 | (RS
T mLOL 15 -
S 0 ] =2 ) \Q%ﬁww
S -1 10s | o 1 o
= 5 1 5 100s o 05 g%ﬁ

05 1 15 2 25 3 35 4 051 15 2 25

logyn(At) (s) logo(1)

Fig. 4.4 (a) The variability measure Fpps(At) (in units of AE) for three Markovian dichotomous time
series, calculated with 7,4 = 4 (triangles), 10 (open circles) and 100 s (open squares). The solid lines, in
each case, correspond to the theoretical analysis described in § 4.1.3. (b) The same as in (a), but calculated
when the time series are read in natural time. The straight lines (dotted in (a), solid in (b)) correspond to
a = 0.5. The curves are shifted relative to each other by constant factors. Taken from Ref. [33].

The aforementioned points hold provided that the analysis is made in the conventional
time frame. If the analysis is performed in natural time (considering as “high” either of the
two states in the Markovian series), we find the following values: DFA exponent &t = 0.5
(see Fig. 4.4(b)) and power spectrum exponent § = 0. The latter values may elucidate
the Markovian nature of the time series, avoiding the existence of the aforementioned
characteristic intermediate scaling regions that appear in the analysis in the conventional
time frame.

We now turn to the case of spikes. This corresponds to a very small value of 7.y
(~ Thigh < Tjow)- Recall that upon decreasing 7.4 (see Figs. 4.3(a) and 4.4(a)) the region
described by the exponent @ = 0.5 extends to even shorter scales. This reveals that sig-
nals with superposed random spikes exhibit uncorrelated behavior (i.e.,ac = 0.5) at small
scales.

By summarizing, we can state that:

For Markovian dichotomous signals, the quantity 7.; — defined by 1/7.; = 1/Tpig +
1/%10w — plays a key role. For time-scales comparable to (or shorter than) 7., the
power spectrum can be well described by a power law, S(f) o< 1/ fB, with an exponent
B around unity or larger, for example, B = 1.0-1.2 (note that 3 approaches the value 2
and O for short and long time-scales, i.e., in the “high”- and “low”’-frequencies, respec-
tively). In other words, this reflects that even randomly distributed square pulses could
also be approximated by such a behavior. Thus, several published claims that “the ap-
pearance of a power law with an exponent 3 around unity constitutes a signature for
critical behavior” should be examined, in each case, with extreme care.
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Concerning DFA, a signal with (true) long-range correlations can be misinterpreted as
having uncorrelated behavior and vice versa. Specifically: (a) truly correlated signals
(0.5 < @ < 1.5) with superposed random spikes may show uncorrelated behavior (a0 =
0.5) at short time-scales, (b) truly uncorrelated signals with superposed random square
pulses, show “correlated” behavior (e.g., o ~ 1.0-1.4) at time-scales comparable to (or
shorter than) 7.;. We can overcome both difficulties if the analysis is made in natural
time.

4.2 Normalized power spectrum of SES activities. The universality
emerged in natural time

4.2.1 Normalized power spectrum of SES activities and “artificial’” noises in natural
time. A universality for SES activities

Figure 4.5(a) depicts the SES activities recorded before the mainshocks labeled K, E and
A of Fig. 4.5(b) (excerpts of these SES activities have been shown in Figs. 2.8 and 4.2).
Once a SES activity has been recorded, we can read it in natural time and then proceed
to its analysis. As an example, let us consider the SES activity K1 (see Fig. 4.5; see also
Fig. 1.11(a)) recorded on April 18, 1995, that preceded the M,, 6.6 earthquake that occurred

(b)
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Fig. 4.5 (a) SES activities recorded before the mainshocks on May 13, 1995, (K), June 15, 1995, (E), and
July 26, 2001, (A), discussed in § 7.2.1, § 7.2.2 and § 7.2.3, respectively. K1 and K2 refer to the two SES
activities before the EQ labeled K (they are also depicted in Fig. 1.11(a),(b)). The upper two SES activities
were recorded at [OA, while the lower two at VOL (note that the SES polarities, for drawing convenience,
are arbitrary here; the correct polarities can be found, for example, in Fig. 4.2). (b) Map showing the EQ
epicenters (circles) and the sites (triangles) of the measuring SES stations. Taken from Ref. [31].
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Fig. 4.6 How the SES activity K1 men-
tioned in Fig. 4.2 (see also Fig. 1.11(a)) is
read in natural time; it depicts the durations
Oy as function of the natural time x (= xx)
but drawn with continuous lines for the
convenience of the reader (in reality, this
should be plotted as in the lower part of
Fig. 2.1(a) or as in Fig. 7.2(b)). Taken from
Ref. [32].

at Grevena-Kozani on May 13, 1995 (see § 7.2.1). This lasted for around three and a half
hours and was collected with a sampling rate f.,, = 1 sample/sec (thus we have N =
11,900 data points). Figure 4.6 shows how the SES activity K1 of Fig. 4.5 can be read in

natural time.

Figure 4.7 depicts I1(¢) for the four SES activities of Fig. 4.5, along with eight “arti-
ficial” noises recorded at various stations of the telemetric network which have a similar
feature with SES (but do not satisfy the SES recognition criteria; see Section 1.2).

0.2

0.4

0.6

natural frequency ¢

Fig. 4.7 The normalized power spectra IT(¢) for the SES activities (red solid lines) — depicted in Fig. 4.5 —
related with the EQs labeled: K, E, and A (in the inset, from the top to the bottom: K1, A, E, K2) along
with those of a number of “artificial” noises (green broken lines). The blue dotted curve corresponds to the
theoretical estimation of Eq. (2.75), which holds for critical dynamics. The inset shows in an expanded
scale the behavior of IT(¢) at small ¢ values, i.e., ¢ — 0. Taken from Ref. [31].
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An inspection of this figure shows the following two facts [31]. First, the curves fall
practically into two different classes, labeled “noises” and “SES activities” respectively.
This classification, provides a tool for a distinction between “artificial” noises and SES
activities (see § 4.2.2).

Secondly, Fig. 4.7 reveals that, for natural frequencies ¢ smaller than 0.5, the I1(¢)
values of the SES activities scatter around the dotted curve, which has been estimated
from theoretical considerations when approaching a critical point, i.e., Eq. (2.75) of
§ 2.4.2. In other words, the normalized power spectra in natural time of all the SES
activities obey a “universal” curve.

Note that a possible explanation of the very pronounced “modes” in some “artificial”
noises depicted in Fig. 4.7 has been discussed in Ref. [34].

4.2.2 Distinction of SES activities from ““artificial” noises based on the normalized
power spectrum

Figure 4.8 depicts, for the region of natural frequencies 0 < ¢ < 0.5, the normalized power
spectra IT(¢) of the electric signals mentioned in Fig. 2.8 together with the one corre-
sponding to the “open” states of ICFMC (see Fig. 4.1). The natural time representation of
all these electric signals is shown in Fig. 4.9.

Figure 4.8 shows that the curves for the SES activities and “artificial” noises fall prac-
tically into two different classes, as already mentioned above (§ 4.2.1), while the ICFMC
curve lies just between them and very close to the one that corresponds to the “uniform”
distribution (labeled “uniform” in Fig. 4.8); see § 2.1.3. The universal curve for SES activ-
ities obeying Eq. (2.75) — which is labeled “theory” in Fig. 4.8 — implies that the variance
of x is k1 = (x*) — (x)? = 0.070 for SES activities (cf. Eq. (2.77), see also the last col-
umn in Table 4.1). The x; value that reproduces [32] the ICFMC data is 0.080+0.003 and

Fig. 4.8 The normalized power spectra
I1(¢): SES activities (dotted lines)
and “artificial” noises (broken lines) of
Fig. 2.8. Three solid curves are also
shown: the lower corresponds to the
“uniform” distribution (Eq. (2.51) of
§ 2.4.1), the middle to ICFMC “open”
states (see Fig. 4.1 of § 4.1.1), while the
uppermost to the theoretical estimation,
Eq. (2.75), for SES activities (critical
) ) dynamics). Reprinted from Ref. [27],
0.3 0.4 05  Copyright (2009), with permission from
(b TerraPub.

08

04

0.2
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Fig. 4.9 The signals mentioned in Fig. 4.8
read in natural time; it depicts py versus xx
with continuous lines for the sake of reader’s
convenience and hence p(y) versus x; see
Eq. (2.4) (in reality, this should be plotted
as in the lower part of Fig. 2.1(a) or as in
Fig. 7.2(b)). Taken from Ref. [33]. Excerpts
of these signals in the conventional time

X domain are depicted in Figs. 2.8, 4.1 and 4.2.

K, = 1/12 2 0.083 for the “uniform” distribution; see Eq. (2.46). Thus, for the “artificial”
noises the variance k; is larger than around 0.083. Hence, the difference 1/12 — k(= A k)
could be considered as a measure of the deviation of a signal from that of the “uniform”
distribution.

By summarizing, SES activities are distinguished from “artificial” noises (AN) ac-
cording to:

Ki1,ses < Ky < K1 AN (4.14)

where the subscripts designate each class of signals and k;, ~ 0.083. Moreover, the
SES activities satisfy Eq. (2.77), i.e.,

K1.ses ~ 0.070 (4.15)

4.3 Superiority of applying Hurst (R/S) analysis in the natural time
domain

4.3.1 Conventional Hurst analysis
A way of studying correlations in a time series is provided by the Hurst analysis [13]

known as rescaled range analysis (R/S). This compares the correlations in the time series
measured at different time-scales and is similar to the classical fluctuation analysis (FA).
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Table 4.1 Summary of the DFA results (when employing E-approximation together with the modification
of Eq. (4.20), see § 4.5.2) for the “high”- and the “low”-level states’ durations (labeled 04, and gy,
respectively) along with the x; values for the SES activities and “artificial” noises depicted in Fig. 4.2.
Taken from Ref. [34].

Signal ahigh Qjow K1

K1 0.98+0.08  0.31£0.12  0.063£0.003
K2 0.92+0.10  0.49+0.09  0.078-+0.004
A 0.87+0.27  0.34£0.25  0.068+0.004
U 0.98+0.13  0.70+£0.15  0.071+0.004
N1 0.68+0.07  0.70+0.08  0.11540.003
N2 0.79+0.03  0.54£0.04  0.09320.003
N3 0.78+0.06  0.4740.08  0.10020.008
N4 0.76+£0.06  0.55£0.06  0.100£0.013
N5 0.68+0.05  0.62+0.05  0.086+0.007
N6 —*) —*) 0.092-+0.004
N7 —*) —*) 0.08340.006
N8 —*) —*) 0.10240.004
N9 0.78+0.20  0.11£0.20  0.084--0.004

*) For N6, N7 and N8 no reliable slope could be determined in view of the small number of pulses (N <25).

Hurst’s method fails to determine correlation properties if linear or higher order trends
are present in the data, while detrended fluctuation analysis (DFA) (see § 1.4.2) —
which is a significant improvement of FA — explicitly deals with monotonous [5] trends
in a detrending procedure with remarkable results.

In short (e.g. see Ref. [5]), in Hurst (R/S) analysis, one calculates in each segment n the
range R of the ‘profile’ y(n) (see Eq. (1.9)) given by the difference between maximal and
minimal value R = max[y(n)] — min[y(n)]. The ‘rescaling of range’ is done by dividing
R by the corresponding standard deviation S of the same segment. The mean (R/S) of
all quotients at a particular scale s is analogous to the fluctuation function F(s) already
discussed in the description of DFA (see Eq. (1.12)) and for long-range correlated signals
shows a power law scaling relationship with s, with an exponent usually called Hurst
exponent H (recall Eq. (2.78)). We first note that “persistence” usually means the tendency
to keep moving in a fixed direction once the random walker has started moving in that
direction [47].

In a persistent time series the increase in the values of the series is more likely to be
followed by an increase and conversely, the decrease is more likely to be followed by
a decrease. This occurs when 1/2 < H < 1.
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The results of the (R/S) analysis are given in Fig. 4.10 for the original time series of
both the SES activities (the upper four curves) and “artificial” noises mentioned in Fig. 4.2.
Since (R/S) o< (At)H, the value of the Hurst exponent H is found from the slope (labeled
Hj in Table 4.2) of the corresponding log-log plot, when approximating it with a single
straight line (note that al/ scaling methods related to the original Hurst analysis that yield
the H exponent, assume a finite variance and according to the central limit theorem the
underlying statistics are Gaussian).

An inspection of Fig. 4.10 shows that a value in the range 0 < H < 1/2 (which means
antipersistent time series, reflecting that increases in the values of a time series are
likely to be followed by decreases, and conversely) cannot be seen.

Furthermore, no case with H = 1/2 (purely random changes) can be recognized. In
all the cases of Fig. 4.10, the resulting H values lie between approximately 0.9 and 1.0
(Table 4.2), which suggest the persistent character of the examined time series (strong
memory; see Ref. [32] and references therein). Thus, when Hurst analysis is carried out
in the original time series, the H values alone cannot lead to any distinction between SES
activities and “artificial” noises.

If we repeat the analysis of Fig. 4.10, but for the dichotomous time series (i.e., the con-
verted from the original time series “0—1" dichotomous representation) we find somewhat
smaller values (labeled H; in Table 4.2) approximately in the range 0.75 to 0.90. Thus, the
conclusion for the persistent character of the time series still remains.
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Table 4.2 Summary of the (R/S) analysis for all the signals mentioned in Fig. 4.2. The symbols H, and H,
stand for the slopes determined by using either the original time series or the dichotomous representation,
respectively. Hygp and Hy,,, stand for the corresponding slopes for the “high”- and the “low”-level states’
durations, respectively. Taken from Ref. [34].

Signal H, Hy Hhigh Hjopy

K1 0.90-0.02 0.77+0.04  0.85+0.05  0.62+0.05
K2 0.96+0.01 0.81+0.05  0.87£0.09  0.70+0.08
A 0.96-0.02 0.76+0.06  0.82+0.28  0.61+0.21
U 0.95+0.02 0.80+0.06  0.89+0.13  0.72+0.12
N1 0.94+0.01 0.78+0.05  0.70£0.07  0.64+0.06
N2 0.9440.01 0.8440.04  0.77+£0.03  0.58+0.03
N3 0.97+0.03 0.85+0.04  0.80+£0.06  0.57+0.05
N4 0.9940.03 0.87£0.05  0.72+0.04  0.63+0.04
N5 0.94-+0.04 0.79+0.06  0.760.04  0.66+0.04
N6 1.0694+0.02  0.86+0.06 —*%) —**)

N7 0.93+0.02 0.79+0.05 —*%) —**)

N8 1.099+£0.02  0.86+0.05 —**) —**)

N9 1.0194+020  0.84+025  0.75+0.20  0.55+0.22

*) The value of H should not exceed unity (see the text), but here we reproduce the directly computed
slope. Note that the computed Hy in the third column never exceeds unity.

*%) For N6, N7 and N8 no reliable slope could be determined in view of the small number of pulses
(N <295).

By summarizing, the (R/S) Hurst analysis of the SES activities and “artificial” noises
reveals a persistent character of both time series, but cannot distinguish between them.

4.3.2 Hurst analysis of the time series of durations of the ‘high”- and the
“low”-level states. Hurst analysis in natural time

The results of Hurst analysis for the time series of durations of the “high”- and the “low”-
level states are shown in Fig. 4.11. The analysis of the former states constitutes, of course,
the Hurst analysis in natural time (recall Fig. 2.1(a)). The following common characteristic
results for both the SES activities and “artificial” noises. The H values are systematically
larger for the time series of the “high”-level states’ durations when compared to the cor-
responding values of the “low”-level ones (labeled Hy;g, and H,,,, respectively, in Table
4.2). The persistent character (1/2 < H < 1) of the time series of the “high”-level states’
durations seems to be well-established, while this holds to a lesser degree for the time se-
ries of the “low”-level ones (because a few of the corresponding H values, e.g. see A, N3
and N9 in Table 4.2, do not differ significantly from 1/2). Moreover in all cases, Hy;gy, is
greater than H,,,,.
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Fig. 4.11 The (R/S) Hurst analysis for the time series of the “high”(panels a and ¢)- and the “low”(panels
b and d)-level states’ durations for the SES activities and the “artificial” noises mentioned in Fig. 4.2. The
data points for each time series are vertically displaced after subsequent multiplication by a factor of 2,
starting from U or N9. For the reader’s convenience, apart from the linear least-squares fits, the straight
lines with slopes 0.9 in (a), 0.7 in (b), 0.75 in (c) and 0.6 in (d) are also plotted. Taken from Ref. [29].

Hence, the memory of the time series of both the SES activities and “artificial” noises
may be mainly attributed to the strong correlation between the “high”-level states’
durations.

Note, however, that when comparing the SES activities and “artificial” noises, the
H values of their “high”-level states’ durations do not differ significantly enough to
guarantee a safe distinction between them.



4.4 Superiority of applying detrended fluctuation analysis (DFA) in the natural time domain 207

4.4 Superiority of applying detrended fluctuation analysis (DFA) in
the natural time domain

4.4.1 DFA of the original time series

Upon using the conventional DFA (§ 1.4.2), we obtain [34] the results depicted in Fig. 4.12
for both the SES activities and “artificial” noises mentioned in Fig. 4.2 (cf. recall that the
DFA for a long duration SES activity has been already presented in § 1.4.3, see Fig. 1.17).
A least squares fit to a single straight line (despite the fact that the data in some cases
obviously deviate from such a scheme, see also below) reveals that the slopes of these
log-log plots (labeled ¢y in Table 4.3) scatter for all cases around o ~1, with a plausible
uncertainty around 0.15. This reveals long-range temporal correlations. Upon repeating
the analysis for their dichotomous time series, slightly different values for each case were
obtained (labeled o, in Table 4.3), and hence the conclusion concerning the strongly per-
sistent character remains the same.

K1 +
K2 x
A *
U o
N1 =
N2 o
_ N3 o
= N4 »
< N5
L N6 ~
Ty N7 ~
e N8 o
I N9 -
- o=l —
Fig. 4.12 The dependence of Fpry4 on At in the
conventional DFA of the original time series
(in normalized units) of the SES activities and
“artificial” noises mentioned in Fig. 4.2. The data
points for each time series are vertically displaced
after subsequent multiplication by a factor of
05 15 25 35 45 2, starting from N9. For the sake of reader’s
convenience, a solid straight line corresponding to
log1o(A1) (s) the slope & = 1 is plotted. Taken from Ref. [29].

If the log-log plot in Fig. 4.12 is approximated with two straight lines, the following re-
sults were obtained [34]: For both SES activities and “artificial”” noises, the slope at shorter
scales (i.e., At <30 s) was found to lie in the range ov = 1.1-1.4, labeled agh‘)’t in Table 4.3,
while for longer scales a value mostly in the range o ~ 0.8—1.0 was determined (labeled
aé""g in Table 4.3), without, however, any safe classification between SES activities and
“artificial” noises on the basis of the & values alone. The fact that both types of signals ex-

hibit a cross-over at Az ~ 30 s and also give almost the same DFA exponent (ag’"’” ~1.2)
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Table 4.3 Results from the conventional DFA of the signals mentioned in Fig. 4.2. The symbols &, and
oy stand for the DFA slopes obtained from either the original time series (in normalized units) or the
dichotomous representation, respectively, for the whole At range. The corresponding slopes when consid-
ering either short Az (smaller than approximately 30 s) or long At (larger than approximately 30 s) are
also shown, being labeled with a superscript “short” and “long”, respectively. Taken from Ref. [34].

long long

Si en al o, o g/wrr o, oy o :l'/wrf ad

K1 0.95+0.04 1.1940.02 0.88+0.02 0.95+0.04 1.214+0.04 0.90£0.02
K2 0.95+0.06 1.2240.04 0.81+0.02 0.96+0.06 1.234+0.03 0.82+0.02
A 1.06£0.10 1.36£0.05 0.96£0.04 1.08£0.10 1.41£0.05 0.98+0.04
U 0.95+0.04 1.03+0.05 0.81+0.03 0.95+0.04 1.07+0.04 0.79+0.03
N1 1.05+0.05 1.26+0.04 0.98+0.02 1.01£0.05 1.21+0.04 0.95+0.03
N2 1.04=£0.03 1.21£0.03 1.01£0.02 0.97+0.03 1.12£0.03 0.94+0.02
N3 1.014+0.04 1.154+0.03 0.97+£0.02 0.99+0.04 1.114+0.03 0.95+0.02
N4 1.04£0.04 1.08+0.03 1.02+0.02 1.02+0.04 1.01£0.03 1.02+0.02
N5 0.94+£0.10 1.224+0.04 0.79+£0.02 0.92+0.10 1.17£0.04 0.78+0.02
N6 1.14£0.11 1.3940.04 0.8940.03 1.13£0.11 1.43+0.04 0.86£0.03
N7 1.08+0.09 1.324+0.04 0.96+0.03 1.03+0.09 1.3410.04 0.82+0.04
N8 1.15+0.12 1.4940.04 0.78+0.03 1.12+0.12 1.45+0.04 0.76£0.03
N9 0.97+0.20 1.53+0.04 0.55+0.02 0.93+0.20 1.46+0.04 0.52+0.02

can be understood in the context of § 4.1.3 where it is shown that for dichotomous time
series such a behavior should be observed at short time scales, i.e., At < Tp.

By summarizing, when the conventional DFA is applied to the original time series of
the SES activities and the “artificial” noises, no distinction can be achieved.

4.4.2 DFA of the time series of durations of the ‘“high”- and the ‘“low”’-level states.
Superiority of applying DFA in natural time

We now present the results of DFA for the time series of durations of the “high”- and the
“low”- level states which are depicted in Fig. 4.13. Three main points emerge [34]:

First, both the SES activities and “artificial” noises exhibit for the time series of the
“high”-level states’ durations o values which are systematically larger than the corre-
sponding values of the time series of the “low”-level ones (labeled g, and 0y, TESPeEC-
tively in Table 4.1).

Second, the « values for the time series of the “high”-level states’ durations (which
reflects that, in reality, DFA is applied in natural time) point to the following difference:
for the SES activities (Fig. 4.13(a)) the 0y, values lie approximately in the range 0.9-1.0,
while for the “artificial” noises (Fig. 4.13(c)) the 04, values are markedly smaller, i.e.,
Opigh = 0.65-0.8 (Table 4.1). We emphasize that such a difference between SES activities
and “artificial” noises is not noticed upon comparing their series of the “low”-level states’
durations.
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Fig. 4.13 The results of DFA (when employing E-approximation together with the modification of
Eq. (4.20); see § 4.5.2) for the time series of the “high” (panels a and c)- and the “low” (panels b and
d)-level states’ durations (measured in sec, and hence F; (/) is also measured in sec) for the SES activities
and “artificial” noises mentioned in Fig. 4.2. The data points for each time series are vertically displaced
after subsequent multiplication by a factor of 2, starting from U or N9. For the reader’s convenience, apart
from the linear least-squares fits, the solid straight lines with slopes & = 1 in (a), @ = 0.5 in (b), & = 0.8
in (c) and o = 0.5 in (d) are also plotted. Taken from Ref. [29].

Third, comparing the o values between the time series of the two states’ durations in
the SES activities, the following characteristic is found: the ¢, values for the time series
of the “low”-level states’ durations scatter more or less around 0.5 (see Fig. 4.13(b)), thus
being appreciably smaller than the aforementioned values 0, = 0.9—1.0 for the series of
the “high”-level states’ durations (Fig. 4.13(a)).



210 4. Natural Time Analysis of Seismic Electric Signals

Hence, only in natural time DFA can distinguish SES activities from “artificial”” noises
leading to an exponent ¢ ~ 1.0 for the SES activities, while o ~ 0.65-0.8 for “artifi-
cial” noises.

4.5 Superiority of applying multifractal detrended fluctuation
analysis (MF-DFA) in the natural time domain

4.5.1 Monofractals and multifractals. The necessity for multifractal analysis

Monofractal signals are homogeneous in the sense that they have the same scaling proper-
ties, characterized locally by a single singularity exponent /g, throughout the signal. Thus,
monofractal signals can be indexed by a single global exponent, e.g., the Hurst exponent
H = hg, which suggests that they are stationary from the viewpoint of their local scaling
properties (e.g., Ivanov et al. [14] and references therein). Since the power spectrum and
the correlation analysis (including the conventional DFA, see § 1.4.2) can measure only
one exponent, these methods are more suitable for the investigation of monofractal signals.

Concerning the use of these methods, however, the following points should be consid-
ered with care. A power spectrum calculation assumes that the signal is stationary and
hence when applied to non-stationary time series it can lead to misleading results, as al-
ready mentioned in § 1.4.1. (A time series is stationary if the mean, standard deviation, and
all higher moments, as well as the correlation functions, are invariant under time transla-
tion.) Thus, a power spectrum analysis should be necessarily preceded by a test for the
stationarity of the data analyzed. As for the DFA, see § 1.4.2, it can determine the (mono)
fractal scaling properties even in non-stationary time series (but see also Refs. [12, 7] on
this point), and can avoid, in principle, spurious detection of correlations that are artifacts
of non-stationarities.

In several cases, however, the records cannot be accounted for by a single scaling ex-
ponent (i.e., do not exhibit a simple monofractal behavior). In general, if a multitude of
scaling exponents is required for a full description of the scaling behavior, a multifractal
analysis must be applied. Multifractal signals are intrinsically more complex, and inhomo-
geneous, than monofractals (e.g., Ref. [14] and references therein). A reliable multifractal
analysis can be performed by multifractal detrended fluctuation analysis [46, 15], which
is summarized below in § 4.5.2. A similar analysis can be also performed by the wavelet
transform (e.g., see Ref. [22]; see also § 4.6.1). Both these methods have been used in
Refs. [34, 33] to analyze time series of SES activities and “artificial” noises (for the ap-
plication of these methods to electrocardiograms see § 9.5.1). It was found [34, 33] that
the multifractal analysis, when carried out in the conventional time-frame did not lead to
any distinction between these two types of signals, but it does so, if the analysis is made
in natural time. This will be explained below in § 4.5.3 and § 4.6.2.
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4.5.2 Multifractal detrended fluctuation analysis. Background

A generalization of the DFA, termed multifractal DFA (hereafter labeled MF-DFA), allows
[46, 15] the multifractal characterization of non-stationary time series. Compared to DFA
(see § 1.4.2), in MF-DFA the following additional two steps should be taken.

First, we average over all segments to obtain the g-th order fluctuation function F(s):

1
Ny

Fy(s) = {]é Y [F(s.v)] } 4.16)

(ST

where s

F?(s,v) = % Y s (4.17)
n=(v—1)s+1
and the index variable ¢ can take any real value except zero. This is repeated for several
scales s.
Second, we determine the scaling behavior of the fluctuation functions by analyzing
log-log plots F,(s) versus s for each value of g. For long-range correlated series, Fy(s)
increases for large values of s as a power law:

Fy(s) o< s"9), (4.18)

where the function /(q) is called generalized Hurst exponent.

For stationary time series the aforementioned Hurst exponent H (see § 4.3.1) is iden-
tical to /1(2),
h(2) =H. 4.19)

For monofractal time series, h(q) is independent of ¢; all stationary long-range cor-
related series can be characterized by the power law decay of their power spectra
S(f) = f~B with frequency f, and B =2H — 1.

Furthermore, Kantelhardt et al. [16], in order to improve the scaling of the DFA fluctu-
ations at short scales s, suggested a modified fluctuation function using randomly shuffled
(shuf) copies of the original time series. This modification is useful to be incorporated in
MF-DFA as well [15] and can be written as:

shuf ¢ 1\ 0.5
mw@:@@%ﬁgLL, (4.20)
Fg™ (s) 899
for s > s, where F,,Sh”f (s") denotes the root mean square fluctuation function averaged
over several configurations of the randomly shuffled data taken from the original record
and s’ ~ N /20.

The MF-DFA method requires series of compact support. In order to analyze data
with fractal support, Varotsos et al. [34] suggested an additional modification called “Eu-



212 4. Natural Time Analysis of Seismic Electric Signals

clidean (E-) approximation”. In this approximation, instead of [F (s, v)]%/? in Eqgs. (4.16)
and (4.20), the “Euclidean distance” d(s,v) = {[F?(s,v — 1)]9 + [F?(s,V)]? + [F?(s, v +
1)]9}1/2 is used.

In Ref. [34], it was shown that when dealing with time series of small length, both the
above corrections improve significantly the conventional DFA (see fig. 11 of Ref. [34]).
The corresponding fluctuation measure is denoted by Fq’ (s) and is the one used in Fig. 4.13
as well as for the determination of /(q) in Figs. 4.14, 4.15 and 4.16.

Relation of MF-DFA to standard multifractal analysis. The scaling exponent 7(g) in
the standard multifractal formalism (§ 4.6.1) is connected to the partition function Z,(s)
through

Z,(s) o 579 4.21)

It can be shown [15] that t(g) is related to the exponent A(g) defined in Eq. (4.18) as
follows:

©(q) = qh(q) — 1. (4.22)

4.5.3 Multifractal detrended fluctuation analysis in natural time compared to that
in conventional time

The results of the MF-DFA analysis (§ 4.5.2) of the original time series for both the SES
activities and “artificial” noises are depicted in Fig. 4.14. An inspection of this figure
shows that no obvious common characteristic can be recognized to allow any systematic
distinction between SES activities and “artificial” noises. In order to visualize the difficulty
of such a distinction, we reproduce in the inset of Fig. 4.14 a case of a SES activity, i.e., A,
which, when compared to the artificial noise N4, shows an almost identical dependence of
h(q) versus g (for g < 4).

When studying the time series of the durations of the “high”- and the “low”-level states
alone (Fig. 4.15), the following common feature emerged. In the time series of the “high”-
level states (which reflects — if we recall Fig. 2.1(a) — that, in reality, MF-DFA is applied
in natural time), the h(q) curves for the SES activities (Fig. 4.15(a)) lie systematically
higher than those in the case of “artificial” noises (Fig. 4.15(b)). For example, for g = 2,
the (2) values for the SES activities lie close to unity, while for the “artificial” noises
they scatter approximately in the range 0.65-0.8 (see Fig. 4.16 and the second column
in Table 4.4). On the other hand, if we compare the time series of the “low”-level states’
durations (although, in general, they have smaller /4(2) values than those corresponding
to the “high”-level states’ durations), no general feature can be recognized to distinguish
the SES activities from the “artificial” noises. Varotsos et al. [34] emphasized that the
“artificial” noises, which are characterized by x; > 0.083 (§ 4.2.2), are accompanied by
h(2) values of the “high”-level states” durations smaller than ~0.8 (see Fig. 4.17). We shall
return to this point in § 4.7.1.
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Fig. 4.14 The MF-DFA analysis for the original time series of the SES activities (solid curves) and “arti-
ficial” noises (dotted curves) mentioned in Fig. 4.2. The g-dependence of the asymptotic scaling exponent
h(q) determined by fits to the log-log plots of F,(s) vs s (see § 4.5.2) at the regimes where the fits are
straight lines. The corresponding regimes are given in Ref. [29]. For the inset, see the text. Taken from
Ref. [29].

Summarizing, when MF-DFA is applied to the original time series of SES activities
and “artificial” noises, no distinction can be achieved (see Fig. 4.14); only if it is ap-
plied in natural time can MF-DFA distinguish SES activities from “artificial” noises;
see Fig. 4.16 together with the second column in Table 4.4.

4.6 Superiority of applying the wavelet transform in natural time

4.6.1 The wavelet transform, background. Comparison of the estimators of scaling
behavior

The main disadvantage of the classical tool of Fourier transform in signal processing is its
missing localization property: if a signal changes at a specific time, its transform changes
everywhere and a simple inspection of the transformed signal does not reveal the position
of the alteration. This originates from the fact that the Fourier transform decomposes a
signal in plane waves (trigonometric functions), which oscillate infinitely with the same
period and have no local character. Another disadvantage of Fourier analysis lies in the
separate description and presentation of time and frequency.
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obtained from the MF-DFA analysis
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(labeled high and low, respectively)
for: (a) the SES activities and (b)
“artificial” noises mentioned in
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Fig. 4.16 Results of MF-DFA in
natural time for: the SES activities
(dotted lines), “artificial” noises
(broken curves) and ICFMC (which
corresponds to open states, solid
curve). Reprinted from Ref. [27],
Copyright (2005), with permission
from TerraPub.
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: Fig. 4.17 The results of the natural
0.11 [ b 1.1 time analysis of the SES activities
L [ Co and the “artificial” noises mentioned
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r " { could be obtained due to the small
oo b v v v L 5 N < 25 number of pulses). Taken from
N1 N2 N3 N4 N5 N6 N7 N8 N9 K1 K2 A U Ref. [34].

Table 4.4 Summary of the results in natural time for the SES activities and the “artificial” noises men-
tioned in Fig. 4.2 together with the results obtained from the analysis of the closed states for ICFMC.
Taken from Ref. [33].

Signal h(2)") h(2)*) S K

K1 0.9840.08 0.91+0.10 0.067+0.003 0.06340.003
K2 0.9240.10 0.9440.17 0.08140.003 0.07840.004
A 0.8740.27 - 0.07040.008 0.0684-0.004
U 0.9840.13 1.1040.27 0.0924-0.004 0.0714:0.004
ICFMC, 0.86+0.07 0.096+0.003 0.080+0.003
‘uniform’ In(2)/2—1/4 1/12

Nl ornl 0.6840.07 0.8640.12 0.14340.003 0.11540.003
N2 or n2 0.7940.03 0.8140.05 0.10340.003 0.09340.003
N3 or n3 0.7840.06 0.69+0.11 0.117+40.010 0.100+0.008
N4 or n4 0.7640.06 0.8440.13 0.10640.010 0.10040.013
N5 or n5 0.6840.05 0.7740.08 0.091+0.011 0.086+0.007
N9 or n6 0.7840.20 - 0.10240.007 0.0844-0.004

*) From MF-DFA in natural time (§ 4.5.3).
*##) From the orthogonal wavelet transform in natural time (§ 4.6.2)

If we use instead a locally confined little wave (wavelet), then translation and scaling
allows for a “frequency’ resolution at arbitrary positions.

Thus, the wavelet transform allows more flexibility (e.g., see Ref. [19]): in simple
words, the wavelet, which can be almost any chosen function, can be shifted and dilated to
analyze signals. The wavelets can be interpreted as generalized oscillations (small waves)
abstractly expressed in a zero mean value (see below). The price of this versatility is that
two variables appear in the transform: the location and the scale of the wavelet. If the
wavelet y is translated to a point 7y and dilated by a factor / then we calculate the inner
(scalar) product of the signal f with the function y;,;(¢). If f shows a big change in a
neighborhood of the point #j it has a high-frequency spectrum there.
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The continuous wavelet transform of a given real function f(¢) is defined (e.g., see Ref.
[4] and references therein) with a family of test functions v ;(¢) as the inner product

Tylf1(00:D) = ¥ios) = [ FOW(0) dr 423

Each test function y;,; is obtained from a single function y(r) (termed analyzing
wavelet) by means of a translation and a dilation:

1 _
Vi (1) = 71// (tlto) (4.24)

where to € # and | € Z’ (where Z stands for the set of real numbers and %7 for the
positive ones). The function y(¢) is chosen such that both its spread in time and frequency
are relatively limited.

In addition to being well localized both in time and frequency, y is required to satisfy
the admissibility condition which in its weak form implies that y must be of zero mean
(hence v is a band-pass or oscillating function, whence the name “wavelet”, e.g. see
Ref. [2] and references therein).

In the study of the scaling behavior, the following two features of the wavelet transform
play key roles. (a) The wavelet basis is constructed from the dilation (change of scale)
operator; thus the analyzing family exhibits a scale-invariant feature. (b) y/(¢) is chosen so
as to have a number ny, > 1 of vanishing moments:

/tkl//(t)thO, k=0,1,...,ny —1 (4.25)

The Fourier transform ¥ (w) of ¢(r) satisfies
¥ (o)~ 0", ©— 0. (4.26)

A common way to build admissible wavelets of arbitrary order ny is to successively
differentiate a smoothing function, e.g., the Gaussian function:

n
anv e—r2/2

gnw(t)

The orthogonal wavelet transform. One can show that if y is properly chosen, then
the family {2//2%7;{}/,{65, with yj (1) = 277y(27/t — k), is an orthonormal basis of

L? (e.g., Ref. [19]). The term 202 is just a normalization factor. The orthogonal wavelet
coefficients can then be defined by:

dr(j,k) = (fl¥jx)- (4.28)
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Orthogonal wavelets that are often used in practice are the Daubechies wavelets, in-
dexed by a parameter np = 1,2,..., which corresponds to the order of the wavelet. The
Daubechies wavelet with np = 1 is in fact the Haar wavelet [11] (which is discontinuous;
itequals 1 at0<r < 1/2,—1at 1/2 <t <1 and 0 otherwise), but the Daubechies wavelets
with np > 1 are continuous with bounded support, and have np vanishing moments.

The Wavelet Transform Modulus Maxima (WTMM) method. This method [22] is based
on the local maxima of the modulus of the continuous wavelet transform, i.e., on the local
maxima fo; (over ) of the function |Ty,[f](f0,!)|, where [ is a fixed scale. In other words,
in practice, instead of averaging over all values of |Ty/[f](t0,!)|, one averages (within the
WTMM) only the local maxima of |Ty[f](t0,/)| and sums up the g-th power of these

maxima,
ilTlElX

Z(g,1) = Y [Ty [f)(0, )| (4.29)
i=1
If scaling behavior is observed, scaling exponents 7(¢) can be defined by:
2(q1) o< 179 (4.30)

These 7(g) exponents are identical [15] to the 7(q) in Eq. (4.21) and related to h(q) as
shown in Eq. (4.22). Attention is drawn to the point that usually in WTMM the time series
are analyzed directly instead of the profile y(i) defined in § 1.4.2.

4.6.1.1 Comparison of the estimators of scaling behavior

Most of the (non-parametric) techniques for estimating the scaling exponent of time series
that display scaling behavior consist essentially in the measurement of a slope in a log-log
plot. Abry et al. [3, 2] and Veitch and Abry [44] have advocated the use of orthogonal
wavelet-based estimators, which have several advantages. For example, they are blind to
eventual superimposed smooth behavior (such as trends) and they are very robust when
changing the slope of the underlying probability law.
Various wavelet-based estimators of self-similarity or long-range dependence scal-
ing exponent were compared by Audit et al. [4]. These estimators mainly include the
(bi)orthogonal wavelet estimators and the WTMM estimator. Their study focused both
on short and long time series and also compared the wavelet-based estimators with DFA
that is not wavelet-based. They found, among others, that the WTMM estimator leads
to larger mean squared errors (MSE) for short time series of length smaller than 128 (i.e.,
N < 128) as compared to the orthogonal estimators but to much smaller MSE for long time
series (see table I of Ref. [4]). For time series of size 8192 (i.e., for sizes comparable to
those of the original time series of the SES activities and “artificial” noises), the WTMM
estimator using the wavelet g4, see Eq. (4.27), should be used.



218 4. Natural Time Analysis of Seismic Electric Signals

Furthermore, for short time series (N < 128) it was shown [4] that DFA is the best
estimator. This justifies why in § 4.4.2 (as well as in Chapter 5) the method of DFA is
employed in order to analyze in natural time the SES activities and “artificial” noises
which have usually N ~ 10> pulses (events).

4.6.2 The wavelet-based methods of estimating scaling behavior in natural time
compared to that in conventional time

We start with the application of the WTMM method to the (original) time series of SES
activities and “artificial” noises mentioned in Fig. 2.8 (see also the caption of Fig. 4.2).
Using a g4 wavelet, see Eq. (4.27), the analysis led to the results shown in Fig. 4.18.
Figure 4.18(b) reveals that the curves showing the ¢ dependence of the generalized Hurst
exponent A(q) are not classified, thus not allowing any obvious distinction between SES
activities and “artificial” noises. The same conclusion is drawn (see Fig. 4.19(a)) if we
apply the orthogonal wavelet transform analysis to the original time series of the signals
mentioned in Fig. 2.8. This analysis was made with the program provided by Veitch et
al. [45] using the Daubechies wavelet np = 1, after checking several other Daubechies
wavelets of higher order, i.e., np > 1.
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Fig. 4.18 The ¢ dependence of the exponent 7(¢) and the generalized Hurst exponent (g) (panels a and
b, respectively) resulting from the application of WTMM using a g4 wavelet for the signals mentioned in
Fig. 2.8 (see also the caption of Fig. 4.2). For the sake of clarity, the straight line corresponding to a slope
H =1 was drawn in (a), while the solid curves in (b) correspond to the four SES activities (bold symbols,
while for the “artificial” noises thinner symbols were used). The data points in (a) for each time series are
vertically displaced by constant factors. Taken from Ref. [33].
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Fig. 4.19 The g dependence of

the generalized Hurst exponent
h(g) resulting from the orthogonal
wavelet transform analysis using a
Daubechies] (i.e., np = 1) wavelet.
The solid curves correspond to the
SES activities while the broken to the
“artificial” noises: (a) of the original
time series mentioned in Fig. 2.8 (see
also the caption of Fig. 4.2); the per-
centage errors in the determination of
h(2) are: 5, 15, 8, 4, 6, 3, 4, 12, 19
and 15% for K1, K2, A, U, nl, n2,
n3, n4, n5, and n6 respectively.(b) of
the time series read in natural time,
see Fig. 4.9 (the corresponding errors
are presented in Table 4.4); note that
the signals A and n6 could not be
analyzed in natural time due to the
small number of pulses. Taken from
Ref. [33].

We now proceed to the application of the wavelet transform to the signals as they are
read in natural time, see Fig. 4.9. The results of the orthogonal wavelet transform analysis
(note that WTMM could not be reliably applied in view of the small number of pulses),
using again the Daubechies np = 1 (i.e., Haar) wavelet, are depicted in Fig. 4.19(b). An
inspection of these h(g) versus ¢ curves, in spite of the large estimation errors seems
to show a classification as follows. For ¢ values around 2 or larger the resulting A(q)
values for the SES activities are higher than those of the “artificial” noises (see the h(2)
values in the third column in Table 4.4). In particular, the results show that the generalized
Hurst exponent /(2) for the SES activities is close to unity, while for the “artificial” noises
h(2) is markedly smaller. This conclusion is fully compatible with that deduced from the
application of MF-DFA in natural time (§ 4.5.3, see also the second column in Table 4.4).
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In summary, the wavelet transform analysis allows a distinction between SES activities
and “artificial” noises, but only if it is applied in natural time leading to 4(2) ~ 1 for
SES activities, while /(2) is markedly smaller for “artificial” noises.

4.7 Combining the normalized power spectrum analysis and
multifractal analysis in natural time. The K-means clustering
algorithm

4.7.1 Combining the variance x; and the generalized Hurst exponent /(2)

Towards this goal, we employ two independent methods: the normalized power spectrum
analysis in natural time (leading to the x; values, see § 4.2.2) and the MF-DFA (§ 4.5.3)
the application of which in natural time led for ¢ = 2 to the 4(2) values given in Table 4.4
(see also the columns labeled @, and k7 in Table 4.1). Figure 4.20 presents the results
for the signals mentioned in Fig. 2.8 (see also the caption of Fig. 4.2) of these two methods
applied independently in natural time.
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Fig. 4.20 Combined results of the analyses in natural time, see § 4.7.1. Plot of /(2) versus Ak (= 1/12—
Kk1): SES activities K1, K2, A, U (filled squares), “artificial” noises n1 to n6 (open squares), and the ICFMC
(open states, labeled ICFMC,). The k; values come from the normalized power spectrum analysis (see
Fig. 4.8), while the 4(2) values were obtained by MF-DFA (Fig. 4.16); all these values are given in Table
4.4. The DFA exponent (~0.86) of the closed states for ICFMC (labeled ICFMC,) is also inserted [33].
The thick straight lines indicate the two groups resulting from the application of the K-means algorithm
explained in § 4.7.2; the full and open circles show the centroids of the two groups. Taken from Ref. [33].
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A unified feature seems to emerge. The deviations from the “uniform” behavior quan-
tified by Ax (where Ax = 1/12 — k, see § 4.2.2) are interrelated with the /(2) values:
First, the SES activities, which correspond to large A x values (Ax > 0), are characterized
by the strongest “memory” (large h(2), close to unity); both their Ak and h(2) values are
consistent with those expected for a critical behavior (see § 4.7.3 and § 2.4.2). Second, the
“artificial” noises simultaneously have smaller Ax values (Ax < 0) and weaker “mem-
ory” (their h(2) values are markedly smaller than unity). Third, concerning the ICFMC,
the values related with the closed states, which have been found [24] to exhibit the stronger
“memory”’ (between the two states, i.e., closed and open, see Fig. 4.1), seem to lie between
the aforementioned two regimes.

Finally, Varotsos et al. [33] emphasized that, the randomly “shuffled” series of all the
three types of electric signals investigated, lead to 2(2) ~ 0.5 (simple random behavior)
and Ax =~ 0 (e.g., see the SES activity in § 7.1.1). These two values are internally
consistent in the absence of heavy tails, because in the “shuffling” procedure the values
are put into random order, thus all correlations (memory) are destroyed (§ 2.5.2.1).

4.7.2 The K-means clustering algorithm

A more elaborated classification of the results depicted in Fig. 4.20, can be obtained by
using some clustering algorithm. In Ref. [33] a K-means type was used, which is a least-
squares partitioning method allowing users to divide a collection of objects into K groups
(e.g., see section 8.8 of Ref. [18]).

The K-means problem consists of dividing a set of multivariate data into non-overlapping
groups in such a way as to minimize the sum (across the groups) of the sums of squared
residual distances to the group centroid (this statistics is usually called sum of squared
errors). In other words, a computer program tries to minimize the sum, over all groups, of
the squared within-groups residuals, which are the distances of the objects to the respec-
tive group centroid. The groups obtained are such that they are geometrically as compact
as possible around their respective centroid.

In Ref. [33] the K-means partitioning program provided by Legendre [17] was used.
This program allows users to search through different values of K in a cascade, starting
with k; groups and ending with k, groups, with ki > k». In the cascade from a larger
to the next smaller number of groups, the two groups whose centroids are the closest in
multivariate space are fused and the algorithm iterates again to optimize the sum of squared
errors function, reallocating objects to the groups. Varotsos et al. [33] run the program by
considering the 10 “objects”, i.e., the four SES activities and the six “artificial” noises
mentioned in Fig. 2.8 (see also the caption of Fig. 4.2). The h(2) values resulting from
ME-DFA in natural time and the k; values reported in Table 4.4 have been used. Studying
partitions from k; = 5 to kp = 2 groups, the clustering shown in Fig. 4.20 with the thick
straight lines was found [33].
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This clustering consists of the following two groups (K = 2): the first one includes the
four SES activities, while the second the six “artificial” noises nl to n6. The centroid
of the first group (solid dot) lies at Ak = 0.013, 2(2) = 0.9375, while the centroid of
the second at Ak = —0.013, A(2) = 0.745. Note that the Ak value (= 1/12 — k;) of
the centroid of the group of the four SES activities corresponds to k; = 0.070, which
coincides with the theoretical value obtained for the SES activities in § 2.4.2, see
Eq. (2.77).

4.7.3 Comments on the differences in the memory and the variance x; among
electric signals of different nature

Let us focus on the tentative origin of the difference in the memory of SES activities and
“artificial” noises. In Ref. [34] an attempt was made towards understanding the aforemen-
tioned results (§ 4.5.3), which show that the values of the generalized Hurst exponent /(2)
of the “high”-level states’ durations of the SES activities are close to unity, while those of
the “artificial” noises are markedly smaller. Let us consider, at the moment, for the sake
of simplicity, the simple case of fBm (which has been proposed [48] to model the SES ac-
tivities for H — 1 and is the only Gaussian self-similar process with self-similarity index
H # 0.5, e.g., see Ref. [21]; see also § 1.5.1.1): the Hurst exponent H has been suggested
as a measure of the degree (intensity) of self-similarity or long-range dependence, e.g.,
see Ref. [26] (see also Refs. [20, 49]). The power law decay of the covariance, Eq. (1.8),
characterizes long-range dependence. The higher the H the slower the decay, e.g., see
Eq. (1.15). If we now assume that, in general, #(2)(= H) is actually a measure of the in-
tensity of long-range dependence, we may understand that the SES activities, since they
exhibit critical dynamics (infinite long-ranged correlations), should have a long-range de-
pendence stronger (thus, a higher H) than that of the “artificial” noises. Note that the
model of critical behavior discussed in § 2.4.2, which resulted in Eq. (2.77), shows that
& (QxOy+1) is independent of /.

As for the fact that the ICEMC curve (k3 = 0.080 4 0.003) lies in Fig. 4.8 closer to
the “uniform” distribution compared either to the SES activities or the (majority of the)
“artificial” noises, this is not unreasonable for a biological system [34] (see Chapter 9,
e.g., Fig. 9.11).

4.8 The fluctuation function F(g) = (x?) — (x)? and the entropy S in
natural time

4.8.1 Classification of electric signals based on the function F(q) = (x7) — (x)?
versus ¢ in various types of electric signals

In Ref. [33], it was proposed that a classification of the aforementioned three types of
electric signals of dichotomous nature, i.e., ICFMC, SES activities and “artificial”” noises,
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becomes possible if we study, in the range 0 < g < 2, the function F(q) = (x?) — (x)?
Versus q.

We recall that Fig. 4.9 shows how the electric signals, mentioned in Fig. 4.8 (see also
Figs. 2.8 and 4.2), are read in natural time. The function (y?) — () versus g, for all these
electric signals, is depicted in Fig. 4.21(a), in the range 0 < g < 2. (cf. Eq. (2.38), which
was introduced for n = positive integer only). This figure shows that the signals are now
classified:

The curves for the SES activities and “artificial” noises, at least in the range g € (1,2)
fall practically into two different classes, while the ICFMC curve lies just between
them.

Note that the results, for ¢ = 2, exhibit the feature already mentioned in § 4.2.2, i.e.,
for SES activities, they scatter around the value k(= (x2) — (x)?) = 0.070, while for the
“artificial” noises k; > 0.083, and for ICFMC k; = 0.080 + 0.003 =~ K, (see also Fig. 4.8).
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4.8.2 Classification of electric signals based on the entropy S in natural time

The derivative of the function F(g) = (x?) — (x)? with respect to ¢, i.e.,

d

F/(Q):Iq

() = (0 = (e Inge) = () In(x) 4.31)
is plotted in Fig. 4.21(b) versus g. We may see again a classification. Furthermore, Varot-
sos et al. [33] drew attention to the region around ¢ = 1. The quantity () Iny) — (x) In{(})
is just the one defined as entropy S in natural time, i.e., see Eq. (3.1). In addition,
Eq. (3.4) states that the entropy S, of the “uniform” distribution (see § 2.1.3) has the value
S = 0.0966.

Therefore the three types of electric signals seem to be classified as follows (but see
also § 4.8.3): The “artificial” noises have an entropy larger than (or equal to) that of the
“uniform” distribution, i.e., § > S, while the SES activities exhibit S values smaller than
Sy As for the ICEMC, the S value lies just in the boundary between the SES activities and
the “artificial” noises and is very close to S,,. The point that only n5 among the “artificial”
noises seems to have a smaller entropy than S, — see Table 4.4 — is discussed below.

Thus, in short, the entropy S = () Inx) — (¥) In()) of the SES activities is smaller than
that (S,) of the “uniform” distribution, while the “artificial” noises have an entropy
larger than (or equal to) S,.

The following remarks are worth adding. First, when employing the K-means algo-
rithm mentioned in § 4.7.2, if the S values inserted in Table 4.4 are used instead of k7, a
comparison of partitions into k; =4 to kp = 2 groups also leads to the clustering shown in
Fig. 4.20.

Second, for each of the signals depicted in Fig. 4.9, the values of the scaling exponent
o (obtained from DFA) and x; do not change upon a time reversal. Such a reversal,
however, leads to a different S value labeled S_.

The latter important point has been already treated in Section 3.4 and will be further
discussed in Section 4.9. Third, if the number of pulses in a SES activity (or “artificial”
noise) is small (e.g. 3-50), the values of both k1 and S are smaller than the actual ones;
the extent of this underestimation could be understood on the basis of Fig. 4.22 to which
we now turn. Figure 4.22, depicts the expected value for k; and S for a Markovian di-
chotomous time series (Section 4.1) as a function of the number of the “high” level states
N along with their uncertainty of £0¢. Recall that the values of x; and S for all the SES
activities and “artificial” noises mentioned in Fig. 4.9, are shown in Table 4.4. The fact
that only n5 among the “artificial” noises seems to have an entropy somewhat smaller than
S, (S[n5] =0.091 4 0.011) might be understood as follows: for n3, we have N ~ 400 (see
Table 2.2) for which Fig. 4.22 reveals that the aforementioned value of 0.091 differs from
S, only by an amount smaller than one ©.
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4.8.3 Classification of electric signals by the complexity measures using the
fluctuations of the entropy in natural time

The values of the complexity measures Ay, A s and v, defined in § 3.6.1, for several
SES activities and “artificial”” noises were calculated in Ref. [38] and the results are shown
in Table 4.5. The complexity measures have been calculated only in the short-range be-
cause the length of these signals in the natural time domain is on the average ~10? pulses
and hence does not significantly exceed the time window length / =~ 60 pulses, thus not
allowing a reliable calculation of the complexity measures in the longer scale (see § 3.6.1;
see also §9.2.2.1 and § 9.2.7).

Table 4.5 The complexity measures Ay, A g and vy of SES activities and “artificial” noises along with
their S values (note that the latter are compiled from Table 4.4). Taken from Ref. [36].

Signal As A shuf Vg S

Kl 1.26 1.27 121 0.067+0.003
K2 1.26 1.29 130 0.081+0.003
U 1.06 1.24 117 0.092+0.004%)
A 0.97 1.14 0.97  0.070+0.008
nl 1.25 1.23 121 0.143+0.003
n2 1.30 1.31 1.18  0.103+0.003
n3 1.35 1.26 124 0.117+0.010
nd 1.36 1.26 120 0.106:0.010
n5*) 1.32 1.28 1.12 0.091+0.011%
n6 1.36 1.01 115 0.102+0.007

*) Note that in these two cases the S values are comparable to S, and hence their distinction can be made
on the basis of the A values which differ markedly.
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An inspection of these results reveals that the A values of most “artificial” noises are
somewhat larger than those in the SES activities. Note that in two cases, i.e., the SES
activity U and the “artificial” noise n5, for which the S values are comparable to S, (thus,
no distinction can be made on the basis of the § values alone), the distinction can be
achieved on the basis of the A, values, A;(U) < As(n5), which differ markedly.

Recapitulating the distinction of similar-looking signals that are emitted from sys-
tems of different dynamics, we can now say the following [38]: If the S values differ
markedly from S, (which holds in most SES activities and “artificial” noises), the sig-
nals can be distinguished on the basis of the S values alone. On the other hand, if the S
values are close to S, (which holds in all ECG, see Chapter 9, but only in the minority
of SES activities and “artificial” noises) the signals can be better classified by using
the complexity measures based on the fluctuations 85 of the entropy (see also § 3.6.1
and § 9.1.1).

4.9 Using the entropy S_ or the fluctuations of natural time under
time reversal

4.9.1 Distinction of SES activities from ‘“artificial” noises based on the entropy in
natural time under time reversal

The entropy S_ in natural time under time reversal, defined in § 3.4.1 has been calculated
for all the SES activities and “artificial” noises tabulated in Table 4.4 (as well as for some
more recent examples) and the results can be found in Ref. [43] (see also Ref. [42]). Here,
Table 4.6 compiles the S and S_ values of all these signals along with those of 16 SES
activities recorded during the subsequent years. The stations at which the latter SES activ-
ities have been recorded are also mentioned in Table 4.6. For the sake of completeness, we
also give in Table 4.6, the value of the variance k; = (¥?) — (¥)? obtained in each case.
An inspection of Table 4.6 reveals the following:

The S values are actually classified, as stated above in § 4.8.2, i.e., S < S, for the SES
activities and S, < S for “artificial” noises. On the other hand, this does not hold in
general for the S_ values.

This is so, since for all the SES activities (with the probable exception of K2) we find
that the S_ values are smaller than (or equal to) S, but for “artificial” noises no common
behavior could be found, because S_ is either smaller or larger than S,,.

In other words, no distinction between SES activities and “artificial” noises can be
achieved on the basis of S_ values alone. This means the following, if we recall that the S
value takes into account the sequential order of pulses and hence captures elements of the
dynamics hidden in this order [37, 38]: Only when considering the true time arrow (i.e.,
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analyzing in natural time the signal as it was actually recorded in nature) the S value can
pinpoint the difference in the dynamics between these two groups of electric signals. Recall
that the SES activities are characterized by critical dynamics and hence exhibit infinitely
ranged long-range correlations, while in “artificial” noises the intensity of the long-range
correlations is markedly weaker [33] (see also § 4.7.3). Numerical studies of models which
show [41] that both S and S_ are smaller than S, have been already presented in § 3.4.3
and § 3.4.4.

Table 4.6 The values of S, kj, S_ for the SES activities and “artificial” noises in Greece analyzed in
Ref. [43] (see also table I of Ref. [42]) together with the one labeled E in Fig. 4.5 as well as with 16 more
recent SES activities which are the following: M| to M4 were recorded at MYT station, while V; at VOL,
see fig. 1 of Ref. [41]. The SES activities PAT, shown in Fig. 7.2, and PAT5, see fig. 2 of Ref. [40], were
recorded at PAT station. The signals PIR, PIR,, PAT3 and PAT4 correspond to the SES activities depicted
in figs. 3(a), 3(b), 3(d) and 3(e) of Ref. [39], respectively. They were recorded at PIR or PAT station. The
four additional SES activities recorded at PAT station during 2007 depicted in figs.5(a), 5(b), 5(c) and
5(d) in Ref. [30] are labeled PATs, PATs, PAT7 and PATg, respectively. Finally, PIR3 stands for the SES
activity (see Fig. 7.22(b)) that was recorded [30] on January 14, 2008, at PIR which preceded the strongest
earthquake in Greece during the last 28 years that occurred on February 14, 2008.

Signal N K1 S_

K1 0.06740.003")  0.0630.003*)  0.074-:0.003
K2 0.081:£0.003*)  0.078+0.004")  0.103£0.003
E 0.071:£0.010  0.07140.006  0.082+0.010
A 0.070-£0.008%)  0.068+0.004")  0.084:0.008
U 0.092:£0.004*)  0.07140.004*)  0.071=£0.004
Tl 0.088:£0.007  0.084+0.007  0.098+0.010
Cl 0.083£0.004  0.074:£0.002  0.080£0.004
Pl 0.087:£0.004  0.0754£0.004  0.081::0.004
P2 0.0884£0.003  0.071£0.005  0.072£0.015
El 0.087:£0.007  0.077£0.017  0.0812:0.007
M 0.094:£0.005  0.07540.004  0.078+0.003
M 0.089£0.003  0.076:£0.004  0.084:0.003
M) 0.089:£0.004  0.080£0.005  0.093:0.004
M;" 0.080:£0.005  0.073+0.004  0.086-:0.006
v 0.0784£0.006  0.074:£0.004  0.09240.005
PAT***) 0.080£0.002  0.072:£0.002  0.07840.002
PAT;™) 0.074+£0.002  0.075+0.002  0.07840.002
PIR}""") 0.070+£0.012  0.062+0.010  0.051£0.010
PIR;"™) 0.0774£0.004  0.076£0.005  0.0820.004
PAT;™) 0.073+£0.007  0.072+0.005  0.08140.006
PAT; ™) 0.085+£0.005  0.073+0.007  0.080:0.004
PATs 0.067£0.007  0.074:£0.007  0.07920.007
PAT, 0.071:£0.005  0.06940.003  0.066+:0.005
PAT; 0.0724£0.003  0.067:£0.003  0.069£:0.003
PAT; 0.070£0.005  0.06540.005  0.070+:0.005

PIR3 0.086+0.003  0.0704£0.005  0.07040.005
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Table 4.6 Continued.

4. Natural Time Analysis of Seismic Electric Signals

Signal S K1 S_

nl 0.14340.003%  0.11540.003%)  0.12740.004
n2 0.103£0.003*)  0.093+0.003*)  0.12240.003
n3 0.11740.0109  0.100+£0.008*)  0.118+0.010
n4 0.10620.010"  0.100+0.013*)  0.13840.010
ns 0.091£0.011*)  0.086+0.007"  0.120+0.011
n6 0.10240.007*)  0.084+0.004*)  0.095+0.007
n7 0.116+0.005  0.085+0.005  0.083-0.005
n8 0.117+£0.004  0.095+0.007  0.099+0.005
n9 0.110£0.010  0.091£0.005  0.0950.010
nl0 0.11240.005  0.087+0.007  0.08740.006
nll 0.12240.012  0.088+0.007  0.079+0.012
nl2 0.104+0.005  0.094+0.005  0.1030.009
nl3 0.124+0.007  0.084:£0.007  0.07740.008
nl4 0.124+0.005  0.087+0.005  0.081%0.007

*) From Ref. [33] and mentioned in Fig. 2.8.
*#%) From Ref. [41].

#%:%) From Ref. [40].

##%%) From Ref. [39].

In other words, the SES activities can be distinguished from “artificial”” noises by con-
sidering that for the SES activities both S and S_ are smaller than S,,, which is not the
case for “artificial” noises , i.e.,

S,S_ < S, for SES activities 4.32)

This happens in addition to the fact that for the SES activities the variance k7 is K] ~
0.070, while for “artificial” noises we have k| > K, ~ 0.083, see § 4.2.2.

4.9.2 Distinction of SES activities from ‘“artificial’’ noises on the basis of the
fluctuations of natural time under time reversal

In §2.2.2, it was discussed that a measure of the long-range dependence emerges in natural
time if we study the dependence of the fluctuations of the average value of natural time
under time reversal

Axi =E1((0)— (Tx) =6 (4.33)

~ =

-

2
(Pk - P1k+1)] )

on the window length [ that is used for the calculation. In particular, it was shown that

Eq. (2.19) holds, i.e,
Ax(= \/Axlz) oc [XH (4.34)
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Hence, the scaling exponent )y can be determined from the slope of the log A y; versus
log! plot. Recall also that in such a plot, we have the interconnection:

xn ~H—1 for descending curves (4.35)

or
xg = H for ascending curves (4.36)

We now show [39] that the aforementioned scale-dependence of the fluctuations of
the natural time itself under time reversal provides a useful tool for the discrimination of
SES activities from “artificial” noises. We apply this procedure to the time series of the
durations of those signals analyzed in Ref. [43] that have enough number of pulses e.g.
~102, excerpts of which are depicted here in Fig. 4.23(a). The relevant results are shown
in Fig. 4.23(b). An inspection of this figure interestingly indicates that all seven “artificial”
noises correspond to descending A curves versus the scale /, while the three SES activ-
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ities to ascending curves (in a similar fashion as in Figs. 2.3(a) and 2.3(d), respectively)
as expected from the fact that the latter exhibit [34] infinitely ranged temporal correlations
(having H close to unity), while the former do not.

Hence, the method discussed here, which is based on the fluctuations of the average
value of the natural time itself under time reversal, enables the identification of long-
range correlations even for datasets of small size (~107), thus allowing the distinction
of SES activities from “artificial” noises.

4.10 Summary of the criteria in natural time for the distinction of
SES activities from noise

By summarizing the previous Sections of this Chapter, the following three rules are put
forward for the distinction between SES activities and “artificial” noises (AN).
First (note that each class of signals below is designated by the relevant subscript):

Ki1,ses < K1 icrme (R ki) < Ki AN, (4.37)

where x1 ;cryc ~ 0.080 and k, ~ 0.083 and
K|,SES ~ 0.070. (438)

Second,

Sses, (S-)sgs < Su < San; (4.39)
where S and S_ stand for the entropy in natural time and that under time reversal, respec-
tively; the value S, is the one of the “uniform” distribution, i.e., S, = 0.0966. The S values
themselves are used for the distinction when they differ markedly from S,. On the other
hand, if the S values are found to be close to S,, which holds for the minority of the SES
activities and the AN, the distinction can be better made by using the complexity measure
As of the fluctuations 85 of the entropy (see § 4.8.3).

Third, if H denotes the generalized Hurst exponent /2(2) in natural time,

HaN < Hsgs, (4.40)

where Hsgs is close to unity, i.e,
Hsgs ~ 1.0 (4.41)

and HAN S 0.86.

The same holds for the DFA exponent in natural time, i.e.,
0.86 < osps ~ 1.0 4.42)

and
oy = 0.65 —0.80. (4.43)
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A safe distinction between SES activities and AN should not be solely based on the
above three rules but should be used in conjunction with the criteria explained in Section
1.2. The basic spirit behind these rules is that SES activities exhibit critical behavior while
AN do not. Some types of AN, however, may be also associated with criticality (e.g., when
a “man-made” system approaches failure) and hence could in principle be misinterpreted
on the basis of the above inequalities.

4.11 Procedure to analyze a long-duration SES activity in natural
time

When a short duration SES activity has an obvious dichotomous nature, the procedure
to read it in natural time is straightforward, i.e., the one shown in Fig. 2.1(a) where we
considered O as being proportional to the duration of the k-th pulse. This is the case, for
example, of the SES activity recorded at IOA on April 18, 1995, whose original time series
is shown in Fig. 1.11(a) (and see its excerpt in Fig. 4.2(a)), while Fig. 4.6 depicts how this
SES activity is read in natural time.

100000 F !
10000 E
LC>,-
(9] r 4
% 1000
i 100 | ] Fig. 4.24 Histogram of the “in-
stantaneous power” P, i.e., the
squared amplitude of the sig-
10 ¢ 3 nal depicted in channel “e” of
Fig. 1.16. Reprinted with permis-
1 A . . . . L L L sion from Ref. [35]. Copyright

0 500 1000 1500 2000 2500 3000 3500 4000 4500 (2009), American Institute of
P (uV2Hz) Physics.

We now focus on a long-duration SES activity of a non-obvious dichotomous nature
which is superimposed on a background that exhibits frequent small M T variations. Let us
consider, for example, the SES activity that lasted from February 29 until March 2, 2008
(channel “a” of Fig. 1.16), for which the procedure to subtract the MT background vari-
ations has already been presented in § 1.4.3.1. This subtraction results in channel “e” of
Fig. 1.16, which provides the time series that should be now analyzed in natural time: To
obtain the time series (X, Ox), the individual pulses of the signal depicted in channel “e”
of Fig. 1.16 have to be identified. A pulse starts, of course, when the amplitude exceeds a
given threshold and ends when the amplitude falls below it. Moreover, since the signal is
not obviously dichotomous, instead of finding the duration of each pulse, one should sum
the “instantaneous power” during the pulse duration in order to find Q. To this end, we
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plot in Fig. 4.24 the histogram of the “instantaneous power” P of channel “e” of Fig. 1.16,
computed by squaring its amplitude. An inspection of this figure reveals a bimodal feature
which signifies the periods of inactivity (P < 500 uV? Hz) and activity (P > 500 uV? Hz)
in channel “e” of Fig. 1.16. In order to find Qy, we focus on the periods of activity and
select the power threshold P;,.s around the second peak of the histogram in Fig. 4.24. Let
us consider, for example, the case of Py, = 1400 ,quHz. In Fig. 4.25(a), we depict the
“instantaneous power” P of the signal in channel “e” of Fig. 1.16 versus time. Starting
from the beginning of the signal, we compare P with P,j,., and when P exceeds P, we
start summing the P values until P falls below P, for the first time, k = 1. The result-
ing sum corresponds to Q. This procedure is repeated until P falls below P, for the
second time, k = 2, and the new sum represents Q», etc. This leads to the natural time
representation depicted in Fig. 4.25(b). The result depends, of course, on the proper selec-
tion of Py,.,. The latter should be verified by checking whether a small change of Py
around the second peak of the histogram leads to a natural time representation resulting
in approximately the same values of the parameters ki, S and S_. By randomly selecting
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Pyjres in the range 500 to 2,000 uV? Hz, we obtain that the number of pulses in channel
“e” of Fig. 1.16 is N = 1,100 = 500 with x; = 0.070 £ 0.007, S = 0.082 £ 0.012 and
S_ =0.078 & 0.006. When P,,,, ranges between 1,000, and 1,500 uV?Hz, the corre-
sponding values are N = 1,200 + 200 with x; = 0.068 4 0.003, S = 0.080 £ 0.005 and
S_ =0.074 4+ 0.003. Thus, we observe that irrespective of the P;,,s value chosen, the pa-
rameters k1, S and S_ obey the conditions (4.38) and (4.39) for the classification of this
signal as SES activity.

To summarize: natural time analysis allows the distinction between true SES activi-
ties and “artificial” (man-made) signals. This type of analysis, however, demands the
knowledge of the energy released during each consecutive event. (Note that the de-
termination of this energy is easier to conduct in the case of electric field variations,
because the magnetic field variations appear in the form of “spikes” when using coil
magnetometers which, as mentioned in § 1.4.4, act as dB/dr detectors.) If these electric
field variations are of clear dichotomous nature, the energy release is proportional to
the duration of each pulse. Otherwise, in the absence of an obvious dichotomous na-
ture, an analysis of the “instantaneous power” similar to that presented above should
be carried out to determine the parameters ki, S and S_ in natural time.
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5. Natural Time Investigation of the Effect of
Significant Data Loss on Identifying Seismic
Electric Signals

Abstract. In many cases of geophysical and/or geological interest, like the case of SES
observations, it happens that for substantial parts of the time of data collection high noise
prevents any attempt to extract a useful signal so that such data are removed from further
analysis. The appearance of such a noise may be either random or periodic. It is the objec-
tive of this chapter to examine whether the remaining data allow the identification of the
SES activities (critical dynamics) characterized by infinitely ranged temporal correlations.
The following two cases are treated here. First, the effect of the random removal of data
segments of fixed length on the scaling properties of SES activities. Second, the appear-
ance of a periodic noise like in Japan, where the electric field measurements at some sites
are seriously contaminated by high noise — due mainly to leakage currents from DC driven
trains — during the period 06:00 to 22:00 LT every day, i.e., around 70-80% data loss.
Here, we show that, in both cases, the identification of a SES activity becomes possible
with probability around 70% even after severe data loss (e.g., 70-80 %). This is achieved
by combining natural time analysis and DFA as follows: the remaining data is first rep-
resented in natural time and then analyzed in order to deduce the quantities ki, S and S_
as well as the exponent o from the slope of the log-log plot of the DFA analysis in nat-
ural time. We then examine whether the latter slope has a value close to unity and/or the
conditions k; =~ 0.070 and S, S_ < S, are obeyed.

5.1 Introduction

It is the basic aim of this chapter to investigate how significant data loss affects the scaling
behavior of SES activities, which are long-range correlated signals (see § 1.4.3, § 2.4.2 and
Chapter 4). The practical importance of this study becomes very clear upon considering
that such a data loss is inevitable, mainly due to the following two reasons. First, failure
of the measuring system in the field station (including the electric measuring dipoles, the
electronics and the data collection system) may occur especially due to lightning. Second,
noise-contaminated data segments are often unavoidable due to natural changes such as
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rainfall, lightning, induction of geomagnetic field variations and ocean-earth tides besides
the noise from “artificial” (man-made) sources.

In particular, let us focus on the geoelectrical measurements in Japan. They face the
major difficulty that at many sites the recordings are contaminated by high noise due to
leakage currents from DC-driven trains and other artificial sources (e.g., see Ref. [2]).
Clear SES, however, have been recognized either at noise-free measuring sites [8, 5, 7]
or at noisy stations but when the SES happened to occur at midnight, i.e., when the noise
level was low [2]. This low noise level occurs from 00:00 to 06:00 and from 22:00 to
24:00 local time (LT) when nearby DC-driven trains cease service, i.e., almost 30% of
24 hours. The answer is attempted here in Section 5.3 provided that the SES activity is
of appreciably long duration, i.e., a few days to a few weeks or even more as in the case
of the Izu island swarm [5, 7]. This question differs from the one treated in Section 5.2
in which we investigate [4] the effect of the random removal of data segments of fixed
length on the scaling properties of SES activities. It also differs from the recent study of
Ma et al. [1] in which the lengths of the lost or removed data segments are random and
may follow a certain type of distribution. In the latter study, a new segmentation approach
to generate surrogate signals by randomly removing data segments from stationary signals
with different types of long-range correlations has been introduced [1] and will be used
here.

5.2 Identification when removing randomly noise-contaminated data
segments of fixed length

Let us consider here as an example the SES activity depicted in Fig. 1.11(a) recorded on
April 18, 1995, that preceded the M,,6.6 earthquake on May 13, 1995 (see § 7.2.1). This is
reproduced here but in normalized units in Fig. 5.1(a).

Following Ma et al. [1], we now describe the segmentation approach used here to gen-
erate surrogate signals (i) by randomly removing data segments of length L from the
original signal u(i). The percentage p of the data loss, i.e., the percentage of the data re-
moved, characterizes the signal ii(i). The procedure followed is based on the construction
of a binary time series g(i) of the same length as u(i). The values of u(i) that correspond
to g(i) equal to unity are kept, whereas the data of u(i) when g(i) equals zero are removed.
The values of u(i) kept, are then concatenated to construct ().

The binary time series g(i) is obtained as follows [1]: (i) We first generate the lengths
l; =L with j =1,2,...,M of the removed segments, by selecting M to be the smallest
integer so that the total number of removed data satisfies the condition ):’}’[:1 [; > pN. (ii)
We then construct an auxiliary time series a(k) with a(k) = L when k = 1,2,...,M and
ak)=1whenk=M+1,....N—M(L+1) of size N —M(L+1). (iii) We shuffle the time
series a(k) randomly to obtain d(k). (iv) We then append d(k) to obtain g(i): if a(k) = 1
we keep it, but we replace all a(k) = L with L elements of value ‘0’ and one element with
value ‘1°. In this way, a binary series g(i) is obtained, which has a size equal to the one
of the original signal u(i). We then construct the surrogate signal (i) by simultaneously
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Fig. 5.1 (a): The electric field recordings in normalized units, i.e., by subtracting the mean value p and
dividing by the standard deviation o, for the SES activity depicted in Fig. 1.11(a), that was recorded
on April 18, 1995. (b): Example of a surrogate time series, in normalized units, obtained by removing
segments of length L = 200 from the signal depicted in (a) with 50% data loss (i.e., p = 0.50). (c):The
natural time representation of (b) but drawn with continuous lines for the reader’s convenience (in reality,
this should be plotted as in the lower part of Fig. 2.1(a) or as in Fig. 7.2(b)). The values obtained from the
analysis of (c) in natural time are k; = 0.067(4), S =0.076(4), S_ = 0.071(4) and a = 0.90(5). Reprinted
with permission from Ref. [4]. Copyright (2010), American Institute of Physics.

scanning the original signal u(i) and the binary series g(i), removing the i-th element of
u(i) if g(i) = 0 and concatenating the segments of the remaining data to (7).
The resulting signal (i) is subsequently read in natural time. This leads to the quantities
K1, S and S_ as well as to the DFA exponent & (see § 1.4.2) in natural time. Such an
example is given in Fig. 5.1(b), which was drawn on the basis of the SES activity data
depicted in Fig. 5.1(a).

Typical DFA plots, obtained for L =200 and p = 30, 50 and 70% are given in Fig. 5.2.
For the sake of comparison, this figure also includes the case of no data loss (i.e., p = 0).
We notice a gradual decrease of the exponent o upon increasing the data loss, which affects
our ability to recognize a signal as SES activity. In order to evaluate this ability to identify
SES activities from the natural time analysis of surrogate signals with various levels of
data loss, three procedures have been attempted which will be explained separately below.
They include the investigation of the following conditions (5.1) and (5.2). The condition
(5.1) comes from the relation (4.42) after considering the reasonable experimental error:

0.85 < & < 1.10. 5.1)
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Fig. 5.2 The dependence of the DFA fluctuation function F(I) (see § 1.4.2) versus the scale / in natural
time: we increase the percentage of data loss p by removing segments of length L = 200 samples from the
signal of Fig. 5.1(a). The plus symbols correspond to no data loss (p = 0), the crosses to 30% data loss
(p = 0.3), the asterisks to 50% data loss (p = 0.5) and the squares to 70% data loss (p = 0.7). Except for
the case p = 0, the data have been shifted vertically for the sake of clarity. The slopes of the corresponding
straight lines that fit the data lead to ov = 0.95, 0.94, 0.88 and 0.84 from the top to bottom, respectively.
They correspond to the average values of ¢ obtained from 5000 surrogate time series that were gener-
ated with the method described in the text. Reprinted with permission from Ref. [4]. Copyright (2010),
American Institute of Physics.

The conditions (5.2) come from Egs. (4.38) and (4.39) by considering the reasonable
experimental error in Kj:

k1 —0.07] < 0.01, S<S,, S_<S,. (5.2)

In the following, the produced surrogate signals will be investigated whether they obey
conditions (5.1) and/or (5.2) using a Monte Carlo comprising a reasonable number of re-
alizations, e.g., of the order of 10°. The probability that the condition (5.1) is satisfied will
be hereafter labeled p;. By the same token, the probability to satisfy the conditions (5.2)
is designated by p,. Finally, the probability to obey either condition (5.1) or conditions
(5.2) will be labeled p3. Upon considering the number of the Monte Carlo realizations, for
example say M = 103, a plausible estimation error (3STD/+/M) at the most around 5% is
expected (cf. 1/ V103 & 0.032, and STD stands for the standard deviation of the quantity
calculated by Monte Carlo, e.g. see Ref. [12]). The three procedures studied refer to the
following investigation(s).

Procedure 1: Investigation whether the exponent ¢, resulted from the DFA analysis of
the natural time representation of a signal, obeys the relation (5.1). If it does, the signal
is then classified as SES activity. Figure 5.3(a) shows that for a given amount of data
loss (p = const.), upon increasing the length L of the randomly removed segments, the
probability p; of achieving (after making 5000 attempts for a given value of p and L) the
identification of the signal as SES activity is found to gradually increase versus L at small
scales and stabilizes at large scales. For example, when considering the case of 70% data
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loss (magenta color in Fig. 5.3(a)) the probability p; is close to 20% for L = 50; it increases
to p1 =~ 30% for L = 100 and finally stabilizes around 50% for lengths L = 300 to 500. This
is essentially consistent with the earlier findings of Ma et al. [1] who noticed that removing
the same percentage of data using longer (and fewer) segments has a lesser impact on the
scaling behavior compared to removing segments with smaller average length.
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Procedure 2: Investigation whether the quantities ki, S and S_ (resulted from the analy-
sis of a signal in natural time) obey the conditions (5.2). If they do so, the signal is classified
as SES activity. Figure 5.3(b) shows that for a given amount of data loss, the probability
p> of achieving the signal identification as SES activity — that results after making again
5,000 attempts for each given value of p and L — gradually decreases when moving from
the small to large scales. Note that for the smallest length scale investigated, i.e., L = 10
(which is more or less comparable — if we consider that f.,, = 1 sample/sec — with the
average duration 11 sec of the transient pulses that constitute the signal, see § 4.1.3 and
table I of Ref. [9]), the probability p, reaches values close to 100% even for the extreme
data loss of 80%. This is understood in the context that the quantities ki, S and S_ remain
almost unaffected when randomly removing segments with lengths comparable to the av-
erage pulse’s duration. This is consistent with our earlier finding [11] that the quantities
K1, S and S_ are experimentally stable (Lesche’s stability, § 3.3.4) in the sense that they
exhibit only slight variations when deleting (due to experimental errors) a small number
of pulses. On the other hand, at large scales L, the probability p, markedly decreases. This
may be understood if we consider that, at such scales, each segment of contiguous L sam-
ples comprises on the average a considerable number of pulses the removal of which may
seriously affect the quantities k7, S and S_. As an example, for 80% data loss (cyan curve
in Fig. 5.3(b)), and for L = 400-500, the p, value becomes 40%.

Interestingly, a closer inspection of Figs. 5.3(a) and 5.3(b) reveals that p; and p; play
complementary roles. In particular, at small scales of L, the probability p; increases but
p> decreases versus L. At large scales, where p; reaches (for considerable data loss) its
largest value, the p, value becomes small. Inspired by this complementary behavior of p;
and p», the following combined procedure was investigated.

Procedure 3: In this procedure, a signal is identified as SES activity when it obeys
either the condition (5.1) or the conditions (5.2). The probability p3 of achieving such a
SES identification, after making 5,000 attempts (for a given value of p and L), is plotted in
Fig. 5.3(c). The results are remarkable since, even at significant values of data loss, e.g.,
p = 70% or 80%, the probability ps at scales L = 100 to 400 remains relatively high, i.e.,
p3 = 75% and 65%, respectively (note also that the value of p3 reaches values close to
100% at small scales L = 10). This is important from a practical point of view, because
it states for example the following. Even if the records of a station are contaminated by
considerable noise, say 70% of the time of its operation, we have a probability of ~75%
to correctly identify an SES activity from the remaining 30% of the non-contaminated
segments. This probability increases considerably, i.e., to p3 ~ 90%, if only half of the
recordings are noisy.

The aforementioned results have been deduced from the analysis of a SES activity
lasting around three hours. In cases of SES activities with appreciably longer duration
(Section 1.3), e.g., a few to several days detected in Greece [3, 10] or a few months in
Japan [7], the results should become appreciably better.

In summary, the identification of a SES activity becomes possible even after significant
data loss by employing the following procedure. The remaining data are first read in
natural time and then analyzed in order to deduce the quantities ki, S and S_ as well as
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the exponent ¢ from the slope of the log-log plot of the DFA analysis in natural time.
We then examine whether this ¢ value is close to unity (cf. Eq. (5.1)) or the conditions
(5.2) are obeyed. This leads to the following results: even when randomly removing
50% of the data, we have a probability (p3) around 90%, or higher, to identify correctly
a SES activity. This probability becomes somewhat smaller, i.e., 75%, when the data
loss increases to 70%.

5.3 Identification upon significant periodic data loss.
The case of Japan

As already mentioned in Section 5.1, in geoelectrical field measurements at some sites in
Japan, high noise prevails almost during 70% of the 24-hour operational time. Thus, the
question arises whether it is still possible to identify a long-duration SES activity upon
removing the noisy data segments lasting from 06:00 to 22:00 LT every day.

Let us suppose that we have a long time series of data s(i) (red in Fig. 5.4), with a
duration appreciably longer than 24 hours for instance, and we are forced to remove the
same segment of these daily data. The portion of the 24-hour data that remain will be
hereafter labeled p, and the number of data corresponding to one day will be designated
by T. Thus, every T samples, (1 —p;)T of them (belonging to the shaded parts of Fig. 5.4)
are removed. The remaining segments (drawn in blue in Fig. 5.4) are concatenated to form
the new time series ¢ (i) which is subsequently read in natural time.
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Fig. 5.4 Schematic diagram showing data of fixed length (grey shaded areas) that are periodically removed
from a dichotomous time series (red).

Let us now follow a procedure similar to that in Section 5.2 and impose the conditions
(5.1) and (5.2). Since we are interested in the low cultural noise night-window, we hereafter
focus on p; values varying from p, = 0.2 to roughly p, = 0.3.

We recall (Section 1.3) that SES activities of appreciably long duration, i.e, around a
few weeks or more, similar to the one observed by Uyeda and coworkers [5, 7] almost
two months before the case of the Izu island swarm in Japan (Section 7.4), have not been
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recorded in Greece. Here, we consider as an example the SES activity depicted in Fig. 1.16
that preceded [10, 6] the most recent major earthquake in Greece. This had almost a 1.5-
day duration, which lasted from February 29 to March 2, 2008, and was followed by a
magnitude M,,6.4 earthquake at 38.0°N 21.5°E on June 8, 2008 (see § 7.2.6). Its original
time series, which is not of an obvious dichotomous nature, is depicted in Fig. 1.16 (chan-
nel “a”). We now attempt to answer the following question: if such an SES activity had
been recorded in Japan, could its identification have become possible by employing a pro-
cedure similar to the Procedure 3 proposed in the previous Section 5.2? Before applying
it, we note that the signal under discussion, as is evident from an inspection of Fig. 1.16
(channel “a”), comprises a number of pulses superimposed on a background which ex-
hibits frequent magnetotelluric (MT) variations. After subtracting these MT variations, as
explained in § 1.4.3.1, we find the signal depicted in Fig. 1.16 (channel “e”), which pro-
vides the time series that should be considered for further analysis. Recall that its analysis
in natural time (i.e., for p, = 0) was presented in Section 4.11.

To answer the question for the possibility to identify this SES activity in Japan after
significant data loss, a Monte Carlo calculation was employed by considering that the first
segment to keep starts at some time uniformly distributed during the first 24 hours (i.e, the
first 86,400 samples since fe,, = 1 sample/s). When removing 70% of the data (i.e., p, =
0.3), we find a probability p3 ~ 67% to identify correctly the SES activity (in particular,
p1 = 0.40, p» = 0.54 and p3 = 0.67). This probability becomes somewhat smaller, i.e.,
~262%, upon increasing the data loss to 80% (in particular, p; = 0.41, p» = 0.40 and
p3 = 0.62). These values of the probability p3 would be expected to become markedly
larger if the duration of the SES activity were to be similar to the one observed before the
Izu island seismic swarm.

Thus, our main conclusion states that when employing two modern techniques, i.e.,
natural time analysis and DFA, an identification of a long-duration SES activity be-
comes possible even after removing periodically a significant portion of the data, e.g.,
even upon removing in Japan the noisy data segments lasting for the period 06:00 to
22:00 LT every day.
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6. Natural Time Analysis of Seismicity

Abstract. Assuming that a mainshock may be considered as a new phase, the natural time
analysis of the seismicity reveals that the normalized power spectrum IT(¢) for small ¢
(¢ — 0) or the quantity ki (= (x?) — (x)?) may be considered as an order parameter for
seismicity. The probability distribution P(k ) of this order parameter is obtained from the
calculation of the variance k7 when a time window of length / (= number of consecutive
events) is sliding through an earthquake catalog. The k; value at which this probability dis-
tribution P(%;) maximizes is designated by x ,. By using P(ki), we find: first, studying
the order parameter fluctuations relative to the standard deviation of its distribution, we ob-
serve that (a) the scaled distributions of different seismic areas (as well as that of the world-
wide seismicity) fall on a universal curve and (b) this curve exhibits an “exponential tail”
similar to that observed in certain non-equilibrium systems (e.g. 3D turbulent flow) as well
as in several equilibrium critical phenomena, e.g., 2D Ising, 3D Ising, 2D XY. Second, the
constant b in the Gutenberg—Richter (G-R) law for EQs, N(> M) = 10~"M is determined
from the Maximum Entropy Principle which leads to b ~ 1 in accordance with the b value
obtained from real seismic data. Third, by analyzing either the original earthquake catalog
or a shuffled one the following results are obtained for the Southern California Earthquake
Catalog (SCEC) as well as for the Japanese Meteorological Agency Earthquake Catalog
(Japan). Concerning the ki, values, we find k;, = 0.066 for the original data, while
K1,p = 0.064 for the randomly shuffled data (with possible uncertainty of 0.001). Both
these ki, values, the difference of which is shown to be associated with temporal correla-
tions between the EQ magnitudes M, differ markedly from the value k, = 1/12(~ 0.083)
of the “uniform” distribution, which is interpreted as reflecting that the process’s incre-
ments’ infinite variance contributes significantly to self-similarity. Fourth, upon employing
multifractal cascades (generalized Cantor sets) in natural time an interconnection between
Ki1,p and the parameter b of the G-R law is obtained which for b ~ 1 leads to k7, = 0.064
that coincides with the k1, value obtained from the (randomly) shuffled earthquake data
of Japan and SCEC. Fifth, by applying DFA to the earthquake magnitude time series of
the SCEC and Japan data, we confirm that temporal correlations exist between EQ mag-
nitudes. Sixth, focusing on the order parameter fluctuations of seismicity before and after
mainshocks, we find the following. The P(k ) versus k] plot before mainshocks exhibits a
significant bimodal feature which is reminiscent of the bimodal feature observed in the pdf
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of the order parameter when approaching (from below) 7, in equilibrium critical phenom-
ena. Finally, the G-R law or its generalization in the frame of the nonextensive statistical
mechanics, if combined with natural time, which captures the temporal correlations be-
tween EQ magnitudes, can reproduce the features of real seismic data.

6.1 Earthquake scaling laws

It is well known that earthquakes exhibit scaling relations, chief among which are the
following three.

First, the well known Gutenberg—Richter (G-R) scaling [33] (hereafter called the G-
R law) which states that the (cumulative) number of earthquakes (EQs) with magnitude
greater than (or equal to) M, N(> M), occurring in a specified area and time is given by

N(>M) = 10“""M, (6.1)

In this relation b is a constant, which varies only slightly from region to region being
generally in the range 0.8 < b < 1.2 (e.g., see Ref. [53] and references therein) and the
constant a gives the logarithm of the number of EQs with magnitude greater than zero
[61] being a measure of the intensity of regional seismicity [75] (note that this relation
holds both regionally and globally). For reasons of convenience, we hereafter write the
G-R law in the following form

N(>M)oc 107M, (6.2)

Considering that the seismic energy E released during an earthquake is related [39] to
the magnitude through
E < 10M, (6.3)

where c is around 1.5, Eq. (6.2) turns to the distribution of Eq. (2.98), i.e.,
P(E)<E" 6.4)
for the earthquake energies E, where
y=1+b/15. (6.5)

Hence, b ~ 1 means that the exponent Y is around ¥ = 1.6 to 1.7, see Table 2.1.

Second, a scaling relation (the modified form [76] of Omori’s law) describes the tem-
poral decay of aftershock activity and is given in the form (e.g. see Ref. [61]):

1

e

(6.6)
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where r(t,M) is the rate of occurrence of aftershocks with magnitudes greater than M per
day, ¢ is the time that has elapsed since the mainshock and 7p and ¢(M) are characteristic
times. Note that p ~ 1 for large earthquakes (e.g., see Ref. [54]).

Third, the Bath law [15] for aftershocks according to which the difference in magnitude
between a mainshock and its largest aftershock is approximately 1.2, a constant indepen-
dent of the mainshock magnitude.

However, deviations from these scaling laws have been observed and their explanation
has attracted a great interest (e.g., see Ref. [43] and references therein). Despite the in-
tense efforts, however, the mechanism behind the complex spatio-temporal behavior of
earthquakes still remains a major challenge [12, 44].

It is widely accepted [74, 66, 23] that the aforementioned earthquake scaling laws as
well as others (e.g., referring to the distribution o<1/L? of fault lengths L [67], the
fractal structure of fault networks [27], the universal law for the distribution of waiting
times and seismic rates derived by Bak et al. [11] from the analysis of space-time
windows) indicate the existence of phenomena closely associated with the proximity
of the system to a critical point [35].

In view of this widespread belief, an order parameter for seismicity has been proposed
[84] in the frame of natural time, which is explained in § 6.2.1. On the basis of this order
parameter, a detailed study of the correlations in real seismic data has been made, a review
of which is provided in this Chapter.

6.2 The order parameter and the universal curve for seismicity. The b
value of the G-R law from first principles

6.2.1 The order parameter proposed for seismicity

As already mentioned (see Section 6.1), the occurrence of mainshocks can be considered as
a critical point (second-order phase transition), but alternative models based on first-order
phase transitions have also been proposed, e.g., see Ref. [53] and references therein. (Such
a diversity also exists for the brittle rupture which is a phenomenon closely related to earth-
quakes. Buchel and Sethna [22] have associated brittle rupture with a first-order transition
and a similar view has been also expressed in Refs. [42, 89]. On the other hand, Gluzman
and Sornette [32] later suggested that it is analogous to a critical point phenomenon.) Both
approaches lead to scaling laws or power law distributions for the dynamical variables,
because:

Second-order transitions demonstrate scaling near a critical point, whereas first-order
transitions demonstrate scaling when the range of interactions is large (mean-field
condition), as is the case with elastic interactions [53].
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Following the wording of Ref. [60], we note that in general:

“A choice of an order parameter is an art, since usually it’s a new phase which we do
not understand yet, and guessing the order parameter is a piece of figuring out what’s
going on.”

We now proceed to choose the order parameter for seismicity by assuming that a main-
shock may be considered as the new phase. We take advantage of the experimental fact
(Chapter 1) that several hours to a few months before a mainshock SES are recorded,
which probably signals that the system enters into the critical regime; see the pressure-
stimulated currents SES generation model described in § 1.6.2 (see also § 2.4.2).

Therefore, we focus our attention on the evolution of the seismicity (in the candidate
area) during the period from the SES detection until the mainshock.

If we set the natural time for the seismicity zero at the initiation of the concerned SES
activity, we form time series of seismic events in natural time, e.g., see Fig. 2.1(b), for
various time windows as the number N of consecutive (small) EQs increases. When com-
puting the normalized power spectrum IT(¢) of the seismicity analyzed in natural time
for each of the time windows (see below), we find that, in the range 0 < ¢ < 0.5, IT(¢)
approaches to that given by Eq. (2.75), i.e.,

(0) = 18 6cos(2mg)  12sin(27¢)

“50n)? 5@ | 5(me)p D

as N increases from 6 to some value usually less than (or around) 40. Simultaneously, the
variance k] of natural time becomes equal to 0.070, see Eq. (2.77), i.e.,

ki = (x*) — (x)* = 0.070. (6.8)

The coincidence occurs usually a few days to around one week before the mainshock.
This is not unreasonable, because in Chapter 8 we will show that upon analyzing in nat-
ural time the series of avalanches in two dynamical models associated with earthquakes
(i.e., the Burridge—Knopoff “train” earthquake model, see § 8.2.2, and the Olami—Feder—
Christensen earthquake model, see § 8.3.2), as well as in other critical systems, we find
that Eq. (6.8) is fulfilled when the critical point is approached.

In simple words, before a mainshock a sequence of earthquakes occurs, which obeys
Eq. (6.7) and this process will be called a single correlated process. When the mainshock
occurs (the new phase), II(¢) abruptly increases to approximately unity and k; becomes
almost zero. The latter can be visualized in the example depicted in Fig. 6.1, where we plot
the k7 value versus the number of EQs after the SES detection on April 18, 1995, until the
occurrence of the M,,6.6 mainshock on May 13, 1995, at 40.2°N, 21.7°E (see Fig. 1.11(a)
and § 7.2.1). This figure shows that the x; value becomes k; =~ 0.070 at the 12th EQ (see
Table 6.1), while upon the occurrence of the mainshock the k; value abruptly decreases
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102 ¢
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10° ¢ i i

Fig. 6.1 How the variance k; evolves event

: by event during the following period: from the
1074 + o . .

initiation of the SES activity on April 18, 1995

(see Fig. 1.11(a)), until the occurrence of the

-5
10 ‘ ‘ ‘ ‘ ‘ M,,6.6 mainshock (numbered 18) on May 13,
6 8 10 12 4 16 18 1995. All the EQs used in the calculation are
Number of EQs after SES tabulated in Table 6.1. Taken from Ref. [84].

to k1 ~ 9 x 1075, Such a behavior has been verified [78, 79] for several major EQs (see
Chapter 7) and points to the conclusion that xj, or IT(¢) for ¢ — 0, could be considered
as an order parameter.

In what remains, we provide details on the calculations supporting the suggestion that
K1, or IT(¢) for ¢ — 0, may be considered as an order parameter for seismicity using the
aforementioned example of the M,,6.6 mainshock. We focus our calculations on the EQs
that occurred after April 18, 1995 within the region Ngg:gE%:g surrounding the epicenter
of the mainshock. The earthquakes in this region until the mainshock are tabulated in
Table 6.1, where the magnitude M is given for each event. The calculation is carried out as
follows. Using, for each EQ, the magnitude given in Table 6.1, we find the corresponding
seismic moment My(in dyn.cm) through the relation [52]: log;o Mo = (0.99 £0.04)M +
(18.1 £0.15). The resulting My values of all the events (numbered 1 to 17 in Table 6.1)
that preceded the mainshock are plotted in the natural time domain in Fig. 6.2, in a similar
fashion as in Fig. 2.1(b). We now calculate the values of II(¢) for ¢ € [0,0.5], as they

12
17
10 -
£ sl ,
=2 8 3
2 o
‘_9 67 -
EO ar 4 1
2 7 v
2’1 5 6 8 g:ﬂﬂg’ ]
S O Y O A A R I T
0 0.2 0.4 0.6 0.8 1

natural time (y)

Fig. 6.2 Plot in natural time of the events that occurred after the initiation of the SES activity on April 18,
1995, until the mainshock on May 13, 1995 (the numbers correspond to the EQs of Table 6.1) in a similar
fashion as Fig. 2.1(b). Taken from Ref. [83].
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Table 6.1 All EQs within N333E32 that occurred after the initiation of the SES activity on April 18,
1995, until the M,,6.6 (from USGS) mainshock at Kozani-Grevena on May 13, 1995. The following data
are available from the site of the National Observatory of Athens (NOA): www.gein.noa.gr/services/1950-
00.txt (see also Ref. [50]); the reported magnitude M stands either for the local magnitude M;, or for the
duration magnitude Mp. The seismic moment of the mainshock was taken from the Appendix of Ref. [52].

No.  Year Mon. Day Hour min sec Lat. Long. Depth M My(N.m)
1 1995  Apr. 27 15 16 553 3950 21.13 10 2.9 9.35x10"3
=) 1995  Apr. 28 20 3 167 39.19 2035 17 3.5 3.67x10"
2 1995. Apr. 30 6 58 248 3979 2072 29 3 1.17x10'
3 1995  Apr. 30 7 50 321 4044 2185 3 3.8% 7.28x10'
4 1995  Apr. 30 21 12 426 4000 2066 5 33 2.33x10™
5 1995 Apr. 30 23 24 547 39.81 2050 10 2.8 7.45%10"3
6 1995 Apr. 30 23 46 425 3958 2058 5 2.9 9.35%10"3
7 1995 May 1 1 49 555 39.89 2074 5 3 1.17x10™
8 1995 May 1 22 47 211 3990 2101 5 2.9 9.35x10"3
9 1995 May 2 15 52 18.6 3955 2058 5 3.8 7.28x10™
10 1995 May 5 2 58 5.8 3938 2035 10 2.8 7.45%x10"3
11 1995 May 7 5 19 503 4012 2052 5 2.9 9.35x10"3
12 1995 May 10 0 1 42 4034 2179 10 2.9 9.35x10"3
13 1995 May 10 15 23 24 3928 21.69 10 2.9 9.35%10"3
14 1995 May 10 18 24 563 3991 2072 5 29 9.35x10"3
15 1995 May 11 9 14 241 3994 2128 10 3.1 1.48x10'
16 1995 May 13 8 42 123 4007 2175 5 3.7 5.79x10'
17 1995 May 13 8 43 187 4002 2177 5 4 1.15x10%3
18 1995 May 13 8 47 17 4018 2171 39 6.1 1.25x10"

*) This event is not reported by NOA but comes from USGS with MLtyg.

**) This is just in the boundary of the region selected. Note that if the calculation includes this event but
disregards the aforementioned(*) one, i.e. MLtyg = 3.8, a collapse of the spectra is again observed on
May 10, 1995.

*#%) This is the My value, while the moment magnitude is M,, = 6.6.

evolve upon the occurrence of each new event by using

= chvzl (Mo)y exp (i27[¢%) 2
Yoo (Mo)n

which results from Egs. (2.29) and (2.31) by replacing Qy with (Mp), (see § 2.1.2). In
Eq. (6.9), N increases by one when a new EQ takes place, i.e. N = 1,2,...18 and ex-
cerpts of the results are plotted with the crosses in Fig. 6.3. In the same figure, we also
plot (solid line, labeled theory), for the sake of comparison, the IT(¢) values calculated
from Eq. (6.7). An inspection of this figure shows that since EQ No. 9 (which occurred
on May 2, see Table 6.1), see Fig. 6.3(b), the crosses start to gradually approach the solid
line. They almost coincide (see Fig. 6.3(e)) upon the occurrence of the EQ No. 12, i.e.,
on May 10 and hence only 3 days before the mainshock). The corresponding k; value
(see Fig. 6.1) is then close to 0.070, thus agreeing with Eq. (6.8). The k; value starts

(¢)

; (6.9)
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to deviate somewhat from this value only upon the occurrence of the EQs No. 16 and
17 which interestingly took place only a few minutes before the mainshock. Figure 6.3(k)
depicts what happens upon the occurrence of the mainshock: The IT(¢) curve then exhibits
an abrupt change and turns to a straight line almost parallel to the horizontal axis, i.e.,
I1(¢) ~ 1 (note that an abrupt change also appears for kj in Fig. 6.1, see No. 18).

This is exactly the change that motivated us to consider IT(¢) for ¢ — 0, or ki, as an
order parameter for seismicity.

6.2.2 Universal curve for the seismicity in various regions

The properties of the normalized power spectrum for the long-term seismicity in natural
time can be studied by means of the procedure described in § 2.5.2. First, calculation of
IT(¢) was made for an event taking time windows from 6 to 40 consecutive events (for the
reasons that will be explained in § 6.4.1, the choice of the precise value of the upper limit,
up to 100 or so, is not found decisive [78]). And second, this process was performed for all
the events by scanning the whole earthquake catalog. The following data from two differ-
ent areas, i.e., San Andreas fault system and Japan, have been analyzed. First, the EQs that
occurred during the period 1973-2003 within the area N%ZWH% using the Southern Cal-
ifornia Earthquake catalog (hereafter called SCEC). Second, the EQs within NégEgg for
the period 1967-2003 using the Japan Meteorological Agency catalog (hereafter simply
called “Japan”). The magnitude thresholds M > 2.0 and M > 3.5 have been considered
for SCEC and Japan, respectively, for the sake of data completeness [83]. The seismic
moments have been obtained by the procedure described later in § 6.2.2.1.

We now study the order parameter fluctuations relative to the standard deviation of its
distribution. Thus, we plot in Fig. 6.4 the quantity cP(X) versus (X — (X))/o where X
stands for I1(¢) and (IT(¢)), o refer to the mean value and the standard deviation of IT(¢)

100 —————
Japan +
10-1 | SCEC ° i Fig. 6.4 Universality of the probabil-
ity density function of IT(¢) for EQs
10-2 L i in natural time. The log-linear plot of
— oP(X) versus (X — (X))/o, where X
E/ 1 0-3 L ] stands for the order paramater IT(¢) for
o o ¢ — 0. Crosses and circles correspond to
10-4 L %?*p 1e-3 ] Japan (M > 3.5) and SCEC (M > 2.0),
gg,g 1e-4 respectively. The inset depicts the corre-
1 0-5 [ o5 ] sponding results for randomly shuffled
o 654321012 (black curve) and the original data (red
10-6 . . ) ) ) ) ) ) crosses) in Japan. Note that the same
6 5 4 3 2 1 0 1 2 graph is obtained for three different re-

gions in Japan (see Fig. 6.5). Taken from

(X-<X>)/o Ref. [84].
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(recall that the calculations should be done for very small ¢ values, e.g., ¢ = 0.05, since
we assume here ¢ — 0, as explained in § 6.2.1). One could alternatively plot P(k;) versus
(u(x1) —k1)/0 (K1), where u(x;) and 6(k;)) refer to the mean value and the standard
deviation of k7. The results in Fig. 6.4, for both SCEC and Japan, fall on the same curve.
This log-linear plot clearly consists of two segments: The segment to the left shows a
decrease of P(X) almost by five orders of magnitude, while the upper right segment has an
almost constant P(X). The feature of this plot is strikingly reminiscent of the one obtained
by Bak et al. [11] (see their fig. 4) on different grounds, using EQs in California only.
More precisely, they measured Ps;(T'), the distribution of waiting times 7', between EQs
occurring within range / whose magnitudes M are greater than log,S. They then plotted
T%Ps;(T) versus TS57%14 and found that, for a suitable choice of the exponent « (i.e.,
a = 1), the G-R law exponent b (i.e., b = 1) and the spatial dimension d (i.e., fractal
dimension d = 1.2) all the data collapse onto a single curve which is similar to that of
Fig. 6.4.

Note that Fig. 6.4 was obtained here without considering the waiting time distribution
and without the suitable choice of any parameter.

After a further inspection of Fig. 6.4, the following points have been clarified.

First, the rapidly decaying part (i.e., the left segment), which is consistent with an al-
most exponential decaying function over around four orders of magnitude, remains prac-
tically unchanged, upon randomly shuffling [85] the data. This can be seen in the inset of
Fig. 6.4, where for the sake of clarity only the results from the data of Japan (the original
as well as the shuffled ones) are depicted.

1 ‘ :
(b) Japan
Region A
01+ Region B
' Region C
— 0.01
X
o
©  0.001
0.0001
28 ";f 1e_05 1 1 1 1 1 1 1 !
wl 6 5 -4 -3 2 1 0 1 2
126 128' 130° 132° 134° 136° 138° 140° 142' 144° 146° (X-<X>)/G

Fig. 6.5 The same as Fig. 6.4 is depicted in (b), but for the regions A (red), B (green) and C (blue) of
Japan. A map of these regions is shown in (a). Taken from Ref. [84].
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Second, the feature of the plot of Fig. 6.4 is not altered upon changing the seismic
region. As an example, Fig. 6.5(b) shows that three different regions A, B, C of Japan
(depicted in Fig. 6.5(a)), as well as the whole of Japan, result in almost identical plots.

Third, the “upturn branch” in the upper right part of Fig. 6.4 arises mainly from the
presence of aftershocks. It disappears (see the crosses in Fig. 6.6) when, in Japan for
example, we delete the EQs with M < 5.7 (and hence drastically reduce the number of
aftershocks), but it does not when deleting EQs with smaller threshold, i.e., M < 4.0; the
latter can be also visualized in the SCEC example of Fig. 6.6, where we give the results
for M > 4.0 (note that this threshold still allows the presence of a reasonable number of
aftershocks).

0.1 |
. 0.01 ¢
X
o
o | ‘Y
0.001 A 2D XY K=2.0 L=10
/2D Ising K=0.4707 L=128 - - - -
° 2D Ising K=0.4707 L=256 ——
0.0001 ¢ WWS . ]
Japan  ~
SCEC °
0.00001 - - - - : - -
6 5 4 -3 -2 A1 0 1 2

(X-<X>)o

Fig. 6.6 The common feature of fluctuations in different correlated systems. The log-linear plot of cP(X)
versus (X — (X))/o for WWS(triangles), Japan (crosses) and SCEC (circles). The magnitude threshold
M > 5.7 for WWS and Japan (while M > 4.0 for SCEC) was used see the text. Furthermore, the dotted
curve shows the results obtained for the 2D XY model (with [59] inverse Kosterlitz—Thouless transition

temperature Kgr ~ 1.2) (X = |/M? +M)2,), K =2.0 for L =10 (N = 100) which has been shown [21]

to describe the experimental results for 3D turbulent flow. The results of the 2D Ising model K = 0.4707
(while K. ~ 0.4407), either for L = 128 (dashed) or L = 256 (solid line), are also plotted. Taken from
Ref. [84].

Fourth, if we consider the relevant results (1977-2003) for the worldwide seismicity
(WWS) by taking a large magnitude threshold, i.e., M > 5.7 (so that the data are complete
[83]), we find that they fall onto the same curve with the results of both Japan and SCEC
(see Fig. 6.6 that will be further discussed in § 6.2.3).

If one generates synthetic seismic data either by means of a simple Poisson model or
by the G-R law and compare the results to those deduced from actual seismicity data, the
following conclusion was drawn [84]: none of these synthetic data can lead to a curve
coinciding with the one obtained from the real data. In other words, the scaled distribution
deduced within the frame of natural time analysis, reveals an extra complexity for the
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real data compared to the synthetic data even if the latter are produced with b values
comparable to the experimental ones. This points to the conclusion that the origin of self-
similarity in seismicity cannot be solely attributed to the process’s increments’ “infinite”
variance (§ 2.5.1) as it will be further investigated in the remaining Sections (6.3 to 6.5) of

this Chapter.

By summarizing, if we analyze the long-term seismicity in natural time and study the
order parameter fluctuations relative to the standard deviation of its distribution, we
find without making use of any adjustable parameter that the scaled distributions of
different seismic areas (as well as that of the world-wide seismicity) fall on the same
curve (universal), see Figs. 6.4, 6.5(b) and 6.6.

6.2.2.1 Additional details on the calculations mentioned above

We first recall that the following earthquake catalogs have been used: for the San An-
dreas fault system, the Southern California Earthquake catalog (SCEC) available from
www.data.scec.org/ftp/catalogs/SCSN/, and for Japan, the Japan Meteorological Agency
(JMA) catalog. As for the worldwide seismicity (WWS) we used the data available from
http://www.globalcmt.org/CMTsearch.html. We also recall that the magnitude thresholds
M >2.0,M > 3.5, and M > 5.7 have been considered for SCEC, Japan, and WWS, re-
spectively to ensure data completeness (i.e., that they obey the G-R law, Eq. (6.1)) for the
periods studied.

All the seismic data have been analyzed in natural time in a similar fashion as shown
in Fig. 2.1(b). The seismic moment My was obtained from the magnitude M as follows:
for Japan, the following approximate formulae, obtained from a fit to fig. 5.3 of Ref. [77],
have been used:

M,, = 0.701Mjpma + 1.47 for Mjyya < 5, (6.10)
M,, = 0.916Mjpa +0.40 for 5 < Mjva < 6, (6.11)
M, = 1.07Mjypa — 0.509 for 6 < Mjpva < 7.3, (6.12)

M, = 1.345Myya —2.56 — 0.0472/(Mpya — 8.3) for 7.3 <Myma,  (6.13)

where Mjya stands for the magnitude reported by JMA and M,, stands for the moment
magnitude. Then M was obtained [34] through Eq. (1.3), i.e., My o< 10! As for SCEC,
we assumed M,, =~ M, where M is the reported magnitude. Finally, for WWS the M, values
are directly accessible at the aforementioned http address.

6.2.3 Similarity of fluctuations in correlated systems including seismicity

Great interest has been focused on the fluctuations of correlated systems in general and of
critical systems in particular [21, 17, 20, 91, 18, 87, 19, 90, 25]. Bramwell, Holdsworth and
Pinton (BHP) [21], in an experiment of a closed turbulent flow, found that a normalized
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form of the probability distribution function (pdf) of the power fluctuations has the same
functional form as that of the magnetization (M) of the finite-size 2D (two-dimensional)
XY equilibrium model in the critical region below the Kosterlitz—Thouless transition tem-
perature (magnetic ordering is then described by the order parameter M). The “normal-
ized” form of the pdf, denoted by P(m), is defined by introducing the reduced magnetiza-
tion [21] m = (M — (M)) /o, where (M) denotes the mean and o the standard deviation.
For both systems, BHP found that while the high end (:m > 0) of the distribution has [21]
a Gaussian shape the asymptote of which was later clarified [20] to have a double ex-
ponential form, a distinctive exponential tail appears towards the low end (m < 0) of the
distribution. The latter tail, which will be hereafter simply called, for the sake of conve-
nience, “exponential tail”, provides the main region of interest [21], since it shows that
the probability for a rare fluctuation, e.g., of greater than six standard deviations from the
mean, is almost five orders of magnitude higher than in the Gaussian case. Subsequent
independent simulations [17, 20, 91, 90, 25] showed that a variety of highly correlated
(non-equilibrium as well as equilibrium) systems, under certain conditions, exhibit ap-
proximately the “exponential tail”. However, the question of whether earthquakes exhibit
an “exponential tail”, has not been clarified due to the major difficulty of choosing an or-
der parameter. Since an order parameter for the case of EQs was proposed in § 6.2.1, we
examine whether an “exponential tail” appears also in seismicity. We find [84] that this
“tail” is identified only if we analyze the time series of earthquakes in natural time.

We now compare in Fig. 6.6 the results obtained in § 6.2.2 for seismicity with those
obtained in some equilibrium critical systems (e.g., see Ref. [90]). We first recall [90] that
the pdf of the order parameter in the critical regime depends on the inverse temperature pa-
rameter K = 1/7 and the length L through a scaling variable s = L'/ (K — K,) /K., where
K. = 1/T, and T, denotes the critical temperature. The quantity s provides the ratio of the
lattice size and the correlation length £ (§ 1.5.2) at K. In Fig. 6.6, we include numerical
results of the 2D Ising model for s = 8.72 (L = 128, K = 0.4707) and s = 17.44 (L = 256,
K = 0.4707). Here, X stands for M. These s values were intentionally selected, because
[90] for s > 8.72 for the 2D Ising model, the normalized forms of the pdfs P(m;s) of a
number of critical models (i.e., 2D XY, 2D Ising, 3D Ising, 2D three-state Potts) share the
same form (up to a constant factor of s), which interestingly exhibits an exponential-like
left tail (m < 0). An inspection of Fig. 6.6 shows that our 2D Ising results almost coincide
(note that this can be safely checked only for the left segment, i.e., m < 0) with those of
seismicity, i.e., Japan, SCEC and WWS (note that some disparity, which appears in the up-
per right part of SCEC only, might be attributed to the selection of the magnitude threshold
for seismicity; recall the third point mentioned in § 6.2.2). This coincidence (which seems
to be better for s = 17.44) reveals that the seismicity, irrespective of the seismic area we
consider, exhibits — over four orders of magnitude — fluctuations of the order parameter
similar to those in several critical systems as well as in 3D turbulent flow [84].

Thus, we conclude that the “universal” curve deduced for seismicity in § 6.2.2, exhibits
an “exponential tail” form similar to that observed in certain non-equilibrium systems
(e.g., 3D turbulent flow) as well as in several equilibrium critical phenomena (e.g., 2D
Ising, 3D Ising, 2D XY).
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6.2.4 The pdf of the order parameter of seismicity. The b-value of the
Gutenberg—Richter law deduced from first principles

We focus here on a challenging point that emerges [81] from a further elaboration of the
results depicted in Fig. 2.5 that have been obtained by the procedure described in § 2.5.4.
In particular, we consider randomly shuffled power law distributed energy bursts obeying
Eq. (6.4),i.e, P(E) «< E~7, that were subsequently analyzed in natural time. Using a (natu-
ral) time window of length / = 6 to 40 consecutive events sliding through the whole dataset,
the pdf P(k;) versus k7 was constructed for several values of ¥ as shown in Fig. 2.5. An
inspection of this figure shows the following:

First, note that upon increasing the y value from y = 1.3 to 2.0, the feature of the curve
changes significantly, becoming bimodal at intermediate y values. Second, we calculate,
for each y value studied, the so-called differential entropy, defined as

S; = —/P(;q) InP(k) di; 6.14)

which is the Shannon information entropy of a continuous probability distribution, e.g., see
Ref. [30]. (Note that the Shannon information entropy is static entropy and not a dynamic
one [80]; see Section 3.1.) Finally, we investigate the resulting Sy values versus . Such a
plot is given in Fig. 6.7, whose inspection reveals that S maximizes at a value of y lying
between ¥ = 1.6 and y = 1.7, which is more or less comparable with the experimental
values, see Table 2.1. (In particular for the case of earthquakes, this y value corresponds to
b ~ 1, as mentioned in Section 6.1.) This value is almost unaffected by the window length
(1) chosen, since it decreases only slightly from Y= 1.70 to y &~ 1.65 upon changing / from
| =640 to [ = 6-100, see Fig. 6.7.

-2
211
22
23
2.4 ¢
25 1
2.6 1
2.7 ¢

28t =6-40 —— | Fig. 6.7 The calculated values of the
29 ‘ ‘ ‘ 1?6'109 = differential entropy Sp (see the text)
’ 13 14 15 16 17 18 19 2 versus the exponent y. Two window
length ranges are used and their results
Y differ slightly. Taken from Ref. [81].

In view of the widespread belief (e.g., Ref. [48]) that there is a close analogy be-
tween non- equilibrium phase transitions (which is likely to be [84, 82] the case of earth-
quakes; see Section 6.1 and § 6.2.1) and equilibrium ones (e.g., ferromagnetic materi-
als) — which however are apparently very different problems — our study has been ex-
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Fig. 6.8 (a) The Shannon entropy Ss =

— Y, P(m) In[P(m)] versus T calculated for
the following equilibrium critical models:
infinite range model for a ferromagnetic
system of N = 2" spins (MFT, dotted green,
n=26,8, 10, 12 and 14), 2D Ising (solid
red, n =6, 8, 10 and 12) and 3D Ising
(dashed blue, n =6, 9, 12 and 15); in each
case the results are given for various sizes
increasing from bottom to top (note that
Ss diverges as InN). The arrows indicate
the critical temperatur 7;in each case. (b)
the probability P(m) of the order parameter
m versus m for four values of the quantity
(T —T.)/T for the infinite range model
with N = 4096. Taken from Ref. [81].

tended to the well-known equilibrium critical systems by investigating the Shannon en-
tropy Ss = — Y., P(m) In[P(m)], where m denotes the order parameter, versus the tempera-
ture. Studying Sy at various temperatures, we find that it maximizes near 7. (for finite sizes
Ss diverges proportionally to InN as T — T.). For example, in Fig. 6.8(a) we plot the re-
sults for the following models: the infinite range model (a summary of which can be found
in the Appendix C of Ref. [81]) of a ferromagnetic system of N spins (s; = £1) (green
dotted curves), the 2D Ising model (red solid curves) or the 3D Ising model (blue dashed
curves). We now proceed to Fig. 6.8(b), which depicts, as an example, P(m) for the first
model at various temperatures above and below the critical temperature 7, for N = 4096

spins.

Note that just below 7, (see Fig. 6.8(b)) a bimodal feature emerges in the probability
distribution of the order parameter, which is reminiscent of the one found in Fig. 2.5
(for intermediate Y values). This point is further elaborated in § 6.4.1.

The above inspired us to investigate the slight variation of the y value (at which S;
maximizes in Fig. 6.7) versus / by means of a procedure analogous to the well-known finite
size scaling techniques. Such a technique was actually applied [81] and, after studying for
three different / the P(k;) that arises when Sy is approaching its maximum, the following
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conclusion was obtained: the value y, ~ 1.55 provides a lower bound for the y value that
maximizes Sy as [ — oo,

Does the above finding in Fig. 6.7 mean that the b or 7y value can be determined just
by applying the Maximum Entropy Principle in the sense developed by Jaynes [36, 37],
who suggested regarding statistical mechanics as a form of statistical inference and start
statistical physics from the principle of maximum entropy inference (MaxEnt)? This is not
yet clear, because a widely accepted formalism for non-equilibrium statistical mechanics
is still lacking. The fact that in some experiments the resulting y values differ slightly from
v=1.6to 1.7 predicted from Fig. 6.7, could be attributed to the following: Fig. 6.7 is based
on randomized data, while the actual data may also exhibit temporal correlations (e.g., the
case of aftershocks). In addition, finite size effects [10] might play a significant role.

Thus, in short, when studying the differential entropy associated with the pdf of x;
(recall that K is the order parameter for seismicity; see § 6.2.1), it maximizes when
the exponent y in Eq. (2.98) (or in Eq. (6.4)) lies in the narrow range ~1.6 to 1.7,
in agreement with the experimental findings in diverse fields. This for the case of
earthquakes immediately reflects that the b value in the Gutenberg—Richter law is
b=1.5(y—1) = 1, as actually observed.

6.2.5 Multifractal cascades in natural time and the case of seismicity

Here, we study multiplicative cascades (or generalized Cantor sets [47, 24]) in natural time
[81, 56]. In generalized Cantor sets (multiplicative cascades), at the initial stage (M = 1)
the original region is divided into K segments with possibly variable sizes, but the mass
probability from the left to the right is distributed by the constant weights w;, i =1,2,...K
with };w; = 1. The same procedure can then be followed in each segment at the stage
M =2, etc. This is what will be hereafter called the Deterministic Cantor Set (DCS) in
contrast to a procedure in which w; are assigned randomly (i.e., not from the left to the
right) at each segment and stage M. The latter will be called the Stochastic Cantor Set
(SCS) and will be also studied by means of Monte Carlo simulations. A case of special
practical interest is the so-called p-model [47] in which each segment is divided equally
into two parts (K = 2), with w; = p and wp = 1 — p. This model, in its SCS flavor, was
originally proposed to describe turbulence data [47, 49]. Moreover, the DCS case was
discussed [51] in relation to power law time sequences in ricepiles.

What is important about DCS is the following. If we consider the original region in the
natural time interval A = (0, 1] (note that y € A) and use the obtained mass probabilities as
pr in the sense of Eq. (2.2), then @ (@) = ZkN:1 Pi €Xp (iw%) can be factorized and one can
obtain easily the properties of DCS in natural time. Under these conditions, for K =2 and
equal segments, the following relates @1 (@) at stage M + 1 to that dy(w) at stage M:

Pua(0) = [p+ (1-p)exp (i5) | @u (3)- (6.15)
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Equation (6.15) can be also generalized for K > 2 into
-lo
Dy11(w) ( ) Zwl exp { j=lo ] (6.16)

Then, we can show that the normalized power spectrum at the stage M, i.e., [Ty (®), is
interconnected to that at the stage M — 1 through the relation:

(%)
iexp | io——

2

Iy (w) = m4( ) , (6.17)

see also Section I of Ref. [55].

1

0.9

8 ()

Fig. 6.9 Normalized power spectra
Iy (¢) for the DCS with K =2 and
p =03 for M =4, 8, 16, 32, etc.
Taken from Ref. [81].

Equation (6.15) can be also used for the calculation of x; as @ — 0. A remarkable
property of ITy (@) = |@y(w)|* is that, independent of M, all ITy;(®) have almost the
same shape for natural frequencies ¢ less than 0.5 (see Fig. 6.9). In other words, in the
sense discussed above, all these stages share the same characteristic properties but differ
in the high natural frequency range. Moreover, the application of Eq. (6.15) for ITy;(®) as
® — 0, leads to the following relation for the k; value at stage M + 1

Kim+p(l—p)

4 ) (6.18)

KiM+1 =

which leads to
p(1—-p)
3
Thus, for p = 0.3 we obtain ki . = 0.070. In Fig. 6.10, we compare such a DCS with the
normalized power spectrum given by Eq. (6.7); the results are almost identical in the region
¢ € [0,0.5]. Note, however that DCS does nor satisfy the entropy conditions (4.39) which
are valid for SES activities (critical dynamics) and other cases summarized in Section 7.1.
On the other hand the SCS flavor of the same model, which has been proposed to describe

Jim K1y = Ko = (6.19)
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Fig. 6.10 Comparison of the nor-
malized power spectrum of Eq. (6.7)
(dashed blue), with that obtained for
an M =9 p-model DCS (solid red,
p = 0.3). The two curves are almost
identical in the region ¢ € [0,0.5].
Taken from Ref. [81].

Fig. 6.11 (a) A typical evolution for the
SCS p-model, p = 0.3; the quantities
K1 (solid), S (dotted) and S_ (dashed)
are plotted versus natural time (b) The
pdfs P(Y) of (Y =) ki, S, S_ for the
case p = 0.3 that has been proposed to
describe turbulence in Ref. [47]. Taken
from Ref. [81].

turbulence [47, 49], also gives an average k] ~ 0.070 and in addition does satisfy the
entropy conditions (4.39) for the majority of the cases treated [81] by Monte Carlo (see

Fig. 6.11).

Figure 6.11 summarizes the Monte Carlo study [81] of the stochastic case in which
interestingly, the most probable value x; , of ki is found to be ki , ~= 0.070.
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6.2.5.1 Application to seismicity

Shuffled earthquake data are random in time and of course follow the G-R law (Section
6.1). The probability to observe in some area and after some waiting time an EQ of mag-
nitude M greater or equal to M., is also given by P(M > M) o< 10~bMinres | Thus,
the frequency v(M) of EQs with magnitude M, i.e., the ones having magnitudes within
[M — M, M + 8M], is just V(M) o< 107" (note that due to the experimental errors in
determining an EQ magnitude a reasonable value of M is around 0.1). In the light of the
p-model, we can now approximate the case of seismicity as follows. Assuming that the
largest EQ in some time interval dominates the corresponding energy release in this inter-
val (see Fig. 6.12), if an earthquake of magnitude M; dominates the second (segment) time
interval, the first segment will be dominated by an earthquake of magnitude M; — AM,
having twice the frequency of My, i.e., v(M; — AM) = 2v(M; ). Thus, a multiplicative
cascade is formed (see Fig. 6.12) with a p value equal to

p=1/(1410M), (6.20)

where c is the constant that interrelates the earthquake energy release with the magnitude
see Eq. (6.3), i.e., E o< M o< 10°M, where M, is the seismic moment of an EQ. Substi-
tuting the value of AM(= %loglo 2) estimated on the basis of the G-R law, we obtain

p=1/ (1 +2§>, which, in view of Eq. (6.19), leads to the most probable value of K
given by '
2%
Kl.p = 76 3
3 (1 +2z)

This interrelates ki , with the quantity ¢/b. Typical values of b and ¢ are b ~ 1 and
¢~ 1.5, see Section 6.1, resulting in k1 , = 0.064. This value coincides with the value of
K1,p obtained [81] for the (randomly) shuffled earthquake data of Japan and SCEC, as it
will be explained in Section 6.3.

6.21)

Thus, in short, the natural time analysis of multiplicative cascades leads to a theoret-
ical interrelation, i.e., Eq. (6.21), between the most probable value ki ,, of k; of the
(randomly) shuffled earthquake data and the parameter b of the Gutenberg—Richter
law. This interrelation, if we just adopt a reasonable value of b, i.e., b = 1, leads to
a k1, value very close to 0.064 in agreement with the shuffled experimental data of
SCEC and Japan.

6.3 Temporal correlations in real seismic data

We now make use of the aspects developed in Section 2.5 on the distinction of the ori-
gins of self-similarity and explain how they can be used for the identification of temporal
correlations in real seismicity time series. In particular, we will use Egs. (2.88) and (2.92)
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(see also Ref. [81]) which give the expectation value & (k) of kj in the actually observed
time series, and the expectation value & (KL shu f) of the randomly shuffled time series, re-
spectively, when a (natural) time window of length / is sliding through the time series
0y >0,k=1,2,...N.

For such a window, starting at k = ko, the quantities p; = Ok +j—1/ Zinzl Oky+m—1 1n
natural time are defined and & (k) in the actually observed time series equals (§ 2.5.2)
that given by Eq. (2.88), i.e.,

; 2
(K1) =Ki.u+ Z w

i COV(pjapm)a (6.22)
all pairs

where ki, is the value of k; corresponding to the time series of the averages u; = & (p;)
of pj,ie., ki » = ):g':l (j/1)? Hj— (Z.lizl w;j/1)% and Cov(p;, p,) stands for the covari-
ance of p; and p,, defined as Cov(p;, pm) = &[(pj — Uj)(Pm — Wm)], While the variance
of p; is given by Var(p,) = &[(p; — i;)?]. The symbol ¥ pairs Stands for le_:ll £n=j+1'
Equation (6.22) reveals that & (k) is determined by two factors that involve:

(i) the correlation of the data as reflected in the averages [}, e.g., due to decreasing in
magnitude aftershocks in an earthquake time series, and

(ii) the covariances’ term which sums up the correlations between all natural time lags
uptol—1.

On the other hand, & (ki g, r) obtained by randomly shuffling (shuf) the original time
series is given by Eq. (2.92), i.e.,

1
E (Kt shuf) = Ku (1 - lz> — K, (I +1) Var(p) (6.23)
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(note that for the shuffled data Var(p;) is independent of j, and hence we merely write
Var(p) = Var(p;)). If Qx do not exhibit heavy tails and have finite variance, Eq. (6.23)
rapidly converges [81] to & (ki s y) = Ky (see § 2.5.2). Otherwise, & (ki s y) differs from
Ky, and the difference

1
Ag(Kl,shuf) =Ky <1 — lz) — (ga(Kl,shuf) = K'M(l + 1) Var(p) (6.24)

LT3

provides a measure of the process’s increments’ “infinite” variance. By comparing the
results obtained from Egs. (6.22), (6.23) and (6.24) in a time series, we can draw quantita-
tive conclusions on the existence of temporal correlations even if the process’s increments’
exhibit “infinite” variance.

Jaban
shuffled —---

Fig. 6.13 The pdfs of x; when using either

the actual seismic catalog of Japan (solid)

‘ ‘ ‘ ‘ ‘ ‘ : ‘ treated in § 6.2.2 with Mypa > 3.5 or the

0 0 002 004 006 008 01 012 0.14 0.16 0.18 02 same data in random order (dashed). Taken
K4 from Ref. [81].

Let us now use the example of the earthquakes in Japan. Using the EQ catalog of Japan
mentioned in § 6.2.2, we give in Fig. 6.13 the two curves P(x) versus k) that result when
the calculation is made by means of a window of 6—40 consecutive events sliding through
either the original catalog or a shuffled one. Both the resulting ki , values markedly differ
from K, and in addition the value of the randomly shuffled data (~0.064) does not greatly
differ from the one (0.066) corresponding to the original data. This could be interpreted
as reflecting that the self-similarity almost solely originates from the process’s increments’
“infinite” variance, but we will show here that the method suggested above does reveal
clear contribution from temporal correlations as well.

Let us start from the (increased) temporal correlations in the well-known case of earth-
quake aftershocks. In this case the (modified form of the) Omori law mentioned above
in Section 6.1 holds. Using the Southern California Earthquake catalog (with magnitude
threshold M,,.; = 2.0, see § 6.2.2.1), we now consider the aftershock series related to the
Landers earthquake with magnitude M,, = 7.3 (that occurred at 11:57 UT on June 28, 1992,
with an epicenter at 34.2°N 116.4°W) and the Hector Mine earthquake with magnitude
M,, = 7.1 (that occurred at 09:46 UT on October 16, 1999, with an epicenter at 34.6°N
116.3°W). For these two mainshocks, Abe and Suzuki [7] identified the corresponding
Omori regimes by examining the best fits of the (modified form of the) Omori law to the
data based on the least-squares method. Here, we use the same aftershock dataset and plot
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Fig. 6.14 (color) The pdfs of x; when using either the almost 30 year data of SCEC (red +) or the two
aftershock series (in the Omori regime [7]) of the Landers (green x) and Hector Mine (blue *) earthquakes,
respectively. Note that all these three curves coincide, but they change upon shuffling (turning to dashed
magenta, dash-dotted cyan and dotted black, respectively) in a way discussed in the text. Taken from
Ref. [81].

in Fig. 6.14 the pdf P(k) vs k] by means of a sliding window of 640 consecutive events,
as above, for Landers (green x) and Hector Mine (blue *) earthquakes, respectively. Be-
yond these two aftershock series, we plot in Fig. 6.14 the corresponding curve (red +) for
all earthquakes that occurred within the area N;%E{ﬁ during the period 1973-2003 (called
SCEC in § 6.2.2). Interestingly, these three curves more or less coincide and result in a
common value of k , =~ 0.066, which agrees with that determined above from the original
data of Japan (Fig. 6.13). Upon shuffling, all these three curves change, but we note that
the two aftershock series (dash-dotted cyan and dotted black, which interestingly also al-
most coincide) exhibit the most noticeable change resulting in ki , ~ 0.060; on the other
hand, the shuffled SCEC data (dashed magenta) lead to ki , ~ 0.064 which agrees with
the corresponding k7, determined above from the shuffled data of Japan.

In other words, when focusing on aftershock series, we do observe that ki , changes
markedly upon shuffling, thus pointing to the existence of considerable temporal cor-
relations, as it should.

It seems reasonable that an Omori sequence where the events are clearly interrelated
should give increased temporal correlations, and larger changes in ki ,, than events in a
larger earthquake catalog where there is a possibility of including unrelated events.
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In summary, when calculating the k value in a window [ = 6 to 40 consecutive events
sliding through either the original earthquake catalog or a shuffled one, the following
results have been obtained for SCEC as well as for Japan:

Comparing the k7, values, we find that k; , ~ 0.066 for the original data, while
K1,p &~ 0.064 for the randomly shuffled ones.

Both these ki, values (with a plausible uncertainty of 4-0.001) differ markedly
from the value k, = 1/12 of the “uniform” distribution. This could be in principle
interpreted as reflecting that the self-similarity almost originates from the process’
increments “infinite” variance.

Albeit, the existence of temporal correlations is responsible for the difference be-
tween the value of k; , ~ 0.064 of the randomly shuffled EQ data from the value of
K1,p ~ 0.066 of the original EQ data.

To further shed light on the presence of temporal correlations in seismicity data, we
considered [56], beyond natural time analysis, the correlation function used in Ref. [46].
As an example, we used the SCEC data with magnitude threshold M;;,.; = 2.0 considering
the area N3JW122 and the period from 1981-2003. The results also showed the presence
of correlations between earthquake magnitudes, thus strengthening the aforementioned
conclusion that in natural time analysis the value of k7 , = 0.064 of the randomly shuffled
data differs from the value of k1, = 0.066 of the original data due to the presence of
temporal correlations (arising from the ordering of the events in natural time).

Thus, in short, upon employing natural time analysis as well as the correlation function
used in Ref. [46], we find that temporal correlations between EQ magnitudes do exist
in real seismicity data.

This conclusion will be further strengthened in § 6.4.1 by studying the DFA in the EQ
magnitude time series.

6.3.1 Temporal correlations upon changing the magnitude threshold in a catalog

The presence of temporal correlations has been further investigated [56] upon changing
the magnitude threshold in the SCEC catalog for the period from 1981-2003. This catalog
according to Ref. [69] is complete above M, = 1.8 since 1981 and this is why we
selected the period 1981-2003 in this investigation.

For each My, the catalog was randomly shuffled and the distribution of & (k1 g )
was determined. It turned out that & (& 4., ) exhibits a Gaussian distribution N (1, o) with
average value u and standard deviation o; both parameters pt and o depend on M,y .

In order to quantify the temporal correlations in the original data as a function of the
magnitude threshold, we plot in Fig. 6.15 the z-score (z = (&' (k1) — 1)/0) of &(x) for
the original catalog with respect to the Gaussian distribution of & (ki ). If the z-score
differs markedly from zero, this indicates the presence of temporal correlations. Figure
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6.15 reveals the following: a clear descending initial part in the magnitude threshold range
Mypres =2 to 3.1, which indicates a gradual decrease in the statistically significant temporal
correlations. This result is consistent with the expectation that upon increasing the mag-
nitude threshold, the number of aftershocks involved in the calculation decreases. For the
sake of comparison, the values of the aforementioned correlation function used in Ref. [46]
have been calculated [56] and interestingly showed the same trend. Note that, in Fig. 6.15,
for larger values of M,;,.s no definite results can be statistically inferred for the presence
of temporal correlations in the catalogs.

6.3.2 The strength of temporal correlations as a function of the
EQ inter-occurrence time

It is well known that seismic catalogs exhibit [38] the so-called short-term aftershock in-
completeness (STAI). On the other hand, it has been recently shown [45] that correlations
between magnitudes are larger for closer in time earthquakes. Thus, it is interesting to in-
vestigate in natural time the temporal correlations in a restricted catalog containing not all
earthquakes but only those at a time distance (inter-occurrence time) 67 < T and choosing
different values for the parameter 7'.

This was applied [56] to the aforementioned (§ 6.3.1) SCEC data for My;,.; = 2.0 for
values of the maximum inter-occurrence time 7" ranging from half a minute to one day. The
resulting catalogs were analyzed in natural time and the value of & (k) for the original data
have been determined. Then, the same catalogs were randomly shuffled and the calculation
was repeated. Following the discussion of Eqs. (6.22) and (6.24), the relative strength of
the temporal correlations with respect to the presence of process’s increments’ “infinite”
variance, can be quantified by the ratio of the change A& (k1)(= & (k1) — & (K1 ghur)) upon
randomly shuffling the catalog over the difference A&’ (Ky s f) of Eq. (6.24). Since our re-
sults are presented for natural time windows [ = 6 to 40, the value K, (l — Ziz) in Eq. (6.24)



270 6. Natural Time Analysis of Seismicity

100 —
T=0.5min ——
90 N\ T=1min - 1
[ T=2min -
80 I T=5min i
Y\ T=10min
70 ‘ T=20min - |
““ T=30min ==« -~
60 - | P T=60min ---- |
= | A T=120min ——
X 50} T . T=720min ——— ]
= i S T=1440min
40 - :
30 q
20 L | ] Fig. 6.16 The distributions of X
/ of Eq. (6.25) for various values
10 / Y 1 of the maximum interoccurrence
0 e b L e - time 7 ranging from half a

0.08 0.1 0.12 0.14 0.1 0.18 0.2 022 024  ihute to one day. Taken from
X=AE(k1)/AE(Ky gpyye) Ref. [56].

can be substituted by its average value k; = 0.08296. The study of these restricted catalogs
showed that the distribution of

AE(k) _ E(k1) = E(Ki ) (6.25)

X —
A(go(’cl,xhuf) K — (g(Kl,slmf)

can be approximated by Gaussian distributions differing from zero, beyond any statistical
doubt, thus reflecting the existence of temporal correlations. These correlations increase
(see Fig. 6.16) as T varies from half a day to one minute, thus agreeing with the conclu-
sions of Ref. [45]. When T becomes less than one minute, these correlations diminish (cf.
the thick solid red curve corresponding to 7 = 0.5 min with the thick dashed green curve
corresponding to 7' = Imin) and this effect could be attributed to STAI: for M equal to the
average magnitude of these two catalogs, the appropriate time interval #y; to remove [38]
STAI is 1y = 300 x 10M~4)/2 seconds = (53 +4) seconds.

Thus, natural time analysis leads to results that are compatible with the recent sugges-
tion [46] that correlations between magnitudes are larger for closer in time earthquakes
when the maximum inter-occurrence time 7" varies from half a day to one minute.

6.4 Order parameter fluctuations of seismicity before and after
mainshocks

6.4.1 Feature of the pdf of the order parameter for seismicity. DFA of earthquake
magnitude time series

In a recent study [44], it has been undoubtedly shown that in the regimes of stationary
seismic activity (i.e., during periods at which large aftershock sequences are missing) long-
range correlations exist between successive EQ magnitudes. Moreover, a separate study
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[13] showed that the fluctuations of seismic activity, defined as the detrended cumulated
sum of the magnitude time series, exhibit Family—Vicsek dynamic scaling. In both studies,
the sequence index £, i.e., the sequential order in which an EQ had occurred, has been used
for the detection of the long-range correlations (e.g. see Fig. 6.17 that will be discussed
later). Notice that it is the combination of this index with the released seismic energy
during the k-th EQ that constitutes, as mentioned in § 2.1.2, the two quantities which are
in fact used in natural time analysis.

Landers
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The existence of temporal correlations in seismicity has been already treated on the ba-
sis of natural time analysis in Section 6.3. Here, we extend [58] the aforementioned recent
study [44] of the DFA for the detection of long-range temporal correlations in earthquake
magnitude time series My by including the non-stationary periods of seismicity. Recall
that DFA has been established as a robust method suitable for detecting long-range power
law correlations embedded in non-stationary signals (see § 1.4.2).

Figure 6.17 depicts with black plus symbols the resulting log,[Fpra (k)] versus log; (k)
for all the 85,862 EQs with My > 2.0 that occurred during the period 1981-2003 within
the area N3J W32 reported by SCEC. A cross-over is observed at k ~ 200 below which
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the DFA exponent ¢ is close to 0.61 (= 0y,,,). This value agrees fairly well with the one
o = 0.59(5) obtained in Ref. [44] when solely analyzing the periods of stationary seis-
mic activity. Thus, the substantially higher value (g, = 0.93) obtained for scales longer
than k ~ 200 now emerges upon the inclusion of the “non-stationary” periods of seismic
activity. To further shed light on the origin of this cross-over, we examine the behavior of
the magnitude time series after the two most significant earthquakes reported in SCEC al-
ready mentioned in Section 6.3, i.e, the Landers EQ (Fig. 6.17(a)) and the Hector Mine EQ
(Fig. 6.17(b)). The application of DFA to the aftershock magnitude time series as identified
in Ref. [7] (by examining the corresponding Omori law regimes) is shown for both these
mainshocks, by the red plus symbols in Figs. 6.17(a) and (b), respectively. Interestingly,
an inspection of this figure reveals that the scaling behavior of DFA in both aftershock
series is close to that of the whole SCEC. Notice that the cross-over still pertains. Recall
that when analyzing both these aftershock data in natural time (Section 6.3), we found
that the corresponding pdfs P(k;) of the order parameter ki of seismicity (§ 6.2.1) al-
most coincide with the P(k;) for the whole SCEC, see Fig. 6.14. The latter coincidence
could be interpreted as a ‘return’ of the seismic activity to its mean behavior after the
completion of the aftershock sequences, thus being in accordance with the previous result
of DFA.

We now examine the magnitude time series with lengths W = 5,000, 3,000 and 1,000
EQs not only just after but also just before these two EQs in SCEC. The corresponding
results of DFA are also given in Figs. 6.17(a) and (b) for the Landers and the Hector Mine
EQ, respectively. Upon restricting ourselves to the period just after the mainshocks, the
results show (e.g., for W = 1,000; see the cyan circles in Fig. 6.17) that the high value of the
DFA exponent ¢ at longer scales should be attributed to the highly correlated “immediate”
aftershocks. We now turn to the study of the magnitude time series solely before these two
mainshocks. The results of DFA suggest that the o value for scales longer than the cross-
over is now significantly smaller than in the case of aftershocks, and much closer to that
for scales shorter than the cross-over (see the squares, triangles and inverted triangles in
Fig. 6.17). Thus, the cross-over effect is definitely smoothed in the magnitude time series
that end just before the mainshocks. A closer inspection of the inverted triangles, i.e., the
results obtained from W = 1,000 EQs just before the mainshocks, indicates that the DFA
scaling exponent becomes even smaller than ¢y, (= 0.61) and the values obtained are
o =0.53(2) and @ = 0.50(2) for the Landers and the Hector Mine EQ, respectively.

Thus, the ‘foreshocks’ appear to exhibit correlations that are somewhat weaker than
those already found [44] in the stationary seismicity (recall that Ref. [44] reported
o = 0.59(5) for stationary periods).

We now turn to the results of the natural time analysis of the time series with W = 5,000,
3,000 and 1,000 EQs just before and just after Landers and Hector Mine EQ. In a seismic
catalog comprising W events, the procedure to construct the pdf P(x;) is the following
(in a similar fashion as in § 6.2.2). Starting from the first EQ, we calculate the k) values
using [ = 6 to 40 consecutive events (including the first one). We then proceed to the
second EQ, and repeat the calculation of k7 and so on. Thus, after sliding event by event
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through the whole earthquake catalog, the calculated k| values enable the construction of
the pdf P(k;). They are shown in Fig. 6.18(a) and (b) for these two EQs, respectively.
In particular, we observe that the pdf P(k;) versus ki curves differ in general from the
corresponding curve obtained from the whole SCEC or from the aftershock time series
identified in Ref. [7].
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This reveals that either just before or just after a significant EQ, the seismicity deviates
from its mean behavior in natural time.

We now proceed to a comparison between the pdfs P(k; ) of the order parameter k just
before and just after a significant EQ. In Fig. 6.18(c) when plotting P(k;) versus kj for
W = 1,000 EQs before and after the Landers EQ with the thick red and the thin red line,
respectively, they are found to be markedly different in the following respect:

Before the Landers EQ a significant bimodal feature appears in the P(k;) vs kj plot.
This, which solely emerged from the natural time analysis, is of profound importance
as it is strikingly reminiscent of the bimodal feature observed in the pdf of the order
parameter when approaching (from below) 7, in equilibrium critical phenomena, e.g.,
see Fig. 6.8(b). Since k is the order parameter for seismicity, a similar behavior should
be expected before every mainshock.

Actually, in Fig. 6.18(c), we depict P(k;) versus & for W = 5,000 events before and
after the Hector Mine EQ. The results are shown with the thick blue and the thin blue
line, respectively. We again observe that a bimodal feature emerges in the curve before the
mainshock.

6.4.2 Prediction scheme by quantifying the bimodal feature of the pdf of the order
parameter k; for seismicity before mainshocks

Let us now assume [58] that the variability B = o(k;)/u(x;), where p(x;) and o(x;)
stand for the average value and the standard deviation of the x; values considered, consti-
tutes at a first approximation a measure to quantify the presence of the bimodal behavior in
P(x;) versus k) identified above in § 6.4.1. If the presence of this bimodal feature actually
signifies the occurrence of an impending mainshock, then the quantity 8 can in princi-
ple be considered as a decision variable to predict the occurrence of a large earthquake
solely based on the past magnitudes. Such a ‘prediction’ scheme should not be confused,
however, with the one achieved when the seismic data are enriched (supplemented) with
SES data (Chapter 1), on the basis of which the epicentral area and the magnitude of the
impending mainshock can be determined, see § 1.3.5. This is so because, once the latter
are available, the natural time analysis of the seismicity that occurs in the future epicentral
area after the SES detection leads to the identification of the time window of the impending
mainshock within a narrow range of a few days to around one week, as it will be explained
in Chapter 7.

Hereafter, we proceed as follows. For each EQ of magnitude My, in SCEC, we estimate
% = Y12 K1 (1)/35, i.e., the average value of the (/) calculated upon considering / = 6
to 40 consecutive EQs (including the k-th event). Next, we assign this value & to the k’-th
element (k' = k+40) of the time series k(k")(=%7). This way, k¥ (k") has no information of
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the event with magnitude My which is the 40-th EQ that occurred after M. We can now
estimate, for various windows of W earthquakes, the time series of the average values

1 &
e (W) = 5 Z K(n), (6.26)
n=k'-W+1

which is equivalent to t(k;) obtained when considering a catalog consisting of the W
earthquakes that occurred just before M. In addition, the time series of standard devia-
tions can be obtained from

1 &
o (W) =\| Y [k(n) - me (W), (6.27)
n=k'—W+1

and the variability time series is given by

_op(W)

We will now examine whether 8 can be used as a decision variable for binary ‘pre-
dictions’. Following the terminology of Keilis-Borok and coworkers [41, 40], the time
increased probability (TIP) is turned on when S (W) > B., where B, is a given threshold
in the prediction. If the magnitude My, is greater than or equal to a target threshold M.,
we have a successful ‘prediction’. For the present case of binary predictions, the predic-
tion of events becomes a classification task, with two type of errors: missing an event and
giving a false alarm. We therefore choose, following Ref. [31], the receiver operating char-
acteristics (ROC) [29] as the method to analyze here the prediction quality. This is a plot
of the hit rate versus the false alarm rate, which is tuned by the threshold .. Only if in
between the hit rate exceeds the false alarm rate, is the predictor useful. Random predic-
tions generate equal hit and false alarm rate, and hence they lead to the diagonal in ROC
plot; see the black straight lines in Figs. 6.19 and 6.20. (If B, is maximum, both hit rate
and false alarm rate are zero, while for very small . values both rates tend to unity.) Thus,
only when the points lie above this diagonal the predictor is useful. Figure 6.19 depicts
the ROC curves, for various values of M;;,.; = 3.0 to 4.5, together with the results ob-
tained when using, for example, two randomly shuffled copies (green and red circles) of
SCEC. The results for various W values are shown, i.e., W = 70, 300, 1,000 and 3,000, in
Figs. 6.19(a) to (d), respectively.

In all cases, the results are better (i.e., points lying above the diagonal) when deduced
from the original SCEC compared to those from the randomly shuffled SCEC. This
indicates that the predictive power of f3;(W) given by Eq. (6.28) stems from temporal
correlations between EQ magnitudes present in the actual seismicity.

In order to further examine the statistical significance of this ‘prediction’ scheme, we
depict in Fig. 6.20 the results for W = 1,000 together with the results of 107 runs of the
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Fig. 6.19 The ROC curves constructed using (W) as decision variable, for W = 70, 300, 1,000 and
3,000, are depicted in panels (a) to (d), respectively. The blue broken lines correspond to the ROC curves
obtained when considering the target thresholds Mp,.; = 3 to 4.5 (note that there are only 212 events
with My > 4.5). The ROC for M,j,.s = 4 is shown in cyan as a guide. The red (1) and green (2) circles
correspond to exactly the same analysis, but performed for two independent randomly shuffled copies
of SCEC, and fall around the diagonal of chancy predictions because the temporal correlations between
consecutive EQs are now lost. Taken from Ref. [58].

same catalog when using as decision variable a uniformly distributed random number in
the same range as f3(1,000). We observe that none of these runs outperforms f3;(1,000)
for false alarm rates from 20% to 60%. Thus, the decision variable f(1,000) has predic-
tive power which is statistically significant. The inset of Fig. 6.20 depicts the ratio of the
hit rate over the false alarm rate versus My, which shows that the prediction results be-
come better upon increasing M,;.s. For example, when M,,.s = 4 (cyan line with squares)
the hit rate is approximately 60% when the false alarm rate is 50%. The TIP can be vi-
sualized in Fig. 6.21, where the red shaded areas correspond to the periods when the TIP
is on (i.e., B(1,000) > 0.35). The results convincingly outperform chance, but are not
spectacular. This (which remains so when using, instead of f3, the kurtosis see the black
dots in Fig. 6.21) is not unreasonable in view of the following fact:
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When using a constant natural time window of W events, it may not correspond to
the time at which the focal area of the impending mainshock enters into the critical
regime, which is captured however by the SES detection if available (note that in the
case of the SES detection, the results are drastically better as explained in detail in
Chapter 7).
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6.4.3 Concluding remarks

Combining the results obtained in the preceding § 6.4.1 and § 6.4.2, the main points could
be summarized as follows:

We made use of the order parameter k; of seismicity defined in natural time (§ 6.2.1)
together with the DFA of the magnitude time series to investigate the period just before
and just after a significant mainshock. The study was focused on two significant EQs that
occurred in Southern California in 1992 and 1999, i.e., the Landers and the Hector Mine
earhquakes.

Quite interestingly, the natural time analysis of these time series reveals that ‘fore-
shocks’ exhibit a behavior characteristic of systems close to their critical point: upon
considering the order parameter k; of seismicity the probability distribution function
P(x1) vs k exhibits a bimodal feature.

In an attempt to quantify this bimodal feature, we considered the variability of ki,
which was then used as decision variable for the ‘prediction’ of the occurrence of a large
earthquake in the next natural time step based solely on the magnitudes of previous earth-
quakes. These results outperform chance but are not spectacular if not supplemented with
SES detection (see Chapter 7).

In other words, the natural time analysis of seismicity before significant earthquakes
reveals that the fluctuations of the order parameter before major earthquakes exhibit
a bimodal feature which, if quantified properly, may be used as decision variable to
predict the occurrence of large earthquakes.

6.5 Nonextensivity and natural time: the case of seismicity

Nonextensive statistical mechanics [4, 72], pioneered by Tsallis [71], provides a theoretical
framework for the studies of complex systems in their non-equilibrium stationary states,
systems with (multi) fractal and self-similar structures, long-range interacting systems etc.
This framework offered recently a generalization of the G-R law. Here, we employ this
nonextensive G-R generalization to study the observed seismic data fluctuations. In partic-
ular, we combine [57] three modern methods, i.e., the non-extensive generalization of the
G-R law together with natural time and detrended fluctuation analysis (DFA, see § 1.4.2).
This procedure is applied to synthetic seismic data as well as to real seismic data from
two different areas: First, the EQs that occurred during the period 1981-2003 within the
area N37 W137 using SCEC. Second, the EQs within N3¢ E13¢ for the period 1967-2003
using the Japan Meteorological Agency catalog, simply called “Japan”. See Figs. 6.22,
6.23 and 6.24 that will be discussed later. The thresholds M > 2.0 and M > 3.5 have been
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considered for SCEC and Japan, respectively for the sake of data completeness as already
mentioned in § 6.2.2.1.

6.5.1 Non extensivity and earthquakes. The generalization of the
Gutenberg—Richter law

The first studies on the analysis of EQs in the nonextensivity framework have been made
by Abe and coworkers [4, 6, 8]. In this framework, an interesting model for earthquake
dynamics has been proposed by Sotolongo-Costa and Posadas (SCP) [68]. It consists ba-
sically of two rough profiles interacting via fragments filling the gap between them where
the fragments are produced by local breakage of the local plates. In other words, the fun-
damental idea of this model consists of the fact that the space between faults is filled with
the residues of the breakage of the tectonic plates from where the faults originate. In this
model the mechanism of earthquake triggering assigns an important role in the fragments:
the stress increase between the two fault plates constitutes the main factor that governs the
complexity of the fragment—asperity interaction, where eventually the fragments may act
as roller bearings, and also as hindering entities of the relative motion of the plates until the
growing stress produces their liberation with the subsequent triggering of the earthquake
[70]. By using the nonextensive formalism, SCP not only showed the influence of the size
distributions of fragments on the energy distribution of earthquakes but also deduced an
energy-distribution function which in a particular case leads to the G-R law.

The aforementioned SCP model was revisited by Silva et al. [65] who made two key
improvements. The first one made use of a different definition for mean values in the con-
text of Tsallis nonextensive statistics that was achieved in Ref. [3]. In particular, Abe and
Bagci [3] considered in depth the two kind of definitions for the expectation value of a
physical quantity which both lead to the maximum Tsallis entropy distribution of a similar
type. The one is the ordinary definition (note that this was used by SCP) and the other is
the normalized g-expectation value employing the escort distribution [16, 5]: Their final
conclusion states that the Shore-Johnson theorem [62, 63, 64] for consistent minimum
cross-entropy (i.e., relative entropy) principle is shown to select the formalism with the
normalized g-expectation value and to exclude the possibility of using the ordinary expec-
tation value from nonextensive statistical mechanics. The second improvement by Silva
et al. refers to the introduction of a scaling law, i.e., € o 3, between the released relative
energy € and the size r of the fragments (this substantially differs from the assumption
€ o< r used by SCP). Then Silva et al. [65] proceeded as follows. The Tsallis entropy has
the form of Eq. (2.101):

Jp(o)(p(0)' " —1)do

S, =k
q B q_l

(6.29)

where p(0) is the probability of finding a fragment of relative surface ¢ (which is defined
as a characteristic surface of the system), ¢ is a real number usually termed nonextensive
parameter and kp is Boltzmann constant which will be hereafter set equal to unity for the
sake of simplicity. It is easy to see that Eq. (6.29) recovers the standard Boltzmann—Gibbs
entropy in the limit ¢ — 1. The maximum entropy formulation for Tsallis entropy implies
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that the following two conditions have to be introduced [73, 72]. First, the normalization
of p(o): -
/ p(o)do =1 (6.30)
0

Second, the ad hoc condition (see also § 6.5.4.1) about the g-expectation value
o, =(0)g= / oP,(o)do, (6.31)
0

where P, (o) is the escort distribution [16, 5] given by

pi(o)

P,(o)= T pi(o)do’ (6.32)
which for ¢ — 1 becomes the definition of the mean value. Silva et al. followed the stan-
dard method of conditional extremization of the entropy functional S, and found an expres-
sion for the fragment distribution p(o). Then, assuming the aforementioned energy scale
€ o< 1, they obtained the energy distribution function p(€) for the EQs. Finally, by consid-
ering the relationship

m= - In(g), (6.33)

where m denotes the magnitude, Silva et al. obtained the number N-,, of EQs with mag-
nitude larger than m:

Nep 2— 1—q\ 10"
log( ; ) — <I_Z>log [1— (2_Z> a2/3:| (6.34)

where N is the total number of the events and a the proportionality constant between €
and 3.

Equation (6.34) incorporates the characteristics of nonextensivity into the distribu-
tion of earthquakes by magnitude, and the G-R law can be deduced as its particular
case when considering a significant magnitude threshold. Then, Eq. (6.34) reduces to
Eq. (6.2) with b =2(2—¢q)/(q—1). Thus, Eq. (6.34) can be alternatively termed as a
generalized G-R law.

This relation has been found [86] to describe appropriately the energy distribution in
a wider detectable range of magnitudes compared to that of the original G-R law. Fur-
thermore, Silva et al. [65] and later Vilar et al. [86] in conjunction with the earlier SCP
study [68] led to the conclusion [86] that values of ¢ ~ 1.6-1.7 seem to be universal in
the sense that different datasets from different regions of the globe (e.g. California [68],
Iberian Peninsula [68], Andalucia [68], Samambaia-Brazil [65], New Madrid (USA) [65],
North Anatolian fault, Turkey [65], San Andreas fault [86]) indicate a value lying in this
interval. In addition, in a very recent study [70], a comparable g value (i.e., ¢ = 1.67) has
been found by analyzing the (tectonic) seismicity in Italy, while a somewhat lower value
(g = 1.48) was reported for the volcanic seismicity in Vesuvius. Finally, we note that very
recently [26] an alternative relation has been suggested between the released energy and
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the surface size of fragments, i.e., € o exp(O'l/ }'0), where A is a constant in contrast to the
relation € o< /2 proposed by SCP [68] and the relation € o< /2 by Silva et al [65]. This,
which has been inspired by the fractal nature of the fragments filling the gaps between ad-
jacent fault plates, leads to a different expression for the distribution of EQs as a function
of the magnitude which has a g-exponential form, and the fit with the Iran and California
catalogs was found to be good. On the other hand, Eq. (6.34) has no g-exponential form,
but it is preferred to be used here since it has been found to describe well the data in a
larger number of seismic regions.

6.5.2 Combining nonextensivity with natural time analysis

Recall that by calculating the x; value in a window of length [ = 6 to 40 consecutive events
sliding through either the original earthquake catalog or a shuffled one, the following re-
sults have been obtained for SCEC and Japan (see § 6.2.2 and Section 6.3): Concerning
the most probable value ki , of ki, we find that xy , =~ 0.066 for the original data while
K1,p = 0.064 for the randomly shuffled data, see Figs. 6.13 and 6.14. Beyond this decrease
of the ki, value, the whole feature of the curve P(k;) versus k; changes markedly upon
shuffling. Both K ,, values, that have a plausible uncertainty of £0.001, differ markedly
from the value k;, = 1/12 of the “uniform” distribution, which indicates a significant con-
tribution from the process’s increments’ “infinite” variance to self-similarity. In addition,
in Section 6.3 the temporal correlations between EQ magnitudes were found to be respon-
sible for the difference between the value of K , = 0.064 of the randomly shuffled data
from the value of ki, ~ 0.066 of the original data. This was ascertained in § 6.4.1 by
employing also DFA for the analysis of the EQ magnitude time series (see also Fig. 6.23
that will be discussed later).

We now explain the procedure followed in this Section for the generation of synthetic
(surrogate) EQ magnitude series. We make use of a simple method [57] to produce long-
range correlated (EQ) data (magnitude series) that obey an arbitrary cumulative distri-
bution function F(x). This is based on the well-known random number generator of an
arbitrary distribution F(x), described in Ref. [14], as well as on the method suggested in
Ref. [28]. Let us first recall that in order to construct [14] a random number generator
for the distribution F(x)(= p), we simply need the inverse function F~!(p)(= x). Then
by inserting a sequence p; of (uncorrelated) random numbers uniformly distributed in the
region (0,1), we can obtain the (uncorrelated) random numbers x; = F~! (pi) which are
distributed according to the cumulative distribution function F (x). Here, we shall take ad-
vantage of the fact that, at least for the exponential distribution (e.g., Eq. (6.1) of the G-R
law) or for the distribution function of Eq. (6.34), if the sequence p; is long-range corre-
lated, the same holds for the random numbers x;[= F~!(p;)] (see Fig. 6.23). For example,
if we want to produce a series of random numbers x;, having a cumulative distribution
function F (x), that have a DFA exponent equal to a(< 1), we can use x; = F~ ! [&g(z;)],
where @g(r) is the cumulative distribution function of the standard normal (Gaussian) dis-
tribution (i.e., with zero mean and unit standard deviation) and z; is a standard fGn with H
(see § 1.5.1.1) equal to .
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Moreover, if we want the generated synthetic data to mimic the temporal correlations
of some experimental data y;, then by using their (experimental) cumulative distribu-
tion function @y (r), we can use x; = F ! [®,(y;)]. This simple method for the sake of
convenience will be hereafter called cumulative distribution function transformation
(CDFT).

P(k)

Fig. 6.22 The pdf P(k;) ver-
sus ki resulting from the
natural time analysis of un-
correlated data obtained from
Eq. (6.34) for various ¢ values
together with those deduced
from real seismic data for
SCEC and Japan. Taken from
Ref. [57].

Figure 6.22 shows the probability density function P(k;) versus k] deduced from the
natural time analysis of synthetic seismic data with no temporal correlations (o = 0.5)
obeying the nonextensive generalization of the G-R law, i.e., Eq. (6.34). Results are given
for four different values of ¢, i.e., ¢ = 1.62, 1.64, 1.65 and 1.68, lying in the universal
range g = 1.6 to 1.7 (see § 6.5.1). In the same figure, for the sake of comparison, the results
obtained from the real seismic data, i.e., SCEC and Japan, are also plotted. An inspection
of this figure shows that the results from synthetic data differ markedly from those of the
real data. This reveals that, since in natural time analysis the waiting (inter-occurrence)
times between EQs do not intervene, temporal correlations do exist in the (magnitude time
series of) real seismic data. This is in agreement with the results of § 6.2.2 in which we
showed that the G-R law cannot fully account for the complexity observed in the real
seismic data.

Thus, as a second step, we investigate whether synthetic data obeying Eq. (6.34) can
reproduce the real situation but when inserting long-range temporal correlations. To quan-
tify the long range temporal correlations in the real seismic data, we depict in Fig. 6.23
the DFA plots (as in § 6.4.1) for the original magnitude time series of SCEC (red pluses)
and Japan (blue circles). The thin and the thick straight lines result from a linear least-
squares fit to the short (log;,(k) < 2) and long (log,o(k) > 2.5) scales, respectively, for
SCEC (red, dotted lines) and Japan (blue, short-dashed lines). The values of the slope o
at the short scales are a = 0.61(2) and 0.57(2) for SCEC and Japan, respectively. These
values are comparable, as mentioned (§ 6.4.1), to those obtained [44] by analyzing the
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Fig. 6.23 The DFA of the original mag-
nitude time series for SCEC (red pluses)
and Japan (blue circles). The thin and thick
straight lines correspond to the linear least-
squares fit at the short and long scales,
respectively. The existence of a cross-over
at k ~ 200 indicates an extra complexity in
the case of earthquake time series. For this
reason, synthetic time series obeying the
G-R law (Eq. (6.1)) with b = 1.08 have been
produced by CDFT, the DFA of which are
shown with the thick black (solid) and green
(long-dashed) broken lines for SCEC and

‘ Japan, respectively. The DFA of Japan has
05 1 15 2 25 3 35 4 45 been displaced for the sake of clarity. Taken
log4o(k) from Ref. [57].

log4o[Fpra(k)]

seismic records in regimes of stationary seismic activity in Northern and Southern Cali-
fornia. At longer scales, a cross-over is evident in Fig. 6.23 (see also Fig. 6.17) at k ~ 200
above which the slopes are found to be o = 0.93(3) and 0.83(3) for SCEC and Japan,
respectively.

The aforementioned DFA behavior (i.e., smaller o value at short scales and larger o
at long scales) of the real seismic data was then reproduced by synthetic (obtained from
CDFT of the original) seismic data coming from the G-R law with b ~ 1.08, the DFA
plots of which are shown in Fig. 6.23 with the broken lines (black and long-dashed green
for SCEC and Japan, respectively). Figure 6.24 depicts P(k;) versus k for the real seis-
mic data of SCEC, Fig. 6.24(a), and Japan, Fig. 6.24(b), along with those obtained from
synthetic G-R data by CDFT (red, dotted lines). There exists a good agreement between
synthetic and real data. This agreement implies that the temporal correlations between EQ
magnitudes have been successfully incorporated as well as the fact that only EQs above
the magnitude completeness threshold (§ 6.2.2.1) have been considered.

To proceed one step further, synthetic seismic data were deduced by using, instead of
the G-R law, Eq. (6.34) and CDFT. In particular, for SCEC we obtained the results depicted
in Fig. 6.24(a) after adopting g = 1.65, 1.66, 1.67 and ¢ = 1.68 and inserting (by means
of CDFT) long-range temporal correlations between EQ magnitudes comparable to those
found in real data, i.e., &« = 0.61 and 0.93 for short and long scales, respectively. They are
shown by the green (long-dashed), black (solid), blue (short-dashed) and cyan (dashed-
dotted) lines for the four values of g, respectively. We observe that the g = 1.67 curve is
closer to the real data but some differences still remain. As for Japan (see Fig. 6.24(b)),
the synthetic long-range correlated data that come from Eq. (6.34) with ¢ = 1.66 (green,
long-dashed) with & = 0.57 and 0.83 for the short and long scales, respectively, exhibit
much better agreement with the real ones.
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Fig. 6.24 (a) The probability
density function P(kj) versus

k1 for SCEC (plus) together

02 025  With G-R distributed data with

b = 1.08 (red, dotted line) having
the same temporal correlations
between EQ magnitudes as the

Japan O original data (see the black broken
blee | linein Fig. 623). The green

(long-dashed), black (solid), blue
(short-dashed) and cyan (dashed-
dotted) lines depict P(k) versus
k) resulting from Eq. (6.34)

for ¢ = 1.65, 1.66, 1.67 and 1.68,
respectively, when taking also into
account the temporal correlations
between EQ magnitudes of the
original data by CDFT. (b) The
same as in (a) for Japan (circles),
but here only the case of g =
1.66 (green, long-dashed line) is
shown. Taken from Ref. [57].

This agreement between synthetic and real data can be considered as satisfactory if we
recall that there exists a considerable deviation between them in Fig. 6.22 where the
results have been obtained from Eq. (6.34) by ignoring long-range temporal correla-

tions between earthquake magnitudes.

6.5.3 Discussion of the results obtained from the combination of nonextensivity with

natural time analysis

Recapitulating the results obtained in § 6.5.2, as well as those discussed in Section 6.3, we
can say that:

Natural time analysis of seismic data for both SCEC and Japan reveals that long-range
temporal correlations between earthquake magnitudes do exist.
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This finding, which agrees with the results obtained by independent analyses of real
seismic data in Refs. [46, 45] through a different procedure, also corroborates with a recent
theoretical study by Woodard et al. [88] of SOC systems. The latter study shows that the
memory of past events (avalanches) is stored in the system profile and that the existence
of these correlations contradicts the notion that a SOC time series is simply a random
superposition of events with sizes distributed as a power law (as has been claimed by
several previous studies). This is the notion which was initially interpreted as stating that
in SOC systems an event ‘can occur randomly anywhere at any time and cannot “know”
how large it will become’, thus incorrectly concluding that EQ prediction is impossible,
which was proven in Ref. [88] to be a misconception (see also Section 8.1).

6.5.4 Conclusions from the combination of nonextensivity with natural time
analysis of earthquakes

Summarizing, we can say the following. In this Section, we investigated the nonextensive
generalization of the G-R law, i.e., Eq. (6.34), but see also § 6.5.4.1. We considered only
values of the nonextensive parameter g that have been found in the recent literature to fit
well with the real seismic data. The results obtained when combining this generalized law
with natural time analysis as well as with DFA, show the following.

(1) The results of the natural time analysis of the synthetic seismic data obtained from
either G-R law or its nonextensive generalization, deviate markedly from those of the
real seismic data for both SCEC and Japan. This unambiguously reveals that long-range
temporal correlations between magnitudes exist in the real datasets.

(2) DFA applied to the magnitude time series of the real seismic data demonstrate in-
dependently the existence of temporal correlations. The DFA exponent is around 0.6 for
short scales but o¢ = 0.8-0.9 for longer scales (note that the cross-over is noticed around
k ~ 200 earthquakes).

(3) Inspired from point 2, temporal correlations, with different « values (i.e., @ ~ 0.6
and 0.8-0.9 for short and long scales, respectively) were inserted to synthetic seismic
data coming from either the G-R law or its nonextensive generalization of Eq. (6.34). The
natural time analysis of the correlated synthetic seismic data deduced from the G-R law
leads to results that agree well with those obtained from the real seismic data of Japan
and SCEC, thus confirming the importance of temporal correlations between the magni-
tudes of successive earthquakes. As for the synthetic seismic data deduced from Eq. (6.34)
by inserting long-range temporal correlations, a satisfactory agreement with real data has
been obtained for the case of Japan for ¢ = 1.66, while for SCEC some differences still
remain.

The present results show that the nonextensive parameter g does not capture the ef-
fect of long-range temporal correlations between the magnitudes of successive earth-
quakes. Thus, published claims (not by the pioneers of the field of nonextensive statis-
tical mechanics) that ¢ is a measure of temporal organization do not hold.
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On the other hand, either the generalization of the G-R law or the G-R law itself,
when combined with natural time analysis (which focuses on the sequential order of
the energies of the events that appear in nature) does enable a satisfactory description
of the real seismic data fluctuations.

6.5.4.1 More recent developments

Very recently, the applicability of the nonextensivity framework has been discussed by
Abe [1] (see also Refs. [9, 2]) who argued that discreteness of basic physical variables is,
at least, essential for generalized statistical mechanics with non-logarithmic entropy, as the
one in Eq. (6.29), to be thermodynamically applicable to classical systems.

Furthermore, it has been pointed out (Abe, personal communication) that the g-average
formalism (i.e., the normalized g-expectation value; see Eq. (6.31)) may result in concep-
tual difficulties and hence should be avoided. In other words, the ordinary average must be
used and not the escort average as given by Eq. (6.31). In this case, Eq. (6.34) along with
the resulting interconnection between b and g will change.

Acknowledgments Acknowledgments are due to Professor Sumiyoshi Abe for bringing to our attention
his recent work on nonextensive Statistical Mechanics.
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7. Identifying the Occurrence Time of an
Impending Mainshock

Abstract. Natural time enables the determination of the occurrence time of an impending
major earthquake since it can identify when a complex system approaches a critical point.
Considering that the detection of a SES activity signifies that the system enters the critical
regime, the small earthquakes that occur (in the region candidate to suffer the mainshock)
after the SES detection are analyzed in natural time. It was found that the variance x; of
natural time becomes equal to 0.070 (which manifests the approach to the critical point)
usually a few days to around one week before the mainshock. This, which exhibits spa-
tial as well as magnitude threshold invariance, has been observed to date for all major
earthquakes that occurred in Greece since the introduction of the natural time concept in
2001 (note that it has been also ascertained in retrospect for the two major earthquakes in
Greece during the previous decade, i.e., in the 1990s). For example, the occurrence time of
the M,,6.9 earthquake on February 14, 2008, which is the strongest earthquake in Greece
during the last 28 years, was announced as imminent on February 10, 2008. The procedure
has been also ascertained in the case of the volcanic-seismic swarm activity in 2000 in the
Izu island region in Japan as well as of the M,7.1 Loma Prieta earthquake in California in
1989.

7.1 Determination of the time-window of the impending mainshock
by analyzing in natural time the seismicity after the initiation of
the SES activity

We first recall (see Eq. (2.75) or Eq. (6.7)) that the relation

18 6cosw 12sinw

H(a))zs—

g 502 503

(7.1)

for w — 0, simplifies to
II(w) ~ 1-0.0700> (7.2)
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which shows that the second-order Taylor expansion coefficient of IT(®), labeled «j, is
equal to 0.070. The quantity k; equals (see Eq. (2.37) ) to the variance (x2) — (x)? of
natural time x, i.e.,

ki = (x%) — (x)* = 0.070. (7.3)

This has been shown for SES activities (§ 2.4.2) as well as for the time series of avalanches
in a number of dynamical models (see Table 8.1), including the “train” Burridge—Knopoff
earthquake model (§ 8.2.2) and the Olami—Feder—Christensen earthquake model (§ 8.3.2),
when the system approaches the critical point. Furthermore, since it has been observed
for several EQs that, when analyzing the seismicity that occurs after the SES activity,
the resulting k7 value slowly approaches to 0.070 just before the mainshock and abruptly
changes to vanishingly small when the main shock occurs, it was proposed (see § 6.2.1)
that x; (or II(w) for @ — 0) may be considered as an order parameter for seismicity [54].
In addition, we recall that the entropy S in natural time as well as the entropy S_ under
time reversal, have been found(see Eq. (4.32)) to obey the following conditions [55, 51, 50]

for SES activities
S,85_ <S8, (7.4)

These also hold for long-range correlated fBm time series with oprs ~ 1 (see § 3.4.3) as
well as for an on—off intermittency model when the critical value is approached from below
(see § 3.4.4) . Note that it has been suggested that [23] “The Californian earthquakes are
long-range correlated according to the persistence of a fractal Gaussian intermittent noise
with H = 1 known as 1/f or pink noise” as well as that [7]: the intermittent criticality
model as being more appropriate for earthquakes.

In view of the above and based on our fundamental premise that mainshock occurrence
is a critical phenomenon, the conditions (7.1) to (7.3) and (7.4) have been used to study
the evolution of seismicity in natural time before a mainshock occurrence. To obtain the
order parameter kj or IT(®) for @ — 0 (as well as the quantities S and S_), however, it
is necessary to decide the initiation time of seismicity analysis. We decided to start the
analysis immediately after the SES initiation since it signals, as mentioned in § 6.2.1,
that the system enters the critical stage (recall that the SES emission marks cooperative
orientation of the electric dipoles and hence the establishment of long-range correlations;
see § 1.6.2 and § 2.4.2).

Once a SES activity has been recorded, the area to suffer the mainshock can be esti-
mated, as explained in § 1.3.5, on the basis of the so-called selectivity map of the station at
which the SES was recorded and in addition by considering the ratio of the two SES com-
ponents. Thus, we have in principle some area (see also the discussion in § 7.2.3), labeled
A, in which we count the small EQs, ¢; , that occur after the initiation of the SES activity.
In order to check the spatial invariance of the results, the study was also repeated for a
smaller area. This procedure, which for the sake of convenience will be hereafter, called
preliminary procedure, was used during the period 2001-2008 in a series of publications
(e.g., see Refs. [45, 54, 51, 50, 35, 48]) to determine the occurrence time of the impending
mainshock by means of the natural time analysis of the seismicity subsequent to a SES
activity. Since there has been, however, some room for subjective judgment to identify the
approach to critical stage, because the time variation of parameters was traced only on a
single subarea, a more objective procedure, which for reasons of brevity will be hereafter
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called “updated” procedure, has been developed [21], in 2008, and considers the natural
time analysis of the seismicity in all the possible subareas, instead of a single smaller area,
of the larger area under discussion.

7.1.1 The preliminary procedure to determine the occurrence time of the
impending mainshock

The actual procedure was carried out as follows. We set the natural time zero at the ini-
tiation time of the SES activity, and then formed time series of seismic events in natural
time for the area A, each time when a small EQ (above a magnitude threshold M > M;.s)
occurred; in other words, when the number of the events increased by one. The normal-
ized power spectrum in natural time IT(®) for @ — 0 (or the variance k) for each of the
time series was computed for the pairs (), Qx) and compared with that of Eq. (7.1) for
o € [0, 7]. We also calculated the evolution of the quantities S and S_ to ascertain Eq. (7.4)
was also satisfied. The actual criteria for recognizing a true coincidence of the observed
time series with that of critical state were as follows [45, 35, 51, 50, 48]:

critical
0.9
08 r Fig. 7.1 Schematic diagram
showing the normalized power
B 07y spectrum IT(w) in natural time
= for o € [0,7x]. Solid line is
06 1 IT(®) obtained from Eq. (7.1)
which holds for critical stage
05 | (x1 = 0.070), whereas two other
lines are for x; > 0.070 and
04l - k1 < 0.070. The grey arrow
indicates how the IT(®) curve
035 ) ) 3n/a T approaches the critical from
below.

First, the ‘average’ (D) distance between the curves of IT(®) of the evolving seismic-
ity and Eq. (7.1) for @ € [0, 7] should be smaller than 10~ (note that this was regarded
as showing that (D) = 0). This was a practical criterion for stopping calculation.

Second, the final approach of the evolving IT(®) to that of Eq. (7.1) must be by
approaching from below as shown by the grey arrow in Fig. 7.1. This alternatively
means that before major EQs, the k| value gradually changes with time and finally
approaches from above that of the critical state (k1 = 0.070, see Eq. (7.3)). This rule
was found empirically [45].

Third, both values S and S_ should be smaller than S, (= 0.0966) at the coincidence
(see Eq. (7.4)).
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Finally and fourth, since the process concerned is supposed to be self-similar (crit-
ical dynamics), the time of the occurrence of the frue coincidence should not vary,
in principle, upon changing (within reasonable limits) the magnitude threshold M,
and the size of area A.

We clarity, however, that if higher magnitude threshold is used, the description of
the real situation approaching criticality is expected to become less accurate due to
‘coarse graining’ [43, 49] since the number of events is finite.
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It has been observed [45, 35, 51, 50, 48] that the aforementioned true coincidence
appears usually a few days (up to around one week) before the occurrence of the main-
shock. As an example, we report a SES activity recorded at a station located in central
Greece (close to Patras city, PAT; see Fig. 1.2) on February 13, 2006. It is depicted in
Fig. 7.2(a) and comprises 37 pulses, the durations Oy of which vary between 1 s and 40 s
(see Fig. 7.2(b)). Beyond the application of the four criteria of Section 1.2, a natural time
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analysis of this SES activity (labeled PAT in Table 4.6) was made which led [50] to the
following values: k1 = 0.0724+0.002, S = 0.080+0.002, S_ = 0.078 +=0.002 which obey
the conditions (4.38) and (4.39), i.e., k1 =~ 0.070 and S,S_ < S, that have to be obeyed for
SES activities. In addition, the Detrended Fluctuation Analysis (DFA) (§ 1.4.2) in natural
time of this SES activity, resulted in an exponent & = 1.07 +0.36, which agrees with the
finding @ ~ 1 in several other SES activities (see § 4.4.2 and Eq. (4.42)). If we repeat the
computation by shuffling the durations Qy randomly (and hence their distribution is con-
served), the corresponding quantities, designated by adding a subscript “shuf”, have the
following values: Ki g, ¢ = K, and S, & S ghup = Sy. This points to the conclusion that
the self-similarity of SES activities results from the process’s memory only (see § 4.7.1
and § 2.5.5). All these results showing that the signal recorded on February 13, 2006, is
a true SES activity were submitted [50] for publication on February 25, 2006 (see Table
7.1). Actually, on April 3, 2006, a strong seismic activity started with an earthquake of
magnitude M;(ATH) = 5.3 and lasted until April 19, 2006 with earthquakes of magnitude
up to 5.9 in a region 80 to 100 km west of PAT station, i.e., around 37.6°N 20.9°E (see
also table I of Ref. [49]). We will now explain how the occurrence time of the initiation of
this earthquake activity has been specified [49] by following the preliminary procedure:

First, after the recording of this SES activity, the area to suffer the impending mainshock
was estimated as follows: We considered that the epicenters of the EQs that have been
preceded, up to that time, by SES activities at PAT station lie approximately within the
area N%%g E%g:g, i.e., this was the selectivity map (§ 1.3.4) of PAT station. Then, by using
the additional information of the ratio of the two SES components (§ 1.3.5), we selected
from the selectivity map the region A: Ng%g E%:g as candidate that might have emitted the
SES activity under discussion.

Second, we now study in natural time the seismicity that evolved after the recording
of the relevant SES activity at PAT, thus we put natural time zero for seismicity at the
initiation time of this SES activity, i.e., at 19:04 UT on February 13, 2006. The study
is made in the areas A: Ng%‘g E%:g‘s‘ as well as in its smaller area B: Ng?:g‘; E%:ég. We
now form time series of seismic events in natural time for various time windows as the
number N of consecutive (small) EQs increases. We then compute the normalized power
spectrum of seismicity in natural time IT(¢) (for ¢ — 0, e.g. ¢ € [0,0.5]) for each of the
time windows. We clarify that the seismic moment M, was estimated from the relation [5]
log,o(Mo) = 1.5M,, + const. by using M,, = 1.09M — 0.21, i.e., the least-squares fit pro-
posed in Ref. [19], and the values of the local magnitude M; were taken from the GI-NOA
catalog. In short, the relation log;,(My) = 1.64M, + const. has been used. Excerpts of the
results of these computations which refer to the values deduced during the period March
27 to April 1, 2006, are depicted in red in Fig. 7.3. In this figure, Fig. 7.3(a) corresponds to
the area A with magnitude threshold M;j,.; = 3.0 (defined by means of the local magnitude
M} and of the ‘duration’ magnitude Mp), while Fig. 7.3(b) to the area B with M., = 2.8.
In the same figure, we plot in blue the normalized power spectrum obeying Eq. (7.1). The
date and the time of the occurrence of each small earthquake (with magnitude exceeding
(or equal to) the aforementioned threshold) that occurred in each of the areas A and B, is
also written in red in each panel.
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Fig. 7.3 The normalized power spectrum(red) IT(¢) of seismicity as it evolves event by event (whose date
and time of occurrence are written in each panel) after the initiation of the SES activity on February 13,
2006. The two excerpts presented here refer to the period March 27 to March 31, 2006, and correspond to:
(a) the area A with M;;,.s = 3.0 and (b) the area B with Myj,.; = 2.8. In each case the spectrum for small
¢ values, e.g. ¢ € [0,0.5] (for the reasons discussed in Section 2.4) is depicted (separated by the vertical

dotted lines), whereas the IT(¢) of Eq. (7.1) is depicted by blue color. The minor horizontal ticks for ¢ are
marked every 0.1. Taken from Ref. [49].

An inspection of Fig. 7.3 reveals that the red line approaches the blue line as N in-
creases and a coincidence occurs at the last small event which had M; = 3.0 and
occurred at 21:29 UT on March 31, 2006, i.e., roughly two days before the first strong
EQ (00:50 UT on April 3, 2006). To ensure that this coincidence is a true one, we also
calculate the evolution of the quantities ki, S and S_ and the results are depicted in
Fig. 7.4 for both magnitude thresholds 2.8 and 3.0 for each of the areas A and B.

We now examine whether the aforementioned criteria for a coincidence to be considered
as true are obeyed: First, concerning the ‘average’ distance (D) see Fig. 7.5, where we plot
(D) versus the conventional time for the aforementioned two areas and the two magnitude
thresholds (hence four combinations were studied in total). In order to better visualize the
details of this figure, its four consecutive segments are enlarged and separately depicted
in Fig. 7.6(a) to (d). Note that in Fig. 7.5 or Fig. 7.6(d), upon the occurrence of the afore-
mentioned last small event of March 31, 2006, in both areas A and B and both magnitude
thresholds (i.e., Myjes = 2.8 and 3.0) their (D) values become smaller than 102, Second,
a few events before the coincidence leading to the strong EQ, the evolving IT(¢) has been
found to approach that of Eq. (7.1), i.e., the blue one in Fig. 7.3, from below (note that this
reflects that during this approach the x; value decreases as the number of events increases
see Fig. 7.4(a)). In addition, both values S and S_ are smaller than S, at the coincidence;
see Fig. 7.4(b) and 7.4(c), respectively. Finally, since the process concerned is self-similar
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Fig. 7.4 Evolution of the quan-
tities ki, S and S_ for seismicity
after the initiation of the SES
activity on February 13, 2006,
depicted in Fig. 7.2(a). They
are shown in (a), (b) and (c),
respectively for two magnitude
thresholds, i.e., M > 2.8 and
M > 3.0, for both areas A and
B. After the event at 14:19 UT
of March 28, 2006 the four
curves (corresponding to the
four combinations, i.e., result-
ing from the two areas and
the two magnitude thresholds)
almost collapse on the same
curve. This points to the scale
invariance when approaching
the critical point (see the text).
Taken from Ref. [49].



7.1 Determination of the time-window of the impending mainshock 299

0.14 T
Area B, My ee=3.0 —+
Area A, My 0s=3.0 ——
012 | Area B, My oe=2.8 —~— |
’ Area A, My 0s=2.8
0.1 | p
0.08 - 1
A
a
\
0.06 | b
0.04 1
Faf
0.02 | X
N AL TN
I\ ]

0
02/18 02/25 03/04 03/11 03/18 03/25 04/01

Fig. 7.5 The average distance (D) versus the conventional time. The calculation of (D) is made upon the
occurrence of every consecutive earthquake when starting the calculation after the SES activity of February
13, 2006 (depicted in Fig. 7.2(a)), for each of the two areas A and B by considering two magnitude
thresholds 2.8 and 3.0. Taken from Ref. [49].

0.14 - 0.04 - g e eV
rea B, Mypes=30 ——
(a) (b) Area A Mires=30 —x—
I Area B, My, 0c=2.8 ——
o2l ] 0035 Area A, Mye=2.8 R
0.03 E
0.1 T B *
—— A 0025 . 1
A 008 — 1 [=)]
o ~ v 1
v A . \ 0.02
L~ ‘x \
0.06 - + | ]
s | 0015 1
| T
004 ‘ | 1 7 ﬁ <
X i 0.01 - -
m | | K / /
L I Ny /
¥
ooz ] i \L 1 0,005 |- / 1
.1 Bk \1 A
= i IDIIN
0 0
029 02020 0221 0222 02/23 0224 02/25 0226 02027 0228 03/01 0301 0g02 0303 0304 0303 0306 0307 0308 009 OO QUM
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 0000 00:00 00:00 00:00 0000 00:00 00:00 00:00 00:00 00:00 00:00
0.045 v TR 0.04 - gy RV
( C) A;g: B Mires=3.0 —+— (d) A;g:A Mires=3.0 —+—
004l I ‘Area B, My, ] Area B M08
N Area A, Myyee=2. 0035 /| Area Al Mprei-28 R
0.035 }i q 003 \ ) |
0.03 q
X 0025 1
A 0025 - \ N 1 A i
[m) 9 002 /\ / 4
V' oozl \ 1 .
% /
oots [ B
0.015 | A \ \
x/ N\
< 0.01
0.01 - / ]
\ “l N / \\
g 0.005 \\ N\ [ ul
0.005 - \// 1 fe
N A
X
0
G311 a2 0313 0314 0315 0316 017 0378 00n9 0320 021 0322 03/22 0323 0324 0325 0326 0327 0328 0329 0330 0331 04/01
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00

Fig. 7.6 Four consecutive segments of Fig. 7.5. Note that in (d), after 14:19 UT of March 28, 2006 the
four curves (corresponding to the four combinations resulting from the two areas and the two magnitude
thresholds) almost collapse on the same curve. This points to the scale invariance when approaching the
critical point (see the text). Taken from Ref. [49].



300 7. Identifying the Occurrence Time of an Impending Mainshock

(critical dynamics), the occurrence time of the (true) coincidence should not change, in
principle, upon changing either the (surrounding) area or the magnitude threshold used in
the calculation. This was actually checked in this example since we considered two areas
and two magnitude thresholds. Hence, this coincidence can be considered as true, while
other coincidences that occurred earlier (i.e., before March 31, 2006) have been found not
to be true ones since they violate one or more of the aforementioned conditions. Let us
briefly summarize:

The occurrence time of the initiation of the strong seismic activity, that lasted from
April 3 to April 19, 2006 at an epicentral region 80 to 100 km west of PAT, has been
specified within a narrow range around 2 days. This is so, because the normalized
power spectrum in natural time of the evolving seismicity after the SES activity of
February 13, 2006, collapses on the one expected for critical dynamics at 21:29 UT on
March 31, 2006, i.e., almost two days before the occurrence time of the 5.3 earthquake
of April 3, 2006, obeying the conditions for a true coincidence.

Additional examples for the preliminary procedure will be presented in § 7.2.1 and
§7.2.4.

7.1.2 The updated procedure to determine the occurrence time of the
impending mainshock

The basic idea behind the new approach suggested in Ref. [21] is the following. When
area A reaches criticality, one expects in general that all its subareas have also reached
criticality simultaneously. At that time, therefore, the evolution of seismicity in each of
these subareas is expected to result in kj value close to 0.070. Assuming equi-partition of
probability among the subareas, the distribution of the x; values of all subareas should be
peaked at around 0.070 exhibiting magnitude threshold invariance. Before the criticality is
reached, the k; values will not show such a behavior.

We recall that, as mentioned above in Section 7.1, once a SES activity has been
recorded, we identify in principle an area, labeled A, in which we count the small EQs,
e;, that occur after the initiation of the SES activity. Each EQ e¢; is characterized by its
epicentral location x(e;), the conventional time of its occurrence #(e;) , and its magnitude
M(e;) or the equivalent seismic moment My(e;). The index i = 1,2,... increases by one
each time a new EQ with M larger or equal to some threshold M., occurs within the area
A. Thus, a set of events denoted as Ay, .. = {ei: X(e;) € A, M(e;) > Mypyes} is formed
each time until the mainshock occurs. Here, the number of EQs in Ay, is denoted by
|AMthres |. Since, in forming Am,,..» We place the EQs in sequence of their occurrence time,
Amy,., 18 a time-ordered set.

In practice, in order to check whether criticality as described above has been approached
at the occurrence of a new event i within the predicted area A, we should construct all the
possible proper subsets of Ay, - that necessarily include the event i and examine whether
their k; values reveal a probability distribution peaked at 0.070. A subset is qualified as a



7.1 Determination of the time-window of the impending mainshock 301

proper subset (Py,, ) iff it includes all EQs that took place inside its corresponding rect-
angular subarea denoted by R(Py,,, ). This is a simplification because other geometries,
e.g., circular, could be also envisaged. It is worthwhile to clarify, however, that even in the

frame of this simplification:

The accuracy in the determination of the epicentral coordinates of the EQs involved in
the computation, may somewhat affect — as intuitively expected — the results as it will
be further commented on in § 7.2.5.1.
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Let us now consider the schematic example shown in Fig. 7.7, in which four EQs
have occurred (area A is indicated by a black line rectangle in each panel) in a sequence
indicated by the numbers i = 1,2,3 and 4. Colored rectangles depict proper subareas
R(Py,,,.) = R;(i) just after the occurrence of each EQ. Figure 7.7 shows that the num-
ber of subareas j increases by an integer larger than or equal to one, when a new EQ
occurs. For each of these proper subsets (which form the £[Ay,, . | ensemble at each time
instant), one can compute the k; values and then construct their distribution denoted by
Prob( k) hereafter. Just after the occurrence of the second event a single proper subset can
be defined, thus only kj[R;(2)] is available. Later, just after the occurrence of the third
event, three proper subsets of Ay, —can be defined as shown in Fig. 7.7. Recall that the
necessary condition for a proper subset at a given time instant is that it includes the last
event (the third EQ in this case). Therefore, k; [R(2)] obtained before the third event is not
included for the construction of the distribution Prob(x;) at the instant of the third event.
By the same token, after the occurrence of the fourth event, seven proper subsets result.
Thus, we can now calculate k; for each of these 7 subsets and construct the Prob(k ) ver-
sus K graph to examine whether it maximizes at k; ~ 0.070 (i.e., if it obeys Eq. (7.3)). In
actual cases, the number of EQs, depending on the threshold magnitude, are usually tens
to a few hundreds and the number of subareas varies from hundreds up to a few tens of
thousands.

In the new approach, the k; values of all these subareas and the largest area A, are
treated on equal footing, which reflects that the adopted largest area A may be a proper
subarea of an even larger area in which the mainshock actually occurs. This is a useful
notion when the selectivity map of the concerned station is incomplete or a portion of it is
adopted for some reason as in the case of the M,,6.4 EQ on June 8, 2008 (see Table 7.1),
that will be discussed later in § 7.2.6.

By summarizing, upon the recording of a SES activity, one can estimate (through the
procedure explained in § 1.3.5) an area A within which the impending mainshock is
expected to occur. Analyzing in natural time the subsequent seismicity (as it evolves
event by event) in all the possible subareas of A, the probability density function of
K1 is obtained until it maximizes at k7 ~ 0.070 exhibiting also magnitude threshold
invariance. This usually occurs a few days to around one week before the mainshock,
thus it enables the prediction of the occurrence time of major EQs with time window
of the order of a week or so. Examples of this procedure will be presented in § 7.2.2,
§7.2.3,§7.2.5and § 7.2.6.

Note also that, as shown later in § 8.4.3, in the mean field case of a growing sandpile
(§ 8.4.2) even when studying a single realization and select random subseries of the process
described by Eq. (8.21) to be analyzed in natural time, the pdf deduced for x; maximizes
at k1 ~ 0.070; see Fig. 8.17.
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7.2 What happened before all earthquakes in Greece with
M (ATH) = 6.0 or larger since 2001. The cases of the major
earthquakes with magnitude M,,6.4 or larger since 1995

Since the introduction of natural time [45] in 2001 a number of earthquakes (EQs) with
magnitude M,, = 6.0 or larger occurred in Greece. In this Section, we report what was ob-
served before these EQs, which are included in Table 7.1 (note that predictions of earlier
EQs — which have been undoubtedly shown to clearly outperform chance in a debate pub-
lished in a Special Issue of Geophysical Research Letters, i.e., Vol. 23, No. 11, May 27,
1996, under the title: Debate on “VAN” — were compiled in Ref. [35]). Particular attention
is focused on the five major EQs (see Fig. 7.8) with M,, > 6.4, i.e., the M,,6.5 at 39.05°N
24.35°E on July 26, 2001, the M,,6.7 at 36.21°N 23.41°E on January 8, 2006, the M,,6.9
at 36.50°N 21.78°E on February 14, 2008, the M,,6.5 at 36.22°N 21.75°E on February
14, 2008, and the M,,6.4 at 37.98°N 21.51°E on June 8, 2008 (note that M,, is taken from
[26]). In addition, our attention here is focused on the two major EQs with M,, > 6.4 of the
previous decade (which are also plotted in Fig. 7.8), i.e., the M,,6.6 at 40.14°N 21.67°E on
May 13, 1995 and the M,,6.5 at 38.4°N 22.3°E on June 15, 1995, the data of which have
been analyzed in natural time in retrospect.

During the last fifteen year period, in accordance with the recommendation of the
European Advisory Committee for earthquake prediction of the Council of Europe (see
p- 101 of Ref. [35]), the following policy was adopted: if the expected EQ magnitude
M(ATH) estimated from the amplitude of the SES activity was larger than (or equal to)
6.0, quick report on the relevant information was submitted to international journals (e.g.,
see Refs. [52, 51, 50]) before the EQ occurrence. The symbol M ;(ATH) stands for the
magnitude defined by

My(ATH) = M; +0.5, (7.5)

where M} denotes the local magnitude reported by GI-NOA
(www.gein.noa.gr/services/monthly-list.html).

In Table 7.1, we include all EQs with M(ATH) > 6.0 that occurred in Greece within the
area Ng‘é E%; since 2001. In addition, this Table also includes in parentheses the data for the
cases in which the expected magnitude (documented on the basis of the SES amplitude)
was M;(ATH) = 6.0, but the actual EQ magnitude turned out to be somewhat smaller.
For each EQ, we tabulate the date and the station at which the relevant SES activity was
recorded along with the publication at which this preseismic information was documented.
For the reader’s convenience, we also give the submission date of each publication in cases
where this documentation was made before the EQ occurrence. We emphasize that, in this
documentation, it has been confirmed that the SES activity reported in each case, was
classified as such since it obeys both the criteria described in Section 1.2 as well as the
criteria in natural time summarized in Section 4.10.

In § 7.2.1 to § 7.2.6, we restrict ourselves to the description on what happened before
the major earthquakes in Greece with magnitude M,, >6.4 since 1995.
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7.2.1 The major Grevena-Kozani M,,6.6 earthquake on May 13, 1995

An International Workshop was held by the Royal Society (London, May 11-12, 1995,
e.g., see Lighthill [12, 13]) under the title: “A critical review of VAN” just before the
occurrence of the M,,6.6 earthquake in Greece on May 13, 1995. This EQ was highly
unexpected, because it occurred in an “aseismic” area. The relevant prediction had been
forwarded to the chairman of the Workshop (Sir James Lighthill) well in advance (see
below). Furthermore, one week after the Workshop, another prediction was sent to the
chairman that was related with the catastrophic M,,6.5 Eratini-Egion earthquake of June
15, 1995, which will be discussed in § 7.2.2. These two EQs were the largest events that
occurred during 1983-1995 in Greece and their predictions, which attracted a strong inter-
est in the international literature (e.g., Masood [15, 14], Kerr [8], Monastersky [16]), can
be found in the Proceedings of the Workshop published several months later (see Varotsos
et al. [39]; copies of these predictions are also reproduced here). The chairman included
the following conclusion in the Proceedings [13]:

“The earthquakes occurring after the meeting (on 13 May in northern Greece and on
15 June in Egion, which were the two largest in Greece for over a decade) are carefully
related to the corresponding VAN predictions (those received by myself, for example —
along with other interested scientists — on 2 May and on 20 May 1995). It is noteworthy
that the distinguished seismologist, Professor H. Kanamori, was influenced partly by these
events, as well as by the proceedings of the review meeting (which he had attended in an
initially neutral spirit), to give the views he has expressed above in ‘A seismologist looks
at VAN, suggesting that for the larger earthquakes in Greece the VAN group appears to
have usefully identified SES precursors.”
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Fig. 7.10 SES activity recorded at IOA on April 18, 1995 (raw data collected by the real-time telemetric
network; the scales are in mV). All dipoles are installed at IOA (see the text), except the one labeled
ASS (given to distinguish the MT disturbances). The arrow labeled “increase” indicates the direction of
increasing AV measured in mV. Taken from Ref. [37].
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Fig. 7.11 SES activity at IOA on April 19, 1995. They are photocopies from the recordings at the central
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creasing value of AV (e.g., see p. 324 of Varotsos and Lazaridou [38]). All the scales are in mV. Reprinted
from Ref. [40], Copyright (2005), with permission from TerraPub.
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We now proceed here to a description of what happened before the M,,6.6 EQ at 08:47
UT on May 13, 1995 (this EQ is labeled ‘K’; see Fig. 4.5(b)).

The SES data and the prediction issued. On April 30, 1995, a three-page prediction was
issued. The first page is reproduced in Fig. 7.9(a). It was a short paper under the title “Re-
cent Seismic Electric Signal activities in Greece”, the abstract of which stated: “Three SES
activities were recently recorded at I0A station. They might indicate that a pronounced
series of EQs will occur in Greece with My(ATH) ~ 6.0 units.” The two strongest SES
activities (Fig. 1.11(a),(b)) were recorded on April 18 and April 19 (and were classified as
such since they obey the criteria mentioned in Section 1.2). The second page reproduced
in Fig. 7.9(b) contained the probable time-chart that will be followed as well as a map in-
dicating the two candidate epicentral areas. The prediction text (Fig. 7.9(a)) stated that the
epicentral area located close to IOA was more probable. The third page was a photocopy
of the SES data, as collected through the real-time telemetric network; see Figs. 7.10 and
7.11 to which we now turn. (Recall that Fig. 1.11 depicts data collected with datalogger,
see Section 1.1).

Figure 7.10 shows the intense SES activity recorded at IOA on April 18, 1995. It was
mainly recorded on the NS short dipole array and on the 3 long dipoles. Figure 7.10(a)
shows the recordings of the following 5 dipoles (see the map in Fig. 1.3): Two NS short
dipoles (L = 100 and 184 m), one EW dipole (L = 50 m), and two long dipoles, labeled L
and L' (see Fig. 1.3(b)). Figure 7.10(b) depicts the recordings at the following 4 dipoles:
one EW short dipole (L ~ 50 m), one short dipole (L ~ 50 m, labeled IOA, NS) which
is almost parallel to the long dipoles that connect IOA with Perama village, and two
long dipoles, labeled L-I and L’ in Fig. 1.3(b) (L’ coincides with that also depicted in
Fig. 7.10(a)). The corresponding SES activity recorded on April 19, 1995, is given, as
mentioned, in Fig. 7.11.

In addition, in Figs. 1.11(a) and 1.11(b), we have presented the SES recordings col-
lected at two of the IOA sites, i.e., “B” and “C” (see the map in Fig. 1.3(c)), along with the
variations of the two horizontal components of the magnetic field that have already been
discussed in § 1.3.6.

Evaluation of the prediction. The prediction issued on April 30, 1995 shown in Fig.
7.9(a) discriminated between the two candidate epicenters, depicted in the prediction
map of Fig. 7.9(b). One candidate epicenter was in western Greece (i.e., close to the
Vartholomio-Killini area), while the second alternative was close to IOA. The prediction
text clarified that the second solution seemed to be more compatible with the experimental
facts. The predicted magnitude (for the latter solution) was (verbatim) “M;(ATH) ~ 5.5~
6.0 with an epicenter a few tens of km NW from IOA.” The actual epicenter (USGS
[26]) was 40.14°N, 21.67°E, i.e., lying at a distance Ar = 80-90 km far from the pre-
dicted area. The fact that the actual magnitude M (ATH)~6.6 exceeded the predicted one
M(ATH) ~ 6.0 by AM = 0.6, is consistent with what was naturally expected for larger
epicentral distances than predicted “a few tens of km”. As for the time-window, the EQ oc-
curred on May 13, 1995, i.e., during the fourth week after the SES initiation, in accordance
to the expected time chart; see § 1.3.1 case (b).
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In summary, this prediction obeyed the tolerances (with respect to the time-window,
epicenter and magnitude) for successful prediction. The latter is considered as such if
Ar < 100 km, AM(=30) < 0.7 and in addition Az obeys the expected (time) limits

(§ 1.3.1).
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Fig. 7.12 Determination of the occurrence time of the major M,,6.6 EQ on May 13, 1995 (see also
Fig. 7.13). The average distance (D) (red circles, left scale), the entropy S (open squares, right scale) and
the entropy under time reversal S_ (filled squares, right scale) of the seismicity versus the natural time ¥.
The distance (D) drastically decreases only a few days before the occurrence of the mainshock, and the
entropies S, S_, become smaller than S,(= 0.0966) satisfying condition (7.4). The numbers correspond
to the earthquakes listed in Table 6.1.

We now explain, following the preliminary procedure (§ 7.1.1), how the occurrence
time of this EQ could have been identified in advance. We consider all EQs within the area
A: Ng‘g:g E%:g that occurred after the SES activity at IOA on April 18, 1995. These have
already been listed in Table 6.1 and their analysis in natural time, explained in detail in
§ 6.2.1, resulted in the evolution of IT(¢), event by event, depicted in Fig. 6.3 (crosses).
A careful inspection of this figure (in conjunction with that of Fig. 6.1) reveals that a
coincidence is observed upon the occurrence of the EQ No. 12 on May 10, i.e., only 3
days before the mainshock. This is a frue coincidence, because (see § 7.1.1): first, the
average distance (D) between the curves of I1(¢) of the evolving seismicity and Eq. (7.1),
as shown by the red circles in Fig. 7.12 is less than 1072 at the coincidence; second,
Fig. 7.13 — which is an excerpt of Fig. 6.3 depicting only the cases from Fig. 6.3(b) to
Fig. 6.3(e) — shows that the evolving IT(9), i.e., the red crosses, approach the blue curve,
i.e., that of Eq. (7.1), from below upon the occurrence of the EQs No. 9, 10 and 11 (see
Table 6.1) and the coincidence occurs at the event No. 12. Third, the criterion of Eq. (7.4)
is obeyed, see Fig. 7.12. Finally, the occurrence time of the coincidence does not vary upon
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Fig. 7.13 Determination of the occurrence time of the major M,,6.6 EQ on May 13, 1995 (see also

Fig. 7.12). The normalized power spectrum (red crosses) IT(¢) of the seismicity within the area N393 E329

as it evolves event by event (whose date and time (UT) of occurrence are written in each panel) after the
initiation of the SES activity on April 18, 1995. The excerpt presented here corresponds to Figs. 6.3(b) to
6.3(e). In each case only the normalized power spectrum in the window 0 < ¢ < 0.5 is depicted (separated
by the vertical dotted lines), whereas the IT(¢) of Eq. (7.1) is depicted by the blue solid line.

changing either the magnitude threshold from M;j;.s = 2.8 to M0 = 2.9 or the area from

40.5 1722.0 40.4 1522.0
N3g5 Eqgs to N3g 5 Egs.

Thus, in short, applying the preliminary procedure, the occurrence time of this EQ
could have been identified around 3 days in advance.

7.2.2 The major Eratini-Egion M,,6.5 earthquake on June 15, 1995

SES data and the prediction issued. This is the EQ labeled E in Fig. 4.5(b) and its pre-
diction, as already explained in § 7.2.1, has been forwarded to the chairman (Sir James
Lighthill) of the International Workshop held by the Royal Society (London, May 11-12,
1995).

Figure 4.5(a) shows the strong SES activity (labeled E) that was recorded on April
30, 1995, at the station VOL (Fig. 1.2). The operation of this station had started only six
months before and hence the selectivity map, as well as the calibration of this station, was
still unknown. No SES activity (simultaneous to that at VOL) was recorded at the other
operating stations.

On the basis of the aforementioned SES activity, a two-page prediction was forwarded
to the Government with some delay (caused by the occurrence of the aforementioned major
EQ on May 13, 1995), i.e., on May 19, 1995. A photocopy is shown in Fig. 7.14, and its ab-
stract clarifies that a new strong EQ might hit Greece at a different epicentral area. Despite
the fact that the SES activity was recorded at a station not yet calibrated, the SES amplitude
(10 mV/km) allowed the estimation, that the expected magnitude would be comparable to
that of the EQ on May 13, 1995, i.e., around 6.6. Since the selectivity map of VOL was
still unknown, the epicenter was estimated as follows: in addition to the short dipole ar-
rays, the SES activity was recorded at two long dipoles (having almost the same direction,
i.e., SSW and SW in respect to the Volos city, and lengths L; = 5 km and L, ~ 22 km)
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CONTINUATION OF THE SEISMIC ELECTRIC SIGNAL ACTIVITIES IN GREECE

by P. Varotsos and M. Lazaridon

Abstract; The 6.6 earthquake of May 13 1995 was preceded by seismic
electrical activities recorded at IOA. A similar seismic electrical activity was
subsequently recorded at VOL, It seems probable that a new strong earthquake
(EQ) might hit Greece. This EQ should occur at a different epicentral area but with
comparable magnitude. The present prediction is not equally reliable with the
previous one, as VOL station is not yet calibrated (because it is operating during
the last 6 months).

On April 27 and 30, 1995 a prediction was issued based on seismic electrical
signal (SES) activities recorded at IOA on April 18 and 19, 1995. This prediction was

actually followed by a M;=6.6 earthquake with a USGS epicenter at 40.0°N, 21L6°E
(labelled with asterisk in Fig. 1). This area was previously considered to be aseismic
because such EQ had not occurred there for a period more than 1000 years.

Since last September an experimental station is operating at VOL. The
inspection of its records indicated that an SES activity was recorded on April 30 (ie.
not simultaneous with those earlier recorded at IOA) on both short and long dipole
arrays. Although this station is not yet calibrated we might guess that it is precursor
of an EQ similar to that of May 13, because its amplitude (10 mV/km) is comparable
to those at IOA. The epicenter should be different due to the following facts:

(i) The two long dipoles installed at VOL (with lengths 22 km and 5 km)

show comparable AV/L-values thus indicating a non nearby source (and hence the
neighbouring area of VOL should be excluded).

(ii) As the SES activity was not recorded at IOA, the areas belonging to IOA
selectivity map (large hatched area in Fig. 1) should be excluded. As the epicenter of
May 13 seems to belong to IOA selectivity map, the regions lying in its immediate
vicinity (and especially those in its western side) should also be excluded.

(iii) As the SES activity was not recorded at ASS, the area belonging to ASS
selectivity map (Fig. 1) ie. that surrounded by the regions a, b, and ¢ (and that of
Chalkidiki peninsula and the neighbouring sea) should be excluded. (Note however
that the VER area still remains as a candidate area as it is not well verified that it
belongs to the ASS selectivity map. Unfortunately VER is out of operation).

(iv) As the SES activity was not recorded at KER, the area lying in the
vicinity of Athens (and those in Peloponese) should be excluded. GOR is not
operating and its immediate vicinity cannot be excluded.

(v) The central Aegean sea {recorded at ASS or at KER) should be excluded.
However the area around Skiros and Alonisos islands cannot be excluded (they are
of smaller probability).

By summariging: The new EQ might occur in the remaining part [ie. after
deleting the areas due to the points (i) to (v)] of continental Greece. The spectrum
of the SES activity at VOL is strikingly similar to those recorded at IOA (on
April 18, 19) thus indicating that the EQ of May 13 and the expected EQ might
belong to the same tectonic process which, according to our opinion, is still going
on. The time evolution might follow Fig. 22 of Varotsos et al (1993).

Fig. 7.14 The prediction issued on May 19, 1995, related to the M,,6.5 EQ that occurred on June 15, 1995
that was sent on May 20, 1995 at several institutes abroad.



7.2 What happened before all earthquakes in Greece 311

with the same AV /L value; the latter fact indicated that the impending focal area should
lie at a distance r appreciably larger than the dipole lengths, i.e. r > L;,L, and hence
r/Ly > 1. As the ratio /L, had to be, at least, around 4-5, the epicenter should lie at a
distance more than ~100 km from VOL. Furthermore as the SES activity was not recorded
at the other four stations operating at that time, i.e. IOA, ASS, KER and PIR (see Fig. 1.2),
we excluded as candidate epicenters the seismic areas belonging to their selectivity maps.
We also excluded the area around the epicenter of the M,,6.6 earthquake which had just
occurred on May 13, 1995, because the latter was preceded by SES activities at [OA.
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Thus, the prediction of the epicenter was summarized in the text of the prediction
as follows: “The new EQ might occur in the remaining part... of continental Greece”.
More precisely, the following areas were excluded from continental Greece: central west-
ern Greece, Chalkidiki area (including Thessaloniki), the area within a radius of at least
~100 km around VOL, the Peloponnese, the neighboring area around Attica (i.e. Athens)



312 7. Identifying the Occurrence Time of an Impending Mainshock

Table 7.2 All EQs within N3 E22 that occurred after the initiation of the SES activity at VOL on April
30, 1995, until the M,,6.5 mainshock on June 15, 1995. Taken from Ref. [46].

No Year Month  Day Hour min sec Lat. Lon. Depth Mg,
1 1995 4 30 19 4 41 3882 2145 9 29
2 1995 5 2 8 26 56 3820 2176 32 2.7
3 1995 5 4 16 11 49 3833 2205 5 29
4 1995 5 6 1 44 12 3770  21.46 10 25
5 1995 5 6 17 44 59 38.51 21.50 24 2.6
6 1995 5 6 23 10 21 3844 2180 5 2.6
7 1995 5 8 5 11 9 3832 2214 21 4.0
8 1995 5 9 12 48 34 3832 22.09 10 25
9 1995 5 10 15 23 2 39.28  21.69 10 29
10 1995 5 12 7 25 13 39.12 2448 31 3.6
11 1995 5 13 11 53 1 39.56 2253 10 32
12 1995 5 13 13 31 55 3852 2204 5 33
13 1995 5 15 20 15 13 38.13 2166 9 2.8
14 1995 5 16 5 15 44 3897 2318 33 3.6
15 1995 5 16 10 1 30 3893 2177 5 3.0
16 1995 5 17 23 5 25 3973 2189 5 29
17 1995 5 17 23 10 52 39.70 2191 5 3.0
18 1995 5 17 23 20 30 39.74 2197 5 3.1
19 1995 5 18 4 48 27 3830 2218 22 32
20 1995 5 19 23 19 49 3824  21.87 11 2.7
21 1995 5 19 23 59 26 3812 22,65 34 2.8
22 1995 5 20 20 32 33 3841 2179 9 29
23 1995 5 22 17 35 27 39.54 2243 5 3.0
24 1995 5 23 2 56 49 39.51 22.25 10 2.7
25 1995 5 25 16 41 31 39.08  23.50 10 2.9
26 1995 5 25 20 32 11 39.74 2157 35 3.0
27 1995 5 26 1 28 47 3836  22.63 10 2.6
28 1995 5 26 7 9 25 3836 2200 5 29
29 1995 5 26 21 30 35 3843 21.81 6 2.7
30 1995 5 28 16 14 44 3890 25.04 49 32
31 1995 5 28 19 56 41 3838 2196 5 4.1
32 1995 5 28 20 9 14 3840 2190 5 3.0
33 1995 5 28 21 51 1 3828  22.67 10 3.0
34 1995 5 29 13 3 3 37.61 2278 5 2.8
35 1995 5 30 9 6 31 3850 2174 5 3.1
36 1995 5 31 12 25 42 39.21 22.88 10 3.0
37 1995 5 31 21 43 30 3939 22,63 29 3.0
38 1995 6 1 14 4 53 3813 2174 5 32
39 1995 6 2 14 47 46 39.20 2314 32 3.1
40 1995 6 4 18 47 35 3850 2225 5 2.6
41 1995 6 5 15 4 40 38.88  21.51 5 2.9
42 1995 6 5 16 50 24 3886 2147 5 29
43 1995 6 5 18 34 46 3898  21.47 12 2.7
44 1995 6 5 18 35 31 3897 2147 7 2.7
45 1995 6 6 20 12 14 3880 2158 5 2.9
46 1995 6 12 20 27 7 38.21 2222 39 29
47 1995 6 13 2 48 39 3829 2247 10 2.6
48 1995 6 14 11 8 41 38.04 2154 28 25
EQ 1995 6 15 0 15 51 3837 2215 26 5.6




7.2 What happened before all earthquakes in Greece 313

and, of course, the area of northern Greece around the major earthquake of May 13, 1995.
Of the remaining small part of continental Greece, the area lying in the vicinity of GOR
(this is a site shown in Fig. 1.1 lying in the vicinity of LAM; see Fig. 1.2) was the more
probable. Recall that the region to the north of GOR, close to VOL, was already excluded
in view of the same AV /L value collected at the long dipoles of VOL.

The actual epicenter of the mainshock at 00:15UT on June 15 was at 38.4°N, 22.3°E
(USGS [26]) being consistent with the prediction, since it lies less than 40-50 km
almost south of GOR. The actual EQ magnitude was M,, = 6.5, thus being also con-
sistent with the predicted value 6.6.

As for the prediction of time, the last row of the prediction text indicated that the time
evolution of seismicity might follow fig. 22 of Varotsos et al. [36]. What actually happened
is shown in the lowest time-chart of Fig. 7.15 and the comparison to the predicted time
chart (i.e., the upper one in Fig. 7.15), reveals a striking agreement. Note that a smaller EQ
with M;(ATH) = 4.8 occurred on May 28, 1995, at 38.4°N, 22.0°E, i.e. practically at the
same area where the mainshock occurred almost two weeks later.

We now apply the updated procedure (§ 7.1.2) for the determination of the occurrence
time of this EQ since the preliminary procedure can be found elsewhere [45, 46]. We con-
sider all EQs (see Table 7.2) that occurred within the area A: Ng% E%?(i) after the initiation
of the SES activity recorded at VOL on April 30, 1995, and their M values are estimated
using the relation log;o(My) = 1.64My + const. as in § 7.2.1. The computation of kj is
extended, as mentioned in § 7.1.2, to all possible subareas of the area A and then the plot
of the probability distribution Prob(k;) versus kj is constructed after the occurrence of
each small event since April 30, 1995. Excerpts of these results that correspond to the
period June 1 to June 12, 1995, are shown in Figs. 7.16(a) to 7.16(c) for three magnitude
thresholds, i.e., M;es = 2.5, 2.6 and 2.8. An inspection of these figures reveals that:

Upon the occurrence of the My, = 2.9 event at 20:27 UT on June 12, 1995, the probabil-
ity distribution Prob(k;) maximizes at k; = 0.070 for all three magnitude thresholds
(see the arrows in Figs. 7.16(a) to 7.16(c)), thus signaling the impending mainshock
that occurred almost two days later at 00:15 UT on June 15, 1995.

7.2.3 The major Aegean M,,6.5 earthquake on July 26, 2001

This is the major earthquake labeled A in Fig. 4.5. This figure also depicts the preceding
SES activity which had duration of around two hours and was recorded at the station VOL
on March 17, 2001. It was clearly detected at several short- and long-measuring dipoles
located in a zone with spatial dimensions (a few tens km) x (several km), see Fig. 1.4.
A copy from the recordings of the real-time telemetric network is given in Ref. [35] as
well as in Ref. [41], while Fig. 7.17(a) depicts the digital recordings from the long-dipole
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Fig. 7.16 Determination of the occurrence time of the M,,6.5 EQ on June 15, 1995. Prob(k;) versus k;
when considering the seismicity within the area Ng?:; E%?:g since the initiation of the SES activity recorded

at VOL on April 30, 1995. Excerpts for the period June 1 to June 12, 1995, are shown for (a) M;py.s

(b) Mypyes = 2.6 and (¢) My, = 2.8. The thick horizontal line corresponds to k;

2.5,

the maximum of Prob(k;) vs kj observed at k1 = 0.070 on June 12, 1995, for all thresholds M.s =

2.6 and 2.8.
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Fig. 7.17 SES activities before the major EQs with M,, > 6.4 since 2001. The short-duration SES activity
(a) was recorded at VOL in 2001, while the three long-duration SES activities of (b), (c) and (d) at PIR in
2005 (b) and in 2008 (c, d) (see the text).

V —Ssp; see the map in Fig. 1.4. The digital recordings from all the measuring dipoles can
be found in Ref. [41].

The epicenter of the impending seismic activity was estimated to be within the region
marked with the broken line in Fig. 7.18. The procedure through which the SES activity
was identified, as well as the expected epicenter and magnitude (M =~ 6.5) were deter-
mined, has been described in detail in Ref. [41] that was submitted for publication on
March 25, 2001, i.e., almost four months before the EQ occurrence. Such a lead time
seems to be in principle too long (note that a tentative explanation in terms of tectonics
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Fig. 7.18 The area ‘bordered’ by the
broken curve (surrounding VOL) was
the predicted area in Ref. [41] for
the epicenter of the impending EQ
@® Field Station related to the SES activity depicted in
m Cenfral Station Fig. 7.17(a). Taken from Ref. [41].

and geodynamics of that seismic area has been discussed in Ref. [3]) but interestingly
conforms with natural time analysis of the subsequent seismicity to which we now turn.

Since the preliminary procedure can be found elsewhere [45, 46], we present here the
updated procedure (§ 7.1.2). We consider all EQs that occurred after the initiation of the
SES activity at VOL on March 17, 2001, within the area A: N33 E33S, which includes
the predicted area ‘bordered’ by the broken line in Fig. 7.18. The natural time analysis of
seismicity (by using, as in § 7.2.1, the relation log,(Mo) = 1.64M}, + const., where M, is
taken from GI-NOA) was made, as explained in § 7.1.2, for all possible subareas of the
area A and the resulting K values lead to the probability distribution Prob(k ) of k; shown
in Fig. 7.19. An inspection of this figure shows that:

Upon the occurrence of the My = 3.0 EQ at 16:35 UT on July 25, 2001, which took
place just eight hours before the mainshock (that occurred at 00:21 UT on July 26,
2001), Prob(k;) vs k) exhibits a maximum at k; = 0.070 marked with arrows in
Fig. 7.19(a), (b) and (c) for three magnitude thresholds, i.e., My..s = 2.8, 2.9 and
3.0, respectively.

Concerning the actual magnitude of this mainshock, i.e, M,, = 6.5, it is comparable
to the one estimated in advance [41].

As for its actual epicenter (see Table 7.1), it actually lies within the predicted area
‘bordered’ by the broken line in Fig. 7.18 and close to its eastern side.
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Fig.7.19 Determination of the occurrence time of the major

222 E%gg since the initiation of the SES activity

recorded at VOL on March 17, 2001. The period July 19 to July 25, 2001, is shown for (a) Mijes = 2.8,

k1 when considering the seismicity within the area N
(®) Minres

3.0. The thick horizontal line corresponds to k1 = 0.070. The arrows
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show the maximum of Prob(k;) vs kj observed at k; = 0.070 upon the occurrence of the M; = 3.0 event

at 16:35 UT on July 25, 2001.
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Note that the predicted area is smaller than the one, i.e., N gg:g E%gg considered in the

computation of kK in the natural time analysis of seismicity. This could be understood in
the following context. The (predicted) area in Fig. 7.18 is solely based on the SES char-
acteristics governed by the electrical inhomogeneities in the Earth’s crust, and hence does
not necessarily coincide with the area considered in the updated procedure that involves
the preceding small EQs that finally establish long-range temporal correlations. The same
argument holds for the case of the EQ discussed in § 7.2.2.

7.2.4 The major M,,6.7 earthquake in southern Greece on January 8, 2006

Two intense SES activities, with a duration of several hours each, were recorded [42] at
PIR station on September 17, 2005. They are shown together in Fig. 7.17(b), where we see
that the first lasts until around 07:00 UT, while the second one starts after 09:00UT.

Almost one month later, a M,,5.7 EQ occurred in Western Greece on October 18, 2005,
with an epicenter at 37.58°N 20.86°E (Table 7.1). USGS and Harvard reported that this EQ
was mainly of thrust type, which, however, seemed to deviate from an earlier conclusion
of Uyeda et al. [28] who had found that, for the EQs in the transform fault zone west
of Kefallinia, the station PIR was mainly sensitive to strike—slip type EQs. In view of
this deviation, doubts were raised whether any of the two SES activities of Fig. 7.17(b)
were actually correlated with the EQ of October 18, 2005. As a result four days later,
i.e., on October 22, 2005, a paper was submitted [42] raising the possibility that the two
SES activities in Fig. 7.17(b) were in fact a one-day long-duration SES activity probably
correlated with an impending strong EQ (not from the aforementioned area studied by
Uyeda et al. [28]). Actually, at 11:34 UT on January 8, 2006, the M,,6.7 EQ occurred in
southern Greece with an epicenter at 36.3°N 23.3°E, i.e., in an area different from the one
studied earlier by Uyeda et al. [28].

42°N

Fig. 7.20 A map showing the areas
discussed in § 7.2.4,§7.2.5 and § 7.2.6.
The corresponding determination of
the occurrence time for the M,,6.9 EQ
on February 14, 2008 (red star), and
the M,,6.7 EQ on January 8, 2006
(green star), was made by considering
the seismicity within the red rectangle
N33:6 E322 and the green rectangle
N372 E334 respectively (see the text).
The shaded area shows the PIR selec-
14 Feb 2008 o tivity map updated in 2008 that was
o used later (§ 7.2.6) for the determi-

o+ F o+ o+t o+ o+ o+t Lt ot o+t

N B nation of the occurrence time of the

L L L S S S S major M,,6.4 EQ on June 8, 2008. Solid
34°N dots show the measuring stations of the
20°E 22°E 24°E 26°E 28°E telemetric network.
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Fig. 7.21 Determination of the occurrence time of the major M,,6.7 EQ on January 8, 2006. The variance
k) (green), the entropy S (blue) and the entropy under time reversal S_ (red) of the seismicity within the
green rectangular region of Fig. 7.20, as it evolves event by event after the long-duration SES activity
recorded at PIR on September 17, 2005 (Fig. 7.17(b)): (a): For all small seismic events reported by GI-
NOA, i.e., M5 = 2.6 and (b): For seismic events with M;;,.; = 3.0. The horizontal solid line corresponds
to k1 = 0.070 while the broken to S, = 0.0966. Taken from Ref. [43].

We now follow the preliminary procedure explained in § 7.1.1. We set the natural time
for seismicity zero at the initiation time of the SES activity recorded at PIR on September
17, 2005 (Fig. 7.17(b)) and form time series of seismic events in natural time for various
time windows as the number of consecutive (small) EQs increases. We consider [42] all
the small EQs (i.e., with My > 2.6) that occurred before the mainshock, within the region
N gg% E%‘z‘:i surrounding the epicenter (see the green rectangular area in Fig. 7.20) according
to the EQ catalog of GI-NOA (the corresponding M values have been estimated from the
relation log;((Mo) = 1.64My, + const. as in § 7.2.1). For each of the time windows, the
following quantities have been computed: xy, (D), S and S_ and the results are plotted in
Fig. 7.21(a). An inspection of this figure shows that k; approaches the value 0.070 from
above at 12:46 UT on January 6, 2005, i.e., almost two days before the occurrence of the
mainshock. Furthermore, both S and S_ values at the coincidence are smaller than the value
S, = 0.0966 in accordance to Eq. (7.4). In addition, we confirmed that (D) is smaller than
1072 Finally, upon changing the magnitude threshold (i.e., taking M;p,.; = 2.8, instead
of My,es = 2.6) and studying a smaller region, i.e., Ngg:? E%‘z‘%, the occurrence time of the
coincidence remains the same. Thus, we conclude that the conditions mentioned in § 7.1.1
for a true coincidence are obeyed. Despite this fact, and in order to shed more light on
a point already tackled in § 7.1.1, we repeated the same calculation, but by imposing an
even larger magnitude threshold, i.e., M;p,.s = 3.0. We then obtained the results depicted
in Fig. 7.21(b) showing that the critical point is approached a week before the mainshock
(note that no EQ with My, > 3.0 occurred during that week). The difference in the results
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is understood in the context already mentioned in § 7.1.1: if higher magnitude threshold
is used, the description of the real situation approaching criticality becomes less accurate
due to ‘coarse graining’ [43] since the number of events is finite.

In summary, the natural time analysis of the seismicity subsequent to the long-duration
SES activity at PIR enables the determination of the occurrence time of the M,,6.7 EQ
on January 8, 2006, within a narrow range of around 2 days up to 1 week.

7.2.5 The two major M,,6.9 and M,,6.5 earthquakes in southwestern Greece on
February 14, 2008

In this case, both short- and long-duration SES activities have been recorded (Table 7.1).
The short one came first [44] and it was recorded (see Fig. 7.22(b)) on January 14, 2008, at
the station PIR. Almost one week later, a long duration SES activity of the same polarity
and amplitude was recorded also at PIR (Fig. 7.17(c)). The natural time analysis of the
former (labeled PIR3 in Table 4.6), which is of clear dichotomous nature, led [44] to the
following parameters: x; = 0.070+0.005, S = 0.086 £ 0.003, S_ = 0.070 £ 0.005, which
obey the conditions in order to classify this signal as SES activity (note that it also satisfies
the criteria mentioned in Section 1.2).

After this classification, the study of the seismicity in natural time was immediately
started in the area A: Ngg:g E%:g (determined by means of the procedure described in
§1.3.5) as publicized on February 1, 2008, by Varotsos et al. [44] (this area is marked with
the red rectangle in Fig. 7.20). The corresponding M, values have been again estimated
using the relation log,,(Mo) = 1.64My + const. as in § 7.2.1. We now draw attention to
the difficulty arisen if the preliminary procedure (§ 7.1.1) is applied to the present case.
Within the area N%g:gE%:g studied since the initiation of this SES activity on January 14,
2008, two EQs with magnitudes M;(ATH) ~ 5.5 occurred on February 4, 2008, close to
PAT associated with the SES activity at PAT on January 10, 2008; see Fig. 7.22(a). This
results in the fact that the x; value becomes very small, i.e., k1 = 0, at any small area
surrounding the epicenters of these two EQs (see § 6.2.1; see also Ref. [54]). On the other
hand, in the updated procedure (§ 7.1.2) the computation of k; is extended to all possible
subareas of the area Ngg:gE%:g. Then the plot of the probability distribution Prob(x;) ver-
sus k] (shown in Fig. 7.23 for M,;,.s = 3.2) constructed after the occurrence of each small
event exhibited a bimodal feature. The one mode, corresponding to nearly zero k; values,
results from the subareas that contain the aforementioned two EQs of magnitude 5.5. The
other mode, maximized at x; = 0.070, comes from subareas which do not include these
two EQs. It is the latter mode that upon the occurrence of a small event at 04:07 UT on
February 12, 2008; see the case marked with an arrow in Fig. 7.23, signifies the approach
to the critical point. Two days later, i.e., at 10:09 UT on February 14, 2008, the M,,6.9
earthquake occurred at 36.5°N 21.8°E inside the area N35-SE323 specified in advance [44].
Two hours later, i.e., at 12:08 UT, a M,,6.5 EQ followed almost at the same epicenter.

At that period, beyond the updated procedure, the preliminary one was simultaneously
applied. The latter procedure, upon avoiding the difficulty described above (i.e., by exclud-
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ing the influence of the aftershocks around the two M;(ATH) ~ 5.5 EQs that had already
occurred close to Patras on February 4, 2008), had led to the conclusion that the critical
point was approached somewhat earlier, i.e., on February 10, 2008 (note that the differ-
ence in the results of the two procedures can be understood on the basis of the discussion
in § 7.1.1 concerning the ‘coarse graining’ when using different magnitude thresholds).
This explains why we were able to publicly announce on February 10, 2008, that the major
EQ is imminent, as described in detail by Uyeda and Kamogawa [30, 31].

The M,,6.9 earthquake on February 14, 2008, according to USGS [26], is the strongest
one in Greece since 1983. As explained above, all the parameters of this earthquake,
i.e., the epicentral area (see the red rectangle in Fig. 7.20), the magnitude (recall that
only when the expected M is larger than 6.0, a prediction is publicized) and the occur-
rence time were specified and announced in advance.



322 7. Identifying the Occurrence Time of an Impending Mainshock

Problky)
03

Q2

Fig. 7.23 Determination of the occurrence time of the major EQs on February 14, 2008. Study of the
Prob(x) versus k; for the seismicity (M;j,.s = 3.2) that occurred within the area Ngg:g E%g after the short
duration SES activity at PIR on January 14, 2008, depicted in Fig. 7.22(b). Taken from Ref. [21].

7.2.5.1 The experimental error in the epicentral location of small EQs and its
influence on the determination of the occurrence time of an impending
mainshock

The results depicted in Fig. 7.23 have been obtained upon adopting a reasonable ex-
perimental error in the determination of the epicentral coordinates of the small EQs in-
volved in the aforementioned computation. In particular, two small EQs have been as-
sumed to occur at different locations iff their reported epicentral coordinates differ more
than 0.02° x 0.02°. In other words, the number of the possible subareas inside the esti-
mated area A: N%g:g E%:g was counted after using a grid with “cells” having dimensions of
0.02° x 0.02° and considering the reported epicentral coordinates of the small EQs. On the
other hand, if we assume that the EQ epicentral coordinates, that have been reported with
two decimals, are accurate and construct a grid based on these coordinates (adaptive grid),
the population of the resulting possible subareas of the area Ngg:g E%:g becomes markedly
larger, thus leading to a somewhat different result. Namely, based on the latter assumption
the computation was repeated and led to the results depicted in Figs. 7.24(a), 7.24(b) and
7.24(c) for Myjes = 2.8, 2.9 and 3.0, respectively. They show that a maximum of Prob(x)
versus k7 at k] =~ 0.070 is simultaneously observed in all the three magnitude thresholds
upon the occurrence of a My = 3.4 event at 10:40 UT on February 7, 2008, with epicenter
at 38.37°N 20.32°E. This date, which is almost one week before the M,,6.9 mainshock of
February 14, 2008, differs from the one (i.e., February 12, 2008) of the maximum observed
in Fig. 7.23.
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In other words, we conclude that the date at which the maximum of Prob(k;) versus
k1 at k1 ~ 0.070 is observed, depends somewhat on the accuracy considered in the
epicentral coordinates of the small earthquakes involved in the computation.

This accuracy depends of course on several factors (including the density of the seis-
mological network operating in the area investigated) and should be considered with care
in each case separately. Since, however, the estimation of this accuracy is far outside of the
scope of the present monograph, in all the other examples treated here, we assumed that
the epicentral coordinates as reported are accurate.

We also note that a random experimental error (=0.2 to 0.3) in the EQ magnitude, does
not seem to affect the date of a frue coincidence, as shown by Uyeda et al. [32] when
applying the preliminary procedure.

7.2.6 M,,6.4 earthquake in the Peloponnese on June 8, 2008

This major EQ was preceded by that long-duration SES activity-lasted from February 29
to March 2, 2008 (see Fig. 7.17(d) which just reproduces the upper channel of Fig. 1.16).
After subtracting the MT background with the procedure described in § 1.4.3.1, the signal
was analyzed in natural time (see Section 4.11) and classified as an SES activity (note that
it also obeys the criteria mentioned in Section 1.2).

The investigation of the subsequent seismicity was conducted at first (see Ref. [20])
in the area N35§ E330, which is somewhat smaller than the PIR selectivity map known
at that time. This was in an attempt to avoid as much as possible the influence of af-
tershocks of the M,,6.9 EQ at 36.5°N 21.8°E on February 14, 2008. This policy was
considered justified, based on the notion that a criticality approach would take place in
proper subareas simultaneously. At the same time, an attempt was also made to extend
the area A to include the shaded area along the Hellenic Arc as shown in Fig. 7.20.
This extension was based on the recent pieces of information for PIR selectivity map,
including the occurrences of the aforementioned M,,6.9 EQ on February 14, 2008 (see
§ 7.2.5), associated with the SES activity of Fig. 7.17(c) and the M,,6.7 EQ at 36.3°N
23.2°E on January 8, 20006 (see § 7.2.4) following the SES activity of Fig. 7.17(b) at PIR
[42]. In the study for the extended PIR selectivity map area (shaded region in Fig. 7.20),
we raised the magnitude threshold to M;j,.s = 3.9, 4.0 and 4.1, because the extended
area along the Hellenic Arc is highly seismic and there were too many (more than half
a thousand) events to handle for Mj,.; = 3.2. This study showed that upon the occur-
rence of a M;(ATH) = 5.1 EQ at 35.5°N 22.4°E at 23:26 UT on May 27 (practically
May 28), 2008, the probability Prob(k;) exhibits a pronounced maximum at k7 ~ 0.070
marked by a vertical arrow in Fig. 7.25(a) drawn for M, = 3.9. Similar maxima at
K1 ~ 0.070 appeared simultaneously for M., = 4.0 and M;;,.s = 4.1 (see Figs. 7.25(b)
and 7.25(c), respectively), thus indicating that the critical point has been approached.
This was reported on May 29, 2008, in Ref. [22]. Actually, at 12:25 UT on June 8§,
2008, a M,,6.4 EQ occurred at 38.0°N 21.5°E, i.e., inside the candidate area N355E320
(see Ref. [20] publicized on March 20, 2008). It caused extensive damage (four people
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lowed by the

were killed while several hundred houses were seriously damaged). The magnitude 67

as mentioned in the last para-

graph of the Appendix of Ref. [21](which had been submitted for publication on March

class EQ expected from the amplitude of the SES activity,

=6.4.

21, 2008, i.e., after the completion of the analysis in natural time of the SES activity de-
picted in Fig. 7.17(d)), was reasonably well supported by the actual EQ magnitude [26],

ie., M,
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Thus, in short, all the parameters of the M,,6.4 earthquake that occurred at 12:25 UT
on June 8, 2008, i.e., the epicentral area, the magnitude and the occurrence time, were
specified and announced well in advance.

42°N

40°N

38°N

36°N

34°N

20°E 22°E 24°E 26°E 28°E

Fig. 7.26 The shaded area shows the up to that date (29 May 2008) addition to the PIR selectivity map.
Solid dots show the measuring stations, while the stars denote the epicenters of the EQs discussed in

Ref. [21] that were preceded by SES recorded at PIR. The rectangle with solid lines corresponds to the area

Ng?:gE%g:g which is the preliminary selectivity map of PAT while the one with broken lines to N%g:gE%:g,

which is also shown (in red) in Fig. 7.20. Taken from Ref. [21].

7.3 Summary of all SES predictions issued along with all earthquakes
of magnitude M,, > 6.0 in Greece since 2001

Table 7.1, as mentioned in § 7.2, compiles the information on what happened before all
EQs with M;(ATH) > 6.0 that occurred in Greece within the area N4, E2] since 2001. We
clarify that this Table also compiles all the predictions issued since 2001 considering that a
prediction is issued only when the expected magnitude (on the basis of the SES amplitude)
is M;(ATH) > 6.0 (see § 7.2).

An inspection of Table 7.1 along with the contents of § 7.2.1 to § 7.2.6, which explain
what happened before each of the major EQs with M,, > 6.4, leads to the following main
conclusions:
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(a) Concerning the natural time results of both the most significant SES activities and
their subsequent seismicities until the corresponding mainshock since 2001: the results
(see Table 7.1) reveal that in all cases but one (i.e., the one in 2003 in which the
body wave magnitude mb = 5.6) with M,, > 6.0, natural time analysis enabled the
classification of the relevant SES activity. This was documentated publicly well before
the EQ occurrence.

(b) The cases mentioned in (a), include all five major EQs with M,, > 6.4 related
to four mainshocks (Fig. 7.8). In each of these mainshocks, the occurrence time was
identified within a narrow range, a few days to around one week or so, by analyzing in
natural time the seismicity after the initiation of the SES activity. The same holds for
the two major EQs during the previous decade (1990-2000, see Fig. 7.8) as shown by
natural time analysis carried out in retrospect.

7.4 The volcanic-seismic swarm activity in 2000 in the Izu Island
region, Japan

SES experimentation has been carried out by Uyeda and coworkers (e.g., Uyeda [27],
Uyeda et al. [33, 29, 32], Orihara et al. [18]). The study has been made in two stages: In
Stage 1 (1987-1995), only long dipole (L = 1-10 km) networks were used (Kinoshita et al.
[9]; Takahashi et al. [24]; Nagao et al. [17]). In Stage 2, i.e., since 1996, short (L ~ 100 m)
dipoles have been also installed. Several precursory changes similar to those observed in
Greece have been recorded. They have been summarized by Uyeda et al. [33, 34] as well
as in pp. 34-37 of Ref. [35].

Below we focus on the natural time analysis of the preseismic electrical anomalous
changes and the seismicity observed in the 2000 swarm in Izu Island region, Japan.

This study by Uyeda et al. [32] is important because the nature of both seismic and
electrical activities is vastly different from the Greek cases, i.e., the number of EQs
subsequent to the initiation of the electrical disturbance was almost two orders of mag-
nitude larger and the duration of electrical activity was around one order of magnitude
longer than in Greek cases. Moreover, the swarm in the Izu Island region was consid-
ered closely related to volcanic/magmatic activity in contrast to the Greek cases.

In this Section we closely follow Uyeda et al. [32].

7.4.1 Natural time analysis of the precursory electric signals

The data collected. In the Izu Island region, a map of which is given in Fig. 7.27, electri-
cal measurements were carried out in Niijima Island by means of 16 measuring electric
dipoles (long and short ones) with sampling rate f,x, = 0.1 Hz. Anomalous electrical
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changes were recorded [29] at two of these electric dipoles. Niijima Island is usually elec-
trically almost noise free (Figs. 7.28(a) and 7.28(d)), the long (=6 km) dipole “Wak-Air”
connecting Wak (Wakago Village) and Air (Airport) and the short (=30 m) dipole “Wak”
in Wakago Village started to show innumerable visually clear unusual changes from 2
months before the onset of the swarm activity (i.e., on April 26, 2000) as illustrated in
Figs. 7.28(b) and 7.28(c). Figure 7.29 shows the 3-year records of daily spectrum intensity
at 0.01 +0.003 Hz after reducing noises common to “Air-Boe” dipole which showed no
unusual changes by taking the intensity ratio of “Wak-Air” and “Air-Boe” dipoles. These
two dipoles are almost in the same NS direction (see Fig. 7.27). They showed similar
noises, mainly due to geomagnetic variations [29], while only “Wak-Air” dipole showed
the unusual changes. In Fig. 7.29, it is clear that the anomalous changes were enhanced
after the swarm activity started until the monitoring was interrupted in July and August
2000 by power failure caused by EQ shaking and typhoons.

Fig. 7.27 Index map of the Izu Island region.
ﬁ Dots are Mjy4 > 0 EQs from 1 June to
September 30, 2000. Stars are Mjy4 > 6
EQs. Right inset is a map of Japan with plate
} 35°N boundaries. P. plate, Pacific Plate; P. S. Plate,
1o e manean Philippine Sea Plate; N. Tr., Nankai Trough;
Q Tr-ghehime S. Tr., Sagami Trough. Left inset shows the
: long dipole configuration of Niijima Island.
b ojase . 400 A short dipole (not shown) is also installed at
i Pagm'gsdlwi :":. the far end of each long dipole centered at Air
B viyaiciin ] ; (Airport). Shaded parts near Wak are basaltic
T July 30 M6.4 ~134° exposures. Broken rectangle shows the
50 region of seismicity study N33SE!S. Taken
from Ref. [32]. Copyright (2009), American
Geophysical Union. Reproduced/modified by
138°E 139° 140° 141°  permission of American Geophysical Union.

These anomalous changes observed on almost perpendicularly oriented “Wak-Air” long
and “Wak” short dipoles cannot be attributed to any source of “artificial” noise in this
island of small population and no industry. Furthermore, the observed changes cannot be
related with electrode noises, because the two dipoles were independent without a common
electrode. As already mentioned in § 1.3.4, it is not uncommon that SES-sensitive sites
are locally highly selective which means most sites are insensitive and a sensitive site is
found only after a painstaking search through repeatedly moving temporary observation
network, e.g. see Refs. [36, 10]. Moreover, as pointed out by Uyeda et al. [32], young
basaltic rocks are exposed only at Wak area on the Island which otherwise exclusively
consists of less conductive rhyolitic rocks (see the inset in Figure 7.27), suggesting highly
heterogeneous underground electrical structure typical of a volcanic zone. According to
volcanological studies [11, 25], Niijima Island was formed by rhyolitic activity in the
Late Pleistocene and the basaltic exposure in Wakago area is less than a few thousand
years old, the last basaltic magma phreatic activity being in the 9th century. It might be
speculated [32] that the basaltic exposure is connected to the underground magma body,
providing possible electrical channel for the transmission of electrical signals. In order to
check these conjectures, which seem to be supported by a detailed geoelectrical modeling
by Huang and Lin [6], a thorough electromagnetic exploration of the island is needed.
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Fig. 7.28 Examples of typical 24-h records of the Wak-Air long dipole potential difference [29] (50
mV/km scale is indicated on the vertical axis). (a) Before 26 April. Records showed mainly smooth vari-
ations only. (b) During 2 months before the onset (26 June) of the seismic swarm activity. Numerous
anomalous changes occurred. (c) Just after 26 June. Anomalous changes were more conspicuous. (d) Af-
ter the cessation of the swarm activity, records resumed usual quietness. Time windows 1, 2, 3, and 4
are indicated in Fig. 7.29 (top). Taken from Ref. [32]. Copyright (2009), American Geophysical Union.
Reproduced/modified by permission of American Geophysical Union.
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Uyeda et al. [32] proceeded to the natural time analysis of the observed anomalous
electric signals as follows. They first subtracted the MT background changes by ap-
plying a procedure similar to that explained in § 1.4.3.1 and the remaining signal was
subsequently analyzed by applying natural time analysis as described earlier in Section
4.11. They found that these electrical disturbances had common characteristic proper-
ties with the SES activities in Greece. Thus, Uyeda et al. [32] concluded that they may
well be called a SES activity.
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7.4.2 Natural time analysis of Izu 2000 seismicity subsequent to the initiation of the
SES activity

Uyeda et al. [32] applied the preliminary procedure explained in § 7.1.1. By setting natu-
ral time zero at the initiation time of the SES activity, analysis of the time series of seis-
mic events in the rectangular region from N33.7° to N34.8° and from E139° to E140° as
marked by broken lines (Fig. 7.27) was conducted using the JMA Catalog. In other words,
the time series of seismic events in natural time was formed for increasingly longer time
windows as the number N of consecutive EQs increased. Then, they computed IT(¢) for
each of the time windows and examined its behavior. Specifically, the investigation was
made for the period from 15:33 (LT) on April 30 (which was the occurrence time of the
first EQ with magnitude greater than 3.5 after the initiation of the SES activity) until just
before the occurrence of the first magnitude 6 class EQ very close to Niijima Island (July
1, 2000).

Uyeda et al. [32] used the magnitude in the JMA catalog (Myu4) and employed
Egs. (6.10) to (6.13) to calculate the moment magnitude M,,. Then, the relation [5]
My < 101w was used to obtain the values of the seismic moment My, as indicated
in Fig. 2.1(b). The spatiotemporal evolution of the seismicity for magnitude threshold
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Fig. 7.30 Seismicity for M4 > 2.0 in the region N%g‘:?E{gg in the study period in 2000: (a) 1 January
to 25 April, (b) 26 April to 25 June, (c) 26 June to 14:45 LT on 27 June, i.e., almost until the “true
coincidence” (see Fig. 7.31), (d) after the “true coincidence” until 16:47 LT on 28 June, (e) 16:47 LT on
28 June until 15:31 LT on 29 June, and (f) after this, until the first magnitude 6 class EQ on July 1. Inset
rectangle shows the smaller study area. Taken from Ref. [32]. Copyright (2009), American Geophysical
Union. Reproduced/modified by permission of American Geophysical Union.
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by permission of American Geophysical Union.
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Fig. 7.32 (bottom) Time evolution of IT(¢) for 0 < ¢ < 0.5 of the seismic activity for Myya > 3.0
when the calculation was started on 30 April. IT(¢) curves (red) fall on the theoretical IT(¢) curves (blue)
calculated from Eq. (7.1) as critical stage is approached. (top) The difference D between the two curves.
(a) Examples for the morning hours of 27 June. (b) At the last six events which occurred at 15:26:35,
15:29:08, 15:29:22, 15:31:50, 15:35:04, and 15:35:10 LT on 27 June until the “true coincidence”. Taken
from Ref. [32]. Copyright (2009), American Geophysical Union. Reproduced/modified by permission of
American Geophysical Union.

Mjma > 2.0 in the studied region is shown in Figs. 7.30(a) to 7.30(f). The readings of
the seismicity in natural and conventional time frames until the coincidence marked A on
June 27 are shown in Fig. 7.31 for three different magnitude thresholds. Figures 7.30(a)
to 7.30(f) show how nonlinearly the two time frames are interconnected. One may notice
that the natural time covered in Figs. 7.30(a) to 7.30(f) is practically from June 26 to June
27, indicating that important changes took place in a short period even before the bulk
of the swarm activity (see Fig. 7.29). Figure 7.32 (bottom) clearly shows that for magni-
tude threshold 3.0 as an example, the computed IT(¢) curve approaches the critical IT(¢)
curve from below on June 27, 2000, a few days before the first M > 6 earthquake of July 1,
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Fig.7.33 D= (D), k1, S, and S_ of
the evolving seismic activity versus
the natural time ). The calculation
was started on 30 April and contin-
ued until the true coincidence A on
27 June just 4 days before the first
M > 6 class EQ on 1 July. Three
magnitude thresholds (M4 > 2.5),
(Myma = 3.0), and (Mypa > 3.5)
are considered. (a) D is plotted and
(b) the quantities kj, S, and S_

are shown with the symbols de-
picted. Taken from Ref. [32]. Copy-
right (2009), American Geophysical
Union. Reproduced/modified by per-
mission of American Geophysical
Union.

Fig. 7.34 Coincidence date versus
the starting date of calculation for
four magnitude thresholds. The SES
activity started on April 26. The
shaded triangular area is irrelevant
because the coincidence has to be
only in the unshaded area. Taken
from Ref. [32]. Copyright (2009),
American Geophysical Union. Re-
produced/modified by permission of
American Geophysical Union.
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2000. The approach of the two curves is more clearly demonstrated in the upper panel of
Fig. 7.32, in which D is plotted.

Moreover, Fig. 7.33 depicts (D), ki, S, and S_, as they evolved event by event during
the whole period (April 30 to June 27). This figure also shows that all three different
magnitude thresholds resulted in approximately the same time of coincidence on June
27, supporting the self-similar structure of the process concerned [32].

As to the spatial self-similar nature of the process, a similar calculation was made for
a smaller region depicted in Fig. 7.30(a). The results showed the same behavior. Thus, the
coincidence on June 27 is considered as frue coincidence since all the conditions men-
tioned in § 7.1.1 are obeyed. It may be added here that in fact, Uyeda et al. [32] made
the calculations until the last event before the first M > 6 class EQ of July 1 and there was
another case with x; = 0.070. But this second case was discarded because it did not satisfy
the entropy criterion for true coincidence, i.e., the condition (7.4).

Figure 7.34 shows the coincidence dates (vertical axis) when the calculations were
started on the dates shown on the horizontal axis for four magnitude thresholds. The cal-
culation with M2.4 threshold was added here in order to check if the true coincidence
A recognized by the abovementioned three threshold calculations satisfies the magnitude
threshold invariance even for M2.4 threshold. Figure 7.34 clearly shows that frue coinci-
dence is reached at a time close to the date of the first M > 6 shock, i.e., late June, only
when the calculation was started around the initiation date of the SES activity, which is
indicated by a vertical broken line in Fig. 7.34. It was found that the self-similarity con-
dition for M2.4 threshold was useful for identifying true coincidence. One may wonder
if the uncertainty in magnitude (or moment) determination bothers this kind of analy-
sis.

Hence, Uyeda et al. [32] have conducted simulation test giving 0.2—0.3 random error
of magnitude and concluded that the date of the true coincidence is not affected.

7.4.3 Main conclusions from the study of the Izu 2000 case

Uyeda et al. [32], after analyzing in natural time both the SES activity started on April 26,
2000, as well as the subsequent seismicity, as explained in § 7.4.1 and § 7.4.2 respectively,
obtained the following main conclusions:

First, before the first magnitude 6 class EQ on July 1, one frue coincidence was ob-
served on June 27. Thus, the analysis in the natural time domain of the seismicity led
to an estimation on the date of the impending large EQ of July 1, 2000, with a narrow
time window of the order of a few days.
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Second, it has been demonstrated that starting the calculation more than 2 weeks
earlier than the initiation time of the SES activity does not result in frue coincidence,
whereas starting the calculation at later time does so. This is consistent with Greek
cases in which natural time zero was set at the time of SES activity initiation.

7.5 Results from California: the M;7.1 Loma Prieta earthquake on
October 18, 1989

This is the best-known case in the USA for which clear precursory electromagnetic vari-
ations have been reported. Almost one month before this earthquake, i.e., on September
12, 1989, magnetic field variations were recorded at a site just 7 km from the earthquake
epicenter [4, 1] similar to those accompanying the SES activities in Greece for earthquakes
with M6.5 or larger [56] (see § 1.3.6).

Table 7.3 The seismic data (reported from the Northern California Earthquake Data Center,
http://www.ncedc.org/ncedc/catalog-search.html, as they appeared on January 8, 2010) analyzed in nat-
ural time. The magnitude M corresponds either to My, or Mp. It is converted to seismic moment according
to M,, = M. Taken from Ref. [53].

Number Magnitude M Date Time(UT) Latitude Longitude

1 2.7 1989/9/16  18:41:24  37.33 —121.70
2 32 1989/9/28  15:42:37  36.57 —121.11
3 2.7 1989/10/1  12:21:37  38.15 —121.90
4 3.0 1989/10/1  13:10:24  38.14 —-121.93
5 32 1989/10/1  13:19:27  38.16 —121.93
6 3.1 1989/10/1  22:08:35 36.56 —121.15
7 3.1 1989/10/1  22:09:17  36.56 —121.15
8 2.7 1989/10/2  11:20:19  38.15 —121.91
9 2.6 1989/10/6  15:53:36  37.32 —122.11
10 33 1989/10/8  12:36:46  36.44 —121.01
11 2.7 1989/10/9  11:51:24  37.63 —121.70
12 2.7 1989/10/9  12:06:02  37.29 —122.09
13 3.1 1989/10/9  12:42:03  37.63 —121.69
14 2.8 1989/10/13  12:22:11 36.63 —121.08
15 7.0 1989/10/18  00:04:15 37.04 —121.88

Following Ref. [53], in order to determine the occurrence time of the impending main-
shock, we analyze in natural time all the earthquakes (see Table 7.3) that occurred after
September 12, 1989, which is the date of the initiation of the aforementioned (SES like)
precursory magnetic field change, within the area A: Nggéw%%g; surrounding the Loma
Prieta earthquake epicenter. The seismic data used here are from the Northern California
Earthquake Data Center and the relevant epicenters are depicted in Fig. 7.35. We set the

natural time zero at the initiation time of the magnetic field change, and then formed time
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39°N

38°N

37°N

Fig. 7.35 The area N353W1397 (shaded) surrounding the

epicenter of the Loma Prieta earthquake (largest star) in

which the seismicity after the initiation on September 12,

36°N 1989, of the precursory magnetic field variations [4, 1] is
123°'W  122°W  121°W analyzed in natural time. Taken from Ref. [53].

series for the area A each time a small earthquake (with magnitude M exceeding a certain
threshold My e, 1.€., M > M;p,.s) occurred. The quantity k; for each of the time series was
computed for the pairs (¥x, Ox). The quantity Q; was taken as the seismic moment My
of the k-th event (see Fig. 2.1(b)), calculated from the relation log;, My ~ 1.5M}, 4 const.
(H. Kanamori, personal communication).

Applying the updated procedure (§ 7.1.2), in order to check whether criticality has
been approached at the occurrence of a new event k within the area A, we construct all the
possible subareas of Ay, . that necessarily include the event k and examine whether their
k1 values reveal a probability distribution Prob(x}) maximized at 0.070. We considered
only earthquakes with M > 2.5 in order to have homogeneous and complete catalog (see
Ref. [2]). In other words, we take M;;,.; = 2.6. The results are depicted in Fig. 7.36(a),
which shows how Prob(k;) versus k| evolves upon the occurrence of each event before
the October 18, 1989, M;7.1 Loma Prieta earthquake. We see that Prob(k;) maximizes
at k] = 0.070 upon the occurrence of a 2.8 event at 12:22 UT on October 13, 1989, i.e.,
almost 5 days before the main shock. Upon repeating the calculation for larger magnitude
thresholds, i.e., M. = 2.7 and 2.8, see Figs. 7.36(b) and 7.36(c), respectively, we find
again that the maximum of Prob(x;) versus k; is observed at k; = 0.070 on October 13,
1989.

In summary, we analyzed in natural time the small earthquakes that occurred after
the initiation on September 12, 1989, of the (SES-like) magnetic field variations in
the area surrounding the epicenter of the M7.1 Loma Prieta earthquake. We find that
Prob(k;) versus kj exhibits a maximum at k; = 0.070, for Mjj,.s = 2.6, 2.7 and 2.8,
on October 13, 1989, i.e., five days before the occurrence of the mainshock.
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8. Natural Time Analysis of Dynamical Models

Abstract. We apply here the natural time analysis to the time series of the avalanches in
several SOC models as well as to other dynamical models. First, in a simple deterministic
SOC system introduced to describe avalanches in stick—slip phenomena that belongs to the
same universality class as the “train” model for earthquakes introduced by Burridge and
Knopoff, we find that the value k; = 0.070 can be considered as quantifying the extent of
the organization of the system at the onset of the critical stage. Second, in the conservative
case of the Olami-Feder—Christensen (OFC) earthquake model, the value k3 = 0.070 is
accompanied by an abrupt exponential increase of the avalanche size which is indicative
of the approach to a critical behavior. In the non-conservative case of OFC, in the later part
of the transient period, coherent domains of the strain field gradually develop accompanied
by xj values close to 0.070. Furthermore, there is a non-zero change AS of the entropy in
natural time under time reversal, thus reflecting predictability in the OFC model. Third, an
explanation for the validity of the condition k7 = 0.070 for critical systems on the basis of
the dynamic scaling hypothesis is forwarded. Fourth, when quenching the 2D Ising model
at temperatures close to but below 7;, which is qualitatively similar with the pressure
stimulated currents SES generation model, and set Oy = |Mj| (where M; stands for the
evolution of the magnetization per spin), we find x; = 0.070. Fifth, in a deterministic
version of the original Bak—Tang—Wiesenfeld sandpile model, the value k; ~ 0.070 is
reached during the transient to the self-organized criticality. Finally, natural time analysis
of the avalanches observed in laboratory experiments on three-dimensional ricepiles and
on the penetration of the magnetic flux into thin films of high 7, superconductors, leads
to k1 values around k7 = 0.070. A further investigation of the experiment on ricepiles
reveals that the sequential order of the avalanches captured by the natural time analysis
is of profound importance for establishing the SOC state and constitutes the basis for the
observation of the result k; ~ 0.070.

P.A. Varotsos et al., Natural Time Analysis: The New View of Time: Precursory Seismic Electric Signals, 341
Earthquakes and other Complex Time Series, Springer Praxis Books, DOI 10.1007/978-3-642-16449-1 8,
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8.1 Is self-organized criticality (SOC) compatible with prediction?
Recent aspects. The models analyzed here in natural time

The SOC concept, that has been originally introduced by Bak, Tang and Wiesenfeld [6]
using as an example the sandpile model, was an attempt to explain the ubiquity of scale in-
variance in nature (see also Refs. [44, 74]). Systems, in general, are termed self-organized
critical if they reach a stationary state (after a transient during which the system acquires
criticality [32, 33]) characterized by power laws without the need for fine-tuning an ex-
ternal parameter, for example the temperature or pressure. There is more or less a gen-
eral tendency [85] on confining the term self-organized critical to those systems that are
slowly driven and that display fast, avalanche-like dissipation events. In other words, in
SOC systems, the competition between a driving force that very slowly injects energy and
the dynamics of local thresholds can drive the system into a critical state where a minor
perturbation can trigger an avalanche of any size and duration [6, 7, 66]. In particular, in
the original sandpile model, the random, slow addition of “blocks” in a two-dimensional
lattice (along with a local conservation law) drives the system into a critical state, where
power law distributed avalanches maintain a steady regime far from equilibrium.

The fact that avalanches were taken [6] as uncorrelated in the original SOC sandpile
model, has been used as an argument that is not possible to predict the occurrence of
large avalanches (relevant claims are cited in Refs. [66, 65]). A belief has been expressed
that power law distributed avalanches are inherently unpredictable, which came from the
concept of SOC, but interpreted in the way that, at any moment, any small avalanche can
eventually cascade to a large event.

However, prediction is possible, because the system is not at, but close fo, the critical
state [21, 66].

This, became clear from the accumulated theoretical and experimental evidence, which
could be summarized as follows (see also § 6.5.3). First, some cellular automaton SOC
models have been analyzed for the predictability of very large avalanches (responsible for
the cut-off on the power law distribution) [62] and in addition precursors of large events
have been identified [41, 67] in dissipative or hierarchical lattices. Second, the prediction
of extreme avalanches in self-organized critical sandpiles have been studied in recent de-
tailed numerical studies [32] which showed that: (a) particularly large events in a close to
SOC system can be predicted on the basis of past observations; (b) the predictive power
stems from temporal correlations which are pure finite size effects, i.e., it disappears in the
infinite system size limit as all avalanches become independent of each other; (c) under
variation of the system size, predictability persists if the magnitude used to define ex-
treme events is scaled linearly in the maximal possible avalanche size. It was also clarified
[33] that SOC seems to be an unsuitable mechanism for the explanation of the extreme
events that occur in clusters. Third, experimental work has recently demonstrated [66] the
possibility of avalanche prediction in the classical SOC paradigm, i.e., a pile of grains:
by knowing the position of every grain in a two-dimensional pile, avalanches of moving
grains do follow a distinct power law distribution, but large avalanches are found [66] to
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Table 8.1 Compilation of the 14 cases described in this monograph in which the condition x; = 0.070 has
been ascertained.

No. Case Class

1 SES activities (Section 4.2) Field experiments

2 Seismicity preceding major EQs (Sections 7.1 to 7.5) "

3 Ricepiles (§ 8.5.1) Laboratory measurements
4 Magnetic flux avalanches in high 7, superconductors (§ 8.5.2) "

5 Burridge & Knopoff “train” EQ model (§ 8.2.2) Dynamical models

6  Olami-Feder—Christensen EQ model (conservative case, § 8.3.2) and "

“foreshocks” in the non-conservative case (§ 8.3.3)
7  Dynamic scaling hypothesis with z = 2.0-2.4 (Section 8.4, § 8.4.3) "
8  Deterministic version of the original sandpile SOC model (§ 8.4.2) "
9  Generalized stochastic directed SOC model (§ 8.5.2) "
10 2D Ising model quenched close to, but below, 7. (§ 8.4.1) Other models
11 Pressure stimulated currents model for SES generation (§ 2.4.2) "
12 fBm time series with DFA exponent o = 1 (§ 3.4.3) "
13 Stochastic Cantor set: p-model describing turbulence (§ 6.2.5) "
14 Power law distributed uncorrelated energy bursts with y = 1.87 "
(§2.5.4, Fig. 2.6)

be preceded on the average by continuous detectable variations in the internal structure of
the pile.

To answer the aforementioned question on predictability, in this Chapter we will an-
alyze in natural time the time series of avalanches in some dynamical models including
typical SOC examples like sandpiles, as well as in laboratory measurements on ricepiles
and magnetic flux penetration in high 7, superconductors which are believed to be SOC
systems.

Table 8.1 includes all 14 cases discussed in this monograph where the condition xj ~
0.070 has been ascertained, thus strengthening the conjecture that: if a system acquires
criticality, the condition k1 = 0.070 holds (but not the inverse as for example case
No. 14).

8.2 Natural time analysis of the Burridge & Knopoff “train”
earthquake model

8.2.1 The earthquake model proposed by Burridge & Knopoff. The ‘“train” model.
Introduction

An earthquake is a stick—slip dynamical instability of a pre-existing fault driven by the
motion of a tectonic plate [71, 72]. A relatively simple dynamical model that contains
much of the essential physics of earthquake faults is the so-called spring-block model
originally proposed [14] by Burridge and Knopoff (BK). It consists of an assembly of
blocks, each of which is connected via elastic springs to the nearest neighboring blocks.
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The blocks are also connected to the driving plate by elastic springs and rest on a surface
with a velocity-weakening stick—slip friction force (note that the friction force decreases
as the velocity is increased). When the force acting on a block overcomes the static friction
with the surface, the block slips. Then a redistribution of forces takes place in the neighbors
that eventually trigger new displacements. An EQ event is defined as a cluster of blocks
that move (slip) due to the initial slip of a single block. A numerical study in one dimension
had already been made by BK, and later Carlson, Langer and others [18, 19] proceeded to
more extensive studies of the one-dimensional and two-dimensional BK models focusing
on the magnitude distribution of EQ events. Spatiotemporal correlations of the 2D BK
model have been studied [55] by considering also long-range inter-block interactions.

In the BK model studied by Carlson, Langer and others, each block is connected, as
mentioned above, to the driving element. To model the dynamics of EQs, Burridge and
Knopoff in their original work [14] also studied the case of a chain of blocks (situated
on a rough surface with friction) connected by elastic springs and pulled only at one end
with a constant small velocity. The dynamics of the model is as follows. All the blocks
are initially at rest. As the driver pulls the first block, the latter remains stuck until the
elastic force overcomes the static friction. When this occurs, the first block will move a
little. Such small events (or EQs) will continue and increase the elastic force on the sec-
ond block. When the elastic force on the second block overcomes the friction force, an
event involving the two blocks will occur. The dynamics continues with events involving
three, four, five or all the blocks in the system. This model is usually called the “train”
model since it has some similarity with a train, where the driving force is applied only
at one end of the chain (e.g., Ref. [75]). The dynamics here is governed by coupled or-
dinary differential equations which makes its study very time-consuming. To make this
system more amenable to computer simulations, de Sousa Vieira [76] introduced a contin-
uous cellular automaton that exhibits SOC and belongs to the same universality class as
the “train” model. This deterministic one-dimensional model, for the avalanches in stick—
slip phenomena, which is very close to the case of an array of connected pendulums first
discussed by Bak et al. [6], is defined as follows (see Refs. [76, 26, 70]). Consider a one-
dimensional system, where a continuous (force) variable f; > 0 is associated with each site
[,1=1,2,...,L. Initially all f; have the same value f; which lies below a threshold f,.
One can set f, = 1.0 without loss of generality. The basic time step consists of varying the
force on the first site according to f; = f;, + 8 f; the system then relaxes with a conserva-
tive redistribution of the forces at the site f; > f;, (toppling site) and its nearest neighbors
according to f; = ¥ (f; — fin) and fi+1 = fi+1 + Af/2, where Af is the change of force
at the overcritical site and ¥(x) a periodic nonlinear function. This condition mimics the
redistribution of forces when the block / is displaced (stick—slips) by Ax; during an ‘earth-
quake’ in the “train” model [76]. The relaxation continues until all sites have f; < f;;, for
all /. The size of the ‘earthquake’ corresponds to the number of topplings, s, required for
the system to relax, and is considered here as the appropriate value of Oy in natural time.
Then, the driving force at the first site sets in again. This is complemented by open bound-
ary conditions; i.e., the force is ‘lost’ at / = 1 and [ = L. The nonlinear periodic function
used here (which means that, when considering that the force supposed mimics the net
effect of the two forces in the “train” model, i.e., the elastic and the friction forces, the
periodicity of the elastic force dominates over the form of the friction force) is similar to
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the one used in Refs. [76, 26], i.e., a sawtooth function ¥ (x) = 1 —ax + [ax] , where [.. ]
denotes the integer part of ax and a is a number. It was shown [76] that such a system
evolves to a SOC state where the avalanche distributions are scale-free, limited only by
the overall system size.

8.2.2 Natural time analysis of the “train” model

In Fig. 8.1, we present the results obtained from the deterministic one-dimensional SOC
system described above in § 8.2.1 that belongs, as mentioned, to the same universality class
as the “train” model for EQs. The same parameters as in Ref. [26], i.e., L = 1024, a = 4,
fo=0.87 and & f = 0.1, have been used. In Fig. 8.1(a), the number of topplings s is plotted
in red versus the avalanche number i for the first 160,000 avalanches which shows in fact
how these series of avalanches can be read in natural time. The blue curve in Fig. 8.1(a),
shows how the quantity k; evolves avalanche by avalanche. There, we also plot in green
the total force X (i) of the system after each avalanche, computed from X (i) = Y%, f1(i),
whose stabilization provides [26] a measure of the approach to SOC. An inspection of
Fig. 8.1(a) reveals that (after the transient and hence) when the system enters into the
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critical state, the x; value fluctuates around 0.070 (designated by the thick blue line).
The latter becomes clear in Fig. 8.1(b), which reproduces Fig. 8.1(a) but in an enlarged
time scale for the first 40,000 avalanches and shows that for i > 5,000 (i.e., just when
the system enters into the SOC state) k; scatters around 0.070. This behavior has been
verified for a wide range of parameters L, a, fo and 6 f just before the SOC state is reached.
Note that, once the statistically steady SOC state is established, the k) value gradually
increases reaching the corresponding value of x, = 1/12 of a “uniform” distribution (see
§ 2.1.3). This can be seen in Fig. 8.2 which has been plotted for 10° avalanches. The
model discussed here leads to a power law with a realistic b value of the Gutenberg—
Richter law. In particular, de Sousa Vieira [76] concluded that the distribution of avalanche
sizes s is a power law with an exponent T ~ 1.54 that corresponds to b ~ 0.81. This lies
in the range (0.8 to 1.2) of the b values found experimentally (see Section 6.1). In spite
of this agreement, however, we note that the BK model cannot account for the observed
spatiotemporal complexity of seismicity, e.g. the Omori law for aftershocks [55].

0.18 1200
0.16 |
4 1000
0.14
012 t 1 800
«~  Fig. 8.2 The results of the
- o1 ‘ ‘ 600 o=  model discussed in the text for
% 008 fT “miw L L I st I e ] 2 10° avalanches. The parameters
u i i I @ (as well as the symbols) here
0.06 400 are the same as in Fig. 8.1
0.04 (except that the total force X (i)
0.02 200 is not plotted, for the sake
' of simplicity). The horizontal
0 0 green line corresponds to k; =
0 100 200 300 400 500 600 700 800 900 1000 0.070, and the black one to
i (x10%) K= 1/12.

In the focal region of a future earthquake the stress gradually changes before failure.
It is commonly accepted that, after the mainshock occurrence, the stress value reduces
to a smaller value, a fact, however, which is not fully captured by the simple BK model
considered here. In other words, in the steady SOC state of this model the system has
an average f; value, f;, around f; = 0.8785 that remains almost constant (i.e., practically
within 0.0055) after the occurrence of any avalanche (cf. X (i) in Fig. 8.1). Our compu-
tations reveal (see Fig. 8.3) that when considering a reasonable decrease, e.g., by a few
percent, of f;, the system exits the steady SOC state and then returns to it through a tran-
sient in which the xj value scatters around 0.070, similarly to that depicted in Fig. 8.1.
This can be seen in Fig. 8.3, which depicts the results that show what happens with Kk
when reducing each f; by 1% (a), 2% (b) and 10% (c) of its value at SOC. The «; value is
given here in red while magenta corresponds to one standard deviation £0. A reasonable
reduction of f; may be around a few percent at the most (see especially Fig. 8.3(a) and
8.3(b)). The results have been obtained by means of the Monte Carlo procedure described
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The quantities shown here are
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and the black one to &, = 1/12.
As shown in (b), the avalanche
size s(= Q) is quasi-periodic,
leading to k7 values “oscillat-
ing” close to (but mostly higher
than) k.

in the caption of this figure. Hence, the value x; = 0.070 can be considered as quantifying
the extent of the organization of the complex system at the onset of the critical stage.

We emphasize that such a behavior is not observed for a variant of the model which
does not exhibit SOC [76], e.g., when using, instead of a periodic function ¥(x), the
strictly non-increasing function @ (x) introduced by Nakanishi [57] (see Fig. 8.4). This
figure shows the results, in a similar fashion to those depicted in Fig. 8.1, obtained from
the model when using, instead of the periodic function ¥(x), the strictly non-increasing
function introduced by Ref. [57]. In this case the behavior of kj is found to be distinctly
different from that of the SOC model depicted in Fig. 8.1 as well as in Fig. 8.2.

In summary, natural time analysis was made for a one-dimensional SOC model intro-
duced to describe avalanches in stick—slip phenomena. It belongs to the same univer-
sality class as the “train” model for earthquakes suggested by Burridge and Knopoff.
We found that the value k; = 0.070 can be considered as quantifying the extent of the
organization of the complex system at the onset of the critical stage.
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8.3 Natural time analysis of the Olami-Feder-Christensen (OFC)
earthquake model

8.3.1 The Olami-Feder-Christensen model. Introduction

The OFC model originated by a simplification of the Burridge & Knopoff spring-block
model [14] by mapping it into a non-conservative cellular automaton, simulating the earth-
quake’s behavior and introducing dissipation in the family of SOC systems. In the spring-
block model, which as mentioned in § 8.2.1 consists of a two-dimensional array of blocks
in a flat surface, each block is connected (by elastic springs) with its neighbors, and in
the vertical direction, to a driving plate which moves horizontally at velocity v. When the
force acting on a block overcomes the static friction with the surface, the block slips. In
the OFC model the force on a block is stored in a site of a square lattice, and the static
friction threshold is assumed to have the same value over all blocks. If force input occurs
in discrete steps instead of continuous and if thresholds are random but not quenched,
quasi-periodicity emerges combined with power laws [65].

The criticality of the OFC model has been debated [21, 54]. Also, the SOC behavior of
the model is destroyed upon introducing some small changes in the rules of the model, e.g.,
replacing open boundary conditions with periodic boundary conditions [64], introducing
frozen noise in the local degree of dissipation [56] or in its threshold value [43], including
lattice defects [23]. Despite these findings as well as others which show [61], that it is
insufficient to account for certain aspects of the spatiotemporal clustering of seismicity, the
OFC model appears to show many features found in real earthquakes. As far as earthquake
predictability [62] or Omori law [39, 36] are concerned, the OFC model appears to be
closer to reality than others [85]. In addition, for certain values of the local degree ‘o’
of dissipation (i.e., if ‘ct’ is chosen above 0.17, see also below), the OFC model exhibits
avalanche size distribution that agrees well [52] with the Gutenberg—Richter (G-R) law; see
Eq. (6.1). These are some of the reasons why the OFC model is considered to be the prime
example [5] for a supposedly SOC system for earthquakes but the question of whether real
earthquakes are described or not by SOC models of this type, or whether other kinds of
mechanisms, e.g., Refs. [51, 50], need to be involved, remains unsolved [9, 86, 39, 36, 65].
Note also that an analysis of the OFC model in the nonextensivity framework (Section 6.5)
has been made by Caruso et al. [20] and further discussed in Ref. [69].

Description of the Olami—Feder—Christensen (OFC) model. The OFC model [59] runs
as follows: we assign a continuous random variable z;; € (0, 1) to each site of a square lat-
tice, which represents the local ‘energy’. Starting with a random initial configuration taken
from a uniform distribution in the segment (0,1), the value z;; of all sites is simultaneously
increased at a uniform loading rate until a site ij reaches the threshold value z;,.; = 1 (i.e.,
the loading A f is such that (z;;),,,. +Af = 1). This site then topples which means that
z;j is reset to zero and an ‘energy’ az;; is passed to every nearest neighbor. If this causes
a neighbor to exceed the threshold, the neighbor topples also, and the avalanche contin-
ues until all z;; < 1. Then the uniform loading increase resumes. The number of topplings
defines the size s of an avalanche or “earthquake”. This is the quantity that is used as Qy
in the natural time analysis. The coupling parameter o can take values from zero to 0.25.
Smaller ov means more dissipation, and & = 0.25 corresponds to the conservative case.
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The parameter « is the only parameter of the model, apart from the system size L, the edge
length of the square lattice. Except from the initial condition the model is deterministic.
The model can be supplemented by open boundary conditions (OBC) in which the sites
at the boundary distribute energy to the outer sites, which cannot topple, thus energy is
removed at the boundary. Another possibility, is to use free boundary conditions (FBC). In
this case, o varies locally

1

=—. 8.1
nij+K &1

O
where n;; is the actual number of nearest neighbors of the site ij. For sites in the bulk
n;j = 4, for sites at the edges n;; = 3 and for the four sites at the corners n;; = 2. The
symbol K denotes the elastic constant of the upper leaf springs measured relatively to that
of the other springs between blocks [36]. Obviously the OFC model is non-conservative
for K > 0 for which a;; < 0.25 in the bulk. Finally, periodic boundary conditions (PBC)
can be imposed but these destroy [64] criticality. Except in the case of PBC, the sites at the
boundary receive energy only from three or two neighbors, and therefore topple on aver-
age less often than sites in the interior, which leads to the formation of “patches” of sites
with similar energy. This patch formation proceeds from the boundaries inward [53, 29].
Due to the dynamics of the model, there occur avalanches of all sizes. The mechanism pro-
ducing these avalanches are different on different scales [29]. Large avalanches are mainly
patch-wide avalanches, while smaller avalanches occur between patches and constitute a
series of ‘foreshocks’ or ‘aftershocks’ [39]. Also, avalanches at different distances from
the boundaries have different sizes.

As already mentioned, there has been no agreement as to whether the model is indeed
critical for all values of the coupling or only in the conservative case [21, 22, 54]. In partic-
ular, detailed analytical studies [13, 24] for a random-neighbor version of the OFC model
concluded that only in the conservative limit the model becomes critical (this conclusion
was also shared by de Carvalho and Prado [21]). Furthermore, using a variety of argu-
ments and large-scale computer simulations, the most exhaustive analyses [10, 35, 85, 5]
coincide to the conclusion that the spatially extended version of the non-conservative OFC
model is not critical.

Thus, the state of the art is [9] that the OFC model is not truly scale-invariant except
for its conservative limit.

8.3.2 Natural time analysis of the Olami-Feder—Christensen model

8.3.2.1 Results in the transient and the stationary regime of the OFC model

We first present the results [68] for the transient regime of the OFC model using the quan-
tity f =Y (A f), which represents the total increase of z;; due to the external force loading
in each site. Since the loading rate is assumed uniform in time, f plays a role analogous
to that of the conventional time T, i.e., T = f.
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We find that the conservative and non-conservative cases of the OFC model display a
qualitatively different behavior.

In the former case, as can be seen in Figs. 8.5(a),(b) which depict the evolution of
K1 versus the ‘time’ T, the quantity k; exhibits a single transient consisting of an abrupt
decrease, from a value larger than k;, down to k7 = 0 (for larger L see Fig. 8.6), and then K
gradually increases up to the value k, = 1/12. The latter value reflects that the system has
reached a steady state, thus the x; value approaches that of the “uniform” distribution. Note
that, as the number of avalanches taken into account in the kj-calculation increases, the
contribution of the avalanches in the transient regime to the xj value becomes gradually
smaller compared with that of the avalanches in the stationary regime. In addition, we
note that the number of avalanches corresponding to the minimum value of k; was found
to scale with L?. This is reminiscent of the scaling found in Ref. [22] when plotting the
mean ‘energy’ per site { = Y z;; /L? versus the number of avalanches. The use of the
‘time’ T which is intensive and not extensive quantity, as does the number of avalanches,
simplifies the study of this transient. By investigating the xj versus T curves for various L
and examining their behavior close to k1 ~ 0, we find (see Fig. 8.6) that all these curves
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Fig. 8.6 The collapse of various k; vs T curves for the conservative case of the OFC model onto a single
curve upon varying the size of the system L = 500 (red), 800 (green), 1000 (blue). In the left vertical scale
we depict kj, while in the right the avalanche size s for L = 500 (cyan) and L = 1000 (magenta). The
cyan (magenta) line corresponds to the maxima observed every 30 (100) avalanches. The thick straight
lines correspond to their exponential fits for 7 € [0.08,0.11] and T € [0.12,0.131] (note that 7 = 0.131
is approximately the value at which the linear increase of { ceases, see Fig. 8.5(c)), and exhibit a cross-
over during which the slope increases by one order of magnitude. The arrows show the values of kj
corresponding to the points at which the two linear fits (of the same color) intersect. The horizontal black
line corresponds to x; = 0.070.



8.3 Natural time analysis of the Olami—Feder—Christensen (OFC) earthquake model 353

collapse onto a single curve. Figure 8.5(c) depicts the size s of avalanches versus 7" along
with the mean energy {. We observe that the almost abrupt decrease of kj is due to the
drastic (exponential) increase by several orders of magnitude of the avalanche size s when
¢ approaches its steady state value. This exponential increase is better visualized in Fig. 8.6
where, for the sake of clarity, we depict for L = 500(1000) the maximum avalanche size
deduced every 30(100) avalanches versus 7 (cf. the two values 30 and 100 are considered
to account for the fact that the larger system exhibits more avalanches for the same increase
in 7). One can recognize roughly three linear regions (only two of which are fitted with
straight lines in Fig. 8.6, for the sake of clarity) in this log-linear plot (right scale). The first
one corresponds to the region 7 € [0.08,0.11] during which the (maximum) avalanche size
increases by almost one order of magnitude (see the lower thick solid lines in Fig. 8.6).
The second stage corresponds to an almost abrupt later increase by almost five orders of
magnitude during 7 € [0.12,0.131], which is linear in the log-linear plot, see the steeper
thick solid lines in Fig. 8.6. After T = 0.131, which is the value at which the initial linear
increase of { ceases, see Fig. 8.5(c), the (maximum) avalanche size does not exhibit any
obvious trend, thus making unnecessary the plot of the corresponding fits in Fig. 8.6.

The non-conservative case gives a more complicated feature, see Fig. 8.7, because the
aforementioned single transient of the conservative case now splits into two parts. Fig-
ures 8.7(a),(b) depict the evolution of k; versus T for & = 0.24 for various lattice sizes.
In Fig. 8.7(b), which is an excerpt of Fig. 8.7(a), an abrupt decrease of k; is observed
at T = 0.3, accompanied by a peak of { (see Fig. 8.7(c)) centered at T =~ 0.16, which
for large L does not depend on L. This k; decrease is followed by an increase — coming
from a decrease of s (see Fig. 8.7(c)) — and k; reaches a maximum which is subsequently
followed by a gradual decrease down to a minimum. This second minimum is observed
at T =~ 1 for L=50,T = 5 for L= 100 and T ~ 25 for L = 200, thus indicating that it
scales somewhat faster than L2, which deviates from the finite-size scaling found for the
single minimum of the transient in the conservative case. Note that the finite-size scal-
ing observed during the first part of the transient could be attributed to an almost one
order of magnitude exponential increase of s when 7 varies approximately in the range
[0.10,0.20] (see Fig. 8.7(c) and Fig. 8.8(a)) which is similar to the one observed in the
conservative case when 7' € [0.08,0.11] (see Fig. 8.8(b)). The dissipation, however, does
not allow the emergence of the second much more significant exponential increase of s ob-
served in the conservative case (see the steeper thick solid lines in Fig. 8.6 and the insets
of Fig. 8.8). This might be the reason for which the simple finite-size scaling found for
T €10.10,0.20] ceases at later times 7. The apparent similarity of the first transient stages
observed for T € [0.08,0.11] and T € [0.10,0.20] for the conservative (e.g. Fig. 8.8(b))
and non-conservative cases (e.g. Fig. 8.8(a)), respectively, could be understood as follows.
Figure 8.8 shows the T-dependence of the percentage P,;; (red solid lines) of the sites
“visited” by the OFC toppling rule, which ‘diffuses’ energy to the nearest neighbors. We
observe that in both cases a similar exponential increase starts when P,;; approaches the
value of the site percolation threshold p. (p. = 0.59274598(4); see Ref. [49]) for the two-
dimensional square lattice. Thus, when the “visited” sites begin to percolate through the
square lattice, the two cases exhibit a similar behavior irrespective of the energy conser-
vation. It seems that the interplay between the diffusive character of the OFC toppling
rule and the geometrical phenomenon of percolation is dominating at this stage. Recall
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Fig. 8.8 (a): The (blue) dotted
broken lines depict the maximum
avalanche size observed every 20
avalanches versus 7 for the non-
conservative case (a = 0.24) for
L = 200. The straight thick (blue)
dotted line shows a linear fit in the
log-linear plot for 7' € [0.1,0.2].
(b) is the same as (a), but every
30 avalanches for the conservative

case (o = 0.25) for L = 500 and
T € [0.08,0.11]. Using the right
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lines) of the sites “visited” by the
OFC toppling rule versus 7 together
with the site-percolation threshold
[49] p. = 0.59274598(4) (green
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that an “unvisited” site of low or moderate random initial ‘energy’ (z;;)o will be toppled
if it receives, apart from the overall increase of Y (AF)(= T), enough energy to exceed
the threshold due to the energy that has diffusively arrived at the site from another site (of
possibly higher initial ‘energy” (zyjr)o). During this stage it is reasonable to assume that
the energy 8z arriving at an “unvisited” site reaches it through a single path. Thus, the
amount 0z scales as @, where 7 is the (presumably small) number of the sites in the path.
This amount is not significantly affected whether o¢ = 0.24 or o = 0.25 and this is why the
conservative and the non-conservative cases resemble each other. Later, as the visited sites
cluster, the differences emerge dramatically: the energy loss in the non-conservative case
occurs at all points of the lattice (o< L?) thus destroying finite-size scaling, whereas in the
conservative case the clusters formed do not alter the finite-size scaling since the energy
loss occurs only at the boundaries (o< L) of the system. Returning, now to the k| behavior,
we observe the following:
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Fig. 8.9 Snapshot images of the strain field in the OFC model (L = 100 and a = 0.22, OBC), showing
that the coherent structure formation is accompanied by values of k; close to 0.070. Here only avalanches
with s > 10 are considered in natural time analysis and N corresponds to the number of such avalanches.
The grey scale (black to white) corresponds to the values of z;; (zero to unity).

After the second minimum, k; increases slowly up to the value k. It is during this
increase that a prolonged period exists in which coherent domains of the z;; field (strain
field) are developed in the non-conservative case; see Fig. 8.9.

Recall that Figs. 8.5 and 8.7 have been drawn by considering all avalanches generated,
i.e, Ox = sx > 1. Similar natural time analysis, however, can be performed upon adopting
an avalanche size threshold sg (i.e., an avalanche of size s is considered as an event in
natural time only if s > s0).
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Selecting an appropriate threshold sp relative to the edge length L, we can find Kk
values that scatter around 0.070 when the aforementioned coherent structures in the
strain field start to appear in the non-conservative case. Such an example is shown in
Fig. 8.9 in which a threshold 5o = 10 was selected for L = 100 and o = 0.22.

Recapitulating the aforementioned results in the transient regime, we see that when
comparing the conservative and non-conservative cases, they exhibit considerable differ-
ences on how they move away from the initial random state. The question is raised, how-
ever, of whether some of these differences can shed light on which of these behaviors is
critical and the other not. An answer can be provided on the basis of the following two key
differences related to the curves k; versus T and { versus T. First, let us consider the Kk
versus T behavior. In the conservative case, when studying the system for various system
sizes L and focusing on the behavior close to k; = 0, we observe, as mentioned, that all
the k1 vs T curves collapse onto a single curve (see Fig. 8.6).

In addition, in the conservative case, the value k; =~ 0.070 (that occurs at 7 = 0.119)
is accompanied by an abrupt exponential increase of the avalanche size s, which is
indicative of the approach to a critical behavior; see the arrows in Fig. 8.6 that mark
the cross-over points between the aforementioned log-linear fits (thick straight lines)
of the (maximum) avalanche size.

It is this drastic increase of s — by several orders of magnitude — which leads to a K
decrease down to kj ~ 0 and then k; gradually increases reaching the value x, = 1/12
in the stationary regime. On the other hand, in the non-conservative case the curves ki
vs T obtained upon increasing the system size L, do not collapse onto a single curve (see
Fig. 8.7(b), where it is evident that the second part of the transient does not coincide
for different L). Second, let us now consider the { vs T behavior: In the conservative
case; Fig. 8.5(c) shows that the curves of the mean energy { upon studying different L
collapse onto a single one after the exponential increase of s (subsequent to the appearance
of k1 =~ 0.070 mentioned above). Such a collapse in the { vs T curves, however, is not
observed in the non-conservative case, see Fig. 8.7(b) (note that in this case, Fig. 8.7(c),
the s vs T curve exhibits an increase of only around one order of magnitude in contrast to
the several orders of magnitude increase of the conservative case mentioned above).

We now summarize the behavior in the transient regime. Only in the conservative
case when studying &7 vs T and/or { vs T (recall that the quantities ki, 7 and §
are intensive and not extensive) the curves obtained upon varying the system size L
collapse onto a single curve, as it should for a critical system. This is not observed
in the non-conservative case, meaning that a larger system needs larger 7 to reach the
‘steady-state’  value. This points to (the absence of a thermodynamic limit, and hence
to) non-criticality.
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As for the stationary regime, for both the conservative and the non-conservative cases,
the k) value stabilizes at a value around k;, = 1/12, see Figs. 8.5(a) and 8.7(a), which as
mentioned reflects that the system has reached a steady state.

8.3.3 The predictability of the OFC model based either on the mean energy or on
the interrelation between the x| value and the exponent of the inverse Omori
law

Here, in order to study the predictability of the OFC model which has been attributed to the
occurrence of ‘foreshocks’ (note that ‘aftershocks’ have been also observed) in the non-
conservative case of the model [39], we start with a prediction algorithm motivated by the
one used by Zhang et al. [88]. This algorithm was inspired by an earlier one proposed by
Keilis-Borok and coworkers [46, 45] and by Pepke and coworkers [62, 63]. In particular,
we consider the mean ‘energy’ { which is a function of the ‘time’ 7. For this function,
the time increased probability (TIP) is turned on when § > ., where {, is a given thresh-
old in the prediction. If the size s of the next avalanche is greater than a target avalanche
size threshold s., we have a successful prediction. For binary predictions, the prediction of
events becomes a classification task with two type of errors: missing an event and giving a
false alarm. We therefore choose, in a similar fashion as in § 6.4.2, the receiver operating
characteristics (ROC) graph [30] to depict here the prediction quality. As an example, the
ROC graph for L = 100 and K = 2 is shown in Fig. 8.10, where the various curves corre-
spond to various values of s, increasing from the bottom to the top. Recalling from § 6.4.2
that the diagonal line in such a plot corresponds to random predictions, and the points in
each curve lie above it (meaningful predictions), we conclude that the precursory function
¢ results in meaningful prediction which becomes very robust for larger values of s.. We
note, however, that the selection of the mean energy { as a precursory function suffers
from the drawback that in the case of earthquakes the measurement of this quantity is dif-

Fig. 8.10 Receiver operating characteristics
graph for the OFC model with L = 100 and
K =2 when using the mean energy { as
a predictor: the true positive rate (hit rate)
versus the false positive rate (false alarm
0 oy rate) for various s, values increasing from

0 0.1 02 03 04 05 06 07 08 09 1 the bottom (s, = 361) to the top (s, = 1,938)
False Positive Rate (false alarm rate) with constant steps.

True Positive Rate (hit rate)
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ficult in practice and indirect (what can be measured by some techniques is the increment
of stress or strain not the absolute values themselves [88]).

The occurrence of ‘foreshocks’ (f) as well as ‘aftershocks’ (a) in the OFC model has
been exhaustively studied by Helmstetter et al. [36]. Here, we solely focus on the former
(foreshocks) that are described by the so-called inverse Omori law [38, 36] which states
that the average increase of seismicity observed at the time ¢ before the occurrence time ¢,
of a mainshock is given by

K
Nyl = ¢ : (8.2)

te—t+c)Pf
where the subscript “f” refers to the foreshocks and the quantities Ky and ¢ are taken
constants. The inverse Omori exponent py is usually close to or slightly smaller than the
corresponding exponent p, of the usual Omori law for aftershocks [37] (see also Section
6.1). Helmstetter et al. [36] defined as a “mainshock” (see their definition d = 0) any
earthquake of magnitude m which was not preceded or followed by a larger earthquake in
a time window of length T (m) equal to 1% of the average return time of an earthquake
of magnitude m. Foreshocks are then selected as all earthquakes occurring within the time
T (m) before a mainshock. The value of p has been found [37] by averaging the seismicity
rate before a large number of mainshocks, because there are huge fluctuations of the rate
of seismicity before individual mainshocks. Helmstetter et al. [36] generated synthetic
catalogs with the OFC model and determined the p; value using various lattice sizes L
and K values, see their table I. They studied the cases for K = 0.5, 1, 2 and 4, i.e., for bulk
a=0.222,0.2,0.167 and 0.125, and among the results presented in their table I, we only
focus here on the larger lattice sizes, i.e., L = 1024 and L = 2048. The average value of
these pr exponents results equal to py = 0.72, if we consider all the relevant p ¢ values that
correspond [36] to b values ranging from b = 0.67 to b = 0.92. If we restrict ourselves,
to those py values corresponding to more reasonable values of b, e.g., b > 0.76, we find
that the average p value increases somewhat to py = 0.78. These average py values (0.72
and 0.78) suggest that py may be considered to be around py ~ 0.75, which is just the py
value given in their Fig. 2 for a synthetic catalog generated [36] with L = 2048 and K = 2.
The power law form of the inverse Omori law, i.e., Eq. (8.2), implies that in natural time

(8.3)

which reflects an increase of foreshocks as we approach the mainshock at y = 1. Equation
(8.3), when substituted into Eq. (2.97) for the estimation of the variance k; of natural time,
leads to 5 1

NG ) on &D
The ki values determined from Eq. (8.4) are plotted versus py in Fig. 8.11. At the same
plot, the two ki values that correspond to the aforementioned average py values (i.e.,
pr=10.72 and py = 0.78) are marked, which scatter around k; ~ 0.070. This k) value is
comparable with the one (k] ~ 0.070) determined when analyzing in natural time the small
seismic events that occur after the initiation of a SES activity and before the occurrence of
a mainshock (see Chapter 7). In other words:
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The ‘foreshocks’ associated with the non-conservative OFC model give on the average
a k7 value which is more or less comparable with that (k7 ~ 0.070) obtained from the
analysis of the real seismic data that precede mainshocks.
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0.06 Fig. 8.11 The values of kj vs
0.055 the power law exponent py
according to Eq. (8.4). The
0.05 two points marked correspond
0.6 0.65 0.7 0.75 0.8 0.85 o the two average ps values
Py discussed in the text.

We note, however, that this property of ki is difficult to be used for the prediction of
the avalanches in the OFC model in a way similar to that used for {. The reason is that
the mean energy { solely depends on the current state of (the z;; field of) the system,
whereas k reflects the history of the system as it evolves starting from some (initial) state.
Thus, the application of xj for prediction purposes in the OFC model requires the real-time
identification of the initiation of the foreshock time series. The latter is extremely difficult.
Recall that in the field experiments, it is the initiation of the SES activity which signifies
that the stress has reached a critical value (see § 1.6.2) in the preparatory volume; then, the
identification of a “critical” time series, by employing the method explained in Chapter 7,
allows the determination of the occurrence time of the impending strong earthquake.

8.3.4 The predictability of the OFC model on the basis of the change AS of the
entropy in natural time under time reversal

Here, we focus on what happens before the occurrence time 7j of a large avalanche during
the stationary regime of the non-conservative case of the OFC model by employing the
change AS of the entropy in natural time under time reversal (Section 3.5). In particular,
for each large avalanche, we study the time evolution of AS; (see § 3.5.1) obtained from
the preceding avalanches time series. Following the study of foreshocks in Ref. [36] and
in view of the fact that, as mentioned in § 8.3.3, there are huge fluctuations before in-
dividual large avalanches, our results have been found by averaging the values obtained
before an appreciably high number of large avalanches. For example, Fig. 8.12 depicts the



8.3 Natural time analysis of the Olami—Feder—Christensen (OFC) earthquake model 361

results for the average change AS (left scale) of the entropy in natural time under time
reversal and the average value of the mean energy { (right scale) obtained by using the
last 1,000 avalanches (irrespective of their size) before large avalanches of size s > 100
(red), 1,000 (green) and 2,000 (blue) in the non-conservative OFC model with L = 100
and K = 2. In the horizontal axis, the time is measured from the occurrence time 7j of
the large avalanche. We find that AS; minimizes (note that. |AS;| maximizes) before the
impending large avalanche, thus signaling the imminent major event. The negative values
of AS reflect, through Eq. (3.79), that the avalanche size tends to increase as the time ap-
proaches that of the large avalanche, “mainshock” (due to the foreshocks, mentioned in the
previous subsection, that start to become discernable from the background “seismicity”).
Furthermore, note that AS changes sign, becoming negative, when the parameter  almost
starts to increase (recall that the quantity §, as shown in § 8.3.3, can be used as a predictor
for the large avalanches).
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Fig. 8.12 Results from averaging the last 1,000 events before a large avalanche (s > 100, 1,000, 2,000
occurring at 7p) in the OFC model with L = 100 and K = 2: the change AS (left scale, thick lines) of the
entropy in natural time under time reversal and the mean energy ¢ (right scale, thin lines) as a function of
the ‘time’ (Tp — T') to the large avalanche. Note that AS minimizes before the occurrence time 7j of the
large avalanche, and changes sign when § almost starts to increase.

Proceeding one step further, Fig. 8.13 depicts the ROC graph when using AS as a pre-
dictor. In this calculation, AS was determined as the average value of AS; using the (past)
events that occurred within the time period 7,,,, — T = 0.05 to 0.2, where 7,,,,, stands for
the present time. This AS is used as a predictor for the size of the next avalanche (in the
sense described above in § 8.3.3; see also § 6.4.2). The results (red curves) lie above the
diagonal and are statistically significant when compared with the cyan curves that cor-
respond to the extrema of 100 trials obtained when performing the same calculation by
using randomly shuffled AS values. These results are certainly less impressive than those
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in Fig. 8.10, but we emphasize that the predictor here is solely based on the sizes of the
past avalanches.

8.3.5 Summary of the results

The main conclusions of the natural time analysis of the time series of avalanches in the
OFC model could be summarized as follows.

First, concerning the transient period: the behavior is different depending on whether
the model is conservative (¢ = 0.25) or non-conservative (o < 0.25). In the former case,
there is a single transient which mainly consists of an abrupt decrease of the variance ki,
down to a minimum k; ~ 0 and then a gradual increase up to the value x, = 1/12 of the
“uniform” distribution.

Before this minimum, the k7 vs T curves deduced for various system sizes (L > 500)
collapse onto a single curve and when the k; value reaches k; = 0.070 (at around
T =0.119), an abrupt exponential increase of the avalanche size s occurs signaling the
approach to the critical behavior.

It is this drastic increase of s which decreases the x; value to x; ~ 0 (the number of
the generated avalanches corresponding to the minimum value x; ~ 0 is found to scale
with L?). On the other hand, in the non-conservative case, the transient period splits into
two parts. In the first part, the number of avalanches corresponding to the minimum k;
value does scale with L2, but in the second part it increases much more quickly. During the
second part, coherent domains of the strain field gradually develop. This coherent structure
formation is accompanied by k; values close to 0.070.
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Second, the resulting power law exponent p of the inverse Omori law for the ‘fore-
shocks’ identified in the non-conservative cases for large lattice sizes (L > 1024), is
shown to correspond to k; values scattered around x; ~ 0.070.

Third, there exists a nonzero change AS of the entropy in natural time under time
reversal, thus signaling the breaking of the time symmetry and reflecting predictability
in the OFC model.

8.4 Explanation of x; = 0.070 for critical systems on the basis of the
dynamic scaling hypothesis

We deal with time series of signals emitted from complex dynamical systems, i.e., systems
consisting of interacting components that evolve with time. In natural time analysis, when
the system is in thermodynamic equilibrium, it should produce stationary time series with
probabilities p; independent of ). The situation is drastically different when the system is
in non-equilibrium state. When the system approaches the critical state, clusters of the new
phase are formed by enhanced fluctuations and their size increases as does the correlation
length. But this happens not instantly, because long-range correlations develop gradually
leading to the so-called dynamic phase transition (critical transition) (see § 1.5.2). Thus,
the time series emitted in such a non-equilibrium process will be non-stationary and py, or
the corresponding probability density function p()) will no longer be independent of .
Using p(x ), the normalized power spectrum of Eq. (2.31) can be re-written as

/ / p(X)p(X') cos [o(x — )] dx dy’ (8.5)

A Taylor expansion of Eq. (8.5) around @ — 0 leads to the value

2/ / p(0)p() (x—2')* dx dy’ (8.6)

Since p(y) is the normalized energy released at ), for a dynamical system at criticality,
it also characterizes the way energy is released during the evolution of the dynamic transi-
tion. Energy release may be caused by some existing external field coupled with the newly
forming phase. The interaction energy density may comprise several terms the most sig-
nificant of which is usually expected to be of the dipole type; for example the interaction
Hamiltonian density hiyy = —E - p (hiny = —B -m) in the case of an electric E (magnetic
B) external field, where p (m) stands for the electric (magnetic) dipole moment density of
the new phase. This interaction energy is proportional to the linear dimension of the newly
forming phase (the system volume is kept constant) and hence it is proportional to the cor-
relation length & (this will be proven below). According to the dynamic scaling hypothesis
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(see Refs. [11, 73] and references therein), already explained in § 1.5.3, the time-dependent

correlation length & at dynamic phase transitions scales as & o tl where z is the so-called
dynamic critical exponent. The time ¢ is usually measured in Monte Carlo steps, i.e., using
the internal clock of the system. Assuming that the dynamic scaling hypothesis should also
hold for p(y) at criticality, we expect [81]:

p(x) = ch% (8.7)

where { is another dynamic exponent (not to be confused with the mean energy { of
Section 8.3), and N, a normalization factor to make fol p(x) dx = 1. In fact, Eq. (8.7)
is plausible from the definition of py, i.e., it represents the normalized energy emitted
during the k-th event and the energy at criticality has a power law distribution. By inserting
Eq. (8.7) into Eq. (8.6), we obtain:

2
‘o — 1+C_(1+C> 8.8)
14+3¢ 14+2¢
Substituting the value of { by the dynamic critical exponent z for various universality
classes of critical systems [58], we can obtain the values of k; depicted in Fig. 8.14. Notice
that for most universality classes, z varies in a region from z =2 to z = 2.4 and thus (see
Fig. 8.14) the value of x; obtained by Eq. (8.8) are in the range 0.068 to 0.071. Especially
for the two-dimensional (2D) Ising model, which is qualitatively similar to the process of
SES emission (see § 8.4.1), one has z = 2.165 (see Ref. [42]) leading through Eq. (8.8)
to k1 = 0.0697 = 0.070. These results seem to justify the substitution of { by z, strongly
suggesting that they are the same dynamic exponent. This is not unreasonable since, in
reality, the Monte Carlo steps used in the computation of z actually correspond to natural
time steps.
Explanation of the statement that the interaction energy is proportional to the linear
dimension of the newly formed phase. Following § 1.5.3, in the non-equilibrium scaling
state, the equal-time correlation function C(r,¢) (see Eq. (1.37)) of an order parameter field

0.072

0.071

Fig. 8.14 The values of k; as a function

0.07 // 1 of dynamic critical exponent. Vari-
ous dynamical universality classes are

K4

sing(2D),model A+ . . . .
o X depicted according to their dynamic
Ising(3D),model A ¢ critical exponent value (see tables IV,

)
-state Potts(2D),model A
4-state Potts(2D) model A VII, IX, XI of Ref. [58]). Models A
) 1 and B correspond to non-conserved or
)

D),
0.069 - Ising(ZB),modeI B
0.068 | )
: XY (2D),model A
) conserved order parameter dynamics

O(N— «)(3D),model A

0.067 : : . O(3)3D);model A as defined by Hohenberg and Halperin
18 19 2 21 22 23 24 25 26  [40]. Taken from Ref. [81]. Note that the
z value k1 = 0.070 corresponds to z ~ 2.2.
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@ (x,1) in the space of D-dimension has the form [12] given by Eq. (1.38) that contains the
usual critical exponent 1).

It was stated above that the most significant part of the energy release is expected to be
of the dipole type, caused by the interaction Hamiltonian Hiyy = —E - P(= [}, hiy dX), and
that this interaction energy is proportional to the linear dimension of the newly forming
phase. This statement, following a suggestion of Professor Hiroshi Ezawa, can be shown
as follows. The dipole moment P is given by the integral of its density p

P— /V p(x,1) dx. 8.9)

Assuming p(x,?) fluctuating under a given electric field E, one focuses on the magnitude
P, considering that

P’ = /dx/dx'p(x,t)~p(x',t),
which, on average, is related to the correlation function (see Eq. (1.37)) by
(P*) = /dx/dx’<p(x,t) p(x,1))
= /dx/dr(p(x,t) p(x+r,1))
_ D/V dx/ORSDrD’IC(r,t) dr. (8.10)

where V is D-dimensional and Sp is the surface area of the unit sphere in D dimensions,
and C(r,1) is given by Eq. (1.38), so that

<P2> = DVSD/(;R rn%lf (5;)) v

:DVSD#/(;&S”L_J(S)@«Wln_zzg(t)zfﬂ, @.11)

irrespective of the dimensionality D of V, where we have changed the variable of integra-
tion from r to s = r/& (¢) assuming V — oo, Since 1 ~ 0 irrespective of the dimensionality
D of V (e.g., see Ref. [8]), Eq. (8.11) leads to

(P?) o< &(1), (8.12)

which gives a linear growth of P = /(P?) with &(z).

8.4.1 Natural time analysis of the 2D Ising model quenched close to, but below, 7.
The qualitative similarity to the original SES generation model

Here we treat the case of quenching a ferromagnetic Ising system from a high temperature
state to a temperature close to (but below) the critical temperature. This case is studied
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here since it is qualitatively similar to the pressure stimulated currents (PSC) generation
mechanism of SES [78] (see § 1.6.2) in the following sense. In the focal region of a future
earthquake, which contains ionic materials, the stress gradually changes before failure. In
ionic solids containing aliovalent impurities, extrinsic defects are formed due to charge
compensation, which are attracted by nearby aliovalent impurities, thus forming electric
dipoles that can change their orientation in space through a defect migration. Stress vari-
ations may decrease the relaxation time of these dipoles and when the pressure, or the
stress in general, reaches a critical value a cooperative orientation of these electric dipoles
occurs, which results in the emission of a transient electric signal, which constitutes the
SES. The amount of energy released during this relaxation is proportional to the electric
dipole moment. This phenomenon may be considered as qualitatively similar to a rapid
quench of a ferromagnetic Ising system from a high temperature state (corresponding to
the initial random orientations of the magnetic dipoles) to a temperature close and below
the critical temperature 7,. Of course, in the case of PSC and hence for the SES, it is not
the temperature that changes, but it is the pressure. Pressure variations modify the coupling
between the dipoles so that effectively the critical state is reached.

The calculations have been carried out as follows. A 2D Ising system (with Hamilto-
nian H = —J} ;) sisj, where s; = £1 and J stands for the coupling constant between the
nearest neighbors s; and ) in a square lattice of linear size L (with periodic boundary con-
ditions) was prepared in a high-temperature state and then instantaneously quenched to a
temperature (just) below 7. The evolution of the magnetization per spin My = ¥ s;/L> was
simulated by the standard Metropolis algorithm and studied as a function of the number k
of Monte Carlo steps (MCS). The latter was set to zero when the system is quenched at a
temperature close but below 7, and increased by 1 after each Monte Carlo step, i.e., after
all the spins of the system have been renewed following the standard Metropolis algorithm.
For the purpose of the present simulation, k runs from k =1 to 10* MCS. Figure 8.15(a)
depicts the ensemble average (|M;|) of [M;| obtained from 10* replicas for various sizes
L =100, 200, 400 and 1,000. It is observed in the figure that, due to the well-known phe-
nomenon of critical slowing down [48], systems of larger linear size need larger number
of MCS to finally reach the equilibrium magnetization. We now present in Fig. 8.15(b) a
log-log plot of the values shown in Fig. 8.15(a). This reveals that, practically independent
of L, the dynamics of (|M;|) is a power law: (|My|) o k'/% with the dynamic exponent z
very close to [42] z =2.165 (see the thick cyan straight line in Fig. 8.15(b)).

This dynamic model was then analyzed in natural time by setting Oy = |My|. Figure
8.15(c), which depicts the results for k; as a function of the number k of Monte Carlo
steps that followed the instantaneous quench, clearly shows that x; ~ 0.070.

This result coincides with the one obtained above (i.e., k] = 0.0697) in § 8.4, when
substituting in Eq. (8.8) { by the aforementioned value z = 2.165.
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Fig. 8.15 (a), (b) Evolution
of (|My]) as a function of the
number k of MCS, after an
abrupt quench close but below
T., up to k = 10*. The thick
line in (b) corresponds to

7 =2.165 (see Ref. [42]) and
is drawn as a guide to the eye.
(c) depicts the evolution of
as a function of k when |My| is
analyzed in natural time. The
average value of Kk is drawn
with the thick lines, whereas
the thinner lines enclose

the one standard deviation
(u £ o) confidence interval.
The results were found by 103
runs of the model for various
L. Taken from Ref. [81].
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8.4.2 The original Bak—-Tang—Wiesenfeld sandpile SOC model and its fully
deterministic version. Natural time analysis

Here, we come back to the original archetypal “sandpile” automaton described in Ref. [6]
(see also Section 8.1), hereafter called the Bak—Tang—Wiesenfeld (BTW) model. Let us
consider the D-dimensional BTW model on a hypercubic lattice of linear size L in which
integer variables z; > 0 represent units of sand. We perturb the system by adding a unit of
sand at a randomly chosen site z; — z;+ 1. If the corresponding z; exceeds the critical value
2D, the site is called unstable; an unstable site relaxes (topples): its z; value is decreased
by 2D, and the amount of units of sand of its 2D nearest neighbors (nn) is increased by
one:

z; — 2z, — 2D (8.13)

Zon — Znn + 1 (814)

Thus, the neighboring sites may be activated and an avalanche of relaxations may proceed.
This avalanche stops when all sites are stable again. A relaxation event is characterized by
its size s (total number of topplings), area a (number of distinct toppled sites), duration
t (number of parallel update steps until stable configuration is reached), and its radius
r (e.g., the maximal distance between the original and a toppled site). According to the
basic hypothesis of Bak et al. [6], in the SOC state the probability distributions of values
x = s,a,t,r exhibit power law behavior

Pe(x) e x™ ™ (8.15)

with x € {s,a,t,r}. According to Ref. [47], Eq. (8.15) might not be in general true for
complete avalanches but it does hold for waves of topplings. Specifically, waves represent
relaxation processes in which any site topples at most once and hence do not contain
multiple toppling events in the origin of the avalanche (note that the latter, for D > 4,
are so rare that they can be neglected). Ktitarev et al. [47] proved analytically that the
upper critical dimension of the BTW model is D, = 4, showing that previously observed
deviations from mean field behavior at D = 4 are due to logarithmic corrections. For this
case, D = 4, the scaling behavior of waves and avalanches is characterized by the same
exponents and scaling functions.

In order to proceed to numerical simulations, we study a fully deterministic version of
the BTW sandpile model, where the random site seeding is replaced by regular seeding at
the central site of the hypercubic lattice, suggested by Wiesenfeld et al. [84]. They showed
that despite this strict determinism, the system for D = 2 evolves into a SOC state. The
natural time analysis (with initial condition z; = 0) of the time series of avalanches lead to
k1 values plotted in Fig. 8.16 for D =2 to D = 7. Focusing on the aforementioned upper
critical dimension (hence corresponding to the mean field case) D = 4, we see that the k)
value fluctuates close to 0.070.

The x; values for various D plotted in Fig. 8.16 fluctuate around the value obtained
from Egq. (8.8) for { = D/2,i.e.,0.056 for D = 2, 0.064 for D = 3, 0.069 for D =4, 0.071
for D =5, 0.073 for D = 6 and 0.075 for D = 7. This result can be understood on the
following grounds.
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Number of Avalances

Fig. 8.16 The evolution of k; values versus the number of consecutive avalanches for various D values,
i.e., for D =2 to D =7, for the centrally fed sandpile. The initial condition is z; = 0. For the sake of
comparison, the broken horizontal line shows the value of x; = 0.070. Taken from Ref. [81].

Since an avalanche occurs every 2D seeds are fed into the central site, the number of
avalanches is equal to the number of seeds n fed divided by 2D. Natural time increases by
1/N when an avalanche occurs, thus we have

k n
— 5 k= {—} 8.16

Xe = D (8.16)
where the brackets [-] denote the integer part. The local conservation of the units of sand
(i.e., sand particles can move only to nearest neighbors sites) expressed in Eqs. (8.13) and
(8.14), leads to the fact that the expected number of toppling G;; at site j, upon adding a
particle at site i is characterized by [27]

Gl] o< ri2j_D’ (8'17)
where r;; is the distance between the sites i and j. Since we deal with a centrally fed
sandpile, the total expected number of topplings (s) is found by integrating Eq. (8.17) in
the hypersphere of radius / of the sandpile:

l 1
<s>o</0 Go,Sprl;! drojcx/o ro; droj o< I2. (8.18)

With regard to [, recent mathematical studies [31] show that the linear dimension of the

formed sandpile grows as
[ < n'/P (8.19)
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Inserting Eqgs. (8.16) and (8.19) into Eq. (8.18), we obtain (s) o< xz/D which reflects (cf.
Eq. (8.7)) that { = D/2.

Notice that for the upper critical dimension, we have D = D, = 4, and hence { = 2
(which is equal to the mean field dynamic exponent z = 2, e.g. see Ref. [47]) which, in
view of Eq. (8.8), leads to k; = 0.0686(~ 0.070).

The fulfillment of the condition k71 = 0.070 could be alternatively seen as follows when
considering some points discussed in Ref. [17]: The relaxation of a site can induce a num-
ber of other sites to relax in turn if, because of the particles received, they exceed the
threshold. From the moment a site topples, the addition of particles stops until all sites
have relaxed (z; < 2D for all i, see Eq. (8.13)). This condition assures that the driving force
is ‘slow’ being the driving time exceedingly longer than the characteristic time of toppling
instances. The sequence of toppling events during this interval constitutes an avalanche.
For conservative models, the number of transferred particles equals the number of particles
lost by the relaxing site and dissipation occurs only at boundary, from which particles can
escape the system. Under these conditions the system reaches a stationary state character-
ized by a sequence of avalanches. Since the SOC algorithm is implemented basically as a
cellular automaton, the cluster growth is intrinsically of diffusive nature.

It is this diffusive nature of the cluster growth, which seems to lie behind the afore-
mentioned result k1 = 0.070 in SOC models.

8.4.3 Natural time analysis of the mean field case

As mentioned above in Section 8.4 for most universality classes, z varies in a region from
z=721to z=2.4 and thus (see Fig. 8.14) the values of x; obtained by Eq. (8.8) are in the
range 0.068 to 0.071. Moreover, in the mean field case, e.g. of the growing centrally fed
sandpile in § 8.4.2, we have

=2 (8.20)
By inserting Eq. (8.20) into Eq. (8.7), we get
3
p(x) = 5\/7? (8.21)

so that fol p(x) dy = 1. Upon using Eq. (8.21) for the estimation of the variance x; of
natural time (see Eq. (2.37))

1 1 2
K| = /0 xzp(x)dx[ /0 xp(2) dx] : (8.22)
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we find and the corresponding k; value is k] = 0.0686. This value almost coincides with
the value k7 ~ 0.070 found (see Chapter 7) from the natural time analysis of seismicity
before large EQs.

The stability of the result k1 ~ 0.070 if a single realization of the process is available.
The results of this investigation, depicted in Fig. 8.17, show the following:

100 T T T T T T T
90 L Shuffled M=103 i Fig. 8.17 The probability dis-
M=10; — tribution of k; obtained after
80 - M=10> - 7 randomly selecting M = 103
y selecting
70 - (red) or M = 10*(green) sub-
series from a single realization
— 6o - of the process described by
g s0r Eq. (8.21) using exponentially
40 - distributed Qy (see the text).
Both distributions are peaked
30 - close to k1 = 0.070. Once the
20 - events of the original realiza-
10 L tion are shuffled randomly and
ol | . . then M = 10 subseries are

analyzed, the peak of the new
distribution, shown in cyan, is
K1 displaced to the right.
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Even when using a single realization of the process described by Eq. (8.21) with Oy
exponentially distributed, i.e., Oy = vk where r; are exponential p.i.i.d. random
variables, and select random subseries of the process to be analyzed in natural time,
the pdf deduced for k1 maximizes at x; ~ 0.070.

This is reminiscent of the updated procedure used in § 7.1.2. This so, because in that
procedure we considered the time series of seismicity that occurs after the initiation of
the SES activity in the area candidate to suffer a mainshock and then used the subseries
corresponding to the seismicity in all possible subareas of the candidate area to construct
the pdf of the resulting k; values. It was then found that this pdf exhibits a maximum at
k1 ~ 0.070 when approaching the occurrence time of the mainshock.

8.5 Natural time analysis of time series of avalanches observed in
laboratory experiments

8.5.1 Time series of avalanches observed in ricepiles
Here, we consider the well-controlled experiment on three-dimensional ricepiles by Aegerter

et al. [2, 1]. Since a genuine understanding of the nature of SOC can be gained only when
the approach to the critical state is understood, Aegerter et al. studied the evolution of
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a three-dimensional pile of rice starting well away from the critical state and getting pro-
gressively closer. They found [1] that their experimental results are satisfactorily described
by well-founded concepts proposed [60] in the context of extremal dynamics. In the latter
context, Paczuski et al. [60] have derived an equation (predicting power law behavior),
which they call the gap equation, describing the approach of the system to the critical
state. Aegerter et al. [2] directly studied a measure of this gap given by the maximal local
slope of the ricepile and hence could test various scaling relations of extremal dynamics.
Furthermore, Aegerter et al. studied the evolution of avalanche sizes, as well as that of the
avalanche distributions, which can be used as further tests of extremal dynamics aspects.
Here we solely focus on the way the size AV of avalanches grow with time in the transient
regime, which was measured directly.

Figure 8.18(a) depicts the time evolution of AV obtained in one experiment of Ref. [2].
Upon analyzing these data in natural time when assuming Qy = AVj, we find the results
shown in Fig. 8.18(b).
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A careful inspection of these results in ricepiles reveals that actually at later times
(N > 350) the k; value scatters in the region around 0.070(10) (as well as that S ~
0.070(10) < S,).

We clarify that upon shuffling the data, which reflects that the values are put into random
order and hence all correlations (memory) are destroyed [80] (see also § 2.5.2.1), we find
that, for N = 550, Prob[x; < 0.070] < 2% (and Prob[S < 0.070] < 0.1%). This leads to the
following conclusion:

The sequential order of the avalanches captured by the natural time analysis is of
prominent importance [70] for establishing the SOC state and constitutes the basis for
the observation of the result k; ~ 0.070.

8.5.2 Time series of magnetic flux avalanches observed in high T, superconductors.
A generalized stochastic directed SOC model

The archetypal example of SOC is, as mentioned (Section 8.1 and § 8.2.2), the growing of
a sandpile [6, 7]. Furthermore, the critical state in superconductors has been proposed (e.g.
see Ref. [87]) to be a SOC system. The strong analogy between these two systems, i.e.,
sandpiles and superconductors, as first pointed out by de Gennes (see p.83 of Ref. [34]),
could be in principle understood as follows.

When a type II superconductor is put in a slowly ramped external field, magnetic vor-
tices start to penetrate the sample from its edges. These vortices get pinned by crystallo-
graphic defects (e.g., dislocations [78]), leading to the build-up of a flux gradient which
is only marginally stable in a similar fashion as is the slope in a slowly growing sandpile.
Hence, it can happen that small changes in the applied field can result in large rearrange-
ments of flux in the sample, known as flux avalanches [15, 4, 83].

We now proceed to the natural time analysis of the time series of the magnetic flux
avalanches measured in a thin film of YBa;Cu3O7_,. These measurements have been made
by Aegerter et al. [3]. They studied the local changes in the magnetic flux over the whole
central area of a sample via a highly sensitive magneto-optic setup, which allows that flux
changes corresponding to 2.5 can be resolved where &y = h/2e is the magnetic flux
quantum (the flux of a single vortex). The pinning sites in the sample were uniformly dis-
tributed and consisted mostly of screw dislocations acting as point pins. For cuprate high
T, superconductors such as YBa,Cu30O7_, the coherence lengths are in the order of tens
of A, and thus atomic-scale structural inhomogeneities such as point defects and columnar
defects can play an important role in flux-line pinning. (In these superconductors, Su et
al. [77] found that Schottky defects formation energy increases almost linearly with BS2,
where B is the isothermal bulk modulus and 2 the mean volume per atom, in striking
agreement with an early model (termed the ¢B£2 model) proposed [79, 78] by one of the
present authors.)
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The data of Aegerter et al. [3] come from experimental runs consisting of 140 time
steps. The size and shape of the avalanches was determined from the difference AB,(x,y)
of two consecutive images (50 uT increase between images), where B;(x,y) denotes the
flux density at the surface of the sample measured. From these differences, the average
increase in the applied magnetic field due to the stepwise field sweep, was subtracted in
order to solely study the avalanches. Once the incremental field difference is determined,
the size of an avalanche, corresponding to the displaced amount of flux A®, is estimated
from AB, by integrating over the whole area AP = % JAB;(x,y) dx dy.
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The time series of the avalanche behavior in a typical experiment of Aegerter et al.
[3] is depicted in Fig. 8.19(a), which shows that the evolution of the magnetic flux inside
the sample is intermittent with occasional large jumps. Figure 8.19(b) depicts the results
obtained [70] when the data of Fig. 8.19(a) are analyzed in natural time by assuming
O =Ad;.

An inspection of the latter figure shows that for N = 140 the k; value is close to
0.070(5) (as well as that the S value is around 0.085, i.e., smaller than S,,).
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The results obtained above have been compared [70] with those deduced from the nat-
ural time analysis of the numerical results from a generalized stochastic SOC model sug-
gested by Carbone and Stanley [17]. It consists of a family of stochastic directed clusters
generated by fractional Brownian paths with different correlation properties. Carbone and
Stanley showed that the cluster area, length and duration exhibit the characteristic scaling
behavior of SOC clusters. This model is considered [17] to be a generalized stochastic
model, including the Dhar-Ramaswamy [28] directed sandpile model (which can be de-
scribed assuming that the system is driven by particles added at the top layer i = 0 and
removed from the bottom layer i = L) and the stochastic models as particular cases.

Carbone and Stanley [17] consider a generalized Brownian walk y(i) defined by
y(i) = 2;;10 &k, where the steps & are taken from a discrete fGn (see § 1.5.1.1). The mean
square displacement of y(i) scales with Ai as (y(i)?) o< (Ai)?!, where H is the Hurst ex-
ponent (0 < H < 1). The moving average function ¥, (i) is

Fu(i) = - Y y(i—k), (8.23)

which is a linear operator whose output is still a generalized Brownian motion, but now
with the high-frequency components of the signals averaged out [16] according to the
window amplitude 7. In order to characterize the clusters % corresponding to the regions
bounded by y(i) and ¥,(i) in terms of the characteristic exponents of SOC systems, they
define — for each cluster — the cluster area s

ic(j+1)
si= Y, () —sa()Ai, (8.24)
i=ic(J)
where the index j refers to each cluster. The symbols i.(j) and i.(j+ 1) stand [17] for the
values of the index i corresponding to two subsequent intersections of the “lines” defined
by ¥,(i) and y(i), and Ai is the elementary time interval corresponding to each step of
the random walker. Then, the pdf P(s) scales [17] as P(s) < s © with T =2/(1+H).
Considering that the exponent of the avalanche distribution reported from the data analysis
of Aegerter et al. [3] is around 7 = 1.3, we find that it corresponds to H ~ 0.5. Thus, in
Fig. 8.20, we plot P(s) versus s calculated for various n values for H = 0.5.

We now turn to the comparison of the results of this model with the aforemen-
tioned experimental results in YBayCuzO7_, films. Taking into account that the maximum
avalanche size s,,,, detected by Aegerter et al. [3] is of the order of 104, an inspection of
Fig. 8.20 leads to n ~ 200. In Fig. 8.21, we plot with solid lines the pdfs of x; and S that
have been obtained from the model of Ref. [17] for H = 0.5, n = 200 and N = 140. An
inspection of this figure shows that:

The maxima of the pdfs of k; and S lie around k; = 0.070(10) and S = 0.080(10),
respectively. These are comparable with the corresponding k; and S values obtained
from the natural time analysis of the experimental data depicted in Fig. 8.19(b) (for
N = 140).
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For the sake of comparison, in Fig. 8.21, we also plot the corresponding pdfs for two
non-critical cases associated with a “uniform” distribution (see § 2.1.3) i.e., (i) when Oy
are uniformly distributed in the range (0,1) (dotted) and (ii) when Qy are exponentially
distributed (broken) which corresponds to a dichotomous Markovian process (see Sec-
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tion 4.1), e.g, the case of the observed [25] RTS signals in metal-oxide-semiconductor
transistors with tunneling oxide. The maxima of the latter two cases lie at k; ~ k,, and
S ~ S, which markedly differ from those deduced for YBa,Cu30O7_, in Fig. 8.19(b) (for
N = 140).

By summarizing, the measurements of the penetration of magnetic flux into a thin film
of YBayCu3O7_, have been analyzed in natural time. This analysis leads to a value of
the variance k; = (x?) — (x)? equal to k; ~ 0.070. The same & value is found from
the natural time analysis of a generalized stochastic SOC model proposed by Carbone

and Stanley [17].

Acknowledgments We express our sincere thanks Professor Rinke J. Wijngaarden, for sending us the
YBa,Cu307_, and ricepile data discussed in § 8.5.2 and § 8.5.1, respectively.
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9. Natural Time Analysis of Electrocardiograms

Abstract. Here, we present the results obtained from the natural time analysis of electro-
cardiograms. Considering that a general agreement about whether normal heart dynamics
are chaotic or not is still lacking, and that a physiological time series may be due to a mixed
process, stochastic and deterministic, we use here the concept of entropy which is equally
applicable to deterministic as well as stochastic processes. Sudden cardiac death is a fre-
quent cause of death and may occur even if the electrocardiogram seems to be strikingly
similar to that of a healthy individual. Upon employing, however, the fluctuations of the
entropy in natural time, when a time window of certain length is sliding each time by one
“pulse” (heartbeat) through the whole time series, sudden cardiac death individuals (SD)
can be clearly distinguished from the truly healthy individuals. Furthermore, by using the
complexity measures introduced in § 3.6.1 to quantify the change of the natural entropy
fluctuations either by changing the time window length scale or by shuffling the “pulses”
randomly, we can achieve the classification of individuals into three categories: healthy,
heart disease patients and SD. In addition, when considering the entropy change under
time reversal, at certain time window length scales (which have a clear physical meaning),
not only can the SD risk be identified, but also an estimate of the time of the impend-
ing cardiac arrest can be provided. In particular, after the maximization of the amplitude
of AS at the scale of 13 heartbeats, ventricular fibrillation starts within ~3 hours in 16
out of 18 SD. Finally, an 1/ model is proposed in natural time which leads to results that
are consistent with the progressive modification of heart rate variability in healthy children
and adolescents. The model results in complexity measures that separate healthy dynamics
from heart disease patients as well as from SD.

9.1 Natural time analysis of the RR, QRS and QT time series

9.1.1 Introduction

The advantages of using the concept of the entropy in the analysis of a physiological
time series in general, and of electrocardiograms (ECG) in particular, has been already

P.A. Varotsos et al., Natural Time Analysis: The New View of Time: Precursory Seismic Electric Signals, 381
Earthquakes and other Complex Time Series, Springer Praxis Books, DOI 10.1007/978-3-642-16449-1 9,
© Springer-Verlag Berlin Heidelberg 2011



382 9. Natural Time Analysis of Electrocardiograms

explained in Section 3.1. In addition, it was explained there why the complexity measures
associated with the entropy S defined in natural time (which is a dynamic entropy) have
certain advantages compared to those based on static entropy (e.g. Shannon entropy). Ear-
lier attempts in the ECG analysis have actually used measures related to dynamic entropy.
For example, the so-called approximate entropy (AE) [48] or sample entropy (SE) [51]
have been used earlier by other authors. Examples showing that the procedure developed
here gives [63] better results than that based on AE or SE will be put forward later in
§9.2.3. Also, Costa et al. [11] introduced the multiscale entropy approach, the algorithm
of which is based on AE or SE, calculating the entropy at different scales. As for the S, it
differs essentially from the other entropies, because it is defined [61, 62] in an entirely dif-
ferent time-domain (see Fig. 9.1(b)). Moreover, as already mentioned (§ 4.8.3), in order to
discriminate similar-looking electric signals emitted from systems of different dynamics,
the following seems to hold [68]:

Signals that have S values more or less comparable to S, (which is the case of all ECG,
see Fig. 9.11 that will be discussed later) can be better classified by the complexity
measures relevant to the fluctuations 65 of the entropy.

If the S values differ markedly from S, (which is usually the case for SES and AN),
the classification of these signals should be preferably made by the use of the S values
themselves (see Section 4.10). Hereafter, we focus on the case of ECG.

In a single sinus (normal) cycle of an ECG, the turning points are traditionally labeled
with the letters Q, R, S, T; see Fig. 9.1(a). It has been clinically observed that the QT in-
terval usually exhibits prolonged values before cardiac death (see Ref. [26] and references
therein). In Fig. 9.1(b) we show how the QT interval time series can be read in natural
time. By the same token, one can read in natural time the RR (beat-to-beat) interval time
series (see Figs. 2.2(a) and 2.2(b)) as well as the QRS interval time series. The RR and

a conventional ’[ime>
I R R
pg T jg(\/k;j\i
S ) S Fig. 9.1 (a) Schematic diagram (not in
A P — scale) of a three heartbeat excerpt of an
Qm Qm+1 Qm+2 ECG in the usual (conventional) time do-
main. Only the durations Q,;,Qp+1,0m+2
of the QT interval (marked in each single
b natural time cycle of the ECG corresponding to one
Q —_ heartbeat) are shown. (b) The QT interval
Q time series of (a) read in natural time; the
m vertical bars are equally spaced and the
Qm+2 length of each bar denotes the duration of

the corresponding QT interval marked in
> (a). Taken from Ref. [66].
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QRS intervals (mainly the RR) can be automatically detected [32, 30, 31, 22] more easily
than the QT.

Sudden cardiac death, which is the primary cause of mortality in the industrialized
world [7], may occur even if the ECG looks to be similar to that of truly healthy (H)
humans.

Here, we present a surrogate data analysis which differentiates the ECG of H from
those of sudden cardiac death individuals (SD) based on the fluctuations of the entropy
S in natural time.

The fact that a system contains nonlinear components does not necessarily reflect that a
specific signal we measure from the system also exhibits nonlinear features. Thus, before
analyzing this signal by applying nonlinear techniques, we must first clarify if the use
of such techniques is justified by the data available. The method of surrogate data has
been extensively used to serve such a purpose (see Ref. [55] for a review). Surrogate data
refer to data that preserve certain linear statistic properties of the experimental data, but
are random otherwise [8, 57]. These data are prepared by various procedures, e.g., see
Ref. [57]. Here, the surrogate data are obtained by shuffling the Q; randomly and hence
their distribution is conserved. Applying such a procedure, we do the following: consider
the null hypothesis that the data consist of independent draws from a fixed probability
distribution of the dwell times; if we find significantly different serial correlations in the
data and their shuffles, we can reject the hypothesis of independence [55]. In other words,
the tested null hypothesis is that Q; are independent and identically distributed (i.i.d.)
random variables, i.e., that there are no correlations between the lengths of consecutive
intervals. If the original (continuous) time series is Markovian then the null hypothesis for
the Qy should hold, i.e., the Qy are i.i.d. random variables. The terminology “Markovian”
here always refers to the original time series.

Following § 3.6.1, as a measure of the natural time entropy S fluctuations we consider
the standard deviation S when we calculate the value of S for a number of consecutive
pulses and study how S varies when sweeping this time-window through the whole time
series. In all examples, we use here a sliding window of length 3 to 10 pulses, except other-
wise stated. Concerning the symbols: we reserve 8 only for the case when the calculation
is made by a single time-window, e.g., 5 pulses. The symbol S denotes the average of the
0S values calculated for a sequence of single time-windows, e.g., 3, 4 and 5 pulses. Fi-
nally, (8S) stands for the §S values averaged over a group of individuals, e.g., the healthy
subjects. The subscript “shuf” means that the relevant quantity refers to data obtained by
shuffling Oy randomly.

We used here the QT database from physiobank [14] (see also Ref. [31]), which is
publicly accessible and consists of 105 fifteen-minute excerpts of Holter recordings as fol-
lows: 10 from MIT-BIH Normal Sinus Rhythm Database (i.e., healthy subjects, hereafter
labeled H), 15 from MIT-BIH Arrhythmia Database (MIT), 13 from MIT-BIH Supraven-
tricular Arrhythmia Database (MSV), 6 from MIT-BIH ST Change Database (MST), 33
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from the European ST-T Database (EST), 4 from MIT-BIH Long-Term ECG Database
(LT) and 24 from sudden cardiac death patients from BIH(SD) (BIH denotes the Beth
Israel Hospital).

9.1.2 The quantities S and 65, s. The non-Markovianity of electrocardiograms

We now investigate if the 6.5 values alone can “recognize” the non-Markovianity in ECG
[67]. In Fig. 9.2, we plot, for the QRS interval time series, the 65 value averaged over
each of the aforementioned seven groups versus the time-window length. Since all time
series of these seven groups have ~103 intervals, we insert in the same figure the results
calculated for a Markovian case of comparable length ~210°. In particular, we consider a
dichotomous Markovian time series, in which we recall (e.g. § 4.1.1 and § 4.1.3) that the
dwell times (Qy) are exponentially distributed. (Since in the calculation of S only ratios
of Qy are involved the result does not depend on the transition rates of the Markovian
process.) An inspection of this figure shows that the Markovian case exhibits 8 values that
are roughly one order of magnitude larger than those of the seven groups of ECG, which
clearly points to the non-Markovianity of all the signals in these groups. We emphasize
that the same conclusions are drawn if we consider, instead of QRS, the time series of QT,
or RR intervals.

0.025 — ; ‘ : : ; ; :
0.02 7//—*\‘\\.7
H+—
SV o
015 F M
(;\) 0.015 et
Ze} SD ——
V 001 1 .
M e Fig. 9.2 The (8S) values for the QRS
intervals (see the text) of the seven
0.005 | groups of ECG versus the time-window
length. The corresponding values for
a Markovian time series (10° pulses,

é 4‘1 é é ‘7 é é 1‘0 labeled M) are also plotted. Taken from
Number of beats Ref. [67].

In summary, the 8S value alone can recognize the non-Markovianity in ECG.

We now study 5Ssh,,f (§ 3.6.1). Having in mind Eq. (3.63), in Fig. 9.3(a) we plot, for
each of the 105 individuals, the value of ¢/u versus the corresponding value of 8S, ¢
(time-window range 3—10 beats) for the RR intervals. The same is repeated in Figs. 9.3(b)
and 9.3(c) for the QT and QRS intervals, respectively. All these three plots, can be de-
scribed by linear behavior and a least-squares fitting to a straight line passing through the
origin leads to the following slopes: 38.6 4= 0.6, 36.8 £ 0.2 and 40.1 + 0.4, for the RR,
QT and QRS intervals, respectively. This points to the conclusion that 6, s provides a
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Fig. 9.3 The o/u value, for each of the
105 individuals, versus the corresponding
OSpus value for the (a) RR, (b) QT and (c)
QRS intervals. The identity of the individual
associated with each point can be found in
Ref. [64]. Taken from Ref. [67].

measure of 6/u. Note that, although these three slopes are more or less comparable, they
differ by amounts lying outside their standard error. Furthermore, if we study altogether
the RR, QT and QRS intervals, for the 10 healthy humans only (Fig. 9.4), a good linearity
of 6/u versus ES’S;,“ ¢ results with a slope 37.5 & 0.4. (note that if we study each of the
three intervals separately, we find slopes that agree within the error margins, i.e., 37.5 +
0.4,37.1 £ 0.7 and 37.8 £ 0.1 for the RR, QT and QRS intervals, respectively). The origin
of this common behavior in the healthy humans merits further investigation.
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02— ‘ ‘ —
X RR
+ QT
O QRS
0.15 b
% 0.1 B Fig. 9.4 The o/u value for RR, QT and
© & | QRS intervals of the ten H versus the
s < corresponding 8y, value (time-window
0.051 o~ & 7 range 3—10 beats). The straight line results
L W@O 1 from a least-squares fit of all the thirty
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One could argue that Q; may become i.i.d. upon their shuffling. In § 3.4.6, we showed
that, when Qy are i.i.d., 85 is actually proportional to ¢/, since the following relation
holds (see Eq. (3.63)):

o 1 Nk ook O\ Norook )
S = 2 e A LI R D D 9.1
T W UN ,;(N neW)N <,;N2 neW) ©-D

where N
k 1 1
A 2
=Xy =ataw ©-2)

and e denotes, as usually, the base of the natural logarithms. The relation (9.1) reveals that
OSsnuy versus o/ must be a straight line with a slope ranging from 34.2 to 40.4, for a
time-window length 3 to 10. This result is comparable with the slopes determined above
from the analysis of the ECG data.

We now proceed to compare 0Sy, r with 4S in ECG. We first point out that for a

Markovian case we expect 575511,, F= 85 in view of the following:

Since, by definition, 8S, s corresponds to the entropy fluctuations upon shuffling O
randomly, it is naturally expected that in a Markovian case the two quantities 65 and
OSsnuy should coincide. Note, however, that the reverse is not always true. The equality
SSshu = 858 may also hold for non-Markovian time series, as will be demonstrated
below with precise examples.

Figure 9.5(a) depicts the 8S values, calculated for each of the 105 individuals, ver-
sus the corresponding 0Syy, s for the RR intervals (time-window range 3-10 beats). The
same is repeated in Figs. 9.5(b) and 9.5(c) for the QT and QRS intervals, respectively. In
each case, we also plot the straight line Ss,r = 85 to visualize that the vast majority
of points fall below this line. The non-equality of 58S, r and 85 has been also verified
by applying the Wilcoxon paired signed-rank test, which is recommended [42] to be fol-
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lowed for non-Gaussian paired data. The tested null hypothesis is that the means of 8Sgu r
and 85 are the same and is rejected at a level of significance well below 0.01, since the
data of Figs. 9.5(a),(b) and (c) lead to normally distributed variables z = —8.29, —6.81
and —6.32, respectively (note that the corresponding one-tailed asymptotic significance is
given by P(Z < z), i.e., the probability of obtaining a normally distributed variable obeying
N(0,1) that is smaller than z). Note that a least-squares fit to a straight line passing through
the origin, results in the following expressions: S = 0.76(3) S r, 65 = 0.85(2) 8 Sy
08 = 0.94(2) 0 Sy for the Figs. 9.5(a), 9.5(b), 9.5(c), respectively. The sampling rate f,.,
in ECG is 250 Hz, thus the experimental error in their allocation is around 1/ f,., = 4 ms.
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This, if we take as an example the RR intervals, reflects in the calculation of 6S and 0 S,
errors which are drastically smaller than those required to eventually justify a compatibil-
ity of the expression 85 = 0.76(3) 5 Sy, obtained from Fig. 9.5(a), with a straight line of

slope equal to unity, i.e., 65 = 8 Sy

The difference between 0S5 and 8S,,s could be understood in the context that the
former depends on the sequential order (of beats), while the latter does not.

Since short- (and long-) range correlations is a usual feature (see Ref. [16] and ref-
erences therein) in heartbeat dynamics, which are possibly destroyed (or become weaker)
upon randomizing the data, more “disorder” is intuitively expected to appear after random-
ization, thus reflecting 6Sy;,r > 0S. Furthermore, note that in all plots of Fig. 9.5 there
are some drastic deviations from the straight line 88 = 8S r- The origin of some of these
deviations will be discussed in Section 9.2.

Finally, by means of a precise example related to SD and H, we further clarify below
the aforementioned point that the equality 8S = 8S,,s does not necessarily reflect
Markovianity.

In Fig. 9.6, we plot for the QT intervals ﬁshuf versus 85 (for time-window range 3—10
beats) for SD and H. We see that there are several individuals (mainly SD, see also the
next Section) whose values lie practically (i.e., within the error margins) on the straight
line 68 = 5iSshuf. If we plot their §S- (or 68, r-) values versus the time-window (in a
similar fashion as in Fig. 9.2), we find that they are distinctly smaller than those of the
Markovian case (note that the 8S values in Fig. 9.6 are smaller than 10~2, while those of
the Markovian case — depicted in the upper curve in Fig. 9.2 — are ~ 2 x 102 or larger).
This makes clear that these individuals cannot be characterized as exhibiting Markovian
behavior. (This non-Markovianity holds for a/l H and all SD.)

I
&
|£ °Q®7 ] Fig. 9.6 The §S value, in each of
L | the 10 H (black) and 24 SD (red),
for the QT intervals versus 0Sg,r
Q@m* L N (time-window range: 3-10 beats).
Note that the values of the ordinates
| | are appreciably smaller than the 65
Q . | . | . | value (222 x 1072) of the Markovian
0 0.002 ___0.004 0.006

S time series (10° events) depicted in
shuf Fig. 9.2. Taken from Ref. [67].
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In addition, we note that in Ref. [67] (see § 4.8.3) the difference between 85 and 85,
in the SES activities and “artificial” noises was also studied. It was found (see Table 4.5)
that there is a systematic tendency pointing to a value of §Sy, /35S larger than unity either
for the time-window range 3-5 or for the time-window range 3—10. This is consistent with
the non-Markovianity of these signals, thus strengthening the conclusions of § 4.1.2 and
§4.1.3.

9.1.3 Distinction between healthy humans and sudden cardiac death ones by means
of either 6S(QT) or the ratio 6S,,r/0S of the RR or QRS intervals

We emphasize that, in this subsection, we consider a set consisting only of two groups of
ECG, namely H and SD. In other words, we are interested here in the distinction of the
(otherwise healthy) SD from H, i.e., if the population under investigation does not include
heart disease patients.

First, we point out that in all SD, the values of the quantities 65 and 65y, s themselves
of the QT intervals exceed those of H, see Fig. 9.7. This important distinction between
SD and H cannot be attributed (see Sec. VIII of Ref. [63]) to the allocation error of the
QT interval.

We now turn to examine whether H and SD can also be distinguished by means of the
ratio 08, /0S, which is just the complexity measure v introduced in § 3.6.1: we calculate
this ratio, for each type of interval, at two ranges: (i) a short (s) range 3—4 beats and (ii)
a longer (L) range 5070 beats. By defining v = 8S,,r/0S (see Eq. (3.82)), hereafter the

[

g

(Jo) Fig. 9.7 (a) The 6S(QT) value for each of the 24 SD and 10
\% | H e | | | H (see Table 9.2) and (b) the average of the 6S(QT) values —

104 designated by (8S(QT)) — along with their standard deviation for

3 4 5 6 7 8 each of the two groups SD and H versus the time-window length.
Number of beats Taken from Ref. [68].
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following ratios are investigated: v,(7) and v, (7), where T denotes the type of interval (i.e.,
T =RR, QRS or QT) and s, L refer to the range studied (i.e., s = 3—4 beats and L = 50-70
beats).

The calculated values for vy(7) and v, (7) for the three types of intervals are given, for
all H and SD, in Table 9.1. The minima ming [V, (7)] and maxima maxg [V, (T)] (Where k
denotes either the short, Kk = s, or the longer, k¥ = L, range) among the healthy subjects are
also inserted in two separate rows, for each type of interval and each range studied. These
minima and maxima are labeled H,,;, and H,,,,, respectively. The cases of SD which have
smaller and larger values than H,,;, and H,,, (reported in each column) are marked with
superscripts “*)” and “**)”, respectively.

A careful inspection of Table 9.1 leads to the following main conclusion: all SD violate
one or more H-limits (i.e., they have values that are smaller than H,,;,, or larger than H,,,,).
We intentionally emphasize that this conclusion is also drawn even when disregarding the
results for the QT intervals. Concerning the latter intervals: Only 5 SD out of 24 violate
the H-limits; however, in all SD, their 65 values themselves, as mentioned, are larger than
those in H, see also Figs. 9.6 and 9.7. The usefulness of this difference will be discussed
later in Section 9.2.

In other words, when focusing our investigation solely on the RR and QRS intervals,
all SD violate one or more of the four H-limits related to Vs(RR), V(RR), Vs(ORS)
and vz (ORS).

This is of profound importance from practical point of view, because the RR and QRS
intervals can be detected more easily (and accurately) than the QT by means of an auto-
matic threshold based detector (e.g., see Ref. [22] that evaluated the results of a detector
that has been forwarded in Refs. [32] and [30] to determine automatically the waveform
limits in Holter ECG).

A further inspection of Table 9.1 leads to the following additional comment:

When investigating the RR intervals alone (which can be detected automatically more
easily and precisely than the other intervals), i.e., studying Vs(RR) and v (RR), the
vast majority of SD (22 out of 24 cases) can be distinguished from H. Only two SD,
i.e., sel30 and sel47, obey the corresponding H-limits.

Specifically, concerning V,(RR), fifteen SD have values smaller than H,,,;, = 1.18, while
only one SD (i.e., sel43) has a value exceeding H,uqx = 2.25. As for v (RR), eighteen SD
exceed Hy,e = 0.77, while only 2 SD (i.e., sel34 and sel42) have values smaller than
H,in = 0.44.

9.1.3.1 Tentative physical interpretation of the above results

The main feature of the aforementioned results focuses on the fact that most SD simul-
taneously have Vy(RR) values smaller than H,;,(= 1.18) and v.(RR) values exceeding
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Table 9.1 The values of the ratios ﬁshu f / 85 in the short (s) range 3—4 (Vy) or in the longer (L) range 50—
70 beats (vz) in H (sel16265 to sel17453) and SD (sel30 to sel17152) for the RR, QRS and QT intervals.
Taken from Ref. [67].

Vs, 3—4 beats vr, 50-70 beats
Individual ~ RR QRS QT RR QRS QT
sel16265 1.82 1.00 1.24 0.48 1.02 0.76
sel16272 1.74 0.99 0.98 0.77 1.08 1.11
sel16273 221 1.00 1.48 0.50 0.88 0.71
sel16420 1.55 0.98 1.08 0.53 1.09 0.90
sel16483 225 1.02 1.14 0.52 1.16 0.92
sel16539 1.42 1.06 1.25 0.50 1.08 0.65
sel16773 1.94 1.00 0.99 0.44 1.05 0.96
sel16786 1.42 1.00 1.19 0.56 1.04 0.77
sel16795 1.18 0.98 1.08 0.73 0.96 0.99
sel17453 1.38 1.01 1.02 0.56 0.98 0.81
Hin 1.18 0.98 0.98 0.44 0.88 0.65
Hypax 225 1.06 1.48 0.77 1.16 1.11
sel30 1.29 1.11%) 1.09 0.65 0.72%) 1.09
sel31 0.96%) 1.08*) 1.17 1.23%%) 0.94 0.62%)
sel32 1.39 1.14%%) 1.12 1.02%%) 0.69%) 0.90
sel33 1.05% 0.99 1.00 0.86™*) 0.82%) 0.99
sel34 2.11 1.29%%) 1.11 0.42%) 0.78%) 0.67
sel35 1.00%) 1.00 0.96%) 1.01%%) 1.05 1.08
sel36 1.02% 1.02 1.04 0.92*%) 1.00 0.88
sel37 1.07%) 1.18%%) 1.07 0.55 0.75% 0.65
sel38 0.99%) 1.09*%) 1.13 1.37%) 0.89 1.04
sel39 0.96%) 1.02 1.06 2.93%) 0.92 0.90
sel40 1.01% 1.00 0.93%) 0.78**) 0.93 1.29%%)
sel41 1.07% 1.04 1.02 1.07+%) 0.84*) 0.96
sel42 1.63 1.08**) 1.23 0.42*) 1.06 0.67
sel43 2.71%) 1.11%) 1.05 0.56 0.76%) 0.89
seld4 0.91% 0.95% 0.88%) 2.24%%) 1.46**) 1.32%%)
seld5 0.98%) 1.24*%) 1.29 0.98**) 0.86%) 0.79
sel46 1.03%) 1.01 1.03 1.00**) 0.84*) 1.01
sel47 1.56 0.97%) 1.03 0.45 0.97 1.01
sel48 0.82%) 1.18%%) 1.44 1.48%%) 0.68*) 0.73
sel49 0.93%) 1.11%%) 0.96%) 1.22%%) 0.70%) 1.14%)
sel50 1.05% 0.98 0.98 0.93**) 1.23*) 1.50%%)
sel51 1.25 1.01 0.97%) 1.05*) 1.24%%) 0.91
sel52 1.50 1.16*) 1.22 1.00%%) 0.73% 0.68
sel17152 1.64 1.01 1.04 0.90**) 1.01 0.97

*) These values are smaller than the minimum (H,,;,) value of ﬁshuf/ﬁ in H for each range.
*#) These values are larger than the maximum (H,,q,) value of 88, ¢/8S in H for each range.
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Hyax (= 0.77). The RR time series of healthy subjects are characterized by high complex-
ity (e.g., see Refs. [18, 16]); this, if we recall that in a Markovian series we intuitively
expect 8Sy,r/0S =1 (and hence vy = 1 and v, = 1), is compatible with the fact that in
all H both v¢(RR) and v (RR) distinctly differ from unity (see Table 9.1).

We now turn to SD by considering that for individuals at high risk of sudden cardiac
death the fractal physiological organization (long-range correlations) breaks down and
this is often accompanied by emergence of uncorrelated randomness, see Ref. [16] and
references therein; see also § 9.2.1.

It is therefore naturally expected that in SD the values of V¢(RR) and vz (RR) become
closer to the Markovian value (i.e., unity) compared to H. Hence, in SD, v;(RR) naturally
becomes smaller than the value 1.18 (the corresponding Hy,;,-limit) and vy (RR) larger than
0.77 (the corresponding H,yq,-limit).

We now focus on the following important property of H: although both v4(RR) and
VL(RR) differ from unity, as mentioned, they systematically behave differently, i.e.,
Vs(RR) > 1 while v, (RR) < 1. The exact origin of the latter difference has not yet been
identified with certainty, but the following comments might be relevant: First, in the frame
of the frequency-domain characteristics of heart rate variability (e.g., Refs. [38, 49]), we
may state that v;(RR) and vy (RR) are associated with the high-frequency (HF, 0.15-
0.4 Hz) and low-frequency (VLF: 0.015-0.04 Hz, LF: 0.04-0.15 Hz) range in the RR
tachogram (“instantaneous” heart rate, i.e., 1/RR, see also § 9.4.3 and § 9.5.1). An im-
portant difference on the effect of the sympathetic and parasympathetic modulation of
the RR intervals has been noticed (e.g., see Ref. [38] and references therein): Sympa-
thetic tone is believed to influence the VLF-LF component whereas both sympathetic and
parasympathetic activity have an effect on the HF component (recall that our results show
Vs(RR) > vi(RR)). Second, at short time-scales (high frequencies), it has been suggested
[46] that we have relatively smooth heartbeat oscillations associated with respiration (e.g.,
15 breaths per minute corresponds to a 4 sec oscillation with a peak in the power spectrum
at 0.25 Hz, see Ref. [38]); this is lost upon randomizing the consecutive intervals Qy, thus
probably leading to (larger variations — compared to the original experimental data — be-
tween the durations of consecutive intervals and hence to) 6Sgy,, ¢ values larger than 0S,ie.,
a Vy(RR) value larger than unity. Such an argument, if true, cannot be applied, of course, in
the longer range 50-70 beats and hence explain why the opposite behavior, i.e., S, <
08, then holds. The latter finding must be inherently connected to the nature itself of the
long-range correlations. The existence of the latter is evident from the fact that (in this
range also) the RR-intervals result in §S values (=10~%) which significantly differ from
the Markovian §S value (~10~2), compare Fig. 9.5(a) with the upper curve in Fig. 9.2.

A simplified interpretation of the results of Fig. 9.6, and in particular the reason why for
the QT intervals the quantity &S is larger for the SD than for the H, could be attempted if
we consider that: (i) S could be thought as a measure of the “disorder” (in the consecutive
intervals) (ii) the essence of the natural time analysis is built on the variation of the du-
rations of consecutive pulses, and (iii) it has been clinically observed (e.g., see Ref. [26])
that the QT interval (which corresponds to the time in which the heart in each beat “re-
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covers” — electrically speaking — from the previous excitation) exhibits frequent prolonged
values before cardiac death. Thus, when a time-window is sliding on an ECG of H, it
is intuitively expected to find, more or less, the same S values (when sweeping through
various parts of the ECG) and hence a small dS value is envisaged. By the same token,
in an ECG of SD, we expect that, in view of the short-long—short sequences of the QT
intervals, the corresponding S values will be much different (compared to H), thus leading
to a larger 65 value (note that in the same frame we may also understand why the o /u
values — and hence 6Sy,y, see Eq. (9.1) — are larger in SD than those in H, as shown in
Fig. 9.6).

9.2 Complexity measures of the RR, QRS and QT intervals in natural
time to classify sudden cardiac death individuals, heart disease
patients and truly healthy ones

9.2.1 Introduction

In complex systems operating far from equilibrium like the case of heart dynamics [16],
long-range correlations play an important role (such correlations are also of prominent
importance in equilibrium systems when approaching a critical point, e.g., the “critical”
temperature 7, i.e., T — T;; see Section 1.5). Specifically the existence of long-range
correlations in the heart rate variability has been independently established by several
applications of DFA, e.g., see Refs. [46, 16] and references therein. Additional studies
[21, 18] showed that healthy dynamics exhibits even higher complexity characterized by
a broad multifractal spectrum (note that both methods for its determination, i.e., MF-DFA
and wavelet transform, see Sections 4.5 and 4.6, respectively, have been employed). This
high complexity breaks down in illness and is usually associated with increased mortality
in cardiac patients (for more details see § 9.5.1). Thus, in ECG it is advisable that both
correlations (i.e., short- and long-range), in general, be studied carefully and hence ap-
propriate complexity measures should be envisaged. This is, in simple terms, the physics
underlying the procedure that is followed in this Section.

In particular, here we employ the complexity measures introduced in § 3.6.1 to quantify
the change of the natural entropy fluctuations at different length scales in time series emit-
ted from systems operating far from equilibrium. Along these lines, we use in ECG the
ratios 8S;(RR)/3S;(RR), 8S;(ORS)/8S;(QRS) and 65;(QT)/6S;(QT) for the RR, QRS
and QT intervals, respectively, where i, j denote the time-window length used in the calcu-
lation of 8S. Assuming that j < i, these three ratios provide measures of the 8S-variability
when a scale i changes to a scale j. We select as a common scale (for all RR, QRS and
QT) the smallest j value reasonable for natural time analysis, i.e., j = 3 beats, and for the
short-range (s) i = 5, while for the longer (L) i = 60 beats.
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Thus, in accordance to § 3.6.1, the following ratios are studied: A;(7) = 8S5(7)/3S3(7)
and Az (7) = 6Se0(7)/6S3(7), where T denotes the type of interval, i.e., T = RR, QRS
or QT.

We also define [68] the ratios

pi(T) = 8Si(RR) /85:(7), ©.3)

which provide a relative measure of the 0S values of the RR intervals compared to
either QRS or QT (for the same number of beats 7). Here, we will use for the short-
range ps(7) = p3(7) and for the long-range py.(7) = peo (7).

Thus, we have 10 complexity measures related to A and p in total: six variability
measures, i.e., A;(RR), AL(RR), As(ORS), AL(ORS), A;(OT), A (QT), and four relative
ones, i.e., ps(ORS), pL(ORS), ps(OT), pr(OT).

We shall show below that these complexity measures identify SD by analyzing fifteen-
minute electrocardiograms and comparing them to those of truly healthy humans. In ad-
dition, these measures seem to be complementary to the ones employed in § 9.1.3, and
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altogether enable the classification of individuals into three categories: H, heart disease
patients and SD. We use here the QT-Database of physiobank mentioned in Section 9.1
by considering, beyond the 10H and 24 SD, four groups of heart disease patients, i.e., 15
MIT, 13 MSV, 33 EST and 6 MST. Thus, 101 individuals out of 105 have been investigated
(note that the group LT consisting of 4 individuals was discarded in view of its small pop-
ulation). Examples of the S values, calculated for the RR, QRS and QT intervals in the
range 3 to 100 beats are plotted in Figs. 9.8(a) and (b) for one H and one SD, respectively.
As for the symbols, we use the same as those mentioned in § 9.1.1.

9.2.2 Distinction of sudden cardiac death individuals (SD) from truly healthy
ones (H)

Here, as in § 9.1.3, we consider a set consisting only of two groups of ECG, namely H and
SD. Thus, we focus here on the distinction of the (otherwise healthy) SD from H, i.e., if
the population under investigation does not include heart disease patients.

The calculated values for the complexity measures Ay, px (Where k denotes either the
short, k¥ = s, or the longer, k¥ = L, range) are given, for all H and SD, in Table 9.2. The
minima ming[A(7)] and maxima maxy [A,(7)] among the healthy individuals for the RR
(t = RR) and QRS (7 = QRS) intervals are also inserted in this Table. We also include
the corresponding minima ming[p,(7)] and maxima maxg[p«(7)] for (the relative 6S-
variability measure) p. For the sake of simplicity, they are labeled H,,;, and H,,, re-
spectively, and jointly named H-limits. The superscripts ‘a’ and ‘b’ show the cases of SD
which have smaller and larger values than H,,;, and H,,,,, respectively. In two individu-
als, i.e., sel41 and sel51, it is uncertain whether their measure A;(QRS) violates the value
Hpin = 1.15.

Table 9.2 reveals that all SD violate one or more H-limits of the four complexity
measures Ag(RR), ArL(RR), ps(QRS) and pr(QORS), and hence can be distinguished
from H.

In other words, the §S-variability measures of the RR-intervals, together with their
relative ones with respect to the QRS (i.e., four parameters in total), seem to achieve a
distinction between SD and H.

Note that A (RR) alone can classify the vast majority of SD, i.e, all SD except sel47.
Furthermore, attention is drawn to the point that if we also consider the A, (7) values
calculated (not in the original, but) in the randomized (“shuffled”’) sequence of Q,,, we
find that all SD violate one or more H-limits of A,(RR) and A g, r(RR) (see Table 9.2
and table VII of Ref. [63], respectively). This allows using again four parameters in
total the distinction of all SD from H by using the RR intervals only.

Thus, we found that among the 10 parameters defined in the original time series ex-
tracted from each ECG (or 20 parameters, in total, if we also account for the correspond-
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Table 9.2 The variability measures (1), the relative ones (p), and the ratios v = ﬁshu r /ﬁ in the short
(s) range and in the longer (L) range in H (sel16265 to sel17453) and SD (sel30 to sel17152) along with
their 8S3_4(QT) values. Taken from Ref. [68].

Individual RR QRS QT RR over QRS
As(RR)  AL(RR)  A(QRS)  AL(QRS) A(QT) AL(QT) ps(QRS)  pL(QRS)
sel16265  1.72 2.38 1.19 0.52 1.27 0.88 0.88 4.01
sel16272  1.69 1.35 1.29 0.61 1.21 0.50 0.18 0.40
sel16273  1.61 2.69 1.16 0.59 1.30 1.11 1.11 5.05
sel16420  1.51 1.74 1.22 0.48 1.37 0.66 0.96 3.46
sel16483  1.43 237 1.23 0.49 1.31 0.68 0.25 1.22
sel16539  2.00 1.94 1.26 0.50 1.41 1.08 1.85 7.10
sell6773 192 261 1.21 0.49 1.31 0.70 0.90 4.84
sell6786  1.71 1.57 1.19 0.51 1.31 0.84 1.16 3.56
sell6795 177 0.99 1.24 0.55 1.16 0.56 0.77 1.37
sel17453  1.87 1.67 1.26 0.54 1.22 0.68 1.49 4.59
Hpin 1.43 0.99 1.16 0.48 1.16 0.50 0.18 0.40
Hypax 2.00 2.69 1.29 0.61 1.41 1.11 1.85 7.10
sel30 119 0.899 1.20 1.05%) 1.28 0.56 0.51 0.43
sel31 0.969  0.34% 1.39%) 0.89”) 1.30 0.84 1.10 0.42
sel32 0.969  0.679 1.26 0.96” 1.16 0.65 0.23 0.16%
sel33 1.149  0.779 0.96% 0.52 1.21 0.53 0.79 1.17
sel34 1.87 3.040) 1.33%) 1.220) 1.159 0.85 0.40 1.00
sel35 1129 0.529 1.24 0.66” 1.129) 0.44%) 1.72
sel36 1319 0.629 1.129 0.51 1.26 0.60 2.35% 2.88
sel37 0.929  0.719 1.26 0.87% 1.114 0.78 0.71 0.58
sel38 0919  0.34% 1.27 0.65% 1.03%) 0.50 0.65 0.34%)
sel39 0.819  0.119 1.23 0.72%) 1.17 0.58 0.80 0.12%
sel40 1.66 0.819 1.149) 0.55 1.19 0.43%) 0.129 0.18%
seld1 1.149  0.489 1.18 0.70%) 1.22 0.56 0.21 0.159
sel42 1.109  1.81 1.16 0.51 131 1.01 0.95 3.40
sel43 1.69 3.04) 1.24 0.77% 1.26 0.68 0.06% 0.23%)
seld4 1.189  0.18% 1.52%) 0.43% 1.024) 0.34%) 0.59 0.25%
seld5 0.929)  0.429 1.16 0.73% 1.37 0.68 1.46 0.85
sel46 0.949)  0.439 1.059 0.71% 1.129 0.55 1.35 0.82
seld7 1.54 2.07 1.19 0.54 1.36 0.57 0.16%9 0.63
sel48 0.849  0.309 1.23 1.08%) 1.14%) 1.00 0.91 0.26%
sel49 0.939  0.33% 1.17 0.83% 1.16 0.50 1.27 0.50
sel50 1.329  0.599 1.28 0.46% 1.21 0.324) 1.78 2.31
sel51 1.83 0.72% 1.149 0.42%) 1.24 0.66 0.16% 0.27%
sel52 1409  0.73 1.320) 1.02) 1.29 1.01 0.14% 0.109
sell7152  1.06%9  0.939 1.319 0.58 1.139 0.54 0.069 0.109
min 0.81 0.11 0.96 0.42 1.02 0.32 0.06 0.10

max 1.87 3.04 1.52 1.22 1.37 1.01 2.35 3.40
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Table 9.2 Continued

RR over QT 3-4 beats (Vy)°) 50-70 beats (v;)°)
ps(QT)  p(QT) RR QRS QT RR QRS QT 553-4(QT) x 10°
2.44 6.62 1.87 0.98 1.29 0.48 1.02 0.75 0.38
0.67 1.79 1.65 0.88 0.94 0.77 1.10 1.07 0.48
3.17 7.65 2.18 0.99 1.46 0.50 0.88 0.71 0.24
1.97 5.21 1.60 0.99 1.07 0.53 1.09 0.90 0.36
0.96 3.37 227 0.99 1.17 0.52 1.15 0.92 0.35
5.57 10.04 1.43 1.07 1.27 0.50 1.08 0.65 0.52
1.49 5.54 1.85 1.01 0.91 0.44 1.05 0.97 0.55
3.97 7.43 1.39 1.01 1.19 0.55 1.04 0.77 0.23
2.87 5.08 1.10 0.98 1.05 0.74 0.95 1.00 0.56
291 7.12 1.46 1.01 1.02 0.57 0.98 0.81 0.34
0.67 1.79 1.10 0.88 0.91 0.44 0.88 0.65 0.23
5.57 10.04 227 1.07 1.46 0.77 1.15 1.07 0.56
1.73 2.73 1.15 .08 113 0.66 0719  1.102  1.04°
0.80 0.329) 0.909  1.06 1.15 1.23%) 097 0.639  3.01°
0.63% 0.64%) 1.31 L11» 113 .02 0.69%  0.90 1.14%
241 3.50 1.079 100 1.08 0.85”  0.839  1.00 0.76°
1.16 4.12 2.13 L1 1.12 0419 0779 067 0.69?
0.83 0.99%) 1.029 097 0.97 .02 1.05 1.07 6.45°
1.45 1.529) 1.039  1.01 1.08 0.93%) 099 0.89 2.08”
1.19 1.079 1.11 179 1.07 0.56 0.759  0.649 330
0.37% 0.25% 1.15 1.08 1.12 1.33")  0.89 1.03 2.71°
1.53 0.28% 0.979 097 0.99 293" 0.93 0.89 2.44P
0.20% 0.38%)

)

0.80 0.68¢ 0.91% 1.04 1.06 1.05°

)
)
1.03% 101 0.93 079"  0.94 1302 3.43°
)
1.62 2.89 1.63 .09  1.26 0.43%)

)
)
)
)
)
)
)
)
)
)
)
0.849  0.96 1.53%)
1.06 0.66 0.95”)
)
)
)
)
)
)
)
)
)
)
)

0.11 0.48%) 2799 1129 1.08 0.56 0.779  0.89 2.23b
1.08 0.58% 0919 092 0904 2259  146P 1339 4120
1.14 0.719 0.97%  1.05 1.11 0.98”)  0.88 0.79 1.71°
1.59 1.26% 1.019  0.99 1.01 0992  0.859  1.01 3.440
0.149 0.499) 1.60 0.97 0.97 0.45 0.96 1.02 2.85%
1.36 0.419 0.849  124Y) 142 1.49%  0.68% 074 1.75°
1.08 0.719 0.869  1.15") 096 1219 0719 1112 3.96°
1.21 2.26 1.079  1.00 0.91 0.93” 1202 1.622 521°
0.30% 0.33% 1.30 1.04 1.00 1.052) 1242 0.90 1.83%
0.429) 0.319 1.51 1132 117 1.020) 0739 0.67 1.66°
0.23% 0.40% 1.68 1.01 1.03 0912  1.01 0.97 1.15°

0.11 0.25 0.84 0.92 0.90 0.41 0.68 0.63 0.69
2.41 4.12 2.79 1.24 1.42 293 1.46 1.62 6.45

a) These values are smaller than the H,,;, given in each column.
b) These values are larger than the H,,,, given in each column.
c) These values do not fully coincide with those given in Ref. [67] for the reasons discussed in § 9.2.7.
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ing parameters defined in the time series obtained after shuffling the Q,, randomly), only
four are required for the distinction between SD and H. We clarify that this seems to
be extremely difficult to be achieved by chance. In order to visualize it, if we assume
(for the sake of convenience only) independent and identically distributed (i.i.d.) values
of the parameters for one subject, we find that the probability that all 4 parameters are
within the bounds (minima and maxima) set by 10 other subjects (i.e., the healthy ones)
is (1 —2/11)* ~ 0.448. Thus, the probability that all 24 additional subjects are classified
as SD by pure chance is (1 —0.448)%* ~ 6.4 x 1077, i.e., extremely small (note that only
if one decides which parameters one wants to use before the calculation of the values is
this probability valid; this is the reason why blind evaluation — defining all methods, pa-
rameters and criteria studying one set of data, and then testing the significance using an
additional set of independent data — is considered very important in medical applications
and/or publications). If one just picks 4 parameters out of the original 20 as in our case, the
above probability should be multiplied by the possible combinations of selecting 4 objects
among 20, i.e., 20!/(4!16!) = 4,845, leading to a value 0.31% of achieving our result by
chance.
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9.2.2.1 Physical interpretation of the aforementioned results in § 9.2.2

The main feature of these results focuses on the fact that both ratios A;(RR) and A (RR)
become smaller in the vast majority of SD, compared to H.

Recall that the 8S;(RR) values themselves cannot distinguish SD from H, see
Fig. 9.9(a), in contrast to the ratios 6S;(RR)/0S3(RR), see Fig. 9.9(b).

We now consider that for individuals at high risk of sudden cardiac death, the fractal
organization (long-range correlations) that characterizes the healthy subjects breaks down
(see Refs. [18, 15] and references therein; see also § 9.2.1 and § 9.5.1). This breakdown
is often accompanied by emergence of uncorrelated randomness (as already mentioned in
§9.1.3.1) or excessive order (e.g., periodic oscillations appear in the heart rate recordings
of “frequency” ~ 1/min, which are associated with Cheyne—Stokes breathing) [15].

Let us now calculate [67] the 8S values in a (dichotomous) Markovian (hereafter la-
beled .#) time series (exponentially distributed durations), see § 9.1.2, hereafter labeled
0Si(A), for a total number of N = 103 pulses (i.e., length comparable to that of the ECG
analyzed here). These values are plotted — along with those for SD and H — in green in
Fig. 9.9(a) and show that the corresponding A; and A, variability measures are

As(#) =1.200.03 and A (.#) = 0.64+0.05; (9.4)

see Fig. 9.9(b). Three comments are now in order:

First, the 6S;(.#) values differ drastically, see Fig. 9.9(a), from the dS;(RR) values
themselves of both SD and H, which indicates that the RR intervals (both in SD and
H) exhibit non-Markovian behavior, as mentioned in § 9.1.2.

This is consistent with the aspects that bodily rhythms, such as the heartbeat, show
complex dynamics, e.g., Refs. [18, 15].

Second, the fact that A;(RR) in SD becomes smaller than in H can now be understood
as follows: Since H exhibit a high degree of complexity, it is expected that (even)
their H,,i, value (= 1.43) should markedly exceed As(.#). On the other hand, in SD
this high complexity breaks down and hence their A;(RR) values naturally approach
As(A ), thus becoming smaller.

This is strengthened by the fact that the SD average value of A;(RR) in Table 9.2 is
1.19, which almost coincides with A;(.# ) (= 1.20).

The latter coincidence also occurs for the QRS intervals in both H and SD, which agrees
with the observations [26] mentioned above (§ 9.1.3.1) that the prolonged QT intervals in
SD mainly originate from enlarged ST values, while their QRS intervals may remain the
same.
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Third, we now turn to the interpretation of the results related to A, (RR). In H, it is ex-
pected that (in view of the RR long-range correlations [15]) the corresponding values
must be appreciably larger than A, (.#) = 0.64 £0.05. We now examine the SD: If, in
SD “uncorrelated randomness” appears, this reflects that their Az (RR) values naturally
approach Ay (.# ), thus becoming smaller (compared to H); this actually occurs in the
vast majority of SD in Table 9.2.

If in SD the aforementioned periodicities (associated with Cheyne—Stokes breathing)
appear, it is naturally expected (as shown below in § 9.2.2.2) to find large dS values when
a time-window of length around 60 beats, or so (i.e., related to the aforementioned ““fre-
quency” &~ 1/min) sweeps through the RR time series. This for SD, results in §S values
even larger than those in H, since in H no such periodicities appear, as actually observed
in the two cases marked with superscript ‘b’ (i.e., those exceeding H,,,,) in Table 9.2.

The plausibility of the above interpretation is considerably strengthened by the follow-
ing remarks. Recall that the H,,;, values for A;(RR) and A, (RR) have been determined
empirically by selecting the smallest values among the 10 H. We may overcome this em-
pirical selection, however, as follows. We divide each ECG in equal and non-overlapping
segments of length (/) significantly larger than the time-window of 60 beats (e.g., [ = 180
or 120 beats; see Tables 9.3 and 9.4, respectively) and calculate the corresponding mea-
sures [A;(RR)]; and [A;(RR)]; for the various segments labeled by /. The mean values
(Ac(RR)); for each individual, agree more or less with the values that have been obtained
above, when the time-window swept through the whole record and their standard devia-
tions provide a measure of the variability of each of these two complexity measures among
the various segments studied in each record. Comparing the values of min{[A;(RR)];} and
min{[AL(RR)];} (see the Tables 9.3 and 9.4) to A;(.#) and A(.# ), respectively, we find
the following. In H , the values of min{[A(RR)];} significantly exceed A, (.#) for k = s
or L, as they should (with a possible exception of min{[A.(RR)];} for sel16795, which
might be due to the fact that the ECG of this individual has the smallest length, i.e., 760
beats, among the H). On the other hand, most SD (e.g., in Table 9.3 those marked with ‘c’
and ‘d’) exhibit min{[Ac(RR)];} values which are smaller than (or equal to) A(.#) for
Kk = s or L (the values in bold, in both Tables 9.3 and 9.4, indicate the minority of cases of
SD in which the resulting min{[A(RR)];} values exceed A (.7 )). Interestingly, all these
(21 or 22 out of 24) SD cases coincide with those already marked with ‘a’ in Table 9.2 on
the basis of the empirically determined H-limits of A;(RR) and A, (RR). Thus, the essence
of our findings could be summarized as follows:

When a time-window sweeps through the whole record available, the vast majority of
SD exhibits A;(RR) and Az (RR) values which are significantly smaller than those in
H and hence SD are distinguished from H. This finding stems from the fact that some
segments of the SD records exhibit values of these measures that are comparable with
those of a Markovian behavior (see Fig. 9.9(b)).
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Table 9.3 The resulting values of the variability measures A;(RR) and A, (RR) when using segments of
length [ = 180 beats and then calculating their mean and minimum values. Taken from Ref. [63].

Signal  As(RR) AL(RR)
As(RR)? As(RR)?) (Ag(RR)); min{[As(RR)];} AL(RR)® Ar(RR)”) (AL(RR)); min{[A.(RR)];}

sel16265  1.72 1.73 1.69 1.52 2.38 2.40 1.78 0.92
sel16272  1.69 1.66 1.67 1.56 1.35 1.44 131 1.12
sel16273  1.61 1.60 1.60 1.52 2.69 2.67 2.50 1.11
sel16420  1.51 1.54 1.50 1.43 1.74 1.80 1.80 1.37
sel16483  1.43 1.38 1.40 1.30 2.37 2.51 2.19 1.44
sel16539  2.00 2.10 2.02 1.73 1.94 2.08 1.92 1.03
sell6773 192 1.93 1.90 1.66 2.61 2.64 2.26 1.52
sel16786  1.71 1.78 1.76 1.54 1.57 1.70 1.51 0.95
sel16795 177 1.81 1.77 1.67 0.99 1.10 0.82 0.419
sel17453  1.87 1.91 1.90 1.85 1.67 1.73 1.68 0.93
sel30 L1119 112 1.17 1.03 0.89 1.06 1.38 1.21
sel31 0.96°  0.96 0.97 0.88 0349 034 0.35 0.28
sel32 0.969  1.12 1.28 0.93 0.679 095 1.32 0.39
sel33 1.149  0.90 1.07 0.92 0.77 0.74 0.87 0.77
sel34 1.87 2.07 1.99 1.50 3.04 3.48 2.82 1.32
sel35 129 113 1.14 1.07 0.529 058 0.56 0.44
sel36 1319 130 1.33 1.16 0.629  0.63 0.64 0.48
sel37 0.929 091 0.94 0.75 0719 0.78 0.69 0.51
sel38 0919  0.81 1.09 0.79 0349 0.12 0.36 0.08
sel39 0.819 081 0.81 0.79 0.119  0.11 0.10 0.07
sel40 1.66 1.16 1.65 1.60 0819  0.82 0.67 0.35
sel41 1149  1.13 131 0.91 0.489)  0.44 0.63 0.10
seld2 1.109 122 1.31 0.87 1.819 213 2.59 0.69
sel43 1.69 1.55 1.63 1.52 3.04 3.85 3.24 1.65
sel44 1189 1.17 1.19 1.17 0.180  0.18 0.17 0.13
sel45 0.929 092 1.12 0.82 0.429 042 0.65 0.11
seld6  0.949  0.96 0.94 0.88 0439 0.46 0.41 0.30
seld7 1.54 1.54 1.54 1.37 2.07 2.16 232 1.81
sel48 0.849  0.84 0.93 0.84 0309 0.30 0.79 0.14
sel49 0.939  0.89 0.93 0.87 0339 037 0.32 0.20
sel50 1329 133 1.33 1.16 0.599  0.73 0.61 0.49
sel51 1.83 1.87 1.79 1.63 0729  0.75 0.77 0.66
sel52 1.409 141 1.13 0.99 0739 0.74 0.69 0.49
sel17152  1.06°9  0.94 1.00 0.87 0.939 098 1.12 0.51

a) They come from Table 9.2.

b) These values, for the sake of comparison, are obtained after applying a detection algorithm which
excludes the “outliers”; this algorithm is analogous to the one used by Ivanov et al. [21].

¢) These individuals have min{[A;(RR)];} values which are equal to or smaller than the value A;(.#) =
1.20£0.03 discussed in the text.

d) These individuals have min{[A;(RR)];} values which are equal to or smaller than the value A, (.#) =
0.64 £ 0.05 discussed in the text.

e) The ECG of this individual has the smallest length (760 beats) among the H, which might be one of the
reasons why this case only deviates from the other H.
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Table 9.4 The resulting values of the variability measures A;(RR) and Az(RR) when using segments of
length [ = 120 beats and then calculating their mean and minimum values. Taken from Ref. [63].

Signal As(RR) AL(RR)
(As(RR)); min{[A;(RR)]1} (AL(RR)); min{[AL(RR)];}

sel16265 1.70 1.46 1.87 0.98
sel16272  1.66 1.46 1.20 0.82
sel16273 1.59 1.47 1.95 0.79
sel16420  1.51 1.39 1.57 0.86
sel16483 1.42 1.23 2.45 0.90
sel16539  2.04 1.67 1.50 0.90
sel16773 1.91 1.67 2.41 0.77
sel16786  1.78 1.49 1.18 0.69
sel16795 1.77 1.68 0.68 0.44°)
sel17453 1.93 1.77 1.33 0.77
sel30 1.09 0.93 1.02 0.68
sel31 0.99 0.87 0.31 0.19
sel32 1.34 0.92 1.82 0.27
sel33 1.13 0.91 0.70 0.46
sel34 2.01 1.39 2.92 1.26
sel35 1.15 1.03 0.45 0.35
sel36 1.33 1.21 0.64 0.36
sel37 0.96 0.75 0.53 0.33
sel38 1.11 0.78 0.34 0.07
sel39 0.81 0.78 0.10 0.06
sel40 1.66 1.58 0.64 0.23
sel41 1.32 0.88 0.58 0.18
sel42 1.43 0.81 2.31 0.48
sel43 1.62 1.42 3.39 1.11
seld4 1.19 1.13 0.16 0.09
sel45 1.17 0.81 0.69 0.19
sel46 0.94 0.85 0.41 0.29
sel47 1.55 1.34 1.83 1.28
sel48 0.98 0.77 1.64 0.14
sel49 0.91 0.86 0.25 0.08
sel50 1.32 1.09 0.51 0.34
sel51 1.80 1.60 0.63 0.57
sel52 1.11 0.94 0.72 0.29
sell7152  0.99 0.79 1.16 0.40

¢) The ECG of this individual has the smallest length (760 beats) among the H, which might be one of the
reasons why this case only deviates from the other H.

The same conclusions are drawn irrespective of whether we use a detection algorithm to
exclude ‘outliers’ from the records. In the third column (labeled with a superscript ‘b”) of
Table 9.3, we present the values obtained after applying such a detection algorithm. More
precisely a moving window average filter was applied. For each set of five contiguous
intervals, a local mean was computed, excluding the central interval. If the value of the
central interval exceeded the local average by a factor 1.5 or larger, it was considered to
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be an outlier and excluded from the interval series. This algorithm is analogous to the one
used by Ivanov et al. [21].

9.2.2.2 Study of the §S values for time series with a “sinusoidal” background

In Fig. 9.10, we show the S value calculated when a time-window of length 3—100 beats
is sliding through the time series given by

X =a+bsin(2nk/T), 9.5)

or
Ve = 1+ o sin(2mk/T)n, (9.6)

where 7 is an exponentially distributed random variable of unit mean and standard devi-
ation. The amplitude of the “oscillation” b or ¢ is comparable to the standard deviation
of the RR intervals in ECG and the “period” T is 60 beats, i.e., comparable to that of
the periodic oscillations in the heart rate recordings which are associated with Cheyne—
Stokes breathing [15] mentioned above in § 9.2.2.1. The main result of Fig. 9.10 could be
summarized as follows:

0.0045 ; ; ;
-----._sel16265 ——
“EQ.(9.5) -+

Eq.(9.6) ———

0.004

0.0035 | 1
0.003 | TN 1

0.0025
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Number of beats

Fig. 9.10 The 85 values versus the time-window length for one H (sel16265) together with those obtained
using Eq. (9.5) (dotted blue) or Eq. (9.6) (broken green). Note that 7o maximum at around 60 beats appears
in the case of H. Taken from Ref. [63].

When the length of the sliding time-window becomes equal to the “period” (7" = 60
beats) of the “oscillating” background, the §S value becomes maximum.
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Note that the window length corresponding to the maximum amplitude is practically
equal to that observed if the “oscillating” background were solely present; the latter case
for the sake of comparison is also plotted in dotted blue in Fig. 9.10.

9.2.3 Comparison of the present results in natural time with those deduced from the
Approximate Entropy (AE) or the Sample Entropy (SE) to distinguish SD
from H

In § 9.1.1, it was mentioned that two other dynamic entropies, i.e., AE or SE, have been
applied to ECG analysis. Here, we compare [63] the results of these two entropies to
distinguish SD from H with those achieved above in § 9.2.2 by means of the complexity
measures in natural time.

AE and SE are based on two input parameters: the sequence length m and the tolerance
level r. The smallest values of entropy correspond to perfectly regular sequences, since
the output of these algorithms provides a likelihood measure that two sequences (within
tolerance level r) remain close at the next point. Note that as r decreases both AE and SE
increase, because the criterion for sequence matching becomes more stringent [51].

In Fig. 9.11, we plot the values of AE calculated for » = 0.2STD and m = 2 (as recom-
mended in the program apen [25]) and SE, again for m = 2, and r = 0.2STD (by means
of the program sampen [33]) along with the values of the entropy S in natural time for
SD and H.

Note that no distinction of all individuals can be achieved by means of either AE or
SE (note that this still holds if we calculate AE for r = 0.65STD as recommended
in Ref. [44]), although the average values of the two groups actually turn out to be
different. This shows the necessity of using the complexity measures based on the
fluctuations 85 of the entropy S in natural time in order to obtain the distinction of all
SD from H as in § 9.1.3 and § 9.2.2. Such a distinction cannot be achieved by means
of the S values themselves (which are close to S, see Fig. 9.11) as already emphasized
in §9.1.1.

9.2.4 The procedure for identifying SD among other individuals that include
healthy ones and heart disease patients

We first address the question of distinguishing all SD from the other individuals (heart
disease patients and H).
We use here the 101 individuals mentioned in § 9.2.1.

The values of all the complexity measures in natural time: A, p, v,853_4(QT), Agu s

Psihuy and 55’3,4#;1” (QT) for each one of the 101 ECG can be found in Table 9.2 and
in tables III to VII of Ref. [63] which are freely accessible.
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Fig. 9.11 The values (for m =2, r = 0.2STD) of AE (upper panel) or SE (lower panel) versus the entropy
S in natural time calculated for SD and H. Taken from Ref. [63].

In addition, the quality of ECG data was discussed in Ref. [63] with the following
results: Among the 101 individuals investigated, five patients have been identified as “out-
liers”. The appearance of such “outliers” is not surprising (see below) when using (as we
did) an automatic threshold detector [31, 22, 32, 30] for the allocation of the intervals.
More precisely, their recognition was made as follows: four individuals, i.e., two MIT
(sel230 and sel231) and two EST (sele0612 and sele0704), have been identified as “out-
liers”, because they exhibit vi(QRS) values which are unusually larger than unity (a simple
statistical test — by means of the STATIST [39] — of the 101 v,(QRS) values, immediately
shows that these four cases can be considered as “outliers”). The fifth individual identified
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as “outlier”, i.e., sele0136, has a p;,(QORS) value drastically larger than the corresponding
values of all other patients.

An inspection of the measures A, p, v shows three facts. First, all SD and all patients
violate one or more H-limits. Second, none of the measures A, p, v alone, or a combination
of two of them, can effectively differentiate the SD from the patients. Third, if we consider
the three measures A, p, v (i.e., 16 parameters consisting of the 10 parameters explained
in § 9.2.1 and the 6 parameters of v, and vy, related to the RR, QRS and QT intervals, e.g.,
see Table 9.1) altogether, we find that 20 SD out of 24 violate some of the limits of both
patients and H, thus allowing in principle a distinction of the vast majority of SD from the
other individuals.

Thus, in summary, the consideration of the quantities (A, p, V) only, does not lead to
a distinction of all SD from the patients. The same conclusion is drawn if we alterna-
tively consider the quantities (4, Ag,,r.0) only.

3.5 ‘ ;
3+t |\/||T —— Fig. 9.12 The average of the
/ %—M 3S(QT) values — labeled (8S(QT))
A 25 1 MS — for each of the six groups labeled
5 ol | H, MIT, MSV, MST, EST and SD
o l» + SD‘} - versus the time-window length. The
© 15t g bars denote the standard error of the
\ T .
™ P S ﬂ—w — mean. (The corresponding standard
o - )
- 1 i L E deviations overlap considerably and

05 | {,///‘}/% % I ‘+ hence are not shown for the sake of

= clarity.) The lowermost curve and
0 the uppermost curve correspond to H
3 4 5 6 7 8 and SD, respectively and hence co-
incide with the two curves depicted
Number of beats in Fig. 9.7(b). Taken from Ref. [68].

We now turn to the investigation of the §S(QT) values, which as shown in Fig 9.7(a)
allows the distinction of all SD from H. In Fig. 9.12, the average value (85)(QT) for each
group is plotted versus the time-window length. It is intriguing that the results of the four
groups (MIT, MSV, MST, EST) of patients are located between H (the lowermost curve)
and SD (the uppermost curve). We emphasize, however, that if we plot the curves for each
one of the 101 individuals (in a way similar to that of Fig. 9.7(a)), we find that there are
some patients whose results overlap with either SD or H. We now restrict ourselves to
0S53_4(QT) which for the sake of simplicity will be hereafter simply denoted 8S(QT). Let
us consider only the limiting cases — i.e., the values corresponding to the lowermost and
the uppermost curve, to be called hereafter 6S(QT)mm7§ and SS(QT)max_g, respectively —
obtained in each group & of heart disease patients, i.e., & = MIT, MSV, EST or MST. In
order to distinguish SD from heart disease patients, we must appropriately discriminate
the overlap which refers to those of the patients that lie above the uppermost §S(QT) of H;
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the latter from now on will be called 8 S(QT)nqx 1. Thus, the limits of the patients we are
currently interested in, do not extend from 6S(QT),n ¢ t0 8S(QT),qy ¢, since they must
exceed 8S(QT)mgx i i-€.,

6S(QT) > SS(QT)max,H~ (97)

The curve which corresponds to the one of the patients that has dS(QT) lying just above
the 6S(QT ) max.n corresponds to a value, which will be hereafter labeled 6S(QT), ;i & (e.g.
see fig.3 of Ref. [63]). Thus, if we apply to each group & of patients the condition

SS(QT)min’,é < 6S(QT) < (SS(QT)maxé 9-8)

we are left only with those of the patients of the group & that actually overlap with SD.
We now recall that the measures A4, p, v altogether, which are in fact ratios of &S values,
enable the discrimination of the vast majority of SD from all the others (i.e., heart disease
patients and H), while the 6 S(QT) values themselves efficiently distinguish, as mentioned
(see Fig. 9.7), all SD from H. This motivates us to investigate whether a proper combi-
nation of these two facts can serve our purpose, which refers to the identification of all
SD among the other individuals (heart disease patients and H). Thus, we now compare the
quantities 4, p, v, 6S(QT) altogether of each SD to the corresponding parameters of only
those among the patients that happen to have §S(QT) values exceeding the corresponding
values of H, i.e., obey the condition (9.7), or preferably the more accurate condition (9.8).

Such a comparison reveals that some of the 17 parameters of A, p, v, 6S(QT), in
all SD, lie outside the limits of these patients (cf. the same happens, of course, if we
compare each SD to the limits of H). These results point to the conclusion that all 24
SD are distinguished from the patients (and H). The same conclusion is drawn if we
consider instead, the 17 parameters A, Agy, 7, p, 6S(QT).

We emphasize, however, that the study of the estimation errors (see § 9.2.7 and Section
9.3; see also the Appendix of Ref. [68]) reveals that:

The confidence level for the distinction of all SD from the patients becomes apprecia-
bly larger if we combine all the measures A, Agyf, P Py, V (of all intervals) with
the condition (9.8) applied to both 6S(QT) and 65y, £(QT) (i.e., in reality, we then
consider the limits of those patients whom both S(QT) and S, (QT) values are
larger than those in H which are shown in Fig. 9.6).

A compilation of the limits of each of the complexity measures A, p,Aguf, Pshuss V

along with those of 853 4(QT) and 5753_4,5;”, 7(QT) in healthy humans (H) and in four
groups (MIT, MSV, EST, MST) of heart disease patients is given in Table 9.5.
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Table 9.6 The number of SD and patients that can be distinguished from H when using A¢(RR) or
lK,A‘huf(RR) alone.

Group Total number  A,(RR) A shur(RR) Ac(RR) and
of individuals A shuf(RR)

SD 24 23 10 24

MIT 15 14 6 14

MSV 13 13 2 13

EST 33 29 8 29

MST 6 5 0 5

We now comment on two points.

First, since it is known that heart rate variability depends strongly on age, it is highly
recommended that when comparing values of the aforementioned complexity mea-
sures, the corresponding limits should be taken from subjects (heart disease patients
and H) of comparable age [66].

Second, we now focus on the importance of the sequential order of Q,, on the aforemen-
tioned complexity measures. We prefer to deal with the results related to the RR intervals
since it is known that the healthy heart beats irregularly and that the RR intervals fluctuate
widely, following complicated patterns [9]. Let us investigate, for example, the possibility
of using A(RR) alone to distinguish the SD as well as the four groups of patients from
H, i.e., examine whether the A,(RR) values of each individual violate one (at least) of the
relevant H-limits.

The results show (see Table 9.6) that the vast majority of SD and of each group of
patients is well distinguished from H by means of A(RR) alone.

The situation drastically changes, however, if we use, instead of A(RR), the lmhuf
values (see the tables V to VII in Ref. [63]): only the minority of SD and of each group
of patients can be differentiated from H. Since the calculation of the A,(RR) values takes
into account the sequential order of Q,,, while the A, s, s(RR) values do not, this points to
the following conclusion:

It is the sequential order of beats that contains the primary information which enables
the distinction between the SD and heart disease patients, on the one hand, and the H,
on the other.

This might explain why procedures based on the entropy in natural time (which is dy-
namic entropy, affected by the sequential order [67]) — and hence consider the complexity
measures mentioned in § 9.2.1 — can achieve such a distinction, while static entropy (e.g.,
Shannon entropy, see Ref. [67]) cannot.
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9.2.5 Distinction of heart disease patients from H

This distinction can be made by identifying as heart disease patients the individuals
whom one or more of the parameters associated with A, p, v (of RR, QRS, QT) and
0S(QT) violate the H-limits provided that the distinction of the SD has been preceded
by the procedure described above in § 9.2.4.

Furthermore, comparing each of the tables in Ref. [63] that present the aforementioned
parameters for each group of heart disease patients to (the H in) Table 9.2, we also find
that:

In all heart disease patients, at least one of their four A parameters associated with
RR and QRS, i.e., A;(RR), A(RR), A;(ORS) and A;(QORS), violates one of the corre-
sponding H-limits, thus allowing again a distinction between patients and H. In other
words, only four parameters are needed to distinguish heart disease patients from H.

A further inspection reveals that among the limits of these four A parameters most
of the heart disease patients violate the ones of A;(RR) and/or A;,(RR).

Thus, in a future population consisting of all three categories SD, heart disease patients
and H, in order to separate the last two, we may work as follows. By considering the limits
given in Table 9.5, we first apply the procedure to identify the SD (as described in § 9.2.4)
among the other individuals, thus only heart disease patients and H remain. It seems then
that, in the latter population, the A parameters of the RR and QRS can efficiently distin-
guish heart disease patients from H (this can be further strengthened by the additional use
of the corresponding v parameters, which differentiate most of the heart disease patients
— but not all of them — from the H). In other words, any (explicit) information on the QT
may not be prerequisite to distinguish between heart disease patients and H. This is con-
sistent with the aforementioned (§ 9.1.1) clinical observations that the prolongation of the
QT (due to the lengthening of the ST interval) is mainly a characteristic of the SD.

9.2.6 Complementarity of the complexity measures for identifying sudden cardiac
death individuals (SD)

We first discuss the complementarity of the two procedures described above in § 9.1.3
and § 9.2.2 for the distinction of the (otherwise healthy) SD from H, i.e., if the population
under investigation does not include heart disease patients.

Recall that in § 9.1.3 entropy fluctuations — deduced from the original and the “shuf-
fled” time series — on fixed time-scales have been employed, while in § 9.2.2 entropy
fluctuations on different time-scales have been considered.
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This complementarity holds in the following sense: if in the frame of the one procedure
an ambiguity emerges in the distinction between SD and H, the other procedure gives a
clear answer.

We now study, as an example, the following two procedures: i.e., the one that uses
0S(QT) (see § 9.1.3) and the other which combines the measures A, p (see § 9.2.2). The
8S53_4(QT) values of SD and H given in the last column of Table 9.2 are classified into
two classes: the larger values correspond to SD, and the lower ones correspond to H (see
also Figs. 9.7 and 9.12). Let us focus on the two lowermost SD values and the upper-
most H value. The former two correspond to sel33 and sel34 (083-4(QT) = 0.00076 and
0.00069, respectively) and the latter one to sel16795 (853_4(QT) = 0.00056). In view of
their 5753,4(QT) values proximity, one may wonder whether these two SD could be con-
fused with H. This ambiguity can be resolved in the light of the other procedure (i.e., A, p),
as follows. Table 9.2 reveals that sel33 markedly violates both the Hy;,,-limit for A;(QRS)
and H,,;, for A;(RR) (the latter can be visualized in Fig. 9.13). As for sel34, the H,,,-limit
of A, (QRS) is strongly violated. We now turn to an alternative example, i.e., sel47, which,
by means of the method using the complexity measures A, p (of the RR and QRS intervals,
see § 9.2.2) could be confused with H, because a deviation of only around 12% from the
Hyin-limit of ming [ps(QRS)] = 0.18 is noticed. This ambiguity can be resolved by means
of the procedure using 8S(QT) (§ 9.1.3) as follows: sel47 has §53_4(QT) = 0.0029, which
exceeds significantly, i.e., by a factor 5, the corresponding value of sel16795, who has the
largest 0S3—4(QT) = 0.00056 value among the H.

5 6

10°6S, (QT)

Fig. 9.13 The 653_4(QT) values along
with those of A¢(RR) and A, (RR) for
SD (red) and H (black). The individual
sel33 is marked with a green column.
Taken from Ref. [68].

We now turn to the investigation (for details see Ref. [63]) of the complementarity of
the four quantities 4, p, v and 8S(QT) on differentiating all SD from the others (i.e., heart
disease patients and H). This can be judged from an inspection of Table 9.7, which contains
the results to distinguish the SD among 101 individuals, for all possible combinations,
upon considering only three of these quantities (i.e., see the cases in Table 9.7 except of the
upper two where all four quantities are used). For example, the combination A, p, v cannot
differentiate four SD (i.e., sel30, sel32, sel34, sel37) from the heart disease patients. As a
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Table 9.7 Results of the distinction of 24 SD among 101 individuals upon using combinations of the
measures A, p, v along with 653_4(QT). Taken from Ref. [63]

Measures combined?) The non-differentiated SD?) Number of SD
distinguished

A,p,V and relation (9.8) None 24 (all)

A,p,V and relation (9.7) One: sel35(MIT) 23

A,p,V Four: sel30(EST), sel32(EST), sel34(EST), sel37(EST) 20

A, p and relation (9.8) Four: sel30(MSV), sel41(MIT), sel46(MIT), sel4d9(MSV) 20

P,V and relation (9.8) Three: sel33(MSV,EST), sel45(MIT,MSV), 21
sel4d6(MSV,EST)

A, Vv and relation (9.8) Seven: sel36(MIT,EST), sel38(MIT), sel41(MSV), 17
sel42(EST), sel47(EST), sel51(EST),
sel17152(MSV,EST)

A, p, v of RR and QRS only Twelve: sel30(EST), sel32(EST), sel34(EST), 12

sel35(MIT,MSV), sel37(EST), sel38(MIT), sel40(EST),
sel43(EST), seldS(MSV), seld7(EST), selSO(MIT),
selS1(EST)

a) In all cases the data of the five heart disease patients sel230, sel231, sele0612, sele0704, sele0136 have
been excluded (see § 9.2.4).

b) In parenthesis we mark the group(s) of heart disease patients in which the corresponding SD is mislo-
cated.

second example, the combination p, v and 6S(QT) cannot identify three SD (i.e., sel33,
sel45, sel46), who are different from the four that could not be discriminated by the former
combination A, p, v. By the same token, we find that each of the remaining combinations
fails to identify certain SD, who can be distinguished by another combination(s).

Therefore, we conclude that each of the four quantities A, p, v, 8S(QT) seems to
complement the others in identifying all SD (note that the same conclusion is drawn
if we alternatively use the four quantities A, Ay, r, p and 6S(QT); see table XIII of
Ref. [63]).

In general, measures that employ entropy fluctuations of the original and shuffled
time series on fixed time-scales, seem to complement those that take into account
entropy fluctuations on different time-scales.

This might be understood in the context that each of these quantities, as already men-
tioned, presumably captures certain “elements” of heart dynamics only. As for the neces-
sity of using all these quantities, it might stem from the following fact. The database we
used, consists of SD individuals in which different physiological processes might have led
to sudden cardiac death. The selection of such a heterogeneous database was intentionally
made, because it was our aim to find, if possible, a general procedure for identifying SD.
If a study of “homogeneous” SD databases (in the sense that the same physiological pro-
cesses preceded the sudden cardiac death) is made, it may happen that a smaller number
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of parameters are necessary to distinguish al/ SD. Until the completion of such studies,
however, it is recommended to use all the parameters associated with the aforementioned
quantities, as described in Ref. [68].

9.2.7 The estimation errors in the procedure for identifying SD

Beyond the error introduced by the use of an automatic threshold detector for the allocation
of the corresponding intervals which is largest for the QT and smallest for the RR intervals,
the following two sources of errors must be considered [67, 68]: First, an estimation error
emerges when analyzing — instead of the original time series of length [ ~ 103 heartbeats
— smaller lengths [’ (e.g., see Table 9.3), which, however, still significantly exceed the
time-window lengths used, for example // ~ 2 x 10? (obviously the errors associated with
the measures in the short-range, s, are smaller from those corresponding to the longer
range, L, because for the latter range the [/I’ values — due to the restricted length of the
records available — are small, thus not allowing more reliable statistics). Second, a source
of (statistical) error in the results emerges when considering the ratio(s) 8S, f/(SS (.e.,
when dealing with v and Ay, r) instead of &5 itself. While 65 may be considered to have
a unique value for a (given) original Q,, time series, the value of 0, depends on the
randomly shuffled Q,, series each time selected (note that such differences are well known
[23] when dealing with randomized series of finite length). This is why the v values given
in Ref. [67] for SD and H do not fully coincide with those tabulated in Ref. [68]. To account
roughly for the extent of this statistical error, we averaged here the S, s values calculated
over a number (e.g. 20) of randomly shuffled Q,,-series generated from the same original
series and the corresponding standard deviation was estimated.

The final results of the above sources, could be summarized as follows [68]: The (per-
centage) estimation error was found to be on the average ~10% for the complexity mea-
sures A, A, 7+ P Pshug» V associated with the RR and QRS intervals. Furthermore, since
the error in the §S(QT) may reach 20%, the estimation error in those of the complexity
measures that involve 6S(QT) may be as high as ~30%. Upon considering such error-
levels, hereafter called “plausible estimation errors” €,, a study of each of the methods for
the distinction of SD was made. The study was repeated by assuming larger (percentage)
estimation errors, hereafter labeled “modified estimation errors” &, calculated for each

parameter from
Hmax - Hmin )
=& |1+ ———7—, 9.9)
r < Hmax + Hmin

see the last column in Table 9.5. Both studies led, more or less, to the same results, e.g.,
those obtained when using &,,, which are tabulated in columns 5-7 in Table 9.8. The calcu-
lation, in each study, was made as follows. Each parameter was assumed to be equal to its
value (initially estimated from the original time series available) multiplied by a number
randomly selected in the range 1 &€, or 1 4= ¢,,, respectively) and then each of the methods
for the distinction of SD was applied. This application was repeated, for each method, 10°
times via Monte Carlo.
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The extent to which these conclusions hold, was also investigated in the following ex-
treme case: the limits of the parameters of H (and patients), which are automatically ad-
justed for each “random” selection of the values described above, have been assumed to
additionally relax by (extra) amounts equal to €, or &,. Such a “relaxation” faces the ex-
treme possibility that the populations of H and heart disease patients analyzed here are not
considered large enough to allow a precise determination of their limits, and hence future
increased populations’ studies could somehow broaden these limits by extra amounts as
large as €, or &,. The corresponding confidence levels to distinguish SD from either H or
heart disease patients can be found in the last four columns of Table 9.8.

9.3 Summarizing the conclusions for identifying sudden cardiac death
individuals (SD) upon considering the error levels

As already mentioned in § 9.1.1, sudden cardiac death may occur even if the ECG looks
similar to that of truly healthy humans. In other words, we are interested here in the dis-
tinction of the (otherwise healthy) SD from H, i.e., if the population under investigation
does not include heart disease patients. To distinguish such cases, i.e., when we consider a
set consisting only of two groups of ECG, namely H and SD, the conclusions drawn from
the procedures developed in § 9.1.3 and § 9.2.2 above, are summarized below in § 9.3.1
and the relevant confidence levels are compiled in Table 9.8 under the Aim “Distinction of
SD from H”. As for the procedures developed to identify SD in a population that includes
H as well as heart disease patients (§ 9.2.4) that led to the limits compiled in Table 9.5, the
conclusions are summarized in § 9.3.2 and the corresponding confidence levels are given
in Table 9.8 against the Aim “Distinction of SD from heart disease patients”.

9.3.1 Summary of the conclusions for distinguishing SD from H

Among the four methods suggested (i.e., two in § 9.1.3 and two in § 9.2.2), the one that
uses the measures A, p (associated, however, with all three types of intervals, i.e., 10
parameters in total, see first row in Table 9.8) seems to be robust [68] in the following
sense:

(1) When assuming the error-levels (see § 9.2.7) deduced from the data analyzed here
(the relevant results are inserted in Table 9.8 under the heading “Using the limits from the
data analyzed”):

The use of A, p related to all intervals, thus 10 parameters in total, allows the distinc-
tion of all SD from H with a confidence level above 99%.

The confidence level decreases to 63%, 49%, 32% and 59% when using either four
parameters or one parameter only as follows: first: A,(RR) and px(QRS); second: A,(RR)
and 7L,<1shuf(RR); third: v(RR) and v,(QRS); fourth: 653 4(QT), respectively.
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(i) If we investigate the extreme case of the additional “relaxation” of the H-limits
mentioned in § 9.2.7 (the relevant results in Table 9.8 are under the heading “Using broader
limits™), the capability for the distinction of a/l SD still remains with the following results:

In the case of using solely A, p for all intervals, the confidence level in distinguishing
all SD is 88%. It becomes appreciably higher, i.e., larger than 99%, if we use the
quantities A, P, )“shuf» Pshufs> Vs 5S3_4(QT), 5S374,shuf(QT) altogether.

When using, however, four parameters only in the first three combinations mentioned
above, the confidence level decreases to 90%, 36% and 8%, respectively (and to 77%
when using 853_4(QT)), even when allowing two at the most SD — out of 24 — to be
misinterpreted as being H.

9.3.2 Summary of the conclusions for identifying SD among individuals that also
include heart disease patients and H

The corresponding conclusions related to the distinction of SD from heart disease patients
can be drawn on the basis of the values given in the lower part of Table 9.8.

In summary, the study of the estimation errors reveals [68] that if the limits of the
parameters that have been deduced from the ECG data analyzed here will not be broadened
by future investigations:

We can satisfactorily distinguish the fotality of SD from H as well as discriminate the
totality of SD from heart disease patients, upon employing the quantities A, Ay, p,
Pstuts V+083-4(QT), 83 4.4 s(QT) altogether, i.e., the sixth and the last method in
Table 9.8, respectively.

These quantities also allow the distinction of the fotality of SD from H (as well as
distinguish the vast majority of SD from the heart disease patients) even if their limits will
be eventually broadened (by &, of Eq. (9.9), see § 9.2.7).

Concerning the number of parameters required to achieve the desired distinction [68]:
In reality, only twelve independent quantities, (i.e., the six: 05, (7) and the six 85 g r(7),
where kK = s5,L and 7 = RR, QRS, QT) are extracted from the experimental data. Thus, for
example, beyond 853_4(QT) or 8S3_4 g (QT ), eleven additional parameters (out of 26)
of the ratios: A, Ay, f> P> Pshuf, V are in principle required to be used for the distinction.
These twelve quantities, however, should nor be fortuitously selected, but the following
points must be carefully considered: (i) priority should be given to the eight parameters
associated with A values and Ay, s (or v) values of RR and QRS, (ii) using, at least, one

p-parameter (involving 8S3_4(QT) or ﬁ3,4’shu +(QT)), and (iii) examining whether the
totality of the parameters used can actually reproduce the aforementioned twelve 8 values
determined directly from the data. However, in order to avoid the difficulty arising from
the completeness (or not) of the aforementioned selection, at the present stage (i.e., until an
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appreciably larger number of H and heart disease patients will be analyzed to allow a better
precision in the determination of the corresponding limits, see § 9.2.7), it is recommended
to use — instead of twelve — all the 28 parameters associated with the quantities A, A,

0, Psiuf> Vs 0S3-4(QT) and 8834 g (OT).

9.4 The change AS of the entropy in natural time under time reversal:
identifying the sudden cardiac death risk and specifying its
occurrence time

9.4.1 Specifying the occurrence time of the impending cardiac arrest by means
of AS

Here, we make use of the Definition 3.2 of AS (see Eq. (3.64)) and the points developed
in §3.5.1.

In particular, a window of length / is sliding, each time by one pulse, through the whole
time series. The entropies S and S_, and therefrom their difference AS;, are calculated
each time. Thus, we form a new time series consisting of successive AS; values.

We will show and that the determination of the occurrence time of the impending car-
diac arrest can be obtained [69] from the time evolution of AS; deduced from the RR time
series.

9.4.1.1 The ECG data analyzed in natural time

These are 159 long-lasting (from several hours to around 24 h) ECG recordings, which
come from databases [14], containing: (i) 72 healthy subjects, (ii) 44 patients with con-
gestive heart failure (CHF) (iii) 25 subjects with atrial fibrillation (AF) and (iv) 18 indi-
viduals suffered sudden cardiac death. In particular (see Ref. [65]), these data come from
the following databases [14]: (i) the MIT-BIH Normal Sinus Rhythm Database (nsrdb)
containing 18 H digitized with frequency fe.., = 128 Hz, (ii) the Normal Sinus Rhythm
RR Interval Database (nsr2db) containing 54 H, f.,, = 128 Hz (iii) the Congestive Heart
Failure RR Interval Database (chf2db) containing 29 subjects with congestive heart fail-
ure, foxp = 128 Hz, (iv) the BIDMC Congestive Heart Failure Database (chfdb) with 15
subjects with severe congestive heart failure, f,\, = 250 Hz (v) the MIT-BIH Atrial Fib-
rillation Database (afdb) with 25 subjects with atrial fibrillation (AF) mostly paroxysmal,
Jexp = 250 Hz and (vi) the Sudden Cardiac Death Holter Database (sddb), f.x, = 250 Hz.
The latter contains 24 SD among which 12 had ECG with audited annotations. Here, be-
yond these 12 individuals, we studied six more (i.e., “33”, “377, “44”, “47”, “48”, “50”)
whose ECG could be analyzed with confidence. Thus, we consider 18 (out of 24) SD
individuals of the sddb.
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The results presented in this Section refer to the RR intervals (see Fig. 2.2), i.e.,
Omn = RR,,,. For reasons that will be explained later, the study will be extended (in all
these 159 individuals except the 25 AF for which NN annotations were not available) to
the so-called NN intervals, i.e., Q,, = NN,,,. These are intervals obtained from ECG an-
notation files by using the option [41] “-c -PN pN”, which yields only intervals between
consecutive normal beats, while intervals between pairs of normal beats surrounding an
ectopic beat are discarded. In both the RR and NN time series, in order to exclude “out-
liers” from the records, the detection algorithm proposed in Ref. [21] has been applied, i.e.,
for each set of five contiguous intervals, if the local mean, excluding the central interval,
is larger than twice the central interval then this interval is excluded from further analysis.
In Fig. 9.15(a) one H out of 72, i.e., the one labeled 16539, has been discarded because the
resulting 6[AS3](NN) value was unusually high compared to that in other H of nsrdb (see
table 2 of Ref. [65]). Furthermore, in Fig. 9.15(b), three H out of 72 (i.e., 16539, nsr024
and nsr044) have been also discarded since they have o[AS3](RR) value unusually higher
than that in other H (see table 2 of Ref. [65]). For more details on the annotators used see
Ref. [65].

Table 9.9 Results of the application of the complexity measure AS; to the RR time series: the extrema
max(AS;3) and min(AS;3) in SD along with the time of their occurrence, i.e., Tqyx and Ty, respectively.
The latter time is measured from the time of the VF onset (except for “49”, who paced with no VF). In the
last column, the total duration of the record Ti, measured from the time of the VF onset is also inserted.
Taken from Ref. [65].

Individual max(AS;3) Trnax(8) min(AS;3) Trmin(s) Tiotal (8)

30 0.0129 28,150.65 —0.0107 6,000.90 28,470.75
31 0.0182 1,497.47 —0.0174 1,492.78 49,341.89
32 0.0069 59,754.38 —0.0047 59,746.80 60,315.61
33 0.0168 3,021.60 —0.0237 11,212.63 17,176.40
34 0.0102 10,642.46 —0.0097 7,408.24 23,743.42
35 0.0214 22,674.56 —0.0220 7,872.32 86,398.19
36 0.0218 5,603.68 —0.0197 5,598.33 68,338.58
37 0.0355 5,361.32 —0.0569 5,370.84 5,470.82
41 0.0240 3,303.27 —0.0212 3,060.47 10,762.66
44 0.0146 7,993.19 —0.0123 34,421.23 70,723.33
45 0.0157 62,992.88 —0.0145 62,985.09 65,354.88
46 0.0184 13.38 —0.0166 5,244.22 13,304.91
47 0.0241 13,282.90 —0.0230 8,481.94 22,378.26
48 0.0146 8,921.66 —0.0150 8,930.64 8,978.57
49 0.0145 5,677.80 —0.0140 1,805.06 84,528.44
50 0.0353 1,349.73 —0.0347 4,349.58 42,339.39
51 0.0151 53,067.89 —0.0161 1,957.63 82,701.48
52 0.0293 2,552.97 —0.0252 2,567.82 9,158.85

9.4.1.2 Presentation of the AS; results

In Fig. 9.14(a), we give as an example the time series of ASy3 for one SD, i.e., the one
labeled “30”. In the horizontal axis the time is measured from the ventricular fibrillation
(VF) onset. The time of the VF initiation for each SD (except for the individual “49”, who
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Fig. 9.14 Results from the analysis

of the RR time series: (a) Plot of the
quantity ASj3 versus the time to the
VF onset for one SD, i.e., “30”. The
quantities max[AS;3] and min[AS)3] are
shown by arrows. (b) For each of the
18 SD (each bar corresponds to each
individual), we plot the max[AS)3] value
— in the upper part (i.e., positive AS13
axis) — and the value min[AS;3] — in the
lower part (i.e., negative AS;3 axis) —
versus the time it appeared before the
VF onset. The shaded part indicates
the last 3 h before the VF onset. (c)
The red curve shows the number of SD
that violate both conditions Tyax < 3 h
and T, < 3 h as a function of scale [.
The probability achieving by chance the
relevant number of SD is drawn by blue
bars (right vertical scale). Reprinted with
permission from Ref. [69]. Copyright
(2007), American Institute of Physics.

paced with no VF) is given in the database used [14]. The VF initiation remains one of the
leading immediate causes of sudden cardiac death [1]. The maximum and the minimum
values of AS;3 will be labeled max[AS)3] and min[AS)3], respectively. The time of their
appearances are designated T, and Tp,, respectively. An inspection of Fig. 9.14(a) in
conjunction to Table 9.9, reveals that T, ~ 28,150 s and Tpni, ~ 6,000 s (before the VF
onset). The corresponding values for all the other SD studied, are also given in the same
Table, which presents the extrema of AS;3 along with the time of their appearance. These
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values, which are depicted in Fig. 9.14(b), reveal that interestingly in the vast majority of
SD (i.e., in all the 18 SD except the individuals “32” and “45”, the latter having a history
of ventricular ectopy) they are smaller than around 3 hours. In other words, only for two
individuals (i.e., “32” and “45”) out of eighteen, both Tyax and Ti,;, are larger than around
3 hours. The results for a variety of other length scales are summarized in Fig. 9.14(c),
where we plot in red the number of SD that violate both conditions, i.e., Tmax < 3 h and
Thin < 3 h, at various scales. The probability having such a result by chance is also shown
in the right vertical scale. This probability has been found by Monte Carlo calculation,
in which the observation times for both extrema, i.e., Tyax and T, Were assumed to be
uniformly distributed within the total duration i, of the record for each individual (see
Table 9.9). We observe that for small scales (I < 30) the observed number of SD differs
significantly from the one expected by chance. Especially, the probability to find by chance
the result obtained at / = 13 is smaller than 0.2%.

In other words, an optimum length scale (i.e., [ = 13 heartbeats) exists, at which the
magnitude of AS; (deduced from the RR time series, alone) maximizes (in 16 out of 18
cases) ~ 3 hours at the most before the VF onset, thus signaling the imminent cardiac
death risk.

Since many SD experience arrhythmia (consisting of one or more types including pre-
mature ventricular contractions (PVCs), AF and non-sustained tachycardia), it has been
confirmed (through a direct inspection of the ECG) that the extreme values of ASy3 in
Fig. 9.14(b) mainly come from trains of occurrences of PVCs. We emphasize, however,
that beyond the PVCs, the method of AS; captures additional elements of cardiac dynam-
ics that distinguish SD from other individuals as will be discussed in § 9.4.2.

9.4.2 Identifying the sudden cardiac death risk by means of complexity measures
based on AS

We now make use of the points treated in § 3.5.1 and § 3.6.2. In particular, following
§ 3.5.1, we recall that when we form the new time series consisting of successive AS;
values, the standard deviation of these values is denoted by o[AS;]. Upon shuffling the Q,,
randomly (thus destroying any information hidden in the ordering of the events), the AS;
values turn to a sequence of different values labeled AS‘;hUf whose standard deviation is
designated by O'[AS?huf] (its theoretical estimation was given in § 3.5.2). The complexity
measure N; = G[AS?h“f} /G[AS)] (see Eq. (3.83)), which quantifies the extent to which the
ordering of the heartbeats contributes to the AS; values (being unity for a random process),
is also computed.

In Fig. 9.15(a), we plot the quantities N3(NN) versus 6[AS7](NN) deduced from the
analysis of the NN time series of all individuals except of the 25 AF (since for the latter,
relevant NN annotations were not available).
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Thus, when using the NN time series alone, an inspection of Fig. 9.15(a) reveals the
major importance of the measure N3(NN) in two respects.
First, the vast majority of SD (i.e., 14 out of 18, lying in the shaded region) exhibit
N3(NN) values that are smaller than the minimum N3(NN) value computed among the
H which is labeled Hy,j, and marked with a horizontal green line in Fig. 9.15(a).
Second, the vast majority of CHF have N3(NN) values larger than H;,, thus al-
lowing in principle a distinction between CHF and SD.
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In Fig. 9.15(b), we plot N3(RR) versus 0[AS7](RR) deduced from the RR time series.
This figure shows that the distinction between CHF and SD achieved in Fig. 9.15(a) is now
lost. This is understood in the context that frequent PVCs influence the RR time series (but
not the NN) of both CHF and SD.

Thus, when using the RR time series alone, a closer inspection of Fig. 9.15(b) reveals
two important points:

First, almost all SD (i.e., except “32”") exhibit N3(RR) values that are smaller (hence
high complexity breaks down) than the minimum value Hy,, computed in H, thus
emphasizing again the importance of the scale / = 3.

Second, the shaded region that contains the vast majority of AF (18 out of 25) lies
to the right of the maximum value of o[AS7](RR) observed in H, labeled Hp,x (see
the rightmost vertical green line). Four out of the five SD (i.e., except “47”) located in
this region, suffered from atrial fibrillation, thus this shaded region seems to separate
AF from the others.

Thus, in short, the aforementioned method not only identifies the sudden cardiac death
risk but also provides a distinction of congestive heart failure patients from SD when NN
annotations are available.

9.4.3 Summary of the findings based on AS and their tentative explanation

In order to understand the physical origin of the findings in § 9.4.1 and § 9.4.2 we resort to
the neural influences on cardiovascular variability. Let us recall that:

Physiologically, the origin of the complex dynamics of heart rate has been attributed
to antagonistic activity of the two branches of the autonomic nervous system, i.e., the
parasympathetic and the sympathetic nervous systems, respectively, decreasing and
increasing heart rate [47, 29, 20, 2]. Their net result is what seems to be actually
captured by AS;, as shown in § 3.5.3.

A variety of research has now established [35], as already mentioned in § 9.1.3.1, two
clear frequency bands in heart rate and blood pressure with autonomic involvement. (i)
A higher frequency (HF) band, which lies in [6, 49] the range 0.15 to 0.40 Hz and is
[29] “indicative of the presence of respiratory modulation of the heart rate” or reflects [6]
“modulation of vagal activity, primarily by breathing”. (ii) A lower frequency (LF) band
from 0.04 to 0.15Hz (i.e., at around 0.1 Hz), which is usually described as corresponding to
[49] “the process of slow regulation of blood pressure and heart rate” or that [6] “it reflects
modulation of sympathetic or parasympathetic activity by baroflex mechanisms” due to
[29] “the emergence of a limit cycle caused by the vascular sympathetic delay” (note that
its exact explanation, however, is still strongly debated [38]). The aforementioned scale
I =13 (see AS;3 in Fig. 9.14(b)) corresponds to the LF band, while the scale [ = 3 (see
N3 in Fig. 9.15), to the HF band. Thus, the magnitude of AS;, when calculated for length
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scales corresponding to the HF and LF bands, quantifies the extent to which the processes:
“modulation of vagal activity primarily by breathing” and the “slow regulation of blood
pressure and heart rate” are “disorganized”, respectively.

An alternative way of understanding intuitively the aforementioned findings is the fol-
lowing. If we consider [67] that S could be thought of as a measure of the “disorder” (in
successive intervals) and that the essence of the natural time analysis is built on the varia-
tion of the durations of consecutive pulses, we may say the following: when approaching
sudden cardiac death, the difference between the “disorder” looking in the (immediate)
future, i.e., S, and that in the (immediate) past, i.e., S_, becomes in SD of profound impor-
tance when compared to the corresponding difference under truly healthy conditions.

In summary, the complexity measure N3, based on the entropy change AS; under time
reversal at the scale /[ = 3 heartbeats, identifies the sudden cardiac death risk and
distinguishes SD from truly healthy individuals as well as from those with the life-
threatening congestive heart failure. Furthermore, the study of AS; at the scale / = 13
heartbeats provides an estimate of the occurrence time of the impending VF onset in
those classified as SD.

The importance of the aforementioned scale of [ = 13 heartbeats also emerges from
studies on the correlation properties of the magnitude and the sign of the increments in
the intervals between successive heartbeats during daytime activity as well as during sleep
stages. Interestingly, it was found [24, 19] that the correlation behavior of the heartbeat
increments and their signs and magnitudes during daytime activity is similar to the be-
havior in REM (rapid eye-movement) sleep, but significantly different from the behavior
in deep sleep. It has been empirically observed [24, 19] by DFA that the most significant
differences between the different sleep stages occur in the following ranges: 8 </ <13
and 11 </ < 150 heartbeats for the sign-series and magnitude-series respectively. It is
challenging that the scale / = 13 is just in the verge of these two important ranges. This
coincidence cannot be fortuitous, but might stem from the reasons (LF-band, etc.) dis-
cussed above.

9.5 Heart rate variability (HRV) and 1/f “noise”. A model in natural
time that exhibits 1/f behavior

9.5.1 The 1/f “noise”. Background

Among the different features that characterize complex physical systems, the most ubig-
uitous is the presence of 1/ noise in fluctuating physical variables [36]. This means that
the Fourier power spectrum S(f) of fluctuations scales with frequency f as S(f) o< 1/f¢,
as already mentioned in § 1.4.2 (see also § 1.5.1.1). The power law behavior often persists
over several orders of magnitude with cutoffs present at both high and low frequencies.
Typical values of the exponent a approximately range between 0.8 and 4 (e.g., see Ref. [4]
and references therein), but in a loose terminology all these systems are said to exhibit 1/ f
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“noise”. Such a “noise” is found in a large variety of systems, e.g., condensed matter sys-
tems(e.g. Ref. [70]), granular flow [43], DNA sequence [45], ionic current fluctuations in
membrane channels [40], the number of stocks traded daily [34], chaotic quantum systems
[17, 50, 52, 53], human cognition [13] and coordination [72], burst errors in communica-
tion systems [5], electrical measurements [28], the electric noise in carbon nanotubes [10]
and in nanoparticle films [27], the SES activities (see § 1.4.3), etc. In some of these sys-
tems, the exponent a was reported to be very close to 1, but good quality data supporting
such a value exist in a few of them [70]. As an example we refer to the voltage fluctuations
when current flows through a resistor [71]. As a second example we recall the case of SES
activities discussed in § 1.4.3 in which we concluded that & &~ 1. As a third example, we
mention the case of heart rate variability to which we now turn.

Various tests of time variation have been applied to heart rate variability to show that in
healthy subjects heart rate fluctuations display 1/ noise and fractal dynamics with long-
range correlations, e.g., see Ref. [47]. These initial studies indicated rich dynamics with
differences between normal individuals and patients [15]. In particular, it has been found
(see Ref. [19] and references therein) that at scales above ~1 min (/ > 60 heartbeats) the
data during waking hours display long-range power law correlations over two decades with
average exponents O,z ~ 1.05 for the healthy group and ¢z, ~ 1.2 for congestive heart
failure patients. These values change to a smaller exponent (.., ~ 0.85 for the healthy
group and Cleep ~ 0.95 for the heart failure group for the sleep data. Heart rate variability
(HRV) is a useful tool that might provide indices of autonomic modulation of the sinus
node [58] and its reduced value is a sign of autonomic imbalance. Later findings (e.g., Refs.
[21, 18]) showed that healthy heartbeat dynamics exhibits even higher complexity, which is
characterized by a broad multifractal spectrum as already mentioned in § 9.2.1 (concerning
the distinction between monofractals and multifractals, see § 4.5.1). This high complexity
breaks down in illness associated with altered cardiovascular autonomic regulation (e.g.,
Refs. [29, 19] and references therein). In particular, the heart rate in healthy subjects is a
multifractal signal while for subjects with a pathological condition, e.g. congestive heart
failure, it shows a clear loss of multifractality [18, 21]. In other words, for the heart failure
subjects the multifractal spectrum is nonzero only over a very narrow range of exponents
indicating an almost monofractal behavior.

The 1/ behavior has been well understood on the basis of dynamic scaling observed
at equilibrium critical points (e.g., § 1.5.3) where the power law correlations in time
stem from the infinite-range correlations in space (see Ref. [4] and references therein).
Most of the observations mentioned above, however, refer to non-equilibrium phe-
nomena for which — despite some challenging theoretical attempts [3, 12] — possible
generic mechanisms leading to scale-invariant fluctuations have not yet been identi-
fied.

In other words, despite its ubiquity, there is no yet universal explanation about the
phenomenon of the 1/f“ behavior.
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9.5.2 An evolution model in natural time that exhibits 1/f behavior

We describe here a simple evolutionary model which, in the frame of natural time, leads
to 1/ behavior with an exponent a close to unity.

This model [54] considers the following simple evolution picture. As the number of
generations n increases by one, a new species — whose ability to survive is character-
ized by a number 1), — appears. The new species competes and eliminates only the
existing species that have a lesser ability to survive. We show below that the number
of species &,, if considered as a function of the number of generations n, exhibits an
1/f behavior and that it increases very slowly with n, actually logarithmically, thus
very few species survive in this competitive process.

The mathematical description of the model, in terms of set theory, is as follows. Let
us consider the cardinality €, (see § 2.7.1) of the family of sets E, of successive extrema
obtained from a given probability distribution function (pdf); Eg equals the empty set. Each
E,, is obtained by following the procedure described below for n times. Select a random
number 7, from a given pdf (here, we use the exponential pdf, i.e., p(n,) = exp(—ny))
and compare it with all the members of E,_;. In order to construct the set E,, we discard
from the set E,_; all its members that are smaller than 1, and furthermore include n,,.
Thus, E,, # 0 for all n > 0 and E,, is a finite set of real numbers whose members are always
larger or equal to 1,. Moreover, max[E,] > max|[E,_;|. The increase of the cardinality
€, = |E,| of these sets is at the most 1, but its decrease may be as large as g, — 1. This
reflects an asymmetry if €, is considered as time series with respect to the natural number
n. An example of €, vs n is shown in Fig. 9.16(a). The cardinality &, exhibits 1/f“ noise
with a very close to unity; see Fig. 9.16(b). The mathematical model described above, the
analytical properties of which has been discussed in detail in Ref. [60], corresponds to
an asymptotically non-stationary process, since (g,) o< Inn with a variance ((g, — (€,))%)
o< Inn (see Fig. 9.16(c)). In particular, it has been shown analytically in Ref. [60] that:

(&) = Z % (9.10)
k=1
ey —y (L1
((&a— (&))" k;l(k k2)' 9.11)

Equations (9.10) and (9.11) reveal that both the average value u = (g,) and the variance
02 = (&, — (&,))?) diverge logarithmically as n tends to infinity. The point probabilities
p(€&, = m), however, remain localized around y = (g,) o Inn since o/ o< 1 //Inn.

Thus, in short, the model suggests that the cardinality &, of the family of sets E,, of suc-
cessive extrema exhibits a logarithmic creep and the 1/ behavior when considered
as time series with respect to the natural (time) number 7.
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9. Natural Time Analysis of Electrocardiograms

Fig. 9.16 (a): Example of the evo-
lution of &, versus the number of
generations 7, i.e., in natural time.
An exponential pdf has been consid-
ered for the selection of 1,. (b): The
Fourier power spectrum of (a); the
(green) solid line corresponds to 1/f
and was drawn as a guide to the eye.
(c): Properties of the distribution of
€,. The average value (g,) (plus) and
the variance {(&, — (€:))>) (crosses)
as a function of n. The straight solid
line depicts In(n) and was drawn for
the reader’s convenience. Taken from
Ref. [54].

Note that an interconnection between 1/ noise and extreme value statistics has been
proposed as providing a new angle at the generic aspect of the phenomena [3].

In order to check the stability of the results of Fig. 9.16, we present in Fig. 9.17(a) the
average power spectrum obtained from 10* runs of the model. A sharp 1/f behavior is
observed. Moreover, in Fig. 9.17(b), we present the results of the corresponding average
values of Fpps—; of the DFA obtained for various orders /, i.e., when detrending with a
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10°
(a)
10-1 L 4
102 b 1
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Fig. 9.17 Results from 10*
10 ‘ ‘ ‘ ‘ ‘ runs of the model presented
10 10°® 10 10° 102 107" 10°  in Fig. 9.16: (a) the average

f power spectrum, (b) detrended
fluctuation analyses of order /
(DFA-I). The black solid line in
(a) corresponds to 1/ f spectrum
and was drawn as a guide to the
eye. For the same reason in (b),
the black solid lines correspond
to appa = 1. In (b), the colored
solid lines correspond to the
least squares fit of the average
Fpra—; depicted by symbols of
the same color. The numbers in
parentheses denote the standard
deviation of otpps_; obtained
from the 10* runs of the model.
The various Fpgs_; have been
0.5 1 1.5 2 25 3 35 4 45 displaced vertically for the sake
logio(n) of clarity. Taken from Ref. [54].

polynomial of order /, see § 1.4.2. Figure 9.17(b) indicates that qppa_; is close to unity,
thus being compatible with the 1/ f power spectrum depicted in Figs. 9.16(b) and 9.17(a).
We recall that in the aforementioned example of Fig. 9.16(a) showing the evolution of
€, versus the number of generations # (i.e., in natural time), an exponential pdf has been
considered. After investigating several different distributions of 7,,, we conclude that the
resulting spectral density depends only very weakly — if at all — on the pdf of n,,.

We find that, in order to obtain o = 1, the only essential condition to be fulfilled is that
the corresponding pdf should be bounded from below (note that this is a reasonable
assumption if 7, is to be considered a measure of the ability to survive; a negative
measure would correspond to a species that is unable to survive).

This holds, of course, under the assumption that 77,, come from the same pdf, i.e., they
are independent and identically distributed variables. Let us now investigate the case when
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9. Natural Time Analysis of Electrocardiograms

Fig. 9.18 Time series of g,
when 1,, come from fGn for
various values of H (increas-
ing from the bottom to the
top). Taken from Ref. [54].

M, come from a stationary but long-range (time) correlated process, for example from frac-
tional Gaussian noise (fGn) (see § 1.5.1.1). To this end, several values of the H exponent
have been considered and indicative results are depicted in Fig. 9.18 for H = 0.5, 0.7, 0.9
and ~1. A noticeable difference can be visualized in this figure upon increasing H: for
H =1, which corresponds, for example, to the case of SES activities (see § 1.4.3, § 4.3.2,
§4.4.2 and Section 4.10) the results differ greatly from those corresponding to smaller ex-
ponents, e.g., H = 0.5-0.7, which are occasionally found in the analysis of electric signal
time series emitted from “artificial” (man-made) electrical sources (see § 4.4.2).

This model, beyond its applicability to HRV (see below in § 9.5.3), may be useful in
other disciplines as well. For example, in the frame of a formal similarity between
the discrete spectrum of quantum systems and a discrete time series [50], the fol-
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lowing striking similarity is noticed. The fact that a ~ 1 together with the behavior
(&4 — (€2))) o< Inn of the present model, is reminiscent of the power law exponent
and the (§?) statistic in chaotic quantum systems [50, 52].

Furthermore, &, may be considered as equivalent to the dimensionality of the thresh-
olds distribution in the so-called coherent noise model (e.g. see Ref. [59] and references
therein).

9.5.3 The 1/f model proposed and the progressive modification of HRV in healthy
children and adolescents

The model described above in § 9.5.2 amounts to a sort of shot noise in a process showing
logarithmic creep, a non-stationary process. We now compare this prediction of the model
with the heart rate variability data in healthy children and adolescents versus age.

We consider here the HRV data in healthy children and adolescents presented by Silvetti
et al. [56]. In particular, the following two standard 24 h time-domain measures, among
others, were computed: SDNN (standard deviation of all normal sinus RR intervals over
24 h) and SDANN (standard deviation of the averaged normal sinus RR intervals for all
5-min segments). They evaluated 103 subjects (57 males and 46 females, aged 1-20 years)
and found that SDNN and SDANN, overall HRV measures, increased with age and were
gender-related. These data demonstrate that in healthy children and adolescents there is a
progressive modification of HRV that may reflect a progressive evolution of the autonomic
nervous system.

Using the results of Silvetti et al. [56], we plot in Fig. 9.19(a) SDNN vs age in a
semilogarithmic plot. An inspection of this figure reveals that, for ages below 14 yr,
in both male (blue) and female (red) subjects an almost logarithmic creep is present, a
property also exhibited by the model.

This logarithmic creep can also emerge from the results of Ref. [37] where the SDNN
versus age (A) was fitted by a power law, i.e., SDNN = 97.2 x A%20 [ms], for the period
from infancy to adolescence.

In particular, in Fig. 9.19(b), drawn on the basis of the data presented in fig. 4 of
Ref. [37] by using averages every one year of age, a logarithmic creep seems to provide
a better description for SDNN from early childhood to adolescence.

This behavior could be, in principle, understood in the following context. The present
model may simulate the variation of RR intervals around a mean value determined by the
sinoatrial node, thus leading to the logarithmic creep of SDNN visualized in Fig. 9.19. We
note that the model intrinsically represents a competitive evolution which is also present
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Fig. 9.19 (a): The mean values
of SDNN for male (blue) and
female (red) subjects as a function
of their age. The data come from
table 1 of Ref. [56]. The x-axis is
in logarithmic scale. (b): Variation
of SDNN with respect to age. The
data come from fig. 4 of Ref. [37]
and are binned every year of age.
The vertical error bars stand for
=+ one standard deviation. The
dotted (blue) curve corresponds
to the power law fit suggested in
Ref. [37] whereas the solid (red)
line corresponds to a logarithmic
creep predicted by the model of
§9.5.2. Taken from Ref. [54].

during the period of childhood. The complexity of heart rate dynamics is high in children
and illustrates [37]: “an increase of cholinergic and a decrease of adrenergic modulation
of heart rate variability with age, confirming the progressive maturation of the autonomic

nervous system.” In other words, in order to shed light on the underlying connection
between the presented model and the development of heartbeat regulation we could say the
following. As already mentioned in § 9.4.3, the origin of the complex dynamics of heart
rate has been attributed to the antagonistic activity of the parasympathetic and sympathetic
nervous system:

It is this antagonistic activity which seems to be captured by the model since its basic
spirit stems from a competitive evolution process.



9.5 Heart rate variability (HRV) and 1/f “noise”. A model in natural time that exhibits 1/f behavior 431

9.5.4 The complexity measures obtained from the 1/f model and their comparison
with HRV data

We now compare the results of the model in natural time with the HRV data — actually
the RR time series — of heart disease patients and healthy subjects that have been already
analyzed in natural time in Section 9.4. Recall that those data came from long time ECG
recordings [14] containing on average N ~ 103 heartbeats for each record. Thus, in order
to compare with the results already presented in Fig. 9.15(b) on HRV, we consider only
mature models with n ~ 10° and examine their evolution, i.e, the time series &,, for the
later 10° generations (cf. this is the order of magnitude of heartbeats in a 24 h ECG record-
ing). The proposed model results in N3 = 2.52+0.19 and 6[AS7] = (2.46+£0.25) x 1073
shown by the (black) square in Fig. 9.20. This figure just reproduces Fig. 9.15(b) to which
the calculated values of the model (as well as those from the INAGS model, see below)
are now added. Concerning the calculated value of N3, this is close to (but below) the
minimum value H,,;, observed in H and larger than the N3 values in the vast majority of
SD (where high complexity breaks down). As for the calculated 6[AS7] value, it lies to
the right of the maximum value of 6[AS7] observed in H as well as in the vast majority
of CHF located outside the shaded region which seems to separate AF from the others.
This is consistent with the fact that the (black) square corresponds to an 1/f behavior,
while healthy heartbeat dynamics exhibits even higher complexity [21, 18] as mentioned
in §9.5.1.
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Fig. 9.20 The complexity measure N3 vs G[AS;] for the RR time series. This figure is the same as
Fig. 9.15(b) to which the complexity measures obtained from the present 1/f model as well as those
deduced from the model of Ref. [20] have been added, marked with (black) square and (green) circle,
respectively. Taken from Ref. [54].
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Indeed, let us consider the stochastic feedback model proposed by Ivanov, Nunes Ama-
ral, Goldberger and Stanley (INAGS) in Ref. [20] which describes the healthy regulation
of biological rhythms with a clear relation to the physiology of the heart; the effects of
the sinoatrial node along with the parasympathetic and the sympathetic influences were
taken into account. The INAGS model leads [20] to an approximately 1/f!! behavior and
generates complex dynamics that account for the functional form and scaling of the distri-
bution of variations of RR. The aforementioned complexity measures in natural time that
correspond to this model (by using the same parameters as those mentioned in fig. 2 of
Ref. [20]) have been calculated [54] and the results are depicted by the (green) circle in
Fig. 9.20. Interestingly, this point lies within the H-limits, as it should.

Summarizing, using the concept of natural time, a simple competitive evolution model
has been proposed that exhibits 1/f“ behavior with a close to unity. The model
amounts to a sort of shot noise in a process showing logarithmic creep (non-stationary
process), a behavior which is similar to the fact that the standard deviation of all nor-
mal sinus RR intervals over 24 h exhibits a logarithmic creep with age for children
and adolescents. The model predicts complexity measures (see the black square in
Fig. 9.20) that separate healthy dynamics from heart disease patients and SD, as intu-
itively expected since it corresponds to a simple 1/f behavior.
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343-349
— — of dynamical models XIX, 341-377
— — of ECG see Electrocardiograms, analysis in
natural time
— — of fBm time series with DFA exponent o = 1
343
— — of long duration SES activities 28,231-233
— — of Magnetic flux avalanches in high 7,
superconductors 343, 373-377
— — of multifractal cascades see Multifractal
cascades, in natural time
— — of Olami-Feder—Christensen EQ model
(conservative case) and “foreshocks” in the
non-conservative case 343, 349-363
— — of power law distributed energy bursts 145
— — of quasi-periodic O 121, 133,348
— — of Ricepiles 343,371-373
— — of Seismicity preceding major EQs
291-335, 343,371
— — of SES activities 191-233,343
— — of SES activities upon significant data loss
237-244
— — of stochastic Cantor set: p-model describing
turbulence 343
— — of the deterministic version of the original
sandpile SOC model 343
— — of the pressure stimulated currents model for
SES generation 134-138, 343
— approaching the time of a mainshock see
Natural time analysis of Seismicity
preceding major EQs
— average value of 123
— — fluctuations under time reversal 228-230
— — fluctuations under time reversal, quantifi-
cation of the long-range dependence
124-127
— — interconnection with a small linear trend
124
— cardinality of 151-153
— definition 121
— detrended fluctuation analysis see Detrended
fluctuation analysis (DFA), in natural time
— distinction between SES and noise XIX, 12,
201-202, 220, 224, 225,228, 230-231
— entropy see Entropy, in natural time

XIX,

Index

— foundations 119-154
— Hurst analysis  see Hurst analysis, in natural
time

— Normalized power spectrum see Normalized
power spectrum

— optimality XVIII, 146-150

— seismicity XIX, 247-286

— time reversal of 123-127

— — definition 123-124

— universality of seismicity 254

— universality of SES activities 199-201

— variance see Variance k) in natural time
— wavelets see Wavelet transform in natural
time

Negative activation volume 41,42, 46

Negative migration volume see Negative
activation volume

Neural influences on cardiovascular variability
see Cardiovascular autonomic regulation

Noise

- 1/f* see1/f* behavior

— “artificial” (man made) XIX, 5, 8, 12,21, 22,
36, 80, 82, 84, 85, 89, 90, 92, 132, 148-150,
191-195, 197, 199-210, 212-215, 217-230,
238,328,389

— contaminated data see Identification of SES
activities upon severe data loss

— contaminated data segments 237,238

— discrimination from SES see Seismic Electric

Signals
— driven logistic map 173
— electrochemical 10, 89

— fractional Gaussian, fGn see fractional
Gaussian noise

— from a geographically fixed source
89-92

— frozen 349

— level 18,77,89,238

— magnetotelluric  8-10, 22, 26

— periodic see High noise due to leakage
currents from DC driven trains in Japan

— pink see 1/f“ behavior

— Shot noise  see Shot noise

— white 26,29

Nonextensive Statistical Mechanics
extensivity

Nonextensivity XIX, 40, 248, 278, 279, 285, 286,
349

— combining with natural time 281-286

— generalization of Gutenberg-Richter law 40,
248, 278-285, 286

— the g-parameter 149, 279-282, 285, 286

— Tsallis Entropy see Entropy, Tsallis

Non-equilibrium critical dynamics 36-37

11,12,

see Non
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Non-Markovian global measure G 193, 194

Non-Markovianity 192, 193, 195, 197

— of ECG see Electrocardiograms, the
non-Markovianity

Normal Sinus Rhythm RR interval Database 417

Normalized power spectrum 119,293,363

— “artificial” (man-made) noise 200, 201

— “uniform” distribution 133-134

— combination with multifractal DFA 220

— definition of 130

— distinction between SES activities and
“artificial” noises 201-202

— expression for @ or ¢ — 0 XVIII, 130-132,
247

— multiplicative cascades 262

— of seismicity 247,250, 293, 295, 297, 300, 309

— SES activities, experimental 191, 200, 201

— SES activities, theoretical 134-138

— Taylor series of 130-132

— universality of 191, 199-201

(0]

Olami-Feder—Christensen (OFC) earthquake
model XX, 183,250,292, 341, 349, 353,
355,362

conservative and non-conservative case 343,
350, 352, 354,360, 362

— free boundary conditions 350

— open boundary conditions 349-351, 354, 356

— periodic boundary conditions 349, 350

predictability 358-363

— transient and stationary regime 343, 350, 362

Omori law  see Earthquake scaling laws, Omori

Order parameter XIX, 35, 38, 247, 250, 254, 260,

364

— bimodal feature XIX, 247,260, 274, 278

— of seismicity 247,249, 250, 257-259,

270-274,278,292

Origins of self-similarity XVIIL, 119, 138, 264

— background 139

— distinction of its origins by natural time analysis

138-146, 264

P

Parasympathetic and sympathetic nervous systems
392,422,430, 432

Partition function 212

Patras (PAT) measuring station 227,294-296,
300, 320, 321

— selectivity map 295, 326

Pauli, Wolfgang see Wolfgang Pauli

pdf
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- p(x) 123,124,130-133, 137, 143, 161, 164,
169,202, 359, 363, 364, 370
— information entropy of see Entropy differential

- ofn, 425-427
— of K1
— — p-model 263

— — dichotomous Markovian process 376

— — for power law distributed energy bursts
146

— — in Carbone & Stanley generalized SOC model
375,376

— — upon selecting random subseries
371

— — upon shuffling

— of [T(¢) 254

— of §

— — p-model 263

— — upon shuffling 171

— of S_

— — p-model 263

— — upon shuffling 171

— of avalanche parameters in SOC 368

— of dwell times 160, 192, 383

— of power law distributed energy bursts 144

— of sojourn times 160, 195

— of the cluster area in Carbone & Stanley

generalized SOC model 375,376

— of the order parameter 248, 258, 260

— quantifying the bimodal feature 274-278

— — seismicity XIX, 247, 254,258-261, 266,
267,270,272,273,282,284

Peierls stress or potential 55

Pelite 46

Percolation 62, 64, 65,353,355

Peroxy defects 55,56

Persistence 203,292

Persistent time series  203-205, 207

Philippine Sea plate 328

Physiobank 383,395

Piezoelectric behavior 45, 50

— charged dislocations 49

Pirgos (PIR) measuring station 27,28, 227,296,

311,315,318-325

— selectivity map 302,318, 324, 326

Plastic bending 49,51

Plastic deformation 52, 144

Plastic flow 144

Polarization 46,49, 55, 65,95, 134

— currents (PSPC) 41-44, 46, 134

— Maxwell-Wagner 45

— MT see Magnetotelluric, polarization

— SES see Seismic Electric Signals

Porosity 58, 62,63

145,

302,

171, 266, 267
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Power law exponent in different physical processes
(Table of values) 144

Power laws 29, 35, 36, 63, 132, 143, 145, 174,
198,203,211, 222,285, 346, 359, 364, 366,
368,424,429, 430

Power spectrum exponent
426,427

Poynting theorem 106

Prediction see Receiver Operating Characteristic,
ROC

Predictions

— evaluation 307

— issued 305,307,309, 310, 326

— successful 275,303, 308, 358

Preliminary procedure to determine the occurrence
time of an impending mainshock 292-300,
308-309, 313, 316, 319, 320, 324, 330

Premature ventricular contractions (PVCs) 420,
422

Pressure stimulated currents model for SES
generation 40-46

26,35,197, 198, 423,

Prob(x;) 300,302,313, 316, 320, 324, 335
Probability conditional see Conditional
probability

Probability density function see pdf

Probability to identify SES under severe data loss
237,240-244

Profile of a time series

Proper set 301, 302

Public warnings XIX, 13,303, 315, 320, 321,
325,327

25, 26,203,217

Q

QRS complex in ECG 382
QT interval in ECG 382
QT-Database 383,395
Quasi-periodic 121, 133,348

R

Rényi entropy 162

Random telegraph signals, RTS 36, 192,377

Random walk 25,26, 196, 203, 375

Rapid eye-movement (REM) sleep 423

Receiver Operating Characteristics, ROC 275,
358

change of the entropy in natural time under time
reversal in the OFC model 362

— false alarm rate 275, 358, 362

— hitrate 275,358,362

— order parameter of seismicity 275-277

Redox conversion 56

Regional

Index

— geoelectrical structure 10

— seismicity 248

— stress 75

— strike angle 10

Relaxation time 52, 101, 103

— charged dislocation 49, 50, 103

— dipole (re)orientation 4146, 134,366

— Maxwell-Wagner 45

Rescaled range (R/S) see Hurst analysis

Respiratory modulation of the heart rate 422

Roughness exponent 32

Royal Society International Workshop on VAN
304,309

Royal Society Meeting see Royal Society
International Workshop on VAN

RR interval in ECG 382

S

Sample Entropy, SE  see Entropy, sample entropy

Sampling frequency fe,

— in ECG see Electrocardiograms, sampling rate

— in SES 14, 28,29

Sampling rate see Sampling frequency fx,

Sandstone 46

Scale-free systems 36, 138, 345

Scaling XVIII, XIX, 3, 24, 26, 27, 29, 30, 36-38,
126-128, 137,139, 171, 174, 203, 204,
210-218, 224,229, 237,238,241, 248, 249,
258,260,271,272,279, 299, 342, 343, 350,
352,353,355, 364,368,372, 375,432

— behavior estimators 217

— exponent yy 126-128, 228,229

— exponent 7(gq) 212,217,218

— exponent H see Hurst analysis exponent or
Self-similarity index

— exponent i(2) see Hurst, generalized exponent
h(2)

— exponent h(g) 211-214,217-219

— exponent of DFA  see Detrendend fluctuation
analysis (DFA)

— exponent of MF-DFA
h(q)

— hypothesis 36,37, 341, 343,364

— phenomenon 37,139, 249, 298, 299, 424

Schottky defects 40, 373

Schrodinger, Erwin  see Erwin Schrodinger

Seismic Electric Signals

— activities

— — of long duration 12, 13,27,28, 121, 207,

231-233, 238, 243, 244,315, 318, 320,
324,325
— activities, experimental results
— — in California XIX, 291, 334-335

see Scaling exponent
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— — in Greece XIX,9, 13-15,17,21-24,
27,105, 148-150, 171, 194, 195, 197,
199-201, 203, 207-209, 212, 214, 215,
218-223,225-227,229-231, 233,238,
239,244,251, 253,291-327
— —inJapan XIX, 13,237,238, 242-244, 291,
327-329, 333
— — in Mexico 13
— activity XVII-XIX, 3,12, 13, 15, 17, 20, 28,
36,40, 45,54, 121, 132-138, 142, 146,
191-193, 195, 197, 199, 201, 202, 204-210,
212,213,217-231,233,237-244, 250, 262,
292,295,327, 329, 330, 332-334, 343, 359,
360,371,389, 424,428

— amplitude XVIII, 3, 8, 15-17, 20, 60, 63-65,
194,231, 232,296, 303, 309, 320, 326

— determination of epicenter and magnitude 3,
19-21

— determination of the mainshock occurrence time
XIX, 15,291-335, 360

— different polarization from MT, explanation
95-97

— discrimination from noise 5, 8—12

— — in natural time see Natural time distinction
between SES and noise

— generation mechanisms X VIII, 3, 38-66, 103,

366
— lead time 13-15,315
— physical properties 12-22

— polarity 8, 13,16, 17, 19, 60, 194, 320

— polarization 9,21, 95,96

— ratio of two components
295

— — explanation 79

— rise time 8

— single 12,13, 137

Seismic moment see Earthquake, seismic
moment of

Seismic waves 22

Seismogenesis, models 38

Seiya Uyeda XX, 16, 62,243,318, 321, 324,
327-330, 333

Selectivity effect 3,8, 18, 19, 65, 103

— detailed experimentation 19

— earthquake source parameters 18

— explanation of 18, 66-95, 103

- map 18,19,21,292,311

Self organization XX, 341,348

Self-affine 32

Self-Organized Criticality, SOC XIX, 341, 342,
344-349, 368, 370, 371, 373, 375,377

— and predictability 285, 342

— background and recent aspects  341-343

— cellular automaton 342, 344, 349, 370

16-17, 20, 95,292,
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— generalized Stochastic SOC model see
Carbone & Stanley generalized SOC model

— original sandpile model 342, 368

— piles of rice 343

Self-similar 31, 32, 278,294, 300, 333

Self-similar processes 139, 170

Self-similarity 25, 26,30-33, 119, 143, 146, 191,
217,222,247,257, 266, 268, 281, 295, 333

— definition of 31-32

— fractional Brownian motion

Brownian motion
fractional Gaussian noise see fractional
Gaussian noise

— index 32,126,128, 159,222

— the two-origins of see Origins of self-similarity

Sensitive sites XVIII, 3, 17-19, 54, 65, 66, 77,
78,328

— extent of 82,85

SES see Seismic Electric Signals

Shannon entropy 259, 409

— distinction from dynamic entropy 160, 259

— of the order parameter 260

— of the order parameter of

— — 2D Ising model 260

— — 3D Ising model 260

— — infinite range model 260

Short-range correlations

— in natural time 133,175

Short Term Aftershock Incompleteness, STAI
269,270

Shot noise 429, 432

Shuffling XVII-XX, 139, 143, 159, 160, 171,
184, 185, 191, 221, 255, 265, 267, 281, 373,
381, 383, 386, 398, 420

Similarity of fluctuations in correlated systems

see fractional

257-259

Similitude relationship 80

Sir James Lighthill 304, 309

Skewness 193, 195

Skin depth 98, 100

Sleep

— deep 423

— rapid-eye movement 423

— stages 423,424

Smoluchowski—Chapman—Kolmogorov equation
193-195

SOC see Self-organized Criticality, SOC

Solar flares 144

Source/sink function 55

Southern California Earthquake Catalog, SCEC
247,254-258,264,267,268,274, 278,
281-285

— magnitude correlations in 268, 269, 271-273,
275,276,283-285
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Spatial invariance  XIX, 291, 292, 299, 333

Spatiotemporal clustering see Spatiotemporal
complexity

Spatiotemporal complexity 349

— 2D Burridge Knopoff model 344

— seismicity 330, 346

Spin 35, 36, 56, 135, 260, 341, 366

Standard deviation of all normal sinus RR intervals
over 24 h, SDNN 429,430

Stationary signal 25,26, 196,210,211, 238, 363

Statistical significance of predictions 275

— false alarm rate see Receiver Operating
Characteristics, ROC, false alarm rate

— hitrate see Receiver Operating Characteristics,
ROC, hit rate

Stick—slip frictional instability 39, 343, 344

Streaming potential  58-62

Successful prediction 275,296, 308, 358

Sudden cardiac death XX, 185, 381, 383, 388,
417

— approximate entropy 404, 405

— complementarity of the complexity measures to
identify the risk see Complementarity of
the complexity measures

— complexity measures to identify the risk XX,
185,381,420-423,431

— confidence levels to identify the risk 414-416

— distinction from healthy dynamics XX, 124,
381, 383, 388-393, 395, 396, 398-400, 410,
411,415, 420,432

— distinction from heart disease patients and
healthy XX, 185,381, 393-395,404-412,
416

— dynamic entropy 417-423

— estimation errors in the procedure to identify the
risk 400, 413415

— fractal organization breakdown 399

— multiscale entropy 382

— QT interval prolonged values
410

— sample entropy 404, 405

— specifying the occurrence time XX, 183,381,
417-420, 423

— ST enlarged values 399,410

— uncorrelated randomness 400

Sudden Cardiac Death Holter Database 417

Surface wave magnitude see Earthquake
magnitude M

Surrogate data 160, 184, 238-241, 281, 383

— analysis 383

— CDFT see CDFT, Cumulative Distribution
Function Transformation

— linear statistic properties 383

382,393,399,

Index

— segmentation approach to generate surrogate
signals by randomly removing data segments
238,239

Symbols, list of XXIII

T

Tazieff, Haroun see Haroun Tazieff

Telemetric network 3, 200

— central station 4

— real-time 6, 7,306,313

— stations 4,318

— with dataloggers 5-7, 14

Temporal correlations deduced from natural time
analysis

between earthquake magnitudes XIX, 247,
264, 266-269, 271,276, 282,284,285

— long-range 139, 191, 207,282,318

— SES activities 12, 191, 230, 237

— SOC models 342

— strength of 269, 270

Thermodynamics of point defects 3

Time Increased Probability, TIP 275-277, 358,

362
Time reversal and natural time
time reversal of

Time-ordered set 300

Toppling rule 353

Toppling site 344, 369

Transmission of electric signals in dielectric media

see Natural time,

97-106
True coincidence 330-332
Tsallis Entropy see Entropy, Tsallis

U

Uncertainty relation 120, 152

Universal curve

— for seismicity 249,254

— for SES activities see Natural time,
universality of SES activities

Universality for seismicity see Natural time,
universality of seismicity

Updated procedure to determine the occurrence
time of an impending mainshock 293,
300-302, 313, 316, 318, 320, 335,371

Uyeda, Seiya see Seiya Uyeda

\%

Vacancy 40,41,47,53,56
— bound 40

— effective charge 41

— bound 41

VAN
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— method 4,303 — SES activities 132,191, 201, 202, 222, 223,

— signals see Seismic Electric Signals 226,295, 343
Variance ki in natural time XVIIIL, 119, 132,138, - — experimental (Table of values) 203,215,
143, 146, 164, 170, 250-252, 270, 281, 348, 227

359,374,377

“artificial” (man-made) noises
212,215,223,227

“uniform” distribution 132, 134, 141-143,
146, 170, 175, 177-179, 191, 202, 215,
221-223, 228, 230, 247, 266, 268, 269, 281,
295, 346-348, 352, 356-358, 362, 377

bimodal feature of its pdf XIX, 248, 259, 260,
274,278

compilation of k; values in various dynamical
models XX, 133, 138,292, 343

critical phenomena 132, 133,291,293, 319,
320, 341,343, 348, 368

definition 130, 131, 143

dichotomous Markovian time series 225

distinction of SES activities from “artificial”
noises 202,203,212,215,220-222, 224,
228,233,237,295

distribution P(k;) 248,259-261

distribution P(k;) of seismicity XIX, 247,
248,266-268,272,273,281-284

distribution P(k) of seismicity before and after
mainshocks XIX, 248, 270-278

expectation value of, sliding window
265,268, 269

132,202, 203,

139-143,

— of long duration 232,233
theoretical XVIII, 132, 138,222, 341, 343,
365-366

— upon severe data loss 239, 240, 242

short-range temporal correlations 175

SOC systems 341, 343, 345-348, 351-353,
355-358, 360, 362, 368-370, 375-377

the most probable value of 142, 145, 146, 171,
173, 247,248,263, 264, 266-268, 281

under time reversal 131, 159, 162, 169, 224

upon shuffling 171, 191

use on the distinction of the origins of
self-similarity see Origins of self-similarity

when assuming the dynamic scaling hypothesis
341, 343,363-365, 370, 371

Ventricular fibrillation 381, 418-420, 423
Viscosity 57
Volos (VOL) measuring station 7, 194,199, 227,

296,309,311-317
selectivity map 309

Voltage fluctuations when current flows through a

resistor 424

Von Koch’s curve 31

Von Neumann, John

see John von Neumann

for pi.id. Qr 177

ICEMC 132,201,202,222,223 w

— closed states 215,220,221

— open states 220 Water

in fBm time series 133, 171, 173, 343

interrelation with memory see Memory,
interrelation with K

Lesche (experimental) stability 162, 165-167

maximum value of 133, 163, 164

multifractal cascades 262-264, 343

of seismicity after SES and before mainshock
292, 293,297,298, 300-302, 313, 314,
316-320, 322-325, 332, 333, 335, 336, 343,
371

OFC model foreshocks 359, 360, 363

order parameter of seismicity XIX, 247,250,

in minerals 39, 56, 61, 62

Wavelet

based estimators of scaling 25,217,218

Daubechies 217-219

Haar 217,219

transform XIX, 191, 210, 213, 215-217, 220,
393

— in natural time 213, 215, 218-220

— modulus maxima method, WTMM 217-219

Weyl, Hermann see Hermann Weyl
Wigner function XVIII, 146-150

Wigner, Eugene

see Eugene Wigner

251,254,255,261,292 Wilcoxon paired signed-rank text 386
positivity 162,163 Wolfgang Pauli  XVIII, 120
power law distributed energy bursts 143-146, Worldwide seismicity XIX, 247, 256, 257
259-261
quasi-periodic Q; 133,348 7
ricepiles 341, 343,371-373
seismicity 133,247,250, 251, 268, 269, 281,
292,293,313 Zeta potential  see Streaming potential
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