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Preface

There is a widespread belief that it is not space but time that in the end poses the great-
est challenge in science. It is according to Gödel “that mysterious and seemingly self-
contradictory being which, on the other hand, seems to form the basis of the world’s and
our own existence”.

The basic scope of this monograph is to present the new view of time, termed natural
time χ (from the Greek word “χρ óνoς” which means “time”), introduced by the authors
in 2001. In this new view, time is not continuous, thus being in sharp contrast with the
hitherto used conventional time t which is modeled as the one-dimensional continuum �
of the real numbers.

The results deduced to date on the basis of this new domain reveal that novel dynamical
features hidden behind time series in complex systems can emerge upon analyzing them in
natural time, but cannot when the analysis is carried out within the frame of conventional
time. Furthermore, the analysis in natural time enables the study of the dynamical evo-
lution of a complex system and identifies when the system enters a critical stage. Hence,
it seems that natural time plays a key role in predicting impending catastrophic events in
general.

The present monograph comprises three Parts:
Part I (Chapter 1) provides a review of the so-called seismic electric signals (SES)

which are low-frequency ( <∼1 Hz) electric signals that precede earthquakes. A sequence
of such signals, termed SES activity, constitutes the first example of a time series emitted
from a complex system, like the Earth, to which natural time analysis has been applied.

Part II, consisting of the Chapters 2 and 3, sheds light on the foundations of natural
time by providing the necessary mathematical background in each step. Furthermore, this
Part describes how the analysis of a time series is made in the frame of natural time and
explains how the entropy in natural time is introduced and calculated.

Part III, consisting of the six Chapters 4 to 9, presents examples of data analysis in
natural time that have appeared to date (mainly in Physical Review and Physical Review
Letters) in diverse fields, including Biology, Earth Sciences (Geophysics, Seismology),
Environmental Sciences, Physics (Condensed Matter, Statistical Physics, Physics of Com-
plex Systems) and Cardiology.

The contents of the nine Chapters can be summarized as follows.
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Chapter 1 summarizes the mechanisms suggested to date for the SES generation as
well as the physical properties of SES including those that SES are observed only at
certain points of the Earth’s surface called “sensitive points” and that their amplitude is
interrelated with the magnitude of the impending earthquake. It is explained that these
physical properties can be theoretically understood on the basis of Maxwell equations if
we just consider that the earthquakes occur by slip on pre-existing faults, which constitute
conductive paths in the solid Earth’s crust. In addition, general background in Statistical
Physics is provided on the basis of which we show that the observed SES activities exhibit
scale invariance over four orders of magnitude. This is consistent with the pressure stim-
ulated currents SES generation model proposed by Varotsos and Alexopoulos in the early
1980s based on thermodynamical grounds which (motivated the SES research in general
and) suggests that SES are emitted when the stress in the focal region reaches a critical
value, thus SES should be governed by critical dynamics.

In Chapter 2, we first present aspects advanced by such giants as A. Einstein, E.
Schrödinger, W. Pauli, J. von Neumann, H. Weyl, and K. Gödel, in order to shed light
on the crucial point that the continuity of conventional time is not demanded from any
fundamental principle. We then introduce the natural time χ , which is not continuous, and
indicate that its values, as well as those of the energy, form countable sets by using the set
theory developed by Cantor. Furthermore, we demonstrate that natural time analysis is op-
timal for enhancing the signals in time-frequency space when employing the Wigner func-
tion and measuring its localization property. In other words, natural time analysis conforms
to the desire to reduce uncertainty and extract signal information as much as possible. The
normalized power spectrum Π(ω) is introduced in natural time, and its Taylor expansion
leads, at low natural (cyclic) frequencies ω (ω → 0), to the expression Π(ω)≈ 1−κ1ω2

where the coefficient κ1 is just the variance of natural time, i.e., κ1 = 〈χ2〉− 〈χ〉2. This
quantity is useful in identifying the approach to a critical point as in the case of SES whose
κ1 value is shown to be 0.070. In addition, natural time analysis enables the distinction be-
tween the two origins of self-similarity, which is a challenging point when analyzing data
from complex systems, i.e., whether self-similarity solely results from long-range tem-
poral correlations (the process’s memory only) or solely from the process’s increments’
infinite variance (heavy tails in their distribution).

In Chapter 3, we define the entropy S in natural time and show that the entropy S−
deduced from the natural time analysis of the time series obtained upon time reversal is
in general different from S, thus the entropy in natural time does satisfy the condition to
be “causal”. Furthermore, the physical meaning of the change ΔS≡ S−S− of the entropy
in natural time under time reversal, which is of profound importance for the study of the
dynamical evolution of a complex system, is discussed. In addition, complexity measures
are introduced that quantify the fluctuations of the entropy S and of the quantity ΔS upon
changing the length scale as well as the extent to which they are affected when shuffling
randomly the consecutive events.

Chapter 4 deals with the natural time analysis of all the measured SES activities which
are shown to be characterized by very strong memory and their normalized power spectra
Π(ω) versus ω fall on a universal curve having κ1 value equal to 0.070. This curve coin-
cides with the one obtained on theoretical grounds when assuming that SES are governed
by critical dynamics. Concerning the distinction of SES activities from similar-looking
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“artificial” (man-made) noise, we find that modern techniques of Statistical Physics, e.g.,
detrended fluctuation analysis (DFA), multifractal DFA, wavelet transform, can achieve
such a distinction, but when they are applied in natural time. The entropy S in natural time
as well as Π(ω) can also achieve such a distinction. Finally, the study of the fluctuations
Δχl of the average value of natural time under time reversal versus the window length l,
also achieves a distinction between SES activities and “artificial” noises.

In Chapter 5, we investigate the effect of significant data loss on the identification of
a SES activity. In particular, the following two cases are treated. First, the effect of the
random removal of data segments of fixed length on the scaling properties of SES activ-
ities. Second, the appearance of a periodic noise like in Japan, where the electric field
measurements at some sites are seriously contaminated by high noise from 06:00 to 22:00
LT every day, i.e., around 70% data loss. We show that in both cases, when combining
natural time analysis with DFA, the identification of a long duration SES activity becomes
possible with probability around 70% even after severe data loss (e.g., 70–80%).

Chapter 6 is focused on the natural time analysis of the seismicity, a careful inspec-
tion of which reveals that the quantity κ1 may be considered as an order parameter. This
allows the determination of the constant b in the Gutenberg–Richter law for earthquakes,
N(≥M) = 10a−bM , by applying the Maximum Entropy Principle. It leads to b≈ 1, which
agrees with real seismic data. Studying the order parameter fluctuations relative to the stan-
dard deviation of its distribution, the scaled distributions of different seismic areas as well
as that of the worldwide seismicity fall on a universal curve which also exhibits features
similar to those in several critical phenomena. This curve changes upon randomly shuf-
fling, which reflects that temporal correlations exist between the earthquake magnitudes
(M). This is confirmed by applying DFA to the earthquake magnitude time series and upon
employing either multifractal cascades in natural time or nonextensive statistical mechan-
ics combined with natural time analysis. Finally, the probability density function P(κ1)
versus κ1 plot before mainshocks exhibits a significant bimodal feature. This is strikingly
similar to the bimodal feature of the order parameter when approaching (from below) Tc
in equilibrium critical phenomena.

In Chapter 7, assuming that the mainshock is a new phase, we show how natural time
analysis enables the determination of the occurrence time of an impending major earth-
quake. Considering that the detection of a SES activity signifies that the system enters in
the critical regime, the time series of the small earthquakes that occur in the candidate
region to suffer the mainshock after the SES detection are analyzed in natural time. It is
found that the variance κ1 becomes equal to 0.070 a few days to around one week be-
fore the mainshock. This behavior, which exhibits spatial as well as magnitude threshold
invariance, has been observed to date for all major earthquakes in Greece since 2001.
For example, the occurrence time of the Mw6.9 earthquake on February 14, 2008, which
was the strongest earthquake to occurr in Greece during the last 27 years, was publicly
announced as imminent on February 10, 2008. The procedure has been also ascertained in
the case of the volcanic-seismic swarm activity in 2000 in the Izu island region in Japan
as well as in the Ms7.1 Loma Prieta earthquake in California in 1989.

In Chapter 8, we apply natural time analysis to the time series of the avalanches in
several self-organized criticality (SOC) models as well as to other dynamical models in-
cluding a simple deterministic version of the “train” model for earthquakes introduced
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by Burridge and Knopoff, the Olami–Feder–Christensen earthquake model, the 2D Ising
model when quenching at temperatures close to but below Tc, which is qualitatively similar
with the pressure stimulated currents SES generation model, a deterministic version of the
original Bak–Tang–Wiesenfeld sandpile model and a generalized stochastic SOC model.
In all these dynamical models, we find that the value κ1 = 0.070 can be considered as
quantifying the extent of the organization of the system at the onset of the critical stage. In
addition, in this Chapter, we present the natural time analysis of the avalanches observed
in laboratory experiments on three-dimensional piles of rice getting progressively closer
to the critical state and on the penetration of the magnetic flux into thin films of high Tc
superconductors. The results reveal κ1 values around κ1 = 0.070.

Chapter 9 deals with the natural time analysis of electrocardiograms and basically aims
at identifying the risk of sudden cardiac death, which is a frequent cause of death and
may occur even if the electrocardiogram seems to be strikingly similar to that of a healthy
individual. Upon employing the fluctuations of the entropy in natural time, we find that
sudden cardiac death individuals (SD) can be clearly distinguished from the truly healthy
ones. Furthermore, by using complexity measures that quantify the change of the natu-
ral entropy fluctuations either by changing the time window length scale or by shuffling
the “pulses” (heartbeats) randomly, we can achieve the classification of individuals into
three categories: healthy, heart disease patients and SD. In addition, when considering the
entropy change under time reversal, not only the SD risk can be identified, but also an
estimate of the time of the impending cardiac arrest can be provided. Finally, a 1/ f model
in natural time is presented which is consistent with the progressive modification of heart
rate variability in healthy children and adolescents. The model also results in complexity
measures that separate healthy dynamics from heart disease patients as well as from SD.

For the reader’s convenience, the figures and the tables that refer to others than
those included in this monograph, begin with small “f” and “t”. As for the Supple-
mental Material, cited as EPAPS document, it is freely available from
www.aip.org/pubservs/epaps.html. Furthermore, bold face symbols corre-
spond to vectors, as usual.

We would like to express our gratitude to the leading contemporary figure in Earth
Sciences, i.e., Professor Seiya Uyeda (Member of the Japan Academy), who has gone
through the text in several of our papers focused on natural time with meticulous care and
generously offered his advice by making very useful suggestions.

Athens P.A. Varotsos, N.V. Sarlis and E.S. Skordas

http://www.aip.org/pubservs/epaps.html
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fLsm fractional Lévy stable motion
GI-NOA Geodynamics Institute National Observatory of Athens
G-R Gutenberg–Richter
HRV Heart Rate Variability
ICFMC Ionic Current Fluctuations in Membrane Channels
i f f if and only if
i.i.d. independent and identically distributed
INAGS Ivanov–Nunes Amaral–Goldberger–Stanley
JMA Japan Meteorological Agency
LT Local Time
MF-DFA Multifractal Detrended Fluctuation Analysis
MSE Mean Squared Errors
MT Magnetotellurics



XXII Acronyms

MW Maxwell–Wagner
OBC Open Boundary Conditions
OFC Olami–Feder–Christensen
pdf probability density function
p.i.i.d. positive, independent and identically distributed
PSC Pressure Stimulated Currents
PSDC Pressure Stimulated Depolarization Currents
PSPC Pressure Stimulated Polarization Currents
QRS QRS complex in ECG
QT QT interval in ECG
PBC Periodic Boundary Conditions
PVC Premature Ventricular Contraction
ROC Receiver Operating Characteristics
RTS Random Telegraph Signal
RR beat to beat interval in ECG
SCEC Southern California Earthquake Catalog
SCK Smoluchowski–Chapman–Kolmogorov
SCS Stochastic Cantor Set
SD Sudden cardiac Death individual
SDNN Standard Deviation of all Normal sinus RR intervals over 24 h
SE Sample Entropy
SES Seismic Electric Signals
STAI Short-Term Aftershock Incompleteness
STD Standard Deviation
SOC Self-Organized Criticality
TIP Time Increased Probability
USGS United States Geological Survey
UT Universal Time
VAN Varotsos–Alexopoulos–Nomicos
WTMM Wavelet Transform Modulus Maxima method
WWS Worldwide Seismicity



Symbols

Γ (x) the gamma function, i.e., Γ (x) =
∫ ∞

0 tx−1 e−t dt
Cov(x,y) the covariance of the random variables x and y,

i.e., Cov(x,y) = � {[x−� (x)] [y−� (y)]}.
δ (x) the usual Dirac’s delta distribution function
δS the standard deviation of the time series of the entropy in natural time
ΔS the change of the entropy in natural time under time reversal
Δχ the change of the average value of natural time under time reversal, see Eq.

(2.12)
ΔV/L SES amplitude
-e the electron charge
e the base of natural logarithms, i.e., e = 2.71828 . . .
ε0 the dielectric permittivity of vacuum (ε0 = 8.85×1012 F/m)
� (x) the expectation value of the random variable x
fexp the experimental sampling frequency or rate
Θ(x) the Heaviside unit-step function, i.e., Θ(x) = 0 for x < 0 and Θ(x) = 1 for

x > 0
I current intensity
ℑ(z) the Imaginary part of the complex number z
κ1 the variance of natural time, see Eq. (2.39)
κu the variance of natural time for a “uniform” distribution, κu = 1/12, see Sub-

section 2.4
κ1,p the most probable value of κ1
kB Boltzmann constant
MD “duration” magnitude of an earthquake
ML Local magnitude of an earthquake
Ms(ATH) ≡ML +0.5
Mw moment magnitude of an earthquake
N(μ,σ) the normal (Gaussian) distribution with mean μ and standard deviation σ
pk stands for the point probabilities in natural time, see Eq. (2.2)
pn stands for the n-th cosine Fourier coefficient of p(χ), see Eq. (2.44)
Π(ω) or Π(φ) normalized power spectrum in natural time



XXIV Symbols

ℜ(z) the Real part of the complex number z
S entropy in natural time
S− entropy in natural time under time reversal
Su entropy in natural time for a “uniform” distribution, Su ≈ 0.0966.
SD the surface area of the unit sphere in D dimensions
� the set of natural numbers
� the set of rational numbers
Qk a quantity proportional to the energy released during the k-th event
� the set of real numbers
Var(x) the variance of the random variable x, i.e., Var(x) = �

{
[x−� (x)]2

}
χ the natural time
ℵ0 the cardinality of�
� the set of integer numbers



Part I

Seismic Electric Signals



1. Introduction to Seismic Electric Signals

Abstract. In the early 1980s, Varotsos and Alexopoulos showed that when the pressure
(stress) on an ionic solid reaches a critical value, a cooperative orientation of the electric
dipoles (that anyhow exist due to lattice defects) may occur, which results in the emis-
sion of a transient electric signal. This may happen before an earthquake since the stress
gradually increases in the focal region before rupture. Thus, a detailed experimentation
started in Greece in 1981, which showed that actually transient variations of the electric
field of the Earth, termed seismic electric signals (SES), are observed before major earth-
quakes. In the meantime, several other SES generation mechanisms have been proposed.
The field experiments revealed the physical properties of SES including those that SES
can be observed only at certain points of the Earth’s surface called “sensitive points” and
that their amplitude is interrelated with the magnitude of the impending earthquake. Each
sensitive station enables the detection of SES only from a restricted number of seismic
areas, a phenomenon termed “selectivity effect”, which provides the basis for the deter-
mination of the epicenter of an impending earthquake. These physical properties can be
theoretically explained on the basis of Maxwell equations, if we take into account that the
earthquakes occur by slip on pre-existing faults and that the faults constitute conductive
paths (electrical inhomogeneities) in the solid Earth’s crust. Finally, the observed SES ac-
tivities, which are series of SES observed within a short time, as well as the associated
magnetic field variations, exhibit scale invariance over four orders of magnitude. This is
consistent with the original model suggested by Varotsos and Alexopoulos for the SES
generation according to which SES should be characterized by critical dynamics which is
always accompanied by scale invariance.

1.1 Data collection and the telemetric network

The experimental study of seismic electric signals (SES) which are low frequency ( <∼ 1 Hz)
electric field variations that precede earthquakes (EQs), started almost thirty years ago in
Greece and was motivated by solid state physics aspects, namely the thermodynamics of
defects in solids. These have been developed by Varotsos and Alexopoulos during the
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1970s in a series of publications (see Ref. [129] and references therein) and led to the
theoretical possibility that the earthquake rupture could be preceded by transient electric
signals(§ 1.6.2). In order to check its validity, continuous measurements of the electric
field of the Earth have been carried out in Greece since 1982 (note that temporary field ex-
periments had already started in 1981 by Varotsos, Alexopoulos and Nomicos [132], from
the initials of which this study is also known as the VAN method). A telemetric network
of eighteen measuring stations (via leased telephone lines) was completed in the end of
1983 [127, 128]. Data were transmitted to the central station located at an Athens suburb,
labeled GLY, on a real-time basis. Technical details on this data transmission system can
be found in Refs. [74, 75, 125]. The sites of the stations operating at that time are shown in
Fig. 1.1, while the present configuration of the telemetric network consists of the stations
depicted in Fig. 1.2.

Fig. 1.1 The sites of the 18 telemetric stations in Greece installed in 1983. The western shaded area
corresponds to the selectivity map of IOA, but a more updated version is given in Ref. [137]. The shaded
regions a, b and c (that may be joined to a single larger area) refer to seismic areas from which SES have
been recorded at ASS. These selectivity maps need gradual completion (see the text). The boundaries of
the IOA selectivity map are yet uncertain. Taken from Ref. [138].

Experimental details were published in Varotsos and Lazaridou [140] and in Varotsos,
Alexopoulos and Lazaridou [131] which are reviewed in Varotsos [125]. Therefore, only
a brief description will be given here.
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Fig. 1.2 Map showing the sites of the stations
of the real-time telemetric network currently
operating in Greece.

Non polarizable electrodes Pb/PbCl2 at a depth of 2 m are used and the potential dif-
ference between two of them (that constitute a measuring electric dipole) is measured.
A minimum of eight (horizontal) measuring electric dipoles was initially installed at
each station; some of these dipoles have lengths (L) between 50 m and 400 m and are
called “short dipoles”, while others have appreciably longer lengths (usually between
2 and 20 km) and are called “long dipoles”.

A minimum of four short dipoles was installed in perpendicular directions (usually
along EW and NS), e.g., two parallel short dipoles with unequal lengths in the EW direc-
tion and two others in the NS direction. No common electrode should be used (§ 1.2.2).
As for the long dipoles, their sites were carefully selected (see Varotsos and Lazaridou
[140] and Appendix II of Varotsos, Alexopoulos and Lazaridou [131]), so as to allow the
distinction between true SES and “artificial” noises coming from man-made sources lying
up to several kilometers away from the station (see Section 1.2 and § 1.2.3).

In 1990, beyond the aforementioned real-time data collecting system, dataloggers
(Campbell 21X connected to a portable PC) were installed at several stations to collect
data with sampling rate fexp = 1 sample/sec. These data were finally stored only during
SES collection, and during the period extending from several minutes before a significant
earthquake (EQ), until a few minutes after. The averages, taken every 20 seconds (note
that initially it was 1 sample/10 sec), were transmitted to the central station (once or twice
per day) through dial-up. Typical example of the configuration of the electrodes is given
in Fig. 1.3, for the station IOA in northwestern Greece. Furthermore, at each of the four
stations ZAK (which is located at Zakymthos island in western Greece, the closest island
to PIR), IOA, KER and ASS, the vertical electrotelluric component was also measured
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(b)

(c)

(a)

Fig. 1.3 Current configuration of the short (a) and long (b) dipoles at IOA, while (c) depicts a more
detailed view of the short dipoles array. In (a), the two solid triangles (bh50) stand for the two boreholes
(with depth h = 50 m). In (a) and (c), the short dipoles with subscripts a, b, c are those located at the
sites termed “A”, “B” and “C”, respectively. In the real-time telemetric network the data of the following
8 (horizontal) electric dipoles are collected: the three long dipoles L, L′ and L-I depicted in (b) as well as
the five short dipoles lying between the sites “B” and “C” in (c), i.e., the two EW dipoles (with lengths
∼50 m) and the three NS dipoles N50S50, N100S100 and N184S184 (with lengths around 50 m, 100 m, and
184 m, respectively). In the datalogger, the data of the 3 coil magnetometers (DMM) along EW, NS and Z
(vertical) together with the following 13 electric dipoles are collected: two short dipoles along EW and NS
at the sites “A”, “B” and “C” (labeled with subscripts a, b and c, respectively), two additional short dipoles
located at site “B” but rotated by 22◦ counterclockwise with respect to the EW and NS directions, respec-
tively, two vertical dipoles at the boreholes, and three long dipoles L, L′ and L-I (occasionally labelled
L′s-I). Concerning the geology in (a): (1) alluvial deposits, (2) flysch of the Ionian unit, (3) limestones;
in (b): (1) quaternary sedimentary deposits, (2) alpine formation of the Ionian unit (mainly limestones).
Reprinted from Ref. [125], Copyright (2005), with permission from TerraPub.
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Fig. 1.4 Current configuration of the measuring short and long electric dipoles at the station VOL. Taken
from Ref. [151].

by using pairs of electrodes installed in each of two independent boreholes with depths
of around 50 m (e.g., see Refs. [1, 135, 125]). The variations of both fields, electric and
magnetic, are studied since the magnetic field was also continuously measured at four
stations, i.e., at IOA, LOU, ASS and VOL, using coil magnetometers. In 1995, beyond
the aforementioned two independent measuring systems (i.e., the real-time telemetric net-
work with 8 channels per station, and the dataloggers with 8 or 16 channels per station)
instrumentation was increased more (see Section 1.4 of Ref. [125]).

In particular, since 1995, beyond the coil magnetometers, several tens of short and long
measuring electric dipoles have been operating around each of the stations depicted in
Fig. 1.2.

As an example, Fig. 1.4 depicts the current configuration of the measuring short and
long dipoles at VOL (central Greece). Details for the low pass filters used for the electric
field measurements as well as for the calibration of the three component DANSK coil
magnetometers (DMM) can be found in the Appendix, see also pp. 1–2 and 24–29 of
Ref. [125], or in Refs. [149, 161, 157, 159].
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1.2 Distinction of SES from noise

The simultaneous operation of multiple short and long measuring electric dipoles at each
station is necessary for the SES recognition.

Frequent electric field variations, termed magnetotelluric (MT) variations appear (prac-
tically) simultaneously at all stations of the network because they are induced by small
variations of the geomagnetic field.

An electric disturbance is classified as a SES after it has met all of the following
four criteria [131, 140], which are currently applied in addition to those based on the
natural time concept that are summarized in Section 4.10 (the same holds in the case
of significant data loss, see Chapter 5):

(1) The SES can be distinguished from MT variations, because the latter appear at
all stations (practically) simultaneously, while the former do not (due to the “selectivity”
phenomenon that will be explained later in § 1.3.4).

(2) The SES must appear simultaneously on the short and long dipoles at the station(s)
concerned.

(3) The SES should obey the criterion ΔV/L = constant for the short dipoles oriented
in the same direction (if they are not located on locally inhomogeneous ground).

(4) The polarity and amplitude of the SES on the short and long dipoles must be com-
patible with a distant source assumption: the projection onto the long dipole of the ΔV/L
vector calculated from the short dipoles must have the same polarity and comparable am-
plitude with the observed signal on the long dipole. Thus, the criterion ΔV/L ≈ const.
should (approximately) hold when considering two dipoles, a long dipole and a short one
that are parallel.

An independent confirmation of the objectivity of these four criteria was made by
Nagao, Uyeshima and Uyeda [73].

Furthermore, note that beyond the aforementioned four criteria, there are two addi-
tional ways of discriminating SES from “artificial” noise which make use of: (a) the
time-difference between the “arrivals” of the electric field and the magnetic field (see
§ 1.3.6.1), (b) the difference of the time evolutions (rise times) of the signal recorded
at two directions (see § 1.3.5; see also section 13.2 in Ref. [125]).

We now describe below how the SES are discriminated from noise of various sources.

1.2.1 Distinction of SES from magnetotelluric (MT) changes

When a network of several electrotelluric stations is operating, it is difficult for the MT
changes (which is alternatively called here “MT noise”) to be misinterpreted as SES. This
is so because, as mentioned, MT appear simultaneously at all the stations, in contrast to
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the SES which are recorded only at a restricted number of them [127] (in most cases, in a
non-dense network, the SES are recorded only at one station). The following procedures
for the distinction between SES and MT are also applied:

Fig. 1.5 The electric field polarization of the SES activity on April 19, 1995 (A), and that of the MT
variations (B) at the site “B” of IOA; the latter is almost directed along EW, as confirmed by long time
recordings as well. Attention is drawn to the point that the origin of the axes has been displaced to the
average value of the electric field. Reprinted from Ref. [125], Copyright (2005), with permission from
TerraPub.

(a) Conventional MT method: After having determined for each site, the impedance
tensor that interconnects the variations of the magnetic and electric field, a “real-time”
subtraction of the MT noise from the VAN records has been developed and tested with
satisfactory results (see chapter 2 of Ref. [125]).

Fig. 1.6 The same as Fig. 1.5, but for the site “C” of IOA. Reprinted from Ref. [125], Copyright (2005),
with permission from TerraPub.

(b) Detection of a SES in the direction in which the MT noise is minimum: Let us
consider for example the case of the station IOA, at which Figs. 1.3(a) and (c) depict
the areas termed “A” ,“B” and “C” of the short dipoles arrays. At “B”, measurements
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of the electric and magnetic fields (see Fig. 1.5(B)) led to the conclusion that the MT
variations are least along the direction ∼N22◦W (cf. a highly anisotropic 2D regional
geoelectrical structure with a strike angle N40◦W is found in Ioannina area, see section 2.5
of Ref. [125]). Thus, two more dipoles (labeled Nb′ Sb′ and Eb′Wb′ ) have been installed
at “B”, which were oriented along to NS(−22◦) and EW(−22◦), respectively. (It will be
hereafter called site “B′”.) This reflects that an SES can be easily recognized at site “B”
on NS(−22◦), in which direction the MT variations are least (provided of course, that
the polarization of the MT significantly differs from that of the SES under consideration;
see also § 1.3.3). By the same token two additional short dipoles had been installed in
the neighboring area “C” (see Figs. 1.3(a) and (c)), where the NS direction was found
experimentally (Fig. 1.6(B)) to be almost the direction at which the MT disturbances are
appreciably small.

Thus, in short, the SES recognition becomes easier in a direction in which the MT
noise is minimum.

1.2.2 Distinction of SES from noise of electrochemical origin

This type of noise, which is usually ascribed to a change in the contact potential between
the electrodes and the ground, e.g., due to rain, can easily be recognized when parallel
dipoles for each measuring direction are installed [127]. This noise is usually not recorded
simultaneously at the parallel dipoles, because, as mentioned, care is taken to have inde-
pendent electrodes. In the rare case that it is simultaneously recorded, the variations ΔV
of the potential difference do not scale (in a homogeneous ground) with the length of the
short dipoles in a given direction, i.e., with ΔV/L �= constant. The long dipoles are less
affected by the electrochemical disturbances, when compared to the short dipoles (e.g., see
Ref. [129]).

1.2.3 Distinction of SES from “artificial” (man-made) noise. The ΔV/L criterion

The proper use of the ΔV/L criterion (see Section 1.2) can lead to the noise recognition.
In particular, depending on the location of the emitting noise source, the application of this
criterion can be made as follows:

(1) A noise source lying in the immediate vicinity of the short dipoles can be easily
recognized, because a cultural signal N does not generate the same field strength ΔV/L
in neighboring parallel (short) dipoles of different lengths. This also excludes any electro-
chemical noise, arising from electrode-instabilities, e.g., due to rain.

Multiple neighboring short dipoles exclude the electrochemical and the local “artifi-
cial” noise.
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Fig. 1.7 Configuration of short (unprimed) and long (primed) dipoles suggested by Varotsos and Lazari-
dou [140] for an easy recognition of noise. N = noise source.

(2) In the case of a noise source the location of which is known and lies a few km
(up to several km) away from the measuring site, the installation of a single long dipole
in combination with a short parallel dipole is usually sufficient for the noise recognition,
under the following condition: one of the two electrodes of the long dipole should be
located close to the measuring site, while the other, i.e., the remote one, should lie on
the same side (with respect to the measuring site) with the noise source. As for the exact
location of this remote electrode, the following two configurations are recommended:

(i) If the noise source N lies closer to the measuring site than the remote electrode as
in Figs. 1.7(a),(b), or case II of Fig. 1.8, the noise is easily recognized, because it gives
signals with opposite polarities on the long dipole and the parallel short dipole.

(ii) If the noise source lies close to the remote electrode, the noise is again recognized,
because the ratio (ΔV/L of the long dipole)/(ΔV/L of the short dipole) of the ΔV/L values
differs drastically from unity (e.g., we compare the long dipole E2W′

2 and the short dipole
E1W1 in Fig. 1.7(c)).

Fig. 1.8 Configuration of the signal strength of short and long dipoles as a function of distance suggested
by Varotsos et al. [131] for an easy recognition of noise. The electrodes e and w correspond to the short
dipole, while E and W to the long dipole. In configuration I, a disturbance from noise source N (or a SES)
is recorded on both dipoles ew and EW, with the same polarity. In II, a disturbance from the noise source
N give signals of different polarities on the dipoles ew and EW, in contrast to SES. Taken from [131].
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Fig. 1.9 The “optimal” configuration of a short dipole
AB and two long dipoles AΓ ′ and AΓ , for an easy recog-
nition of noise; the emitting noise source is assumed to
lie within the elliptical area. Taken from Ref. [145].

(3) In the case of “artificial” sources (up to several km away from the measuring site),
the exact location of which is not known, two (parallel) long dipoles with non-equal
lengths should be installed (in addition to the short dipole array). One of the short dipoles
should be parallel to the long ones of which one of their electrodes has to be close to the
measuring site. If the candidate area of “artificial” sources can be roughly estimated, say
as an ellipse, care should be taken in order its major axis to coincide, if possible, with one
of the long dipoles (the other long dipole may have a smaller length, e.g., by a factor of
2, or so, see Fig. 1.9). For such a configuration, any noise originating from the candidate
area, cannot give equal ΔV/L values (within 50% or so) at both the long and the short
dipole(s).

Detailed calculations which explain the aforementioned recommended configurations
of the short and long dipoles are presented in chapter 7 of Varotsos [125], a review of
which is given here in § 1.7.7.

In the case of lateral inhomogeneities, however, the ΔV/L criterion may not be appli-
cable at all [140]. In this case, as well as in all other cases where the eventual inhomo-
geneities are not known beforehand, the SES activities (i.e., a sequence of SES within
a relatively short time, see below) can be distinguished from “artificial” (man-made)
noises by analyzing the signal in natural time and then applying the criteria summa-
rized in Section 4.10. These criteria stem from the fact that solely SES activities are
characterized by critical dynamics (infinitely ranged temporal correlations), while the
“artificial” noises do not.

We also note that if a noise source remains geographically fixed, the relevant noise on
the records can be permanently eliminated by applying a technique developed in Ref. [140]
(see also pp. 6, 7 in Varotsos [125]).

1.3 SES physical properties

Seismic electric signals are classified into two types: (a) single SES, i.e., a single transient
change of the electric field, (b) SES activity, i.e., many one-sided SES within a relatively
small time. Examples are given in Figs. 1.10 and 1.11. These examples, show SES activi-
ties of duration up to a few hours. During recent years, however, SES activities of appre-
ciably longer-duration, i.e., from several hours to 1 week have been recorded in Greece
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(see §1.4.3 and Section 4.11). These will be hereafter termed long duration SES activities.
In Japan, beyond several SES of duration comparable to that recorded in Greece, an SES
activity lasting for around 2 months has been also reported [119, 120] that was related with
volcanic-swarm activity; see Section 7.4. In addition, an SES activity lasting for more than
2 months [83] has been also recorded before the Guerrero-Oaxaca EQ (Ms = 7.4) that oc-
curred on September 14, 1995, in southern Mexico at a measuring station lying close to
Acapulco, i.e., at a distance around 110 km from the EQ epicenter [83, 36, 84].

(a)

(b)

Fig. 1.10 (a): SES activity at IOA (records from the real-time telemetric network) on Aug. 31, 1988,
which preceded the destructive EQs at Killini-Vartholomio (i.e., approximately at 38.0◦N 21.0◦E) that oc-
curred on Sep. 22 and Oct. 16, 1988. This SES activity provided the basis for the public warning issued by
Haroun Tazieff on September 3, 1988, the social impact of which has been studied in detail in Ref. [164].
Taken from Ref. [140]. (b): Excerpt of (a) taken from Ref. [131]. The corresponding directions and lengths
of the dipoles are as follows: red (EW, L = 47.5 m), green (NS, L = 48 m), orange (EW, L = 181 m). The
dipole No 2 labeled IOA (blue) is the long dipole labeled “L” in Fig. 1.3(b); the apparently reversed po-
larity of the SES on the latter dipole is due to the connection of this dipole to the recorder, having been
intentionally reversed, as explained by Varotsos and Lazaridou [140]. The horizontal scale is in mV, while
the vertical is time in UT.

1.3.1 Lead time of SES. Other electrical precursors

The lead time of SES lies, in general, between several hours and several weeks. In partic-
ular:

(a) For single SES, the lead time is usually around 11 days [123] or smaller [127].
(b) For SES activities: the study of several cases observed until 2000 (compiled in Ref.

[125]) led to the following empirical rule [141]:
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Fig. 1.11 The two SES activities
recorded by datalogger at IOA
with a sampling rate fexp = 1
sample/sec before the Mw6.6 EQ
at Grevena-Kozani that occurred
on May 13, 1995 (see § 7.2.1). In
§ 1.3.6, a short description of the
recordings at various channels
is given. (a): April 18, 1995.
(b): April 19, 1995. Figure (c)
is an excerpt of (b), showing the
variations in an expanded time-
scale. The range (10 ticks) of
80 mV or 50 mV in the lower
two channels of (a) and (b),
(c) correspond to 0.4 nT/sec or
0.25 nT/sec, respectively, for a
constantly increasing magnetic
variation (see Appendix). Taken
from Ref. [150].
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A time period of at least 3 weeks elapses between the initiation of the SES activity
and the occurrence of a strong EQ (small shocks may start earlier), see Fig. 7.15. The
strongest EQ usually occurs during the fourth week, see the middle case in Fig. 7.15;
otherwise smaller EQ(s) with magnitude around 5-units appear during this week and
the strongest EQ occurs after an additional period of 2–3 weeks, see the upper and the
lowest case in Fig. 7.15.

Some later examples, however, e.g., the SES activity that preceded the Mw6.5 EQ in the
Aegean sea on July 26, 2001 (see § 7.2.3), revealed that the lead time Δ t may occasionally
be longer. Upon the introduction of natural time in 2001, however, a methodology has
been developed which enables the determination of the time-window of an impending
mainshock with an accuracy usually around a few days to 1 week. Chapter 7 is reserved to
explain this methodology along with several examples.

Fig. 1.12 Schematic representation (not to scale) of the three types of electrical precursors (GVEF, SES
and electric pulses) observed in Greece. Modified from Ref. [131].

We clarify that, beyond the SES, two other types of electrical precursors have been
detected in Greece as summarized in Fig. 1.12. First, a gradual variation of the electric
field of the earth (GVEF) which is a transient anomaly of long duration (of the order of one
month) with an amplitude one order of magnitude larger than that of the SES [128, 129].
Second, electric pulses of short duration, labeled “electric pulse” in Fig. 1.12, which appear
some minutes before the earthquake occurrence [159, 129]; see also § 1.3.7.

1.3.2 Interrelation between SES amplitude and EQ magnitude

For SES registered at a given station and originating from a given seismic area, their am-
plitude expressed as ΔV/L (for a dipole with given orientation) scales with the magnitude
M according to the relation [127, 129, 140]

log10(ΔV/L) = (0.32−0.37)M+β . (1.1)
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Equation (1.1) reflects that when the EQ magnitude increases by 1-unit, the SES am-
plitude becomes almost double.

The plots for the dipoles of two different orientations have the same slope but different
intercepts. This is schematically shown in Fig. 1.13.

The following three comments are in order.
First, the ΔV/L value is of the order of 10 mV/km, for EQs of magnitude M≈ 6.0–6.5,

when measured at epicentral distances of around 100 km.
Second, the aforementioned relation, which was found empirically by Varotsos and

Alexopoulos [127] has the form:

log10(ΔV/L) = aM+β , (1.2)

where the constant a is approximately a≈ 0.3–0.4 for all measuring cites (universal).
Third, let us now consider that the seismic energy E released during the EQ is propor-

tional to the seismic moment M0 and that M0 is interrelated with the moment magnitude
Mw through [35] (see also Section 6.1)

M0 ∝ 10cMw (1.3)

where the constant c = 1.5. Thus, the empirical relation (1.2), in view of Eq. (1.3), is in
fact a power law relation that interconnects ΔV/L with the energy E, thus pointing to the
conclusion that the future focal region has a fractal geometry (§1.5.1). This is consistent
with the early suggestion by Varotsos and Alexopoulos [127] (see p.92) that the universal
a-value stems from the geometry of the SES emitting source.

In addition, when considering (§ 1.5.2) that criticality is always associated with frac-
tality, Eq. (1.2) is consistent with the SES generation model of pressure stimulated
currents (§ 1.6.2) that motivated the SES research and assumes that SES is emitted
when the stress reaches a critical value in the future focal region. Note that a num-
ber of independent workers, e.g. Sornette and Sornette [102] (see § 1.6.9) and Surkov,
Uyeda, Tanaka and Hayakawa [109] (see § 1.6.8) have also provided a theoretical jus-
tification of Eq. (1.2) based on concepts of critical phenomena.

1.3.3 SES polarity and the ratio of the two SES components

For a given short dipole (e.g., EW or NS) a SES from a given seismic area always has the
same algebraic sign. For each pair “seismic area-station”, the ratio of the amplitudes in the
EW and NS directions, i.e. (ΔV/L)EW /(ΔV/L)NS, remains the same for EQs of different
magnitudes but from the same seismic area (Fig. 1.14).
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M

Fig. 1.13 Schematic representation of the variation of
log10(ΔV/L) versus the magnitude M, for SES coming
from the same seismic area and recorded at a given sen-
sitive station. Taken from Ref. [140].

The above property seems to hold when the EQ source parameters from the seismic
region under discussion remain the same. In the case that the EQ mechanism changes, a
reversal of the polarity may be observed [151].

V
L NS

V
L EW

Fig. 1.14 Schematic representation of the ratio of the two
SES components, for a given pair “seismic area – (SES
sensitive) station”. It remains almost the same. Taken
from Ref. [140].

The ratio of the two SES components is, in general, different from that of the MT-
polarization. We present two characteristic examples. Let us consider the case for the SES
activities that preceded the Mw6.6 EQ of Grevena-Kozani. In Fig. 1.11(a), we give the
recordings of April 18, 1995, at IOA, at the sites termed “B” and “C” (see the maps in Figs.
1.3(a) and (c)). An inspection of this figure reveals the difference between MT disturbances
and SES recordings. First, the MT disturbances in the NS direction (e.g., 09:30 UT on
April 18), measured at site “C”, are appreciably smaller than those in NS measured at site
“B” (the opposite holds for the EW direction), but the SES amplitude at NcSc is larger than
that at NbSb. Second, when comparing the recordings at the long dipoles L′s-I and L′ (or
L), we find that they respond differently to MT disturbances than to SES activities.
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1.3.4 SES sensitive sites. Selectivity effect

SES cannot be observed at all points on the Earth’s surface but only at certain points
[127, 128, 130] called “sensitive sites” [140].

Therefore the installation of a station appropriate for SES collection should necessarily
be preceded by a tedious experimentation to find a sensitive site [131]. In short, a number
(e.g., 10) of temporary low-noise stations are installed and only after a long period, i.e.,
after the occurrence of several significant EQs from a given seismic area, can we select
the most appropriate site (if any). Although general rules cannot be drawn, it seems that
[131] the areas which are more likely to be sensitive are: (a) the vicinity of a major fault,
(b) regions of crystalline rocks close to large heterogeneities, such as geological contacts
with significantly different conductivities and (c) areas with strong local inhomogeneities.
The stations depicted in Fig. 1.2 have been selected to be SES sensitive after long exper-
imentation. As an example, the procedure we followed for the selection of IOA sensitive
site has been described in detail by Kondo, Uyeda and Nagao [53].

Selectivity effect. It refers to the experimental fact that a sensitive station is capable of
collecting SES only from a restricted number of seismic areas [140, 131].

The following may happen: a given station SA situated at A may be able to record SES
originating from a seismic area B but not from an area C, even when the distance between
A and C is significantly smaller than that between A and B [127, 128, 130]. A map showing
the seismic areas that emit SES detectable (for EQs above a magnitude threshold) at a given
station is called “selectivity map of this station”. In Fig. 1.1 the western large dotted area
corresponds to the selectivity map of IOA, while the shaded regions a, b and c (which are
likely to be joined to a single larger area) refer to the selectivity map of ASS.

The construction of the selectivity map of a given station takes a long time. There
are, in principle, three categories of seismic regions with respect to a given SES station.
The first two categories refer to those regions at which strong EQs occurred during the
operation of the station: the one category refers to the regions which gave detectable SES
at the station (thus belonging to the selectivity map) and the other which did not. There
is, however, a third category, referring to those seismic regions that were not seriously
activated during the operation of the station. Thus, the completion of the selectivity map of
a station needs gradual improvement as more data are collected. For example, the seismic
region of Kozani-Grevena until 1995 was not initially included in the selectivity map of
IOA depicted in Fig. 1.1; however, after the Mw6.6 EQ on May 13, 1995, with an epicenter
at 40.2◦N 21.7◦E, it became included (see Refs. [141, 137]). Thus, the construction of the
selectivity map requires a long time operation of a (sensitive) station. The procedure is
described in detail in Ref. [131] (see also pp. 13–14 of Ref. [125]).

An explanation for the selectivity effect has been suggested by Varotsos and Alexopou-
los [129] (see Section 1.7 and Ref. [131]).
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This explanation is supported by analytical solutions of Maxwell equations (§ 1.7.4),
as well as by numerical ones (§ 1.7.5), and suggests that selectivity is a natural con-
sequence of the fact that EQs occur by slip on faults, which are appreciably more
conductive than the surrounding medium.

Moreover, a detailed experimentation summarized in section 1.4 of Ref. [125] has been
carried out in Greece aiming at a better understanding of the SES selectivity effect. This
experimentation included: (a) the additional installation of several tens of short and long
dipoles in order to determine the spatial extent of each of the SES sensitive sites, and (b)
a detailed magnetotelluric investigation around each SES sensitive station. For example,
the results showed [137] that the SES sensitive site at IOA extends to a zone with a width
of about a few km and a length of the order of ≈10 km. These dimensions seem to be
compatible with the results obtained from analytical and numerical solutions of Maxwell
equations, e.g. see Fig. 1.38(c) and § 1.7.5.3.

1.3.5 Determination of the epicenter and magnitude of an impending mainshock

from the SES data

In a non-dense network, the SES of an impending EQ is recorded at one station only. In
this case, the following procedure is applied [140]:

The determination of the epicenter and magnitude of an impending EQ needs the
knowledge of the selectivity map of the station that recorded the SES. Then by consid-
ering the SES polarity and the value of the ratio (ΔV/L)EW /(ΔV/L)NS (see § 1.3.3)
obtained from the short dipoles array, we select the region(s) of the selectivity map
which might have emitted the observed SES. Subsequently, from the log10ΔV/L vs
M plot (see § 1.3.2) that corresponds to this concrete pair: “candidate seismic area-
station”, we estimate the magnitude.

We clarify that the additional use of long dipole information may significantly improve
the epicenter estimation. Let us consider, as an example, one of the two (independent)
long dipoles (L or L′) installed between the IOA station and the town of Perama, which
are oriented along an angle θ̂ = N30◦E (see Fig. 1.3(b)). Let us denote the electric field
and potential difference by E and ΔV with relevant suffices. If we denote the NS and EW
components of electric field variation measured by the short dipole by ENS = ΔVNS/Lshort
and EEW = ΔVEW /Lshort , the component of the electric field variation in the direction of
the long dipole, Elong = ΔVlong/Llong, would be: Elong ≈ ENS cos θ̂ +EEW sin θ̂ , in the case
that the resistivity structure is assumed homogeneous and isotropic. Then:

(ΔVlong/ΔVNS) = (Llong/Lshort)[cos θ̂ +(EEW /ENS)sin θ̂ ]. (1.4)
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As θ̂ and (Llong/Lshort ) are constant, (ΔVlong/ΔVNS) can be considered as a sensitive mea-
sure of (EEW /ENS), because it “amplifies” the latter almost by the ratio (Llong/Lshort ≈
20)× (sin θ̂ = 1/2) ≈ 10. Since the underground structure is neither homogeneous nor
isotropic, the observed ratio (ΔVlong/ΔVNS) is considered to be merely a parameter sen-
sitive to (EEW /ENS). (This ratio is termed “directional parameter” by Kondo, Uyeda and
Nagao [53], who independently checked this procedure.)

By summarizing, since the ratio ΔVlong/ΔVNS is a sensitive measure for the ratio of
the two SES components, the use of the ratio EEW /ENS deduced from the short dipoles
array together with the ratio ΔVlong/ΔVNS improves the epicentral determination.

By the same token, in some cases, the ratio ΔVlong/ΔV ′long of two long dipoles with
unequal lengths may help towards distinguishing one among different candidate epicentral
areas. This has been used for example in the text of the prediction of the EQ at Grevena-
Kozani (May 13, 1995), that will be discussed in § 7.2.1.

We also emphasize the following. If the two components of the electric field detected
on the Earth’s surface are measured along appropriate directions, i.e., by two short dipoles,
oriented along and perpendicular to the (local) current channeling [136, 152], they exhibit
markedly different time evolutions. This stems from the fact that the electric field obeys
diffusion type equations (in the low frequency range, see §1.8.1 and §1.8.3).

An analysis of the difference between the time evolutions of these two SES compo-
nents can then reveal the distance of the emitting source from the measuring station(see
Refs. [157, 151, 152]; see also pp. 275–280 of Ref. [125]).

1.3.6 Magnetic field variations associated with SES

The experiments show that small amplitude SES, e.g., those corresponding to magnitude
M ∼ 5.5 EQs at epicentral distances of the order of 100 km, are not accompanied by
easily observable variations of the horizontal components of the magnetic field [141]. This
does not imply that SES are not accompanied at all by magnetic field (B) variations, the
existence of which is obligatory from Maxwell equations, but does imply that they are very
small compared to those which produce (comparable) magnetotelluric electric signals.

On the other hand, both theoretical calculations (see § 1.7.6 and chapter 10 of
Ref. [125]) and experiments (e.g., see Figs. 1.11(a),(b)) indicate that strong SES ac-
tivities and in particular those related with EQs of magnitude M >∼ 6.5 at epicentral
distances ∼100 km, should be accompanied by detectable magnetic field variations,
e.g., B∼ 10−1 nT.
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This was actually observed (details are given in subsection 1.6.3 of Ref. [125]) for the
SES activities detected at IOA before the occurrence of the Mw6.6 EQ at Grevena-Kozani
on May 13, 1995 [138, 150, 161], to which we now turn.

Figures 1.11(a),(b) depict the SES activities recorded at IOA on April 18 and April
19, 1995, respectively. All variations were collected with the Campbell X21 datalogger by
20 ms integration to avoid 50 Hz noise with fexp = 1 sample/s. The following nine (out of
16) channels are shown in the figures: two for the horizontal coil magnetometers DMM
(see Section 1.1), labeled BEW and BNS, four for the short electric dipoles at sites “B” and
“C” and three for the long electric dipoles L, L′ and L′s-I (see Fig. 1.3). Note that “1 Hz”
low pass filters were used in the measurements of the electric field variations of the three
long dipoles and “10 Hz” (see Appendix) for the short dipoles at sites “B” and “C”. An
inspection of this figure reveals that there are obvious magnetic disturbances at DMM,
which accompanied the SES activities. A part of the SES activities and the accompanied
DMM recordings is presented, but in a more expanded time scale, in Fig. 1.11(c). These
SES activities meet [138] the criteria for distinguishing true SES from noise (Section 1.2).

1.3.6.1 The time difference between the variations of the electric and magnetic fields

Varotsos et al. [161] studied in the aforementioned example of Figs. 1.11(a),(b) the cross-
correlation values, calculated between the following two time series versus their time-
difference Δ t: one component of the electric field and one component of the horizontal
DMM. The results, either for the SES activity on April 18, 1995 (Fig. 1.11(a)), or for
that on April 19, 1995 (Fig. 1.11(b)), showed that [161]: the electric field variations pre-
ceded the magnetic ones (i.e., dB/dt since we used coil magnetometers) by a Δ t of around
1–2 sec.

The fact that the SES electric field variations precede those of the magnetic field by
a measurable time difference, i.e., of the order of 1 sec (for epicentral distances of
the order of ∼100 km), may be critical in distinguishing SES from “artificial” noises.
This is so, because for noises emitted from nearby “artificial” (man-made) sources, the
“arrivals” of the variations of the two fields are simultaneous at the measuring station
within experimental accuracy.

Such a distinction can be achieved, of course, when the epicentral distance is ≈ several
tens of km. The value of the time-difference may also be used for the estimation of the
epicentral distance of the impending EQ, which when combined with the selectivity map
can significantly improve the epicenter determination.

1.3.6.2 The polarization of the electric and magnetic field variations of SES

The SES polarization differs [127, 128] from that of the MT as already mentioned in
§ 1.3.3. Let us recall, for example, the SES activity of April 19, 1995: the SES record-
ings at site “C” (Fig. 1.6(A)) indicate an almost linear polarization of the electric field
variations along NS, in contrast to that of the MT, which is almost directed along EW
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(Fig. 1.6(B)). A smaller directional difference was observed at site “B” (Fig. 1.5). Further-
more, the magnetic field recordings associated with this SES activity also show an almost
linear polarization as can be seen in fig. 1.6.17 of Ref. [125].

1.3.7 Magnetic field variations associated with the precursory short-duration

electric pulses

Figure 1.15(a) shows the electric and magnetic field variations associated with the short-
duration pulses (§ 1.3.1 and Fig. 1.12) that have been observed at the station IOA shortly
before the aforementioned Mw6.6 EQ which occurred at 08:47:13 UT on May 13, 1995.
Here, we present the electric field recordings of two horizontal short dipoles of length 50
m installed at site “C” (see Fig. 1.3) that are oriented along EW and NS. The magnetic
field variations were measured by two horizontal DMM, also oriented along EW and NS,
which act as dB/dt detectors. The details of the instrumentation are the same as described
in § 1.3.6.

The bottom panel of Fig. 1.15(a) reveals that five magnetic pulses marked “a” to “e” are
detected before the EQ occurrence. They started at 16 min before the EQ and the last one
was at 3 min before. They were identified also in the electric records, with varying defini-
tude. Note also that simultaneously with the arrival of the seismic waves, several seconds
after the origin time (OT), disturbances reminiscent of seismograms were recorded by
both, the electric field and magnetic field sensors. No “true” coseismic, i.e., cofracture sig-
nal, was observed at OT. Observation of such signals but no cofracture signal was reported
for several other cases [125, 98, 72].

Example pulses “c” and “e” of Fig. 1.15(a) are shown in Figs. 1.15(b) and 1.15(c)
in a more expanded time scale. It can be noted that the magnetic field disturbance was
recorded around 1 s after the electric field variation. These pulses cannot be attributed to
noise from a nearby source or to a magnetotelluric origin for the following reasons: (i)
the time difference between the arrivals of the electric field variations and the magnetic
field recordings should not be in the observable range in the case of emission from nearby
sources [161] (see also § 1.3.6) and (ii) in the case of MT disturbances, the magnetic
variations (dB/dt) are recorded before [161, 125] (not after) the electric field variations,
see the examples marked MT in Fig. 1.15(d).

In other words, the time difference of 1 s observed between the electric and magnetic
field recordings of the short duration electric pulses detected shortly before the afore-
mentioned Mw6.6 EQ, supports the view that they were not from a local man-made
source but from the same origin as the SES activities of Fig. 1.11 (see also § 1.3.6),
i.e., the EQ epicentral area lying ∼100 km away from the measuring site.
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Fig. 1.15 Variations of the electric field (the upper two channels) and the associated magnetic field record-
ings (the lowest two channels) at IOA station. (a): For the time period from 22 min before, until 3 min after
the occurrence of the Mw6.6 mainshock on May 13, 1995. The symbols “a” to “e” mark the five pulses ob-
served before the earthquake occurrence, while the vertical broken line shows the earthquake origin time
(OT). (b) and (c): The pulses “c” and “e”, respectively, in an expanded time scale. (d): Excerpt from (a)
to show MT disturbances in an expanded time scale. For the scale in the vertical axis for the magnetome-
ters: 20 mV correspond to a constantly increasing magnetic field of 0.1 nT/s. In the middle channel of (d)
the amplitude of dB/dt in nT/s. Reprinted with permission from Ref. [159]. Copyright (2007), American
Institute of Physics.

1.4 Scale invariance of SES activities and their associated magnetic

field variations

Complex systems exhibit scale-invariant features characterized by long-range power law
correlations, which are often difficult to quantify due to the presence of erratic fluctua-
tions, heterogeneity and nonstationarity embedded in the emitted signals. This also hap-
pens when monitoring geoelectric (and geomagnetic) field changes aiming at detecting
SES activities and their associated magnetic field variations. Different types of nonstation-
arities appear in these measurements, such as random spikes and pseudo-sinusoidal trends,
that may affect the long-range correlation properties of signals. Since these nonstationar-
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ities may either be epiphenomena of external conditions or may arise from the intrinsic
dynamics of the system, it is crucial to distinguish their origin. This is attempted in the
present Section for both the magnetic and the electric field variations associated with SES
activities by employing the detrended fluctuation analysis (DFA) as a scaling method to
quantify long-range temporal correlations.

DFA, originally introduced by Peng et al. [80], has been established as an important
method to reliably detect long-range correlations in data effected by trends. Before pro-
ceeding to its description, some comments on the notion of long-range correlations are
forwarded below (e.g. Ref. [6] and references therein).

1.4.1 Long-Range Correlations. Background

Let us consider a record (xi) of i = 1, . . . ,N equidistant measurements in which we are
interested in the correlation of the values xi and xi+s for different time lags s, i.e., corre-
lations over different time scales . In order to remove the constant offset in the data, the
mean x = 1

N ∑N
i=1 xi is usually subtracted, i.e.,

x̃i ≡ xi− x . (1.5)

Correlations between x values separated by “s” steps are usually defined by the auto-
correlation function:

C(s) =
〈x̃ix̃i+s〉
〈x̃2

i 〉
=

1
(N− s)〈x̃2

i 〉
N−s

∑
i=1

x̃ix̃i+s . (1.6)

If the xi are uncorrelated, C(s) is zero for s > 0. Short-range correlations of the xi are
described by an exponentially decreasing C(s), i.e.,

C(s)∼ exp(−s/τ) (1.7)

with a decay time τ (cf. a convenient way to exclude short-range correlations up to a scale
s1 is downsampling the original data by the same factor s1). In the case of the so-called
long-range correlations, τ =

∫ ∞
0 C(s) ds diverges and the decay time τ cannot be defined.

For example, in this case C(s) may decrease as a power law

C(s)∼ s−γ (1.8)

with an exponent [51] in the range 0 < γ < 1.
The determination of the correlation exponent γ cannot be made by a direct computa-

tion of C(s) in view of the following:

The autocorrelation function C(s) strongly fluctuates around zero on large scales s,
making it extremely difficult to find the potential scaling (fractal) behavior of Eq. (1.8).

In addition, a direct calculation of C(s) is usually not suitable due to underlying
nonstationarities and trends of unknown origin. This also holds for the traditional
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method of power spectrum, because a power spectrum calculation assumes (e.g. see
Ref. [8]) that the signal is stationary and hence when applied to nonstationary time
series it can lead to misleading results.

Thus, a power spectrum analysis should be necessarily preceded by a test for the sta-
tionarity of the (portions of the) data analyzed.

1.4.2 Detrended fluctuation analysis (DFA)

Here, we summarize the detrended fluctuation analysis (DFA) [80, 111].

DFA is established, as mentioned, as a robust method suitable for detecting long-range
power law correlations embedded in nonstationary signals.

It has been applied to diverse fields such as DNA [79, 107], heart dynamics [81, 3], hu-
man locomotion [2, 5, 45], circadian rhythms [39, 44], meteorology [47, 110], MT during
magnetic storms [156], economics [58, 121, 4, 46] etc. A major advantage of DFA is the
systematic elimination of polynomial trends of different order [12, 51, 38, 6]. In addition,
as it will be discussed in § 4.6.1.1, DFA is the best estimator (compared to wavelet-based
estimators) of self-similarity or long-range dependence for short time series.

DFA is based on random walk theory and its brief description is as follows. We first
calculate the ‘profile’:

y(n) =
n

∑
i=1

(xi− x) (1.9)

of a time series (xi), i = 1,2, ...,N with mean x:

x =
1
N

N

∑
i=1

xi (1.10)

where N is the length of the signal. In Eq. (1.9), y(n) can be considered as the position of
a random walker on a linear chain after n steps.

Second, the profile y(n) is divided into Ns ≡ [N/s] (where the symbol [ ] here stands for
the integer part) non-overlapping segments of equal length (“scale”) s. Third, we estimate
a piecewise polynomial trend y(l)

s (n) within each segment by least-squares fitting, i.e.,
y(l)

s (n) consists of concatenated polynomials of order l which are calculated separately for
each of the segments. The degree of the polynomial can be varied in order to eliminate
linear (l = 1), quadratic (l = 2), or higher-order trends [12] of the profile function. DFA is
named after the order of the fitting polynomial, i.e., DFA-1 if l = 1, DFA-2 if l = 2, . . . .
Note that, due to the integration procedure in the first step, DFA-l removes polynomial
trends of order l−1 in the original signal (xi). Fourth, the detrended profile function ỹs(n)
on scale s is determined by

ỹs(n) = y(n)− y(l)
s (n) (1.11)
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which, in other words, means that the profile y(n) is detrended by subtracting the local
trend in each segment. Fifth, the variance of ỹs(n) yields the fluctuation function on scale s

F(s) =

√
1
N

N

∑
n=1

[ỹs(n)]2 (1.12)

which corresponds to the trend-eliminated root mean square displacement of the random
walker mentioned above. Sixth, the above computation is repeated for a broad number of
scales s to provide a relationship between F(s) and s.

A power law relation between F(s) and s, i.e.,

F(s)∼ sα (1.13)

indicates the presence of scale-invariant (fractal) behavior embedded in the fluctuations
of the signal. The fluctuations can be characterized by the scaling exponent α , a self-
similarity parameter (see § 1.5.1):

If α = 0.5, there are no correlations in the data and the signal is uncorrelated (white
noise); the case α < 0.5 corresponds to anti-correlations, meaning that large values
are most likely to be followed by small values and vice versa. If α > 0.5, there are
long-range correlations, which are stronger [6] for higher α . Note that α > 1 indicates
a nonstationary local average of the data and the value α = 1.5 indicates Brownian
motion (integrated white noise).

For stationary signals with long-range power law correlations the value of the scal-
ing exponent α is interconnected with the exponent β characterizing the power spectrum
S( f )∼ f−β ( f =frequency) through [79]

β = 2α−1 . (1.14)

Thus, the widely observed case of the so-called 1/ f noise, where β = 1, corresponds to
α = 1. Furthermore, if 0.5 < α < 1, the scaling exponent α is interconnected with the
correlation exponent γ (see Eq. (1.8)) through the relation:

γ = 2−2α . (1.15)

If the type of trends in a given data set is not known beforehand, the fluctuation func-
tion F(s) should be calculated for several orders l of the fitting polynomial.

If l is too low, F(s) will show a pronounced cross-over to a regime with larger slope
for large scales [51, 38]. The cross-over will move to larger scales s or disappear upon
increasing l, unless it is a real cross-over associated with intrinsic fluctuations and not due
to trends [38].
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1.4.3 DFA of long duration SES activities

In several applications of DFA, long-range correlations have been revealed in SES activ-
ities of duration up to a few hours [154, 156, 155, 163] (these will be summarized later
in Section 4.4 along with the corresponding analysis in natural time). During the last few
years, however, as already mentioned in Section 1.3, SES activities of appreciably longer
duration, i.e., from several hours to a couple of days, have been collected (see § 7.2.4 to
§ 7.2.6). Since such long duration data enable the investigation of scaling in a wider range
of scales, we focus below on such a case.

Here, we analyze as an example the long duration SES activity at PIR that lasted from
February 29 until March 2, 2008. It was followed [93] by a Mw6.4 earthquake at 38.0◦N
21.5◦E on June 8, 2008 (see § 7.2.6). The time series of this electrical disturbance, which
is not of obvious dichotomous nature, is reproduced in the channel “a” of Fig. 1.16. The
signal, comprising a number of pulses, is superimposed on a background which exhibits
frequent small MT variations.

Fig. 1.16 The long duration SES activity from February 29 to March 2, 2008, recorded at the station PIR.
Channel “a” :original time series, channel “b”: recordings at a measuring dipole which did not record the
SES activity, but does show MT variations, “c”: the angle of the resulting vector upon assuming that the 1 s
increments of channel “a” lie along the x-axis and those of channel “b” along the y-axis. Channel “d”: the
residual of a linear least-squares fit of channel “a” with respect to channel “b”; channel “e”: the same as
“d” but after eliminating the slight variations of the MT background. For the sake of clarity, channels “a”,
“b” and “d” have been shifted vertically. Reprinted with permission from Ref. [158]. Copyright (2009),
American Institute of Physics.
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1.4.3.1 The procedure to subtract the magnetotelluric background variations

In order to separate the MT background, the following steps are taken: First, we look into
the simultaneous data of another measuring dipole of the same station (PIR), i.e., the data
shown in channel “b” of Fig. 1.16, which has not recorded the signal but does show the
MT pseudo-sinusoidal variations. Second, since the sampling rate of the measurements
fexp is 1 sample/sec, we now read the increments every 1 s of the two time series of
channels “a” and “b”. Placing the “1 s increments” of channel “a” along the x-axis and
those of “b” along the y-axis, we obtain increment vectors and plot in the middle panel “c”
of Fig. 1.16 their angles with dots. When a non-MT variation (e.g. a dichotomous pulse)
appears (disappears) in channel “a”, the angle in “c” abruptly changes to 0◦ (±180◦).
Thus, the dots in panel “c” mark such changes. In other words, an increased density of
dots (dark regions) around 0◦ or ±180◦ marks the occurrence of these pulses, on which
we should focus. To this end, we plot in channel “d” of Fig. 1.16 the residual of a linear
least-squares fit of channel “a” with respect to channel “b”. Comparing channel “d” with
channel “a”, we notice a significant reduction of the MT background but not of the signal.
The small variations of the MT background that still remain in “d” are now marked by the
light blue line. When this is removed, channel “d” results in channel “e”. Hence, channel
“e” provides the time series which should now be further analyzed.

1.4.3.2 The results of DFA

The DFA plot of the time series of channel “e” of Fig. 1.16 is shown in Fig. 1.17. It
reveals an almost linear log F(s) vs log s plot with an exponent α ≈ 1 practically over
all scales available (approximately four orders of magnitude). Note, that this value of the
exponent remains the same irrespective of whether we apply DFA-1, DFA-2 or DFA-3
(see § 1.4.2). This result is in agreement with the exponents obtained [154, 156, 155, 163]
for SES activities of shorter duration (see Section 4.4). Furthermore, note that in order to
distinguish whether the signal “e” in Fig. 1.16 is a true SES activity or a man-made electric
signal, its analysis in natural time has been employed as described in Section 4.11.

By summarizing, when DFA is applied to recent SES activities of long duration (sev-
eral hours to a couple of days) it reveals a scale-invariant feature with an exponent
α ≈ 1 over all scales available (around four orders of magnitude)

1.4.4 DFA of the magnetic field variations that accompany SES activities

For major earthquakes, i.e., with magnitude Mw
>∼ 6.5, the SES activities are accompanied

[161], as mentioned above (§ 1.3.6), by detectable variations of the magnetic field B. These
variations, when measured by coil magnetometers, have the form of ‘spikes’ of alternating
sign. Here, we investigate whether these ‘spikes’ exhibit long-range temporal correlations.
This investigation, which is of major importance since only magnetic field data are usually
available in most countries [25, 52, 64] (because it is easier to conduct magnetic field
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Fig. 1.17 The DFA−l (l = 1, 2 and 3) for the lower channel labeled “e” of Fig. 1.16. Logarithm base 10
is used. Reprinted with permisson from Ref. [158]. Copyright (2009) American Institue of Physics.

measurements than electric field ones), was reported in Ref. [158] and is briefly described
here.

Figures 1.11(a),(b) provide the simultaneous recordings of the electric and magnetic
variations on April 18, 1995, and April 19, 1995, respectively, at the station IOA. As men-
tioned, a magnitude Mw6.6 earthquake with an epicenter at 40.2◦N 21.7◦E occurred almost
three weeks later, i.e., on May 13, 1995 (see also § 7.2.1). The recordings of the two hor-
izontal magnetometers oriented along the EW- and NS-directions labeled BEW and BNS,
are shown in the lower two channels. They consist of a series of ‘spikes’ of alternating sign
as more clearly seen in Fig. 1.11(c) which provides a 10 min excerpt of the recordings in
Fig. 1.11(b), but in a more expanded time scale. The ‘spikes’ are superimposed on a back-
ground which exhibits almost pseudo-sinusoidal MT variations of duration much larger
than 1 s. We now apply DFA to the original time series of the magnetic field variations and
focus our attention on the BEW component where the intensity of ‘spikes’ is higher. We
find the corresponding logF(s) versus logs plot, shown in Fig. 1.18. This refers to the data
on April 18, 1995, i.e., Fig. 1.11(a). If we fit the data with two straight lines (which are
also depicted in Fig. 1.18) the corresponding scaling exponents are α = 0.52± 0.04 and
α = 0.89±0.03 for the short and long time lags (i.e., smaller than∼12 sec and larger than
∼12 sec), respectively. The cross-over occurs at a time-lag Δ t ∼ 12 sec which is roughly
equal to the average duration 〈T 〉 ≈ 11.01±0.03 sec of the electric pulses, corresponding
to the interval between two consecutive alternating ‘spikes’. Thus, Fig. 1.18 shows that, at
time-lags Δ t larger than 〈T 〉, long-range power law correlations prevail (since α > 0.5),
while at shorter time-lags the α value is very close to that (α = 0.5) of an uncorrelated
signal (white noise). This is understood, if we consider the conclusions drawn in § 4.1.3
for the DFA of dichotomous time series.



30 1. Introduction to Seismic Electric Signals

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0.5  1  1.5  2  2.5  3  3.5

lo
g 

F
(s

)

log s

DFA=0.52
DFA=0.89

Fig. 1.18 The DFA for the BEW channel of Fig. 1.11(a). Logarithm base 10 is used. Reprinted with per-
mission from Ref. [158]. Copyright (2009), American Institute of Physics.

In summary, DFA was used here as a scaling analysis method to investigate long-range
correlations in the original time series of the magnetic field variations. When using coil
magnetometers, these magnetic field variations have the form of ‘spikes’ of alternating
sign. We find a scaling exponent α close to 0.9 for time-lags larger than the average
time interval 〈T 〉 between consecutive ‘spikes’, while at shorter time-lags the exponent
is close to 0.5.

Electric field variations are interconnected, of course, with the magnetic field ones
through Maxwell equations. Thus, it is expected that when the former exhibit long-range
correlations (§ 1.4.3.2) the same should hold for the latter.

1.5 Criticality, complexity and fractals. An introduction

1.5.1 Introductory note on fractal dimension and self-similarity. Fractional

Brownian motion and fractional Gaussian noise

Fractals can be introduced in a simple way as follows [33]: Assume a reference volume V
which consists of N smaller elementary volumes rD, i.e., N = V/rD. The smaller volume
rD is the reference volume used for measurement. For D = 1, a segment of unit length can
be decomposed into N smaller segments of length r, i.e., N = 1/r. In two dimensions, i.e.,
D = 2, a surface of unit area can be decomposed into N smaller areas 1/r2. Generalizing
this procedure, a dimension D can be defined through the relation:

D = logN/ log(1/r) . (1.16)
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This definition allows a noninteger dimension, or fractional dimension. N is the number of
elementary elements necessary to cover the unit surface, curve or volume, N = 1/rD.

The latter can be equivalently formulated as r = N−(1/D). Therefore, when the fractal
curve has length L and is measured with a ruler of length ε:

D = log(L/ε)/ log(1/ε) (1.17)

and hence
L(ε) = ε1−D . (1.18)

Obviously, if D =1 (Euclidean dimension), L is a constant independent of ε . On the
other hand, if D �= 1 the length of the curve depends on the choice of ε . An example is
the so-called Von Koch’s curve, which is obtained by a process of repeated dissection as
follows:

A segment AB is dissected into four new segments, each being one-third of the orig-
inal length (see Fig. 1.19, where note that the length at Fig. 1.19(b) is 4/3 the length at
Fig. 1.19(a)). This is repeated at the next stage: each of the four segments obtained in the
previous step is dissected into four new segments each being one-third the length at the
preceding step, etc. Thus, if ε denotes the length of the elementary segment at a stage n,
then the elementary segment at the stage n + 1 will be of length ε/3. Therefore, if L(ε)
and L(ε/3) denote the total lengths at the stages n and n+1 respectively, we have:

L(ε/3) = 4/3L(ε) (1.19)

If L(ε) = ε1−D, we obtain (ε/3)1−D = (4/3)ε1−D with D = log4/ log3 ≈ 1.26. Von
Koch’s “curve” (which is continuous but not differentiable) is a fractal of dimension
D = 1.26. It is a self-similar curve, i.e., a curve invariant on a change of scale. The ra-
tio of self-similarity is 4/3.

A

A

A

B

B

B

(a)

(b)

(c)

Fig. 1.19 Von Koch’s curve. The segment
AB is replaced by four segments each of
length AB/3. This is repeated n fold. The
fractal dimension is D = log4/ log3≈ 1.26
and the ratio of self-similarity is 4/3 (see
the text). Reprinted from Ref. [125],
Copyright (2005), with permission from
TerraPub.
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In general, we may say the following. Self-similarity of an object is equivalent to the
invariance of its geometrical properties under isotropic rescaling of lengths.

Furthermore, we clarify that:

A stochastic process X(t) is called self-similar with index H if it has the property

X(λ t) d= λHX(t) (1.20)

where the equality concerns the finite-dimensional distributions of the process X(t) on
the right- and the left-hand side of the equation (not the values of the process).

In many physically relevant cases, the structure of the objects is such that it is invariant
under dilation transformation only if the lengths are rescaled by direction dependent fac-
tors. These anisotropic fractals are called self-affine (Vicsek [162]). Such examples are the
fracture surfaces.

In summary, a fracture surface z(x,y) is said to be a self-affine object in the sense that
it remains invariant under the transformation (x,y,z)→ (αx,αy,αζ z), where ζ is the
so-called roughness exponent.

1.5.1.1 Fractional Brownian motion and fractional Gaussian noise

Among the simplest models that display self-similarity and long-range dependence, one
can consider the example of the fractional Brownian motion (fBm), introduced by Mandel-
brot and van Ness [60]. Let B(t) be an ordinary Brownian motion (or Wienner process, in
mathematical jargon), then the fractional Brownian motions of the exponent H (0 < H < 1)
denote [60] a family of Gaussian random functions (continuous-time stochastic processes)
BH(t) which are the moving averages of dB(s) in which the past increments of B(t) are
weighted by the kernel (t− s)H−1/2.

More specifically, B(t) is called ordinary Brownian motion (or Wienner process) when

• The increments B(t)−B(s) are Gaussian.
• The increments B(t)−B(s) have zero mean:

� [B(t)−B(s)] = 0 . (1.21)

• The increments B(t)−B(s) have variance:

Var[B(t)−B(s)] = |t− s|. (1.22)
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• The increments B(t)−B(s) are independent if they correspond to non-overlapping in-
tervals, i.e., when [t1, t2] does not overlap with [t3, t4], i.e., (t2 < t3):

� {[B(t2)−B(t1)][B(t4)−B(t3)]}= 0. (1.23)

• B(t) is almost surely continuous with B(0) = 0.

According to Mandelbrot and van Ness [60], the fBm BH(t) for t > 0 is then given by

BH(t)−BH(0) =
∫ 0
−∞
[
(t− s)H−1/2− (−s)H−1/2

]
dB(s)+

∫ t
0(t− s)H−1/2 dB(s)

Γ (H + 1
2 )

(1.24)

where the integration is taken in the pointwise sense (as well as in the mean square sense)
by using the usual methods involving integration by parts. The symbol Γ (H + 1

2 ) is the
gamma function of the real argument H +1/2 and throughout this monograph we assume
BH(0) = 0. Note that B 1

2
(t) = B(t), thus fractional Brownian motions are divided into three

very different families corresponding, respectively, to 0 < H < 1
2 , 1

2 < H < 1 and H = 1
2

(see also § 4.3.1).
The function BH(t) has [60] the following important properties (that generalize those

of the Brownian motion stated above):

• The increments BH(t)−BH(s) are Gaussian.
• The increments BH(t)−BH(s) have zero mean:

� [BH(t)−BH(s)] = 0 . (1.25)

• The increments BH(t)−BH(s) have variance:

Var[BH(t)−BH(s)] = σ2|t− s|2H , (1.26)

where σ2 ≡ Var[BH(s+1)−BH(s)] (e.g. see Ref. [57]).
• BH(t) is (mean square) continuous, has all sample paths continuous but is not (mean

square) differentiable and it almost surely does not have differentiable paths.

The fBM process, Eq. (1.24), which is not stationary, has [60] two unique properties:
self-similarity and stationary increments (cf. Eqs. (1.25) and (1.26)). As mentioned
in Ref. [54], self-similarity can be understood in the sense that if a time segment is
taken from the fBm trajectory, after proper normalization, the segment has the same
behavior as any segments of other time scales (see also §1.5.1). Moreover, stationary
increments means that the distribution of the increments BH(t)−BH(s) depend only
on the time lag t− s.

According to Eqs. (1.25), (1.26) and the fact that BH(0) = 0, one has

� [BH(t)2] = Var[BH(t)] = σ2|t|2H . (1.27)
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as well as
Var[BH(t)−BH(s)] = �

{
[BH(t)−BH(s)]2

}
= σ2|t− s|2H . (1.28)

Expanding the square in Eq. (1.28) and using Eq. (1.27), one can obtain the autocorrelation
function (§ 1.4.1) of the fBm [60] (e.g. see also Ref. [57])

� [BH(t)BH(s)] =
σ2

2
(|t|2H + |s|2H −|t− s|2H) . (1.29)

The fact that fBm, like ordinary Brownian motion, has no derivative is inconvenient,
but fractional Gaussian noise GH(t;ε) can be defined [60] through the random function
(ε > 0)

�H(t) =
1
ε

∫ t+ε

t
BH(s)ds (1.30)

as

GH(t;ε) =
�H(t + ε)−�H(t)

ε
. (1.31)

The fractional Gaussian noise (fGn) GH(t;ε) is Gaussian with zero mean, stationary,
almost surely continuous, but surely nondifferentiable [60].

Note that it is not uncommon to call [57] fractional Gaussian noise simply the time
series of the increments of fBm, i.e., BH(t + s)−BH(t), but it is actually in the sense of
Eq. (1.31) that fGn is applied [54] in physics.

Since fGn is stationary the autocorrelation function of fGn

CH(t,s;ε)≡ � [GH(t;ε)GH(s;ε)] (1.32)

depends solely in the time-lag τ = t − s, i.e., CH(t,s;ε) = r(τ;ε). Mandelbrot and Van
Ness [60] showed that

CH(t,s;ε) =
σ2ε2H−2

2

[( |t− s|
ε

+1
)2H

−2
∣∣∣∣ t− s
ε

∣∣∣∣2H

+
∣∣∣∣ |t− s|
ε

−1
∣∣∣∣2H
]

. (1.33)

The fGn is a generalization of the so-called “white Gaussian noise” and contains three
subclasses of time series [60]:

• When H = 1
2 , the fGn reduces to white Gaussian noise whose “integral” is the

Brownian motion.
• In the case of H ∈ (0.5,1), r(τ;ε) is positive and finite for all τ . Moreover, in this

case fGn exhibits long-range dependence (see § 1.4.1)∫ ∞

0
r(τ;ε) dτ = ∞. (1.34)
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• For H ∈ (0,0.5) the integral of r(τ;ε) in Eq. (1.34) is zero and r(0;ε) diverges as
ε→ 0; r(τ;ε) changes sign once, from positive to negative, as τ approaches ε from
below.

Mandelbrot and Van Ness [60] proposed that (verbatim) “1:f noises be relabeled as
fractional noises” this is indeed fully justified since the Fourier transform (considered
[56] in the sense of a generalized function over the Schwartz space of test functions, due
to Eq. (1.34)) of the autocorrelation function of Eq. (1.33), which corresponds to the power
spectral density S(ω;ε) of the fGn GH(t;ε), has the property [54, 56]

SH(ω)≡ lim
ε→0

S(ω;ε) ∝
sin(Hπ)Γ (2H +1)

|ω|2H−1 . (1.35)

The power spectrum SH(ω) of fGn in Eq. (1.35), which has been rigorously proven in
Ref. [56], explains why the suggestion by Mandelbrot and Van Ness [60] provides a unique
Gaussian model for the ubiquitous 1/ f β (β = 2H−1) noise in nature.

1.5.2 Critical phenomena and fractality

Critical points are for example temperatures (T ), densities (ρ), etc. above which some
parameter describing, say, long-range order in a ferromagnetic, or the density change in
liquid–gas transition, vanishes. For example, spontaneous magnetization, M(T ), is zero
above some critical temperature TC in a ferromagnet.

Order parameters are quantities, which are nonzero below TC and zero above it, and are
found to be a common feature associated with critical points in a large variety of physical
systems (see also § 6.2.1). For example, M(T ), is the magnetic order parameter, whereas
ρL−ρG is the order parameter in the case of liquid–gas transition through a critical point
(the subscripts L and G stand for liquid and gas, respectively).

Correlation length ξ is the distance over which specific thermodynamic variables in
the system are correlated and is relevant in a system near a critical point.

As an example, we refer to the 2D Ising model (§ 8.4.1), where one can see correlations
of spins over larger and larger distances, as TC is approached. Above TC, such correlations
of spins show short-range order (correlations over short distances), whereas just below
(and more precisely at) TC the system exhibits (infinitely ranged, e.g., ∝1/r1/4) long-
range correlations. In other words, the physical meaning of ξ is the following: it is the
length scale up to which critical correlations have been established (see also § 1.5.3).

The power laws. Following Stanley [106], who hat an interesting discussion aimed at
providing a qualitative justification of power laws characteristic of critical phenomena, let
us consider the aforementioned example of a ferromagnet. The probability that a spin at
the origin O is aligned with a spin at a distance r is unity only at T = 0. For T > 0, we may
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imagine intuitively that the spin correlation function C(r), in the sense of Eq. (1.6), would
decay exponentially with r. Thus, we might expect that C(r) ∝ exp(−r/ξ ), where ξ , the
correlation length, is the characteristic length scale above which the correlation function is
negligibly small. Calculations on mathematical models, confirmed by experiments, indi-
cate that actually correlations decay exponentially. However, if the system is at its critical
point T = Tc, then the rapid exponential decay “magically” turns into a long-range power
law decay

C(r) ∝ 1/rD−2+η , (1.36)

where D denotes the system dimensionality and η is a critical exponent.
Scale-free systems. Many systems in nature are scale-free, meaning that their struc-

ture or behavior is represented by power laws over several orders of magnitude. The best
understood of these are critical systems, like thermodynamic systems at a critical phase
transition, or dynamical systems on the verge of the period-doubling transition to chaos.
Examples are the solid–liquid transition, which is a first-order (abrupt) transition (there ex-
ists latent heat), and those termed “dynamic phase transitions” (§ 1.5.4), which are second-
order (continuous) phase transitions, without latent heat. See also § 6.2.1 on this point.

Concerning the usual statement in the literature that, once a power law is found it reveals
a critical phenomenon, we emphasize that this should be considered with extreme care,
because it is not always valid.

In other words, criticality is always accompanied with fractality (power laws), but the
inverse is not always valid.

A characteristic example of such a case is the following: the SES activities and some
“artificial” noises of RTS shape bear as a common signature the power law behavior (e.g.,
see Section 4.4), but only the SES activities exhibit critical dynamics [156, 155].

1.5.3 Non-equilibrium critical dynamics. The scaling hypothesis

The approach to equilibrium, from a non-equilibrium initial state, in a system at its critical
point is usually described by a scaling theory with a single growing length scale, ξ (t) ∝
t1/z, where z is the dynamic exponent that governs the equilibrium dynamics. Such a case
is called the single growth model.

The simplest scenario consists of a system evolving at its critical point from a non-
equilibrium initial state in which the system was prepared at time t = 0 (e.g., see Bray
et al. [11]). The system evolves toward equilibrium through a non-equilibrium scaling
state. We consider, as an example of our discussion below, the equal-time pair correlation
function:

C(r, t) = 〈φ(x, t)φ(x+ r, t)〉 (1.37)

where φ is the order-parameter field. In the non-equilibrium scaling state, this function has
the following form:

C(r, t) =
c

rD−2+η f
[

r
ξ (t)

]
(1.38)
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which holds in the limit r 
 a, ξ (t)
 a, with r/ξ (t) arbitrary, where a is a microscopic
cut-off, e.g., a lattice spacing. In Eq. (1.38), the factor c/rD−2+η (where c = constant,
D is the dimension of space and η the usual critical exponent of Eq. (1.36)) denotes the
equilibrium correlation function (which holds for a � r � ξ (t)). Requiring that this be
recovered for t = ∞, forces f (0) = 1.

The physical meaning of ξ (t). This is, as mentioned, the length scale up to which
critical correlations have been established at time t.

Dynamic scaling, for large t, suggests:

ξ (t) ∝ t1/z (1.39)

where z is the usual dynamic exponent characterizing temporal correlations in equilib-
rium.

First, we emphasize that Eq. (1.39) shows that relaxation to equilibrium is governed by
the same exponent as correlations in equilibrium. Secondly, we note that this relation holds
independently of the non-equilibrium initial state, which can affect the scaling function,
f (x), but not the exponent z (since this is a property of the equilibrium renormalization
group fixed point, e.g., Ref. [11]).

The point that domain growth is a scaling phenomenon could be simply understood [10]
when considering the result of a Monte Carlo simulation of a 2D Ising model quenched
from Tinitial = ∞ to Tf inal = 0 and then visualizing the time sequence of domain growth at
T = 0: We then see (e.g. fig. 2 of Ref. [10]) that the domain patterns at later times look
statistically similar to those at earlier times, apart from a global change of scale.

As for the scaling hypothesis, it states that a single characteristic length scale L(t)
exists, such that at late times the domain structure is (in a statistical sense) independent
of time when lengths are scaled by L(t).

1.5.4 Current aspects on the non-equilibrium driven dynamics.

Dynamic phase transitions

Several efforts have been devoted to understand how quenched impurities (i.e., time-
independent) influence the transport of charge-density waves (CDW), pinning of magnetic
flux in type-II superconductors, roughness of crystalline surfaces, propagation of inva-
sion fronts, etc. Many aspects of these systems can be described either by the model of
randomly-pinned CDWs or by the model of randomly-pinned directed manifold (RM).
The progress made in understanding the non-equilibrium driven dynamics of these sys-
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tems revealed that, in the extreme limit where thermal fluctuations can be neglected, a
driving force F exceeding a critical value Fc is necessary to depin the system.

A (continuous) dynamic phase transition occurs at the depinning threshold, where the
dynamics exhibit complex stick–slip motion with “avalanches” of all sizes.

The current conclusion of thought on the dynamics of driven CDW/RM systems could
be summarized as follows. For F below some threshold Fc, the average velocity v is zero.
Upon approaching the threshold from below, the dynamics (e.g., response to perturbation)
becomes very “jerky”; it consists of a series of “avalanches”, whose (linear) size l obeys a
power law distribution Prob(l > s) = s−κρ(s/ξ ) where ξ is the correlation length of the
system, ρ(x) is a scaling function, which is constant for x� 1 and drops off sharply for
x
 1. The correlation length diverges as ξ ∝ (Fc−F)−ν when F →Fc (for example, when
studying the dynamics of planar crack fronts in heterogeneous media we have ν ≈ 1.52;
the exponents ν and κ are interconnected through κ = 1−1/ν , e.g., see Ref. [124]). For
F > Fc the motion becomes continuous due to overlapping avalanches. There, the interface
(e.g., in planar crack fronts in solids) acquires a finite velocity v ∝ (F −Fc)β , similar to
the emergence of the order parameter in a critical phenomenon.

1.6 Physical mechanisms suggested for the generation of SES

1.6.1 Introduction. Views on seismogenesis and classes of SES generation models

As already mentioned in Section 1.1, aspects related to defects motivated the SES research
and the pressure-stimulated currents (PSC) model [129, 133, 127, 128] was proposed for
the SES generation. Several others have been also proposed later. All these models can be
grouped into various classes depicted in Fig. 1.20.

The fact that a plethora of models have been suggested to explain the SES generation is
not surprising, especially if one considers that there is still a diversity of views on which
physical phenomenon, e.g., friction, fracture, etc. plays the prominent role in seismogene-
sis. This diversity could be summarized as follows.

In the standard rebound theory of earthquakes, elastic deformation energy is gradually
stored in the crust until a threshold is reached at which it is suddenly released in an earth-
quake. The traditional view of tectonics is that the lithosphere comprises a strong brittle
layer overlying a weak ductile layer, which gives rise to two forms of deformation: brittle
fracture, accompanied by EQs, in the upper layer, and aseismic ductile flow in the layer
beneath; thus, earthquakes are associated with strength and brittleness. Scholz [95] noticed
that although this view is not incorrect, it is imprecise and in ways this can lead to serious
misunderstandings. A different point of view has been suggested stating that [95]:

An EQ is a frictional, rather than a fracture, phenomenon, with brittle fracture playing
a secondary role in the lengthening of faults and frictional wear.
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Fig. 1.20 Schematic classification of the more than ten models proposed to date for the explanation of
the SES generation.

Within this frame, the seismogenic behavior of the fault is solely determined by its fric-
tional stability, and not by its strength. Brace and Byerlee [9] suggested that EQs must be
the result of a “stick–slip frictional instability” which could be interpreted as EQs in the
“slip” and interseismic period of elastic strain accumulation in the “stick”. This is consis-
tent with the observation that tectonic EQs seldom, if ever, occur by the sudden appear-
ance and propagation of a new shear crack (or “fault”), but instead they occur by sudden
slippage along a pre-existing fault or plate interface. This point of view suggests that prop-
erties traditionally thought to control EQ processes – strength, brittleness and ductility –
are subsumed within the overarching concept of frictional stability regimes. Furthermore,
there are aspects, which consider that the earthquake rupture is a mixed process between
frictional slip failure and a shear fracture of intact rock and conclude that a constitutive
law for earthquake rupture can be formulated as a unifying law that governs both frictional
slip failure and shear fracture of intact rock [76].

Another point of view focuses attention to the prominent role of water, both mechan-
ically (pore pressure) and chemically (e.g., recrystallization, texture) and their probable
interplay. Water was previously seen to have mainly the mechanical effect of decreasing
the normal lithostatic stress in the fault core on one hand, and to weaken rock materials via
hydrolytic weakening and stress corrosion on the other (e.g., see Refs. [103, 104]). Sor-
nette [103] pointed out that nowdays there is a growing recognition that mineral structures,
when in contact with water or in the presence of anisotropic strain and stress, can form and
deform at much milder pressures and temperatures than their pure equilibrium phase di-
agram would suggest: water in the presence of finite localized strain within fault gouges
may lead to the modification of mineral textures, involving dynamic recrystallization and
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(a) (b)

Fig. 1.21 (a) Schottky defect in an ionic crystal, e.g., Na+Cl−: one cation migrates to the surface through
the consecutive jumps 3, 2, 1, thus leaving a cation vacancy at site A. For reasons of electrical neutrality
an anion also migrates to the surface (the corresponding jumps are not shown in the figure), thus leaving
the anion vacancy at site B in the interior of the crystal. These vacancies, cation and anion vacancies,
are free vacancies, i.e., they do not lie close to each other, so that they can freely move into the crystal
through jumps of the neighboring ions. (b) Production of a (bound) cation vacancy, when Ca+2 enter into
Na+Cl−. This vacancy is attracted by the divalent cation, and hence it lies in its vicinity, thus forming an
electric dipole: “Ca+2-cation vacancy”, which can change orientation in space. Reprinted from Ref. [125],
Copyright (2005), with permission from TerraPub.

maybe phase transformations of stable minerals into metastable polymorphs of higher free
energy density.

Finally, we note that concepts on dynamic phase transitions (critical phenomena) and on
the physics of complex systems have been also forwarded for understanding the physics
of earthquakes (for a review see Ref. [89]). In addition, a model which generalizes the
Gutenberg-Richter law in the frame of nonextensive Statistical Mechanics has been pro-
posed (§ 6.5.1).

Note that SES generation models have been developed in the frame of all the aforemen-
tioned streams.

1.6.2 Pressure (stress) stimulated currents (PSC) model

This, as mentioned, is the model that motivated the SES research. Its description can be
found in Varotsos and Alexopoulos [129] (see also Varotsos et al. [147]) and its essence,
which also explains that SES activities exhibit critical dynamics, could be summarized as
follows:

In the focal area of an impending earthquake, which contains ionic materials, the stress
gradually increases. In ionic solids extrinsic defects (see Fig. 1.21(b)) are always formed
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(beyond the usual intrinsic lattice defects, see Fig. 1.21(a)), because they contain aliova-
lent impurities. Some extrinsic defects are attracted by the nearby impurities and hence
form electric dipoles (see Fig. 1.21(b)) the orientation of which can change through defect
migration. The stress increase may result in a gradual decrease of the relaxation time of
these dipoles and when the stress (pressure) σ reaches a critical value σcr, a cooperative
orientation of these dipoles occurs. This reflects the emission of a transient electric signal
which constitutes the SES. More details on this model are now given below.

We start with the electric dipoles caused by aliovalent impurities. As an example, we
refer to the presence of M+2 impurities in a crystal A+B−, which introduces an equiv-
alent number of cation vacancies in order to maintain charge neutrality in the bulk. A
portion of these cation vacancies are attracted by the divalent cations and form electric
dipoles that can change their orientation in space (the rest of cation vacancies remain
“free”, contributing to the d.c. conductivity of the crystal in a way shown by the arrows
in Fig. 1.21(a)). For simplicity, we may assume that this change of orientation can be
achieved only through jumps of the neighboring cations into the cation vacancies, which
are usually called “bound” cation vacancies. This bound (b) cation vacancy motion (m)
requires a migration Gibbs free energy gm,b. For example, when adding CaCl2 to NaCl,
Fig. 1.21(b) shows that a Ca+2 enters the lattice in a normal Na+ site and charge neutrality
results in a creation of a vacant cation site. This cation vacancy, being negatively charged,
is attracted by the divalent Ca+2 and hence is located at one of its neighboring sites, usu-
ally at one of the 12 nearest neighboring sites, 4 in sites “a”, 4 in “b”, and 4 in “c”, depicted
in Fig. 1.21(b). Thus, an electric dipole “Ca+2-vacancy” is formed, which can change its
orientation through the vacancy jumps from one neighboring site to another (overcoming
a potential barrier, which regulates the migration Gibbs energy). The time needed for such
a dipole to change orientation is related to the so-called relaxation time τm,b:

τm,b = (λν)−1 exp
(

gm,b/kT
)

(1.40)

where λ denotes the number of jump paths accessible to the jumping species with an
attempt frequency ν .

A solid containing electric dipoles, due to defects, can emit [129] PSC under isother-
mal conditions, as a result of either increasing or decreasing pressure. They can be clas-
sified into two categories [129]: “pressure-stimulated polarization currents” (PSPC) or
“pressure-stimulated depolarization currents” (PSDC). PSPC refers to the polarization that
arises under a gradual variation of pressure (pressure increase, if the migration volume vm,b

is negative, or pressure decrease, if vm,b > 0). In the PSDC category, the solid is initially
brought into a “fully” polarized state under the action of an external field for a time appre-
ciably longer than the relaxation time; if vm,b > 0, the pressure is increased to a final value
P f , thus increasing τm,b, so that the dipoles are practically immobilized and the electric
field is then switched off; the pressure is then gradually decreased, and a depolarization
current density j is liberated, the absolute value of which reaches a maximum jM , sig-
nalling the cooperative reorientation of dipoles at a certain pressure PM . If vm,b < 0, the
PSDC are emitted upon increasing pressure.
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Thus, in short, pressure stimulated polarization or depolarization currents are emitted
upon a gradual pressure increase if the migration volume vm,b is negative, or pressure
decrease if vm,b > 0.

A general condition for the appearance of the maximum in the absolute value of the
current density j can be derived as follows (for the sake of convenience, the superscripts
m,b in the relaxation time τm,b will be dropped hereafter).

Assuming the operation of a single relaxation time, the current density j is given by:

j =−dΠ
dt

=
Π(t)−ΠE

τ(t)
, (1.41)

Π(t) being the polarization each time, andΠE the isothermal saturation of polarization (cf.
ΠE = 0 for PSDC, see Ref. [134]). This relation can be also written as: jτ(t) =Π(t)−ΠE ,
which by differentiating with respect to time, for T = constant, gives:

j
dτ
dt

+ τ
d j
dt

=
d [Π(t)−ΠE ]

dt
. (1.42)

In the simple case of free-rotating dipoles, according to Langevin theory, we may write
ΠE = μ2NDEloc/3kT , where μ is the dipole moment, ND is the dipole concentration and
Eloc the local electric field. In materials for which Eloc varies only slightly with pressure
[126], (and if μ,ND are assumed independent of P) the quantity dΠE/dt can be disre-
garded, at least in the pressure region where −dΠ(t)/dt starts to become significant, and
hence the previous relation turns to

j
dτ
dt

+ τ
d j
dt

=− j . (1.43)

The maximum value jM occurs when d j
dt | j= jM = 0, and hence we find:

dτ
dt

∣∣∣∣
j= jM

=−1 . (1.44)

This is the condition for the (cooperative rotation of dipoles and hence the) appearance
of a maximum in the absolute value of PSC.

It is exact for PSDC (because, in the above derivation,ΠE = 0, see also Ref. [134]), but
also holds for PSPC as long as the pressure variation of ΠE is not significant.

The above relation, for any form of the pressure rate b ≡ dP
dt

∣∣
T , can be alternatively

written as:
dP
dt

∣∣∣∣
T

dτ
dP

∣∣∣∣
j= jM

=−1 , (1.45)

or
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b
dτ
dP

∣∣∣∣
j= jM

=−1 (1.46)

which, after considering that [129, 134]

1
τ
∂τ
∂P

∣∣∣∣
T

=
vm,b

kT
(1.47)

becomes:
bvm,b

kT
=− 1

τ(PM)
(1.48)

where τ(PM) denotes the relaxation time at the pressure at which jM is detected. This rela-
tion holds either for PSPC or PSDC, without assuming that the pressure rate b is constant.

In short, PSC maximizes when a gradual pressure variation decreases the relaxation
time with a rate obeying the relation bvm,bτ = −kT . In particular: (a) a transient de-
polarization electric signal is emitted in absence of any external electric field (PSDC)
in a previously polarized solid, which contains electric dipoles due to defects; (b) a
transient polarization electric signal (PSPC) is emitted under either the action of an
electric field or an inhomogeneous stress deformation (see below) if the solid is not
initially polarized.

Let us now consider a material in which a pressure increase results in a decrease of the
relaxation time (see Fig. 1.22) and assume that at the initial pressure P0 the relaxation time
τ is very long. In view of the long τ , the dipoles, which have initially random orientations,
still retain their random orientation even after applying an external field. When the pressure
starts increasing, the relaxation time becomes gradually smaller, and when the pressure
reaches a critical value Pcr, in the neighborhood of which the relaxation time becomes
sufficiently small so that the dipoles align from their initial random orientation into the
direction of the continuously applied electric field, a transient electric signal is emitted
(because the crystal is brought from a non-polarized state to a polarized one within a very
short time). When the pressure (stress) still continues to increase, it reaches at later times
the failure stress Pf (see Fig. 1.22).

Therefore, the emission of this PSC signal can be considered as a precursor of the
failure of the solid.

The following point should be also noticed. Let us assume, for simplicity, an ellipsoidal
stressed volume in the EQ preparation area (cf. in p. 92 of Ref. [127], it was argued that this
volume cannot be spherical, because the slope of logΔV/L versus M would then result
around unity, which disagrees with the experimental data, see § 1.3.2). In addition, upon
increasing stress, a simultaneous achievement of the stimulating stress σcr at all points
of the stressed volume is not intuitively expected. The “points” obeying the condition
σ = σcr should lie on a surface A (which may be very complicated in view of the existing
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Fig. 1.22 The mechanism of
the emission of a transient
polarization current (PSPC) be-
fore the failure ( f ) at Pf when
vm,b < 0. The current is emit-
ted when the pressure (stress)
reaches a critical value Pcr (b)
at which the relaxation time of
the dipoles becomes sufficiently
short and hence a cooperative
orientation of the dipoles can
occur within a very short time
under the action either of an ex-
ternal electric field E shown in
(a) or an inhomogeneous stress
deformation (§ 1.6.2.1). The
time Δ t shown in (c) elapsed
between the emission of this
current and the failure is the
lead time. The cartoon in (d)
shows, that the electric dipoles
at P ≈ P0 are randomly ori-
ented, while at P→ Pcr become
oriented cooperatively(see the
text). (e): the “points” obeying
the condition P = Pcr or σ =σcr
lie on a surface A which sweeps
through the stressed volume
V. Reprinted from Ref. [125],
Copyright (2005), with permis-
sion from TerraPub.

V 3

V 1

V 2

V

Fig. 1.23 During the last preparatory stage before a seismic
event in the volume V, the stress field σ gradually changes.
However the critical value σcr is not reached simultaneously
in the various sub-volumes V1, V2, V3 etc., so that the
corresponding SES are not emitted from these sub-volumes at
the same time. Taken from Ref. [140].
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inhomogeneities) that sweeps through the stressed volume (Fig. 1.22(e), see p. 419 of
Ref. [129]).

Note that sweeping the whole stressed volume (presumably comprising several sub-
volumes, see Fig. 1.23) produces the SES activity, while each sub-volume corresponds
to a SES transient “pulse” [140, 129].

1.6.2.1 Comments on the pressure (stress) stimulated currents model

We now proceed to a number of comments, which aim at clarifying a few misunderstand-
ings of the model published in the literature:

(1) The negative sign in Eq. (1.44) comes from the following necessity: in order to
approach the critical pressure/stress, the relaxation time τ should gradually decrease as the
time progresses (increases).

In the above frame, we can also understand the negative sign in Eq. (1.48), which is
equivalent to Eq. (1.44). Since the relaxation time τ(PM) is always positive, the quantity
bvm,b should always be negative. The latter means, for example (b > 0, vm,b < 0), simply
that, when the time progresses (increases) in order for a dipole to rotate more easily, the
following possibility can be envisaged: upon increasing the stress (and hence b > 0) the
migration volume should be negative (vm,b < 0); an alternative possibility is, of course,
upon decreasing the stress, if the volume vm,b is positive (note that Eq. (1.48) was derived
in p. 403 of Ref. [129] with a positive sign since the absolute value of b was used there).

(2) Concerning the existence of an external electric field or of the piezoelectric inclu-
sions in the rocks, which was postulated at an earlier stage [133], we clarify that neither
of them are prerequisite for the PSC explanation of SES. This is so because in the case
of inhomogeneous stress deformation (which happens during the EQ preparation stage),
as emphasized long ago in Ref. [21] (see also § 1.6.4 and Ref. [139]): “the effect of the
applied stress gradient is similar to that of an electric field”.

Thus, neither external electric field nor piezoelectric inclusions in the rocks (to give
rise to an internal field “driving” the dipoles) are a prerequisite for PSC and hence for
the relevant explanation of the SES generation.

(3) The Maxwell–Wagner (MW) polarization mechanism, is very likely to occur in the
EQ preparation process, in view of the heterogeneities in the structure. This is [118, 70]
what usually appears in heterogeneous structures, in which the ratio of permittivity to
conductivity is different in the different phases. It is the result of: (i) the formation of
charge layers at the interfaces due to the different conductivity currents within the vari-
ous phases, or (ii) the migration of the carriers over microscopic distances and the sub-
sequent trapping. The relaxation time of this mechanism obeys again an equation of the
form: τ ≈ constant× exp(gact/kT ), which finally leads to Eq. (1.44) or, equivalently to
Eq. (1.48), where vm,b should be simply replaced by vact = dgact

dP |T (where the superscript
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“act” now refers to the corresponding quantities in the activation process of the MW mech-
anism). Thus, PSPC may well arise from the MW mechanism (without the necessity of any
external electric field, in view of the clarifications given above in point 2). In other words,
we emphasize that the PSPC model for the SES generation should not be necessarily con-
sidered as being connected solely with (re)orientation of electric dipoles of the simple type
of Fig. 1.21(b) (discussed at an early stage in Ref. [133] to exemplify the PSPC concept),
but may also include more complicated processes like that of the MW mechanism. The
latter mechanism may lead a PSPC amplitude drastically larger than that resulting from
the mechanism depicted in Fig. 1.21(b).

Putting the details aside, the basic spirit of the pressure stimulated currents (PSC)
model can be summarized as follows. During the EQ preparation stage, the stress σ
gradually changes; when σ reaches a critical value σcr, a transient current is emitted
associated with a (cooperative) reorientation of electric dipoles taking place through
motion of defects. This is a (second-order) dynamic phase transition (see also § 8.4.1).
Later the rupture occurs.

Note that PSC model is solely based on thermodynamical concepts and hence can
be applied to all cases that could be described by a single relaxation time.

1.6.2.2 Laboratory activation volumes in hydrated rocks

The basic prerequisite for the applicability of the PSC model to the SES generation, i.e.,
vm,b < 0, has been recently confirmed in laboratory measurements [77]. In particular, the
complex impedance spectra of as-received and hydrated rocks from Greece in the fre-
quency range 10−2 Hz to 107 Hz were investigated at various temperatures (from room
temperature to 373 K) and hydrostatic pressures (from 1 bar to 3.5 kbar). In such a spec-
troscopic scheme, mechanisms with negative activation volume are shifted to higher fre-
quencies (smaller relaxation times τ) on increasing pressure, i.e., the relaxation time of
a mechanism with negative activation volume decreases on pressurization and hence can
easily be detected at higher frequencies. So, a proper combination of temperature and pres-
sure is likely to reveal slow relaxation processes, which – having long relaxation time –
are activated in the low-frequency region (whereas dc conductivity and electrode polariza-
tion are strongly dominating masking any bulk relaxation process). Following this strat-
egy, Papathanasiou et al. [77], among different rocks measured (such as pelite, sandstone,
leukolite and limestone), were able to identify experimentally relaxation mechanisms with
negative activation volume in hydrated leukolite and hydrated limestone. For example, for
hydrated leukolite, at temperature T = 349 K, the relaxation time varies from 150 s at
ambient pressure to 1 s at 3 kbar.



1.6 Physical mechanisms suggested for the generation of SES 47

1.6.3 Charged dislocation mechanism

1.6.3.1 Dislocations. Background

The observed shear strength of crystalline materials is orders of magnitude smaller than
what is expected theoretically for a perfect crystal lattice structure, and can only be ex-
plained by the presence of imperfections that can act as sources of mechanical weakness.
These linear defects, called dislocations, are known to exist in almost all crystals.

Fig. 1.24 Motion of an edge dislocation under a shear stress; the edge dislocation is indicated by an
upside-down “T” with the base representing the slip plane and the stem the end of the extra half-plane;
the upper surface moves to the right. Reprinted from Ref. [125], Copyright (2005), with permission from
TerraPub.

The movement of dislocations is responsible for slip at very low applied stress. In slip,
one part of the crystal slides as a unit across an adjacent part. There are several types of
dislocations, but we only refer here to the so-called edge dislocation, which is simply the
presence of an extra half-plane of atoms. The mechanism responsible for the mobility of an
edge dislocation is depicted in Fig. 1.24, where its motion is shown under a shear, tending
to move the upper surface of the specimen to the right. This reminds that a wrinkle moves
more easily than a whole rug. Points of particular interest along the edge dislocation are
the “jogs”, where the edge of the extra half-plane makes an abrupt step from one slip plane
to an adjacent, parallel one.

Electrical effects of dislocations. In an ionic crystal, a dislocation line, being a region
where the regular alternation of positive and negative ions is disturbed, may carry an elec-
trical charge, or, if the line as a whole is uncharged, jogs in it may carry charges. A line,
which is itself uncharged, may carry an atmosphere of charged point defects (e.g., see
Fig. 1.25).

Jogs which are charged, attract charged point defects. In view of the fact that the charge
of jogs is half-integral (see pp. 233–234 of Ref. [125]), they can never be neutralized.
Screw dislocations are uncharged [99].

As mentioned, the individual types of intrinsic point defects, such as cation and anion
vacancies, have effective electric charge (−e or +e respectively in a crystal like NaCl,
where −e stands for the electron charge). A jog may emit or absorb a vacancy; this causes
the jog to change electrical sign and to move along the dislocation by one interatomic
spacing. As the jogs must establish equilibrium with each of the species of point defects,
this results in the presence of more jogs of one sign than the other, so that the dislocations
carry a net charge.
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Fig. 1.25 (a): Schematic drawing of
a charged edge dislocation, with loop
length l, surrounded by a cylindri-
cal charge-cloud of effective radius
κ−1. We consider the motion of the
dislocation in the x-y slip plane. The
displacement of the dislocation in
the x-direction from its equilibrium
position is given by ξ (y, t), where y
denotes the co-ordinate of the dislo-
cation; this displacement ξ is zero at
y = 0 and y = l as the result of pinning
at dislocation nodes. (b): The upper
figure schematically shows the effec-
tive radius κ−1 of the charge cloud and
the next two depict the limiting cases
of ωθ , i.e., ωθ � 1 and ωθ 
 1 (see
the text). Reprinted from Ref. [125],
Copyright (2005), with permission
from TerraPub.

The linear charge density on the dislocations is compensated by an almost cylindrical
space charge around the dislocation, consisting of an excess of point defects – e.g.,
vacancies and heterovalent impurity ions – of opposite sign (Fig. 1.25).

Ionic surface charge. Lattice defects in a simple ionic crystal only occur in pairs be-
cause the overall electrical neutrality of the crystal must be maintained. For example, in
NaCl vacancies of the Na+ sublattice must be compensated by vacancies of the Cl− sub-
lattice and vice versa (see Fig. 1.21(a)). The equality of the concentrations of the two
components of the appropriate defect pair holds only in the deep interior of a pure and
otherwise perfect crystal (where the net charge density is zero), but not near the surface.
The concentration of defects near the surface is governed by the energies of individual
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defects and one member of the defect pair can dominate. Thus, at steady state, there is
an ionic surface charge compensated by a space charge of opposite sign, which reflects
strong electric field reaching 107V/m near the surface [99].

As for the spatial distribution of the potential within the sub-surface space charge, in
a very rough approximation it resembles an exponential decay, but with the curvature
suppressed for small depths. The decay distance, or Debye screening length, is given by:

λ =
(
εε0kT
2ne2

)1/2

(1.49)

where ε is the (relative) dielectric constant and n is the number of Frenkel pairs (if we take
as an example silver halides) per unit volume deep inside the crystal. In simple words,
the screening length λ is a quantity demanding that essentially all the space charge is
contained within a layer of thickness about 2λ . For example, in experiments in which thin
layers of two simple ionic crystals BaF2 and CaF2 were investigated [94], the value of λ
was found to be around 15 nm.

Ionic crystals containing charged dislocations exhibit a type of (dynamic) piezoelec-
tric behavior (see below). This piezoelectric behavior has been attributed solely to the
movement of charged dislocations.

In simple words the following happens: Let us consider an ionic crystal which in its
undeformed state is not piezoelectric. In a crystal which becomes plastically bent, a pro-
duction of an excess of dislocations of one mechanical sign takes place to accommodate
the bend. These dislocations move away from the center of curvature of the specimen upon
the application of a compressive stress. If a segment δy of a dislocation with a charge q
per unit length is displaced a distance δh from the center of its immobile compensating
charge cloud (Fig. 1.25(a)), the resulting polarization δPh will be:

δPh = ξhqδy . (1.50)

If the crystal is mechanically loaded, the total strain is the sum of the elastic and inelas-
tic components. The inelastic component is mainly governed by the mobility of structural
defects contained in the crystal. The main difference between the elastic and inelastic strain
components is the following:

Elastic deformation occurs “instantaneously”, while inelastic deformation is a function
of time. The latter is due to the existence of a certain relaxation time θ characterizing
the mobility of structure defects. The relaxation time θ characterizes the rate at which
the defect concentrations in the charge cloud can adjust to a perturbation caused by
displacement of the dislocation.

Let us consider the motion in the x-y slip plane of a charged edge dislocation, which
is acted on by an oscillating stress σ = σ0 sinωt. The displacement of the dislocation in
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the x-direction ξ (y, t) is zero at y = 0 and y = l as a result of pinning at the dislocation
nodes.

In Fig. 1.25(a) a schematic drawing of a charged dislocation, with loop length l, sur-
rounded by a charge-cloud of radius κ−1 is depicted. The displacement in the x-direction
from its equilibrium position is given by ξ (y, t). Figure 1.25(b) shows the two limiting
cases of ωθ . In the lowest case, the frequency ω of the applied stress is far greater than
that associated with the relaxation of the charge cloud. This corresponds to a dislocation
oscillating within an almost immobile charge cloud. On the other hand, in the middle fig-
ure, ω is far less than the θ−1; the charge cloud, in this case, can remain in phase with
the dislocation and thereby keep the dislocation at its center. The experimental results are
usually obtained in the case of ωθ 
 1, i.e., the dislocation is oscillating within an almost
immobile charge cloud. The piezoelectric behavior (defect) therefore arises from the os-
cillating electric dipole formed by the separation of the dislocation from the center of its
charge cloud. This is the basis for the mechanism that has been proposed in Ref. [125]
as being responsible for the generation of the “oscillating” electric signals (reminiscent of
seismograms, see Fig. 1.15(a)) upon the arrival of seismic waves at a measuring site.

1.6.3.2 Description of the charged dislocation mechanism for the SES generation

Slifkin [100, 101] suggested the following mechanism for the production of electric
dipoles upon abrupt stress variation in materials with significant concentrations of im-
purities. Such is the case of geophysically interesting materials, as silicates, oxides and the
like, in which the space charge around an electrically charged edge dislocation consists
largely of aliovalent ions (note that vacancies and aliovalent impurity ions carry effective
charges; see § 1.6.2 and § 1.6.3.1).

Assume that a shear stress is applied to a slab; although all the dislocations may not be
able to move through large distances, segments of them can indeed bow out between the
points at which the dislocations are pinned. For example, the pins may be impurity ions
or points of intersection with other dislocations (see sections 11.3 to 11.5 of Ref. [125]).
The dislocation loops between the “pinning” points respond to applied shear stress as if
they were non-Hookean elastic bands (Fig. 1.25). Hence, at any abrupt change in stress,
the bowed loops will quickly respond; the space charge around them, however, cannot re-
spond so quickly, because it requires motion of ions. Thus, immediately after each abrupt
change in stress, the space charge distribution remains practically unrelaxed and hence
its center remains at the same site, no longer coinciding with the line of the disloca-
tion; see Fig. 1.25(b)-bottom (recall that the relaxation time of the charge cloud, e.g.,
at 100◦C is very long, i.e., lies roughly between 106 and 1012 hours; see subsection 11.5.4
of Ref. [125]).

In other words, an electric dipole has been produced, the dipole moment of which lies
in the slip plane and is oriented perpendicular to the dislocation line. Note that these
dipoles do not have random orientations.
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(1+  )m(a)

(b)

Fig. 1.26 (a) Introduction of edge dislocations
(of the same mechanical sign) by plastic bend-
ing. If the angle θ = 1◦, the upper edge of the
block is longer by ε = 20 mm than the lower.
(b) Mechanism of the production of a dipole
moment in a specimen which was previously
plastically bent (and hence extra edge disloca-
tions have been introduced). A shear stress is
applied parallel to the slip plane of the dislo-
cations. Reprinted from Ref. [125], Copyright
(2005), with permission from TerraPub.

This is due to the fact that the distribution of dislocations in most rock strata is not ran-
dom, because of the deformation they have undergone in earlier history. This can be un-
derstood from the fact that plastic bending of crystalline material is accomplished through
the introduction of a set of edge dislocations, all of the same “mechanical” sign, i.e., their
extra half-planes all come from above or all from below. Consider, for example, the spec-
imen shown in Fig. 1.26(a) (not in scale), a slab of edge length 1 m. If it has been bent
through a very small angle of 1◦, the upper edge must be longer than the lower one by
20 mm. If we assume that the lattice spacing is around 5 Å(1 Å = 10−10 m), the bending
must have resulted from the introduction of 20 mm/5 Å = 4×107 new edge dislocations,
all of the same mechanical sign, as shown in the figure. This excess density of disloca-
tions (i.e., 4×107/m2) is a quite modest value, as noticed by Slifkin, and probably greatly
underestimates the dislocation densities in naturally occurring rocks. (For the sake of com-
parison, we note that most annealed simple crystals have dislocation densities in the range
108–1010/m2, while heavily deformed material contains 103–104 times larger densities.)
Slifkin then proceeded to an estimate of the (total) electric dipole moment for a horizontal
block 100 m thick and 1000 m wide on the other two sides, that has been folded around
a horizontal axis perpendicular to one of the end faces (Fig. 1.26(b)). Assuming that the
angle through which the block has been bent is 1◦, the excess dislocations must have a
density around 4×107/m2 in order to achieve the aforementioned bending. This value led
Slifkin to a dipole moment of around 8×10−4 Cb.m, after first estimating that the stress-
induced dipole moment per unit length of dislocation is 2×10−19 Cb.m/m; in other words,
Slifkin based his estimation on the relation: (stress induced dipole moment of a block) =
(stress-induced dipole moment per unit length of dislocation)× (density of the excess dis-
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locations) × (cross-sectional area) × (length of the dipole) (as will be discussed later in
§ 1.7.4.1, a typical seismic source of an EQ with magnitude M ≈ 5 has a dipole moment
larger than that estimated by Slifkin [101] by a factor of the order of 102).

In this example, Slifkin [101] found an electric field value E of 7× 10−6 V/m at a
distance of 10 km from the dipole by assuming a 1/d3 decrease.

By summarizing, Slifkin’s mechanism suggests that upon an abrupt change in stress,
the bowed dislocation loops will quickly respond, but the space charge distribution
remains unrelaxed. Thus, an electric dipole is produced, whose dipole moment lies in
the slip plane and is oriented perpendicular to the dislocation line.

Slifkin [101] also proceeded to the following remark: “The electric relaxation time
(the RC time constant) of wet soil and minerals is much shorter than the duration of the
observed signal. This suggests that the recorded signals may be due to the superposition
of many rapid, closely spaced, unidirectional pulses such as could be propagation of a
sequence of mechanical relaxations”. We shall return to this interesting point in § 1.8.4.

1.6.4 The deformation-induced charge flow mechanism

1.6.4.1 The phenomenon of deformation-induced charge flow. Background

Deformation-induced charge flow is the occurrence of a charge flow as a result of in-
homogeneous deformation; this takes place even in the absence of an electric field and
ceases abruptly when the stress increment producing it is removed. This phenomenon
is a current flow and not a voltage effect.

Fischbach and Nowick [22, 21] reported that when a single crystal of NaCl is plastically
deformed in an inhomogeneous fashion, a transient electric current flows through the crys-
tal, even when no external field is applied. The effect was observed when cleaned single
crystals of NaCl approximately 0.1× 1× 1 cm were deformed in compression (note that
the load was applied to a smaller area on the one face of the specimen than on the other) at
temperatures between room temperature and about 100◦C. The greatest flow was observed
whenever a given stress was applied to the crystal for the first time.

The direction of the current flow was found to be governed solely from the deforming
stress gradient. In particular, negative charge flows from the crystal face to which the
higher compressive stress has been applied. In other words, the effect of the applied
stress gradient is similar to that of an electric field.
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The total charge flow produced by a stress increment of 1 kg/cm2, was of the order of
10−12 Cb. Similar experiments in non-piezoelectric rock meterials have been performed
by Varotsos and coworkers (see section 3.7 of Ref. [125]).

If the deforming load increment is removed before the current has decayed to zero, the
residual current drops immediately to a value near zero. On reapplying the load increment,
the charge flow is resumed. An applied electric field has little influence on the effect. Even
under fields of the order of 105 V/m, the direction of the initial charge flow produced
by deformation is determined by stress gradient rather than the direction of the applied
electric field.

Fischbach and Nowick [21] concluded that the only suitable carrier to explain the afore-
mentioned characteristics appears to be the electrically charged dislocations as follows. As
mentioned in § 1.6.3.1, jogs on edge dislocation lines in NaCl may have an effective charge
±e/2, the sign depending on whether the jog occurs at a positive or negative ion. When a
dislocation, however, is in motion, vacancies may be “absorbed” at a jog, thereby changing
the sign of the charge at the jog. Thus, when a negatively charged jog generates a cation
vacancy, it becomes a positively charged jog. A dislocation in motion may be expected to
have equal numbers of negative and positive jogs if cation and anion vacancies are formed
with equal probability. This is not the case, however, because both theoretical and exper-
imental results show that the formation energy for an anion vacancy is somewhat larger
than that required to form a positive-ion vacancy. Therefore, a moving edge dislocation
may be expected to achieve a net positive charge due to the preferential loss of positive-
ion vacancies from jogs. Since these positively charged dislocations move into the crystal,
from regions of stress concentration (§ 1.6.3.1), leaving behind a net excess of (negatively
charged) cation vacancies, this model correctly predicts the sign of the observed charge
flow. The model explains all the other observed characteristics of the phenomenon (see
subsection 11.6.1 of Ref. [125]).

1.6.4.2 The model of the deformation-induced charge flow mechanism for the

SES generation

This model, suggested by Varotsos et al. [139], is based on the “deformation-induced
charge flow” phenomenon (hereafter called DICF) discussed above in § 1.6.4.1.

The DICF, as mentioned, is a current flow (as a result of inhomogeneous deforma-
tion) and not a voltage effect; thus, the RC time constant of the circuit does not have a
significant influence on the phenomenon. This implies that ionic materials, subjected to
inhomogeneous deformation, can still emit a current even when they are shorted through
the surrounding conductive material. Such a situation would exist in the focal area, where
the material undergoes inhomogeneous deformation before an EQ. In fact, the stress lev-
els involved in the laboratory experiments by Varotsos and coworkers on rocks, presented
in section 3.7 of Ref. [125], are of the same order of magnitude as those in the Earth at
the shallow depths of the earthquakes for which SES measurements have been reported.
Assuming that DICF is the likely mechanism for the SES generation, in what follows we
will interpret a few properties of the SES (for the explanation of other SES properties see
subsection 12.4.4 of Ref. [125]):
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Concerning the form of the signal recorded at remote sites, when Fischbach and Now-
ick [21] compared their DICF measurements between 30 and 90◦C, they reported the fol-
lowing difference: “A ‘jerky’ type of charge flow often occurred in the crystal at 90◦C,
i.e., instead of decaying smoothly with time, the current/time curve obtained at 90◦C was
interrupted at random intervals by sudden brief rises in the current.”

These rises were in the same direction as the initial increase on application of the load
increment. This agrees with the field observations, because in the latter a multi-peak
occurrence (i.e., SES activity) was found to have the same direction (and hence is an
one-sided signal; see Section 1.3).

Concerning the amplitude of the signal, considering that DICF is a volume effect
(§ 1.6.4.1) and using the value 10−13 A/cm3 found in the aforementioned laboratory ex-
periments on rock materials (see section 3.7 of Ref. [125]), we expect a current intensity I
of the order of I = 102–103 A to be emitted from a similarly stressed volume in the even-
tual focal area, which may be of the order of 1 to 10 km3, e.g., a cross-sectional area of
≈1 km2 and a length l of a few to several km. Such values of Il, when the current source
is located inside a homogeneous medium with conductivity σhost ≈ 10−3 S/m would gen-
erate at d ≈ 100 km an electric field Ehost of the order of Ehost ≈ 10−1 to 1 mV/km (see
§ 1.7.2, § 1.7.4 and § 1.7.4.1). We now take into account that the current source lies close to
a fault, which is a conductive path having a conductivity (σ ) significantly larger than that
(σhost) of the surrounding medium. This, when the highly conductive path terminates (see
§ 1.7.4.1) within the host medium, gives rise to an electric field Eoutside (measured within
the host medium but close to the edge of the path) which is around Ehost× (σ/σhost). Con-
sidering a reasonable conductivity ratio σ/σhost = 102, we find Eoutside ≈ 10–102 mV/km,
which agrees with the SES field experiments and in addition explains the existence of SES
sensitive sites.

We stress again, that in the above calculation we used the value 10−13 A/cm3 (per unit
load increment, see § 1.6.4.1) measured in rock experiments at stress levels comparable
to those occurred at faults. Interestingly this value is comparable to that obtained for
NaCl when a relatively small load increment is removed and reapplied, while the major
part of the total load still remains applied to the crystal.

The latter is reminiscent of the earthquake preparation process, and this is why the
value 10−13 A/cm3 was preferred in the calculation above instead of the values 10−11 to
10−12 A/cm3 deduced from the experiments by Fischbach and Nowick [21] in NaCl upon
the initial attainment of a 1 kg load increment (recall, see § 1.6.4.1, that the greatest flow
was observed whenever a given stress was applied to the crystal for the first time).

We now turn to the following important point about the explanation of the SES gener-
ation. Fischbach and Nowick [21] do not report any critical stress value above which the
charge flow is detectable. The following suggestion could be forwarded concerning the
stress critical value. In subsection 11.3.3 of Ref. [125], it was discussed that there exists
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a critical stress τ , above which dislocation overcomes the second maximum of the so-
called Peierls relief, and continues to overcome the succeeding maxima dynamically, thus
moving forward a long distance. This could explain why the SES initiates when the stress
reaches a critical value σcr.

1.6.5 Teisseyre’s model on the precursory electric signals generation related with

dislocation dynamics

Teisseyre [116] reviewed the theory of stress and dislocation evolution, which is based on
the equation of motion for the self-stresses (dislocation stresses) on the slip-fault plane.
Furthermore, the effects of dislocation dynamics on the generation of electrical precursors
were reviewed [116].

Stress evolution. On a fault plane the fracturing processes produce a rapid increase of
the self-stress fields: formation of dislocations, dislocation arrays and cracks [114]. The
theory of the stress and dislocation evolution is developed on the basis of the interaction
between the dislocations and dislocation arrays of opposite signs [115]. This interaction,
which leads to stress accumulation and release, is governed by the so-called source/sink
function Π which describes the nucleation of new dislocations and coalescence processes
(mutual annihilation of dislocations with opposite signs, being equivalent to the coales-
cence of two neighboring dislocated elements or formation of a crack). The role of the
source/sink function Π is similar to that of the body forces acting in the zone of seismic
source and introduces an instability factor into the equation of motion; thus it is reminis-
cent of the friction weakening laws (see § 8.2.1) used in the fault-slip dynamics.

Based on the aforementioned concept on Π , Teisseyre [112, 113] suggested a model
that combines the dipole polarization and the motion of the charged dislocations under
the influence of the evolving field of stresses (this model was further discussed in Refs.
[117, 71]). Finally, Teisseyre [116], after solving numerically the equations that govern the
evolution of Π versus the time, found the electric field values generated at the preseismic
zone.

The results show sharp increases of the electric current source intensities at the ex-
trema or zeros of the corresponding derivatives of the function Π , which leads to the
conclusion that electromagnetic phenomena precede the seismic event.

1.6.6 The peroxy defects model

Freund and coworkers studied the defects in oxide and silicate crystals and ran across
rather peculiar defects (e.g., see Refs. [27, 28] for brief reviews). They call them “peroxy
defects” because they arise from lattice oxygen that has been oxidized from its normal
O2− state to the O− or Si/OO \ Si. Valence changes between O2− and O− can introduce
electronic charge carriers into oxides. An O− represents a defect electron on the O2−
sublattice, which is called a positive hole. A similar concept has been earlier used in Ref.
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[122] to explain that the dc conductivity in LiD and LiH decreases upon X-irradiation as
follows: “molecular” H2 is produced that (somehow) associates with a certain vacancy to
form a charge-compensated complex (a cation vacancy traps a positive hole).

Peroxy defects derive from small amounts of H2O incorporated as OH− or Si-OH into
the matrix of nominally anhydrous minerals when they crystallize in H2O-laden environ-
ments [31, 29]. Upon cooling below 500◦C, pairs of OH− or Si-OH undergo [26] a redox
conversion to molecular H2 plus peroxy defects (peroxy moieties; the word ‘moiety’ mean-
ing here one of the two parts into which something is divided). The peroxy moieties are
inconspicuous and inactive as long as they are spin-coupled and localized. However, they
are a dormant source of powerful charge carriers [30].

A tentative model for the generation of precursory electromagnetic signal goes as fol-
lows. We can conceive situations where mobile charge carriers might be generated at depth
through physical changes in the stress state of rocks. This may happen because of the very
short O−-O− bond (which is [15] about 1.5 Å, and hence very short compared to the nearly
3 Å length of the regular O2−-O2− bond in MgO structure), thus the pressure increase sta-
bilizes peroxy moieties and pressure release destabilizes them.

If O− charge carriers are generated, the resulting surge of mobile O− is expected to
lead to an outflow of positive charges, and when the O− outflow is asymmetrical, an
electric dipole will emerge. This in turn will generate an electromagnetic signal, which
propagates through the surrounding rock [30].

1.6.7 The model of the large-scale motion of lattice defects

It is alternatively called Lazarus’s model for SES generation since it has been suggested
by Lazarus [55]. This is based on a phase transition associated with large-scale motion of
lattice defects. An EQ is presumed to occur through a three-step process, arising from a
uniaxial stress across a pre-existing fault-plane. The phase transition region is confined to
a thin region immediately adjacent to and parallel to the fault plane. A likely candidate for
such a phase transition would be from a hydrous to an anhydrous form of a mineral. Nearly
all terrestrial minerals are formed with varying amounts of water crystallization in the lat-
tice; under sufficient compression, they must transform to anhydrous phases, expelling the
water. The compression of the lattice at this phase transition would cause large-scale (de-
formation and hence) motion of lattice defects, which would result in a large electrostatic
signal, roughly proportional to the length of the region transformed, in a similar fashion as
in the Slifkin’s model considered above in § 1.6.3.2. This phase transition is the first step in
the EQ generation; it occurs when the orthogonal stress component, in combination with
the overall hydrostatic stress caused by the overburden, reaches a threshold sufficient to
bring about the aforementioned phase transition in the material lying in the vicinity of the
fault plane. The second step may occur when the water (or any other low-density, low-
friction substance), released during the phase transition in microscopic amounts, diffuses
to the interface of the fault plane (where there is excess free volume). The third, and final,
stage may occur when the tangential component of the stress reaches a threshold suffi-
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cient to cause macroscopic rapid slip along the (possibly now “lubricated”) fault plane.
In this model, there is naturally a time delay between the first threshold, at which SES is
generated, and the third, at which the EQ occurs [55].

Thus, in short, this model suggests that SES are generated during a phase transition
(i.e., from a hydrous to an anhydrous form of a mineral) associated with large-scale
motion of lattice defects. This occurs within a thin region immediately adjacent and
parallel to the fault plane.

1.6.8 SES generation mechanisms based on electrokinetic phenomena

Several publications suggested that electrokinetic phenomena can provide the basis for
the generation of electrical precursors (e.g., see Refs. [61, 62, 23, 24, 42, 16, 65, 66, 32,
48, 49]). The electric field results from fluid flow through the crust in the presence of an
electric double layer at the solid–liquid interfaces. This fluid flow transports the ions in the
fluid in the direction of flow, thus leading to electric currents.

We present below some background material on the physics of the phenomenon, and
then focus only on those suggestions that are relevant with the explanation of the SES
generation.

These suggestions could be grouped broadly into two types: hypocentral and local. The
hypocentral mechanisms, e.g. Refs. [65, 63], consider electrokinetic phenomena in the
EQ preparation zone and transmission (diffusion) of electric field to the recording site.
On the other hand, the local mechanisms, e.g., Refs. [16, 32, 7], require electrokinetic
phenomena (in response to precursors of strain or stress) close to the SES measuring
site.

1.6.8.1 The physical basis of the electrokinetic effect

Permeability. Darcy’s law. From a physical point of view, the permeability of one sub-
stance in another is a transport property. In porous, permeable media, traversed by a fluid
in the +x direction, the permeability coefficient k (which, in reality, reflects an effective
cross-section for flow, see below) relates the fluid flux to the force (the fluid pressure gra-
dient):

J =− k
η

dP
dx

(1.51)

where η denotes the viscosity of the fluid and J the fluid volume that crosses a section S
(perpendicular to the x-axis) per unit area and per unit time; note that Eq. (1.51) is usually
called Darcy’s law. Thus, J is a volume flux and although it is measured in m/s does not
reflect the real velocity v of the fluid. This can be understood on the basis of the simple
case depicted in Fig. 1.27(a), in which the fluid flow is taking place through N capillaries
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Fig. 1.27 Schematic diagram of (a): The fluid flow crossing the total section S0 through capillaries of
individual cross-section si (the fluid volume V0 that crosses the section S0 per unit time should be equal to
the sum of the (volume) fluxes flowing through each channel, and hence V0 = JS0). (b): The electrochem-
ical solid/solution interface; the absolute value of the ionic charge of the surface layer is equal to the sum
of the ionic charges in the Helmholtz layer and in the diffuse zone, thus leading to an electrically neutral
double layer, if the appropriate charge signs for each zone are considered. The plane H lies at a distance
from the zero surface of the solid, and corresponds to the beginning of the diffuse zone. Reprinted from
Ref. [125], Copyright (2005), with permission from TerraPub.

of individual cross-sections si. In this case, assuming isotropic distribution of porosity φ ,
thus φ = (1/S0)∑N

i=1 si, and that the velocity vi in every channel i is equal to v, we find
that the quantities J and v are interconnected through: J = φv.

The origin of electrokinetic phenomena. An electric double layer is formed at a
solid/liquid interface (Fig. 1.27(b)). This is made up of a layer of ions (the Helmholtz
layer) adsorbed on the surface of the solid (e.g., the rock) and of a diffuse mobile layer of
ions (the Gouy–Chapman zone) which extends into the liquid phase.

When a fluid flows through a porous medium, a potential will be developed across the
(length of) sample, because of the relative motion between the solid and the liquid; this
is the so called streaming potential (which may be thought of as the reverse of electro-
osmosis). If S denotes the closest plane to the surface on which fluid motion takes place
(see Fig. 1.27(b)), the potential of this plane is defined as the ζ potential. (Note that this is
manifested in the streaming potential measurements. In other words, the zeta potential ζ
is the potential at the slipping plane; the latter is the plane where the fluid velocity goes to
zero.) In such cases, if V denotes the streaming potential, both forces ∇V and ∇P (while
in Eq. (1.51) only the second force, i.e., ∇P, was present) must be considered and then the
fluid flow becomes:



1.6 Physical mechanisms suggested for the generation of SES 59

J =− k
η

∇P+
εζ
ηF0 ∇V (1.52)

while the electric current density j is given by:

j =
εζ
ηF0 ∇P− σ

F
∇V (1.53)

where σ , ε are the electrical conductivity and the dielectric constant of the fluid. F0 is
the so-called formation factor (the ratio of the conductivities of the fluid and the porous
medium, e.g., σ/σr, the ratio of the fluid over the rock conductivity [33, 49]) when sur-
face conduction is absent, while F is the formation factor for the fluid conductivity being
studied (possibly with surface conductivity).

In a steady state, the absolute values of the two terms in the right-hand side of Eq. (1.53)
(i.e., the first term represents current resulting from mechanical energy being offered to the
system, while the second term corresponds to the conduction current) become equal; this
equality leads to the so-called Helmholtz–Smoluchowski equation [17]:

ΔV
ΔP

=
εζ
ησ

F
F0 (1.54)

(note that we again clarify that ΔP and ΔV are measured across the length of the sample).
The quantity C ≡ ΔV/ΔP, i.e.,

C ≡ ΔV
ΔP

=
εζ
ησ

F
F0 (1.55)

is called the streaming potential cross-coupling coefficient or simply the coupling coeffi-
cient. For a circular cross-section pore of radius r, we have [68]

F
F0 =

1(
1+ 2Ss

rσ

) (1.56)

where Ss denotes the surface conductance. If surface conductivity is absent, F = F0 and
Eq. (1.55) simplifies to:

C ≡ ΔV
ΔP

=
εζ
ησ

(1.57)

In other words, streaming potentials occur in a fluid when there is relative motion
between the fluid and a charged surface, for the latter recall § 1.6.3.1.

The electrical double layer, which as mentioned forms at the interface between the fluid
and the charged surface, has a charge density ρ which decays exponentially away from the
surface; the distance at which this charge density decays by 1/e is the so-called Debye
length (see § 1.6.3.1; see also subsection 11.4.1 of Ref. [125]). As the fluid moves tan-
gentially to the double layer, it pulls the ions of the double layer along a length l.
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These moving ions near the surface give rise to convection current: Iconv =
∫

v(r)ρ(r) dr
= (πεr2ζΔP)/(η l), where v(r) is the fluid velocity. The conduction current
Icond = (πσr2/l)ΔV flows through the resistive bulk fluid to generate a potential referred
to as the streaming potential.

The electrokinetic current density averaged with respect to the cross-section is usually
written as [24, 16]:

j =−σrC∇P, C ≈ εε0ζφ
ησr

(1.58)

where σr the electric conductivity of the rock. Alternatively the following relation is given
[109]:

j =−Ce∇P (1.59)

where
Ce ≈ εζφ

η
(1.60)

The physical parameters (including the temperature and/or tri-axial stress) that influ-
ence the electrokinetic coupling coefficient (e.g., Refs. [68, 42, 48, 78]) and the frequency
dependence of permeability (e.g., Refs. [82, 85, 87, 86]) have been discussed in pp. 267–
268 of Ref. [125].

1.6.8.2 Electrokinetic phenomena in the hypocentral area of an impending

earthquake

Morgan et al. [68] and Morgan and Nur [67] suggested the following mechanism that may
have significant relevance to the generation of transient electric signals. Two-phase fluid
flow enhances cross-coupling properties; this enhancement originates from an increase of
resistivity at partial saturation which reflects an increase of C by a factor of 2 or more.
Partial saturation may result at the earthquake source region either by dilatancy or boiling
[59]. However, boiling is unlikely except as a coseismic phenomenon [78]. Morgan [65]
first presented a calculation showing that such electrokinetic phenomena in the source area
can account for the observed SES amplitudes. Beyond this suggestion, a few other more
recent publications [63, 43] appeared, the results of which will be summarized below.

Molchanov’s multifractures model [63]. The idea is that SES is generated during the en-
hanced fracturing that occurs a few weeks or a few days before the main shock. Molchanov
considered for the source current the electrokinetic mechanism (in the focal area), by as-
suming a water-induced relaxation of stress-drop just after the appearance of microfrac-
tures. A similar process was considered in Ref. [20] for the explanation of ULF magnetic
variations.

The following model was proposed [63]. Assume that many fractures with scale Ls and
rate Ṅ(Ls) occur in a volume V0 ∼ L3

0, where L0 is a length of the order of the large-scale
stress gradient. Before a large EQ with magnitude M, fracture occurrences are probably
intensified; the latter can be represented as foreshocks obeying the Gutenberg–Richter law
with the usual exponent b, e.g. see Eq. (6.1).

Considering that the electric field variations (due to the largest fractures from the region
V0) recorded at the same site probably retain the same polarity, the electric field amplitude
E resulting from the overlapping (clustering) of a significant number of electric pulses,



1.6 Physical mechanisms suggested for the generation of SES 61

after assuming Poisson distribution (in time) for the occurrence of these electric pulses, is
found to be [63]:

log10 E =
(

3
4
− b

2

)
M+ const . (1.61)

Molchanov [63] assumed b = 0.89, and found that the slope of log10 E versus M is
0.305 which is very close to the experimental values, see Eq. (1.1). The empirical b values
are around unity (i.e., between 0.8 and 1.2, see Section 6.1), thus resulting in a slightly
different slope which is still in remarkable agreement with the SES observations.

Numerical simulation of electric field produced by fluid flow within a fault. The elec-
trokinetic potential on the ground surface, produced by the fluid flow within a vertical thin
fault zone, has been computed in Ref. [43]. “Dilatancy” or “over-pressure” was assumed
as a driving force of the fluid flow. It was found that, if the resistivity of the crust is of the
order of 103–104 Ωm and a high conductivity (vertical) channel exists between the fault
zone and the Earth’s surface, the electric field values in the peripheral area of the outcrop
of the channel reach values well above the detectability limit.

1.6.8.3 Electrokinetic phenomena close to the SES measuring station

Dobrovolsky et al. [16] and Gershenzon and Gokhberg [32] suggested that SES can be
explained by the electrokinetic effect resulting from strain changes that affect fluid dy-
namics close to the measuring site or around it. Moreover, they suggested that SES can be
better recorded on a vertical electric dipole as follows: at the surface the excess pressure
is always zero, but at points within the crust strain changes will produce pressure changes
and hence, a potential difference ΔV will result between an electrode located at the surface
and another at a depth h (e.g., in a well, provided that the latter electrode lies below the
water level and is covered by the Earth, making the pressure at the pore fluid around it
approximately equal to what it would have been if there were no well at all). We clarify
that ΔV does not have [16] to be proportional to h.

A model slightly different from that of Refs. [16, 32] for detecting electrical anomalies
due to electrokinetic phenomena close to the measuring site has been suggested by other
authors [48]. Based on empirical observations of abrupt upheaval of the underground water
level measured postseismically (at distances of the order of 50 km from the epicenter), it
is assumed that there is a ground-water recharge during interseismic periods; this recharge
implies vertical fluid flows in shallow aquifers which could induce electrokinetic anoma-
lies.

Within such a scheme, a precursory electrical anomaly can be observed irrespective
of either the exact value of the coupling coefficient or whether a lateral heterogeneity
exists or not.

Note that the measurements of Jouniaux and Pozzi [48] show that a streaming potential
up to 30 mV could be produced by an underground water level change of 50 cm, for a fluid
resistivity of 102 Ωm and a permeability of 10−12 m2. In addition, Jouniax and Pozzi [49]
observed transient streaming potential variations with pulses of amplitude 15–40 mV and



62 1. Introduction to Seismic Electric Signals

frequency 0.1 to 0.5 Hz under geochemical changes; they suggest that such geochemically
induced effects may possibly be responsible for the observation of electrical precursors in
this frequency range.

1.6.8.4 Electrokinetic phenomena in porous media with fractal structure

Fractal critical exponents of electrokinetic current parameters. Surkov, Uyeda, Tanaka
and Hayakawa [109] supposed that the EQ hypocenter is surrounded by water-saturated
porous rock with fluid-filled pore channels. The pre-earthquake stage was assumed to be
accompanied by the appearance of fresh cracks in the fracture zone. The scale of this zone
may vary from hundreds of meters up to several kilometers. It was assumed that the pore
space in the fracture zone exhibited fractal structure. Apparently, most of the fresh cracks
are closed when formed. Because of the pressure release due to cracking, they are under
lower pressure, so that water from the un-cracked outer region can penetrate into them as
soon as a network of connected channels or fractal clusters is formed. The closed fresh
cracks may be regarded as the sink of water from the surrounding higher-pressure areas.

Fig. 1.28 (a) The porosity φ at various distances r from
the fracture zone assumed in Ref. [109]; the percolation
threshold φc is exceeded only in the internal area r < L,
and non-fractal zone is situated at r < Ri. The fractal
region is confined by the radii Ri and R f . (b) Schematic
picture of the fracture zone assumed in Ref. [109]. The
internal high permeability area is restricted by the radius
Ri. The fractal region occupies the field from r = Ri to
r = R f = Ri + H. L denotes the distance where φ = φc.
Reprinted from Ref. [109], Copyright (2002), with
permission from Elsevier.

Surkov et al. [109] assumed that the porosity φ , after the cluster formation, decreases
from the center of the fracture zone towards the periphery according to a certain law, see
Fig. 1.28(a):

The percolation threshold φc is exceeded only in the internal area that has a typical
size L.
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Fractal properties, near the threshold, are governed by a correlation length(see § 1.5.2):

ξ ∝
1

|φ(r)−φc|ν , (1.62)

where ν = 0.88 is the correlation length critical exponent [108]. This equation indicates
that an increase in the porosity in the internal area (r < L) is followed by a decrease of
correlation length. Thus, the central part of the internal area may lose its fractal properties,
because of a multiplex intersection of channels. This part with high porosity and high
permeability was called the non-fractal central zone, in contrast to the peripheral fractal
region. Let Ri = L−H be the typical radius/size of the non-fractal central zone, as shown
in Figs. 1.28(a) and 1.28(b). The fractal region occupies a spherical shell confined by the
radii Ri and R f = L+H. The typical size H of the fractal region was assumed to be of the
order of the correlation length, i.e., H ∝ ξ (Ri) ∝ ξ (R f ), and the porosity near r = L was
written as a power series of the parameter H:

φ(r)≈ φc +
dφ
dr

H . (1.63)

Substituting the latter expression into Eq. (1.62) and using the approximation dφ/dr ≈
Δφ/L, at r = L, where Δφ is the porosity variation, at r =0 and r = L, they obtained:

H ∝
(

dφ
dr

)− ν
ν+1

∝ L
ν
ν+1 (1.64)

which is valid if H � L. For this case, they supposed that the size of the fracture zone is of
the same order as that of the internal area, i.e., L, and so the H dependence on the fracture
zone size looks like Eq. (1.64). This dependence will be needed later to find the relation
between the SES amplitude and the EQ magnitude.

In the fractal peripheral region, the coefficient C, as well as the diffusion coefficient,
the permeability and other rock parameters, change with distance through power laws; the
coefficient Ce (see Eq. (1.60)) was assumed to have the form:

Ce ≈ G
ρμ

, (1.65)

where G is a constant, ρ the distance between two points in the fractal region, and μ
denotes an unknown critical exponent, which can be determined as follows. The coefficient
Ce in the form of Eq. (1.60) cannot be applied, because the fractal geometry should be
taken into account. In the latter case, the average conductivity σr of the rock containing
pore channels and the permeability k depend on the porosity φ according to: σr ∝ k ∝
(φ−φc)t , where t ≈ 1.6 is the transport critical exponent [108]. Using these dependencies,
Surkov et al. find Ce ∝ H−t/ν , which when compared to Eq. (1.65), leads to: μ = t/ν
≈ 1.82 (where they used the values t = 1.6 and ν = 0.88 mentioned above).

The dependence of the current dipole source moment on the dimensions of the fracture
zone. At remote distances from the fracture zone, the low-frequency electromagnetic field
generated by a system of electrokinetic currents can be characterized by an effective short
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linear current element IΔ l. Here I denotes the total source current and Δ l is the effective
current length. To replace an extrinsic current system by a point current element, they
integrate the electrokinetic current density over the volume V of the fracture zone, i.e.,

p = IΔ l =
∫

V
je dV =−

∫
V

Ce∇P dV (1.66)

According to Surkov et al. [109] there are two contributions to this integral: one (pc)
from the central non-fractal zone and a second one (p f ) from the external fractal region.
The first one was shown [109] to be

pc ∝ L2 (1.67)

while the second contribution (p f ) is given by:

p f ∝ Ce
ΔP
L

L2H ∝ L1− t−ν
1+ν . (1.68)

Explanation of the empirical VAN relation of Eq. (1.1) or Eq. (1.2). The SES amplitude
E(=ΔV/L) must be proportional to the amplitude |p| of the current dipole source moment.
Furthermore, recall that the EQ focal dimension L is related to the EQ magnitude M,
through the empirical equation [50]:

log10 L = 0.5M−1.9 (1.69)

where L is measured in km. Due to the perfect spherical symmetry of the non-fractal zone
the corresponding dipole moment p should be vanishingly small, thus its contribution to
the observed electric field value can be disregarded. Therefore, the leading contribution
comes from the fractal region, i.e. p f 
 pc, with E ∝ p f , which when taking into account
Eqs. (1.68) and (1.69), gives:

log10 E = αM+b, α =
1
2

(
1− t−ν

1+ν

)
≈ 0.31 (1.70)

after using the critical exponents: t =1.6 and ν = 0.88.

Thus, when assuming fractal geometry in the fracture region, Surkov et al. [109] find
a value of α in Eq. (1.2) very close to the one observed.

This is consistent with an early suggestion (see p. 92 of Ref. [127]), see also § 1.3.2,
that the α value stems from the geometry of the emitting source (where it is clear that when
the source enters the critical regime, it must be characterized by fractal geometry).

1.6.9 SES generation mechanisms when assuming the earthquake rupture as

critical point

Sornette and Sornette [102], based on the concept that rupture in EQs could be considered
as a critical point (CP), suggested a model for the SES generation. (Since percolation is a
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critical phenomenon, the model by Surkov et al. [109] discussed in § 1.6.8.4, as well as
the PSC model (§ 1.6.2), could have been classified in the same framework as the model
of Sornette and Sornette [102].) This model provides naturally an explanation of the SES
detectability at certain cites at long distances (selectivity effect; see § 1.3.4). In addition,
this model explains the experimental fact mentioned above that the logarithm of the SES
amplitude scales linearly with the magnitude M for a given focal area and a given SES
sensitive station, see Eq. (1.2), i.e., log10(ΔV/L) = αM+β , where the experimental value
of α is around α = 0.32–0.37 for all measuring sites (universal).

The essence of the Sornette and Sornette [102] proposal is that SES is closely related
to a local piezoelectric effect, which does not average to zero in some places and thus
can be detected as the CP is approached.

In particular, they state [102] that as the CP is approached, the medium becomes more
and more fragile, ending eventually in rupture at the CP. Then they assume that an effective
control parameter “q” can be defined such that the CP is attained when q reaches some
threshold qc. As the CP is approached, the increasing fragility of the medium is reflected
in the “critical” behavior of the effective deformation modulus Y , which should decrease
eventually to zero at CP. As q approaches qc, the material becomes very weak and hence a
finite stress creates a locally large strain, resulting in a large polarization and electric field.
Thus, one expects to measure an increasing potential difference between two points of a
piezoelectric system as the CP is approached. The small value of the measured SES can
be associated with the absence of a real macroscopic effect, but is more closely related to
a local piezoelectric effect which does not average to zero in some places and thus can
be detected [102]. In other words, the detectability of the potential difference variations is
related with the strong spatial variations in the polarization of the medium.

Sornette and Sornette [102] made use of the theory of critical piezoelectricity in
percolation [105] and derived an interconnection between its critical exponents and
Eq. (1.2). They finally obtained an α value comparable with the aforementioned one
obtained experimentally.

1.6.10 Other SES generation mechanisms

Beyond the mechanisms mentioned above, several others have been suggested. Two of
them are mentioned below:

(a) Pulsed charge model: Ikeya et al. [41, 40] suggested a model, based on the piezo-
electricity of quartz, and raise the possibility that SES may come from the time averaged
evanescent ULF waves. In simple words, their model assumes an ensemble of emitting
dipoles in the fault area (due to the piezoelectricity of quartz-bearing rocks) and there-
from the SES are explained as being the envelopes of these electromagnetic pulse waves.



66 1. Introduction to Seismic Electric Signals

This model seems to satisfactorily explain [40] the empirical relation found for SES:
log10(ΔV/L) = αM+β , where α is around 0.35.

(b) SES generation based on the magmatic mechanism of shallow crustal earthquake
preparation: Rokityansky [88] forwarded a model, which is based on a suggestion of
Guterman and Khazan [34] that crustal seismic activity (or some parts of it) is a mani-
festation of contemporary magmatic activity. The model assumes a mantle chamber (that
can be a mantle plume head, for instance) and a crustal magma chamber. The latter is con-
nected to the former by a magma channel. Based on giant radiating dike swarms data [19],
Rokityansky also assumes secondary crustal chambers. Such a model can qualitatively ex-
plain several SES features: a SES-sensitive station is situated near a magma channel or
crustal magma chamber. Long-distance SES-sensitivity is observed when the station and
the focal area are situated at opposite ends of a (quasi-)radial chain of crustal chambers,
the station being near the first chamber, and the EQ near a peripheral one. The SES gener-
ation is attributed to magma flow or, more probably, to the beginning of magma flow, with
the opening of magma channel(s).

1.7 Explanation of the selectivity effect and other SES properties

When a current-emitting solid is surrounded by a medium of conductivity σ ′, the question
arises whether the signal can be observed at long distances (i.e., at distances appreciably
larger than the dimensions of the emitting source). Of special interest, for practical appli-
cations, is the case when the emitting source is located at a small distance from a “path”,
which has conductivity σ , orders of magnitude larger than the conductivity σ ′ of the sur-
rounding medium. The study of this case is closely related to the SES transmission in the
Earth and the question of SES detectability at long distances. This is so, because, as will
become clear in this Section:

Maxwell equations can naturally explain the selectivity effect, if we consider that the
SES generation source lies in the future focal region and the earthquakes occur by slip
on faults, which are highly conductive paths in the Earth’s crust. This is the essence of
the model described below and was proposed by Varotsos and Alexopoulos [129] for
the explanation of the SES selectivity.

1.7.1 The model for the explanation of the selectivity effect

Varotsos and Alexopoulos [129] (see also Ref. [131]) suggested the following model for
the SES transmission from its source to the measuring station. When the SES is emit-
ted, the current follows the most conductive (neighboring) path through which most of
this current travels and the measuring station lies at a site on the Earth’s surface (see the
point “O” in Fig. 1.29, or Fig. 1.30) close to the upper end of the conductive path (and
preferably close to a high-resistivity anomaly, see fig. 25 of Ref. [131]). One can show
that the measured electric field is then appreciably stronger than in the case of a homoge-
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Fig. 1.29 Schematic represen-
tation of the SES transmission
model suggested by Varotsos
and Alexopoulos [129] (see also
Fig. 1.30). In general, the dipole
source may be parallel (B) or
perpendicular to the neighbor-
ing conductive path; the case of
perpendicular orientation (see
Fig. 1.32) is practically equiva-
lent (as far as the amplitude of
the electric field above the upper
end of the channel is concerned)
with the case A. Varotsos and
Alexopoulos [129] (see also fig.
25 of Ref. [131]) suggested that
the case A is more probable
than B; this seems to coincide
with aspects that there is always
a significant component of the
emitting dipole perpendicular to
the conductive path (§ 1.7.3). The
symbol ρ0 stands for ρhost used
in the text. Taken from Ref. [92]

neous or horizontally layered Earth. In particular, the consequences of the high conductiv-
ity path terminating inside the host medium discussed later (e.g. see § 1.7.2.3) conclude
that, for large conductivity ratios, the “edge effects” play a major role, leading to strong
electric field in the host medium close to the termination of the conductive path. In addi-
tion, we draw attention to the following case discussed in detail in sections 6.5 and 6.6 of
Ref. [125]:

The increase of the electric field value may reach a factor even larger than the conduc-
tivity ratio σ/σ ′. This is termed over-amplification (see § 1.7.2.3).

The two configurations A and B of the electric dipole (with respect to the neighbor-
ing path) depicted in Fig. 1.29 can be in principle envisaged. However, Varotsos and
Alexopoulos [129] suggested a current source close to the bottom end of the path (e.g.,
see fig. 25 of Ref. [131], i.e., the case of Fig. 1.29(A) which can be better visualized in
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(b)(a)

Fig. 1.30 Schematic model for the explanation of the selectivity effect suggested by Varotsos and Alex-
opoulos [129]. This is an enlarged version of Fig. 1.29, the caption of which applies also here, for better
visualization of the parameters. (a) and (b) correspond to the cases of Figs. 1.29(A) and 1.29(B) respec-
tively. Reprinted from Ref. [125], Copyright (2005), with permission of TerraPub.

Fig. 1.30(a)). This is the case, as explained in § 1.7.2.3, which is practically equivalent – as
far as the amplitude of the electric field values above the upper end of the channel is con-
cerned – with an electric dipole source being perpendicular to the neighboring conductive
path. We note that:

Only when there is a significant component of the emitting dipole source perpendicular
to the conductive path, the phenomenon of the “over-amplification” may become of
paramount importance (§ 1.7.2.3 and § 1.7.3).
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1.7.2 Analytical studies related to the explanation of the SES properties

All the analytical studies mentioned in this section have been made in the static approxima-
tion, but we draw attention to the point that, as summarized in Section 1.8 (and explained
in detail in chapter 8 of Ref. [125]), approximately the same conclusions hold for low
frequencies which are of interest for the case of SES (i.e., <∼ 1 Hz).

The electric field due to a dipole source being oriented either parallel or perpendicular
to a neighboring high conductivity path of conductivity σ embedded in a less conductive
medium of conductivity σ ′ (occasionally also labeled σhost ), was investigated in chapter 6
of Ref. [125] (see also Refs. [147, 144]). Two ideal paths were considered: a cylindrical
channel (radius R) of infinite length, and a conductive layer (width w) of infinite extent,
see Figs. 1.31(a) and (b), respectively when the dipole source is parallel to the conductive
path, and Figs. 1.32(a) and (b), respectively when the dipole source is perpendicular. When
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Fig. 1.31 (a) Current dipole lying inside (case A) or outside (case B) but parallel to the main axis of a
conductive cylinder (radius R and conductivity σ ) of infinite length embedded in a host medium with
conductivity σ ′(σ > σ ′). (b) Current dipole lying inside (case A) or outside (case B) but parallel to the
surface of a conductive layer of infinite extent (width w, conductivity σ ), which is embedded in a host
medium with conductivity σ ′(σ > σ ′). Note that the host medium conductivity σ ′ is labeled σhost in the
figure (and occasionally used in the text). Reprinted from Ref. [125], Copyright (2005), with permission
from TerraPub.
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Fig. 1.32 A current dipole source
perpendicular to a conductive path.
The emitting dipole lies at a distance
D from a conductive cylinder of infi-
nite length and radius R (a) or from a
conductive layer of infinite extent and
width w (b). The host medium con-
ductivity, labeled σhost in this figure, is
alternatively label σ ′ elsewhere (while
the conductivity of the path is always
labeled σ ). Reprinted from Ref. [125],
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from TerraPub.

the source lies outside the conductive path, the distance D between the source and the path
is also shown in Figs. 1.29 to 1.32.

The amplitude of the component of the electric field Ez at points lying on the z-axis,
shown in Figs. 1.31 and 1.32, and thus inside the path is hereafter labeled Einside.

As an example, we consider the case A of Fig. 1.31(a) and present in Fig. 1.33(a)
the amplitude Einside of the electric field component Ez along the axis of the cylinder at
ρ = 0 versus the distance d = z from the dipole. The ratio of Einside over the corresponding
amplitude of the electric field for a full space of conductivity σ ′ (labeled Ehost ) is shown
in Fig. 1.33(b). For a given conductivity ratio, the ratio Einside/Ehost reaches a maximum
value, larger than unity, at a certain (critical) reduced distance – labeled (d/R)crit.‖ – and
then decreases approaching unity at larger distances. This reflects, if we recall that Ehost
varies with distance as 1/d3, the following conclusion.

When studying at (reduced) distances smaller than (d/R)crit.‖, the value of Einside de-
creases (versus distance) at a rate slower than 1/d3. In particular for distances smaller than
the inflection point (d/R)in f l , an almost parabolic increase of the ratio Einside/Ehost is no-
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Fig. 1.33 The amplitude Einside of the
electric field (a) and the ratio Einside/Ehost
(b), versus the reduced distance d/R from
a current dipole lying inside a conductive
cylinder (of radius R and conductivity σ )
of infinite length embedded in a medium
(host) with conductivity σ ′(σ > σ ′). The
curves correspond to the conductivity
ratios: σ/σ ′ = 4000/1, 1000/1, 4000/10
and 200/1, respectively. Reprinted with
permission from Ref. [147]. Copyright
(1998), American Institute of Physics.

ticed in Fig. 1.33(b), and hence Einside ∝ 1/d. Estimating the inflection point (d/R)in f l of
the curves in Fig. 1.33(b), we find that (d/R)crit.‖ exceeds (d/R)in f l by a factor of around
2.5. At distances much larger than (d/R)crit.‖, the value of Einside varies as 1/d3 approach-
ing Ehost .

We now summarize below the main results deduced [125] for large conductivity ratios
σ/σ ′ and for distances (d), between the source and the measuring site, of practical interest.

1.7.2.1 Dipole source parallel to the path of infinite length

This is the case depicted in Fig. 1.31. The main conclusions are [125]:
(a) The amplitude Einside of the electric field inside a cylindrical channel is found to

vary as 1/d, compared to an 1/d3 behavior in an isotropic and homogeneous medium; this
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holds, as mentioned in the example of Fig. 1.33, almost up to a certain (reduced) distance
(d/R)in f l , which increases with the conductivity ratio σ/σ ′.

(b) The value of Einside, inside a layer of width w, varies as 1/d2; this holds up to a
certain (reduced) distance, d/w, which is around (1/e)(σ/σ ′).

(c) For conductive paths (cylinder or layer), and at distances d appreciably longer than
those mentioned above in (a) and (b), the amplitude of the electric field Einside becomes
comparable to Ehost , i.e., to the value that would be measured for a full volume of
conductivity σ ′.

This holds irrespective of the fact that the source lies inside the path or outside of
it (under the condition that the distance D of the dipole source from the path is much
smaller than d). It implies a high value of the current density inside the path, jinside,
because jinside/ jhost ≈ σ/σ ′.

1.7.2.2 Dipole source perpendicular to the path of infinite length

This is the case depicted in Fig. 1.32. The main conclusions are [125]:
(a) The amplitude Einside of the electric field inside a cylindrical channel increases with

the distance d up to a certain distance from the source, and then, at larger distances, de-
creases. Furthermore, for long (reduced) distances d/R, the value of Einside, decreases
upon increasing the distance D of the source from the path, in a way approximately equal
to 1/D; this holds only up to a value of D which exceeds R by a factor of around 10. In
general, for long distances d/R, and for small values of D/R, the value of Einside varies as
1/(D/R).

The value of Einside at long (reduced) distances d/R becomes comparable to Ehost for
a dipole source relatively close to the path, e.g., D/R ≈ 5–10 (which implies a high
value of the current density inside the path, because jinside/ jhost ≈ σ/σ ′). At even
smaller distances, e.g., D/R∼ 2, Einside may exceed Ehost by a significant factor, e.g.,
by a factor of 10, thus implying that jinside/ jhost is appreciably larger than σ/σ ′.

The ratio Einside/Ehost versus d/R reaches a maximum at a certain value (d/R)crit.⊥,
which is approximately equal to that found (d/R)crit.‖ for a dipole parallel to the path.
This maximum, which significantly exceeds unity when the dipole lies at a small distance
D/R = 2 from the path, e.g., see Fig. 1.34, has a special importance for the effect of over-
amplification, see below.

(b) The amplitude Einside of the electric field inside the conductive layer increases with
the distance d/w, reaches a maximum when d starts to become comparable with D, and at
larger distances (d/w), decreases reaching finally the 1/d3 behavior.
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At very long (reduced) distances (e.g., d/w = 102), the value of Einside does not prac-
tically depend either on D or w (for a dipole source relatively close to the path) and
becomes comparable to Ehost , thus implying a high value of the current density inside
the path.

1.7.2.3 Dipole source close to a path terminating inside the host (more resistive)

medium. The case of over-amplification

If a conductive path terminates inside the host (more resistive) medium, then at some
points of the host medium close to the termination of the path the amplitude of the electric
field, labeled Eoutside, exceeds Ehost by a factor ∼ σ/σ ′ due to current conservation, e.g.
see Fig. 1.44. We focus, however, below on certain cases where the ratio Eoutside/Ehost be-
comes even larger than σ/σ ′ which, as mentioned (§ 1.7.1), is called “over-amplification”.

In general, in order to have over-amplification, i.e., Eoutside/Ehost > σ/σ ′, the condi-
tion required is Einside/Ehost > 1 along the perpendicular to the interface at the termination
point. Therefore, cases of conductive paths with infinite length that have been found to
fulfill, in a certain region of d/R values, the condition Einside/Ehost > 1, are candidates
for over-amplification when they happen to terminate (inside the more resistive medium)
approximately in this region. Such regions of d/R values have been noted above in both
cases, i.e., when the current dipole source is either parallel or perpendicular to a highly
conductive cylinder of infinite length, see Figs. 1.33(b) and 1.34, respectively. It was men-
tioned that, for a given conductivity ratio, the ratio Einside/Ehost versus d/R shows a max-
imum at a distance (d/R)crit . Comparing the corresponding values from these two figures
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and considering that the curves Einside/Ehost versus d/R have a considerable full-width half
maximum (see Figs. 1.33(b) and 1.34), we may conclude that, for the same conductivity
ratio, they maximize almost at the same region of d/R values. This fact, i.e., (d/R)crit.⊥ is
almost equal to (d/R)crit.‖ (already mentioned above), implies that the corresponding crit-
ical value (d/R)crit when the dipole source forms any angle between 0 and 90◦ is almost
the same, i.e.,

(d/R)crit ≈ (d/R)crit.‖ ≈ (d/R)crit.⊥ (1.71)

It should be emphasized, however, that, when comparing the two orientations of the
dipole source, the corresponding critical values of the ratio Einside/Ehost , which will be
labeled (Einside/Ehost)crit , are quite different.

In particular, a current dipole source perpendicular to a conductive cylinder is in gen-
eral expected to show, for small values of D/R, a stronger over-amplification than
that of the parallel one when the termination occurs in the range of (d/R)crit . In other
words, the value of (Einside/Ehost)crit.⊥ is markedly larger than (Einside/Ehost)crit.‖.

Concerning the electric field Eoutside when a dipole source forms a certain angle with
a neighboring highly conductive path terminating inside the host medium, the following
points emerge [144] (see also section 6.4 of Ref. [125]).

(1) The direction of Eoutside close to an edge is regulated by the angle between the
emitting dipole and the conductive path as well as by the distance from the source.

(2) The amplitude Eoutside is usually larger than that of Ehost by a factor of around σ/σ ′,
but there are also some cases of over-amplification, i.e., the value of Eoutside/Ehost exceeds
the conductivity ratio σ/σ ′. Such an over-amplification may also occur in the cases of
conductive paths that are not connected.

(3) The amplitude Eoutside versus the distance r from the edge varies only slowly, i.e.,
Eoutside ∝ 1/rθ where θ is around (but smaller than) unity.

Concerning an elongated conductive spheroid, which may approximate an elongated
conductive body, the following conclusions hold as far as the over-amplification is con-
cerned [144] (see also pp. 149–153 of Ref. [125]):

(i) A dipole source produces over-amplification when lying either perpendicular to a
neighboring conductive path (terminating at a critical reduced length) or close to (and
lying on the major axis of) an elongated conductive spheroid (body).
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(ii) Elongated conductive spheroids “amplify” the remote electric fields by a factor of
around σ/σ ′ at the most (see Fig. 1.35), while with a nearby emitting electric dipole source
(lying on the major axis) they may lead to over-amplification without requiring so much
elongation.

(iii) An electric dipole of finite length that approaches perpendicularly an elongated
conductive body, may give rise to over-amplification provided that one pole of the
source is very close to the body.

As for the amplitude of the electric field, the following two properties have been proven
(see pp.150–151 of Ref. [125]).

When changing the distance D of a dipole source that lies on the major axis and ap-
proaches the one end of an elongated conductive spheroid, the amplitude of the electric
field surrounding the other end varies as ∼1/D.

A dipole source at a small distance D from one end of an elongated conductive spheroid,
produces electric field values which vary with the distance r from the other edge as 1/rθ ,
where θ ≤ 1, in accordance to the point (3) mentioned above.

1.7.3 Direction of the maximum principal stress with respect to the neighboring

earthquake fault

In the late 1980s it was reported that the direction of the maximum horizontal principal
stress near the San Andreas fault is in general nearly perpendicular to the fault (see Ref.
[166] and references therein). However, Scholz [96] pointed out that the directions reported
to be nearly fault normal in central California do not correspond to regional stresses but
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are a result of active folding within folds that have been rotated 20◦–30◦ clockwise from
their original orientations. A debate followed on this issue (e.g. see Scholz [97]), which
could be alternatively seen as diversity of views on whether the San Andreas fault is weak
(or strong) relative to the surrounding crust. Some details can be found in pp. 157–158
of Ref. [125], but here we keep as a conclusion that one could compromise the current
aspects as follows:

The maximum horizontal principal stress near the fault, is normally oriented at an an-
gle of 30◦–60◦ with respect to the normal vector to the fault, but may be perpendicular
to the fault if the fault has a low coefficient of friction.

This, under the simplifying assumption that the emitting current dipole source is ori-
ented parallel to the maximum principal stress along a fault (which seems to be true, at
least, in the frame of either the pressure stimulated currents SES generation model (§ 1.6.2)
or the deformation-induced charge flow phenomenon (§ 1.6.4), implies the following: The
existence of a significant component perpendicular to the fault cannot be anyhow ignored,
because as explained above (§ 1.7.2.3) a dipole source perpendicular to a nearby conduc-
tive path may result in over-amplification.

Thus, we conclude that it is very likely that there exists a considerable current dipole
moment component perpendicular to the fault. This may be of major importance when
calculating the electric and the magnetic field at sites close to the upper end of the
channel, because it may give rise to over-amplification.

1.7.4 Explanation of the SES properties based on analytical studies

Earthquakes (EQ) occur by slip on faults which may have lengths of several tens of kilo-
meters and widths of a few to several hundred meters (for example, in the San Andreas
fault, the cataclasite fault core has a width of the order of 10–100 m, e.g., see Ref. [14]).
The resistivities of faults have been found to be around a few Ω m to 10 Ω m, thus being
102 to 103 times more conductive than the surrounding medium, which, at a usual depth of
5–30 km, has a resistivity of 103 to 104 Ω m. Thus, in the case of SES, the emitting source
(i.e., the EQ preparation zone, where stresses are “accumulating” before rupture) should
lie at a small distance D from a neighboring conductive path with a large conductivity
ratio, e.g., σ/σ ′ = 102 to 103 or so. The length of a fault, which is of the order of several
tens of km, is drastically larger than its other two dimensions. Therefore, the situation,
although in reality lies between the two ideal conductive paths discussed in § 1.7.2, may
be better approximated by a conductive cylinder (radius R) rather than a conductive layer
(width w).
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1.7.4.1 Explanation of the selectivity effect

We show below that, if the electric field measurements are carried out at a distance d
(e.g., d ≈ 100 km) much longer than the distance D between the emitting source and the
neighboring conductive path, the SES detectability does not depend on the exact values of
the distance D or the width of the path.

Since d 
 D,w,R, the emitting source is usually assumed to be a point electric dipole.
A value of dipole moment p = 8× 10−4 Cb ·m was estimated by Slifkin [100, 101], see
§ 1.6.3.2, assuming a modest value for the density of dislocations and considering a slab
with a length of L ≈ 1 km and a cross-sectional area of 1,000 m × 100 m = 0.1 km2.
This equivalently results in a current dipole moment Il = 22.6 A km when assuming
ρhost = 4,000Ω m and considering Il = p

ε0ρhost
giving rise, as mentioned (§ 1.6.3.2), to

an electric field of 7 mV/km at distances of 10 km. A typical seismic source of an EQ with
(magnitude) M≈ 5, however, has a length of around 5 km [13] and a cross-sectional area
of around 1 km2.

Therefore, when disregarding – for the purpose of our calculation – factors of around
2, or so, we may estimate that the relevant emitting source for a M≈ 5 EQ should have
[147] a dipole moment two orders of magnitude larger than that estimated by Slifkin
[101], hence Il ≈ 22.6×102 A km.

This value will be used below (see also § 1.8.4), although we could have accepted larger
values due to a probably larger density of dislocations.

Estimation of the electric field at remote distances. For long distances of practical in-
terest, e.g., d/R ≈ 200 or d/w ≈ 200, if the dipole source is parallel to the path for any
value of D lying in the range from a few to 10 km, the amplitude of Einside is of the order
of Ehost , see point (c) in § 1.7.2.1. This is of the order of 1 mV/km (≈ Ehost) at distances
d ≈ 100 km, as can be seen for example in Fig. 1.36, see the asterisks. The same is true for
a dipole with an orientation perpendicular to the path; see § 1.7.2.2 (in cases where there
is no overamplification).

The electric field Ehost (≈1 mV/km) will be enhanced, as mentioned in § 1.7.2.3,
by a factor almost equal to the conductivity ratio σ/σ ′ (or even larger due to over-
amplification; see below) if the measurements are carried out in the vicinity of the ter-
mination of the conductive path. Thus, at certain sites lying at distances d ≈ 100 km,
electric field values of the order of at least around 10 mV/km are expected which are
well above typical noise levels.

Hence, if we make reasonable assumptions, the SES detectability at certain remote sites
(sensitive sites) becomes clear as long as d 
 R (or d 
 w), and d 
 D.
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Fig. 1.36 The amplitude
Einside versus d/R, for various
values of the distance D (= 1,
3, 5, 10 km, see the inset)
of the emitting dipole from
a given conductive cylin-
der (R = 500 m). For values
d/R ≈ 2× 102 or larger, all
curves practically coincide.
The points with asterisks cor-
respond to d ≈ 100 km. The
dipole moment is 102 times
that estimated by Slifkin
[100, 101]. Conductivity ratio
σ/σ ′ = 4000/10. Reprinted
with permission from Ref.
[147]. Copyright (1998),
American Institute of Physics.

In other words, an explanation of the selectivity effect of SES becomes evident, if we
just consider the fact that the emitting current dipole source lies in the vicinity of a path
appreciably more conductive than the surrounding medium and that the measurements
are carried out in the more resistive medium close to the termination of the conductive
path.

The orientation of the emitting dipole source is likely to be around the normal to the
neighboring fault (see § 1.7.3) which may result in the over-amplification phenomenon,
thus strengthening the importance of the “edge effects” concerning the SES detectability
at remote sites.

Therefore, detectable electric field values are found in two regions (“sensitive sites”)
only: first, at sites in the region just above the source (e.g., d ≈ 10 km, due to the
small attenuation if the source depth is not too large) and second, at those remote sites
(e.g., d ≈ 100 km) of the Earth’s surface lying close to the upper end of a path (if it
terminates near the Earth’s surface).

We clarify, however, that when the depth of the source increases, the electric field in the
first region becomes smaller and hence (for appreciably large depths) may lie below the
detectability limit (see the electric field numerical calculations below in § 1.7.5.2); on the
other hand, the values in the second region remain practically unchanged provided that the
termination of the conductive path is close to the Earth’s surface.
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Hence, the electric field may reach measurable values at remote sites, but may be not
at shorter. This behavior has been experimentally observed (§ 1.3.4).

1.7.4.2 Explanation of the use of the ratio of the two SES components to determine

the EQ epicenter

As already mentioned in § 1.7.2.3, the direction of the electric field Eoutside close to the
termination of a conductive path (at sites lying in the more resistive medium) is regulated
by the angle between the emitting dipole source and the conductive path as well as by
the distance d of the source from the measuring site. Therefore, if we assume that, for a
given seismic area, the mechanism of the build up of stresses remains the same (which
of course does not always hold, e.g., see Ref. [125]), thus reflecting almost the same di-
rection of the emitting dipole source, the relevant earthquakes should give, at the same
measuring (remote) site, SES with the same direction, and hence the same ratio of the two
SES components. On the other hand, two different epicentral areas, which are likely to
have in general different directions of accumulating stresses as well as different epicentral
distances, should correspond to different ratios of the SES components (measured at the
same remote site).

This provides an explanation of the fact that the ratio of the two SES components has
been used (see § 1.3.5) for the estimation of the epicentral area of an impending EQ.

1.7.5 Electric field numerical calculations explaining the selectivity effect

1.7.5.1 The procedure for the numerical simulation of the selectivity model

We now explain how we simulate the model of Fig. 1.29 studied in Ref. [90]. Since we are
interested in the case where the focal depth is within the range of 5–50 km, we can safely
assume that the “host rock” has a host resistivity between 103 Ω m and 104 Ω m [147]. As
a first approximation, we select the value ρhost = 4×103Ω m. The surface layer with depth
50 m has a typical resistivity value ρS = 200 Ω m. The resistivity ρ f of a fault is known
to be around 10 Ω m (or smaller see § 1.7.4), giving the conductivity σc of the channel,
σc = (1/ρ f ) = 0.1 S/m (e.g., Ref. [145]). Concerning the width w of the channel, we may
assume values of the order of 100 to 1000 m (§ 1.7.4). Calculations have been made with
various w values, e.g., w = 500 m in Refs. [145, 90] or w = 800 m in Ref. [91], and it was
found that the essence of the main conclusions is not affected by the exact w value chosen.
A value Δz≈ 500 m was assumed for the thickness Δz and hence the channel conductance
τ = σcΔz is 50 S. The same value of τ results, if we alternatively consider for example
ρ f = 2 Ω m, Δz = 100 m or ρ f = 1 Ω m, Δz = 50 m, etc, thus the resistivity contrast
ρhost/ρ f is of the order of 103.
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For reasons explained in § 1.7.4.1, the dipole source associated with a M ≈ 5.0 EQ
should be around Il = 22.6× 102 A km and hereafter the calculations will be carried out
by using this value except otherwise stated. The current dipole is assumed to be oriented
along either the x-axis or the y-axis and its projection on the Earth’s surface lies at a
distance of 100 km from the point “O” (see Fig. 1.29) with coordinates (0,0,0). The latter
point represents the projection of the channel’s upper end on the Earth’s surface.

In summary, the conductivity structure involves a two layered Earth (with a 50 m sur-
face layer with resistivity ρS = 200Ω m, and a host with resistivity ρhost = 4000Ω m) and
a conductive channel with resistivity ρc = 10 Ω m. The dimensions of the channel were
taken either 500 m× 500 m× 100 km or 500 m× 500 m× 200 km for the cases A and B
of Fig. 1.29, respectively. The conductive channel was modeled by a thin sheet (depicted
in the insets of Fig. 1.29(A) and 1.29(B)) of conductance τ = 50 S. In other words, the
conductive channel was modeled by a slightly dipping conductive thin sheet. The results
were obtained in a frequency range around 10−2 Hz by running the EM1DSH program
(Hoversten and Becker [37]), with two different rectangular grids of 6 × 150 and 5 ×
200 cells, on HP 735 or a Sun Ultra Enterprise 450 digital computer (note that a larger
number of cells have been also used; see § 1.7.5.3). Only the electric field values that have
discrepancy less than 20% between the two discretizations were used for further analy-
sis; the error bars in the diagrams depict the extent of this discrepancy. The real problem
was studied by a scaled model Lm = 10−7Lw, following the “similitude relationship” (see
Refs. [145, 165]) that relates the corresponding frequency ω , magnetic permeability μ ,
conductivity σ , and length scale L of a real world (w) problem to a model (m) problem:

ωmμmσmL2
m = ωwμwσwL2

w. (1.72)

Of course, the current source was scaled by the corresponding factor 10−7 mentioned
above.

1.7.5.2 Numerical results when assuming point dipole current source

Let us consider the case when the dipole source (oriented along the x-axis) is almost paral-
lel with a neighboring conductive sheet. Following § 1.7.5.1, Fig. 1.37 depicts the results
of the calculation for the case of a model shown in Fig. 1.29(B) (with D = 5 km and
w = 500 m, see Fig. 1.37(D)). All the values have been reduced by the magnitude Ehost
(−100,0,0) of the electric field (≈700 mV/km) that would be measured just above the
source on the Earth’s surface in absence of the channel. The distribution of the absolute
values of the horizontal component Ex of the electric field on the XZ plane, Y = 0 and
on the XY plane, Z = 0, i.e., at the Earth’s surface, is shown in Figs. 1.37(A) and 1.37(B)
respectively, while Fig. 1.37(C) depicts Ey at the Earth’s surface. Since “artificial” noise is
usually of the order of 1 mV/km, Fig. 1.37(B) indicates that:

For a M ≈ 5 earthquake, there are two regions on the Earth’s surface in which Ex is
detectable, i.e., larger than 10 mV/km: one region lies close to the channel’s upper end
and another one just above the source.
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Repeating the calculation for larger depths of the source and comparing the values in
these two regions, we find the following [90]: the electric signals may become stronger
close to the channel’s upper end than directly above the source at a depth z = 50 km. In
such cases a signal may be detected at larger epicentral distances, but not at shorter.

As for the case of Fig. 1.29(A), i.e., a dipole source close to the bottom of an almost
horizontal conductive sheet, the results can be found in Ref. [145].

1.7.5.3 Numerical results when assuming a current dipole source of finite length

In order to better approximate [91] the real situation, the emitting source is now assumed to
be an electric dipole of finite length, i.e., l = 2 km, centered at x =−100 km, y =−1.5 km
at a depth z = 5 km with Il = 22.6×102 A km. The dipole is oriented either perpendicular
(i.e, along the y-axis) or almost parallel (i.e, along the x-axis) with respect to a 200 km
long conductive sheet of width w = 800 m. As in § 1.7.5.1, the sheet was buried in a two
layer Earth, with a surface layer having resistivity 200 Ω m and thickness 50 m and a host
medium with ρhost = 1/σ ′ = 4000 Ω m; the conductance of the sheet τ = σΔz was again
chosen to be 50 S. Discretizations of the order of 2,000 to 3,000 cells were used. The error
bars in Fig. 1.38(a) depict the standard deviation on the average result obtained for each
case after running several discretizations on a SUN Enterprise 450 digital computer.

Figure 1.38 depicts the results when the current electric dipole is perpendicular to the
conductive sheet. In Fig. 1.38(a), the ratio E/Ehost is shown at sites along the projection
of the channel on the Earth’s surface. At sites above the upper end of the sheet, the ratio
reaches appreciably large values, i.e., of the order of 104. This is probably due to “over-
amplification” (see §1.7.2.3), if we recall that the electric field may reach values even one
order of magnitude higher than Ehost(σ/σ ′)(= 400Ehost , if ρ = 1/σ = 10 Ω m). Figure
1.38(b) shows the electric field lines on the Earth’s surface in the region above the source.
In Fig. 1.38(c), we depict the logarithm of their ratio E/Ehost in the region around the
upper end of the channel; this figure (when also considering that Ehost ≈ 1 mV/km, see
Fig. 1.36 and § 1.7.4.1) reveals the existence of a SES-sensitive region (E ≈ 10 mV/km)
with dimensions of the order 20 km × 4 km elongated along the projection of the chan-
nel on the Earth’s surface. This compares favorably with experimental results at IOA
(§ 1.3.4).

Thus, the numerical calculations reveal that the extent of a SES sensitive site is of the
order: (a few tens of km) × (a few km), as the experiments show.

Note that the corresponding results when the extended dipole is oriented parallel with
the sheet show [91] that the values of the ratio E/Ehost are roughly one order of magnitude
less than those in Fig. 1.38(a), thus indicating that no “over-amplification” occurs in this
case.

The case of an “artificial” noise. The aforementioned numerical results reveal that
actually a dipole source perpendicular (and very close) to the path produces appreciably
larger electric fields compared to those of the parallel orientation. The situation changes
(see Fig. 1.39), however, when considering a source lying on the surface of the Earth,
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Fig. 1.38 The case of an electric dipole of finite length perpendicular (see the inset) to the conductive path.
(a): The ratio E/Ehost at sites along the projection of the sheet on the Earth’s surface. (b): The electric field
lines in the region above the source. (c): The quantity log10(E/Ehost) in the region close to the projection
of the upper top of the channel on the Earth’s surface. Reprinted from Ref. [125], Copyright (2005), with
permission from TerraPub.
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Fig. 1.39 The case of the emission of an “artificial” noise, e.g., an extended electric dipole lying on the
Earth’s surface: the ratio E/Ehost at sites along the projection of the sheet on the Earth’s surface, when the
dipole is either perpendicular (a) or parallel (b) to this projection. Taken from Ref. [91].
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as in the case of an “artificial” (man-made) noise. In this case the results are depicted
in Figs. 1.39(a) and 1.39(b), which correspond to the same dipole source located either
perpendicular (a) or parallel (b) to the projection of the sheet on the Earth’s surface. They
show that the values of the ratio E/Ehost are now almost independent of the orientation of
the source.

More importantly, a comparison of Fig. 1.39(a), or 1.39(b), with Fig. 1.38(a), reveals
that an “artificial” noise source produces appreciably smaller (≈2%) electric field val-
ues than the SES-emitting dipole source.

1.7.5.4 Main conclusions of the electric field numerical calculations

The electric field numerical calculations reveal the following:
(1) The simple model of Fig. 1.29 (or Fig. 1.30) assumes that a dipole current source

lies in the vicinity of a conductive channel, which terminates below the Earth’s surface.
This results in electric field E that is significantly intensified (compared to the case with no
channel) in the region above the upper end of the channel (hereafter called AEC). Assum-
ing that AEC lies at epicentral distances of d ≈ 100 km, this model can explain that: (a)
the electric field values (hereafter called E values) at AEC are larger than those measured
at points on the Earth’s surface that may lie at shorter epicentral distances (note that for
source depths larger than a certain value, the E values at AEC may even become larger
than those measured at the Earth’s surface just above the source); (b) assuming current
source dipole moments consistent with M ≈ 5 EQ, the E values at AEC are detectable
(>10 mV/km).

(2) Comparing the numerical results when a dipole of finite length is oriented either
perpendicular to or parallel with a neighboring conductive path, we find that, in the former
case, the E values above the AEC are appreciably larger than in the latter.

(3) Current aspects (see § 1.7.3) reveal that a SES-emitting dipole source has probably
a significant component perpendicular to the neighboring fault. Therefore, in view of
the previous conclusion, the intensification of the E values above the upper end of
the conductive path is expected to be large (since over-amplification then occurs). In
this case, the numerical calculations show that the SES-sensitive region is an elongated
one, having dimensions of the order a few tens of km× a few km (e.g., see Fig. 1.38(c))
in agreement with the experimental findings.

1.7.6 Magnetic field calculations

Analytical studies of the magnetic field in the presence of highly conductive bodies, e.g.,
paraboloid, spheroid and cylinder, embedded in a less conductive medium can be found
in chapter 10 of Ref. [125] (see also Ref. [146]). Here, we solely focus on numerical
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simulations of the magnetic field related with the model described in § 1.7.1, that has been
suggested for the explanation of the SES selectivity effect. In particular, since the presence
of a conductive sheet may change both the horizontal and the vertical component of the
magnetic field, we will summarize below whether our modeling reveals that generally the
following two inequalities hold:

Bh/Bh,layer < Bz/Bz,layer (1.73)

and
Bh > Bz (1.74)

where the symbols Bh and Bz denote the horizontal (h) and the vertical (z) components of
the magnetic field in the presence of the conductive sheet, while the subscript “layer” refer
to the cases in the absence of the sheet. The inequality (1.73) is reminiscent of the well
known result [18] that near the edges of conductivity contrasts the vertical magnetic field
is enhanced for surface (or MT) sources.

We now summarize the main features of the results for the magnetic field near the upper
end of an almost horizontal conductive sheet:

(1) When the dipole source lies in the same vertical plane (xz plane) with the main axis
x of the elongated sheet as in Fig. 1.29(B), the presence of the sheet results in: (a) larger
(relative) increase of the vertical component of the magnetic field compared to that of the
horizontal one, i.e., the inequality (1.73) holds; (b) the Bh value still remains larger than
Bz, i.e., the relation (1.74) holds (Bh > Bz).

(2) When the dipole source lies almost in the same horizontal plane with the sheet (e.g.,
if the dipole depth in Fig. 1.29(B) is decreased to 5 km): (a) If the dipole is parallel to the
main axis of the sheet, the magnetic field is mainly horizontal as in the case of no sheet.
(b) With a dipole perpendicular to the main axis of the sheet, the magnetic field is tilted
leading to a dominant vertical component. Studying various orientations (see Fig. 1.40)
of the dipole with respect to the main axis of the sheet, we find that, when the dipole is
oriented around the normal to the sheet, the magnetic field near the upper end of the sheet
has a dominant vertical component.

(3) When the electric dipole is located close to the center of the conductive sheet (for
example, if in Fig. 1.29(B) the dipole lies 5 km deeper than the center of the channel, i.e.,
at a total depth of 10 km), and is oriented −52◦ to +53◦ with respect to the normal to
the sheet, the magnetic field has a dominant vertical component near the upper end of the
sheet.

In view of the aforementioned features, the magnetic field variations accompanying the
SES are likely to have a dominant vertical component, since the SES current dipole
source is expected to have a considerable component directed around the normal to the
fault (see § 1.7.3).

In order to get an insight into the amplitude of the magnetic field variations that accom-
pany SES for shallow (of ≈5 km depth) earthquakes, we proceed below to the calculation
of the magnetic field for the current dipole source of finite length considered in § 1.7.5.3.
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Hence, the emitting source is assumed at a depth z = 5 km with Il = 22.6×102 A km which
corresponds to a magnitude M ≈ 5 earthquake (§ 1.7.4.1). Figure 1.41 depicts the results
when the current dipole source is perpendicular (i.e., along the y-axis) to the conductive
sheet, thus probably causing “over-amplification”, see also Fig. 1.38. Figures 1.41(a) and
1.41(b) show the amplitude of the total magnetic field B on the surface of the Earth, in the
region above the source (epicentral area) and above the upper end of the sheet, respectively.
The feature of the contours for the logarithm of the amplitude of the ratio B/Bhost , in both
regions, can be seen in Fig. 1.41(c). For both orientations of the emitting dipole source,
the calculated values of the ratio Bz/Bh on the Earth’s surface, along the axis y = 2 km,
z = 0, are plotted in Fig. 1.40.

In view of these results, we now comment on the amplitude of the magnetic field vari-
ations accompanying SES. We clarify two cases:

(1) Epicentral area. A few km from the epicenter, the calculated B values are found
detectable, since they exceed 1 nT (see Fig. 1.41(a)).
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Fig. 1.41 Contours of the total magnetic field on the Earth’s surface, in log10(B/nT ), for the case of a
current dipole source with finite length perpendicular (see the inset) to the conductive path: (a) in the
region above the source, (b) close to the projection of the upper top of the channel. The contours of
log10(B/Bhost) that correspond to the whole region are depicted in (c). A current dipole source Il = 22.6×
102 A km, which corresponds to M ≈ 5 EQ, is considered. Reprinted from Ref. [125], Copyright (2005),
with permission from TerraPub.
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In addition we find that for current dipole moments related to stronger EQs (i.e.,
M >∼ 6.5), the B values at distances of the order of 10 km are well above 1 nT, thus
being clearly detectable.

This expectation, compares favorably with the experimental observations, e.g., those by
Fraser-Smith et al. [25].

(2) Upper end of the conductive path. When the measuring site is located at a reason-
able distance (e.g., about 1 km) from the projection of the conductive path on the Earth’s
surface: (a) for EQs of magnitude M ≈ 5, the B values are of the order of 10−1–10−2 nT
(Fig. 1.41(b)) which are not readily detectable (because they are usually smaller than the
cultural noise); (b) if we repeat the calculation for larger current dipole moments, e.g., for
M≈ 6.5 (by applying Eq. (1.1)), we find B values, with a prominent Bz component, of the
order of 1 nT.

It is therefore expected that at epicentral distances of ≈100 km the B-variations are
detectable only for earthquakes with M≈ 6.5 or larger. This has been actually experi-
mentally observed (see § 1.3.6).

1.7.7 The physical background of the ΔV/L criterion to distinguish SES from noise

Here, we review the physical basis of the ΔV/L criterion (see Section 1.2 and § 1.2.3)
on the basis of which, if long dipoles and short dipoles are simultaneously operating, a
SES identification can be achieved. In § 1.7.7.1, the simple case of a homogeneous half-
space or a horizontally layered Earth is presented. The study is extended in § 1.7.7.2 to
the case of a conductive edge embedded in a homogeneous medium by making use of the
analytical solutions for the electric field in the following cases: a paraboloidal edge and a
spheroid. Numerical investigations are also presented in § 1.7.7.3 when studying the SES
transmission model discussed in § 1.7.1. Throughout this subsection, the measuring long-
and short-dipoles are assumed to be horizontal.

1.7.7.1 Homogeneous half-space or horizontally layered Earth

We first discuss below the case where a single long (measuring) dipole is operating, which
is collinear with the noise source and a short (measuring) dipole. This is the case (2)
mentioned in § 1.2.3.

Let us consider a short (measuring) dipole AB (e.g., L = 50 m) and a long (measur-
ing) dipole AΓ (e.g., L = 5 km) which lie on a straight line (Fig. 1.42). Although we
assume here, that these dipoles have a common electrode A, this never occurs in practice
(Section 1.1), because we use independent neighboring electrodes in order to avoid the
electrochemical noise, e.g., due to rain (see § 1.2.2). We designate with ρ the distance of a
current (point) dipole noise source N (grounded at the Earth’s surface) from the measuring
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Fig. 1.42 Definition of the angles φ and θ (and the distance ρ
of the noise-emitting dipole N from the measuring site) with
two measuring dipoles: a long dipole AΓ and a short dipole AB.
Taken from Ref. [145].

site (which, by definition, is the site of the short dipole’s deployment A–B), while φ de-
notes the angle between the position vector of the noise and the direction of the measuring
dipoles and θ the angle between noise source dipole moment and the measuring dipoles.
We assume, as mentioned, that the two measuring dipoles and the noise source lie on a
straight line, i.e., φ = 0 or φ = 180◦.

The calculations (static, since we are interested for frequencies f ≈ 10−2–10−3 Hz)
were performed by the method of images [165]. The series of image charges contribu-
tions was summed up numerically so as to obtain an accuracy of 1 ppm. The results were
compared to those obtained by the EM1DSH program (Hoversten and Becker [37]).

The ΔV/L value for the long measuring dipole is just [φ(A)−φ(Γ )]/L, where φ(A)−
φ(Γ ) is the (electric) potential difference between A and Γ and L is the length (AΓ ). The
calculation was made in each case: (i) either by representing the Earth with a half-space,
having resistivity ρ0 = 4× 103 Ω m, or (ii) with a two (horizontal) layer Earth having
a surface layer of thickness 50 m with resistivity ρs = 200 Ω m and a basement with
ρ0 = 4× 103 Ω m. The detailed results can be found in Refs. [145, 143]. Here, we shall
present only some typical examples, in which we assume a current dipole noise source
with Il = 1 Am.

The following three quantities are plotted in Fig. 1.43: the ΔV/L values recorded by
the short dipole (L = 50 m) and the long dipole (L = 5 km), as well as their ratio, i.e.,
“ΔV/L of the long dipole” / “ΔV/L of the short dipole”. The latter quantity labeled “Ratio
(Long/Short)” is depicted with a solid line (it corresponds to the left vertical scale). The
former two quantities, i.e., the ΔV/L values, are depicted with dotted and broken lines,
respectively (they correspond to the right vertical scale).

Case A (φ = 0). The noise source and the remote electrode of the long dipole lie on the
same side with respect to the measuring site.

Figure 1.43(a) depicts the results for the two-layer model, which show that at long
distances, the “Ratio (Long/Short)” is around unity. As we move from +∞ to the site of
the remote electrode Γ , the “Ratio (Long/Short)” increases (note that this is one of the
cases recommended by Varotsos and Lazaridou [140] for an easy recognition of noise; see
Fig. 1.7(c)).

At shorter distances from the measuring site, i.e., ρ < (AΓ ), Fig. 1.43(a) shows that
the “Ratio (Long/Short)” goes down to negative values, thus leading to an even easier
recognition of noise.

As mentioned, Fig. 1.43(a) shows the results when the dipole moment is parallel to
the measuring (long and short) dipoles, i.e., θ = 0. The study was extended to various
values of θ , i.e., from 0 to 180◦, and the results show [145, 143] that although the ΔV/L
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Fig. 1.43 The “Ratio (Long/Short)”
and the ΔV/L values for a short
dipole L = 50 m and a long dipole
L = 5 km (asymmetric dipoles) at
various (reduced) distances from
an emitting surface source. The
calculation was made for a dipole
source located on a two layer Earth
(ρS = 200 Ω m, ρ0 = 4×103 Ω m).
(a): φ = 0; (b): φ = 180◦. Taken
from Ref. [145].

values vary from case to case, the “Ratio (Long/Short)” retains the same behavior as in
Fig. 1.43(a) (cf. both ΔV/L values, for the short and long dipole, are positive for θ < 90◦
and negative for θ > 90◦).

Case B (φ = 180◦). The noise source N lies at the other side, with respect to the mea-
suring site, of the remote electrode Γ of the long dipole.

Fig. 1.43(b) shows that the “Ratio (Long/Short)” approaches unity at large distances
[i.e., ρ 
 (AΓ )]. This ratio never becomes negative (and this why such an electrode de-
ployment was not recommended in Refs. [140, 131]), but it becomes markedly smaller
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than unity when the emitting source approaches the measuring site, e.g., ρ ∼ 2(AΓ ), and
hence the noise becomes recognizable.

The results in Fig. 1.43(b) hold when the dipole moment of the emitting source is
parallel to the measuring (long and short) dipoles, i.e., θ = 0. The study was extended to
various values of θ and the results (for a half-space with ρ0 = 4×103 Ω m) are shown in
figs. 7.1.6 and 7.1.7 of Ref. [125]. These figures indicate again that, although the ΔV/L
values change from case to case, the “ratio (Long/Short)” retains the same behavior as in
Fig. 1.43(b).

Recall that in all cases treated above, the middle point of the short dipole AB does not
coincide with the middle point of the long dipole AΓ . We shall call such cases asymmetric.
We emphasize that the asymmetric configuration plays a decisive role in recognizing easily
the noise emitted from nearby “artificial” sources.

In short, the configuration recommended for an easy recognition of noise is the follow-
ing: the noise source and the remote electrode lie on the same side of the measuring
site, or simply when the remote electrode is installed very close to the noise source.

The study of the case (3) of § 1.2.3 which applies to the general case where noise source
is not necessarily collinear with the measuring dipoles, can be found in Refs. [125, 145,
143].

1.7.7.2 Conductive edges embedded in a more resistive homogeneous medium

Detailed analytical results for a paraboloidal edge have been reported in Refs. [147, 144,
90] (see also subsections 6.4.1, 6.5.1 and 7.2.1 of Ref. [125]) and for an elongated con-
ductive spheroid in Ref. [144] (see also subsections 6.5.3, 6.6.1 and 6.6.2 of Ref. [125]).

Let us now summarize these results by starting from the case of a paraboloidal edge (see
Fig. 1.44). Consider a paraboloidal region of conductivity σ embedded in a host medium
of conductivity σ ′. We assume the paraboloidal coordinates [69]

x = λμ cos(φ), y = λμ sin(φ), z =
1
2
(λ 2−μ2) , (1.75)

where φ ∈ [0,2π], μ,λ ∈ [0,∞). The surfaces of equal λ and μ are parabolic surfaces of
revolution, and the equal φ surfaces are planes that intersect each other along the z-axis.
The results show that just outside the edge, the amplitude of the electric field Eoutside (along
êμ , see Fig. 1.44(d)) close to the vertex (but not very close to it) varies as ∝ 1/δ , where δ
denotes the distance of the measuring site from the surface of the paraboloid (but along êμ ).
This 1/δ behavior, which seems to be a general one for “edge effects” (e.g., Ref. [144]),
could be explained, in the frame of the accumulation of charges close to the interface
between two media with different conductivities. At distances δ of the order of the (linear)
dimension of the edge, the electric field decreases with δ slower than the field of a point
charge (which varies as 1/δ 2), giving an almost 1/δ dependence. As the distance becomes
appreciably larger than the (linear) dimension of the edge, the field dependence turns first
to 1/δ 2, and finally, at even longer distances, to 1/δ 3, see Fig. 1.44(b). Furthermore, a
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Fig. 1.44 The case of a paraboloidal edge for a conductivity ratio σ/σ ′ = 1000/1. The colors denote
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√
km separating

the regions with conductivities σ and σ ′. (b) Eoutside as a function of δ (along êμ ) measured from various
points on its surface (their ordinate z are given in the inset). (c) The ratio Eoutside/Ehost on the xz plane. (d)
The potential (due to a dipole source: 4×22.6 A km lying inside the conductive medium at a distance from
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scale) AB, AΓ or A′Γ ′, B′Γ ′ . (e) and (f): The “Ratio (Long/Short)” for the two dipole configurations AB,
AΓ or A′Γ ′, B′Γ ′ as a function of the position of A or A′, respectively. Taken from Ref. [90]. Copyright
(1999), American Geophysical Union. Reproduced by permission of American Geophysical Union.
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study of the equipotential surfaces surrounding a (paraboloidal) edge shows that, in order
to find significant (and hence measurable) values of the electric field, we should measure
along êμ . Thus, in order to detect measurable values of the electric field, according to the
usual formula ΔV/L, the line connecting the two electrodes should be perpendicular to the
surface of the edge(i.e., oriented along êμ ). Since the electric fields show a “slow” variation
like ∝ 1/δ – we conclude that they should show a small variation when the measurements
are carried out at neighboring sites such that L� δ . This is the basis of the ΔV/L criterion.
Furthermore, the calculations show that, if two measuring dipoles have lengths around a
few tens of meters and a few km respectively, they both give comparable ΔV/L values, if
they are both directed perpendicularly to the paraboloidal edge; see Fig. 1.44(e) and (f).

The same conclusion is reached for other cases of conductive edges, such as the electric
field Eoutside at one end of the major axis of an elongated spheroid; see point (3) in § 1.7.2.3.

By summarizing, the physical basis for the validity of the ΔV/L criterion for the SES
stems from the following fact: at long distances from a dipole source but close to an
“edge”, the amplitude of the electric field exhibits a slow 1/δ -behavior (or, in general,
1/rθ , where θ ≈ 1; see §1.7.2.3). Hence, the main characteristic of the distant source
assumption (see Section 1.2), i.e., the slow variation of the amplitude of the electric
field versus the distance when measuring along a certain direction at sites close to each
other, practically remains.

1.7.7.3 Numerical investigation of the ΔV/L criterion in the model proposed for the

explanation of the SES selectivity

In § 1.7.1, we considered the model of a conductive path terminating close to the surface
of a two-layer medium and found that the SES are detectable in the region above the upper
end of the conductive path. One may wonder, if the ΔV/L criterion still holds in this region.
Thus, we now comment on its validity in the model shown in the insets of Figs. 1.29(A)
and 1.29(B) by examining whether the “Ratio (Long/Short)”, i.e., the ratio of the ΔV/L
values for the long and the short dipoles, markedly differs from unity.

The case of the model of Fig. 1.29(A) has been studied in Ref. [145] by considering
the “Ratio (Long/Short)” (see § 1.7.7.1) for the asymmetric configuration of a set of a long
dipole (5 km) and a short dipole (50 m) placed at various distances from the projection
“O” on the Earth’s surface of the top of the conductive path. These (collinear) dipoles
were assumed to be placed parallel to the projection of the conductive path on the Earth’s
surface (which is the direction of the dominant electric field). The results show that only
at short distances from the top of the conductive path (i.e., a few times its width) the “ratio
(Long/Short)” markedly deviates from unity, as expected. Otherwise, this ratio approaches
unity (it only differs from unity by 20%, or so).

We now proceed to the case of the model of Fig. 1.29(B): Figures 1.45(A),(B) show the
“Ratio (Long/Short)” for the asymmetric dipole configurations of a set of a long dipole and
a short dipole placed at various distances x as shown in the top part of each figure, x being
measured from the projection on the Earth’s surface of the upper end of the conductive
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Fig. 1.45 The “Ratio (Long/Short)” for the model, depicted in Fig. 1.29(B). The collinear dipoles (short:
AB, long: AΓ = 3 km) are parallel to the projection of the conductive path on the Earth’s surface, at
various y-values given in the inset. Taken from Ref. [90]. Copyright (1999), American Geophysical Union.
Reproduced by permission of American Geophysical Union.

path. These figures again show that only at very short distances from the upper end of
the conductive path, and at small y-values (i.e., y ≈ 0, 0.5 km), the “Ratio (Long/Short)”
markedly differs from unity, but it otherwise remains close to unity.

1.7.8 Explanation of the difference between SES polarization and MT polarization

We explain below that when measuring the SES, arising from an emitting dipole source
that forms a certain angle with the neighboring conductive path, close to an “edge” the
ratio of the two SES components is different from that of the MT variations at the same
frequency range.

Consider the case of Fig. 1.29(B) or Fig. 1.30(b), i.e., a current dipole source lying at a
distance D from a channel of high conductivity whose projection on the Earth’s surface is
assumed along x-axis. We use the same parameters (as well as the procedure of calculation)
as in § 1.7.5.2. The electric current dipole source (ECD) is assumed to be oriented along
either the x-axis or the y-axis. For the sake of comparison, the calculation is repeated for
a source, which is considered as an incident plane electromagnetic wave (PEM) circularly
polarized on the x–y plane. The results of the calculations (as far as only the direction
of the field is concerned) are given in Figs. 1.46(a) and 1.46(b), which correspond to the
cases when the ECD is assumed either parallel or perpendicular to the projection of the
conductive channel on the Earth’s surface, respectively. The polarization of the measured
electrical variations due to PEM is depicted, at each site, by a red circle or ellipse, and the
direction of the signal due to ECD by a short blue line.

We first discuss the results of the variations due to PEM. An inspection of Figs.
1.46(a),(b) shows that at those sites which are relatively far from the projection of the
channel on the Earth’s surface, there is no preferred direction and hence the results are
represented by circles. As we approach the projection of the channel, the circles transform
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(a)

(b)
Fig. 1.46 Calculated directions (red circle or ellipse for PEM and blue lines for ECD) of the electric field
at various points close to the projection on the Earth’s surface (thick yellow line) of the conductive channel
shown in Fig. 1.29B with w = 500 m. Panels (a) and (b) correspond to different orientations of the ECD,
i.e., along x-axis or y-axis, respectively. Each square corresponds to 1 km × 1 km. The source is located
at the point x =−100 km, y = 0.5 km, z = 0.5 km. For the resistivity parameters used see § 1.7.5.1. Taken
from Ref. [144].

gradually to ellipses. These results are compatible with those intuitively expected: for a
homogeneous half-space or for a horizontally layered medium, at large distances from the
channel, the electrical measurements should not show any preferred (horizontal) direction;
on the other hand, at short distances from the conductive channel, the direction along the
(projection of the) channel should correspond to larger electric fields than that perpendic-
ular to the channel.

We now turn to the discussion of the results concerning the direction of the measured
electric field due to ECD. This is mainly regulated from the orientation of the emitting
dipole, as can be seen from a comparison of Figs. 1.46(a) and 1.46(b). Since we are mainly
interested for sites close to the edge, Fig. 1.46(b) shows that when ECD is along the y-axis,
the electric field measured at sites close to the edge is in general almost perpendicular to
the projection of the channel on the Earth’s surface. On the other hand, in Fig. 1.46(a),
where ECD is parallel to the x-axis, the electric field measured at sites close to the edge,
forms with the projection of the channel an angle appreciably smaller than 90◦. In other
words, the “polarization” of the signal due to ECD is drastically different in Figs. 1.46(a)
and 1.46(b), thus indicating that:

The information related with the directionality of the current dipole source is not “lost”
when the transmission of the current is taking place mainly through the conductive
channel.

It is evident that when ECD forms any angle ϕ(0 < ϕ < 90◦) with the conductive
channel, the direction of the signals measured at sites close to the edge can be found from
a combination of Figs. 1.46(a) and 1.46(b). By studying the difference in the direction of
the electric field, measured at sites close to the edge between the cases ECD and PEM, we
find that it minimizes when the emitting dipole is almost parallel to the conductive path
and maximizes when the emitting dipole is almost perpendicular to the path.
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Thus, a considerable difference between SES polarization and MT polarization seems
likely to happen in most cases, since in the case of ECD there exists a significant
current dipole component perpendicular to the path as explained in § 1.7.3.

In other words, the SES direction is governed by the angle of the dipole source
with the neighboring conductive path. Thus, it does not have to coincide with the MT
polarization coming from circularly polarized EM waves “traveling” vertically.

1.8 Transmission of electric signals in dielectric media: time- and

frequency-dependence

1.8.1 The propagation regime and the diffusion regime of electromagnetic fields.

Isotropic and homogeneous medium

Following subsection 8.1.2 of Ref. [125], we restrict ourselves below to the simple case of
a plane wave of angular frequency ω propagating along the z-direction in an isotropic and
homogeneous medium of conductivity σ . The electric field E is assumed polarized in the
x-direction:

Ex = E0 ei(ωt−kz) (1.76)

and the magnetic field H in the y-direction:

Hy =
E0k
μ0ω

ei(ωt−kz) (1.77)

The complex wave number k here is determined by the condition that the fields E, H

should satisfy Maxwell’s equations; by inserting Eqs. (1.76) and (1.77) into the equation
for the propagation of an electromagnetic field (which results from Maxwell’s equations):

∇2Ex = σμ0
∂Ex

∂ t
+ εμ0

∂ 2Ex

∂ t2 , (1.78)

we find the following relation between the wavenumber, angular frequency and the mate-
rial properties σ , ε = ε ′ − iε ′′:

k2 =
(
ε− i

σ
ω

)
μ0ω2 = (1− i tanδ )μ0ε ′ω2, (1.79)

for tanδ see Eq. (1.86), below. This relation contains all the essential information con-
cerning the transmission of signals and leads to:

Ex = E0e−k′′z ei(ωt−k′z) (1.80)

The imaginary part k′′ of k describes how the field strength decreases with distance,
E0 e−k′′z. It is associated with energy dissipation. This quantity k′′ can be determined by
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measuring the amplitude at two locations z1, z2 and applying the relation:

amplitude ratio = exp
[−k′′(z2− z1)

]
(1.81)

The induction skin depth is equal to 1/k′′ and simply denotes the distance over which
the field strength attenuates to 1/e of its original value.

The real part k′ describes the propagation of the electric field and its oscillations
through the factor ei(ωt−k′z), where k′ = 2π/λ and λ is the wavelength. The quantity k′
is experimentally determined through the relation:

phase shift = (z2− z1)k′ (1.82)

The quantities k′, k′′ are explicitly connected to the material properties through:

k′ = ω
√
μ0ε ′

√
1+ cosδ
2cosδ

and k′′ = ω
√
μ0ε ′

√
1− cosδ
2cosδ

(1.83)

Measurements of the amplitude ratio and the phase shift, lead as mentioned to the de-
termination of k′, k′′. The real ε ′ and imaginary ε ′′ parts of ε are obtained from:

ε ′ =
k′2− k′′2

μ0ω2 (1.84)

ε ′′ =
σ
ω

+2
(k′2− k′′2)
μ0ω2 (1.85)

and hence the loss tangent is given by [142]:

tanδ =
σ
ωε ′

+
ε ′′

ε ′
= 2

k′k′′

(k′2− k′′2)
(1.86)

Low frequencies, i.e., ωε ′ < σ . At low frequencies the displacement currents are neg-
ligible in comparison to the conductivity currents. In this case Eqs. (1.78) and (1.79) take
the form:

∂ 2Ex

∂ z2 = σμ0
∂Ex

∂ t
(1.87)

k = (1− i)
(σωμ0

2

)1/2
(1.88)

Equation (1.87) shows that the electric field obeys the diffusion equation (and therefore
this frequency range is called the diffusion regime). The typical t1/2 dependence, which
characterizes a diffusion process, can now be presented as follows.
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For an electromagnetic pulse emitted at z = 0 at t = 0: the electric field amplitude
measured at a fixed time t versus the distance z, reaches a maximum at a distance z = zm:

zm =
(

2t
μ0σ

)1/2

. (1.89)

This maximum of the pulse travels with a velocity:

vm ≡ dzm

dt
= (2μ0σt)−1/2 (1.90)

and its amplitude decreases versus the time as 1/t. The phase velocity vph can be found by
inserting Eq. (1.83) into the relation vph = ω/k′:

vph =
1√
μ0ε ′

√
2cosδ

1+ cosδ
(1.91)

The electric field measured at a given distance z from the source varies with time, so that
the signal is detected over a long time interval; the maximum occurs after a time Δ t:

Δ t =
μ0σz2

6
(1.92)

This time Δ t is appreciably larger than the time z/
√
κ ′ (where κ ′ = ε ′/ε0) correspond-

ing to the transmission of either a high-frequency signal in a conductive medium or of (any
frequency) signal in an insulating medium.

High frequencies, i.e., ωε ′ > σ . The conductivity currents are negligible in compar-
ison to the displacement currents. In this case Eq. (1.86) shows that tanδ = ε ′′/ε ′ (and
considering that ε ′′/ε ′ � 1), Eqs. (1.78) and (1.79) take the form:

∂ 2Ex

∂ z2 = εμ0
∂ 2Ex

∂ t2 (1.93)

k = ω(μ0ε ′)1/2
(

1− i
ε ′′

ε ′

)1/2

≈ ω(μ0ε ′)1/2
(

1− i
2
ε ′′

ε ′

)
(1.94)

Equation (1.93) shows that the electromagnetic field satisfies the wave equation so that
this high-frequency regime is known as the propagation regime. In this range (because
ε ′ 
 ε ′′), the waves propagate without significant attenuation and dispersion. In absence
of all dissipation, i.e., δ = 0, Eq. (1.91) gives:

vph =
1√
μ0ε0κ ′

=
c√
κ ′

(1.95)

We see that, for very high frequencies, there is no dispersion, i.e., all velocities are essen-
tially constant and they have a value lower than c by a factor 1/

√
κ ′.



100 1. Introduction to Seismic Electric Signals

Thus, in short, in a conductive medium at low frequencies, the electric field obeys a
diffusion type equation (diffusion regime), while at high frequencies, the electromag-
netic field satisfies the wave equation (propagation regime).

As a result, when considering low-frequency electric signals transmission in a con-
ductive medium as in the case of SES: (1) The velocity v is appreciably smaller than
the value c/

√
κ ′ (c the speed of light in vacuum), which only holds in absence of

dissipation. (2) The time Δ t, that is necessary for the transmission to a distance z, is
appreciably larger than that expected from the usual rough guess Δ t ≈ z/(c/

√
κ ′).

(3) The duration recorded at a remote site is appreciably longer than the emitted true
duration of a short-duration pulse.

1.8.2 Electric field from a dipole current source lying close to a conductive path.

Frequency dependence

The frequency dependence of the electric field produced by a current dipole source lying
inside or very close to a cylinder of infinite length (Fig. 1.31(a)) and high conductivity
(σ ), embedded in a significantly less conductive medium (σ ′), was investigated in detail
in Ref. [148]. The study was also extended to the case when the dipole is located inside or
very close to a highly conductive layer (σ ), of infinite extent, embedded in a significantly
less conductive medium (σ ′) (Fig. 1.31(b)).

The main conclusions were the following. At large distances d from the source and for
appreciably low frequencies, i.e., smaller than around fc = 1/(2πμσR2) for the case of the
cylinder or some f0 = 1/(μσw2) for the case of the layer, the electric field follows mainly
the properties of the outer (host) medium and hence its attenuation is governed by a skin
depth δOUT of the outer medium, i.e., that for a full space of conductivity σ ′. For higher
frequencies, i.e., f > fc or f > f0 for the case of the cylinder or layer, respectively, the
electric field is attenuated with a skin depth significantly smaller than δOUT, with a lower
limit δIN, the skin depth in a full space of conductivity σ . The static dependence is valid
as long as the distance d is appreciably smaller than the “wavelength” in the host medium,
but larger than the “wavelength” in the internal highly conductive medium.

An example of practical interest is given for a highly conductive layer in Fig. 1.47. It
depicts the electric field Ez measured at the points in the middle of the conductive layer
versus d/w, for various distances D of the source from the layer (see the inset of Fig. 1.47).
The calculation of Fig. 1.47 was made for the frequency 0.1 Hz, for various D values and
for a certain width w = 500 m (the calculation was repeated at the same frequency, for a
certain D value, i.e., D = 5 km, but for various widths w = 100 to 1000 m and the results
are given in Ref. [148]). These results show that:
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Fig. 1.47 The amplitude
of the electric field Einside
versus d/w, for various val-
ues of the distance D (=
1, 3, 5, 10 km, see the in-
set) of the emitting dipole
from a given conductive
layer (w = 500 m). For values
d/w = 102 or larger, all curves
practically coincide. Conduc-
tivity ratio σ/σ ′ = 4000/10.
Source 22.6×102 A km. Fre-
quency f = 0.1 Hz. The point
with asterisk corresponds to
d = 100 km. Taken from
Ref. [148].

At long distances, i.e. d 
 D, d 
 w, the amplitude of the electric field practically
does not depend either on the exact distance D from the conductive layer (or from
the exact value of its width w) and almost follows the properties of the external more
resistive medium.

1.8.3 The electric signal recorded at a remote site. Time domain

The characteristics (amplitude, duration) of the signal at remote distances d from a current
dipole source emitting with a time dependence of the form f (t) =Θ(t)exp(−t/τ) were
studied in detail in Refs. [160, 148]. The dipole source is located either inside a full volume
of conductivity σ ′ or inside a conductive half-space at a depth h(� d):

(1) In the case of a homogeneous medium of conductivity σ ′, a certain time scale
τ0 = μσ ′d2/4 exists (governed solely by the properties of the medium and the distance d
from the source), so that the following main conclusions hold: (a) If τ � τ0, the recorded
signal has an enlarged duration of around τ0 and an amplitude orders of magnitude smaller
than that corresponding to the static case. (b) If τ > τ0, the recorded signal has duration
almost equal to that of the emitted signal, it arrives after a time of around τ0 (due to the
“diffusion regime”), and its amplitude approaches that of the static case. An example is
given in Fig. 1.48. This figure depicts the amplitude of the electric field measured along
the direction of the dipole for various values of the “relaxation time” τ of an emitted sig-
nal. An inspection of this figure shows that, for long “relaxation times”, i.e., τ 
 τ0 (τ0 is
of the order of 1 sec if σ ′ ≈ 10−3 S/m and d = 100 km), the maximum amplitude of the
recorded signal approaches the value expected from the static (i.e., if f (t) = 1) calcula-
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tion; on the other hand, for short “relaxation times”, i.e., τ � τ0, the maximum amplitude
is smaller by order(s) of magnitude. In the latter case the amplitude is almost proportional
to the value of τ .
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Fig. 1.48 Amplitude of the electric field versus time of a signal recorded at a distance d =100 km from a
current dipole source IlΘ(t)exp(−t/τ), where Il = 1 A m, located in a homogeneous conductive medium
with resistivity ρ ′(= 1/σ ′) = 1000Ω m. The curves correspond to various τ values lying between τ = 1 ms
and 1000 s, as calculated in Ref. [160]. Note that for short values of τ , the maximum value of the signal
is almost proportional to τ . Taken from Ref. [148].

Fig. 1.49 Schematic diagram that shows
how the signal (emitted from a horizontal
current dipole source at a depth h and
recorded at an observation point located
on the surface of a half-space) arrives
in two parts: “semi-diffusing” path h–d
(that arrives first), and “solely-diffusing”
direct path (that arrives second). Reprinted
from Ref. [125], Copyright (2005), with
permission of TerraPub.
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(2) In the case of the current source located within a conductive half-space, the re-
sults could be interpreted in simple words as follows. The signal recorded at a remote
observation site on the interface, arrives in two parts (Fig. 1.49): the first part “dif-
fuses” vertically from the source to the interface and then propagates horizontally to
the measuring site. It has a duration significantly smaller than the second part, which
“diffuses” directly from the source to the easuring site through the conductive medium.
The role of the second part is more important for larger conductivity σ ′ and becomes
dominant for cases of practical interest like SES transmission in the Earth.

For example, let us consider the case of a current dipole source of the form Il(t) =
IlΘ(t) exp(−t/τ) with Il = 1 A m located inside a conductive half-space with resistivity
ρ ′(= 1/σ ′) = 1,000 Ω m. The results of the calculation for short “relaxation times”, e.g.,
τ = 10, 100 and 200 ms given in Ref. [148] show that the first part (arriving after almost
0.1 s in all cases) has an amplitude which is larger than the second part. On the other hand,
the second part becomes dominant at significantly longer “relaxation times”, e.g. τ = 10
and 100 s, see Figs. 1.50(A),(B) and the amplitude of this solely diffusing part reaches the
static value. For example, the amplitude becomes 1.6×10−13 V/m and 2.4×10−13 V/m for
τ = 10 and 100 s respectively, which is comparable with the value of around 3×10−13 V/m
in the static case.

1.8.4 Discussion on the explanation of the SES detectability and selectivity

We focus on the detectability at long distances of the low frequencies only. The results
mentioned in § 1.8.2 confirm the analytical results summarized in § 1.7.2 and § 1.7.4 in
the following sense: for appreciably low frequencies (e.g., smaller than around 1 Hz or
0.1 Hz as in the case of SES) and for distances d ≈ 100 km in media with σ ′ in the range
10−4–10−3 S/m, the electric field values approach those of the static case. Thus, we can
follow the same arguments as in § 1.7.4.1 and explain the SES selectivity.

We now turn to § 1.8.3, which concludes that for an emitted signal with τ ≥ 10 s, the
amplitude of the second solely diffusing part (which dominates, see Fig. 1.50) becomes
almost comparable to that of the static case. The overlapping of a considerable number
of such signals (in view of the results of the static calculation in § 1.7.2.3) may reach de-
tectable values at remote distances, a point to which we now turn. Let us assume a SES
generation mechanism like that of charged dislocations discussed in § 1.6.3. This mecha-
nism has a relaxation time [160] of τ = 10–100 s. We consider a sequence of neighboring
blocks, each one emitting a signal with τ ≥ 10 s. Each block may have [101] a width, say, a
few hundreds of meters (§ 1.6.3) and the mechanical relaxation needs a time τm

<∼ 0.1 s to
“travel” through each block (i.e., with a velocity of a few to several kilometers per second).
Hence, we may assume that every tenth of a second or so an electric signal is emitted and,
after taking into account the dimensions of the source (which, of course, for EQs depends
on the magnitude, and may reach several kilometers), we may consider a sequence of the
order of 102 such signals. So the electric field value at remote distances (d ≈ 100 km) will
be equal to the number of blocks multiplied by the value emitted from each block. This
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alternatively justifies why in the static case of § 1.7.4.1 we used a value 102 larger than
that corresponding to each of the blocks considered by Slifkin [101], on the basis of which
we deduced significant electric field values, i.e., larger than 10 mV/km, at distances of
d ≈ 100 km.

In other words, in the Earth, a sequence of signals emitted every ≈0.1 s, with long
duration each (e.g., with τ ≈ 10–100 s), may lead to significant electric field values at
remote distances (d ≈ 100 km) due to the overlapping of their “solely diffusing” parts.

1.8.5 Discussion on the time-difference between the SES electric field variation and

the associated magnetic field recordings

We first recall (see § 1.3.6.1) that the SES electric field variations before the Mw6.6
Grevena-Kozani EQ precede the associated magnetic (DMM) recordings (note that the lat-
ter correspond to dB/dt, not B) by a time of 1–2 sec. We also recall that (see § 1.8.3), the
time scale τ0 = μσ ′d2/4 calculated, for example, for a medium with resistivity 2000 Ω m
at a distance 80 km (which is the distance between IOA and the Kozani-Grevena EQ epi-
center) is around 1 second.

If a dipole current source is located within a conductive half-space (with the afore-
mentioned resistivity) at a depth (say 5 to 10 km) appreciably smaller than the epicentral
distance, the signal arrives in two parts (see § 1.8.3 and Fig. 1.49). It is the second solely
diffusing part that dominates the recordings at epicentral distances of the order of 100 km
for the reasons discussed above in § 1.8.3 and § 1.8.4. Thus, we focus below our discus-
sion on this “solely diffusing” part. In view of the SES transmission model (i.e., a current
dipole source lying close to a highly conductive path, see § 1.7.1), we study below, in the
time domain, the case of a conductive cylinder embedded in a more resistive medium.

We solve the problem in the frequency domain and finally calculate the result in the time
domain by inverse Fourier transform. The detailed procedure for the latter calculation can
be found in Ref. [161]. As an example, we present in Fig. 1.51 the results for a cylinder
of infinite length with radius R = 500 m (having a small resistivity 2 Ω m, typical of a
fault) embedded in a more resistive medium (with resistivity 2000 Ω m, typical of the
Earth’s upper crust). We assume that the main axis of the cylinder lies along the z-axis
of a cylindrical system of coordinates (ρ,φ ,z). The fields are studied at a distance z =
80 km far from a (point) current dipole source, which, for simplicity, is oriented along
the z-axis (a more realistic case should consider of course a current dipole source having
a considerable component perpendicular to the conductive path for reasons discussed in
§ 1.7.3). The observation point is taken at a distance ρ = 1 km from the cylinder axis, i.e.,
at ρ = 2R = 1 km. The current emitted i(z, t)[= δ (z)Θ(t)Θ(Td− t)], is a boxcar pulse with
duration Td = 11 s comparable to the typical duration (see table I of Ref. [153]) of the
pulses in the corresponding SES activities.

Two main results emerge from this calculation. (1) Concerning the electric field compo-
nents: the component Eρ (i.e., perpendicular to the surface of the cylinder, associated with
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Fig. 1.51 Results for a conductive cylinder of infinite extent (with its axis along the z-axis) embedded in
a less conductive medium. A point current dipole source (oriented along the z-axis) is located at the origin
(0,0,0) of cylindrical coordinates (ρ,φ ,z). The fields Eρ and Bφ at an observation point with ρ = 1 km,
z = 80 km together with Ez (ρ = 0, z = 80 km) are depicted versus time. The thick line depicts the emitted
pulse. Taken from Ref. [161].

the accumulation of charges on the cylinder’s surface) reaches detectable values earlier
than the component Ez (which accompanies the high current density inside the cylinder).
(2) The magnetic field Bφ (which is measured again at ρ = 2R = 1 km, z = 80 km) ap-
pears practically simultaneously with Ez (see Fig. 1.51) and their forms seem to coincide,
as expected.

In other words, the magnetic field Bφ , which accompanies the high current density
flowing inside the cylinder, is “delayed” compared to the field Eρ that signifies the
accumulation of charges at the interface.

In the simple model of Fig. 1.51, no frequency dispersion of the dielectric constant (as
well as of the conductivities, inside and outside the cylindrical path) was assumed. The
results do show that the Eρ -field “precedes” the B-field. However, a careful inspection of
Fig. 1.51 reveals that the model cannot explain that the E-field is recorded even before
dB/dt (note that the latter is not plotted), as the field experiments show (§ 1.3.6.1). At this
point, we recall the limitations of the Poynting theorem [161]: when considering non-linear
relations between the four vectors D, E, B, H and wave-vector dispersive interactions
discussed in section 8.5 of Ref. [125], the Poynting theorem does not apply. Maybe, such
nonlinear relations as well as wave-vector dispersive interactions should also be considered
together with criticality, in order to achieve a satisfactory explanation of the experimental
fact that the E-field markedly precedes dB/dt [161].
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Appendix

The instrumentation for the magnetic field measurements. The permanent recordings of
the magnetic field variations are carried out by three DANSK coil magnetometers (DMM)
directed along the directions EW, NS and Z. Furthermore, since 1996 the portable MT-1
system of Electro-Magnetic Instruments (EMI) has been also used for temporary mea-
surements. Concerning the calibration of DMM (details are given in Ref. [149]), beyond a
laboratory calibration, an in situ (i.e., at IOA station) calibration was performed by com-
paring the DMM recordings Vm(t) to those of the EMI-magnetometers and relying on the
accurate laboratory calibration of the latter which has been reported by the manufacturer.

The DMM calibration led to a Heaviside (or unit step) response function H(t):

Vm(t) =
∫ ∞

−∞
H(ξ )

dB
dt

(t−ξ ) dξ , (1.96)

that vanishes for t < 0, while for t ≥ 0
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(1.97)

with τd ≈ 0.025 s and τr ≈ 0.007 s (see Ref. [149]).

In summary, this calibration showed that, for magnetic field variations with peri-
ods larger than around half a second, DMM magnetometers act as dB/dt detec-
tors. Furthermore, upon the “arrival” of a Heaviside unit step magnetic variation, i.e,
B(t) = B0Θ(t), their output is “neutralized” after 200 ms.

The instrumentation for the electric field measurements. Low pass “1 Hz” or “10 Hz”
filters have been used. They are fourth-order active low pass filters, having two symmetric
second-order poles in the complex f -plane with a frequency response:

R( f ) =
A exp(−2πi f τd)

[1− ( f / fp)2 + i
√

2( f / fp)]2
, (1.98)

where A is the amplification, fp is the half-response frequency corner of the filter and τd is
the time delay of the filter. The expression (1.98) was applied to the laboratory measured
data for both amplitude and phase, and a nonlinear least-squares fitting was performed (see
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Fig. 1.52) using the constant chi-square (p = 95%) boundaries for the determination of the
errors in the fitting parameters which are also shown in Fig. 1.52.

Finally, Eq. (1.98) leads to an impulse response:

I(t) = 2
A
Tp

exp
[
− (t− τd)

Tp

][
sin
(

t− τd

Tp

)
−
(

t− τd

Tp

)
cos
(

t− τd

Tp

)]
Θ(t−τd). (1.99)

In the case of “10 Hz” filters, for example, Tp = 14.6± 0.4 ms and τd = 1.5± 0.4 ms,
determined by the aforementioned laboratory calibration; see Fig. 1.52.
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Part II

Natural Time Foundations



2. Natural Time. Background

Abstract. Time and not space poses the greatest challenge to science. Conventional time is
modeled as the one-dimensional continuum � of real numbers. This continuity, however,
does not stem from any fundamental principle. On the other hand, natural time χ , which is
a new time domain introduced by the authors in 2001, is not continuous and its values as
well as those of the energy form countable sets. Novel dynamical features hidden behind
time series in complex systems can emerge upon analyzing them in natural time, which
conforms to the desire to reduce uncertainty and extract signal information as much as
possible. The fluctuations, under time reversal, of the natural time can serve in time series
for the quantification of the long-range dependence. Natural time analysis also enables the
study of the dynamical evolution of a complex system and identifies when the system enters
a critical state. In particular, the normalized power spectrumΠ(ω) is introduced in natural
time, and its Taylor expansion leads, at low natural (cyclic) frequencies ω (ω → 0), to the
expressionΠ(ω)≈ 1−κ1ω2. The values of the coefficient κ1, which is just the variance of
natural time, i.e., κ1 = 〈χ2〉−〈χ〉2, are useful in identifying the approach to a critical point
such as SES whose κ1 value is shown to be 0.070. In addition, natural time analysis enables
the distinction between the two origins of self-similarity, i.e., whether self-similarity solely
results from long-range temporal correlations (the process’s memory only) or solely from
the process’s increments’ infinite variance (heavy tails in their distribution). In general,
however, the self-similarity may result from both these origins, a case that can be also
identified by natural time.

2.1 Introduction to natural time

In this Section, we follow Ref. [50]. In reviewing the state of physics today, a consensus
seems to emerge that we are missing something absolutely fundamental, e.g., Refs. [2, 17].
Furthermore, there is a widespread belief that, it is not space but time that in the end poses
the greatest challenge to science (e.g., p. 18 of Ref. [71]) as it will be further discussed in
the next subsection.

P.A. Varotsos et al., Natural Time Analysis: The New View of Time: Precursory Seismic Electric Signals,
Earthquakes and other Complex Time Series, Springer Praxis Books, DOI 10.1007/978-3-642-16449-1_2, 
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2.1.1 Time and not space poses the greatest challenge to science

Time, according to Weyl (see p. 5 of Ref. [67]) for example, is “the primitive form of
the stream of consciousness. It is a fact, however, obscure and perplexing to our minds,
that . . . one does not say this is but this is now, yet no more” or according to Gödel “that
mysterious and seemingly self-contradictory being which, on the other hand, seems to
form the basis of the world’s and our own existence” (p. 111 of Ref. [71]). The challenge
seems to stem from the fact that special relativity and quantum mechanics, which are the
two great (and successful) theories of twentieth-century physics, are based on entirely
different ideas, which are not easy to reconcile. (In general, the former theory, according
to Einstein [10], is an example of “principled theory” in the sense that you start with the
principles that underlie the theory and then work down to deduce the facts, while the latter
is a “constructive theory” meaning that it describes phenomena based on some known facts
but an underlying principle to explain the strangeness of the quantum world has not yet
been found.) In particular, special relativity puts space and time on the same footing, but
quantum mechanics treats them very differently, e.g., see p. 858 of Ref. [69]. (In quantum
gravity, space is fluctuating and time is hard to define, e.g., Ref. [70].) More precisely, as
far as the theory of special relativity is concerned, let us recall the following wording of
Einstein [11]:

“Later, H. Minkowski found a particularly elegant and suggestive expression . . . , which
reveals a formal relationship between Euclidean geometry of three dimensions and the
space time continuum of physics . . . . From this it follows that, in respect to its rôle in the
equations of physics, though not with regard to its physical significance, time is equiv-
alent to the space co-ordinates (apart from the relations of reality). From this point of
view, physics is, as it were, Euclidean geometry of four dimensions, or, more correctly, a
statics in a four-dimensional Euclidean continuum.” – whereas in quantum mechanics, Von
Neumann complains [28]:

“First of all we must admit that this objection points at an essential weakness which
is, in fact, the chief weakness of quantum mechanics: its non-relativistic character, which
distinguishes the time t from the three space coordinates x,y,z, and presupposes an objec-
tive simultaneity concept. In fact, while all other quantities (especially those x,y,z, closely
connected with t by the Lorentz transformation) are represented by operators, there corre-
sponds to the time an ordinary number-parameter t, just as in classical mechanics.”

Note also that Pauli [33] has earlier shown that there is no operator canonically con-
jugate to the Hamiltonian, if the latter is bounded from below. This means that for many
systems a time operator does not exist. In other words, the introduction of an operator t
is basically forbidden and the time must necessarily be considered as an ordinary number
(but recall the long-standing question that Schrödinger’s equation, as well as Einstein’s
general theory of relativity, is symmetric under time reversal in contrast to the fact that
our world is not, e.g., Ref. [35]). These observations have led to a quite extensive liter-
ature mainly focused on time-energy (as well as on “phase-action”) uncertainty relation,
proposing a variety of attempts to overcome these obstacles. The discussion of this liter-
ature, however, lies beyond the scope of the present monograph. We just summarize here
that the (conventional) time t is currently modeled as the one-dimensional continuum �
of the real numbers, e.g., p. 10 of Ref. [70] (or p. 12 of Ref. [67] in which it is stated that
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“. . . the straight line . . . is homogeneous and a linear continuum just like time”). It is the
consequences of this continuity that will be compared to the newly introduced concept of
natural time, in a sense that will be discussed later in Section 2.7.

2.1.2 Definition of natural time

In a time series comprising N events, the natural time

χk = k/N (2.1)

serves as an index for the occurrence of the k-th event [51, 52], and it is smaller than, or
equal to, unity (note that the symbol χ originates from the ancient Greek word χρ óνoς
(chronos), see the cover page, which means “time”).

In natural time analysis the evolution of the pair of two quantities (χk,Qk) is consid-
ered, where χk = k/N, N being the total number of events, and Qk denotes in general a
quantity proportional to the energy of the individual (k-th) event [51, 52]. Equivalently
with Qk, one can consider the quantity

pk =
Qk

∑N
n=1 Qn

, (2.2)

N

∑
k=1

pk = 1, (2.3)

where pk is the normalized energy emitted during the k-th event. In other words, the
evolution of the pair either (χk,Qk) or (χk, pk) is considered in natural time analysis.

For example, to perform the analysis of dichotomous electric signals (Fig. 2.1(a)),
which is frequently the case of a SES activity (see Chapter 1), we consider Qk as being
proportional to the duration of the k-th pulse [51, 52, 55, 54]. As another example, we refer
to the analysis of seismic events (Fig. 2.1(b)): we then consider the evolution of the pair
(χk,M0k) where M0k stands for the seismic moment of the k-th earthquake [51, 53, 61, 60],
since M0k is proportional to the energy emitted in that earthquake (note that M0k differs
essentially from the magnitude M, but they are interconnected [21] M0k ∝ 10cM where
c≈ 1.5, see also Section 6.1). Other examples elaborated in this monograph are: first, the
analysis of electrocardiograms (see Fig. 2.2) which will be discussed in detail in Chapter
9. Second, the case of long-duration SES activities of non-obvious dichotomous nature,
which is treated in Section 4.11. Third, the analysis of various dynamical models (among
which a case of quasi-periodic Qk, see Fig.(8.4)) in natural time which is discussed in
detail in Chapter 8.
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Fig. 2.1 (a) How a dichotomous series
of electric pulses in conventional time
t (upper panel, red) can be read in
natural time χ (lower panel, blue). The
symbol E stands for the electric field.
(b) The same as in (a), but for a series
of seismic events.

2.1.3 The “uniform” distribution

Among the various applications of natural time that will be discussed throughout this
monograph, there is the fundamental paradigm of the “uniform” distribution that corre-
sponds for example to the case when the system under study is in a stationary state emitting
uncorrelated bursts of energy:

As a “uniform” distribution we consider the case when Qk are positive independent
and identically distributed (p.i.i.d.) random variables.

In this case, the expectation value � (pk) of the point probabilities pk is � (pk) = 1/N
by virtue of Eq. (2.3).

Let us now consider the distribution

p(χ) =
N

∑
k=1

pkδ (χ−χk) =
N

∑
k=1

pkδ
(
χ− k

N

)
(2.4)
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that corresponds to the point probabilities pk. (Note that, δ (x) stands for the usual
Dirac delta function.)

As N → ∞, p(χ) for a “uniform” distribution tends to

p(χ) = 1, (2.5)

leading to an average value of natural time

〈χ〉=
∫ 1

0
χ p(χ) dχ =

1
2
. (2.6)

2.2 Time reversal and natural time

In a time series comprising N events, the effect of the time-reversal operator T̂ on Qk is
given by

T̂ Qk = QN−k+1, (2.7)

so that the first pulse (k = 1) is positioned last in the time reversed time-series, the second
becomes last but one, etc.

Thus, the time reversal operator T̂ in natural time acting on pk results in

T̂ pk = pN−k+1 (2.8)
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Fig. 2.2 (a) Schematic diagram (not to scale) of a four heartbeat excerpt of an ECG (for the notation of
the inflection points see § 9.1.1) in the usual (conventional) time domain. The durations Qm, Qm+1, Qm+2
of the three RR intervals are shown. (b) The RR interval time series of (a) read in natural time; the vertical
bars are equally spaced, but the length of each bar denotes the duration of the corresponding RR interval
marked in (a). In (c) and (d) we depict (a) and (b), respectively, but under time reversal. Reprinted with
permission from Ref. [57]. Copyright (2007), American Institute of Physics.
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Let us consider an example from the case of electrocardiogram (ECG) analysis dis-
cussed in detail in Chapter 9. Figure 2.2(a) provides a schematic diagram of a four-
heartbeat excerpt of an ECG in the conventional time domain. The durations Qm, Qm+1
and Qm+2 of the three RR (beat to beat) intervals are marked in green, red and blue, re-
spectively. In Fig. 2.2(b), we show how the RR interval time series of Fig. 2.2(a) is read
in natural time: the vertical bars are equally spaced and the length of each bar denotes the
duration of the corresponding RR interval marked in Fig. 2.2(a). We now turn to the effect
of the time reversal: Fig. 2.2(c) depicts how the four heartbeat excerpt of Fig. 2.2(a) be-
comes upon reversing the conventional time (thus the sequential order of colors–durations
in Fig. 2.2(a) has been reversed) and Fig. 2.2(b) turns to Fig. 2.2(d). Time reversal may re-
veal important elements of the dynamics of the system as will become clear, for example,
in identifying the occurrence time of an impending cardiac arrest; see § 9.4.1.

2.2.1 Interconnection of the average value of natural time with the effect of a small

linear trend on a “uniform” distribution

The way through which natural time captures the influence of the effect of a small linear
trend on a “uniform” distribution is studied on the basis [60, 58] of the parametric family
of probability density functions (cf. Eq. (2.5)):

p(χ;ε) = 1+ ε(χ−1/2), (2.9)

where the parameter ε quantifies the linear trend. Such a family of pdfs shares the inter-
esting property

T̂ p(χ;ε) = p(χ;−ε), (2.10)

i.e, the action of the time reversal is obtained by simply changing the sign of ε . A linear
measure of ε in natural time is [58] the average of the natural time itself since:

〈χ〉=
∫ 1

0
χ p(χ;ε) dχ =

1
2

+
ε
12

. (2.11)

In the following subsection, we shall show that if we consider the fluctuations of this
simple measure upon time reversal, we can obtain information on the long-range depen-
dence of Qk.

2.2.2 Quantification of the long-range dependence from the fluctuations of the

average value of natural time under time reversal

As discussed in § 1.4.1, in order to study the long-range dependence in a time series,
e.g., Qk, we have to define a scale-dependent measure (for example, F(s) of Eq. (1.12)
constitutes such a measure in DFA; see § 1.4.2).
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We shall show that such a scale-dependent measure is the one that quantifies how the
average value of natural time fluctuates upon time reversal when considering a window
of length l (= number of) consecutive events sliding through the time series Qk.

In a window of length l starting from Qm0 (thus ending at Qm0+l−1), the values of
natural time are χk = k/l for k = 1,2, . . . , l and correspond to the point probabilities pk =
Qm0+k−1/∑l

i=1 Qm0+i−1. Since under time reversal we have T̂ pk = pl−k+1, the fluctuations
of the average value of natural time under time reversal could be quantified by

Δχ2
l ≡ � [(〈χ〉−〈T̂χ〉)2] = �

⎧⎨
⎩
[

l

∑
k=1

k
l
(pk− pl−k+1)

]2
⎫⎬
⎭ , (2.12)

where the symbol � [. . .] denotes the expectation value obtained when a window of length
l is sliding through the time series Qk. The evaluation of � [. . .] can be carried out either
by full computation or by Monte Carlo; the full computation refers to the case when the
window is sliding consecutively event by event, i.e., m0 takes all the N − l + 1 (m0 =
1,2, . . .N− l + 1) possible values, whereas in Monte Carlo evaluation m0 is selected ran-
domly. The argument of � [. . .] is computed by substituting pk = Qm0+k−1/∑l

i=1 Qm0+i−1

and pl−k+1 = Qm0+l−k/∑l
i=1 Qm0+i−1. The sum of the resulting values over the number of

the selected segments (different m0) is assigned to � [. . .].
By expanding the square in the last part of Eq. (2.12), we obtain

Δχ2
l =

l

∑
k=1

(
k
l

)2

� [(pk− pl−k+1)2]+ ∑
k �=m

km
l2 � [(pk− pl−k+1)(pm− pl−m+1)]. (2.13)

Equation (2.3) constitutes the basic relation that interrelates pk, i.e., ∑l
k=1 pk = 1 or equiva-

lently pk = 1−∑m�=k pm. By subtracting from the last expression its value for k = l−k+1,
we obtain pk− pl−k+1 =−∑m�=k(pm− pl−m+1), and hence

(pk− pl−k+1)2 =− ∑
m�=k

(pk− pl−k+1)(pm− pl−m+1) . (2.14)

By substituting Eq. (2.14) into Eq. (2.13), we obtain

Δχ2
l = −

l

∑
k=1

(
k
l

)2

∑
m�=k

� [(pk− pl−k+1)(pm− pl−m+1)]

+ ∑
k �=m

km
l2 � [(pk− pl−k+1)(pm− pl−m+1)] (2.15)

which simplifies to

Δχ2
l =−∑

k,m

(k−m)2

l2 � [(pk− pl−k+1)(pm− pl−m+1)] . (2.16)



126 2. Natural Time. Background

The negative sign appears because (pk − pl−k+1) and (pm − pl−m+1) are in general
anti-correlated in view of Eq. (2.14). We notice that the quantity −� [(pk − pl−k+1)
(pm− pl−m+1)] in Eq. (2.16) is similar to the covariance Cov(pk, pm) ≡ �

{
[pk−� (pk)]

[pm−� (pm)]
}

, thus capturing the correlations between pk and pm as they appear within
the window length l under time reversal. Hence, Δχ2

l due to Eq. (2.16) may reveal non-
trivial correlations between the elements of the time series Qk.

Let us now assume that Qk are long-range correlated, thus it may be justified to use the
ansatz (see § 1.5.1.1):

−� [(pk− pl−k+1)(pm− pl−m+1)] ∝
(k−m)2χH

l2 , (2.17)

where χH is a scaling exponent and we divided by l2 because the probability pk is expected
to scale with 1/l in view of ∑l

k=1 pk = 1. Substituting Eq. (2.17) into Eq. (2.16), we have

Δχ2
l ∝ l4+2χH /l4 (2.18)

so that

Δχl

(
≡
√
Δχ2

l

)
∝ lχH . (2.19)

Equation (2.19) reveals that the scaling exponent χH can be determined from the slope
of the logΔχl versus log l plot.

2.2.2.1 An example from fractional Brownian motion and fractional Gaussian noise

time series

In order to examine the validity of the above result of Eq. (2.19) when the quantities
Qk come from fractional Brownian motion (fBm) or fractional Gaussian noise (fGn) (see
§ 1.5.1.1), we employ the following procedure. First, we generate fBm (or fGn) time series
Xk (consisting of 2×104 points) for a given value of the self-similarity index H using the
Mandelbrot–Weierstrass function [25, 44, 13] of Eq. (3.37) described in detailed later in
§ 3.4.3; see also Ref. [60]. Second, since Qk should be positive, we normalize the resulting
Xk time series to zero mean and unit standard deviation and then add to the normalized
time series Nk a constant factor c to ensure the positivity of Qk = Nk + c (for the purpose
of the present study we used c = 10). The resulting Qk time series is then used for the
calculation of the fluctuations of Δχl versus the scale l which are shown in Figs. 2.3(a)
and 2.3(d) for fGn and fBm, respectively. The upper three panels of Fig. 2.3 correspond to
fGn and the lower three to fBm. We observe that:
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For fGn we have the interconnection (see Fig. 2.3(b)) χH ≈H−1 corresponding to
descending curves(see Fig. 2.3(a)).

For fBm the interconnection turns (see Fig. 2.3(e)) to χH ≈ H corresponding to
ascending curves (see Fig. 2.3(d)).

In order to judge the merits or demerits of the procedure proposed here for the determi-
nation of the scaling exponent, we compare Figs. 2.3(b) and 2.3(e) with Figs. 2.3(c) and
2.3(f), respectively, that have been obtained by DFA (§ 1.4.2). This comparison reveals that
the results are more or less comparable for fGn, while for fBm the exponent χH deviates
less from the behavior of an ideal estimator of the true scaling exponent (drawn in dashed
green) compared to the exponent αDFA obtained from the DFA method, especially for the
largest H values.

2.3 Characteristic function. Mathematical background

Here, we recapitulate some useful properties related to the notion of the characteristic
function in Probability Theory. These are given here without proofs, which can be found
in Ref. [12]. For further studies see Ref. [7].

2.3.1 Definition of the characteristic function

Definition 2.1. Let X be a random variable with probability distribution F . The character-
istic function of F (or of X) is the function ϕ defined for real ζ by

ϕ(ζ ) =
∫ +∞

−∞
eiζX F{dX}= u(ζ )+ iv(ζ ), (2.20)

where u(ζ ) = ℜ[ϕ(ζ )] and v(ζ ) = ℑ[ϕ(ζ )].
For distributions F with a probability distribution function f

ϕ(ζ ) =
∫ +∞

−∞
eiζX f (X) dX . (2.21)

According to Ref. [12], we make the following terminological note. In the accepted
terminology of Fourier analysis ϕ is the Fourier–Stieltjes transform of F . Such transforms
are defined for all bounded measures and the term “characteristic function” emphasizes
that the measure has unit mass. (No other measures have characteristic functions.) On the
other hand, integrals of the form (2.21) occur in many connections and one can say that
Eq. (2.21) defines the ordinary Fourier transform of f . The characteristic function of F is
the ordinary Fourier transform of the pdf f (when the latter exists), but the term Fourier
transform applies also to other functions.
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We now note that the function Φ(ω), defined as

Φ(ω) =
∑N

k=1 Qk exp
(
iω k

N

)
∑N

n=1 Qn
=

N

∑
k=1

pk exp
(

iω
k
N

)
, (2.22)

is a characteristic function of pk for all ω ∈�.

2.3.2 Properties of the characteristic function

Definition 2.2. The moments mn and the absolute moments Mn of X are given by

mn =
∫ +∞

−∞
XnF{dX}, (2.23)

and
Mn =

∫ +∞

−∞
|X |nF{dX}. (2.24)

The following important theorem holds [12]:

Theorem 2.1. If Mn < ∞, the n-th derivative of ϕ exists and is a continuous function given
by

ϕ(n)(ζ ) = in
∫ +∞

−∞
eiζX XnF{dX} (2.25)

leading to

ϕ ′(0) = im1, (2.26)
ϕ ′′(0) = −m2, (2.27)
ϕ ′′′(0) = −im3, etc. (2.28)

It is important to note that the converse in Eq. (2.27) is also true: If ϕ ′′(0) exists, then
m2 < ∞. For example, the function ϕα(ζ ) = exp(−|ζ |α) is not acceptable as a char-
acteristic function when α > 2, because the second moment of a distribution should be
non-vanishing (note that this fact is important for understanding the applications of Lévy
α-stable distributions in physics, e.g., see Refs. [27, 46, 47]).

Thus, the moments mn of the distribution are calculated from the behavior of the char-
acteristic function as ζ → 0.

There exists [12] another important theorem which describes the behavior of the char-
acteristic function for large values of ζ : if F has a pdf f , then ϕ(ζ )→ 0 as ζ →±∞. If f
has integrable derivatives f ′, f ′′, . . . , f (n), then |ϕ(ζ )|= o(|ζ |−n) as |ζ | → ∞.
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2.4 The normalized power spectrum Π(ω) or Π(φ) and the variance

κ1 of natural time

For the purpose of natural time analysis, the following continuous function Φ(ω), recall
Eq. (2.22), was introduced [51, 52]:

Φ(ω) =
∑N

k=1 Qk exp
(
iω k

N

)
∑N

n=1 Qn
=

N

∑
k=1

pk exp
(

iω
k
N

)
=

N

∑
k=1

pk eiωχk (2.29)

where
ω = 2πφ , (2.30)

φ standing for the frequency in natural time, termed natural frequency.

We then compute the normalized power spectrum Π(ω) as

Π(ω) = |Φ(ω)|2 =

∣∣∣∣∣
N

∑
k=1

pk eiω k
N

∣∣∣∣∣
2

(2.31)

which does not change of course under time reversal. The functionΦ(ω) should not be
confused with the discrete Fourier transform because ω is here a continuous variable.

Using Eq. (2.4), we have

∫ 1

0
eiωχ p(χ) dχ =

N

∑
k=1

[∫ 1

0
pkδ (χ−χk) eiωχ dχ

]
=

N

∑
k=1

pk eiωχk , (2.32)

thus Φ(ω) can be written as

Φ(ω) =
∫ 1

0
eiωχ p(χ) dχ =

N

∑
k=1

pk eiωχk . (2.33)

If we regard p(χ) in Eq. (2.33) as the probability density function of χ , in analogy with
probability theory, its Fourier transform Φ(ω) may be regarded as the characteristic func-
tion of χ , representing the expectation value of eiωχ (see Eq. (2.21) in § 2.3.1).

By differentiations at the origin, i.e., as ω → 0, Φ(ω) gives (see Theorem 2.1) the
statistical properties of p(χ), such as the mean, variance etc. In view of Eq. (2.31), we
now focus on the small ω values of Π(ω) by considering [51] its Taylor expansion,
around ω = 0,

Π(ω) = 1−κ1ω2 +κ2ω4 +κ3ω6 +κ4ω8 + . . . (2.34)
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where

κ1 =− 1
2

d2Π(ω)
dω2

∣∣∣∣
ω=0

. (2.35)

We now consider

d2Π(ω)
dω2 =Φ∗(ω)

d2Φ(ω)
dω2 +Φ(ω)

d2Φ∗(ω)
dω2 +2

dΦ(ω)
dω

dΦ∗(ω)
dω

(2.36)

and taking into account Eq. (2.29) along with the fact that Φ(0) = 1, we find:

κ1 = −1
2

⎡
⎣−∑

k
pkχ2

k −∑
k

pkχ2
k +2

(
∑
k

pkχk

)2
⎤
⎦

= 〈χ2〉−〈χ〉2, (2.37)

where

〈χn〉=
N

∑
k=1

pkχn
k (2.38)

denote the moments of the natural time χ ‘weighted’ by pk.

Thus, the quantity κ1 corresponds to the variance of natural time:

κ1 = 〈χ2〉−〈χ〉2 =
N

∑
k=1

pk

(
k
N

)2

−
(

N

∑
k=1

k
N

pk

)2

. (2.39)

Since the normalized power spectrum Π(ω) does not change under time reversal, the
same holds for κ1.

The remaining terms of Eq. (2.34) can be shown [51] to be equal to

κ2 =
〈χ2〉2

4
+
〈χ4〉
12

− 〈χ〉〈χ
3〉

3
(2.40)

κ3 =
〈χ3〉2

36
+
〈χ〉〈χ5〉

60
− 〈χ

6〉
360

− 〈χ
2〉〈χ4〉
24

(2.41)

κ4 =
〈χ8〉

20160
+
〈χ2〉〈χ6〉

720
+
〈χ4〉2
576

− 〈χ
3〉〈χ5〉
360

− 〈χ〉〈χ
7〉

2520
(2.42)

When considering the symmetric expansion of p(χ) in the region [−1,1] which is ob-
tained by selecting p(0) ≡ limχ→0 p(χ) and p(−χ) ≡ p(χ), we obtain that p(χ) can be
expanded [51, 55] in a cosine Fourier series for χ ∈ (0,1]:
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p(χ) = 1+
∞

∑
n=1

pn cos(nπχ) (2.43)

where

pn = 2
∫ 1

0
p(χ)cos(nπχ)dχ , (2.44)

are the cosine Fourier series expansion coefficients. Equation (2.43) could give insight into
what one should expect for the normalized power spectra Π(ω).

We recall that the lowest frequency included in this expansion, in addition to φ = 0, is
φ = 0.5 corresponding to ω = π .

Furthermore, Π(ω) for ω � π , or φ � 0.5, by virtue of the Taylor expansion (2.34)
and Eqs. (2.39), (2.40), (2.41) and (2.42) resembles the properties of the characteristic
function Φ(ω) for p(χ) since its Taylor expansion coefficients are explicitly related to the
moments of natural time χ . Of course, these moments do not appear in such a simple way
as they appear in Theorem 2.1.

The detailed study of the quantity κ1 shows that it exhibits (see Section 3.3) positivity,
concavity, experimental stability and reveals that it has interesting physical properties;
see Chapters 4 to 8.

By combining Eqs. (2.33), (2.35), (2.43) and (2.44), the following interrelation between
κ1 and the Fourier coefficients of p(χ) can be found [51]

κ1 = 〈χ2〉−〈χ〉2 =
1

12
+

1
2π2

∞

∑
n=1

p2n

n2 −
[

1
2π2

∞

∑
k=0

p2n+1

(n+1/2)2

]2

. (2.45)

We now calculate the limit for the variance κ1 in the case of a “uniform” distribution,
see § 2.1.3, for which p(χ) = 1 and pn = 0. Thus, Eq. (2.45) leads to κ1 = 1/12. This
will be hereafter labeled κu, i.e.,

κu =
1

12
= 0.0833 . . . (2.46)

The κ1 value has been calculated in a variety of cases discussed in the present mono-
graph. In particular, for SES activities it is theoretically obtained in § 2.4.2 and given in
Table 4.6 for several experimental cases. The latter table also includes the κ1 value for
various “artificial” noises, and Table 4.4 the ionic current fluctuations in membrane chan-
nels. The κ1 value for the case when the increments of the time series of Qk are p.i.i.d.
random variables of finite variance is calculated in § 2.5.3 and for power law distributed
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(uncorrelated) energy bursts in § 2.5.4. For the case of fBm time series the κ1 value will
be discussed later in § 3.4.3 and for short-range correlated time series in § 3.4.5. As for
dichotomous Markovian time series the κ1 value will be treated in Chapter 4; see Fig. 4.22.
Moreover, the κ1 value for long-term seismicity will be discussed in Chapter 6, while for
the seismicity that evolves after the initiation of SES activities and before the mainshock
occurrence will be treated in Chapter 7 for several cases. Finally, for various dynamical
models discussed in Chapter 8, the results for the κ1 value when the critical point is ap-
proached are compiled in Table 8.1. Note also that the κ1 values for a case when Qk are
quasi-periodic are depicted in Fig. 8.4.

The largest κ1 value obtained either from experimental data or from theoretical models
is 0.25. A theoretical explanation of this fact is given in § 3.3.2.1.

2.4.1 The normalized power spectrum for the “uniform” distribution

Using Eqs. (2.31) and (2.33), we obtain

Π(ω) =
∣∣∣∣∫ 1

0
eiωχ p(χ) dχ

∣∣∣∣2 =
∫ 1

0

∫ 1

0
p(χ)p(ψ) eiω(χ−ψ) dχ dψ (2.47)

After the transformation of variables: X = (χ+ψ)/2 and δ = (χ−ψ), the double integral
in Eq. (2.47) becomes

Π(ω) = 2
∫ 1

0
cos(ωδ )

∫ 1− δ
2

δ
2

p
(

X− δ
2

)
p
(

X +
δ
2

)
dX dδ (2.48)

Equation (2.48) can be also written as

Π(ω) = 2
∫ 1

0
cos(ωδ )G(δ ) dδ (2.49)

with

G(δ ) =
∫ 1− δ

2

δ
2

p
(

X− δ
2

)
p
(

X +
δ
2

)
dX (2.50)

We can now estimate the normalized power spectrum Πu(ω) for the “uniform” dis-
tribution. As already mentioned this is the case when Qk are p.i.i.d. random variables.
Thus, the pdf p(χ) becomes p(χ) = 1 for all χ ∈ (0,1]; Eq. (2.50) simply results in

G(δ ) =
∫ 1− δ

2
δ
2

dX = 1−δ leading, see Eq. (2.49), to the normalized power spectrum

Πu(ω) = 2
∫ 1

0
(1−δ )cos(ωδ ) dδ =

sin2(ω/2)
(ω/2)2 (2.51)
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When expanding Πu(ω) of Eq. (2.51) around ω → 0, we obtain

Πu(ω)≈
[

1− 1
3!

(ω
2

)2
]2

≈ 1− 2
3!

(ω
2

)2
= 1− 1

12
ω2 (2.52)

When considering the expansion of Eq. (2.34), we observe that Eq. (2.52) results to
κ1 = κu = 1/12 in accordance with Eq. (2.46).

2.4.2 The normalized power spectrum of seismic electric signals

Here, we focus on the normalized power spectrum of SES activities which are emitted
when criticality is approached [51, 52]. Thus, we rely on the physics behind their gen-
eration discussed in Section 1.6. We first consider the following two laboratory measure-
ments. (i) Indentation experiments even in simple ionic crystals showed that transient elec-
tric signals are emitted, without the action of any external electric field, due to (formation
and motion of) point and linear defects, e.g., see Ref. [62]. (ii) Independent measurements
[37] revealed that, as the glass transition is approached, a polarization time series is emitted
which probably arises from the reorientation process of electric dipoles; this process in-
cludes a large number of atoms (cooperativity). The feature of this polarization time series
is strikingly similar [48] to the measured SES activities. This similarity is reminiscent of
the pressure stimulated currents model [49] discussed in § 1.6.2, which suggests that upon
a gradual variation of the pressure (stress) P on a solid, when approaching the critical
pressure (stress) Pcr, transient electric signals are emitted arising from the (re)orientation
of electric dipoles (formed due to defects). This emission occurs when the following con-
dition is obeyed (which is just Eq. (1.48) of § 1.6.2):

dP
dt

∣∣∣∣
T

vm,b

kT
=− 1

τ(Pcr)
, (2.53)

where dP
dt

∣∣
T is the pressure rate and τ(Pcr) is the relaxation time of the dipoles at the crit-

ical pressure. It has been argued, see p. 404 of Ref. [49], that the values of the migration
volume vm,b associated with SES generation should exceed the mean atomic volume by or-
ders of magnitude, and this entails that the relevant (re)orientation process should involve
the motion of a large number of “atoms” . Thus, the laboratory measurements fortify the
suggestion [48] that the emission of the SES activities could be discussed in the frame of
the theory of dynamic phase transitions (critical phenomena). The very stochastic nature
of the relaxation process has been repeatedly discussed in the literature (see p. 350 of Ref.
[19] and references therein; other suggestions have been reviewed in Ref. [31], while illu-
minating aspects have been forwarded in Ref. [66]). A stochastic analysis was based on the
concept of clusters, the structural rearrangement of which develops in time [19]. Accord-
ing to this analysis the exponential relaxation of the polarization is arrested at a random
time variable ηi and the instantaneous orientation reached at this instant is “frozen” at a
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value exp(−βiηi) where βi = b = constant (see fig. 11.19 of Ref. [19]). Assuming that
ηi itself follows an exponential distribution, with a time constant τ0 � τ(Pcr), an almost
constant current would be expected for as long as this unit “lives” (i.e., for a duration ηi).

As a result of cooperativity, the duration Qk of a SES activity pulse is envisaged as the
sum of nk such identical units, thus Qk = ∑nk

i=1ηi. Under this assumption, the duration Qk
of the k-th pulse in a SES activity follows the gamma distribution with a mean lifetime
nkτ0 and variance nkτ2

0 (e.g., see lemma 8.1.6.5. of Ref. [30]), i.e., the average duration is
given by:

� (Qk) = nkτ0 (2.54)

and its variance by:
� (Q2

k)−n2
kτ

2
0 = nkτ2

0 . (2.55)

As already mentioned (§ 1.6.2), the SES activity is emitted when the focal area enters
into the critical regime. The approach of a system to a critical point can be characterized by
a feature that events begin to be temporally correlated, which is equivalent to a persistent
avalanching. The condition for the persistent avalanching can be expressed as

� (Qk+1) = Qk (2.56)

which means that the average Qk+1 value of the k + 1-th event is maintained at the level
already reached by the previous one. This is reminiscent of the aspect that the reorientation
of a spin in the random-field Ising Hamiltonian, will cause on average just one more spin
to flip at the critical point [23]. Since Qk+1 is assumed to be distributed according to the
gamma distribution, we also have:

�

{
[Qk+1−� (Qk+1)]

2
}

= � (Qk+1)τ0 ⇒
� (Q2

k+1) = Qkτ0 +Q2
k (2.57)

We now turn to the evaluation of the normalized power spectrumΠ(ω), see Eqs. (2.49)
and Eq. (2.50), for the SES activities. We will first attempt to evaluate the average value
G̃(δ )

G̃(δ ) =
∫ 1− δ

2

δ
2

�

[
QX− δ

2
QX+ δ

2

]
dX (2.58)

as it results from all SES activities comprising N pulses. Note that G̃(δ ) is similar to
G(δ ) of Eq. (2.50) apart from the fact that it does not involve the normalized pdfs p(X −
δ
2 )p(X + δ

2 ). When for example X− δ
2 = k/N and X + δ

2 = l/N, we have

� [QX− δ
2

QX+ δ
2
] = � [QkQl ] =

∫
. . .
∫

︸ ︷︷ ︸
N

QkQl d�1 d�2 . . . d�k . . . d�l . . . d�N (2.59)

where�1,�2 . . .�N are the pdfs for the durations Q1,Q2, . . .QN , respectively. Using the
normalization condition of the pdfs, we can eliminate the integrals over�l+1 to�N
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� [QkQl ] =
∫

. . .
∫

︸ ︷︷ ︸
l

QkQl d�1 d�2 . . . d�k . . . d�l (2.60)

and using Eq. (2.56) we can integrate over�l down to�k

� [QkQl ] =
∫

. . .
∫

︸ ︷︷ ︸
k

Q2
k d�1 d�2 . . . d�k (2.61)

Performing now the integration over �k by using the recursive relation of Eq. (2.57) for
k = k−1, we obtain

� [QkQl ] =
∫

. . .
∫

︸ ︷︷ ︸
k−1

(Qk−1τ0 +Q2
k−1) d�1 d�2 . . . d�k−1 (2.62)

whereas a second application of the recursive relations of Eqs. (2.56) and (2.57) into
Eq. (2.62) results in

� [QkQl ] =
∫

. . .
∫

︸ ︷︷ ︸
k−2

(2Qk−2τ0 +Q2
k−2) d�1 d�2 . . . d�k−2 , (2.63)

a third one to

� [QkQl ] =
∫

. . .
∫

︸ ︷︷ ︸
k−3

(3Qk−3τ0 +Q2
k−3) d�1 d�2 . . . d�k−3 , (2.64)

and so on. Finally, we obtain

� [QX− δ
2

QX+ δ
2
] = � [QkQl ] =

∫ [
(k−1)Q1τ0 +Q2

1
]

d�1 . (2.65)

Restoring k = (X− δ
2 )N into Eq. (2.65), we obtain

� [QX− δ
2

QX+ δ
2
] = α

(
X− δ

2

)
+β , (2.66)

where α =
∫

Nτ0Q1 d�1 and β =
∫ (

Q2
1− τ0Q1

)
d�1 = (

∫
Q1 d�1)

2. Substituting Eq.
(2.66) into Eq. (2.58), we obtain

G̃(δ ) =
∫ 1− δ

2

δ
2

[
α
(

X− δ
2

)
+β

]
dX = α

(1−δ )2

2
+β (1−δ ). (2.67)

Equation (2.67) provides G̃(δ ) for the SES activities comprising N pulses. We note the
existence of two terms in the right-hand side of Eq. (2.67): The last term, which is simply
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proportional to (1− δ ), originates from the positivity of Qk and is also present in the

case of the “uniform” distribution, see Eq. (2.51). On the other hand, the first term (1−δ )2

2
comes from the memory of the critical process as reflected in Eq. (2.66), which states that
the expectation � [QX− δ

2
QX+ δ

2
] depends solely on X − δ

2 , i.e., the natural time elapsed
since the initiation of the process.

In order to determine the normalized power spectrum for SES activities through a for-
mula similar to Eq. (2.49), e.g.,

Π(ω) = 2
∫ 1

0
cos(ωδ )� (δ ) dδ (2.68)

we need also to average over all possible values of N to obtain an appropriate � (δ ). The
quantity of G(δ ) in Eq. (2.49), as well as � (δ ) in Eq. (2.68), is dimensionless since it
results from the pdf p(χ) in Eq. (2.49). Equation (2.67) was obtained, however, without
normalizing QX− δ

2
and QX+ δ

2
by the appropriate factor

(∫
Qχ dχ

)2 because the inclusion
of such a factor in the denominator would hinder the integration procedure followed. As
a first approximation, we construct a dimensionless quantity from Eq. (2.67), thus for
example we divide G̃(δ ) by α:

G̃(δ )
α

=
(1−δ )2

2
+
β
α

(1−δ ). (2.69)

The quantity � (δ ) is expected to be a weighted sum of the right-hand side of Eq. (2.69)
for various values of N, thus it will be of the form

� (δ ) ∝
(1−δ )2

2
+
(
β
α

)
(1−δ ), (2.70)

where
(
β
α

)
stands for the corresponding average – renormalized – value of the ratio

β
α

=
(
∫

Q1 d�1)
2∫

Nτ0Q1 d�1
=

n1

N
. (2.71)

Let us now impose (natural time) scale invariance which should hold for criticality. This
means that the result should be independent of N. Hence, the time scale τ0, so far arbitrary,
should be such that the results obtained from Eq. (2.71) for various N lead to a value

(labeled
(
β
α

)
in Eq. (2.70)) independent of N. This is satisfied when τ0 = const.×Q1/N as

it is evident from Eq. (2.71). Since when a single SES pulse is emitted the only reasonable
time scale to assume is that of the duration of the single pulse, we should impose τ0 =
Q1/N. Thus, we may write (

β
α

)
=

(
∫

Q1 d�1)
2∫

Q2
1d�1

. (2.72)
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Assuming that at the initiation of the SES activity, only one unit is available, i.e, n1 = 1, the
duration Q1 in Eq. (2.72) is exponentially distributed (see Eqs. (2.54) and (2.55)) leading
to (

β
α

)
=

1
2
. (2.73)

Equation (2.70) then reads

� (δ ) ∝
(1−δ )2

2
+

(1−δ )
2

. (2.74)

Inserting Eq. (2.74) into Eq. (2.68), we obtain that for the SES activities (critical dy-
namics) the normalized power spectrum equals to [51]

Π(ω) =
18

5ω2 −
6cosω

5ω2 − 12sinω
5ω3 . (2.75)

Expanding Eq. (2.75) around ω = 0 (see Eqs. (2.34) and (2.35)), we get

Π(ω)≈ 1−κ1ω2, (2.76)

where
κ1 = 0.070. (2.77)

An inspection of Fig. 4.7 shows that for the region of natural frequencies 0 ≤ φ < 0.5
(recall the shaded remark after Eq. (2.44)) the experimental results for the SES activities
agree favorably with Eq. (2.75). In addition, for the SES activities observed to date, see
Table 4.6, the validity of Eq. (2.77) has been confirmed.

An alternative derivation that κ1 ≈ 0.070 for SES activities, can be given on the basis
of the Ising model if we also consider its qualitative similarity under certain conditions
with the pressure-stimulated currents model (§ 1.6.2) for the SES generation, as will be
explained in § 8.4.1.

Note that the relation κ1 = 0.070, i.e., Eq. (2.77), emerges for several dynamical mod-
els approaching criticality which are compiled in Table 8.1.

2.5 Distinction of the origins of self-similarity

A large variety of natural systems exhibit irregular and complex behavior which at first
looks erratic, but in fact possesses scale-invariant structure (e.g., see Refs. [34, 20]). As
explained in § 1.5.1, a process {X(t)}t≥0 is called self-similar [24] with index H > 0, if it
has the property

X(λ t) d= λHX(t) ∀ λ > 0. (2.78)
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Equation (2.78) means a “scale invariance” of the finite-dimensional distributions of X(t),
which does not imply, in stochastic processes, the same for the sample paths (e.g., see
Ref. [65]). In this Section, following Ref. [59], we will explain how natural time enables
the distinction of the two origins of self-similarity.

2.5.1 The two origins of self-similarity. Background

Examples of self-similar processes are Brownian, fractional Brownian (fBm), Lévy stable
and fractional Lévy stable motion (fLsm). Lévy stable distributions (which are followed
by many natural processes, e.g., see Refs. [46, 47]) differ greatly from the Gaussian ones
because they have heavy tails and their variance is infinite (e.g., see Refs. [65, 38]).

An important point in analyzing data from natural systems that exhibit scale-invariant
structure is the following. In several systems this nontrivial structure points to long-range
temporal correlations; in other words, the self-similarity results from the process’s memory
only (e.g., the case of fBm discussed in § 1.5.1.1). Alternatively, the self-similarity may
solely result from the process’s increments’ infinite variance, e.g., Lévy stable motion.
(Note that in distributions that are applicable to a large variety of problems, extreme events
have to be truncated for physical reasons, e.g., finite size effects – when there is no infinity
[6] – and this is why we write hereafter “infinite”.) In general, however, the self-similarity
may result from both these origins (e.g., fLsm). It is the main aim of this Section to discuss
how a distinction of the two origins of self-similarity (i.e., process’s memory and process’s
increments’ “infinite” variance) can be in principle achieved by employing natural time
analysis.

Before proceeding, the following clarifications are necessary as far as the aforemen-
tioned two sources of self-similarity are concerned. Long-range temporal correlations,
which are quoted above as a first origin of self-similarity, are an immediate consequence of
Eq. (2.78) with H > 1

2 defining a self-similar process. We stress, however, that long-range
correlations do not automatically imply self-similarity of a process. Multifractal processes
provide a large class of counter-examples (note that the natural time analysis of multi-
plicative cascades is discussed in § 6.2.5). The second origin of self-similarity comes from
the statistical properties of the increments of the process. We emphasize, however, that
the statistics of these increments does not automatically lead to nontrivial self-similarity
of the process. Specifically, a process which is invariant under shuffling of the increments
has independent increments and is characterized by the self-similarity index 1

2 .

2.5.2 The expectation value of κ1 when a (natural) time window of length l is sliding

through a time series

Here, we focus on the expectation value � (κ1) of the variance (κ1) of natural time
when sliding a (time) window of length l through a time series of Qk > 0,k = 1,2, . . .N
(while in § 2.2.2 we calculated the fluctuations of the average value of the natural time
itself under time reversal). In a window of length l starting at k = k0, the quantities
p j = Qk0+ j−1/∑l

m=1 Qk0+m−1, j = 1,2, . . . , l are obtained, which satisfy the necessary
conditions
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p j > 0, (2.79)

l

∑
j=1

p j = 1 (2.80)

to be considered as point probabilities. We then define [51, 55] the moments of the natural
time χ j = j/l as 〈χq〉= ∑l

j=1( j/l)q p j and hence

κ1 =
l

∑
j=1

(
j
l

)2

p j−
[

l

∑
j=1

j
l

p j

]2

. (2.81)

Note that κ1 is a nonlinear functional of {p j}. Let us consider the expectation value
μ j ≡ � (p j) of p j. For the purpose of our calculation the relation between the vari-
ance of p j, Var(p j) ≡ � [(p j − μ j)2], and the covariance of p j and pm, Cov(p j, pm) ≡
� [(p j−μ j)(pm−μm)], is important. In view of Eqs. (2.79) and (2.80), the quantities μ j,
Var(p j) and Cov(p j, pm) are always finite independent of the presence of heavy tails in
Qk. Using the constraint of Eq. (2.80), leading to p j−μ j = ∑m�= j(μm− pm), we obtain

Var(p j) =− ∑
m�= j

Cov(p j, pm). (2.82)

We now turn to the evaluation of � (κ1), and study its difference from the one that corre-
sponds to the average time series� = {μk} which is labeled κ1,� ,

κ1,� =
l

∑
j=1

(
j
l

)2

μ j−
[

l

∑
j=1

j
l
μ j

]2

. (2.83)

Hence,

� (κ1)−κ1,� = �

⎡
⎣ l

∑
m=1

m2

l2 (pm−μm)−
(

l

∑
m=1

m
l

pm

)2

+

(
l

∑
m=1

m
l
μm

)2
⎤
⎦ . (2.84)

In view of the definition of μm, the first term in the right-hand side of Eq. (2.84) vanishes,
whereas the latter two terms reduce to the variance of 〈χ〉:

� (κ1)−κ1,� =−�
⎧⎨
⎩
[

l

∑
m=1

m
l

(pm−μm)

]2
⎫⎬
⎭ . (2.85)

Expanding this variance, we get

κ1,� −� (κ1) =
l

∑
m=1

m2

l2 Var(pm)+2
l−1

∑
j=1

l

∑
m= j+1

jm
l2 Cov(p j, pm) . (2.86)

which, upon using Eq. (2.82), leads to
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� (κ1)−κ1,� =
l−1

∑
j=1

l

∑
m= j+1

( j−m)2

l2 Cov(p j, pm) =
1
2

l

∑
j=1

l

∑
m=1

( j−m)2

l2 Cov(p j, pm) .

(2.87)
This relation turns to

� (κ1) = κ1,� + ∑
all pairs

( j−m)2

l2 Cov(p j, pm) , (2.88)

where ∑all pairs≡∑l−1
j=1 ∑l

m= j+1 (compare Eq. (2.88) with Eq. (2.16) in which a term similar
to the covariance Cov(p j, pm) has been discussed).

The case when Qk do not exhibit temporal correlations: This is the case for example of
randomly shuffled data. As the window is sliding through the whole time series, Qk takes
of course every position j within the window of length l. Then, Eq. (2.80) leads to

� (p j) =
1
l
, (2.89)

and Cov(p j, pm) becomes independent of j and m, thus Eq. (2.82) becomes

Cov(p j, pm) =−Var(p)
(l−1)

. (2.90)

Since Var(p j) is also independent of j, Var(p j) was merely substituted by Var(p). More-
over, κ1,� reduces to κ1,c, where κ1,c corresponds to the constant time series � = {xk} :
xk = 1/l, k = 1,2, . . . l, which is given by

κ1,c =
l

∑
m=1

m2

l3 −
(

l

∑
m=1

m
l2

)2

= κu

(
1− 1

l2

)
, (2.91)

where κu = 1/12 ≈ 0.0833. Turning now to Eq. (2.86) and by adding and subtracting
Var(p)

l−1 ∑ m2

l2 , we obtain that:

For shuffled data

� (κ1) = κu

(
1− 1

l2

)
−κu(l +1) Var(p) . (2.92)

In view of Eqs. (2.79) and (2.80), Var(p) < � (p2) < � (p) = 1/l, and thus the second
term in Eq. (2.92) remains finite for l → ∞.

The l-dependence of Var(p) when Qk have a finite second moment is obtained from

Var(pk) =
1
l2 �

[(
lQk

∑l
n=1 Qn

−1
)2
]

, (2.93)
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where the quantity � [(lQk/∑l
n=1 Qn − 1)2] is asymptotically l-independent. The latter

arises as follows: if � (Qk) = μ and Var(Qk) = σ2(< ∞), as a result of the central limit the-
orem [12], we have � (∑l

k=1 Qk/l) = μ and Var(∑l
k=1 Qk/l) = σ2/l. The latter two equa-

tions, for large enough l imply that � [(lQk/∑l
n=1 Qn− 1)2] ≈ � [(Qk/μ − 1)2] = σ2/μ2.

Thus, Eq. (2.93) becomes (note that Var(pk) is independent of k)

Var(p) =
σ2

l2μ2 . (2.94)

For Qk which do not exhibit time correlations, e.g., randomly shuffled data:
If Qk do not exhibit heavy tails and have finite variance, Var(p) scales (Eq. (2.94))

as 1/l2, thus � (κ1), as l increases in Eq. (2.92), converges to κu. The same holds for
the most probable value κ1,p of κ1.

Otherwise, the expectation value � (κ1) differs from κu -pointing that κ1,p also
differs from κu, i.e., κ1,p �= κu – thus identifying the presence of heavy tails in the
examined time series.

2.5.2.1 Comments on the expectation value of κ1 for a given window length l

Let us now comment on the expectation value � (κ1) of κ1 when a (natural) time window
of length l is sliding through a time series of Qk > 0, which as mentioned (see Eq. (2.88))
is given by

� (κ1) = κ1,� + ∑
all pairs

( j−m)2

l2 Cov(p j, pm), (2.95)

Let us first discuss the case when Qk are shuffled randomly. Equation (2.95) then turns
to (see Eq. (2.92))

� (κ1,shu f ) = κu

(
1− 1

l2

)
−κu(l +1) Var(p). (2.96)

If Qk do not exhibit heavy tails and have finite variance, Eq. (2.96) reveals (see the
discussion above, § 2.5.2) that � (κ1,shu f ) rapidly converges to κu. For example, this is
the case of the SES activities [60] discussed in Chapter 4, e.g., see § 4.7.1. Otherwise,
� (κ1,shu f ) differs from κu, thus pointing to κ1,p �= κu. This is the case, for example, of the
earthquakes discussed in Chapter 6.

Second, if Qk do exhibit time correlations, the difference between the κ1,p for the orig-
inal and the shuffled time series most likely originates from the difference of Eqs. (2.95)
and (2.96), respectively. The extent to which the latter difference is nonzero accounts for
the time correlations irrespective if Qk exhibit heavy tails. For example, this is clearly the
case of aftershocks and the case of earthquake catalogs in general (both of which exhibit
heavy tails) discussed in detail in Section 6.3 (e.g., see Figs. 6.14 and 6.13, respectively).

The application of the above results to two important examples are given in the next
two subsections.
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2.5.3 The case when the increments of the time series of Qk are positive i.i.d.

random variables of finite variance

We first discuss the case when the increments of the time series of Qk are p.i.i.d. random
variables rn of finite variance. In this case Qk = ∑k

n=1 rn, and hence Qk is on average linearly
related to k. Thus, it is expected that the continuous distribution p(χ), that corresponds to
pk see Eq. (2.4), is p(χ) = 2χ . Using

κ1 =
∫ 1

0
p(χ)χ2 dχ−

(∫ 1

0
p(χ)χ dχ

)2

, (2.97)

a direct calculation leads to the value κ1 = 1
18 ≈ 0.056 which significantly differs from

that κu ≈ 0.083 of the “uniform” distribution (see Eq. (2.46)). In view of the fact that the
increments have finite variance, the distribution of Qk for a given N has also finite variance.
Hence, as shown in the previous subsection, we expect that when Qk are shuffled randomly
the resulting κ1 values should scatter around κu. A numerical example for exponentially
distributed increments is shown in Fig. 2.4.
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Fig. 2.4 The pdf of κ1 that
has been obtained by shuffling
the Qk randomly in the case of
exponential increments, i.e., rn
are randomly drawn from an
exponential distribution. Here,
N = 500 and the original time
series results in κ1 = 0.055.
See also Fig. 3.3.

2.5.4 The value of κ1 when a (natural) time window is sliding through power law

distributed energy bursts

We now study a case of self-similarity resulting from the process’s increments’ “infinite”
variance. Here, we restrict ourselves to (slowly driven) systems that emit energy bursts
obeying a power law distribution

P(E)∼ E−γ (2.98)
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where γ is constant. In a large variety of such systems in diverse fields, an inspection of
the experimental data reveals that the γ exponent lies in a narrow range 1.5 ≤ γ ≤ 2.1
and mostly within even narrower bounds, i.e., γ = 1.5 to 1.8. To realize the diversity
of the phenomena that exhibit the aforementioned property, we compile some indicative
examples in Table 2.1, which are the following.

Table 2.1 Compilation of the experimental values of the power law exponent γ determined in different
physical processes. Taken from Ref. [59].

Process / type of measurement γ References

Dislocation glide in hexagonal 1.6 [26]
ice single crystals (acoustic emission)

Intermittent plastic flow 1.6 [9]
in nickel microcrystals

Solar flares 1.5–2.1 [5, 32, 18, 29]

Microfractures before the 1.5 [14, 1]
breakup of wood (acoustic emission)

Microfractures before the 2.0 [14, 1]
breakup of fiberglass (acoustic emission)

Earthquakes 1.5–1.8 See Ref. [36]
and references therein

Icequakes ≈1.8 See p.212 of Ref. [64]
and references therein

First, crystalline materials subjected to an external stress, display bursts of activity ow-
ing to the nucleation and motion of dislocations. These sudden local changes produce
acoustic emission waves which reveal that a large number of dislocations move coopera-
tively in an intermittent fashion (e.g., see Ref. [22] and references therein). As a precise
example, we include in Table 2.1 the results of acoustic emission experiments on stressed
single crystals of ice under viscoelastic deformation (creep), which show that the proba-
bility distribution of energy bursts intensities obey a power law distribution with γ = 1.6
spanning many decades (see fig. 1 of Ref. [26]). Second, the same exponent is found [9]
(i.e., γ = 1.60± 0.02) in the analysis of intermittent plastic flow observations (i.e., mea-
surements of discrete slip events for loadings above the elastic–plastic transition) on nickel
microcrystals (see fig. 2 of Ref. [9]). Third, we consider the case of solar flares that rep-
resent impulsive energy releases in the solar corona (e.g. see Ref. [29] and references
therein; see also Ref. [4] in which it is concluded that earthquakes and solar flares exhibit
the same distributions of sizes, inter-occurrence times, and the same temporal clustering).
This energy release is observed in various forms: thermal, soft and hard X-ray emissions,
accelerated particles etc. The statistical analysis of these impulsive events show that the
energy distribution exhibits, over several orders of magnitude, a power law with exponents
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Fig. 2.5 The probability density function
P(κ1) versus κ1 for several values of γ .
Taken from Ref. [59].

γ ranging from 1.5 to approximately 2.1 (depending on the experimental procedure and the
geometrical assumptions adopted in the analysis). Other examples are: acoustic emission
from microfractures before the breakup of heterogeneous materials (wood, fiberglass), ice-
quakes and earthquakes.

The following procedure is now applied. We generate a large amount (500,000) of arti-
ficial data obeying Eq. (2.98) for a certain γ value with energy E ≥ 1 and randomly shuffle
them. This was repeated for various γ values by keeping the total number of events con-
stant (which implies that when changing γ , the maximum energy involved in the calcula-
tion also changes). These randomized (“shuffled” [63, 56]) data are subsequently analyzed
[61] in the natural time domain: the calculation of the variance κ1 is made for an event
taking time windows for l = 6 to 40 consecutive events (i.e., while in § 2.5.2 the value of
l was kept constant, here l varies within certain limits and no κ1 averaging is made). The
choice of the precise value of the upper limit of l is not found decisive, since practically
the same results are obtained even if the number of consecutive events was changed from
6–40 to 6–100. And second, this process was performed for all the events (for all the l
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Fig. 2.6 The values of κ1,p as a func-
tion of γ for power law distributed
data. The continuous line has been
drawn as a guide to the eye. Note
that κ1,p ≈ 0.070 for γ ≈ 1.87, see
also Fig. 2.5. Taken from Ref. [59].
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values, e.g. between l = 6 to l = 40) by scanning the whole dataset. In Fig. 2.5, we plot the
pdf P(κ1) versus κ1 for several γ values. The most probable value κ1,p (for γ = constant)
is also plotted in Fig. 2.6 versus the corresponding γ value.

This curve interrelates κ1 and γ for the shuffled data (thus an eventual process’s mem-
ory is destroyed) and hence the plotted κ1,p values (which differ markedly from κu)
correspond to the self-similarity resulting solely from the heavy-tailed distribution.

Note that the study of the origin of the self-similarity in real earthquake data will be
elaborated in Chapter 6.

2.5.5 Conclusions

In summary, the origin of self-similarity may be distinguished as follows:

If self-similarity exclusively results from the process’s memory, the κ1 value should
change to κu = 1/12 for the (randomly) shuffled data. This is the case of the SES
activities, e.g. see § 4.7.1.

On the other hand, if the self-similarity results from process’s increments’ “infinite”
variance only, the most probable value κ1,p should be the same (but differing from κu)
for the original and the (randomly) shuffled data.

When both origins of self-similarity are present, the relative strength of the contri-
bution of the one origin with respect to that of the other can be quantified on the basis
of Eqs. (2.95) and (2.96), e.g., see § 6.3.2.

2.6 Origin of the optimality of the natural time representation

Here we address the problem [3] of optimality of the natural time representation of time
series resulting from complex systems. For this purpose, we first study the structures of
the time-frequency representations [7] of the signals by employing the Wigner function
[68] to compare the natural time representation with the ones, either in conventional time
or in other possible reparametrizations. We shall see that significant enhancement of the
signal is observed in the time-frequency space if natural time is used, in marked contrast
to other time domains. To quantify this localization property, we examine the generalized
entropic measure proposed by Tsallis [45], which has been widely discussed in the studies
of complex dynamical systems (see also Section 6.5).
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In time series analysis, it is desired to reduce uncertainty and extract signal informa-
tion as much as possible. Consequently, the most useful time domain should maximize
the information measure, and hence minimize the entropy. We find that this can sta-
tistically be ascertained in natural time, by investigating a multitude of different time
domains.

Consider a signal {x(t)} represented in conventional time, t. The normalized time-
frequency Wigner function associated with it is defined by

W (t,ω) = A
∫

dτ e−iωτx(t− τ/2)x(t + τ/2), (2.99)

where A = [π
∫

dtx2(t)]−1 is the normalization constant and ω is the frequency. Numeri-
cally, it is necessary to discretize and make finite both time and frequency, and the inte-
gral has to be replaced by a sum. To make comparison of the natural time analysis with
Eq. (2.99), it is convenient to rescale χk by Nχk, which is precisely the pulse number,
k ≡ tk. The quantity, Qk , has a clear meaning for dichotomous time series (Fig. 2.1(a)),
whereas for nondichotomous time series, threshold should be appropriately applied (e.g.,
the mean value plus half of the standard deviation) to transform it to a dichotomous one.
The normalized Wigner function associated with Qk is now given as follows:

W (k, ω̃) = B
N−1

∑
i=0

Qk−iQk+i cos[ω̃(tk+i− tk−i)], (2.100)

where B = [π∑N
k=1 Q2

k ]
−1 stands for the normalization constant and ω̃ is the dimensionless

“frequency”. In the sum, Qk with k ≤ 0 and k > N should be set equal to zero. Note that
Eq. (2.100) is a discrete version of the continuous Wigner function in Eq. (2.99) and unlike
the ordinary definition, the transformation in Eq. (2.100) is not orthogonal in general.

Figure 2.7 depicts the Wigner functions in the time-frequency spaces for the conven-
tional time (a) and the natural time (b). Remarkably, significant enhancement of the signal
is observed in the latter case, with the scale of enhancement being about 10 times. A local-
ized structure emerges in natural time, in contrast to a moderate profile in the conventional
time representation.

In the natural time domain, the time difference between two consecutive pulses (i.e.,
inter-occurrence time) is equally spaced and dimensionless, and is here taken to be unity:
tk+1− tk = 1. However, for the sake of comparison, we will later consider various time
domains in which the occurrence time tk = Nuk in Eq. (2.100) is made random. The con-
ventional time representation is characterized by a constant time increment Δ t (e.g., 1 sec),
and the occurrence of the i-th event is at ti = iΔ t. To generate the random time domains
artificially, we consider uniformly distributed uk so that the average inter-occurrence time
is again unity. Performing Monte-Carlo simulation, we have constructed more than 1,000
different time domains and integrated over ω (ω̃) over 0 to π [rad/sec] ([rad]), which can
cover the regimes of interest (recall that when tk = k, W (k,ω+π) = W (k,ω)).



148 2. Natural Time. Background

0
750

1500 2250 3000 3750 4500

Conventional time t

0.0
0.4

0.8
1.2

1.6
2.0

2.4
2.8

 [ra
d/s]

-0
.0

5
0.

00
0.

05
0.

10
W

(t,
)

0
5

10
15

20
25

30
35

40
45

Natural time k

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

 [ra
d]

0.
0

0.
1

0.
2

0.
3

W
(k

,
)

(b)

(a)

Fig. 2.7 The plots of the Wigner functions
of the SES activity A of Fig. 2.8 given
below in (a) the conventional time domain
and (b) the natural time domain. Significant
enhancement of the signal is recognized
in the natural time domain at both edges
but mainly in the localized structures in the
intermediate region. Note that, instead of χk,
Nχk = k is used (see the text). ω has the unit
[rad/sec], whereas has ω̃ has [rad]. Taken
from Ref. [3].
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To quantify the degrees of disorder in the time-frequency spaces with various time
domains, we employ as mentioned the Tsallis entropy [45] defined by

Sq =
1

1−q

(∫
dμW q−1

)
, (2.101)

where
∫

dμ is the collective notation for integral and sum over the time-frequency space
and q is the positive entropic index. In the limit q → 1, this quantity tends to the form
of the Boltzmann–Gibbs–Shannon entropy S =−∫ dμW lnW . This limit cannot however
be taken, since the Wigner function is a pseudo-distribution and takes negative values, in
general. The quantity Sq is, however, well defined if q is even. Thus, we propose to use the
value

q = 2, (2.102)

which, by considering Eqs. (2.100) and (2.101), results in:

S2 = 1− 1
2π
×

⎧⎪⎨
⎪⎩

∑N
k=1 ∑N−1

l=0 ∑N−1
l′=0 Qk−lQk+lQk−l′Qk+l′

sin[π(tk+l−tk−l+tk+l′−tk−l′ )]
π(tk+l−tk−l+tk+l′−tk−l′ )[

∑N
k=1

(
Q2

k +∑N−1
l=1 Qk−lQk+l

sin[π(tk+l−tk−l)]
π(tk+l−tk−l)

)]2 +

∑N
k=1 ∑N−1

l=0 ∑N−1
l′=0 Qk−lQk+lQk−l′Qk+l′

(
δl+l′,0 +δl,l′ +

sin[π(tk+l−tk−l−tk+l′+tk−l′ )]
π(tk+l−tk−l−tk+l′+tk−l′ )

)
[
∑N

k=1

(
Q2

k +∑N−1
l=1 Qk−lQk+l

sin[π(tk+l−tk−l)]
π(tk+l−tk−l)

)]2

⎫⎪⎬
⎪⎭

(2.103)

Table 2.2 The values of Prob(S2 < Snat
2 ) together with the number of pulses N for the electric signals of

Fig. 2.8 with N > 50. The estimation error is at the most 1.6%.

Signal N Prob(S2 < Snat
2 )(%)

K1 312 3.7
K2 141 6.9
U 80 8.1

n1 216 5.7
n2 1080 <0.1
n3 259 2.7
n4 396 1.6
n5 432 2.8

To examine how the natural time representation is superior to other ones, in Ref. [3] we
made comparison of the values of S2 for 10 different time series [54] of electric signals
(see Fig. 2.8, whereas Fig. 4.9 depicts their natural time representation): 4 SES activities
and 6 “artificial” noises. The results of 8 (out of the 10) signals comprising more than
50 pulses are compiled in Table 2.2 in which we give the values of Prob(S2 < Snat

2 ), i.e.,
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the probability that S2 calculated for a time domain different than the natural time domain
to be smaller than the value Snat

2 calculated for natural time (note that this value comes
from Eq. (2.103) and should not be confused with the entropy S in natural time defined by
Eq. (3.1), see Chapter 3). This probability Prob(S2 < Snat

2 ) was estimated as follows. For
each time domain produced by Monte–Carlo the corresponding S2 value was calculated
through Eq. (2.103) and compared to Snat

2 . For signals with a reasonable number of pulses,
e.g., larger than 50, Table 2.2 reveals that the quantity Snat

2 , in fact, tends to be minimum
compared to those of other representations attempted. In addition, it is mentioned that Snat

2
is also appreciably smaller than S2 in conventional time (see Fig. 2.7).

In conclusion, we investigated if natural time yields an optimal representation for en-
hancing the signals in the time-frequency space by employing the Wigner function
and measuring its localization property by means of the Tsallis entropy. For this pur-
pose, we compared the values of the entropy for various time series (being either SES
activities or “artificial” noises) represented in a multitude of different time domains.
We find that the entropy is highly likely to be minimum for natural time, implying the
least uncertainty in the time-frequency space. This explains why dynamical evolution
of diverse systems can be better described in natural time.

2.7 Is time continuous?

Natural time χ , from its definition, is not continuous and takes values which are rational
numbers in the range (0,1]. (In these numbers, as the complex system evolves, the numer-
ators are just the natural numbers (except 0), which denote the order of appearance of the
consecutive events.) Hence, one of the fundamental differences between (conventional)
time and natural time refers to the fact that the former is based on the idea of continuum,
while the latter is not. Following Ref. [50], here we aim at raising some consequences of
this difference, and in particular those that stem from the set theory developed by Can-
tor, having in mind the following crucial remark made by Schrödinger (see pp. 62–63 of
Ref. [40]):

“We are familiar with the idea of the continuum, or we believe ourselves to be. We are
not familiar with the enormous difficulty this concept presents to the mind, unless we have
studied very modern mathematics (Dirichlet, Dedekind,Cantor).”

2.7.1 Differences between natural time and conventional time on the basis

of set theory

We clarify in advance that we do not tackle here the case (since it is inapplicable to our
universe [16]) raised by Gödel in 1949 who discovered [15] unexpected solutions to the
equations of general relativity corresponding to universes in which no universal temporal
ordering is possible (see also Refs. [8, 71] and references therein). This solution acquires
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its simplest form (see p.86 in Ref. [39]) “with two of the coordinate-line-elements time-
like (the other two space-like)”. Interestingly, Schrödinger in an early version of Ref. [39],
which was published almost simultaneously with Gödel’s work, had also emphasized that
“there is no necessity for just three of the four line-elements being space-like, one time-like
. . . ”.

We now recapitulate some points of the Cantor set theory that are relevant to our present
discussion.

A transfinite number or transfinite cardinal is the cardinality of some infinite set,
where the term cardinality of a set stands for the number of members it contains,
e.g., see Ref. [43].

The set of natural numbers is labeled by � , while the number of natural numbers is
designated by ℵ0, i.e., ℵ0 = |� | (note that the cardinality of a set S is labeled |S|). In this
transfinite number, the zero subscript is justified by the fact that, as proved by Cantor, no
infinite set has a smaller cardinality than the set of natural numbers.

It can be shown that the set of rational numbers designated by � has the same cardi-
nality as the set of natural numbers, or |� | = |�| (e.g., Theorem 2 in Ref. [43]). In
other words, the rationals are exactly as numerous as the naturals.

Note that a set is countable i f f its cardinality is either finite or equal to ℵ0 and in
particular is termed denumerable i f f its cardinality is exactly ℵ0 (note that as usually, for
“if and only if” we write simply “i f f ”). A set is uncountable i f f its cardinality is greater
than ℵ0; see also below.

Hence, natural time takes values (which, as mentioned, are rational numbers) that form
in general a countable set; this becomes a denumerable set in the limit of infinitely
large number of events (see § 2.7.2).

Further, since in natural time analysis we consider the pairs (χk,Qk), the values
of the quantity Qk should form a set with cardinality smaller than (or equal to) ℵ0. In
other words, the values of the energy also form a countable set, which reflects of course
that the energy is not continuous, thus the quantization of energy seems to emerge.

The fact that |� | = |�| is an astounding result in view of the following. The rational
numbers are dense in the real numbers, which means that between any two rational num-
bers on the real number line we can find infinitely more rational numbers. In other words,
although the set of rational numbers seems to contain infinities within infinities, there are
just as many natural numbers as there are rational numbers. This reflects the following
point.

Let us assume that we follow the evolution of a system with some (experimental) accu-
racy, in which, as mentioned, in the limit of infinitely large number of events the cardinality
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of the set of the values of natural time is ℵ0. Let us assume that we now repeat the mea-
surement with more sensitive instrumentation, i.e., counting events above an appreciably
smaller energy threshold (which should be constrained by the uncertainty principle, but a
further discussion on this point lies beyond the scope of the present monograph, as already
mentioned in § 2.1.1); hence between two consecutive events of the former measurement a
considerable number of appreciably smaller events may be monitored. The corresponding
cardinality, in contrast to our intuition, is again ℵ0. In other words, when considering the
limit of infinitely large number of consecutive events, the natural time takes values that
form a denumerable set and this remains so even upon increasing the accuracy (and hence
lowering the uncertainty) of our measurement. The inverse, i.e., when the instrumentation
becomes less sensitive, may correspond to a “coarse graining” procedure.

We now turn to the aspects of Cantor set theory related to the real numbers, which
as mentioned are associated with the conventional time. It is shown that the number of
points on a finite line segment is the same as the number of points on an infinite line (e.g.,
Theorem 13 in Ref. [43]). Considering the definition: the number of real numbers is the
same as the number of points on an infinite line (or in the jargon, the numerical continuum
has the same cardinality as the linear continuum), let “c” designate the cardinality of the
continuum – or equivalently the cardinality of the set of real numbers. (Hence c = |�|
by definition.) It is proven (e.g., Theorem 16 in Ref. [43]) that the set of real numbers is
uncountable, or |�|> ℵ0. (Equivalently, this theorem asserts that c > ℵ0.)

Hence, the values of conventional time form an uncountable set, in contrast to that of
natural time which in general as mentioned is countable.

In order to further inspect this fundamental difference, we resort to the continuum hy-
pothesis (CH) which was formulated (but not proved) by Cantor.

Continuum hypothesis, after Euclid’s parallel postulate, was the first major conjecture
to be proved undecidable by standard mathematics [43].

We first clarify that the power set ∗S of a set S, which is the set of all subsets of S, has
a cardinality |∗S|= 2|S| when S is finite. According to Cantor’s Theorem the cardinality of
the power set of an arbitrary set has a greater cardinality than the original arbitrary set,
i.e., |∗S| > |S| (e.g., Theorem 4 in Ref. [43]). This theorem is trivial for finite sets, but
fundamental for infinite sets. Hence, for any infinite cardinality, there is a larger infinite
cardinality, namely, the cardinality of its power set.

The continuum hypothesis asserts that there is no cardinal number α such that
ℵ0 < α < c.

Then it follows that the next largest transfinite cardinal after ℵ0 (labeled ℵ1) is c, thus
c = ℵ1. Since Cantor proved (e.g., Theorem 17 in Ref. [43]) that ℵ1 = 2ℵ0 , CH leads to:
c = 2ℵ0 (thus, this is the number of points on an infinite line).
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Hence, if we assume CH, the cardinality of the set of the values of natural time – in
the limit of infinitely large number of events – corresponds to ℵ0, while that of the
conventional time is 2ℵ0 .

The values of the former, as mentioned, are rational numbers, while almost all the
values of the latter are irrational, because, since 2ℵ0 
ℵ0, almost all reals are irrational
numbers. (On the other hand, without assuming CH we have essentially no idea which
transfinite number corresponds to c, and we would know the cardinality of the naturals,
integers, and rationals, but not the cardinality of the reals, e.g., see Ref. [43].) As for the
values of Qk, they are not necessarily rational, because in general when taking ℵ0 (at the
most) out of 2ℵ0 values they may all be irrational.

Hence, in the limit of infinitely large number of events, even upon gradually improving
the accuracy of our measurements, both sets {χk} and {Qk} remain denumerable, the
former consisting of rational numbers only.

2.7.2 Proof of the cardinality of the set of the values of natural time

We now indicate how in the limit of infinitely large number of events we conclude that the
cardinality of the set of the values of natural time equals to ℵ0. Let us tabulate the values
of natural time upon the occurrence of each event:

after the first event 1
after the second event 1

2
2
2

after the third event 1
3

2
3

3
3

after the fourth event 1
4

2
4

3
4

4
4

. . .
after the Nth event 1

N
2
N

3
N

4
N . . . N

N

This indicates that the cardinality of the set of the values of natural time |{χk}| should
be greater than (or equal to) N(number of entries in the first column) and smaller than (or
equal to) N2 (number of entries in the square N×N matrix), i.e.,

N ≤ |{χk}| ≤ N2. (2.104)

Thus, for N → ∞ we have ℵ0 ≤ |{χk}| ≤ ℵ2
0 and since ℵ2

0 = ℵ0 (see Theorem 22 of
Ref. [43]), we find that |{χk}|= ℵ0.

2.7.3 Is natural time compatible with Schrödinger’s point of view?

Schrödinger, in order to point out “the intricacy of the continuum”, used the following
example (see pp. 138–143 of Ref. [41]): Let us consider the interval [0,1], you first take
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away the whole middle third including its left border point, thus the points from 1/3 to
2/3 (but you leave 2/3). Of the remaining two-thirds you again take away “the middle
thirds”, including their left border points, but leaving their right border points. With the
remaining “four ninths” you proceed in the same way and so on. The cardinality of the set
that remains ad infinitum is no less than that of [0,1] because it can be shown [41] that there
is a one-to-one correspondence between their elements. Moreover, since it is a subset of
[0,1], its cardinality is also no greater, so it must in fact be equal. In particular, Schrödinger
concludes [41] as follows: “The remarkable fact about our remaining set is that, although
it covers no measurable interval, yet it still has the vast extension of any continuous range.
This astonishing combination of properties is, in mathematical language, expressed by
saying that our set has still the ‘potency’ of the continuum, although it is ‘of measure
zero’.” In other words, the cardinality of the aforementioned remaining set considered by
Schrödinger exceeds drastically that of the set of the values of natural time.

Let us now comment on the common view that (conventional) time is continuous, keep-
ing in the frame that, as pointed out by Schrödinger (p. 145 of Ref. [42]) “our sense per-
ceptions constitute our sole knowledge about things”. In short, it seems that the continuity
of time does not stem from any fundamental principle, but probably originates from the
following demand on continuity discussed by Schrödinger (see p. 130 of [41]):

“From our experiences on a large scale . . . physicists had distilled the one clear-cut
demand that a truly clear and complete description of any physical happening has to fulfill:
it ought to inform you precisely of what happens at any point in space at any moment of
time . . . . We may call this demand the postulate of continuity of the description.”

Schrödinger, however, subsequently commented on this demand as follows (see p. 131
of Ref. [41]): “It is this postulate of continuity that appears to be unfulfillable!...” and
furthermore added: “We must not admit the possibility of continuous observation.”
Considering these important remarks, we may say that the concept of natural time is
not inconsistent with Schrödinger’s point of view.

2.7.4 Conclusions

Conventional time is currently assumed continuous, but this does not necessarily result
from any fundamental principle. Its values form an uncountable set, almost all of which
may be irrational numbers. On the other hand, natural time is not continuous, and its
values form a countable set consisting of rational numbers only; further, the values of
the energy also form a countable set but they are not necessarily rational. In the limit of
infinitely large number of events, the cardinality of the set of the values of natural time
is ℵ0 (irrespective of whether we increase the accuracy of the measurement), thus being
drastically smaller than that of conventional time, which equals to 2ℵ0 if we accept the
validity of the continuum hypothesis.
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3. Entropy in Natural Time

Abstract. Entropy is a concept equally applicable to deterministic as well as stochastic
processes. An entropy S is defined in natural time, which exhibits positivity, concavity
and Lesche’s (experimental) stability. The entropy S− deduced from analyzing in natural
time the time series obtained upon time reversal, is in general different from S, thus the
entropy in natural time does satisfy the condition to be “causal” (while the variance κ1 =
〈χ2〉− 〈χ〉2 does not). The physical meaning of the change ΔS ≡ S− S− of the entropy
in natural time under time reversal, which is of profound importance for the study of
the dynamical evolution of a complex system, is discussed. For a fractional Brownian
motion time series with self-similarity exponent H close to unity, as well as for an on–
off intermittency model when the critical value is approached from below, both values of
S and S− are smaller than the entropy Su ≈ 0.0966 of a “uniform” distribution. When a
(natural) time window of length l is sliding through a time series, the entropy S exhibits
fluctuations, a measure of which is the standard deviation δS. Complexity measures are
introduced that quantify the δS variability upon changing the length scale l as well as
the extent to which δS is affected when shuffling the consecutive events randomly (for
l = const.). In a similar fashion, complexity measures can be defined for the fluctuations
of the quantity ΔS whose standard deviation is designated σ [ΔS]. For the case that Qk are
independent and identically distributed positive random variables, as in the case of data
shuffled randomly, their σ/μ value is interrelated with δS and σ [ΔS].

3.1 The entropy in dynamical systems and the advantages of its use

Before defining the entropy S in natural time time (see Section 3.2), we recapitulate some
background knowledge on the entropy in dynamical systems (see chapter 13 of Ref. [36]).

Following Eckmann and Ruelle [8] (see pp. 637, 638), we note that a system with
sensitive dependence on initial conditions produces information. This is because two initial
conditions that are different but indistinguishable (at a certain experimental precision) will
evolve into distinguishable states after a finite time. If ρ is an ergodic probability measure
for a dynamical system, the concept of the mean rate of creation of information, h(ρ),

P.A. Varotsos et al., Natural Time Analysis: The New View of Time: Precursory Seismic Electric Signals,
Earthquakes and other Complex Time Series, Springer Praxis Books, DOI 10.1007/978-3-642-16449-1_3, 
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also known as the Kolmogorov–Sinai (KS) invariant or entropy, was introduced. This,
which (is, in fact, an entropy per unit time and) will be hereafter labeled hKS, is not the
same physical quantity as the thermodynamic entropy when studying the dynamics of
dissipative physicochemical systems (see also below).

Grassberger and Procaccia [12] proposed a method to estimate a very good lower bound
for hKS directly from a time signal (see also Refs. [6] and [7] for other estimations and/or
relevant discussion). The value of hKS is zero in an ordered system, and a constant different
than zero (but positive, see p. 649 of Ref. [8]) in a chaotic (deterministic) system.

The greater the hKS-value, the stronger are the chaotic features of the system in ques-
tion. In a random system hKS is infinite (see p. 38 of Ref. [21]).

An interconnection between hKS (which is a single number characteristic of the chaotic
dynamical system under consideration) and the time evolution of the entropy of the second
law of thermodynamics, is not yet well established. The latter is a function of time; this
function depends on both (i) the particular dynamical system considered and (ii) the choice
of an initial probability distribution for the state of the system.

We now summarize [43, 36] the advantages when using the concept of the entropy
for the study of a dynamical system for which an agreement whether the system dynam-
ics (e.g., normal heart dynamics) are chaotic or not is lacking. The most commonly used
nonlinear complexity measures are fractal dimensions of various kinds (e.g., correlation
dimension, Rényi dimensions). We emphasize, however, that each of them measures dif-
ferent aspects of the statistics on the attractor. On the other hand, Liapunov exponents and
KS entropy and entropy rates are measures of the dynamics on an attractor.

Except for the KS entropy and the entropy rates, the other categories of complexity
measures assume a purely deterministic system. On the other hand, entropy is a con-
cept equally applicable to deterministic as well as stochastic processes.

Thus, in a time series that may be due to a mixed process, stochastic and deterministic,
the use of fractal dimensions can be criticized. Furthermore, the following point should
be stressed: complexity measures based on static entropy (e.g., Shannon entropy) quantify
statistical properties in the time series. The underlying key property of these complexity
measures is the probability distribution of the (dwell times in the) data analyzed; thus, the
result of such computations should be independent of permutations performed on the (se-
quence of the dwell times in the) time series as in surrogate (randomized) dataset obtained
by shuffling. On the other hand, the entropy S in natural time that will now be defined
(and the relevant complexity measures, see Section 3.6) considers the sequential order of
pulses (events); in other words, S is a dynamic entropy, i.e., it captures characteristics of
the dynamics of the system. We emphasize, however, that an interrelation between hKS and
S still remains to be explored.
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3.2 Entropy in natural time. Definition

The derivative of the fluctuation function 〈χq〉− 〈χ〉q, with respect to q, i.e., 〈χq lnχ〉−
〈χ〉q ln〈χ〉 in the region around q = 1 leads [40] to the quantity 〈χ lnχ〉−〈χ〉 ln〈χ〉. The
latter is reminiscent of an excessive “entropy” (see pp. 26–28 of Ref. [37], but recall that
the usual expressions of the thermodynamic potentials, in terms of macroscopic variables,
break down [37] far from equilibrium and the behavior of entropy is still a matter of inten-
sive investigation). Thus,

Definition 3.1. The entropy in natural time is [38, 40]

S≡ 〈χ lnχ〉−〈χ〉 ln〈χ〉 (3.1)

or equivalently

S =
N

∑
k=1

k
N

ln
(

k
N

)
pk−

(
N

∑
l=1

l
N

pl

)
ln

[
N

∑
m=1

m
N

pm

]
(3.2)

Note that S should not be confused with Cov(χ, lnχ)≡ 〈χ lnχ〉−〈χ〉〈 lnχ〉 since in
general 〈 lnχ〉 �= ln〈χ〉.

The entropy S consists of two terms: Sχ ≡−〈χ lnχ〉 and S〈χ〉 ≡ −〈χ〉 ln〈χ〉 and hence
S =−Sχ +S〈χ〉. Upon employing p(χ), Eq. (3.1) can be written as

S =
∫ 1

0
p(χ)χ lnχ dχ−

(∫ 1

0
p(χ)χ dχ

)
ln
[∫ 1

0
p(χ ′)χ ′ dχ ′

]
. (3.3)

Recalling that for the “uniform” (u) distribution p(χ) = 1 and 〈χ〉= 1
2 (see § 2.1.3), we find

that, since d
dx [x

2/4−(x2/2) lnx] =−x lnx, the entropy Su of the “uniform” distribution has
the value

Su =
ln2
2
− 1

4
≈ 0.0966 (3.4)

3.3 Properties of the entropy in natural time

An entropic functional Σ [p], where {pi}i=1,2,...N is a probability distribution for a given
system (beyond positivity, e.g., see Ref. [16]) should be concave (e.g., pp. 52–53 of
Ref. [5]). For the central importance of this concavity on both the 0th and the 2nd prin-
ciple of thermodynamics; see for example Ref. [33]. Another important issue which has
attracted a strong interest is the stability or experimental robustness of the entropies, e.g.,
see Refs. [31, 2, 16, 17, 15, 24, 33, 19]. In particular, this investigation is usually made
in terms of an early suggestion by Lesche [18] (Lesche stability criterion), which states
that an entropic measure is stable if its change upon an arbitrarily small deformation of the
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distribution (representing fluctuations of experimental data [31]) remains small. By means
of this stability criterion, Lesche [18] showed that the well known Boltzmann–Gibbs–
Shannon (BGS) entropy SBGS =−kB ∑N

i=1 pi ln pi is stable, while the Rényi-entropy [28] is
unstable. Abe later proved [2] that Tsallis entropy is also stable, while the escort-entropy
is not. Finally, the stability was also shown for the κ-entropy [17, 31], while it became
clear [34] that the Landsberg–Vedral.-entropy does not obey this criterion.

To sum up, an entropic functional should exhibit positivity, concavity and Lesche sta-
bility.

The mathematical proofs concerning the positivity, concavity and uniform continuity
(or as usually called Lesche stability) for both the variance κ1 and entropy S in natural time
are now given below. In particular, we first present in § 3.3.1 some background material,
while §§ 3.3.2, 3.3.3 and 3.3.4 provide in detail the proof of the positivity, concavity and
Lesche stability of both the variance κ1 and the entropy S in natural time.

Despite this similarity of the properties of κ1 and S, however, we note that upon time
reversal they exhibit an essential difference, i.e., the former (κ1) always remains the
same while the latter (S) does not, see § 3.4.1.

Finally, § 3.3.5 is reserved for the presentation of a more general theorem.

3.3.1 Background material

Here, we review some of the basic properties of the real functions g(x) = x2 and
f (x) = x lnx defined on the closed interval [0,1] (more accurately we consider f (x) =
{x lnx : ∀ x ∈ (0,1], 0 : if x = 0} ). These are depicted in Fig. 3.1, and note that the fol-
lowing two inequalities hold:

0≤ g(x)≤ 1, (3.5)

0≥ f (x)≥−1
e
. (3.6)
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Fig. 3.1 The functions g(x) = x2 and f (x) = x lnx
in the closed interval [0,1].
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Equation (3.6) clearly means that

| f (x)| ≤ 1
e
. (3.7)

We now proceed to two very simple Lemmas:

Lemma 1 Both g(x) and f (x) are continuous in the interval [0,1].

Proof. For g(x) this is trivial; for f (x) it is also trivial for x∈ (0,1] and since limx→0 f (x) =
0, f (x) is also continuous at x = 0. ��
Lemma 2 Both g(x) and f (x) are convex in the interval (0,1].

Proof. It is sufficient to show that the second derivatives of these twice differentiable func-
tions are positive. Indeed g′′(x) = 2 and f ′′(x) = 1/x which are both positive for x > 0. ��

3.3.2 The positivity of κ1 and S

We first recall Eqs. (2.39) and (3.1) and that the symbol 〈F(χ)〉 stands for

〈F(χ)〉=
N

∑
k=1

pkF
(

k
N

)
. (3.8)

Second, in order to prove the positivity of κ1 and S, we shall make use of the following
well known theorem [1] (see also 12.411 at page 1101 of Ref. [11]):

Theorem 3.1. (Jensen’s inequality) If F is a convex function on the interval [a,b], then

F

(
n

∑
k=1

λkxk

)
≤

n

∑
k=1

λkF(xk)

where 0≤ λk ≤ 1, λ1 +λ2 + · · ·+λn = 1 and each xk ∈ [a,b].

Due to Lemma 2 both g(x) = x2 and f (x) = x lnx are convex in (0,1]. Using in Jensen’s
inequality λk = pk, xk = k/N(> 0) and Eq. (3.8), we obtain:

〈χ〉2 ≤ 〈χ2〉 (3.9)

and
〈χ〉 ln〈χ〉 ≤ 〈χ lnχ〉, (3.10)

respectively. Obviously, Eqs. (3.9) and (3.10) imply the positivity of both κ1 and S.

3.3.2.1 Upper bounds of κ1 and S

Another important property of κ1 and S is that they are not only bounded from below by
zero, but also bounded from above by N-independent bounds. For κ1, in view of Eq. (3.5),
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we have:

0≤ κ1 = 〈χ2〉−〈χ〉2 < 〈χ2〉+ 〈χ〉2 ≤
N

∑
k=1

pk

(
k
N

)2

+1≤ 2. (3.11)

As for S, in view of Eq. (3.7), we get:

0≤ S = 〈χ lnχ〉−〈χ〉 ln〈χ〉 ≤ |〈χ lnχ〉|+ |〈χ〉 ln〈χ〉| ≤
N

∑
k=1

pk

∣∣∣∣ k
N

ln
k
N

∣∣∣∣+ 1
e

<
2
e
.

(3.12)
Thus, in summary

0≤ κ1 < 2 (3.13)

0≤ S <
2
e

(3.14)

Note that the usual values of κ1 and S are much smaller than these upper bounds. For
example, since κ1 is the variance of the natural time χ that varies from 0 to 1, it is
expected to be maximum when p(χ) has support only at the extreme points 0 and 1.
In such a case, κ1 = p− p2 and S = −p ln p, where p ≡ p(χ = 1). Since 0 < p ≤ 1,
the maximum value of κ1 is obtained when p = 1

2 and then κ1 equals 1
4 . Moreover, S =

−p ln p maximizes for p = 1/e taking the value 1/e≈ 0.3679. We note that the latter
value is the maximum value of S since, when using Eq. (3.6) we have S = 〈χ lnχ〉−
〈χ〉 ln〈χ〉 ≤ −〈χ〉 ln〈χ〉 ≤ 1/e.

3.3.3 The concavity of κ1 and S

The concavity of κ1 and S with respect to pk is based on the fact that they both have
negative second derivatives:

∂ 2κ1

∂ pk∂ pl
=− k l

N2 , (3.15)

∂ 2S
∂ pk∂ pl

=− k l
N2

(
N

∑
m=1

pm
m
N

)−1

. (3.16)

Thus, the matrix elements of the corresponding Hessians (Hk,l = ∂ 2

∂ pk∂ pl
Σ [p]) have the

form Hk,l = −εVkVl , where V = (1/N,2/N, . . . ,1) and ε = 1(> 0) when Σ [p] = κ1 or
ε =

(
∑N

m=1 pm
m
N

)−1 (> 0) when Σ [p] = S. Such Hessians cannot have a positive eigenvalue
λ , because Hk,leλ = λeλ ⇒ eT

λHk,leλ = λ |eλ |= λ =−εeT
λV TVeλ =−ε|Veλ | ≤ 0, where

eλ (∈ �N) is any normalized eigenvector of the symmetric real matrix Hk,l . Since they
cannot have a positive eigenvalue these Hessians are negative semi-definite and hence the
corresponding entropic measures κ1 and S are concave [11].
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3.3.4 Lesche stability (or experimental robustness) of κ1 and S

Lesche stability [18], as mentioned, is considered [3, 24, 15, 16] as an important property
to be satisfied by an entropic measure Σ [p].

Lesche stability implies [3] that for two slightly different distributions {pi}i=1,2,...N and
{p′i}i=1,2,...N , the corresponding entropic measures Σ [p] and Σ [p′] do not change drasti-
cally (and also in a uniform way, see below).

Mathematically

∀ε > 0 ∃δ : ‖p− p′‖< δ ⇒
∣∣∣∣Σ [p]−Σ [p′]

Σmax

∣∣∣∣< ε (3.17)

for any value of N, with the metric ‖p‖ = ∑N
i=1 |pi| and Σmax is the maximum value of

Σ [p].
We note [24] that, for a fixed value of N, Lesche stability implies uniform continuity

which is a rather trivial statement, because a continuous function on a compact set is
automatically uniformly continuous (see Theorem 3.3 below).

It was pointed out [16] that Lesche condition is a definition of natural uniform metric
continuity.

The power of Lesche stability condition arises from the fact that uniform continuity
may not survive in the N → ∞ limit [15]. Thus, to avoid confusion, one should consider
[15] that the mapping Σ [p], where p ∈ (�+)N , taken as a function of N, converges to a
uniformly continuous function in a uniform manner, i.e., ∀ε > 0 there exists δε (which
depends only on ε) such that ∀ p, p′ ∈ (�+)N and for every N ∈� +

‖p− p′‖< δε ⇒
∣∣∣∣Σ [p]−Σ [p′]

Σmax

∣∣∣∣< ε. (3.18)

In our case of κ1 and S, there is at least one distribution {pi}i=1,2,...N , the constant one
with all pi = 1/N, for which for all N the corresponding values κ1,c and Sc:

κ1,c(N) =
N

∑
k=1

k2

N3 −
(

N

∑
k=1

k
N2

)2

, (3.19)

Sc(N) =
N

∑
k=1

k
N2 ln

(
k
N

)
−

N

∑
k=1

k
N2 ln

(
N

∑
l=1

l
N2

)
, (3.20)

as well as those in the limit N → ∞:

lim
N→∞

κ1,c(N) = κu =
1
12

, (3.21)

lim
N→∞

Sc(N) = Su =
ln2
2
− 1

4
. (3.22)
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reach well-defined finite and positive values. We note that both κ1,c(N) and Sc(N) are
monotonically increasing with respect to N and hence:

1
16

= κ1,c(2)≤ κ1,c(N), (3.23)

5 ln2−3 ln3
4

= Sc(2)≤ Sc(N). (3.24)

Since Σmax should be by definition greater or equal than each of these values for all N, we
can replace Σmax in the definition of Lesche stability by either 1

16 or 5 ln2−3 ln3
4 , respectively.

Then, these positive numbers can be absorbed in ε and thus we retain the usual definition
of uniform metric continuity in a uniform manner (independent of N). This is what we
shall prove:

∀ε > 0, N ∈� +∃δ (ε) : ‖p− p′‖< δ (ε) ⇒ |Σ [p]−Σ [p′]|< ε. (3.25)

Theorem 3.2. (Stability of κ1) The variance κ1 in natural time:

κ1[p] =
N

∑
k=1

pk

(
k
N

)2

−
(

N

∑
k=1

k
N

pk

)2

(3.26)

satisfies the condition (3.25) and hence is Lesche stable.

Proof. For every ε > 0, we can consider δ (ε) = ε/3 so that if ‖p− p′‖< δ (ε) we have:

|κ1[p]−κ1[p′]| =
∣∣∣∣∣∣
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≤ 3
N
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|pk− p′k| (3.27)
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but since ‖p− p′‖= ∑N
k=1 |pk− p′k|< ε/3, inequality (3.27) implies that

|κ1[p]−κ1[p′]|< ε (3.28)

This relation shows that the condition (3.25) is obeyed for κ1. ��

Thus, the quantity κ1 is Lesche stable.

Now, before proceeding to the final proof for the stability of the entropy S, we make
use of a well-known theorem [51]:

Theorem 3.3. (Heine 1870) If a function F(x) of a real variable x is continuous when
a≤ x≤ b, then F(x) is uniformly continuous throughout the range a≤ x≤ b.

In Lemma 1 we proved that f (x) = {x lnx : ∀ x ∈ (0,1], 0 : if x = 0} is continuous in
the closed interval [0,1], and hence it is also uniformly continuous in the same interval.
Uniform continuity implies that

∀ε
2

> 0,x,y ∈ [0,1]∃δ1(ε/2) : |x− y|< δ1(ε/2)⇒ |x lnx− y lny|< ε
2
. (3.29)

Now, we can show that S is Lesche stable.

Theorem 3.4. (Stability of S) The entropy S in natural time:

S[p] =
N

∑
k=1

pk
k
N

ln
k
N
−
(

N

∑
k=1

pk
k
N

)
ln

N

∑
k=1

pk
k
N

(3.30)

satisfies the condition (3.25) and hence it is Lesche stable.

Proof. For every ε > 0, we can consider δ (ε) = min
[ eε

2 ,δ1(ε/2)
]

so that if ‖p− p′‖ <
δ (ε) we have:

|S[p]−S[p′]| =
∣∣∣∣∣

N

∑
k=1

(pk− p′k)
k
N

ln
k
N
−
(

N

∑
k=1

k
N

pk

)
ln

N

∑
k=1

k
N

pk +

+

(
N

∑
k=1
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N

p′k

)
ln

N

∑
k=1

k
N

p′k
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≤
∣∣∣∣∣

N

∑
k=1

(pk− p′k)
k
N

ln
k
N

∣∣∣∣∣+ |x lnx− y lny| , (3.31)

where x = ∑N
k=1

k
N pk and y = ∑N

k=1
k
N p′k. We now consider that

|x− y|=
∣∣∣∣∣

N

∑
k=1

k
N

(pk− p′k)

∣∣∣∣∣≤
N

∑
k=1

∣∣∣∣ k
N

∣∣∣∣ |pk− p′k| ≤
N

∑
k=1
|pk− p′k|< δ (ε)≤ δ1(ε/2) (3.32)
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and hence (see condition (3.29))

|x lnx− y lny|< ε
2
. (3.33)

Now, we return to inequality (3.31) to complete the proof:

|S[p]−S[p′]| ≤
∣∣∣∣∣

N

∑
k=1

(pk− p′k)
k
N

ln
k
N

∣∣∣∣∣+ |x lnx− y lny|<

<
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N
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ln
k
N

∣∣∣∣+ ε
2
≤

≤
N

∑
k=1
|pk− p′k|

1
e

+
ε
2
, (3.34)

since we assumed ‖p− p′‖= ∑N
k=1 |pk− p′k|< δ (ε)≤ eε

2 , the inequality (3.34) becomes:

|S[p]−S[p′]|< ε
2

+
ε
2

= ε. (3.35)

This relation shows that the condition (3.25) is obeyed for S. ��

Thus, the entropy S is Lesche stable.

3.3.5 A more general theorem for entropic functionals in natural time

The following general theorem holds

Theorem 3.5. Let F(x) : [0,1]→� which is:

1. uniformly continuous in [0,1]
2. strictly convex in (0,1]
3. twice differentiable in (0,1]

then the functional:

Σ [p] =
N

∑
k=1

pkF
(

k
N

)
−F

(
N

∑
k=1

pk
k
N

)

is:

1. positive
2. concave
3. Lesche stable.

Proof. The proof of this Theorem is given in Section V of Ref. [49]. ��
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3.4 Entropy under time reversal

It is believed (e.g., see Ref. [20] and references therein) that in general there is a rela-
tion between the irreversibility of thermodynamic processes as expressed by the breaking
of time-reversal symmetry and the entropy production in such processes. An essential
characteristic of these processes is that the time-reversal invariance of the microscopic dy-
namics is apparently broken [20]. It means that out of equilibrium a particular sequence
of macrostates and its time reversal can have a very different plausibility (this, basically,
must be the reason for the positivity of entropy production [20]). Since in general we are
dealing with out of equilibrium processes, the above motivated us to investigate what hap-
pens when calculating the S values upon time reversal of the original time series. We find
that in general S is not invariant under time reversal [50].

3.4.1 Definition of the entropy in natural time under time reversal

The value of the entropy deduced upon analyzing in natural time the time series obtained
upon considering the time reversal T̂ of the original time series, i.e., T̂ pk = pN−k+1 see
Eq. (2.8), is designated by S−. This differs from the S value which results from the analysis
of the original time series. On the other hand κ1 does not change upon time reversal –
since it results [39] from a power spectrum (see Section 2.4) – in a similar fashion as the
exponents obtained from DFA (see § 1.4.2) and Hurst [14] analysis (see Section 4.3). Since
the value of S− is in general different [50, 48, 47] from S, the entropy in natural time does
satisfy the condition to be “causal” in the following sense (see Ref. [50] and references
therein):

When studying a dynamical system evolving in time, a “causal” operator should be
able to represent the evolution of the system according to the true time arrow, thus
such an operator can reveal the differences arising upon time reversal. This holds for
S but not for κ1.

3.4.1.1 A simple example clarifying the physical meaning of the entropies S and S−

Let us study the influence of a linear trend on the “uniform” distribution by consider-
ing the example of the parametric family of pdfs discussed in § 2.2.1, i.e., p(χ;ε) =
1+ ε(χ−1/2), for small ε(< 1), see Eq. (2.9). Such a family of pdfs shares the interest-
ing property of Eq. (2.10), i.e, the action of time reversal is obtained by simply changing
the sign of ε . The calculation of the entropy S(ε) ≡ S[p(χ;ε)], as well as that of the en-
tropy under time reversal S−(ε)≡ S[T̂ p(χ;ε)] = S(−ε), can be done analytically by using
Eq. (3.3). This yields

S(ε) =−1
4

+
ε
72
−
(

1
2

+
ε
12

)
ln
(

1
2

+
ε
12

)
. (3.36)
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Fig. 3.2 The values of S (dashed) and S−
(dotted) as a function of the linear trend
parameter ε . The solid line corresponds to
Su and is drawn for the sake of comparison.
Taken from Ref. [48].

Figure 3.2 shows the values of S and S− as a function of the linear trend parameter ε .
We observe that they lie above and below Su, respectively. In simple words:

A (small) linearly increasing (decreasing) trend superimposed on a “uniform” distribu-
tion leads to an entropy S smaller (larger) than Su, while S− is larger (smaller) than Su.

3.4.2 The case when the increments of the time series of Qk are positive i.i.d.

random variables of finite variance

In this case, as discussed in § 2.5.3, p(χ) = 2χ . By using Eq. (2.97), we find κ1 = 1
18 ≈

0.056 �= κu (see § 2.5.3). Moreover, Eq. (3.3) leads to the value S = 2
3 ln 2

3 − 2
9 ≈ 0.048

and, in addition when considering T̂ p(χ) = 2(1− χ), we get S− = 1
3 ln3− 5

18 ≈ 0.088.
Both S and S− values significantly differ from Su ≈ 0.0966 of the “uniform” distribution,
see Eq. (3.4). On the other hand, when Qk are shuffled randomly, in view of the fact that
the increments have a finite variance, the distribution of Qk for a given N has also finite
variance. Thus, the results for the shuffled case correspond [43] to those treated later in
§ 3.4.6, which lead (see Eqs. (3.56) and (3.48)) to Sshu f → Su and κ1,shu f → κu as N → ∞.
A numerical example for exponentially distributed increments of Qk is shown in Fig. 3.3.

3.4.3 Fractional Brownian motion time series

The fBm as mentioned in (§ 1.5.1.1) is H self-similar with stationary increments and con-
stitutes [29] the only Gaussian process with such properties for 0 < H < 1. This can be
simulated [23, 25, 30]; see also pp. 321–323 of Ref. [22], by randomizing a construction
due to Weierstrass, i.e., using the Weierstrass–Mandelbrot function [10]:

w(t) =
∞

∑
l=1

cl
sin(blt +dl)

blH , (3.37)
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randomly in the case of exponentially
distributed increments (see also Fig. 2.4).
Here, N = 500 and the original time
series results in κ1 = 0.055, S = 0.048
and S− = 0.088. Taken from Ref. [47].

where b > 1, cl normally distributed with mean 0 and standard deviation 1, and dl are uni-
formly distributed in the interval [0,2π] (note that when using the increments of Eq. (3.37)
one can also produce fractional Gaussian noise of a given H, see the note after Eq. (1.31)).

By using Eq. (3.37), fBm for various values of H were produced [48], the one-sided
segments of which were analyzed in natural time (an example showing how the one-sided
segments of a fractional Brownian motion are read in natural time is given in Fig. 3.4). This
means that if we denote by wi, i = 0,1,2, . . .N + 1, some N + 2 consecutive fBm values
obtained from Eq. (3.37) with w0w1 < 0 and wNwN+1 < 0 whereas all wn,n = 1,2, . . .N,
have the same sign – thus constituting an one-sided segment – then the pk, k = 1,2, . . .N,
used in the calculation are given by pk = wk/∑N

n=1 wn and correspond to the “energies”
Qk = wk mentioned in § 2.1.2. A Monte Carlo calculation was made by analyzing a large
number of such segments in natural time. The results obtained for each one-sided segment
include the values of the entropies S, S− (and the value of κ1 see below) together with
the exponent αDFA of the DFA described in § 1.4.2. For segments of a small number of
points N (note that only segments with N > 40 were considered), the values of αDFA may
vary significantly, but they scatter around that expected for a given value of H (see fig. 11
of Ref. [41]); in this sense, the DFA exponent αDFA is consistent with the H-index used
to generate fBm by means of Eq. (3.37). The method of DFA was preferred, because it
is one of the few well-defined and robust estimators of the scaling properties for such
segments, see § 4.6.1.1. The results are shown in Fig. 3.5, in which we plot the S and S−
values versus αDFA. Since, as will be explained later in § 4.4.2, the analysis of the SES
activities in natural time leads [41, 40] to DFA exponents αDFA around unity, we are solely
focused in Fig. 3.5 on the range 0.8 < αDFA < 1.5. An inspection of this figure reveals the
following conclusions. First, despite the large standard deviation, we may say that these
computations do not result in a definite sign for S−S− and that both S and S− are smaller
than Su (≈0.0966) when αDFA ≈ 1. Second, S and S− are more or less comparable. Third,
the computed S and S− values are ≈ 0.08 for αDFA ≈ 1. Interestingly, when plotting the
most probable value κ1,p of κ1 versus αDFA we find that κ1,p ≈ 0.070 when αDFA = 1, see
Fig. 3.6.
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Thus, the results deduced from a numerical simulation in fBm time series show that
when αDFA ≈ 1 the corresponding values are κ1 ≈ 0.070 and S≈ S− ≈ 0.080.

3.4.4 An on–off intermittency model

We clarify that on–off intermittency is a phase-space mechanism that allows dynamical
systems to undergo bursting (bursting is a phenomenon in which episodes of high activity
are alternated with periods of inactivity). This mechanism is different from the well-known
Pomeau–Manneville scenario for the behavior of a system in the proximity of a saddle-
node bifurcation [27]. Here, we use the simple model of the driven logistic map

Xt+1 = A(Yt)Xt(1−Xt) (3.38)

where we assume that the quantity A(Yt) is monotonic function of Yt and that 0 ≤ A ≤ 4
(A is further specified below). The system has the invariant manifold X = 0 and the level
of its activity is measured by Xt ; see Ref. [32]. In order to have the on–off mechanism in
action, we specialize to the case of a noise-driven logistic map, with

A(Yt) = A0 +αYt (3.39)

where Yt is δ -correlated noise which is uniformly distributed in the interval [0,1] and A0
and α are parameters. In order to have 0 ≤ A ≤ 4, we assume [32] A0 ≥ 0,α ≥ 0 and
A0 +α ≤ 4. The relevant parameter plane for the noise-driven system of Eqs. (3.38) and
(3.39) (as well as the parameter range for which the fixed point X = 0 is stable) can be
found in fig. 1 of Ref. [32], while the description of the intermittent dynamics is given
in Refs. [26, 13, 4]. Bursting is observed in the temporal evolution of Xt as the stability
of the fixed point X = 0 varies. Following Ref. [13], for A0 = 0 there is a critical value
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αc > 1, below which the system asymptotically tends to the fixed point X = 0, without any
sustained intermittent bursting. For this case, i.e., A0 = 0, the value αc = e ≡ 2.71828 . . .
leads to on–off intermittency [32]. In the intermittent system under discussion, both the
signal amplitude and the power spectrum resulted [32] in power law distributions (with
low frequencies predominating in the power spectrum).

Several time series have been produced for the above on–off intermittency model with
the following procedure [48]: The system was initiated at a time (tin = −200) with a uni-
formly distributed value Xtin in the region [0,1], and then the mapping of Eqs. (3.38) and
(3.39) was followed until N events will occur after t = 0. The results for Xt , t = 1,2 . . .N,
were analyzed in natural time domain (i.e., pk = Xk/∑N

t=1 Xt , where Xk here corresponds
to the “energy” Qk mentioned in § 2.1.2) and the values of S and S− have been determined.
This was repeated 103 times for a given number N of events and the average values of
S and S− have been deduced. These values are plotted in Fig. 3.7(a) versus (α − e)N1/2

(the factor N1/2 stems from finite size scaling effects, since for large values of N, e.g.,
N > 15,000, a scaling – reminiscent of a first-order phase transition – was observed).
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Fig. 3.7 Calculated results for the on–off
intermittency model discussed in § 3.4.4:
The average values of (a) S (closed
symbols) and S− (open symbols) and (b)
the fluctuations δS and δS− versus the
finite size scaling variable (α−αc)N1/2.
The quantity N stands for the number of
the events considered in each sample time
series; N = 70000, 50000, 30000, 15000
correspond to squares, circles, triangles
and inverted triangles, respectively. The
horizontal line in (a) corresponds to Su.
Taken from Ref. [48].
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Figure 3.7 reveals that as the critical value for on–off intermittency is approached from
below, i.e., α→ e−, the entropy S is different from S− (in contrast to fBm, see § 3.4.3)
and both S and S− are smaller than Su.

3.4.5 The case of signals that exhibit short-range temporal correlations

We now present results of modeling Qk by short-ranged temporal correlated time series.
Two examples are treated here by numerical simulation [46]. (i) A stationary autoregres-
sive process Qk = aQk−1 +gk + c, |a|< 1, where gk are Gaussian i.i.d. random variables,
and c stands for an appropriate constant to ensure positivity of Qk. (ii) Qk = |aQk−1 +gk|.
Figure 3.8(a) depicts the results for S, S− and κ1 for the first example versus the number
N of Qk, whereas Fig. 3.8(b) refers to the second example.

In both cases S and S− converge to Su while κ1 to the value κu = 1/12 corresponding
to the “uniform” distribution.
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Fig. 3.8 The thick colored lines in (a) and (b) depict the average value of S (red), S− (blue) and κ1 (green)
versus the number N of Qk for the two examples (i) and (ii), respectively, mentioned in § 3.4.5. The thinner
colored lines refer to the ±σ deviation from the average value. For the reader’s convenience, the values
of Su and κu are designated by the horizontal solid black lines. Reprinted with permission from Ref. [46].
Copyright (2008), American Institute of Physics.

3.4.6 Interrelation between δS and σ/μ in the case of p.i.i.d.

This subsection is focused on the “uniform” distribution in the natural time domain (see
§ 2.1.3). We consider here the case when Qk are independent and identically distributed
positive random variables with finite second moment, i.e., Var(Qk) = σ2(< ∞). This case
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naturally arises when an experimental time series, which does not exhibit heavy tails
(§ 2.5.2), is randomly shuffled [42, 43]. Since Qk are i.i.d., for � (pk) = � [Qk/∑N

l=1 Ql ]
we have: � [∑N

k=1 Qk/∑N
l=1 Ql ] = 1 = N� (pk), thus � (pk) = 1

N (see Eq. (2.89)). Using the
constraint ∑N

k=1 pk = 1 (see Eq. (2.3)), leading to pk−1/N = ∑l �=k(1/N− pl), and the fact
that Qk are i.i.d., we obtain

Var[pk] = �

[(
pk− 1

N

)2
]

= �

[(
pk− 1

N

)
∑
l �=k

(
1
N
− pl

)]

= −(N−1)�
[(

pk− 1
N

)(
pl− 1

N

)]
. (3.40)

Thus, we get

Cov(pk, pl) = �

[(
pk− 1

N

)(
pl− 1

N

)]
=−Var(pk)

N−1
(3.41)

which is analogous to Eq. (2.90). It then follows, when considering the central limit theo-
rem [9], that the N-dependence of Var(pk) is (see Eq. (2.94):

Var(pk) =
σ2

N2μ2 . (3.42)

We now turn to the statistical properties of 〈χq〉. Using � (pk) = 1
N , we have

� [〈χq〉] =
N

∑
k=1

(
k
N

)q 1
N

. (3.43)

which, since [11] ∑N
k=1 kq = Nq+1/(q + 1)+ Nq/2 + o(Nq), reveals that � [〈χq〉] is again

asymptotically N-independent because it approaches the value 1/(q + 1) with a “small”
1/(2N) correction. The variance Var[〈χq〉][= (δ 〈χq〉)2],

Var[〈χq〉] = �

⎧⎨
⎩
[

N

∑
k=1

(
k
N

)q(
pk− 1

N

)]2
⎫⎬
⎭ , (3.44)

after expanding the square and using Eqs. (3.41) and (3.42), becomes:

Var[ 〈χq〉 ] =
N

∑
k=1

(
k
N

)2q σ2

N2μ2

− σ2

(N−1)N2μ2

N

∑
k=1

(
k
N

)q N

∑
l=1,l �=k

(
l
N

)q

, (3.45)

which, using Eq. (3.43), finally leads to:

Var[〈χq〉] =
σ2

(N−1)μ2

{
� [〈χ2q〉]−�

2[〈χq〉]} . (3.46)
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The expectation value of κ1 when Qk are p.i.i.d. can be found on the basis of Eqs. (3.43)
and (3.46):

� [κ1] = � [〈χ2〉−〈χ〉2]
= � [〈χ2〉]−�

2[〈χ〉]−Var[〈χ〉]

=
{
� [〈χ2〉]−�

2[〈χ〉]}{1− σ2

(N−1)μ2

}

=

⎧⎨
⎩

N

∑
k=1

k2

N3 −
(

N

∑
k=1

k
N2

)2
⎫⎬
⎭
{

1− σ2

(N−1)μ2

}
(3.47)

which by considering Eq. (2.91) leads to

� [κ1] = κu

(
1− 1

N2

)[
1− σ2

(N−1)μ2

]
. (3.48)

Note that, as expected, Eq. (2.92) leads to the above equation when Var(Qk) = σ2(< ∞).
The proof of Eq. (3.46) can be generalized for all linear functionals of pk of the form

〈 f (χ)〉= ∑N
k=1 f (k/N)pk and yields:

Var[〈 f (χ)〉] =
σ2
{
� [〈 f 2(χ)〉]−�

2[〈 f (χ)〉]}
(N−1)μ2 . (3.49)

In Fig. 3.9, we compare the theoretical result of Eq. (3.46) with synthetic (Gaussian)
data which have values of μ , σ and size (≈1000) similar to those in 15 min ECG (see
Chapter 9). Note that when one uses the estimator (δX)2 = ∑(X −X)2/N, instead of the
unbiased estimator (δX)2 = ∑(X −X)2/(N− 1), in order to find the sample variance, N
should replace N−1 in Eq. (3.46).
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variance of the synthetic data, and thus
N−1 was replaced by N in Eqs. (3.46) and
(3.63). Taken from Ref. [43].



178 3. Entropy in Natural Time

We now proceed to the statistical properties of the entropy S = 〈χ lnχ〉− 〈χ〉 ln〈χ〉;
see Eq. (3.1). To simplify the calculation of the expectation value � [S] and the variance
Var(S) of the entropy, we define the two linear functionals

m[xk] =
N

∑
k=1

k
N

xk, (3.50)

L[xk,ξ ] =
N

∑
k=1

k
N

ln
(

k
ξN

)
xk, (3.51)

and the constant time series � = {xk} : xk = 1/N, k = 1,2, . . .N (cf. §§ 2.5.2 and 3.3.4).
Note that for both functionals m[xk] and L[xk,ξ ], in view of their linearity, we have

�

{
m
[

pk− 1
N

]}
= �

{
L
[

pk− 1
N

,ξ
]}

= 0. (3.52)

Moreover, we define χ = m[� ] = ∑N
k=1 k/N2 = (1+1/N)/2.

The expectation value

� (S) = �

[
N

∑
k=1

k
N

ln
(

k
N

)
pk−

N

∑
k=1

k
N

pk ln

(
N

∑
l=1

l
N

pl

)]
(3.53)

of the entropy S given by Eq. (3.2) can be evaluated as follows: we add and subtract the
term ∑N

k=1
k
N pk lnχ , and then expand the resulting term ln

{
1+m[pk− 1

N ]/χ
}

to get

� (S) =
N

∑
k=1

k
N2 ln

(
k
N

)
−χ lnχ− (1− 1

2
)�

{
m2[pk− 1

N ]
χ

}

+
(

1
2
− 1

3

)
�

{
m3[pk− 1

N ]

χ2

}
−
(

1
3
− 1

4

)
�

{
m4[pk− 1

N ]

χ3

}
+ . . . (3.54)

Assuming that the contribution from the moments of m[pk− 1
N ] higher than the second

are negligible, we finally obtain (see Eq. (3.46) for q = 1).

� (S) =
N

∑
k=1

k
N2 ln

(
k
N

)
−χ lnχ− σ2

2(N−1)μ2

(
χ2

χ
−χ
)

, (3.55)

where χ2 = ∑N
k=1 k2/N3 = (1+1/N)[1+1/(2N)]/3.

Equation (3.55) reveals that � (S) depends slightly on σ/μ; upon increasing N the last
term of Eq. (3.55) decays as 1/N (note that for the terms in parentheses limN→∞ χ = 1

2 and
limN→∞ χ2 = 1

3 ). Equation (3.55), after considering Eqs. (2.91) and (3.20), leads to

� (S) =
N

∑
k=1

k
N2 ln

(
k

Nχ

)
−κu

σ2

μ2
1
N

= Sc(N)−κu
σ2

μ2
1
N

. (3.56)
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We note that Eq. (3.56) when combined with Eq. (3.22) shows that, as N →∞, � (S)→ Su.
Using Eqs. (3.50) and (3.51) the entropy can be written, in compact form, as follows:

S = L [pk,m[pk]] = L [pk,1]−m[pk] lnm[pk], (3.57)

and its expectation value is written as

� (S) = L[� ,1]−m[� ] lnm[� ]−κu
σ2

μ2
1
N

. (3.58)

The variance of the entropy Var(S) = (δS)2 can then be found by adding and subtracting
the term m[pk] lnm[� ] and expanding the logarithms in the expression

m[pk] ln
m[pk]
m[� ]

= m[pk− 1
N

] ln

{
1+

m[pk− 1
N ]

m[� ]

}
+m[� ] ln

{
1+

m[pk− 1
N ]

m[� ]

}
=

= m
[

pk− 1
N

]
+
(

1− 1
2

)
m2[pk− 1

N ]
m[� ]

−
(

1
2
− 1

3

)
m3[pk− 1

N ]
m2[� ]

+ . . . (3.59)

This procedure gives:

Var(S) = �

{(
L[pk,1]−m[pk] lnm[pk]−L[� ,1]+m[� ] lnm[� ]+κu

σ2

μ2
1
N

)2
}

,

= �

{(
L[pk− 1

N
,1]−m[pk] ln

m[pk]
m[� ]

+m[
1
N
− pk] lnm[� ]+κu

σ2

μ2
1
N

)2
}

,

= �

⎧⎨
⎩
(

L
[

pk− 1
N

,m[� ]
]

+κu
σ2

μ2
1
N
−m[pk− 1

N
] lne− m2[pk− 1

N ]
2m[� ]

+ . . .

)2
⎫⎬
⎭ ,

= �

⎧⎨
⎩
(

L
[

pk− 1
N

,m[� ]e
]

+κu
σ2

μ2
1
N
− m2[pk− 1

N ]
2m[� ]

+ . . .

)2
⎫⎬
⎭ . (3.60)

Expanding the square in Eq. (3.60), using Eq. (3.52) and keeping terms of order 1/N, we
find

Var(S) = �
(

L2
[

pk− 1
N

,m[� ]e
])

, (3.61)

which can be explicitly written as follows

Var(S) = �

⎧⎨
⎩
[

N

∑
k=1

k
N

ln
(

k
m[� ]eN

)(
pk− 1

N

)]2
⎫⎬
⎭ . (3.62)

The right side of Eq. (3.62) becomes similar to Eq. (3.44), if we replace χq by χ ln( χχe ) (cf.
χ ≡ m[� ]); thus after expanding the square and using Eqs. (3.41) and (3.42), we finally
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obtain

Var(S) =
σ2

(N−1)μ2

⎡
⎣ N

∑
k=1

(
k
N

ln
k

eχN

)2 1
N
−
(

N

∑
k=1

k
N2 ln

k
eχN

)2
⎤
⎦ . (3.63)

A comparison of Eqs. (3.61) and (3.57) reveals the following: in order to find the entropy
fluctuation δS, one simply has to replace in Eq. (3.57) m[pk] with m[� ]e(= χe) and then
directly take its variance according to Eq. (3.49).

3.5 The change ΔS of the entropy in natural time under time reversal

As mentioned above in § 3.4.1, in general, S− is different from S, and hence S shows the
breaking of the time reversal symmetry.

Definition 3.2. The difference S−S− will be hereafter labeled ΔS, i.e.,

ΔS≡ S−S− (3.64)

this may also have a subscript (ΔSl) meaning that the calculation is made (for each S and
S−) at a scale l (= number of successive events). In such a procedure, a window of length
l is sliding each time by one event through the whole time series. The entropies S and S−,
and therefrom their difference ΔSl , are calculated within a window of length l starting from
each event (see § 3.5.1 below). Thus, we form a new time series consisting of successive
ΔSl values.

3.5.1 Evaluation of ΔSl when a (natural) time window of length l is sliding through

a time series

The value of S (and S−) calculated for a number of successive events varies within the time
series, i.e., when using a time-window of length l sliding each time by one event through
the whole time series (see § 2.2.2). Thus, for a window of length l when starting from the
m0-th event, we have

S(m0, l) = 〈χ lnχ〉w−〈χ〉w ln〈χ〉w (3.65)

where

〈χ lnχ〉w =
l

∑
k=1

pk,wχk,w lnχk,w, (3.66)

〈χ〉w =
l

∑
k=1

pk,wχk,w (3.67)

with
pk,w =

Qm0−1+k

∑l
n=1 Qm0−1+n

(3.68)



3.5 The change ΔS of the entropy in natural time under time reversal 181

and χk,w = k/l. Similarly, S−(m0, l) is calculated by Eq. (3.65) when pk,w of Eq. (3.68) is
substituted by

T̂ pk,w =
Qm0+l−k

∑l
n=1 Qm0+l−n

. (3.69)

The time series of ΔSl is obtained by the differences ΔSl(m0) ≡ S(m0, l)− S−(m0, l),
m0 = 1,2, . . . ,N− l and its variation is quantified by its standard deviation

σ [ΔSl ]≡
√

Var[ΔSl ] =
√
�

{
(ΔSl−� [ΔSl ])

2
}

. (3.70)

In Eq. (3.70), the symbol � {. . .} stands for the average obtained when all the N− l values
(cf. m0 = 1,2, . . . ,N− l) of its argument are considered.

3.5.2 Interrelation of σ [ΔSl ] and σ/μ in the case of p.i.i.d.

In the previous subsection, § 3.5.1, the relevant expressions for evaluating S and S−, when
a window of length l(= N) is sliding event by event through a time series were given. Let
us first study �

[
S− T̂ S

]
= � (S)−� (T̂ S) for which we intuitively expect that it equals

zero when Qk are positive i.i.d. random variables. Indeed, we have (see Eq. (3.53)) that

� (S) = �

[
N

∑
k=1

k
N

ln
(

k
N

)
pk−

N

∑
k=1

k
N

pk ln

(
N

∑
l=1

l
N

pl

)]
(3.71)

and

� (T̂ S) = �

[
N

∑
k=1

k
N

ln
(

k
N

)
pN−k+1−

N

∑
k=1

k
N

pN−k+1 ln

(
N

∑
l=1

l
N

pN−l+1

)]
. (3.72)

Since time reversal (see Eq. (2.8)) just “projects” pk to pN−k+1, Eq. (3.72) is just a
reparametrization of Eq. (3.71) in the dummy variables where k is now N− k + 1. Both
Qk and QN−k+1 are p.i.i.d., thus the expectation values in both Eqs. (3.71) and (3.72) are
equal to the result of Eq. (3.56), thus �

[
S− T̂ S

]
= 0.

We now turn to the variance σ2[ΔS] ≡ �

{[
S− T̂ S−� (S− T̂ S)

]2}. For the sake of
simplicity of the notation, from now on and until the end of this subsection, we use both
symbols 〈. . .〉 and � [. . .] to denote the expectation value � [. . .]. Having this in mind and
using the fact that δS2 ≡ 〈[S−� (S)]2〉= Var[S] (see Eq. (3.63)) remains unchanged under
time reversal, for the same reasons as � (S) = � (T̂ S), we have that

σ2[ΔS] = 〈{[S−� (S)]− [T̂ S−� (T̂ S)
]}2〉

= 〈[S−� (S)]2〉+ 〈[T̂ S−� (T̂ S)
]2〉−2〈[S−� (S)]

[
T̂ S−� (T̂ S)

]〉
= 2

{
δS2−〈[S−� (S)]

[
T̂ S−� (T̂ S)

]〉} , (3.73)
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The term 〈[S−� (S)]
[
T̂ S−� (T̂ S)

]〉 can be evaluated in a way similar to the one used
in § 3.4.6. Namely, we add and subtract the term ∑N

k=1
k
N pk lnχ from S and the term

∑N
k=1

k
N pN−k+1 lnχ from T̂ S. Then, we expand the resulting logarithmic terms

ln[1 + ∑N
l=1

l
N (pl − 1

N )/χ] and ln[1 + ∑N
l=1

l
N (pN−l+1− 1

N )/χ] in terms of (pl − 1
N ) and

(pN−l+1− 1
N ), respectively (see Eq. (3.59)). This leads to (see Eqs. (3.50), (3.51) in con-

junction with the terms in parentheses in Eq. (3.60)):

〈
[S−� (S)]

[
T̂ S−� (T̂ S)

]〉
=

〈[
N

∑
k=1

k
N

ln
(

k
eχN

)(
pk− 1

N

)
+κu
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1
N

− 1
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N
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N
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N
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N
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]
×

×
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N

∑
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k′

N
ln
(

k′

eχN

)(
pN−k′+1−

1
N

)
+κu

σ2

μ2
1
N

− 1
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∑
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N

(
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1
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∑
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N
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1
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)
+ . . .

]〉
. (3.74)

Restricting ourselves up to terms of order 1/N, Eq. (3.74) simplifies to

〈[S−� (S)]
[
T̂ S−� (T̂ S)

]〉 =

〈[
N

∑
k=1

k
N

ln
(

k
eχN

)(
pk− 1

N

)]
×

×
[

N

∑
k′=1

k′

N
ln
(

k′

eχN

)(
pN−k′+1−

1
N

)]〉
. (3.75)

Now, using Eqs. (3.41) and (3.42), we have〈(
pk− 1

N

)(
pN−k′+1−

1
N

)〉
=

σ2

(N−1)Nμ2 δk,N−k′+1−
σ2

(N−1)N2μ2 , (3.76)

where δl,m is Kronecker’s delta (equal to 1 if l = m and 0 otherwise). Substituting
Eq. (3.76) into Eq. (3.75), we find that

〈[S−� (S)]
[
T̂ S−� (T̂ S)

]〉 =
σ2

(N−1)μ2

{
N

∑
k=1

k
N

ln
(

k
eχN

)
×

× N− k +1
N

ln
(

N− k +1
eχN

)
1
N
−

−
[

N

∑
k=1

k
N2 ln

(
k

eχN

)]2
⎫⎬
⎭ (3.77)
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Substituting Eq. (3.63) for δS2 and Eq. (3.77) into Eq. (3.73), we finally obtain that

σ2[ΔS] =
2σ2

(N−1)μ2

[
N

∑
k=1

(
k
N

ln
k

eχN

)2 1
N
−

−
N

∑
k=1

k
N

ln
(

k
eχN

)
N− k +1

N
ln
(

N− k +1
eχN

)
1
N

]
. (3.78)

In summary, for p.i.i.d., we observe that σ [ΔS] is proportional to σ/μ , which is a
behavior similar to the one, i.e., δS ∝ σ/μ , found in § 3.4.6 .

3.5.3 A simple example in which the meaning of the entropy change ΔS under time

reversal seems to emerge clearly

Here, we consider, as in § 2.2.1 and § 3.4.1, the parametric family p(χ;ε) = 1+ε(χ−1/2)
for small ε(< 1). In this case, as mentioned, the calculation of the entropy S(ε) can be done
analytically and the result yields Eq. (3.36). An interrelation between ΔS(ε) = S(ε)−
S(−ε) and the small linear trend parameter ε can be obtained by expanding Eq. (3.36)
around ε = 0 which leads to

ΔS(ε) =
(

6 ln2−5
36

)
ε+O(ε3) (3.79)

Since ln2 < 5/6, Eq. (3.79) implies the following [45]:

From the physical point of view, a positive ε , i.e., increasing trend, corresponds to
negative ΔS and vice versa.

Thus, in the ECG data for example the variation of ΔSl may be thought as capturing the
net result, at scale l, of the competing mechanisms that decrease or increase heart rate; see
Section 9.4. In particular, the ΔSl time series, at proper scales l, can serve for specifying
the occurrence time of the impending sudden cardiac death, see § 9.4.1. Furthermore,
ΔSl can be used as a tool (see § 8.3.4) to investigate the predictability of a dynamical
model like the case of the Olami–Feder–Christensen model for earthquakes. Additionally,
the concept of ΔSl has been used in Environmental Sciences namely in the study of the
dynamical evolution of the ozone hole area over Antarctica [35].
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3.6 Complexity measures using the entropy in natural time

Complexity measures have been introduced [42, 43, 44, 45] to quantify the variability
of the natural entropy fluctuations upon changing either the (natural time window) length
scale or shuffling the consecutive events randomly. These are classified into two categories
depending on whether they make use of either the entropy S in natural time or the change
ΔS of the entropy in natural time under time reversal.

3.6.1 Complexity measures that make use of the fluctuations of the entropy S in

natural time

As a measure of the natural entropy fluctuations we consider the standard deviation δS
(defined in § 3.4.6) when we calculate the value of S for a number of consecutive pulses
(events) and study how S varies when sweeping this time window (each time by one pulse)
through the whole time series. The following complexity measures for the δS variability
have been suggested [42, 43, 44]:

When the natural time window length changes from a short value, e.g., 5 pulses (events),
to a shorter one, e.g., 3 pulses (events), the corresponding δS value also changes. This
variation in the short (s) range is quantified by the measure

λs =
δS5

δS3
, (3.80)

where the subscript in δS denotes the time window length chosen. If a longer (L) range,
e.g., 60 pulses (events), changes to a short one, e.g., 3 pulses (events), the corresponding
variation is quantified by another measure

λL =
δS60

δS3
. (3.81)

Thus, the values of λs and λL quantify the δS variability with the natural time window
length scale.

Considering the surrogate data obtained by randomly shuffling the durations Qk of con-
secutive pulses (events), we can define the measure ν as

ν ≡ δSshu f

δS
, (3.82)

where δS and δSshu f denote the value of δS calculated when a time window is sweeping
through the original and the shuffled time series, respectively. The following ratios have
been investigated [43]: νs and νL for the following natural time window lengths: s = 3–4
pulses (events) and L = 50–70 pulses (events), respectively.
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The quantity ν captures the extent to which the sequential order of pulses (events)
regulates the δS value.

An alternative (but not equivalent) measure is λκ,shu f (where κ = s,L refer to the short
and long-range, respectively), which is defined in a similar fashion as the measure λ men-
tioned above, but is calculated after shuffling the Qk randomly.

The δS values themselves in conjuction with the aforementioned complexity measures
λκ , λκ,shu f and νκ (where κ = s,L), which are in fact ratios of the δS values, have been
found of prominent importance in the analysis of electrocardiograms (ECG) and allow
the distinction between healthy (H) humans and (otherwise healthy) sudden cardiac death
(SD) ones; see Chapter 9.

3.6.2 Complexity measures that make use of the change ΔS of the entropy in

natural time under time reversal

Complexity measures Λ and N can be defined [45], in a similar fashion with the measures
λ and ν defined above in § 3.6.1, by using the quantity ΔS instead of S. For example, we
can define the measure

Nl =
σ [ΔSshu f

l ]
σ [ΔSl ]

(3.83)

The measure Nl quantifies the extend to which the ordering of the events contributes
to the ΔSl values being equal to unity for a random process.

This finds application, for example, in the identification of SD risk; see Section 9.4.
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28. Rényi, A.: Probability Theory. North-Holland, Amsterdam (1970)
29. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with

Infinite Variance. Chapman & Hall/CRC, Florida (1994)
30. Szulga, J., Molz, F.: The Weierstrass Mandelbrot process revisited. J. Stat. Phys. 104, 1317–1348

(2001)
31. Tirnakli, U., Abe, S.: Aging in coherent noise models and natural time. Phys. Rev. E 70, 056120

(2004)
32. Toniolo, C., Provenzale, A., Spiegel, E.A.: Signature of on–off intermittency in measured signals.

Phys. Rev. E 66, 066209 (2002)
33. Tsallis, C.: What should a statistical mechanics satisfy to reflect nature? Physica D 193, 3–34 (2004)
34. Tsallis, C., Brigatti, E.: Nonextensive statistical mechanics: A brief introduction. Continuum Mech.

Thermodyn. 16, 223–235 (2004)
35. Varotsos, C.A., Tzanis, C.: On the dynamic evolution of the ozone hole area over Antarctica. under

review 1, 123,456 (2010)
36. Varotsos, P.: The Physics of Seismic Electric Signals. TERRAPUB, Tokyo (2005)
37. Varotsos, P., Alexopoulos, K.: Thermodynamics of Point Defects and their Relation with Bulk Prop-

erties. North Holland, Amsterdam (1986)
38. Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: Spatio-temporal complexity aspects on the interrelation

between Seismic Electric Signals and seismicity. Practica of Athens Academy 76, 294–321 (2001)
39. Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: Long-range correlations in the electric signals that precede

rupture. Phys. Rev. E 66, 011902 (2002)



References 187

40. Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: Attempt to distinguish electric signals of a dichotomous
nature. Phys. Rev. E 68, 031106 (2003)

41. Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: Long-range correlations in the electric signals that precede
rupture: Further investigations. Phys. Rev. E 67, 021109 (2003)

42. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Lazaridou, M.S.: The use of the entropy in the natural
time-domain to distinguish electric signals. Practica of Athens Academy 78, 281–298 (2003)

43. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Lazaridou, M.S.: Entropy in natural time domain. Phys.
Rev. E 70, 011106 (2004)

44. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Lazaridou, M.S.: Natural entropy fluctuations discriminate
similar-looking electric signals emitted from systems of different dynamics. Phys. Rev. E 71, 011110
(2005)

45. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Lazaridou, M.S.: Identifying sudden cardiac death risk and
specifying its occurrence time by analyzing electrocardiograms in natural time. Appl. Phys. Lett. 91,
064106 (2007)

46. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Lazaridou, M.S.: Fluctuations, under time reversal, of the
natural time and the entropy distinguish similar looking electric signals of different dynamics. J. Appl.
Phys. 103, 014906 (2008)

47. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Tanaka, H.K., Lazaridou, M.S.: Attempt to distinguish
long-range temporal correlations from the statistics of the increments by natural time analysis. Phys.
Rev. E 74, 021123 (2006)

48. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Tanaka, H.K., Lazaridou, M.S.: Entropy of seismic electric
signals: Analysis in the natural time under time reversal. Phys. Rev. E 73, 031114 (2006)

49. Varotsos, P.A., Sarlis, N.V., Tanaka, H.K., Skordas, E.S.: See (the freely available) EPAPS
Document No. E-PLEEE8-71-081503 originally from P.A. Varotsos, N.V. Sarlis, H.K. Tanaka
and E.S. Skordas, Phys. Rev. E 71, 032102 (2005). For more information on EPAPS, see
http://www.aip.org/pubservs/epaps.html.

50. Varotsos, P.A., Sarlis, N.V., Tanaka, H.K., Skordas, E.S.: Some properties of the entropy in the natural
time. Phys. Rev. E 71, 032102 (2005)

51. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, UK
(1958)



Part III

Natural Time Applications



4. Natural Time Analysis of Seismic Electric Signals

Abstract. The natural time analysis of all the measured SES activities showed that they
are characterized by very strong memory and their normalized power spectraΠ(ω) versus
ω fall on a universal curve having κ1(= 〈χ2〉− 〈χ〉2) value equal to 0.070. This curve
coincides with the one obtained on theoretical grounds when assuming that SES are gov-
erned by critical dynamics. Upon shuffling the events (pulses) randomly, the memory is
destroyed and the κ1 value becomes equal to that κu(= 1/12 ≈ 0.083) of a “uniform”
distribution. This shows that the self-similarity solely stems from long range temporal
correlations. Concerning the distinction of SES activities from similar looking “artificial”
(man-made) noises, we find the following. Modern techniques of Statistical Physics, e.g.,
detrended fluctuation analysis (DFA), multifractal DFA, wavelet transform, when applied
to the original time series cannot achieve such a distinction, but when they are applied in
natural time a clear distinction emerges. For example, for the SES activities the DFA expo-
nent in natural time is close to unity, i.e., α ≈ 1, while for “artificial” noises it is markedly
smaller, i.e., α < 0.85. Also the entropy S in natural time can achieve such a distinction:
For SES activities both S and S− (where S− stands for the entropy in natural time un-
der time reversal) are smaller than the entropy Su ≈ 0.0966 of the “uniform” distribution,
which is not the case for the “artificial” noises where S is larger than (or equal to) Su and
S− may either be smaller or larger than Su. Upon “shuffling” the events (pulses) randomly,
both values of S and S− in the SES activities turn out to be equal to Su, which conforms
with the aforementioned conclusion that in SES activities the self-similarity originates
solely from long range temporal correlations. Finally, when investigating the dependence
of the fluctuations Δχl of the average value of natural time under time reversal versus
the window length l, we can also achieve a distinction between SES activities and “artifi-
cial” noises. In particular, when studying the log-log plot of Δχl versus l, the former give
ascending curves, in contrast to the latter that result in descending curves.

P.A. Varotsos et al., Natural Time Analysis: The New View of Time: Precursory Seismic Electric Signals,
Earthquakes and other Complex Time Series, Springer Praxis Books, DOI 10.1007/978-3-642-16449-1_4, 
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192 4. Natural Time Analysis of Seismic Electric Signals

4.1 Dichotomous time series. Markovian and non-Markovian

processes

4.1.1 Difference between natural time analysis and earlier studies of dichotomous

time series. The Markovian process

The following point should be stressed concerning one of the key differences of the nat-
ural time analysis compared to the earlier procedures in the study of dichotomous time
series. For such time series, the quantity Qk (see § 2.1.2, Fig. 2.1(a)) coincides with the
so-called dwell time (for the high-level state only) and is one of the basic characteristics of
a dichotomous (i.e., on–off) process. The standard procedure consists of the determination
of the dwell times distribution P(Q): for a Markovian process P(Q) is exponential, i.e.,
P(Q) = e−Q/Q/Q (frequently the average dwell time Q is different for the high- and the
low-level states). For non-Markovian (which contain some “memory”) processes P(Q) is
non-exponential, e.g., stretched exponential, i.e., of the form e−(Q/τ)b

where 0 < b < 1, or
even algebraic. On the other hand, the natural time analysis is carried out in terms of the
couple (χk,Qk), which takes into account the ordering of the pulses, and hence not solely
based on the statistics of their durations, i.e., P(Q).

We just mention here that ionic current fluctuations in membrane channels (ICFMC),
the long-range correlations of which have been studied in Ref. [21], can be also approx-
imated by dichotomous time series. Further, we clarify that (see Ref. [9] and references
therein) single ionic channels in a membrane open and close spontaneously in a stochastic
way, resulting in current and voltage changes which resemble the realizations of random
telegraph signals (RTS, dichotomous noise). The channel’s opening state can be deter-
mined [21] on the basis of the ion current: a low current corresponds to a closed channel
state, while high current values indicate an open state (see Fig. 4.1). It has been shown
[8] that the action of membrane-embedded enzymes depends critically on fluctuations of
the membrane potential, and that the main source of these fluctuations originates in the
fluctuations of ionic concentrations due to the action of ion channels. Recall that the SES
activities have also an RTS feature, e.g., see Figs. 2.8 and 4.2. These figures also depict
a number of “artificial” noises (see § 1.2.3) that have been intentionally selected to ex-
hibit a RTS feature similar to that of SES activities. Note that N1–N5 and N9 of Fig. 4.2
correspond to n1–n5 and n6 of Fig. 2.8, respectively.

Hence, apart from a difference in the time-scales, the feature of all these electric sig-
nals is similar to that of the SES activities (RTS shape). This similarity instigated the
simultaneous study of SES activities, “artificial” noises and ICFMC by Varotsos et al.
[32, 34, 33], as will be explained below.
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Fig. 4.1 Excerpt of the ionic current
fluctuation in membrane channels
(ICFMC) ( fexp =10 kHz) studied in
Ref. [21] (see also Refs. [10, 9]).

4.1.2 Non-Markovian character of SES activities and “artificial” noises

Varotsos et al. [32] showed, by means of the Smoluchowski–Chapman–Kolmogorov func-
tional equation (SCK equation), that the SES activities exhibit non-Markovian character
(i.e., contain some “memory”, see § 4.1.1). The stationarity of the signal was studied by
the quantiles procedure. Subsequently, Varotsos et al. [33], in order to further investigate
the non-Markovianity for both SES activities and “artificial” noises, proceeded to the study
of the non-Markovian quantitative global measure G. Furthermore, they studied the coef-
ficients of skewness and kurtosis.

The non-Markovian quantitative global measure G. Following Siwy and Fuliński [23],
the definition of G can be summarized as follows: one of the properties of a Markov pro-
cess is that it satisfies the SCK equation (e.g., see Ref. [32]). The deviation from this
equation, i.e.,

Dm,n(t,τ) = P(m, t|n,0)−
M

∑
k=1

P(m, t|k, t− τ)P(k, t− τ|n,0), (4.1)

measures the degree of non-Markovianity. In Eq. (4.1), the indices k,m,n = 1,2, . . .M
number the electric field states (note that in our case we have M = 2 different states, labeled
“high”, m = 1, and “low”, m = 2, respectively; we consider as “high”-level states those
having the largest deflections of the electric field amplitude with respect to the background
level; see the arrows in Fig. 4.2). The P(m, t|n,s) stands for the field–field conditional
probability that the electric field E(t) is in the state number m, under the condition that at
the earlier time s < t the field E(s) was in the state number n.

The integral measure (mean square characteristics) of the non-Markovianity is [9, 23]

G = G(τ,T ) =

[
1
T

1
M2

M

∑
m,n

∫ τ+T

τ
D2

m,n(t,τ) dt

]1/2

(4.2)
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Fig. 4.2 Excerpts of: (a) four SES activities recorded
on April 18, 1995 (K1), April 19, 1995 (K2), March 17,
2001 (A) and February 5, 2002 (U); (b) nine “artificial”
noises recorded on November 14, 1997 (N1), November
15, 1997 (N2), November 16, 1997 (N3, N4 and N5),
July 13, 2001 (N6), August 4, 2001 (N7), March 22,
2001 (N8 and N9). The SES activity U was recorded
at IOA (see Ref. [34]), while for the SES activities K1,
K2 and A see the caption of Fig. 4.5. The “artificial”
noises were distinguished from SES activities according
to the criteria discussed in Section 1.2, and collected at
various stations (see the map of Fig. 1.2), i.e., N1 to N5
at VOL, N6 and N7 at IOA, N8 and N9 at LAG (this
is a station lying very close to ASS). The electric field
E is presented here in normalized units (μ and σ stand
for the mean value and the standard deviation in each
case, respectively). The arrows on the right indicate the
polarity of the deflection from the background level to
the largest (in amplitude) electric field variations (i.e.,
from the “low”-level to the “high”-level states). Taken
from Ref. [34]. Note that N1–N5 and N9 correspond to
n1–n5 and n6 of Fig. 2.8, respectively.

where T is the range of the time t and τ is the shift in the SCK equation. As an example,
for the SES activity K1 and the “artificial” noise N1 mentioned in Fig. 4.2, the calculation
for T = 100 s yields Gmax(= supτG(τ,T )) = 0.107± 0.002 and 0.135± 0.004, respec-
tively. For computer-generated Markovian dichotomous series of comparable length, the
corresponding G values are smaller by one order of magnitude, which also suggests the
non-Markovian character of the experimental data for both cases, i.e., K1 and N1, respec-
tively (this non-Markovianity has been also shown by employing the entropy fluctuations
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δS in natural time and the relevant complexity measures; see Table 4.5 and the last para-
graph of § 9.1.2).

Skewness and kurtosis. The coefficients of skewness (γ1) and kurtosis (β2) are (see
p. 928 of Ref. [1]):

γ1 = μ3/σ3 and β2 = μ4/σ4 (4.3)

where μn denotes the nth central moment, i.e., μn = ∑s(xs−μ)n ps for randomly distributed
data xs with point probabilities ps. The symbol μ stands for the mean and σ for the stan-
dard deviation. For Markovian processes, the durations of the “high”- (Th) and “low”-level
states (Tl) should follow exponential distributions p(T) = λ exp(−λT) (see § 4.1.1), for
which the values γ1 = 2, β2 = 9 and σ2/μ2 = 1 are expected. The two coefficients γ1 and
β2 are tabulated along with σ2/μ2 in table II of Ref. [28], for both series of the “high”-
and “low”-level states’ durations of the “artificial” noises and the SES activities depicted
in Fig. 2.8. Comparing these values with those expected from an exponential distribution,
we find [33] the following: None of the time series of durations, corresponding to either the
SES activities or the “artificial” noises investigated, could be compatible with an exponen-
tial distribution. Moreover, the Kolmogorov-Smirnov test excludes for the SES activities
the Gaussian distribution.

In short, both the SES activities and the “artificial” noises exhibit non-Markovian char-
acter.

4.1.3 Markovian dichotomous time series. Spectral analysis and detrended

fluctuation analysis (DFA)

This was studied in Ref. [33]. Following Berezhkovskii and Weiss [6], in the case of a
Markovian dichotomous (M =2, m =1,2; these are the symbols used in § 4.1.2) time series,
the probability densities for the time spent in a single sojourn in the states “high” (m = 1)
and “low” (m = 2) respectively are both exponential, i.e.,

p1(T ) ∝ exp(−T/τhigh), p2(T ) ∝ exp(−T/τlow) (4.4)

and lead to the following expressions for the field–field conditional probabilities

P(1, t + τ|1, t) = τeff

[
1
τlow

+
exp(−τ/τeff )

τhigh

]
(4.5)

and
P(2, t + τ|1, t) =

τeff

τhigh

[
1− exp(−τ/τeff )

]
, (4.6)

where 1/τeff ≡ 1/τhigh +1/τlow and τ is a time lag. Note that the expressions of Eqs. (4.5)
and (4.6) for the conditional probabilities satisfy the SCK functional equation (see § 4.1.2).
The probability to observe the “high” state P1 is
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P1 =
τhigh

τlow + τhigh
, (4.7)

and the joint probability P11(τ) to observe the “high” state at both the times t and t + τ ,
due to the definition of the conditional probability, is

P11(τ) = P1P(1, t + τ|1, t). (4.8)

The power spectral density S(ω) is the Fourier transform of the autocovariance � (τ) =
[x(t + τ)− x][x(t)− x] of the stationary signal x(t) [25] with average value x:

� (τ) = x(t + τ)x(t)− x2 =
1

2π

∫ ∞

0
S(ω) cos(ωτ) dω. (4.9)

If we assume that the states “low” and “high” have amplitudes 0 and ΔE, respec-
tively, we have x = (ΔE)P1, and x(t + τ)x(t) = (ΔE)2P11(τ), and using the expressions
of Eqs. (4.5) and (4.7)–(4.9), we finally obtain

� (τ) = (ΔE)2 τeff

τlow + τhigh
exp
(
− τ
τeff

)
(4.10)

Equation (4.10), using the Wiener–Khinchin theorem, leads to the power spectral density
S(ω)

S(ω) = 4
∫ ∞

0
� (τ) cos(ωτ) dτ =

4(ΔE)2τ2
eff

(τlow + τhigh)(1+ω2τ2
eff )

(4.11)

The last relation reveals that the high-frequency behavior of the spectrum becomes
S(ω) ∝ω−2 if ω
 (1/τhigh +1/τlow), which corresponds to a random walk-like behavior
in short time-scales. We will come back to this point below.
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Fig. 4.3 Theoretical estimation of (a) the variability measure FDFA(thick line) versus l/τeff and (b) the
power spectral density S(ω) (thick line) versus ω/ωeff , for a Markovian dichotomous signal (see § 4.1.3).
The thin solid and dotted straight lines correspond to the short and long time ranges in each case, i.e., they
are approached for l � τeff and l 
 τeff , respectively. Taken from Ref. [33].
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Following Talkner and Weber [25], the squared variability of DFA (§ 1.4.2) is given, in
terms of S(ω), by:

F2
DFA(l) =

l
2π

∫ ∞

0
S(w/l)rDFA(w) dw (4.12)

where w denotes the dimensionless frequency and rDFA(w) is given by the explicit form:

rDFA(w) = [w4−8w2−24−4w2 cos(w)+24 cos(w)+24w sin(w)]/w6. (4.13)

In Fig. 4.3(a), the FDFA(l) versus l/τeff for a dichotomous Markovian process was
drawn using Eqs. (4.11)–(4.13), while Fig. 4.3(b) depicts S(ω) versusω/ωeff whereωeff ≡
2π/τeff , using Eq. (4.11). This figure shows that [33]:

– Concerning the DFA exponent α: (i) For short time-scales (high frequencies), i.e., Δ t�
τeff , the DFA exponent approaches the value α = 1.5. (Note that such a behavior is
expected for any signal with a high frequency spectrum as given in Eq. (4.11); see also
below.) (ii) For long time-scales (low frequencies), i.e., Δ t 
 τeff , we find α = 0.5,
as expected. (iii) For intermediate scales, comparable to (or shorter than) τeff , DFA
exponents exceeding unity (e.g., 1.2 or so) naturally emerge.

– Concerning the power spectrum exponent β (see § 1.4.2): it approaches the values 2
and 0 for the aforementioned short and long time-scales, respectively. For time-scales
comparable to (or shorter than) τeff , values of β around unity or larger (e.g. β = 1.4) can
fit the data. (In other words, data consisting, for example, of randomly distributed square
pulses, if analyzed in the range Δ t � τeff , may approximately obey S ∝ ω−β , β ≈1.)
Note that, for a given (high) frequency range, upon increasing 1/τeff the calculated
value of β becomes larger.

We now define for non-Markovian time series the quantity T in an analogous way with
the quantity τeff introduced above for the Markovian ones, i.e., 1/T ≡ 1/Th+1/Tl , where
Th and Tl denote the average dwell time in the “high” and the “low” state, respectively.
The values of T for all SES activities and “artificial” noises mentioned in Fig. 2.8 (which
are non-Markovian, e.g., see § 4.1.2) can be found in table I of Ref. [28] and vary in the
range from 4 s to 20 s. In Fig. 4.4(a), we give examples of DFA plots of three Markovian
time series with τlow/2 = τhigh/2 = τeff = 4 s, 10 s and 100 s; the first two (τeff = 4 s and
τeff = 10 s, upper two curves) have been intentionally selected to have τeff comparable to
the T of the SES activities and “artificial” noises. Comparing the DFA plots of the SES
activities (that will be discussed later in § 4.4.1) with the upper two curves of Fig. 4.4(a),
we find that a cross-over occurs at the same region Δ t ≈ 30 s (with almost the same α
exponents in the short scales only). In other words, in short time-scales, even Markovian
dichotomous time series (that have τeff values comparable to T of the SES activities and
“artificial” noises) result in α values in the range 1 ≤ α ≤ 1.5 with a cross-over at Δ t ≈
30 s. More generally, we can state [33] that not only signals of dichotomous nature, but
any signal with a high frequency spectrum as given in Eq. (4.11) will lead to the same
scaling behavior of FDFA(Δ t) for small time lags Δ t (irrespective of the particular shape of
the signal; for example, a Gaussian signal with this spectrum will be much smoother and
will display a continuity of values rather than only two steps).
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Fig. 4.4 (a) The variability measure FDFA(Δ t) (in units of ΔE) for three Markovian dichotomous time
series, calculated with τeff = 4 (triangles), 10 (open circles) and 100 s (open squares). The solid lines, in
each case, correspond to the theoretical analysis described in § 4.1.3. (b) The same as in (a), but calculated
when the time series are read in natural time. The straight lines (dotted in (a), solid in (b)) correspond to
α = 0.5. The curves are shifted relative to each other by constant factors. Taken from Ref. [33].

The aforementioned points hold provided that the analysis is made in the conventional
time frame. If the analysis is performed in natural time (considering as “high” either of the
two states in the Markovian series), we find the following values: DFA exponent α = 0.5
(see Fig. 4.4(b)) and power spectrum exponent β = 0. The latter values may elucidate
the Markovian nature of the time series, avoiding the existence of the aforementioned
characteristic intermediate scaling regions that appear in the analysis in the conventional
time frame.

We now turn to the case of spikes. This corresponds to a very small value of τeff
(≈ τhigh � τlow). Recall that upon decreasing τeff (see Figs. 4.3(a) and 4.4(a)) the region
described by the exponent α = 0.5 extends to even shorter scales. This reveals that sig-
nals with superposed random spikes exhibit uncorrelated behavior (i.e.,α = 0.5) at small
scales.

By summarizing, we can state that:

For Markovian dichotomous signals, the quantity τeff – defined by 1/τeff ≡ 1/τhigh +
1/τlow – plays a key role. For time-scales comparable to (or shorter than) τeff , the
power spectrum can be well described by a power law, S( f ) ∝ 1/ f β , with an exponent
β around unity or larger, for example, β = 1.0–1.2 (note that β approaches the value 2
and 0 for short and long time-scales, i.e., in the “high”- and “low”-frequencies, respec-
tively). In other words, this reflects that even randomly distributed square pulses could
also be approximated by such a behavior. Thus, several published claims that “the ap-
pearance of a power law with an exponent β around unity constitutes a signature for
critical behavior” should be examined, in each case, with extreme care.
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Concerning DFA, a signal with (true) long-range correlations can be misinterpreted as
having uncorrelated behavior and vice versa. Specifically: (a) truly correlated signals
(0.5 <α ≤ 1.5) with superposed random spikes may show uncorrelated behavior (α =
0.5) at short time-scales, (b) truly uncorrelated signals with superposed random square
pulses, show “correlated” behavior (e.g., α ≈ 1.0–1.4) at time-scales comparable to (or
shorter than) τeff . We can overcome both difficulties if the analysis is made in natural
time.

4.2 Normalized power spectrum of SES activities. The universality

emerged in natural time

4.2.1 Normalized power spectrum of SES activities and “artificial” noises in natural

time. A universality for SES activities

Figure 4.5(a) depicts the SES activities recorded before the mainshocks labeled K, E and
A of Fig. 4.5(b) (excerpts of these SES activities have been shown in Figs. 2.8 and 4.2).
Once a SES activity has been recorded, we can read it in natural time and then proceed
to its analysis. As an example, let us consider the SES activity K1 (see Fig. 4.5; see also
Fig. 1.11(a)) recorded on April 18, 1995, that preceded the Mw6.6 earthquake that occurred

20˚ 21˚ 22˚ 23˚ 24˚ 25˚ 26˚
36˚

37˚

38˚

39˚

40˚

41˚

20˚ 21˚ 22˚ 23˚ 24˚ 25˚ 26˚
36˚

37˚

38˚

39˚

40˚

41˚

20˚ 21˚ 22˚ 23˚ 24˚ 25˚ 26˚
36˚

37˚

38˚

39˚

40˚

41˚

IOA
VOL

20˚ 21˚ 22˚ 23˚ 24˚ 25˚ 26˚
36˚

37˚

38˚

39˚

40˚

41˚

-20

-10

0

10

20

30

40

50

60

70

80

0 1200 2400 3600 4800 6000 7200 8400 9600 10800 12000

(a)

measured

E

S

K

E

A

(b)

conventional time

K1

E

A

E
(m

V
/k

m
)

t(sec)

2K

Fig. 4.5 (a) SES activities recorded before the mainshocks on May 13, 1995, (K), June 15, 1995, (E), and
July 26, 2001, (A), discussed in § 7.2.1, § 7.2.2 and § 7.2.3, respectively. K1 and K2 refer to the two SES
activities before the EQ labeled K (they are also depicted in Fig. 1.11(a),(b)). The upper two SES activities
were recorded at IOA, while the lower two at VOL (note that the SES polarities, for drawing convenience,
are arbitrary here; the correct polarities can be found, for example, in Fig. 4.2). (b) Map showing the EQ
epicenters (circles) and the sites (triangles) of the measuring SES stations. Taken from Ref. [31].
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Fig. 4.6 How the SES activity K1 men-
tioned in Fig. 4.2 (see also Fig. 1.11(a)) is
read in natural time; it depicts the durations
Qk as function of the natural time χ(= χk)
but drawn with continuous lines for the
convenience of the reader (in reality, this
should be plotted as in the lower part of
Fig. 2.1(a) or as in Fig. 7.2(b)). Taken from
Ref. [32].

at Grevena-Kozani on May 13, 1995 (see § 7.2.1). This lasted for around three and a half
hours and was collected with a sampling rate fexp = 1 sample/sec (thus we have N =
11,900 data points). Figure 4.6 shows how the SES activity K1 of Fig. 4.5 can be read in
natural time.

Figure 4.7 depicts Π (φ ) for the four SES activities of Fig. 4.5, along with eight “arti-
ficial” noises recorded at various stations of the telemetric network which have a similar
feature with SES (but do not satisfy the SES recognition criteria; see Section 1.2).
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Fig. 4.7 The normalized power spectraΠ(φ) for the SES activities (red solid lines) – depicted in Fig. 4.5 –
related with the EQs labeled: K, E, and A (in the inset, from the top to the bottom: K1, A, E, K2) along
with those of a number of “artificial” noises (green broken lines). The blue dotted curve corresponds to the
theoretical estimation of Eq. (2.75), which holds for critical dynamics. The inset shows in an expanded
scale the behavior of Π(φ) at small φ values, i.e., φ → 0. Taken from Ref. [31].
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An inspection of this figure shows the following two facts [31]. First, the curves fall
practically into two different classes, labeled “noises” and “SES activities” respectively.
This classification, provides a tool for a distinction between “artificial” noises and SES
activities (see § 4.2.2).

Secondly, Fig. 4.7 reveals that, for natural frequencies φ smaller than 0.5, the Π (φ )
values of the SES activities scatter around the dotted curve, which has been estimated
from theoretical considerations when approaching a critical point, i.e., Eq. (2.75) of
§ 2.4.2. In other words, the normalized power spectra in natural time of all the SES
activities obey a “universal” curve.

Note that a possible explanation of the very pronounced “modes” in some “artificial”
noises depicted in Fig. 4.7 has been discussed in Ref. [34].

4.2.2 Distinction of SES activities from “artificial” noises based on the normalized

power spectrum

Figure 4.8 depicts, for the region of natural frequencies 0≤ φ ≤ 0.5, the normalized power
spectra Π(φ) of the electric signals mentioned in Fig. 2.8 together with the one corre-
sponding to the “open” states of ICFMC (see Fig. 4.1). The natural time representation of
all these electric signals is shown in Fig. 4.9.

Figure 4.8 shows that the curves for the SES activities and “artificial” noises fall prac-
tically into two different classes, as already mentioned above (§ 4.2.1), while the ICFMC
curve lies just between them and very close to the one that corresponds to the “uniform”
distribution (labeled “uniform” in Fig. 4.8); see § 2.1.3. The universal curve for SES activ-
ities obeying Eq. (2.75) – which is labeled “theory” in Fig. 4.8 – implies that the variance
of χ is κ1 = 〈χ2〉− 〈χ〉2 = 0.070 for SES activities (cf. Eq. (2.77), see also the last col-
umn in Table 4.1). The κ1 value that reproduces [32] the ICFMC data is 0.080±0.003 and
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Fig. 4.8 The normalized power spectra
Π(φ): SES activities (dotted lines)
and “artificial” noises (broken lines) of
Fig. 2.8. Three solid curves are also
shown: the lower corresponds to the
“uniform” distribution (Eq. (2.51) of
§ 2.4.1), the middle to ICFMC “open”
states (see Fig. 4.1 of § 4.1.1), while the
uppermost to the theoretical estimation,
Eq. (2.75), for SES activities (critical
dynamics). Reprinted from Ref. [27],
Copyright (2009), with permission from
TerraPub.
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Fig. 4.9 The signals mentioned in Fig. 4.8
read in natural time; it depicts pk versus χk
with continuous lines for the sake of reader’s
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Eq. (2.4) (in reality, this should be plotted
as in the lower part of Fig. 2.1(a) or as in
Fig. 7.2(b)). Taken from Ref. [33]. Excerpts
of these signals in the conventional time
domain are depicted in Figs. 2.8, 4.1 and 4.2.

κu = 1/12≈ 0.083 for the “uniform” distribution; see Eq. (2.46). Thus, for the “artificial”
noises the variance κ1 is larger than around 0.083. Hence, the difference 1/12−κ1(≡ Δκ)
could be considered as a measure of the deviation of a signal from that of the “uniform”
distribution.

By summarizing, SES activities are distinguished from “artificial” noises (AN) ac-
cording to:

κ1,SES < κu ≤ κ1,AN (4.14)

where the subscripts designate each class of signals and κu ≈ 0.083. Moreover, the
SES activities satisfy Eq. (2.77), i.e.,

κ1,SES ≈ 0.070 (4.15)

4.3 Superiority of applying Hurst (R/S) analysis in the natural time

domain

4.3.1 Conventional Hurst analysis

A way of studying correlations in a time series is provided by the Hurst analysis [13]
known as rescaled range analysis (R/S). This compares the correlations in the time series
measured at different time-scales and is similar to the classical fluctuation analysis (FA).



4.3 Superiority of applying Hurst (R/S) analysis in the natural time domain 203

Table 4.1 Summary of the DFA results (when employing E-approximation together with the modification
of Eq. (4.20), see § 4.5.2) for the “high”- and the “low”-level states’ durations (labeled αhigh and αlow,
respectively) along with the κ1 values for the SES activities and “artificial” noises depicted in Fig. 4.2.
Taken from Ref. [34].

Signal αhigh αlow κ1

K1 0.98±0.08 0.31±0.12 0.063±0.003
K2 0.92±0.10 0.49±0.09 0.078±0.004
A 0.87±0.27 0.34±0.25 0.068±0.004
U 0.98±0.13 0.70±0.15 0.071±0.004

N1 0.68±0.07 0.70±0.08 0.115±0.003
N2 0.79±0.03 0.54±0.04 0.093±0.003
N3 0.78±0.06 0.47±0.08 0.100±0.008
N4 0.76±0.06 0.55±0.06 0.100±0.013
N5 0.68±0.05 0.62±0.05 0.086±0.007
N6 –∗) –∗) 0.092±0.004
N7 –∗) –∗) 0.083±0.006
N8 –∗) –∗) 0.102±0.004
N9 0.78±0.20 0.11±0.20 0.084±0.004

*) For N6, N7 and N8 no reliable slope could be determined in view of the small number of pulses (N<25).

Hurst’s method fails to determine correlation properties if linear or higher order trends
are present in the data, while detrended fluctuation analysis (DFA) (see § 1.4.2) –
which is a significant improvement of FA – explicitly deals with monotonous [5] trends
in a detrending procedure with remarkable results.

In short (e.g. see Ref. [5]), in Hurst (R/S) analysis, one calculates in each segment n the
range R of the ‘profile’ y(n) (see Eq. (1.9)) given by the difference between maximal and
minimal value R = max[y(n)]−min[y(n)]. The ‘rescaling of range’ is done by dividing
R by the corresponding standard deviation S of the same segment. The mean 〈R/S〉 of
all quotients at a particular scale s is analogous to the fluctuation function F(s) already
discussed in the description of DFA (see Eq. (1.12)) and for long-range correlated signals
shows a power law scaling relationship with s, with an exponent usually called Hurst
exponent H (recall Eq. (2.78)). We first note that “persistence” usually means the tendency
to keep moving in a fixed direction once the random walker has started moving in that
direction [47].

In a persistent time series the increase in the values of the series is more likely to be
followed by an increase and conversely, the decrease is more likely to be followed by
a decrease. This occurs when 1/2 < H < 1.
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The results of the (R/S) analysis are given in Fig. 4.10 for the original time series of
both the SES activities (the upper four curves) and “artificial” noises mentioned in Fig. 4.2.
Since 〈R/S〉 ∝ (Δ t)H , the value of the Hurst exponent H is found from the slope (labeled
H0 in Table 4.2) of the corresponding log-log plot, when approximating it with a single
straight line (note that all scaling methods related to the original Hurst analysis that yield
the H exponent, assume a finite variance and according to the central limit theorem the
underlying statistics are Gaussian).

An inspection of Fig. 4.10 shows that a value in the range 0 < H < 1/2 (which means
antipersistent time series, reflecting that increases in the values of a time series are
likely to be followed by decreases, and conversely) cannot be seen.

Furthermore, no case with H = 1/2 (purely random changes) can be recognized. In
all the cases of Fig. 4.10, the resulting H values lie between approximately 0.9 and 1.0
(Table 4.2), which suggest the persistent character of the examined time series (strong
memory; see Ref. [32] and references therein). Thus, when Hurst analysis is carried out
in the original time series, the H values alone cannot lead to any distinction between SES
activities and “artificial” noises.

If we repeat the analysis of Fig. 4.10, but for the dichotomous time series (i.e., the con-
verted from the original time series “0–1” dichotomous representation) we find somewhat
smaller values (labeled Hd in Table 4.2) approximately in the range 0.75 to 0.90. Thus, the
conclusion for the persistent character of the time series still remains.
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Table 4.2 Summary of the (R/S) analysis for all the signals mentioned in Fig. 4.2. The symbols Ho and Hd
stand for the slopes determined by using either the original time series or the dichotomous representation,
respectively. Hhigh and Hlow stand for the corresponding slopes for the “high”- and the “low”-level states’
durations, respectively. Taken from Ref. [34].

Signal Ho Hd Hhigh Hlow

K1 0.90±0.02 0.77±0.04 0.85±0.05 0.62±0.05
K2 0.96±0.01 0.81±0.05 0.87±0.09 0.70±0.08
A 0.96±0.02 0.76±0.06 0.82±0.28 0.61±0.21
U 0.95±0.02 0.80±0.06 0.89±0.13 0.72±0.12

N1 0.94±0.01 0.78±0.05 0.70±0.07 0.64±0.06
N2 0.94±0.01 0.84±0.04 0.77±0.03 0.58±0.03
N3 0.97±0.03 0.85±0.04 0.80±0.06 0.57±0.05
N4 0.99±0.03 0.87±0.05 0.72±0.04 0.63±0.04
N5 0.94±0.04 0.79±0.06 0.76±0.04 0.66±0.04
N6 1.06∗)±0.02 0.86±0.06 –∗∗) –∗∗)

N7 0.93±0.02 0.79±0.05 –∗∗) –∗∗)

N8 1.09∗)±0.02 0.86±0.05 –∗∗) –∗∗)

N9 1.01∗)±0.20 0.84±0.25 0.75±0.20 0.55±0.22

*) The value of H should not exceed unity (see the text), but here we reproduce the directly computed
slope. Note that the computed Hd in the third column never exceeds unity.
**) For N6, N7 and N8 no reliable slope could be determined in view of the small number of pulses
(N < 25).

By summarizing, the (R/S) Hurst analysis of the SES activities and “artificial” noises
reveals a persistent character of both time series, but cannot distinguish between them.

4.3.2 Hurst analysis of the time series of durations of the “high”- and the

“low”-level states. Hurst analysis in natural time

The results of Hurst analysis for the time series of durations of the “high”- and the “low”-
level states are shown in Fig. 4.11. The analysis of the former states constitutes, of course,
the Hurst analysis in natural time (recall Fig. 2.1(a)). The following common characteristic
results for both the SES activities and “artificial” noises. The H values are systematically
larger for the time series of the “high”-level states’ durations when compared to the cor-
responding values of the “low”-level ones (labeled Hhigh and Hlow, respectively, in Table
4.2). The persistent character (1/2 < H < 1) of the time series of the “high”-level states’
durations seems to be well-established, while this holds to a lesser degree for the time se-
ries of the “low”-level ones (because a few of the corresponding H values, e.g. see A, N3
and N9 in Table 4.2, do not differ significantly from 1/2). Moreover in all cases, Hhigh is
greater than Hlow.
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Fig. 4.11 The (R/S) Hurst analysis for the time series of the “high”(panels a and c)- and the “low”(panels
b and d)-level states’ durations for the SES activities and the “artificial” noises mentioned in Fig. 4.2. The
data points for each time series are vertically displaced after subsequent multiplication by a factor of 2,
starting from U or N9. For the reader’s convenience, apart from the linear least-squares fits, the straight
lines with slopes 0.9 in (a), 0.7 in (b), 0.75 in (c) and 0.6 in (d) are also plotted. Taken from Ref. [29].

Hence, the memory of the time series of both the SES activities and “artificial” noises
may be mainly attributed to the strong correlation between the “high”-level states’
durations.

Note, however, that when comparing the SES activities and “artificial” noises, the
H values of their “high”-level states’ durations do not differ significantly enough to
guarantee a safe distinction between them.
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4.4 Superiority of applying detrended fluctuation analysis (DFA) in

the natural time domain

4.4.1 DFA of the original time series

Upon using the conventional DFA (§ 1.4.2), we obtain [34] the results depicted in Fig. 4.12
for both the SES activities and “artificial” noises mentioned in Fig. 4.2 (cf. recall that the
DFA for a long duration SES activity has been already presented in § 1.4.3, see Fig. 1.17).
A least squares fit to a single straight line (despite the fact that the data in some cases
obviously deviate from such a scheme, see also below) reveals that the slopes of these
log-log plots (labeled α0 in Table 4.3) scatter for all cases around α ≈1, with a plausible
uncertainty around 0.15. This reveals long-range temporal correlations. Upon repeating
the analysis for their dichotomous time series, slightly different values for each case were
obtained (labeled αd in Table 4.3), and hence the conclusion concerning the strongly per-
sistent character remains the same.
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Fig. 4.12 The dependence of FDFA on Δ t in the
conventional DFA of the original time series
(in normalized units) of the SES activities and
“artificial” noises mentioned in Fig. 4.2. The data
points for each time series are vertically displaced
after subsequent multiplication by a factor of
2, starting from N9. For the sake of reader’s
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If the log-log plot in Fig. 4.12 is approximated with two straight lines, the following re-
sults were obtained [34]: For both SES activities and “artificial” noises, the slope at shorter
scales (i.e., Δ t ≤ 30 s) was found to lie in the range α = 1.1–1.4, labeled αshort

0 in Table 4.3,
while for longer scales a value mostly in the range α ≈ 0.8–1.0 was determined (labeled
α long

0 in Table 4.3), without, however, any safe classification between SES activities and
“artificial” noises on the basis of the α values alone. The fact that both types of signals ex-
hibit a cross-over at Δ t ≈ 30 s and also give almost the same DFA exponent (αshort

0 ≈ 1.2)
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Table 4.3 Results from the conventional DFA of the signals mentioned in Fig. 4.2. The symbols αo and
αd stand for the DFA slopes obtained from either the original time series (in normalized units) or the
dichotomous representation, respectively, for the whole Δ t range. The corresponding slopes when consid-
ering either short Δ t (smaller than approximately 30 s) or long Δ t (larger than approximately 30 s) are
also shown, being labeled with a superscript “short” and “long”, respectively. Taken from Ref. [34].

Signal αo αshort
o α long

o αd αshort
d α long

d

K1 0.95±0.04 1.19±0.02 0.88±0.02 0.95±0.04 1.21±0.04 0.90±0.02
K2 0.95±0.06 1.22±0.04 0.81±0.02 0.96±0.06 1.23±0.03 0.82±0.02
A 1.06±0.10 1.36±0.05 0.96±0.04 1.08±0.10 1.41±0.05 0.98±0.04
U 0.95±0.04 1.03±0.05 0.81±0.03 0.95±0.04 1.07±0.04 0.79±0.03

N1 1.05±0.05 1.26±0.04 0.98±0.02 1.01±0.05 1.21±0.04 0.95±0.03
N2 1.04±0.03 1.21±0.03 1.01±0.02 0.97±0.03 1.12±0.03 0.94±0.02
N3 1.01±0.04 1.15±0.03 0.97±0.02 0.99±0.04 1.11±0.03 0.95±0.02
N4 1.04±0.04 1.08±0.03 1.02±0.02 1.02±0.04 1.01±0.03 1.02±0.02
N5 0.94±0.10 1.22±0.04 0.79±0.02 0.92±0.10 1.17±0.04 0.78±0.02
N6 1.14±0.11 1.39±0.04 0.89±0.03 1.13±0.11 1.43±0.04 0.86±0.03
N7 1.08±0.09 1.32±0.04 0.96±0.03 1.03±0.09 1.34±0.04 0.82±0.04
N8 1.15±0.12 1.49±0.04 0.78±0.03 1.12±0.12 1.45±0.04 0.76±0.03
N9 0.97±0.20 1.53±0.04 0.55±0.02 0.93±0.20 1.46±0.04 0.52±0.02

can be understood in the context of § 4.1.3 where it is shown that for dichotomous time
series such a behavior should be observed at short time scales, i.e., Δ t <∼ τeff .

By summarizing, when the conventional DFA is applied to the original time series of
the SES activities and the “artificial” noises, no distinction can be achieved.

4.4.2 DFA of the time series of durations of the “high”- and the “low”-level states.

Superiority of applying DFA in natural time

We now present the results of DFA for the time series of durations of the “high”- and the
“low”- level states which are depicted in Fig. 4.13. Three main points emerge [34]:

First, both the SES activities and “artificial” noises exhibit for the time series of the
“high”-level states’ durations α values which are systematically larger than the corre-
sponding values of the time series of the “low”-level ones (labeled αhigh and αlow, respec-
tively in Table 4.1).

Second, the α values for the time series of the “high”-level states’ durations (which
reflects that, in reality, DFA is applied in natural time) point to the following difference:
for the SES activities (Fig. 4.13(a)) the αhigh values lie approximately in the range 0.9–1.0,
while for the “artificial” noises (Fig. 4.13(c)) the αhigh values are markedly smaller, i.e.,
αhigh ≈ 0.65–0.8 (Table 4.1). We emphasize that such a difference between SES activities
and “artificial” noises is not noticed upon comparing their series of the “low”-level states’
durations.
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Fig. 4.13 The results of DFA (when employing E-approximation together with the modification of
Eq. (4.20); see § 4.5.2) for the time series of the “high” (panels a and c)- and the “low” (panels b and
d)-level states’ durations (measured in sec, and hence F ′2(l) is also measured in sec) for the SES activities
and “artificial” noises mentioned in Fig. 4.2. The data points for each time series are vertically displaced
after subsequent multiplication by a factor of 2, starting from U or N9. For the reader’s convenience, apart
from the linear least-squares fits, the solid straight lines with slopes α = 1 in (a), α = 0.5 in (b), α = 0.8
in (c) and α = 0.5 in (d) are also plotted. Taken from Ref. [29].

Third, comparing the α values between the time series of the two states’ durations in
the SES activities, the following characteristic is found: the αlow values for the time series
of the “low”-level states’ durations scatter more or less around 0.5 (see Fig. 4.13(b)), thus
being appreciably smaller than the aforementioned values αhigh ≈ 0.9–1.0 for the series of
the “high”-level states’ durations (Fig. 4.13(a)).
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Hence, only in natural time DFA can distinguish SES activities from “artificial” noises
leading to an exponent α ≈ 1.0 for the SES activities, while α ≈ 0.65–0.8 for “artifi-
cial” noises.

4.5 Superiority of applying multifractal detrended fluctuation

analysis (MF-DFA) in the natural time domain

4.5.1 Monofractals and multifractals. The necessity for multifractal analysis

Monofractal signals are homogeneous in the sense that they have the same scaling proper-
ties, characterized locally by a single singularity exponent h0, throughout the signal. Thus,
monofractal signals can be indexed by a single global exponent, e.g., the Hurst exponent
H ≡ h0, which suggests that they are stationary from the viewpoint of their local scaling
properties (e.g., Ivanov et al. [14] and references therein). Since the power spectrum and
the correlation analysis (including the conventional DFA, see § 1.4.2) can measure only
one exponent, these methods are more suitable for the investigation of monofractal signals.

Concerning the use of these methods, however, the following points should be consid-
ered with care. A power spectrum calculation assumes that the signal is stationary and
hence when applied to non-stationary time series it can lead to misleading results, as al-
ready mentioned in § 1.4.1. (A time series is stationary if the mean, standard deviation, and
all higher moments, as well as the correlation functions, are invariant under time transla-
tion.) Thus, a power spectrum analysis should be necessarily preceded by a test for the
stationarity of the data analyzed. As for the DFA, see § 1.4.2, it can determine the (mono)
fractal scaling properties even in non-stationary time series (but see also Refs. [12, 7] on
this point), and can avoid, in principle, spurious detection of correlations that are artifacts
of non-stationarities.

In several cases, however, the records cannot be accounted for by a single scaling ex-
ponent (i.e., do not exhibit a simple monofractal behavior). In general, if a multitude of
scaling exponents is required for a full description of the scaling behavior, a multifractal
analysis must be applied. Multifractal signals are intrinsically more complex, and inhomo-
geneous, than monofractals (e.g., Ref. [14] and references therein). A reliable multifractal
analysis can be performed by multifractal detrended fluctuation analysis [46, 15], which
is summarized below in § 4.5.2. A similar analysis can be also performed by the wavelet
transform (e.g., see Ref. [22]; see also § 4.6.1). Both these methods have been used in
Refs. [34, 33] to analyze time series of SES activities and “artificial” noises (for the ap-
plication of these methods to electrocardiograms see § 9.5.1). It was found [34, 33] that
the multifractal analysis, when carried out in the conventional time-frame did not lead to
any distinction between these two types of signals, but it does so, if the analysis is made
in natural time. This will be explained below in § 4.5.3 and § 4.6.2.
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4.5.2 Multifractal detrended fluctuation analysis. Background

A generalization of the DFA, termed multifractal DFA (hereafter labeled MF-DFA), allows
[46, 15] the multifractal characterization of non-stationary time series. Compared to DFA
(see § 1.4.2), in MF-DFA the following additional two steps should be taken.

First, we average over all segments to obtain the q-th order fluctuation function Fq(s):

Fq(s)≡
{

1
Ns

Ns

∑
ν=1

[
F2(s,ν)

] q
2

} 1
q

(4.16)

where
F2(s,ν) =

1
s

νs

∑
n=(ν−1)s+1

ỹs(n)2, (4.17)

and the index variable q can take any real value except zero. This is repeated for several
scales s.

Second, we determine the scaling behavior of the fluctuation functions by analyzing
log-log plots Fq(s) versus s for each value of q. For long-range correlated series, Fq(s)
increases for large values of s as a power law:

Fq(s) ∝ sh(q), (4.18)

where the function h(q) is called generalized Hurst exponent.

For stationary time series the aforementioned Hurst exponent H (see § 4.3.1) is iden-
tical to h(2),

h(2) = H. (4.19)

For monofractal time series, h(q) is independent of q; all stationary long-range cor-
related series can be characterized by the power law decay of their power spectra
S( f ) = f−β with frequency f , and β = 2H−1.

Furthermore, Kantelhardt et al. [16], in order to improve the scaling of the DFA fluctu-
ations at short scales s, suggested a modified fluctuation function using randomly shuffled
(shuf) copies of the original time series. This modification is useful to be incorporated in
MF-DFA as well [15] and can be written as:

Fmod
q (s) = Fq(s)

Fshu f
q (s′) s0.5

Fshu f
q (s) s′0.5

(4.20)

for s′ 
 s, where Fshu f
q (s′) denotes the root mean square fluctuation function averaged

over several configurations of the randomly shuffled data taken from the original record
and s′ ≈ N/20.

The MF-DFA method requires series of compact support. In order to analyze data
with fractal support, Varotsos et al. [34] suggested an additional modification called “Eu-
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clidean (E-) approximation”. In this approximation, instead of [F2(s,ν)]q/2 in Eqs. (4.16)
and (4.20), the “Euclidean distance” d(s,ν) ≡ {[F2(s,ν − 1)]q +[F2(s,ν)]q +[F2(s,ν +
1)]q}1/2 is used.

In Ref. [34], it was shown that when dealing with time series of small length, both the
above corrections improve significantly the conventional DFA (see fig. 11 of Ref. [34]).
The corresponding fluctuation measure is denoted by F ′q(s) and is the one used in Fig. 4.13
as well as for the determination of h(q) in Figs. 4.14, 4.15 and 4.16.

Relation of MF-DFA to standard multifractal analysis. The scaling exponent τ(q) in
the standard multifractal formalism (§ 4.6.1) is connected to the partition function Zq(s)
through

Zq(s) ∝ sτ(q) (4.21)

It can be shown [15] that τ(q) is related to the exponent h(q) defined in Eq. (4.18) as
follows:

τ(q) = qh(q)−1. (4.22)

4.5.3 Multifractal detrended fluctuation analysis in natural time compared to that

in conventional time

The results of the MF-DFA analysis (§ 4.5.2) of the original time series for both the SES
activities and “artificial” noises are depicted in Fig. 4.14. An inspection of this figure
shows that no obvious common characteristic can be recognized to allow any systematic
distinction between SES activities and “artificial” noises. In order to visualize the difficulty
of such a distinction, we reproduce in the inset of Fig. 4.14 a case of a SES activity, i.e., A,
which, when compared to the artificial noise N4, shows an almost identical dependence of
h(q) versus q (for q < 4).

When studying the time series of the durations of the “high”- and the “low”-level states
alone (Fig. 4.15), the following common feature emerged. In the time series of the “high”-
level states (which reflects – if we recall Fig. 2.1(a) – that, in reality, MF-DFA is applied
in natural time), the h(q) curves for the SES activities (Fig. 4.15(a)) lie systematically
higher than those in the case of “artificial” noises (Fig. 4.15(b)). For example, for q = 2,
the h(2) values for the SES activities lie close to unity, while for the “artificial” noises
they scatter approximately in the range 0.65–0.8 (see Fig. 4.16 and the second column
in Table 4.4). On the other hand, if we compare the time series of the “low”-level states’
durations (although, in general, they have smaller h(2) values than those corresponding
to the “high”-level states’ durations), no general feature can be recognized to distinguish
the SES activities from the “artificial” noises. Varotsos et al. [34] emphasized that the
“artificial” noises, which are characterized by κ1 ≥ 0.083 (§ 4.2.2), are accompanied by
h(2) values of the “high”-level states’ durations smaller than≈0.8 (see Fig. 4.17). We shall
return to this point in § 4.7.1.
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Fig. 4.14 The MF-DFA analysis for the original time series of the SES activities (solid curves) and “arti-
ficial” noises (dotted curves) mentioned in Fig. 4.2. The q-dependence of the asymptotic scaling exponent
h(q) determined by fits to the log-log plots of F ′q(s) vs s (see § 4.5.2) at the regimes where the fits are
straight lines. The corresponding regimes are given in Ref. [29]. For the inset, see the text. Taken from
Ref. [29].

Summarizing, when MF-DFA is applied to the original time series of SES activities
and “artificial” noises, no distinction can be achieved (see Fig. 4.14); only if it is ap-
plied in natural time can MF-DFA distinguish SES activities from “artificial” noises;
see Fig. 4.16 together with the second column in Table 4.4.

4.6 Superiority of applying the wavelet transform in natural time

4.6.1 The wavelet transform, background. Comparison of the estimators of scaling

behavior

The main disadvantage of the classical tool of Fourier transform in signal processing is its
missing localization property: if a signal changes at a specific time, its transform changes
everywhere and a simple inspection of the transformed signal does not reveal the position
of the alteration. This originates from the fact that the Fourier transform decomposes a
signal in plane waves (trigonometric functions), which oscillate infinitely with the same
period and have no local character. Another disadvantage of Fourier analysis lies in the
separate description and presentation of time and frequency.
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Fig. 4.15 The q-dependence of the
asymptotic scaling exponent h(q)
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Ref. [34].

Table 4.4 Summary of the results in natural time for the SES activities and the “artificial” noises men-
tioned in Fig. 4.2 together with the results obtained from the analysis of the closed states for ICFMC.
Taken from Ref. [33].

Signal h(2)∗) h(2)∗∗) S κ1

K1 0.98±0.08 0.91±0.10 0.067±0.003 0.063±0.003
K2 0.92±0.10 0.94±0.17 0.081±0.003 0.078±0.004
A 0.87±0.27 – 0.070±0.008 0.068±0.004
U 0.98±0.13 1.10±0.27 0.092±0.004 0.071±0.004
ICFMCc 0.86±0.07 0.096±0.003 0.080±0.003
‘uniform’ ln(2)/2−1/4 1/12
N1 or n1 0.68±0.07 0.86±0.12 0.143±0.003 0.115±0.003
N2 or n2 0.79±0.03 0.81±0.05 0.103±0.003 0.093±0.003
N3 or n3 0.78±0.06 0.69±0.11 0.117±0.010 0.100±0.008
N4 or n4 0.76±0.06 0.84±0.13 0.106±0.010 0.100±0.013
N5 or n5 0.68±0.05 0.77±0.08 0.091±0.011 0.086±0.007
N9 or n6 0.78±0.20 – 0.102±0.007 0.084±0.004

*) From MF-DFA in natural time (§ 4.5.3).
**) From the orthogonal wavelet transform in natural time (§ 4.6.2)

If we use instead a locally confined little wave (wavelet), then translation and scaling
allows for a “frequency” resolution at arbitrary positions.

Thus, the wavelet transform allows more flexibility (e.g., see Ref. [19]): in simple
words, the wavelet, which can be almost any chosen function, can be shifted and dilated to
analyze signals. The wavelets can be interpreted as generalized oscillations (small waves)
abstractly expressed in a zero mean value (see below). The price of this versatility is that
two variables appear in the transform: the location and the scale of the wavelet. If the
wavelet ψ is translated to a point t0 and dilated by a factor l then we calculate the inner
(scalar) product of the signal f with the function ψt0,l(t). If f shows a big change in a
neighborhood of the point t0 it has a high-frequency spectrum there.
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The continuous wavelet transform of a given real function f (t) is defined (e.g., see Ref.
[4] and references therein) with a family of test functions ψt0,l(t) as the inner product

Tψ [ f ](t0, l) = 〈 f |ψt0,l〉 ≡
∫

f (t)ψt0,l(t) dt. (4.23)

Each test function ψt0,l is obtained from a single function ψ(t) (termed analyzing
wavelet) by means of a translation and a dilation:

ψt0,l(t) =
1
l
ψ
(

t− t0
l

)
(4.24)

where t0 ∈ � and l ∈ �∗+ (where � stands for the set of real numbers and �∗+ for the
positive ones). The function ψ(t) is chosen such that both its spread in time and frequency
are relatively limited.

In addition to being well localized both in time and frequency, ψ is required to satisfy
the admissibility condition which in its weak form implies that ψ must be of zero mean
(hence ψ is a band-pass or oscillating function, whence the name “wavelet”, e.g. see
Ref. [2] and references therein).

In the study of the scaling behavior, the following two features of the wavelet transform
play key roles. (a) The wavelet basis is constructed from the dilation (change of scale)
operator; thus the analyzing family exhibits a scale-invariant feature. (b) ψ(t) is chosen so
as to have a number nψ ≥ 1 of vanishing moments:∫

tkψ(t) dt ≡ 0, k = 0,1, . . . ,nψ −1 (4.25)

The Fourier transformΨ(ω) of φ(t) satisfies

|Ψ(ω)| ≈ ωnψ , ω → 0. (4.26)

A common way to build admissible wavelets of arbitrary order nψ is to successively
differentiate a smoothing function, e.g., the Gaussian function:

gnψ (t) =
dnψ

dtnψ
e−t2/2 (4.27)

The orthogonal wavelet transform. One can show that if ψ is properly chosen, then
the family

{
2 j/2ψ j,k

}
j,k∈� , with ψ j,k(t) = 2− jψ(2− jt − k), is an orthonormal basis of

L2 (e.g., Ref. [19]). The term 2 j/2 is just a normalization factor. The orthogonal wavelet
coefficients can then be defined by:

d f ( j,k) = 〈 f |ψ j,k〉. (4.28)
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Orthogonal wavelets that are often used in practice are the Daubechies wavelets, in-
dexed by a parameter nD = 1,2, . . ., which corresponds to the order of the wavelet. The
Daubechies wavelet with nD = 1 is in fact the Haar wavelet [11] (which is discontinuous;
it equals 1 at 0≤ t < 1/2,−1 at 1/2 < t ≤ 1 and 0 otherwise), but the Daubechies wavelets
with nD > 1 are continuous with bounded support, and have nD vanishing moments.

The Wavelet Transform Modulus Maxima (WTMM) method. This method [22] is based
on the local maxima of the modulus of the continuous wavelet transform, i.e., on the local
maxima t0,i (over t0) of the function |Tψ [ f ](t0, l)|, where l is a fixed scale. In other words,
in practice, instead of averaging over all values of |Tψ [ f ](t0, l)|, one averages (within the
WTMM) only the local maxima of |Tψ [ f ](t0, l)| and sums up the q-th power of these
maxima,

Z(q, l) =
imax

∑
i=1
|Tψ [ f ](t0,i, l)|q (4.29)

If scaling behavior is observed, scaling exponents τ(q) can be defined by:

Z(q, l) ∝ lτ(q) (4.30)

These τ(q) exponents are identical [15] to the τ(q) in Eq. (4.21) and related to h(q) as
shown in Eq. (4.22). Attention is drawn to the point that usually in WTMM the time series
are analyzed directly instead of the profile y(i) defined in § 1.4.2.

4.6.1.1 Comparison of the estimators of scaling behavior

Most of the (non-parametric) techniques for estimating the scaling exponent of time series
that display scaling behavior consist essentially in the measurement of a slope in a log-log
plot. Abry et al. [3, 2] and Veitch and Abry [44] have advocated the use of orthogonal
wavelet-based estimators, which have several advantages. For example, they are blind to
eventual superimposed smooth behavior (such as trends) and they are very robust when
changing the slope of the underlying probability law.

Various wavelet-based estimators of self-similarity or long-range dependence scal-
ing exponent were compared by Audit et al. [4]. These estimators mainly include the
(bi)orthogonal wavelet estimators and the WTMM estimator. Their study focused both
on short and long time series and also compared the wavelet-based estimators with DFA
that is not wavelet-based. They found, among others, that the WTMM estimator leads

to larger mean squared errors (MSE) for short time series of length smaller than 128 (i.e.,
N ≤ 128) as compared to the orthogonal estimators but to much smaller MSE for long time
series (see table I of Ref. [4]). For time series of size 8192 (i.e., for sizes comparable to
those of the original time series of the SES activities and “artificial” noises), the WTMM
estimator using the wavelet g4, see Eq. (4.27), should be used.
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Furthermore, for short time series (N ≤ 128) it was shown [4] that DFA is the best
estimator. This justifies why in § 4.4.2 (as well as in Chapter 5) the method of DFA is
employed in order to analyze in natural time the SES activities and “artificial” noises
which have usually N ≈ 102 pulses (events).

4.6.2 The wavelet-based methods of estimating scaling behavior in natural time

compared to that in conventional time

We start with the application of the WTMM method to the (original) time series of SES
activities and “artificial” noises mentioned in Fig. 2.8 (see also the caption of Fig. 4.2).
Using a g4 wavelet, see Eq. (4.27), the analysis led to the results shown in Fig. 4.18.
Figure 4.18(b) reveals that the curves showing the q dependence of the generalized Hurst
exponent h(q) are not classified, thus not allowing any obvious distinction between SES
activities and “artificial” noises. The same conclusion is drawn (see Fig. 4.19(a)) if we
apply the orthogonal wavelet transform analysis to the original time series of the signals
mentioned in Fig. 2.8. This analysis was made with the program provided by Veitch et
al. [45] using the Daubechies wavelet nD = 1, after checking several other Daubechies
wavelets of higher order, i.e., nD > 1.
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Fig. 4.18 The q dependence of the exponent τ(q) and the generalized Hurst exponent h(q) (panels a and
b, respectively) resulting from the application of WTMM using a g4 wavelet for the signals mentioned in
Fig. 2.8 (see also the caption of Fig. 4.2). For the sake of clarity, the straight line corresponding to a slope
H = 1 was drawn in (a), while the solid curves in (b) correspond to the four SES activities (bold symbols,
while for the “artificial” noises thinner symbols were used). The data points in (a) for each time series are
vertically displaced by constant factors. Taken from Ref. [33].
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We now proceed to the application of the wavelet transform to the signals as they are
read in natural time, see Fig. 4.9. The results of the orthogonal wavelet transform analysis
(note that WTMM could not be reliably applied in view of the small number of pulses),
using again the Daubechies nD = 1 (i.e., Haar) wavelet, are depicted in Fig. 4.19(b). An
inspection of these h(q) versus q curves, in spite of the large estimation errors seems
to show a classification as follows. For q values around 2 or larger the resulting h(q)
values for the SES activities are higher than those of the “artificial” noises (see the h(2)
values in the third column in Table 4.4). In particular, the results show that the generalized
Hurst exponent h(2) for the SES activities is close to unity, while for the “artificial” noises
h(2) is markedly smaller. This conclusion is fully compatible with that deduced from the
application of MF-DFA in natural time (§ 4.5.3, see also the second column in Table 4.4).
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In summary, the wavelet transform analysis allows a distinction between SES activities
and “artificial” noises, but only if it is applied in natural time leading to h(2) ≈ 1 for
SES activities, while h(2) is markedly smaller for “artificial” noises.

4.7 Combining the normalized power spectrum analysis and

multifractal analysis in natural time. The K-means clustering

algorithm

4.7.1 Combining the variance κ1 and the generalized Hurst exponent h(2)

Towards this goal, we employ two independent methods: the normalized power spectrum
analysis in natural time (leading to the κ1 values, see § 4.2.2) and the MF-DFA (§ 4.5.3)
the application of which in natural time led for q = 2 to the h(2) values given in Table 4.4
(see also the columns labeled αhigh and κ1 in Table 4.1). Figure 4.20 presents the results
for the signals mentioned in Fig. 2.8 (see also the caption of Fig. 4.2) of these two methods
applied independently in natural time.
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4.4. The DFA exponent (≈0.86) of the closed states for ICFMC (labeled ICFMCc) is also inserted [33].
The thick straight lines indicate the two groups resulting from the application of the K-means algorithm
explained in § 4.7.2; the full and open circles show the centroids of the two groups. Taken from Ref. [33].
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A unified feature seems to emerge. The deviations from the “uniform” behavior quan-
tified by Δκ (where Δκ ≡ 1/12− κ1, see § 4.2.2) are interrelated with the h(2) values:
First, the SES activities, which correspond to large Δκ values (Δκ > 0), are characterized
by the strongest “memory” (large h(2), close to unity); both their Δκ and h(2) values are
consistent with those expected for a critical behavior (see § 4.7.3 and § 2.4.2). Second, the
“artificial” noises simultaneously have smaller Δκ values (Δκ ≤ 0) and weaker “mem-
ory” (their h(2) values are markedly smaller than unity). Third, concerning the ICFMC,
the values related with the closed states, which have been found [24] to exhibit the stronger
“memory” (between the two states, i.e., closed and open, see Fig. 4.1), seem to lie between
the aforementioned two regimes.

Finally, Varotsos et al. [33] emphasized that, the randomly “shuffled” series of all the
three types of electric signals investigated, lead to h(2)≈ 0.5 (simple random behavior)
and Δκ ≈ 0 (e.g., see the SES activity in § 7.1.1). These two values are internally
consistent in the absence of heavy tails, because in the “shuffling” procedure the values
are put into random order, thus all correlations (memory) are destroyed (§ 2.5.2.1).

4.7.2 The K-means clustering algorithm

A more elaborated classification of the results depicted in Fig. 4.20, can be obtained by
using some clustering algorithm. In Ref. [33] a K-means type was used, which is a least-
squares partitioning method allowing users to divide a collection of objects into K groups
(e.g., see section 8.8 of Ref. [18]).

The K-means problem consists of dividing a set of multivariate data into non-overlapping
groups in such a way as to minimize the sum (across the groups) of the sums of squared
residual distances to the group centroid (this statistics is usually called sum of squared
errors). In other words, a computer program tries to minimize the sum, over all groups, of
the squared within-groups residuals, which are the distances of the objects to the respec-
tive group centroid. The groups obtained are such that they are geometrically as compact
as possible around their respective centroid.

In Ref. [33] the K-means partitioning program provided by Legendre [17] was used.
This program allows users to search through different values of K in a cascade, starting
with k1 groups and ending with k2 groups, with k1 ≥ k2. In the cascade from a larger
to the next smaller number of groups, the two groups whose centroids are the closest in
multivariate space are fused and the algorithm iterates again to optimize the sum of squared
errors function, reallocating objects to the groups. Varotsos et al. [33] run the program by
considering the 10 “objects”, i.e., the four SES activities and the six “artificial” noises
mentioned in Fig. 2.8 (see also the caption of Fig. 4.2). The h(2) values resulting from
MF-DFA in natural time and the κ1 values reported in Table 4.4 have been used. Studying
partitions from k1 = 5 to k2 = 2 groups, the clustering shown in Fig. 4.20 with the thick
straight lines was found [33].
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This clustering consists of the following two groups (K = 2): the first one includes the
four SES activities, while the second the six “artificial” noises n1 to n6. The centroid
of the first group (solid dot) lies at Δκ = 0.013, h(2) = 0.9375, while the centroid of
the second at Δκ = −0.013, h(2) = 0.745. Note that the Δκ value (= 1/12−κ1) of
the centroid of the group of the four SES activities corresponds to κ1 = 0.070, which
coincides with the theoretical value obtained for the SES activities in § 2.4.2, see
Eq. (2.77).

4.7.3 Comments on the differences in the memory and the variance κ1 among

electric signals of different nature

Let us focus on the tentative origin of the difference in the memory of SES activities and
“artificial” noises. In Ref. [34] an attempt was made towards understanding the aforemen-
tioned results (§ 4.5.3), which show that the values of the generalized Hurst exponent h(2)
of the “high”-level states’ durations of the SES activities are close to unity, while those of
the “artificial” noises are markedly smaller. Let us consider, at the moment, for the sake
of simplicity, the simple case of fBm (which has been proposed [48] to model the SES ac-
tivities for H → 1 and is the only Gaussian self-similar process with self-similarity index
H �= 0.5, e.g., see Ref. [21]; see also § 1.5.1.1): the Hurst exponent H has been suggested
as a measure of the degree (intensity) of self-similarity or long-range dependence, e.g.,
see Ref. [26] (see also Refs. [20, 49]). The power law decay of the covariance, Eq. (1.8),
characterizes long-range dependence. The higher the H the slower the decay, e.g., see
Eq. (1.15). If we now assume that, in general, h(2)(= H) is actually a measure of the in-
tensity of long-range dependence, we may understand that the SES activities, since they
exhibit critical dynamics (infinite long-ranged correlations), should have a long-range de-
pendence stronger (thus, a higher H) than that of the “artificial” noises. Note that the
model of critical behavior discussed in § 2.4.2, which resulted in Eq. (2.77), shows that
� (QkQk+l) is independent of l.

As for the fact that the ICFMC curve (κ1 = 0.080 ± 0.003) lies in Fig. 4.8 closer to
the “uniform” distribution compared either to the SES activities or the (majority of the)
“artificial” noises, this is not unreasonable for a biological system [34] (see Chapter 9,
e.g., Fig. 9.11).

4.8 The fluctuation function F(q) = 〈χq〉−〈χ〉q and the entropy S in

natural time

4.8.1 Classification of electric signals based on the function F(q) = 〈χq〉−〈χ〉q
versus q in various types of electric signals

In Ref. [33], it was proposed that a classification of the aforementioned three types of
electric signals of dichotomous nature, i.e., ICFMC, SES activities and “artificial” noises,
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becomes possible if we study, in the range 0 < q ≤ 2, the function F(q) = 〈χq〉− 〈χ〉q
versus q.

We recall that Fig. 4.9 shows how the electric signals, mentioned in Fig. 4.8 (see also
Figs. 2.8 and 4.2), are read in natural time. The function 〈χq〉−〈χ〉q versus q, for all these
electric signals, is depicted in Fig. 4.21(a), in the range 0 < q ≤ 2. (cf. Eq. (2.38), which
was introduced for n = positive integer only). This figure shows that the signals are now
classified:

The curves for the SES activities and “artificial” noises, at least in the range q ∈ (1,2)
fall practically into two different classes, while the ICFMC curve lies just between
them.

Note that the results, for q = 2, exhibit the feature already mentioned in § 4.2.2, i.e.,
for SES activities, they scatter around the value κ1(= 〈χ2〉−〈χ〉2) = 0.070, while for the
“artificial” noises κ1 ≥ 0.083, and for ICFMC κ1 = 0.080± 0.003≈ κu (see also Fig. 4.8).
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Fig. 4.21 (a) The function 〈χq〉−
〈χ〉q and (b) its derivative with re-
spect to q, i.e., 〈χq lnχ〉−〈χ〉q ln〈χ〉,
versus q. ICFMC: Thick solid line;
SES activities: thin solid lines; “ar-
tificial” noises: broken lines. The
uncertainties for q = 2 in (a) and for
q = 1 in (b) are given in Table 4.4.
Taken from Ref. [33].
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4.8.2 Classification of electric signals based on the entropy S in natural time

The derivative of the function F(q) = 〈χq〉−〈χ〉q with respect to q, i.e.,

F ′(q) =
d
dq

(〈χq〉−〈χ〉q) = 〈χq lnχ〉−〈χ〉q ln〈χ〉 (4.31)

is plotted in Fig. 4.21(b) versus q. We may see again a classification. Furthermore, Varot-
sos et al. [33] drew attention to the region around q = 1. The quantity 〈χ lnχ〉−〈χ〉 ln〈χ〉
is just the one defined as entropy S in natural time, i.e., see Eq. (3.1). In addition,
Eq. (3.4) states that the entropy Su of the “uniform” distribution (see § 2.1.3) has the value
Su = 0.0966.

Therefore the three types of electric signals seem to be classified as follows (but see
also § 4.8.3): The “artificial” noises have an entropy larger than (or equal to) that of the
“uniform” distribution, i.e., S ≥ Su, while the SES activities exhibit S values smaller than
Su. As for the ICFMC, the S value lies just in the boundary between the SES activities and
the “artificial” noises and is very close to Su. The point that only n5 among the “artificial”
noises seems to have a smaller entropy than Su – see Table 4.4 – is discussed below.

Thus, in short, the entropy S = 〈χ lnχ〉−〈χ〉 ln〈χ〉 of the SES activities is smaller than
that (Su) of the “uniform” distribution, while the “artificial” noises have an entropy
larger than (or equal to) Su.

The following remarks are worth adding. First, when employing the K-means algo-
rithm mentioned in § 4.7.2, if the S values inserted in Table 4.4 are used instead of κ1, a
comparison of partitions into k1 = 4 to k2 = 2 groups also leads to the clustering shown in
Fig. 4.20.

Second, for each of the signals depicted in Fig. 4.9, the values of the scaling exponent
α (obtained from DFA) and κ1 do not change upon a time reversal. Such a reversal,
however, leads to a different S value labeled S−.

The latter important point has been already treated in Section 3.4 and will be further
discussed in Section 4.9. Third, if the number of pulses in a SES activity (or “artificial”
noise) is small (e.g. 3–50), the values of both κ1 and S are smaller than the actual ones;
the extent of this underestimation could be understood on the basis of Fig. 4.22 to which
we now turn. Figure 4.22, depicts the expected value for κ1 and S for a Markovian di-
chotomous time series (Section 4.1) as a function of the number of the “high” level states
N along with their uncertainty of ±σ . Recall that the values of κ1 and S for all the SES
activities and “artificial” noises mentioned in Fig. 4.9, are shown in Table 4.4. The fact
that only n5 among the “artificial” noises seems to have an entropy somewhat smaller than
Su (S[n5] = 0.091 ± 0.011) might be understood as follows: for n5, we have N ≈ 400 (see
Table 2.2) for which Fig. 4.22 reveals that the aforementioned value of 0.091 differs from
Su only by an amount smaller than one σ .
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4.8.3 Classification of electric signals by the complexity measures using the

fluctuations of the entropy in natural time

The values of the complexity measures λs, λs,shu f and νs, defined in § 3.6.1, for several
SES activities and “artificial” noises were calculated in Ref. [38] and the results are shown
in Table 4.5. The complexity measures have been calculated only in the short-range be-
cause the length of these signals in the natural time domain is on the average ≈102 pulses
and hence does not significantly exceed the time window length l ≈ 60 pulses, thus not
allowing a reliable calculation of the complexity measures in the longer scale (see § 3.6.1;
see also § 9.2.2.1 and § 9.2.7).

Table 4.5 The complexity measures λs, λs,shu f and νs of SES activities and “artificial” noises along with
their S values (note that the latter are compiled from Table 4.4). Taken from Ref. [36].

Signal λs λs,shu f νs S

K1 1.26 1.27 1.21 0.067±0.003
K2 1.26 1.29 1.30 0.081±0.003
U∗) 1.06 1.24 1.17 0.092±0.004∗)

A 0.97 1.14 0.97 0.070±0.008

n1 1.25 1.23 1.21 0.143±0.003
n2 1.30 1.31 1.18 0.103±0.003
n3 1.35 1.26 1.24 0.117±0.010
n4 1.36 1.26 1.20 0.106±0.010
n5∗) 1.32 1.28 1.12 0.091±0.011∗)

n6 1.36 1.01 1.15 0.102±0.007

*) Note that in these two cases the S values are comparable to Su, and hence their distinction can be made
on the basis of the λs values which differ markedly.
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An inspection of these results reveals that the λs values of most “artificial” noises are
somewhat larger than those in the SES activities. Note that in two cases, i.e., the SES
activity U and the “artificial” noise n5, for which the S values are comparable to Su (thus,
no distinction can be made on the basis of the S values alone), the distinction can be
achieved on the basis of the λs values, λs(U) < λs(n5), which differ markedly.

Recapitulating the distinction of similar-looking signals that are emitted from sys-
tems of different dynamics, we can now say the following [38]: If the S values differ
markedly from Su (which holds in most SES activities and “artificial” noises), the sig-
nals can be distinguished on the basis of the S values alone. On the other hand, if the S
values are close to Su (which holds in all ECG, see Chapter 9, but only in the minority
of SES activities and “artificial” noises) the signals can be better classified by using
the complexity measures based on the fluctuations δS of the entropy (see also § 3.6.1
and § 9.1.1).

4.9 Using the entropy S− or the fluctuations of natural time under

time reversal

4.9.1 Distinction of SES activities from “artificial” noises based on the entropy in

natural time under time reversal

The entropy S− in natural time under time reversal, defined in § 3.4.1 has been calculated
for all the SES activities and “artificial” noises tabulated in Table 4.4 (as well as for some
more recent examples) and the results can be found in Ref. [43] (see also Ref. [42]). Here,
Table 4.6 compiles the S and S− values of all these signals along with those of 16 SES
activities recorded during the subsequent years. The stations at which the latter SES activ-
ities have been recorded are also mentioned in Table 4.6. For the sake of completeness, we
also give in Table 4.6, the value of the variance κ1 = 〈χ2〉− 〈χ〉2 obtained in each case.
An inspection of Table 4.6 reveals the following:

The S values are actually classified, as stated above in § 4.8.2, i.e., S < Su for the SES
activities and Su

<∼ S for “artificial” noises. On the other hand, this does not hold in
general for the S− values.

This is so, since for all the SES activities (with the probable exception of K2) we find
that the S− values are smaller than (or equal to) Su, but for “artificial” noises no common
behavior could be found, because S− is either smaller or larger than Su.

In other words, no distinction between SES activities and “artificial” noises can be
achieved on the basis of S− values alone. This means the following, if we recall that the S
value takes into account the sequential order of pulses and hence captures elements of the
dynamics hidden in this order [37, 38]: Only when considering the true time arrow (i.e.,
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analyzing in natural time the signal as it was actually recorded in nature) the S value can
pinpoint the difference in the dynamics between these two groups of electric signals. Recall
that the SES activities are characterized by critical dynamics and hence exhibit infinitely
ranged long-range correlations, while in “artificial” noises the intensity of the long-range
correlations is markedly weaker [33] (see also § 4.7.3). Numerical studies of models which
show [41] that both S and S− are smaller than Su have been already presented in § 3.4.3
and § 3.4.4.

Table 4.6 The values of S, κ1, S− for the SES activities and “artificial” noises in Greece analyzed in
Ref. [43] (see also table I of Ref. [42]) together with the one labeled E in Fig. 4.5 as well as with 16 more
recent SES activities which are the following: M1 to M4 were recorded at MYT station, while V1 at VOL,
see fig. 1 of Ref. [41]. The SES activities PAT, shown in Fig. 7.2, and PAT2, see fig. 2 of Ref. [40], were
recorded at PAT station. The signals PIR1, PIR2, PAT3 and PAT4 correspond to the SES activities depicted
in figs. 3(a), 3(b), 3(d) and 3(e) of Ref. [39], respectively. They were recorded at PIR or PAT station. The
four additional SES activities recorded at PAT station during 2007 depicted in figs.5(a), 5(b), 5(c) and
5(d) in Ref. [30] are labeled PAT5, PAT6, PAT7 and PAT8, respectively. Finally, PIR3 stands for the SES
activity (see Fig. 7.22(b)) that was recorded [30] on January 14, 2008, at PIR which preceded the strongest
earthquake in Greece during the last 28 years that occurred on February 14, 2008.

Signal S κ1 S−

K1 0.067±0.003∗) 0.063±0.003∗) 0.074±0.003
K2 0.081±0.003∗) 0.078±0.004∗) 0.103±0.003
E 0.071±0.010 0.071±0.006 0.082±0.010
A 0.070±0.008∗) 0.068±0.004∗) 0.084±0.008
U 0.092±0.004∗) 0.071±0.004∗) 0.071±0.004
T1 0.088±0.007 0.084±0.007 0.098±0.010
C1 0.083±0.004 0.074±0.002 0.080±0.004
P1 0.087±0.004 0.075±0.004 0.081±0.004
P2 0.088±0.003 0.071±0.005 0.072±0.015
E1 0.087±0.007 0.077±0.017 0.081±0.007
M∗∗)

1 0.094±0.005 0.075±0.004 0.078±0.003
M∗∗)

2 0.089±0.003 0.076±0.004 0.084±0.003
M∗∗)

3 0.089±0.004 0.080±0.005 0.093±0.004
M∗∗)

4 0.080±0.005 0.073±0.004 0.086±0.006
V∗∗)1 0.078±0.006 0.074±0.004 0.092±0.005
PAT∗∗∗) 0.080±0.002 0.072±0.002 0.078±0.002
PAT∗∗∗)2 0.074±0.002 0.075±0.002 0.078±0.002
PIR∗∗∗∗)1 0.070±0.012 0.062±0.010 0.051±0.010
PIR∗∗∗∗)2 0.077±0.004 0.076±0.005 0.082±0.004
PAT∗∗∗∗)3 0.073±0.007 0.072±0.005 0.081±0.006
PAT∗∗∗∗)4 0.085±0.005 0.073±0.007 0.080±0.004
PAT5 0.067±0.007 0.074±0.007 0.079±0.007
PAT6 0.071±0.005 0.069±0.003 0.066±0.005
PAT7 0.072±0.003 0.067±0.003 0.069±0.003
PAT8 0.070±0.005 0.065±0.005 0.070±0.005
PIR3 0.086±0.003 0.070±0.005 0.070±0.005
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Table 4.6 Continued.

Signal S κ1 S−

n1 0.143±0.003∗) 0.115±0.003∗) 0.127±0.004
n2 0.103±0.003∗) 0.093±0.003∗) 0.122±0.003
n3 0.117±0.010∗) 0.100±0.008∗) 0.118±0.010
n4 0.106±0.010∗) 0.100±0.013∗) 0.138±0.010
n5 0.091±0.011∗) 0.086±0.007∗) 0.120±0.011
n6 0.102±0.007∗) 0.084±0.004∗) 0.095±0.007
n7 0.116±0.005 0.085±0.005 0.083±0.005
n8 0.117±0.004 0.095±0.007 0.099±0.005
n9 0.110±0.010 0.091±0.005 0.095±0.010
n10 0.112±0.005 0.087±0.007 0.087±0.006
n11 0.122±0.012 0.088±0.007 0.079±0.012
n12 0.104±0.005 0.094±0.005 0.103±0.009
n13 0.124±0.007 0.084±0.007 0.077±0.008
n14 0.124±0.005 0.087±0.005 0.081±0.007

*) From Ref. [33] and mentioned in Fig. 2.8.
**) From Ref. [41].
***) From Ref. [40].
****) From Ref. [39].

In other words, the SES activities can be distinguished from “artificial” noises by con-
sidering that for the SES activities both S and S− are smaller than Su, which is not the
case for “artificial” noises , i.e.,

S,S− < Su for SES activities (4.32)

This happens in addition to the fact that for the SES activities the variance κ1 is κ1 ≈
0.070, while for “artificial” noises we have κ1 ≥ κu ≈ 0.083, see § 4.2.2.

4.9.2 Distinction of SES activities from “artificial” noises on the basis of the

fluctuations of natural time under time reversal

In § 2.2.2, it was discussed that a measure of the long-range dependence emerges in natural
time if we study the dependence of the fluctuations of the average value of natural time
under time reversal

Δχ2
l ≡ � [(〈χ〉−〈T̂χ〉)2] = �

⎧⎨
⎩
[

l

∑
k=1

k
l
(pk− pl−k+1)

]2
⎫⎬
⎭ , (4.33)

on the window length l that is used for the calculation. In particular, it was shown that
Eq. (2.19) holds, i.e,

Δχl(≡
√
Δχ2

l ) ∝ lχH (4.34)
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Hence, the scaling exponent χH can be determined from the slope of the logΔχl versus
log l plot. Recall also that in such a plot, we have the interconnection:

χH ≈ H−1 for descending curves (4.35)

or
χH = H for ascending curves (4.36)

We now show [39] that the aforementioned scale-dependence of the fluctuations of
the natural time itself under time reversal provides a useful tool for the discrimination of
SES activities from “artificial” noises. We apply this procedure to the time series of the
durations of those signals analyzed in Ref. [43] that have enough number of pulses e.g.
≈102, excerpts of which are depicted here in Fig. 4.23(a). The relevant results are shown
in Fig. 4.23(b). An inspection of this figure interestingly indicates that all seven “artificial”
noises correspond to descending Δχl curves versus the scale l, while the three SES activ-
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ities to ascending curves (in a similar fashion as in Figs. 2.3(a) and 2.3(d), respectively)
as expected from the fact that the latter exhibit [34] infinitely ranged temporal correlations
(having H close to unity), while the former do not.

Hence, the method discussed here, which is based on the fluctuations of the average
value of the natural time itself under time reversal, enables the identification of long-
range correlations even for datasets of small size (≈102), thus allowing the distinction
of SES activities from “artificial” noises.

4.10 Summary of the criteria in natural time for the distinction of

SES activities from noise

By summarizing the previous Sections of this Chapter, the following three rules are put
forward for the distinction between SES activities and “artificial” noises (AN).

First (note that each class of signals below is designated by the relevant subscript):

κ1,SES < κ1,ICFMC(≈ κu)≤ κ1,AN, (4.37)

where κ1,ICFMC ≈ 0.080 and κu ≈ 0.083 and

κ1,SES ≈ 0.070. (4.38)

Second,
SSES, (S−)SES < Su ≤ SAN, (4.39)

where S and S− stand for the entropy in natural time and that under time reversal, respec-
tively; the value Su is the one of the “uniform” distribution, i.e., Su ≈ 0.0966. The S values
themselves are used for the distinction when they differ markedly from Su. On the other
hand, if the S values are found to be close to Su, which holds for the minority of the SES
activities and the AN, the distinction can be better made by using the complexity measure
λs of the fluctuations δS of the entropy (see § 4.8.3).

Third, if H denotes the generalized Hurst exponent h(2) in natural time,

HAN < HSES, (4.40)

where HSES is close to unity, i.e,
HSES ≈ 1.0 (4.41)

and HAN ≤ 0.86.

The same holds for the DFA exponent in natural time, i.e.,

0.86 < αSES ≈ 1.0 (4.42)

and
αAN = 0.65−0.80. (4.43)
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A safe distinction between SES activities and AN should not be solely based on the
above three rules but should be used in conjunction with the criteria explained in Section
1.2. The basic spirit behind these rules is that SES activities exhibit critical behavior while
AN do not. Some types of AN, however, may be also associated with criticality (e.g., when
a “man-made” system approaches failure) and hence could in principle be misinterpreted
on the basis of the above inequalities.

4.11 Procedure to analyze a long-duration SES activity in natural

time

When a short duration SES activity has an obvious dichotomous nature, the procedure
to read it in natural time is straightforward, i.e., the one shown in Fig. 2.1(a) where we
considered Qk as being proportional to the duration of the k-th pulse. This is the case, for
example, of the SES activity recorded at IOA on April 18, 1995, whose original time series
is shown in Fig. 1.11(a) (and see its excerpt in Fig. 4.2(a)), while Fig. 4.6 depicts how this
SES activity is read in natural time.
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We now focus on a long-duration SES activity of a non-obvious dichotomous nature
which is superimposed on a background that exhibits frequent small MT variations. Let us
consider, for example, the SES activity that lasted from February 29 until March 2, 2008
(channel “a” of Fig. 1.16), for which the procedure to subtract the MT background vari-
ations has already been presented in § 1.4.3.1. This subtraction results in channel “e” of
Fig. 1.16, which provides the time series that should be now analyzed in natural time: To
obtain the time series (χk,Qk), the individual pulses of the signal depicted in channel “e”
of Fig. 1.16 have to be identified. A pulse starts, of course, when the amplitude exceeds a
given threshold and ends when the amplitude falls below it. Moreover, since the signal is
not obviously dichotomous, instead of finding the duration of each pulse, one should sum
the “instantaneous power” during the pulse duration in order to find Qk. To this end, we
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plot in Fig. 4.24 the histogram of the “instantaneous power” P of channel “e” of Fig. 1.16,
computed by squaring its amplitude. An inspection of this figure reveals a bimodal feature
which signifies the periods of inactivity (P < 500 μV2 Hz) and activity (P > 500 μV2 Hz)
in channel “e” of Fig. 1.16. In order to find Qk, we focus on the periods of activity and
select the power threshold Pthres around the second peak of the histogram in Fig. 4.24. Let
us consider, for example, the case of Pthres = 1400 μV2Hz. In Fig. 4.25(a), we depict the
“instantaneous power” P of the signal in channel “e” of Fig. 1.16 versus time. Starting
from the beginning of the signal, we compare P with Pthres and when P exceeds Pthres we
start summing the P values until P falls below Pthres for the first time, k = 1. The result-
ing sum corresponds to Q1. This procedure is repeated until P falls below Pthres for the
second time, k = 2, and the new sum represents Q2, etc. This leads to the natural time
representation depicted in Fig. 4.25(b). The result depends, of course, on the proper selec-
tion of Pthres. The latter should be verified by checking whether a small change of Pthres
around the second peak of the histogram leads to a natural time representation resulting
in approximately the same values of the parameters κ1, S and S−. By randomly selecting
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Pthres in the range 500 to 2,000 μV2 Hz, we obtain that the number of pulses in channel
“e” of Fig. 1.16 is N = 1,100 ± 500 with κ1 = 0.070 ± 0.007, S = 0.082 ± 0.012 and
S− = 0.078 ± 0.006. When Pthres ranges between 1,000, and 1,500 μV2 Hz, the corre-
sponding values are N = 1,200 ± 200 with κ1 = 0.068 ± 0.003, S = 0.080 ± 0.005 and
S− = 0.074 ± 0.003. Thus, we observe that irrespective of the Pthres value chosen, the pa-
rameters κ1, S and S− obey the conditions (4.38) and (4.39) for the classification of this
signal as SES activity.

To summarize: natural time analysis allows the distinction between true SES activi-
ties and “artificial” (man-made) signals. This type of analysis, however, demands the
knowledge of the energy released during each consecutive event. (Note that the de-
termination of this energy is easier to conduct in the case of electric field variations,
because the magnetic field variations appear in the form of “spikes” when using coil
magnetometers which, as mentioned in § 1.4.4, act as dB/dt detectors.) If these electric
field variations are of clear dichotomous nature, the energy release is proportional to
the duration of each pulse. Otherwise, in the absence of an obvious dichotomous na-
ture, an analysis of the “instantaneous power” similar to that presented above should
be carried out to determine the parameters κ1, S and S− in natural time.
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5. Natural Time Investigation of the Effect of

Significant Data Loss on Identifying Seismic

Electric Signals

Abstract. In many cases of geophysical and/or geological interest, like the case of SES
observations, it happens that for substantial parts of the time of data collection high noise
prevents any attempt to extract a useful signal so that such data are removed from further
analysis. The appearance of such a noise may be either random or periodic. It is the objec-
tive of this chapter to examine whether the remaining data allow the identification of the
SES activities (critical dynamics) characterized by infinitely ranged temporal correlations.
The following two cases are treated here. First, the effect of the random removal of data
segments of fixed length on the scaling properties of SES activities. Second, the appear-
ance of a periodic noise like in Japan, where the electric field measurements at some sites
are seriously contaminated by high noise – due mainly to leakage currents from DC driven
trains – during the period 06:00 to 22:00 LT every day, i.e., around 70–80% data loss.
Here, we show that, in both cases, the identification of a SES activity becomes possible
with probability around 70% even after severe data loss (e.g., 70-80 %). This is achieved
by combining natural time analysis and DFA as follows: the remaining data is first rep-
resented in natural time and then analyzed in order to deduce the quantities κ1, S and S−
as well as the exponent α from the slope of the log-log plot of the DFA analysis in nat-
ural time. We then examine whether the latter slope has a value close to unity and/or the
conditions κ1 ≈ 0.070 and S, S− < Su are obeyed.

5.1 Introduction

It is the basic aim of this chapter to investigate how significant data loss affects the scaling
behavior of SES activities, which are long-range correlated signals (see § 1.4.3, § 2.4.2 and
Chapter 4). The practical importance of this study becomes very clear upon considering
that such a data loss is inevitable, mainly due to the following two reasons. First, failure
of the measuring system in the field station (including the electric measuring dipoles, the
electronics and the data collection system) may occur especially due to lightning. Second,
noise-contaminated data segments are often unavoidable due to natural changes such as

P.A. Varotsos et al., Natural Time Analysis: The New View of Time: Precursory Seismic Electric Signals,
Earthquakes and other Complex Time Series, Springer Praxis Books, DOI 10.1007/978-3-642-16449-1_5, 
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rainfall, lightning, induction of geomagnetic field variations and ocean-earth tides besides
the noise from “artificial” (man-made) sources.

In particular, let us focus on the geoelectrical measurements in Japan. They face the
major difficulty that at many sites the recordings are contaminated by high noise due to
leakage currents from DC-driven trains and other artificial sources (e.g., see Ref. [2]).
Clear SES, however, have been recognized either at noise-free measuring sites [8, 5, 7]
or at noisy stations but when the SES happened to occur at midnight, i.e., when the noise
level was low [2]. This low noise level occurs from 00:00 to 06:00 and from 22:00 to
24:00 local time (LT) when nearby DC-driven trains cease service, i.e., almost 30% of
24 hours. The answer is attempted here in Section 5.3 provided that the SES activity is
of appreciably long duration, i.e., a few days to a few weeks or even more as in the case
of the Izu island swarm [5, 7]. This question differs from the one treated in Section 5.2
in which we investigate [4] the effect of the random removal of data segments of fixed
length on the scaling properties of SES activities. It also differs from the recent study of
Ma et al. [1] in which the lengths of the lost or removed data segments are random and
may follow a certain type of distribution. In the latter study, a new segmentation approach
to generate surrogate signals by randomly removing data segments from stationary signals
with different types of long-range correlations has been introduced [1] and will be used
here.

5.2 Identification when removing randomly noise-contaminated data

segments of fixed length

Let us consider here as an example the SES activity depicted in Fig. 1.11(a) recorded on
April 18, 1995, that preceded the Mw6.6 earthquake on May 13, 1995 (see § 7.2.1). This is
reproduced here but in normalized units in Fig. 5.1(a).

Following Ma et al. [1], we now describe the segmentation approach used here to gen-
erate surrogate signals ũ(i) by randomly removing data segments of length L from the
original signal u(i). The percentage p of the data loss, i.e., the percentage of the data re-
moved, characterizes the signal ũ(i). The procedure followed is based on the construction
of a binary time series g(i) of the same length as u(i). The values of u(i) that correspond
to g(i) equal to unity are kept, whereas the data of u(i) when g(i) equals zero are removed.
The values of u(i) kept, are then concatenated to construct ũ(i).

The binary time series g(i) is obtained as follows [1]: (i) We first generate the lengths
l j = L with j = 1,2, . . . ,M of the removed segments, by selecting M to be the smallest
integer so that the total number of removed data satisfies the condition ∑M

j=1 l j ≥ pN. (ii)
We then construct an auxiliary time series a(k) with a(k) = L when k = 1,2, . . . ,M and
a(k) = 1 when k = M +1, . . . ,N−M(L+1) of size N−M(L+1). (iii) We shuffle the time
series a(k) randomly to obtain ã(k). (iv) We then append ã(k) to obtain g(i): if ã(k) = 1
we keep it, but we replace all ã(k) = L with L elements of value ‘0’ and one element with
value ‘1’. In this way, a binary series g(i) is obtained, which has a size equal to the one
of the original signal u(i). We then construct the surrogate signal ũ(i) by simultaneously
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Fig. 5.1 (a): The electric field recordings in normalized units, i.e., by subtracting the mean value μ and
dividing by the standard deviation σ , for the SES activity depicted in Fig. 1.11(a), that was recorded
on April 18, 1995. (b): Example of a surrogate time series, in normalized units, obtained by removing
segments of length L = 200 from the signal depicted in (a) with 50% data loss (i.e., p = 0.50). (c):The
natural time representation of (b) but drawn with continuous lines for the reader’s convenience (in reality,
this should be plotted as in the lower part of Fig. 2.1(a) or as in Fig. 7.2(b)). The values obtained from the
analysis of (c) in natural time are κ1 = 0.067(4), S = 0.076(4), S− = 0.071(4) and a = 0.90(5). Reprinted
with permission from Ref. [4]. Copyright (2010), American Institute of Physics.

scanning the original signal u(i) and the binary series g(i), removing the i-th element of
u(i) if g(i) = 0 and concatenating the segments of the remaining data to ũ(i).

The resulting signal ũ(i) is subsequently read in natural time. This leads to the quantities
κ1, S and S− as well as to the DFA exponent α (see § 1.4.2) in natural time. Such an

example is given in Fig. 5.1(b), which was drawn on the basis of the SES activity data
depicted in Fig. 5.1(a).

Typical DFA plots, obtained for L = 200 and p = 30, 50 and 70% are given in Fig. 5.2.
For the sake of comparison, this figure also includes the case of no data loss (i.e., p = 0).
We notice a gradual decrease of the exponent α upon increasing the data loss, which affects
our ability to recognize a signal as SES activity. In order to evaluate this ability to identify
SES activities from the natural time analysis of surrogate signals with various levels of
data loss, three procedures have been attempted which will be explained separately below.
They include the investigation of the following conditions (5.1) and (5.2). The condition
(5.1) comes from the relation (4.42) after considering the reasonable experimental error:

0.85≤ α ≤ 1.10. (5.1)
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They correspond to the average values of α obtained from 5000 surrogate time series that were gener-
ated with the method described in the text. Reprinted with permission from Ref. [4]. Copyright (2010),
American Institute of Physics.

The conditions (5.2) come from Eqs. (4.38) and (4.39) by considering the reasonable
experimental error in κ1:

|κ1−0.07| ≤ 0.01, S≤ Su, S− ≤ Su. (5.2)

In the following, the produced surrogate signals will be investigated whether they obey
conditions (5.1) and/or (5.2) using a Monte Carlo comprising a reasonable number of re-
alizations, e.g., of the order of 103. The probability that the condition (5.1) is satisfied will
be hereafter labeled p1. By the same token, the probability to satisfy the conditions (5.2)
is designated by p2. Finally, the probability to obey either condition (5.1) or conditions
(5.2) will be labeled p3. Upon considering the number of the Monte Carlo realizations, for
example say M = 103, a plausible estimation error (3STD/

√
M) at the most around 5% is

expected (cf. 1/
√

103 ≈ 0.032, and STD stands for the standard deviation of the quantity
calculated by Monte Carlo, e.g. see Ref. [12]). The three procedures studied refer to the
following investigation(s).

Procedure 1: Investigation whether the exponent α , resulted from the DFA analysis of
the natural time representation of a signal, obeys the relation (5.1). If it does, the signal
is then classified as SES activity. Figure 5.3(a) shows that for a given amount of data
loss (p = const.), upon increasing the length L of the randomly removed segments, the
probability p1 of achieving (after making 5000 attempts for a given value of p and L) the
identification of the signal as SES activity is found to gradually increase versus L at small
scales and stabilizes at large scales. For example, when considering the case of 70% data
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loss (magenta color in Fig. 5.3(a)) the probability p1 is close to 20% for L = 50; it increases
to p1≈ 30% for L = 100 and finally stabilizes around 50% for lengths L = 300 to 500. This
is essentially consistent with the earlier findings of Ma et al. [1] who noticed that removing
the same percentage of data using longer (and fewer) segments has a lesser impact on the
scaling behavior compared to removing segments with smaller average length.
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Fig. 5.3 The probabilities p1, panel
(a), p2, panel (b), and p3, panel (c),
to recognize the signal of Fig. 5.1(a)
as true SES activity when consider-
ing various percentages of data loss
p = 0.2, 0.3, 0.5, 0.7 and 0.8 as a
function of the length L of the con-
tiguous samples removed. Note that
the removal of large segments leads to
better results when using the condition
(5.1), see (a), whereas the opposite
holds when using the conditions (5.2),
see (b). The optimum selection (c) for
the identification of a signal as SES ac-
tivity consists of a proper combination
of the aforementioned procedures in
(a) and (b); see Procedure 3 described
in the text. The values presented have
been obtained from 5000 surrogate
time series (for a given value of p and
L), which lead to a plausible error
1.4% (≈1/
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5,000). Reprinted with

permission from Ref. [4]. Copyright
(2010), American Institute of Physics.
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Procedure 2: Investigation whether the quantities κ1, S and S− (resulted from the analy-
sis of a signal in natural time) obey the conditions (5.2). If they do so, the signal is classified
as SES activity. Figure 5.3(b) shows that for a given amount of data loss, the probability
p2 of achieving the signal identification as SES activity – that results after making again
5,000 attempts for each given value of p and L – gradually decreases when moving from
the small to large scales. Note that for the smallest length scale investigated, i.e., L = 10
(which is more or less comparable – if we consider that fexp = 1 sample/sec – with the
average duration ≈11 sec of the transient pulses that constitute the signal, see § 4.1.3 and
table I of Ref. [9]), the probability p2 reaches values close to 100% even for the extreme
data loss of 80%. This is understood in the context that the quantities κ1, S and S− remain
almost unaffected when randomly removing segments with lengths comparable to the av-
erage pulse’s duration. This is consistent with our earlier finding [11] that the quantities
κ1, S and S− are experimentally stable (Lesche’s stability, § 3.3.4) in the sense that they
exhibit only slight variations when deleting (due to experimental errors) a small number
of pulses. On the other hand, at large scales L, the probability p2 markedly decreases. This
may be understood if we consider that, at such scales, each segment of contiguous L sam-
ples comprises on the average a considerable number of pulses the removal of which may
seriously affect the quantities κ1, S and S−. As an example, for 80% data loss (cyan curve
in Fig. 5.3(b)), and for L = 400–500, the p2 value becomes 40%.

Interestingly, a closer inspection of Figs. 5.3(a) and 5.3(b) reveals that p1 and p2 play
complementary roles. In particular, at small scales of L, the probability p1 increases but
p2 decreases versus L. At large scales, where p1 reaches (for considerable data loss) its
largest value, the p2 value becomes small. Inspired by this complementary behavior of p1
and p2, the following combined procedure was investigated.

Procedure 3: In this procedure, a signal is identified as SES activity when it obeys
either the condition (5.1) or the conditions (5.2). The probability p3 of achieving such a
SES identification, after making 5,000 attempts (for a given value of p and L), is plotted in
Fig. 5.3(c). The results are remarkable since, even at significant values of data loss, e.g.,
p = 70% or 80%, the probability p3 at scales L = 100 to 400 remains relatively high, i.e.,
p3 ≈ 75% and 65%, respectively (note also that the value of p3 reaches values close to
100% at small scales L = 10). This is important from a practical point of view, because
it states for example the following. Even if the records of a station are contaminated by
considerable noise, say 70% of the time of its operation, we have a probability of ≈75%
to correctly identify an SES activity from the remaining 30% of the non-contaminated
segments. This probability increases considerably, i.e., to p3 ≈ 90%, if only half of the
recordings are noisy.

The aforementioned results have been deduced from the analysis of a SES activity
lasting around three hours. In cases of SES activities with appreciably longer duration
(Section 1.3), e.g., a few to several days detected in Greece [3, 10] or a few months in
Japan [7], the results should become appreciably better.

In summary, the identification of a SES activity becomes possible even after significant
data loss by employing the following procedure. The remaining data are first read in
natural time and then analyzed in order to deduce the quantities κ1, S and S− as well as
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the exponent α from the slope of the log-log plot of the DFA analysis in natural time.
We then examine whether this α value is close to unity (cf. Eq. (5.1)) or the conditions
(5.2) are obeyed. This leads to the following results: even when randomly removing
50% of the data, we have a probability (p3) around 90%, or higher, to identify correctly
a SES activity. This probability becomes somewhat smaller, i.e., 75%, when the data
loss increases to 70%.

5.3 Identification upon significant periodic data loss.

The case of Japan

As already mentioned in Section 5.1, in geoelectrical field measurements at some sites in
Japan, high noise prevails almost during 70% of the 24-hour operational time. Thus, the
question arises whether it is still possible to identify a long-duration SES activity upon
removing the noisy data segments lasting from 06:00 to 22:00 LT every day.

Let us suppose that we have a long time series of data s(i) (red in Fig. 5.4), with a
duration appreciably longer than 24 hours for instance, and we are forced to remove the
same segment of these daily data. The portion of the 24-hour data that remain will be
hereafter labeled pr and the number of data corresponding to one day will be designated
by T . Thus, every T samples, (1−pr)T of them (belonging to the shaded parts of Fig. 5.4)
are removed. The remaining segments (drawn in blue in Fig. 5.4) are concatenated to form
the new time series c(i) which is subsequently read in natural time.
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Fig. 5.4 Schematic diagram showing data of fixed length (grey shaded areas) that are periodically removed
from a dichotomous time series (red).

Let us now follow a procedure similar to that in Section 5.2 and impose the conditions
(5.1) and (5.2). Since we are interested in the low cultural noise night-window, we hereafter
focus on pr values varying from pr = 0.2 to roughly pr = 0.3.

We recall (Section 1.3) that SES activities of appreciably long duration, i.e, around a
few weeks or more, similar to the one observed by Uyeda and coworkers [5, 7] almost
two months before the case of the Izu island swarm in Japan (Section 7.4), have not been



244 5. Effect of Significant Data Loss on Identifying Seismic Electric Signals

recorded in Greece. Here, we consider as an example the SES activity depicted in Fig. 1.16
that preceded [10, 6] the most recent major earthquake in Greece. This had almost a 1.5-
day duration, which lasted from February 29 to March 2, 2008, and was followed by a
magnitude Mw6.4 earthquake at 38.0◦N 21.5◦E on June 8, 2008 (see § 7.2.6). Its original
time series, which is not of an obvious dichotomous nature, is depicted in Fig. 1.16 (chan-
nel “a”). We now attempt to answer the following question: if such an SES activity had
been recorded in Japan, could its identification have become possible by employing a pro-
cedure similar to the Procedure 3 proposed in the previous Section 5.2? Before applying
it, we note that the signal under discussion, as is evident from an inspection of Fig. 1.16
(channel “a”), comprises a number of pulses superimposed on a background which ex-
hibits frequent magnetotelluric (MT) variations. After subtracting these MT variations, as
explained in § 1.4.3.1, we find the signal depicted in Fig. 1.16 (channel “e”), which pro-
vides the time series that should be considered for further analysis. Recall that its analysis
in natural time (i.e., for pr = 0) was presented in Section 4.11.

To answer the question for the possibility to identify this SES activity in Japan after
significant data loss, a Monte Carlo calculation was employed by considering that the first
segment to keep starts at some time uniformly distributed during the first 24 hours (i.e, the
first 86,400 samples since fexp = 1 sample/s). When removing 70% of the data (i.e., pr =
0.3), we find a probability p3 ≈ 67% to identify correctly the SES activity (in particular,
p1 = 0.40, p2 = 0.54 and p3 = 0.67). This probability becomes somewhat smaller, i.e.,
≈62%, upon increasing the data loss to 80% (in particular, p1 = 0.41, p2 = 0.40 and
p3 = 0.62). These values of the probability p3 would be expected to become markedly
larger if the duration of the SES activity were to be similar to the one observed before the
Izu island seismic swarm.

Thus, our main conclusion states that when employing two modern techniques, i.e.,
natural time analysis and DFA, an identification of a long-duration SES activity be-
comes possible even after removing periodically a significant portion of the data, e.g.,
even upon removing in Japan the noisy data segments lasting for the period 06:00 to
22:00 LT every day.
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6. Natural Time Analysis of Seismicity

Abstract. Assuming that a mainshock may be considered as a new phase, the natural time
analysis of the seismicity reveals that the normalized power spectrum Π(φ) for small φ
(φ → 0) or the quantity κ1(= 〈χ2〉− 〈χ〉2) may be considered as an order parameter for
seismicity. The probability distribution P(κ1) of this order parameter is obtained from the
calculation of the variance κ1 when a time window of length l (= number of consecutive
events) is sliding through an earthquake catalog. The κ1 value at which this probability dis-
tribution P(κ1) maximizes is designated by κ1,p. By using P(κ1), we find: first, studying
the order parameter fluctuations relative to the standard deviation of its distribution, we ob-
serve that (a) the scaled distributions of different seismic areas (as well as that of the world-
wide seismicity) fall on a universal curve and (b) this curve exhibits an “exponential tail”
similar to that observed in certain non-equilibrium systems (e.g. 3D turbulent flow) as well
as in several equilibrium critical phenomena, e.g., 2D Ising, 3D Ising, 2D XY. Second, the
constant b in the Gutenberg–Richter (G-R) law for EQs, N(≥M) = 10a−bM, is determined
from the Maximum Entropy Principle which leads to b≈ 1 in accordance with the b value
obtained from real seismic data. Third, by analyzing either the original earthquake catalog
or a shuffled one the following results are obtained for the Southern California Earthquake
Catalog (SCEC) as well as for the Japanese Meteorological Agency Earthquake Catalog
(Japan). Concerning the κ1,p values, we find κ1,p = 0.066 for the original data, while
κ1,p = 0.064 for the randomly shuffled data (with possible uncertainty of ±0.001). Both
these κ1,p values, the difference of which is shown to be associated with temporal correla-
tions between the EQ magnitudes M, differ markedly from the value κu = 1/12(≈ 0.083)
of the “uniform” distribution, which is interpreted as reflecting that the process’s incre-
ments’ infinite variance contributes significantly to self-similarity. Fourth, upon employing
multifractal cascades (generalized Cantor sets) in natural time an interconnection between
κ1,p and the parameter b of the G-R law is obtained which for b≈ 1 leads to κ1,p = 0.064
that coincides with the κ1,p value obtained from the (randomly) shuffled earthquake data
of Japan and SCEC. Fifth, by applying DFA to the earthquake magnitude time series of
the SCEC and Japan data, we confirm that temporal correlations exist between EQ mag-
nitudes. Sixth, focusing on the order parameter fluctuations of seismicity before and after
mainshocks, we find the following. The P(κ1) versus κ1 plot before mainshocks exhibits a
significant bimodal feature which is reminiscent of the bimodal feature observed in the pdf

P.A. Varotsos et al., Natural Time Analysis: The New View of Time: Precursory Seismic Electric Signals,
Earthquakes and other Complex Time Series, Springer Praxis Books, DOI 10.1007/978-3-642-16449-1_6, 
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of the order parameter when approaching (from below) Tc in equilibrium critical phenom-
ena. Finally, the G-R law or its generalization in the frame of the nonextensive statistical
mechanics, if combined with natural time, which captures the temporal correlations be-
tween EQ magnitudes, can reproduce the features of real seismic data.

6.1 Earthquake scaling laws

It is well known that earthquakes exhibit scaling relations, chief among which are the
following three.

First, the well known Gutenberg–Richter (G-R) scaling [33] (hereafter called the G-
R law) which states that the (cumulative) number of earthquakes (EQs) with magnitude
greater than (or equal to) M, N(≥M), occurring in a specified area and time is given by

N(≥M) = 10a−bM. (6.1)

In this relation b is a constant, which varies only slightly from region to region being
generally in the range 0.8 ≤ b ≤ 1.2 (e.g., see Ref. [53] and references therein) and the
constant a gives the logarithm of the number of EQs with magnitude greater than zero
[61] being a measure of the intensity of regional seismicity [75] (note that this relation
holds both regionally and globally). For reasons of convenience, we hereafter write the
G-R law in the following form

N(≥M) ∝ 10−bM. (6.2)

Considering that the seismic energy E released during an earthquake is related [39] to
the magnitude through

E ∝ 10cM, (6.3)

where c is around 1.5, Eq. (6.2) turns to the distribution of Eq. (2.98), i.e.,

P(E) ∝ E−γ (6.4)

for the earthquake energies E, where

γ = 1+b/1.5. (6.5)

Hence, b≈ 1 means that the exponent γ is around γ = 1.6 to 1.7, see Table 2.1.

Second, a scaling relation (the modified form [76] of Omori’s law) describes the tem-
poral decay of aftershock activity and is given in the form (e.g. see Ref. [61]):

r(t,M) =
1

τ0 [1+ t/c(M)]p , (6.6)
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where r(t,M) is the rate of occurrence of aftershocks with magnitudes greater than M per
day, t is the time that has elapsed since the mainshock and τ0 and c(M) are characteristic
times. Note that p≈ 1 for large earthquakes (e.g., see Ref. [54]).

Third, the Båth law [15] for aftershocks according to which the difference in magnitude
between a mainshock and its largest aftershock is approximately 1.2, a constant indepen-
dent of the mainshock magnitude.

However, deviations from these scaling laws have been observed and their explanation
has attracted a great interest (e.g., see Ref. [43] and references therein). Despite the in-
tense efforts, however, the mechanism behind the complex spatio-temporal behavior of
earthquakes still remains a major challenge [12, 44].

It is widely accepted [74, 66, 23] that the aforementioned earthquake scaling laws as
well as others (e.g., referring to the distribution ∝1/L2 of fault lengths L [67], the
fractal structure of fault networks [27], the universal law for the distribution of waiting
times and seismic rates derived by Bak et al. [11] from the analysis of space-time
windows) indicate the existence of phenomena closely associated with the proximity
of the system to a critical point [35].

In view of this widespread belief, an order parameter for seismicity has been proposed
[84] in the frame of natural time, which is explained in § 6.2.1. On the basis of this order
parameter, a detailed study of the correlations in real seismic data has been made, a review
of which is provided in this Chapter.

6.2 The order parameter and the universal curve for seismicity. The b
value of the G-R law from first principles

6.2.1 The order parameter proposed for seismicity

As already mentioned (see Section 6.1), the occurrence of mainshocks can be considered as
a critical point (second-order phase transition), but alternative models based on first-order
phase transitions have also been proposed, e.g., see Ref. [53] and references therein. (Such
a diversity also exists for the brittle rupture which is a phenomenon closely related to earth-
quakes. Buchel and Sethna [22] have associated brittle rupture with a first-order transition
and a similar view has been also expressed in Refs. [42, 89]. On the other hand, Gluzman
and Sornette [32] later suggested that it is analogous to a critical point phenomenon.) Both
approaches lead to scaling laws or power law distributions for the dynamical variables,
because:

Second-order transitions demonstrate scaling near a critical point, whereas first-order
transitions demonstrate scaling when the range of interactions is large (mean-field
condition), as is the case with elastic interactions [53].
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Following the wording of Ref. [60], we note that in general:

“A choice of an order parameter is an art, since usually it’s a new phase which we do
not understand yet, and guessing the order parameter is a piece of figuring out what’s
going on.”

We now proceed to choose the order parameter for seismicity by assuming that a main-
shock may be considered as the new phase. We take advantage of the experimental fact
(Chapter 1) that several hours to a few months before a mainshock SES are recorded,
which probably signals that the system enters into the critical regime; see the pressure-
stimulated currents SES generation model described in § 1.6.2 (see also § 2.4.2).

Therefore, we focus our attention on the evolution of the seismicity (in the candidate
area) during the period from the SES detection until the mainshock.

If we set the natural time for the seismicity zero at the initiation of the concerned SES
activity, we form time series of seismic events in natural time, e.g., see Fig. 2.1(b), for
various time windows as the number N of consecutive (small) EQs increases. When com-
puting the normalized power spectrum Π(φ) of the seismicity analyzed in natural time
for each of the time windows (see below), we find that, in the range 0 ≤ φ ≤ 0.5, Π(φ)
approaches to that given by Eq. (2.75), i.e.,

Π(φ) =
18

5(2πφ)2 −
6cos(2πφ)

5(2πφ)2 − 12sin(2πφ)
5(2πφ)3 , (6.7)

as N increases from 6 to some value usually less than (or around) 40. Simultaneously, the
variance κ1 of natural time becomes equal to 0.070, see Eq. (2.77), i.e.,

κ1 = 〈χ2〉−〈χ〉2 = 0.070. (6.8)

The coincidence occurs usually a few days to around one week before the mainshock.
This is not unreasonable, because in Chapter 8 we will show that upon analyzing in nat-
ural time the series of avalanches in two dynamical models associated with earthquakes
(i.e., the Burridge–Knopoff “train” earthquake model, see § 8.2.2, and the Olami–Feder–
Christensen earthquake model, see § 8.3.2), as well as in other critical systems, we find
that Eq. (6.8) is fulfilled when the critical point is approached.

In simple words, before a mainshock a sequence of earthquakes occurs, which obeys
Eq. (6.7) and this process will be called a single correlated process. When the mainshock
occurs (the new phase), Π(φ) abruptly increases to approximately unity and κ1 becomes
almost zero. The latter can be visualized in the example depicted in Fig. 6.1, where we plot
the κ1 value versus the number of EQs after the SES detection on April 18, 1995, until the
occurrence of the Mw6.6 mainshock on May 13, 1995, at 40.2◦N, 21.7◦E (see Fig. 1.11(a)
and § 7.2.1). This figure shows that the κ1 value becomes κ1 ≈ 0.070 at the 12th EQ (see
Table 6.1), while upon the occurrence of the mainshock the κ1 value abruptly decreases
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Fig. 6.1 How the variance κ1 evolves event
by event during the following period: from the
initiation of the SES activity on April 18, 1995
(see Fig. 1.11(a)), until the occurrence of the
Mw6.6 mainshock (numbered 18) on May 13,
1995. All the EQs used in the calculation are
tabulated in Table 6.1. Taken from Ref. [84].

to κ1 ≈ 9× 10−5. Such a behavior has been verified [78, 79] for several major EQs (see
Chapter 7) and points to the conclusion that κ1, or Π(φ) for φ → 0, could be considered
as an order parameter.

In what remains, we provide details on the calculations supporting the suggestion that
κ1, or Π(φ) for φ → 0, may be considered as an order parameter for seismicity using the
aforementioned example of the Mw6.6 mainshock. We focus our calculations on the EQs
that occurred after April 18, 1995 within the region N40.5

39.2E22.0
20.3 surrounding the epicenter

of the mainshock. The earthquakes in this region until the mainshock are tabulated in
Table 6.1, where the magnitude M is given for each event. The calculation is carried out as
follows. Using, for each EQ, the magnitude given in Table 6.1, we find the corresponding
seismic moment M0(in dyn.cm) through the relation [52]: log10 M0 = (0.99± 0.04)M +
(18.1± 0.15). The resulting M0 values of all the events (numbered 1 to 17 in Table 6.1)
that preceded the mainshock are plotted in the natural time domain in Fig. 6.2, in a similar
fashion as in Fig. 2.1(b). We now calculate the values of Π(φ) for φ ∈ [0,0.5], as they
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Fig. 6.2 Plot in natural time of the events that occurred after the initiation of the SES activity on April 18,
1995, until the mainshock on May 13, 1995 (the numbers correspond to the EQs of Table 6.1) in a similar
fashion as Fig. 2.1(b). Taken from Ref. [83].
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Table 6.1 All EQs within N40.5
39.2E22.0

20.3 that occurred after the initiation of the SES activity on April 18,
1995, until the Mw6.6 (from USGS) mainshock at Kozani-Grevena on May 13, 1995. The following data
are available from the site of the National Observatory of Athens (NOA): www.gein.noa.gr/services/1950-
00.txt (see also Ref. [50]); the reported magnitude M stands either for the local magnitude ML or for the
duration magnitude MD. The seismic moment of the mainshock was taken from the Appendix of Ref. [52].

No. Year Mon. Day Hour min sec Lat. Long. Depth M M0(N.m)

1 1995 Apr. 27 15 16 55.3 39.50 21.13 10 2.9 9.35×1013

∗∗) 1995 Apr. 28 20 3 16.7 39.19 20.35 17 3.5 3.67×1014

2 1995. Apr. 30 6 58 24.8 39.79 20.72 29 3 1.17×1014

3 1995 Apr. 30 7 50 32.1 40.44 21.85 3 3.8∗) 7.28×1014

4 1995 Apr. 30 21 12 42.6 40.00 20.66 5 3.3 2.33×1014

5 1995 Apr. 30 23 24 54.7 39.81 20.50 10 2.8 7.45×1013

6 1995 Apr. 30 23 46 42.5 39.58 20.58 5 2.9 9.35×1013

7 1995 May 1 1 49 55.5 39.89 20.74 5 3 1.17×1014

8 1995 May 1 22 47 21.1 39.90 21.01 5 2.9 9.35×1013

9 1995 May 2 15 52 18.6 39.55 20.58 5 3.8 7.28×1014

10 1995 May 5 2 58 5.8 39.38 20.35 10 2.8 7.45×1013

11 1995 May 7 5 19 50.3 40.12 20.52 5 2.9 9.35×1013

12 1995 May 10 0 1 4.2 40.34 21.79 10 2.9 9.35×1013

13 1995 May 10 15 23 2.4 39.28 21.69 10 2.9 9.35×1013

14 1995 May 10 18 24 56.3 39.91 20.72 5 2.9 9.35×1013

15 1995 May 11 9 14 24.1 39.94 21.28 10 3.1 1.48×1014

16 1995 May 13 8 42 12.3 40.07 21.75 5 3.7 5.79×1014

17 1995 May 13 8 43 18.7 40.02 21.77 5 4 1.15×1015

18 1995 May 13 8 47 17 40.18 21.71 39 6.1∗∗∗) 1.25×1019

*) This event is not reported by NOA but comes from USGS with MLTHE.
**) This is just in the boundary of the region selected. Note that if the calculation includes this event but
disregards the aforementioned(*) one, i.e. MLTHE = 3.8, a collapse of the spectra is again observed on
May 10, 1995.
***) This is the ML value, while the moment magnitude is Mw = 6.6.

evolve upon the occurrence of each new event by using

Π(φ) =

∣∣∣∣∣∑
N
k=1(M0)k exp

(
i2πφ k

N

)
∑N

n=1(M0)n

∣∣∣∣∣
2

, (6.9)

which results from Eqs. (2.29) and (2.31) by replacing Qk with (M0)k (see § 2.1.2). In
Eq. (6.9), N increases by one when a new EQ takes place, i.e. N = 1,2, . . .18 and ex-
cerpts of the results are plotted with the crosses in Fig. 6.3. In the same figure, we also
plot (solid line, labeled theory), for the sake of comparison, the Π(φ) values calculated
from Eq. (6.7). An inspection of this figure shows that since EQ No. 9 (which occurred
on May 2, see Table 6.1), see Fig. 6.3(b), the crosses start to gradually approach the solid
line. They almost coincide (see Fig. 6.3(e)) upon the occurrence of the EQ No. 12, i.e.,
on May 10 and hence only 3 days before the mainshock). The corresponding κ1 value
(see Fig. 6.1) is then close to 0.070, thus agreeing with Eq. (6.8). The κ1 value starts
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to deviate somewhat from this value only upon the occurrence of the EQs No. 16 and
17 which interestingly took place only a few minutes before the mainshock. Figure 6.3(k)
depicts what happens upon the occurrence of the mainshock: TheΠ(φ) curve then exhibits
an abrupt change and turns to a straight line almost parallel to the horizontal axis, i.e.,
Π(φ)≈ 1 (note that an abrupt change also appears for κ1 in Fig. 6.1, see No. 18).

This is exactly the change that motivated us to consider Π(φ) for φ → 0, or κ1, as an
order parameter for seismicity.

6.2.2 Universal curve for the seismicity in various regions

The properties of the normalized power spectrum for the long-term seismicity in natural
time can be studied by means of the procedure described in § 2.5.2. First, calculation of
Π(φ) was made for an event taking time windows from 6 to 40 consecutive events (for the
reasons that will be explained in § 6.4.1, the choice of the precise value of the upper limit,
up to 100 or so, is not found decisive [78]). And second, this process was performed for all
the events by scanning the whole earthquake catalog. The following data from two differ-
ent areas, i.e., San Andreas fault system and Japan, have been analyzed. First, the EQs that
occurred during the period 1973–2003 within the area N37

32W122
114 using the Southern Cal-

ifornia Earthquake catalog (hereafter called SCEC). Second, the EQs within N46
25E146

125 for
the period 1967–2003 using the Japan Meteorological Agency catalog (hereafter simply
called “Japan”). The magnitude thresholds M ≥ 2.0 and M ≥ 3.5 have been considered
for SCEC and Japan, respectively, for the sake of data completeness [83]. The seismic
moments have been obtained by the procedure described later in § 6.2.2.1.

We now study the order parameter fluctuations relative to the standard deviation of its
distribution. Thus, we plot in Fig. 6.4 the quantity σP(X) versus (X −〈X〉)/σ where X
stands forΠ(φ) and 〈Π(φ)〉, σ refer to the mean value and the standard deviation ofΠ(φ)

10-6
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10-4

10-3

10-2

10-1
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-6 -5 -4 -3 -2 -1 0 1 2

 P
(X

)

(X-<X>)/

SCEC
Japan

1e-5
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1e-3
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Fig. 6.4 Universality of the probabil-
ity density function of Π(φ) for EQs
in natural time. The log-linear plot of
σP(X) versus (X −〈X〉)/σ , where X
stands for the order paramater Π(φ) for
φ → 0. Crosses and circles correspond to
Japan (M ≥ 3.5) and SCEC (M ≥ 2.0),
respectively. The inset depicts the corre-
sponding results for randomly shuffled
(black curve) and the original data (red
crosses) in Japan. Note that the same
graph is obtained for three different re-
gions in Japan (see Fig. 6.5). Taken from
Ref. [84].
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(recall that the calculations should be done for very small φ values, e.g., φ = 0.05, since
we assume here φ → 0, as explained in § 6.2.1). One could alternatively plot P(κ1) versus
(μ(κ1)− κ1)/σ(κ1), where μ(κ1) and σ(κ1)) refer to the mean value and the standard
deviation of κ1. The results in Fig. 6.4, for both SCEC and Japan, fall on the same curve.
This log-linear plot clearly consists of two segments: The segment to the left shows a
decrease of P(X) almost by five orders of magnitude, while the upper right segment has an
almost constant P(X). The feature of this plot is strikingly reminiscent of the one obtained
by Bak et al. [11] (see their fig. 4) on different grounds, using EQs in California only.
More precisely, they measured PS,l(T ), the distribution of waiting times T , between EQs
occurring within range l whose magnitudes M are greater than log10 S. They then plotted
TαPS,l(T ) versus T S−bld and found that, for a suitable choice of the exponent α (i.e.,
α = 1), the G-R law exponent b (i.e., b = 1) and the spatial dimension d (i.e., fractal
dimension d = 1.2) all the data collapse onto a single curve which is similar to that of
Fig. 6.4.

Note that Fig. 6.4 was obtained here without considering the waiting time distribution
and without the suitable choice of any parameter.

After a further inspection of Fig. 6.4, the following points have been clarified.
First, the rapidly decaying part (i.e., the left segment), which is consistent with an al-

most exponential decaying function over around four orders of magnitude, remains prac-
tically unchanged, upon randomly shuffling [85] the data. This can be seen in the inset of
Fig. 6.4, where for the sake of clarity only the results from the data of Japan (the original
as well as the shuffled ones) are depicted.
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(X-<X>)/

Japan
Region A
Region B
Region C

(a) (b)

Fig. 6.5 The same as Fig. 6.4 is depicted in (b), but for the regions A (red), B (green) and C (blue) of
Japan. A map of these regions is shown in (a). Taken from Ref. [84].
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Second, the feature of the plot of Fig. 6.4 is not altered upon changing the seismic
region. As an example, Fig. 6.5(b) shows that three different regions A, B, C of Japan
(depicted in Fig. 6.5(a)), as well as the whole of Japan, result in almost identical plots.

Third, the “upturn branch” in the upper right part of Fig. 6.4 arises mainly from the
presence of aftershocks. It disappears (see the crosses in Fig. 6.6) when, in Japan for
example, we delete the EQs with M ≤ 5.7 (and hence drastically reduce the number of
aftershocks), but it does not when deleting EQs with smaller threshold, i.e., M < 4.0; the
latter can be also visualized in the SCEC example of Fig. 6.6, where we give the results
for M ≥ 4.0 (note that this threshold still allows the presence of a reasonable number of
aftershocks).

0.00001
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0.001
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0.1

1

-6 -5 -4 -3 -2 -1 0 1 2

 P
(X

)

(X-<X>)/

2D XY  K=2.0 L=10
2D Ising K=0.4707 L=128
2D Ising K=0.4707 L=256

WWS
Japan
SCEC

Fig. 6.6 The common feature of fluctuations in different correlated systems. The log-linear plot of σP(X)
versus (X −〈X〉)/σ for WWS(triangles), Japan (crosses) and SCEC (circles). The magnitude threshold
M > 5.7 for WWS and Japan (while M ≥ 4.0 for SCEC) was used see the text. Furthermore, the dotted
curve shows the results obtained for the 2D XY model (with [59] inverse Kosterlitz–Thouless transition
temperature KKT ≈ 1.2) (X =

√
M2

x +M2
y ), K = 2.0 for L = 10 (N = 100) which has been shown [21]

to describe the experimental results for 3D turbulent flow. The results of the 2D Ising model K = 0.4707
(while Kc ≈ 0.4407), either for L = 128 (dashed) or L = 256 (solid line), are also plotted. Taken from
Ref. [84].

Fourth, if we consider the relevant results (1977–2003) for the worldwide seismicity
(WWS) by taking a large magnitude threshold, i.e., M > 5.7 (so that the data are complete
[83]), we find that they fall onto the same curve with the results of both Japan and SCEC
(see Fig. 6.6 that will be further discussed in § 6.2.3).

If one generates synthetic seismic data either by means of a simple Poisson model or
by the G-R law and compare the results to those deduced from actual seismicity data, the
following conclusion was drawn [84]: none of these synthetic data can lead to a curve
coinciding with the one obtained from the real data. In other words, the scaled distribution
deduced within the frame of natural time analysis, reveals an extra complexity for the
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real data compared to the synthetic data even if the latter are produced with b values
comparable to the experimental ones. This points to the conclusion that the origin of self-
similarity in seismicity cannot be solely attributed to the process’s increments’ “infinite”
variance (§ 2.5.1) as it will be further investigated in the remaining Sections (6.3 to 6.5) of
this Chapter.

By summarizing, if we analyze the long-term seismicity in natural time and study the
order parameter fluctuations relative to the standard deviation of its distribution, we
find without making use of any adjustable parameter that the scaled distributions of
different seismic areas (as well as that of the world-wide seismicity) fall on the same
curve (universal), see Figs. 6.4, 6.5(b) and 6.6.

6.2.2.1 Additional details on the calculations mentioned above

We first recall that the following earthquake catalogs have been used: for the San An-
dreas fault system, the Southern California Earthquake catalog (SCEC) available from
www.data.scec.org/ftp/catalogs/SCSN/, and for Japan, the Japan Meteorological Agency
(JMA) catalog. As for the worldwide seismicity (WWS) we used the data available from
http://www.globalcmt.org/CMTsearch.html. We also recall that the magnitude thresholds
M ≥ 2.0, M ≥ 3.5, and M > 5.7 have been considered for SCEC, Japan, and WWS, re-
spectively to ensure data completeness (i.e., that they obey the G-R law, Eq. (6.1)) for the
periods studied.

All the seismic data have been analyzed in natural time in a similar fashion as shown
in Fig. 2.1(b). The seismic moment M0 was obtained from the magnitude M as follows:
for Japan, the following approximate formulae, obtained from a fit to fig. 5.3 of Ref. [77],
have been used:

Mw = 0.701MJMA +1.47 for MJMA < 5, (6.10)
Mw = 0.916MJMA +0.40 for 5≤MJMA < 6, (6.11)
Mw = 1.07MJMA−0.509 for 6≤MJMA < 7.3, (6.12)
Mw = 1.345MJMA−2.56−0.0472/(MJMA−8.3) for 7.3≤MJMA, (6.13)

where MJMA stands for the magnitude reported by JMA and Mw stands for the moment
magnitude. Then M0 was obtained [34] through Eq. (1.3), i.e., M0 ∝ 101.5Mw . As for SCEC,
we assumed Mw ≈M, where M is the reported magnitude. Finally, for WWS the M0 values
are directly accessible at the aforementioned http address.

6.2.3 Similarity of fluctuations in correlated systems including seismicity

Great interest has been focused on the fluctuations of correlated systems in general and of
critical systems in particular [21, 17, 20, 91, 18, 87, 19, 90, 25]. Bramwell, Holdsworth and
Pinton (BHP) [21], in an experiment of a closed turbulent flow, found that a normalized
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form of the probability distribution function (pdf) of the power fluctuations has the same
functional form as that of the magnetization (M) of the finite-size 2D (two-dimensional)
XY equilibrium model in the critical region below the Kosterlitz–Thouless transition tem-
perature (magnetic ordering is then described by the order parameter M). The “normal-
ized” form of the pdf, denoted by P(m), is defined by introducing the reduced magnetiza-
tion [21] m = (M−〈M〉)/σ , where 〈M〉 denotes the mean and σ the standard deviation.
For both systems, BHP found that while the high end (m > 0) of the distribution has [21]
a Gaussian shape the asymptote of which was later clarified [20] to have a double ex-
ponential form, a distinctive exponential tail appears towards the low end (m < 0) of the
distribution. The latter tail, which will be hereafter simply called, for the sake of conve-
nience, “exponential tail”, provides the main region of interest [21], since it shows that
the probability for a rare fluctuation, e.g., of greater than six standard deviations from the
mean, is almost five orders of magnitude higher than in the Gaussian case. Subsequent
independent simulations [17, 20, 91, 90, 25] showed that a variety of highly correlated
(non-equilibrium as well as equilibrium) systems, under certain conditions, exhibit ap-
proximately the “exponential tail”. However, the question of whether earthquakes exhibit
an “exponential tail”, has not been clarified due to the major difficulty of choosing an or-
der parameter. Since an order parameter for the case of EQs was proposed in § 6.2.1, we
examine whether an “exponential tail” appears also in seismicity. We find [84] that this
“tail” is identified only if we analyze the time series of earthquakes in natural time.

We now compare in Fig. 6.6 the results obtained in § 6.2.2 for seismicity with those
obtained in some equilibrium critical systems (e.g., see Ref. [90]). We first recall [90] that
the pdf of the order parameter in the critical regime depends on the inverse temperature pa-
rameter K = 1/T and the length L through a scaling variable s≡ L1/ν(K−Kc)/Kc, where
Kc = 1/Tc and Tc denotes the critical temperature. The quantity sν provides the ratio of the
lattice size and the correlation length ξ (§ 1.5.2) at K. In Fig. 6.6, we include numerical
results of the 2D Ising model for s = 8.72 (L = 128, K = 0.4707) and s = 17.44 (L = 256,
K = 0.4707). Here, X stands for M. These s values were intentionally selected, because
[90] for s ≥ 8.72 for the 2D Ising model, the normalized forms of the pdfs P(m;s) of a
number of critical models (i.e., 2D XY, 2D Ising, 3D Ising, 2D three-state Potts) share the
same form (up to a constant factor of s), which interestingly exhibits an exponential-like
left tail (m < 0). An inspection of Fig. 6.6 shows that our 2D Ising results almost coincide
(note that this can be safely checked only for the left segment, i.e., m < 0) with those of
seismicity, i.e., Japan, SCEC and WWS (note that some disparity, which appears in the up-
per right part of SCEC only, might be attributed to the selection of the magnitude threshold
for seismicity; recall the third point mentioned in § 6.2.2). This coincidence (which seems
to be better for s = 17.44) reveals that the seismicity, irrespective of the seismic area we
consider, exhibits – over four orders of magnitude – fluctuations of the order parameter
similar to those in several critical systems as well as in 3D turbulent flow [84].

Thus, we conclude that the “universal” curve deduced for seismicity in § 6.2.2, exhibits
an “exponential tail” form similar to that observed in certain non-equilibrium systems
(e.g., 3D turbulent flow) as well as in several equilibrium critical phenomena (e.g., 2D
Ising, 3D Ising, 2D XY).
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6.2.4 The pdf of the order parameter of seismicity. The b-value of the

Gutenberg–Richter law deduced from first principles

We focus here on a challenging point that emerges [81] from a further elaboration of the
results depicted in Fig. 2.5 that have been obtained by the procedure described in § 2.5.4.
In particular, we consider randomly shuffled power law distributed energy bursts obeying
Eq. (6.4), i.e, P(E) ∝ E−γ , that were subsequently analyzed in natural time. Using a (natu-
ral) time window of length l = 6 to 40 consecutive events sliding through the whole dataset,
the pdf P(κ1) versus κ1 was constructed for several values of γ as shown in Fig. 2.5. An
inspection of this figure shows the following:

First, note that upon increasing the γ value from γ = 1.3 to 2.0, the feature of the curve
changes significantly, becoming bimodal at intermediate γ values. Second, we calculate,
for each γ value studied, the so-called differential entropy, defined as

SI =−
∫

P(κ1) lnP(κ1) dκ1 (6.14)

which is the Shannon information entropy of a continuous probability distribution, e.g., see
Ref. [30]. (Note that the Shannon information entropy is static entropy and not a dynamic
one [80]; see Section 3.1.) Finally, we investigate the resulting SI values versus γ . Such a
plot is given in Fig. 6.7, whose inspection reveals that SI maximizes at a value of γ lying
between γ = 1.6 and γ = 1.7, which is more or less comparable with the experimental
values, see Table 2.1. (In particular for the case of earthquakes, this γ value corresponds to
b≈ 1, as mentioned in Section 6.1.) This value is almost unaffected by the window length
(l) chosen, since it decreases only slightly from γ ≈ 1.70 to γ ≈ 1.65 upon changing l from
l = 6–40 to l = 6–100, see Fig. 6.7.
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Fig. 6.7 The calculated values of the
differential entropy SI (see the text)
versus the exponent γ . Two window
length ranges are used and their results
differ slightly. Taken from Ref. [81].

In view of the widespread belief (e.g., Ref. [48]) that there is a close analogy be-
tween non- equilibrium phase transitions (which is likely to be [84, 82] the case of earth-
quakes; see Section 6.1 and § 6.2.1) and equilibrium ones (e.g., ferromagnetic materi-
als) – which however are apparently very different problems – our study has been ex-
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Fig. 6.8 (a) The Shannon entropy SS ≡
−∑m P(m) ln[P(m)] versus T calculated for
the following equilibrium critical models:
infinite range model for a ferromagnetic
system of N = 2n spins (MFT, dotted green,
n = 6, 8, 10, 12 and 14), 2D Ising (solid
red, n = 6, 8, 10 and 12) and 3D Ising
(dashed blue, n = 6, 9, 12 and 15); in each
case the results are given for various sizes
increasing from bottom to top (note that
SS diverges as lnN). The arrows indicate
the critical temperatur Tcin each case. (b)
the probability P(m) of the order parameter
m versus m for four values of the quantity
(T − Tc)/T for the infinite range model
with N = 4096. Taken from Ref. [81].

tended to the well-known equilibrium critical systems by investigating the Shannon en-
tropy SS ≡−∑m P(m) ln[P(m)], where m denotes the order parameter, versus the tempera-
ture. Studying SS at various temperatures, we find that it maximizes near Tc (for finite sizes
SS diverges proportionally to lnN as T → Tc). For example, in Fig. 6.8(a) we plot the re-
sults for the following models: the infinite range model (a summary of which can be found
in the Appendix C of Ref. [81]) of a ferromagnetic system of N spins (si = ±1) (green
dotted curves), the 2D Ising model (red solid curves) or the 3D Ising model (blue dashed
curves). We now proceed to Fig. 6.8(b), which depicts, as an example, P(m) for the first
model at various temperatures above and below the critical temperature Tc for N = 4096
spins.

Note that just below Tc (see Fig. 6.8(b)) a bimodal feature emerges in the probability
distribution of the order parameter, which is reminiscent of the one found in Fig. 2.5
(for intermediate γ values). This point is further elaborated in § 6.4.1.

The above inspired us to investigate the slight variation of the γ value (at which SI
maximizes in Fig. 6.7) versus l by means of a procedure analogous to the well-known finite
size scaling techniques. Such a technique was actually applied [81] and, after studying for
three different l the P(κ1) that arises when SI is approaching its maximum, the following
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conclusion was obtained: the value γc ≈ 1.55 provides a lower bound for the γ value that
maximizes SI as l → ∞.

Does the above finding in Fig. 6.7 mean that the b or γ value can be determined just
by applying the Maximum Entropy Principle in the sense developed by Jaynes [36, 37],
who suggested regarding statistical mechanics as a form of statistical inference and start
statistical physics from the principle of maximum entropy inference (MaxEnt)? This is not
yet clear, because a widely accepted formalism for non-equilibrium statistical mechanics
is still lacking. The fact that in some experiments the resulting γ values differ slightly from
γ = 1.6 to 1.7 predicted from Fig. 6.7, could be attributed to the following: Fig. 6.7 is based
on randomized data, while the actual data may also exhibit temporal correlations (e.g., the
case of aftershocks). In addition, finite size effects [10] might play a significant role.

Thus, in short, when studying the differential entropy associated with the pdf of κ1
(recall that κ1 is the order parameter for seismicity; see § 6.2.1), it maximizes when
the exponent γ in Eq. (2.98) (or in Eq. (6.4)) lies in the narrow range ≈1.6 to 1.7,
in agreement with the experimental findings in diverse fields. This for the case of
earthquakes immediately reflects that the b value in the Gutenberg–Richter law is
b = 1.5(γ−1)≈ 1, as actually observed.

6.2.5 Multifractal cascades in natural time and the case of seismicity

Here, we study multiplicative cascades (or generalized Cantor sets [47, 24]) in natural time
[81, 56]. In generalized Cantor sets (multiplicative cascades), at the initial stage (M = 1)
the original region is divided into K segments with possibly variable sizes, but the mass
probability from the left to the right is distributed by the constant weights wi, i = 1,2, . . .K
with ∑i wi = 1. The same procedure can then be followed in each segment at the stage
M = 2, etc. This is what will be hereafter called the Deterministic Cantor Set (DCS) in
contrast to a procedure in which wi are assigned randomly (i.e., not from the left to the
right) at each segment and stage M. The latter will be called the Stochastic Cantor Set
(SCS) and will be also studied by means of Monte Carlo simulations. A case of special
practical interest is the so-called p-model [47] in which each segment is divided equally
into two parts (K = 2), with w1 = p and w2 = 1− p. This model, in its SCS flavor, was
originally proposed to describe turbulence data [47, 49]. Moreover, the DCS case was
discussed [51] in relation to power law time sequences in ricepiles.

What is important about DCS is the following. If we consider the original region in the
natural time interval A = (0,1] (note that χ ∈ A) and use the obtained mass probabilities as
pk in the sense of Eq. (2.2), thenΦ(ω) = ∑N

k=1 pk exp
(
iω k

N

)
can be factorized and one can

obtain easily the properties of DCS in natural time. Under these conditions, for K = 2 and
equal segments, the following relates ΦM+1(ω) at stage M +1 to that ΦM(ω) at stage M:

ΦM+1(ω) =
[

p+(1− p) exp
(

i
ω
2

)]
ΦM

(ω
2

)
. (6.15)
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Equation (6.15) can be also generalized for K > 2 into

ΦM+1(ω) =ΦM

(ω
K

) K

∑
j=1

w j exp
[

i
( j−1)ω

K

]
. (6.16)

Then, we can show that the normalized power spectrum at the stage M, i.e., ΠM(ω), is
interconnected to that at the stage M−1 through the relation:

ΠM(ω) =ΠM−1

(ω
K

)∣∣∣∣∣
K

∑
j=1

w j exp
(

iω
j−1
K

)∣∣∣∣∣
2

, (6.17)

see also Section I of Ref. [55].
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Equation (6.15) can be also used for the calculation of κ1 as ω → 0. A remarkable
property of ΠM(ω) = |ΦM(ω)|2 is that, independent of M, all ΠM(ω) have almost the
same shape for natural frequencies φ less than 0.5 (see Fig. 6.9). In other words, in the
sense discussed above, all these stages share the same characteristic properties but differ
in the high natural frequency range. Moreover, the application of Eq. (6.15) for ΠM(ω) as
ω → 0, leads to the following relation for the κ1 value at stage M +1

κ1,M+1 =
κ1,M + p(1− p)

4
, (6.18)

which leads to

lim
M→∞

κ1,M = κ1,∞ =
p(1− p)

3
. (6.19)

Thus, for p = 0.3 we obtain κ1,∞ = 0.070. In Fig. 6.10, we compare such a DCS with the
normalized power spectrum given by Eq. (6.7); the results are almost identical in the region
ϕ ∈ [0,0.5]. Note, however that DCS does not satisfy the entropy conditions (4.39) which
are valid for SES activities (critical dynamics) and other cases summarized in Section 7.1.
On the other hand the SCS flavor of the same model, which has been proposed to describe
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turbulence [47, 49], also gives an average κ1 ≈ 0.070 and in addition does satisfy the
entropy conditions (4.39) for the majority of the cases treated [81] by Monte Carlo (see
Fig. 6.11).

Figure 6.11 summarizes the Monte Carlo study [81] of the stochastic case in which
interestingly, the most probable value κ1,p of κ1 is found to be κ1,p ≈ 0.070.
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6.2.5.1 Application to seismicity

Shuffled earthquake data are random in time and of course follow the G-R law (Section
6.1). The probability to observe in some area and after some waiting time an EQ of mag-
nitude M greater or equal to Mthres is also given by P(M ≥ Mthres) ∝ 10−bMthres . Thus,
the frequency ν(M) of EQs with magnitude M, i.e., the ones having magnitudes within
[M− δM,M + δM], is just ν(M) ∝ 10−bM (note that due to the experimental errors in
determining an EQ magnitude a reasonable value of δM is around 0.1). In the light of the
p-model, we can now approximate the case of seismicity as follows. Assuming that the
largest EQ in some time interval dominates the corresponding energy release in this inter-
val (see Fig. 6.12), if an earthquake of magnitude M1 dominates the second (segment) time
interval, the first segment will be dominated by an earthquake of magnitude M1−ΔM,
having twice the frequency of M1, i.e., ν(M1−ΔM) = 2ν(M1). Thus, a multiplicative
cascade is formed (see Fig. 6.12) with a p value equal to

p = 1/(1+10cΔM), (6.20)

where c is the constant that interrelates the earthquake energy release with the magnitude
see Eq. (6.3), i.e., E ∝ M0 ∝ 10cM, where M0 is the seismic moment of an EQ. Substi-
tuting the value of ΔM(= 1

b log10 2) estimated on the basis of the G-R law, we obtain

p = 1/
(

1+2
c
b

)
, which, in view of Eq. (6.19), leads to the most probable value of κ1

given by

κ1,p =
2

c
b

3
(

1+2
c
b

)2 . (6.21)

This interrelates κ1,p with the quantity c/b. Typical values of b and c are b ≈ 1 and
c ≈ 1.5, see Section 6.1, resulting in κ1,p = 0.064. This value coincides with the value of
κ1,p obtained [81] for the (randomly) shuffled earthquake data of Japan and SCEC, as it
will be explained in Section 6.3.

Thus, in short, the natural time analysis of multiplicative cascades leads to a theoret-
ical interrelation, i.e., Eq. (6.21), between the most probable value κ1,p of κ1 of the
(randomly) shuffled earthquake data and the parameter b of the Gutenberg–Richter
law. This interrelation, if we just adopt a reasonable value of b, i.e., b ≈ 1, leads to
a κ1,p value very close to 0.064 in agreement with the shuffled experimental data of
SCEC and Japan.

6.3 Temporal correlations in real seismic data

We now make use of the aspects developed in Section 2.5 on the distinction of the ori-
gins of self-similarity and explain how they can be used for the identification of temporal
correlations in real seismicity time series. In particular, we will use Eqs. (2.88) and (2.92)
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(see also Ref. [81]) which give the expectation value � (κ1) of κ1 in the actually observed
time series, and the expectation value � (κ1,shu f ) of the randomly shuffled time series, re-
spectively, when a (natural) time window of length l is sliding through the time series
Qk ≥ 0,k = 1,2, . . .N.

For such a window, starting at k = k0, the quantities p j = Qk0+ j−1/∑l
m=1 Qk0+m−1 in

natural time are defined and � (κ1) in the actually observed time series equals (§ 2.5.2)
that given by Eq. (2.88), i.e.,

� (κ1) = κ1,� + ∑
all pairs

( j−m)2

l2 Cov(p j, pm), (6.22)

where κ1,� is the value of κ1 corresponding to the time series of the averages μ j ≡ � (p j)
of p j, i.e., κ1,� = ∑l

j=1 ( j/l)2 μ j− (∑l
j=1 μ j j/l)2, and Cov(p j, pm) stands for the covari-

ance of p j and pm defined as Cov(p j, pm) ≡ � [(p j− μ j)(pm− μm)], while the variance
of p j is given by Var(p j) = � [(p j− μ j)2]. The symbol ∑all pairs stands for ∑l−1

j=1 ∑l
m= j+1.

Equation (6.22) reveals that � (κ1) is determined by two factors that involve:
(i) the correlation of the data as reflected in the averages μ j, e.g., due to decreasing in

magnitude aftershocks in an earthquake time series, and
(ii) the covariances’ term which sums up the correlations between all natural time lags

up to l−1.
On the other hand, � (κ1,shu f ) obtained by randomly shuffling (shuf ) the original time

series is given by Eq. (2.92), i.e.,

� (κ1,shu f ) = κu

(
1− 1

l2

)
−κu(l +1) Var(p) (6.23)
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(note that for the shuffled data Var(p j) is independent of j, and hence we merely write
Var(p) ≡ Var(p j)). If Qk do not exhibit heavy tails and have finite variance, Eq. (6.23)
rapidly converges [81] to � (κ1,shu f ) = κu (see § 2.5.2). Otherwise, � (κ1,shu f ) differs from
κu, and the difference

Δ� (κ1,shu f )≡ κu

(
1− 1

l2

)
−� (κ1,shu f ) = κu(l +1) Var(p) (6.24)

provides a measure of the process’s increments’ “infinite” variance. By comparing the
results obtained from Eqs. (6.22), (6.23) and (6.24) in a time series, we can draw quantita-
tive conclusions on the existence of temporal correlations even if the process’s increments’
exhibit “infinite” variance.
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Let us now use the example of the earthquakes in Japan. Using the EQ catalog of Japan
mentioned in § 6.2.2, we give in Fig. 6.13 the two curves P(κ1) versus κ1 that result when
the calculation is made by means of a window of 6–40 consecutive events sliding through
either the original catalog or a shuffled one. Both the resulting κ1,p values markedly differ
from κu, and in addition the value of the randomly shuffled data (≈0.064) does not greatly
differ from the one (≈0.066) corresponding to the original data. This could be interpreted
as reflecting that the self-similarity almost solely originates from the process’s increments’
“infinite” variance, but we will show here that the method suggested above does reveal
clear contribution from temporal correlations as well.

Let us start from the (increased) temporal correlations in the well-known case of earth-
quake aftershocks. In this case the (modified form of the) Omori law mentioned above
in Section 6.1 holds. Using the Southern California Earthquake catalog (with magnitude
threshold Mthres = 2.0, see § 6.2.2.1), we now consider the aftershock series related to the
Landers earthquake with magnitude Mw = 7.3 (that occurred at 11:57 UT on June 28, 1992,
with an epicenter at 34.2◦N 116.4◦W) and the Hector Mine earthquake with magnitude
Mw = 7.1 (that occurred at 09:46 UT on October 16, 1999, with an epicenter at 34.6◦N
116.3◦W). For these two mainshocks, Abe and Suzuki [7] identified the corresponding
Omori regimes by examining the best fits of the (modified form of the) Omori law to the
data based on the least-squares method. Here, we use the same aftershock dataset and plot
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in Fig. 6.14 the pdf P(κ1) vs κ1 by means of a sliding window of 6–40 consecutive events,
as above, for Landers (green ×) and Hector Mine (blue ∗) earthquakes, respectively. Be-
yond these two aftershock series, we plot in Fig. 6.14 the corresponding curve (red +) for
all earthquakes that occurred within the area N37

32E122
114 during the period 1973–2003 (called

SCEC in § 6.2.2). Interestingly, these three curves more or less coincide and result in a
common value of κ1,p ≈ 0.066, which agrees with that determined above from the original
data of Japan (Fig. 6.13). Upon shuffling, all these three curves change, but we note that
the two aftershock series (dash-dotted cyan and dotted black, which interestingly also al-
most coincide) exhibit the most noticeable change resulting in κ1,p ≈ 0.060; on the other
hand, the shuffled SCEC data (dashed magenta) lead to κ1,p ≈ 0.064 which agrees with
the corresponding κ1,p determined above from the shuffled data of Japan.

In other words, when focusing on aftershock series, we do observe that κ1,p changes
markedly upon shuffling, thus pointing to the existence of considerable temporal cor-
relations, as it should.

It seems reasonable that an Omori sequence where the events are clearly interrelated
should give increased temporal correlations, and larger changes in κ1,p, than events in a
larger earthquake catalog where there is a possibility of including unrelated events.
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In summary, when calculating the κ1 value in a window l = 6 to 40 consecutive events
sliding through either the original earthquake catalog or a shuffled one, the following
results have been obtained for SCEC as well as for Japan:

Comparing the κ1,p values, we find that κ1,p ≈ 0.066 for the original data, while
κ1,p ≈ 0.064 for the randomly shuffled ones.

Both these κ1,p values (with a plausible uncertainty of ±0.001) differ markedly
from the value κu = 1/12 of the “uniform” distribution. This could be in principle
interpreted as reflecting that the self-similarity almost originates from the process’
increments “infinite” variance.

Albeit, the existence of temporal correlations is responsible for the difference be-
tween the value of κ1,p ≈ 0.064 of the randomly shuffled EQ data from the value of
κ1,p ≈ 0.066 of the original EQ data.

To further shed light on the presence of temporal correlations in seismicity data, we
considered [56], beyond natural time analysis, the correlation function used in Ref. [46].
As an example, we used the SCEC data with magnitude threshold Mthres = 2.0 considering
the area N37

32W122
114 and the period from 1981–2003. The results also showed the presence

of correlations between earthquake magnitudes, thus strengthening the aforementioned
conclusion that in natural time analysis the value of κ1,p = 0.064 of the randomly shuffled
data differs from the value of κ1,p = 0.066 of the original data due to the presence of
temporal correlations (arising from the ordering of the events in natural time).

Thus, in short, upon employing natural time analysis as well as the correlation function
used in Ref. [46], we find that temporal correlations between EQ magnitudes do exist
in real seismicity data.

This conclusion will be further strengthened in § 6.4.1 by studying the DFA in the EQ
magnitude time series.

6.3.1 Temporal correlations upon changing the magnitude threshold in a catalog

The presence of temporal correlations has been further investigated [56] upon changing
the magnitude threshold in the SCEC catalog for the period from 1981–2003. This catalog
according to Ref. [69] is complete above Mthres = 1.8 since 1981 and this is why we
selected the period 1981–2003 in this investigation.

For each Mthres, the catalog was randomly shuffled and the distribution of � (κ1,shu f )
was determined. It turned out that � (κ1,shu f ) exhibits a Gaussian distribution N(μ,σ) with
average value μ and standard deviation σ ; both parameters μ and σ depend on Mthres.

In order to quantify the temporal correlations in the original data as a function of the
magnitude threshold, we plot in Fig. 6.15 the z-score (z ≡ (� (κ1)− μ)/σ ) of � (κ1) for
the original catalog with respect to the Gaussian distribution of � (κ1,shu f ). If the z-score
differs markedly from zero, this indicates the presence of temporal correlations. Figure
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6.15 reveals the following: a clear descending initial part in the magnitude threshold range
Mthres = 2 to 3.1, which indicates a gradual decrease in the statistically significant temporal
correlations. This result is consistent with the expectation that upon increasing the mag-
nitude threshold, the number of aftershocks involved in the calculation decreases. For the
sake of comparison, the values of the aforementioned correlation function used in Ref. [46]
have been calculated [56] and interestingly showed the same trend. Note that, in Fig. 6.15,
for larger values of Mthres no definite results can be statistically inferred for the presence
of temporal correlations in the catalogs.

6.3.2 The strength of temporal correlations as a function of the

EQ inter-occurrence time

It is well known that seismic catalogs exhibit [38] the so-called short-term aftershock in-
completeness (STAI). On the other hand, it has been recently shown [45] that correlations
between magnitudes are larger for closer in time earthquakes. Thus, it is interesting to in-
vestigate in natural time the temporal correlations in a restricted catalog containing not all
earthquakes but only those at a time distance (inter-occurrence time) δ t < T and choosing
different values for the parameter T .

This was applied [56] to the aforementioned (§ 6.3.1) SCEC data for Mthres = 2.0 for
values of the maximum inter-occurrence time T ranging from half a minute to one day. The
resulting catalogs were analyzed in natural time and the value of � (κ1) for the original data
have been determined. Then, the same catalogs were randomly shuffled and the calculation
was repeated. Following the discussion of Eqs. (6.22) and (6.24), the relative strength of
the temporal correlations with respect to the presence of process’s increments’ “infinite”
variance, can be quantified by the ratio of the change Δ� (κ1)(≡ � (κ1)−� (κ1,shu f )) upon
randomly shuffling the catalog over the difference Δ� (κ1,shu f ) of Eq. (6.24). Since our re-
sults are presented for natural time windows l = 6 to 40, the value κu

(
1− 1

l2

)
in Eq. (6.24)
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can be substituted by its average value κl = 0.08296. The study of these restricted catalogs
showed that the distribution of

X ≡ Δ� (κ1)
Δ� (κ1,shu f )

=
� (κ1)−� (κ1,shu f )
κl−� (κ1,shu f )

(6.25)

can be approximated by Gaussian distributions differing from zero, beyond any statistical
doubt, thus reflecting the existence of temporal correlations. These correlations increase
(see Fig. 6.16) as T varies from half a day to one minute, thus agreeing with the conclu-
sions of Ref. [45]. When T becomes less than one minute, these correlations diminish (cf.
the thick solid red curve corresponding to T = 0.5 min with the thick dashed green curve
corresponding to T = 1min) and this effect could be attributed to STAI: for M equal to the
average magnitude of these two catalogs, the appropriate time interval tM to remove [38]
STAI is tM = 300×10(M−4)/2 seconds = (53±4) seconds.

Thus, natural time analysis leads to results that are compatible with the recent sugges-
tion [46] that correlations between magnitudes are larger for closer in time earthquakes
when the maximum inter-occurrence time T varies from half a day to one minute.

6.4 Order parameter fluctuations of seismicity before and after

mainshocks

6.4.1 Feature of the pdf of the order parameter for seismicity. DFA of earthquake

magnitude time series

In a recent study [44], it has been undoubtedly shown that in the regimes of stationary
seismic activity (i.e., during periods at which large aftershock sequences are missing) long-
range correlations exist between successive EQ magnitudes. Moreover, a separate study
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[13] showed that the fluctuations of seismic activity, defined as the detrended cumulated
sum of the magnitude time series, exhibit Family–Vicsek dynamic scaling. In both studies,
the sequence index k, i.e., the sequential order in which an EQ had occurred, has been used
for the detection of the long-range correlations (e.g. see Fig. 6.17 that will be discussed
later). Notice that it is the combination of this index with the released seismic energy
during the k-th EQ that constitutes, as mentioned in § 2.1.2, the two quantities which are
in fact used in natural time analysis.
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in Ref. [7]) for the Landers EQ
(panel a) and the Hector Mine EQ
(panel b). The results (2) to (7) de-
pict the DFA plots of W = 5,000,
3,000, 1,000 EQs immediately af-
ter, and W = 5,000, 3,000, 1,000
EQs immediately before, the Lan-
ders EQ (panel a) and the Hector
Mine EQ (panel b), respectively.
(These plots have been vertically
shifted for sake of clarity.) The
straight lines with α = 0.61 and
0.93 have been drawn as a guide
to the eye. Taken from Ref. [58].

The existence of temporal correlations in seismicity has been already treated on the ba-
sis of natural time analysis in Section 6.3. Here, we extend [58] the aforementioned recent
study [44] of the DFA for the detection of long-range temporal correlations in earthquake
magnitude time series Mk by including the non-stationary periods of seismicity. Recall
that DFA has been established as a robust method suitable for detecting long-range power
law correlations embedded in non-stationary signals (see § 1.4.2).

Figure 6.17 depicts with black plus symbols the resulting log10[FDFA(k)] versus log10(k)
for all the 85,862 EQs with Mk ≥ 2.0 that occurred during the period 1981–2003 within
the area N37

32 W122
114 reported by SCEC. A cross-over is observed at k ≈ 200 below which
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the DFA exponent α is close to 0.61 (≡ αlow). This value agrees fairly well with the one
α = 0.59(5) obtained in Ref. [44] when solely analyzing the periods of stationary seis-
mic activity. Thus, the substantially higher value (αhigh = 0.93) obtained for scales longer
than k ≈ 200 now emerges upon the inclusion of the “non-stationary” periods of seismic
activity. To further shed light on the origin of this cross-over, we examine the behavior of
the magnitude time series after the two most significant earthquakes reported in SCEC al-
ready mentioned in Section 6.3, i.e, the Landers EQ (Fig. 6.17(a)) and the Hector Mine EQ
(Fig. 6.17(b)). The application of DFA to the aftershock magnitude time series as identified
in Ref. [7] (by examining the corresponding Omori law regimes) is shown for both these
mainshocks, by the red plus symbols in Figs. 6.17(a) and (b), respectively. Interestingly,
an inspection of this figure reveals that the scaling behavior of DFA in both aftershock
series is close to that of the whole SCEC. Notice that the cross-over still pertains. Recall
that when analyzing both these aftershock data in natural time (Section 6.3), we found
that the corresponding pdfs P(κ1) of the order parameter κ1 of seismicity (§ 6.2.1) al-
most coincide with the P(κ1) for the whole SCEC, see Fig. 6.14. The latter coincidence
could be interpreted as a ‘return’ of the seismic activity to its mean behavior after the
completion of the aftershock sequences, thus being in accordance with the previous result
of DFA.

We now examine the magnitude time series with lengths W = 5,000, 3,000 and 1,000
EQs not only just after but also just before these two EQs in SCEC. The corresponding
results of DFA are also given in Figs. 6.17(a) and (b) for the Landers and the Hector Mine
EQ, respectively. Upon restricting ourselves to the period just after the mainshocks, the
results show (e.g., for W = 1,000; see the cyan circles in Fig. 6.17) that the high value of the
DFA exponent α at longer scales should be attributed to the highly correlated “immediate”
aftershocks. We now turn to the study of the magnitude time series solely before these two
mainshocks. The results of DFA suggest that the α value for scales longer than the cross-
over is now significantly smaller than in the case of aftershocks, and much closer to that
for scales shorter than the cross-over (see the squares, triangles and inverted triangles in
Fig. 6.17). Thus, the cross-over effect is definitely smoothed in the magnitude time series
that end just before the mainshocks. A closer inspection of the inverted triangles, i.e., the
results obtained from W = 1,000 EQs just before the mainshocks, indicates that the DFA
scaling exponent becomes even smaller than αlow (= 0.61) and the values obtained are
α = 0.53(2) and α = 0.50(2) for the Landers and the Hector Mine EQ, respectively.

Thus, the ‘foreshocks’ appear to exhibit correlations that are somewhat weaker than
those already found [44] in the stationary seismicity (recall that Ref. [44] reported
α = 0.59(5) for stationary periods).

We now turn to the results of the natural time analysis of the time series with W = 5,000,
3,000 and 1,000 EQs just before and just after Landers and Hector Mine EQ. In a seismic
catalog comprising W events, the procedure to construct the pdf P(κ1) is the following
(in a similar fashion as in § 6.2.2). Starting from the first EQ, we calculate the κ1 values
using l = 6 to 40 consecutive events (including the first one). We then proceed to the
second EQ, and repeat the calculation of κ1 and so on. Thus, after sliding event by event
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Fig. 6.18 The probability density
function P(κ1) versus κ1 for SCEC
(black plus) along with the ones re-
sulting from the aftershock sequence
(1) as reported in Ref. [7] for the
Landers EQ (panel a) and the Hector
Mine EQ (panel b). The results (2)
to (7) depict P(κ1) for W = 5,000,
3,000, 1,000 EQs immediately after,
and W = 5,000, 3,000, 1,000 EQs
immediately before, the Landers EQ
(panel a) and the Hector Mine EQ
(panel b), respectively. In panel (c),
we depict the results for: (1) 1,000
EQs immediately before the Landers
EQ, (2) 1,000 EQs immediately af-
ter the Landers EQ, (3) 5,000 EQs
immediately before the Hector Mine
EQ, (4) 5,000 EQs immediately after
the Hector Mine EQ. Taken from
Ref. [58].

through the whole earthquake catalog, the calculated κ1 values enable the construction of
the pdf P(κ1). They are shown in Fig. 6.18(a) and (b) for these two EQs, respectively.
In particular, we observe that the pdf P(κ1) versus κ1 curves differ in general from the
corresponding curve obtained from the whole SCEC or from the aftershock time series
identified in Ref. [7].
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This reveals that either just before or just after a significant EQ, the seismicity deviates
from its mean behavior in natural time.

We now proceed to a comparison between the pdfs P(κ1) of the order parameter κ1 just
before and just after a significant EQ. In Fig. 6.18(c) when plotting P(κ1) versus κ1 for
W = 1,000 EQs before and after the Landers EQ with the thick red and the thin red line,
respectively, they are found to be markedly different in the following respect:

Before the Landers EQ a significant bimodal feature appears in the P(κ1) vs κ1 plot.
This, which solely emerged from the natural time analysis, is of profound importance
as it is strikingly reminiscent of the bimodal feature observed in the pdf of the order
parameter when approaching (from below) Tc in equilibrium critical phenomena, e.g.,
see Fig. 6.8(b). Since κ1 is the order parameter for seismicity, a similar behavior should
be expected before every mainshock.

Actually, in Fig. 6.18(c), we depict P(κ1) versus κ1 for W = 5,000 events before and
after the Hector Mine EQ. The results are shown with the thick blue and the thin blue
line, respectively. We again observe that a bimodal feature emerges in the curve before the
mainshock.

6.4.2 Prediction scheme by quantifying the bimodal feature of the pdf of the order

parameter κ1 for seismicity before mainshocks

Let us now assume [58] that the variability β ≡ σ(κ1)/μ(κ1), where μ(κ1) and σ(κ1)
stand for the average value and the standard deviation of the κ1 values considered, consti-
tutes at a first approximation a measure to quantify the presence of the bimodal behavior in
P(κ1) versus κ1 identified above in § 6.4.1. If the presence of this bimodal feature actually
signifies the occurrence of an impending mainshock, then the quantity β can in princi-
ple be considered as a decision variable to predict the occurrence of a large earthquake
solely based on the past magnitudes. Such a ‘prediction’ scheme should not be confused,
however, with the one achieved when the seismic data are enriched (supplemented) with
SES data (Chapter 1), on the basis of which the epicentral area and the magnitude of the
impending mainshock can be determined, see § 1.3.5. This is so because, once the latter
are available, the natural time analysis of the seismicity that occurs in the future epicentral
area after the SES detection leads to the identification of the time window of the impending
mainshock within a narrow range of a few days to around one week, as it will be explained
in Chapter 7.

Hereafter, we proceed as follows. For each EQ of magnitude Mk in SCEC, we estimate
κ1 = ∑40

l=6κ1(l)/35, i.e., the average value of the κ1(l) calculated upon considering l = 6
to 40 consecutive EQs (including the k-th event). Next, we assign this value κ1 to the k′-th
element (k′ = k+40) of the time series κ(k′)(≡ κ1). This way, κ(k′) has no information of
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the event with magnitude Mk′ which is the 40-th EQ that occurred after Mk. We can now
estimate, for various windows of W earthquakes, the time series of the average values

μk′(W )≡ 1
W

k′

∑
n=k′−W+1

κ(n), (6.26)

which is equivalent to μ(κ1) obtained when considering a catalog consisting of the W
earthquakes that occurred just before Mk′ . In addition, the time series of standard devia-
tions can be obtained from

σk′(W )≡
√√√√ 1

W

k′

∑
n=k′−W+1

[κ(n)−μk′(W )]2, (6.27)

and the variability time series is given by

βk′(W ) =
σk′(W )
μk′(W )

. (6.28)

We will now examine whether βk′ can be used as a decision variable for binary ‘pre-
dictions’. Following the terminology of Keilis-Borok and coworkers [41, 40], the time
increased probability (TIP) is turned on when βk′(W )≥ βc, where βc is a given threshold
in the prediction. If the magnitude Mk′ is greater than or equal to a target threshold Mthres,
we have a successful ‘prediction’. For the present case of binary predictions, the predic-
tion of events becomes a classification task, with two type of errors: missing an event and
giving a false alarm. We therefore choose, following Ref. [31], the receiver operating char-
acteristics (ROC) [29] as the method to analyze here the prediction quality. This is a plot
of the hit rate versus the false alarm rate, which is tuned by the threshold βc. Only if in
between the hit rate exceeds the false alarm rate, is the predictor useful. Random predic-
tions generate equal hit and false alarm rate, and hence they lead to the diagonal in ROC
plot; see the black straight lines in Figs. 6.19 and 6.20. (If βc is maximum, both hit rate
and false alarm rate are zero, while for very small βc values both rates tend to unity.) Thus,
only when the points lie above this diagonal the predictor is useful. Figure 6.19 depicts
the ROC curves, for various values of Mthres = 3.0 to 4.5, together with the results ob-
tained when using, for example, two randomly shuffled copies (green and red circles) of
SCEC. The results for various W values are shown, i.e., W = 70, 300, 1,000 and 3,000, in
Figs. 6.19(a) to (d), respectively.

In all cases, the results are better (i.e., points lying above the diagonal) when deduced
from the original SCEC compared to those from the randomly shuffled SCEC. This
indicates that the predictive power of βk′(W ) given by Eq. (6.28) stems from temporal
correlations between EQ magnitudes present in the actual seismicity.

In order to further examine the statistical significance of this ‘prediction’ scheme, we
depict in Fig. 6.20 the results for W = 1,000 together with the results of 102 runs of the
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Fig. 6.19 The ROC curves constructed using βk′ (W ) as decision variable, for W = 70, 300, 1,000 and
3,000, are depicted in panels (a) to (d), respectively. The blue broken lines correspond to the ROC curves
obtained when considering the target thresholds Mthres = 3 to 4.5 (note that there are only 212 events
with Mk ≥ 4.5). The ROC for Mthres = 4 is shown in cyan as a guide. The red (1) and green (2) circles
correspond to exactly the same analysis, but performed for two independent randomly shuffled copies
of SCEC, and fall around the diagonal of chancy predictions because the temporal correlations between
consecutive EQs are now lost. Taken from Ref. [58].

same catalog when using as decision variable a uniformly distributed random number in
the same range as βk′(1,000). We observe that none of these runs outperforms βk′(1,000)
for false alarm rates from 20% to 60%. Thus, the decision variable βk′(1,000) has predic-
tive power which is statistically significant. The inset of Fig. 6.20 depicts the ratio of the
hit rate over the false alarm rate versus Mthres, which shows that the prediction results be-
come better upon increasing Mthres. For example, when Mthres = 4 (cyan line with squares)
the hit rate is approximately 60% when the false alarm rate is 50%. The TIP can be vi-
sualized in Fig. 6.21, where the red shaded areas correspond to the periods when the TIP
is on (i.e., βk′(1,000) ≥ 0.35). The results convincingly outperform chance, but are not
spectacular. This (which remains so when using, instead of β , the kurtosis see the black
dots in Fig. 6.21) is not unreasonable in view of the following fact:
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Fig. 6.20 The ROC curves constructed
using βk′ (W ) for W = 1,000 as decision
variable (the case of Mthres = 4 is shown
in cyan color as a guide) together with
102 repetitions of the prediction scheme
using a uniformly distributed random
number as decision variable (see the
text). The inset depicts the ratio of the
True Positive rate (TPr) over the False
Positive rate (FPr) versus Mthres, for
FPr ≈ 25% (magenta diamonds) and
FPr ≈ 50% (green stars). Taken from
Ref. [58].

Fig. 6.21 The variability
βk′ (W ) (left scale, green color)
for W = 1,000 together with
the magnitude time series Mk′

(right scale, blue impulses)
as a function of the sequence
index k′, i.e., the total number
of EQs since January 1, 1981.
The red shaded areas, which
are formed by impulses when
βk′ (W ) ≥ 0.35, show when
the TIP is on. The black dots
correspond to the TIP obtained
when using, instead of β , the
kurtosis. Taken from Ref. [58].

When using a constant natural time window of W events, it may not correspond to
the time at which the focal area of the impending mainshock enters into the critical
regime, which is captured however by the SES detection if available (note that in the
case of the SES detection, the results are drastically better as explained in detail in
Chapter 7).
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6.4.3 Concluding remarks

Combining the results obtained in the preceding § 6.4.1 and § 6.4.2, the main points could
be summarized as follows:

We made use of the order parameter κ1 of seismicity defined in natural time (§ 6.2.1)
together with the DFA of the magnitude time series to investigate the period just before
and just after a significant mainshock. The study was focused on two significant EQs that
occurred in Southern California in 1992 and 1999, i.e., the Landers and the Hector Mine
earhquakes.

Quite interestingly, the natural time analysis of these time series reveals that ‘fore-
shocks’ exhibit a behavior characteristic of systems close to their critical point: upon
considering the order parameter κ1 of seismicity the probability distribution function
P(κ1) vs κ1 exhibits a bimodal feature.

In an attempt to quantify this bimodal feature, we considered the variability of κ1,
which was then used as decision variable for the ‘prediction’ of the occurrence of a large
earthquake in the next natural time step based solely on the magnitudes of previous earth-
quakes. These results outperform chance but are not spectacular if not supplemented with
SES detection (see Chapter 7).

In other words, the natural time analysis of seismicity before significant earthquakes
reveals that the fluctuations of the order parameter before major earthquakes exhibit
a bimodal feature which, if quantified properly, may be used as decision variable to
predict the occurrence of large earthquakes.

6.5 Nonextensivity and natural time: the case of seismicity

Nonextensive statistical mechanics [4, 72], pioneered by Tsallis [71], provides a theoretical
framework for the studies of complex systems in their non-equilibrium stationary states,
systems with (multi) fractal and self-similar structures, long-range interacting systems etc.
This framework offered recently a generalization of the G-R law. Here, we employ this
nonextensive G-R generalization to study the observed seismic data fluctuations. In partic-
ular, we combine [57] three modern methods, i.e., the non-extensive generalization of the
G-R law together with natural time and detrended fluctuation analysis (DFA, see § 1.4.2).
This procedure is applied to synthetic seismic data as well as to real seismic data from
two different areas: First, the EQs that occurred during the period 1981–2003 within the
area N37

32 W122
114 using SCEC. Second, the EQs within N46

25 E146
125 for the period 1967–2003

using the Japan Meteorological Agency catalog, simply called “Japan”. See Figs. 6.22,
6.23 and 6.24 that will be discussed later. The thresholds M≥ 2.0 and M≥ 3.5 have been
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considered for SCEC and Japan, respectively for the sake of data completeness as already
mentioned in § 6.2.2.1.

6.5.1 Non extensivity and earthquakes. The generalization of the

Gutenberg–Richter law

The first studies on the analysis of EQs in the nonextensivity framework have been made
by Abe and coworkers [4, 6, 8]. In this framework, an interesting model for earthquake
dynamics has been proposed by Sotolongo-Costa and Posadas (SCP) [68]. It consists ba-
sically of two rough profiles interacting via fragments filling the gap between them where
the fragments are produced by local breakage of the local plates. In other words, the fun-
damental idea of this model consists of the fact that the space between faults is filled with
the residues of the breakage of the tectonic plates from where the faults originate. In this
model the mechanism of earthquake triggering assigns an important role in the fragments:
the stress increase between the two fault plates constitutes the main factor that governs the
complexity of the fragment–asperity interaction, where eventually the fragments may act
as roller bearings, and also as hindering entities of the relative motion of the plates until the
growing stress produces their liberation with the subsequent triggering of the earthquake
[70]. By using the nonextensive formalism, SCP not only showed the influence of the size
distributions of fragments on the energy distribution of earthquakes but also deduced an
energy-distribution function which in a particular case leads to the G-R law.

The aforementioned SCP model was revisited by Silva et al. [65] who made two key
improvements. The first one made use of a different definition for mean values in the con-
text of Tsallis nonextensive statistics that was achieved in Ref. [3]. In particular, Abe and
Bagci [3] considered in depth the two kind of definitions for the expectation value of a
physical quantity which both lead to the maximum Tsallis entropy distribution of a similar
type. The one is the ordinary definition (note that this was used by SCP) and the other is
the normalized q-expectation value employing the escort distribution [16, 5]: Their final
conclusion states that the Shore–Johnson theorem [62, 63, 64] for consistent minimum
cross-entropy (i.e., relative entropy) principle is shown to select the formalism with the
normalized q-expectation value and to exclude the possibility of using the ordinary expec-
tation value from nonextensive statistical mechanics. The second improvement by Silva
et al. refers to the introduction of a scaling law, i.e., ε ∝ r3, between the released relative
energy ε and the size r of the fragments (this substantially differs from the assumption
ε ∝ r used by SCP). Then Silva et al. [65] proceeded as follows. The Tsallis entropy has
the form of Eq. (2.101):

Sq = kB

∫
pq(σ)(p(σ)1−q−1) dσ

q−1
(6.29)

where p(σ) is the probability of finding a fragment of relative surface σ (which is defined
as a characteristic surface of the system), q is a real number usually termed nonextensive
parameter and kB is Boltzmann constant which will be hereafter set equal to unity for the
sake of simplicity. It is easy to see that Eq. (6.29) recovers the standard Boltzmann–Gibbs
entropy in the limit q→ 1. The maximum entropy formulation for Tsallis entropy implies
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that the following two conditions have to be introduced [73, 72]. First, the normalization
of p(σ): ∫ ∞

0
p(σ) dσ = 1 (6.30)

Second, the ad hoc condition (see also § 6.5.4.1) about the q-expectation value

σq ≡ 〈σ〉q =
∫ ∞

0
σPq(σ) dσ , (6.31)

where Pq(σ) is the escort distribution [16, 5] given by

Pq(σ) =
pq(σ)∫ ∞

0 pq(σ) dσ
, (6.32)

which for q→ 1 becomes the definition of the mean value. Silva et al. followed the stan-
dard method of conditional extremization of the entropy functional Sq and found an expres-
sion for the fragment distribution p(σ). Then, assuming the aforementioned energy scale
ε ∝ r3, they obtained the energy distribution function p(ε) for the EQs. Finally, by consid-
ering the relationship

m =
1
3

ln(ε), (6.33)

where m denotes the magnitude, Silva et al. obtained the number N>m of EQs with mag-
nitude larger than m:

log
(

N>m

N

)
=
(

2−q
1−q

)
log
[

1−
(

1−q
2−q

)
102m

a2/3

]
(6.34)

where N is the total number of the events and a the proportionality constant between ε
and r3.

Equation (6.34) incorporates the characteristics of nonextensivity into the distribu-
tion of earthquakes by magnitude, and the G-R law can be deduced as its particular
case when considering a significant magnitude threshold. Then, Eq. (6.34) reduces to
Eq. (6.2) with b = 2(2−q)/(q−1). Thus, Eq. (6.34) can be alternatively termed as a
generalized G-R law.

This relation has been found [86] to describe appropriately the energy distribution in
a wider detectable range of magnitudes compared to that of the original G-R law. Fur-
thermore, Silva et al. [65] and later Vilar et al. [86] in conjunction with the earlier SCP
study [68] led to the conclusion [86] that values of q � 1.6–1.7 seem to be universal in
the sense that different datasets from different regions of the globe (e.g. California [68],
Iberian Peninsula [68], Andalucia [68], Samambaia-Brazil [65], New Madrid (USA) [65],
North Anatolian fault, Turkey [65], San Andreas fault [86]) indicate a value lying in this
interval. In addition, in a very recent study [70], a comparable q value (i.e., q = 1.67) has
been found by analyzing the (tectonic) seismicity in Italy, while a somewhat lower value
(q = 1.48) was reported for the volcanic seismicity in Vesuvius. Finally, we note that very
recently [26] an alternative relation has been suggested between the released energy and
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the surface size of fragments, i.e., ε ∝ exp(σ1/λ0), where λ0 is a constant in contrast to the
relation ε ∝ σ1/2 proposed by SCP [68] and the relation ε ∝ σ3/2 by Silva et al [65]. This,
which has been inspired by the fractal nature of the fragments filling the gaps between ad-
jacent fault plates, leads to a different expression for the distribution of EQs as a function
of the magnitude which has a q-exponential form, and the fit with the Iran and California
catalogs was found to be good. On the other hand, Eq. (6.34) has no q-exponential form,
but it is preferred to be used here since it has been found to describe well the data in a
larger number of seismic regions.

6.5.2 Combining nonextensivity with natural time analysis

Recall that by calculating the κ1 value in a window of length l = 6 to 40 consecutive events
sliding through either the original earthquake catalog or a shuffled one, the following re-
sults have been obtained for SCEC and Japan (see § 6.2.2 and Section 6.3): Concerning
the most probable value κ1,p of κ1, we find that κ1,p ≈ 0.066 for the original data while
κ1,p ≈ 0.064 for the randomly shuffled data, see Figs. 6.13 and 6.14. Beyond this decrease
of the κ1,p value, the whole feature of the curve P(κ1) versus κ1 changes markedly upon
shuffling. Both κ1,p values, that have a plausible uncertainty of ±0.001, differ markedly
from the value κu = 1/12 of the “uniform” distribution, which indicates a significant con-
tribution from the process’s increments’ “infinite” variance to self-similarity. In addition,
in Section 6.3 the temporal correlations between EQ magnitudes were found to be respon-
sible for the difference between the value of κ1,p ≈ 0.064 of the randomly shuffled data
from the value of κ1,p ≈ 0.066 of the original data. This was ascertained in § 6.4.1 by
employing also DFA for the analysis of the EQ magnitude time series (see also Fig. 6.23
that will be discussed later).

We now explain the procedure followed in this Section for the generation of synthetic
(surrogate) EQ magnitude series. We make use of a simple method [57] to produce long-
range correlated (EQ) data (magnitude series) that obey an arbitrary cumulative distri-
bution function F(x). This is based on the well-known random number generator of an
arbitrary distribution F(x), described in Ref. [14], as well as on the method suggested in
Ref. [28]. Let us first recall that in order to construct [14] a random number generator
for the distribution F(x)(= p), we simply need the inverse function F−1(p)(= x). Then
by inserting a sequence pi of (uncorrelated) random numbers uniformly distributed in the
region (0,1), we can obtain the (uncorrelated) random numbers xi = F−1(pi) which are
distributed according to the cumulative distribution function F(x). Here, we shall take ad-
vantage of the fact that, at least for the exponential distribution (e.g., Eq. (6.1) of the G-R
law) or for the distribution function of Eq. (6.34), if the sequence pi is long-range corre-
lated, the same holds for the random numbers xi[= F−1(pi)] (see Fig. 6.23). For example,
if we want to produce a series of random numbers xi, having a cumulative distribution
function F(x), that have a DFA exponent equal to α(< 1), we can use xi = F−1[ΦG(zi)],
whereΦG(t) is the cumulative distribution function of the standard normal (Gaussian) dis-
tribution (i.e., with zero mean and unit standard deviation) and zi is a standard fGn with H
(see § 1.5.1.1) equal to α .
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Moreover, if we want the generated synthetic data to mimic the temporal correlations
of some experimental data yi, then by using their (experimental) cumulative distribu-
tion function Φy(t), we can use xi = F−1[Φy(yi)]. This simple method for the sake of
convenience will be hereafter called cumulative distribution function transformation
(CDFT).
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Figure 6.22 shows the probability density function P(κ1) versus κ1 deduced from the
natural time analysis of synthetic seismic data with no temporal correlations (α = 0.5)
obeying the nonextensive generalization of the G-R law, i.e., Eq. (6.34). Results are given
for four different values of q, i.e., q = 1.62, 1.64, 1.65 and 1.68, lying in the universal
range q = 1.6 to 1.7 (see § 6.5.1). In the same figure, for the sake of comparison, the results
obtained from the real seismic data, i.e., SCEC and Japan, are also plotted. An inspection
of this figure shows that the results from synthetic data differ markedly from those of the
real data. This reveals that, since in natural time analysis the waiting (inter-occurrence)
times between EQs do not intervene, temporal correlations do exist in the (magnitude time
series of) real seismic data. This is in agreement with the results of § 6.2.2 in which we
showed that the G-R law cannot fully account for the complexity observed in the real
seismic data.

Thus, as a second step, we investigate whether synthetic data obeying Eq. (6.34) can
reproduce the real situation but when inserting long-range temporal correlations. To quan-
tify the long range temporal correlations in the real seismic data, we depict in Fig. 6.23
the DFA plots (as in § 6.4.1) for the original magnitude time series of SCEC (red pluses)
and Japan (blue circles). The thin and the thick straight lines result from a linear least-
squares fit to the short (log10(k) ≤ 2) and long (log10(k) ≥ 2.5) scales, respectively, for
SCEC (red, dotted lines) and Japan (blue, short-dashed lines). The values of the slope α
at the short scales are α = 0.61(2) and 0.57(2) for SCEC and Japan, respectively. These
values are comparable, as mentioned (§ 6.4.1), to those obtained [44] by analyzing the
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Fig. 6.23 The DFA of the original mag-
nitude time series for SCEC (red pluses)
and Japan (blue circles). The thin and thick
straight lines correspond to the linear least-
squares fit at the short and long scales,
respectively. The existence of a cross-over
at k ≈ 200 indicates an extra complexity in
the case of earthquake time series. For this
reason, synthetic time series obeying the
G-R law (Eq. (6.1)) with b = 1.08 have been
produced by CDFT, the DFA of which are
shown with the thick black (solid) and green
(long-dashed) broken lines for SCEC and
Japan, respectively. The DFA of Japan has
been displaced for the sake of clarity. Taken
from Ref. [57].

seismic records in regimes of stationary seismic activity in Northern and Southern Cali-
fornia. At longer scales, a cross-over is evident in Fig. 6.23 (see also Fig. 6.17) at k ≈ 200
above which the slopes are found to be α = 0.93(3) and 0.83(3) for SCEC and Japan,
respectively.

The aforementioned DFA behavior (i.e., smaller α value at short scales and larger α
at long scales) of the real seismic data was then reproduced by synthetic (obtained from
CDFT of the original) seismic data coming from the G-R law with b ≈ 1.08, the DFA
plots of which are shown in Fig. 6.23 with the broken lines (black and long-dashed green
for SCEC and Japan, respectively). Figure 6.24 depicts P(κ1) versus κ1 for the real seis-
mic data of SCEC, Fig. 6.24(a), and Japan, Fig. 6.24(b), along with those obtained from
synthetic G-R data by CDFT (red, dotted lines). There exists a good agreement between
synthetic and real data. This agreement implies that the temporal correlations between EQ
magnitudes have been successfully incorporated as well as the fact that only EQs above
the magnitude completeness threshold (§ 6.2.2.1) have been considered.

To proceed one step further, synthetic seismic data were deduced by using, instead of
the G-R law, Eq. (6.34) and CDFT. In particular, for SCEC we obtained the results depicted
in Fig. 6.24(a) after adopting q = 1.65, 1.66, 1.67 and q = 1.68 and inserting (by means
of CDFT) long-range temporal correlations between EQ magnitudes comparable to those
found in real data, i.e., α = 0.61 and 0.93 for short and long scales, respectively. They are
shown by the green (long-dashed), black (solid), blue (short-dashed) and cyan (dashed-
dotted) lines for the four values of q, respectively. We observe that the q = 1.67 curve is
closer to the real data but some differences still remain. As for Japan (see Fig. 6.24(b)),
the synthetic long-range correlated data that come from Eq. (6.34) with q = 1.66 (green,
long-dashed) with α = 0.57 and 0.83 for the short and long scales, respectively, exhibit
much better agreement with the real ones.
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with G-R distributed data with
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but here only the case of q =
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shown. Taken from Ref. [57].

This agreement between synthetic and real data can be considered as satisfactory if we
recall that there exists a considerable deviation between them in Fig. 6.22 where the
results have been obtained from Eq. (6.34) by ignoring long-range temporal correla-
tions between earthquake magnitudes.

6.5.3 Discussion of the results obtained from the combination of nonextensivity with

natural time analysis

Recapitulating the results obtained in § 6.5.2, as well as those discussed in Section 6.3, we
can say that:

Natural time analysis of seismic data for both SCEC and Japan reveals that long-range
temporal correlations between earthquake magnitudes do exist.
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This finding, which agrees with the results obtained by independent analyses of real
seismic data in Refs. [46, 45] through a different procedure, also corroborates with a recent
theoretical study by Woodard et al. [88] of SOC systems. The latter study shows that the
memory of past events (avalanches) is stored in the system profile and that the existence
of these correlations contradicts the notion that a SOC time series is simply a random
superposition of events with sizes distributed as a power law (as has been claimed by
several previous studies). This is the notion which was initially interpreted as stating that
in SOC systems an event ‘can occur randomly anywhere at any time and cannot “know”
how large it will become’, thus incorrectly concluding that EQ prediction is impossible,
which was proven in Ref. [88] to be a misconception (see also Section 8.1).

6.5.4 Conclusions from the combination of nonextensivity with natural time

analysis of earthquakes

Summarizing, we can say the following. In this Section, we investigated the nonextensive
generalization of the G-R law, i.e., Eq. (6.34), but see also § 6.5.4.1. We considered only
values of the nonextensive parameter q that have been found in the recent literature to fit
well with the real seismic data. The results obtained when combining this generalized law
with natural time analysis as well as with DFA, show the following.

(1) The results of the natural time analysis of the synthetic seismic data obtained from
either G-R law or its nonextensive generalization, deviate markedly from those of the
real seismic data for both SCEC and Japan. This unambiguously reveals that long-range
temporal correlations between magnitudes exist in the real datasets.

(2) DFA applied to the magnitude time series of the real seismic data demonstrate in-
dependently the existence of temporal correlations. The DFA exponent is around 0.6 for
short scales but α = 0.8–0.9 for longer scales (note that the cross-over is noticed around
k ≈ 200 earthquakes).

(3) Inspired from point 2, temporal correlations, with different α values (i.e., α ≈ 0.6
and 0.8–0.9 for short and long scales, respectively) were inserted to synthetic seismic
data coming from either the G-R law or its nonextensive generalization of Eq. (6.34). The
natural time analysis of the correlated synthetic seismic data deduced from the G-R law
leads to results that agree well with those obtained from the real seismic data of Japan
and SCEC, thus confirming the importance of temporal correlations between the magni-
tudes of successive earthquakes. As for the synthetic seismic data deduced from Eq. (6.34)
by inserting long-range temporal correlations, a satisfactory agreement with real data has
been obtained for the case of Japan for q = 1.66, while for SCEC some differences still
remain.

The present results show that the nonextensive parameter q does not capture the ef-
fect of long-range temporal correlations between the magnitudes of successive earth-
quakes. Thus, published claims (not by the pioneers of the field of nonextensive statis-
tical mechanics) that q is a measure of temporal organization do not hold.
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On the other hand, either the generalization of the G-R law or the G-R law itself,
when combined with natural time analysis (which focuses on the sequential order of
the energies of the events that appear in nature) does enable a satisfactory description
of the real seismic data fluctuations.

6.5.4.1 More recent developments

Very recently, the applicability of the nonextensivity framework has been discussed by
Abe [1] (see also Refs. [9, 2]) who argued that discreteness of basic physical variables is,
at least, essential for generalized statistical mechanics with non-logarithmic entropy, as the
one in Eq. (6.29), to be thermodynamically applicable to classical systems.

Furthermore, it has been pointed out (Abe, personal communication) that the q-average
formalism (i.e., the normalized q-expectation value; see Eq. (6.31)) may result in concep-
tual difficulties and hence should be avoided. In other words, the ordinary average must be
used and not the escort average as given by Eq. (6.31). In this case, Eq. (6.34) along with
the resulting interconnection between b and q will change.

Acknowledgments Acknowledgments are due to Professor Sumiyoshi Abe for bringing to our attention
his recent work on nonextensive Statistical Mechanics.
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7. Identifying the Occurrence Time of an

Impending Mainshock

Abstract. Natural time enables the determination of the occurrence time of an impending
major earthquake since it can identify when a complex system approaches a critical point.
Considering that the detection of a SES activity signifies that the system enters the critical
regime, the small earthquakes that occur (in the region candidate to suffer the mainshock)
after the SES detection are analyzed in natural time. It was found that the variance κ1 of
natural time becomes equal to 0.070 (which manifests the approach to the critical point)
usually a few days to around one week before the mainshock. This, which exhibits spa-
tial as well as magnitude threshold invariance, has been observed to date for all major
earthquakes that occurred in Greece since the introduction of the natural time concept in
2001 (note that it has been also ascertained in retrospect for the two major earthquakes in
Greece during the previous decade, i.e., in the 1990s). For example, the occurrence time of
the Mw6.9 earthquake on February 14, 2008, which is the strongest earthquake in Greece
during the last 28 years, was announced as imminent on February 10, 2008. The procedure
has been also ascertained in the case of the volcanic-seismic swarm activity in 2000 in the
Izu island region in Japan as well as of the Ms7.1 Loma Prieta earthquake in California in
1989.

7.1 Determination of the time-window of the impending mainshock

by analyzing in natural time the seismicity after the initiation of

the SES activity

We first recall (see Eq. (2.75) or Eq. (6.7)) that the relation

Π(ω) =
18

5ω2 −
6cosω

5ω2 − 12sinω
5ω3 . (7.1)

for ω → 0, simplifies to
Π(ω)≈ 1−0.070ω2 (7.2)

P.A. Varotsos et al., Natural Time Analysis: The New View of Time: Precursory Seismic Electric Signals,
Earthquakes and other Complex Time Series, Springer Praxis Books, DOI 10.1007/978-3-642-16449-1_7, 
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which shows that the second-order Taylor expansion coefficient of Π(ω), labeled κ1, is
equal to 0.070. The quantity κ1 equals (see Eq. (2.37) ) to the variance 〈χ2〉 − 〈χ〉2 of
natural time χ , i.e.,

κ1 = 〈χ2〉−〈χ〉2 = 0.070. (7.3)

This has been shown for SES activities (§ 2.4.2) as well as for the time series of avalanches
in a number of dynamical models (see Table 8.1), including the “train” Burridge–Knopoff
earthquake model (§ 8.2.2) and the Olami–Feder–Christensen earthquake model (§ 8.3.2),
when the system approaches the critical point. Furthermore, since it has been observed
for several EQs that, when analyzing the seismicity that occurs after the SES activity,
the resulting κ1 value slowly approaches to 0.070 just before the mainshock and abruptly
changes to vanishingly small when the main shock occurs, it was proposed (see § 6.2.1)
that κ1 (or Π(ω) for ω→ 0) may be considered as an order parameter for seismicity [54].

In addition, we recall that the entropy S in natural time as well as the entropy S− under
time reversal, have been found(see Eq. (4.32)) to obey the following conditions [55, 51, 50]
for SES activities

S,S− < Su. (7.4)

These also hold for long-range correlated fBm time series with αDFA ≈ 1 (see § 3.4.3) as
well as for an on–off intermittency model when the critical value is approached from below
(see § 3.4.4) . Note that it has been suggested that [23] “The Californian earthquakes are
long-range correlated according to the persistence of a fractal Gaussian intermittent noise
with H = 1 known as 1/ f or pink noise” as well as that [7]: the intermittent criticality
model as being more appropriate for earthquakes.

In view of the above and based on our fundamental premise that mainshock occurrence
is a critical phenomenon, the conditions (7.1) to (7.3) and (7.4) have been used to study
the evolution of seismicity in natural time before a mainshock occurrence. To obtain the
order parameter κ1 or Π(ω) for ω → 0 (as well as the quantities S and S−), however, it
is necessary to decide the initiation time of seismicity analysis. We decided to start the
analysis immediately after the SES initiation since it signals, as mentioned in § 6.2.1,
that the system enters the critical stage (recall that the SES emission marks cooperative
orientation of the electric dipoles and hence the establishment of long-range correlations;
see § 1.6.2 and § 2.4.2).

Once a SES activity has been recorded, the area to suffer the mainshock can be esti-
mated, as explained in § 1.3.5, on the basis of the so-called selectivity map of the station at
which the SES was recorded and in addition by considering the ratio of the two SES com-
ponents. Thus, we have in principle some area (see also the discussion in § 7.2.3), labeled
A, in which we count the small EQs, ei , that occur after the initiation of the SES activity.
In order to check the spatial invariance of the results, the study was also repeated for a
smaller area. This procedure, which for the sake of convenience will be hereafter, called
preliminary procedure, was used during the period 2001–2008 in a series of publications
(e.g., see Refs. [45, 54, 51, 50, 35, 48]) to determine the occurrence time of the impending
mainshock by means of the natural time analysis of the seismicity subsequent to a SES
activity. Since there has been, however, some room for subjective judgment to identify the
approach to critical stage, because the time variation of parameters was traced only on a
single subarea, a more objective procedure, which for reasons of brevity will be hereafter
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called “updated” procedure, has been developed [21], in 2008, and considers the natural
time analysis of the seismicity in all the possible subareas, instead of a single smaller area,
of the larger area under discussion.

7.1.1 The preliminary procedure to determine the occurrence time of the

impending mainshock

The actual procedure was carried out as follows. We set the natural time zero at the ini-
tiation time of the SES activity, and then formed time series of seismic events in natural
time for the area A, each time when a small EQ (above a magnitude threshold M≥Mthres)
occurred; in other words, when the number of the events increased by one. The normal-
ized power spectrum in natural time Π(ω) for ω → 0 (or the variance κ1) for each of the
time series was computed for the pairs (χk,Qk) and compared with that of Eq. (7.1) for
ω ∈ [0,π]. We also calculated the evolution of the quantities S and S− to ascertain Eq. (7.4)
was also satisfied. The actual criteria for recognizing a true coincidence of the observed
time series with that of critical state were as follows [45, 35, 51, 50, 48]:

 0.3

 0.4
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 0.7

 0.8

 0.9

 1
critical

1 < 0.070
1 > 0.070

Fig. 7.1 Schematic diagram
showing the normalized power
spectrum Π(ω) in natural time
for ω ∈ [0,π]. Solid line is
Π(ω) obtained from Eq. (7.1)
which holds for critical stage
(κ1 = 0.070), whereas two other
lines are for κ1 > 0.070 and
κ1 < 0.070. The grey arrow
indicates how the Π(ω) curve
approaches the critical from
below.

First, the ‘average’ 〈D〉 distance between the curves of Π(ω) of the evolving seismic-
ity and Eq. (7.1) for ω ∈ [0,π] should be smaller than 10−2 (note that this was regarded
as showing that 〈D〉= 0). This was a practical criterion for stopping calculation.

Second, the final approach of the evolving Π(ω) to that of Eq. (7.1) must be by
approaching from below as shown by the grey arrow in Fig. 7.1. This alternatively
means that before major EQs, the κ1 value gradually changes with time and finally
approaches from above that of the critical state (κ1 = 0.070, see Eq. (7.3)). This rule
was found empirically [45].

Third, both values S and S− should be smaller than Su(= 0.0966) at the coincidence
(see Eq. (7.4)).



294 7. Identifying the Occurrence Time of an Impending Mainshock

Finally and fourth, since the process concerned is supposed to be self-similar (crit-
ical dynamics), the time of the occurrence of the true coincidence should not vary,
in principle, upon changing (within reasonable limits) the magnitude threshold Mthres
and the size of area A.

We clarify, however, that if higher magnitude threshold is used, the description of
the real situation approaching criticality is expected to become less accurate due to
‘coarse graining’ [43, 49] since the number of events is finite.
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Fig. 7.2 (a) A SES activity recorded
on February 13, 2006 at PAT sta-
tion(sampling rate fexp = 1 Hz). The
actual electric field E of the SES pulses
is 6 mV/km (see Ref. [49]), but here
the signal is presented in normalized
units, i.e., by subtracting the mean
value and dividing by the standard
deviation. (b) How the SES activity in
(a) is read in natural time. Taken from
Ref. [50].

It has been observed [45, 35, 51, 50, 48] that the aforementioned true coincidence
appears usually a few days (up to around one week) before the occurrence of the main-
shock. As an example, we report a SES activity recorded at a station located in central
Greece (close to Patras city, PAT; see Fig. 1.2) on February 13, 2006. It is depicted in
Fig. 7.2(a) and comprises 37 pulses, the durations Qk of which vary between 1 s and 40 s
(see Fig. 7.2(b)). Beyond the application of the four criteria of Section 1.2, a natural time
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analysis of this SES activity (labeled PAT in Table 4.6) was made which led [50] to the
following values: κ1 = 0.072±0.002, S = 0.080±0.002, S− = 0.078±0.002 which obey
the conditions (4.38) and (4.39), i.e., κ1 ≈ 0.070 and S,S− < Su, that have to be obeyed for
SES activities. In addition, the Detrended Fluctuation Analysis (DFA) (§ 1.4.2) in natural
time of this SES activity, resulted in an exponent α = 1.07±0.36, which agrees with the
finding α ≈ 1 in several other SES activities (see § 4.4.2 and Eq. (4.42)). If we repeat the
computation by shuffling the durations Qk randomly (and hence their distribution is con-
served), the corresponding quantities, designated by adding a subscript “shuf”, have the
following values: κ1,shu f ≈ κu and Sshu f ≈ S−,shu f ≈ Su. This points to the conclusion that
the self-similarity of SES activities results from the process’s memory only (see § 4.7.1
and § 2.5.5). All these results showing that the signal recorded on February 13, 2006, is
a true SES activity were submitted [50] for publication on February 25, 2006 (see Table
7.1). Actually, on April 3, 2006, a strong seismic activity started with an earthquake of
magnitude Ms(ATH) = 5.3 and lasted until April 19, 2006 with earthquakes of magnitude
up to 5.9 in a region 80 to 100 km west of PAT station, i.e., around 37.6◦N 20.9◦E (see
also table I of Ref. [49]). We will now explain how the occurrence time of the initiation of
this earthquake activity has been specified [49] by following the preliminary procedure:

First, after the recording of this SES activity, the area to suffer the impending mainshock
was estimated as follows: We considered that the epicenters of the EQs that have been
preceded, up to that time, by SES activities at PAT station lie approximately within the
area N38.6

37.5 E23.3
19.8, i.e., this was the selectivity map (§ 1.3.4) of PAT station. Then, by using

the additional information of the ratio of the two SES components (§ 1.3.5), we selected
from the selectivity map the region A: N38.6

37.6 E22.6
20.9 as candidate that might have emitted the

SES activity under discussion.
Second, we now study in natural time the seismicity that evolved after the recording

of the relevant SES activity at PAT, thus we put natural time zero for seismicity at the
initiation time of this SES activity, i.e., at 19:04 UT on February 13, 2006. The study
is made in the areas A: N38.64

37.55 E22.64
20.85 as well as in its smaller area B: N38.34

37.55 E22.15
20.85. We

now form time series of seismic events in natural time for various time windows as the
number N of consecutive (small) EQs increases. We then compute the normalized power
spectrum of seismicity in natural time Π(φ) (for φ → 0, e.g. φ ∈ [0,0.5]) for each of the
time windows. We clarify that the seismic moment M0 was estimated from the relation [5]
log10(M0) = 1.5Mw + const. by using Mw = 1.09ML−0.21, i.e., the least-squares fit pro-
posed in Ref. [19], and the values of the local magnitude ML were taken from the GI-NOA
catalog. In short, the relation log10(M0) = 1.64ML + const. has been used. Excerpts of the
results of these computations which refer to the values deduced during the period March
27 to April 1, 2006, are depicted in red in Fig. 7.3. In this figure, Fig. 7.3(a) corresponds to
the area A with magnitude threshold Mthres = 3.0 (defined by means of the local magnitude
ML and of the ‘duration’ magnitude MD), while Fig. 7.3(b) to the area B with Mthres = 2.8.
In the same figure, we plot in blue the normalized power spectrum obeying Eq. (7.1). The
date and the time of the occurrence of each small earthquake (with magnitude exceeding
(or equal to) the aforementioned threshold) that occurred in each of the areas A and B, is
also written in red in each panel.
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Fig. 7.3 The normalized power spectrum(red)Π(φ) of seismicity as it evolves event by event (whose date
and time of occurrence are written in each panel) after the initiation of the SES activity on February 13,
2006. The two excerpts presented here refer to the period March 27 to March 31, 2006, and correspond to:
(a) the area A with Mthres = 3.0 and (b) the area B with Mthres = 2.8. In each case the spectrum for small
φ values, e.g. φ ∈ [0,0.5] (for the reasons discussed in Section 2.4) is depicted (separated by the vertical
dotted lines), whereas the Π(φ) of Eq. (7.1) is depicted by blue color. The minor horizontal ticks for φ are
marked every 0.1. Taken from Ref. [49].

An inspection of Fig. 7.3 reveals that the red line approaches the blue line as N in-
creases and a coincidence occurs at the last small event which had ML = 3.0 and
occurred at 21:29 UT on March 31, 2006, i.e., roughly two days before the first strong
EQ (00:50 UT on April 3, 2006). To ensure that this coincidence is a true one, we also
calculate the evolution of the quantities κ1, S and S− and the results are depicted in
Fig. 7.4 for both magnitude thresholds 2.8 and 3.0 for each of the areas A and B.

We now examine whether the aforementioned criteria for a coincidence to be considered
as true are obeyed: First, concerning the ‘average’ distance 〈D〉 see Fig. 7.5, where we plot
〈D〉 versus the conventional time for the aforementioned two areas and the two magnitude
thresholds (hence four combinations were studied in total). In order to better visualize the
details of this figure, its four consecutive segments are enlarged and separately depicted
in Fig. 7.6(a) to (d). Note that in Fig. 7.5 or Fig. 7.6(d), upon the occurrence of the afore-
mentioned last small event of March 31, 2006, in both areas A and B and both magnitude
thresholds (i.e., Mthres = 2.8 and 3.0) their 〈D〉 values become smaller than 10−2. Second,
a few events before the coincidence leading to the strong EQ, the evolving Π(φ) has been
found to approach that of Eq. (7.1), i.e., the blue one in Fig. 7.3, from below (note that this
reflects that during this approach the κ1 value decreases as the number of events increases
see Fig. 7.4(a)). In addition, both values S and S− are smaller than Su at the coincidence;
see Fig. 7.4(b) and 7.4(c), respectively. Finally, since the process concerned is self-similar
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Fig. 7.4 Evolution of the quan-
tities κ1, S and S− for seismicity
after the initiation of the SES
activity on February 13, 2006,
depicted in Fig. 7.2(a). They
are shown in (a), (b) and (c),
respectively for two magnitude
thresholds, i.e., M ≥ 2.8 and
M ≥ 3.0, for both areas A and
B. After the event at 14:19 UT
of March 28, 2006 the four
curves (corresponding to the
four combinations, i.e., result-
ing from the two areas and
the two magnitude thresholds)
almost collapse on the same
curve. This points to the scale
invariance when approaching
the critical point (see the text).
Taken from Ref. [49].
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(critical dynamics), the occurrence time of the (true) coincidence should not change, in
principle, upon changing either the (surrounding) area or the magnitude threshold used in
the calculation. This was actually checked in this example since we considered two areas
and two magnitude thresholds. Hence, this coincidence can be considered as true, while
other coincidences that occurred earlier (i.e., before March 31, 2006) have been found not
to be true ones since they violate one or more of the aforementioned conditions. Let us
briefly summarize:

The occurrence time of the initiation of the strong seismic activity, that lasted from
April 3 to April 19, 2006 at an epicentral region 80 to 100 km west of PAT, has been
specified within a narrow range around 2 days. This is so, because the normalized
power spectrum in natural time of the evolving seismicity after the SES activity of
February 13, 2006, collapses on the one expected for critical dynamics at 21:29 UT on
March 31, 2006, i.e., almost two days before the occurrence time of the 5.3 earthquake
of April 3, 2006, obeying the conditions for a true coincidence.

Additional examples for the preliminary procedure will be presented in § 7.2.1 and
§ 7.2.4.

7.1.2 The updated procedure to determine the occurrence time of the

impending mainshock

The basic idea behind the new approach suggested in Ref. [21] is the following. When
area A reaches criticality, one expects in general that all its subareas have also reached
criticality simultaneously. At that time, therefore, the evolution of seismicity in each of
these subareas is expected to result in κ1 value close to 0.070. Assuming equi-partition of
probability among the subareas, the distribution of the κ1 values of all subareas should be
peaked at around 0.070 exhibiting magnitude threshold invariance. Before the criticality is
reached, the κ1 values will not show such a behavior.

We recall that, as mentioned above in Section 7.1, once a SES activity has been
recorded, we identify in principle an area, labeled A, in which we count the small EQs,
ei, that occur after the initiation of the SES activity. Each EQ ei is characterized by its
epicentral location x(ei), the conventional time of its occurrence t(ei) , and its magnitude
M(ei) or the equivalent seismic moment M0(ei). The index i = 1,2, . . . increases by one
each time a new EQ with M larger or equal to some threshold Mthres occurs within the area
A. Thus, a set of events denoted as AMthres = {ei: x(ei) ∈ A, M(ei) ≥ Mthres} is formed
each time until the mainshock occurs. Here, the number of EQs in AMthres is denoted by
|AMthres |. Since, in forming AMthres , we place the EQs in sequence of their occurrence time,
AMthres is a time-ordered set.

In practice, in order to check whether criticality as described above has been approached
at the occurrence of a new event i within the predicted area A, we should construct all the
possible proper subsets of AMthres that necessarily include the event i and examine whether
their κ1 values reveal a probability distribution peaked at 0.070. A subset is qualified as a
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proper subset (PMthres ) iff it includes all EQs that took place inside its corresponding rect-
angular subarea denoted by R(PMthres). This is a simplification because other geometries,
e.g., circular, could be also envisaged. It is worthwhile to clarify, however, that even in the
frame of this simplification:

The accuracy in the determination of the epicentral coordinates of the EQs involved in
the computation, may somewhat affect – as intuitively expected – the results as it will
be further commented on in § 7.2.5.1.
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Fig. 7.7 The area A (thick black
rectangle) and its rectangular subareas
R j(i), corresponding to the proper sub-
sets immediately after the occurrence
of the second EQ “2” (upper panel),
the third EQ “3” (middle panel) and
the fourth EQ “4” (bottom panel). The
location of each EQ is shown by an
open star. Right column shows the κ1
values that can be obtained for each
subarea. Taken from Ref. [21].
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Let us now consider the schematic example shown in Fig. 7.7, in which four EQs
have occurred (area A is indicated by a black line rectangle in each panel) in a sequence
indicated by the numbers i = 1,2,3 and 4. Colored rectangles depict proper subareas
R(PMthres) = R j(i) just after the occurrence of each EQ. Figure 7.7 shows that the num-
ber of subareas j increases by an integer larger than or equal to one, when a new EQ
occurs. For each of these proper subsets (which form the ε[AMthres ] ensemble at each time
instant), one can compute the κ1 values and then construct their distribution denoted by
Prob(κ1) hereafter. Just after the occurrence of the second event a single proper subset can
be defined, thus only κ1[R1(2)] is available. Later, just after the occurrence of the third
event, three proper subsets of AMthres can be defined as shown in Fig. 7.7. Recall that the
necessary condition for a proper subset at a given time instant is that it includes the last
event (the third EQ in this case). Therefore, κ1[R1(2)] obtained before the third event is not
included for the construction of the distribution Prob(κ1) at the instant of the third event.
By the same token, after the occurrence of the fourth event, seven proper subsets result.
Thus, we can now calculate κ1 for each of these 7 subsets and construct the Prob(κ1) ver-
sus κ1 graph to examine whether it maximizes at κ1 ≈ 0.070 (i.e., if it obeys Eq. (7.3)). In
actual cases, the number of EQs, depending on the threshold magnitude, are usually tens
to a few hundreds and the number of subareas varies from hundreds up to a few tens of
thousands.

In the new approach, the κ1 values of all these subareas and the largest area A, are
treated on equal footing, which reflects that the adopted largest area A may be a proper
subarea of an even larger area in which the mainshock actually occurs. This is a useful
notion when the selectivity map of the concerned station is incomplete or a portion of it is
adopted for some reason as in the case of the Mw6.4 EQ on June 8, 2008 (see Table 7.1),
that will be discussed later in § 7.2.6.

By summarizing, upon the recording of a SES activity, one can estimate (through the
procedure explained in § 1.3.5) an area A within which the impending mainshock is
expected to occur. Analyzing in natural time the subsequent seismicity (as it evolves
event by event) in all the possible subareas of A, the probability density function of
κ1 is obtained until it maximizes at κ1 ≈ 0.070 exhibiting also magnitude threshold
invariance. This usually occurs a few days to around one week before the mainshock,
thus it enables the prediction of the occurrence time of major EQs with time window
of the order of a week or so. Examples of this procedure will be presented in § 7.2.2,
§ 7.2.3, § 7.2.5 and § 7.2.6.

Note also that, as shown later in § 8.4.3, in the mean field case of a growing sandpile
(§ 8.4.2) even when studying a single realization and select random subseries of the process
described by Eq. (8.21) to be analyzed in natural time, the pdf deduced for κ1 maximizes
at κ1 ≈ 0.070; see Fig. 8.17.
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7.2 What happened before all earthquakes in Greece with

Ms(AT H) = 6.0 or larger since 2001. The cases of the major

earthquakes with magnitude Mw6.4 or larger since 1995

Since the introduction of natural time [45] in 2001 a number of earthquakes (EQs) with
magnitude Mw = 6.0 or larger occurred in Greece. In this Section, we report what was ob-
served before these EQs, which are included in Table 7.1 (note that predictions of earlier
EQs – which have been undoubtedly shown to clearly outperform chance in a debate pub-
lished in a Special Issue of Geophysical Research Letters, i.e., Vol. 23, No. 11, May 27,
1996, under the title: Debate on “VAN” – were compiled in Ref. [35]). Particular attention
is focused on the five major EQs (see Fig. 7.8) with Mw ≥ 6.4, i.e., the Mw6.5 at 39.05◦N
24.35◦E on July 26, 2001, the Mw6.7 at 36.21◦N 23.41◦E on January 8, 2006, the Mw6.9
at 36.50◦N 21.78◦E on February 14, 2008, the Mw6.5 at 36.22◦N 21.75◦E on February
14, 2008, and the Mw6.4 at 37.98◦N 21.51◦E on June 8, 2008 (note that Mw is taken from
[26]). In addition, our attention here is focused on the two major EQs with Mw > 6.4 of the
previous decade (which are also plotted in Fig. 7.8), i.e., the Mw6.6 at 40.14◦N 21.67◦E on
May 13, 1995 and the Mw6.5 at 38.4◦N 22.3◦E on June 15, 1995, the data of which have
been analyzed in natural time in retrospect.

During the last fifteen year period, in accordance with the recommendation of the
European Advisory Committee for earthquake prediction of the Council of Europe (see
p. 101 of Ref. [35]), the following policy was adopted: if the expected EQ magnitude
Ms(ATH) estimated from the amplitude of the SES activity was larger than (or equal to)
6.0, quick report on the relevant information was submitted to international journals (e.g.,
see Refs. [52, 51, 50]) before the EQ occurrence. The symbol Ms(ATH) stands for the
magnitude defined by

Ms(ATH) = ML +0.5, (7.5)

where ML denotes the local magnitude reported by GI-NOA
(www.gein.noa.gr/services/monthly-list.html).

In Table 7.1, we include all EQs with Ms(ATH)≥ 6.0 that occurred in Greece within the
area N41

36 E27
19 since 2001. In addition, this Table also includes in parentheses the data for the

cases in which the expected magnitude (documented on the basis of the SES amplitude)
was Ms(ATH) ≈ 6.0, but the actual EQ magnitude turned out to be somewhat smaller.
For each EQ, we tabulate the date and the station at which the relevant SES activity was
recorded along with the publication at which this preseismic information was documented.
For the reader’s convenience, we also give the submission date of each publication in cases
where this documentation was made before the EQ occurrence. We emphasize that, in this
documentation, it has been confirmed that the SES activity reported in each case, was
classified as such since it obeys both the criteria described in Section 1.2 as well as the
criteria in natural time summarized in Section 4.10.

In § 7.2.1 to § 7.2.6, we restrict ourselves to the description on what happened before
the major earthquakes in Greece with magnitude Mw ≥6.4 since 1995.

http://www.gein.noa.gr/services/monthly-list.html
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Fig. 7.8 Map showing the location of
the VAN stations (triangles) operating
in Greece. The location of the central
station GLY (which is a suburb of
Athens, ATH, rectangle), to which
the data of all stations are transferred
telemetrically in real time is also
shown. The epicenters of the five
major EQs with Mw ≥ 6.4 since
2001(see Table 7.1) along with the
two ones in 1995 are indicated by red
stars.

7.2.1 The major Grevena-Kozani Mw6.6 earthquake on May 13, 1995

An International Workshop was held by the Royal Society (London, May 11–12, 1995,
e.g., see Lighthill [12, 13]) under the title: “A critical review of VAN” just before the
occurrence of the Mw6.6 earthquake in Greece on May 13, 1995. This EQ was highly
unexpected, because it occurred in an “aseismic” area. The relevant prediction had been
forwarded to the chairman of the Workshop (Sir James Lighthill) well in advance (see
below). Furthermore, one week after the Workshop, another prediction was sent to the
chairman that was related with the catastrophic Mw6.5 Eratini-Egion earthquake of June
15, 1995, which will be discussed in § 7.2.2. These two EQs were the largest events that
occurred during 1983–1995 in Greece and their predictions, which attracted a strong inter-
est in the international literature (e.g., Masood [15, 14], Kerr [8], Monastersky [16]), can
be found in the Proceedings of the Workshop published several months later (see Varotsos
et al. [39]; copies of these predictions are also reproduced here). The chairman included
the following conclusion in the Proceedings [13]:

“The earthquakes occurring after the meeting (on 13 May in northern Greece and on
15 June in Egion, which were the two largest in Greece for over a decade) are carefully
related to the corresponding VAN predictions (those received by myself, for example –
along with other interested scientists – on 2 May and on 20 May 1995). It is noteworthy
that the distinguished seismologist, Professor H. Kanamori, was influenced partly by these
events, as well as by the proceedings of the review meeting (which he had attended in an
initially neutral spirit), to give the views he has expressed above in ‘A seismologist looks
at VAN’, suggesting that for the larger earthquakes in Greece the VAN group appears to
have usefully identified SES precursors.”
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(a) (b)

Fig. 7.10 SES activity recorded at IOA on April 18, 1995 (raw data collected by the real-time telemetric
network; the scales are in mV). All dipoles are installed at IOA (see the text), except the one labeled
ASS (given to distinguish the MT disturbances). The arrow labeled “increase” indicates the direction of
increasing ΔV measured in mV. Taken from Ref. [37].

(a) (b)

Fig. 7.11 SES activity at IOA on April 19, 1995. They are photocopies from the recordings at the central
station (GLY) of the real-time telemetric network. All channels correspond to IOA, except those labeled
ROD or ASS, which refer to other stations. The arrow, labeled “increase”, indicates the direction of in-
creasing value of ΔV (e.g., see p. 324 of Varotsos and Lazaridou [38]). All the scales are in mV. Reprinted
from Ref. [40], Copyright (2005), with permission from TerraPub.
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We now proceed here to a description of what happened before the Mw6.6 EQ at 08:47
UT on May 13, 1995 (this EQ is labeled ‘K’; see Fig. 4.5(b)).

The SES data and the prediction issued. On April 30, 1995, a three-page prediction was
issued. The first page is reproduced in Fig. 7.9(a). It was a short paper under the title “Re-
cent Seismic Electric Signal activities in Greece”, the abstract of which stated: “Three SES
activities were recently recorded at IOA station. They might indicate that a pronounced
series of EQs will occur in Greece with Ms(ATH) ≈ 6.0 units.” The two strongest SES
activities (Fig. 1.11(a),(b)) were recorded on April 18 and April 19 (and were classified as
such since they obey the criteria mentioned in Section 1.2). The second page reproduced
in Fig. 7.9(b) contained the probable time-chart that will be followed as well as a map in-
dicating the two candidate epicentral areas. The prediction text (Fig. 7.9(a)) stated that the
epicentral area located close to IOA was more probable. The third page was a photocopy
of the SES data, as collected through the real-time telemetric network; see Figs. 7.10 and
7.11 to which we now turn. (Recall that Fig. 1.11 depicts data collected with datalogger,
see Section 1.1).

Figure 7.10 shows the intense SES activity recorded at IOA on April 18, 1995. It was
mainly recorded on the NS short dipole array and on the 3 long dipoles. Figure 7.10(a)
shows the recordings of the following 5 dipoles (see the map in Fig. 1.3): Two NS short
dipoles (L = 100 and 184 m), one EW dipole (L = 50 m), and two long dipoles, labeled L
and L′ (see Fig. 1.3(b)). Figure 7.10(b) depicts the recordings at the following 4 dipoles:
one EW short dipole (L ≈ 50 m), one short dipole (L ≈ 50 m, labeled IOA, NS) which
is almost parallel to the long dipoles that connect IOA with Perama village, and two
long dipoles, labeled L-I and L′ in Fig. 1.3(b) (L′ coincides with that also depicted in
Fig. 7.10(a)). The corresponding SES activity recorded on April 19, 1995, is given, as
mentioned, in Fig. 7.11.

In addition, in Figs. 1.11(a) and 1.11(b), we have presented the SES recordings col-
lected at two of the IOA sites, i.e., “B” and “C” (see the map in Fig. 1.3(c)), along with the
variations of the two horizontal components of the magnetic field that have already been
discussed in § 1.3.6.

Evaluation of the prediction. The prediction issued on April 30, 1995 shown in Fig.
7.9(a) discriminated between the two candidate epicenters, depicted in the prediction
map of Fig. 7.9(b). One candidate epicenter was in western Greece (i.e., close to the
Vartholomio-Killini area), while the second alternative was close to IOA. The prediction
text clarified that the second solution seemed to be more compatible with the experimental
facts. The predicted magnitude (for the latter solution) was (verbatim) “Ms(ATH)≈ 5.5–
6.0 with an epicenter a few tens of km NW from IOA.” The actual epicenter (USGS
[26]) was 40.14◦N, 21.67◦E, i.e., lying at a distance Δr = 80–90 km far from the pre-
dicted area. The fact that the actual magnitude Ms(ATH)≈6.6 exceeded the predicted one
Ms(ATH) ≈ 6.0 by ΔM = 0.6, is consistent with what was naturally expected for larger
epicentral distances than predicted “a few tens of km”. As for the time-window, the EQ oc-
curred on May 13, 1995, i.e., during the fourth week after the SES initiation, in accordance
to the expected time chart; see § 1.3.1 case (b).
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In summary, this prediction obeyed the tolerances (with respect to the time-window,
epicenter and magnitude) for successful prediction. The latter is considered as such if
Δr <∼ 100 km, ΔM(= 3σ) ≤ 0.7 and in addition Δ t obeys the expected (time) limits
(§ 1.3.1).
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Fig. 7.12 Determination of the occurrence time of the major Mw6.6 EQ on May 13, 1995 (see also
Fig. 7.13). The average distance 〈D〉 (red circles, left scale), the entropy S (open squares, right scale) and
the entropy under time reversal S− (filled squares, right scale) of the seismicity versus the natural time χ .
The distance 〈D〉 drastically decreases only a few days before the occurrence of the mainshock, and the
entropies S, S−, become smaller than Su(= 0.0966) satisfying condition (7.4). The numbers correspond
to the earthquakes listed in Table 6.1.

We now explain, following the preliminary procedure (§ 7.1.1), how the occurrence
time of this EQ could have been identified in advance. We consider all EQs within the area
A: N40.5

39.2 E22.0
20.3 that occurred after the SES activity at IOA on April 18, 1995. These have

already been listed in Table 6.1 and their analysis in natural time, explained in detail in
§ 6.2.1, resulted in the evolution of Π(φ), event by event, depicted in Fig. 6.3 (crosses).
A careful inspection of this figure (in conjunction with that of Fig. 6.1) reveals that a
coincidence is observed upon the occurrence of the EQ No. 12 on May 10, i.e., only 3
days before the mainshock. This is a true coincidence, because (see § 7.1.1): first, the
average distance 〈D〉 between the curves ofΠ(φ) of the evolving seismicity and Eq. (7.1),
as shown by the red circles in Fig. 7.12 is less than 10−2 at the coincidence; second,
Fig. 7.13 – which is an excerpt of Fig. 6.3 depicting only the cases from Fig. 6.3(b) to
Fig. 6.3(e) – shows that the evolving Π(φ), i.e., the red crosses, approach the blue curve,
i.e., that of Eq. (7.1), from below upon the occurrence of the EQs No. 9, 10 and 11 (see
Table 6.1) and the coincidence occurs at the event No. 12. Third, the criterion of Eq. (7.4)
is obeyed, see Fig. 7.12. Finally, the occurrence time of the coincidence does not vary upon
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Fig. 7.13 Determination of the occurrence time of the major Mw6.6 EQ on May 13, 1995 (see also
Fig. 7.12). The normalized power spectrum (red crosses)Π(φ) of the seismicity within the area N40.5

39.2 E22.0
20.3

as it evolves event by event (whose date and time (UT) of occurrence are written in each panel) after the
initiation of the SES activity on April 18, 1995. The excerpt presented here corresponds to Figs. 6.3(b) to
6.3(e). In each case only the normalized power spectrum in the window 0 < φ < 0.5 is depicted (separated
by the vertical dotted lines), whereas the Π(φ) of Eq. (7.1) is depicted by the blue solid line.

changing either the magnitude threshold from Mthres = 2.8 to Mthres = 2.9 or the area from
N40.5

39.2 E22.0
20.3 to N40.4

39.5 E22.0
20.5.

Thus, in short, applying the preliminary procedure, the occurrence time of this EQ
could have been identified around 3 days in advance.

7.2.2 The major Eratini-Egion Mw6.5 earthquake on June 15, 1995

SES data and the prediction issued. This is the EQ labeled E in Fig. 4.5(b) and its pre-
diction, as already explained in § 7.2.1, has been forwarded to the chairman (Sir James
Lighthill) of the International Workshop held by the Royal Society (London, May 11–12,
1995).

Figure 4.5(a) shows the strong SES activity (labeled E) that was recorded on April
30, 1995, at the station VOL (Fig. 1.2). The operation of this station had started only six
months before and hence the selectivity map, as well as the calibration of this station, was
still unknown. No SES activity (simultaneous to that at VOL) was recorded at the other
operating stations.

On the basis of the aforementioned SES activity, a two-page prediction was forwarded
to the Government with some delay (caused by the occurrence of the aforementioned major
EQ on May 13, 1995), i.e., on May 19, 1995. A photocopy is shown in Fig. 7.14, and its ab-
stract clarifies that a new strong EQ might hit Greece at a different epicentral area. Despite
the fact that the SES activity was recorded at a station not yet calibrated, the SES amplitude
(10 mV/km) allowed the estimation, that the expected magnitude would be comparable to
that of the EQ on May 13, 1995, i.e., around 6.6. Since the selectivity map of VOL was
still unknown, the epicenter was estimated as follows: in addition to the short dipole ar-
rays, the SES activity was recorded at two long dipoles (having almost the same direction,
i.e., SSW and SW in respect to the Volos city, and lengths L1 = 5 km and L2 ≈ 22 km)



310 7. Identifying the Occurrence Time of an Impending Mainshock

Fig. 7.14 The prediction issued on May 19, 1995, related to the Mw6.5 EQ that occurred on June 15, 1995
that was sent on May 20, 1995 at several institutes abroad.
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with the same ΔV/L value; the latter fact indicated that the impending focal area should
lie at a distance r appreciably larger than the dipole lengths, i.e. r 
 L1,L2 and hence
r/L2 
 1. As the ratio r/L2 had to be, at least, around 4–5, the epicenter should lie at a
distance more than∼100 km from VOL. Furthermore as the SES activity was not recorded
at the other four stations operating at that time, i.e. IOA, ASS, KER and PIR (see Fig. 1.2),
we excluded as candidate epicenters the seismic areas belonging to their selectivity maps.
We also excluded the area around the epicenter of the Mw6.6 earthquake which had just
occurred on May 13, 1995, because the latter was preceded by SES activities at IOA.

Fig. 7.15 Time evolution
of the SES activities re-
lated with the 2 big EQs in
Greece in 1995. For the sake
of comparison, the case of
Killini-Vartholomio destruc-
tive EQs in 1988 (i.e., fig.
28A of Varotsos and Lazari-
dou [38]) is also given. Open
bars and full bars correspond
to SES activities and EQs,
respectively.

Thus, the prediction of the epicenter was summarized in the text of the prediction
as follows: “The new EQ might occur in the remaining part... of continental Greece”.
More precisely, the following areas were excluded from continental Greece: central west-
ern Greece, Chalkidiki area (including Thessaloniki), the area within a radius of at least
∼100 km around VOL, the Peloponnese, the neighboring area around Attica (i.e. Athens)
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Table 7.2 All EQs within N39.7
37.5 E25.0

21.5 that occurred after the initiation of the SES activity at VOL on April
30, 1995, until the Mw6.5 mainshock on June 15, 1995. Taken from Ref. [46].

No Year Month Day Hour min sec Lat. Lon. Depth ML

1 1995 4 30 19 4 41 38.82 21.45 9 2.9
2 1995 5 2 8 26 56 38.20 21.76 32 2.7
3 1995 5 4 16 11 49 38.33 22.05 5 2.9
4 1995 5 6 1 44 12 37.70 21.46 10 2.5
5 1995 5 6 17 44 59 38.51 21.50 24 2.6
6 1995 5 6 23 10 21 38.44 21.80 5 2.6
7 1995 5 8 5 11 9 38.32 22.14 21 4.0
8 1995 5 9 12 48 34 38.32 22.09 10 2.5
9 1995 5 10 15 23 2 39.28 21.69 10 2.9
10 1995 5 12 7 25 13 39.12 24.48 31 3.6
11 1995 5 13 11 53 1 39.56 22.53 10 3.2
12 1995 5 13 13 31 55 38.52 22.04 5 3.3
13 1995 5 15 20 15 13 38.13 21.66 9 2.8
14 1995 5 16 5 15 44 38.97 23.18 33 3.6
15 1995 5 16 10 1 30 38.93 21.77 5 3.0
16 1995 5 17 23 5 25 39.73 21.89 5 2.9
17 1995 5 17 23 10 52 39.70 21.91 5 3.0
18 1995 5 17 23 20 30 39.74 21.97 5 3.1
19 1995 5 18 4 48 27 38.30 22.18 22 3.2
20 1995 5 19 23 19 49 38.24 21.87 11 2.7
21 1995 5 19 23 59 26 38.12 22.65 34 2.8
22 1995 5 20 20 32 33 38.41 21.79 9 2.9
23 1995 5 22 17 35 27 39.54 22.43 5 3.0
24 1995 5 23 2 56 49 39.51 22.25 10 2.7
25 1995 5 25 16 41 31 39.08 23.50 10 2.9
26 1995 5 25 20 32 11 39.74 21.57 35 3.0
27 1995 5 26 1 28 47 38.36 22.63 10 2.6
28 1995 5 26 7 9 25 38.36 22.00 5 2.9
29 1995 5 26 21 30 35 38.43 21.81 6 2.7
30 1995 5 28 16 14 44 38.90 25.04 49 3.2
31 1995 5 28 19 56 41 38.38 21.96 5 4.1
32 1995 5 28 20 9 14 38.40 21.90 5 3.0
33 1995 5 28 21 51 1 38.28 22.67 10 3.0
34 1995 5 29 13 3 3 37.61 22.78 5 2.8
35 1995 5 30 9 6 31 38.50 21.74 5 3.1
36 1995 5 31 12 25 42 39.21 22.88 10 3.0
37 1995 5 31 21 43 30 39.39 22.63 29 3.0
38 1995 6 1 14 4 53 38.13 21.74 5 3.2
39 1995 6 2 14 47 46 39.20 23.14 32 3.1
40 1995 6 4 18 47 35 38.50 22.25 5 2.6
41 1995 6 5 15 4 40 38.88 21.51 5 2.9
42 1995 6 5 16 50 24 38.86 21.47 5 2.9
43 1995 6 5 18 34 46 38.98 21.47 12 2.7
44 1995 6 5 18 35 31 38.97 21.47 7 2.7
45 1995 6 6 20 12 14 38.80 21.58 5 2.9
46 1995 6 12 20 27 7 38.21 22.22 39 2.9
47 1995 6 13 2 48 39 38.29 22.47 10 2.6
48 1995 6 14 11 8 41 38.04 21.54 28 2.5
EQ 1995 6 15 0 15 51 38.37 22.15 26 5.6
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and, of course, the area of northern Greece around the major earthquake of May 13, 1995.
Of the remaining small part of continental Greece, the area lying in the vicinity of GOR
(this is a site shown in Fig. 1.1 lying in the vicinity of LAM; see Fig. 1.2) was the more
probable. Recall that the region to the north of GOR, close to VOL, was already excluded
in view of the same ΔV/L value collected at the long dipoles of VOL.

The actual epicenter of the mainshock at 00:15UT on June 15 was at 38.4◦N, 22.3◦E
(USGS [26]) being consistent with the prediction, since it lies less than 40–50 km
almost south of GOR. The actual EQ magnitude was Mw = 6.5, thus being also con-
sistent with the predicted value 6.6.

As for the prediction of time, the last row of the prediction text indicated that the time
evolution of seismicity might follow fig. 22 of Varotsos et al. [36]. What actually happened
is shown in the lowest time-chart of Fig. 7.15 and the comparison to the predicted time
chart (i.e., the upper one in Fig. 7.15), reveals a striking agreement. Note that a smaller EQ
with Ms(ATH) = 4.8 occurred on May 28, 1995, at 38.4◦N, 22.0◦E, i.e. practically at the
same area where the mainshock occurred almost two weeks later.

We now apply the updated procedure (§ 7.1.2) for the determination of the occurrence
time of this EQ since the preliminary procedure can be found elsewhere [45, 46]. We con-
sider all EQs (see Table 7.2) that occurred within the area A: N39.7

37.5 E25.0
21.5 after the initiation

of the SES activity recorded at VOL on April 30, 1995, and their M0 values are estimated
using the relation log10(M0) = 1.64ML + const. as in § 7.2.1. The computation of κ1 is
extended, as mentioned in § 7.1.2, to all possible subareas of the area A and then the plot
of the probability distribution Prob(κ1) versus κ1 is constructed after the occurrence of
each small event since April 30, 1995. Excerpts of these results that correspond to the
period June 1 to June 12, 1995, are shown in Figs. 7.16(a) to 7.16(c) for three magnitude
thresholds, i.e., Mthres = 2.5, 2.6 and 2.8. An inspection of these figures reveals that:

Upon the occurrence of the ML = 2.9 event at 20:27 UT on June 12, 1995, the probabil-
ity distribution Prob(κ1) maximizes at κ1 = 0.070 for all three magnitude thresholds
(see the arrows in Figs. 7.16(a) to 7.16(c)), thus signaling the impending mainshock
that occurred almost two days later at 00:15 UT on June 15, 1995.

7.2.3 The major Aegean Mw6.5 earthquake on July 26, 2001

This is the major earthquake labeled A in Fig. 4.5. This figure also depicts the preceding
SES activity which had duration of around two hours and was recorded at the station VOL
on March 17, 2001. It was clearly detected at several short- and long-measuring dipoles
located in a zone with spatial dimensions (a few tens km) × (several km), see Fig. 1.4.
A copy from the recordings of the real-time telemetric network is given in Ref. [35] as
well as in Ref. [41], while Fig. 7.17(a) depicts the digital recordings from the long-dipole
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Fig. 7.16 Determination of the occurrence time of the Mw6.5 EQ on June 15, 1995. Prob(κ1) versus κ1
when considering the seismicity within the area N39.7

37.5 E25.0
21.5 since the initiation of the SES activity recorded

at VOL on April 30, 1995. Excerpts for the period June 1 to June 12, 1995, are shown for (a) Mthres = 2.5,
(b) Mthres = 2.6 and (c) Mthres = 2.8. The thick horizontal line corresponds to κ1 = 0.070. The arrows show
the maximum of Prob(κ1) vs κ1 observed at κ1 = 0.070 on June 12, 1995, for all thresholds Mthres = 2.5,
2.6 and 2.8.
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Fig. 7.17 SES activities before the major EQs with Mw ≥ 6.4 since 2001. The short-duration SES activity
(a) was recorded at VOL in 2001, while the three long-duration SES activities of (b), (c) and (d) at PIR in
2005 (b) and in 2008 (c, d) (see the text).

V−SΣB; see the map in Fig. 1.4. The digital recordings from all the measuring dipoles can
be found in Ref. [41].

The epicenter of the impending seismic activity was estimated to be within the region
marked with the broken line in Fig. 7.18. The procedure through which the SES activity
was identified, as well as the expected epicenter and magnitude (M ≈ 6.5) were deter-
mined, has been described in detail in Ref. [41] that was submitted for publication on
March 25, 2001, i.e., almost four months before the EQ occurrence. Such a lead time
seems to be in principle too long (note that a tentative explanation in terms of tectonics
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Fig. 7.18 The area ‘bordered’ by the
broken curve (surrounding VOL) was
the predicted area in Ref. [41] for
the epicenter of the impending EQ
related to the SES activity depicted in
Fig. 7.17(a). Taken from Ref. [41].

and geodynamics of that seismic area has been discussed in Ref. [3]) but interestingly
conforms with natural time analysis of the subsequent seismicity to which we now turn.

Since the preliminary procedure can be found elsewhere [45, 46], we present here the
updated procedure (§ 7.1.2). We consider all EQs that occurred after the initiation of the
SES activity at VOL on March 17, 2001, within the area A: N39.5

38.5 E25.6
22.2, which includes

the predicted area ‘bordered’ by the broken line in Fig. 7.18. The natural time analysis of
seismicity (by using, as in § 7.2.1, the relation log10(M0) = 1.64ML + const., where ML is
taken from GI-NOA) was made, as explained in § 7.1.2, for all possible subareas of the
area A and the resulting κ1 values lead to the probability distribution Prob(κ1) of κ1 shown
in Fig. 7.19. An inspection of this figure shows that:

Upon the occurrence of the ML = 3.0 EQ at 16:35 UT on July 25, 2001, which took
place just eight hours before the mainshock (that occurred at 00:21 UT on July 26,
2001), Prob(κ1) vs κ1 exhibits a maximum at κ1 = 0.070 marked with arrows in
Fig. 7.19(a), (b) and (c) for three magnitude thresholds, i.e., Mthres = 2.8, 2.9 and
3.0, respectively.

Concerning the actual magnitude of this mainshock, i.e, Mw = 6.5, it is comparable
to the one estimated in advance [41].

As for its actual epicenter (see Table 7.1), it actually lies within the predicted area
‘bordered’ by the broken line in Fig. 7.18 and close to its eastern side.
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Fig. 7.19 Determination of the occurrence time of the major Mw6.5 EQ on July 26, 2001. Prob(κ1) versus
κ1 when considering the seismicity within the area N39.5

38.5 E25.6
22.2 since the initiation of the SES activity

recorded at VOL on March 17, 2001. The period July 19 to July 25, 2001, is shown for (a) Mthres = 2.8,
(b) Mthres = 2.9, and (c) Mthres = 3.0. The thick horizontal line corresponds to κ1 = 0.070. The arrows
show the maximum of Prob(κ1) vs κ1 observed at κ1 = 0.070 upon the occurrence of the ML = 3.0 event
at 16:35 UT on July 25, 2001.
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Note that the predicted area is smaller than the one, i.e., N39.5
38.5 E25.6

22.2, considered in the
computation of κ1 in the natural time analysis of seismicity. This could be understood in
the following context. The (predicted) area in Fig. 7.18 is solely based on the SES char-
acteristics governed by the electrical inhomogeneities in the Earth’s crust, and hence does
not necessarily coincide with the area considered in the updated procedure that involves
the preceding small EQs that finally establish long-range temporal correlations. The same
argument holds for the case of the EQ discussed in § 7.2.2.

7.2.4 The major Mw6.7 earthquake in southern Greece on January 8, 2006

Two intense SES activities, with a duration of several hours each, were recorded [42] at
PIR station on September 17, 2005. They are shown together in Fig. 7.17(b), where we see
that the first lasts until around 07:00 UT, while the second one starts after 09:00UT.

Almost one month later, a Mw5.7 EQ occurred in Western Greece on October 18, 2005,
with an epicenter at 37.58◦N 20.86◦E (Table 7.1). USGS and Harvard reported that this EQ
was mainly of thrust type, which, however, seemed to deviate from an earlier conclusion
of Uyeda et al. [28] who had found that, for the EQs in the transform fault zone west
of Kefallinia, the station PIR was mainly sensitive to strike–slip type EQs. In view of
this deviation, doubts were raised whether any of the two SES activities of Fig. 7.17(b)
were actually correlated with the EQ of October 18, 2005. As a result four days later,
i.e., on October 22, 2005, a paper was submitted [42] raising the possibility that the two
SES activities in Fig. 7.17(b) were in fact a one-day long-duration SES activity probably
correlated with an impending strong EQ (not from the aforementioned area studied by
Uyeda et al. [28]). Actually, at 11:34 UT on January 8, 2006, the Mw6.7 EQ occurred in
southern Greece with an epicenter at 36.3◦N 23.3◦E, i.e., in an area different from the one
studied earlier by Uyeda et al. [28].
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Fig. 7.20 A map showing the areas
discussed in § 7.2.4, § 7.2.5 and § 7.2.6.
The corresponding determination of
the occurrence time for the Mw6.9 EQ
on February 14, 2008 (red star), and
the Mw6.7 EQ on January 8, 2006
(green star), was made by considering
the seismicity within the red rectangle
N38.6

36.0 E22.5
20.0 and the green rectangle

N37.2
35.2 E24.4

22.4,respectively (see the text).
The shaded area shows the PIR selec-
tivity map updated in 2008 that was
used later (§ 7.2.6) for the determi-
nation of the occurrence time of the
major Mw6.4 EQ on June 8, 2008. Solid
dots show the measuring stations of the
telemetric network.
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Fig. 7.21 Determination of the occurrence time of the major Mw6.7 EQ on January 8, 2006. The variance
κ1 (green), the entropy S (blue) and the entropy under time reversal S− (red) of the seismicity within the
green rectangular region of Fig. 7.20, as it evolves event by event after the long-duration SES activity
recorded at PIR on September 17, 2005 (Fig. 7.17(b)): (a): For all small seismic events reported by GI-
NOA, i.e., Mthres = 2.6 and (b): For seismic events with Mthres = 3.0. The horizontal solid line corresponds
to κ1 = 0.070 while the broken to Su = 0.0966. Taken from Ref. [43].

We now follow the preliminary procedure explained in § 7.1.1. We set the natural time
for seismicity zero at the initiation time of the SES activity recorded at PIR on September
17, 2005 (Fig. 7.17(b)) and form time series of seismic events in natural time for various
time windows as the number of consecutive (small) EQs increases. We consider [42] all
the small EQs (i.e., with ML ≥ 2.6) that occurred before the mainshock, within the region
N37.2

35.2 E24.4
22.4 surrounding the epicenter (see the green rectangular area in Fig. 7.20) according

to the EQ catalog of GI-NOA (the corresponding M0 values have been estimated from the
relation log10(M0) = 1.64ML + const. as in § 7.2.1). For each of the time windows, the
following quantities have been computed: κ1, 〈D〉, S and S− and the results are plotted in
Fig. 7.21(a). An inspection of this figure shows that κ1 approaches the value 0.070 from
above at 12:46 UT on January 6, 2005, i.e., almost two days before the occurrence of the
mainshock. Furthermore, both S and S− values at the coincidence are smaller than the value
Su = 0.0966 in accordance to Eq. (7.4). In addition, we confirmed that 〈D〉 is smaller than
10−2. Finally, upon changing the magnitude threshold (i.e., taking Mthres = 2.8, instead
of Mthres = 2.6) and studying a smaller region, i.e., N36.9

35.7 E24.2
22.6, the occurrence time of the

coincidence remains the same. Thus, we conclude that the conditions mentioned in § 7.1.1
for a true coincidence are obeyed. Despite this fact, and in order to shed more light on
a point already tackled in § 7.1.1, we repeated the same calculation, but by imposing an
even larger magnitude threshold, i.e., Mthres = 3.0. We then obtained the results depicted
in Fig. 7.21(b) showing that the critical point is approached a week before the mainshock
(note that no EQ with ML ≥ 3.0 occurred during that week). The difference in the results



320 7. Identifying the Occurrence Time of an Impending Mainshock

is understood in the context already mentioned in § 7.1.1: if higher magnitude threshold
is used, the description of the real situation approaching criticality becomes less accurate
due to ‘coarse graining’ [43] since the number of events is finite.

In summary, the natural time analysis of the seismicity subsequent to the long-duration
SES activity at PIR enables the determination of the occurrence time of the Mw6.7 EQ
on January 8, 2006, within a narrow range of around 2 days up to 1 week.

7.2.5 The two major Mw6.9 and Mw6.5 earthquakes in southwestern Greece on

February 14, 2008

In this case, both short- and long-duration SES activities have been recorded (Table 7.1).
The short one came first [44] and it was recorded (see Fig. 7.22(b)) on January 14, 2008, at
the station PIR. Almost one week later, a long duration SES activity of the same polarity
and amplitude was recorded also at PIR (Fig. 7.17(c)). The natural time analysis of the
former (labeled PIR3 in Table 4.6), which is of clear dichotomous nature, led [44] to the
following parameters: κ1 = 0.070±0.005, S = 0.086±0.003, S− = 0.070±0.005, which
obey the conditions in order to classify this signal as SES activity (note that it also satisfies
the criteria mentioned in Section 1.2).

After this classification, the study of the seismicity in natural time was immediately
started in the area A: N38.6

36.0 E22.5
20.0 (determined by means of the procedure described in

§ 1.3.5) as publicized on February 1, 2008, by Varotsos et al. [44] (this area is marked with
the red rectangle in Fig. 7.20). The corresponding M0 values have been again estimated
using the relation log10(M0) = 1.64ML + const. as in § 7.2.1. We now draw attention to
the difficulty arisen if the preliminary procedure (§ 7.1.1) is applied to the present case.
Within the area N38.6

36.0E22.5
20.0 studied since the initiation of this SES activity on January 14,

2008, two EQs with magnitudes Ms(ATH) ≈ 5.5 occurred on February 4, 2008, close to
PAT associated with the SES activity at PAT on January 10, 2008; see Fig. 7.22(a). This
results in the fact that the κ1 value becomes very small, i.e., κ1 ≈ 0, at any small area
surrounding the epicenters of these two EQs (see § 6.2.1; see also Ref. [54]). On the other
hand, in the updated procedure (§ 7.1.2) the computation of κ1 is extended to all possible
subareas of the area N38.6

36.0E22.5
20.0. Then the plot of the probability distribution Prob(κ1) ver-

sus κ1 (shown in Fig. 7.23 for Mthres = 3.2) constructed after the occurrence of each small
event exhibited a bimodal feature. The one mode, corresponding to nearly zero κ1 values,
results from the subareas that contain the aforementioned two EQs of magnitude 5.5. The
other mode, maximized at κ1 = 0.070, comes from subareas which do not include these
two EQs. It is the latter mode that upon the occurrence of a small event at 04:07 UT on
February 12, 2008; see the case marked with an arrow in Fig. 7.23, signifies the approach
to the critical point. Two days later, i.e., at 10:09 UT on February 14, 2008, the Mw6.9
earthquake occurred at 36.5◦N 21.8◦E inside the area N38.6

36.0E22.5
20.0 specified in advance [44].

Two hours later, i.e., at 12:08 UT, a Mw6.5 EQ followed almost at the same epicenter.
At that period, beyond the updated procedure, the preliminary one was simultaneously

applied. The latter procedure, upon avoiding the difficulty described above (i.e., by exclud-
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Fig. 7.22 The short duration SES
activities recorded on January 10,
2008, at PAT (a) and on January
14, 2008, at PIR (b) in normalized
units (i.e., by subtracting the mean
value and dividing the results by
the standard deviation) along with
the dichotomous representation
marked by the dotted (blue) line.
Taken from Ref. [44].

ing the influence of the aftershocks around the two Ms(ATH) ≈ 5.5 EQs that had already
occurred close to Patras on February 4, 2008), had led to the conclusion that the critical
point was approached somewhat earlier, i.e., on February 10, 2008 (note that the differ-
ence in the results of the two procedures can be understood on the basis of the discussion
in § 7.1.1 concerning the ‘coarse graining’ when using different magnitude thresholds).
This explains why we were able to publicly announce on February 10, 2008, that the major
EQ is imminent, as described in detail by Uyeda and Kamogawa [30, 31].

The Mw6.9 earthquake on February 14, 2008, according to USGS [26], is the strongest
one in Greece since 1983. As explained above, all the parameters of this earthquake,
i.e., the epicentral area (see the red rectangle in Fig. 7.20), the magnitude (recall that
only when the expected M is larger than 6.0, a prediction is publicized) and the occur-
rence time were specified and announced in advance.
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Fig. 7.23 Determination of the occurrence time of the major EQs on February 14, 2008. Study of the
Prob(κ1) versus κ1 for the seismicity (Mthres = 3.2) that occurred within the area N38.6

36.0 E22.5
20.0 after the short

duration SES activity at PIR on January 14, 2008, depicted in Fig. 7.22(b). Taken from Ref. [21].

7.2.5.1 The experimental error in the epicentral location of small EQs and its

influence on the determination of the occurrence time of an impending

mainshock

The results depicted in Fig. 7.23 have been obtained upon adopting a reasonable ex-
perimental error in the determination of the epicentral coordinates of the small EQs in-
volved in the aforementioned computation. In particular, two small EQs have been as-
sumed to occur at different locations iff their reported epicentral coordinates differ more
than 0.02◦ × 0.02◦. In other words, the number of the possible subareas inside the esti-
mated area A: N38.6

36.0 E22.5
20.0 was counted after using a grid with “cells” having dimensions of

0.02◦×0.02◦ and considering the reported epicentral coordinates of the small EQs. On the
other hand, if we assume that the EQ epicentral coordinates, that have been reported with
two decimals, are accurate and construct a grid based on these coordinates (adaptive grid),
the population of the resulting possible subareas of the area N38.6

36.0 E22.5
20.0 becomes markedly

larger, thus leading to a somewhat different result. Namely, based on the latter assumption
the computation was repeated and led to the results depicted in Figs. 7.24(a), 7.24(b) and
7.24(c) for Mthres = 2.8, 2.9 and 3.0, respectively. They show that a maximum of Prob(κ1)
versus κ1 at κ1 ≈ 0.070 is simultaneously observed in all the three magnitude thresholds
upon the occurrence of a ML = 3.4 event at 10:40 UT on February 7, 2008, with epicenter
at 38.37◦N 20.32◦E. This date, which is almost one week before the Mw6.9 mainshock of
February 14, 2008, differs from the one (i.e., February 12, 2008) of the maximum observed
in Fig. 7.23.
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Fig. 7.24 Determination
of the occurrence time of
the major EQs on February
14, 2008, when considering
the assumption discussed
in § 7.2.5.1. Study of the
Prob(κ1) versus κ1 for the
seismicity for (a) Mthres = 2.8,
(b) Mthres = 2.9, and (c)
Mthres = 3.0 that occurred
within the area N38.6

36.0 E22.5
20.0

after the SES activity at
PIR on January 14, 2008,
depicted in Fig. 7.22(b).
The simultaneous maxima
of Prob(κ1) versus κ1 at
κ1 ≈ 0.070, marked with
arrows, are observed upon
the occurrence of a ML = 3.4
EQ at 10:40 UT on February
7, 2008, with epicenter at
38.37◦N 20.32◦E.
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In other words, we conclude that the date at which the maximum of Prob(κ1) versus
κ1 at κ1 ≈ 0.070 is observed, depends somewhat on the accuracy considered in the
epicentral coordinates of the small earthquakes involved in the computation.

This accuracy depends of course on several factors (including the density of the seis-
mological network operating in the area investigated) and should be considered with care
in each case separately. Since, however, the estimation of this accuracy is far outside of the
scope of the present monograph, in all the other examples treated here, we assumed that
the epicentral coordinates as reported are accurate.

We also note that a random experimental error (≈0.2 to 0.3) in the EQ magnitude, does
not seem to affect the date of a true coincidence, as shown by Uyeda et al. [32] when
applying the preliminary procedure.

7.2.6 Mw6.4 earthquake in the Peloponnese on June 8, 2008

This major EQ was preceded by that long-duration SES activity-lasted from February 29
to March 2, 2008 (see Fig. 7.17(d) which just reproduces the upper channel of Fig. 1.16).
After subtracting the MT background with the procedure described in § 1.4.3.1, the signal
was analyzed in natural time (see Section 4.11) and classified as an SES activity (note that
it also obeys the criteria mentioned in Section 1.2).

The investigation of the subsequent seismicity was conducted at first (see Ref. [20])
in the area N38.6

37.0 E22.0
20.0, which is somewhat smaller than the PIR selectivity map known

at that time. This was in an attempt to avoid as much as possible the influence of af-
tershocks of the Mw6.9 EQ at 36.5◦N 21.8◦E on February 14, 2008. This policy was
considered justified, based on the notion that a criticality approach would take place in
proper subareas simultaneously. At the same time, an attempt was also made to extend
the area A to include the shaded area along the Hellenic Arc as shown in Fig. 7.20.
This extension was based on the recent pieces of information for PIR selectivity map,
including the occurrences of the aforementioned Mw6.9 EQ on February 14, 2008 (see
§ 7.2.5), associated with the SES activity of Fig. 7.17(c) and the Mw6.7 EQ at 36.3◦N
23.2◦E on January 8, 2006 (see § 7.2.4) following the SES activity of Fig. 7.17(b) at PIR
[42]. In the study for the extended PIR selectivity map area (shaded region in Fig. 7.20),
we raised the magnitude threshold to Mthres = 3.9, 4.0 and 4.1, because the extended
area along the Hellenic Arc is highly seismic and there were too many (more than half
a thousand) events to handle for Mthres = 3.2. This study showed that upon the occur-
rence of a Ms(ATH) = 5.1 EQ at 35.5◦N 22.4◦E at 23:26 UT on May 27 (practically
May 28), 2008, the probability Prob(κ1) exhibits a pronounced maximum at κ1 ≈ 0.070
marked by a vertical arrow in Fig. 7.25(a) drawn for Mthres = 3.9. Similar maxima at
κ1 ≈ 0.070 appeared simultaneously for Mthres = 4.0 and Mthres = 4.1 (see Figs. 7.25(b)
and 7.25(c), respectively), thus indicating that the critical point has been approached.
This was reported on May 29, 2008, in Ref. [22]. Actually, at 12:25 UT on June 8,
2008, a Mw6.4 EQ occurred at 38.0◦N 21.5◦E, i.e., inside the candidate area N38.6

37.0E22.0
20.0

(see Ref. [20] publicized on March 20, 2008). It caused extensive damage (four people
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Fig. 7.25 Determination of
the occurrence time of the
major Mw6.4 EQ on June 8,
2008. Prob(κ1) versus κ1 of
the seismicity Mthres = 3.9
(a), Mthres = 4.0 (b) and
Mthres = 4.1 (c) within
the shaded area shown in
Fig. 7.20 subsequent to the
long duration SES activity
recorded at PIR during Febru-
ary 29 to March 2, 2008;
see Fig. 7.17(d). The vertical
arrows mark the maxima of
Prob(κ1) vs κ1 at κ1 ≈ 0.070
that occurred at 23:26 UT
on May 27, 2008 (practically
May 28), and has been fol-
lowed by the Mw6.4 on June
8, 2008. Taken from Ref. [22].

were killed while several hundred houses were seriously damaged). The magnitude 6–7
class EQ expected from the amplitude of the SES activity, as mentioned in the last para-
graph of the Appendix of Ref. [21](which had been submitted for publication on March
21, 2008, i.e., after the completion of the analysis in natural time of the SES activity de-
picted in Fig. 7.17(d)), was reasonably well supported by the actual EQ magnitude [26],
i.e., Mw = 6.4.
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Thus, in short, all the parameters of the Mw6.4 earthquake that occurred at 12:25 UT
on June 8, 2008, i.e., the epicentral area, the magnitude and the occurrence time, were
specified and announced well in advance.
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Fig. 7.26 The shaded area shows the up to that date (29 May 2008) addition to the PIR selectivity map.
Solid dots show the measuring stations, while the stars denote the epicenters of the EQs discussed in
Ref. [21] that were preceded by SES recorded at PIR. The rectangle with solid lines corresponds to the area
N38.6

37.5E23.3
20.0 which is the preliminary selectivity map of PAT while the one with broken lines to N38.6

36.0E22.5
20.0,

which is also shown (in red) in Fig. 7.20. Taken from Ref. [21].

7.3 Summary of all SES predictions issued along with all earthquakes

of magnitude Mw ≥ 6.0 in Greece since 2001

Table 7.1, as mentioned in § 7.2, compiles the information on what happened before all
EQs with Ms(ATH)≥ 6.0 that occurred in Greece within the area N41

36 E27
19 since 2001. We

clarify that this Table also compiles all the predictions issued since 2001 considering that a
prediction is issued only when the expected magnitude (on the basis of the SES amplitude)
is Ms(ATH)≥ 6.0 (see § 7.2).

An inspection of Table 7.1 along with the contents of § 7.2.1 to § 7.2.6, which explain
what happened before each of the major EQs with Mw ≥ 6.4, leads to the following main
conclusions:



7.4 The volcanic-seismic swarm activity in 2000 in the Izu Island region, Japan 327

(a) Concerning the natural time results of both the most significant SES activities and
their subsequent seismicities until the corresponding mainshock since 2001: the results
(see Table 7.1) reveal that in all cases but one (i.e., the one in 2003 in which the
body wave magnitude mb = 5.6) with Mw ≥ 6.0, natural time analysis enabled the
classification of the relevant SES activity. This was documentated publicly well before
the EQ occurrence.

(b) The cases mentioned in (a), include all five major EQs with Mw ≥ 6.4 related
to four mainshocks (Fig. 7.8). In each of these mainshocks, the occurrence time was
identified within a narrow range, a few days to around one week or so, by analyzing in
natural time the seismicity after the initiation of the SES activity. The same holds for
the two major EQs during the previous decade (1990–2000, see Fig. 7.8) as shown by
natural time analysis carried out in retrospect.

7.4 The volcanic-seismic swarm activity in 2000 in the Izu Island

region, Japan

SES experimentation has been carried out by Uyeda and coworkers (e.g., Uyeda [27],
Uyeda et al. [33, 29, 32], Orihara et al. [18]). The study has been made in two stages: In
Stage 1 (1987–1995), only long dipole (L = 1–10 km) networks were used (Kinoshita et al.
[9]; Takahashi et al. [24]; Nagao et al. [17]). In Stage 2, i.e., since 1996, short (L≈ 100 m)
dipoles have been also installed. Several precursory changes similar to those observed in
Greece have been recorded. They have been summarized by Uyeda et al. [33, 34] as well
as in pp. 34–37 of Ref. [35].

Below we focus on the natural time analysis of the preseismic electrical anomalous
changes and the seismicity observed in the 2000 swarm in Izu Island region, Japan.

This study by Uyeda et al. [32] is important because the nature of both seismic and
electrical activities is vastly different from the Greek cases, i.e., the number of EQs
subsequent to the initiation of the electrical disturbance was almost two orders of mag-
nitude larger and the duration of electrical activity was around one order of magnitude
longer than in Greek cases. Moreover, the swarm in the Izu Island region was consid-
ered closely related to volcanic/magmatic activity in contrast to the Greek cases.

In this Section we closely follow Uyeda et al. [32].

7.4.1 Natural time analysis of the precursory electric signals

The data collected. In the Izu Island region, a map of which is given in Fig. 7.27, electri-
cal measurements were carried out in Niijima Island by means of 16 measuring electric
dipoles (long and short ones) with sampling rate fexp = 0.1 Hz. Anomalous electrical
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changes were recorded [29] at two of these electric dipoles. Niijima Island is usually elec-
trically almost noise free (Figs. 7.28(a) and 7.28(d)), the long (≈6 km) dipole “Wak-Air”
connecting Wak (Wakago Village) and Air (Airport) and the short (≈30 m) dipole “Wak”
in Wakago Village started to show innumerable visually clear unusual changes from 2
months before the onset of the swarm activity (i.e., on April 26, 2000) as illustrated in
Figs. 7.28(b) and 7.28(c). Figure 7.29 shows the 3-year records of daily spectrum intensity
at 0.01± 0.003 Hz after reducing noises common to “Air-Boe” dipole which showed no
unusual changes by taking the intensity ratio of “Wak-Air” and “Air-Boe” dipoles. These
two dipoles are almost in the same NS direction (see Fig. 7.27). They showed similar
noises, mainly due to geomagnetic variations [29], while only “Wak-Air” dipole showed
the unusual changes. In Fig. 7.29, it is clear that the anomalous changes were enhanced
after the swarm activity started until the monitoring was interrupted in July and August
2000 by power failure caused by EQ shaking and typhoons.

Fig. 7.27 Index map of the Izu Island region.
Dots are MJMA ≥ 0 EQs from 1 June to
September 30, 2000. Stars are MJMA ≥ 6
EQs. Right inset is a map of Japan with plate
boundaries. P. plate, Pacific Plate; P. S. Plate,
Philippine Sea Plate; N. Tr., Nankai Trough;
S. Tr., Sagami Trough. Left inset shows the
long dipole configuration of Niijima Island.
A short dipole (not shown) is also installed at
the far end of each long dipole centered at Air
(Airport). Shaded parts near Wak are basaltic
exposures. Broken rectangle shows the
region of seismicity study N34.8

33.7E140
139. Taken

from Ref. [32]. Copyright (2009), American
Geophysical Union. Reproduced/modified by
permission of American Geophysical Union.

These anomalous changes observed on almost perpendicularly oriented “Wak-Air” long
and “Wak” short dipoles cannot be attributed to any source of “artificial” noise in this
island of small population and no industry. Furthermore, the observed changes cannot be
related with electrode noises, because the two dipoles were independent without a common
electrode. As already mentioned in § 1.3.4, it is not uncommon that SES-sensitive sites
are locally highly selective which means most sites are insensitive and a sensitive site is
found only after a painstaking search through repeatedly moving temporary observation
network, e.g. see Refs. [36, 10]. Moreover, as pointed out by Uyeda et al. [32], young
basaltic rocks are exposed only at Wak area on the Island which otherwise exclusively
consists of less conductive rhyolitic rocks (see the inset in Figure 7.27), suggesting highly
heterogeneous underground electrical structure typical of a volcanic zone. According to
volcanological studies [11, 25], Niijima Island was formed by rhyolitic activity in the
Late Pleistocene and the basaltic exposure in Wakago area is less than a few thousand
years old, the last basaltic magma phreatic activity being in the 9th century. It might be
speculated [32] that the basaltic exposure is connected to the underground magma body,
providing possible electrical channel for the transmission of electrical signals. In order to
check these conjectures, which seem to be supported by a detailed geoelectrical modeling
by Huang and Lin [6], a thorough electromagnetic exploration of the island is needed.
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Fig. 7.28 Examples of typical 24-h records of the Wak-Air long dipole potential difference [29] (50
mV/km scale is indicated on the vertical axis). (a) Before 26 April. Records showed mainly smooth vari-
ations only. (b) During 2 months before the onset (26 June) of the seismic swarm activity. Numerous
anomalous changes occurred. (c) Just after 26 June. Anomalous changes were more conspicuous. (d) Af-
ter the cessation of the swarm activity, records resumed usual quietness. Time windows 1, 2, 3, and 4
are indicated in Fig. 7.29 (top). Taken from Ref. [32]. Copyright (2009), American Geophysical Union.
Reproduced/modified by permission of American Geophysical Union.

Fig. 7.29 Three-year record [29]. Time
change of the 0.01 Hz spectral intensity
ratio of geoelectric potential difference
at Wak-Air and Air-Boe dipoles, Ni-
ijima Island. Anomalous changes started
about two months before the seismic
swarm (26 June to 29 August). The
gap in data was caused by the system
failure due to shaking and typhoons in
July and August 2000. The numbers
1, 2, 3, and 4 correspond to those in
Fig. 7.28. A is the date of the “true” coin-
cidence. Taken from Ref. [32]. Copyright
(2009), American Geophysical Union.
Reproduced/modified by permission of
American Geophysical Union.

Uyeda et al. [32] proceeded to the natural time analysis of the observed anomalous
electric signals as follows. They first subtracted the MT background changes by ap-
plying a procedure similar to that explained in § 1.4.3.1 and the remaining signal was
subsequently analyzed by applying natural time analysis as described earlier in Section
4.11. They found that these electrical disturbances had common characteristic proper-
ties with the SES activities in Greece. Thus, Uyeda et al. [32] concluded that they may
well be called a SES activity.
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7.4.2 Natural time analysis of Izu 2000 seismicity subsequent to the initiation of the

SES activity

Uyeda et al. [32] applied the preliminary procedure explained in § 7.1.1. By setting natu-
ral time zero at the initiation time of the SES activity, analysis of the time series of seis-
mic events in the rectangular region from N33.7◦ to N34.8◦ and from E139◦ to E140◦ as
marked by broken lines (Fig. 7.27) was conducted using the JMA Catalog. In other words,
the time series of seismic events in natural time was formed for increasingly longer time
windows as the number N of consecutive EQs increased. Then, they computed Π(φ) for
each of the time windows and examined its behavior. Specifically, the investigation was
made for the period from 15:33 (LT) on April 30 (which was the occurrence time of the
first EQ with magnitude greater than 3.5 after the initiation of the SES activity) until just
before the occurrence of the first magnitude 6 class EQ very close to Niijima Island (July
1, 2000).

Uyeda et al. [32] used the magnitude in the JMA catalog (MJMA) and employed
Eqs. (6.10) to (6.13) to calculate the moment magnitude Mw. Then, the relation [5]
M0 ∝ 101.5Mw was used to obtain the values of the seismic moment M0, as indicated
in Fig. 2.1(b). The spatiotemporal evolution of the seismicity for magnitude threshold

Fig. 7.30 Seismicity for MJMA ≥ 2.0 in the region N34.8
33.7E140

139 in the study period in 2000: (a) 1 January
to 25 April, (b) 26 April to 25 June, (c) 26 June to 14:45 LT on 27 June, i.e., almost until the “true
coincidence” (see Fig. 7.31), (d) after the “true coincidence” until 16:47 LT on 28 June, (e) 16:47 LT on
28 June until 15:31 LT on 29 June, and (f) after this, until the first magnitude 6 class EQ on July 1. Inset
rectangle shows the smaller study area. Taken from Ref. [32]. Copyright (2009), American Geophysical
Union. Reproduced/modified by permission of American Geophysical Union.
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Fig. 7.31 The seismicity after 30 April until the “true coincidence” on 27 June for magnitude thresholds
(a) MJMA≥ 2.5, (b) MJMA≥ 3.0, and (c) MJMA≥ 3.5 for (top) conventional time and (bottom) natural time.
In the bottom panel, the number of events (instead of χ) is given in the horizontal axis for the reader’s con-
venience. Taken from Ref. [32]. Copyright (2009), American Geophysical Union. Reproduced/modified
by permission of American Geophysical Union.

Fig. 7.32 (bottom) Time evolution of Π(φ) for 0 ≤ φ ≤ 0.5 of the seismic activity for MJMA ≥ 3.0
when the calculation was started on 30 April. Π(φ) curves (red) fall on the theoretical Π(φ) curves (blue)
calculated from Eq. (7.1) as critical stage is approached. (top) The difference D between the two curves.
(a) Examples for the morning hours of 27 June. (b) At the last six events which occurred at 15:26:35,
15:29:08, 15:29:22, 15:31:50, 15:35:04, and 15:35:10 LT on 27 June until the “true coincidence”. Taken
from Ref. [32]. Copyright (2009), American Geophysical Union. Reproduced/modified by permission of
American Geophysical Union.

MJMA ≥ 2.0 in the studied region is shown in Figs. 7.30(a) to 7.30(f). The readings of
the seismicity in natural and conventional time frames until the coincidence marked A on
June 27 are shown in Fig. 7.31 for three different magnitude thresholds. Figures 7.30(a)
to 7.30(f) show how nonlinearly the two time frames are interconnected. One may notice
that the natural time covered in Figs. 7.30(a) to 7.30(f) is practically from June 26 to June
27, indicating that important changes took place in a short period even before the bulk
of the swarm activity (see Fig. 7.29). Figure 7.32 (bottom) clearly shows that for magni-
tude threshold 3.0 as an example, the computed Π(φ) curve approaches the critical Π(φ)
curve from below on June 27, 2000, a few days before the first M≥ 6 earthquake of July 1,
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Fig. 7.33 D≡ 〈D〉, κ1, S, and S− of
the evolving seismic activity versus
the natural time χ . The calculation
was started on 30 April and contin-
ued until the true coincidence A on
27 June just 4 days before the first
M ≥ 6 class EQ on 1 July. Three
magnitude thresholds (MJMA ≥ 2.5),
(MJMA ≥ 3.0), and (MJMA ≥ 3.5)
are considered. (a) D is plotted and
(b) the quantities κ1, S, and S−
are shown with the symbols de-
picted. Taken from Ref. [32]. Copy-
right (2009), American Geophysical
Union. Reproduced/modified by per-
mission of American Geophysical
Union.

Fig. 7.34 Coincidence date versus
the starting date of calculation for
four magnitude thresholds. The SES
activity started on April 26. The
shaded triangular area is irrelevant
because the coincidence has to be
only in the unshaded area. Taken
from Ref. [32]. Copyright (2009),
American Geophysical Union. Re-
produced/modified by permission of
American Geophysical Union.
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2000. The approach of the two curves is more clearly demonstrated in the upper panel of
Fig. 7.32, in which D is plotted.

Moreover, Fig. 7.33 depicts 〈D〉, κ1, S, and S−, as they evolved event by event during
the whole period (April 30 to June 27). This figure also shows that all three different
magnitude thresholds resulted in approximately the same time of coincidence on June
27, supporting the self-similar structure of the process concerned [32].

As to the spatial self-similar nature of the process, a similar calculation was made for
a smaller region depicted in Fig. 7.30(a). The results showed the same behavior. Thus, the
coincidence on June 27 is considered as true coincidence since all the conditions men-
tioned in § 7.1.1 are obeyed. It may be added here that in fact, Uyeda et al. [32] made
the calculations until the last event before the first M≥ 6 class EQ of July 1 and there was
another case with κ1 = 0.070. But this second case was discarded because it did not satisfy
the entropy criterion for true coincidence, i.e., the condition (7.4).

Figure 7.34 shows the coincidence dates (vertical axis) when the calculations were
started on the dates shown on the horizontal axis for four magnitude thresholds. The cal-
culation with M2.4 threshold was added here in order to check if the true coincidence
A recognized by the abovementioned three threshold calculations satisfies the magnitude
threshold invariance even for M2.4 threshold. Figure 7.34 clearly shows that true coinci-
dence is reached at a time close to the date of the first M ≥ 6 shock, i.e., late June, only
when the calculation was started around the initiation date of the SES activity, which is
indicated by a vertical broken line in Fig. 7.34. It was found that the self-similarity con-
dition for M2.4 threshold was useful for identifying true coincidence. One may wonder
if the uncertainty in magnitude (or moment) determination bothers this kind of analy-
sis.

Hence, Uyeda et al. [32] have conducted simulation test giving 0.2–0.3 random error
of magnitude and concluded that the date of the true coincidence is not affected.

7.4.3 Main conclusions from the study of the Izu 2000 case

Uyeda et al. [32], after analyzing in natural time both the SES activity started on April 26,
2000, as well as the subsequent seismicity, as explained in § 7.4.1 and § 7.4.2 respectively,
obtained the following main conclusions:

First, before the first magnitude 6 class EQ on July 1, one true coincidence was ob-
served on June 27. Thus, the analysis in the natural time domain of the seismicity led
to an estimation on the date of the impending large EQ of July 1, 2000, with a narrow
time window of the order of a few days.
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Second, it has been demonstrated that starting the calculation more than 2 weeks
earlier than the initiation time of the SES activity does not result in true coincidence,
whereas starting the calculation at later time does so. This is consistent with Greek
cases in which natural time zero was set at the time of SES activity initiation.

7.5 Results from California: the Ms7.1 Loma Prieta earthquake on

October 18, 1989

This is the best-known case in the USA for which clear precursory electromagnetic vari-
ations have been reported. Almost one month before this earthquake, i.e., on September
12, 1989, magnetic field variations were recorded at a site just 7 km from the earthquake
epicenter [4, 1] similar to those accompanying the SES activities in Greece for earthquakes
with M6.5 or larger [56] (see § 1.3.6).

Table 7.3 The seismic data (reported from the Northern California Earthquake Data Center,
http://www.ncedc.org/ncedc/catalog-search.html, as they appeared on January 8, 2010) analyzed in nat-
ural time. The magnitude M corresponds either to ML or MD. It is converted to seismic moment according
to Mw = M. Taken from Ref. [53].

Number Magnitude M Date Time(UT) Latitude Longitude

1 2.7 1989/9/16 18:41:24 37.33 −121.70
2 3.2 1989/9/28 15:42:37 36.57 −121.11
3 2.7 1989/10/1 12:21:37 38.15 −121.90
4 3.0 1989/10/1 13:10:24 38.14 −121.93
5 3.2 1989/10/1 13:19:27 38.16 −121.93
6 3.1 1989/10/1 22:08:35 36.56 −121.15
7 3.1 1989/10/1 22:09:17 36.56 −121.15
8 2.7 1989/10/2 11:20:19 38.15 −121.91
9 2.6 1989/10/6 15:53:36 37.32 −122.11
10 3.3 1989/10/8 12:36:46 36.44 −121.01
11 2.7 1989/10/9 11:51:24 37.63 −121.70
12 2.7 1989/10/9 12:06:02 37.29 −122.09
13 3.1 1989/10/9 12:42:03 37.63 −121.69
14 2.8 1989/10/13 12:22:11 36.63 −121.08

15 7.0 1989/10/18 00:04:15 37.04 −121.88

Following Ref. [53], in order to determine the occurrence time of the impending main-
shock, we analyze in natural time all the earthquakes (see Table 7.3) that occurred after
September 12, 1989, which is the date of the initiation of the aforementioned (SES like)
precursory magnetic field change, within the area A: N38.5

36.2W120.7
122.7 surrounding the Loma

Prieta earthquake epicenter. The seismic data used here are from the Northern California
Earthquake Data Center and the relevant epicenters are depicted in Fig. 7.35. We set the
natural time zero at the initiation time of the magnetic field change, and then formed time

http://www.ncedc.org/ncedc/catalog-search.html
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Fig. 7.35 The area N38.5
36.2W120.7

122.7 (shaded) surrounding the
epicenter of the Loma Prieta earthquake (largest star) in
which the seismicity after the initiation on September 12,
1989, of the precursory magnetic field variations [4, 1] is
analyzed in natural time. Taken from Ref. [53].

series for the area A each time a small earthquake (with magnitude M exceeding a certain
threshold Mthres, i.e., M≥Mthres) occurred. The quantity κ1 for each of the time series was
computed for the pairs (χk,Qk). The quantity Qk was taken as the seismic moment M0k
of the k-th event (see Fig. 2.1(b)), calculated from the relation log10 M0 ≈ 1.5ML + const.
(H. Kanamori, personal communication).

Applying the updated procedure (§ 7.1.2), in order to check whether criticality has
been approached at the occurrence of a new event k within the area A, we construct all the
possible subareas of AMthres that necessarily include the event k and examine whether their
κ1 values reveal a probability distribution Prob(κ1) maximized at 0.070. We considered
only earthquakes with M > 2.5 in order to have homogeneous and complete catalog (see
Ref. [2]). In other words, we take Mthres = 2.6. The results are depicted in Fig. 7.36(a),
which shows how Prob(κ1) versus κ1 evolves upon the occurrence of each event before
the October 18, 1989, Ms7.1 Loma Prieta earthquake. We see that Prob(κ1) maximizes
at κ1 = 0.070 upon the occurrence of a 2.8 event at 12:22 UT on October 13, 1989, i.e.,
almost 5 days before the main shock. Upon repeating the calculation for larger magnitude
thresholds, i.e., Mthres = 2.7 and 2.8, see Figs. 7.36(b) and 7.36(c), respectively, we find
again that the maximum of Prob(κ1) versus κ1 is observed at κ1 = 0.070 on October 13,
1989.

In summary, we analyzed in natural time the small earthquakes that occurred after
the initiation on September 12, 1989, of the (SES-like) magnetic field variations in
the area surrounding the epicenter of the Ms7.1 Loma Prieta earthquake. We find that
Prob(κ1) versus κ1 exhibits a maximum at κ1 = 0.070, for Mthres = 2.6, 2.7 and 2.8,
on October 13, 1989, i.e., five days before the occurrence of the mainshock.
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Fig. 7.36 Detemination of
the occurrence time of the
Ms7.1 Loma Prieta EQ on
October 18, 1989. Prob(κ1)
versus κ1 for the seismicity
in the area N38.5

36.2W120.7
122.7, for

Mthres = 2.6 (a), Mthres = 2.7
(b) and Mthres = 2.8 (c) sub-
sequent to the initiation on
September 12, 1989, of the
precursory (SES like) mag-
netic field variations reported
in Refs. [4, 1]. The last event
corresponds to the magnitude
2.8 earthquake that occurred
at 12:22 UT on October 13,
1989 with an epicenter at
36.63◦N 121.08◦W (see Table
7.3). Taken from Ref. [53].
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8. Natural Time Analysis of Dynamical Models

Abstract. We apply here the natural time analysis to the time series of the avalanches in
several SOC models as well as to other dynamical models. First, in a simple deterministic
SOC system introduced to describe avalanches in stick–slip phenomena that belongs to the
same universality class as the “train” model for earthquakes introduced by Burridge and
Knopoff, we find that the value κ1 = 0.070 can be considered as quantifying the extent of
the organization of the system at the onset of the critical stage. Second, in the conservative
case of the Olami–Feder–Christensen (OFC) earthquake model, the value κ1 = 0.070 is
accompanied by an abrupt exponential increase of the avalanche size which is indicative
of the approach to a critical behavior. In the non-conservative case of OFC, in the later part
of the transient period, coherent domains of the strain field gradually develop accompanied
by κ1 values close to 0.070. Furthermore, there is a non-zero change ΔS of the entropy in
natural time under time reversal, thus reflecting predictability in the OFC model. Third, an
explanation for the validity of the condition κ1 = 0.070 for critical systems on the basis of
the dynamic scaling hypothesis is forwarded. Fourth, when quenching the 2D Ising model
at temperatures close to but below Tc, which is qualitatively similar with the pressure
stimulated currents SES generation model, and set Qk = |Mk| (where Mk stands for the
evolution of the magnetization per spin), we find κ1 = 0.070. Fifth, in a deterministic
version of the original Bak–Tang–Wiesenfeld sandpile model, the value κ1 ≈ 0.070 is
reached during the transient to the self-organized criticality. Finally, natural time analysis
of the avalanches observed in laboratory experiments on three-dimensional ricepiles and
on the penetration of the magnetic flux into thin films of high Tc superconductors, leads
to κ1 values around κ1 = 0.070. A further investigation of the experiment on ricepiles
reveals that the sequential order of the avalanches captured by the natural time analysis
is of profound importance for establishing the SOC state and constitutes the basis for the
observation of the result κ1 ≈ 0.070.

P.A. Varotsos et al., Natural Time Analysis: The New View of Time: Precursory Seismic Electric Signals,
Earthquakes and other Complex Time Series, Springer Praxis Books, DOI 10.1007/978-3-642-16449-1_8, 
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8.1 Is self-organized criticality (SOC) compatible with prediction?

Recent aspects. The models analyzed here in natural time

The SOC concept, that has been originally introduced by Bak, Tang and Wiesenfeld [6]
using as an example the sandpile model, was an attempt to explain the ubiquity of scale in-
variance in nature (see also Refs. [44, 74]). Systems, in general, are termed self-organized
critical if they reach a stationary state (after a transient during which the system acquires
criticality [32, 33]) characterized by power laws without the need for fine-tuning an ex-
ternal parameter, for example the temperature or pressure. There is more or less a gen-
eral tendency [85] on confining the term self-organized critical to those systems that are
slowly driven and that display fast, avalanche-like dissipation events. In other words, in
SOC systems, the competition between a driving force that very slowly injects energy and
the dynamics of local thresholds can drive the system into a critical state where a minor
perturbation can trigger an avalanche of any size and duration [6, 7, 66]. In particular, in
the original sandpile model, the random, slow addition of “blocks” in a two-dimensional
lattice (along with a local conservation law) drives the system into a critical state, where
power law distributed avalanches maintain a steady regime far from equilibrium.

The fact that avalanches were taken [6] as uncorrelated in the original SOC sandpile
model, has been used as an argument that is not possible to predict the occurrence of
large avalanches (relevant claims are cited in Refs. [66, 65]). A belief has been expressed
that power law distributed avalanches are inherently unpredictable, which came from the
concept of SOC, but interpreted in the way that, at any moment, any small avalanche can
eventually cascade to a large event.

However, prediction is possible, because the system is not at, but close to, the critical
state [21, 66].

This, became clear from the accumulated theoretical and experimental evidence, which
could be summarized as follows (see also § 6.5.3). First, some cellular automaton SOC
models have been analyzed for the predictability of very large avalanches (responsible for
the cut-off on the power law distribution) [62] and in addition precursors of large events
have been identified [41, 67] in dissipative or hierarchical lattices. Second, the prediction
of extreme avalanches in self-organized critical sandpiles have been studied in recent de-
tailed numerical studies [32] which showed that: (a) particularly large events in a close to
SOC system can be predicted on the basis of past observations; (b) the predictive power
stems from temporal correlations which are pure finite size effects, i.e., it disappears in the
infinite system size limit as all avalanches become independent of each other; (c) under
variation of the system size, predictability persists if the magnitude used to define ex-
treme events is scaled linearly in the maximal possible avalanche size. It was also clarified
[33] that SOC seems to be an unsuitable mechanism for the explanation of the extreme
events that occur in clusters. Third, experimental work has recently demonstrated [66] the
possibility of avalanche prediction in the classical SOC paradigm, i.e., a pile of grains:
by knowing the position of every grain in a two-dimensional pile, avalanches of moving
grains do follow a distinct power law distribution, but large avalanches are found [66] to



8.2 Natural time analysis of the Burridge & Knopoff “train” earthquake model 343

Table 8.1 Compilation of the 14 cases described in this monograph in which the condition κ1 = 0.070 has
been ascertained.

No. Case Class

1 SES activities (Section 4.2) Field experiments
2 Seismicity preceding major EQs (Sections 7.1 to 7.5) "
3 Ricepiles (§ 8.5.1) Laboratory measurements
4 Magnetic flux avalanches in high Tc superconductors (§ 8.5.2) "
5 Burridge & Knopoff “train” EQ model (§ 8.2.2) Dynamical models
6 Olami–Feder–Christensen EQ model (conservative case, § 8.3.2) and

“foreshocks” in the non-conservative case (§ 8.3.3)
"

7 Dynamic scaling hypothesis with z = 2.0–2.4 (Section 8.4, § 8.4.3) "
8 Deterministic version of the original sandpile SOC model (§ 8.4.2) "
9 Generalized stochastic directed SOC model (§ 8.5.2) "
10 2D Ising model quenched close to, but below, Tc (§ 8.4.1) Other models
11 Pressure stimulated currents model for SES generation (§ 2.4.2) "
12 fBm time series with DFA exponent α = 1 (§ 3.4.3) "
13 Stochastic Cantor set: p-model describing turbulence (§ 6.2.5) "
14 Power law distributed uncorrelated energy bursts with γ = 1.87

(§ 2.5.4, Fig. 2.6)
"

be preceded on the average by continuous detectable variations in the internal structure of
the pile.

To answer the aforementioned question on predictability, in this Chapter we will an-
alyze in natural time the time series of avalanches in some dynamical models including
typical SOC examples like sandpiles, as well as in laboratory measurements on ricepiles
and magnetic flux penetration in high Tc superconductors which are believed to be SOC
systems.

Table 8.1 includes all 14 cases discussed in this monograph where the condition κ1 ≈
0.070 has been ascertained, thus strengthening the conjecture that: if a system acquires
criticality, the condition κ1 = 0.070 holds (but not the inverse as for example case
No. 14).

8.2 Natural time analysis of the Burridge & Knopoff “train”

earthquake model

8.2.1 The earthquake model proposed by Burridge & Knopoff. The “train” model.

Introduction

An earthquake is a stick–slip dynamical instability of a pre-existing fault driven by the
motion of a tectonic plate [71, 72]. A relatively simple dynamical model that contains
much of the essential physics of earthquake faults is the so-called spring-block model
originally proposed [14] by Burridge and Knopoff (BK). It consists of an assembly of
blocks, each of which is connected via elastic springs to the nearest neighboring blocks.
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The blocks are also connected to the driving plate by elastic springs and rest on a surface
with a velocity-weakening stick–slip friction force (note that the friction force decreases
as the velocity is increased). When the force acting on a block overcomes the static friction
with the surface, the block slips. Then a redistribution of forces takes place in the neighbors
that eventually trigger new displacements. An EQ event is defined as a cluster of blocks
that move (slip) due to the initial slip of a single block. A numerical study in one dimension
had already been made by BK, and later Carlson, Langer and others [18, 19] proceeded to
more extensive studies of the one-dimensional and two-dimensional BK models focusing
on the magnitude distribution of EQ events. Spatiotemporal correlations of the 2D BK
model have been studied [55] by considering also long-range inter-block interactions.

In the BK model studied by Carlson, Langer and others, each block is connected, as
mentioned above, to the driving element. To model the dynamics of EQs, Burridge and
Knopoff in their original work [14] also studied the case of a chain of blocks (situated
on a rough surface with friction) connected by elastic springs and pulled only at one end
with a constant small velocity. The dynamics of the model is as follows. All the blocks
are initially at rest. As the driver pulls the first block, the latter remains stuck until the
elastic force overcomes the static friction. When this occurs, the first block will move a
little. Such small events (or EQs) will continue and increase the elastic force on the sec-
ond block. When the elastic force on the second block overcomes the friction force, an
event involving the two blocks will occur. The dynamics continues with events involving
three, four, five or all the blocks in the system. This model is usually called the “train”
model since it has some similarity with a train, where the driving force is applied only
at one end of the chain (e.g., Ref. [75]). The dynamics here is governed by coupled or-
dinary differential equations which makes its study very time-consuming. To make this
system more amenable to computer simulations, de Sousa Vieira [76] introduced a contin-
uous cellular automaton that exhibits SOC and belongs to the same universality class as
the “train” model. This deterministic one-dimensional model, for the avalanches in stick–
slip phenomena, which is very close to the case of an array of connected pendulums first
discussed by Bak et al. [6], is defined as follows (see Refs. [76, 26, 70]). Consider a one-
dimensional system, where a continuous (force) variable fl ≥ 0 is associated with each site
l, l = 1,2, . . . ,L. Initially all fl have the same value f0 which lies below a threshold fth.
One can set fth = 1.0 without loss of generality. The basic time step consists of varying the
force on the first site according to f1 = fth +δ f ; the system then relaxes with a conserva-
tive redistribution of the forces at the site fl ≥ fth (toppling site) and its nearest neighbors
according to fl =Ψ( fl − fth) and fl±1 = fl±1 +Δ f /2, where Δ f is the change of force
at the overcritical site andΨ(x) a periodic nonlinear function. This condition mimics the
redistribution of forces when the block l is displaced (stick–slips) by Δxl during an ‘earth-
quake’ in the “train” model [76]. The relaxation continues until all sites have fl < fth for
all l. The size of the ‘earthquake’ corresponds to the number of topplings, s, required for
the system to relax, and is considered here as the appropriate value of Qk in natural time.
Then, the driving force at the first site sets in again. This is complemented by open bound-
ary conditions; i.e., the force is ‘lost’ at l = 1 and l = L. The nonlinear periodic function
used here (which means that, when considering that the force supposed mimics the net
effect of the two forces in the “train” model, i.e., the elastic and the friction forces, the
periodicity of the elastic force dominates over the form of the friction force) is similar to
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the one used in Refs. [76, 26], i.e., a sawtooth functionΨ(x) = 1−ax +[ax] , where [. . .]
denotes the integer part of ax and a is a number. It was shown [76] that such a system
evolves to a SOC state where the avalanche distributions are scale-free, limited only by
the overall system size.

8.2.2 Natural time analysis of the “train” model

In Fig. 8.1, we present the results obtained from the deterministic one-dimensional SOC
system described above in § 8.2.1 that belongs, as mentioned, to the same universality class
as the “train” model for EQs. The same parameters as in Ref. [26], i.e., L = 1024, a = 4,
f0 = 0.87 and δ f = 0.1, have been used. In Fig. 8.1(a), the number of topplings s is plotted
in red versus the avalanche number i for the first 160,000 avalanches which shows in fact
how these series of avalanches can be read in natural time. The blue curve in Fig. 8.1(a),
shows how the quantity κ1 evolves avalanche by avalanche. There, we also plot in green
the total force X(i) of the system after each avalanche, computed from X(i) = ∑L

l=1 fl(i),
whose stabilization provides [26] a measure of the approach to SOC. An inspection of
Fig. 8.1(a) reveals that (after the transient and hence) when the system enters into the
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(a)

(b) Fig. 8.1 The results of the model
discussed in the text for 160,000 (a)
and 40,000 (b) avalanches as read
in natural time, for L = 1024, a = 4,
f0 = 0.87 and δ f = 0.1. The avalanche
size s is depicted by red color, and the
variance κ1 by blue color. The thick
blue line corresponds to κ1 = 0.070.
The total force of the system after
each avalanche X(i) is plotted with
green color and read in the right scale.
For an extension of this figure to 106

avalanches see Fig. 8.2. Taken from
Ref. [82].
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critical state, the κ1 value fluctuates around 0.070 (designated by the thick blue line).
The latter becomes clear in Fig. 8.1(b), which reproduces Fig. 8.1(a) but in an enlarged
time scale for the first 40,000 avalanches and shows that for i > 5,000 (i.e., just when
the system enters into the SOC state) κ1 scatters around 0.070. This behavior has been
verified for a wide range of parameters L,a, f0 and δ f just before the SOC state is reached.
Note that, once the statistically steady SOC state is established, the κ1 value gradually
increases reaching the corresponding value of κu = 1/12 of a “uniform” distribution (see
§ 2.1.3). This can be seen in Fig. 8.2 which has been plotted for 106 avalanches. The
model discussed here leads to a power law with a realistic b value of the Gutenberg–
Richter law. In particular, de Sousa Vieira [76] concluded that the distribution of avalanche
sizes s is a power law with an exponent τ ≈ 1.54 that corresponds to b ≈ 0.81. This lies
in the range (0.8 to 1.2) of the b values found experimentally (see Section 6.1). In spite
of this agreement, however, we note that the BK model cannot account for the observed
spatiotemporal complexity of seismicity, e.g. the Omori law for aftershocks [55].
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Fig. 8.2 The results of the
model discussed in the text for
106 avalanches. The parameters
(as well as the symbols) here
are the same as in Fig. 8.1
(except that the total force X(i)
is not plotted, for the sake
of simplicity). The horizontal
green line corresponds to κ1 =
0.070, and the black one to
κu = 1/12.

In the focal region of a future earthquake the stress gradually changes before failure.
It is commonly accepted that, after the mainshock occurrence, the stress value reduces
to a smaller value, a fact, however, which is not fully captured by the simple BK model
considered here. In other words, in the steady SOC state of this model the system has
an average fl value, f̄l , around f̄l = 0.8785 that remains almost constant (i.e., practically
within 0.0055) after the occurrence of any avalanche (cf. X(i) in Fig. 8.1). Our compu-
tations reveal (see Fig. 8.3) that when considering a reasonable decrease, e.g., by a few
percent, of f̄l , the system exits the steady SOC state and then returns to it through a tran-
sient in which the κ1 value scatters around 0.070, similarly to that depicted in Fig. 8.1.
This can be seen in Fig. 8.3, which depicts the results that show what happens with κ1
when reducing each fl by 1% (a), 2% (b) and 10% (c) of its value at SOC. The κ1 value is
given here in red while magenta corresponds to one standard deviation ±σ . A reasonable
reduction of fl may be around a few percent at the most (see especially Fig. 8.3(a) and
8.3(b)). The results have been obtained by means of the Monte Carlo procedure described
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Fig. 8.3 Results showing the
behavior of the average value of
κ1 (red) when decreasing f̄l to
(a) 99%, (b) 98% and (c) 90%
of its value at SOC. The results
have been obtained as follows.
We considered 103 systems with
the initial fl values randomly
scattered around f0 = 0.87. Each
system was driven to SOC and in
order to obtain a reliable series
fl SOC , l = 1,2, . . .L, the first 107

avalanches were ignored in natural
time analysis. Then, each of these
fl values was reduced to 99%,
98% and 90%, respectively, of
its value at SOC, i.e., fl SOC , and
natural time analysis was initiated
(i = 0). The magenta curves depict
the one standard deviation(±σ )
interval. The horizontal green line
corresponds to κ1 = 0.070, and
the black one to κu = 1/12. Taken
from Ref. [82].
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Fig. 8.4 The results obtained
when using, instead of the
periodic function Ψ(x), the
strictly non-increasing func-
tion φ(x) = (2−δ f )2/a

x+(2−δ f )/a − 1,
introduced in Ref. [57]. The
parameters L = 1024, a = 4,
f0 = 0.87 and δ f = 0.1 are the
same as those in Figs. 8.1 and
8.2. Results are given for 106(a)
and 40,000(b) avalanches.
The quantities shown here are
the same as those plotted in
Fig. 8.2. The horizontal green
line corresponds to κ1 = 0.070,
and the black one to κu = 1/12.
As shown in (b), the avalanche
size s(≡ Qk) is quasi-periodic,
leading to κ1 values “oscillat-
ing” close to (but mostly higher
than) κu.

in the caption of this figure. Hence, the value κ1 = 0.070 can be considered as quantifying
the extent of the organization of the complex system at the onset of the critical stage.

We emphasize that such a behavior is not observed for a variant of the model which
does not exhibit SOC [76], e.g., when using, instead of a periodic function Ψ(x), the
strictly non-increasing function φ(x) introduced by Nakanishi [57] (see Fig. 8.4). This
figure shows the results, in a similar fashion to those depicted in Fig. 8.1, obtained from
the model when using, instead of the periodic function Ψ(x), the strictly non-increasing
function introduced by Ref. [57]. In this case the behavior of κ1 is found to be distinctly
different from that of the SOC model depicted in Fig. 8.1 as well as in Fig. 8.2.

In summary, natural time analysis was made for a one-dimensional SOC model intro-
duced to describe avalanches in stick–slip phenomena. It belongs to the same univer-
sality class as the “train” model for earthquakes suggested by Burridge and Knopoff.
We found that the value κ1 = 0.070 can be considered as quantifying the extent of the
organization of the complex system at the onset of the critical stage.
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8.3 Natural time analysis of the Olami–Feder–Christensen (OFC)

earthquake model

8.3.1 The Olami–Feder–Christensen model. Introduction

The OFC model originated by a simplification of the Burridge & Knopoff spring-block
model [14] by mapping it into a non-conservative cellular automaton, simulating the earth-
quake’s behavior and introducing dissipation in the family of SOC systems. In the spring-
block model, which as mentioned in § 8.2.1 consists of a two-dimensional array of blocks
in a flat surface, each block is connected (by elastic springs) with its neighbors, and in
the vertical direction, to a driving plate which moves horizontally at velocity v. When the
force acting on a block overcomes the static friction with the surface, the block slips. In
the OFC model the force on a block is stored in a site of a square lattice, and the static
friction threshold is assumed to have the same value over all blocks. If force input occurs
in discrete steps instead of continuous and if thresholds are random but not quenched,
quasi-periodicity emerges combined with power laws [65].

The criticality of the OFC model has been debated [21, 54]. Also, the SOC behavior of
the model is destroyed upon introducing some small changes in the rules of the model, e.g.,
replacing open boundary conditions with periodic boundary conditions [64], introducing
frozen noise in the local degree of dissipation [56] or in its threshold value [43], including
lattice defects [23]. Despite these findings as well as others which show [61], that it is
insufficient to account for certain aspects of the spatiotemporal clustering of seismicity, the
OFC model appears to show many features found in real earthquakes. As far as earthquake
predictability [62] or Omori law [39, 36] are concerned, the OFC model appears to be
closer to reality than others [85]. In addition, for certain values of the local degree ‘α’
of dissipation (i.e., if ‘α’ is chosen above 0.17, see also below), the OFC model exhibits
avalanche size distribution that agrees well [52] with the Gutenberg–Richter (G-R) law; see
Eq. (6.1). These are some of the reasons why the OFC model is considered to be the prime
example [5] for a supposedly SOC system for earthquakes but the question of whether real
earthquakes are described or not by SOC models of this type, or whether other kinds of
mechanisms, e.g., Refs. [51, 50], need to be involved, remains unsolved [9, 86, 39, 36, 65].
Note also that an analysis of the OFC model in the nonextensivity framework (Section 6.5)
has been made by Caruso et al. [20] and further discussed in Ref. [69].

Description of the Olami–Feder–Christensen (OFC) model. The OFC model [59] runs
as follows: we assign a continuous random variable zi j ∈ (0,1) to each site of a square lat-
tice, which represents the local ‘energy’. Starting with a random initial configuration taken
from a uniform distribution in the segment (0,1), the value zi j of all sites is simultaneously
increased at a uniform loading rate until a site i j reaches the threshold value zthres = 1 (i.e.,
the loading Δ f is such that (zi j)max +Δ f = 1). This site then topples which means that
zi j is reset to zero and an ‘energy’ αzi j is passed to every nearest neighbor. If this causes
a neighbor to exceed the threshold, the neighbor topples also, and the avalanche contin-
ues until all zkl < 1. Then the uniform loading increase resumes. The number of topplings
defines the size s of an avalanche or “earthquake”. This is the quantity that is used as Qk
in the natural time analysis. The coupling parameter α can take values from zero to 0.25.
Smaller α means more dissipation, and α = 0.25 corresponds to the conservative case.
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The parameter α is the only parameter of the model, apart from the system size L, the edge
length of the square lattice. Except from the initial condition the model is deterministic.
The model can be supplemented by open boundary conditions (OBC) in which the sites
at the boundary distribute energy to the outer sites, which cannot topple, thus energy is
removed at the boundary. Another possibility, is to use free boundary conditions (FBC). In
this case, α varies locally

αi j =
1

ni j +K
. (8.1)

where ni j is the actual number of nearest neighbors of the site i j. For sites in the bulk
ni j = 4, for sites at the edges ni j = 3 and for the four sites at the corners ni j = 2. The
symbol K denotes the elastic constant of the upper leaf springs measured relatively to that
of the other springs between blocks [36]. Obviously the OFC model is non-conservative
for K > 0 for which αi j < 0.25 in the bulk. Finally, periodic boundary conditions (PBC)
can be imposed but these destroy [64] criticality. Except in the case of PBC, the sites at the
boundary receive energy only from three or two neighbors, and therefore topple on aver-
age less often than sites in the interior, which leads to the formation of “patches” of sites
with similar energy. This patch formation proceeds from the boundaries inward [53, 29].
Due to the dynamics of the model, there occur avalanches of all sizes. The mechanism pro-
ducing these avalanches are different on different scales [29]. Large avalanches are mainly
patch-wide avalanches, while smaller avalanches occur between patches and constitute a
series of ‘foreshocks’ or ‘aftershocks’ [39]. Also, avalanches at different distances from
the boundaries have different sizes.

As already mentioned, there has been no agreement as to whether the model is indeed
critical for all values of the coupling or only in the conservative case [21, 22, 54]. In partic-
ular, detailed analytical studies [13, 24] for a random-neighbor version of the OFC model
concluded that only in the conservative limit the model becomes critical (this conclusion
was also shared by de Carvalho and Prado [21]). Furthermore, using a variety of argu-
ments and large-scale computer simulations, the most exhaustive analyses [10, 35, 85, 5]
coincide to the conclusion that the spatially extended version of the non-conservative OFC
model is not critical.

Thus, the state of the art is [9] that the OFC model is not truly scale-invariant except
for its conservative limit.

8.3.2 Natural time analysis of the Olami–Feder–Christensen model

8.3.2.1 Results in the transient and the stationary regime of the OFC model

We first present the results [68] for the transient regime of the OFC model using the quan-
tity f = ∑(Δ f ), which represents the total increase of zi j due to the external force loading
in each site. Since the loading rate is assumed uniform in time, f plays a role analogous
to that of the conventional time T , i.e., T ≡ f .
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Fig. 8.5 The conservative case
of the OFC model for various L
(= 50, 100, 200) and OBC: (a) κ1
versus the ‘time’ T ; (b) an excerpt
of (a) showing the transient regime;
(c) the avalanche size s (left scale)
and the mean energy ζ (right scale)
versus the ‘time’ T .
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We find that the conservative and non-conservative cases of the OFC model display a
qualitatively different behavior.

In the former case, as can be seen in Figs. 8.5(a),(b) which depict the evolution of
κ1 versus the ‘time’ T , the quantity κ1 exhibits a single transient consisting of an abrupt
decrease, from a value larger than κu down to κ1 ≈ 0 (for larger L see Fig. 8.6), and then κ1
gradually increases up to the value κu = 1/12. The latter value reflects that the system has
reached a steady state, thus the κ1 value approaches that of the “uniform” distribution. Note
that, as the number of avalanches taken into account in the κ1-calculation increases, the
contribution of the avalanches in the transient regime to the κ1 value becomes gradually
smaller compared with that of the avalanches in the stationary regime. In addition, we
note that the number of avalanches corresponding to the minimum value of κ1 was found
to scale with L2. This is reminiscent of the scaling found in Ref. [22] when plotting the
mean ‘energy’ per site ζ = ∑zi j/L2 versus the number of avalanches. The use of the
‘time’ T which is intensive and not extensive quantity, as does the number of avalanches,
simplifies the study of this transient. By investigating the κ1 versus T curves for various L
and examining their behavior close to κ1 ≈ 0, we find (see Fig. 8.6) that all these curves
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Fig. 8.6 The collapse of various κ1 vs T curves for the conservative case of the OFC model onto a single
curve upon varying the size of the system L = 500 (red), 800 (green), 1000 (blue). In the left vertical scale
we depict κ1, while in the right the avalanche size s for L = 500 (cyan) and L = 1000 (magenta). The
cyan (magenta) line corresponds to the maxima observed every 30 (100) avalanches. The thick straight
lines correspond to their exponential fits for T ∈ [0.08,0.11] and T ∈ [0.12,0.131] (note that T = 0.131
is approximately the value at which the linear increase of ζ ceases, see Fig. 8.5(c)), and exhibit a cross-
over during which the slope increases by one order of magnitude. The arrows show the values of κ1
corresponding to the points at which the two linear fits (of the same color) intersect. The horizontal black
line corresponds to κ1 = 0.070.
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collapse onto a single curve. Figure 8.5(c) depicts the size s of avalanches versus T along
with the mean energy ζ . We observe that the almost abrupt decrease of κ1 is due to the
drastic (exponential) increase by several orders of magnitude of the avalanche size s when
ζ approaches its steady state value. This exponential increase is better visualized in Fig. 8.6
where, for the sake of clarity, we depict for L = 500(1000) the maximum avalanche size
deduced every 30(100) avalanches versus T (cf. the two values 30 and 100 are considered
to account for the fact that the larger system exhibits more avalanches for the same increase
in T ). One can recognize roughly three linear regions (only two of which are fitted with
straight lines in Fig. 8.6, for the sake of clarity) in this log-linear plot (right scale). The first
one corresponds to the region T ∈ [0.08,0.11] during which the (maximum) avalanche size
increases by almost one order of magnitude (see the lower thick solid lines in Fig. 8.6).
The second stage corresponds to an almost abrupt later increase by almost five orders of
magnitude during T ∈ [0.12,0.131], which is linear in the log-linear plot, see the steeper
thick solid lines in Fig. 8.6. After T = 0.131, which is the value at which the initial linear
increase of ζ ceases, see Fig. 8.5(c), the (maximum) avalanche size does not exhibit any
obvious trend, thus making unnecessary the plot of the corresponding fits in Fig. 8.6.

The non-conservative case gives a more complicated feature, see Fig. 8.7, because the
aforementioned single transient of the conservative case now splits into two parts. Fig-
ures 8.7(a),(b) depict the evolution of κ1 versus T for α = 0.24 for various lattice sizes.
In Fig. 8.7(b), which is an excerpt of Fig. 8.7(a), an abrupt decrease of κ1 is observed
at T ≈ 0.3, accompanied by a peak of ζ (see Fig. 8.7(c)) centered at T ≈ 0.16, which
for large L does not depend on L. This κ1 decrease is followed by an increase – coming
from a decrease of s (see Fig. 8.7(c)) – and κ1 reaches a maximum which is subsequently
followed by a gradual decrease down to a minimum. This second minimum is observed
at T ≈ 1 for L = 50, T ≈ 5 for L = 100 and T ≈ 25 for L = 200, thus indicating that it
scales somewhat faster than L2, which deviates from the finite-size scaling found for the
single minimum of the transient in the conservative case. Note that the finite-size scal-
ing observed during the first part of the transient could be attributed to an almost one
order of magnitude exponential increase of s when T varies approximately in the range
[0.10,0.20] (see Fig. 8.7(c) and Fig. 8.8(a)) which is similar to the one observed in the
conservative case when T ∈ [0.08,0.11] (see Fig. 8.8(b)). The dissipation, however, does
not allow the emergence of the second much more significant exponential increase of s ob-
served in the conservative case (see the steeper thick solid lines in Fig. 8.6 and the insets
of Fig. 8.8). This might be the reason for which the simple finite-size scaling found for
T ∈ [0.10,0.20] ceases at later times T . The apparent similarity of the first transient stages
observed for T ∈ [0.08,0.11] and T ∈ [0.10,0.20] for the conservative (e.g. Fig. 8.8(b))
and non-conservative cases (e.g. Fig. 8.8(a)), respectively, could be understood as follows.
Figure 8.8 shows the T -dependence of the percentage Pvis (red solid lines) of the sites
“visited” by the OFC toppling rule, which ‘diffuses’ energy to the nearest neighbors. We
observe that in both cases a similar exponential increase starts when Pvis approaches the
value of the site percolation threshold pc (pc = 0.59274598(4); see Ref. [49]) for the two-
dimensional square lattice. Thus, when the “visited” sites begin to percolate through the
square lattice, the two cases exhibit a similar behavior irrespective of the energy conser-
vation. It seems that the interplay between the diffusive character of the OFC toppling
rule and the geometrical phenomenon of percolation is dominating at this stage. Recall
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Fig. 8.8 (a): The (blue) dotted
broken lines depict the maximum
avalanche size observed every 20
avalanches versus T for the non-
conservative case (α = 0.24) for
L = 200. The straight thick (blue)
dotted line shows a linear fit in the
log-linear plot for T ∈ [0.1,0.2].
(b) is the same as (a), but every
30 avalanches for the conservative
case (α = 0.25) for L = 500 and
T ∈ [0.08,0.11]. Using the right
scales in both (a) and (b), we also
show the percentage Pvis (red solid
lines) of the sites “visited” by the
OFC toppling rule versus T together
with the site-percolation threshold
[49] pc = 0.59274598(4) (green
dashed horizontal line) for the two-
dimensional square lattice. The
whole picture for T ∈ [0,0.25] is
reproduced in the insets.

that an “unvisited” site of low or moderate random initial ‘energy’ (zi j)0 will be toppled
if it receives, apart from the overall increase of ∑(ΔF)(= T ), enough energy to exceed
the threshold due to the energy that has diffusively arrived at the site from another site (of
possibly higher initial ‘energy’ (zi′ j′)0). During this stage it is reasonable to assume that
the energy δ z arriving at an “unvisited” site reaches it through a single path. Thus, the
amount δ z scales as αn, where n is the (presumably small) number of the sites in the path.
This amount is not significantly affected whether α = 0.24 or α = 0.25 and this is why the
conservative and the non-conservative cases resemble each other. Later, as the visited sites
cluster, the differences emerge dramatically: the energy loss in the non-conservative case
occurs at all points of the lattice (∝ L2) thus destroying finite-size scaling, whereas in the
conservative case the clusters formed do not alter the finite-size scaling since the energy
loss occurs only at the boundaries (∝ L) of the system. Returning, now to the κ1 behavior,
we observe the following:
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Fig. 8.9 Snapshot images of the strain field in the OFC model (L = 100 and a = 0.22, OBC), showing
that the coherent structure formation is accompanied by values of κ1 close to 0.070. Here only avalanches
with s > 10 are considered in natural time analysis and N corresponds to the number of such avalanches.
The grey scale (black to white) corresponds to the values of zi j (zero to unity).

After the second minimum, κ1 increases slowly up to the value κu. It is during this
increase that a prolonged period exists in which coherent domains of the zi j field (strain
field) are developed in the non-conservative case; see Fig. 8.9.

Recall that Figs. 8.5 and 8.7 have been drawn by considering all avalanches generated,
i.e, Qk = sk ≥ 1. Similar natural time analysis, however, can be performed upon adopting
an avalanche size threshold s0 (i.e., an avalanche of size s is considered as an event in
natural time only if s > s0).
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Selecting an appropriate threshold s0 relative to the edge length L, we can find κ1
values that scatter around 0.070 when the aforementioned coherent structures in the
strain field start to appear in the non-conservative case. Such an example is shown in
Fig. 8.9 in which a threshold s0 = 10 was selected for L = 100 and α = 0.22.

Recapitulating the aforementioned results in the transient regime, we see that when
comparing the conservative and non-conservative cases, they exhibit considerable differ-
ences on how they move away from the initial random state. The question is raised, how-
ever, of whether some of these differences can shed light on which of these behaviors is
critical and the other not. An answer can be provided on the basis of the following two key
differences related to the curves κ1 versus T and ζ versus T . First, let us consider the κ1
versus T behavior. In the conservative case, when studying the system for various system
sizes L and focusing on the behavior close to κ1 ≈ 0, we observe, as mentioned, that all
the κ1 vs T curves collapse onto a single curve (see Fig. 8.6).

In addition, in the conservative case, the value κ1 ≈ 0.070 (that occurs at T = 0.119)
is accompanied by an abrupt exponential increase of the avalanche size s, which is
indicative of the approach to a critical behavior; see the arrows in Fig. 8.6 that mark
the cross-over points between the aforementioned log-linear fits (thick straight lines)
of the (maximum) avalanche size.

It is this drastic increase of s – by several orders of magnitude – which leads to a κ1
decrease down to κ1 ≈ 0 and then κ1 gradually increases reaching the value κu = 1/12
in the stationary regime. On the other hand, in the non-conservative case the curves κ1
vs T obtained upon increasing the system size L, do not collapse onto a single curve (see
Fig. 8.7(b), where it is evident that the second part of the transient does not coincide
for different L). Second, let us now consider the ζ vs T behavior: In the conservative
case; Fig. 8.5(c) shows that the curves of the mean energy ζ upon studying different L
collapse onto a single one after the exponential increase of s (subsequent to the appearance
of κ1 ≈ 0.070 mentioned above). Such a collapse in the ζ vs T curves, however, is not
observed in the non-conservative case, see Fig. 8.7(b) (note that in this case, Fig. 8.7(c),
the s vs T curve exhibits an increase of only around one order of magnitude in contrast to
the several orders of magnitude increase of the conservative case mentioned above).

We now summarize the behavior in the transient regime. Only in the conservative
case when studying κ1 vs T and/or ζ vs T (recall that the quantities κ1, T and ζ
are intensive and not extensive) the curves obtained upon varying the system size L
collapse onto a single curve, as it should for a critical system. This is not observed
in the non-conservative case, meaning that a larger system needs larger T to reach the
‘steady-state’ ζ value. This points to (the absence of a thermodynamic limit, and hence
to) non-criticality.
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As for the stationary regime, for both the conservative and the non-conservative cases,
the κ1 value stabilizes at a value around κu = 1/12, see Figs. 8.5(a) and 8.7(a), which as
mentioned reflects that the system has reached a steady state.

8.3.3 The predictability of the OFC model based either on the mean energy or on

the interrelation between the κ1 value and the exponent of the inverse Omori

law

Here, in order to study the predictability of the OFC model which has been attributed to the
occurrence of ‘foreshocks’ (note that ‘aftershocks’ have been also observed) in the non-
conservative case of the model [39], we start with a prediction algorithm motivated by the
one used by Zhang et al. [88]. This algorithm was inspired by an earlier one proposed by
Keilis-Borok and coworkers [46, 45] and by Pepke and coworkers [62, 63]. In particular,
we consider the mean ‘energy’ ζ which is a function of the ‘time’ T . For this function,
the time increased probability (TIP) is turned on when ζ > ζc, where ζc is a given thresh-
old in the prediction. If the size s of the next avalanche is greater than a target avalanche
size threshold sc, we have a successful prediction. For binary predictions, the prediction of
events becomes a classification task with two type of errors: missing an event and giving a
false alarm. We therefore choose, in a similar fashion as in § 6.4.2, the receiver operating
characteristics (ROC) graph [30] to depict here the prediction quality. As an example, the
ROC graph for L = 100 and K = 2 is shown in Fig. 8.10, where the various curves corre-
spond to various values of sc increasing from the bottom to the top. Recalling from § 6.4.2
that the diagonal line in such a plot corresponds to random predictions, and the points in
each curve lie above it (meaningful predictions), we conclude that the precursory function
ζ results in meaningful prediction which becomes very robust for larger values of sc. We
note, however, that the selection of the mean energy ζ as a precursory function suffers
from the drawback that in the case of earthquakes the measurement of this quantity is dif-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
ru

e 
P

os
iti

ve
 R

at
e 

(h
it 

ra
te

)

False Positive Rate (false alarm rate)

Fig. 8.10 Receiver operating characteristics
graph for the OFC model with L = 100 and
K = 2 when using the mean energy ζ as
a predictor: the true positive rate (hit rate)
versus the false positive rate (false alarm
rate) for various sc values increasing from
the bottom (sc = 361) to the top (sc = 1,938)
with constant steps.
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ficult in practice and indirect (what can be measured by some techniques is the increment
of stress or strain not the absolute values themselves [88]).

The occurrence of ‘foreshocks’ ( f ) as well as ‘aftershocks’ (a) in the OFC model has
been exhaustively studied by Helmstetter et al. [36]. Here, we solely focus on the former
(foreshocks) that are described by the so-called inverse Omori law [38, 36] which states
that the average increase of seismicity observed at the time t before the occurrence time tc
of a mainshock is given by

Nf (t) =
Kf

(tc− t + c)p f
(8.2)

where the subscript “ f ” refers to the foreshocks and the quantities Kf and c are taken
constants. The inverse Omori exponent p f is usually close to or slightly smaller than the
corresponding exponent pa of the usual Omori law for aftershocks [37] (see also Section
6.1). Helmstetter et al. [36] defined as a “mainshock” (see their definition d = 0) any
earthquake of magnitude m which was not preceded or followed by a larger earthquake in
a time window of length T (m) equal to 1% of the average return time of an earthquake
of magnitude m. Foreshocks are then selected as all earthquakes occurring within the time
T (m) before a mainshock. The value of p f has been found [37] by averaging the seismicity
rate before a large number of mainshocks, because there are huge fluctuations of the rate
of seismicity before individual mainshocks. Helmstetter et al. [36] generated synthetic
catalogs with the OFC model and determined the p f value using various lattice sizes L
and K values, see their table I. They studied the cases for K = 0.5, 1, 2 and 4, i.e., for bulk
α = 0.222, 0.2, 0.167 and 0.125, and among the results presented in their table I, we only
focus here on the larger lattice sizes, i.e., L = 1024 and L = 2048. The average value of
these p f exponents results equal to p f = 0.72, if we consider all the relevant p f values that
correspond [36] to b values ranging from b = 0.67 to b = 0.92. If we restrict ourselves,
to those p f values corresponding to more reasonable values of b, e.g., b ≥ 0.76, we find
that the average p f value increases somewhat to p f = 0.78. These average p f values (0.72
and 0.78) suggest that p f may be considered to be around p f ≈ 0.75, which is just the p f
value given in their Fig. 2 for a synthetic catalog generated [36] with L = 2048 and K = 2.
The power law form of the inverse Omori law, i.e., Eq. (8.2), implies that in natural time

p(χ) =
1− p f

(1−χ)p f
(8.3)

which reflects an increase of foreshocks as we approach the mainshock at χ = 1. Equation
(8.3), when substituted into Eq. (2.97) for the estimation of the variance κ1 of natural time,
leads to

κ1 =
2

(2− p f )(3− p f )
− 1

(2− p f )2 (8.4)

The κ1 values determined from Eq. (8.4) are plotted versus p f in Fig. 8.11. At the same
plot, the two κ1 values that correspond to the aforementioned average p f values (i.e.,
p f = 0.72 and p f = 0.78) are marked, which scatter around κ1 ≈ 0.070. This κ1value is
comparable with the one (κ1≈ 0.070) determined when analyzing in natural time the small
seismic events that occur after the initiation of a SES activity and before the occurrence of
a mainshock (see Chapter 7). In other words:
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The ‘foreshocks’ associated with the non-conservative OFC model give on the average
a κ1 value which is more or less comparable with that (κ1 ≈ 0.070) obtained from the
analysis of the real seismic data that precede mainshocks.
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Fig. 8.11 The values of κ1 vs
the power law exponent p f
according to Eq. (8.4). The
two points marked correspond
to the two average p f values
discussed in the text.

We note, however, that this property of κ1 is difficult to be used for the prediction of
the avalanches in the OFC model in a way similar to that used for ζ . The reason is that
the mean energy ζ solely depends on the current state of (the zi j field of) the system,
whereas κ1 reflects the history of the system as it evolves starting from some (initial) state.
Thus, the application of κ1 for prediction purposes in the OFC model requires the real-time
identification of the initiation of the foreshock time series. The latter is extremely difficult.
Recall that in the field experiments, it is the initiation of the SES activity which signifies
that the stress has reached a critical value (see § 1.6.2) in the preparatory volume; then, the
identification of a “critical” time series, by employing the method explained in Chapter 7,
allows the determination of the occurrence time of the impending strong earthquake.

8.3.4 The predictability of the OFC model on the basis of the change ΔS of the

entropy in natural time under time reversal

Here, we focus on what happens before the occurrence time T0 of a large avalanche during
the stationary regime of the non-conservative case of the OFC model by employing the
change ΔS of the entropy in natural time under time reversal (Section 3.5). In particular,
for each large avalanche, we study the time evolution of ΔSl (see § 3.5.1) obtained from
the preceding avalanches time series. Following the study of foreshocks in Ref. [36] and
in view of the fact that, as mentioned in § 8.3.3, there are huge fluctuations before in-
dividual large avalanches, our results have been found by averaging the values obtained
before an appreciably high number of large avalanches. For example, Fig. 8.12 depicts the
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results for the average change ΔS (left scale) of the entropy in natural time under time
reversal and the average value of the mean energy ζ (right scale) obtained by using the
last 1,000 avalanches (irrespective of their size) before large avalanches of size s ≥ 100
(red), 1,000 (green) and 2,000 (blue) in the non-conservative OFC model with L = 100
and K = 2. In the horizontal axis, the time is measured from the occurrence time T0 of
the large avalanche. We find that ΔSl minimizes (note that. |ΔSl | maximizes) before the
impending large avalanche, thus signaling the imminent major event. The negative values
of ΔS reflect, through Eq. (3.79), that the avalanche size tends to increase as the time ap-
proaches that of the large avalanche, “mainshock” (due to the foreshocks, mentioned in the
previous subsection, that start to become discernable from the background “seismicity”).
Furthermore, note that ΔS changes sign, becoming negative, when the parameter ζ almost
starts to increase (recall that the quantity ζ , as shown in § 8.3.3, can be used as a predictor
for the large avalanches).
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Fig. 8.12 Results from averaging the last 1,000 events before a large avalanche (s ≥ 100, 1,000, 2,000
occurring at T0) in the OFC model with L = 100 and K = 2: the change ΔS (left scale, thick lines) of the
entropy in natural time under time reversal and the mean energy ζ (right scale, thin lines) as a function of
the ‘time’ (T0−T ) to the large avalanche. Note that ΔS minimizes before the occurrence time T0 of the
large avalanche, and changes sign when ζ almost starts to increase.

Proceeding one step further, Fig. 8.13 depicts the ROC graph when using ΔS as a pre-
dictor. In this calculation, ΔS was determined as the average value of ΔSl using the (past)
events that occurred within the time period Tnow−T = 0.05 to 0.2, where Tnow stands for
the present time. This ΔS is used as a predictor for the size of the next avalanche (in the
sense described above in § 8.3.3; see also § 6.4.2). The results (red curves) lie above the
diagonal and are statistically significant when compared with the cyan curves that cor-
respond to the extrema of 100 trials obtained when performing the same calculation by
using randomly shuffled ΔS values. These results are certainly less impressive than those
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Fig. 8.13 Receiver operating char-
acteristics graph (red) for the non-
conservative OFC model with L = 100
and K = 2 when using ΔS as a pre-
dictor (i.e., the TIP is on when ΔS
becomes less than some threshold):
The true positive rate (hit rate) ver-
sus the false positive rate (false alarm
rate) for various sc values increasing
from the bottom (sc = 100) to the
top (sc = 2,500) with constant steps.
The cyan curves depict the extrema
obtained when repeating 100 times
the same calculation using a random
predictor (see the text).

in Fig. 8.10, but we emphasize that the predictor here is solely based on the sizes of the
past avalanches.

8.3.5 Summary of the results

The main conclusions of the natural time analysis of the time series of avalanches in the
OFC model could be summarized as follows.

First, concerning the transient period: the behavior is different depending on whether
the model is conservative (α = 0.25) or non-conservative (α < 0.25). In the former case,
there is a single transient which mainly consists of an abrupt decrease of the variance κ1,
down to a minimum κ1 ≈ 0 and then a gradual increase up to the value κu = 1/12 of the
“uniform” distribution.

Before this minimum, the κ1 vs T curves deduced for various system sizes (L ≥ 500)
collapse onto a single curve and when the κ1 value reaches κ1 = 0.070 (at around
T = 0.119), an abrupt exponential increase of the avalanche size s occurs signaling the
approach to the critical behavior.

It is this drastic increase of s which decreases the κ1 value to κ1 ≈ 0 (the number of
the generated avalanches corresponding to the minimum value κ1 ≈ 0 is found to scale
with L2). On the other hand, in the non-conservative case, the transient period splits into
two parts. In the first part, the number of avalanches corresponding to the minimum κ1
value does scale with L2, but in the second part it increases much more quickly. During the
second part, coherent domains of the strain field gradually develop. This coherent structure
formation is accompanied by κ1 values close to 0.070.
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Second, the resulting power law exponent p f of the inverse Omori law for the ‘fore-
shocks’ identified in the non-conservative cases for large lattice sizes (L ≥ 1024), is
shown to correspond to κ1 values scattered around κ1 ≈ 0.070.

Third, there exists a nonzero change ΔS of the entropy in natural time under time
reversal, thus signaling the breaking of the time symmetry and reflecting predictability
in the OFC model.

8.4 Explanation of κ1 = 0.070 for critical systems on the basis of the

dynamic scaling hypothesis

We deal with time series of signals emitted from complex dynamical systems, i.e., systems
consisting of interacting components that evolve with time. In natural time analysis, when
the system is in thermodynamic equilibrium, it should produce stationary time series with
probabilities pk independent of χk. The situation is drastically different when the system is
in non-equilibrium state. When the system approaches the critical state, clusters of the new
phase are formed by enhanced fluctuations and their size increases as does the correlation
length. But this happens not instantly, because long-range correlations develop gradually
leading to the so-called dynamic phase transition (critical transition) (see § 1.5.2). Thus,
the time series emitted in such a non-equilibrium process will be non-stationary and pk, or
the corresponding probability density function p(χ) will no longer be independent of χ .

Using p(χ), the normalized power spectrum of Eq. (2.31) can be re-written as

Π(ω) =
∫ 1

0

∫ 1

0
p(χ)p(χ ′) cos

[
ω(χ−χ ′)] dχ dχ ′ (8.5)

A Taylor expansion of Eq. (8.5) around ω → 0 leads to the value

κ1 =
1
2

∫ 1

0

∫ 1

0
p(χ)p(χ ′)

(
χ−χ ′)2 dχ dχ ′ (8.6)

Since p(χ) is the normalized energy released at χ , for a dynamical system at criticality,
it also characterizes the way energy is released during the evolution of the dynamic transi-
tion. Energy release may be caused by some existing external field coupled with the newly
forming phase. The interaction energy density may comprise several terms the most sig-
nificant of which is usually expected to be of the dipole type; for example the interaction
Hamiltonian density hint = −E ·p (hint = −B ·m) in the case of an electric E (magnetic
B) external field, where p (m) stands for the electric (magnetic) dipole moment density of
the new phase. This interaction energy is proportional to the linear dimension of the newly
forming phase (the system volume is kept constant) and hence it is proportional to the cor-
relation length ξ (this will be proven below). According to the dynamic scaling hypothesis
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(see Refs. [11, 73] and references therein), already explained in § 1.5.3, the time-dependent
correlation length ξ at dynamic phase transitions scales as ξ ∝ t

1
z , where z is the so-called

dynamic critical exponent. The time t is usually measured in Monte Carlo steps, i.e., using
the internal clock of the system. Assuming that the dynamic scaling hypothesis should also
hold for p(χ) at criticality, we expect [81]:

p(χ) = Ncχ
1
ζ (8.7)

where ζ is another dynamic exponent (not to be confused with the mean energy ζ of
Section 8.3), and Nc a normalization factor to make

∫ 1
0 p(χ) dχ = 1. In fact, Eq. (8.7)

is plausible from the definition of pk, i.e., it represents the normalized energy emitted
during the k-th event and the energy at criticality has a power law distribution. By inserting
Eq. (8.7) into Eq. (8.6), we obtain:

κ1 =
1+ζ
1+3ζ

−
(

1+ζ
1+2ζ

)2

(8.8)

Substituting the value of ζ by the dynamic critical exponent z for various universality
classes of critical systems [58], we can obtain the values of κ1 depicted in Fig. 8.14. Notice
that for most universality classes, z varies in a region from z = 2 to z = 2.4 and thus (see
Fig. 8.14) the value of κ1 obtained by Eq. (8.8) are in the range 0.068 to 0.071. Especially
for the two-dimensional (2D) Ising model, which is qualitatively similar to the process of
SES emission (see § 8.4.1), one has z = 2.165 (see Ref. [42]) leading through Eq. (8.8)
to κ1 = 0.0697 ≈ 0.070. These results seem to justify the substitution of ζ by z, strongly
suggesting that they are the same dynamic exponent. This is not unreasonable since, in
reality, the Monte Carlo steps used in the computation of z actually correspond to natural
time steps.

Explanation of the statement that the interaction energy is proportional to the linear
dimension of the newly formed phase. Following § 1.5.3, in the non-equilibrium scaling
state, the equal-time correlation function C(r, t) (see Eq. (1.37)) of an order parameter field
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φ(x, t) in the space of D-dimension has the form [12] given by Eq. (1.38) that contains the
usual critical exponent η .

It was stated above that the most significant part of the energy release is expected to be
of the dipole type, caused by the interaction Hamiltonian Hint =−E ·P(=

∫
V hint dx), and

that this interaction energy is proportional to the linear dimension of the newly forming
phase. This statement, following a suggestion of Professor Hiroshi Ezawa, can be shown
as follows. The dipole moment P is given by the integral of its density p

P =
∫

V
p(x, t) dx. (8.9)

Assuming p(x, t) fluctuating under a given electric field E, one focuses on the magnitude
P, considering that

P2 =
∫

dx

∫
dx′p(x, t) ·p(x′, t),

which, on average, is related to the correlation function (see Eq. (1.37)) by

〈
P2〉 =

∫
dx

∫
dx′
〈
p(x, t) ·p(x′, t)

〉
=
∫

dx

∫
dr
〈
p(x, t) ·p(x+ r, t)

〉
= D

∫
V

dx

∫ R

0
SD rD−1C(r, t) dr, (8.10)

where V is D-dimensional and SD is the surface area of the unit sphere in D dimensions,
and C(r, t) is given by Eq. (1.38), so that

〈
P2〉 = DV SD

∫ R

0

c
rη−1 f

(
r
ξ (t)

)
dr

= DV SD
c

ξ (t)η−2

∫ ∞

0

c
sη−1 f (s) ds ∝

1
ξ (t)η−2 = ξ (t)2−η , (8.11)

irrespective of the dimensionality D of V , where we have changed the variable of integra-
tion from r to s = r/ξ (t) assuming V →∞. Since η ≈ 0 irrespective of the dimensionality
D of V (e.g., see Ref. [8]), Eq. (8.11) leads to√

〈P2〉 ∝ ξ (t), (8.12)

which gives a linear growth of P =
√
〈P2〉 with ξ (t).

8.4.1 Natural time analysis of the 2D Ising model quenched close to, but below, Tc.

The qualitative similarity to the original SES generation model

Here we treat the case of quenching a ferromagnetic Ising system from a high temperature
state to a temperature close to (but below) the critical temperature. This case is studied
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here since it is qualitatively similar to the pressure stimulated currents (PSC) generation
mechanism of SES [78] (see § 1.6.2) in the following sense. In the focal region of a future
earthquake, which contains ionic materials, the stress gradually changes before failure. In
ionic solids containing aliovalent impurities, extrinsic defects are formed due to charge
compensation, which are attracted by nearby aliovalent impurities, thus forming electric
dipoles that can change their orientation in space through a defect migration. Stress vari-
ations may decrease the relaxation time of these dipoles and when the pressure, or the
stress in general, reaches a critical value a cooperative orientation of these electric dipoles
occurs, which results in the emission of a transient electric signal, which constitutes the
SES. The amount of energy released during this relaxation is proportional to the electric
dipole moment. This phenomenon may be considered as qualitatively similar to a rapid
quench of a ferromagnetic Ising system from a high temperature state (corresponding to
the initial random orientations of the magnetic dipoles) to a temperature close and below
the critical temperature Tc. Of course, in the case of PSC and hence for the SES, it is not
the temperature that changes, but it is the pressure. Pressure variations modify the coupling
between the dipoles so that effectively the critical state is reached.

The calculations have been carried out as follows. A 2D Ising system (with Hamilto-
nian H =−J ∑〈i j〉 sis j, where si =±1 and J stands for the coupling constant between the
nearest neighbors si and s j) in a square lattice of linear size L (with periodic boundary con-
ditions) was prepared in a high-temperature state and then instantaneously quenched to a
temperature (just) below Tc. The evolution of the magnetization per spin Mk = ∑si/L2 was
simulated by the standard Metropolis algorithm and studied as a function of the number k
of Monte Carlo steps (MCS). The latter was set to zero when the system is quenched at a
temperature close but below Tc, and increased by 1 after each Monte Carlo step, i.e., after
all the spins of the system have been renewed following the standard Metropolis algorithm.
For the purpose of the present simulation, k runs from k =1 to 104 MCS. Figure 8.15(a)
depicts the ensemble average 〈|Mk|〉 of |Mk| obtained from 103 replicas for various sizes
L = 100, 200, 400 and 1,000. It is observed in the figure that, due to the well-known phe-
nomenon of critical slowing down [48], systems of larger linear size need larger number
of MCS to finally reach the equilibrium magnetization. We now present in Fig. 8.15(b) a
log-log plot of the values shown in Fig. 8.15(a). This reveals that, practically independent
of L, the dynamics of 〈|Mk|〉 is a power law: 〈|Mk|〉 ∝ k1/z with the dynamic exponent z
very close to [42] z =2.165 (see the thick cyan straight line in Fig. 8.15(b)).

This dynamic model was then analyzed in natural time by setting Qk = |Mk|. Figure
8.15(c), which depicts the results for κ1 as a function of the number k of Monte Carlo
steps that followed the instantaneous quench, clearly shows that κ1 ≈ 0.070.

This result coincides with the one obtained above (i.e., κ1 = 0.0697) in § 8.4, when
substituting in Eq. (8.8) ζ by the aforementioned value z = 2.165.
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Fig. 8.15 (a), (b) Evolution
of 〈|Mk|〉 as a function of the
number k of MCS, after an
abrupt quench close but below
Tc, up to k = 104. The thick
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The results were found by 103
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L. Taken from Ref. [81].
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8.4.2 The original Bak–Tang–Wiesenfeld sandpile SOC model and its fully

deterministic version. Natural time analysis

Here, we come back to the original archetypal “sandpile” automaton described in Ref. [6]
(see also Section 8.1), hereafter called the Bak–Tang–Wiesenfeld (BTW) model. Let us
consider the D-dimensional BTW model on a hypercubic lattice of linear size L in which
integer variables zi ≥ 0 represent units of sand. We perturb the system by adding a unit of
sand at a randomly chosen site zi→ zi +1. If the corresponding zi exceeds the critical value
2D, the site is called unstable; an unstable site relaxes (topples): its zi value is decreased
by 2D, and the amount of units of sand of its 2D nearest neighbors (nn) is increased by
one:

zi → zi−2D (8.13)

znn → znn +1 (8.14)

Thus, the neighboring sites may be activated and an avalanche of relaxations may proceed.
This avalanche stops when all sites are stable again. A relaxation event is characterized by
its size s (total number of topplings), area a (number of distinct toppled sites), duration
t (number of parallel update steps until stable configuration is reached), and its radius
r (e.g., the maximal distance between the original and a toppled site). According to the
basic hypothesis of Bak et al. [6], in the SOC state the probability distributions of values
x = s,a, t,r exhibit power law behavior

Px(x) ∝ x−τx (8.15)

with x ∈ {s,a, t,r}. According to Ref. [47], Eq. (8.15) might not be in general true for
complete avalanches but it does hold for waves of topplings. Specifically, waves represent
relaxation processes in which any site topples at most once and hence do not contain
multiple toppling events in the origin of the avalanche (note that the latter, for D ≥ 4,
are so rare that they can be neglected). Ktitarev et al. [47] proved analytically that the
upper critical dimension of the BTW model is Du = 4, showing that previously observed
deviations from mean field behavior at D = 4 are due to logarithmic corrections. For this
case, D = 4, the scaling behavior of waves and avalanches is characterized by the same
exponents and scaling functions.

In order to proceed to numerical simulations, we study a fully deterministic version of
the BTW sandpile model, where the random site seeding is replaced by regular seeding at
the central site of the hypercubic lattice, suggested by Wiesenfeld et al. [84]. They showed
that despite this strict determinism, the system for D = 2 evolves into a SOC state. The
natural time analysis (with initial condition zi = 0) of the time series of avalanches lead to
κ1 values plotted in Fig. 8.16 for D = 2 to D = 7. Focusing on the aforementioned upper
critical dimension (hence corresponding to the mean field case) D = 4, we see that the κ1
value fluctuates close to 0.070.

The κ1 values for various D plotted in Fig. 8.16 fluctuate around the value obtained
from Eq. (8.8) for ζ = D/2, i.e., 0.056 for D = 2, 0.064 for D = 3, 0.069 for D = 4, 0.071
for D = 5, 0.073 for D = 6 and 0.075 for D = 7. This result can be understood on the
following grounds.
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Fig. 8.16 The evolution of κ1 values versus the number of consecutive avalanches for various D values,
i.e., for D = 2 to D = 7, for the centrally fed sandpile. The initial condition is zi = 0. For the sake of
comparison, the broken horizontal line shows the value of κ1 = 0.070. Taken from Ref. [81].

Since an avalanche occurs every 2D seeds are fed into the central site, the number of
avalanches is equal to the number of seeds n fed divided by 2D. Natural time increases by
1/N when an avalanche occurs, thus we have

χk =
k
N

, k =
[ n

2D

]
. (8.16)

where the brackets [·] denote the integer part. The local conservation of the units of sand
(i.e., sand particles can move only to nearest neighbors sites) expressed in Eqs. (8.13) and
(8.14), leads to the fact that the expected number of toppling Gi j at site j, upon adding a
particle at site i is characterized by [27]

Gi j ∝ r2−D
i j , (8.17)

where ri j is the distance between the sites i and j. Since we deal with a centrally fed
sandpile, the total expected number of topplings 〈s〉 is found by integrating Eq. (8.17) in
the hypersphere of radius l of the sandpile:

〈s〉 ∝
∫ l

0
G0 jSDrD−1

0 j dr0 j ∝
∫ l

0
r0 j dr0 j ∝ l2. (8.18)

With regard to l, recent mathematical studies [31] show that the linear dimension of the
formed sandpile grows as

l ∝ n1/D (8.19)
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Inserting Eqs. (8.16) and (8.19) into Eq. (8.18), we obtain 〈s〉 ∝ χ2/D which reflects (cf.
Eq. (8.7)) that ζ = D/2.

Notice that for the upper critical dimension, we have D = Du = 4, and hence ζ = 2
(which is equal to the mean field dynamic exponent z = 2, e.g. see Ref. [47]) which, in
view of Eq. (8.8), leads to κ1 = 0.0686(≈ 0.070).

The fulfillment of the condition κ1 = 0.070 could be alternatively seen as follows when
considering some points discussed in Ref. [17]: The relaxation of a site can induce a num-
ber of other sites to relax in turn if, because of the particles received, they exceed the
threshold. From the moment a site topples, the addition of particles stops until all sites
have relaxed (zi < 2D for all i, see Eq. (8.13)). This condition assures that the driving force
is ‘slow’ being the driving time exceedingly longer than the characteristic time of toppling
instances. The sequence of toppling events during this interval constitutes an avalanche.
For conservative models, the number of transferred particles equals the number of particles
lost by the relaxing site and dissipation occurs only at boundary, from which particles can
escape the system. Under these conditions the system reaches a stationary state character-
ized by a sequence of avalanches. Since the SOC algorithm is implemented basically as a
cellular automaton, the cluster growth is intrinsically of diffusive nature.

It is this diffusive nature of the cluster growth, which seems to lie behind the afore-
mentioned result κ1 = 0.070 in SOC models.

8.4.3 Natural time analysis of the mean field case

As mentioned above in Section 8.4 for most universality classes, z varies in a region from
z = 2 to z = 2.4 and thus (see Fig. 8.14) the values of κ1 obtained by Eq. (8.8) are in the
range 0.068 to 0.071. Moreover, in the mean field case, e.g. of the growing centrally fed
sandpile in § 8.4.2, we have

ζ = 2. (8.20)

By inserting Eq. (8.20) into Eq. (8.7), we get

p(χ) =
3
2
√
χ (8.21)

so that
∫ 1

0 p(χ) dχ = 1. Upon using Eq. (8.21) for the estimation of the variance κ1 of
natural time (see Eq. (2.37))

κ1 =
∫ 1

0
χ2 p(χ) dχ−

[∫ 1

0
χ p(χ) dχ

]2

, (8.22)
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we find and the corresponding κ1 value is κ1 = 0.0686. This value almost coincides with
the value κ1 ≈ 0.070 found (see Chapter 7) from the natural time analysis of seismicity
before large EQs.

The stability of the result κ1 ≈ 0.070 if a single realization of the process is available.
The results of this investigation, depicted in Fig. 8.17, show the following:

Fig. 8.17 The probability dis-
tribution of κ1 obtained after
randomly selecting M = 103

(red) or M = 104(green) sub-
series from a single realization
of the process described by
Eq. (8.21) using exponentially
distributed Qk (see the text).
Both distributions are peaked
close to κ1 = 0.070. Once the
events of the original realiza-
tion are shuffled randomly and
then M = 103 subseries are
analyzed, the peak of the new
distribution, shown in cyan, is
displaced to the right.

Even when using a single realization of the process described by Eq. (8.21) with Qk
exponentially distributed, i.e., Qk = rk

√
k where rk are exponential p.i.i.d. random

variables, and select random subseries of the process to be analyzed in natural time,
the pdf deduced for κ1 maximizes at κ1 ≈ 0.070.

This is reminiscent of the updated procedure used in § 7.1.2. This so, because in that
procedure we considered the time series of seismicity that occurs after the initiation of
the SES activity in the area candidate to suffer a mainshock and then used the subseries
corresponding to the seismicity in all possible subareas of the candidate area to construct
the pdf of the resulting κ1 values. It was then found that this pdf exhibits a maximum at
κ1 ≈ 0.070 when approaching the occurrence time of the mainshock.

8.5 Natural time analysis of time series of avalanches observed in

laboratory experiments

8.5.1 Time series of avalanches observed in ricepiles

Here, we consider the well-controlled experiment on three-dimensional ricepiles by Aegerter
et al. [2, 1]. Since a genuine understanding of the nature of SOC can be gained only when
the approach to the critical state is understood, Aegerter et al. studied the evolution of
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a three-dimensional pile of rice starting well away from the critical state and getting pro-
gressively closer. They found [1] that their experimental results are satisfactorily described
by well-founded concepts proposed [60] in the context of extremal dynamics. In the latter
context, Paczuski et al. [60] have derived an equation (predicting power law behavior),
which they call the gap equation, describing the approach of the system to the critical
state. Aegerter et al. [2] directly studied a measure of this gap given by the maximal local
slope of the ricepile and hence could test various scaling relations of extremal dynamics.
Furthermore, Aegerter et al. studied the evolution of avalanche sizes, as well as that of the
avalanche distributions, which can be used as further tests of extremal dynamics aspects.
Here we solely focus on the way the size ΔV of avalanches grow with time in the transient
regime, which was measured directly.

Figure 8.18(a) depicts the time evolution of ΔV obtained in one experiment of Ref. [2].
Upon analyzing these data in natural time when assuming Qk = ΔVk, we find the results
shown in Fig. 8.18(b).
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Fig. 8.18 (a): The evolution of the
avalanche sizes, in the transient regime,
for one of the experiments of Ref. [2]
on ricepiles. (b): The results of the
variance κ1 (dotted) and the entropy S
(solid) as they evolve event by event,
when the data of (a) are analyzed in
natural time. Taken from Ref. [70].
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A careful inspection of these results in ricepiles reveals that actually at later times
(N ≥ 350) the κ1 value scatters in the region around 0.070(10) (as well as that S ≈
0.070(10) < Su).

We clarify that upon shuffling the data, which reflects that the values are put into random
order and hence all correlations (memory) are destroyed [80] (see also § 2.5.2.1), we find
that, for N = 550, Prob[κ1 ≤ 0.070] < 2% (and Prob[S≤ 0.070] < 0.1%). This leads to the
following conclusion:

The sequential order of the avalanches captured by the natural time analysis is of
prominent importance [70] for establishing the SOC state and constitutes the basis for
the observation of the result κ1 ≈ 0.070.

8.5.2 Time series of magnetic flux avalanches observed in high Tc superconductors.

A generalized stochastic directed SOC model

The archetypal example of SOC is, as mentioned (Section 8.1 and § 8.2.2), the growing of
a sandpile [6, 7]. Furthermore, the critical state in superconductors has been proposed (e.g.
see Ref. [87]) to be a SOC system. The strong analogy between these two systems, i.e.,
sandpiles and superconductors, as first pointed out by de Gennes (see p.83 of Ref. [34]),
could be in principle understood as follows.

When a type II superconductor is put in a slowly ramped external field, magnetic vor-
tices start to penetrate the sample from its edges. These vortices get pinned by crystallo-
graphic defects (e.g., dislocations [78]), leading to the build-up of a flux gradient which
is only marginally stable in a similar fashion as is the slope in a slowly growing sandpile.
Hence, it can happen that small changes in the applied field can result in large rearrange-
ments of flux in the sample, known as flux avalanches [15, 4, 83].

We now proceed to the natural time analysis of the time series of the magnetic flux
avalanches measured in a thin film of YBa2Cu3O7−x. These measurements have been made
by Aegerter et al. [3]. They studied the local changes in the magnetic flux over the whole
central area of a sample via a highly sensitive magneto-optic setup, which allows that flux
changes corresponding to 2.5Φ0 can be resolved where Φ0 = h/2e is the magnetic flux
quantum (the flux of a single vortex). The pinning sites in the sample were uniformly dis-
tributed and consisted mostly of screw dislocations acting as point pins. For cuprate high
Tc superconductors such as YBa2Cu3O7−x the coherence lengths are in the order of tens
of Å, and thus atomic-scale structural inhomogeneities such as point defects and columnar
defects can play an important role in flux-line pinning. (In these superconductors, Su et
al. [77] found that Schottky defects formation energy increases almost linearly with BΩ ,
where B is the isothermal bulk modulus and Ω the mean volume per atom, in striking
agreement with an early model (termed the cBΩ model) proposed [79, 78] by one of the
present authors.)
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The data of Aegerter et al. [3] come from experimental runs consisting of 140 time
steps. The size and shape of the avalanches was determined from the difference ΔBz(x,y)
of two consecutive images (50 μT increase between images), where Bz(x,y) denotes the
flux density at the surface of the sample measured. From these differences, the average
increase in the applied magnetic field due to the stepwise field sweep, was subtracted in
order to solely study the avalanches. Once the incremental field difference is determined,
the size of an avalanche, corresponding to the displaced amount of flux ΔΦ , is estimated
from ΔBz by integrating over the whole area ΔΦ = 1

2
∫
ΔBz(x,y) dx dy.
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Fig. 8.19 (a): The time evolution of
the magnetic flux in YBa2Cu3O7−x
inside the sample over the 1st run of
fig.2 of Ref. [3]. (b): The results of the
variance κ1 (dotted) and the entropy S
(solid) as they evolve event by event,
when the data of (a) are analyzed in
the natural time-domain. Taken from
Ref. [70].

The time series of the avalanche behavior in a typical experiment of Aegerter et al.
[3] is depicted in Fig. 8.19(a), which shows that the evolution of the magnetic flux inside
the sample is intermittent with occasional large jumps. Figure 8.19(b) depicts the results
obtained [70] when the data of Fig. 8.19(a) are analyzed in natural time by assuming
Qk = ΔΦk.

An inspection of the latter figure shows that for N = 140 the κ1 value is close to
0.070(5) (as well as that the S value is around 0.085, i.e., smaller than Su).
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The results obtained above have been compared [70] with those deduced from the nat-
ural time analysis of the numerical results from a generalized stochastic SOC model sug-
gested by Carbone and Stanley [17]. It consists of a family of stochastic directed clusters
generated by fractional Brownian paths with different correlation properties. Carbone and
Stanley showed that the cluster area, length and duration exhibit the characteristic scaling
behavior of SOC clusters. This model is considered [17] to be a generalized stochastic
model, including the Dhar-Ramaswamy [28] directed sandpile model (which can be de-
scribed assuming that the system is driven by particles added at the top layer i = 0 and
removed from the bottom layer i = L) and the stochastic models as particular cases.

Carbone and Stanley [17] consider a generalized Brownian walk y(i) defined by
y(i)≡ ∑i−1

k=0 ξk, where the steps ξk are taken from a discrete fGn (see § 1.5.1.1). The mean
square displacement of y(i) scales with Δ i as 〈y(i)2〉 ∝ (Δ i)2H , where H is the Hurst ex-
ponent (0 < H < 1). The moving average function ỹn(i) is

ỹn(i)≡ 1
n

n−1

∑
k=0

y(i− k), (8.23)

which is a linear operator whose output is still a generalized Brownian motion, but now
with the high-frequency components of the signals averaged out [16] according to the
window amplitude n. In order to characterize the clusters � corresponding to the regions
bounded by y(i) and ỹn(i) in terms of the characteristic exponents of SOC systems, they
define – for each cluster – the cluster area s j

s j ≡
ic( j+1)

∑
i=ic( j)

|y(i)− ỹn(i)|Δ i, (8.24)

where the index j refers to each cluster. The symbols ic( j) and ic( j +1) stand [17] for the
values of the index i corresponding to two subsequent intersections of the “lines” defined
by ỹn(i) and y(i), and Δ i is the elementary time interval corresponding to each step of
the random walker. Then, the pdf P(s) scales [17] as P(s) ∝ s−τ with τ = 2/(1 + H).
Considering that the exponent of the avalanche distribution reported from the data analysis
of Aegerter et al. [3] is around τ = 1.3, we find that it corresponds to H ≈ 0.5. Thus, in
Fig. 8.20, we plot P(s) versus s calculated for various n values for H = 0.5.

We now turn to the comparison of the results of this model with the aforemen-
tioned experimental results in YBa2Cu3O7−x films. Taking into account that the maximum
avalanche size smax detected by Aegerter et al. [3] is of the order of 104, an inspection of
Fig. 8.20 leads to n ≈ 200. In Fig. 8.21, we plot with solid lines the pdfs of κ1 and S that
have been obtained from the model of Ref. [17] for H = 0.5, n = 200 and N = 140. An
inspection of this figure shows that:

The maxima of the pdfs of κ1 and S lie around κ1 = 0.070(10) and S = 0.080(10),
respectively. These are comparable with the corresponding κ1 and S values obtained
from the natural time analysis of the experimental data depicted in Fig. 8.19(b) (for
N = 140).
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For the sake of comparison, in Fig. 8.21, we also plot the corresponding pdfs for two
non-critical cases associated with a “uniform” distribution (see § 2.1.3) i.e., (i) when Qk
are uniformly distributed in the range (0,1) (dotted) and (ii) when Qk are exponentially
distributed (broken) which corresponds to a dichotomous Markovian process (see Sec-
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tion 4.1), e.g, the case of the observed [25] RTS signals in metal-oxide-semiconductor
transistors with tunneling oxide. The maxima of the latter two cases lie at κ1 ≈ κu and
S ≈ Su, which markedly differ from those deduced for YBa2Cu3O7−x in Fig. 8.19(b) (for
N = 140).

By summarizing, the measurements of the penetration of magnetic flux into a thin film
of YBa2Cu3O7−x have been analyzed in natural time. This analysis leads to a value of
the variance κ1 = 〈χ2〉− 〈χ〉2 equal to κ1 ≈ 0.070. The same κ1 value is found from
the natural time analysis of a generalized stochastic SOC model proposed by Carbone
and Stanley [17].

Acknowledgments We express our sincere thanks Professor Rinke J. Wijngaarden, for sending us the
YBa2Cu3O7−x and ricepile data discussed in § 8.5.2 and § 8.5.1, respectively.
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9. Natural Time Analysis of Electrocardiograms

Abstract. Here, we present the results obtained from the natural time analysis of electro-
cardiograms. Considering that a general agreement about whether normal heart dynamics
are chaotic or not is still lacking, and that a physiological time series may be due to a mixed
process, stochastic and deterministic, we use here the concept of entropy which is equally
applicable to deterministic as well as stochastic processes. Sudden cardiac death is a fre-
quent cause of death and may occur even if the electrocardiogram seems to be strikingly
similar to that of a healthy individual. Upon employing, however, the fluctuations of the
entropy in natural time, when a time window of certain length is sliding each time by one
“pulse” (heartbeat) through the whole time series, sudden cardiac death individuals (SD)
can be clearly distinguished from the truly healthy individuals. Furthermore, by using the
complexity measures introduced in § 3.6.1 to quantify the change of the natural entropy
fluctuations either by changing the time window length scale or by shuffling the “pulses”
randomly, we can achieve the classification of individuals into three categories: healthy,
heart disease patients and SD. In addition, when considering the entropy change under
time reversal, at certain time window length scales (which have a clear physical meaning),
not only can the SD risk be identified, but also an estimate of the time of the impend-
ing cardiac arrest can be provided. In particular, after the maximization of the amplitude
of ΔS at the scale of 13 heartbeats, ventricular fibrillation starts within ≈3 hours in 16
out of 18 SD. Finally, an 1/ f model is proposed in natural time which leads to results that
are consistent with the progressive modification of heart rate variability in healthy children
and adolescents. The model results in complexity measures that separate healthy dynamics
from heart disease patients as well as from SD.

9.1 Natural time analysis of the RR, QRS and QT time series

9.1.1 Introduction

The advantages of using the concept of the entropy in the analysis of a physiological
time series in general, and of electrocardiograms (ECG) in particular, has been already

P.A. Varotsos et al., Natural Time Analysis: The New View of Time: Precursory Seismic Electric Signals,
Earthquakes and other Complex Time Series, Springer Praxis Books, DOI 10.1007/978-3-642-16449-1_9, 
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382 9. Natural Time Analysis of Electrocardiograms

explained in Section 3.1. In addition, it was explained there why the complexity measures
associated with the entropy S defined in natural time (which is a dynamic entropy) have
certain advantages compared to those based on static entropy (e.g. Shannon entropy). Ear-
lier attempts in the ECG analysis have actually used measures related to dynamic entropy.
For example, the so-called approximate entropy (AE) [48] or sample entropy (SE) [51]
have been used earlier by other authors. Examples showing that the procedure developed
here gives [63] better results than that based on AE or SE will be put forward later in
§ 9.2.3. Also, Costa et al. [11] introduced the multiscale entropy approach, the algorithm
of which is based on AE or SE, calculating the entropy at different scales. As for the S, it
differs essentially from the other entropies, because it is defined [61, 62] in an entirely dif-
ferent time-domain (see Fig. 9.1(b)). Moreover, as already mentioned (§ 4.8.3), in order to
discriminate similar-looking electric signals emitted from systems of different dynamics,
the following seems to hold [68]:

Signals that have S values more or less comparable to Su (which is the case of all ECG,
see Fig. 9.11 that will be discussed later) can be better classified by the complexity
measures relevant to the fluctuations δS of the entropy.

If the S values differ markedly from Su (which is usually the case for SES and AN),
the classification of these signals should be preferably made by the use of the S values
themselves (see Section 4.10). Hereafter, we focus on the case of ECG.

In a single sinus (normal) cycle of an ECG, the turning points are traditionally labeled
with the letters Q, R, S, T; see Fig. 9.1(a). It has been clinically observed that the QT in-
terval usually exhibits prolonged values before cardiac death (see Ref. [26] and references
therein). In Fig. 9.1(b) we show how the QT interval time series can be read in natural
time. By the same token, one can read in natural time the RR (beat-to-beat) interval time
series (see Figs. 2.2(a) and 2.2(b)) as well as the QRS interval time series. The RR and
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Fig. 9.1 (a) Schematic diagram (not in
scale) of a three heartbeat excerpt of an
ECG in the usual (conventional) time do-
main. Only the durations Qm,Qm+1,Qm+2
of the QT interval (marked in each single
cycle of the ECG corresponding to one
heartbeat) are shown. (b) The QT interval
time series of (a) read in natural time; the
vertical bars are equally spaced and the
length of each bar denotes the duration of
the corresponding QT interval marked in
(a). Taken from Ref. [66].
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QRS intervals (mainly the RR) can be automatically detected [32, 30, 31, 22] more easily
than the QT.

Sudden cardiac death, which is the primary cause of mortality in the industrialized
world [7], may occur even if the ECG looks to be similar to that of truly healthy (H)
humans.

Here, we present a surrogate data analysis which differentiates the ECG of H from
those of sudden cardiac death individuals (SD) based on the fluctuations of the entropy
S in natural time.

The fact that a system contains nonlinear components does not necessarily reflect that a
specific signal we measure from the system also exhibits nonlinear features. Thus, before
analyzing this signal by applying nonlinear techniques, we must first clarify if the use
of such techniques is justified by the data available. The method of surrogate data has
been extensively used to serve such a purpose (see Ref. [55] for a review). Surrogate data
refer to data that preserve certain linear statistic properties of the experimental data, but
are random otherwise [8, 57]. These data are prepared by various procedures, e.g., see
Ref. [57]. Here, the surrogate data are obtained by shuffling the Qk randomly and hence
their distribution is conserved. Applying such a procedure, we do the following: consider
the null hypothesis that the data consist of independent draws from a fixed probability
distribution of the dwell times; if we find significantly different serial correlations in the
data and their shuffles, we can reject the hypothesis of independence [55]. In other words,
the tested null hypothesis is that Qk are independent and identically distributed (i.i.d.)
random variables, i.e., that there are no correlations between the lengths of consecutive
intervals. If the original (continuous) time series is Markovian then the null hypothesis for
the Qk should hold, i.e., the Qk are i.i.d. random variables. The terminology “Markovian”
here always refers to the original time series.

Following § 3.6.1, as a measure of the natural time entropy S fluctuations we consider
the standard deviation δS when we calculate the value of S for a number of consecutive
pulses and study how S varies when sweeping this time-window through the whole time
series. In all examples, we use here a sliding window of length 3 to 10 pulses, except other-
wise stated. Concerning the symbols: we reserve δS only for the case when the calculation
is made by a single time-window, e.g., 5 pulses. The symbol δS denotes the average of the
δS values calculated for a sequence of single time-windows, e.g., 3, 4 and 5 pulses. Fi-
nally, 〈δS〉 stands for the δS values averaged over a group of individuals, e.g., the healthy
subjects. The subscript “shu f ” means that the relevant quantity refers to data obtained by
shuffling Qk randomly.

We used here the QT database from physiobank [14] (see also Ref. [31]), which is
publicly accessible and consists of 105 fifteen-minute excerpts of Holter recordings as fol-
lows: 10 from MIT-BIH Normal Sinus Rhythm Database (i.e., healthy subjects, hereafter
labeled H), 15 from MIT-BIH Arrhythmia Database (MIT), 13 from MIT-BIH Supraven-
tricular Arrhythmia Database (MSV), 6 from MIT-BIH ST Change Database (MST), 33
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from the European ST-T Database (EST), 4 from MIT-BIH Long-Term ECG Database
(LT) and 24 from sudden cardiac death patients from BIH(SD) (BIH denotes the Beth
Israel Hospital).

9.1.2 The quantities δS and δSshu f . The non-Markovianity of electrocardiograms

We now investigate if the δS values alone can “recognize” the non-Markovianity in ECG
[67]. In Fig. 9.2, we plot, for the QRS interval time series, the δS value averaged over
each of the aforementioned seven groups versus the time-window length. Since all time
series of these seven groups have ≈103 intervals, we insert in the same figure the results
calculated for a Markovian case of comparable length ≈103. In particular, we consider a
dichotomous Markovian time series, in which we recall (e.g. § 4.1.1 and § 4.1.3) that the
dwell times (Qk) are exponentially distributed. (Since in the calculation of S only ratios
of Qk are involved the result does not depend on the transition rates of the Markovian
process.) An inspection of this figure shows that the Markovian case exhibits δS values that
are roughly one order of magnitude larger than those of the seven groups of ECG, which
clearly points to the non-Markovianity of all the signals in these groups. We emphasize
that the same conclusions are drawn if we consider, instead of QRS, the time series of QT,
or RR intervals.
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M Fig. 9.2 The 〈δS〉 values for the QRS

intervals (see the text) of the seven
groups of ECG versus the time-window
length. The corresponding values for
a Markovian time series (103 pulses,
labeled M) are also plotted. Taken from
Ref. [67].

In summary, the δS value alone can recognize the non-Markovianity in ECG.

We now study δSshu f (§ 3.6.1). Having in mind Eq. (3.63), in Fig. 9.3(a) we plot, for
each of the 105 individuals, the value of σ/μ versus the corresponding value of δSshu f
(time-window range 3–10 beats) for the RR intervals. The same is repeated in Figs. 9.3(b)
and 9.3(c) for the QT and QRS intervals, respectively. All these three plots, can be de-
scribed by linear behavior and a least-squares fitting to a straight line passing through the
origin leads to the following slopes: 38.6 ± 0.6, 36.8 ± 0.2 and 40.1 ± 0.4, for the RR,
QT and QRS intervals, respectively. This points to the conclusion that δSshu f provides a
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Fig. 9.3 The σ/μ value, for each of the
105 individuals, versus the corresponding
δSshu f value for the (a) RR, (b) QT and (c)
QRS intervals. The identity of the individual
associated with each point can be found in
Ref. [64]. Taken from Ref. [67].

measure of σ/μ . Note that, although these three slopes are more or less comparable, they
differ by amounts lying outside their standard error. Furthermore, if we study altogether
the RR, QT and QRS intervals, for the 10 healthy humans only (Fig. 9.4), a good linearity
of σ/μ versus δSshu f results with a slope 37.5 ± 0.4. (note that if we study each of the
three intervals separately, we find slopes that agree within the error margins, i.e., 37.5 ±
0.4, 37.1± 0.7 and 37.8± 0.1 for the RR, QT and QRS intervals, respectively). The origin
of this common behavior in the healthy humans merits further investigation.
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Fig. 9.4 The σ/μ value for RR, QT and
QRS intervals of the ten H versus the
corresponding δSshu f value (time-window
range 3–10 beats). The straight line results
from a least-squares fit of all the thirty
points. For the identity of the individual
associated with each point see Ref. [64].
Taken from Ref. [67].

One could argue that Qk may become i.i.d. upon their shuffling. In § 3.4.6, we showed
that, when Qk are i.i.d., δS is actually proportional to σ/μ , since the following relation
holds (see Eq. (3.63)):

δSshu f =
σ
μ
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and e denotes, as usually, the base of the natural logarithms. The relation (9.1) reveals that
δSshu f versus σ/μ must be a straight line with a slope ranging from 34.2 to 40.4, for a
time-window length 3 to 10. This result is comparable with the slopes determined above
from the analysis of the ECG data.

We now proceed to compare δSshu f with δS in ECG. We first point out that for a
Markovian case we expect δSshu f = δS in view of the following:

Since, by definition, δSshu f corresponds to the entropy fluctuations upon shuffling Qk
randomly, it is naturally expected that in a Markovian case the two quantities δS and
δSshu f should coincide. Note, however, that the reverse is not always true. The equality
δSshu f = δS may also hold for non-Markovian time series, as will be demonstrated
below with precise examples.

Figure 9.5(a) depicts the δS values, calculated for each of the 105 individuals, ver-
sus the corresponding δSshu f for the RR intervals (time-window range 3–10 beats). The
same is repeated in Figs. 9.5(b) and 9.5(c) for the QT and QRS intervals, respectively. In
each case, we also plot the straight line δSshu f = δS to visualize that the vast majority
of points fall below this line. The non-equality of δSshu f and δS has been also verified
by applying the Wilcoxon paired signed-rank test, which is recommended [42] to be fol-
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Fig. 9.5 The δS value, for each of the
105 individuals versus the corresponding
δSshu f value for (a) RR, (b) QT and (c) QRS
intervals. The straight line, drawn in each
case, corresponds to δSshu f = δS. For the
identity of the individual associated with each
point see Ref. [64]. Taken from Ref. [67].

lowed for non-Gaussian paired data. The tested null hypothesis is that the means of δSshu f

and δS are the same and is rejected at a level of significance well below 0.01, since the
data of Figs. 9.5(a),(b) and (c) lead to normally distributed variables z = −8.29, −6.81
and −6.32, respectively (note that the corresponding one-tailed asymptotic significance is
given by P(Z < z), i.e., the probability of obtaining a normally distributed variable obeying
N(0,1) that is smaller than z). Note that a least-squares fit to a straight line passing through
the origin, results in the following expressions: δS = 0.76(3)δSshu f , δS = 0.85(2)δSshu f ,
δS = 0.94(2)δSshu f for the Figs. 9.5(a), 9.5(b), 9.5(c), respectively. The sampling rate fexp
in ECG is 250 Hz, thus the experimental error in their allocation is around 1/ fexp = 4 ms.
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This, if we take as an example the RR intervals, reflects in the calculation of δS and δSshu f
errors which are drastically smaller than those required to eventually justify a compatibil-
ity of the expression δS = 0.76(3)δSshu f , obtained from Fig. 9.5(a), with a straight line of
slope equal to unity, i.e., δS = δSshu f .

The difference between δS and δSshu f could be understood in the context that the
former depends on the sequential order (of beats), while the latter does not.

Since short- (and long-) range correlations is a usual feature (see Ref. [16] and ref-
erences therein) in heartbeat dynamics, which are possibly destroyed (or become weaker)
upon randomizing the data, more “disorder” is intuitively expected to appear after random-
ization, thus reflecting δSshu f > δS. Furthermore, note that in all plots of Fig. 9.5 there
are some drastic deviations from the straight line δS = δSshu f . The origin of some of these
deviations will be discussed in Section 9.2.

Finally, by means of a precise example related to SD and H, we further clarify below
the aforementioned point that the equality δS = δSshu f does not necessarily reflect
Markovianity.

In Fig. 9.6, we plot for the QT intervals δSshu f versus δS (for time-window range 3–10
beats) for SD and H. We see that there are several individuals (mainly SD, see also the
next Section) whose values lie practically (i.e., within the error margins) on the straight
line δS = δSshu f . If we plot their δS- (or δSshu f -) values versus the time-window (in a
similar fashion as in Fig. 9.2), we find that they are distinctly smaller than those of the
Markovian case (note that the δS values in Fig. 9.6 are smaller than 10−2, while those of
the Markovian case – depicted in the upper curve in Fig. 9.2 – are ≈ 2×10−2 or larger).
This makes clear that these individuals cannot be characterized as exhibiting Markovian
behavior. (This non-Markovianity holds for all H and all SD.)
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Fig. 9.6 The δS value, in each of
the 10 H (black) and 24 SD (red),
for the QT intervals versus δSshu f
(time-window range: 3–10 beats).
Note that the values of the ordinates
are appreciably smaller than the δS
value (≈2× 10−2) of the Markovian
time series (103 events) depicted in
Fig. 9.2. Taken from Ref. [67].
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In addition, we note that in Ref. [67] (see § 4.8.3) the difference between δS and δSshu f
in the SES activities and “artificial” noises was also studied. It was found (see Table 4.5)
that there is a systematic tendency pointing to a value of δSshu f /δS larger than unity either
for the time-window range 3–5 or for the time-window range 3–10. This is consistent with
the non-Markovianity of these signals, thus strengthening the conclusions of § 4.1.2 and
§ 4.1.3.

9.1.3 Distinction between healthy humans and sudden cardiac death ones by means

of either δS(QT) or the ratio δSshu f /δS of the RR or QRS intervals

We emphasize that, in this subsection, we consider a set consisting only of two groups of
ECG, namely H and SD. In other words, we are interested here in the distinction of the
(otherwise healthy) SD from H, i.e., if the population under investigation does not include
heart disease patients.

First, we point out that in all SD, the values of the quantities δS and δSshu f themselves
of the QT intervals exceed those of H, see Fig. 9.7. This important distinction between
SD and H cannot be attributed (see Sec. VIII of Ref. [63]) to the allocation error of the
QT interval.

We now turn to examine whether H and SD can also be distinguished by means of the
ratio δSshu f /δS, which is just the complexity measure ν introduced in § 3.6.1: we calculate
this ratio, for each type of interval, at two ranges: (i) a short (s) range 3–4 beats and (ii)
a longer (L) range 50–70 beats. By defining ν ≡ δSshu f /δS (see Eq. (3.82)), hereafter the
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Fig. 9.7 (a) The δS(QT ) value for each of the 24 SD and 10
H (see Table 9.2) and (b) the average of the δS(QT) values –
designated by 〈δS(QT )〉 – along with their standard deviation for
each of the two groups SD and H versus the time-window length.
Taken from Ref. [68].
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following ratios are investigated: νs(τ) and νL(τ), where τ denotes the type of interval (i.e.,
τ = RR, QRS or QT) and s,L refer to the range studied (i.e., s = 3–4 beats and L = 50–70
beats).

The calculated values for νs(τ) and νL(τ) for the three types of intervals are given, for
all H and SD, in Table 9.1. The minima minH [νκ(τ)] and maxima maxH [νκ(τ)] (where κ
denotes either the short, κ = s, or the longer, κ = L, range) among the healthy subjects are
also inserted in two separate rows, for each type of interval and each range studied. These
minima and maxima are labeled Hmin and Hmax, respectively. The cases of SD which have
smaller and larger values than Hmin and Hmax (reported in each column) are marked with
superscripts “*)” and “**)”, respectively.

A careful inspection of Table 9.1 leads to the following main conclusion: all SD violate
one or more H-limits (i.e., they have values that are smaller than Hmin or larger than Hmax).
We intentionally emphasize that this conclusion is also drawn even when disregarding the
results for the QT intervals. Concerning the latter intervals: Only 5 SD out of 24 violate
the H-limits; however, in all SD, their δS values themselves, as mentioned, are larger than
those in H, see also Figs. 9.6 and 9.7. The usefulness of this difference will be discussed
later in Section 9.2.

In other words, when focusing our investigation solely on the RR and QRS intervals,
all SD violate one or more of the four H-limits related to νs(RR), νL(RR), νs(QRS)
and νL(QRS).

This is of profound importance from practical point of view, because the RR and QRS
intervals can be detected more easily (and accurately) than the QT by means of an auto-
matic threshold based detector (e.g., see Ref. [22] that evaluated the results of a detector
that has been forwarded in Refs. [32] and [30] to determine automatically the waveform
limits in Holter ECG).

A further inspection of Table 9.1 leads to the following additional comment:

When investigating the RR intervals alone (which can be detected automatically more
easily and precisely than the other intervals), i.e., studying νs(RR) and νL(RR), the
vast majority of SD (22 out of 24 cases) can be distinguished from H. Only two SD,
i.e., sel30 and sel47, obey the corresponding H-limits.

Specifically, concerning νs(RR), fifteen SD have values smaller than Hmin = 1.18, while
only one SD (i.e., sel43) has a value exceeding Hmax = 2.25. As for νL(RR), eighteen SD
exceed Hmax = 0.77, while only 2 SD (i.e., sel34 and sel42) have values smaller than
Hmin = 0.44.

9.1.3.1 Tentative physical interpretation of the above results

The main feature of the aforementioned results focuses on the fact that most SD simul-
taneously have νs(RR) values smaller than Hmin(= 1.18) and νL(RR) values exceeding
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Table 9.1 The values of the ratios δSshu f /δS in the short (s) range 3–4 (νs) or in the longer (L) range 50–
70 beats (νL) in H (sel16265 to sel17453) and SD (sel30 to sel17152) for the RR, QRS and QT intervals.
Taken from Ref. [67].

νs, 3–4 beats νL, 50–70 beats
Individual RR QRS QT RR QRS QT

sel16265 1.82 1.00 1.24 0.48 1.02 0.76
sel16272 1.74 0.99 0.98 0.77 1.08 1.11
sel16273 2.21 1.00 1.48 0.50 0.88 0.71
sel16420 1.55 0.98 1.08 0.53 1.09 0.90
sel16483 2.25 1.02 1.14 0.52 1.16 0.92
sel16539 1.42 1.06 1.25 0.50 1.08 0.65
sel16773 1.94 1.00 0.99 0.44 1.05 0.96
sel16786 1.42 1.00 1.19 0.56 1.04 0.77
sel16795 1.18 0.98 1.08 0.73 0.96 0.99
sel17453 1.38 1.01 1.02 0.56 0.98 0.81

Hmin 1.18 0.98 0.98 0.44 0.88 0.65
Hmax 2.25 1.06 1.48 0.77 1.16 1.11

sel30 1.29 1.11∗∗) 1.09 0.65 0.72∗) 1.09
sel31 0.96∗) 1.08∗∗) 1.17 1.23∗∗) 0.94 0.62∗)

sel32 1.39 1.14∗∗) 1.12 1.02∗∗) 0.69∗) 0.90
sel33 1.05∗) 0.99 1.00 0.86∗∗) 0.82∗) 0.99
sel34 2.11 1.29∗∗) 1.11 0.42∗) 0.78∗) 0.67
sel35 1.00∗) 1.00 0.96∗) 1.01∗∗) 1.05 1.08
sel36 1.02∗) 1.02 1.04 0.92∗∗) 1.00 0.88
sel37 1.07∗) 1.18∗∗) 1.07 0.55 0.75∗) 0.65
sel38 0.99∗) 1.09∗∗) 1.13 1.37∗∗) 0.89 1.04
sel39 0.96∗) 1.02 1.06 2.93∗∗) 0.92 0.90
sel40 1.01∗) 1.00 0.93∗) 0.78∗∗) 0.93 1.29∗∗)

sel41 1.07∗) 1.04 1.02 1.07∗∗) 0.84∗) 0.96
sel42 1.63 1.08∗∗) 1.23 0.42∗) 1.06 0.67
sel43 2.71∗∗) 1.11∗∗) 1.05 0.56 0.76∗) 0.89
sel44 0.91∗) 0.95∗) 0.88∗) 2.24∗∗) 1.46∗∗) 1.32∗∗)

sel45 0.98∗) 1.24∗∗) 1.29 0.98∗∗) 0.86∗) 0.79
sel46 1.03∗) 1.01 1.03 1.00∗∗) 0.84∗) 1.01
sel47 1.56 0.97∗) 1.03 0.45 0.97 1.01
sel48 0.82∗) 1.18∗∗) 1.44 1.48∗∗) 0.68∗) 0.73
sel49 0.93∗) 1.11∗∗) 0.96∗) 1.22∗∗) 0.70∗) 1.14∗∗)

sel50 1.05∗) 0.98 0.98 0.93∗∗) 1.23∗∗) 1.50∗∗)

sel51 1.25 1.01 0.97∗) 1.05∗∗) 1.24∗∗) 0.91
sel52 1.50 1.16∗∗) 1.22 1.00∗∗) 0.73∗) 0.68
sel17152 1.64 1.01 1.04 0.90∗∗) 1.01 0.97

*) These values are smaller than the minimum (Hmin) value of δSshu f /δS in H for each range.
**) These values are larger than the maximum (Hmax) value of δSshu f /δS in H for each range.
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Hmax(= 0.77). The RR time series of healthy subjects are characterized by high complex-
ity (e.g., see Refs. [18, 16]); this, if we recall that in a Markovian series we intuitively
expect δSshu f /δS = 1 (and hence νs = 1 and νL = 1), is compatible with the fact that in
all H both νs(RR) and νL(RR) distinctly differ from unity (see Table 9.1).

We now turn to SD by considering that for individuals at high risk of sudden cardiac
death the fractal physiological organization (long-range correlations) breaks down and
this is often accompanied by emergence of uncorrelated randomness, see Ref. [16] and
references therein; see also § 9.2.1.

It is therefore naturally expected that in SD the values of νs(RR) and νL(RR) become
closer to the Markovian value (i.e., unity) compared to H. Hence, in SD, νs(RR) naturally
becomes smaller than the value 1.18 (the corresponding Hmin-limit) and νL(RR) larger than
0.77 (the corresponding Hmax-limit).

We now focus on the following important property of H: although both νs(RR) and
νL(RR) differ from unity, as mentioned, they systematically behave differently, i.e.,
νs(RR) > 1 while νL(RR) < 1. The exact origin of the latter difference has not yet been
identified with certainty, but the following comments might be relevant: First, in the frame
of the frequency-domain characteristics of heart rate variability (e.g., Refs. [38, 49]), we
may state that νs(RR) and νL(RR) are associated with the high-frequency (HF, 0.15–
0.4 Hz) and low-frequency (VLF: 0.015–0.04 Hz, LF: 0.04–0.15 Hz) range in the RR
tachogram (“instantaneous” heart rate, i.e., 1/RR, see also § 9.4.3 and § 9.5.1). An im-
portant difference on the effect of the sympathetic and parasympathetic modulation of
the RR intervals has been noticed (e.g., see Ref. [38] and references therein): Sympa-
thetic tone is believed to influence the VLF-LF component whereas both sympathetic and
parasympathetic activity have an effect on the HF component (recall that our results show
νs(RR) > νL(RR)). Second, at short time-scales (high frequencies), it has been suggested
[46] that we have relatively smooth heartbeat oscillations associated with respiration (e.g.,
15 breaths per minute corresponds to a 4 sec oscillation with a peak in the power spectrum
at 0.25 Hz, see Ref. [38]); this is lost upon randomizing the consecutive intervals Qk, thus
probably leading to (larger variations – compared to the original experimental data – be-
tween the durations of consecutive intervals and hence to) δSshu f values larger than δS, i.e.,
a νs(RR) value larger than unity. Such an argument, if true, cannot be applied, of course, in
the longer range 50–70 beats and hence explain why the opposite behavior, i.e., δSshu f <
δS, then holds. The latter finding must be inherently connected to the nature itself of the
long-range correlations. The existence of the latter is evident from the fact that (in this
range also) the RR-intervals result in δS values (≈10−3) which significantly differ from
the Markovian δS value (≈10−2), compare Fig. 9.5(a) with the upper curve in Fig. 9.2.

A simplified interpretation of the results of Fig. 9.6, and in particular the reason why for
the QT intervals the quantity δS is larger for the SD than for the H, could be attempted if
we consider that: (i) S could be thought as a measure of the “disorder” (in the consecutive
intervals) (ii) the essence of the natural time analysis is built on the variation of the du-
rations of consecutive pulses, and (iii) it has been clinically observed (e.g., see Ref. [26])
that the QT interval (which corresponds to the time in which the heart in each beat “re-
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covers” – electrically speaking – from the previous excitation) exhibits frequent prolonged
values before cardiac death. Thus, when a time-window is sliding on an ECG of H, it
is intuitively expected to find, more or less, the same S values (when sweeping through
various parts of the ECG) and hence a small δS value is envisaged. By the same token,
in an ECG of SD, we expect that, in view of the short–long–short sequences of the QT
intervals, the corresponding S values will be much different (compared to H), thus leading
to a larger δS value (note that in the same frame we may also understand why the σ/μ
values – and hence δSshu f , see Eq. (9.1) – are larger in SD than those in H, as shown in
Fig. 9.6).

9.2 Complexity measures of the RR, QRS and QT intervals in natural

time to classify sudden cardiac death individuals, heart disease

patients and truly healthy ones

9.2.1 Introduction

In complex systems operating far from equilibrium like the case of heart dynamics [16],
long-range correlations play an important role (such correlations are also of prominent
importance in equilibrium systems when approaching a critical point, e.g., the “critical”
temperature Tc, i.e., T → Tc; see Section 1.5). Specifically the existence of long-range
correlations in the heart rate variability has been independently established by several
applications of DFA, e.g., see Refs. [46, 16] and references therein. Additional studies
[21, 18] showed that healthy dynamics exhibits even higher complexity characterized by
a broad multifractal spectrum (note that both methods for its determination, i.e., MF-DFA
and wavelet transform, see Sections 4.5 and 4.6, respectively, have been employed). This
high complexity breaks down in illness and is usually associated with increased mortality
in cardiac patients (for more details see § 9.5.1). Thus, in ECG it is advisable that both
correlations (i.e., short- and long-range), in general, be studied carefully and hence ap-
propriate complexity measures should be envisaged. This is, in simple terms, the physics
underlying the procedure that is followed in this Section.

In particular, here we employ the complexity measures introduced in § 3.6.1 to quantify
the change of the natural entropy fluctuations at different length scales in time series emit-
ted from systems operating far from equilibrium. Along these lines, we use in ECG the
ratios δSi(RR)/δS j(RR), δSi(QRS)/δS j(QRS) and δSi(QT )/δS j(QT ) for the RR, QRS
and QT intervals, respectively, where i, j denote the time-window length used in the calcu-
lation of δS. Assuming that j < i, these three ratios provide measures of the δS-variability
when a scale i changes to a scale j. We select as a common scale (for all RR, QRS and
QT) the smallest j value reasonable for natural time analysis, i.e., j = 3 beats, and for the
short-range (s) i = 5, while for the longer (L) i = 60 beats.
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Thus, in accordance to § 3.6.1, the following ratios are studied: λs(τ)≡ δS5(τ)/δS3(τ)
and λL(τ)≡ δS60(τ)/δS3(τ), where τ denotes the type of interval, i.e., τ = RR, QRS
or QT.

We also define [68] the ratios

ρi(τ) = δSi(RR)/δSi(τ), (9.3)

which provide a relative measure of the δS values of the RR intervals compared to
either QRS or QT (for the same number of beats i). Here, we will use for the short-
range ρs(τ)≡ ρ3(τ) and for the long-range ρL(τ)≡ ρ60(τ).

Thus, we have 10 complexity measures related to λ and ρ in total: six variability
measures, i.e., λs(RR), λL(RR), λs(QRS), λL(QRS), λs(QT ), λL(QT ), and four relative
ones, i.e., ρs(QRS), ρL(QRS), ρs(QT ), ρL(QT ).

We shall show below that these complexity measures identify SD by analyzing fifteen-
minute electrocardiograms and comparing them to those of truly healthy humans. In ad-
dition, these measures seem to be complementary to the ones employed in § 9.1.3, and
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altogether enable the classification of individuals into three categories: H, heart disease
patients and SD. We use here the QT-Database of physiobank mentioned in Section 9.1
by considering, beyond the 10H and 24 SD, four groups of heart disease patients, i.e., 15
MIT, 13 MSV, 33 EST and 6 MST. Thus, 101 individuals out of 105 have been investigated
(note that the group LT consisting of 4 individuals was discarded in view of its small pop-
ulation). Examples of the δS values, calculated for the RR, QRS and QT intervals in the
range 3 to 100 beats are plotted in Figs. 9.8(a) and (b) for one H and one SD, respectively.
As for the symbols, we use the same as those mentioned in § 9.1.1.

9.2.2 Distinction of sudden cardiac death individuals (SD) from truly healthy

ones (H)

Here, as in § 9.1.3, we consider a set consisting only of two groups of ECG, namely H and
SD. Thus, we focus here on the distinction of the (otherwise healthy) SD from H, i.e., if
the population under investigation does not include heart disease patients.

The calculated values for the complexity measures λκ ,ρκ (where κ denotes either the
short, κ = s, or the longer, κ = L, range) are given, for all H and SD, in Table 9.2. The
minima minH [λκ(τ)] and maxima maxH [λκ(τ)] among the healthy individuals for the RR
(τ = RR) and QRS (τ = QRS) intervals are also inserted in this Table. We also include
the corresponding minima minH [ρκ(τ)] and maxima maxH [ρκ(τ)] for (the relative δS-
variability measure) ρ . For the sake of simplicity, they are labeled Hmin and Hmax, re-
spectively, and jointly named H-limits. The superscripts ‘a’ and ‘b’ show the cases of SD
which have smaller and larger values than Hmin and Hmax, respectively. In two individu-
als, i.e., sel41 and sel51, it is uncertain whether their measure λs(QRS) violates the value
Hmin = 1.15.

Table 9.2 reveals that all SD violate one or more H-limits of the four complexity
measures λs(RR), λL(RR), ρs(QRS) and ρL(QRS), and hence can be distinguished
from H.

In other words, the δS-variability measures of the RR-intervals, together with their
relative ones with respect to the QRS (i.e., four parameters in total), seem to achieve a
distinction between SD and H.

Note that λκ(RR) alone can classify the vast majority of SD, i.e, all SD except sel47.
Furthermore, attention is drawn to the point that if we also consider the λκ(τ) values
calculated (not in the original, but) in the randomized (“shuffled”) sequence of Qm, we
find that all SD violate one or more H-limits of λκ(RR) and λκ,shu f (RR) (see Table 9.2
and table VII of Ref. [63], respectively). This allows using again four parameters in
total the distinction of all SD from H by using the RR intervals only.

Thus, we found that among the 10 parameters defined in the original time series ex-
tracted from each ECG (or 20 parameters, in total, if we also account for the correspond-
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Table 9.2 The variability measures (λ ), the relative ones (ρ), and the ratios ν ≡ δSshu f /δS in the short
(s) range and in the longer (L) range in H (sel16265 to sel17453) and SD (sel30 to sel17152) along with
their δS3−4(QT ) values. Taken from Ref. [68].

Individual RR QRS QT RR over QRS

λs(RR) λL(RR) λs(QRS) λL(QRS) λs(QT ) λL(QT ) ρs(QRS) ρL(QRS)

sel16265 1.72 2.38 1.19 0.52 1.27 0.88 0.88 4.01
sel16272 1.69 1.35 1.29 0.61 1.21 0.50 0.18 0.40
sel16273 1.61 2.69 1.16 0.59 1.30 1.11 1.11 5.05
sel16420 1.51 1.74 1.22 0.48 1.37 0.66 0.96 3.46
sel16483 1.43 2.37 1.23 0.49 1.31 0.68 0.25 1.22
sel16539 2.00 1.94 1.26 0.50 1.41 1.08 1.85 7.10
sel16773 1.92 2.61 1.21 0.49 1.31 0.70 0.90 4.84
sel16786 1.71 1.57 1.19 0.51 1.31 0.84 1.16 3.56
sel16795 1.77 0.99 1.24 0.55 1.16 0.56 0.77 1.37
sel17453 1.87 1.67 1.26 0.54 1.22 0.68 1.49 4.59
Hmin 1.43 0.99 1.16 0.48 1.16 0.50 0.18 0.40
Hmax 2.00 2.69 1.29 0.61 1.41 1.11 1.85 7.10

sel30 1.11a) 0.89a) 1.20 1.05b) 1.28 0.56 0.51 0.43
sel31 0.96a) 0.34a) 1.39b) 0.89b) 1.30 0.84 1.10 0.42
sel32 0.96a) 0.67a) 1.26 0.96b) 1.16 0.65 0.23 0.16a)

sel33 1.14a) 0.77a) 0.96a) 0.52 1.21 0.53 0.79 1.17
sel34 1.87 3.04b) 1.33b) 1.22b) 1.15a) 0.85 0.40 1.00
sel35 1.12a) 0.52a) 1.24 0.66b) 1.12a) 0.44a) 1.72
sel36 1.31a) 0.62a) 1.12a) 0.51 1.26 0.60 2.35b) 2.88
sel37 0.92a) 0.71a) 1.26 0.87b) 1.11a) 0.78 0.71 0.58
sel38 0.91a) 0.34a) 1.27 0.65b) 1.03a) 0.50 0.65 0.34a)

sel39 0.81a) 0.11a) 1.23 0.72b) 1.17 0.58 0.80 0.12a)

sel40 1.66 0.81a) 1.14a) 0.55 1.19 0.43a) 0.12a) 0.18a)

sel41 1.14a) 0.48a) 1.18 0.70b) 1.22 0.56 0.21 0.15a)

sel42 1.10a) 1.81 1.16 0.51 1.31 1.01 0.95 3.40
sel43 1.69 3.04b) 1.24 0.77b) 1.26 0.68 0.06a) 0.23a)

sel44 1.18a) 0.18a) 1.52b) 0.43a) 1.02a) 0.34a) 0.59 0.25a)

sel45 0.92a) 0.42a) 1.16 0.73b) 1.37 0.68 1.46 0.85
sel46 0.94a) 0.43a) 1.05a) 0.71b) 1.12a) 0.55 1.35 0.82
sel47 1.54 2.07 1.19 0.54 1.36 0.57 0.16a) 0.63
sel48 0.84a) 0.30a) 1.23 1.08b) 1.14a) 1.00 0.91 0.26a)

sel49 0.93a) 0.33a) 1.17 0.83b) 1.16 0.50 1.27 0.50
sel50 1.32a) 0.59a) 1.28 0.46a) 1.21 0.32a) 1.78 2.31
sel51 1.83 0.72a) 1.14a) 0.42a) 1.24 0.66 0.16a) 0.27a)

sel52 1.40a) 0.73 1.32b) 1.02b) 1.29 1.01 0.14a) 0.10a)

sel17152 1.06a) 0.93a) 1.31b) 0.58 1.13a) 0.54 0.06a) 0.10a)

min 0.81 0.11 0.96 0.42 1.02 0.32 0.06 0.10
max 1.87 3.04 1.52 1.22 1.37 1.01 2.35 3.40
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Table 9.2 Continued

RR over QT 3–4 beats (νs)c) 50–70 beats (νL)c)

ρs(QT ) ρL(QT ) RR QRS QT RR QRS QT δS3−4(QT )×103

2.44 6.62 1.87 0.98 1.29 0.48 1.02 0.75 0.38
0.67 1.79 1.65 0.88 0.94 0.77 1.10 1.07 0.48
3.17 7.65 2.18 0.99 1.46 0.50 0.88 0.71 0.24
1.97 5.21 1.60 0.99 1.07 0.53 1.09 0.90 0.36
0.96 3.37 2.27 0.99 1.17 0.52 1.15 0.92 0.35
5.57 10.04 1.43 1.07 1.27 0.50 1.08 0.65 0.52
1.49 5.54 1.85 1.01 0.91 0.44 1.05 0.97 0.55
3.97 7.43 1.39 1.01 1.19 0.55 1.04 0.77 0.23
2.87 5.08 1.10 0.98 1.05 0.74 0.95 1.00 0.56
2.91 7.12 1.46 1.01 1.02 0.57 0.98 0.81 0.34
0.67 1.79 1.10 0.88 0.91 0.44 0.88 0.65 0.23
5.57 10.04 2.27 1.07 1.46 0.77 1.15 1.07 0.56

1.73 2.73 1.15 1.08b) 1.13 0.66 0.71a) 1.10b) 1.04b)

0.80 0.32a) 0.90a) 1.06 1.15 1.23b) 0.97 0.63a) 3.01b)

0.63a) 0.64a) 1.31 1.11b) 1.13 1.02b) 0.69a) 0.90 1.14b)

2.41 3.50 1.07a) 1.00 1.08 0.85b) 0.83a) 1.00 0.76b)

1.16 4.12 2.13 1.11b) 1.12 0.41a) 0.77a) 0.67 0.69b)

0.83 0.99a) 1.02a) 0.97 0.97 1.02b) 1.05 1.07 6.45b)

1.45 1.52a) 1.03a) 1.01 1.08 0.93b) 0.99 0.89 2.08b)

1.19 1.07a) 1.11 1.17b) 1.07 0.56 0.75a) 0.64a) 3.30b)

0.37a) 0.25a) 1.15 1.08 1.12 1.33b) 0.89 1.03 2.71b)

1.53 0.28a) 0.97a) 0.97 0.99 2.93b) 0.93 0.89 2.44b)

0.20a) 0.38a) 1.03a) 1.01 0.93 0.79b) 0.94 1.30b) 3.43b)

0.80 0.68a) 0.91a) 1.04 1.06 1.05b) 0.84a) 0.96 1.53b)

1.62 2.89 1.63 1.09b) 1.26 0.43a) 1.06 0.66 0.95b)

0.11 0.48a) 2.79b) 1.12b) 1.08 0.56 0.77a) 0.89 2.23b)

1.08 0.58a) 0.91a) 0.92 0.90a) 2.25b) 1.46b) 1.33b) 4.12b)

1.14 0.71a) 0.97a) 1.05 1.11 0.98b) 0.88 0.79 1.71b)

1.59 1.26a) 1.01a) 0.99 1.01 0.99b) 0.85a) 1.01 3.44b)

0.14a) 0.49a) 1.60 0.97 0.97 0.45 0.96 1.02 2.85b)

1.36 0.41a) 0.84a) 1.24b) 1.42 1.49b) 0.68a) 0.74 1.75b)

1.08 0.71a) 0.86a) 1.15b) 0.96 1.21b) 0.71a) 1.11b) 3.96b)

1.21 2.26 1.07a) 1.00 0.91 0.93b) 1.20b) 1.62b) 5.21b)

0.30a) 0.33a) 1.30 1.04 1.00 1.05b) 1.24b) 0.90 1.83b)

0.42a) 0.31a) 1.51 1.13b) 1.17 1.02b) 0.73a) 0.67 1.66b)

0.23a) 0.40a) 1.68 1.01 1.03 0.91b) 1.01 0.97 1.15b)

0.11 0.25 0.84 0.92 0.90 0.41 0.68 0.63 0.69
2.41 4.12 2.79 1.24 1.42 2.93 1.46 1.62 6.45

a) These values are smaller than the Hmin given in each column.
b) These values are larger than the Hmax given in each column.
c) These values do not fully coincide with those given in Ref. [67] for the reasons discussed in § 9.2.7.
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ing parameters defined in the time series obtained after shuffling the Qm randomly), only
four are required for the distinction between SD and H. We clarify that this seems to
be extremely difficult to be achieved by chance. In order to visualize it, if we assume
(for the sake of convenience only) independent and identically distributed (i.i.d.) values
of the parameters for one subject, we find that the probability that all 4 parameters are
within the bounds (minima and maxima) set by 10 other subjects (i.e., the healthy ones)
is (1−2/11)4 ≈ 0.448. Thus, the probability that all 24 additional subjects are classified
as SD by pure chance is (1−0.448)24 ≈ 6.4×10−7, i.e., extremely small (note that only
if one decides which parameters one wants to use before the calculation of the values is
this probability valid; this is the reason why blind evaluation – defining all methods, pa-
rameters and criteria studying one set of data, and then testing the significance using an
additional set of independent data – is considered very important in medical applications
and/or publications). If one just picks 4 parameters out of the original 20 as in our case, the
above probability should be multiplied by the possible combinations of selecting 4 objects
among 20, i.e., 20!/(4!16!) = 4,845, leading to a value 0.31% of achieving our result by
chance.
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Fig. 9.9 The average (denoted by
the brackets) values of (a): the
δSi(RR) and (b): δSi(RR)/δS3(RR)
for the SD (solid black) and H (red
circles) versus the time-window
length; the bars correspond to the
standard error of the mean. The
results for a Markovian time series
are also plotted (green squares), but
the bars here denote the standard
deviation. Taken from Ref. [68].
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9.2.2.1 Physical interpretation of the aforementioned results in § 9.2.2

The main feature of these results focuses on the fact that both ratios λs(RR) and λL(RR)
become smaller in the vast majority of SD, compared to H.

Recall that the δSi(RR) values themselves cannot distinguish SD from H, see
Fig. 9.9(a), in contrast to the ratios δSi(RR)/δS3(RR), see Fig. 9.9(b).

We now consider that for individuals at high risk of sudden cardiac death, the fractal
organization (long-range correlations) that characterizes the healthy subjects breaks down
(see Refs. [18, 15] and references therein; see also § 9.2.1 and § 9.5.1). This breakdown
is often accompanied by emergence of uncorrelated randomness (as already mentioned in
§ 9.1.3.1) or excessive order (e.g., periodic oscillations appear in the heart rate recordings
of “frequency” ≈ 1/min, which are associated with Cheyne–Stokes breathing) [15].

Let us now calculate [67] the δS values in a (dichotomous) Markovian (hereafter la-
beled� ) time series (exponentially distributed durations), see § 9.1.2, hereafter labeled
δSi(� ), for a total number of N = 103 pulses (i.e., length comparable to that of the ECG
analyzed here). These values are plotted – along with those for SD and H – in green in
Fig. 9.9(a) and show that the corresponding λs and λL variability measures are

λs(� ) = 1.20±0.03 and λL(� ) = 0.64±0.05; (9.4)

see Fig. 9.9(b). Three comments are now in order:

First, the δSi(� ) values differ drastically, see Fig. 9.9(a), from the δSi(RR) values
themselves of both SD and H, which indicates that the RR intervals (both in SD and
H) exhibit non-Markovian behavior, as mentioned in § 9.1.2.

This is consistent with the aspects that bodily rhythms, such as the heartbeat, show
complex dynamics, e.g., Refs. [18, 15].

Second, the fact that λs(RR) in SD becomes smaller than in H can now be understood
as follows: Since H exhibit a high degree of complexity, it is expected that (even)
their Hmin value (= 1.43) should markedly exceed λs(� ). On the other hand, in SD
this high complexity breaks down and hence their λs(RR) values naturally approach
λs(� ), thus becoming smaller.

This is strengthened by the fact that the SD average value of λs(RR) in Table 9.2 is
1.19, which almost coincides with λs(� )(= 1.20).

The latter coincidence also occurs for the QRS intervals in both H and SD, which agrees
with the observations [26] mentioned above (§ 9.1.3.1) that the prolonged QT intervals in
SD mainly originate from enlarged ST values, while their QRS intervals may remain the
same.
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Third, we now turn to the interpretation of the results related to λL(RR). In H, it is ex-
pected that (in view of the RR long-range correlations [15]) the corresponding values
must be appreciably larger than λL(� ) = 0.64±0.05. We now examine the SD: If, in
SD “uncorrelated randomness” appears, this reflects that their λL(RR) values naturally
approach λL(� ), thus becoming smaller (compared to H); this actually occurs in the
vast majority of SD in Table 9.2.

If in SD the aforementioned periodicities (associated with Cheyne–Stokes breathing)
appear, it is naturally expected (as shown below in § 9.2.2.2) to find large δS values when
a time-window of length around 60 beats, or so (i.e., related to the aforementioned “fre-
quency” ≈ 1/min) sweeps through the RR time series. This for SD, results in δS values
even larger than those in H, since in H no such periodicities appear, as actually observed
in the two cases marked with superscript ‘b’ (i.e., those exceeding Hmax) in Table 9.2.

The plausibility of the above interpretation is considerably strengthened by the follow-
ing remarks. Recall that the Hmin values for λs(RR) and λL(RR) have been determined
empirically by selecting the smallest values among the 10 H. We may overcome this em-
pirical selection, however, as follows. We divide each ECG in equal and non-overlapping
segments of length (l) significantly larger than the time-window of 60 beats (e.g., l = 180
or 120 beats; see Tables 9.3 and 9.4, respectively) and calculate the corresponding mea-
sures [λs(RR)]l and [λL(RR)]l for the various segments labeled by l. The mean values
〈λκ(RR)〉l for each individual, agree more or less with the values that have been obtained
above, when the time-window swept through the whole record and their standard devia-
tions provide a measure of the variability of each of these two complexity measures among
the various segments studied in each record. Comparing the values of min{[λs(RR)]l} and
min{[λL(RR)]l} (see the Tables 9.3 and 9.4) to λs(� ) and λL(� ), respectively, we find
the following. In H , the values of min{[λκ(RR)]l} significantly exceed λκ(� ) for κ = s
or L, as they should (with a possible exception of min{[λL(RR)]l} for sel16795, which
might be due to the fact that the ECG of this individual has the smallest length, i.e., 760
beats, among the H). On the other hand, most SD (e.g., in Table 9.3 those marked with ‘c’
and ‘d’) exhibit min{[λκ(RR)]l} values which are smaller than (or equal to) λκ(� ) for
κ = s or L (the values in bold, in both Tables 9.3 and 9.4, indicate the minority of cases of
SD in which the resulting min{[λκ(RR)]l} values exceed λκ(� )). Interestingly, all these
(21 or 22 out of 24) SD cases coincide with those already marked with ‘a’ in Table 9.2 on
the basis of the empirically determined H-limits of λs(RR) and λL(RR). Thus, the essence
of our findings could be summarized as follows:

When a time-window sweeps through the whole record available, the vast majority of
SD exhibits λs(RR) and λL(RR) values which are significantly smaller than those in
H and hence SD are distinguished from H. This finding stems from the fact that some
segments of the SD records exhibit values of these measures that are comparable with
those of a Markovian behavior (see Fig. 9.9(b)).
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Table 9.3 The resulting values of the variability measures λs(RR) and λL(RR) when using segments of
length l = 180 beats and then calculating their mean and minimum values. Taken from Ref. [63].

Signal λs(RR) λL(RR)

λs(RR)a) λs(RR)b) 〈λs(RR)〉l min{[λs(RR)]l} λL(RR)a) λL(RR)b) 〈λL(RR)〉l min{[λL(RR)]l}
sel16265 1.72 1.73 1.69 1.52 2.38 2.40 1.78 0.92
sel16272 1.69 1.66 1.67 1.56 1.35 1.44 1.31 1.12
sel16273 1.61 1.60 1.60 1.52 2.69 2.67 2.50 1.11
sel16420 1.51 1.54 1.50 1.43 1.74 1.80 1.80 1.37
sel16483 1.43 1.38 1.40 1.30 2.37 2.51 2.19 1.44
sel16539 2.00 2.10 2.02 1.73 1.94 2.08 1.92 1.03
sel16773 1.92 1.93 1.90 1.66 2.61 2.64 2.26 1.52
sel16786 1.71 1.78 1.76 1.54 1.57 1.70 1.51 0.95
sel16795 1.77 1.81 1.77 1.67 0.99 1.10 0.82 0.41e)

sel17453 1.87 1.91 1.90 1.85 1.67 1.73 1.68 0.93

sel30 1.11c) 1.12 1.17 1.03 0.89 1.06 1.38 1.21

sel31 0.96c) 0.96 0.97 0.88 0.34d) 0.34 0.35 0.28
sel32 0.96c) 1.12 1.28 0.93 0.67d) 0.95 1.32 0.39
sel33 1.14c) 0.90 1.07 0.92 0.77 0.74 0.87 0.77

sel34 1.87 2.07 1.99 1.50 3.04 3.48 2.82 1.32

sel35 1.12c) 1.13 1.14 1.07 0.52d) 0.58 0.56 0.44
sel36 1.31c) 1.30 1.33 1.16 0.62d) 0.63 0.64 0.48
sel37 0.92c) 0.91 0.94 0.75 0.71d) 0.78 0.69 0.51
sel38 0.91c) 0.81 1.09 0.79 0.34d) 0.12 0.36 0.08
sel39 0.81c) 0.81 0.81 0.79 0.11d) 0.11 0.10 0.07
sel40 1.66 1.16 1.65 1.60 0.81d) 0.82 0.67 0.35
sel41 1.14c) 1.13 1.31 0.91 0.48d) 0.44 0.63 0.10
sel42 1.10c) 1.22 1.31 0.87 1.81d) 2.13 2.59 0.69
sel43 1.69 1.55 1.63 1.52 3.04 3.85 3.24 1.65

sel44 1.18c) 1.17 1.19 1.17 0.18d) 0.18 0.17 0.13
sel45 0.92c) 0.92 1.12 0.82 0.42d) 0.42 0.65 0.11
sel46 0.94c) 0.96 0.94 0.88 0.43d) 0.46 0.41 0.30
sel47 1.54 1.54 1.54 1.37 2.07 2.16 2.32 1.81

sel48 0.84c) 0.84 0.93 0.84 0.30d) 0.30 0.79 0.14
sel49 0.93c) 0.89 0.93 0.87 0.33d) 0.37 0.32 0.20
sel50 1.32c) 1.33 1.33 1.16 0.59d) 0.73 0.61 0.49
sel51 1.83 1.87 1.79 1.63 0.72d) 0.75 0.77 0.66
sel52 1.40c) 1.41 1.13 0.99 0.73d) 0.74 0.69 0.49

sel17152 1.06c) 0.94 1.00 0.87 0.93d) 0.98 1.12 0.51

a) They come from Table 9.2.
b) These values, for the sake of comparison, are obtained after applying a detection algorithm which
excludes the “outliers”; this algorithm is analogous to the one used by Ivanov et al. [21].
c) These individuals have min{[λs(RR)]l} values which are equal to or smaller than the value λs(� ) =
1.20±0.03 discussed in the text.
d) These individuals have min{[λL(RR)]l} values which are equal to or smaller than the value λL(� ) =
0.64±0.05 discussed in the text.
e) The ECG of this individual has the smallest length (760 beats) among the H, which might be one of the
reasons why this case only deviates from the other H.
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Table 9.4 The resulting values of the variability measures λs(RR) and λL(RR) when using segments of
length l = 120 beats and then calculating their mean and minimum values. Taken from Ref. [63].

Signal λs(RR) λL(RR)

〈λs(RR)〉l min{[λs(RR)]l} 〈λL(RR)〉l min{[λL(RR)]l}
sel16265 1.70 1.46 1.87 0.98
sel16272 1.66 1.46 1.20 0.82
sel16273 1.59 1.47 1.95 0.79
sel16420 1.51 1.39 1.57 0.86
sel16483 1.42 1.23 2.45 0.90
sel16539 2.04 1.67 1.50 0.90
sel16773 1.91 1.67 2.41 0.77
sel16786 1.78 1.49 1.18 0.69
sel16795 1.77 1.68 0.68 0.44e)

sel17453 1.93 1.77 1.33 0.77

sel30 1.09 0.93 1.02 0.68
sel31 0.99 0.87 0.31 0.19
sel32 1.34 0.92 1.82 0.27
sel33 1.13 0.91 0.70 0.46
sel34 2.01 1.39 2.92 1.26

sel35 1.15 1.03 0.45 0.35
sel36 1.33 1.21 0.64 0.36
sel37 0.96 0.75 0.53 0.33
sel38 1.11 0.78 0.34 0.07
sel39 0.81 0.78 0.10 0.06
sel40 1.66 1.58 0.64 0.23
sel41 1.32 0.88 0.58 0.18
sel42 1.43 0.81 2.31 0.48
sel43 1.62 1.42 3.39 1.11

sel44 1.19 1.13 0.16 0.09
sel45 1.17 0.81 0.69 0.19
sel46 0.94 0.85 0.41 0.29
sel47 1.55 1.34 1.83 1.28

sel48 0.98 0.77 1.64 0.14
sel49 0.91 0.86 0.25 0.08
sel50 1.32 1.09 0.51 0.34
sel51 1.80 1.60 0.63 0.57
sel52 1.11 0.94 0.72 0.29

sel17152 0.99 0.79 1.16 0.40

e) The ECG of this individual has the smallest length (760 beats) among the H, which might be one of the
reasons why this case only deviates from the other H.

The same conclusions are drawn irrespective of whether we use a detection algorithm to
exclude ‘outliers’ from the records. In the third column (labeled with a superscript ‘b’) of
Table 9.3, we present the values obtained after applying such a detection algorithm. More
precisely a moving window average filter was applied. For each set of five contiguous
intervals, a local mean was computed, excluding the central interval. If the value of the
central interval exceeded the local average by a factor 1.5 or larger, it was considered to
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be an outlier and excluded from the interval series. This algorithm is analogous to the one
used by Ivanov et al. [21].

9.2.2.2 Study of the δS values for time series with a “sinusoidal” background

In Fig. 9.10, we show the δS value calculated when a time-window of length 3–100 beats
is sliding through the time series given by

xk = a+b sin(2πk/T ), (9.5)

or
yk = μ+σ sin(2πk/T )η , (9.6)

where η is an exponentially distributed random variable of unit mean and standard devi-
ation. The amplitude of the “oscillation” b or σ is comparable to the standard deviation
of the RR intervals in ECG and the “period” T is 60 beats, i.e., comparable to that of
the periodic oscillations in the heart rate recordings which are associated with Cheyne–
Stokes breathing [15] mentioned above in § 9.2.2.1. The main result of Fig. 9.10 could be
summarized as follows:
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Fig. 9.10 The δS values versus the time-window length for one H (sel16265) together with those obtained
using Eq. (9.5) (dotted blue) or Eq. (9.6) (broken green). Note that no maximum at around 60 beats appears
in the case of H. Taken from Ref. [63].

When the length of the sliding time-window becomes equal to the “period” (T = 60
beats) of the “oscillating” background, the δS value becomes maximum.
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Note that the window length corresponding to the maximum amplitude is practically
equal to that observed if the “oscillating” background were solely present; the latter case
for the sake of comparison is also plotted in dotted blue in Fig. 9.10.

9.2.3 Comparison of the present results in natural time with those deduced from the

Approximate Entropy (AE) or the Sample Entropy (SE) to distinguish SD

from H

In § 9.1.1, it was mentioned that two other dynamic entropies, i.e., AE or SE, have been
applied to ECG analysis. Here, we compare [63] the results of these two entropies to
distinguish SD from H with those achieved above in § 9.2.2 by means of the complexity
measures in natural time.

AE and SE are based on two input parameters: the sequence length m and the tolerance
level r. The smallest values of entropy correspond to perfectly regular sequences, since
the output of these algorithms provides a likelihood measure that two sequences (within
tolerance level r) remain close at the next point. Note that as r decreases both AE and SE
increase, because the criterion for sequence matching becomes more stringent [51].

In Fig. 9.11, we plot the values of AE calculated for r = 0.2STD and m = 2 (as recom-
mended in the program apen [25]) and SE, again for m = 2, and r = 0.2STD (by means
of the program sampen [33]) along with the values of the entropy S in natural time for
SD and H.

Note that no distinction of all individuals can be achieved by means of either AE or
SE (note that this still holds if we calculate AE for r = 0.65STD as recommended
in Ref. [44]), although the average values of the two groups actually turn out to be
different. This shows the necessity of using the complexity measures based on the
fluctuations δS of the entropy S in natural time in order to obtain the distinction of all
SD from H as in § 9.1.3 and § 9.2.2. Such a distinction cannot be achieved by means
of the S values themselves (which are close to Su, see Fig. 9.11) as already emphasized
in § 9.1.1.

9.2.4 The procedure for identifying SD among other individuals that include

healthy ones and heart disease patients

We first address the question of distinguishing all SD from the other individuals (heart
disease patients and H).

We use here the 101 individuals mentioned in § 9.2.1.

The values of all the complexity measures in natural time: λ , ρ , ν ,δS3−4(QT), λshu f ,
ρshu f and δS3−4,shu f (QT) for each one of the 101 ECG can be found in Table 9.2 and
in tables III to VII of Ref. [63] which are freely accessible.
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Fig. 9.11 The values (for m = 2, r = 0.2STD) of AE (upper panel) or SE (lower panel) versus the entropy
S in natural time calculated for SD and H. Taken from Ref. [63].

In addition, the quality of ECG data was discussed in Ref. [63] with the following
results: Among the 101 individuals investigated, five patients have been identified as “out-
liers”. The appearance of such “outliers” is not surprising (see below) when using (as we
did) an automatic threshold detector [31, 22, 32, 30] for the allocation of the intervals.
More precisely, their recognition was made as follows: four individuals, i.e., two MIT
(sel230 and sel231) and two EST (sele0612 and sele0704), have been identified as “out-
liers”, because they exhibit νs(QRS) values which are unusually larger than unity (a simple
statistical test – by means of the STATIST [39] – of the 101 νs(QRS) values, immediately
shows that these four cases can be considered as “outliers”). The fifth individual identified



406 9. Natural Time Analysis of Electrocardiograms

as “outlier”, i.e., sele0136, has a ρL(QRS) value drastically larger than the corresponding
values of all other patients.

An inspection of the measures λ , ρ , ν shows three facts. First, all SD and all patients
violate one or more H-limits. Second, none of the measures λ , ρ , ν alone, or a combination
of two of them, can effectively differentiate the SD from the patients. Third, if we consider
the three measures λ , ρ , ν (i.e., 16 parameters consisting of the 10 parameters explained
in § 9.2.1 and the 6 parameters of νs and νL related to the RR, QRS and QT intervals, e.g.,
see Table 9.1) altogether, we find that 20 SD out of 24 violate some of the limits of both
patients and H, thus allowing in principle a distinction of the vast majority of SD from the
other individuals.

Thus, in summary, the consideration of the quantities (λ , ρ , ν) only, does not lead to
a distinction of all SD from the patients. The same conclusion is drawn if we alterna-
tively consider the quantities (λ , λshu f ,ρ) only.
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Fig. 9.12 The average of the
δS(QT ) values – labeled 〈δS(QT )〉
– for each of the six groups labeled
H, MIT, MSV, MST, EST and SD
versus the time-window length. The
bars denote the standard error of the
mean. (The corresponding standard
deviations overlap considerably and
hence are not shown for the sake of
clarity.) The lowermost curve and
the uppermost curve correspond to H
and SD, respectively and hence co-
incide with the two curves depicted
in Fig. 9.7(b). Taken from Ref. [68].

We now turn to the investigation of the δS(QT) values, which as shown in Fig 9.7(a)
allows the distinction of all SD from H. In Fig. 9.12, the average value 〈δS〉(QT) for each
group is plotted versus the time-window length. It is intriguing that the results of the four
groups (MIT, MSV, MST, EST) of patients are located between H (the lowermost curve)
and SD (the uppermost curve). We emphasize, however, that if we plot the curves for each
one of the 101 individuals (in a way similar to that of Fig. 9.7(a)), we find that there are
some patients whose results overlap with either SD or H. We now restrict ourselves to
δS3−4(QT) which for the sake of simplicity will be hereafter simply denoted δS(QT). Let
us consider only the limiting cases – i.e., the values corresponding to the lowermost and
the uppermost curve, to be called hereafter δS(QT)min,ξ and δS(QT)max,ξ , respectively –
obtained in each group ξ of heart disease patients, i.e., ξ = MIT, MSV, EST or MST. In
order to distinguish SD from heart disease patients, we must appropriately discriminate
the overlap which refers to those of the patients that lie above the uppermost δS(QT) of H;
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the latter from now on will be called δS(QT)max,H . Thus, the limits of the patients we are
currently interested in, do not extend from δS(QT)min,ξ to δS(QT)max,ξ , since they must
exceed δS(QT)max,H , i.e.,

δS(QT ) > δS(QT )max,H . (9.7)

The curve which corresponds to the one of the patients that has δS(QT) lying just above
the δS(QT )max,H corresponds to a value, which will be hereafter labeled δS(QT)min′,ξ (e.g.
see fig.3 of Ref. [63]). Thus, if we apply to each group ξ of patients the condition

δS(QT )min′,ξ ≤ δS(QT )≤ δS(QT )max,ξ (9.8)

we are left only with those of the patients of the group ξ that actually overlap with SD.
We now recall that the measures λ , ρ , ν altogether, which are in fact ratios of δS values,

enable the discrimination of the vast majority of SD from all the others (i.e., heart disease
patients and H), while the δS(QT) values themselves efficiently distinguish, as mentioned
(see Fig. 9.7), all SD from H. This motivates us to investigate whether a proper combi-
nation of these two facts can serve our purpose, which refers to the identification of all
SD among the other individuals (heart disease patients and H). Thus, we now compare the
quantities λ , ρ , ν , δS(QT) altogether of each SD to the corresponding parameters of only
those among the patients that happen to have δS(QT) values exceeding the corresponding
values of H, i.e., obey the condition (9.7), or preferably the more accurate condition (9.8).

Such a comparison reveals that some of the 17 parameters of λ , ρ , ν , δS(QT), in
all SD, lie outside the limits of these patients (cf. the same happens, of course, if we
compare each SD to the limits of H). These results point to the conclusion that all 24
SD are distinguished from the patients (and H). The same conclusion is drawn if we
consider instead, the 17 parameters λ , λshu f , ρ , δS(QT).

We emphasize, however, that the study of the estimation errors (see § 9.2.7 and Section
9.3; see also the Appendix of Ref. [68]) reveals that:

The confidence level for the distinction of all SD from the patients becomes apprecia-
bly larger if we combine all the measures λ , λshu f , ρ ρshu f , ν (of all intervals) with
the condition (9.8) applied to both δS(QT) and δSshu f (QT) (i.e., in reality, we then
consider the limits of those patients whom both δS(QT) and δSshu f (QT) values are
larger than those in H which are shown in Fig. 9.6).

A compilation of the limits of each of the complexity measures λ , ρ ,λshu f , ρshu f , ν
along with those of δS3−4(QT ) and δS3−4,shu f (QT ) in healthy humans (H) and in four
groups (MIT, MSV, EST, MST) of heart disease patients is given in Table 9.5.
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Table 9.6 The number of SD and patients that can be distinguished from H when using λκ (RR) or
λκ,shu f (RR) alone.

Group Total number
of individuals

λκ (RR) λκ,shu f (RR) λκ (RR) and
λκ,shu f (RR)

SD 24 23 10 24
MIT 15 14 6 14
MSV 13 13 2 13
EST 33 29 8 29
MST 6 5 0 5

We now comment on two points.

First, since it is known that heart rate variability depends strongly on age, it is highly
recommended that when comparing values of the aforementioned complexity mea-
sures, the corresponding limits should be taken from subjects (heart disease patients
and H) of comparable age [66].

Second, we now focus on the importance of the sequential order of Qm on the aforemen-
tioned complexity measures. We prefer to deal with the results related to the RR intervals
since it is known that the healthy heart beats irregularly and that the RR intervals fluctuate
widely, following complicated patterns [9]. Let us investigate, for example, the possibility
of using λκ (RR) alone to distinguish the SD as well as the four groups of patients from
H, i.e., examine whether the λκ (RR) values of each individual violate one (at least) of the
relevant H-limits.

The results show (see Table 9.6) that the vast majority of SD and of each group of
patients is well distinguished from H by means of λκ (RR) alone.

The situation drastically changes, however, if we use, instead of λκ (RR), the λκ,shu f
values (see the tables V to VII in Ref. [63]): only the minority of SD and of each group
of patients can be differentiated from H. Since the calculation of the λκ (RR) values takes
into account the sequential order of Qm, while the λκ,shu f (RR) values do not, this points to
the following conclusion:

It is the sequential order of beats that contains the primary information which enables
the distinction between the SD and heart disease patients, on the one hand, and the H,
on the other.

This might explain why procedures based on the entropy in natural time (which is dy-
namic entropy, affected by the sequential order [67]) – and hence consider the complexity
measures mentioned in § 9.2.1 – can achieve such a distinction, while static entropy (e.g.,
Shannon entropy, see Ref. [67]) cannot.
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9.2.5 Distinction of heart disease patients from H

This distinction can be made by identifying as heart disease patients the individuals
whom one or more of the parameters associated with λ , ρ , ν (of RR, QRS, QT) and
δS(QT ) violate the H-limits provided that the distinction of the SD has been preceded
by the procedure described above in § 9.2.4.

Furthermore, comparing each of the tables in Ref. [63] that present the aforementioned
parameters for each group of heart disease patients to (the H in) Table 9.2, we also find
that:

In all heart disease patients, at least one of their four λ parameters associated with
RR and QRS, i.e., λs(RR), λL(RR), λs(QRS) and λL(QRS), violates one of the corre-
sponding H-limits, thus allowing again a distinction between patients and H. In other
words, only four parameters are needed to distinguish heart disease patients from H.

A further inspection reveals that among the limits of these four λ parameters most
of the heart disease patients violate the ones of λs(RR) and/or λL(RR).

Thus, in a future population consisting of all three categories SD, heart disease patients
and H, in order to separate the last two, we may work as follows. By considering the limits
given in Table 9.5, we first apply the procedure to identify the SD (as described in § 9.2.4)
among the other individuals, thus only heart disease patients and H remain. It seems then
that, in the latter population, the λ parameters of the RR and QRS can efficiently distin-
guish heart disease patients from H (this can be further strengthened by the additional use
of the corresponding ν parameters, which differentiate most of the heart disease patients
– but not all of them – from the H). In other words, any (explicit) information on the QT
may not be prerequisite to distinguish between heart disease patients and H. This is con-
sistent with the aforementioned (§ 9.1.1) clinical observations that the prolongation of the
QT (due to the lengthening of the ST interval) is mainly a characteristic of the SD.

9.2.6 Complementarity of the complexity measures for identifying sudden cardiac

death individuals (SD)

We first discuss the complementarity of the two procedures described above in § 9.1.3
and § 9.2.2 for the distinction of the (otherwise healthy) SD from H, i.e., if the population
under investigation does not include heart disease patients.

Recall that in § 9.1.3 entropy fluctuations – deduced from the original and the “shuf-
fled” time series – on fixed time-scales have been employed, while in § 9.2.2 entropy
fluctuations on different time-scales have been considered.
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This complementarity holds in the following sense: if in the frame of the one procedure
an ambiguity emerges in the distinction between SD and H, the other procedure gives a
clear answer.

We now study, as an example, the following two procedures: i.e., the one that uses
δS(QT) (see § 9.1.3) and the other which combines the measures λ , ρ (see § 9.2.2). The
δS3−4(QT) values of SD and H given in the last column of Table 9.2 are classified into
two classes: the larger values correspond to SD, and the lower ones correspond to H (see
also Figs. 9.7 and 9.12). Let us focus on the two lowermost SD values and the upper-
most H value. The former two correspond to sel33 and sel34 (δS3−4(QT) = 0.00076 and
0.00069, respectively) and the latter one to sel16795 (δS3−4(QT) = 0.00056). In view of
their δS3−4(QT) values proximity, one may wonder whether these two SD could be con-
fused with H. This ambiguity can be resolved in the light of the other procedure (i.e., λ , ρ),
as follows. Table 9.2 reveals that sel33 markedly violates both the Hmin-limit for λs(QRS)
and Hmin for λs(RR) (the latter can be visualized in Fig. 9.13). As for sel34, the Hmax-limit
of λL(QRS) is strongly violated. We now turn to an alternative example, i.e., sel47, which,
by means of the method using the complexity measures λ , ρ (of the RR and QRS intervals,
see § 9.2.2) could be confused with H, because a deviation of only around 12% from the
Hmin-limit of minH [ρs(QRS)] = 0.18 is noticed. This ambiguity can be resolved by means
of the procedure using δS(QT) (§ 9.1.3) as follows: sel47 has δS3−4(QT) = 0.0029, which
exceeds significantly, i.e., by a factor 5, the corresponding value of sel16795, who has the
largest δS3−4(QT) = 0.00056 value among the H.
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s (RR) 0.0

0.6
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Fig. 9.13 The δS3−4(QT) values along
with those of λs(RR) and λL(RR) for
SD (red) and H (black). The individual
sel33 is marked with a green column.
Taken from Ref. [68].

We now turn to the investigation (for details see Ref. [63]) of the complementarity of
the four quantities λ , ρ , ν and δS(QT ) on differentiating all SD from the others (i.e., heart
disease patients and H). This can be judged from an inspection of Table 9.7, which contains
the results to distinguish the SD among 101 individuals, for all possible combinations,
upon considering only three of these quantities (i.e., see the cases in Table 9.7 except of the
upper two where all four quantities are used). For example, the combination λ , ρ , ν cannot
differentiate four SD (i.e., sel30, sel32, sel34, sel37) from the heart disease patients. As a
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Table 9.7 Results of the distinction of 24 SD among 101 individuals upon using combinations of the
measures λ , ρ , ν along with δS3−4(QT ). Taken from Ref. [63]

Measures combineda) The non-differentiated SDb) Number of SD
distinguished

λ ,ρ,ν and relation (9.8) None 24 (all)

λ ,ρ,ν and relation (9.7) One: sel35(MIT) 23

λ ,ρ,ν Four: sel30(EST), sel32(EST), sel34(EST), sel37(EST) 20

λ ,ρ and relation (9.8) Four: sel30(MSV), sel41(MIT), sel46(MIT), sel49(MSV) 20

ρ,ν and relation (9.8) Three: sel33(MSV,EST), sel45(MIT,MSV), 21
sel46(MSV,EST)

λ ,ν and relation (9.8) Seven: sel36(MIT,EST), sel38(MIT), sel41(MSV), 17
sel42(EST), sel47(EST), sel51(EST),
sel17152(MSV,EST)

λ , ρ , ν of RR and QRS only Twelve: sel30(EST), sel32(EST), sel34(EST), 12
sel35(MIT,MSV), sel37(EST), sel38(MIT), sel40(EST),
sel43(EST), sel45(MSV), sel47(EST), sel50(MIT),
sel51(EST)

a) In all cases the data of the five heart disease patients sel230, sel231, sele0612, sele0704, sele0136 have
been excluded (see § 9.2.4).
b) In parenthesis we mark the group(s) of heart disease patients in which the corresponding SD is mislo-
cated.

second example, the combination ρ , ν and δS(QT ) cannot identify three SD (i.e., sel33,
sel45, sel46), who are different from the four that could not be discriminated by the former
combination λ , ρ , ν . By the same token, we find that each of the remaining combinations
fails to identify certain SD, who can be distinguished by another combination(s).

Therefore, we conclude that each of the four quantities λ , ρ , ν , δS(QT ) seems to
complement the others in identifying all SD (note that the same conclusion is drawn
if we alternatively use the four quantities λ , λshu f , ρ and δS(QT); see table XIII of
Ref. [63]).

In general, measures that employ entropy fluctuations of the original and shuffled
time series on fixed time-scales, seem to complement those that take into account
entropy fluctuations on different time-scales.

This might be understood in the context that each of these quantities, as already men-
tioned, presumably captures certain “elements” of heart dynamics only. As for the neces-
sity of using all these quantities, it might stem from the following fact. The database we
used, consists of SD individuals in which different physiological processes might have led
to sudden cardiac death. The selection of such a heterogeneous database was intentionally
made, because it was our aim to find, if possible, a general procedure for identifying SD.
If a study of “homogeneous” SD databases (in the sense that the same physiological pro-
cesses preceded the sudden cardiac death) is made, it may happen that a smaller number
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of parameters are necessary to distinguish all SD. Until the completion of such studies,
however, it is recommended to use all the parameters associated with the aforementioned
quantities, as described in Ref. [68].

9.2.7 The estimation errors in the procedure for identifying SD

Beyond the error introduced by the use of an automatic threshold detector for the allocation
of the corresponding intervals which is largest for the QT and smallest for the RR intervals,
the following two sources of errors must be considered [67, 68]: First, an estimation error
emerges when analyzing – instead of the original time series of length l ≈ 103 heartbeats
– smaller lengths l′ (e.g., see Table 9.3), which, however, still significantly exceed the
time-window lengths used, for example l′ ≈ 2×102 (obviously the errors associated with
the measures in the short-range, s, are smaller from those corresponding to the longer
range, L, because for the latter range the l/l′ values – due to the restricted length of the
records available – are small, thus not allowing more reliable statistics). Second, a source
of (statistical) error in the results emerges when considering the ratio(s) δSshu f /δS (i.e.,
when dealing with ν and λshu f ) instead of δS itself. While δS may be considered to have
a unique value for a (given) original Qm time series, the value of δSshu f depends on the
randomly shuffled Qm series each time selected (note that such differences are well known
[23] when dealing with randomized series of finite length). This is why the ν values given
in Ref. [67] for SD and H do not fully coincide with those tabulated in Ref. [68]. To account
roughly for the extent of this statistical error, we averaged here the δSshu f values calculated
over a number (e.g. 20) of randomly shuffled Qm-series generated from the same original
series and the corresponding standard deviation was estimated.

The final results of the above sources, could be summarized as follows [68]: The (per-
centage) estimation error was found to be on the average ≈10% for the complexity mea-
sures λ ,λshu f , ρ , ρshu f , ν associated with the RR and QRS intervals. Furthermore, since
the error in the δS(QT) may reach 20%, the estimation error in those of the complexity
measures that involve δS(QT) may be as high as ≈30%. Upon considering such error-
levels, hereafter called “plausible estimation errors” εp, a study of each of the methods for
the distinction of SD was made. The study was repeated by assuming larger (percentage)
estimation errors, hereafter labeled “modified estimation errors” εm, calculated for each
parameter from

εm = εp

(
1+

Hmax−Hmin

Hmax +Hmin

)
, (9.9)

see the last column in Table 9.5. Both studies led, more or less, to the same results, e.g.,
those obtained when using εm, which are tabulated in columns 5–7 in Table 9.8. The calcu-
lation, in each study, was made as follows. Each parameter was assumed to be equal to its
value (initially estimated from the original time series available) multiplied by a number
randomly selected in the range 1±εp or 1±εm, respectively) and then each of the methods
for the distinction of SD was applied. This application was repeated, for each method, 103

times via Monte Carlo.
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The extent to which these conclusions hold, was also investigated in the following ex-
treme case: the limits of the parameters of H (and patients), which are automatically ad-
justed for each “random” selection of the values described above, have been assumed to
additionally relax by (extra) amounts equal to εp or εm. Such a “relaxation” faces the ex-
treme possibility that the populations of H and heart disease patients analyzed here are not
considered large enough to allow a precise determination of their limits, and hence future
increased populations’ studies could somehow broaden these limits by extra amounts as
large as εp or εm. The corresponding confidence levels to distinguish SD from either H or
heart disease patients can be found in the last four columns of Table 9.8.

9.3 Summarizing the conclusions for identifying sudden cardiac death

individuals (SD) upon considering the error levels

As already mentioned in § 9.1.1, sudden cardiac death may occur even if the ECG looks
similar to that of truly healthy humans. In other words, we are interested here in the dis-
tinction of the (otherwise healthy) SD from H, i.e., if the population under investigation
does not include heart disease patients. To distinguish such cases, i.e., when we consider a
set consisting only of two groups of ECG, namely H and SD, the conclusions drawn from
the procedures developed in § 9.1.3 and § 9.2.2 above, are summarized below in § 9.3.1
and the relevant confidence levels are compiled in Table 9.8 under the Aim “Distinction of
SD from H”. As for the procedures developed to identify SD in a population that includes
H as well as heart disease patients (§ 9.2.4) that led to the limits compiled in Table 9.5, the
conclusions are summarized in § 9.3.2 and the corresponding confidence levels are given
in Table 9.8 against the Aim “Distinction of SD from heart disease patients”.

9.3.1 Summary of the conclusions for distinguishing SD from H

Among the four methods suggested (i.e., two in § 9.1.3 and two in § 9.2.2), the one that
uses the measures λ , ρ (associated, however, with all three types of intervals, i.e., 10
parameters in total, see first row in Table 9.8) seems to be robust [68] in the following
sense:

(i) When assuming the error-levels (see § 9.2.7) deduced from the data analyzed here
(the relevant results are inserted in Table 9.8 under the heading “Using the limits from the
data analyzed”):

The use of λ , ρ related to all intervals, thus 10 parameters in total, allows the distinc-
tion of all SD from H with a confidence level above 99%.

The confidence level decreases to 63%, 49%, 32% and 59% when using either four
parameters or one parameter only as follows: first: λκ (RR) and ρκ (QRS); second: λκ (RR)
and λκ,shu f (RR); third: νκ (RR) and νκ (QRS); fourth: δS3−4(QT), respectively.
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(ii) If we investigate the extreme case of the additional “relaxation” of the H-limits
mentioned in § 9.2.7 (the relevant results in Table 9.8 are under the heading “Using broader
limits”), the capability for the distinction of all SD still remains with the following results:

In the case of using solely λ , ρ for all intervals, the confidence level in distinguishing
all SD is 88%. It becomes appreciably higher, i.e., larger than 99%, if we use the
quantities λ , ρ , λshu f , ρshu f , ν , δS3−4(QT ), δS3−4,shu f (QT ) altogether.

When using, however, four parameters only in the first three combinations mentioned
above, the confidence level decreases to 90%, 36% and 8%, respectively (and to 77%
when using δS3−4(QT)), even when allowing two at the most SD – out of 24 – to be
misinterpreted as being H.

9.3.2 Summary of the conclusions for identifying SD among individuals that also

include heart disease patients and H

The corresponding conclusions related to the distinction of SD from heart disease patients
can be drawn on the basis of the values given in the lower part of Table 9.8.

In summary, the study of the estimation errors reveals [68] that if the limits of the
parameters that have been deduced from the ECG data analyzed here will not be broadened
by future investigations:

We can satisfactorily distinguish the totality of SD from H as well as discriminate the
totality of SD from heart disease patients, upon employing the quantities λ , λshu f , ρ ,
ρshu f , ν ,δS3−4(QT), δS3−4,shu f (QT) altogether, i.e., the sixth and the last method in
Table 9.8, respectively.

These quantities also allow the distinction of the totality of SD from H (as well as
distinguish the vast majority of SD from the heart disease patients) even if their limits will
be eventually broadened (by εm of Eq. (9.9), see § 9.2.7).

Concerning the number of parameters required to achieve the desired distinction [68]:
In reality, only twelve independent quantities, (i.e., the six: δSκ(τ) and the six δSκ,shu f (τ),
where κ = s,L and τ = RR, QRS, QT) are extracted from the experimental data. Thus, for
example, beyond δS3−4(QT ) or δS3−4,shu f (QT ), eleven additional parameters (out of 26)
of the ratios: λ , λshu f , ρ , ρshu f , ν are in principle required to be used for the distinction.
These twelve quantities, however, should not be fortuitously selected, but the following
points must be carefully considered: (i) priority should be given to the eight parameters
associated with λ values and λshu f (or ν) values of RR and QRS, (ii) using, at least, one
ρ-parameter (involving δS3−4(QT ) or δS3−4,shu f (QT )), and (iii) examining whether the
totality of the parameters used can actually reproduce the aforementioned twelve δS values
determined directly from the data. However, in order to avoid the difficulty arising from
the completeness (or not) of the aforementioned selection, at the present stage (i.e., until an
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appreciably larger number of H and heart disease patients will be analyzed to allow a better
precision in the determination of the corresponding limits, see § 9.2.7), it is recommended
to use – instead of twelve – all the 28 parameters associated with the quantities λ , λshu f ,
ρ , ρshu f , ν , δS3−4(QT ) and δS3−4,shu f (QT ).

9.4 The change ΔS of the entropy in natural time under time reversal:

identifying the sudden cardiac death risk and specifying its

occurrence time

9.4.1 Specifying the occurrence time of the impending cardiac arrest by means

of ΔS

Here, we make use of the Definition 3.2 of ΔS (see Eq. (3.64)) and the points developed
in § 3.5.1.

In particular, a window of length l is sliding, each time by one pulse, through the whole
time series. The entropies S and S−, and therefrom their difference ΔSl , are calculated
each time. Thus, we form a new time series consisting of successive ΔSl values.

We will show and that the determination of the occurrence time of the impending car-
diac arrest can be obtained [69] from the time evolution of ΔSl deduced from the RR time
series.

9.4.1.1 The ECG data analyzed in natural time

These are 159 long-lasting (from several hours to around 24 h) ECG recordings, which
come from databases [14], containing: (i) 72 healthy subjects, (ii) 44 patients with con-
gestive heart failure (CHF) (iii) 25 subjects with atrial fibrillation (AF) and (iv) 18 indi-
viduals suffered sudden cardiac death. In particular (see Ref. [65]), these data come from
the following databases [14]: (i) the MIT-BIH Normal Sinus Rhythm Database (nsrdb)
containing 18 H digitized with frequency fexp = 128 Hz, (ii) the Normal Sinus Rhythm
RR Interval Database (nsr2db) containing 54 H, fexp = 128 Hz (iii) the Congestive Heart
Failure RR Interval Database (chf2db) containing 29 subjects with congestive heart fail-
ure, fexp = 128 Hz, (iv) the BIDMC Congestive Heart Failure Database (chfdb) with 15
subjects with severe congestive heart failure, fexp = 250 Hz (v) the MIT-BIH Atrial Fib-
rillation Database (afdb) with 25 subjects with atrial fibrillation (AF) mostly paroxysmal,
fexp = 250 Hz and (vi) the Sudden Cardiac Death Holter Database (sddb), fexp = 250 Hz.
The latter contains 24 SD among which 12 had ECG with audited annotations. Here, be-
yond these 12 individuals, we studied six more (i.e., “33”, “37”, “44”, “47”, “48”, “50”)
whose ECG could be analyzed with confidence. Thus, we consider 18 (out of 24) SD
individuals of the sddb.
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The results presented in this Section refer to the RR intervals (see Fig. 2.2), i.e.,
Qm = RRm. For reasons that will be explained later, the study will be extended (in all
these 159 individuals except the 25 AF for which NN annotations were not available) to
the so-called NN intervals, i.e., Qm = NNm. These are intervals obtained from ECG an-
notation files by using the option [41] “-c -PN pN”, which yields only intervals between
consecutive normal beats, while intervals between pairs of normal beats surrounding an
ectopic beat are discarded. In both the RR and NN time series, in order to exclude “out-
liers” from the records, the detection algorithm proposed in Ref. [21] has been applied, i.e.,
for each set of five contiguous intervals, if the local mean, excluding the central interval,
is larger than twice the central interval then this interval is excluded from further analysis.
In Fig. 9.15(a) one H out of 72, i.e., the one labeled 16539, has been discarded because the
resulting σ [ΔS3](NN) value was unusually high compared to that in other H of nsrdb (see
table 2 of Ref. [65]). Furthermore, in Fig. 9.15(b), three H out of 72 (i.e., 16539, nsr024
and nsr044) have been also discarded since they have σ [ΔS3](RR) value unusually higher
than that in other H (see table 2 of Ref. [65]). For more details on the annotators used see
Ref. [65].

Table 9.9 Results of the application of the complexity measure ΔSl to the RR time series: the extrema
max(ΔS13) and min(ΔS13) in SD along with the time of their occurrence, i.e., Tmax and Tmin, respectively.
The latter time is measured from the time of the VF onset (except for “49”, who paced with no VF). In the
last column, the total duration of the record Ttotal measured from the time of the VF onset is also inserted.
Taken from Ref. [65].

Individual max(ΔS13) Tmax(s) min(ΔS13) Tmin(s) Ttotal (s)

30 0.0129 28,150.65 −0.0107 6,000.90 28,470.75
31 0.0182 1,497.47 −0.0174 1,492.78 49,341.89
32 0.0069 59,754.38 −0.0047 59,746.80 60,315.61
33 0.0168 3,021.60 −0.0237 11,212.63 17,176.40
34 0.0102 10,642.46 −0.0097 7,408.24 23,743.42
35 0.0214 22,674.56 −0.0220 7,872.32 86,398.19
36 0.0218 5,603.68 −0.0197 5,598.33 68,338.58
37 0.0355 5,361.32 −0.0569 5,370.84 5,470.82
41 0.0240 3,303.27 −0.0212 3,060.47 10,762.66
44 0.0146 7,993.19 −0.0123 34,421.23 70,723.33
45 0.0157 62,992.88 −0.0145 62,985.09 65,354.88
46 0.0184 13.38 −0.0166 5,244.22 13,304.91
47 0.0241 13,282.90 −0.0230 8,481.94 22,378.26
48 0.0146 8,921.66 −0.0150 8,930.64 8,978.57
49 0.0145 5,677.80 −0.0140 1,805.06 84,528.44
50 0.0353 1,349.73 −0.0347 4,349.58 42,339.39
51 0.0151 53,067.89 −0.0161 1,957.63 82,701.48
52 0.0293 2,552.97 −0.0252 2,567.82 9,158.85

9.4.1.2 Presentation of the ΔSl results

In Fig. 9.14(a), we give as an example the time series of ΔS13 for one SD, i.e., the one
labeled “30”. In the horizontal axis the time is measured from the ventricular fibrillation
(VF) onset. The time of the VF initiation for each SD (except for the individual “49”, who
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Fig. 9.14 Results from the analysis
of the RR time series: (a) Plot of the
quantity ΔS13 versus the time to the
VF onset for one SD, i.e., “30”. The
quantities max[ΔS13] and min[ΔS13] are
shown by arrows. (b) For each of the
18 SD (each bar corresponds to each
individual), we plot the max[ΔS13] value
– in the upper part (i.e., positive ΔS13
axis) – and the value min[ΔS13] – in the
lower part (i.e., negative ΔS13 axis) –
versus the time it appeared before the
VF onset. The shaded part indicates
the last 3 h before the VF onset. (c)
The red curve shows the number of SD
that violate both conditions Tmax ≤ 3 h
and Tmin ≤ 3 h as a function of scale l.
The probability achieving by chance the
relevant number of SD is drawn by blue
bars (right vertical scale). Reprinted with
permission from Ref. [69]. Copyright
(2007), American Institute of Physics.

paced with no VF) is given in the database used [14]. The VF initiation remains one of the
leading immediate causes of sudden cardiac death [1]. The maximum and the minimum
values of ΔS13 will be labeled max[ΔS13] and min[ΔS13], respectively. The time of their
appearances are designated Tmax and Tmin, respectively. An inspection of Fig. 9.14(a) in
conjunction to Table 9.9, reveals that Tmax ≈ 28,150 s and Tmin ≈ 6,000 s (before the VF
onset). The corresponding values for all the other SD studied, are also given in the same
Table, which presents the extrema of ΔS13 along with the time of their appearance. These
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values, which are depicted in Fig. 9.14(b), reveal that interestingly in the vast majority of
SD (i.e., in all the 18 SD except the individuals “32” and “45”, the latter having a history
of ventricular ectopy) they are smaller than around 3 hours. In other words, only for two
individuals (i.e., “32” and “45”) out of eighteen, both Tmax and Tmin are larger than around
3 hours. The results for a variety of other length scales are summarized in Fig. 9.14(c),
where we plot in red the number of SD that violate both conditions, i.e., Tmax ≤ 3 h and
Tmin ≤ 3 h, at various scales. The probability having such a result by chance is also shown
in the right vertical scale. This probability has been found by Monte Carlo calculation,
in which the observation times for both extrema, i.e., Tmax and Tmin, were assumed to be
uniformly distributed within the total duration Ttotal of the record for each individual (see
Table 9.9). We observe that for small scales (l < 30) the observed number of SD differs
significantly from the one expected by chance. Especially, the probability to find by chance
the result obtained at l = 13 is smaller than 0.2%.

In other words, an optimum length scale (i.e., l = 13 heartbeats) exists, at which the
magnitude of ΔSl (deduced from the RR time series, alone) maximizes (in 16 out of 18
cases) ≈ 3 hours at the most before the VF onset, thus signaling the imminent cardiac
death risk.

Since many SD experience arrhythmia (consisting of one or more types including pre-
mature ventricular contractions (PVCs), AF and non-sustained tachycardia), it has been
confirmed (through a direct inspection of the ECG) that the extreme values of ΔS13 in
Fig. 9.14(b) mainly come from trains of occurrences of PVCs. We emphasize, however,
that beyond the PVCs, the method of ΔSl captures additional elements of cardiac dynam-
ics that distinguish SD from other individuals as will be discussed in § 9.4.2.

9.4.2 Identifying the sudden cardiac death risk by means of complexity measures

based on ΔS

We now make use of the points treated in § 3.5.1 and § 3.6.2. In particular, following
§ 3.5.1, we recall that when we form the new time series consisting of successive ΔSl
values, the standard deviation of these values is denoted by σ [ΔSl ]. Upon shuffling the Qm
randomly (thus destroying any information hidden in the ordering of the events), the ΔSl
values turn to a sequence of different values labeled ΔSshuf

l whose standard deviation is
designated by σ [ΔSshuf

l ] (its theoretical estimation was given in § 3.5.2). The complexity
measure Nl ≡ σ [ΔSshuf

l ]/σ [ΔSl ] (see Eq. (3.83)), which quantifies the extent to which the
ordering of the heartbeats contributes to the ΔSl values (being unity for a random process),
is also computed.

In Fig. 9.15(a), we plot the quantities N3(NN) versus σ [ΔS7](NN) deduced from the
analysis of the NN time series of all individuals except of the 25 AF (since for the latter,
relevant NN annotations were not available).
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Fig. 9.15 The quantity N3 versus σ [ΔS7] for (a) the NN and (b) the RR time series. The green horizontal
line corresponds to the minimum N3 value computed in H. Reprinted with permission from Ref. [69].
Copyright (2007), American Institute of Physics.

Thus, when using the NN time series alone, an inspection of Fig. 9.15(a) reveals the
major importance of the measure N3(NN) in two respects.

First, the vast majority of SD (i.e., 14 out of 18, lying in the shaded region) exhibit
N3(NN) values that are smaller than the minimum N3(NN) value computed among the
H which is labeled Hmin and marked with a horizontal green line in Fig. 9.15(a).

Second, the vast majority of CHF have N3(NN) values larger than Hmin, thus al-
lowing in principle a distinction between CHF and SD.
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In Fig. 9.15(b), we plot N3(RR) versus σ [ΔS7](RR) deduced from the RR time series.
This figure shows that the distinction between CHF and SD achieved in Fig. 9.15(a) is now
lost. This is understood in the context that frequent PVCs influence the RR time series (but
not the NN) of both CHF and SD.

Thus, when using the RR time series alone, a closer inspection of Fig. 9.15(b) reveals
two important points:

First, almost all SD (i.e., except “32”) exhibit N3(RR) values that are smaller (hence
high complexity breaks down) than the minimum value Hmin computed in H, thus
emphasizing again the importance of the scale l = 3.

Second, the shaded region that contains the vast majority of AF (18 out of 25) lies
to the right of the maximum value of σ [ΔS7](RR) observed in H, labeled Hmax (see
the rightmost vertical green line). Four out of the five SD (i.e., except “47”) located in
this region, suffered from atrial fibrillation, thus this shaded region seems to separate
AF from the others.

Thus, in short, the aforementioned method not only identifies the sudden cardiac death
risk but also provides a distinction of congestive heart failure patients from SD when NN
annotations are available.

9.4.3 Summary of the findings based on ΔS and their tentative explanation

In order to understand the physical origin of the findings in § 9.4.1 and § 9.4.2 we resort to
the neural influences on cardiovascular variability. Let us recall that:

Physiologically, the origin of the complex dynamics of heart rate has been attributed
to antagonistic activity of the two branches of the autonomic nervous system, i.e., the
parasympathetic and the sympathetic nervous systems, respectively, decreasing and
increasing heart rate [47, 29, 20, 2]. Their net result is what seems to be actually
captured by ΔSl , as shown in § 3.5.3.

A variety of research has now established [35], as already mentioned in § 9.1.3.1, two
clear frequency bands in heart rate and blood pressure with autonomic involvement. (i)
A higher frequency (HF) band, which lies in [6, 49] the range 0.15 to 0.40 Hz and is
[29] “indicative of the presence of respiratory modulation of the heart rate” or reflects [6]
“modulation of vagal activity, primarily by breathing”. (ii) A lower frequency (LF) band
from 0.04 to 0.15Hz (i.e., at around 0.1 Hz), which is usually described as corresponding to
[49] “the process of slow regulation of blood pressure and heart rate” or that [6] “it reflects
modulation of sympathetic or parasympathetic activity by baroflex mechanisms” due to
[29] “the emergence of a limit cycle caused by the vascular sympathetic delay” (note that
its exact explanation, however, is still strongly debated [38]). The aforementioned scale
l = 13 (see ΔS13 in Fig. 9.14(b)) corresponds to the LF band, while the scale l = 3 (see
N3 in Fig. 9.15), to the HF band. Thus, the magnitude of ΔSl , when calculated for length
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scales corresponding to the HF and LF bands, quantifies the extent to which the processes:
“modulation of vagal activity primarily by breathing” and the “slow regulation of blood
pressure and heart rate” are “disorganized”, respectively.

An alternative way of understanding intuitively the aforementioned findings is the fol-
lowing. If we consider [67] that S could be thought of as a measure of the “disorder” (in
successive intervals) and that the essence of the natural time analysis is built on the varia-
tion of the durations of consecutive pulses, we may say the following: when approaching
sudden cardiac death, the difference between the “disorder” looking in the (immediate)
future, i.e., S, and that in the (immediate) past, i.e., S−, becomes in SD of profound impor-
tance when compared to the corresponding difference under truly healthy conditions.

In summary, the complexity measure N3, based on the entropy change ΔSl under time
reversal at the scale l = 3 heartbeats, identifies the sudden cardiac death risk and
distinguishes SD from truly healthy individuals as well as from those with the life-
threatening congestive heart failure. Furthermore, the study of ΔSl at the scale l = 13
heartbeats provides an estimate of the occurrence time of the impending VF onset in
those classified as SD.

The importance of the aforementioned scale of l = 13 heartbeats also emerges from
studies on the correlation properties of the magnitude and the sign of the increments in
the intervals between successive heartbeats during daytime activity as well as during sleep
stages. Interestingly, it was found [24, 19] that the correlation behavior of the heartbeat
increments and their signs and magnitudes during daytime activity is similar to the be-
havior in REM (rapid eye-movement) sleep, but significantly different from the behavior
in deep sleep. It has been empirically observed [24, 19] by DFA that the most significant
differences between the different sleep stages occur in the following ranges: 8 ≤ l ≤ 13
and 11 ≤ l ≤ 150 heartbeats for the sign-series and magnitude-series respectively. It is
challenging that the scale l = 13 is just in the verge of these two important ranges. This
coincidence cannot be fortuitous, but might stem from the reasons (LF-band, etc.) dis-
cussed above.

9.5 Heart rate variability (HRV) and 1/f “noise”. A model in natural

time that exhibits 1/f behavior

9.5.1 The 1/f “noise”. Background

Among the different features that characterize complex physical systems, the most ubiq-
uitous is the presence of 1/ f a noise in fluctuating physical variables [36]. This means that
the Fourier power spectrum S( f ) of fluctuations scales with frequency f as S( f ) ∝ 1/ f a,
as already mentioned in § 1.4.2 (see also § 1.5.1.1). The power law behavior often persists
over several orders of magnitude with cutoffs present at both high and low frequencies.
Typical values of the exponent a approximately range between 0.8 and 4 (e.g., see Ref. [4]
and references therein), but in a loose terminology all these systems are said to exhibit 1/ f
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“noise”. Such a “noise” is found in a large variety of systems, e.g., condensed matter sys-
tems(e.g. Ref. [70]), granular flow [43], DNA sequence [45], ionic current fluctuations in
membrane channels [40], the number of stocks traded daily [34], chaotic quantum systems
[17, 50, 52, 53], human cognition [13] and coordination [72], burst errors in communica-
tion systems [5], electrical measurements [28], the electric noise in carbon nanotubes [10]
and in nanoparticle films [27], the SES activities (see § 1.4.3), etc. In some of these sys-
tems, the exponent a was reported to be very close to 1, but good quality data supporting
such a value exist in a few of them [70]. As an example we refer to the voltage fluctuations
when current flows through a resistor [71]. As a second example we recall the case of SES
activities discussed in § 1.4.3 in which we concluded that α ≈ 1. As a third example, we
mention the case of heart rate variability to which we now turn.

Various tests of time variation have been applied to heart rate variability to show that in
healthy subjects heart rate fluctuations display 1/ f noise and fractal dynamics with long-
range correlations, e.g., see Ref. [47]. These initial studies indicated rich dynamics with
differences between normal individuals and patients [15]. In particular, it has been found
(see Ref. [19] and references therein) that at scales above ≈1 min (l > 60 heartbeats) the
data during waking hours display long-range power law correlations over two decades with
average exponents αwake ≈ 1.05 for the healthy group and αwake ≈ 1.2 for congestive heart
failure patients. These values change to a smaller exponent αsleep ≈ 0.85 for the healthy
group and αsleep ≈ 0.95 for the heart failure group for the sleep data. Heart rate variability
(HRV) is a useful tool that might provide indices of autonomic modulation of the sinus
node [58] and its reduced value is a sign of autonomic imbalance. Later findings (e.g., Refs.
[21, 18]) showed that healthy heartbeat dynamics exhibits even higher complexity, which is
characterized by a broad multifractal spectrum as already mentioned in § 9.2.1 (concerning
the distinction between monofractals and multifractals, see § 4.5.1). This high complexity
breaks down in illness associated with altered cardiovascular autonomic regulation (e.g.,
Refs. [29, 19] and references therein). In particular, the heart rate in healthy subjects is a
multifractal signal while for subjects with a pathological condition, e.g. congestive heart
failure, it shows a clear loss of multifractality [18, 21]. In other words, for the heart failure
subjects the multifractal spectrum is nonzero only over a very narrow range of exponents
indicating an almost monofractal behavior.

The 1/ f a behavior has been well understood on the basis of dynamic scaling observed
at equilibrium critical points (e.g., § 1.5.3) where the power law correlations in time
stem from the infinite-range correlations in space (see Ref. [4] and references therein).
Most of the observations mentioned above, however, refer to non-equilibrium phe-
nomena for which – despite some challenging theoretical attempts [3, 12] – possible
generic mechanisms leading to scale-invariant fluctuations have not yet been identi-
fied.

In other words, despite its ubiquity, there is no yet universal explanation about the
phenomenon of the 1/ f a behavior.
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9.5.2 An evolution model in natural time that exhibits 1/f behavior

We describe here a simple evolutionary model which, in the frame of natural time, leads
to 1/ f a behavior with an exponent a close to unity.

This model [54] considers the following simple evolution picture. As the number of
generations n increases by one, a new species – whose ability to survive is character-
ized by a number ηn – appears. The new species competes and eliminates only the
existing species that have a lesser ability to survive. We show below that the number
of species εn, if considered as a function of the number of generations n, exhibits an
1/ f behavior and that it increases very slowly with n, actually logarithmically, thus
very few species survive in this competitive process.

The mathematical description of the model, in terms of set theory, is as follows. Let
us consider the cardinality εn (see § 2.7.1) of the family of sets En of successive extrema
obtained from a given probability distribution function (pdf); E0 equals the empty set. Each
En is obtained by following the procedure described below for n times. Select a random
number ηn from a given pdf (here, we use the exponential pdf, i.e., p(ηn) = exp(−ηn))
and compare it with all the members of En−1. In order to construct the set En, we discard
from the set En−1 all its members that are smaller than ηn and furthermore include ηn.
Thus, En �= /0 for all n > 0 and En is a finite set of real numbers whose members are always
larger or equal to ηn. Moreover, max[En] ≥ max[En−1]. The increase of the cardinality
εn ≡ |En| of these sets is at the most 1, but its decrease may be as large as εn−1−1. This
reflects an asymmetry if εn is considered as time series with respect to the natural number
n. An example of εn vs n is shown in Fig. 9.16(a). The cardinality εn exhibits 1/ f a noise
with a very close to unity; see Fig. 9.16(b). The mathematical model described above, the
analytical properties of which has been discussed in detail in Ref. [60], corresponds to
an asymptotically non-stationary process, since 〈εn〉 ∝ lnn with a variance 〈(εn−〈εn〉)2〉
∝ lnn (see Fig. 9.16(c)). In particular, it has been shown analytically in Ref. [60] that:

〈εn〉 =
n

∑
k=1

1
k
, (9.10)

〈(εn−〈εn〉)2〉 =
n

∑
k=1

(
1
k
− 1

k2

)
. (9.11)

Equations (9.10) and (9.11) reveal that both the average value μ ≡ 〈εn〉 and the variance
σ2 ≡ 〈(εn−〈εn〉)2〉 diverge logarithmically as n tends to infinity. The point probabilities
p(εn = m), however, remain localized around μ = 〈εn〉 ∝ lnn since σ/μ ∝ 1/

√
lnn.

Thus, in short, the model suggests that the cardinality εn of the family of sets En of suc-
cessive extrema exhibits a logarithmic creep and the 1/ f a behavior when considered
as time series with respect to the natural (time) number n.
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Fig. 9.16 (a): Example of the evo-
lution of εn versus the number of
generations n, i.e., in natural time.
An exponential pdf has been consid-
ered for the selection of ηn. (b): The
Fourier power spectrum of (a); the
(green) solid line corresponds to 1/ f
and was drawn as a guide to the eye.
(c): Properties of the distribution of
εn. The average value 〈εn〉 (plus) and
the variance 〈(εn−〈εn〉)2〉 (crosses)
as a function of n. The straight solid
line depicts ln(n) and was drawn for
the reader’s convenience. Taken from
Ref. [54].

Note that an interconnection between 1/ f a noise and extreme value statistics has been
proposed as providing a new angle at the generic aspect of the phenomena [3].

In order to check the stability of the results of Fig. 9.16, we present in Fig. 9.17(a) the
average power spectrum obtained from 104 runs of the model. A sharp 1/ f behavior is
observed. Moreover, in Fig. 9.17(b), we present the results of the corresponding average
values of FDFA−l of the DFA obtained for various orders l, i.e., when detrending with a
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Fig. 9.17 Results from 104

runs of the model presented
in Fig. 9.16: (a) the average
power spectrum, (b) detrended
fluctuation analyses of order l
(DFA-l). The black solid line in
(a) corresponds to 1/ f spectrum
and was drawn as a guide to the
eye. For the same reason in (b),
the black solid lines correspond
to αDFA = 1. In (b), the colored
solid lines correspond to the
least squares fit of the average
FDFA−l depicted by symbols of
the same color. The numbers in
parentheses denote the standard
deviation of αDFA−l obtained
from the 104 runs of the model.
The various FDFA−l have been
displaced vertically for the sake
of clarity. Taken from Ref. [54].

polynomial of order l, see § 1.4.2. Figure 9.17(b) indicates that αDFA−l is close to unity,
thus being compatible with the 1/ f power spectrum depicted in Figs. 9.16(b) and 9.17(a).

We recall that in the aforementioned example of Fig. 9.16(a) showing the evolution of
εn versus the number of generations n (i.e., in natural time), an exponential pdf has been
considered. After investigating several different distributions of ηn, we conclude that the
resulting spectral density depends only very weakly – if at all – on the pdf of ηn.

We find that, in order to obtain α ≈ 1, the only essential condition to be fulfilled is that
the corresponding pdf should be bounded from below (note that this is a reasonable
assumption if ηn is to be considered a measure of the ability to survive; a negative
measure would correspond to a species that is unable to survive).

This holds, of course, under the assumption that ηn come from the same pdf, i.e., they
are independent and identically distributed variables. Let us now investigate the case when
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ing from the bottom to the
top). Taken from Ref. [54].

ηn come from a stationary but long-range (time) correlated process, for example from frac-
tional Gaussian noise (fGn) (see § 1.5.1.1). To this end, several values of the H exponent
have been considered and indicative results are depicted in Fig. 9.18 for H = 0.5, 0.7, 0.9
and ≈1. A noticeable difference can be visualized in this figure upon increasing H: for
H = 1, which corresponds, for example, to the case of SES activities (see § 1.4.3, § 4.3.2,
§ 4.4.2 and Section 4.10) the results differ greatly from those corresponding to smaller ex-
ponents, e.g., H = 0.5–0.7, which are occasionally found in the analysis of electric signal
time series emitted from “artificial” (man-made) electrical sources (see § 4.4.2).

This model, beyond its applicability to HRV (see below in § 9.5.3), may be useful in
other disciplines as well. For example, in the frame of a formal similarity between
the discrete spectrum of quantum systems and a discrete time series [50], the fol-
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lowing striking similarity is noticed. The fact that a ≈ 1 together with the behavior
〈(εn−〈εn〉)2〉 ∝ lnn of the present model, is reminiscent of the power law exponent
and the 〈δ 2

n 〉 statistic in chaotic quantum systems [50, 52].

Furthermore, εn may be considered as equivalent to the dimensionality of the thresh-
olds distribution in the so-called coherent noise model (e.g. see Ref. [59] and references
therein).

9.5.3 The 1/f model proposed and the progressive modification of HRV in healthy

children and adolescents

The model described above in § 9.5.2 amounts to a sort of shot noise in a process showing
logarithmic creep, a non-stationary process. We now compare this prediction of the model
with the heart rate variability data in healthy children and adolescents versus age.

We consider here the HRV data in healthy children and adolescents presented by Silvetti
et al. [56]. In particular, the following two standard 24 h time-domain measures, among
others, were computed: SDNN (standard deviation of all normal sinus RR intervals over
24 h) and SDANN (standard deviation of the averaged normal sinus RR intervals for all
5-min segments). They evaluated 103 subjects (57 males and 46 females, aged 1–20 years)
and found that SDNN and SDANN, overall HRV measures, increased with age and were
gender-related. These data demonstrate that in healthy children and adolescents there is a
progressive modification of HRV that may reflect a progressive evolution of the autonomic
nervous system.

Using the results of Silvetti et al. [56], we plot in Fig. 9.19(a) SDNN vs age in a
semilogarithmic plot. An inspection of this figure reveals that, for ages below 14 yr,
in both male (blue) and female (red) subjects an almost logarithmic creep is present, a
property also exhibited by the model.

This logarithmic creep can also emerge from the results of Ref. [37] where the SDNN
versus age (A) was fitted by a power law, i.e., SDNN = 97.2×A0.20 [ms], for the period
from infancy to adolescence.

In particular, in Fig. 9.19(b), drawn on the basis of the data presented in fig. 4 of
Ref. [37] by using averages every one year of age, a logarithmic creep seems to provide
a better description for SDNN from early childhood to adolescence.

This behavior could be, in principle, understood in the following context. The present
model may simulate the variation of RR intervals around a mean value determined by the
sinoatrial node, thus leading to the logarithmic creep of SDNN visualized in Fig. 9.19. We
note that the model intrinsically represents a competitive evolution which is also present
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during the period of childhood. The complexity of heart rate dynamics is high in children
and illustrates [37]: “an increase of cholinergic and a decrease of adrenergic modulation
of heart rate variability with age, confirming the progressive maturation of the autonomic
nervous system.” In other words, in order to shed light on the underlying connection

between the presented model and the development of heartbeat regulation we could say the
following. As already mentioned in § 9.4.3, the origin of the complex dynamics of heart
rate has been attributed to the antagonistic activity of the parasympathetic and sympathetic
nervous system:

It is this antagonistic activity which seems to be captured by the model since its basic
spirit stems from a competitive evolution process.
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9.5.4 The complexity measures obtained from the 1/f model and their comparison

with HRV data

We now compare the results of the model in natural time with the HRV data – actually
the RR time series – of heart disease patients and healthy subjects that have been already
analyzed in natural time in Section 9.4. Recall that those data came from long time ECG
recordings [14] containing on average N � 105 heartbeats for each record. Thus, in order
to compare with the results already presented in Fig. 9.15(b) on HRV, we consider only
mature models with n � 106 and examine their evolution, i.e, the time series εn, for the
later 105 generations (cf. this is the order of magnitude of heartbeats in a 24 h ECG record-
ing). The proposed model results in N3 = 2.52±0.19 and σ [ΔS7] = (2.46±0.25)×10−3

shown by the (black) square in Fig. 9.20. This figure just reproduces Fig. 9.15(b) to which
the calculated values of the model (as well as those from the INAGS model, see below)
are now added. Concerning the calculated value of N3, this is close to (but below) the
minimum value Hmin observed in H and larger than the N3 values in the vast majority of
SD (where high complexity breaks down). As for the calculated σ [ΔS7] value, it lies to
the right of the maximum value of σ [ΔS7] observed in H as well as in the vast majority
of CHF located outside the shaded region which seems to separate AF from the others.
This is consistent with the fact that the (black) square corresponds to an 1/ f behavior,
while healthy heartbeat dynamics exhibits even higher complexity [21, 18] as mentioned
in § 9.5.1.
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Fig. 9.20 The complexity measure N3 vs σ [ΔS7] for the RR time series. This figure is the same as
Fig. 9.15(b) to which the complexity measures obtained from the present 1/ f model as well as those
deduced from the model of Ref. [20] have been added, marked with (black) square and (green) circle,
respectively. Taken from Ref. [54].



432 9. Natural Time Analysis of Electrocardiograms

Indeed, let us consider the stochastic feedback model proposed by Ivanov, Nunes Ama-
ral, Goldberger and Stanley (INAGS) in Ref. [20] which describes the healthy regulation
of biological rhythms with a clear relation to the physiology of the heart; the effects of
the sinoatrial node along with the parasympathetic and the sympathetic influences were
taken into account. The INAGS model leads [20] to an approximately 1/ f 1.1 behavior and
generates complex dynamics that account for the functional form and scaling of the distri-
bution of variations of RR. The aforementioned complexity measures in natural time that
correspond to this model (by using the same parameters as those mentioned in fig. 2 of
Ref. [20]) have been calculated [54] and the results are depicted by the (green) circle in
Fig. 9.20. Interestingly, this point lies within the H-limits, as it should.

Summarizing, using the concept of natural time, a simple competitive evolution model
has been proposed that exhibits 1/ f a behavior with a close to unity. The model
amounts to a sort of shot noise in a process showing logarithmic creep (non-stationary
process), a behavior which is similar to the fact that the standard deviation of all nor-
mal sinus RR intervals over 24 h exhibits a logarithmic creep with age for children
and adolescents. The model predicts complexity measures (see the black square in
Fig. 9.20) that separate healthy dynamics from heart disease patients and SD, as intu-
itively expected since it corresponds to a simple 1/ f behavior.
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H
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– chaotic 160, 381
– complex dynamics 160, 388, 393, 399, 422,

424, 430–432
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429, 430
– healthy dynamics 25, 381, 388, 393, 412, 422,

424, 430
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373
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219–222, 230
Hydrated rocks 46
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144
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17–19, 21–23, 29, 82, 105, 107, 194, 199,
231, 305–308, 311
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Kolmogorov–Smirnov test 195
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343–349
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191–195, 197, 199–210, 212–215, 217–230,
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Gaussian noise
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currents from DC driven trains in Japan
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– Shot noise see Shot noise
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248, 278–285, 286
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Non-equilibrium critical dynamics 36–37



Index 445

Non-Markovian global measure G 193, 194
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– of ECG see Electrocardiograms, the

non-Markovianity
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– universality of 191, 199–201
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model XX, 183, 250, 292, 341, 349, 353,
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350, 352, 354, 360, 362

– free boundary conditions 350
– open boundary conditions 349–351, 354, 356
– periodic boundary conditions 349, 350
– predictability 358–363
– transient and stationary regime 343, 350, 362
Omori law see Earthquake scaling laws, Omori
Order parameter XIX, 35, 38, 247, 250, 254, 260,

364
– bimodal feature XIX, 247, 260, 274, 278
– of seismicity 247, 249, 250, 257–259,

270–274, 278, 292
Origins of self-similarity XVIII, 119, 138, 264
– background 139
– distinction of its origins by natural time analysis

138–146, 264
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392, 422, 430, 432
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300, 320, 321
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– p(χ) 123, 124, 130–133, 137, 143, 161, 164,
169, 202, 359, 363, 364, 370
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– of ηn 425–427
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– – p-model 263
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– – for power law distributed energy bursts 145,
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375, 376
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371
– – upon shuffling 171, 266, 267
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– – p-model 263
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– – p-model 263
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– of power law distributed energy bursts 144
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Pelite 46
Percolation 62, 64, 65, 353, 355
Peroxy defects 55, 56
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Persistent time series 203–205, 207
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Physiobank 383, 395
Piezoelectric behavior 45, 50
– charged dislocations 49
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311, 315, 318–325
– selectivity map 302, 318, 324, 326
Plastic bending 49, 51
Plastic deformation 52, 144
Plastic flow 144
Polarization 46, 49, 55, 65, 95, 134
– currents (PSPC) 41–44, 46, 134
– Maxwell–Wagner 45
– MT see Magnetotelluric, polarization
– SES see Seismic Electric Signals
Porosity 58, 62, 63
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198, 203, 211, 222, 285, 346, 359, 364, 366,
368, 424, 429, 430

Power spectrum exponent 26, 35, 197, 198, 423,
426, 427
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– issued 305, 307, 309, 310, 326
– successful 275, 303, 308, 358
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time of an impending mainshock 292–300,
308–309, 313, 316, 319, 320, 324, 330
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422

Pressure stimulated currents model for SES
generation 40–46

Prob(κ1) 300, 302, 313, 316, 320, 324, 335
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probability
Probability density function see pdf
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237, 240–244
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Public warnings XIX, 13, 303, 315, 320, 321,

325, 327
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QT-Database 383, 395
Quasi-periodic 121, 133, 348

R

Rényi entropy 162
Random telegraph signals, RTS 36, 192, 377
Random walk 25, 26, 196, 203, 375
Rapid eye-movement (REM) sleep 423
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358
– change of the entropy in natural time under time

reversal in the OFC model 362
– false alarm rate 275, 358, 362
– hit rate 275, 358, 362
– order parameter of seismicity 275–277
Redox conversion 56
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– seismicity 248
– stress 75
– strike angle 10
Relaxation time 52, 101, 103
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– dipole (re)orientation 41–46, 134, 366
– Maxwell–Wagner 45
Rescaled range (R/S) see Hurst analysis
Respiratory modulation of the heart rate 422
Roughness exponent 32
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304, 309
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S
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– in ECG see Electrocardiograms, sampling rate
– in SES 14, 28, 29
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Scale-free systems 36, 138, 345
Scaling XVIII, XIX, 3, 24, 26, 27, 29, 30, 36–38,

126–128, 137, 139, 171, 174, 203, 204,
210–218, 224, 229, 237, 238, 241, 248, 249,
258, 260, 271, 272, 279, 299, 342, 343, 350,
352, 353, 355, 364, 368, 372, 375, 432
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– exponent χH 126–128, 228, 229
– exponent τ(q) 212, 217, 218
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h(2)
– exponent h(q) 211–214, 217–219
– exponent of DFA see Detrendend fluctuation

analysis (DFA)
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h(q)
– hypothesis 36, 37, 341, 343, 364
– phenomenon 37, 139, 249, 298, 299, 424
Schottky defects 40, 373
Schrödinger, Erwin see Erwin Schrödinger
Seismic Electric Signals
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– – of long duration 12, 13, 27, 28, 121, 207,

231–233, 238, 243, 244, 315, 318, 320,
324, 325

– activities, experimental results
– – in California XIX, 291, 334–335
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– – in Greece XIX, 9, 13–15, 17, 21–24,
27, 105, 148–150, 171, 194, 195, 197,
199–201, 203, 207–209, 212, 214, 215,
218–223, 225–227, 229–231, 233, 238,
239, 244, 251, 253, 291–327

– – in Japan XIX, 13, 237, 238, 242–244, 291,
327–329, 333

– – in Mexico 13
– activity XVII–XIX, 3, 12, 13, 15, 17, 20, 28,

36, 40, 45, 54, 121, 132–138, 142, 146,
191–193, 195, 197, 199, 201, 202, 204–210,
212, 213, 217–231, 233, 237–244, 250, 262,
292, 295, 327, 329, 330, 332–334, 343, 359,
360, 371, 389, 424, 428

– amplitude XVIII, 3, 8, 15–17, 20, 60, 63–65,
194, 231, 232, 296, 303, 309, 320, 326

– determination of epicenter and magnitude 3,
19–21

– determination of the mainshock occurrence time
XIX, 15, 291–335, 360

– different polarization from MT, explanation
95–97

– discrimination from noise 5, 8–12
– – in natural time see Natural time distinction

between SES and noise
– generation mechanisms XVIII, 3, 38–66, 103,

366
– lead time 13–15, 315
– physical properties 12–22
– polarity 8, 13, 16, 17, 19, 60, 194, 320
– polarization 9, 21, 95, 96
– ratio of two components 16–17, 20, 95, 292,

295
– – explanation 79
– rise time 8
– single 12, 13, 137
Seismic moment see Earthquake, seismic

moment of
Seismic waves 22
Seismogenesis, models 38
Seiya Uyeda XX, 16, 62, 243, 318, 321, 324,

327–330, 333
Selectivity effect 3, 8, 18, 19, 65, 103
– detailed experimentation 19
– earthquake source parameters 18
– explanation of 18, 66–95, 103
– map 18, 19, 21, 292, 311
Self organization XX, 341, 348
Self-affine 32
Self-Organized Criticality, SOC XIX, 341, 342,

344–349, 368, 370, 371, 373, 375, 377
– and predictability 285, 342
– background and recent aspects 341–343
– cellular automaton 342, 344, 349, 370

– generalized Stochastic SOC model see
Carbone & Stanley generalized SOC model

– original sandpile model 342, 368
– piles of rice 343
Self-similar 31, 32, 278, 294, 300, 333
Self-similar processes 139, 170
Self-similarity 25, 26, 30–33, 119, 143, 146, 191,

217, 222, 247, 257, 266, 268, 281, 295, 333
– definition of 31–32
– fractional Brownian motion see fractional

Brownian motion
– fractional Gaussian noise see fractional

Gaussian noise
– index 32, 126, 128, 159, 222
– the two-origins of see Origins of self-similarity
Sensitive sites XVIII, 3, 17–19, 54, 65, 66, 77,

78, 328
– extent of 82, 85
SES see Seismic Electric Signals
Shannon entropy 259, 409
– distinction from dynamic entropy 160, 259
– of the order parameter 260
– of the order parameter of
– – 2D Ising model 260
– – 3D Ising model 260
– – infinite range model 260
Short-range correlations
– in natural time 133, 175
Short Term Aftershock Incompleteness, STAI

269, 270
Shot noise 429, 432
Shuffling XVIII–XX, 139, 143, 159, 160, 171,

184, 185, 191, 221, 255, 265, 267, 281, 373,
381, 383, 386, 398, 420

Similarity of fluctuations in correlated systems
257–259

Similitude relationship 80
Sir James Lighthill 304, 309
Skewness 193, 195
Skin depth 98, 100
Sleep
– deep 423
– rapid-eye movement 423
– stages 423, 424
Smoluchowski–Chapman–Kolmogorov equation

193–195
SOC see Self-organized Criticality, SOC
Solar flares 144
Source/sink function 55
Southern California Earthquake Catalog, SCEC

247, 254–258, 264, 267, 268, 274, 278,
281–285

– magnitude correlations in 268, 269, 271–273,
275, 276, 283–285
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Spatial invariance XIX, 291, 292, 299, 333
Spatiotemporal clustering see Spatiotemporal

complexity
Spatiotemporal complexity 349
– 2D Burridge Knopoff model 344
– seismicity 330, 346
Spin 35, 36, 56, 135, 260, 341, 366
Standard deviation of all normal sinus RR intervals

over 24 h, SDNN 429, 430
Stationary signal 25, 26, 196, 210, 211, 238, 363
Statistical significance of predictions 275
– false alarm rate see Receiver Operating

Characteristics, ROC, false alarm rate
– hit rate see Receiver Operating Characteristics,

ROC, hit rate
Stick–slip frictional instability 39, 343, 344
Streaming potential 58–62
Successful prediction 275, 296, 308, 358
Sudden cardiac death XX, 185, 381, 383, 388,

417
– approximate entropy 404, 405
– complementarity of the complexity measures to

identify the risk see Complementarity of
the complexity measures

– complexity measures to identify the risk XX,
185, 381, 420–423, 431

– confidence levels to identify the risk 414–416
– distinction from healthy dynamics XX, 124,

381, 383, 388–393, 395, 396, 398–400, 410,
411, 415, 420, 432

– distinction from heart disease patients and
healthy XX, 185, 381, 393–395, 404–412,
416

– dynamic entropy 417–423
– estimation errors in the procedure to identify the

risk 400, 413–415
– fractal organization breakdown 399
– multiscale entropy 382
– QT interval prolonged values 382, 393, 399,

410
– sample entropy 404, 405
– specifying the occurrence time XX, 183, 381,

417–420, 423
– ST enlarged values 399, 410
– uncorrelated randomness 400
Sudden Cardiac Death Holter Database 417
Surface wave magnitude see Earthquake

magnitude Ms
Surrogate data 160, 184, 238–241, 281, 383
– analysis 383
– CDFT see CDFT, Cumulative Distribution

Function Transformation
– linear statistic properties 383

– segmentation approach to generate surrogate
signals by randomly removing data segments
238, 239

Symbols, list of XXIII

T

Tazieff, Haroun see Haroun Tazieff
Telemetric network 3, 200
– central station 4
– real-time 6, 7, 306, 313
– stations 4, 318
– with dataloggers 5–7, 14
Temporal correlations deduced from natural time

analysis
– between earthquake magnitudes XIX, 247,

264, 266–269, 271, 276, 282, 284, 285
– long-range 139, 191, 207, 282, 318
– SES activities 12, 191, 230, 237
– SOC models 342
– strength of 269, 270
Thermodynamics of point defects 3
Time Increased Probability, TIP 275–277, 358,

362
Time reversal and natural time see Natural time,

time reversal of
Time-ordered set 300
Toppling rule 353
Toppling site 344, 369
Transmission of electric signals in dielectric media

97–106
True coincidence 330–332
Tsallis Entropy see Entropy, Tsallis

U

Uncertainty relation 120, 152
Universal curve
– for seismicity 249, 254
– for SES activities see Natural time,

universality of SES activities
Universality for seismicity see Natural time,

universality of seismicity
Updated procedure to determine the occurrence

time of an impending mainshock 293,
300–302, 313, 316, 318, 320, 335, 371

Uyeda, Seiya see Seiya Uyeda

V

Vacancy 40, 41, 47, 53, 56
– bound 40
– effective charge 41
– bound 41
VAN
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– method 4, 303
– signals see Seismic Electric Signals
Variance κ1 in natural time XVIII, 119, 132, 138,

143, 146, 164, 170, 250–252, 270, 281, 348,
359, 374, 377

– “artificial” (man-made) noises 132, 202, 203,
212, 215, 223, 227

– “uniform” distribution 132, 134, 141–143,
146, 170, 175, 177–179, 191, 202, 215,
221–223, 228, 230, 247, 266, 268, 269, 281,
295, 346–348, 352, 356–358, 362, 377

– bimodal feature of its pdf XIX, 248, 259, 260,
274, 278

– compilation of κ1 values in various dynamical
models XX, 133, 138, 292, 343

– critical phenomena 132, 133, 291, 293, 319,
320, 341, 343, 348, 368

– definition 130, 131, 143
– dichotomous Markovian time series 225
– distinction of SES activities from “artificial”

noises 202, 203, 212, 215, 220–222, 224,
228, 233, 237, 295

– distribution P(κ1) 248, 259–261
– distribution P(κ1) of seismicity XIX, 247,

248, 266–268, 272, 273, 281–284
– distribution P(κ1) of seismicity before and after

mainshocks XIX, 248, 270–278
– expectation value of, sliding window 139–143,

265, 268, 269
– for p.i.i.d. Qk 177
– ICFMC 132, 201, 202, 222, 223
– – closed states 215, 220, 221
– – open states 220
– in fBm time series 133, 171, 173, 343
– interrelation with memory see Memory,

interrelation with κ1
– Lesche (experimental) stability 162, 165–167
– maximum value of 133, 163, 164
– multifractal cascades 262–264, 343
– of seismicity after SES and before mainshock

292, 293, 297, 298, 300–302, 313, 314,
316–320, 322–325, 332, 333, 335, 336, 343,
371

– OFC model foreshocks 359, 360, 363
– order parameter of seismicity XIX, 247, 250,

251, 254, 255, 261, 292
– positivity 162, 163
– power law distributed energy bursts 143–146,

259–261
– quasi-periodic Qk 133, 348
– ricepiles 341, 343, 371–373
– seismicity 133, 247, 250, 251, 268, 269, 281,

292, 293, 313

– SES activities 132, 191, 201, 202, 222, 223,
226, 295, 343

– – experimental (Table of values) 203, 215,
227

– – of long duration 232, 233
– – theoretical XVIII, 132, 138, 222, 341, 343,

365–366
– – upon severe data loss 239, 240, 242
– short-range temporal correlations 175
– SOC systems 341, 343, 345–348, 351–353,

355–358, 360, 362, 368–370, 375–377
– the most probable value of 142, 145, 146, 171,

173, 247, 248, 263, 264, 266–268, 281
– under time reversal 131, 159, 162, 169, 224
– upon shuffling 171, 191
– use on the distinction of the origins of

self-similarity see Origins of self-similarity
– when assuming the dynamic scaling hypothesis

341, 343, 363–365, 370, 371
Ventricular fibrillation 381, 418–420, 423
Viscosity 57
Volos (VOL) measuring station 7, 194, 199, 227,

296, 309, 311–317
– selectivity map 309
Voltage fluctuations when current flows through a

resistor 424
Von Koch’s curve 31
Von Neumann, John see John von Neumann

W

Water
– in minerals 39, 56, 61, 62
Wavelet
– based estimators of scaling 25, 217, 218
– Daubechies 217–219
– Haar 217, 219
– transform XIX, 191, 210, 213, 215–217, 220,

393
– – in natural time 213, 215, 218–220
– – modulus maxima method, WTMM 217–219
Weyl, Hermann see Hermann Weyl
Wigner function XVIII, 146–150
Wigner, Eugene see Eugene Wigner
Wilcoxon paired signed-rank text 386
Wolfgang Pauli XVIII, 120
Worldwide seismicity XIX, 247, 256, 257

Z

Zeta potential see Streaming potential
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