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Preface

The concept of the generalized inverses was first introduced by I. Fredholm [81] in
1903. He proposed a generalized inverse of an integral operator, called pseudoin-
verse. The generalized inverses of differential operators were brought up in
D. Hilbert’s [107] discussion of the generalized Green’s functions in 1904. For a
history of the generalized inverses of differential operators, the reader is referred to
W. Reid’s paper [189] in 1931.

The generalized inverse of a matrix was first introduced by E. H. Moore [166] in
1920, where a unique generalized inverse by means of projectors of matrices is
defined. Little was done in the next 30 years until the mid-1950s, when the dis-
coveries of the least-squares properties of certain generalized inverses and the
relationship of the generalized inverses to solutions of linear systems brought new
interests in the subject. In particular, R. Penrose [174] showed in 1955 that Moore’s
inverse is the unique matrix satisfying four matrix equations. This important dis-
covery revived the study of the generalized inverses. In honor of Moore and
Penrose’s contribution, this unique generalized inverse is called the Moore—Penrose
inverse.

The theory, applications, and computational methods for the generalized
inverses have been developing rapidly during the last 50 years. One milestone is the
publication of several books and monographs [9, 19, 92, 187] on the subject in
1970s. Particularly, the excellent volume by Ben-Israel and Greville [9] has made a
long-lasting impact on the subject. The other milestone is the publications of the
two volumes of proceedings. The first, edited by M. Z. Nashed, is the volume of the
proceedings [167] of the Advanced Seminar on the Generalized Inverses and
Applications held at the University of Wisconsin-Madison in 1973. It is an
excellent and extensive survey book. It contains 14 survey papers on the theory,
computations and applications of the generalized inverses, and a comprehensive
bibliography that includes all related references up to 1975. The other, edited by
S. L. Campbell, is the volume of the proceedings [18] of the AMS Regional
Conference held in Columbia, South Carolina, in 1976. It is a new survey book
consisting of 12 papers on the latest applications of the generalized inverses. The
volume describes the developments in the research directions and the types of the
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generalized inverses since the mid-1970s. Prior to this period, due to the applica-
tions in statistics, research often centered in the generalized inverses for solving
linear systems and the generalized inverses with the least-squares properties. Recent
studies focus on such topics as: infinite-dimensional theory, numerical computation,
matrices of special types (Boolean, integral), matrices over algebraic structures
other than real or complex field, systems theory, and non-equation solving gener-
alized inverses.

I have been teaching and conducting research in the generalized inverses of
matrices since 1976. I gave a course “Generalized Inverses of Matrices” and held
many seminars for graduate students majoring in Computational Mathematics in
our department. Since 1979, my colleagues, graduated students, and I have obtained
a number of results on the generalized inverses in the areas of perturbation theory,
condition numbers, recursive algorithms, finite algorithms, embedding algorithms,
parallel algorithms, the generalized inverses of rank-r modified matrices and
Hessenberg matrices, extensions of the Cramer’s rule, and the representation and
approximation of the generalized inverses of linear operators. Dozens of papers
have been published in refereed journals in China and other countries. They have
drawn attention from researchers around the world. I have received letters from
more than ten universities in eight countries, USA, Germany, Sweden, etc.,
requesting papers or seeking academic contacts. Colleagues in China show strong
interests and support in our work and request a systematic presentation of our work.
With the support of the Academia Sinica Publishing Foundation and the National
Natural Science Foundation of China, Science Press published my book
“Generalized Inverses of Matrices and Operators” [241] in Chinese in 1994. That
book is noticed and well received by researchers and colleagues in China. It has
been adopted by several universities as a textbook or reference book for graduate
courses. The book was reprinted in 1998.

In order to improve graduate teaching and international academic exchange, I
was encouraged to write this English version based on the Chinese version. This
English version is not a direct translation of the Chinese version. In addition to the
contents in the Chinese version, this book includes the contents from more than 100
papers since 1994. The final product is an entirely new book, while the spirit of the
Chinese version still lives. For example, Sects. 2, 3, and 5 of Chap. 3; Sect. 1 of
Chap. 6; Sects. 4 and 5 of Chap. 7; Sects. 1, 4, and 5 of Chap. 8, Chaps. 4, 10, and
11 are all new.

Yimin Wei of Fudan University in China and Qiao Sanzheng of McMaster
University in Canada were two of my former excellent students. They have made
many achievements in the area of the generalized inverses and are recognized
internationally. I would not be able to finish this book without their cooperation.

We would like to thank A. Ben-Israel, Jianmin Miao of Rutgers
University; R. E. Hartwig, S. L. Campbell, and C. D. Meyer, Jr. of North Carolina
State University; and C. W. Groetsch of University of Cincinnati. The texts [9],
[19], and [92] undoubtedly have had an influence on this book. We also thank
Erxiong Jiang of Shanghai University, Zihao Cao of Fudan University, Musheng
Wei of East China Normal University and Yonglin Chen of Nanjing Normal
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University for their help and advice in the subject for many years, and my doctoral
student Yaomin Yu for typing this book.

I would appreciate any comments and corrections from the readers.

Finally, I am indebted to the support by the Graduate Textbook Publishing
Foundation of Shanghai Education Committee and Shanghai Normal University.

June 2003 Guorong Wang
Shanghai Normal University



Preface to the Second Edition

Since the first publication of the book more than one decade ago, we have wit-
nessed exciting developments in the study of the generalized inverses. We are
encouraged by colleagues, Science Press, and Springer to update our book. This
edition is the result of their encouragement. To include recent developments, this
edition has two new chapters on the generalized inverses of special matrices and an
updated bibliography. The new chapter six is about the generalized inverses of
structured matrices, such as Toeplitz matrix and more general matrices of low
displacement rank. It discusses the structure of the generalized inverses of struc-
tured matrices and presents efficient algorithms for computing the generalized
inverses by exploiting the structure. The new chapter ten studies the generalized
inverses of polynomial matrices, that is, matrices whose entries are polynomials.
Remarks and references are updated to include recent publications. More than
seventy publications are added to the bibliography.

To Science Press and Springer, we are grateful for their encouragement of the
publication of this new edition. We would like to thank the reviewers for their
constructive comments, which helped us improve the presentation and readability
of the book.

Also, we would like to thank National Natural Science Foundation of China
under grant 11171222 for supporting Wang Guorong, International Cooperation
Project of Shanghai Municipal Science and Technology Commission under grant
16510711200 for supporting Yimin Wei and Sanzheng Qiao, National Natural
Science Foundation of China under grant 11771099 and Key Laboratory of
Mathematics for Nonlinear Science of Fudan University for supporting Yimin Wei,
and Natural Science and Engineering Council of Canada under grant
RGPIN-2014-04252 for supporting Sanzheng Qiao.

Shanghai, China Guorong Wang
Shanghai, China Yimin Wei
Hamilton, Canada Sanzheng Qiao

November 2017 Shanghai Normal University
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Chapter 1 ®)
Equation Solving Generalized Inverses e

There are various ways to introduce the generalized inverses. We introduce them by
considering the problem of solving systems of linear equations. Various generalized
inverses are introduced in terms of solving various systems of linear equations incon-
sistent and consistent systems. We also show how the generalized inverses can be
used for expressing solution of a matrix equation, common solution of two systems
of linear equations, and common solution of two matrix equations.

1.1 Moore-Penrose Inverse

In this section, the Moore-Penrose inverse is introduced. Its definition and some basic
properties are given in Sect. 1.1.1. Before establishing a relation between the Moore-
Penrose inverse and the full-rank factorization in Sect. 1.1.3, we briefly review the
concept of the range and null space of a matrix and some properties of the matrix
rank in Sect. 1.1.2. Finally, Sect. 1.1.4 shows how the Moore-Penrose inverse plays
arole in finding the minimum-norm least-squares solution of an inconsistent system
of linear equations.

Let C (R) be the field of complex (real) numbers, C* (R") the vector space of
n-tuples of complex (real) numbers over C (R), C"*" (R™*") the class of m x n
complex (real) matrices, C"*" (R!"*") the class of m x n complex (real) matrices
of rank r, and R(A) = {y € C" : y = Ax, x € C"} the range of A € C"*". It is
well known that for every nonsingular matrix A € C};*" there exists a unique matrix
X e C*" satisfying

AX =1, and XA =1,

where I, is the identity matrix of order n. This X is called the inverse of A, denoted
by X = A~!. The nonsingular system of linear equations

Ax=b (AeC™ beC")

© Springer Nature Singapore Pte Ltd. and Science Press 2018 1
G. Wang et al., Generalized Inverses: Theory and Computations,
Developments in Mathematics 53, https://doi.org/10.1007/978-981-13-0146-9_1
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2 1 Equation Solving Generalized Inverses

has a unique solution
x=A""b.

In general, A may be singular or rectangular, the system may have no solution or
multiple solutions. Specifically, the consistent system of linear equations

Ax=b (AeC™", m <n, beR(A) (1.1.1)
has many solutions. Whereas, the inconsistent system of linear equations
Ax=b (AeC™" b¢R(A) (1.1.2)

has no solution, however, it has a least-squares solution.

Can we find a suitable matrix X, such that x = Xb is some kind of solution of the
general system Ax = b? This X is called the equation solving generalized inverse. A
generalized inverse should reduce to the regular inverse A~! when A is nonsingular.
The Moore-Penrose inverse and the {i, j, k} inverses, which will be discussed in
Sect. 1.2, are the classes of the generalized inverses.

1.1.1 Definition and Basic Properties of A"

Let A* denote the complex conjugate and transpose of A. In the case when A € C'*"
is of full column rank, A* A is a nonsingular matrix of order n and the least-squares
solution x of the overdetermined system of linear equation (1.1.2) can be obtained
by solving the following normal equations

A*Ax = A™b, (1.1.3)
specifically, x = (A*A)~! A*b. Define
X = (A*A) 'A%,
It can be verified that the above defined X is the unique matrix satisfying the following

four conditions, known as the Penrose conditions,

(1) AXA = A,
(2) XAX = X,

(3) (AX)" = AX,
4) (XA)* = XA.

The matrix X satisfying the above four conditions is called the Moore-Penrose
generalized inverse of A, denoted by AT. Thus the least-squares solution of (1.1.3)
isx = A'b.
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Especially, if m = n = rank(A), we have
AT — (A*A)flA* — A*l(A*)flA* — A*l’

showing that the Moore-Penrose inverse A" reduces to the usual inverse A~' when
A is nonsingular.
For a general m-by-n matrix A, we have the following definition.

Definition 1.1.1 Let A € C™*", then the matrix X € C"*" satisfying the Penrose
conditions (1)—(4) is called the Moore-Penrose inverse of A, abbreviated as the M-P
inverse and denoted by A".

The following theorem shows that the above defined generalized inverse uniquely
exists for any A € C"*",

Theorem 1.1.1 The generalized inverse X satisfying the Penrose conditions (1)—(4)
is existent and unique.

Proof Let A € C'*", then A can be decomposed as A = Q*RP (see for example
[1]), where Q and P are unitary matrices of orders m and n respectively and

_ RIIO mxn
R_[O O:|e(C ,

where R|; is a nonsingular upper triangular matrix of order r. Denote

RT = |:R6_11 8i| e Crm,

then X = P*R" Q satisfies the Penrose conditions (1)—(4). Indeed,

AXA = Q*RPP*RTQQ*RP = Q*RP = A,
XAX = P*R'QQ*RPP*R'Q = P*RTQ = X,

(AX)' = (Q"RPP'R'Q)" = <Q* [g 8] Q) = AX,

* * pT * * * I. O *_
(XA)* = (P*RTQQ"RP) _<P [Oo]p) _ XA

Therefore, for any A € CI"", X = Af always exists.
The uniqueness of X is proved as follows. If X and X, both satisfy the Penrose
conditions (1)—(4), then
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X1 = X1AX, = X1AX,AX,
= X1 (AX2)"(AX )" = X1 (AX|AX>)"
=X 1(AXy)" = X|AX,
= X AX2AX, = (X1 A) (XoA) X,
= (X2AX1A) X, = (X2A)* X,
= XAX, = X>.

This completes the proof. U

Now that we have shown the existence and uniqueness of the M-P inverse, we list
some of its properties.

Theorem 1.1.2 Let A € C"*", then
1) (AH" = A;

AL N #£0,

T \TAT T
2) (\A) —)\A,where)\e(c,)\—{o’ A\ = 0:

(3) (A" =A%

(4) (AA")" = (A)TAT; (A*A)T = AT(AM)T;

(5) AT = (A*A)TA* = A*(AA%):

(6) A* = A*AAT = ATAA®;

(7) Ifrank(A) = n, then ATA = I,; Ifrank(A) = m, then AAT = I,,,;

8) (UAV)' = V*ATU*, when U and V are unitary matrices.

The above properties can be verified by using Definition 1.1.1. The proof is left as
an exercise.

1.1.2 Range and Null Space of a Matrix

Definition 1.1.2 For A € C"*", we denote the range of A as
R(A)={yeC": y=Ax, xe C"}
and the null space of A as

N(A) ={xeC": Ax=0}.



1.1 Moore-Penrose Inverse 5
Using the above definitions, we can prove that
R(A)T = N(A"),

where R(A)* is the orthogonal complementary subspace of R(A), i.e., the set of
all the vectors in C" which are orthogonal to every vector in R(A). Every vector
x € C" can be expressed uniquely as the sum:

X=y+4+z yeRA), zecRA™ .

Theorem 1.1.3 The basic properties of the range and null space:

(1) R(A) = R(AAY) = R(AA*®);

(2) R(AT) = R(A*) = R(ATA) = R(A*A);

(3) R(I — ATA) = N(ATA) = N(A) = R(A)L;

(4) R(I — AAT) = N(AAT) = N(AT) = N(A*) = R(A)L;
(5) R(AB) = R(A) & rank(AB) = rank(A);

(6) N(AB) = N(B) & rank(AB) = rank(B).

The proof is left as an exercise.
The following properties of rank are used in this book.

Lemma 1.1.1 Let A € C"", Ey =1, — AAT, and Fy = I, — AT A, then

(1) rank(A) = rank(A") = rank(ATA) = rank(AAT);
(2) rank(A) = m —rank(E,), rank(A) = n — rank(Fy,);
(3) rank(AA*) = rank(A) = rank(A*A).

The proof is left as an exercise.

1.1.3 Full-Rank Factorization

The columns of a full column rank matrix form a basis for the range of the matrix.
Likewise, the rows of a full row rank matrix form a basis for the space spanned by
the rows of the matrix. In this subsection, we show that a non-null matrix that is of
neither full column rank nor full row rank can be expressed as a product of a matrix
of full column rank and a matrix of full row rank. We call a factorization with the
above property the full-rank factorization of a non-null matrix. This factorization
turns out to be a powerful tool in the study of the generalized inverses.

Theorem 1.1.4 Let A € C"*", r > 0, then there exist matrices F € C!"*" and G €
C*" such that
A = FG.
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Proof Let A =[a;,a, - ,a,] and F be any matrix whose columns form a basis

for R(A), then F = [f;, £, --- ,f,] € C"*" and every column a; of A is uniquely
representable as a linear combination of the columns of F':

a=gfi+gpb+ -+g:f, i=12,...,n

Hence
A=la,a, -, a,]
g11 912 -+ G
921 922 -+ 9
=[f.6,--- 61 . . .
9r1 Gr2 " Grn
= FG.

The matrix G € C/*" is uniquely determined. Obviously, rank(G) < r. On the other
hand,

rank(G) > rank(FG) =r.
Thus rank(G) = r. O

Let A = F G be a full-rank factorization of A and C € C/*", then
A= (FC)(C'G) = FGy,

which is also a full-rank factorization of A. This shows that the full-rank factorization
of A is not unique. A practical algorithm for the full-rank factorization is given in
Chap. 5. MacDuffe [2] pointed out that a full-rank factorization of A leads to an
explicit formula for the M-P inverse A" of A.

Theorem 1.1.5 Let A € C"*", r > 0, and its full-rank factorization A = F G, then

A" = G (F*AG*)™'F* = G*(GG*) " (F*F)"' F*. (1.1.4)
Proof First we show that F*AG* is nonsingular. From A = FG,

F*AG* = (F*F)(GG"),
and F*F and GG* are r-by-r matrices. Also by Lemma 1.1.1, both are of rank
r. Thus F*AG* is the product of two nonsingular matrices, therefore F*AG* is
nonsingular and
(FFAGH ™' = (GG (F*F)~".

Let
X = GGG (F*F)"'F*,
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the right side of (1.1.4). Using the above expression for X, it is easy to verify that X
satisfies the Penrose conditions (1)—(4). By the uniqueness of the M-P inverse AT,
(1.1.4) is therefore established. O

1.1.4 Minimum-Norm Least-Squares Solution

In Sect. 1.1.1, we introduced the definition of the Moore-Penrose inverse by consid-
ering the least-squares solution of an inconsistent system of linear equations, where
the coefficient matrix is of full column rank. In this subsection, we consider the
problem of solving a general inconsistent system of linear equations and its relation
with the Moore-Penrose inverse.

Letx =[x, X2, - -+, xp]* € C?, then

p 1/2
x> = (Z |x,-|2) = (x'x)'?

i=1

is the 2-norm of x. For simplicity, we set [|x|| = ||x]|>-
Ifu,v € C? and (u, v) =0, i.e., u and v are orthogonal, then

la+v|* = @+v,u+v) = u) + (v,u) + @, v) + (v,v)
= flull* + [Iv]?,

which is the Pythagorean theorem.
Considering the problem of finding a solution x for the general system of linear
equations (1.1.2):
Ax=Db (A eC™" b¢R(A)),

we look for an X minimizing the residual || Ax — b].

Definition 1.1.3 Let A € C"*" and b € C™, then a vector u € C" is called a least-
squares solution of Ax = b if || Au — b|| < ||[Av — b| forall v € C".

A system of linear equations may have many least-squares solutions. In many
applications, the least-squares solution with minimum norm is of interest.

Definition 1.1.4 Let A € C™*" and b € C", then a vector u € C" is called the
minimum-norm least-squares solution of Ax = b if u is a least-squares solution
of Ax = b and |Ju| < ||w|| for any other least-squares solution w.

When b € R(A), the system of linear equations Ax = b is consistent, then the
solution and the least-squares solution of Ax = b obviously coincide.

The next theorem shows the relation between the minimum-norm least-squares
solution of (1.1.2) and the M-P inverse AT.
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Theorem 1.1.6 Let A € C"™*" and b € C™, then A'b is the minimum-norm least-
squares solution of (1.1.2).

Proof Letb = by + by, where
b, = AA'b € R(A) and b, = (I — AA")b € R(A)™,
then Ax — b; € R(A) and
[AX = b|I* = |AX — by + (—=bp)|I> = | AX — by [|* + [[b2]|*.

Thus x is a least-squares solution if and only if x is a solution of the consistent system
Ax = AA™D. Tt is obvious that ATb is a particular solution. From Theorem 1.1.3,

N(A)={(I—-A"A)h: heC,
thus the general solution of the consistent system Ax = AA'b is given by

x=Ab+ (I —A"A)h, heC"

Since
AT < |A™D|* + (1 — ATA)h|?
= AT+ —ATAN|?, (I —ATAh #0,
x = A'b is the minimum-norm least-squares solution of (1.1.2). O

In some applications, the minimality of a least-squares solution is important, in
others it is not important. If the minimality is not important, then the next theorem
can be very useful.

Theorem 1.1.7 Let A € C"*" andb € C™, then the following statements are equiv-
alent:

(1) wis a least-squares solution of Ax = b;
(2) uis a solution of Ax = AATb;

(3) wuis a solution of A*AX = A*b;

(4) wis of the form Ab 4+ h, where h € N/(A).

Proof From the proof of Theorem 1.1.6, we know that (1), (2) and (4) are equivalent.
If (1) holds, then premultiplying Au =b with A* gives (3). On the other hand,
premultiplying A*Au = A*b with A*" gives

Au = AA'D,
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consequently, .
u=A"(AAD)+h=Ab+h, heN(A).

Thus (4) holds. O

Notice that the equations in statement (3) of Theorem 1.1.7 do not involve AT and
are consistent. They are called the normal equations and play an important role in
certain areas of statistics.

Exercises 1.1

Prove Theorem 1.1.2.

Prove that R(A) = N (A*)* .

Prove that rank (AA*) = rank(A) = rank(A*A).
Prove that R(AA*) = R(A), N(A*A) = N(A).
Prove that

Nk L=

R(AB) = R(A) < rank(AB) = rank(A);
N(AB) = N(B) < rank(AB) = rank(B).

6. Prove Theorem 1.1.3.
7. Show that if A = F G is a full-rank factorization, then

AT =GTFT.

8. If a and b are column vectors, then

(1)a" = (a*a)Ta*;

(2) (ab*)" = (a*a)"(b*b)ba*.
9. Show that H' = H if and only if H* = H and H> = H.
10. If U and V are unitary matrices, show that

(UAV) = V*ATU*

for any matrix A for which the product U AV is defined.

11. Show that if A € C"™*" and rank(A) = 1, then AT = a~'A*, where o =
tr(A*A) = Zi,j I(l,’j|2.

12. Show thatif X € C"*",

1

1
Xo=|.|€eC" X;=I[x X]eC™"th,
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and
beC", [ByeC, b = [%} e Ot

then by is a least-squares solution of X;b; =y if and only if 3y = m~'x}(y —
Xb) and b is a least-squares solution of

(I —m™ " %px5)Xb = (I — m™"'xox})y.

1.2 The {i, j, k} Inverses

We discussed the relations between the minimum-norm least-squares solution of an
inconsistent system of linear equations (1.1.2) and the M-P inverse in Sect. 1.1. In
this section, we introduce the {i, j, k} inverses and their relations with the solution
of other linear equations and some matrix equations.

1.2.1 The {1} Inverse and the Solution of a Consistent System
of Linear Equations

If A € Ci*", then one of the characteristics of A~ is that for every b, A~ b is the
solution of Ax = b. One might ask: for a general A € C"*", what are the character-
istics of a matrix X € C"* such that Xb is a solution of the consistent system of
linear equations (1.1.1)?

If AXb = b is true for every b € R(A), it is clear that

AXA=A,

i.e., the Penrose condition (1) holds. Conversely, suppose X satisfies AXA = A.
For every b € R(A) there exists an x;, € C" such that Ax;, = b. Therefore AXb =
AXAxp = Axp = b for every b € R(A). The following theorem is a formal state-
ment of the above argument.

Theorem 1.2.1 For A € C"*", X € C" is a matrix such that Xb is a solution of
AX = b for everyb € R(A) if and only if X satisfies

AXA = A.

Definition 1.2.1 A matrix X satisfying the Penrose condition (1) AX A = Aiscalled
the equation solving generalized inverse for AXA = A or {1} inverse of A and is
denoted by X = A" or X € A{1}, where A{1} denotes the set of all {1} inverses
of A.
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1.2.2 The {1, 4} Inverse and the Minimum-Norm Solution
of a Consistent System

Similar to the {1} inverse, we define the {1, 4} inverse and show its relation with
minimum-norm solution of a consistent system. A consistent system of equations
may have many solutions. Suppose we seek X € C"*" such that, in addition to
being an equation solving inverse for consistent linear equations (1.1.1), for each
b € R(A), it also satisfies || Xb|| < ||z| forallz # Xband z € {x : Ax = b}. That
is, for each b € R(A), Xb is the solution with minimal-norm.

Let A1% denote a matrix satisfying the Penrose conditions (1) and (4). If b €
R(A), then AA"Yb = b and the solutions and the least-squares solutions of the
consistent system of linear equation (1.1.1) coincide. Therefore the least-squares
solutions satisfy

Ax=b = AA"Yp.

It is clear that AU¥b is a least-squares solution. Note that (I — AP A)h € N'(A).
So a general least-squares solution can be presented by

A+ (1 — AP A)h, heC".

Since
A(l,4)b — A(1,4)Ay — (A(1,4)A)>ky — A*A(1,4)*y c R(A*),

we have
(A", (1 — A"YA)h) = 0.

By the Pythagorean theorem, we get

[ACYDb)? < JAYYD|? + (1 — AT A)h|?
= |A"Yb + (1 — AT A)h |2

It then follows that AY?b is the minimum-norm least-squares solution of (1.1.1)
and is also the minimum-norm solution of (1.1.1). Therefore, for each b € R(A),
we require that Xb = A¥b, that is,

XA=A"P4,
which is equivalent to the Penrose conditions (1) and (4):

AXA=A and (XA)" = XA.

The next theorem is a formal statement of what we have just shown.

Theorem 1.2.2 Let A € C"*" andb € R(A), then X is amatrix suchthat AXb = b
and || Xb|| < ||z|| forallz # Xb andz € {x: Ax = b} if and only if X satisfies
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AXA=A, and (XA)" = XA.

Definition 1.2.2 A matrix X satisfying the Penrose conditions (1) and (4) is called
the generalized inverse for the minimum-norm solution of the consistent system of
linear equations (1.1.1) or the {1, 4} inverse of A, and is denoted by X = A"% or
X € A{l, 4}, where A{l, 4} denotes the set of all {1, 4} inverses of A.

1.2.3 The {1, 3} Inverse and the Least-Squares Solution
of An Inconsistent System

For A e C"", b e C" and b ¢ R(A), the vector A'b is the minimum-norm least-
squares solution of the inconsistent system of linear equations (1.1.2). In some appli-
cations, the minimality of the norm of a least-squares solution is not important, one
might settle for any least-squares solution without considering the size of its norm.

Suppose A € C"*", let us try to determine the characteristics of a matrix X such
that Xb is a least-squares solution of (1.1.2).

Letb = b, + b,, whereb; € R(A) andb, € R(A)* = N (4*), and denote AU+
as a matrix satisfying the Penrose conditions (1) and (3). Since

AA"ID; = AATY Ay = Ay = b,

and
AA(1’3)b2 _ (AA(I,S))*bz — A(1,3)*A*b2 =0,
we have
AADp = AA(1’3)Ay = Ay = b;.
From

[AXb —b|* = [(AXb — by) + (=by)|?
= [|[AXb — by |> + b2 %,

we can see that ||AXb — b|| is minimized when and only when AXb =Db, =
AAULIDp for all b € C™. Tt is clear that

AX = AAUY,
which is equivalent to the Penrose conditions (1) and (3):
AXA=A, (AX)"=AX.

The next theorem is a formal statement of the above discussion.
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Theorem 1.2.3 For A € C"*", b € C", and b ¢ R(A), the vector Xb is a least-
squares solution of (1.1.2) if and only if X satisfies

AXA=A and (AX)* = AX.

Definition 1.2.3 A matrix X satisfying the Penrose conditions (1) and (3) is called
the generalized inverse for solving the least-squares solution of the inconsistent
system of linear equations (1.1.2) or the {1, 3} inverse of A, and is denoted by
X = A% or X € A{1, 3}, where A{l, 3} denotes the set of all the {1, 3} inverses
of A.

Since A1"¥b is a particular least-squares solution and (I — A" A)z € NV (A),
for all z € C", the general solution of the least-squares solution for (1.1.2) is

x=A"Yb+ (I — AYYA)z, wherez e C".

From Theorems 1.2.1, 1.2.2, and 1.2.3, one can see that each of the different types
of X matrices discussed above can be characterized as a set of matrices satisfying
some subset of the Penrose conditions (1) to (4). To simplify our nomenclature we
make the following definition.

Definition 1.2.4 Forany A € C"*", amatrix X € C"*" iscalled an {i, j, k} inverse
of A if X satisfies the ith, jth, and kth Penrose conditions, and is denoted by X =
AG7R or X e Ali, j, k), where A{i, j, k} denotes the set of all the {i, j, k} inverses
of A.

As shown above, the important types of the {i, j, k} inverses, such as the {1, 3}
inverse, {1, 4} inverse, and M-P inverse, are members of A{l}. They are all the
equation solving generalized inverses of A. Therefore, we give the basic properties
of the {1} inverse.

Theorem 1.2.4 For A € C"*",

(1) (AD)* e A*{1};

2) MTAD e MA{1}, A e C;

(3) rank(AW) > rank(A);

(4) For nonsingular P and Q, Q"'AV P~ € (PAQ){1};

(5) If P is of full column rank, Q is of full row rank, then QWA PM ¢
(PAO) {1},

(6) If A is of full column rank, then AVA = 1,,;
If A is of full row rank, then AAV = 1,,;

(7) AAD and AD A are idempotent, and rank(AA™") = rank(A) = rank(A(V A);

(8) If A is nonsingular, then AD = A1,

9) If A* = A, then there exists a matrix X € A{l} and X* = X;

(10) R(AAD) = R(A), N(ADA) = N(A), R(ADA)*) = R(A™).

The proof is left as an exercise.
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1.2.4 The {1} Inverse and the Solution of the Matrix
Equation AXB = D

From the above discussion, we have seen that all the important types of equation
solving inverses are the {1} inverse. For the rest of this section, we focus our discussion
on the {1} inverse as an equation solving inverse. In this subsection, we consider the
problem of solving the matrix equation AXB = D.

Theorem 1.2.5 Let A € C"*", B € CP*4, and D € C"*4, then the matrix equation
AXB =D (1.2.1)
is consistent if and only if for some AV and BW,
AAYDBYB = D. (1.2.2)
In which case the general solution is
X=AYDBY + v - AVAYBBY (1.2.3)

foranyY e C"*P.

Proof If (1.2.2) holds, then X = AV DBW is a solution of (1.2.1). Conversely, if X
is any solution of (1.2.1), then

D=AXB=AAYAXBB"YB = AAVDBYB.
Moreover, it follows from (1.2.2) and the definitions of A" and B(!) that every matrix
X of the form (1.2.3) satisfies (1.2.1). On the other hand, let X be any solution of
(1.2.1), then clearly
X=AYDBY 4+ X - AVAXBBY
which is of the form (1.2.3). (Il

In the special case of ordinary system of linear equations, Theorem 1.2.5 gives:

Corollary 1.2.1 Let A € C"*", b € C", then the system of linear equations AX = b
is consistent if and only if for some AV,

AADD =b.
In which case the general solution of Ax = b is

x=ADb+ 1 —AVA)y, VyeC". (1.2.4)
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1.2.5 The {1} Inverse and the Common Solution
of Ax=aand Bx=Db

Let A e C™", B e CP*", ae C", and b € C?, we consider the two systems
Ax=a and Bx=Db (1.2.5)

of linear equations. The problem is to find an x € C” satisfying the two systems in
(1.2.5) simultaneously. It is clearly equivalent to solving the partitioned system

313

First of all, we find a {1} inverse of the above partitioned matrix.

Theorem 1.2.6 Let A € C"*" and B € CP*", then a {1} inverse for the row parti-

tioned matrix
A
=)

is given by
Xy =1[Y Z] (1.2.7)
where
Y=0~-I-AYA)BU - AVA))YDB)AD
and

Z=(—-AYA)BUI - AVA)D,
Let C € C™*", then a {1} inverse for the column partitioned matrix
N =[A C]

is given by

Wy _ 1 My — D
‘o [A (I = C((I — AAD)YCYD (T — AAC D] (12.8)

(I = AAMNCYD(T — AAD)

Proof From (1.2.7), we have

A A
MXyM = |:B:| [Y Z] [B]

= [2} (AVA — (1 — AV A BU — AV A)YDBAD A

+ (I —-AYAYBUI — AVA)DB).
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Since
AAVA=A, AU —-ADA) =0,
and
—B(I — AV AYBU — AVA)YDBADA
+B(I — AV ABUI - AVA))DB
=B — AV AYBU — AVA)YDBUI - AV A)
= B(I — AV A),
we have
A A
MXuM = |:BA“)A +B(U - A“)A)] = [B} =M.
The proof of (1.2.8) is left as an exercise. O

The following theorem provides the common solution of the systems Ax = a and
Bx =b.

Theorem 1.2.7 Let A € C™*", B € CP*", a € R(A) and b € R(B). Suppose that
X, and Xy, are any two particular solutions for the two systems in (1.2.5) respectively.
Denote F = B(I — AW A), then the following three statements are equivalent:

The two systems in (1.2.5) possess a common solution; (1.2.9)
Bx, —b € R(F) = BN (A); (1.2.10)
Xa — Xp € N(A) + N (B). (1.2.11)

Furthermore, when a common solution exists, a particular common solution is given
» xe=(I - —-AVYAFYB)x, + (I — ADA)FDD (1.2.12)
and the set of all common solutions can be written as

{xe + U = AP AT - FVF)h: heC"}. (1.2.13)
Proof The chain of the implications to be proven is (1.2.11) = (1.2.10) = (1.2.9)

= (1.2.11).
Equation (1.2.11) = (1.2.10): Suppose that (1.2.11) holds, then

Xa —Xp =N, +n,, where n, € N(A) and n, € N(B).
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So
Bx, —b = B(x, — Xp) = Bn, € R(F),

which gives (1.2.10).
Equation (1.2.10) = (1.2.9): If (1.2.10) holds, then the vector x, of (1.2.12) is a
common solution of (1.2.5). Since Ax, = Ax, = a and
BxX. = Bx, — FFVBx, + FF'p, (1.2.14)
the statement (1.2.10) implies that

FFY(Bx, —b) = Bx, — b,

or
Bx, — FFYBx, =b — FF"b.

Therefore (1.2.14) becomes Bx. = b. Thus x. is a common solution for the two
systems in (1.2.5).

Equation (1.2.9) = (1.2.11): If there exists a common solution for the two systems
in (1.2.5), then the two solution sets must intersect, that is,

{Xa + N (A} N {xp + N(B)} # 0.
Thus there exist vectors n, € A (A) and ny, € N (B) such that
Xa + Ny = Xp + Np,

and (1.2.11) follows.

To obtain the set of all solutions for (1.2.5), we rewrite the system, which is

equivalent to (1.2.6), as

{xe + N(M)} = {xe + (I = XyM)h: heC"},

(eY]
A A
M=|:Bi| and XM=|:Bi|

where

is given in (1.2.7). Now

I—XuM=(I-AYA) I -FYB+FVYBADA)
= —-AVAUI - FVF)

which gives (1.2.13). O
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1.2.6 The {1} Inverse and the Common Solution
of AX=Band XD = E

We consider the common solution of the two matrix equations
AX =B and XD =E. (1.2.15)
Theorem 1.2.8 The matrix Eq. (1.2.15) have a common solution if and only if each
equation has a solution and AE = BD. If there exists a common solution, then a
particular common solution is
X.=APB+EDY — AVAEDD

and the general common solution is

X.+ (I —-AYA)YU —DDY) (1.2.16)
for any AW e A{1}, DY e D{1}, and Y of the same size as X.

Proof TF: If each equation has a solution and AE = B D, by Theorem 1.2.5, we have

AAVYB =B, EDVD=E,

and
AX, = A(AYB + EDY — AVAEDW)
=B+ AEDY — AEDW
=B
and

X.D = (AYB+ED"Y — AVAED")D
=AYBD+E - AYAEDY D
=AYBD+E-AYBDD"D
=E.

Therefore X is a common solution of (1.2.15).
Since
AX.+ U —AVYA)YUT —DDWV)) =B

and
X, +UT—-AYA)YUI —DDVY)YD = E,
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the matrix (1.2.16) is a common solution of (1.2.15). Suppose X, is a common
solution of (1.2.15), it is easy to verify that

X=X.+U—-AVAX - X)I — DDY)

is also a common solution. If we set Y = X — X, then X is of the form (1.2.16).
Thus the general common solution is (1.2.16).

ONLY IF: If X is a common solution, then AX = B and XD = E. Postmultiply-
ing AX = B with D and premultiplying XD = E with A, we get AE = BD. [

Exercises 1.2

1. Prove Theorem 1.2.4.
2. If X € A{l}, then the following three statements are equivalent:

(1) X € A{L,2};
(2) rank(A) = rank(X);
(3) There exist X; € A{l1} and X, € A{l} such that X{AX, = X.

3. If rank(A*V A) = rank(A), then
AA*VA)YV(A*VA) = Aand (A*VA)(A*VA)DA* = A"

4. Prove that A(A*A)(DA* = AAT.

5. For every A € C"™" and B € C"*P, there exist G € A{l} and F € B{l} such

that
FG € (AB){1}.
6. For A € C"™*" prove that
AV = AT+ HI — AAY+ (I — ATAK

for arbitrary H, K € C"™".

1.3 The Generalized Inverses With Prescribed Range
and Null Space

Theorem 1.1.3 shows some properties of the range and null space of the Moore-
Penrose inverse. Forexample, R(AT) = R(A*)and N (A") = N'(A*).Inthis section,
we study the generalized inverses with prescribed range and null space.
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1.3.1 Idempotent Matrices and Projectors

A projector is associated with subspaces, so we begin with projectors and related
idempotent matrices. We will present their properties and establish a one-to-one
correspondence between them.

Definition 1.3.1 For E € C"*",if E? = E, then E is called an idempotent matrix.

Lemma 1.3.1 Let E € C"*" be idempotent, then

(1) E*and I — E are idempotent;

(2) The eigenvalues of E are 0 and 1, and the multiplicity of the eigenvalue 1 is
rank(E);

(3) rank(E) = tr(E);

@4 EA—-—E)=U—-E)E=0;

(5) Ex=xifandonly ifx € R(E);

(6) E € E{1,2};

(7) N(E) =R — E).

Proof Properties (1)—(6) are immediate consequences of Definition 1.3.1; (3) follows
from (2) and the fact that the trace of any square matrix is the sum of its eigenvalues
counting multiplicities; (7) is obtained by applying Corollary 1.2.1to Ex =0. [

Lemma 1.3.2 Let E = F G be a full-rank factorization of E, then E is idempotent
ifandonly if GF = I.

Proof If GF = I, then clearly
(FG)> = FGFG = FG.

On the other hand, since F is of full column rank and G is of full row rank, by
Theorem 1.2.4,
FVF =GGY =1.

If FGFG = FG, multiplying on the left by F" and on the right by GV gives
GF =1. O

Now, we turn to projectors. Two subspaces L and M of C" are called comple-
mentary if C" = L @ M. In this case, every x € C" can be expressed uniquely as the
sum

x=y+z (yelL,zeM). (1.3.1)

We shall then call y the projection of x on L along M.

Definition 1.3.2 Let P, j; denote the transformation that maps any x € C" into its
projection on L along M. It is easy to verify that this transformation is linear. This
linear transformation can be represented by a matrix, which is uniquely determined
by the linear transformation and the standard basis of unit vectors. We denote P
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as both the linear transformation and its matrix representation. It is easy to verify
that this transformation is idempotent. The linear transformation Py, j, is called the
projector on L along M and P, yXx =Y.

The next theorem establishes a one-to-one correspondence between an idempotent
matrix of order n and a projector Py, )y where L @ M = C". Moreover, for any two
complementary subspaces L and M, a method for the construction of Py, j, is given
by (1.3.3).

Theorem 1.3.1 For every idempotent matrix E € C"*", R(E) and N'(E) are com-
plementary subspaces and
E = PryNE)- (1.3.2)

Conversely, if L and M are complementary subspaces, then Py is the unique
idempotent matrix such that

R(PL,M):L, and N(PLM):M.

Proof Let E be idempotent and of order n, then it follows from (5) and (7) in
Lemma 1.3.1 and
x=FEx+ (I — E)x

that C" is the sum of R(E) and NV (E). Moreover, R(E) NN (E) = {0}. Since x €
R(E),x = Ex by (5) of Lemma 1.3.1, also x € N'(E) implies Ex = 0, then x = 0.
Thus C* = R(E) & N(E). It follows from x = Ex + (I — E)x that for every x, EX
is the projection of x on R(E) along N'(E). This establishes (1.3.2).

On the other hand, if L and M are complementary subspaces, suppose that
{x1,x5,---,%x;} and {y;,¥2, - ,¥n} are any bases for L and M, respectively. If
there exists Pr_y such that R(Py p) = L and N'(Py p) = M, then

Pruxi=x;,i=1,2,..,1,
Pomyi=0;,i=1,2,...,m.

Let X =[x1xy ---x;]and Y =[y; y2 - Yul, then
PrylX Y]I=[X O]
Since {x1, X2, ..., X/, Y1, Y2, ---» Y} is a basis for C", the matrix [X Y]is nonsingular.
Thus
Pry=[X O][X Y1~ (1.3.3)
Since P y[X Y] =[X O], we have

P}y =P ulX OI[X YI"'=[X O][X Y]'' =P u,

showing that Py js given by (1.3.3) is idempotent.
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The proof for the uniqueness of Py, j, is as follows.
If there exists another idempotent matrix E such that R(E) = L and N (E) = M,
then

EX,'—X,',I:l,z,..,l,
Ey;=0, i=1,2,....m
Itis clear that E = [X O][X Y] 'and E = P y. O

Corollary 1.3.1 LetC" = L @& M, then for everyx € C", the unique decomposition
(1.3.1) is given by
Y= PL,MX and 7 = (I — PL,M)X'

The above corollary shows a relation between the projector Py, 3, and the direct sum

C" = L & M. The following corollary shows a relation between the {1, 2} inverse
and projectors.

Corollary 1.3.2 IfAand X are {1, 2} inverses of each other, then AX is the projector
on R(A) along N'(X) and X A is the projector on R(X) along N'(A), i.e.,

AX = PR(A),N(X) and XA = PR(X),N(A)~ (134)

Proof The equations in (1.3.4) can be obtained by Theorems 1.3.1 and 1.2.4. (I
Let L and M be complementary subspaces of C" and consider the matrix Py .
By (1) of Lemma 1.3.1, it is idempotent and therefore a projector by Theorem 1.3.1.
Since N (4*) = R(A)*,
R(PL ) = N(PLw)t = M~

and
NP} ) =R(PLy)" = L.

Thus, by Theorem 1.3.1,
PZ,M = PML.LL,

from which the next corollary follows easily.
Corollary 1.3.3 LetC" = L @ M, then M = L™ if and only if Py y is Hermitian.
Proof If PE,M = Py y, then

N(Pry)=N(P},) and M =L".
Conversely, if M = L+, then
Pr oy =Pyt =Py

This completes the proof. O
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Just as there is a one-to-one correspondence between projectors and idempotent
matrices, Corollary 1.3.3 shows that there is a one-to-one correspondence between
orthogonal projectors and Hermitian idempotent matrices. The projector on L along
L% is called the orthogonal projector on L and denoted by P; .

Now we discuss the conditions under which the sum, difference, and product of
two projectors are also projectors.

Theorem 1.3.2 Let Py be the projector on Ry along Ny, P, the projector on R,
along N, then P = P 4+ P, is a projector if and only if

P P,=P,P =0.

In this case, P is a projector on R = Ry ® R, along N = N; N N,.
Proof 1F: Let P} = P; and P} = P,.If P? = P, then

PP, + P,P =0.
Multiplying the above on the left by P; gives
Py(P\P,+ P,P)) =P P+ P P,P =0.
Multiplying on the right by P; gives
(P\Py+ PiP,P)P, =2P PP, =O0.
Hence P; P, Py = O. Substituting it into the previous equation, we have PP, = O
and P, P, = O.
ONLY IF: If P, P, = P, P, = O, then
PP=(P +P)' =P +P; =P +P,=P

and P is a projector by Theorem 1.3.1.
Now we prove R = Ry @ R,. Letu € R; (i =1, 2), then

Pu=u, Pu=PPu= Pi2u= Pu=u, ueR.
Thus R; C R.Letu € R; N Ry, then
Pu=u, bPu=u, u=Pu=Pu=P,Pu=0.
Thus R; N R, = {0}. Any vector u € R can be expressed as the sum
u= Pu= Pu+ Pu, Plue Ry, P,u€e R,,

SOR:R]@Rz.
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Next we prove N = Ny N N,. Letu € N, then Pu = 0 and
0= P Pu= Plu= Pu
Thus u € N;. The proof of u € N; is similar. Hence
N C NN N,.
Conversely, let u € Ny N N, then
Pu=0, Lu=0, Pu= Pju+ P,u=0.

Thusu € N and
N1 NNy CN.

The proof is completed. O

Theorem 1.3.3 Under the assumptions in Theorem 1.3.2, P = Py — P; is a projec-
tor if and only if
PP, = PP =P, (1.3.5)

In this case, P is a projector on R = Ry N N, along N = N1 @ R;.

Proof Noting that P is a projector if and only if / — P is a complementary projector.
Since I — P = (I — P;) + P,, by Theorem 1.3.2, I — P is a projector if and only
if (I — P1)P, = P,(I — P;) = O. Thus (1.3.5) holds.

Next we prove that N = Ny @ R, and R = R; N N,. By Lemma 1.3.1 and The-
orem 1.3.2,

N=N(/P)=R(UI—-P)=RU—P)®R(P)
=NP)SRP,)=N &R,

and
R=RP)=NU—-P)=NU—- P)NN(P,)
=R(P)NN(P) = RN N;.
This completes the proof. O

Theorem 1.3.4 Under the assumptions in Theorem 1.3.2, if
PP, = PP, (1.3.6)

then P = P P, is a projector on R = Ry N R, along N = N| + N,.
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Proof 1F: If P, P, = P, Py, then P2=P,soPisa projector. Now we prove R =
Ry N R,.Letu € R, then
PiPou = Pu=nu.

Multiplying the above on the left by P; gives

Piu= P} Pu= P Pu=u,
thus u € R;. The proof of u € R, is similar, thus u € R; N R,. Conversely, let u €
R; N R,, then

Plu=u and Pu=nu,

thus
Pu = P, P,u= Pju=nu.

Therefore u € R. Thus R = R; N R,.
Next we prove N = Ny + N,. If u € N, then

PyPou= Pu=0,
thus P,u € Ny. Moreover, P,(I — P;)u = 0, thus (I — P>)u € N,. Since
u=Pu+{ — P)u,

we have N C Ny + N».
Conversely, if u € N; + N, then u can be expressed as the sum

u=u; +u, u €N, u e N,.

Since
Pu = P1P211 = P1P2111 + P1P2112 = P1P2111 = P2P1111 = 0,

we haveu € N. Thus N = Ny + N,. |

1.3.2 Generalized Inverse A(Tl,’g)

Now we are ready for the generalized inverses with prescribed range and null space.
Let A € C"*" and A" be an element of A{1}. Suppose that R(A) = L and N'(A) =
M,andL® S=C"and T @ M = C", then AAD) and AV A are idempotent and,
by Theorems 1.3.1 and 1.2.4,

AAY = P g and AVA = Py
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Next, we introduce a generalized inverse X which is the unique matrix satisfying
the following three equations

AX=P,5, XA=Pry and XAX =X.

First, we show the following lemma.

Lemma 1.3.3 There exists at most one matrix X satisfying the three equations:
AX =B, XA=D, and XAX =X. (1.3.7)

Proof The Eq.(1.3.7) may have no common solution. Now we suppose (1.3.7) have
a common solution. Let both X; and X, satisfy (1.3.7) and U = X| — X5. Then
AU =0,UA=0,UB =U,and DU = U by (1.3.7). Thus

U'U =U*D'UB =U"A*XUAX; =0, i=1,2.

Therefore U = O, i.e., X; = X,. O

The following theorem gives an explicit expression for the {1, 2} inverse with
prescribed range and null space.

Theorem 1.3.5 Let A e C", R(A) =L, N(A) =M, LSS=C", and T &
M = C", then

(1) X is a {1} inverse of A such that R(XA) = T, N(AX) = S if and only if
AX =PrLs, XA= Pruy; (1.3.8)
(2) The general solution of (1.3.8) is
X = PryAV P s+ (I, — AV AY T, — AAD),
where AW is a fixed (but arbitrary) element of A{1} and Y is an arbitraryn x m
matrix;

3) A(Tl”sz) = Pr y AWV Py g is the unique {1,2} inverse of A having range T and
null space S.

Proof (1) IF: By the assumptions AX = P g and R(A) = L, and Exercise 1.3.2,
we have
AXA =P, sA=A.
Thus X € A{1}. Moreover,
NAX)=N(PLs)=S and R(XA)=R(Pry) =T.

ONLY IF: By Lemma 1.3.1, AX and XA are idempotent. By Theorems 1.3.1
and 1.2.4,
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AX = PraaxyNax)y = Prs and XA = Prixaynxa) = Prou.

(2) Set Xo = PryAV P, 5. By R(P..s) = L = R(A), there exists Y such that
P, s = AY. By Exercise 1.3.2,

AXo= APr yAVPL s =AAV P s = AADAY = AY = P, 5.

The proof of XoA = Pr y is similar. Thus X is a common solution of (1.3.8). By
using Theorem 1.2.8, the general solution of (1.3.8) is

X =PryAVP s+ I, — AV AY U, — AAD), VY eCV™
(3) Set X = Pr AW Py s. It follows from (2) that X satisfies
AXA =P, sA=A.
Thus X € A{1} and rank(X) > rank(A). Since
rank(X) = rank(Pr A"V P, 5) < rank(Py ) < rank(A),
rank(X) = rank(A). It is obvious that R(XA) C R(X). By Theorem 1.2.4,
rank(X A) = rank(A). Thus R(XA) = R(X) and there exists a Y such that XAY =
X. Multiplying XAY = X on the left by A gives
AX = AXAY = AY
and multiplying it on the left by X gives

XAX = XAY = X.

Therefore X € A{2}.
Next, using (1.3.4), we have

R(X)=R(XA) =T and N(X)=N(AX)=S.
Thus X = A(le’sz). Since X satisfies
AX=PLs, XA=Pry, and XAX =X,

by Lemma 1.3.3, there exists at most one matrix X satisfying the above three equa-
tions. Therefore A(T]"SZ) is the unique {1, 2} inverse of A having range 7" and null

space S. (]

Finally, we establish a relation between A(T]_”Sz) and AT,
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Theorem 1.3.6 Let A € C™*", R(A) = L, and N (A) = M, then
AT = AR N (1.3.9)
Proof Clearly AT € A{1,2}. By (2) and (4) of Theorem 1.1.3,
R(AT) = R(A*) and N(AT) = N(A).
It then follows from the uniqueness of A%(ZX*), N (an that (1.3.9) holds. O

This result means that the M-P inverse A" is the {1, 2} inverse of A having range
R(A*) and null space N'(A*).

1.3.3 Urquhart Formula

The formulas in Theorem 1.3.5 are not convenient for computational purposes. Using

the results in [3], a useful formula for A(Tl”sz) is given as follows.

Theorem 1.3.7 Let A € CI"*", U € C"*?, V € CI*™, and
X =UWVAU)VV,

where (VAU)WY is a fixed but arbitrary element of (V AU){1}, then

(1) X € A{1} ifand only ifrank(VAU) = r;

2) X € A{2} and R(X) = R(U) if and only if rank(V AU) = rank(U),
3) X € A2} and N'(X) = N (V) if and only if rank(V AU) = rank(V);
@) X = A%’(%}),N(V) if and only if rank(V AU) = rank(U) = rank(V) = r;
(5) X = Ay, vy if and only if rank(V AU) = rank(U) = rank(V).

Proof (1) IF: Since
r =rank(VAU) <rank(AU) <rank(A) =r,

we have
rank(AU) = r = rank(A),

thus R(AU) = R(A) and there exists a matrix Y such that A = AUY. Moreover,
rank(VAU) = rank(AU) =,

by Exercise 1.3.3,
AUWVAUYDVAU = AU.
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Thus
AXA = AUWVAU)VVAUY = AUY = A,

ie., X € A{l}.
ONLY IF: Suppose that X € A{l}, then

A=AXAXA =AUWVAU)VYVAU(VAU)VVA,
thus rank(V AU) > rank(A). It is clear that rank(V AU) < rank(A). Therefore
rank(VAU) = rank(A) = r.
(2) IF: By Exercise 1.3.3,
XAU =U(VAU)PVAU = U,
from which it follows that
XAX = XAUVAU)VV =Uu(vAU)VV = X,
thus X € A{2}. By XAU = U,
rank(U) <rank(X) and R(U) C R(X).
From X = U(VAU)VV,
rank(X) <rank(U) and R(X) C R(U).

Thus
rank(X) = rank(U) and RU) = R(X).

ONLY IF: Since R(U) = R(X) and rank(X) = rank(U). By X € A{2},
X =XAX = UWVAU)VYVAU(VAU)VY.

Therefore
rank(U) = rank(X) < rank(VAU) < rank(U).

Thus
rank(VAU) = rank(U).

(3) IF: By Exercise 1.3.3,

VAX = VAUV APV =V,
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from which it follows that
XAX =UWVAU)VYVAX =U(vAU)VYV = X,
thus X € A{2}. By V = VAX,
rank(V) <rank(X) and N (X) C N(V).
Since X = U(VAU)VV,
rank(X) <rank(V) and N(V) C N(X).

Thus
rank(X) = rank(V) and N (V) = N(X).

ONLY IF: Since N'(X) = N (V) and the number of the columns of both X and V is
m, we have rank (V) = rank(X). By X € A{2},

X =XAX =UWVAU)VYVAU(VAU)VY,

thus
rank(V) = rank(X) < rank(VAU) < rank(V).

Therefore
rank(VAU) = rank (V).

(4) Follows from (1), (2) and (3).
(5) Follows from (2) and (3). U

By Theorem 1.3.7, we can derive the formula of Zlobec [4].
AT = A*Y A, (1.3.10)
where ¥ € (A*AA*){1}. Indeed, since
rank(A*AA*) = rank(AA*) = rank(A) = rank(A*) = r,
by (4) in Theorems 1.3.6 and 1.3.7,
AYATAAN DA = AR any = AT
Using Theorem 1.3.7, we can construct not only A%’(zl})’ A(v) but also the {2}

inverse of A with prescribed range R(U) and null space N (V). We discuss this kind
of generalized inverses in the following subsection.
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1.3.4 Generalized Inverse A(TZ)S

In this subsection, we present a necessary and sufficient condition for the existence
of A(Tz’)s and then a condition for A(Tz’)s to be A(Tl’?).
Theorem 1.3.8 Let A € C'*", T be a subspace of C" of dimensiont <r, and S a
subspace of C" of dimensionm — t, then A has a {2} inverse X such that R(X) =T
and N'(X) = S if and only if

AT @ S =C", (1.3.11)

in which case X is unique and denoted by A(Tz,)s.

Proof TF: Let the columns of U € C}*' form a basis for 7 and the columns of
V* e C"*! form a basis for S+, thatis, R(U) = T and N (V) = S, then the columns
of AU span AT . It follows from (1.3.11) that dim(AT) = t, so

rank(AU) = dim(R(AU)) = dim(AT) =t. (1.3.12)
Another consequence of (1.3.11) is

AT NS = {0}. (1.3.13)

Moreover, the t x t matrix VAU is nonsingular. If VAUy =0, then AUy €
N(V) =S and AUy € R(AU) = AT, thus AUy = 0 by (1.3.13). It follows from
(1.3.12) that AU is of full column rank, thus y = 0. Therefore

rank(VAU) = rank(U) =rank(V) =1 (< r). (1.3.14)

By (5) of Theorem 1.3.7,
X =UWVAU) 'V (1.3.15)

is a {2} inverse of A having range R(X) = R(U) = T and null space N'(X) =
N(V)=S.

ONLY IF: Since X € A{2},i.e., A € X{l}, AX is idempotent. By Theorem 1.3.1,
R(AX) ® N(AX) = C™.
Moreover, by (10) of Theorem 1.2.4,
R(AX) = AR(X) = AT and N(AX)=N(X)=S.

Thus AT @ S = C™ holds.
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UNIQUENESS: Let X and X, be {2} inverses of A having range T and null space
S,then A € X {1}, A € X,{1},

X1A = PrixypyNixa) = PRy NG Ay = Proaxga)s

and
AX> = PRriax) NAx,) = PR(Ax).NX) = PrRAX),S-

Since R(X3) = T and N'(X;) = S, by Exercise 1.3.2,
Xo = Pryix, 0 X2 = X1AXo = X1 Prax,.s = X1,

which completes the proof. O

The following corollary shows thatif # = r, then A(Tz’)s = A(Tl§ ) in Theorem 1.3.8.

Corollary 1.3.4 Let A € C"", T be a subspace of C" of dimension r, and S a sub-
space of C" of dimension m — r, then the following three statements are equivalent:
(1) AT@ S =C"

2) RLAAY®S=C"and N(A) @ T = C";

(3) There exists an X € A{1,2} such that R(X) =T and N'(X) = S.

Proof (1)=-(3): If (1) holds, by (1.3.14),
rank(VAU) = rank(U) = rank(V) = r.
It follows from (4) of Theorem 1.3.7 that X = U(VAU)~ 'V isa {1, 2} inverse of A
having range R(X) = T and null space N'(X) = S.
(3)=(1): (1) is obtained by applying Theorem 1.3.8.

(1)=(2): If (1) holds, then rank(VAU) = r. By Theorem 1.3.7, X € A{1}. It
follows from Theorem 1.2.4 that

R(AX) = R(A)

and
AT = AR(X) = R(AX) = R(A).

Therefore R(A) & S = C™" by (1).

On the other hand, since (1)<(3), X € A{l} and X € A{2}, ie., A € X{1}. It
follows from Theorem 1.2.4 that R(XA) = R(X) = T and N (XA) = N (A). Thus

XA = PrixayNxa) = Pravay

and T @ N'(A) = C" by Theorem 1.3.1.
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(2)=(1): Since C" = N'(A) @ T, it is easy to verify that R(A) = AT. In fact,
it is clear that R(A) D AT. Conversely, if x is any vector in R(A), then x = Ay,
y € C". Settingy =y, + y2, where y; € N(A) and y, € T, we have

X = Ay = Ay, + Ay, = Ay, € AT.

Thus R(A) = AT. Therefore AT & S = C” holds by (2). O

Exercises 1.3

1. Let L and M be complementary subspaces of C", and Py, js denote the transfor-
mation that carries any x € C" into its projection on L along M. Prove that this
transformation is linear.

2. Let L and M be complementary subspaces of C", prove that

(1) PLyA=A & R(A) CL;
2) APLy=A& N(A) DM.

3. Prove that

(1) AB(AB)YVA = A © rank(AB) = rank(A);
(2) B(AB)YVAB = B < rank(AB) = rank(B).

4. Provethat I — Py = Py 1.
. Prove that (1.3.11) is equivalent to A*S*+ @ T+ = C".
6. Let L be a subspace of C" and the columns of F form a basis for L. Show that

91

P, =FF' = F(F*F)"'F*.

7. Prove that AL = (Ps APr)T.
8. Prove that (A(Tz,)s)* = (A*)ng!p-
9. Prove that

(1) AAYY) = Par.s:

2) (AP)A = Prasiy.

1.4 Weighted Moore-Penrose Inverse

In Sects. 1.1 and 1.2, the relations between the generalized inverses A%, A(3
and A, and the minimum-norm solution, least-squares solution and minimum-norm
least-squares solution are discussed. There, the vector 2-norm |[x||; was used. Let
X,y € C", then the inner product in C" is defined by

(x,y) = y*x.
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Moreover ,
Ixll2 = (x, %)% = (x*x)"/2.

A matrix norm can be induced from a vector norm. For example, the 2-norm of a
matrix A can be defined by

[All2 = max [|AX][.
Ixlo=1

In the vector 2-norm defined above, all the components of the vector are equally
important. In practice, we may want to give different weights to the components of the
residual of the linear system Ax = b. A generalization of the standard least-squares
is the minimization of the weighted norm

|Ax — b||3, = (Ax — b)*M (Ax — b),

where M is a given Hermitian positive definite matrix. Now we discuss the weighted
norm and some related generalized inverses.

1.4.1 Weighted Norm and Weighted Conjugate Transpose
Matrix

Let M and N be Hermitian positive definite matrices of orders m and n respectively.
The weighted inner products in C” and C" are defined by

(Xv Y)M = y*MX7 X,y € (Cm

and
X, y)v =y'Nx, x,yeC"

respectively. Correspondingly, the definitions of weighted vector norms are
172

Ixllp = (X, X),; = X*Mx)"/* = [M"?x||l,, xeC"

and
1/2
Ixlly = X, x)y° = (X*Nx)'/2 = |[N'x],, xeC"

respectively. Let x,y € C™ and (x,y)) = 0, then x and y are called M-orthogonal,
i.e., M'/?x and M'/?y are orthogonal. It is easy to verify that

Ix +yll3, = IIxlI3, + llyl3;, x,yeC”, (1.4.1)

which is called the weighted Pythagorean theorem.
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The definitions of weighted matrix norm are:

Ay = max, [Ax|ly, AeC™™ xeC"
X||y=

and
_ nxm m
9 9
IBllnm = nllax IBx|ly, BeC xeC

lIxllp=

respectively. Such a norm is sometimes called an operator norm subordinate to vector
norms. It is easy to verify that

Ay = IM'"2ANT2||,

and
IBllyy = IN'2BM 2|,

The next lemma shows the consistent property of the weighted matrix norm
induced from a weighted vector norm.

Lemma 1.4.1 Let A € C"", B e C"", x € C", andy € C", then
IAX[ly < IAllpw X3 (1.4.2)
IBylln < [IBllnallyllaes (1.4.3)
IABlmm = AN IBlinwm-

Proof We give only the proof of last inequality and leave the rest for Exercise 1.4.2.
From the relation between the weighted matrix norm and 2-norm, we get

IAB|lyy = IMPANT2N2BM 12|,
S ||M1/2AN—1/2”2 ||N|/ZBM_1/2||2
= |Allun I Bllnm-

Let A € C™",x,y € C", and A* be the conjugate transpose matrix of A, then
(Ax,y) = y*Ax = (A"y)"x = (x, A"y).

This shows a relation between the inner product and the conjugate transpose matrix.
The weighted conjugate transpose matrix of A is the generalization of the conjugate
transpose matrix of A.

Definition 1.4.1 Let A € C"*", and M and N be Hermitian positive definite matri-
ces of orders m and n respectively. The matrix X € C"*" satisfying
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(AX,y)y = (x, Xy)y, forallx e C",yeC”

is called the weighted conjugate transpose matrix and denoted by X = A*.
From the above definition,

A* = N71A*M, A e C"*»
B* = M~'B*N, B € C"", (1.4.4)
In the special case when A € C"*", x,y € C", and N is a Hermitian positive definite
matrix of order n, then

(Ax, y)n = (x, A'y)y,

where
A* = N7TA*N. (1.4.5)

If (AX,y)y = (X, Ay)y, then A* = A and A is called the weighted self-conjugate
matrix. The following lemmas list some useful properties of the weighted conjugate
transpose matrix and the weighted matrix norm.

Lemma 1.4.2
(A+ B =A"+B* A, BeC™" (1.4.6)
(AB)* = B*A*, A eC™" BeC™™, (1.4.7)
(AH* = A, AeCm™m, (1.4.8)
AH T =@ H, Aecr (1.4.9)

Proof These conclusions can be easily verified by using Definition 1.4.1, Egs. (1.4.4),
and (1.4.5), and are left as exercises. O

Lemma 1.4.3 Let A € C"*", then

IAlly = 1A v (1.4.10)
1Ay = 1AA* Iy = 1A% Allyw. (1.4.11)

Proof

IA* Ivw = IN'2A*M 2|y = INTV2A* M2,
= |M'"?AN""2|l, = | Al mw,
IAA*|prpr = IMZAAT M|
_ ”(MI/ZANfl/z)(Ml/zANfl/z)*”2
= [M'ZANT2|3 = | A%y

The proof of |A*A||yy = ||A||12v11v is similar. O



1.4 Weighted Moore-Penrose Inverse 37

The relations between the weighted generalized inverses and the solutions of
linear equations are discussed in the following subsections.

1.4.2 The {1,4N} Inverse and the Minimum-Norm (N )
Solution of a Consistent System of Linear Equations

Now that we have introduced the weighted norm in the previous subsection, we
consider a generalized inverse in terms of finding the minimal weighted norm solution
for a consistent system of linear equations. The following theorem gives a sufficient
and necessary condition for such solution.

Theorem 1.4.1 Let A € C"*", b € R(A), and N be a Hermitian positive definite
matrix of order n, then x = Xb is the minimum-norm (N ) solution of the consistent
system of linear equations (1.1.1) if and only if X satisfies

(1) AXA=A,
(4N) (NXA)* = NXA. (1.4.12)
Proof By (1.2.4), the general solution of (1.1.1) is
x=Xb+ (I — XAy, VyeC
where X € A{1}. If Xb is the minimum-norm (N) solution, then
[Xblly < IXb+ (I — XA)ylly, VbeR(A),yeC"
By Exercise 1.4.5,
[XAu|y < [[XAu+ (I — XA)yl|ly, Vu,y € C"
& (XAu, (I — XA)y)y =0, YuyeC
& (u, (XA — XA)y)y =0, Yu,yeC
& (XAHY T -XA) =0
& (XA =XA
< (NXA)*=NXA,
which completes the proof. (|

A matrix X satisfying (1.4.12) is called the generalized inverse for the minimum-
norm (V) solution of the consistent system of linear equations (1.1.1), and is denoted
by X = AN or X € A{l, 4N}, where A{l, 4N} denotes the set of all the {1, 4N}
inverses of A.
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1.4.3 The {1,3M} Inverse and the Least-Squares (M)
Solution of An Inconsistent System of Linear Equations

Previously, we introduced weights to the solution norm and considered its associated
generalized inverse. We can also introduce weights to the residual norm, that is, we
consider the problem of finding the least-squares solution in a weighted residual
norm and its associated generalized inverse.

Theorem 1.4.2 Let A € C"*", b € C", and M be a Hermitian positive definite
matrix of order m, then X = Xb is the least-squares (M ) solution of the inconsistent
system of linear equations (1.1.2) if and only if X satisfies

(1) AXA=A,
BM) (MAX)* = MAX. (1.4.13)
Proof 1F:

JAXb —bly < |[Ax—b[y, VxeC', beC"
— |[AXb—b+ Ax — AXb|y, ¥xeC" beC"
= ||[AXb—b+ Aw|ly, YbeC", w=x—XbeC".

By Exercise 1.4.5, the above inequality holds if and only if

(Aw, (AX —Db)y; =0, VbeC" weC"
s AMAX -1 =0
o ATAX = A% (1.4.14)

From (1.4.14), we have
(AX)* = X*A* = X*A*AX = (AX)*AX.
Thus (AX)* = AX, which is equivalent to (MAX)* = MAX, and
A= (A"AX)" = XTA*A = (AX)*A = AXA.

Therefore (1.4.13) holds.
ONLY IF: If (1.4.13) holds, then

AfAX = AF(AX) = (AXA) = AF,
i.e., (1.4.14) holds, equivalently, Xb is the least-squares (M) solution of (1.1.2). [J

A matrix X satisfying (1.4.13) is called the generalized inverse for the least-
squares (M) solution of the inconsistent system of linear equations (1.1.2), and is
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denoted by X = A13M or X € A{1,3M}, where A{1,3M} denotes the set of all
the {1, 3M} inverses of A.

1.4.4 Weighted Moore-Penrose Inverse and The
Minimum-Norm (N) and Least-Squares (M) Solution
of An Inconsistent System of Linear Equations

Finally, we introduce weights to both the solution norm and the residual norm and
its associated generalized inverse, that is, the weighted Moore-Penrose inverse for
expressing the minimal weighted norm and weighted least-squares solution.

Theorem 1.4.3 Let A € C"*" andb € C", M and N be Hermitian positive definite
matrices of orders m and n respectively, then X = Xb is the minimum-norm (N ) and
least-squares (M) solution if and only if X satisfies

(1) AXA = A,
(2) XAX = X,

(GBM) (MAX)* = MAX,

(AN) (NXA)* = NXA.

(1.4.15)

Proof ONLY IF: Since Xb is a least-squares (M) solution, (1) and (3M) of (1.4.15)
hold by Theorem 1.4.2. It is clear that the general solution of the least-squares (M)
solution of (1.1.2) is

Xb+ (I —XAz, X e A{l,3M}, VzeC".

From the meaning of the minimum-norm (N) and least-squares (M) solution,

[Xbly < |IXb+ (I —XA)z||ly, YVbeC" zeC"
& (Xb, I —XA)z)y =0, YbeC", zeC"
s X1 -XA) =0
s XP=X"XA. (1.4.16)

By (1.4.16),
(XA = APX* = A*X*XA = (XA XA.

Thus (XA)* = X A, which is equivalent to (NXA)* = NXA, and
X =X*XA)" = (X)X = XAX.

Therefore (2) and (4N) of (1.4.15) hold.
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IF: If (1.4.15) holds, (1) and (3M) show that Xb is a least-squares (M) solution of
(1.1.2) by Theorem 1.4.2. Equations (2) and (4N) in (1.4.15) imply

X* XA = x*(xA)* = (xAX)* = x*.

Thus (1.4.16) holds, i.e., Xb is the minimum-norm (/N) and least-squares (M) solu-
tion of (1.1.2). O

A matrix X satisfying (1.4.15) is called the generalized inverse for the minimum-
norm (N) and least-squares (M) solution or the weighted Moore-Penrose inverse,
and is denoted by X = AL - Itis readily found that X is unique.

The weighted least-squares and weighted minimum-norm problem can be reduced
to the standard least-squares and minimum-norm problem by some simple transfor-
mations [5].

Let Ac C™" beC", xe(C" and M and N be Hermitian positive definite
matrices of orders m and n respectively. Set

A=M7PAN2 X=N'"’, and b= M"?Dp,
then it is easy to verify that
|AX — blly = |M'>Ax — M'b|l, = | AX — bl|

and
Ixlly = lIX]l2.

Thus we reduce the weighted least-squares problem to the standard least-squares

problem: o
min || AX — b||3; = min || AX — b||.

Moreover, there exists the least-squares solution generalized inverse X satisfying
AXA = A, (AX)" = AX
such that Xb is the least-squares solution of AX = b. Let
X=N""2XM"* or X =N"’xM"'2,

then
N'2x =X = Xb = N'2XM~'>M'b = N'/2Xb.

Thus
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X=Xb < x=Xb
AXA=A & AXA = A,
(AX)* = AX & (MAX)" = MAX.

It shows that there exists the least-squares solution generalized inverse X satisfying
AXA=A and (MAX)" = MAX

such that Xb is a least-squares (M) solution of Ax = b.
This result is the same as Theorem 1.4.2. Theorems 1.4.1 and 1.4.3 can be obtained
by the same method. It is omitted here.

The weighted Moore-Penrose inverse AL y 1s a generalization of the Moore-
Penrose inverse A'. Specifically, when M = I,, and N = I,,, A;m 5, = AT,

Some properties of AL  are given as follows.

Theorem 1.4.4 Let A € C"*". [f M and N are Hermitian positive definite matrices
of orders m and n respectively, then

(1) (Ay)iw = Ar
Q) Ay = (A s
(3) Al,y = (A*MA)|  A*M = N"'A*(AN"'A")]
@) R(A}y) = NTIR(A*) = R(A),
N(AL ) = MTIN(A%) = N'(A%);
(5) R(AA}y) = R(A),
N(AA],) = MT'N(A*) = N (A%),
R(Al,yA) = NTIR(A%) = R(AY),
N (Al A) = N(A);
(6) If A = FG is a full-rank factorization of A, then

Ay =N'G"(F*MAN™'G" ™' F*M;

T 4 (L2) _ 212 .
(N AMN - AN*IR(A*),M*IN(A*) - AR(A#),N(A#)’
(8) ATMN — N—I/Z(MI/ZAN—I/Z)TMI/Z;

9) A}y = A*YA* where Y € (A*AA*){(1).

The proof is left to the reader as an exercise.

Exercises 1.4

1. Prove (1.4.1).
2. Prove (1.4.2) and (1.4.3).
3. Prove (1.4.6)—(1.4.9).
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4. Prove Theorem 1.4.4.
5. Let N be a Hermitian positive definite matrix of order n, L a subspace of C", and
R(B) = L, show that

Ixllv < Ix+ylv, VyeL
& x*Ny =0, Vyel
& xX*NB=0".

1.5 Bott-Duffin Inverse and Its Generalization

To conclude this chapter on the equation solving generalized inverses, we introduce
another type of generalized inverse called Bott-Duffin inverse in terms of solving
constrained linear systems.

1.5.1 Bott-Duffin Inverse and the Solution of Constrained
Linear Equations

Let A € C"™" b € C" and a subspace L C C", the constrained linear equations
Ax+y=b, xelL,yelLt (1.5.1)

arise in electrical network theory. It is readily found that the consistency of (1.5.1)
is equivalent to the consistency of the following linear equations

Also, the pair (X, y) is a solution of (1.5.1) if and only if
X=Pz, y=P.z=b— APz, (1.5.3)

where z is a solution of (1.5.2), and P; and P;. are projectors on L and L' respec-
tively. If the matrix A P, + P . is nonsingular, then (1.5.2) is consistent forallb € C”
and the solution

x= P (AP, + P;1)"'b, y=b— Ax

is unique. This leads to another equation solving generalized inverses.

Definition 1.5.1 Let A € C"*" and L be a subspace of C". If AP, + P;. is non-
singular, then the Bott-Duffin inverse of A with respect to L, denoted by AEZ)I), is
defined by

Alf)) = PL(AP, + Pp)™". (1.5.4)
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The basic properties of AEZ)I) are given in the following theorem.
Theorem 1.5.1 Suppose that AP, + Py . is nonsingular, then

(1) The constrained linear equations (1.5.1) has a unique solution

(=1 (=D
x=A'b, y=(—AA )b

foranyb € C";

2
Ch (=1
PL = A(L) APL = PLAA(L) ,
D _ =) _ 4(=Dp .
Aw = PLAg)y = Ay P
3) o . )
“) (-1 (1.2 (1.2) )
Aqy = (AP 0 = (PLA) ) = (PLAPL) s
%)

Ay = PLAPL.

Proof (1) This follows from the equivalence of (1.5.4) and (1.5.1)—(1.5.3).

(2) Premultiplying (1.5.4) with P, and using PL2 = P, we have

(=) _ 4(=D
PLA =Ay) -

From (1.5.4),

AL (APL+ PL) = Py

Postmultiplying (1.5.11) with P, and using P, . P, = O, we get

A AP, = Py.

By (1.5.11) and (1.5.12), we have A{; )’ P,. = O, thus

(=D (=D (=D
Ay PL=Ag I —P)= Ay

and
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(1.5.5)

(1.5.6)
(1.5.7)

(1.5.8)

(1.5.9)

(1.5.10)

(1.5.11)

(1.5.12)

(1.5.13)
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PLAAY) = PLAPL(AP, + Pp2)™!
= PL(APL + PL)(APL + Ppu)™
=P (1.5.14)

It follows from (1.5.12), (1.5.14), (1.5.10) and (1.5.13) that (1.5.6) and (1.5.7) hold.
(3) From (1.5.6) and (1.5.7),

dim(L) < rank(A{;,") < dim(L),

R(AL,) CR(P) =L,

and
NAL) DN (P = L*.
Therefore
rank(A{7,’) = dim(L) (1.5.15)
and
RAS)Y =L, NG =L (1.5.16)

(L) (L)

(4) Now, A7) is a {1, 2} inverse of AP,. By (1.5.6) and (1.5.7),

Ay = AR APLALY. (1.5.17)

Premultiplying the first equality in (1.5.6) with A P, gives

AP, = AP A AP, (1.5.18)

From (1.5.16)—(1.5.18), we have

(=N (1,2)
Ay = (AP

The proof of
Ay = (PLAY D = (PLAPD D

is similar.
- (5)(Flirsst;))f, we show that (AEZ)I))EZ)I) is defined, i.e., AEZ)I) P; + P, . isnonsingular.
rom (1.5.7),
AL P+ P =AY + P

If (A{;,” + P.1)x = 0, then

Alf)x=—-PpxeLNL" = {0},
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thus
AEZ;)X =P.x=0 and xe LNL* ={0}.

Therefore x =0, which implies that AEZ;) + P;. is nonsingular. Moreover,

AEZ)I)PL + P is also nonsingular.

Secondly, by (1.5.9), P, AP, and AEZ)I) are {1, 2} inverses of each other, and
rank(PLAPy) = rank(A{;)") = dim(L)
by (1.5.15), which, together with
R(PLAPL) C R(P) =L and N(PLAP)) D> N(P)=L",

shows that
R(PLAP;) =L and N(PLAP;) = Lt (1.5.19)

It then follows from (1.5.7) and (1.5.9) that

AN D p (D) (—DN(=D)
PLAPL = (A ) = Ay Py = (A Dy

This completes the proof. (]

1.5.2 The Necessary and Sufficient Conditions
Jor the Existence of the Bott-Duffin Inverse

In this subsection, we present some conditions equivalent to the nonsingularity of
APp + P;.. Based on the equivalent conditions, we give more properties of the
Bott-Duffin inverse.

Theorem 1.5.2 Let A € C" and a subspace L C C", then the following state-
ments are equivalent:
(a) APy + Pp. is nonsingular;
(b)AL® L+ =C";
(c) PLAL® L+ =C";
(d) rank (P, AP;) = rank(P;) = dim(L);
(e) rank (P, A* P;) = rank(Py) = dim(L);
() PLA*L ® L+ =C";
(g) A*L @ LJ_ — (C”,'
(h) L& (ALYt =C";
(1) A*Py + Py is nonsingular;



46 1 Equation Solving Generalized Inverses

(G) PLA + Pp. is nonsingular;

(k) PLAPy + Pp. is nonsingular.
Thus, each of the above conditions is necessary and sufficient for the existence of
AEZ)]), the Bott-Duffin inverse of A with respect to L.

Proof (a) < (b): If AP, + P;. is nonsingular, then AEZ)I) exists. By (1.5.7) and
(1.5.6),
(=D (=1 _ 4(=D =D _ (=1) _ 4 (=D
Ay Ay =Aw) APLAGy = PLAg = Ay,

(=D =1 _ ;
thus A € A, "{1} and AA ;)" = PR(AAEZ)”),N(AA{Z,”)' Since

R(AA)) = AR(A()) = AL

and
N@AAL) =N(@AL) =L

AL @ L+ = C" holds.

Conversely, if AL @ L+ = C" but AP, + P;. is singular, then (AP, 4+ P;.)
x = 0 for some nonzerox € C",i.e., AP;Xx+ P;1Xx =0.Since AP;x € AL, P;.X €
Lt,and AL® Lt =C", AP, x =0and P;.x = 0, thus x € L and Ax = 0. Hence
dim(AL) < dim(L) — 1. The contradiction establishes (a).
(a) & (c): If AP, + P;. is nonsingular, then ATD exists. By (1.5.9), AT =

© @ )
(PLA)"?,, thus

D _
PLAA W) = Prepan ) N(paA))

= PPLAR(AEZ)”),N(AEZ)”)
= PpaL.1*

and PLAL @ L+ = C".

Conversely, the proof of (¢c) = (a) is similar to that of (b) = (a).
(c) < (d): Forany x € PLAL,x = P Aw, where w € L. Thus

X = PLAPLZ € R(PLAPL)
Conversely, for all x € R(PLAP.),x = P APpz. Thus
Xx=P,Aw, we L, andx € P, AL.

Therefore R(PLAP;) = P, AL. Thus

PLAL® L =C"
< rank(P,AP;) = dim(PLAL) = dim(L) = rank(Pp).
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(d) & (e): rank (P AP;) = rank((PLAP;)*) = rank(P; A*Pp).

(e) < (f): The proof is similar to (c) < (d).

(f) < (g): The proof is similar to (b) < (c).

(g) & (h): By orthogonal complement.

(g) < (i): The proof is similar to (a) < (b).

(i) < (j): By conjugate transposition.

(c) < (k): The proof is similar to (a) < (b). O

We show more properties of AEZ)D .

Theorem 1.5.3 If A{; ) exists, then

(D
Al = PL(APL + Pp)™!
= (PLA+ PP, (1.5.20)
= (PLAP)' (1.5.21)
= P (PLAP, + P;1)"!
= (PLAP, + P,)"'P, (1.5.22)
= (PLAP. + P,.)"' — P. (1.5.23)
=AY (1.5.24)

(2) Let U be a matrix whose columns form a basis for L, then AEZ)I) exists if and
only if U*AU is nonsingular, in which case

A =UwrAv) U (1.5.25)
3)
(A" = @A), (1.5.26)
AAL) = Pappe, (15.27)
A A = Priary (1.5.28)

Proof (1) From (1.5.4), A{;,” = PL(AP, + Py:)~". Since
(PLA+ Ppi)PpL = PL(APL + Pp1)
and AP; + P;. is nonsingular by (j) of Theorem 1.5.2,
AL = PLAPL+ PL)™ = (PLA+ PL)T P

i.e., (1.5.20) holds. From (1.5.9), (1.5.19) and (1.5.12),
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Ay = (PLAPL)Y, = (PLAPL)T,

thus (1.5.21) holds.
Since

Al = (PL(PLAP)PL) = (PLAPy) ;) = PL.(PLAP, + Pp)™"

and
(PLAPp + Pp)Pp = PL(PLAPL + Pp1),

Eq.(1.5.22) holds.
Since
(PLAP, + PL)((PLAP)" + Pp2)
= (PLAPL)(PLAP,)" + Pp.
= Prep,ap) + Pt
=P+ Ppe
=1,

we have
(PLAPL + Ppo) ' = (PLAP) + Ppe

and

A = (PLAPL) = (PLAP, + PL)™ = Ppu.

So (1.5.23) holds.
By (1.5.7) and (1.5.6),

(=D (=1) _ (=D =D _ (=) _ 4D (=D
AL AAGY = ALVAPALY = PLAL = ALY, ALY € A

From (1.5.16): R(A{;,)) = Land N (A{;))) = L+, A} = AY |,
holds.

2) If AEZ)I) exists, from (b) of Theorem 1.5.2, AL @ L' = C". Let U be a matrix

whose columns form a basis for L, then L = R(U) and Lt = N (U*). Now we
prove that U* AU is nonsingular. Suppose U*AUx = 0, then

that is, (1.5.24)

AUx e N(U*) = L*

and
AUx € R(AU) = AR(U) = AL,

thus
AUx € ALN L = {0}.
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It is clear that the columns of AU span AL and AU is of full column rank, thus
x = 0. Therefore U*AU is nonsingular. In this case,

rank(U*AU) = rank(U) = rank(U™).
By (5) of Theorem 1.3.7 and (1.5.24),

* —lpr* ) @) (=D
UUTAU) U = ARy v = A =Aw -

(3) From (1.5.24),

thus (1.5.26) holds. Since

(=D (=D (=D (=D
R(AAL) = AR(A(;) = AL and N(AA()) = N(A)) = L,

we get AA{;)) = Pay 1, which is (1.5.27). Since

R(A)A) =RA)) =L

and

we have

N(AL A) = (A*L)*.

Therefore A\’ A = Py (41, ie., (1.5.28) holds. O

1.5.3 Generalized Bott-Duffin Inverse and Its Properties

Definition 1.5.1 of the Bott-Duffin inverse requires the nonsingularity of AP, + P; ..
In this subsection, we generalize the Bott-Duffin inverse by extending it to the case
when AP, + P, . is singular. We first give some slightly extended concepts related
to Hermitian positive definiteness and Hermitian nonnegative definiteness [6].

Definition 1.5.2 Let A* = A. If A satisfies the condition
x*Ax > 0, forallx € L andx # 0,

then A is called an L-positive definite (L-p.d.) matrix.
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Definition 1.5.3 Let A* = A. If A satisfies the two conditions:
(1) x*Ax > 0 for all x € L and
(2) x*Ax = 0, where x € L, implies Ax = 0,

then A is called an L-positive semidefinite (L-p.s.d.) matrix.

Now we introduce the generalized Bott-Duffin inverse.

Definition 1.5.4 Let A € C"*" and a subspace L C C", then

()
A(L)

= P (AP, + P1)'
is called the generalized Bott-Duffin inverse of A with respect to L.

When AP, + P; . is nonsingular, Ag)) exists and equals the Bott-Duffin inverse.

Naturally, before studying the generalized Bott-Duffin inverse, we investigate
APp + P;.. Some expressions of the range and null space of AP, + P;. are given
in the following lemmas. We first consider the case of a general A.

Lemma 1.5.1 Forany A € C"" and a subspace L C C", we have

(1)
N(PLA+ Pr)=N(PLAP, + P;.) = (A*L)* NL =N (PLAP,)NL,
(2)
R(APL + P1) = R(PLAP, + Ppi) = AL+ LY = PLAL® L™
Proof (1) Firstly,

XGN(PLAPL—}—PLL) < PLAPLXZ —PLLXZO
o xeN(PLAP)NL.

Secondly,

XeNPLA+P) & PLAX=—Pix=0
& PpAx=0andx € L
< Pix=x,x€Land PLAP,x= P, Ax=0
S xeN(PLAP)NL
& xeN(APL P, + Ppo).

Thirdly, since
N(PLA) = R(A*P,) = A*R(P.) = A*L,

N(PLA) = (A*L)*. Thus
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XeEN(PLA+ Pr1) & xe N(PLA)andx € L
& xe (AL NL.

(2) Firstly, by (1) above,

(R(AP, + Py )" = N(PLA* + Pp1)
= N(PLA*PL + Pr1)
= (R(PLAP, + Ppo))*.

Thus
R(APL + PLL) - R(PLAPL + PLL).

Secondly,
xe R(AP,+ P;.) & x= (AP, + P, )z=AP,z+ Pz AL+ L*.
Thirdly,
x € R(PLAP, + P;.) & x=P,AP,z+ P,.z€ PLAL® L™ .

The proof is completed. ]
Then we consider the case of an L-positive semidefinite A.

Lemma 1.5.2 Let A be L-p.s.d. (including p.d., p.s.d., and L-p.d.), then we have
(1)

N(APL + Pp1) = N(PLA+ P.) = N(PLAP, + Pp1)
=NA)NL=NAP,)NL,

2

R(AP, 4+ Pp1) = R(PLA+ Py1) = R(PLAP, + P;1)
=RA)+L*=PRA S L.

Proof (1) Firstly,
XeNAPL + P;1) & AP x=—Pp.x.
Multiplying the above equation on the left with P, we get
P, AP x = P (—Pp1x) =0.

Thus
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x* PL A PLX = 0,

equivalently,
(PLx)*A(Prx) = 0.

Since A is L-p.s.d, we have

APLX =0
and
Ppix=—AP; x =0,
thus
XENAP, + P;1) & AP;x=—P;ix=0
sxeNAP)NL.
Secondly,
xe NAP.)NL & xeN(AP)and PLx=X, Xxe L

< 0=AP x=Ax, xe L

S xeNANL.
Thirdly,

xeNANL & xeN(P,A)andxe L
< PLAx=0and P,.x=0
o xeN(PLA+ PL).

Lastly, it is clear that
N(PLA + Ppi) = N(PLAPL + Pp1)

by (1) of Lemma 1.5.1.
(2) Let A be L-p.s.d. and

N(APL + Ppi)t = N(PLA + Ppi)t = N(PLAPL + Ppu)*,
then we have
R(PLA+ P,1) = R(AP, + P;1) = R(PLAP, + P;1).

On the other hand,
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XeR(PLA+P.) & x=PAz+ Pize PLR(A) L

and
X € R(APL+ P1) & x=APiz+ PzeR(A)+ L™,

which completes the proof. (I

Lemma 1.5.3 Let A be L-p.s.d. and S = R(PLA), then we have the following prop-

erties:
(D)
(AP, + P, ) (AP, + PL) = (AP, + PL) (AP + Pp2)
= Ps+ Pp1;
(PLA+ Ppi)(PLA+ Pp)' = (PLA+ Pr) (PLA + Ppi)
= PS + PLL.
2)
Ps =P, A(PLA+ P..) = (AP, + PL.)TAP,:
P =P (PLA+ PL) = (AP, + P.L)TP, L.
3)

PL(AP, + Pr1) Pre =0;
P (AP + PL) AP, =O.

Proof (1) By Lemma 1.5.2 and Theorem 1.3.2,

(AP, + PLo)(APL + Ppo)' = Priap,+p.) = PrepoA+PL)
= Psgrr = Ps+ Pro,

(AP + Pr) (AP + Pri) = Priar,+pory = PrePoA+P.L)
= Psgr+ = Ps+ P,

(PLA+ Ppo)(PLA+ Ppo)' = Prep,a+p, ) = Ps+ Ppr,
and

(PLA+ Pr) (PLA+ Pr) = Pripoavp,ry = Priar,+p.)
= Pg+ Py ..

(2) Since
PsPL = PS = PLPS and PSPLL =0= PLLP5,

multiplying the first equation in (1) on the right with P, and P.. gives
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(AP, + P,.)TAP, = Ps and (AP, + P.) Ppo = Py

respectively. Multiplying the second equation in (1) on the left with P, and P,
gives
PLA(PLA+P) =Ps and P (PLA+Py) =P

respectively.
(3) Multiplying the first and second equations in (2) on the left with P, 1 and P,
respectively gives
P (AP, + P ) AP, = P i Ps =0

and ,
P (APp + Py o) P = PP =0.

This completes the proof. (]

The properties of AEB are given as follows:

Theorem 1.5.4 Let A be L-p.s.d. and S = R(PLA) and T = R(APL), then A(})
has the following properties:

(D
Ay = PLAY) = AQ PL = PLAQ PL; (1.5.29)
A AP, = PLAA(), = Ps; (1.5.30)
RAD) =S and N(A}) = st (1.5.31)
APs = AP, and PsA = PLA: (1.5.32)
PL(A— AA()A) = (A— AA[} A)PL = O. (1.5.33)
2)
() 2) (1,2) (1,2)
Apy = Agsr = (AP g1 = (PLA)g 51
= (PLAPL)S§) = (PLAP)T (1.5.34)
AAEZ)) = Pr s+ and AE?)A = Ps L. (1.5.35)
3)
AD = PL(APL + P)' = (PLA+ PPy (1.5.36)
= PL(PLAP, + Pp.)'
= (PLAP, + P1.)'P, (1.5.37)

= (PLAP, +P.) — P... (1.5.38)
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“
(T _ 4 (=D
A(L) - A(S)
= Ps(APs + Ps.)"!
= (PgA + Pg1)" ! Ps. (1.5.39)

Proof (1) From Definition 1.5.4, A} = PL(AP. + P;.)!. The premultiplication
of P, gives PLAE?) = Ag?). Also, by the first equation in (3) of Lemma 1.5.3, the
postmultiplication of P, gives
A PL = PL(APL + PL) P+ PL(APL + PL) Pr
= PL(APL + Pp) (PL + Ppo)
A0

Consequently,

PL — PLA(") — A(f)

()
PLA (L) (L)

(L)

Thus (1.5.29) holds.
From the first equation in (1) of Lemma 1.5.3, we have

(AP, + P ) (AP + Pp)' = Ps+ Ppo.
Since P; P . = Oand P, Ps = Pgs, premultiplying the above equation with P, gives
PLAP (AP, + P..)" = Ps.
Thus PLAAEB = Ps. Again, by the first equation in (1) of Lemma 1.5.3, multiplying

(AP, + P;) (AP, + Ppu) = P+ Ppu

on both the left and right by P, gives AEB AP, = Pgs. Thus (1.5.30) holds.
By (2) of Lemma 1.5.2,

R(AG)) = PLR(APL + Ppi)
= PL(R(A) + Lb)
= P R(A)
=R(PLA)
=S.

From (1.5.30), we have A/(A{})) C §*. Since
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dimW(A()) = n — dim(R(A{})) = n — dim(S) = dim($4),

N(A{})) = $*. Thus (1.5.31) holds.

Since PLA(PLA) P LA = PLA,

(PLA*((PLA)(PLA))* = (PLA);
= APL(PLA)(PLA)" = AP;
= AP, A(PLA) = AP,
= APR(PLA) = AP;.

Thus APS = APL

The proof of P, A = PsA is similar to AP (AP)TAP, = AP;. Thus (1.5.32)
holds.

It follows from (1.5.29) and (1.5.30) that

AP, and P,A = PsA = P AAD A

@)
AP, = APs = AA DA,

(L)

therefore, we have

AP, =0 and Pr(A— AA'

(1)
(A—AA o

%) A) =0.

Thus (1.5.33) holds.
(2) From (1.5.29), (1.5.30), and (1.5.31), we have

= A = A

()
APLA (L) (L)

() () _ 4
ADAAD = A o

(L) (L) (L)
which implies that AEB € A{2} and AE?) = A(SZ)S »
From (1.5.30) and (1.5.32),

AP, AD

(AP, = AP Ps= APs = APy,

therefore AE?) e AP, {1}.

From (1.5.29) and and A{}) € A{2},

A(T)

(L)APLA(T) — A(-D AA(T) — A(-D

(L) (L) (L) (L)’

therefore AEB € (APp){2}. Thus AE?) = (APL)fg{ZgzL)'

Similarly, we can prove AETL)) = (P, A)(Slszf and Af?) = (PLAPL)(SI’;E.
Finally, since A is L-p.s.d.,
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X e N(PLAP) & PLAPx=0
&S X PLAPx=0
& (Px)*A(Prx) =0
& APx=0
S xeNAP) =S,

implying that V'(P,AP;) = N(AP;) = S*.Moreover, R(PLAP.) =N (P AP;)*
= §. It then follows that

i) 2
Ay = (PLAPLY!

(1,2)
= (PLAPL)R(PLAPL),N(PLAPL)
= (PLAPL)"

Thus (1.5.34) holds.
Noting that

R(AA(}) = AR(A()) = AS
= AR(PLA) = R(APLPLA)
= R(APL(APL)") = R(APL)
=T

and

NAAD) =N(AD) = s,

we have AAEZ)) = PT,SL'
The proof of AE?)A = Py 71 1s similar. Thus (1.5.35) holds.
(3) From (1.5.34), we have (A{}))* = (PLAP,)! = A{}) and

= (PLAP)" = (PL(PLAP)P)'
= (PLAP)}, = PL(PLAPL + P11)'
= (PLAP, + P..)' Py,

M
A

thus (1.5.37) holds. Since

= (PLAPL) = (PLAP.PL)"
= (AP){}, = PL(APL + P’
= (PLA+ PL) P,

M)
A

(1.5.36) holds.
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Note that
(PLAPL + Pp)' = (PLAPL) + P = A}, + Ppo.

Thus (1.5.38) holds.
(4) Since

() (1) (T) ()
AS = AR(A{}) = R(AA)) and §*=N(A})) = N(AAJ),

we have
s () ) n
ASD S = R(AA('L)) @N(AA(L)) =C".
By Theorem 1.5.2, APs + Ps. is nonsingular, then AEE)D exists and

Aly) = ASy = (PsAPy)" = (PLAP)" = A(})

and
Als)) = Ps(APs+ Ps1)™' = (PsA + Ps.)”' Ps.

Thus (1.5.39) holds. O

1.5.4 The Generalized Bott-Duffin Inverse and the Solution
of Linear Equations

The solution of the constrained linear equations (1.5.1) can be expressed by the

Bott-Duffin inverse AEZ;). The relations between the general solution of the linear
system

(1.5.40)

and the generalized Bott-Duffin inverse are discussed in this subsection.
The consistency of (1.5.40) is given in following theorem.

Theorem 1.5.5 Let A € C", B € C"", L = N'(B), b € C", and d € C", then
(1.5.40) and the system
(AP, + Pyu=b—ABPd, de R(B) (1.5.41)

have the same consistency. A necessary and sufficient condition for the consistency
of (1.5.40) is
deR(B) and b— ABVd e AL + L*. (1.5.42)



1.5 Bott-Duffin Inverse and Its Generalization 59

Ifthe condition (1.5.42) is satisfied, then the vector pair (X, y) is a solution of (1.5.40)
if and only if X and y can be expressed as

x=BVd + PLu (1.5.43)
y =By P u+ Pnrg-V, foran arbitrary v, (1.5.44)

where u is a solution of (1.5.41).

Proof Let (x,y) be a solution pair of (1.5.40), thend € R(B), BBVd = d, and x
and y satisfy

Ax — BYd) + B*y =b — AB"Vd, (1.5.45)
B(x — BVd) = 0. (1.5.46)

Setu = (x — BVd) + B*y.Now, from (1.5.46),x — B"d € N(B) = L,and B*y €
R(B*) = N(B)* = L, we have

x— Bd = Pru, ie., x = BMd + Pru,
which is (1.5.43). Since B*y = P, .u, we have
y = (BOY*Priu+ Prpyv,
for an arbitrary v, which is (1.5.44). From (1.5.45), we obtain
APpu+ Priu=b—AB"Vd.
This shows that u is a solution of (1.5.41) and by Lemma 1.5.1
b— ABVd e R(AP, + P;1) = AL + L*,

which is (1.5.42).
On the other hand, let (xg, yo) be a solution pair of (1.5.40), then

xo = BYd + (I — BB)x
= B"Wd+ P.(I — BBM)xg
= BVd + P.((I - BB")xo + B*yo)
= B"d + Ppu,

which is (1.5.43), and
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B*yy = b — Axg
=b— ABYd+ PLu)
=b—ABYd - AP,u
=b—ABYPd— (b— ABVd — P,.u)
= P;iu

and

yo = BY P ou+ (1 — BV By,
= BV PLiu+ Prs Yo,

which is (1.5.44).

Conversely, if the condition (1.5.42) is satisfied, then the system (1.5.41) is con-
sistent. Let u be a solution of (1.5.41) and x and y be expressed as in (1.5.43) and
(1.5.44), then

Bx = B(BYd + P,u) = BBVd = d.

Using (1.5.41) and
B*(B(l))* = PR(B*(B(]))*),N(B*(B(”)*) = PR(B*),M = PLL,Mv
where M = N (B*(B™")*), we have

AX 4 B*y = ABVd + APLu+ B*(BV)* Priu+ B PyrpyV
= ABVd+ APju+ P;iu
= ABPd+b - AB"d
=b.

This shows that (x, y) is a solution pair of (1.5.40). O

The general solution of (1.5.40) is given as follows.

Theorem 1.5.6 Let L = N'(B). Ifthe condition (1.5.42) is satisfied, then the general
solution of (1.5.40) is given by

x=APb+ (I — A ABYA+ PLPx P p,. 2. (1.5.47)
_ (B(l))*APL P./\/'(APLJrPLL)z + PnnV, (1.5.48)

for arbitraryz € C" and v € C".
Proof From (1.2.4), the general solution of (1.5.41) is

u= (AP, + Pp.)'(b— ABVd) + Pxap,+p,.)2, (1.5.49)
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for an arbitrary z. Substituting u in (1.5.43) with the above equation, we obtain
(1.5.47).
By (1.5.42), we have

(AP, + P 1) (AP + P,.)' b — ABYd) =b — ABVd,
equivalently,
PLi(APL+ Pp) (b — ABVd) = (I — AA[)) (b — ABVd). (1.5.50)
From (AP + Pr1) Px(ap,+p,.) = O, we have
PriPxnap,+p,) = —APLPN (AP, 1P, )- (1.5.51)
Substituting u in (1.5.44) with (1.5.49) and using (1.5.50) and (1.5.51), we get

y =BV PL((APL+ PL) (b — ABVd) + Prrap, 4p,.)2)
+ PrraoV
= (BDy:(1 — AAER)(b — ABMq)
- (B(l))*APLPN(APULPLL)Z + Pns4V
= (BDY"(I — AAP)b + (BD) (AA) A — A)BVd

— (BWY*APLPxap,+p,)2 + PnsV
for arbitrary z € C" and v € C™. Thus (1.5.48) holds. O

Corollary 1.5.1 If A is L-p.s.d. in Theorem 1.5.6, then the general solution of
(1.5.40) is simplified to

X = AG\b+ (= AG) A BV + Py,

y =B — AAD)b+ (BV) (AA A — A)BVd + Pygoy.
for arbitraryz € C" and v € C".
Proof 1f A is L-p.s.d., then
NAP, 4+ P)=N(ANLCL,

implying that
PrLPnap, +p,) = Pneap+p, ) = Pniane. (1.5.52)
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Since
R(ABY) c R(A) C R(A) + L+ = (W(A) N L)+,

we have

(BY*APLPN(ap,+p, )2 = (BD) APxaL2
= (PnaneABY)'z
= 0. (1.5.53)

The proof is completed by substituting (1.5.52) and (1.5.53) into (1.5.47) and (1.5.48)
respectively. U

Exercises 1.5

1. Prove that
(=D .
(1) PLL?(L) =0;
(2) A, Py = 0.
2. Let Abe L-p.s.d. and S = R(P.A), then
(1) PsPp = Ps = P Ps;
2) PsPp . =0 = P;.Ps.

Remarks

This chapter surveys basic concepts and important results on the solution of linear
equations and various generalized inverses. Sections 1.1, 1.2, 1.3 and 1.4 are based
on [5, 7, 8], Sect. 1.5 is based on [6, 9].

As for the linear least squares problem, there are several excellent books and
papers [10-13].

The ray uniqueness of the Moore-Penrose inverse is discussed in [14]. Some
results on the weighted projector and weighted generalized inverse matrices can be
found in [15].

The matrix Moore-Penrose inverse can be generalized to tensors [16, 17] and
projectors [18].

Other types of generalized inverses are studied, for example, outer generalized
inverse [19-22], MK-weighted generalized inverse [23], signed generalized inverse
[24-26], scaled projections and generalized inverses [27, 28], core inverses [29, 30],
and related randomized generalized SVD [31].

The analysis of a recursive least squares signal processing algorithm is given in
[32]. Applications of the {2} inverse in statistics can be found in [33].
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Chapter 2 ()
Drazin Inverse Becit

In Chap. 1, we discussed the Moore-Penrose inverse and the {i, j, k} inverses which
possess some “inverse-like” properties. The {i, j, k} inverses provide some types
of solution, or the least-square solution, for a system of linear equations just as
the regular inverse provides a unique solution for a nonsingular system of linear
equations. Hence the {i, j, k} inverses are called equation solving inverses. However,
there are some properties of the regular inverse matrix that the {i, j, k} inverses do
not possess. For example, if A, B € C"*", then there is no class C{i, j, k} of {i, j, k}
inverses of A and B such that A=, B~ € C{i, j, k} implies any of the following
properties:

(1) A A~ =AA;

(2) (A7)? = (AP)~ for positive integer p;

(3) A€ AM(A) & A" € M\(A7), where A\(A) denotes the set of the eigenvalues of an
n X n matrix A;

(4) APH'A~ = AP for positive integer p;

(5) P'AP=B= P 'A"P=B".

The Drazin inverse and its special case of the group inverse introduced in Sects. 2.1
and 2.2 possess all of the above properties. Moreover, in some cases, the Drazin
inverse and group inverse provide not only solutions of linear equations, but also
solutions of linear differential equations and linear difference equations. Hence, they
resemble the regular inverse more closely than the {i, j, k} inverses. The weighted
Drazin inverse presented in Sect.2.3 is a generalization of the Drazin inverse for
rectangular matrices, with some interesting applications.
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2.1 Drazin Inverse

The Drazin inverse is associated with matrix index, which is defined only for square
matrices. In this section, we first introduce the index of a square matrix before defining
the Drazin inverse. Then we present a matrix decomposition related to the Drazin
inverse.

2.1.1 Matrix Index and Its Basic Properties

The index of a square matrix is defined as follows.

Definition 2.1.1 Let A € C"*". If
rank (A**!) = rank (A%), (2.1.1)

then the smallest positive integer k for which (2.1.1) holds is called the index of A
and is denoted by

Ind(A) = k.
If A is nonsingular, then Ind(A) = 0; if A is singular, then Ind(A) > 1.

In the following, we only consider the singular case.
The basic properties of the index of a square matrix are summarized in the fol-
lowing theorem.

Theorem 2.1.1 Let A € C**".
(1) IfInd(A) = k, then

rank(A") = rank(4%), [ >k; (2.1.2)
R(A) = R(AY, 1=k (2.1.3)
N =N AY, 1>k (2.1.4)

(2) Ind(A) = k if and only if k is the smallest positive integer such that
AF = AR, (2.1.5)

for some matrix X.
(3) Ind(A) = k ifand only if R(A¥) and N'(A¥) are complementary subspaces, that
is,

R(A% @ N (A% = C™. (2.1.6)
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Proof (1) It follows from rank (A**!) = rank(A¥) and Theorem 1.1.3 that
R(A) = R(A%), N(AF) = N (Ah).
Therefore A¥ = A¥*1X holds for some matrix X, then multiplying on the left with
A7k gives
Al = AX, >k
Hence rank (A’) = rank(A’*"). By Theorem 1.1.3, we have
R(A™) =R(A") and N(A™H =N, 1>k,
Thus (2.1.2)~(2.1.4) hold.
(2) Since rank (A*) = rank(A¥*!) and A¥ = A**1 X are equivalent, (2.1.5) holds.
(3) Suppose that rank (A¥) > rank (A**!), equivalently, there exists some x € C"
such that
Atlx =0 and Afx #£0.
Lety = A*x € R(A¥), then Ay = A%*x = 0. Thus
y € N(A%) and 0 #y = A*x € R(A") NN (AD),

which completes the proof. O

2.1.2 Drazin Inverse and Its Properties
In this section, we first define the Drazin inverse, then show its existence and unique-
ness and study its basic properties.

Definition 2.1.2 Let A € C"*" and Ind(A) =k, then the matrix X € C"*"
satisfying

(1% AFXA = A%, (2.1.7)
(2) XAX =X, (2.1.8)
(5) AX=XA (2.1.9)

is called the Drazin inverse of A and is denoted by X = A or X = A(1"2.9,

It is easy to verify that (2.1.7)—(2.1.9) are equivalent to

Ak-HX — Ak,
AX?* =X,
AX = XA,
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and by Definition 2.1.1, we have

ATX = Al 1>k,
If A is nonsingular, then Ay = A~!.

The existence and uniqueness of the Drazin inverse are given in the following
theorem.

Theorem 2.1.2 Let A € C"" and Ind(A) = k, then the Drazin inverse of A is exis-
tent and unique.

Proof EXISTENCE: Since Ind(A) = k, by (2.1.6), R(A¥) @ N'(A¥) = C". Let
P=1[vi,va, ..., Ve, Veg1, Vg2, oo, Vi,

where Vi, V2, ..., V, and V.41, V.12, ..., V, form the bases for R(AX) and N'(A%)
respectively. Set

P=[P P], Pr=[vi,v2,...,V], Po=[Vey1, V12, ..., V4l

Since R(A*) and N (AX) are invariant subspaces for A, there exist C € C"™" and
N e C=mx0=r) guch that

AP]:P]C and AP2=P2N

Thus A has the decomposition:
A:P[CO]PI. (2.1.10)

Since A*N(4%) = O, we have O = AP, = P, N*. Thus N¥ = O. Moreover

k
AkzP[% 8} P!

and
r= rank(Ak) = rank(Ck) <r.

Thus rank(C) = r, that is, C is a nonsingular matrix of order r. Using (2.1.10), we
set »
X=P|:C O}P". (2.1.11)

It is easy to verify that X satisfies (2.1.7)—(2.1.9). Thus X = A,.
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UNIQUENESS: Suppose both X and Y are the Drazin inverses of A. Set
AX=XA=E and AY=YA=F.

It is clear that
E*’=E and F>=F.

Thus
E = AX = AKXF = AFy AXY = AYAF XY = FAX = FE
F=YA=Y"A* =Y*A*XA = YAE = FE.
Therefore E = F and
X=AX’=EX=FX=YAX=YE=YF=Y?A=AY?=7Y,

meaning that the Drazin inverse is unique. (]

If A is nonsingular, then it is easy to show that A~! can be expressed as a poly-
nomial of A. Indeed, if A € C*", the characteristic polynomial of A is

f) =det(A — A)
=N 4+a N+t a Nt ay,
where [ is the identity matrix of order n. By Cayley-Hamilton Theorem, f(A) = O

implies
ATl = —(A" " A+ ayi D) a.

Hence A~ is expressed as a polynomial of A. This property does not carry over to
the {7, j, k} inverses. However, the Drazin inverse of A is always expressible as a
polynomial of A.

Theorem 2.1.3 Let A € C"" and Ind(A) = k. There exists a polynomial q(x) such

that
Ag = Al(gAN!TY, 1>k (2.1.12)
Proof By (2.1.10),
_[co]
w59

where P and C are nonsingular and N is nilpotent of index k.
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Since C is nonsingular, there exists a polynomial ¢ (x) such that C~! = ¢(C).
Thus
[c'o] - © o 1" _
! I+1 _ 1 q 1
A'(q(A)) _P_OO:|P P|: 0 q(N) P
_ o[ Clge)r ol o
=F i o o P
[c'0o7 ,_,
=[5 O} P
= Ay,
which completes the proof. (]

The basic properties of the Drazin inverse are summarized in the following theo-
rem.

Theorem 2.1.4 Let A € C"" and Ind(A) = k, then

R(Aq) = R(AD), I >k, (2.1.13)

N(Ag) =N (A, >k, (2.1.14)

AAs = AdA = Priag Ny = Pran v, [ =k, (2.1.15)
I —AAy =1 —AgA = Pyianreny. 12 k. (2.1.16)

Proof (1) Let A; = X. From the definition of the Drazin inverse,
Ak — AR+l — x Akt
Multiplication on the right by A'~* gives
Al=XA" 1>k
Thus R(A)) € R(X). From (2.1.12), R(X) < R(A"). Therefore, we have
R(X) =R(A), 1>k
(2) From (2.1.13), rank (X) = rank(A’). By (2.1.12), N'(A") C N(X). Thus
NEX)=N@AD, 1=k
(B)Let X = Ay € A{1%,2,5),then XAX = X, X € A{l}and AX = XA. Thus

R(AX) = R(XA) = R(X) and N(AX)=N(X).
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Since AX = X A is idempotent, it follows from Theorem 1.3.1 that
AX = XA = PraxNuax) = ProoNve = Pranvan, =k

(4) From (2.1.6), R(A") & N'(A!) = C". By Exercise 1.3.4,

Pran v + Pyanrany = 1.

Thus
I — AAd =1- AdA - PN(A’),R(A’)'

This completes the proof. U

From the above theorem, we have

—_ A®
Ad - AR(AI),./\/.(AI)’
which shows that the Drazin inverse Ay is the {2} inverse of A with range R(A’) and
null space N'(AY).
Recall the Zlobec formula (1.3.10):

AT = A (A*AAH)D AT

for AT, where the Moore-Penrose inverse A’ is expressed by any {1} inverse of
A*AA*. Similarly, it is possible to express the Drazin inverse in terms of any {1}
inverse of A%+,

Theorem 2.1.5 Let A € C™" and Ind(A) = k, then for any {1} inverse of A%+,
for each integer | > k,

Ay = AlAPTHD AL (2.1.17)
in particular,

Ay = AI(A21+1)%AI_
Proof Let

A=P [(C) 2] P!,

where P and C are nonsingular, N is nilpotent of index k, then

Cc2+1 o
2+1 _ -1
i —p[ o] e
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If X is a {1} inverse of A%*!, then it is easy to see that

c2-1 x, »
X_P[ X, x|P

where X, X, and X3 are arbitrary. It can be verified that
Ay = A'XA!
by multiplying the block matrices. (]

In Theorem 1.1.5, the Moore-Penrose inverse is expressed by applying the full
rank factorization of a matrix. The Drazin inverse can also be obtained by applying
the full rank factorization.

Theorem 2.1.6 Let A € C"*". We perform a sequence of full rank factorizations:
A= BiCy, CiBy=B,Cy, CyB,=B3Cs,...

so that B;C; are full rank factorizations of C;_1B;_,, fori = 2,3, .... Eventually,
there will be a pair of factors, By, and Cy, such that either (Cy By) ! exists or C; By =
O. If k is the smallest integer for which this occurs, then

k when (CyBy) ™" exists,

Ind(A) =
(A) k + 1 when C, By = O.

When Cy By is nonsingular,
rank (AX) = number of columns of By = number of rows of C

and
R(A*) = R(Bi1By--- By), N(AY) = N(CrCr_y -+~ Cy).

Moreover

B+ Bi(CyB)~*tDC, ... C; when (CyBy) ™! exists,
A = 1 «(Ck By) X 1 (CeBr) (2.1.18)
O when Cy By, = O.

Proof If C;B; is p x p and has rank ¢ < p, then C; | B;y; will be ¢ x g. That is,
the size of C; B;+1 must be strictly smaller than that of C; B; when C; B; is singular.
It follows that there eventually must be a pair of factors By and Cy, such that Cy By
is either nonsingular or zero matrix. Let k be the smallest integer when this occurs
and write
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AF = (B,C)* = Bi(CiB)*IC,

= B|(B,C2)*"'Cy = B Bo(C2B)* 2 C,C
= BBy Bi_1(ByCr)Cr—1Cy— - - - Cy,
A = BB, -+ By(Cy By)CiC—y - - - C.

(2.1.19)

Assume that C; By, is nonsingular. If B, € C/™" and C; € C,™”, then rank (B, Cy)
= r. Since Cy By is r X r and nonsingular, it follows that

rank (Cy By) = r = rank (B Cy).

Noting that B; and C; are of full column rank and full row rank respectively, for
i=1,2,3,.... It follows from (2.1.19) that

rank (A**!) = rank (Cy By) = rank(B;Cy) = rank (AX).

Since k is the smallest integer for this to hold, it must be the case that Ind(A) = k.
We can clearly see that rank (A%) equals the number of columns of By, which, in
turn, equals the number of rows of Cy.
By using the fact that B; and C; are full rank factors, fori = 1,2, 3, ..., itis not
difficult to show that

R(AY) = R(B1By -+ By), N(AY) = N(CiCry -+ C).
If C¢B; =0, then A**! =0, rank(A**?) = rank(A**!") = 0. Thus Ind(A) =
k+1.

To prove the formula (2.1.18), one simply verifies the three conditions (2.1.7)—
(2.1.9) of Definition 2.1.2. O

2.1.3 Core-Nilpotent Decomposition

If Ind(A) =k # 1, then Ay, is not always a {1} inverse of A € C"*". Although
AAyA # A, the product AA;A = A% A, still plays an important role in the theory
of the Drazin inverse.

Definition 2.1.3 Let A € C"*", then the product
Ca=AA A = A’A, = A4A?

is called the core part of A.
Theorem 2.1.7 Let A € C"", Ind(A) = k, and Ny = A — Cjg, then N4 satisfies

NX =0 and Ind(N,) =k.
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Proof The theorem is trivial when Ind(A) = 0. Thus, assuming Ind(A) > 1, we
have

N = (A — AAAF = AR — AAY)*
= A1 — AAy) = AF — AF
=0.
Since Ni& = Al — A*1A, £ Oforl < k, we have Ind(N,) = k. ]

Definition 2.1.4 Let A € C"*", then the matrix Ny = A —C, = (I — AAy A is
called the nilpotent part of A and the decomposition

A=Cp+ Ny

is called the core-nilpotent decomposition of A.

In terms of the decomposition (2.1.10) of A, we have the following results.
Theorem 2.1.8 Let A € C"™" be written as (2.1.10):

. [co],.
A_P[ON]P :

where P and C are nonsingular and N is nilpotent of index k = Ind(A), then

_ _[col,.
co=r[S0]r

and

_ o017 ,.
NA_P[ON}P .

Proof The above two equations can be easily verified by using (2.1.11):

c'o],
Ad_P|: 5 O]P

and the definitions of C4 and N4. O

The next theorem summarizes some of the basic relationships between A, Cg4,
N A and Ad.
Theorem 2.1.9 Let A € C**", the following statements are true.

1if Ind(A) > 1,

(1) Ind(Ag) =Ind(Cy) = {o if Ind(A) =0;

(2) NACyp =CypNy =0y
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NAAd = AdNA = O,‘
CAAAd = AAdCA = CA,'
(Ag)a = Ca;

A=C4 & Ind(A) <1;
((ADa)a = Aas

Ag = (Ca)a;

(Ap)* = (A")a.

The proof is left to the reader as an exercise.

Exercise 2.1

1.

LetT € C"™", R € C*", and S € C**. Prove
rank(RT S) = rank(T).

Prove Theorem 2.1.9.

. Show that

(Ahy = Ay, 1=1,2,....

Prove that
rank(A) = rank(A,) + rank(Ny).

.If A, B € C"" and AB = BA, then

(AB); = BjA,.

If A, B € C"", then
(AB)q = A(BA)Y"),B

even if AB # BA.

. Let A*T1U = A¥ and VA!*! = A!, prove that

(1) Ind(A) < min{k, [};
2) Ay = AkUk+1 — ylrlpgl — VAkUk — VIAIU;
(3) AA, = AKtmyktm = yl+n A7 for all integers m > 0 and n > 0;
4) VA = AF ifk <,
ATy = AL ifk > 1.

2.2 Group Inverse

Let A € C"". If Ind(A) = 1, then this special case of the Drazin inverse is known as
the group inverse. Notice that in this case, the condition (1¥) becomes AA A = A.
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2.2.1 Definition and Properties of the Group Inverse

We start with the definition of the group inverse.

Definition 2.2.1 Let A € C"*" . If X € C"*" satisfies

(1) AXA = A,
(2) XAX = X,
(5) AX = XA,

then X is called the group inverse of A and denoted by X = A, or X = A1:25,

From Sect.2.1.2, for every A € C"*", A, always uniquely exists. However, the
group inverse may not exist.

Theorem 2.2.1 Let A € C"*" be singular, then A has a group inverse if and only if
Ind(A) = 1. When the group inverse exists, it is unique.

Proof Let X = AWL25) then X € A{l, 2}. From Sect. 1.3,
AX = PRy Ny, and XA = Prix) a4
Since AX = XA, we have
R(X) = R(A), N(X)=N(A),

and
(1,2)
X = ARy Ne) 2.2.1)
By Theorem 1.3.5, there is at most one such inverse, and such an inverse exists
if and only if R(A) and A/ (A) are complementary subspaces. By (2.1.6), R(A) and
N(A) are complementary subspaces if and only if Ind(A) = 1. O

Another necessary and sufficient condition for the existence of the group inverse
is given in the next theorem.

Theorem 2.2.2 Let A € C"*", then A has a group inverse if and only if there exist
nonsingular matrices P and C, such that

_ [co],.
A_P[OO}P .

Proof From Theorem 2.2.1, A has a group inverse A, if and only if Ind(A) = 1. By
Theorem 2.1.9, Ind(A) = 1 if and only if

. Jco],.
A_CA_P[OO]P .
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The proof is completed by verifying that

c'07,
Ag_P|: o O:|P

is the group inverse of A. (]

From Theorem 2.1.3, the group inverse of A can be expressed as a polynomial of
A.

Corollary 2.2.1 Let A € C"" and Ind(A) = 1, then there exists a polynomial g (x)
such that
Ay =Ag(x))’.

From Theorem 2.1.4, the basic properties of the group inverse are as follows.
Corollary 2.2.2 Let A € C"" and Ind(A) = 1, then
R(Ag) =R(A),
N(Ay) = N(A),

AAg = AgA = Pray N4y = PrayN@)s
I — AAg =1- AgA = P./\/(A),R(A)~

From Theorem 2.1.5, the group inverse A, can be expressed by any {1} inverse
of A3,
Corollary 2.2.3 Let A € C"" and Ind(A) = 1, then

A, =AAHDVA,

In particular,
A, = AAY)TA.

From Theorem 2.1.6, the group inverse A, can be expressed by applying the full
rank factorization of A.

Corollary 2.2.4 Let A € C™" and Ind(A) = 1. If A = BC is a full rank factoriza-
tion, then
A, = B(CB)C.

There are cases when the group inverse coincides with the Moore-Penrose inverse.

Definition 2.2.2 Suppose A € C"" and Ind(A) =r. If ATA = AA", then A is
called an E P,, or simply EP, matrix.

Theorem 2.2.3 Let A € C™" and Ind(A) = r, then A, = A" if and only if A is an
EP matrix.
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Proof From (2.2.1) and (1.3.9), we have

_ 402 F_ 202
Ag = ARy nvay and A= ARG v

Thus
A, = A" & R(A) = R(A")
== P'R,(A) = PR(A*)
& ATA = AAT,
completing the proof. [

2.2.2 Spectral Properties of the Drazin and Group Inverses

As we know, if A is nonsingular, then A does not have 0 as an eigenvalue and
Ax=)Xx & A 'x=\"x,

that is, x is an eigenvector of A associated with the eigenvalue X if and only if x is
an eigenvector of A~! associated with the eigenvalue A\~'. Can we generalize this
spectral property of the regular inverse to the generalized inverses?

We first introduce a generalization of eigenvectors.

Definition 2.2.3 The principal vector of grade p associated with an eigenvalue A is
a vector x such that

(A=ADPx=0 and (A—X)P"'x #0,

where p is some positive integer.

Evidently, principal vectors are a generalization of eigenvectors. In fact an eigen-
vector is a principal vector of grade 1. The term “principal vector of grade p associated
with the eigenvalue \” is abbreviated to “\-vector of A of grade p”.

It is not difficult to show that if A is nonsingular, a vector x is a A™!-vector of A~}
of grade p if and only if it is a A-vector of A of grade p, i.e.,

(A=-ADH)Px=0 N (A" = X"'DHrx =0
(A= XDP'x #0 A7V = \"IDPIx £0.

We then generalize the above spectral property of the regular inverse to the group

inverse and Drazin inverse.
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Lemma 2.2.1 IfInd(A) = 1, then the 0-vectors of A are all of grade 1.

Proof Since Ind(A) = 1, we have rank (A?) = rank(A). Thus N'(A%) = N'(A). Let
x be a 0-vector of A of grade p, then

APx =0, ie., A2 (AP72x) =0, implying A?>x € N(A%) = N'(A).
Thus A?~'x = 0. Continuing the same process, we get Ax = 0. (]

Lemma 2.2.2 Let x be a A-vector of A of grade p, \ # 0, then x € R(A"), where |
is a positive integer.

Proof By the assumption, we have
(A=ADPx=0.
Expanding the left side by the Binomial Theorem gives
P
Z(—l)fx'cj,AP*ix =0.
i=0

Moving the last term to the right side and dividing the both sides by its coefficient
(—1)P7INP £ 0, we get

p—1
D (=PI AP X = x,
i=0
Set j =i + 1, then the above equation becomes
P
j=pyj—p—lj—1 gp—j+le _
D (=niramrTiei Tt At ix = x

i=I

Set ¢j = (—1)/7PX\I=P=1C}", then the above equation gives

P
E cjAPTITIx = x.
—

Hence
X = | APX + 2 AP7Ix + - + ¢, Ax. (2.2.2)
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Successive premultiplication of (2.2.2) by A gives

AX = APHIX 4 APX +o A
A’ = APTIX 0 APTIX 4, A

(2.2.3)
AlTIx = ] APTIEIX 40 APH2x 0 Al

Successive substitutions of the equations in (2.2.3) into the terms on the right side
of (2.2.2) eventually give
x = Alg(A)x,

where ¢ is some polynomial. ]

Lemma 2.2.3 Let A € C"" and
XA = A (2.2.4)

for some positive integer I, then every A-vector of A of grade p for A\ #0 is a
X" L-vector of X of grade p.

Proof The proof will be by induction on the grade p. For p =1, let A # 0 and x
be a A-vector of A of grade 1, that is, Ax = \x, then Altlx = N*!x and therefore
x = A/~ A*1x, consequently, by (2.2.4),

Xx = A x AT I = Al = A ik,

Thus the lemma is true for p = 1.
Now, suppose that it is true for p = 1,2, ..., r, and let x be a A-vector of A of
grade r + 1, then, by Lemma 2.2.2, x € R(A'), i.e., x = Ay for some y. Thus

X - 2"'Dx =X -x"'hHAly
— X(Al _ )\_1A1+1)y
=X(I-X"'AaAly
=X —\"A)x
=-2"'X(A - \Dx. (2.2.5)

Since x is a A-vector of A of grade r + 1,
(A=X)"'x=0 and (A—X)'x#0,
that is,

(A=AD"((A=ADx) =0, and (A—AN)"'((A—\Dx) #0.
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Thus (A — AI)xisa A-vector of A of grade . By the induction hypothesis, (A — A\I)x
is a A\~!-vector of X of grade r. Consequently,

X =2"'"D'(A=XDx =0,

and
2= (X -2 A - ADx #0. (2.2.6)
Thus (X — A~'1)z = 0 and
Xz=\"z (2.2.7)
It is clear that
X =2'"DX=XX-=\"D. (2.2.8)

By using (2.2.5)—(2.2.8), we have

X = 2D =X = X'D"(=\"'X(A = \Dx)
=-A!'XX-X'"D"(A-XDx

= 0’
and
X=2"D'xs=X-=X"D"""=\"X - )\Dx)
=-\!Xz
R N /
# 0.
This completes the induction. (]

The following theorem shows the spectral property of the group inverse.

Theorem 2.2.4 Let A € C"™" and Ind(A) = 1, then X is a A-vector of A of grade
p if and only if X is a X'-vector of A, of grade p.

Proof Since X = A,, we have XA?> = A and AX? =X, it then follows from
Lemma 2.2.3 that, for all A # 0, x is a A-vector of A of grade p if and only if x
is a A™!-vector of A, of grade p. For A = 0, since Ind(A) = 1 = Ind(A,), from
Lemma 2.2.1, the O-vectors of A and A, are all of grade 1. Let x be a 0-vector of
A, then Ax = 0 and x # 0. Thus x € N'(A) = N(A,). Therefore A,x = 0, i.e., X is
also a zero vector of A, and vice versa. O

The following theorem shows that the spectral property of the Drazin inverse is the
same as that of the group inverse with regard to nonzero eigenvalues and associated
eigenvectors, but weaker than the group inverse for O-vectors.
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Theorem 2.2.5 Let A € C"" and Ind(A) = k, then for all X # 0, X is a A\-vector
of A of grade p if and only if X is a \™'-vector of Ay of grade p, and for X = 0, X is
a 0-vector of A if and only if X is a O-vector of Ay (with no regard to grade).

Proof By the assumption of Ind(A) = k, A, satisfies
A A = AF and A(Ay)? = Ay

From Lemma 2.2.3, for all A # 0, x is a A-vector of A of grade p if and only if x is a
A~ l-vector of A, of grade p. For A = 0, from Theorem 2.1.9, we have Ind(A,) = 1.
By using Lemma 2.2.1, the O-vectors of A, are all of grade 1. Let x be a O-vector of
Ay, thatis, A;x = 0 and x # 0, then

x e N(Ay) = N(AYH, [>k.

Therefore A’x = 0. So x is a 0-vector of A of grade [ and vice versa. O
Exercises 2.2

. Prove that (Ay), = A.

. Prove that (A*), = (A,)*.

. Prove that (A’)g = (Ag)l, [=1,2,....

. Prove that (A,), = A%Ay.

. Prove that A;(Ay), = AAy.

. Prove that if A is nilpotent, then A; = O.

. Let A € C™", dim(N (A)) = 1, and x # 0 and y # 0 satisfy

~N N AW =

Ax=0 and A'y =0.

Prove that

(1) Ay exists < y*x # 0.

@) Ify*x # 0, then [ — AA, = .
y*x

8. Let A € C,X!, Ind(A) = l,and U € C*" and V € C*" satisfy
AU =0, A*V =0, and V*'U = I.
Prove that

() AT = —UUNA,( —VV).
Q) Ay = —UVHA(I —UV*).
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2.3 W-Weighted Drazin Inverse

In 1980, the definition of the Drazin inverse of a square matrix was extended to
rectangular matrix by Cline and Greville [1].

Definition 2.3.1 Let A € C"*" and W € C"*", then the matrix X € C"*" satisfy-
ing

(A W)k*'l XW = (A W)k, for some nonnegative integer k, 2.3.1)
XWAWX =X, (2.3.2)
AWX = XWA (2.3.3)

is called the W-weighted Drazin inverse of A and denoted by X = A, w.

Itis clear thatif W = I and A € C"*", then X = A,.
The existence and uniqueness of the W-weighted Drazin inverse are given in the
following theorems.

Theorem 2.3.1 Let A € C"*". Ifthere exists amatrix X € C™*" satisfying (2.3.1)—
(2.3.3) for some W € C"*™ then it must be unique.

Proof Suppose both X and X, satisfy (2.3.1)—(2.3.3) for some nonnegative integers
k) and k, respectively. Let k = max(ky, k), then

X, = X\WAWX,
=X\ WAWX WAW X,
=AWX{\WAWX, WX,
=AWAWX\ WX, WX,
= (AW)* X1 (WX,)?

= (AW X, (WX

= (AW XWX (WX

= X,(WA WX, (wx

= Xo(WAXWAWX, WX (WX,)!
=X, (WAWX,WAW X, (WX k!
= X>,(WA WX, (Wx !

=X, WAWX,.

Similarly,
Xy = (AW X (W X))k,
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Postmultiplying (2.3.3) with W gives
(AW)(Xo W) = (XaW)(AW).

Thus
XZW — (AW)k+l(X2W)k+2 — (XzW)k+2(AW)k+l.

Moreover,

X, =X, WAWX,
= (XaW2( AW AW X,
= (XaW)F2(AW)H X, WA
= (XaW)2(Aw)ka
— (XzW)k+]X2(WA)k+]
= (XWX, WX, WA(W A)YK
= (XaW) X, WAW X, (W A
= (W) X, (WA
= XWX WA
=X, WAWX,
= X»,

which completes the proof. O

To derive the conditions for the existence of the W-weighted Drazin inverse, we
need some results when Ind(W A) = k.

Theorem 2.3.2 Let A € C"*", W € C""™, and Ind(W A) =k, then
(AW), = A(WA)fIW, and Ind(AW) <k + 1. 2.3.4)
Proof By the assumption of Ind(W A) = k, (W A), satisfies
(WA) (WA = (WA,
(WAZ(WA) = (WA),, (2.3.5)
(WA, (WA) = (WA)(WA),.

Setting X = A(WA)[ZIW, we have



2.3 W-Weighted Drazin Inverse 85

(AW 2 X = (AW)*2PA(WA)ZW
= A(WA 2 (WAIW
= A(WAW
— (AW)k+1,

X2(AW) = (A(WA)ZW)? AW
= A(WA)4(WA) W
=X,

and

X(AW) = A(WA2WAW
= AWA(WA)ZW
= AWX.

Consequently, X = (AW),; and Ind(AW) <k + 1. U
Corollary 2.3.1 Under the assumptions in Theorem 2.3.2, we have
WAW)! = wA)iw (2.3.6)

and
A(WA)Z = (AW),’;A, 2.3.7)

for any positive integer p.

Proof The proof is by induction on the positive integer p. The assertion (2.3.6) is
true for p = 1. It follows from (2.3.4) and (2.3.5) that

W(AW), = WAWA?W = (WAZWAW = (WA),W.
Suppose that the assertion (2.3.6) is true for all the positive integer less than p, then
we have
WAW) ™ = wa)r'w,
implying that

W(AW)! = W AW)E ™ (AW),
= (WA, 'W(AW),
= (WA (WA, W
= (WA)W.

The proof of (2.3.7) is similar and is left to the reader as an exercise. ([l
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By using (AW), and (W A),, the W-weighted Drazin inverse A, w can be con-
structed as shown in the following theorem.

Theorem 2.3.3 Let A € C"*", W € C"*™, and Ind(AW) =k, then
Agw = AWA) = (AW)2A.
Proof Let X = A(WA)%. It can be verified that X satisfies (2.3.1)—(2.3.3):

AW XW = (AW AW AW
= AWA T (WA?IW
= AWA WA),W
= AWA W (AW),
= (AW (AW),
= (AW,

XWAWX = A(WA2WAWA(WA)?
=A(WA)(WA),
=X,

AWX = AWA(WA)
= A(WA)?ZWA
= XWA.

Hence X = A, w. The proof of Ay w = (A W)(ziA is similar and is left to the reader
as an exercise. O

In particular, we have the following corollary.
Corollary 2.3.2 A;, W = (AW)g and WA4, = (WA),.
The basic properties of the W-weighted Drazin inverse are as follows.

Theorem 2.3.4 ([2]) Let A € C™", W € C"*", Ind(AW) = ky, and Ind(WA) =
ko, then

(@) R(Aqw) = RUAW),) = R((AW)");

(b) N(Agw) = N(WA)g) = N(WA*);

() WAWAG, = WAWA)a = Priwaye) N(waya)
AgyWAW = AW(AW), = Prawya) N(AWy)-

Theorem 2.3.5 Supposethat A € C"*" and W € C"™, and let k =max{Ind(AW),
Ind(WA)}, then

Adw = (WAW)R 6, ni) = G(GWAWG)'G,

where G = A(W A)X.
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Proof The proof is left to the reader as an exercise. (I

By using the core-nilpotent decompositions of AW and WA, we can obtain
another expression of A ,,.

Theorem 2.3.6 ([3]) Suppose that A € C"*", W € C*"™, and k = max{Ind(AW),
Ind(WA)}, then

_ A O —1 _ Wi O _1
amr[4 0T weo[% 2]

and |
_ WnAuWwi)— O -1
Adw - P [ O A22 Q k)

where A1y, Wy, P, and Q are nonsingular matrices.

At last, a characteristic property of the W-weighted Drazin inverse is given as
follows.

Theorem 2.3.7 Let A, X € C"*", then for some W € C"", X = A, w if and only
if X has a decomposition
X = AYAYA,

where Y € C"" satisfies Ind(AY) = Ind(YA) = 1.

Proof If: Let
W =Y(AY)] = (YA)Y,

then WA = (Y A),. Since Ind(YA) =1 and X = AYAY A, we have
WX =WAYAYA = (YA, YAYA=YA. (2.3.8)
By Theorem 2.1.9 and Ind(YA) =1,
YA =(YA)a)a = (WA)a.
Substituting Y A in (2.3.8) with the above equation, we get
WX =(WA),.

Similarly, since Ind(AY) = 1and X = AYAY A, we have

AW = (AY)y, AY = (AW),,

and
XW = AYAYAW = AYAY(AY),; = AY = (AW),.
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It then follows that

(AW XW = (AW Aw),
= (AW)K,
XWAWX = (AW),A(WA),
= (AW)(AW) A
= AYAY A
=X,

and

AWX = A(WA),
= (AW) A
= XWA.

Therefore X = Ay w.
Onlyif: If X = Ay w, for some W, then from Corollary 2.3.1,
X = A(WA)?
= (AW),A(WA),
= (AW)(AW)ZAW A)z(W A)
= A(WA?WA(WA)(WA)
= AYAYA,

where Y = (WA)?,W. Thus AY = (AW),; and YA = (WA),. By Theorem 2.1.9,
we have
Ind(AY) = Ind((AW),) =1

and
Ind(YA) =Ind((WA),) = 1.

The proof is completed. (]

Exercises 2.3

1. Prove (2.3.7) in Corollary 2.3.1.
2. Prove that Ay w = (AW)[ZIA.
3. Let A € C"" and W € C"" with Ind(AW) = k; and Ind(W A) = k,, show

(D) AgwW = (AW)yg; WA w = (WA),.

(2) R(Agw) = RI(AW)y) = R((AW)");
N(Agw) =N(WA)g) = N(WA*).

(B) WAWA w = WAWA) s = Priwaye) N(way)s
AgwWAW = (AW) AW = Prawya) Naw))-
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4. Prove that
_ @
Aaw = WAW)R awyo away):

where k = max{Ind(AW), Ind(W A)}.

Remarks

The concept of the Drazin inverse is based on the associative ring and the semigroup
[4]. Greville further investigated the Drazin inverse of a square matrix in [5]. As for the
applications of the Drazin inverse and group inverse, such as, in finite Markov chain,
linear differential equations, linear difference equations, the model of population
growth and optimal control can be found in [6-10].

A characterization and representation of the Drazin inverse can be foundin [11]. A
characterization of the Drazin index can be found in [12, 13]. Full-rank and determi-
nantal representations can be found in [14]. The group inverse of a triangular matrix
is discussed in [15] and the group inverse of M-matrix is discussed in [16]. The
Drazin inverse of a 2 x 2 block matrix is presented by Hartwig et al. [17] and more
results in [12, 18-20]. Representations of the Drazin inverse of a block or modified
matrix can be found in [21-24].
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Chapter 3 )
Generalization of the Cramer’s Rule ek
and the Minors of the Generalized

Inverses

It is well known that the Cramer’s rule for the solution x of a nonsingular equation
AXx=b (AeCY" beC", x=I[x1,x2,...,%]")

is
_ det(A(i — b))

i = , i=1,2,...,n,
det(A)

where A(i — b) denotes the matrix obtained by replacing the ith column of A with b.
In 1970, Steve Robinson [1] gave an elegant proof of the Cramer’s rule by rewriting
Ax = b as
Al — x)=A( — b),

where [ is the identity matrix of order n, and taking determinants
det(A) det(I (i — x)) = det(A(i — b)).

The Cramer’s rule then follows fromdet(/ (i — x)) =x;,i =1,2,...,n.

Since 1982, the Robinson’s trick has been used to derive a series of the Cramer’s
rules for the minimum-norm solution and the minimum-norm (N) solution of con-
sistent linear equations; for the unique solutions of special consistent restricted linear
equations; for the minimum-norm least-squares solution and the minimum-norm (N)
least-squares (M) solution of inconsistent linear equations; for the unique solutions
of a class of singular equations; and for the best approximate solution of a matrix
equation AXH = K [2-12].

The basic idea of these Cramer’s rules is to construct a nonsingular bordered
matrix by adjoining certain matrices to the original matrix. The solution of the original
system is then obtained from the new nonsingular system.

© Springer Nature Singapore Pte Ltd. and Science Press 2018 91
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As weknow, the jth column of the inverse of a nonsingular matrix can be computed
by solving a linear system with the jth unit vector e; as the right-hand-side. Thus, by
applying the Cramer’s rule, the inverse of a nonsingular matrix A can be expressed in
terms of the determinants of A and modified A. This chapter presents determinantal
expressions of the generalized inverses.

3.1 Nonsingularity of Bordered Matrices

Given a matrix A, an associated bordered matrix

A B
CD
is an expanded matrix that contains A as its leading principal submatrix as shown

above. This section establishes relations between the generalized inverses and the
nonsingularity of bordered matrices.

3.1.1 Relations with AL N and AT

In 1986, Wang [8] showed the following results on a relation between A" and the
inverse of a bordered matrix.

Theorem 3.1.1 Let A € C"*", M and N be Hermitian positive definite matrices of
orders m and n respectively, and the columns of U € C™*"™" and v* € C'*"™")

m-—r n—r

form bases for N'(A*) and N (A) respectively, then the bordered matrix

A M~'U
AZ_[VN 0 }

is nonsingular and its inverse

T * *\—1
o Ay VHVNV*)
Ayl = |:(U*M‘1U)‘1U* o : G.1.1)

Proof Obviously, (VNV*)~!and (U*M~'U)~" exist and
VNV*(VNVH ' =1,_,. (3.1.2)
It follows from AV* = O that

AV*(VNVH 1 =0 (3.1.3)
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and from (1.4.15) that
il T T
VNA,y =VNA,NAA N
= V(NAL A A,y
= VA*(NAL )AL,
=0. 3.1.4)

Finally, let
F=M''UWU*M'U)"'U* and E = AA},,,

then E and F are idempotent, and therefore they are the projectors

E = PreyNE) = PRU) MARW)
F = PrryNF) = Pu-1ruy. R

Since
Pruyt . m—rwy + Pu-rany,rwyr = Ins

we have
AAL, +MTUWUMTIO)TIU = 1, (3.1.5)

From (3.1.2)—(3.1.5),

A MU Ay vEVNVH'] [, O
VN O wM-'uy-'ux ¢} (o |

which is the desired result (3.1.1). ([l

Corollary 3.1.1 Let A € C™", and U € C*"" " and V* € C!*""" be matrices

n—r

whose columns form the bases for N'(A*) and N'(A) respectively, then

AU
w=[7e)
is nonsingular and
4 AT VT
A] :|:UT o | (3.1.6)

Proof Applying Theorem 3.1.1 and
vi=v:wvvH U= @wru)'Ur,

we obtain (3.1.6) immediately. O
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Corollary 3.1.2 Let A € C"*", M and N be Hermitian positive definite matrices
of orders m and n respectively, and U € C™*""" and V* € C**"" satisfy

AV =0, VNV*=1,_,; A*U=0, UM~ 'U=1,_,,
then
| A MU
27 lvN O

is nonsingular and its inverse

_ Al v
A21:|:(}4*N0i|'

Corollary 3.1.3 ([2]) Suppose that A € C™", U € C2*""" and V* € C1x*"™"

satisfy
AV*=0, VV*=1,.,, A*'U=0, U'U = I,_,,

AU
w=[7e)

then

is nonsingular and its inverse
_ AT v*
1
A7 = [U* A } |

3.1.2 Relations Between the Nonsingularity of Bordered
Matrices and Ag and Ag

In 1989, Wang [9, 13] showed relations between the Drazin inverse and group inverse
and the nonsingularity of bordered matrices.

Lemma 3.1.1 Let U € C,*7, V* € C}?, and R(U) ® N'(V) = C", then VU is
nonsingular.

Proof If (VU)x = 0, then Ux € N (V) and Ux € R(U). By the assumption,
Ux e RWU)NN(V) ={0}.

Thus Ux = 0. Since U is of full column rank, x = 0. This shows that V U has linearly
independent columns and VU € CP*? is nonsingular. ]
The following results can be found in [9, 13].
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Theorem 3.1.2 Let A € C™", Ind(A) =k, rank(A") =r <n, and U,V* €
C"*""") be matrices whose columns form the bases for N'(A*) and N (A¥) respec-

n—r
tively, then

AU
is nonsingular and its inverse

-1 __ Ad U(VU)71
A = [(VU)‘IV —(VU)‘1VAU(VU)—1]- (3.1.7)

Proof By the assumptions on U and V, we have
RWU) =N (A" and N (V)= R(A").

From Theorem 3.1.1 and Lemma 3.1.1, VU is nonsingular, thus its inverse (VU )~
exists. Setting

¥ — Ay uwu)~!
“lwvo)'v —voy'vAuwvo) ! |°
we have
A — | AAdHUVD)TIV (I = UVU)'V)AU(VU)™!
4t = VA, vUWVU)™! '
Obviously,

vUWVU) ™ =1, (3.1.8)
Denoting G = (VU)™'V, we have UGU = U, G € U{l}, and
G* =V (VU™ R(G") =R(V*") = N(A), N(G) =R(AY.
Since UG = U(VU)~'V is idempotent, it is a projector and
Uwvu)y'v=ucG = Prwe)Nwe) = PRy NG = Prvan,rab-

Thus
AAG+UWVU)'V = Prianvan + Pran.ras = . (3.1.9)

Since N (V) = R(A¥), we have V A¥ = O. It then follows from (2.1.17) that,
VA, = VAHAZTHD AR = O, (3.1.10)

Finally, setting F = U(VU) ™!, we get AKF = O, since R(F) = R(U) = N (A¥).
It follows from (3.1.9) and (2.1.17) that
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(I -UWVU'VMYAUWVU)™' = AA,AF
— Ak+|(A2k+l)(l)Ak+lF
= 0. (3.1.11)

From (3.1.8)—(3.1.11), we have A4 X = I5,_,, which proves (3.1.7). U

Corollary 3.1.4 Let A€ C™ Ind(A) =1, rank(A) =r <n, and U, V* €
C**""") be matrices whose columns form the bases for N'(A) and N'(A*) respec-

livgly, then
AU
As = [v o]

is nonsingular and its inverse

[ 4 UWvu)
3 VU)'V —(vU)'vAU(VU) T |

3.1.3 Relations Between the Nonsingularity of Bordered
Matrices and A(T?)S, A(Tl’g), and AEZ)I )

Now, we investigate the relations between the nonsingularity of bordered matrices
and the generalized inverses A?)S, A(Tl.’sz), and AEZ)I) .

Theorem 3.1.3 ([3, 4]) Suppose A e C"", T CC", S C", dim(T) =dim
(SYH =t <rand AT ® S = C". Let B and C* be of full column rank such that

S=R(B) and T =N (C),

AB
w=leo)

then the bordered matrix

is nonsingular and

Ag' = AL (U = ApsA)C! 3.1.12
6 = | pt @\ piiaa® e (3.1.12)
BT(I — AAT) BT(AATKA — A)C

Proof By Theorem 1.3.8 and the assumptions, we have
RWU)=T =N(C) and N(V)=S=R(B),

consequently,
CU=0 and VB =0. (3.1.13)
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Set
_ AL (I — AP A)CT
B (I — AAT) BT (AAT A — A)CT |’
then

Ax— | Pars+ BB'Ps a1 A(I — ATSA)CT — BB Ps 47 ACH
ot CAL CI — APSA)CT ’

where
PAT,S = AA?)S and PS,AT =1- AA??S

Using (3.1.13) and
AP =UWAU) Y,

we have
CAY = CU(VAU)™'V = 0. (3.1.14)

Noting that R(CT) = R(C*) = T+ and C is of full row rank, we get
CUI - APACT =cCT = 1. (3.1.15)

Moreover, since
BB'" = Pr(p) = Ps

and
BB'Ps a1 = PsPs ar = Ps ar,
we have
Par.s + BB Ps a1 = Par.s + Ps.ar = I. (3.1.16)
Finally,
AUl — ADGA)CY — BB Ps 47 ACT
= (I — AAD)ACT — Pg 47 ACT (3.1.17)
= 0.
From (3.1.14)—(3.1.17), we have A¢X = I,,1,—,, hence (3.1.12) holds. U

When ¢ = r in the above theorem, by Corollary 1.3.4, AT & S = C" isequivalent
toR(A) @ S =C" and N (A) ® T = C". In this case, A(T%)S becomes A(Tl'é%), and we
have the following theorem. ,
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Theorem 3.1.4 ([14]) Let A€ C™", T c C", S C C", dim(T) = dim(S+) =r
and R(A) @ S =C", N(A) ® T = C", and B and C* be of full column rank such
that

S=R(B) and T =N(C),

AB
w=[eo)

then the bordered matrix

is nonsingular and

. ALY (I — AL AT
5 = | pt (1,2) .
BY(I — AAYY) 0

By Theorem 1.5.1, the Bott-Duffin inverse A(L_]) =AY

LLL> thus we have the fol-
lowing theorem.

Theorem 3.1.5 ([15]) Let A € C™", U € C,”, and L = N'(U*), then

AU
w=[ o]

is nonsingular if and only if
ANU" @ RWU) =C".
In this case the inverse of A7 is

(=1 (=1 *T
A7l = AL -1 L(I _fﬁ AU )
Ut — AAT) UT(AATP A — AyUrT

Exercises 3.1

1. Prove I — AAY = Ps a7.

2. Show the relation between AE?) and the nonsingularity of a bordered matrix.

3.2 Cramer’s Rule for Solutions of Linear Systems

Using the relations between the generalized inverses and nonsingular bordered matri-
ces discussed in the previous sections, in this section, we give the Cramer’s rules for
the solutions of systems of linear equations and matrix equations.

We adopt the following notations and definitions.
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elet AecC™, xe(C" andy € C", A(j — x) denotes the matrix obtained by
replacing the jth column of A with x; A(y* < i) denotes the matrix obtained by
replacing the ith row of A with y*.

e Let A € C"*", det(A) denotes the determinant of A.

e Re(A)=1{S: SOR(A) =C"} and N.(A) ={T: T ®N(A) =C"} denote
the complements of R(A) and of N'(A) respectively.

3.2.1 Cramer’s Rule for the Minimum-Norm (N )
Least-Squares (M) Solution of an Inconsistent System
of Linear Equations

Let A € C"", b € C", M and N are Hermitian positive definite matrices of orders
m and n respectively. The vector u € C” is called the least-squares (M) solution of
the inconsistent system of linear equations

AX=b (AeC™" b¢R(A), X=[x1, %, ..., %17, (3.2.1)

if
|[Au —b|ly < ||Av —b]|y, forallv e C".

Thus the least-squares (M) solution of (3.2.1) is not unique. If u is the least-squares
(M) solution of (3.2.1) and
lully < lIwlin,

for all the least-squares (M) solution w # u of (3.2.1), then u is called the minimum-
norm (N) least-squares (M) solution of (3.2.1).

We know that the minimum-norm (N) least-squares (M) solution of (3.2.1) is
x = A, ~b. The following theorem about the Cramer’s rule for finding the solution
X = ALNb is given by Wang [8].
Theorem 3.2.1 Let A € CI'"*", and M € C"*", N € C"*" be Hermitian positive
definite matrices, and U € C*" " and V* € C*"" be matrices whose columns
form the bases for N'(A*) and N (A) respectively, then the minimum-norm (N ) least-
squares (M) solution x of (3.2.1) satisfies

x € NT'R(A*), b—Ax e M~'N(A"), (3.2.2)
and its components are given by

A(j—b) M~'U
det[vzv(j—w) 0 ]

det A MU ’
“lvy o

X; = ji=1,2,...,n. (3.2.3)
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Proof Let A = FG be a full rank factorization. By Theorem 1.4.4,
Ayy=N"'G"(F*MAN~'G"'F*M.

Thus
T _
VNx=VNA,yb=Vh,

where
h=G*(F-MAN~'G*)"'F*Mb € R(G*).

Since G*F* = A*, we have R(A*) C R(G*). Because F* is of full row rank,
F*F*Y = I Thus

G* = A*F*V| R(G*) Cc R(A"), h e R(G*) = R(A").
By the assumption R(V*) = N (A), we have
N(V) =R(A*) and Vh=0.

Therefore
VNx =0. (3.2.4)

It then follows that
Nx e N(V) = R(A*), xe N 'R(A"),
which proves the first statement in (3.2.2). Since
A*MAAS,, = A*(MAAS,)" = (MAA, A = (MA)* = A*M,
we have
A*Mb = A*MAA}, b= A*MAx and A*M(b— Ax) = 0.
It then follows that
M(b — Ax) e N(A*) and b— Ax € M~'N(A%),

which proves the second statement in (3.2.2).
From M (b — Ax) € N'(A*), we get

M®b— Ax) =Uz, zcC"™".

Thus
b=Ax+ M 'Uz.
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It then follows from (3.2.4) and the above equation that the minimum-norm (N)
least-squares (M) solution x of (3.2.1) satisfies

AR e

By Theorem 3.1.1, the coefficient matrix of (3.2.5) is nonsingular, and (3.2.3) follows
from the standard Cramer’s rule. O
The following corollary is a result in [2].

Corollary 3.2.1 Let A€ C™", beC" b¢ R(A), and U € (C,ﬁffm_”, V* e
(Cnx(n—r)

n—r

be matrices whose columns form the bases for N'(A*) and N (A) respec-
tively, then components of the minimum-norm least-squares solution x = A'b of
(3.2.1) are given by

A > b) U
det[V(j—>0)O] _
Xj= j=12,...,n.

AU ’
det|:V Oi|

3.2.2 Cramer’s Rule for the Solution of a Class of Singular
Linear Equations

Let A € CI*", r < n, and Ind(A) = k. We consider the following problem: For a
given b € R(AX) find a vector x € R(AX) such that

Ax = b. (3.2.6)
From (2.1.6), R(A%) & N(AF) = C", thus, for any x € C",
x=u+v, ueR(A") andveN(A").
It follows from (2.1.15) that

AAdll = PR(Ak),N(Ak)u =u,
AAdV = PR(A"’),_/\/’(A")V =0.

Therefore
AA;x=u, xeC", ueRAY. (3.2.7)

SetA; = A |72(A’<) , that is, A is restricted to R(AY). Ifu € R(AX), thenu = Az,
z c C", and
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A]ll = A[AkZ
= Az e R(AM) = R(AY).

Clearly, the linear transformation A;: R(A*) — R(A*) is 1-1 onto and invertible.
Thus there exists A,_l such that premultiplying (3.2.7) with AI_1 gives

Aix=A7"u, x=u+veC", ueRMA", veN(A").
The linear transformation A, defined by the above equation is called the Drazin

inverse of A. The proof of the equivalence between this definition and Definition
2.1.2 is given in the following theorem.

Theorem 3.2.2 Let A € C"™*", Ind(A) = k, then Ay is the Drazin inverse of A if
and only if
Agx=A ', forallx =u+veC (3.2.8)

where u € R(A*) and v € N (AY).

Proof ONLY IF: It has been shown above.
IF: Firstly, from (3.2.8), we have A;,v =0, v € N(A%) and Agu = Al_lu. Thus

AA v =0, v e N(AY),
AAqu=AA;'u=u, ueR(AY).

(3.2.9)
Obviously, v € N'(AY), Akv = 0, Ay = 0, and Av € N(AF) = N(A,), thus
AgAv =0, ve N4, (3.2.10)
On the other hand, u € R(AX) and Au € R(A*T!) = R(A%), thus
AjAu= A 'Au=u, ueRA". (3.2.11)
It follows from (3.2.9)—(3.2.11) that AA;x = A, AXx, for all x € C", thus
AA; = A4A. (3.2.12)
Secondly,
AgAAx = AgAAT u = Agu = Ay(u+ V) = Ax, forallx € C", thus
AgAA; = Ay (3.2.13)
Finally,

A A x = AFAATu = Afu = AF(u +v) = Afx, forall x € C", thus
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AR A, = AL, (3.2.14)

Therefore, the sufficiency is proved by (3.2.12)—(3.2.14). O
It follows that the unique solution of (3.2.6) is

x=A;"b=A,b.

The Cramer’s rule for the unique solution x = A;b of (3.2.6) is given in the following
theorem.

Theorem 3.2.3 ([9]) Suppose that A € C" Ind(A) = k, rank(A¥) = r < n, and
U, V* € C"" be matrices whose columns form the bases for N'(A%) and N'(A¥*)
respectively. Letb € R(AX), then the components of the unique solution x = A4b of
(3.2.6) are given by

A(j—>b)U
det[V(j—>0)O] '
X = j=12,...,n. (3.2.15)

AU ’
det|:v Oi|

Proof Since X = Ayb € R(AY) and N'(V) = R(A¥), we have

Vx =0.
It follows from (3.2.6) and the above equation that the solution of (3.2.6) satisfies
Vol [o]-[¢]
VOol||Oo| (0]
By Theorem 3.1.2, the coefficient matrix in the above equation is nonsingular. Using

(3.1.7),wehavex = A;b. Consequently, (3.2.15) follows from the standard Cramer’s
rule. O

3.2.3 Cramer’s Rule for the Solution of a Class of Restricted
Linear Equations

Let A e C"", b e R(A)and T C C". The Cramer’s rule for the unique solution of
a class of restricted linear equations:

Ax=Db, xeT (3.2.16)

is given by Chen [3].
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Theorem 3.2.4 The Eq.(3.2.16) have a unique solution if and only if
be AT and T NN(A) = {0}.

Proof If b € AT, then it is obvious that (3.2.16) has a solution xy € T. Let the
general solution of (3.2.16) be x = xo +y € T, where y € N'(A), then

y=x—-x0€T.

Since T N N'(A) = {0}, we gety = 0. Therefore (3.2.16) has a unique solution x =
X0.

Conversely, let the general solution of (3.2.16) be x =xo+y € T, where y €
N(A) and xo € T is a particular solution of (3.2.16). Since (3.2.16) has a unique
solution, we have y = 0. Moreover,

x=Xg9 and b= Axy € AT.

It follows fromy € N (A),y =x—xp € T,andy = 0 that T NN (A) = {0}. O

Lemma 3.2.1 Let A € CI'"" and T be a subspace of C", then the following condi-
tions are equivalent:

(1) TNN(A) ={0};
2) dm(AT) =dim(T) =5 <r;
(3) There exists a subspace S of C" of dimension m — dim(T') such that

AT S=C"

or equivalently

A*Ste Tt =C".
Proof (1)<(2): It follows from the equation:
dim(AT) = dim(7T) — dim(T NN (A)).

2)=3): If dim(AT) = dim(T) = s < r, then there exists S C C” with dim(S) =
m — s such that AT @ § = C". If dim(AT) = dim(T) = s = r, by the equation
dim(N(A)) = n — r, then, from the equivalence of (1) and (2) and T N A (A) = {0},
T ® N (A) = C". Since dim(R(A)) = r, there exists an S C C™ such that R(A) &
S = C", which is equivalent to AT @ S = C” by Corollary 1.3.4.

(3)=(2): From Exercise 1.3.9, AT & S = C" is equivalent to A*S*+ @ T+ = C".
Thus

T & (A*SH: =C".

However,
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N(A) = R(A%)" C (A*SH™,

therefore

T NN(A) = {0},

which is equivalent to
dim(AT) =dim(T) =s <r

by the equivalence of (1) and (2). O

Theorem 3.2.5 Let A € C"™*", T C C", and the condition in Lemma 3.2.1 be sat-
isfied, then the unique solution of the restricted linear equations

Ax=Db, xeT

is given by
x = ATxb,
for any subspace S of C" satisfying AT & S = C".

Proof Obviously, x = A(T%)Sb e T. Since AA(TZ’)S is the projector P47 s and b € AT,

we have Ax = AA{ (b = b. Thus x = Ab is a solution of (3.2.16).
By the condition in Lemma 3.2.1 and Theorem 3.2.4, the solution of (3.2.16) is
unique, independent of the choice of the subspace S. (]

Corollary 3.2.2 Let A € C™", b € AT, dim(AT) =dim(T) =r, T®N(A) =
C", and S C C™ satisfy
RA)® S =C",

then the unique solution of the restricted linear Eq. (3.2.16) is given by

x=A7¢b (3.2.17)
for any subspace S of C" satisfying R(A) & S = C™.
Proof From Theorem 3.2.5 and the note after Theorem 3.1.3, we obtain (3.2.17)

immediately. U
Now, we have the Cramer’s rule for the solution x = A(T2)Sb orx = A(Tl’g)b.

Theorem 3.2.6 Let A € C'", T C C", the condition in Lemma 3.2.1 be satisfied,
and both B and C* be of full column rank and satisfy

S=R(B) and T =N(C), (3.2.18)

then the components x j of the unique solution x = A(T%)Sb of (3.2.16) are given by
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A(j > b) B
det[C(j—u))o} ,
xj= j=12,...,n. (3.2.19)

A B ’
det[COi|

Proof From (3.2.18),
x=APb € T=N() & Cx=0.
Thus (3.2.16) can be rewritten as
ol [3)-13]
COo||0f O]

By Theorem 3.1.3, the coefficient matrix of the above equation is nonsingular. Thus
X = A(T%)Sb and y = 0 is the unique solution of the nonsingular linear equations

A B x\ (b

cojJ\y/) \o)
Consequently, (3.2.19) follows from the standard Cramer’s rule for the above equa-
tion. (]

Theorem 3.2.7 Let A € C"", T C C" and S C C" satisfy
RA)®S=C" and T ®dN(A) =C", (3.2.20)
and both B and C* be of full column rank and satisfy
S=R(B) and T =N(C),

then the components x j of the unique solution X = A(le’g)b of (3.2.16) are given by

A —b) B
det[cg—w)o}

%= AB]
det[coj|

Proof Since dim(N'(A)) = n — r and dim(R(A)) = r, we have

Jj=12....,n (3.2.21)

dim(7T) =r and dim(S)=m —r

by (3.2.20). Since (3.2.20) is equivalent to AT @& S = C", we have AT = R(A),
b e R(A) = AT and dim(T) = dim(AT) =r are satisfied. It follows from
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Corollary 3.2.2 that the unique solution of (3.2.16) is x = A(Tl’f)b. Consequently,
(3.2.21) follows from (3.2.19), which is the unique solution of (3.2.16). (Il

Corollary 3.2.3 Let A € C!*" and L C C" satisfy
AL Lt =C",
then the restricted equations
AX+y=b, xeL, yelt (3.2.22)
have a unique pair of solutions X and'y. Let U be of full column rank and satisfy
L=N(U",

then the components of the solution x = Agz;)b of (3.2.22) are given by

det[ A(j = b) U]

us(j—> 00 .
xj= , J=12,....n (3.2.23)
det AU
U* o0
Proof From Theorem 1.5.1, the unique solution of (3.2.22) is x = AEZ)I)b. Since
Ay =AY = AR rw)- (3:2.23) follows from setting B = U and C = U* in
(3.2.19). O

3.2.4 An Alternative and Condensed Cramer’s Rule
Jor the Restricted Linear Equations

In this section, we consider again the restricted linear Eq. (3.2.16):
Ax=Db, xeT,

where A € C™*" and T C C", and assume that the conditions in Lemma 3.2.1 are
satisfied.

Recall that a component of the unique solution of (3.2.16) is expressed by (3.2.19)
as the quotient of the determinants of two square matrices both of order m +n —r.
Because these matrices are possibly considerably larger than A, the aim of this section
is to derive a condensed Cramer’s rule for the solution of (3.2.16).

First we give an explicit expression of the generalized inverse A(TZ)S in terms of
the group inverse.



108 3 Generalization of the Cramer’s Rule and the Minors of the Generalized Inverses

Lemma 3.2.2 ([16]) Let A € C'", T C C", S C C™", and dim(T) = dim(S*) =
t < r. In addition, suppose that G € C"™" satisfies

R(G)=T and N(G)=S.
If A has a {2}-inverse A(T%)S, then
Ind(AG) = Ind(GA) = 1. (3.2.24)

Furthermore, we have
AT = G(AG), = (GA),G.

Proof 1Tt is easy to verify
R(AG) = AR(G) = AT and S = N(G) C N(AG).
By Theorem 1.3.8, we have

dim(AT) = m — dim(S)
=m—(m—t)

=1.

Now
dim(R(AG)) +dim(N(AG)) = m,

hence

dim(NV(AG)) = m — dim(R(AG))

=m — dim(AT)
=m—1
= dim(S).

Thus N'(AG) = S, implying that
RAG) BN (AG) = AT & S =C".

By Theorem 2.1.1, we have
Ind(AG) = 1.

Let X = G(AG),. We can verify
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XAX = G(AG),AG(AG),
= G(AG),
= X’

and

R(X) =R(G(AG),)
C R(G)
=T:

N(X) = N(G(AG),)
D N((AG),)
=N(AG)
> N(G)
=S.

Obviously, rank(X) < dim(7'). On the other hand,

rank(X) = rank(G(AG),)
> rank(AG(AG),)

= rank(AG)
=S
= dim(T).
Thus, R(X) =T.
Similarly, we can show that A'(X) = S, which is the desired result A(T%)S =
G(AG),. Similarly, it follows that Ind(GA) = 1 and A(T%)S = (GA),G. (I

Theorem 3.2.8 Given A, T, S, and G as in Lemma 3.2.2, and
AT & S =C".
Suppose that the columns of V and U* form the bases for N (G A) and N'((GA)*)
respectively. We define
E=VWUV)'U.
Then E satisfies
R(E) =R(V) =N(GA) and N(E)=N(U)=R(GA), (3.2.25)

and GA + E is nonsingular and its inverse

(GA+E)'=(GA), + E,.
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Proof From the assumptions on V and U, we have
R(V) =N(GA), NU)=TR(GA).
By Lemmas 3.2.2 and 3.1.1, we have

Ind(GA) =1 < R(GA) ® N(GA) =C"
s RV)YBNU)=C"

Thus UV is nonsingular and £ = V(U V)~!U exists. It follows from E/ =

1,2, ..., that
E;=E,=E.
From
R(E) =R(V) =N(GA)
and
N(E) =N(U) =R(GA) = R((GA),),
we have
(GA)E =0 and E(GA), =0,

and

(GA+ E)(GA), + E)) = (GA)GA), + EE,
= PrGANGA) T PRE)N®E)

= Pn(e),rE) + PRE)N(E)
= 1.

This completes the proof.

E, j=

O

Theorem 3.2.9 Given A,T,S,G,V,U* and E as above, and b € AT, the

restricted linear Eq.(3.2.16)
Ax=Db, xeT

is equivalent to the nonsingular linear equations
(GA+E)x=Gb, xeT.

The components of the unique solution of (3.2.16) are given by

_ det((GA + E)(i — Gb))
B det(GA + E)

, i=1,2,...,n.

i

(3.2.26)

(3.2.27)
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Proof From the assumptions, b € AT = R(GA), then b = AGYy for some y. By
(3.2.25), EGA =0, s0
EGb=EGAGy =0.

It follows from Theorem 3.2.8 and Lemma 3.2.2 that the unique solution of the
nonsingular linear Eq. (3.2.26) is

x=(GA+E)'Gb
= ((GA),+ E;)Gb
= (GA),Gb+ EGb
= AP e R(ATY) =T.
From Theorem 3.2.5, the unique solution of the restricted linear Eq.(3.2.16)
is also x = A(Tz)sb. This completes the proof of the equivalence between (3.2.16)

and (3.2.26). Consequently, (3.2.27) follows from the standard Cramer’s rule for
(3.2.26). O

Corollary 3.2.4 Let A € C"", T = R(A*), S = N(A*), b € AR(A*) = R(A),
and the columns of V € (Cngn_r) form an orthonormal basis for N (A* A). We define

E=VV*
Then E satisfies
R(E) =R(V) =N(A*A), N(E)=N(V*) =R(A*A),
and A*A + E is nonsingular and

(A*A+ E)™' = (A*A), + E,
= (A*A)" + ET.

The consistent restricted linear equations
Ax=Db, xeR(AY) (3.2.28)
are equivalent to the nonsingular linear equations
(A*A+ E)x = A*b, x € R(AY).
The components of the unique solution x = A'b of (3.2.28) are given by

_ det((A*A+ E)(i — A*b))
o det(A*A + E)

, i=1,2,...,n.

i
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Corollary 3.2.5 Let A € C"*", M and N be Hermitian positive definite matri-
ces of orders m and n respectively, T = R(A*), § = N(A%), A* = N~1A*M,
b € AR(A*) = R(A), and the columns of V,U* € (CZfﬁn_r) form the bases for
N (A*A) and N ((A* A)*) respectively. We define

E=VWUV)'U.
Then E satisfies

R(E) = R(V) = N(A*A) = N(A*MA),
N(E) = N(U) = R(A*A) = N" (R(A*M A)),

and A* A + E is nonsingular and
(A*A+E)y' = (A*A), + E,.
The consistent restricted linear equations
Ax =b, xe R(AH (3.2.29)
is equivalent to the nonsingular linear equations
(A*A + E)x = A"b, x e R(A%).
The components of the unique solution X = ALNb of (3.2.29) are given by

_ det((A*A + E)(i — A"b))
- det(A*A + E)

, 1=1,2,...,n.

Corollary 3.2.6 Let A € C™", Ind(A) =k, rank(AX) =r, T = R(AY), S=N
(A%), b € R(A%), and the columns of V,U* € Cﬁffn_r) form the bases for N'(A¥)
and N (A¥™) respectively. We define
E=VUV)'U.
Then E satisfies
R(E) = R(V) = N(A), N(E) =N (U) = R(AY),
and A* + E is nonsingular and

A"+ E)' = (A%, + E,.
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The restricted linear equations
Ax=b, x e R(AYH (3.2.30)
is equivalent to the nonsingular linear equations
(A" + E)x = A*'p, x e R(AY).
The components of the unique solution x = Ayb of (3.2.30) are given by

_ det((A* + E)(i —» A¥'b))

X; , 1=1,2,...,n.
det(A* + E)

Corollary 3.2.7 Let A € C"™", Ind(A) = 1, rank(A) =r, T = R(A), S = N (A),
b € R(A), and the columns of V, U* € C*"™" form the bases for N'(A) and R(A)
respectively. We define
E=vWwv)''u.
Then E satisfies
R(E) = R(V) = N(4), N(E)=NU)="R(A),
and A + E is nonsingular and
(A+E)"'=A,+E,

The restricted linear equations

Ax =b, xeR(A) (3.2.31)
is equivalent to the nonsingular linear equations

(A+E)x=b, xeR(A).

The components of the unique solution x = Agb of (3.2.31) are given by

_ det((A+ E)(i — b))

X; o i=1,2,...,n.
det(A + E)

Exercises 3.2

1. Prove Corollary 3.2.2.

2. Prove Corollary 3.2.3.

3. Let A, T and S be the same as in Lemma 3.2.1, and both B € C**™ and C €
C#=9%" be of full row rank and satisfy
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R(B*) =S+ and R(C*) =T".

BA

C
is nonsingular and the components of the unique solution of (3.2.16) are given
by

Prove that the matrix

(BA)(j — Bb)
det[ C(j — 0) } .
Xj = , jJ=12,...,n.

det |: BCA i|

3.3 Cramer’s Rule for Solution of a Matrix Equation

We consider the problem of solving the matrix equation AXB = D using the
Cramer’s rule. We start with the nonsingular case where an exact solution X can
be found, then a general case where a best approximation solution can be found.
Analogous to the linear systems in the previous section, we also study restricted
matrix equations and a condensed form of the Cramer rule for solving restricted
matrix equations.

3.3.1 Cramer’s Rule for the Solution of a Nonsingular
Matrix Equation

First, we discuss the Cramer’s rule for the unique solution of the matrix equation
AXB = D.

Lemma 3.3.1 (1)LetA € C)*",and D = [d, d, ...,d,] € C"*?, then the unique
solution of the matrix equation

AY =D
isY =A"'D = [y, ys, ..., ¥pl € C™P, whose elements are given by
det(AG — d
o= BAC= D) S k12 (3.3.1)

det(A)

(2) Let B € (CﬁXp and I be the identity matrix of order p, then the unique solution
of the matrix equation
ZB =1 (3.3.2)
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isZ=B"'=][z,2o, ..., Zp]T € CP*P whose elements are given by

_ det(B(e] < j))

- Ck=1.2.....p j=1.2...p.
ki det(B) P p

Proof (1) It is easy to verify (3.3.1).
(2) It follows from (3.3.2) that

B*Z* =1.
Let Z* = [Zjx] € CP*P, then Zj; = Z,. By part(1),

~ _ det(B*(j — &)

Sk T Get(BY)
Thus
S det((B*(j — ex)")
ki det(B)
_ det(B(e] <« j))
det(B) ’
which completes the proof. (I

Now we have the Cramer’s rule for the matrix equation AX B = D when both A
and B are nonsingular.

Theorem 3.3.1 Let A € C"", B e C)*?, and D = [d;, d, ..., d,] € C"P, then
the unique solution of the matrix equation

AXB =D (3.3.3)
is X = AT'DB™" = (x;;) € C"*P, whose elements are given by

2l det(AG = dy)) det(B(ef < )
= det(A) det(B)

, (3.34)

where dy is the k-th column of D and e;. denotes the p-vector whose k-th component
is unity and other components are zero.

Proof Let A”'D =Y and B~! = Z, then

X=YZ.
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It follows from Lemma 3.3.1 that the unique solution of (3.3.3) is X = [x;;] € C"*7,
whose elements are given by

P
Xij = Z YikZkj
k=1

Yy det(AG — dy)) det(B(e] < j))
o det(A) det(B) ’

which is (3.3.4). O

3.3.2 Cramer’s Rule for the Best-Approximate Solution
of a Matrix Equation

The matrix equation AXB = D may not have exact solution when A and B are
rectangle matrices. In this general case, we find the best-approximate solution in the
following sense.

If X satisfies

(1) |AXoB — D|r < ||IAXB — Dl||r, VX
) 11 Xollr = IX1lF, VX # Xo, where X satisfies | AXB — D||p = [|[AXoB — D|l,

then X is called the best-approximate solution of the matrix equation
AXB =D, (3.3.5)

where ||P||r = (tr(P*P))% is the Frobenius-norm of the matrix P.
The best-approximate solution of (3.3.5) is discussed in [17], and the Cramer’s
rule for it is given in [18].

Definition 3.3.1 Let A = [a;;] € C"*" and B € C?*4, then the Kronecker product
A ® B of A and B is the mp x ng matrix expressible in partitioned form:

a”B a1zB al,,B
le]B (1223 CIQnB
A®B =

amiB aB ... ap, B

The properties of the Kronecker product can be found in [19-21].
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Lemma 3.3.2 Let A, B, Ay, Ay, By, and B> be matrices whose orders are suitable
for the following operations, then

(1) O® A=A®O0 =0, where O is a zero matrix;

2) (A1+A2)®B=A1®B+AQ®B;

3) AR(B1+B2)=A®B1+A® By,

4) aA® BB = (af)(A® B);

(5) (A142) ® (B1B2) = (A1 ® B1)(A2 ® By);

6) (A®B)'=A""'®B7;

(7) (A® B)" = A*® B”,

(A®B)T :AT®BT,'

® (A®B)' =AT®B"

9) (AQB)¢p,=Ayy ®Bpy, where C=M®P, D=N® Q, and M, N,
P and Q are Hermitian positive definite matrices of orders suitable for the
operations;

(10) (A® B)y = Ay ® By, where A and B are square matrices;
(1) (A® B)aw = Aa,w, @ Baw,, where W = W, @ W,.

An important application of the Kronecker product is that we can rewrite the
matrix Eq.(3.3.5) as a vector equation. For any X = [x;;] € C"*", let the vector
v(X) = [vx] € C" be the transpose of the row vector obtained by lining the rows
of X end to end with the first row on the left and the last row on the right. In other
words,

Vr(i—1)+j = Xij, i=1,2,...,n,j=1,2,...,r.

It is easy to verify that
V(AXB) = (A ® BN)v(X).

By using the above equation, the matrix Eq.(3.3.5) can be rewritten as the vector
equation:
(A® BT)v(X) = v(D). (3.3.6)

It is clear that the best-approximate solution of (3.3.5) is equivalent to the
minimum-norm least-squares solution of (3.3.6). It follows from Theorem 1.1.6 and

Lemma 3.3.2 that

v(X) = (A® B")'v(D)
= (A" ® BHHv(D)
=v(A"DB").

Thus, the best-approximate solution of (3.3.5) is simply
X =A"DB". (3.3.7)

The Cramer’s rules for the best-approximate solutions of two special matrix equa-
tions AY = D and ZB = I are given in the following two lemmas.
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Lemma 3.3.3 Let A€ C"", D =1[d;,dy,...,d,] € C"", and U € (Cﬁfim*")
and V* € C'*"") be matrices whose columns form the bases for N'(A*) and N'(A)
respectively, then the best-approximate solution of the matrix equation

AY =D

is Y = ATD = [y ] € C"™", whose elements are given by

AG = d) U
det[ V(i - 0) o}

Yik = o AU s
VO

i=1,2,....n k=1,2,..., w. (3.3.8)

Proof LetY =[y1,Y¥2, - ., Y] be the column partition of Y. Since

w

1D =AY =) lde — Ayell3
k=1

and
w

Y15 =" lyl3,
k=1

the matrix Y is the best-approximate solution of AY = D if and only if y;, k =
1,2,..., w, is the minimum-norm least-squares solution of Ay; = dy. Then (3.3.8)
follows from Corollary 3.2.1. (]

Lemma 3.3.4 Let B € C)*", I, be the identity matrix of order w, and P € Cgfg’_”)

and Q* € (Cﬁf;,wip ) matrices whose columns form the bases for N'(B*) and N (B)

respectively, then the best-approximate solution of the matrix equation
ZB =1, (3.3.9)

isZ =B =[z1,2,, ...,2,]" € C”*9, whose elements are given by

0 o

ZkJ: )
B P
det[QO}

det[B(e{ <) PO < j)}
k

=12,...,w; j=1,2,...,q.

(3.3.10)

Proof Tt follows from (3.3.9) that

B*Z* =1.
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Let Z* = (Zjx) € C7*", then Z ;3 = Z;. Using Lemma 3.3.3, we have

B*(j — ) Q"
_ det[P*(j—>0) o]

“po

which implies (3.3.10). [l
Putting Lemmas 3.3.3 and 3.3.4 together, we have the following Cramer’s rule
for the best-approximate solution of (3.3.5).

Theorem 3.3.2 LetA € C"" B € CL*”, D = [d;. dy. ....d,] € C"™" andU €
(szim_r), V* e (CZfi”_r), P e (C‘qlf(pq_p), and Q* € (C:ﬁf;w_p) be matrices whose

columns form the bases for N (A*), N'(A), N'(B*), and N (B) respectively, then the
best-approximate solution of the matrix Eq.(3.3.5):

AXB=D

is X = [x;;] € C"™9, whose elements are given by

Xij =
- Al —> d) U B(e{ < j) P(0 < )
;det[ Vi — 0) o}det[ 0 0
AU B P ’
det|:voi|det|:QO]
i=1,2,....n; j=12,...,q, (3.3.11)

where ey is the kth unit vector of dimension w.

Proof By (3.3.7), the best-approximate solution of (3.3.5) is X = ATDBT. Setting
A'D=Y and B'=7Z,

we get
X=YZ.

Thus the best-approximate solution of (3.3.5) is X = [x;;] € C"*4, whose elements

are given by
w
Xij = ZYikaj
k=0

and (3.3.11) follows from Lemmas 3.3.3 and 3.3.4. U
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3.3.3 Cramer’s Rule for the Unique Solution of a Restricted
Matrix Equation

The Cramer’s rule for the unique solution of the restricted matrix equation
AXB=D, R(X)CT, N(X)DS, (3.3.12)

is given as follows, where A € C"*", B € CL, DeCm™4, TCCr, ScCnm,
T c C?,and S C C? satisfy

dim(T) = dim(S*) = <r, dim(T) =dim(SH) =7<7 (3.3.13)

and
AT @ S = C" equivalentto T @ (A*SH)+ =C"

~ o~ ~ ~ (3.3.14)
BT @ S = CP equivalentto T & (B*S+)*+ = C9.
If we define the range and null space of a pair of matrices A and B as

R(A,B) ={Y = AXB : X € C"*F}

and
N(A,B)={XeC"™: AXB =0}

respectively, then the unrestricted matrix equation
AXB =D

has a solution if D € R(A, B).
Now, we consider the solution of the restricted matrix Eq. (3.3.12).

Theorem 3.3.3 Given the matrices A, B and D, and the subspaces T, S, T, and S
as above. Suppose that matrices G € C*"™ and G € C1*? satisfy

R(G) =T, N(G)=S, R(G) =T, and N(G) = S. (3.3.15)

4 ~
D € R(AG,GB),

then the restricted matrix Eq. (3.3.12) has the unique solution
(2) (2
X = AT,SDBT,E' (3.3.16)

Proof From the definitions of the range and null space of a pair of matrices, D =
AGYGB for some Y. Consequently,
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R(D) C R(AG) and N(D) > N(GB),

equivalently, B
R(D) ¢ AT and N(D) > (B*SHt,

since R(AG) = AR(G) = AT and R(D*) C R(B*G*) = B*R(G*) = B*S*.
Thus we can verify that

2 @) -~
AAT,SDBT’EB == PAT»SDPT,(B*SL)L - D,

thatis, X in (3.3.16) is a solution of the matrix Eq. (3.3.12). The solution A?)SDB(;%
also satisfies the restricted conditions because '

R(X) CR(AT) =T and N(X) D N(BFY) =5.

Finally, we prove the uniqueness. If X is also a solution of the restricted matrix
Eq.(3.3.12), then

_ A® @)

X = AT,SDBT,E
= A7SAXBBY:
= PT,(A*SL)LXOPBY':,g

= X,

since R(Xo) C T and N'(X) D S. O
Next, we show a Cramer’s rule for solving the restricted matrix Eq. (3.3.12).

Theorem 3.3.4 Given the matrices A, B and D, and the subspaces T, S, T and S
as above. Let

LeCmmD preC" I e (Cgf;”_?), and M* € (CZ:iq_?)
be matrices such that
R(L)=S, NM)=T, R(L)=S, and N(M) =T,

then the elements of the unique solution X = [x;;] of the restricted matrix Eq. (3.3.12)
are given by

q
> det

=2 Mi—00 M 0

AL B L ’
det[MO}det[MO]

i=1,2,....n; j=1,2,...,p, (3.3.17)

[A(i — dp) L}det [B(e,Z:— NILE" < j)}

Xij =
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where dy. is the kth column of D and ey is the kth column of the q X q identity matrix.

Proof Since X is the solution of the restricted matrix Eq.(3.3.12), we have
RX)CT=NM) and N(X)> S =RD).

It follows that _
MX =0 and XL=0O

AL)[xO0][BL]_[AxBO]_[DO (3.3.18)

M O 00 MO| ™ O O |OO|" o
From Theorem 3.1.3, the two coefficient matrices on the left of the above equation
are nonsingular and

[A Lr B [ AP, I — A Ay }

M O LY (I — AATY) LY (AAT A — AyM?
and 1 (2) (2) el

BL|" _ ~ B U= BmB)M‘~

MO L'(1 — BBY) L'(BBY B — B)M'

By using R(X) C T and V' (X) D S, we have
(I — APSA)X = Pyesiy 7 X =0

and
2 2
XB(I — B%%B) =X - BB(T’)E)B = XP;5 7B =O.

Therefore
xol [AL]'[pO][BL]"
00| |MO 00 M O
_ | A¥sDBZ O
= o ol
From the above equation, the unique solution of (3.3.12) is the same as that of

(3.3.18). Applying Theorem 3.3.1 to (3.3.18), we obtain (3.3.17) immediately. [

Corollary 3.3.1 Let A € C"", B € CZ™, M, N, P, and Q be Hermitian pos-
itive define matrices of orders m, n, p, and q respectively, and U € (Cﬁffm*r),
vieC" " Ue Cgf;‘” ™ and V* € (Cgf;q_?) be matrices whose columns form
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the bases for N'(A*), N'(A), N'(B*), and N (B) respectively. Suppose that A* =
N~'A*M, B* = Q7 'B*P and D € C"*4 satisfy

D € R(AA*, B*B). (3.3.19)
Then the restricted matrix equation
AXB =D, R(X)C N 'R(A", N(X) > PT'N(B"),

has a unique solution
T il
X = AMNDBPQ = [.X,'j],

whose elements are given by

idet[ Al — dy) M-IU]det[B(e,Qe j) PO <—j):|
k=l

VNG—0) O 120) 0
i = der] A MU dot| B P-lU ’
VN O Vo O

fori=1,2,...,nand j =1,2,..., p, where dy, is the kth column of D and ey is
the kth column of the q X q identity matrix.

Corollary 3.3.2 Given the matrices A, B, U, V, U , and V as above. Let D € C™*4
satisfy

D € R(AA*, B*B), (3.3.20)
then the restricted matrix equation

AXB =D, R(X)cC R(AY, N(X) D N(BY

has a unique solution
X =A"DB" = [x;],

whose elements are given by

V(i —0) 0 1% 0

AU BU ’
det[v O:|det[\70]

i=12,....n; j=1,2,...,p,

idet[A(i — dy) U}det[B(ekaf— j) ur <—j)j|
k=1

)C,'j =

where dy, is the kth column of D and ey, is the kth column of the q x q identity matrix.

Corollary 3.3.3 Let A € C"*" with Ind(A) = k, B € CP*? Wi{h Lnd(B) _ E rank
(A" =r < n, rank(B") = < p,and U, V* € C;"\" " and U, V* € CL*7 be
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matrices whose columns form the bases for N'(A¥), N'(AF"), N (B, and N'(BF)
respectively. Suppose that D € C"*? satisfies

D e R(A*!, BFHy, (3.3.21)
Then the restricted matrix equation
AXB =D, R(X)C R(AY), N(X) D> N(BY

has a unique solution
X = A;DB; = [x;],

whose elements are given by

q Al — d) U Bl < ) U0 « j)
kgldet[v(l._)o) O]det[ k\7 o

AU BU ’
det[v O:|det[‘70]

i=12,....n; j=1,2,...,p,

X,’j =

where dy, is the kth column of D and ey, is the kth column of the q x q identity matrix.
Corollary 3.3.4 Let A € C"*" with Ind(A) = 1, B € CP*? with Ind(B) = 1, rank
(A)=r <n, rank(B) =7 < p, and U, V* € C*"" and U, V* € CL"¥™ be

matrices whose columns form the bases for N'(A), N'(A*), N'(B) and N'(B*) respec-
tively. Suppose that D € C"*? satisfies

D e R(A?, BY). (3.3.22)
Then the restricted matrix equation
AXB =D, R(X)C R(A), N(X) DN (B)

has a unique solution
X = AgDBg = [)Cij],

whose elements are given by

q Al — d) U Bl < ) U0 « j)
Zdet[vae())o]det[ v 0

AU BU ’
det[v O:|det[‘70]

i=12,....n; j=1,2,...,p,
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where dy. is the kth column of D and ey is the kth column of the q X q identity matrix.
Let A e C"" BeCP* T c C", and S C CP”, then the Bott-Duffin inverses

(A*A) 7)) = (A" and (BBY) ) = (BBMY .

It is obviously that the orthogonal projectors Pr and Pg. satisfy
T =R(Pr), T* =N(Pr), & =R(Ps), S =N(Ps.).

Thus, when setting G = Pr and G = Pg. in Theorem 3.3.3, we have the following
result immediately.

Corollary 3.3.5 Let A e C™", Be CP*1, D e C", T CC'and S C CP. If
A*DB* € R(A*APr, Ps. BB),
then the restricted matrix equation
A*AXBB* = A*DB*, R(X)CT, N(X)D S (3.3.23)
has the unique solution

X = (A*A)E;)‘)A*DB*(BB*)EEE)).

By using Theorem 3.3.4, we have the Cramer’s rule for solving the restricted
matrix Eq.(3.3.23).

Corollary 3.3.6 Given A, B, D and the subspaces T and S as in Corollary 3.3.5.
Let
T =N(E), S=R(F)

and

T+ =R(E"), S*t=TR(F),

then the elements of the unique solution X = [x;;] of the restricted matrix Eq. (3.3.23)
are given by

a A*A( — dy) E* BB*e] < j) F(OT < j)
gdet[ Ei—0) o |% F* 0
A*A E* BB* F
det|: E Oi|det|: P O]
i=1,...,n, j=1,...,p,

Xij =

3

where dy. is the kth column of A* D B* and ey is the kth column of the q X q identity
matrix.
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3.3.4 An Alternative Condensed Cramer’s Rule
Jor a Restricted Matrix Equation

In this section, we revisit the restricted matrix Eq. (3.3.12):
AXB=D, R(X)CT, N(X)DS,
where A € C"", Be CL*, DeC"™4, T cC", SCcC", T cC% §cC’and

the conditions (3.3.13) and (3.3.14) are satisfied.
It follows from Lemma 3.2.2 and Theorem 3.2.8, we have the following results.

Lemma 3.3.5 Given B, T, S as above. In addition, suppose G € C9%P such that
RG)=T and N(G)=35.

If B has a {2}-inverse B(TZ)S"’ then

Ind(BG) = Ind(GB) = 1.

Furthermore, we have o ~ ~
BY: = G(BG), = (GB),G. (3.3.24)

Theorem 3.3.5 Given B, T §, and G as in Lemma 3.3.5, and
BT @S =Cr.

Let V and U* be matrices whose columns form the bases for N'(B 5) and N'((B 5)*)
respectively. We define o

F=VUV)'U.
Then F satisfies

R(F) =R(V) = N(BG), N(F) = N(U) = R(BG),
and BG + F is nonsingular and
(BG + F)™' = (BG), + F,.

Next, we show a condensed Cramer’s rule for solving the restricted matrix
Eq.(3.3.12).

Theorem 3.3.6 Given A,B,T,S,T,S,G,G,V,U*,V,U*, E, and F as in
Theorems 3.2.8 and 3.3.5. If ~
D € R(AG, GB),



3.3 Cramer’s Rule for Solution of a Matrix Equation 127
then the restricted matrix Eq. (3.3.12):
AXB=D, R(X)CT, N(X)D>S
is equivalent to the nonsingular matrix equation
(GA+ E)X(BG + F) = GDG (3.3.25)

and the entries of the unique solution X of (3.3.12) are given by

i det(GA+ E)(i — ak))det((Ba + F)(e] < j))
k=1

)

Xij =

det(GA + E) det(BG + F)
i=12....n j=12..,p, (3.3.26)

where d is the kth column of GDG and ey is the kth column of the identity matrix
of order p.

Proof Tt follows from Theorems 3.2.8 and 3.3.5 that GA + E and BG + F are
nonsingular, and that the unique solution of (3.3.25) is

X =(GA+E)"'GDG(BG + F)™!
= (GA),GDG(BG), + (GA),GDGF, (3.3.27)
+ E,GDG(BG), + E,GDGF,.

From assumptions, we have

D = AGYGB for some Y,

and
N(E) = NU) = R(GA), R(F)=RV)=N(BG).
Thus N
EGA=0 and BGF = O,
implying

E,GD = EGAGYGB =0 and DGF,=AGYGBGF =0. (3.3.28)
It follows from (3.3.27) and (3.3.28), (3.2.24) and (3.3.24) that

X = (GA),GDG(BG),
2) (2)
= AT,SDBT,S“'
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The restricted matrix Eq. (3.3.12) has the unique solution

(@) 2
X - ATaSDBT,S:

by Theorem 3.3.3, hence the restricted matrix Eq. (3.3.12) is equivalent to the nonsin-
gular matrix Eq.(3.3.25). Applying the Cramer rule (3.3.4)—(3.3.25), we can obtain
the expression (3.3.26) immediately. O

Similar to Corollaries 3.3.1-3.3.5, we have a series of condensed Cramer rules
for those corresponding restricted matrix equations, see [22]. It is omitted here and
left as an exercise.

Exercises 3.3

1. Prove (9), (10) and (11) of Lemma 3.3.2. (cf. [4])
2. Can we use the conditions

R(D) C R(A) and N(D) D N(B)

instead of the conditions (3.3.19) and (3.3.20) in Corollaries 3.3.1 and 3.3.2?
3. Can we use the conditions

R(D) C R(AY) and N(D) > N(BY

instead of the condition (3.3.21) in Corollary 3.3.3?
4. Can we use the conditions

R(D) C R(A) and N (D) D N(B)

instead of the condition (3.3.22) in Corollary 3.3.4?

3.4 Determinantal Expressions of the Generalized Inverses
and Projectors

It is well known that if A is nonsingular, then the inverse of A is given by

Al = adj(A)
"~ det(A)’

where
(adj(A));j = det(AG — e;)), i,j=1,2,...,n.
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Let A=' = [ay;], then

_ det(A(i — e)))

= L i=1,2.....n
i det(A) J "

The determinantal expression of an ordinary inverse can be extended to the gener-
alized inverses. These results offer a useful tool for the theory and computations of
the generalized inverses.

By using the results in Sect. 3.1, the determinantal expressions of the generalized
inverses A1, AT, Ay, A, A(T%)S, A(TI”SZ), and AEZ;) and the projectors AT A and AAT
are given in the following theorems.

Theorem 3.4.1 Let A € C"*", M and N be Hermitian positive definite matrices of

orders m and n respectively, and U € Cﬁfﬁ’”’” and V* € (Cngnir) matrices whose

columns form bases for N'(A*) and N'(A) respectively. Also, let

A M~ 'U AU
A2_|:VN o ] and A1_|:V0i|’

and Avauv = [alsz_)] and AT = [af})], then

o _ det(A[(l — ej))

0 _ =12 3.4.1
i det(A)) (3.4.1)

Proof It follows from Theorem 3.1.1 and Corollary 3.1.1 that A, and A, are nonsjn—
gular and the n x m submatrices in the upper-left corners of A, ' and A" are A},
and AT respectively. Using AIA,_l =1,l =1, 2, we obtain (3.4.1) immediately. [

Theorem 3.4.2 Let A € C™", Ind(A) = k and rank(A¥) =r <n, and U, V* €
C"*"") be matrices whose columns form bases for N'(A*) and N'(A¥™) respectively.

Let_
AU AU
A4=|:VO:|’k>1’ and A3=|:VO:|’k=1’

and Ay = [of)] and A, = (o], then

a(l) _ det(Al(l e ej))

0 _ . 1=3,4. 3.4.2
i det(A;) (34.2)

Proof 1t follows from Theorem 3.1.2 and Corollary 3.1.4 that A4 and A3 are non-
singular and the n x m submatrices in the upper-left corners of A; ' and A3" are A,
and A, respectively. Using AlAl_1 = 1,1 = 3, 4, we obtain (3.4.2) immediately. [J

Theorem 3.4.3 Let A € C"", T c C", S C C",dim(T) = dim(S+) =1 < r and
AT & S = C™", and both B and C* be of full column rank and satisfy
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S=R(B) and T =N(C).

Let

Aﬁz[ég],t<r, and Asz[ég],tzr,

and ADs = [ and A}Y = [af)), then

o _ det(Al(l e ej))

O _ . 1=5.6. 3.43
i det(A)) (3.4.3)

Proof 1t follows from Theorems 3.1.3 and 3.1.4 that Ag and As are nonsingular and
the n x m submatrices in the upper-left corners of Ag "and AS_l are A(T%)S and A(Tl”?

respectively. Using A;Al_1 = 1,1 =35, 6, we obtain (3.4.3) immediately. O
Theorem 3.4.4 Let A € C", U € C,"” satisfy N(U*) = Land AL ® L+ = C",
and
AU
and AEZ)I) = [Ozf;)], then
det(A;7(i ;
o) = deA (> €)) (3.4.4)
/ det(A7)

Proof It follows from Theorem 3.1.5 that A7 is nonsingular and the n x n subma-
trix in the upper-left corner of A7 is AEZ)”. Using A7A7 I'= I, we obtain (3.4.4)
immediately. O

Finally, since the projectors A"A and AAT are the best-approximate solutions
of AY = A and Y A = A respectively, using Lemmas 3.3.3 and 3.3.4, we have the
following theorem.

Theorem 3.4.5 Let A =[a;, a,,...,a,] € C/"", A* =[a;,a,,...,a,] € C",
and U € C*"" " and v* € C*"™" be matrices whose columns form the bases
for N'(A*) and N (A) respectively. Also, let

ATA = [ij1€ C™" and AAT = [vi;] € C™™,
then

Al = a;) U
det[ V(i — 0) o}

Pij = ,
det|:A U:|

i,j=12...n.
vV O

and
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A@ < H U0 <))
det|: v o ]

AU ’
det |: VO ]
The determinantal expressions of the projectors A}, A, AA},\, AAg, and AA,

are given in [21]. The determinantal expressions of the projectors A(Tl”SZ)A, AA(TI,‘SZ),
A(Tz’)SA and AA(TZ,)S are left to the reader.

i = iji=1,2...,m.

Exercises 3.4

1. Show the determinantal expressions of the generalized Bott-Duffin inverses AEZ

and the W-weighted Drazin inverse A4 w [23].

2. Show the determinantal expressions of the projectors A(Tl,’SZ)A, AA(TI,’?, A(Tz_)SA,
AAT G, WAW Aqy and Agw WAW.

3. By using the Werner’s method [14], show the condensed Cramer rule for the
solutions of linear equations and matrix equations in Sects.3.2 and 3.3.

3.5 The Determinantal Expressions of the Minors
of the Generalized Inverses

In this section, we study the minors, submatrices, of inverses. First, we introduce
notations and review the expressions of the minors of the regular inverse of a non-
singular matrix. Then we present the minors of various generalized inverses in the
following subsections.

If a matrix A € R™*" is nonsingular, then the adjoint formula for its inverse

Al = adj(A)
~ det(A)

has a well-known generalization, the Jacobi identity, which relates the minors of Al
to those of A.

Denote the set of strictly increasing sequences of k integers chosen from {1, 2,
...,n}by

Oin=1{a: a=(a,a, - ,q), 1 oy <o < <ag <nj.

For a,, 3 € Qf.n, we denote

Ala, 3] the submatrix of A having row indices « and column indices (3,
Ale/, '] the submatrix obtained from A by deleting rows indexed o and columns
indexed (3.
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Then the Jacobi identity [24] is: for any a, B € Qj s

det(Alo, B'1)

» — (_1\S@+50)
det(A7'[B,a]) = (1) det(A)

)

where S(«) is the sum of the integers in .. By convention,
det(A[9, ¥]) = 1.

We adopt the following notations from [25]. For any index sets I and J, let Aj,,
A,j, and A;; denote the submatrices of A lying in the rows indexed by I, in the
columns indexed by J, and in their intersection, respectively. The principal submatrix
Ay is denoted by A;. For A € R"™*", let

Z(A) ={l € Orm: rank(Aj,) =7},
JA)={J € Q,, : rank(A,y) =r}, (3.5.1)
B(A) = {(I, J) € Qr,m X Qr,n : ra-nk(AIJ) = I"},

that is,
B(A) =I(A) x J(A),

be the index sets of maximal sets of linearly independent rows, columns and maximal
nonsingular submatrices, respectively.
Fora € Qi.m, B € Qk.n, let

T(a) = {I € Z(A) : o C I},
JPB ={JeTJA: BcCl} (3.5.2)
B(a,3) ={(,J) e BAA): a«C I, BCJ},

that is,
B(a, 8) = Z(a) x T (B).

For oo = (a1, az, -+, ay) and 3 = (81, Ba, - -+, ), we denote

A(B — 1)
the matrix obtained from A by replacing the [;th column with the unit vector e,,,
i=1,2,...,k,and denote

A(B — O)

the matrix obtained from A by replacing the [3;th column with the zero vector,
i=1,2,... k.
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Finally, the coefficient (—1)5( 5 det(A[o/, 3']) of det(A[cv, 3]) in the Laplace
expansion of det(A) is denoted by

0
Ol Aagl

|A]. (3.5.3)
Using the above notations, (3.5.3) can be rewritten as

%w = (=1)5@+SD det(A[o/, ) = det(A(B — 1,,)) (3.5.4)

and the Jacobi identity as

det(A(5 — 1a))

—1 _
det(A™'[3, a]) = — (3.5.5)
 det(ATA(B - 1))
= Gt (3.5.6)

As in [26], we define the volume of an m x n matrix A by

Vol(A) = Z det® (A7)
(1,1)eB(A)
and in particular,
Vol(A) = +/det(AT A) if A has full column rank 3.5.7)
and
Vol(A) = \/det(AAT) if A has full row rank. (3.5.8)

If A = FG is a full rank factorization of A, then
Vol(A) = Vol(F)Vol(G). 3.5.9)

LetA € R, andU € R and VT € R2*" ™" be matrices whose columns
form the orthonormal bases for A'(A7) and A/ (A) respectively, then

AU
r=[vo)
is nonsingular by Corollary 3.1.3 and its inverse is

AT yT
-1 _
B _[UT o ] (3.5.10)
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If A is of full column (row) rank, then V (U) is empty. Moreover, by [26],
det(BTB) = VOIZ(A). (3.5.11)

In the following subsections, we study the determinantal expressions of the minors
of the various generalized inverses.

3.5.1 Minors of the Moore-Penrose Inverse

Theorem 3.5.1 ([25]) Let A e R and 1 < k <, then for any o € Qy,, and

B € Qk,n;
det(AT[8, a]) = (35.12
0 if Bla, ) = o
Vol *(4) 2 det(A[J)LlAIJL otherwise.
(1,J))eB(a, B) 0|Aas]

Proof From (3.5.10) and (3.5.6), we have

det(A'[3, a]) = det(B7'[3, a])
= GeiaTB) 1B B~ L) (3.5.13)
Now
det(B"B(3 — 1,))
= det AT VI TAB— 1)U
““\lvT o] |lve-0o0
= AB — 1)
= det ([AT VT] |:V(5_) O):|>

= Z det[(AT)*, VT] det |:(A(ﬁ e Ia))l*i|

1€Z(A) V(ﬂ - O)
A * In,
= Y det[(A)" V7] det|: \I/((gﬁ__:o))]‘ (3.5.14)

1eZ(a)

In the above equation, the equality next to the last is by the Cauchy-Binet for-
mula, noting that the determinant of any n x n submatrix of [AT V7] ¢ R n+n=r)
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consisting of more than r columns of A7 is zero. The last equality holds because the

matrix
A(ﬂ i Icz)l*
V(3 — 0)

has at least one column of zeros if I ¢ Z(«).
We claim (and prove later) that for any fixed I € Z(«),

det[(A7)7 V] det [AI*(/B — Ia)]

V(B — 0)

= Z det(A;y)det(A;; (6 — 1,)). (3.5.15)
JeJB)

Then, using (3.5.11), (3.5.14) and (3.5.4), the Eq.(3.5.13) becomes

det(AT[3, a])

1
=——— > ) det(Ary)det(A;; (B — I.))
Vol“(4) IeZ(a) JeT(B)

1 0
= det(A; ) ———1Apy].
2 Z 17

Vol*(4) , £ A Ausl

Finally, we prove (3.5.15). For any fixed I € Z(«), the columns of VT form an
orthonormal basis for V'(A;,). Let

[V ]
then, by Corollary 3.1.3, L is nonsingular and its inverse is
L™ =[4A], V'],
and
det((A7)'[8. a)
= det(L7'[3, al)

_ T
= D det(LTL(B — I,,))

det[(A;)T VT]det [A’*(ﬁ — I‘*)] . (3.5.16)

= Vol’(A.,) V(3 — 0)

Writing (A7,)T = C, we have
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det((A7)'[8, a]) = det((CHT[3, al) = det(C[a, F).
Let W be a matrix whose columns form an orthonormal basis for A/(CT) and
M =[C W],

then, by Corollary 3.1.3, M is nonsingular and its inverse is
il
M~ = [ v?/T ] )

M =pchH" wi

Thus

and

det((AT)B, al)
= det((CT)'[3, a])
= det(M")7'[3, al)
= det((M)'[a, B])

1
=—  dettM™M 1
ST M M = 1)

1
= W det(An(Ar)" (a — I3))
I*

1
VoI’ (Ar,)
_ 1
Vo’ (Ar,)

> det(Agy) det((Ar)" (o — 1))
JeT(B)

> det(Agy) det(Ar (B — ). (3.5.17)
JeJ ()

The equality next to the last is by the Cauchy-Binet formula, noting that, if J ¢ 7 (3),
then the submatrix of (A7,)” (o — 15) whose rows are indexed by J has at least one
column of zeros.

Finally, (3.5.15) follows by comparing (3.5.16) and (3.5.17). O

Note that B(«, 3) = @ is equivalent to the linear dependence of either the columns
of A, or the rows of A,..

As a special case, if « =1 € Z(A) and = J € J(A), then B(«, (3) contains
only one element, i.e., (1, J). Now Theorem 3.5.1 gives the identity:

det(A");; = det(A;;), VU,J) € B(a, B).

Vol?(A)
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3.5.2 Minors of the Weighted Moore-Penrose Inverse

Let A € R, U € R and VT e R.*"" be matrices whose columns form
the bases for A'(AT) and N'(A) respectively, and M and N be symmetric positive
definite matrices of orders m and n respectively, then

A MU
VN O
is nonsingular by Theorem 3.1.1 and its inverse is

A MUl Aly VI(VNVT)!
VN O wmM-u)-'u’ 0 '

Lemma 3.5.1 Let B € R, VT e R2*"" and BVT = O, then

]

is nonsingular and its inverse is

-1
[VBN} =(B], VI(vNVT)~]. (3.5.18)

Proof Since
Bly=N""2 BN,

we have
BB, = BN"'2(BN~V})T =1,
VNWVT(VNVTY™h =1,
VNB], = VNB BB,

= V(NB] B)"B],

= VBT (NB] )" B}

=0,
and

BVI(VNVT)~! = O,

which imply (3.5.18). (]
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Lemma 3.5.2 Let C € R™", W € RV and CTW = O, then

[C NW]
is nonsingular and its inverse is
[C NW]™' = [(WTsz;évl)’ilWT] (3.5.19)
Proof Since
[C NW] = [WCTTN],
by using (3.5.18), we have
cr 1 N T -1
|:WTN] — [(c )y WWTNW) ]
=[ci " warTvwy .
Thus (3.5.19) holds. O

Lemma 3.5.3 Let A € R"" and A = F G be a full rank factorization of A, and M
and N be symmetric positive definite matrices of orders m and n respectively. Then

Al =GivFl, (3.5.20)

and
det(FTMF)det(GN™'GT) = Vol>(M'?AN~'/?). (3.5.21)

Proof By using Theorem 1.4.4,

Ay = N'GT(FTMANT'GT)'FT M
=N'G"(GN'G") (FTMF)"'FTM
f ot
=G yFyy-

Since
GN™'G" = (GN™'*(GN~HT

and
FITMF =WM"?FT (M'?F),

where M!/2F is of full column rank and GN~'/? is of full row rank, using (3.5.7)-
(3.5.9), we have
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det(FTMF)det(GN™'GT)
= det(M'?F)T (M'*F))det(GN~*)(GN~VHT)
= Vol>(M'*F) Vol>(GN~'/?)
= Vol>(M'?AN~/?),

which completes the proof. (]

Lemma 3.5.4 Let A € R and A = FG be a full rank factorization of A, 1 <
k<r,andVo € Qpm, VB € QrnandV(I, J) € B(a, ), then

det(AIJ(ﬁ g I(y))
= Z det((F(w = 1a))1x) det((G(B = 1,))4s)- (3.5.22)

WEQk,r

Proof From (3.5.5),
det(A;;(6— 1)) = det(A”)det(AI_J1 [8, al. (3.5.23)
Since F is of full column rank and G is of full row rank, we have

det((F(w = 1)) 1x) = det(Fre(w — 1))
= det(F},) det(F;,'[w, a]) (3.5.24)

and

det((G(B — 1,))x1) = det(Gys (B — L))
= det(G,,) det(G_ 3. w)). (3.5.25)

By using A;; = F1.G,,, we have
det(A;;) = det(Fy,) det(G.y). (3.5.206)

It follows from AI_J] = G;Jl F 1_*1 and the Cauchy-Binet formula that

det(A,[3, al) = Z det(G,}[3, w]) det(F;,'[w, a). (3.5.27)
WEQk.r
Thus, (3.5.22) follows by (3.5.23)—(3.5.27). 4

Theorem 3.5.2 ([27]) Let A € R™*", and U € R™*" ™" and VT e R"*"™" be
matrices whose columns form the bases for N'(AT) and N (A) respectively, and M
and N symmetric positive definite matrices of orders m and n respectively, 1 <k <r,
then for any o € Qy.n and B € Qy p,
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det(Al,y[6, al) (3.5.28)
0, if B(a, B) = 0;
o, 1 L OlAL] .
Vol (A) > det(MAN~Yp) otherwise,
(1.1YeB(o B) 0|Aasl

where A = MV2AN—1/2,

Proof Let A = FG be a full rank factorization. It follows from (3.5.20) and the
Cauchy-Binet formula that

det(Aj,y[B.a) = Y det(G]y[B. w]) det(Fy,[w, al).

we€Qy r
Setting GT = D, by the assumption AVT = O,wehave GVT = O,i.e.,, DTVT =

O. From Lemma 3.5.2,
H=[D NVT]

is nonsingular and its inverse

H-! — Dj\/*‘,l
(VNVDY-ly |
Since .
(D} )" =(D")} y =G}y
we have
det(Gy[3, wl)
= det((D}, )" [B. w])

= det(D},_, ,[w. B])
= det(H '[w, A])

1
=—— det(H'N'H I
der TN U W= 1p)
B 1 det GN7'G"(w— I) GVT
"~ det(GN-'GT)det(VNVT) VGl (w— 13 VNVT
1
=——det(GN'GT I
et GNTGT) 4 W= Iy)
1

- -1 T
- det(GNflGT) JE;(S) det((GN )*]) det((G (w — 13))]*)

_ .
T det(GN-'GT) J;ﬁ) det((GN™")sy) det((G(B — 1,))«s).  (3.5.29)
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The equality next to the last is by the Cauchy-Binet formula. Noting that, if
J ¢ J(73), then the submatrix of GT (w < I,,) whose rows are indexed by J has at
least one column of zeros.

From the assumption AT U = O, we have F7U = O. By Lemma 3.5.2,

P=[F M~'U]

is nonsingular and its inverse is

FT
P l= Ml :
|:(UTM_'U)UT1|
Thus

det(F,,[w, o)
= det(P '[w, a])

1
= ————det(PTMP I,
der P p) 9 W= 1))

1
= ————det(FTMF I,
et (FT M F) 9 @ = 1))
B 1
~ det(FTMF)

1
"~ det(FTMF)

> det((F" M).p) det((F(w — 10))1.)
I1€Z(o)

Z det((MF) ;) det((F(w — 1.))4). (3.5.30)
IeZ(a)

If I ¢ Z(«), then the submatrix of F(w < I,) whose rows are indexed by / has at
least one column of zeros.

It follows from (3.5.2), (3.5.4), (3.5.21), (3.5.22), (3.5.29) and (3.5.30) that the
second part in (3.5.28) holds.

Note that B(«, 8) = ¢ is equivalent to linear dependence of either the columns
of A,z or the rows of A .. O

As a special case, if a =1 € Z(A) and = J € J(A), then B(«, ) contains
only one element, which is (I, J). Now Theorem 3.5.2 gives the identity:

_ 1 B
det((Aln) o) = VBT St ((MAN N
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3.5.3 Minors of the Group Inverse and Drazin Inverse

Definition 3.5.1 Let A € R"*", 0 < k < r, the kth compound matrix of A denoted
by Cr(A) is the <’Z> X <Z ) matrix whose elements are determinants of all k x k

submatrices of A in lexicographic order.

Some well known properties of compound matrices are listed below (see for
example [28]).

Lemma 3.5.5
(1) C(AT) = C(A)T;
) IfAeC™?, B e CP*" andrank(AB) = r, then

Cir(AB) = Cy(A)Cr(B), k < min{m,r, n};

(3) rank(Cx(4)) = (,ﬁ ;

(4) Cr(I) = I (appropriate size identity matrix).
Lemma 3.5.6 Let A € RI"". If A = CR is a full rank factorization of A, then

o
1AL A Z a|cm,| 18|Rw3| !

forany o € Qgm, B € Q. and (I, J) € B(a, B).

Proof The result follows from the Cauchy-Binet formula

det(A[I \ o, J\ B8]
= Z det(C[I \ e, 7])det(R[7, J \ B])

TEQr—kr

D det(CII\ @, F\ YD det(RIF\ 7, J\ B,

VEQkr

where 7 = {1,2,...,r}. O
Lemma 3.5.7 Let R e R’ and C € R If E and F are a right inverse of R and
a left inverse of C respectively, thatis, RE = I and FC = I, then

det(EB. ) = ) det(Er) g ||R*J|, (3.5.31)
JeT (B) K

forany~y € Q. B € Qin, and
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0
det(F[v, a]) = E det(Fy;) ——|Cr4l,
0|Cq, |
IeZ(a)

forany o € Qm, v € Qi.r-
Proof Let e, be the right-hand side of (3.5.31), then

0
o=y | D det(EIB 5])8|E Esel | g R
B

JeT(B) \&§€Qkr

= Y. D det(E[B. (=IO

JeT (B) €€ Ok.r
~det(E[J \ B, 7\ €D det(R[F\ 7, J\ B])
= ) det(E[B, EH(=DSOTD

TEQ ko
TNB=0

~det(E[, 7\ £D) det(R[7\ v, 1),

noting thatif 7 € Q,_, and 7 N 3 # &, then

D (=)@ det(E[B, £]) det(E[7, 7\ £]) = 0.
€0y

Thus (3.5.33) becomes

gy =Y (=DSOTSD det(E[B, €]) -
£€0kr

> det(R[F\ v, 7)) det(E[r, 7\ )

TEQr—kn

Now it follows from
Cr«(R)C,(E) =1,

that
D" det(RIF\ 7, 7D det(Elr, 7\ &) = {

TEQr—kn

Putting the above equation and (3.5.34) together gives

eg ., = det(E[S3, v]).

0,ify #&
1,ify =¢.

143

(3.5.32)

(3.5.33)

(3.5.34)
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This completes the proof of (3.5.31). The proof of (3.5.32) is similar and left to the
reader as an exercise. O

Theorem 3.5.3 ([29]) Let A e RI"". If G € A{l, 2}, then

0
det(G[3, a]) = Z det(G 1) —2 1AL, 5535
(1.1)eB(.5) 01Ausl

forany o € Qrmand B € Qrn 1 <k <r.

Proof Let A = CR be a full rank factorization of A, E = GC, and F = RG. Since
G € A{l}, wehave CRGCR = CR, RGC = 1. Thus RE = I and

FC=RGC=RE=1.
It follows from the assumption G € A{2} that
EF =GCRG =GAG =G.

Denoting the right-hand side of (3.5.35) as gz, and using the above equation, we get
0
goa= Y det(Ey)det(Fu)=——IA|.
I, )eB(a,B) 9l Aasl

It then follows from Lemmas 3.5.6 and 3.5.7 that

gﬁ()é

0 0
E E det(E ) 70— | Rusl E det(Fiuy) =——1Cp]
. O|Rypl 0|Col
Y€Qk, \JeT () 1€Z(a)

Z det(E[S3, v]) det(F [, al),

V€ Qk,r

which equals det(G[S3, a]). O
The following theorem is a special case of Theorem 3.5.3.

Theorem 3.5.4 Let A € R?*". IfInd(A) = 1, then A has a group inverse A,, and

)
det(A (B, ah) =v™2 3 det(As) g —IAnl, (3.5.36)
(1.7)eB(of) OlAasl

for any «, ﬂ S Qk,nr 1 f k f r, Where

V= Z det(A ).

JeJ(A)
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Proof Let A = CR be a full rank factorization of A. By using A, = C(RC)™2R and
the Cauchy-Binet formula, we have

det((Ay) 1) = det((RC)™?) det(A ;)

-2

= Z det(Ayy) det(Ayg)
JeJ(A)

= v 2 det(Ay)),
which implies (3.5.36) by Theorem 3.5.3. |

Theorem 3.5.5 ([30]) Let A € R™" Ind(A) = k and rank(AX) = ry, then A has
a Drazin inverse Ay, and

det(Aql3, al) = (3.5.37)

0
vy D0 det((ANyp) det(A [, a])WI(Ak)ul,
weQpn (I,J)eB(wW,) wf

forany o, B,w e Qpupand1,J € Q,, ,, 1 <h <ry, where

v=) det((4),).

JeJ (Ak)

Proof 1t is easy to verify that
(A = (A,

Applying (3.5.36) and the above equation, we have
det((Aa)“[B. al)
= det((A),[8, a])

0
v Y det(AN) 5 (A9
0. ;
(1,J)eB(a.p) 8|(A )(y‘d|

where v = )74, det((A%) ). Since Ay = (Ay)* A*~", from the Cauchy-Binet
formula, we have

det(Aq[B, o)
> det((Ag)[8, w) det(A*w, al)

WEQhn

0
VYN detl(A ) det(A ) g (A
weQpn (I,J)EBW,) wp
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which completes the proof.

O

As a special case, when A € R"*" Ind(A) = k and rank (A¥) = r¢, we can show

that
det((A%), 1)

Y det(Ayg)det((A%) )’
(1,7)EB(AR)

det((Ag)yr) =

for any (I, J) € B(A¥). Indeed, it follows from Theorem 2.1.6 that

A=BCi, CiBy=BC;, (2B, =B3C3, ---,

then
Ay =
BBy - Bi(CyBy) ' CiCy—y - - - C1, when (CiB)~! exists,
O, when Cy B, = O.
Set
B=B/B,---B,, C=CCy_1---Cq,
then
Aq = B(CyBy) " **VC = B(CAB)™'C
and C (5O
C,(Ay) =C, (B(CAB)™HC) = ———,
(Aa) L (B( ) )O) et (CAB)

It is easy to show that A¥ = BC is a full rank factorization of A¥, and
Cr, (BC) = C, (AN).

Using the Cauchy-Binet formula, we have

det(CAB) = Z Z det(C,;) det(A ;) det(By,)

1€Qyn JE€Qy n

= Y det(Ayy)det((A))).

(1,])eB(A¥)

Applying the above equation and (3.5.40)—(3.5.39), we obtain (3.5.38).

(3.5.38)

(3.5.39)

(3.5.40)
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3.5.4 Minors of the Generalized Inverse A(TZ)S

In this subsection, we consider the expression of the determinant of a minor of the
generalized inverse A?)S. In 2001, Wang and Gao [31] gave an expression which
includes the group inverse as a special case. Later, in 2006, Yu [32] presented a for-
mula which unifies the expressions (3.5.12) for the Moore-Penrose inverse, (3.5.28)
for the weighted Moore-Penrose inverse, (3.5.36) for the group inverse, and (3.5.37)

for the Drazin inverse.

Theorem 3.5.6 ([32]) Let A € C"*", T be a subspace of C" of dimension s <r,
and S a subspace of C" of dimension m — s. If A has the generalized inverse A(Tz’)s

and there exists a matrix G € C™" such that R(G) = T and N (G) = S, then

- 0
det(Ar s[5, o) = v™" Z det(G”)alA | |Ary]
1, ))eB(a,f) a,f

forany o € Qi m, B € Qkp, 1 <k <s, where

v="Y_ det((AG),)).

JeJ(AG)
Proof From Lemma 3.2.2, A(T%)S = G(AG)y, so

det(ATS[8, al) = det(G(AG),)[B, al.
Using the Cauchy-Binet formula and Theorem 3.5.4, we obtain

det(AT[8, o)
=Y det(G[B, @]) det((AG),[w. o)

0
— -2 det(G , det((AG _ 9 AG ’
v %:(,’F);mw) et(G[f, w]) det(( )FI)5|(AG)a,w| [(AG)Fl

where
v = Z det((AG) ;).

JeJ(AG)

Note that for all 7, for which o € I, and all F,

0
;det(Gw’ w])mmm)m = det(U;r),
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where U is the matrix obtained from AG by replacing the 3-rows of AG with
the a-rows of G. Let a = {ay, aa, ..., ¢} and B = {0, B2, ..., Bx}. Then, if we
denote B as the matrix obtained from A by replacing the «;th row of A with the row
[0---010 --- 0], where the S;ithentryis 1,i = 1,2, ..., k, and all other entries
are zero, then we have U = BG. Hence

det(U;p) = Zdet(B”) det(Gr).
J

Thus

det(AT[8, o)

=v2 Y Y det(AG)p; det(By)) det(G )
I, FyeB(a,B) J

=2 Z ZZdet(ApL)det(Gu)det(GJF)det(B”).

(I,FeB(a,p) J L

Since rank(G) = s, (rank(C;(G)) = 1, where C;(G) is the sth compound matrix of
G. Thus, we can get

det(Gry) det(Gr) = det(Grr) det(G )

and so
det(A[8, o)
=v? Y > det(Apy) det(GLr) det(G ) det(By )
(I,FyeB(a,5) J L
=v? Y > det((AG)pr) det(G yp) det(By )
(I,FyeB(a,5) J
=v"' Y " " det(Gy) det(By,)
1 J
=v' ) det(G y) = Ay|
8|Au ;3| '
(I,J)eB(a,B) ’
which completes the proof. [

Exercises 3.5

1. Prove that if A = F'G is a full rank factorization of A, then
Vol(A) = Vol(F) Vol(G).

2. Prove Lemma 3.5.5.
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3. Prove (3.5.32).

4. Prove that (Ay)* = (Ak)g.

5. Prove that Ay = (A )X A1

6. Prove thatif A = CR € C!*" is a full rank factorization of A, then

det(RC) = Z det(Ay ;).
JeT(A)

Remarks

The trick in Robinson’s proof was used by Ben-Israel [2] to derive a Cramer rule
for the least-norm solution of consistent linear equations. It is a pioneering work.
In this chapter, we survey the recent results in the field. Its application to parallel
computation of the generalized inverses is presented in Chap.7. Werner [14] gave
the unique solution of a more general consistent restricted linear system. He also
presented an alternative condensed Cramer rule. The basic idea is to modify the
original matrix so that the new matrix is invertible, then solve the solution of the
original problem from the corresponding nonsingular system of linear equations.
The method is practical since it is easy to construct the nonsingular matrix of a low
order. Further discussions on this method can be found in [3, 10, 11, 33].

The singular values and maximum rank minors of the generalized inverses are
given in [25, 29, 34-36]. A Cramer rule for finding the unique W-weighted Drazin
inverse solution of special restricted linear equations is discussed in [23].

The generalized inverses of bordered matrices are discussed in [15, 37-39].
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Chapter 4 ®)
Reverge Order and Forward Order Laws | oz
for A(T )S

4.1 Introduction

The reverse order law for the generalized inverses of a matrix product yields a class of
interesting fundamental problems in the theory of the generalized inverses of matri-
ces. They have attracted considerable attention since the middle 1960s. Greville [1]
first studied the Moore-Penrose inverse of the product of two matrices A and B, and
gave a necessary and sufficient condition for reverse order law:

(AB)' = BTAT.

Since then more equivalent conditions for (AB)" = BT A" have been discovered.
Hartwig [2] and Tian [3, 4] studied reverse order law for the Moore-Penrose inverse
of a product of three and n matrices respectively.

On the other hand, the reverse order law for the weighted Moore-Penrose inverse
of a product of two and three matrices was considered by Sun and Wei [5] and
Wang [6], respectively. Greville [1] first studied the reverse order law for the Drazin
inverse of a product of two matrices A and B. He proved that

(AB)y = BjAy

holds under the condition AB = BA. The necessary and sufficient conditions for
the reverse order law for the Drazin inverse of the products of two and n matrices
were considered by Tian [7] and Wang [8] respectively. Djordjevi¢ [9] considered
the reverse order law of the form

2 2 2
(AB)Y, = BR3Ajy

for outer generalized inverse with prescribed range and null space. Reverse order law
for the generalized inverse A(TZ)S of multiple matrix products has not been studied yet
in literature.

© Springer Nature Singapore Pte Ltd. and Science Press 2018 153
G. Wang et al., Generalized Inverses: Theory and Computations,
Developments in Mathematics 53, https://doi.org/10.1007/978-981-13-0146-9_4
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In this chapter, by using the ranks of matrices, the necessary and sufficient con-
dition is given for the reverse order law

(AAz-- A = (A5, - (ADT 5, (AN @.1.1)

to hold. From the above equation, we can obtain the necessary and sufficient condi-
tions for the reverse order law of the Moore-Penrose inverse, the weighted Moore-
Penrose inverse, the Drazin inverse and the group inverse.

Throughout this chapter, all matrices are over the complex number field C and
the symbol RS(A) denotes the row space of A.

From Theorem 1.3.8, we have the following lemma.

Lemma 4.1.1 ([10]) Ler A € C**", and the columns of U € C}*" form a basis for
T and the columns of V* € C™*' form a basis for S* (t <r), that is,

RWU)=T and N(V) =S,
then rank(V AU) = rank(V) = rank(U) = ¢, that is, V AU is nonsingular, and
X =UWVAU)'v 4.1.2)
is a {2} inverse of A having range T and null space S, that is,
X = AP, (4.1.3)
The next lemma shows that the common four kinds of generalized inverses At
Al ~» Aq and A, are all the generalized inverse A(T%)S.
Lemma 4.1.2 ([10, 11])
(1) Let A € C"*", then
@ AT = AR v = A*(AFAAY)T A%
) = A*(A*AA%)TAY,

—_ AD
(b) Ayn = ARan nan)
where M and N are Hermitian positive definite matrices of order m and n,
respectively. In addition, A* = N~'A*M.
(2) Let A € C"™", then
(@) IfInd(A) =k, then Ay = A%(Ak), Nan = ARAZFT AL
(b) IfInd(A) = 1, then Ay = AR, ni) = AADTA.

Lemma 4.1.3 ([12]) Suppose that A, B, C and D satisfy the conditions:

R(B) C R(A) and RS(C) C RS(A)
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or
R(C) CR(D) and RS(B) C RS(D),
then
A B s
rank = rank(A) 4+ rank(D — CA'B)
CD
or
A B :
rank cpl= rank(D) + rank(A — BD'C).

Lemma 4.1.4 ([13]) Suppose B, C and D satisfy

R(D) C R(C) and RS(D) C RS(B),

- ToB]" [-c'pB'ct
M' = = .
C D Bf (0]
Lemma 4.1.5 Suppose A; e C">*",  i=0,1,2,...,n+1,
i=1,2,...,n+1, satisfy

then

R(Bi) C R(Ai), RS(B;j) C RS(Ai—1),i=1,2,....,n+1,

then the Moore-Penrose inverse of the (n + 2) x (n + 2) block matrix

Ao
A1 B
Jut2 = R
A, B,
An+1 Bun

can be expressed as

Fn,0) F(n,1) --- F(n,n)

n+2 =

F(0,0)

[ Fn+1,00 Fn+1,1)--- Fn+1,n) Fn+1,n+1)]

)

155

(4.1.4)

Bi c (Cm;xni,l’

(4.1.5)

(4.1.6)

4.1.7)
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where
F(i,i)= A,
o o ¥ ¥ . L (4.1.8)
F@,j)= (1) /AiB,-AFlB;_l~--Aj+1Bj+1Aj, O0<j<i<n+l.

Proof We use induction on n. Forn =0, from the conditions (4.1.5) and Lemma4.1.4,
the Moore-Penrose inverse of J, in (4.1.7) is

i i
g_oa] _ —AlBiAG A [ FL0) F(1, D)
27 | A B Al o F@©0,00 O |
which shows that the lemma holds when n = 0. Now we assume that it is also true

for n + 1. In other words, under the conditions (4.1.5), the Moore-Penrose inverse
of J,, 41 in (4.1.6) is given by

F(n,0) Fn,1) --- Fm,n—1 F@,n)]
Fn—1,00 Fn—1,1)--- Fn—1,n—1)

I = E . (419

F(0,0)

Next we consider the Moore-Penrose inverse of J,, 1, in (4.1.6). First, partition J,,4»

in (4.1.6) into the form:
0 Jn 1
Jn+2 = [ M } 3
An+1 H

where H = [B,,11 O]. Then it is easy to see from the conditions (4.1.5) that the three
submatrices in the above J,,, satisfy the inclusions

R(H) C R(A,41) and RS(H) C RS(Jpy1).

Hence by Lemma 4.1.4,
—A HI A
J,L_z — n+¥[— n+1 “Tn+1 ) (4.1.10)
A (@)

Using the induction hypothesis (4.1.9), the structure of H, F(i,i) and F(i, j) in

JT. |, and (4.1.8), we obtain
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T

_An+1HJnT+1
=[-Al Bt 1 F(,0) — Al B, F(n, 1) -~ — Al By 1 F(n, n)]
=[Fn+1,00 Fn+1,1) --- Fn+1,n)] 4.1.11)
and
Al =Fmn+1,n+1). (4.1.12)

Finally, substituting (4.1.9), (4.1.11), and (4.1.12) into (4.1.10) directly produces
4.1.7). O

Next, we consider the product A = AgA1Ay--- A, Aptg. Let
ni=m;1, i =0,1,...,n, and mg =my, Ny =My,
then
Ag e C"M A, € C XMl DAL e CHL G =11,2, ..., n,

and
B, eCt™ =1,2,...,n+1.

Let 1,,, and [,

m,,, De identity matrices of orders m and m,; respectively and

P =11

My+1

Ol, Q=I[l. OI, (4.1.13)
then the (1, 1)-block in (4.1.7) has the form
F(n+1,00=PJ ,0=(-D""A}, B, 1AlB,- - A|BiA]. (4.1.14)

n+l1

If we replace Ag and A, in (4.1.6) with [, and I, ,, respectively, and A; with the
nonsingular matrices V; A; U;, where
V* c Cm,-xti U e (Cmi+1><li
i noo Vi fi

and
RWU;) =T, and N(V;) =S§;

satisfy the conditions in Lemma 4.1.1 and
rank(V;A;U;) = rank(V;) =rank(U;) =¢t;, i=1,2,...,n,
then, when

Bi=Vy, Byy1=U,, and B, =V,U_;, i=23,...,n,



158 4 Reverse Order and Forward Order Laws for A(Tz’)s

we have
R(B1) = R(V1) = R(ViA1Uy),
R(B;) = R(ViUi_1) CR(V)) = R(V;A; U, i=2,3,...,n,
R(BnJrl) = R(Un) - R(Im,l_,_l)’

RS(B1) = RS(Vi) C RS(U,), (4.1.15)
RS(B;) = RS(V;U;—1) C RS(U;—1) = RS(Vi1Ai-1Ui—y),
i=2,3,...,n,

RS(Bn-H) = RS(Un) = RS(VnAnUn)-

Thus it is obvious from the above equations that the conditions (4.1.5) in Lemma4.1.5
are satisfied. Hence the Moore-Penrose inverse of the (n 4+ 2) x (n + 2) block matrix

Iml
ViA U vV,
M= . V2A'2.U2 VLU,
VnAnUn VnUn—l
_Imn+l U'l
" [OE
=& N] (4.1.16)

can be expressed as the form (4.1.7), where
Ei=[0 I,] and E, =10 I,,,1",

According to (4.1.7), (4.1.8), and (4.1.14), the (1, 1)-block F(n + 1,0) in (4.1.7)
becomes

F(n+1,0)
=PM'Q
= (D" Uy (Vi AU VUt (Vact ApmUn ) Voo Uy - -
VL UL(VIA UD T,
= (="M U, (Vo AuUp) " VUt (Vi1 Ayt Un )™ Vi Uy - -
VaU (V1A UDT'Y,
= (" ADD ¢ (AP o (ADD (4.1.17)
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From the structure of M in (4.1.16), we see that it has the following properties to be
used in the next section.

Lemma 4.1.6 Let M, U;, V;, P, and Q be given in (4.1.16) and (4.1.13), and let
A e Crmint i =1,2,...,n, Ay = Iy, and A, 11 = 1,,,,. Then

rank(M) = my + my1 + Y _ rank(V; A;Uj)

i=1

= my + My +Zrank(m (4.1.18)

i=1

=my +mu + Y rank(Uj),

i=1

and
R(Q) C R(M), RS(P)C RS(M). (4.1.19)

4.2 Reverse Order Law

In this section, we first give a sufficient and necessary condition for the reverse order
law (4.1.1). Then we discuss special case for the Moore-Penrose inverse, the Drazin
inverse, and the group inverse.

Theorem 4.2.1 ([14]) Suppose that A; € C">™Mivi for i=1,2,...,n,
A=AAy-- A, € CM X = (A s (AueD)f) s (ADT s, and

RWU) =T, N(V) =S8,

4.2.1)
RWUN =T, NV)=S;,i=12,....n,

and
rank(VAU) = rank(U) = rank(V) =1,

rank(V; A;U;) = rank(U;) =rank(V;) =, i =1,2,...,n.

Then X = A(Tz,)s, that is, the reverse order law (4.1.1) holds, if and only if A, U, V
and A;, U;, Vi, i = 1,2, ..., n, satisfy the following rank conditions:
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(—D'"VAU VE;
rank|: E2U N ]

= rank(U) + Zrank(Ui)

i=1

= rank (V) + Y _ rank(V;) (4.2.2)

i=1

= rank(VAU) + Zrank(ViAiUi),

i=1
where E|, E; and N are defined in (4.1.16).

Proof From (4.1.17), X = (—=1)"*'PMTQ, where
| O E;

w-[28]
It is obvious that X = A%)S holds if and only if

0 = rank(As — X) = rank((=1)"As + PM' Q). (4.2.3)

Now using the matrices in (4.2.1) and (4.1.13), we construct the following 3 x 3

block matrix:
M (@) (0]

G=| O CD)'VAU V
P U (0]

It follows from (4.1.19) that

=[] <= ([ o))

(15 v}
RS([P U]) C RS .
O (-=1)'"VAU

Hence, by the rank formula (4.1.4), we have
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O (-1D)"VAU

kl[puU M O % Q
rank | [ ] O (=D)"VAU [V}

= rank(M) 4+ rank(VAU) + rank(PMTQ + (—1)”U(VAU)_l V)
= rank(M) + rank(V AU) + rank(PM"Q + (=1)"ALY). (4.2.4)

Substituting the complete expression (4.1.16) of M and then calculating the rank of

G, we get
[ 0 E
_ E, N
rank(G) = rank 0 0 (- 1)”VAU V
L Imn+1 O
0 O L,
el ON —EQU 0
=r O —VE, (=1)"VAU O
L Imn+1 O O O
_ (—=D)"VAU VE, ]
_m1+mn+1+rank<|: E2U N .
Combining (4.1.18), (4.2.3), (4.2.4), and the above equation yields (4.2.2). U
Corollary 4.2.1 ([4]) Suppose  A; € C"Mini o for  i=1,2,...,n,
A=AjAy--- A, e C"mini X = AT ATAT then X = AT, that is, the reverse

order law

(A1As--- AT :A;~-~A;AI
holds, if and only if

(—=D"A*AA* A*E,
rank
E,A* N

= rank(A*) + Zrank(A;")
i=1

= rank(A) + Zrank(Ai),
i=1
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where E| and E, are defined in (4.1.16) and

ATAlA’f A’f
AS AT
N = A::—lAnflA:—l
ATAAL ATAL
A,

Corollary 4.2.2 Suppose that A; € C™">™i+t for i =1,2,...,n, M; are m; x
m; Hermitian positive definite matrices, i = 1,2,...,.n+1, A= A|A,--- A, €
Crmmt, X = (A wpy o (A b an (AD by, g,y then X = Al - that s, the
reverse order law

= (A an (A b (AD b,

n+1

(A1A2 Ay

n+1

holds, if and only if

(—D"A*AA* AYE,
rank
E,A* N

— rank(A") + Z rank (A*)

i=1

= rank(A) + Zrank(Ai),

i=1
where E| and E; are defined in (4.1.16),

A =M AarMy, AY =M

% .
= n+1 H_lAiM,‘,l:l,z,...,l’l,

and

A?AlAﬁ|l A?
ASAT
N = Af A AL
AﬁAnAﬁ AffAzi1
A#

Corollary 4.2.3 ([8]) Let A; € C™™, for i =1,2,...,n, A= AjAy--- A, €
Cmxm X = (Ap)a - (A2)a(A1)g, and k = max;{Ind(A), Ind(A;)}, then X = Ay,
that is, the reverse order law

(A1Az---Ap)g = (Ay)g - (A2)a(A1)a
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holds, if and only if

—1)"AKAA* AFE "
rank |:< 2 Ak N N = rank (A¥) + Zrank(Aff),
2

i=1

where E| and E; are defined in (4.1.16) and

B A%k+l Allc_
Al
N = A2
A AL
A,

Corollary 4.2.4 Suppose A; e C"", i =1,2,...,n, A= A1A,--- A, € C"™
Ind(A;)) =Ind(A) =1, X = (A,)y - - (A2)4(A1)y, then X = Ay, that is, the reverse
order law

(A]A2 e An)g = (An)g T (AZ)g(Al)g

holds, if and only if

(=D"A3 AE, 1
rank =rank(A) + rank(A;),
[ B4 N } (A) + ) rank(4))

i=l1

where E| and E, are defined in (4.1.16) and

A3 A
o AAY
N = AL
A3 A A,
An

From the above results, the conclusion of the reverse order law given in
[3, 6, 7] can be obtained easily. In [15], Sun and Wei give a triple reverse order
law for weighted generalized inverses.



164 4 Reverse Order and Forward Order Laws for A(T%)S

4.3 Forward Order Law

In this section, by using the concept of ranks, the necessary and sufficient condition
is given for the forward order law:

(AAr- A)Ds = (AT (ADE s - (AT s . (4.3.1)

from which we can obtain the necessary and sufficient conditions for the forward
order laws of the Moore-Penrose inverse, the weighted Moore-Penrose inverse, the
Drazin inverse, and the group inverse.

Apparently, the matrices A;, A,, ..., A, must be square and of the same order,
say m.

Lemma 4.3.1 Suppose A; € C"™", i =0,1,2,...,n+1,B; € C"™" i =0,1,2,
..., n, satisfy

R(B;) CR(A;), RS(B;) CRS(Ai11),i=0,1,2,...,n, 4.3.2)
then the Moore-Penrose inverse of the (n + 2) x (n + 2) block matrix

At
A, B,
Jusr = (4.3.3)
A1 By
Ao Bo

can be expressed as

- FO,n+1) F(O,n)--- F,1) F(0,0)7

F,n+1) F(,n)---F(,1)
AP : , (4.3.4)

F(n,n+1) F(n,n)
| Fn+1,n+1) i

where

FG,i)y=A], i=0,1,....,n+1,
F(i, j) = (=17 A]B;Al,|Biyy - A} B, Al
O0<i<j<n+I1. 4.3.5)
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Proof We use induction on n. For n = 0, according (4.3.2) and Lemma 4.1.4, the
Moore-Penrose inverse of J; in (4.3.3) is

g_|oa - [—AiBoAT AG] [ FO,1) F(0,0)
> | Ao B Al 0 F(,1) o |’
which shows that the lemma is true for n = 0. Now suppose that it is true for n + 1,

that is, under the condition (4.3.2), the Moore-Penrose inverse of J, 1 in (4.3.3) is

[ F,n) FO,n—1)--- F(0,1) F(0,0)]
F(l,n) Fl,n—1)--- F(1,1)

VAl : . (4.3.6)

n+l =

_F(n,n)

Next, we consider the Moore-Penrose inverse of J,,1, in (4.3.3). First, we partition

Ju+2 1n (4.3.3) into the form
O An+1
Jn+2 = s
Jor1 H

where H = [B}; O]*. Then it is easy to see from the conditions (4.3.2) that the three
submatrices in the above J,,, satisfy

R(H) C R(Juy1) and RS(H) C RS(An41).

Hence by Lemma 4.1.4,

. —J  HA T
—[ (A (4.3.7)

Juy2 =
n i
A, 0

According to the induction hypothesis (4.3.6) for JJ +1 and the structure of H,
F(i,i)and F(i, j) in J,T and (4.3.5), we obtain

n+1°
—F(0,n)B,A, ., F(O,n+1)
. . —F(1,n)B,A} | F(l,n+1)
— I HAL = . = . 4.3.8)
—F(n,n)B, Al F(n,n+1)
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and
Al =Fm+1,n+1).

Finally, substituting (4.3.6), (4.3.8) and the above equation into (4.3.7) directly pro-
duces (4.3.4). (Il

Let
P=1[I, O] and Q =1[l, O], (4.3.9)

then the (1, 1)-block in (4.3.4) has the form

FO,n+1)=PJ ,0=(—1)""AJByA]B,--- Al B,A]

. (4.3.10)

If we set Ag = I,, Ayy1 = Iy, and A; to the nonsingular matrix V; A; U;, where

V¥eC™ and U; € CI™"

satisfying the conditions
RU) =T, and N(V;) =S,

in Lemma 4.1.1 and

rank(V;A;U;) = rank(V;) =rank(U;) =t;, i=1,2,...,n,
then, when
By=U;, Bi=VU4,i=2,...,.n—1, and B, = V,,,
we have

R(By) = R(U1) C R(Im) = R(Aop),
R(B;) = R(ViUi11) C R(Vi) = R(V;A; Uy),

i=1,2,...,n—1,

R(By) = R(V,) C R(V,ApUy),

RS(Bo) = RS(Uy) = RS(V1AUy),

RS(B;) = RS(V;Ui11) C RS(Ui11) = RS(Vit1Ai1Uiv),
i=2,3,...,n—1,

RS(B,) = RS(V,) C RS(I,)) = RS(Ans).
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It then follows from the above equations that the conditions (4.3.2) in Lemma 4.3.1
are satisfied. Hence the Moore-Penrose inverse of the (n + 2) x (n + 2) block matrix

_ L
VnAnUn Vn
anlAnflUnfl anlUn
M= >
V2A,U, VaUs
ViAiUp ViU
_Im Ul |
0 E
=| &, N} 4.3.11)

can be expressed in the form (4.3.4), where
E,=[0 I,] and E, =[O0 IL,]".

According to (4.1.2), (4.1.3), and (4.3.10), the (1, 1)-block F(0,n + 1) in (4.3.4)
becomes

FO,n+1)

=PM'Q

= (=) T U (VA UD) VUL (Va Ay Up) TV U - -
Vi2Un ot (Va1 Auct Un—) 'V Un (VAU TV T

= (=" LU (VA U)'ViU,(Va A Un) "' Vo Us - - (43.12)
Vi2Un i (Vaet Aumt Un—) ™ Vet Un (Va Ay Un) ™' Vi

= (D" ADT (AR (AT s (AT s .

From the structure of M in (4.3.11), we see that it has the following simple
properties to be used in the proof of the following Theorem 4.3.1.

Lemma4.3.2 Let M, P, and Q be given in (4.3.11) and (4.3.9), and Ay = I,
Apr1 =1y, A, €eC" i =1,2,...,n,and A = AgA,--- A, € C"*"™ then

rank (M) = 2m + Zrank(ViAiU,-)

i=1

=2m+ Y rank(V})

i=1

=2m + Zrank(Ui) (4.3.13)

i=1
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and
R(Q) C R(M) and RS(P) C RS(M). (4.3.14)

Theorem 4.3.1 Suppose A; € C™" i =1,2,...,n, A= A|Ay--- A, € C"",
X = (A (AT s - (ADY s,

RWU)=T, N(V) =S8,

(4.3.15)
rank(VAU) = rank(V) = rank(U) = t,

and
RWU) =T;, N(V)) = S,
i=1,2,...,n,

rank(V;A;U;) = rank(V;) = rank(U;) = t;,

then X = A(TZ)S that is, the forward order law (4.3.1) holds, if and only if A, U, V
and A;, U;, V; satisfy the following rank conditions:

(—D"VAU VE,
rank
EU N

= rank(U) + ) _ rank(U;)

i=1

= rank (V) + Y _ rank(V;) (4.3.16)

i=1
= rank(VAU) + Zrank(ViA,-Ui),
i=1
where E|, E», and N are defined in (4.3.11).
Proof From (4.3.12), X = (=)™ PMTQ, where

[oE
w=[25]

It is obvious that X = A{ if and only if
0 = rank(ATs — X) = rank((—1)" AP + PM' Q). 4.3.17)

Now using the matrices in (4.3.9) and (4.3.15), we construct the following 3 x 3

block matrix
M (0] 0

G=| OD)'VAU V
P U (0]
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It follows from (4.3.16), we have

g S )

([6 o)
RS([P U]) C RS .
| O (=D"VAU |

and

Hence, by the rank formula (4.1.4), we have

rank(G)

<|: . :|)
= rank
O (-D)"VAU

|: ! :|T|:Q:|
+rank | [P U]
O (-=1)"VAU \%

= rank(M) + rank(V AU) + rank(PM"Q + (=1)"U(VAU)~'V)
= rank(M) + rank(V AU) + rank(PM" Q + (—1)"ATY). (4.3.18)
Substituting the complete expression of M in (4.3.11) and then calculating the rank
of G will produce
[0 E; o) I
E, N 0 0
O O (-1)'VAU V
| I, O U 0

rank(G) = rank

o O (0] I,
O N —-E, U O
= rank
O —-VE{ (-D)"VAU O
| In O (0] (0]

(—D'VAU VE;
= 2m + rank .
EU N

Finally, combining (4.3.13), (4.3.17), (4.3.18), and the above equation yields (4.3.16).
O
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Applying the above theorem, from Lemma 4.1.2, we have the following forward
order laws for various generalized inverses.

Corollaryl 4.3.1 Suppose A; e C"™", i=1,2,...,n, A= AjAy--- A, € C"",
X = A;A; e Aj;, then X = AT, that is, the forward order law

(AjAy--- AT = ATAl... AT

n

holds, if and only if

(—D"A*AA* A*E,
rank
E,A* N

= rank (A*) + Zrank(A;*)

i=1

=rank(A) + Zrank(A,-),
i=1
where E| and E; are defined in (4.3.11) and
B AXA AN AL
AL At AL AL AL

A3AL AL AL A
ATAIAT ATA;
A

Corollary 4.3.2 Suppose A; e C"", i =1,2,...,n, A= A1A,--- A, € C"™
M; are m x m Hermitian positive definite matrices, i = 1,...,n 4+ 1, and

X = (AI)LI,Mz(AZ)Lz,Mz T (A”)Lu,MnH ’
then X = ALI,M,1+1’ that is, the forward order law

(AtAz - A i = ADan (A by - (A

holds, if and only if
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(—D"A*AA* ATE,
rank
E,A* N

= rank(A*) + Z rank (A¥)

i=1

= rank(A) + Zrank(Ai),

i=1

where

Af =M ATMy, A= MTNATM, i=1,2,. 0,

E,| and E; are defined in (4.3.11), and

A% AL, AT AT
AﬁfAn—lAf:—l Aﬁ—lAﬁ
ASAL AR ARAR
ATALAT ATAS
A

Corollary 4.3.3 Suppose A; e C"", i =1,2,...,n, A= A1A,--- A, € C"™
X = (A1)a(A2)q - (Ay)a, and k = max{Ind(A), Ind(A;)}, then X = Ay, that is,
the forward order law

(A1Az -~ Ap)a = (ADa(A)a - (An)a

holds, if and only if

(— 1) A%+ AkE1:| "
rank = rank(Ak) + E rank(A’f),
k 1
|: E>A N P

where E| and E, are defined in (4.3.11) and

A’21k+1 Aﬁ_
AR Ak
N = A%kﬂ
AT A
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Corollary 4.3.4 Suppose A; e C"" i =1,2,...,n, A= A1Ay--- A, € C"",
Ind(A;) =Ind(A) =1, and X = (A1)4(A2)g- - (A,)g then X = Ay, that is, the
forward order law

(A1Ay - Ap)g = (A1) g(A2)g - -+ (An)g

holds, if and only if

(—1)"A3 AE, "
r =rank(A) + rank(A;),
[ B4 N (A) ; (AD)

where E| and E, are defined in (4.3.11) and

A3 A,
"A1A,
N = A3
A3 A4,
Ay

Corollary 4.3.5 Let Ay, Ay € C"", A = AjAy € C"", and X = A['AS", then
X = A7}, that is, the forward order law

(AjA)~" = A7t AT
holds, if and only if
AjAy = AZA,.
Proof Since
AT = AR v, and AT = (A, o 0= 1,2,

thatis, U =V = U; = V; = I,,. It follows from Theorem 4.3.1 that

(A1A) 7 = A7 AT

<|:(—1)2A1A2 E, :|>
rank
E> N

=rank(AA;) + rank(A;) + rank(A,)

holds if and only if

= 3m, (4.3.19)
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where
O A I,
E,=[00 I,], E;=[00 I,], andN=| A, I, O
I, O O

From (4.3.19), we have

[A1A, O O I,
O 0 Al
O A1,O
I, I, OO

3m = rank

[0 O 01,
0 AjA, A, O
O A 1,0
I, O 00

A1Ar) A
= 2m + rank 1
Al Im

A1Ay — AyAL O
= 2m + rank
(0] I,

= 3m +rank(A A, — AyA)),

= rank

which implies that rank(A; A, — A2A;) = 0, thatis, AjAy = AyA;. ([l

Remarks

The reverse order law for {1}-inverse or {1, 2}-inverse of products of two or more
matrices can be found in [16—19]. A generalized triple reverse order law is presented
in [20]. More results on the reverse order law are given in [9, 21-23]. The reverse
order law for the Drazin inverse and the weighted M-P inverse is discussed in [5, 15,
24] and [25] respectively.
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Chapter 5 ®)
Computational Aspects ez

It follows from Chap. 1 that the six important kinds of generalized inverse: the M-P
inverse A", the weighted M-P inverse A 1'\-41\/’ the group inverse Ag, the Drazin inverse

Ay, the Bott-Duffin inverse AEZ)I) and the generalized Bott-Duffin inverse AEB are all

the generalized inverse A?’ )S which is the {2}-inverse of A with the prescribed range
T and null space S. Specifically, let A € C"™*", then
T_A@
A" = ARy Ny
T A
Ayy = AR(A”),N(A#)’
where A* = N"'A*M , M and N are Hermitian positive

definite matrices of orders m and n respectively.

Let A € C"™" then

—_A®@
Ag = AR(A),N(A)’

—AD
Ad - AR(A]"),N(A")’
where k = Ind(A),
=D _ 4@
Awy =ApL
where L is a subspace of C" and satisfies AL @ L+ = C",
M _ 4@
A(L) - AS,Si ’

where L is a subspace of C", P is the orthogonal projector
onL,S =R(P.A), and A is L-p.s.d. matrix.

In this chapter, the direct methods for computing the generalized inverse A(T2 )S are
discussed. A direct method means that the solution for a problem is computed in
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finite steps. In practice, we can only compute in finite precision. So a direct method
can only compute an approximation of the exact solution.

If the matrices involved are small, then it is possible to carry out the calculations
exactly; if, however, the matrices are large, it is impractical to perform exact compu-
tation, then the conditioning of matrices and accumulation of rounding errors must
be considered. The purpose of this chapter is to offer some useful suggestions for
those who wish to compute the generalized inverses numerically.

The direct methods discussed in this chapter are based on the full rank factor-
ization, singular value decomposition and (M, N)-singular value decomposition,
a variety of partitioned methods, the embedding methods, the finite methods, and
splitting methods.

5.1 Methods Based on the Full Rank Factorization

LetA € C™" twosubspaces T C C"and S C C",dim(T) = dim(SY) =t < r,and
G € C™" such that
R(G)=T and N(G)=S.
Suppose that G = UV is a full rank factorization of G, then
T=R(G)=RWU) and S =N(G)=N(V).
It follows from (1.3.15) that
AP =UwAU) 'V (5.1.1)
TS = . 1.
Let A € C™ and A* = C*B* be a full rank factorization of A*. Using (5.1.1),
we have
A" = C*(B*AC*)"'B* = C*(CC*)"Y(B*B)"'B*. (5.1.2)
If A* = N7'A*M = (N~'C*)(B*M) is a full rank factorization of A*, then

Al = NIC*(B*MAN~'C*)"'B*M
=N"'c*(cN~'Cc*) " (B*MB)"'B*M.. (5.1.3)

Now, suppose that A € C"*" and Ind(A) = k, we have a sequence of full rank
factorizations:
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A=A =B,C,
Ay = C1B) = B, (%,

Ay = Cr1By—1 = By Gy,
then

Af = (B,C))*
= B,(C;B)*7'C
= B1(B,Cy) ' Cy
= B1B2(C2B,)* 2,y

= (B1By - Br—1Bp)(Cy Cy—y - - - C2Cy)
is a full rank factorization of A*. It then follows from (5.1.1) that

Ag =B\B; - -B(CCi_y - C,C1AB By - - - B) ' CiCy_y - - - C,Cy
= BBy By (CyCy_1 --- C2C1B{CiB1By - - - By) "' Cy Cy_y - - - C2C
= BBy By(CyBy) " *TVCChy - - - C-Cy. (5.1.4)

Especially, when A € C**",Ind(A) = 1 and A = B, C; is a full rank factorization
of A, then
A, = Bi(C1B))*Cy. (5.1.5)

LetA € C™", U € C"™"and V € C"*! be matrices whose columns form the bases
for R(U) = Land R(V) = R(P.A) = S, respectively, then

Ay =UW*AU)'U* (5.1.6)

and

AD

o =VrAv) v, (5.1.7)

Thus, by applying the algorithm for the full rank factorization, we can compute the
generalized inverses AT, ALN, Ag, AEZ)I), and AEB using the formulas (5.1.2)—(5.1.7).

There are several methods for performing full rank factorization. Since the matrix
A can always be row reduced to the row echelon form by elementary row operations,
one method is based on the row echelon form. The other two methods are based on
Gaussian elimination with complete pivoting and Householder transformation. The
method based on the row-echelon form is suitable for the case when the order of
the matrix is low and the calculations are done manually. The others are suitable for

the case when the calculations are carried out by a computer.
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5.1.1 Row Echelon Forms

In this subsection, we give a row echelon form based method for the full rank
factorization.

Definition 5.1.1 Let £ € C!"*". If E is of the form

c
E= [o] (5.1.8)

where O is an (m — r) x n zero matrix and C = [¢;;] € C™" satisfies the following
three conditions:
1. ¢; =0,wheni > j;
2. The first non-zero entry in each row of C is 1;
3. If ¢;; = 1 is the first non-zero entry of the ith row, then the jth column of C is
the unit vector e; whose only non-zero entry is in the ith position;

then E is said to have the row echelon form.

For example, the matrix

1203 3
0011-2
0000 O (5.1.9)
0000 O

is of the row echelon form. Below we state some properties of the row echelon form.
Their proofs can be found in [1].
Let A € C™", then

(1) A can always be row reduced to the row echelon form by elementary row oper-
ations, that is, there always exists a non-singular matrix P € C"*" such that
PA = E, is in the row echelon form;

(2) for a given A, the row echelon form E4 obtained by reducing the rows of A is

unique;
(3) if E, is the row echelon form of A and the unit vectors in E4 appear in columns
i1, 1, -, ir, then the corresponding columns a;,, a;,, - - - , a;, of A form a basis

for R(A). This particular basis is called the set of distinguished columns of A.
The remaining columns are called undistinguished columns of A. For example,
if A is a matrix whose row echelon form is given by (5.1.9), then the first and
third columns of A are distinguished columns;

(4) if E4 is the row echelon form (5.1.8) for A, then N'(A) = N'(E4) = N (C).

(5) if (5.1.8) is the row echelon form of A and B € C"*" is the matrix consisting of
the distinguished columns of A, i.e., B = [a;,, a;,, - - - , a; ], then A = BC, where
C is obtained from the row echelon form, is a full rank factorization.
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Now we show, through an example, how to find Af using the row echelon form
and (5.1.2). Suppose
12141
24066
12033
24066

we reduce A to the row echelon form:

1203 3
0011-2
0000 O
0000 O

E4 =

Next, we select the distinguished columns of A and place them as the columns of
a matrix B in the same order as they appear in A. In particular, the first and third
columns are distinguished. Thus

11
20
10
20

Selecting the non-zero rows of E4 and placing them as the rows of a matrix C in the
same order they appear in E4, we have

1203 3
C:[oon—z}'

Finally, computing

1 1 -1 1 16 3
* -1 _ =l "
(B*B) _9[_] 10i| and (CC™) =129 [323i|
and applying the formula (5.1.2) for AT, we get

A" = c*(cc*)~'(B*B)"'B*
27 6 3 6
| 54 12 6 12
— | 207 —40 —20 —40
6L 1 9gg 20 11 —22
~333 98 49 98
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5.1.2 Gaussian Elimination with Complete Pivoting

‘We describe a full rank factorization method based on the Gaussian elimination with
complete pivoting. Let A € C"*". The basic idea of the method is as follows. The
matrix A = Ay is transformed in succession to matrices A;, Ay, --- , A,, where Ay,
1 <k <r,is of the form

_ Uk Vk mxn
A = |: o Wki| e Cc"™ (5.1.10)

where Uy is a nonsingular upper triangular matrix of order k. Denoting the (i, j)-
element in Wy by w;;, we determine the element in W; with the largest modulus.
Suppose that w),, is such element. Interchange the pth and (k + 1)th rows, and gth
and (k + 1)th columns, so w,, is now in the (k + 1, k£ + 1) position. We denote the
elementary permutations /i1, and Ijy1 4 by Pry1 and Oy 1, respectively. Forming
an elementary lower triangular matrix

1
0
1 Wi k41
M = / 1 v i = ———,
T lk+2,k+1 WiA1,k+1
L _lm,k+1 1_

we have

U \%
Akt = M1 Pyt Ak Qi1 = |: 81 W];:I] ’

where Uiy is a nonsingular upper triangular matrix of order k + 1. With exact
computation, the process will terminate with A,:

A — u-v.,| U V.| [U
"low., | |]OO]| (O}
where U is r x n upper trapezoidal with diagonal elementsu; ; #0,i =1,2,--- ,r,

that is,
Uy - Uty U4l 0 Ul

U =

ur,r ur,r+1 ttt ur,n
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It follows from [2, 3] that

Ay =MPM,_\Pr_y---MP\AQ 105 - -- O,
=MM,—---MyP.Pr_y---PYAQ10s -+ O,

Let
PrPrfl"'PIZPv QlQZ"'QrZQ»

and ~
MM,y M) =M My M = (L,

where L is m x r lower trapezoidal, with zeros above the principal diagonal, 1s on
the principal diagonal, and elements /; ; below the diagonal in the jth column, that is,

1
l2,1 1
L= lr,l s 1 S (CTxr.
Lpin oo oo by
| Dt o Ly
Thus
PAQ = LU
and

A= (P'DHUQ")

is a full rank factorization of A. Consequently, the corresponding Moore-Penrose
inverse is .
AT =QU'L'P,

where .
U'=u*WwuUu*™" and L' = @*L)"'L*. (5.1.11)

In the above argument it was assumed that rank (A) was exactly r, and that the
exact arithmetic was performed. In practice, however, rank (A) may not be known and
rounding errors occur. We have to decide, at the kth stage of the reduction, when A is
reduced to A; of the form (5.1.10), whether the elements of W should be considered
as zero. In many practical situations it is sufficient to regard numbers less than a
predetermined small number € as zero. We then say that A has a “computational
e-rank” equal to r if the magnitude of all the elements of the computed W, is less
than or equal to € and at least one element of W,_; whose magnitude is greater than e.
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If P and Q are identity matrices, then a stable method for computing (5.1.11) is
to solve the following two sets of Hermitian positive definite equations in turn

(L*L)X = L*,

UUMY — X (5.1.12)

and then form
AT =U*Y.

Equations (5.1.12) involve the solution of two sets of equations with m different right-
hand sides. Another method for computing (5.1.11) solves only one set of equations.
We set U = DU, where D is diagonal and U has unit diagonal. It follows from the
second equation in (5.1.12) that

DU\U{D'Y =X.
Setting D*Y = Y and substituting it into the first equation in (5.1.12), we get one set
of equations:

(L*LDU,\U})Y = L*. (5.1.13)

The coefficient matrix is no longer Hermitian. The solution Y of (5.1.13) can be
obtained by using Gaussian elimination with partial pivoting. We then form

AT =UY.

5.1.3 Householder Transformation

Now, we give a full rank factorization method using the Householder transformations.
Definition 5.1.2 Letu € C", u*u = 1, then the n x n matrix

H =1—-2uu"
is called a Householder transformation.

It is easy to show that H* = H = H~'. Hence H is a unitary matrix.

Theorem 5.1.1 Letve C', v#0,u=v+o|v|e, and

_J+L v >0
7= —1, v <0,

where v| denotes the first element of v, then H = I — (2/||u||%)uu* is a Householder
transformation and Hv = —o||v||»e;.
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Proof See for example [2]. O

The above theorem shows that given a nonzero n-vector v we can find an n x n
Householder transformation H such that Hv = —co||v||;e;, a scalar multiple of the
first unit vector e;.

Applying the above theorem, we can premultiply an arbitrary m x n matrix A with
an m x m Householder transformation H to produce a matrix HA, in which all the
elements in first column are zero except the first.

Theorem 5.1.2 Let A € C"*". There is an m x m unitary matrix H and an n x n
permutation matrix P such that

U, V.
me=[% 5],

where U, is r X r upper triangular with nonzero diagonal elements. The appropriate
null matrices are absent if r = m or n.

Proof Choose P; so that the first » columns of A are linearly independent. Apply
an m x m Householder transformation H; to AP; such that the first column of the
resulting matrix is a scalar multiple of the first unit vector:

T
HAP, = ["‘O“ “;}1 ]

Let H, be an (m — 1) x (m — 1) Householder transformation that transforms the first
column of W; to a multiple of an (m — 1) unit column vector e;. Thus

107 RS
[OHJH‘AP1 _[0 W2i|’

where U, is a 2 x 2 upper triangular matrix. Proceeding in this way, we find an

m X m matrix ,
_|4-1 O 10
A AL

U, Vv,
HAP = [o Wr}’ (5.1.14)

such that

where U, is an r X r upper triangular matrix and P = PP, - - - P,. Since the first r
column of AP are linearly independent, the columns of U, must be linearly inde-
pendent, i.e., the diagonal elements of U, must be nonzero. The matrix W, must be
zero since otherwise the rank of HAP would be greater than r, which contradicts the
assumption that the rank of A is r. O
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Let o I .
-1 = r—1 _ ~
e [OHJ”'[ 0 Hrj| =[0 0], (5.1.15)

where Q € C"™*" and Q*Q = I,, and

U v,] _[R
[0 o}—[o] (5.1.16)

From (5.1.14)—(5.1.16), we have

AP = QR.
Thus
A = Q(RP)
is a full rank factorization of A and
A" = PR*(RR")™'Q*. (5.1.17)

A stable method for computing (5.1.17) is to solve the set of Hermitian positive
definite equations:
(RRX = Q"

and then form
A" = PR*X.

Set R = DR;, where D is diagonal matrix of order r and R has unit on the diagonal
and |r;| < 1. Thus
A" = PRI(R,R)"'D7' Q"

Another method for computing (5.1.17) is to solve the set of Hermitian positive
definite equations:
(RIRDX =D~' Q"

and then form
A" = PRIX.

The full rank factorization based methods for computing other generalized
inverses A(TZ)S are omitted here and left as exercises.
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5.2 Singular Value Decompositions and (M, N) Singular
Value Decompositions

This section discusses the singular value decomposition (SVD) based methods for
computing the generalized inverses.

5.2.1 Singular Value Decomposition

Definition 5.2.1 LetA € C"*",u € C", v € C", and o > 0 such that
Av=ocou and A*u=ov, 5.2.1)

then o is called the singular value of A, u and v are called the left and right singular
vectors of A respectively.

By (5.2.1),
A*Av = o*v and AA*u = c’u,

thus o is an eigenvalue of A*A or AA*.

Theorem 5.2.1 Let A € C"™", then there are unitary matrices U € C"" and V €

C"™" such that
0| .
A—U|:00i|V, (5.2.2)

where ¥ = diag(oy, 02, -+ ,0,), 0; = Shiand Ay =Xy > - > N\ > 0 are the

nonzero eigenvalues of A*A, then oy > o, > --- > o, > 0 are the nonzero singular

value of A and (5.2.2) is called the singular value decomposition (SVD) of A, and
Al =01 and A", =1/0,.

Proof Since A*A e C*" is Hermitian positive semidefinite, its eigenvalues are non-

negative. Suppose they are 07,03, ---,02, where 01 > 07> -+ > 0, > 0,11 =
-+ =0, =0.Letvy, vy, --- , v, be the orthonormal eigenvectors corresponding to
2 2 2 :
01,05, , 0, respectively and
Vi=[viva --- V], Va=[v Vo -0 V],
and
¥ = diag(oy, 02, -+, 0,),
then

VI (A*A)V, = 2% and VS (A*A)V, =0,
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and consequently

2'WIA*AVIZ T =1 and AV, =O.

Now, let
U =AV,27",

5 Computational Aspects

then U;U, = I, that is, the columns of U, are orthonormal. Let U, be chosen so that

U = [U; U] is unitary, then

_[@avi=H*av, 0

.. TUAV, UrAV,
UAV—[ = wws o

U;AV, UAV,

Thus (5.2.2) holds. From (5.2.2), we have

* 220 *
AA_V[OO]V'

Thus the eigenvalues of A*A are 07 = \;(A*A),i=1,2,---
AN = IA*All, = [\ (A*A)| = o7.

So ||All, = oy. It is easy to verify that

>0
T *
w=v[%' )

Hence the non-zero singular values of AT are

1 1 1
- > >...> — > 0.
oy~ 01 T 01

Thus ||AT|, = 1/0,.

J-[58

, 1, and

]

(5.2.3)

O

The following perturbation theorem for the singular values is useful in Chap. 8.

Lemma 5.2.1 Let A and B = A + E € C™" have singular values 01(A) > 0,(A)
> .. > 0,(A) and 0\(B) = 02(B) > - - - = 0,(B) respectively, then

0i(A) — IEl2 < 0i(B) < 0i(A) + IEl2, =1

Proof See for example [2].

,2, -, 1.
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5.2.2 (M, N) Singular Value Decomposition

Definition 5.2.2 LetA € C"", M and N be Hermitian positive definite matrices of
orders m and n respectively, then the (M, N) singular values of A are the elements
of the set pyy (A) defined by

[lAX [ a2 }

pun (A) = {u : >0, pis astationary value of ™
X|iv

Next is a theorem of the (M, N) singular value decomposition.

Theorem 5.2.2 ([4, 5]) Let A € C!"™", M and N be Hermitian positive definite
matrices of orders m and n respectively, then there are matrices U € C™™ and
V € CY" satisfying

UMU =1, and V*N~'V =1,
such that

pO7 ..
A=U[OO]V, (5.2.4)

where D = diag(uy, o, -+, ), i = SN M=M= > )\ >0 are the
nonzero eigenvalues ofA#A = (N"'A*M)A. Then W1 > pp = >, > 0 are the
nonzero (M, N) singular values of A and (5.2.4) is called the (M, N) singular value
decomposition of A, and

Ay = i and ALy v = it (5.2.5)

Proof Let M = LL* and N = KK* be the Cholesky factorizations of M and N
respectively. Set C = L*AK™ € C"™" (where K™* = (K~H* = (K*)~") and let

C=Q[88]T

represent the singular value decomposition of C, where
Q°Q=1l, Z'Z=1I, and D =diag(ui, p2, -+, ), pri > 0.
By defining U = L™*Q and V = KZ, we have
U*MU =1,, V*N7'v =1,
and

_ [po],.
A_U[OO}V.
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Thus (5.2.4) holds. It follows from (5.2.4) that

D*> 0O
# _ —1 4% _
AA"U = AN AMU_U[OO]

So the squares of the (M, N) singular values y; of A are equal to the eigenvalues of
AA*. Moreover,

IAI3 = 1M 2AN"2 |13
= |M:AN"IN IA*M ||,
= M (AN'A"MIM "2l
= [|AA%|),
= |\ (AA%)]
=i
Thus ||A||yy = p1- By using (5.2.4), it is easy to verify that

D'0

Al =N“V|: o 0

i| U'M. (5.2.6)

Hence the non-zero (M, N) singular values ofA;,,N arep ' >pt > >t >

0. Thus | Ay llxwr = " O

The following perturbation theorem for (M, N) singular values is useful in
Chap. 8.

Lemma 5.2.2 LetA, E € C™", u;(A 4+ E) and 11;(A) be the (M , N) singular values
of A + E and A respectively, then

wi(A) = |Ellmn < wi(A+E) < pi(A) + |Ellpn -

Proof Let E=M:EN~> and A = M3AN~ 2 then A+ FE = M2(A+E)N P =
A + E. It follows from Lemma 5.2.1 that the smgular values p; (A) and u; (A + E) =

ui(A +E) of A and A +E satisfy
1iA) = |Ella < (A + E) < i(A) + | E|l2.

This completes the proof, since |Ell» = [|E|lyv, 1(A) = 1i(A), and 11;(A 4 E) =
wi(A+E). ]
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5.2.3 Methods Based on SVD and (M, N) SVD

Let A € C™<". If the singular value decomposition of A is (5.2.2), then (5.2.3) gives:

10
T *
A _V|: 0 O}U.

If the (M, N) singular value decomposition of A is (5.2.4), then we have (5.2.6):

D™'0

ALN:N‘IV[ o o

:|U*M.

The algorithms and programs for computing (5.2.2) and (5.2.3) can be found in [2].
From these results and Theorem 5.2.2, the algorithms and programs for computing
(5.2.4) and (5.2.6) can be obtained easily.

When A € C"*", the methods for finding A; and A, are given as follows.

Lemma 5.2.3 Let A € C™", Ind(A) =k, W € C*", and WAW~! =R, then

Ay = W'R;W, Ind(A) = Ind(R),

Core-rank(A) = Core-rank(R), (5.2.7)

where Core-rank(A) = rank(AX) is called the core-rank of A.

Proof See [6]. 0O

=[50

be a block lower triangular matrix. If A is nonsingular, then

Lemma 5.2.4 ([7]) Let

Ind(M) = Ind(C).
Proof Let Ind(M) = k, then rank(M*) = rank(M**1), i.e.,
rank (AX) + rank(C*) = rank(A*™") + rank(C**).

By the assumption, we have rank (A%) = rank (A**"). Thus rank(C*) = rank(C**")
and so Ind(C) = k. |

The algorithm for the Drazin inverse of block lower triangular matrices are given as
follows.
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Theorem 5.2.3 Let a block triangular matrix

_ BIO nxn
M_[BZN}G(C ,

where By € C** and N = [n;;] € C™' is a strictly lower triangular matrix. Then

_[B"0
Ma = [XBII o]’

where X is the solution of the Sylvester equation
XB; — NX = B;. (5.2.8)
Let x; be the ith row of By, then the rows X; of X can be recursively solved by:
i—1

x1=r1Bf1 and X; = |r; + E nijX; B(l.
j=1

_[8'o0
Y_[XB;lo}’
_[BiO][B'O] [10]_
MY_[BQN} [XB;‘O =|xo|=™

_[8'0]_
YMY_[XBllo}_Y.

Proof Let

then we have
and

Note that for any positive integer p,

—1
B o7 B’ O — i
[B;N] =|:S(II7)NP:|’ where S(p) =) N’"'"'ByB.
i=0

Ifp > t,then NP = O, because N is a strictly lower triangular matrix of order ¢. Thus
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M™TY = MY(MY)
_[B,O][IO
“|smol|xo0

_| B O
“|smo
—M'.

Therefore Y = M, and (5.2.8) follows from MM,; = M,;M .

191

O

By using Theorem 5.2.3 and the singular value decomposition of A € C**", an

orthogonal deflation method for calculating A, is given as follows.

Algorithm 5.2.1 ([6]) Given a matrix A € C"*", this algorithm computes its Drazin

inverse A,.

1. Compute the singular value decomposition of A:

x07..
a=o[Z9]v

If ¥ e R}*", then Ay =A"'=vEZ-lU*. IfInd(A) > 0, write
. .. [zo0 AV o
VAV =V U[oo]—[Aggo :

2. Now compute the singular value decomposition of Agll):

07,
A§‘I>:U1[OIO}V1.

If Aill) is nonsingular, go to step 4, otherwise
%0 A® 0
VL*A(III) Vi=ViU |: ] = [ ) :
00 A3 O
Thus

01 o1
[vialVv, 0
L A3V 0
A% 0 O
=AY o0 o,

(2) 42
—A31 A32 0

V; O}V*Av[vlo]

(5.2.9)
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where Aéll) Vi= [Ag? A;zz) ] is partitioned accordingly.
Continue the procedure in step 2, at each step, compute the singular value decom-

position of A" and perform the appropriate multiplication as in (5.2.9) to get

Ai"fﬂ). If some Agkl) = O, thenA; = O.If some Agkl) is nonsingular, go to step 4.
By Lemma 5.2.4, we now have k = Ind(A) and

i A o .o O]
A(Zkl) O .- ... 0
_ (k) ® - | _[B1O
WAW* = | Ay A3 . = [Bz N] ,
® 4 ® ®
_Ak+1,1 Ak+1,2 e Ak+1,k O_
where B = Agkl) is nonsingular,
(k)
il . 7
A A® :
B, = 3 and N = ?2
(k) (k.) (k). i
Ak+1,1 Ak+1,2 U Ak+1,k 0

is a strictly lower triangular matrix, thus N k= 0, and

Vol veE o ViO |, .
W‘[OIHOI “lor]Y
is unitary, that is, W* = W~!. It then follows from Lemma 5.2.3 and Theo-

rem 5.2.3 that |
-1 B O
Ag =W [XBI_I o W,

where X is the solution of XB; — NX = B;. Let N = [n;;] and r; be the ith row
of B,, then the rows x; of X can be recursively solved by

i—1
x1=r1Bf1 and x; = r,-—i—g n;X; Bfl.
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5.3 Generalized Inverses of Sums and Partitioned Matrices

AC
v =[h5)
where A, B, C, D are four matrices of appropriate dimensions, then A, B, C, D are
called conformable. Matrix M can be viewed in two ways. One is to view M as a
bordered matrix built from A. In this case, the blocks are considered fixed. If one is

trying to build M with certain properties, then one might choose a particular kind
of blocks. For example, in Chap. 3,if A € C"*", and C € C"™m=1) whose columns

(m—r)
form a basis for A'(A*), B € (CEZ::%X” whose columns form a basis for A'(4), and D
isan (n — r) x (m — r) zero matrix, then M is nonsingular. Another is to view M as
a partitioned matrix. In this case, M is considered fixed. Different partitions may be
considered to compute M from its blocks.

Consider the partitioned matrix M above. Suppose that the matrix M and the
block A are nonsingular and
EG
-1 _
v =[]

Let

then

H=({D-BA"'0)!,
G =-A"'CH,

F = —HBA™',
E=A"'UI-CF).

As a special case, let the bordered matrix

aiy vt aip—1 Aain
L] : ol A u,
" o v¥ oa
ap—1,1 """ Ap—1,n—1 An—1,n n nn
(25 R 2 i | Ap.n

and A, be nonsingular, then

-1 —14—-1 x4 —1 —14—1
A—l _ Anfl + Q, Anflu"VnAnfl -, Anflun (5.3.1)
n _a—lv*A—l a—l ’ i
n 'n‘tn—1 n
where

W = Gy — VA 1, (53.2)
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Thus, the inverse of A, can be computed from the inverse of its submatrix A,,_; and
its last column and last row.

Can we partition a matrix and compute its generalized inverses from the blocks?
This section is concerned with the computation of the generalized inverses of a
matrix from its blocks using various partitions. A related problem of computing the
generalized inverses of a sum of matrices is also discussed.

5.3.1 Moore-Penrose Inverse of Rank-One Modified Matrix

Let A; € C™*¥ be partitioned and decomposed as the following:
Ar = [Ar—1 01] +a[o] 1],

where 0; € C" and 0, € CF~! are zero vectors and a,, is the last column of A;. Let
A=A 0], a, =¢, d* = [02T ], then Ay = A + c¢d* is a rank-one modified
matrix of A.

In order to obtain an expression for A,t = [Ar—; a;]", we will now develop a
formulation for the Moore-Penrose inverse of a rank-one modified matrix A + cd*.

Theorem 5.3.1 ([6]) LetA € C"™", ¢ € C",d € C",

k =A'c,
h* = d*A",

u= (I —AA")c,
vi=d*(I —ATA),
B=1+d*A"c.

(Notice that ¢ € R(A) ifand only ifu = 0andd € R(A*) ifand only if v =0.) Then
the Moore-Penrose inverse of A + cd* is as follows.

(D) Ifu#0andv # 0, then
A+cd) =A" —ku" — v'h + v’
2) Ifu=0,v£0and 3 =0, then
(A+cd) =AT —kk'AT — v*Th*.
3) Ifu=0and 8 #0, then

| _
A+cd) =A"+ Evk”‘AT - Uﬁlplqi‘,
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I <||k||2 +k> o = — (n VPt +h*>
3 1 3

and oy = ||k|*|Iv||* + 8]
@) Ifu#0,v=0and 3 =0, then

where

(A+cd)" =AT — ATh*'h* — ku'.
S) If v=0and 3 # 0, then
*\ T T 1 T B *
A+cd’)' =A"+ =A'hu™ — —p,q;,
B 02

2 h2
I <||u|| ATHk) q;:_(n | u*+h*),
B B

and o3 = ||| |[u]* + 5],
©) Ifu=0,v=0and 3 =0, then

where

(A+cd)" = AT —kk'AT — ATh*"'h* + kTATh*T)kh*.

Before proving Theorem 5.3.1, we state the following lemma.

Lemma 5.3.1 Let A, c,d, u, v, and (3 be the same as in Theorem 5.3.1, then

o A u
rank(A+cd)_rank|:V* _ﬂi|—1.

Proof This follows immediately from the factorization

At+ed* ¢ | | 10]]|A u I k 10
0" —1| [h*1||[v- =] |07 1][a* 1]

which can be verified by the definitions of k, h, u, v, and . 0O

We now proceed to the proof of Theorem 5.3.1. Throughout, we assume ¢ # 0
andd # 0.

Proof (1) Let X; denote the right-hand side of the equation in (1) and
M = A + cd*.

The proof consists of showing that X, satisfies the four Penrose conditions. From
the definitions of k, v, and 3, we have AvT =0, d*v' = 1, d*k = 6 — 1, and
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¢ — Ak = u, which implies that
MX, = AAT + uu’.

So the third Penrose condition holds. Using u’A = 07, uf¢ = 1, h*e = 3 — 1, and
d* — h*A = v*, one obtains

XM = ATA = v*Tv*

and hence the fourth condition holds. The first and second conditions follow easily.
(2) Let X, denote the right-hand side of the equation in (2). By using Ak = ¢, Av*' =
0,d*v*' = 1, and d*k = (3 — 1, we can see that

(A + cd)X, = AAT,

which is Hermitian. From the equalities kTA'A = k7, h*c = —1,and d* — h*A = v*,
it follows that
X>(A 4 cd*) = ATA — kk' + v*Tv*,

which is also Hermitian. The first and second Penrose conditions can now be easily
verified.

(3) This is the most difficult case. Since u =0, ¢ € R(A) implying that R(A +
cd®) C R(A). Since § # 0, from Lemma 5.3.1, we have rank(A + c¢d*) = rank(A).
Therefore, R(A + ¢d*) = R(A) and

(A +cd*)(A 4 ced*)" = AAT, (5.3.3)
because AAT is the unique orthogonal projector onto R (A). Let X3 denote the right-
hand side of the equation in (3) and M = A + cd*. Because q{AA" = ¢, it follows
from (5.3.3) that .

XsMM " = X3AAT = X;.

We claim that .
M™M =X3M. (5.3.4)

Thus, we have
M =MMM" =XMMT = X;.

Now we prove (5.3.4) by showing
MM =ATA —kk' +p,p] (5.3.5)

and
XsM =ATA —kk' +ppl. (5.3.6)
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The matrix ATA — kk" + plpI is Hermitian and idempotent. It is obvious that it
is Hermitian. The fact that it is idempotent can be verified by using the identities
ATAk = Afe = k, ATAp; = —k, and kk'p; = —k. Since the rank of an idempotent

matrix is equal to its trace,

rank(A'A — kk' + pip}) = tr(A’A — kk' + p;p))
= tr(ATA) — tr(kk") + tr(p,p]).

Now, kk' and plpf are idempotent matrices of rank one and A¥A is an idempotent
matrix whose rank is rank(A), so

rank(AA — kk' + p;pl) = rank(A + cd*). (5.3.7)

Using the equalities Ak = ¢, Ap;y = —¢, &*k=5—1, d*p; =1 — alﬂ_’l, and
d*ATA = d* — v*, we obtain

(A +cd*)(A'A —kk' + p;p}) = A+ cd* — c(v* + 5k + 0,37 p)).
Now, [Ip: |12 = [[k|20118172, s0 013~ p1 ]2 = B]k|| "2 Hence,
o1f”'py = BlIk| pi = —v* — gk’

Thus,
(A+cd)(AA —kk" +pip)) = A + cd*.

Because AfA —kk' +p 1pI is an orthogonal projector,

R(A* +dc*) C R(ATA — Kk + pip)).
From (5.3.7), we conclude that

R(A* 4 dc*) = R(ATA — kk' + p;p)).

Consequently, ,
(A+cd) (A +cd*) = ATA — Kk +ppl,

which is equivalent to (5.3.7). B
To show the Eq. (5.3.6), using the identities K'ATA =Kk*, qfc =1 —0y37!, and
QA +d* = —||v||>57k* + v*, we get
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XsM
= X3(A + cd¥)

= ATA 4+ 37'VK* — Bor'piqiA + (k + 57 Kk[1Pv)d* — Bo7'piqied®
= A"A+ 37'Vk* — Boy'piqjA — pid* — Boy 'pid” + pid*

= ATA+ 37'Vk* — Boy 'pi(qiA + d*)

= ATA + B7'VK* — Boy ' pi (v — B IVIPKY).

Writing v* as v = —(3 ||k||‘2(p’f + k*), substituting this into the above expression
in parentheses, and using the fact that ||p,||~> = |ﬂ|201_] k|| ~2, we obtain

XsM = ATA + 37IVK* 4+ pip| + k[ 2pik*.

Since B B B
B+ Ik 72pr = B7'v = BV — k|| ?k = — k[ 7k,

we have ,
XsM = ATA 4 pip] — Kk,

that is, (5.3.6) holds.

(4) and (5) It is easy to see that (4) follows from (2) and (5) follows from (3) by taking
conjugate transposes and using the fact that for any matrix M, (M ")* = (M *)".

(6) Both matrices AAT — h*"h* and ATA — kk' are orthogonal projectors. The fact
that they are idempotent follows from AATh*" = h*, h*AAT = h*, ATAk = k, and
k'ATA = k. It is clear that they are Hermitian.

Moreover
rank(AAT —h*'h*) = r(4AT — h*'h*)
= tr(AA") — r(h*"h*)
= rank(AA") — rank(h*'h*)
=rank(A) — 1.
Similarly

rank(ATA — kk") = rank(4) — 1.
Sinceu =0, v =0, and § = 0, from Lemma 5.3.1,
rank (A + e¢d*) = rank(A) — 1.
Hence

rank (A + e¢d*) = rank(AA" — h*'h*) = rank(ATA — kkT). (5.3.8)
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From AAfc = ¢, h*c = —1, and h*A = d*, it is easy to see that
(AAT — h*"h*)(A + cd®) = A + cd*.

Hence R(A + cd*) C R(AAT — h*"h*). Likewise, using d*ATA = d*, d*k = —1,
and Ak = ¢, we have

(A+cd*)(ATA —kk") = A + cd*.
Hence R(A* + dc*) € R(ATA — kk"). It now follows from (5.3.8) that
(A + cd*)(A + cd®)" = AAT — h*'h* (5.3.9)

and .
(A* + dc*)(A* +dc*)" = ATA — Kk'.

Taking conjugate transposes on the both sides of the above equation, we get
(A+cd)"(A+cd) =ATA —KkKk'. (5.3.10)
Let X, denote the right-hand side of (6) and M = A + ed*. Using (5.3.9)and h*AAT =
h*, we obtain
XuMM T = X4(AAT — h*'h*) = X,.
On the other hand, Using k'ATA = kT, h*A = d*,h*c = —1, and (5.3.10), we obtain

XM =X4A+cd) =ATA—kk' =M"M.

Hence
MT=WMMM" =XMMT = Xy,

which completes the proof. O
Corollary 5.3.1 Letc € R(A), d € R(A*), and 3 # O, then

A+cd) =AT— 3 'ATed*A" = AT — 57 'kh".
Proof Setv=10in (3) oru = 0 in (5) of Theorem 5.3.1. O

The following is a special case when A and A + cd* are nonsingular.

Corollary 5.3.2 Let A and A + cd* be nonsingular, then

A+cd) '=A"1—p A ed* A
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The Moore-Penrose inverse of a rank-» modified matrix M = A — CBis discussed
in [8], where rank (§) = rand S = BC is a full rank factorization. The Drazin inverse
of a rank-one modified matrix M = A + ed” is discussed in [9].

By using the generalized singular value decomposition, a more general weighted
Moore-Penrose inverse of a rank-r modified matrix A — CB is discussed in [10],
where CB need not be a full rank factorization. The Drazin inverse of a rank-» modi-
fied matrix M = A — CBisdiscussedin [11]. Cases similar to those in Theorem 5.3.1
are considered in the derivation of the expressions of the weighted Moore-Penrose
inverse of a rank-r modified matrix or the Drazin inverse of a rank-r modified matrix.
See [10, 11] for details.

5.3.2 Greville’s Method

Let Ay € C"™*k be partitioned as Ay = [A;_; a;], where Ay_; € C"<*=D and a, e
C" is the last column. It is a simple partitioned matrix called the Greville’s partitioned
matrix.

The Greville’s method [12] for computing the Moore-Penrose inverse A is a

recursive algorithm. At the kth iteration (k = 1, 2, - - - , n) it computes Az, where Ay
is the submatrix of A consisting of its first k columns. Fork = 2, 3, - - - | n, the matrix
Ay is partitioned as
A = [Ar—1 2],
where a; is the kth column of A. For k =2, 3, --- , n, let the vector d; and ¢; be
defined by
d; = A,Llak,

G =ay—Ady = —Ak71Az_1)ak,

then the following theorem gives an expression of A,t in terms of A,Ll, d;, and ¢;.

Theorem 5.3.2 Let A € C"™*", using the above notations, then the Moore-Penrose
inverse of Ay is given by

. T _ *
Ay = [A ak1*=[Ak1 *d"bk], k=2,3,---,n,
bk
and
Al = AT,
where
b = {c,i _ifea #0,
Tl +dido AL ifec=0.
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Proof Since Aj can be written as
Ay = [Aror a] = [Ar_r 011+ a,[0] 1],

where 0; € C"and 0, € (C"‘~' are zero vectors, Ay is in thg rank-one modified matrix
form in Theorem 5.3.1. Let A = [A¢_; 0,],€ = a;, and d* = [03, 1], then

Al = A+

Using the notations in Theorem 5.3.1 and the equation

we have h* =~§*;ﬁ =07,s0 F=1+d*AC=1and V' = d*( —A'A) = d* #
07, U= -AAHe=( —Ak,lA,t_l)ak = ¢;. Thus, there are only two cases to
consider: ¢; # 0 and ¢, = 0.

Case (1): If U = ¢, # 0 and V # 0, then the case (1) in Theorem 5.3.1 is applied to
obtain A, . It is clear that

ﬁ:ZW:[&Em} md(Wﬁ:ﬂTﬂ:[?]

Thus
ATk - @R+ 5
_ A/Ll _ ALlakCZ _ 0
- [ ] o [
_ Azfltdkcll-
() '

Case (2): If U=c¢ =0and E # 0, then the case (3) in Theorem 5.3.1 is applied to
obtain A, . It is clear that

~ o~ T
k=AT= |:Ak1ak] — [‘:)k} o) = 1 +didy,
p=- k and qF = —d’A]

1= did, | q; = —d A,

Thus



202 5 Computational Aspects

Al =214+ (B)SKA - B P
_[Al —(+ddo- ldkd*A,Z 1
(14 didy)"'d;A]

The proof is completed by noting that b} = (1 + d,’:dk)’ld,fA}:_]. O

There are other proofs of the above theorem, see [13—-16].
A method for computing the weighted Moore-Penrose inverse of Greville’s par-
titioned matrix is given as follows.

Theorem 5.3.3 ([17]) Let A € C™", M and N be Hermitian positive definite matri-
ces of orders m and n respectively. Denote Ay as the submatrix consisting of the first
k columns of A, a;. as the kth column of A, and Ay = [Ar—1 ai]. Suppose that

Ny = N1 e c Chkxk
l; Nik

is the kth leading principal submatrix of N and
Xiot = =Dy, and Xe = (A n,

are the weighted Moore-Penrose inverses of Ax—1 and Ay respectively. For k =
2,3,---,n, define

d; = X314y,
& =ay — A1y = (I — A1 Xx—1ag,

then 1
X, — |:Xk—1 —(di +d —Xk—lAk—l)N{_llk)bZ}
k = b*
k
and
X, =Al.
where
b — (ckok) oM ifer #0,
KT 6 @iNg—y — lk)Xk—lv ifer =0,
and

O = g + diNpdy — (A1, + 1idy) — (T — X1 A DN I

Note that the initial X; = (ajMa;)~'ajM and it is easy to compute Nk , by
(5.3.1) and (5.3.2).
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5.3.3 Cline’s Method

An extension of the Greville’s partitioned matrix isA = [U V], where U and V are
general conformable matrices and V no longer is just a column. The matrix [U V]
is called the Cline’s partitioned matrix.

The Cline’s method for computing the Moore-Penrose inverse of partitioned
matrix A = [U V] is given by the following theorem.

Theorem 5.3.4 ([18]) LetA = [U V] € C™", where U € C"*? (p <n)andV €
Cm* =D then

At=[U vI (5.3.11)
_[vt-vivcr —utva - ctok'vututa - ve
B CT+ U - CTOK'VUTUT1 - VC) ’

where :

C =-UUYYV,

Ki=1+U-crovututva - cto). (5:3.12)
I . o

«ctoywvruttutvy = (vuttutvyco),
then from (5.3.11) and (5.3.12) we have

AT =[U V]
_[vr-uviver —utva - ctok;, 'vuttut (5.3.13)
ct+a - crok,'vutut : o

where
C =U- UU*)V,
K, =1+ V*Utu'v.

In 1971, an alternative representation of the Moore-Penrose inverse of the parti-
tioned matrix A = [U V] was given by Mihalyffy in [19]:

5 KU™(I —VCT)

t_ P ,

A=l vlh= [T*KUT(I —veh+ct ]

where .
C=(I-UU"V,
T =U'V{I - C'C),
K=d+T1T"""



204 5 Computational Aspects

The reader should be aware that there are other ways of representing the Moore-
Penrose inverse for the partitioned matrix A = [U V]. The interested reader is
referred to [20, 21].

The method for computing the weighted Moore-Penrose inverse of the partitioned
matrix A = [U V] is given by the following theorem.

Theorem 5.3.5 ([22]) LetA =[U V] e C™", where U € C"*’ (p <n)andV €
C™@=p) and M and N be Hermitian positive definite matrices of orders m and n

respectively. Partition N as
N L
v=[it)

where N1 € CP*P and let

D= UV,
C=U-UU)V,
K = Ny + D*N\D — (D*L + L*D) — L*(I — Ujjy UN; 'L,

then K is a Hermitian positive definite matrix and

e L R

il
AMN - H

where
H = Cly + (I = Clix OK ™ (D*Ny — LUy, -

Proof Let X denote the right-hand side of (5.3.14). It is easy to verify that the
following four conditions are satisfied:

AXA = A, XAX =X,
(MAX)* = MAX, (NXA)* = NXA,

which completes the proof. O

The following corollary follows from Theorem 5.3.5.

Corollary 5.3.3 Suppose that A, U and V are the same as in Theorem 5.3.5. Then

AT =[U v] (5.3.15)
_[ut-Uutvcl, - UV -l Ok VEUTUT
- Cix, + (I — Ci OK;' VU™ UT ’
where .
C =I-UUhHyv,
Ky =1+ VUtuty,
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Comparing (5.3.13) with (5.3.15), C"in (5.3.13) is replaced by C,TK] in (5.3.15).
No additional conditions are necessary here.

5.3.4 Noble’s Method

An extension of the Cline’s partitioned matrix is the Noble’s partitioned matrix of

the form:
AC
M = [BD1|’ (5.3.16)

where A, B, C, and D are general conformable matrices.
The answer to “What is the Moore-Penrose inverse of M ?" is difficult. However,
if we place some restrictions on the blocks in M, we can obtain some useful results.

Lemma 5.3.2 IfA, B, C, and D in (5.3.16) are conformable matrices such that A is
square and nonsingular, and rank(M ) = rank(A), then D = BA~'C. Furthermore,
if P = BA~! and 0= A~'C, then

AC I
M:[BD}z[P}A[I 0l. (5.3.17)

Proof The factorization
I O][AcC][I -A"'C A ¢}
[—BAI 1] [BD] [0 1 }_ [OD—BAIC} (53.18)

rank(M ) = rank(A) + rank(D — BA~'C).

yields

Therefore, it can be concluded that rank (D — BA~!C) = 0, equivalently, D = BA~!C.
Then (5.3.17) follows from (5.3.18). m]

Theorem 5.3.6 Let A, B, C, and D in (5.3.16) be conformable matrices such that
A is square and nonsingular, and rank(M') = rank(A), P = BA™!, and Q = A~'C,
then

= ACT—-I * *y\— 1 *
M —[BD] __Q*]((I+PP)A(I+QQ NP

Proof LetA € CI*7,

I 3
F= P]A and G =[I, Q]

then
rank (F) = rank(G) = rank(A) = rank(M ) = r.
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It follows from (5.3.17) that M = FG. By Theorem 1.1.5 and the nonsingularity of
A, we have

M"=G'F'
— G*(GG*)fl(F*F)le*

= QI (I + 00"~ (A*U + P*P)A)'A*[I P*]
- Q’* (I + 00"\ (I + P*P)A) "I P*]
= QI* (I + P*P)A(I + Q0")~'lI P,

which completes the proof. O

Let A, B, C, and D in (5.3.16) be conformable matrices such that M and A are
square. The Drazin inverse of the Noble’s partitioned matrix M is given by the
following theorem. First, we give two lemmas.

Lemma 5.3.3 LetT € C™", Re C*", and S € C}*°, then
rank (RTS) = rank(T).
Proof Since R'R =1, and SST = I,,, we have
rank (RTS) < rank(7T) = rank(R'RTSS") < rank(RTS),
implying that rank (R7'S) = rank (7). O

Lemma 5.3.4 LetA € C*" and

Ifrank(M ) = rank(A) = r, then
Ind(M) = Ind(A( + QP)) + 1 = Ind(({ 4+ QP)A) + 1,

where P = BA™' and Q = A~'C.
Proof From Lemma 5.3.2,

D=BA"'C and M = [;} All Q).

Thus for any integer i > 0,
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i 1 i1
M= [P] (Al + 0P))™All 0]

- [ ;]A«I +OP)AY I Q.

i

Since the matrix

207

(5.3.19)

is of full column rank and A[/ Q] is of full row rank, from Lemma 5.3.3, we have

rank(M "™y = rank((A( + QP))™). Thus

rank((A(I + QP))™) = rank((A(I + QP))" ")

& rank(M ™) = rank(M™).

It then follows that Ind(A(I + QP)) + 1 = Ind(M). The proof of Ind((/ + QP)A)

4+ 1 = Ind(M) is similar.
Corollary 5.3.4 Under the same assumptions as Lemma 5.3.4,
IndM) =1 <« I+ QP is nonsingular.
Proof From Lemma 5.3.4,
IndiM) =1« Ind(A{ 4+ QP)) =0
< A(I 4+ QP) is nonsingular

< [ + QP is nonsingular.

The penultimate equivalence follows from the nonsingularity of A.

Now we have a theorem on the Drazin inverse.

AC
v=[5b)

Theorem 5.3.7 Let A € C*,

O

where Ind(M) = m, rank(M) = rank(A) = r, and P = BA™', Q = A~'C, then

My = [ 1{,} ((AS))AlL Q]
= [ ;}A«SA)Z)(Z[I 0l

where S =1 +A"'CBA™! =1+ QP.

(5.3.20)
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Proof Setting
1
X = [ P} (A$))4AlL Q]
and using (5.3.19), we have

M"IX = [ f,} (AS)" 1 (AS)")aAll Q).

Since Ind(M') = m, we have
Ind(AS) = Ind(A(I + QP)) =m — 1

by Lemma 5.3.4. Thus
(AS)" 1 ((AS)D) 4 = (AS)" .

Furthermore

M"Y = [II,} (ASY"All Q1 =M".

It is easy to verify that MX = XM and XMX = X, which is left to the reader as an
exercise. Therefore M; = X.
The proof of the second equality of (5.3.20) is similar, it is omitted here. O

In Theorem 5.3.7, we have obtained an expression of M; when A is nonsingular.
If A is a square and singular matrix, then an expression of M is given as follows.

AC
MZ[BD]

where A is a square and singular matrix, and

Theorem 5.3.8 ([23]) Let

HZBAda KZAdC,
P=(I-AA)C, Q=B —A4A),
Z=D—-BA,;C.

IfP=0,0=0,andZ = O, then
My = [ ;,] ((AS) Al K]
- [ ZI]A((SA)d)Z[I K,

where S =1 +A,CBA; =1 + KH.
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Proof From the assumptions, we have
mM=|1! All K]
=g )
By using (5.3.19), we have
mi=|! (AS)'A[l K]
=g .

Setting
X = [ H (AS)aAll K]

and noting that AS € C"™* and Ind(AS) < m, we have

M"X = 1{, (AS)"*((AS)a)?All K]
17
= |49t K
=M""!, (5.3.21)
MX = 12 AS((AS),)?A[l K]
_ [; ((AS)a)?ASA[I K]
_[1] AS)))A[l K LAk
= | | @90 k1| |4 K
— XM, (5.3.22)
and
= [ ;’,} (AS)0 Al K][ ]A[l K] [ ,ﬂ ((AS)aAIl K]
_ [é} (AS))2A[l K]
—X. (5.3.23)
It then follows from (5.3.21)—(5.3.23) that M; = X . |

An expression of the group inverse for the Noble’s partitioned matrix is given as
follows.
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AcC
w=[5b)

whereInd(M) = 1 and rank(M) = rank(A) = r. IfP = BA™' and Q = A~'C, then

Theorem 5.3.9 Let A € C™,

(SAS)™'[1 Q]
S7'ATIST 0]

A2+ CB)'A(A’+CB)'[A (],

where S =1+ A~'CBA™! =T + QP.

Proof 1t follows from Corollary 5.3.4 that
IndM)=1 <« S =1+ QP isnonsingular.

By using Theorem 5.3.7 and the nonsingularity of AS, we have
My = | p [((AHH7'ALL Q]
@A)~ As)™'Al Q]

(SAS)™'[I Q]

_ B;_I}SIAISI[I A~lC
= 2} AN AA? 4+ CB)'A)ATI (A + CB) ' AHATA €]

= 2} (A2 + CB)"'A(A*+ CB)'[A C).

This completes the proof. O
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5.4 Embedding Methods

An embedding method for the Moore-Penrose inverse is given in [24] by Kalaba and
Rasakhoo. The basic idea of the embedding methods is that the original problem
is embedded in a problem with larger range, if we can get the solution of the later
problem, then the solution of the original problem can be found.

The embedding methods for the weighted Moore-Penrose inverse, the Moore-
Penrose inverse, the Drazin inverse and the group inverse are presented in [25], and
these methods have a uniform formula.

5.4.1 Generalized Inverse as a Limit

In this subsection, we will show how the generalized inverses A}y, AT, A; and A,
can be characterized in terms of a limiting process.

Theorem 5.4.1 Let A € C"™", rank(A) = r, and M and N be Hermitian positive
definite matrices of orders m and n respectively, then

Al = lim (NT'A*MA — z)"'NT'A*M, (5.4.1)
z—0~

where z tends to zero through negative values.

Proof From the (M, N)-singular value decomposition Theorem 5.2.2, there exist an
M -unitary matrix U € C"™™ and an N ~'-unitary matrix V € C™" such that

A=U|:DO]V*,

(0XO)
where
U'MU =1, VEN-V =1,
Dzdiag(p’l?/’(ﬂv"' 7:“4‘)7 /J’i >O’ l: 1’23"‘ , Ty
and |
¥ 1y | DT O
Ay =N V[ 0 O}U*M.
Let
N2y =V = [vivy -+ v,] and
M2V =U=[u uy --- uyl,
then
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and

Al =N (Zﬂl vu )w

Since

,
N~'A*MA = N~1/? (Z u?v,-vf) N2

i=1

and the vectors vy, v,, - - - , v, form an orthonormal basis for C”",

n n
1= X:viv;k =N"1/?2 (ZV,-VZ‘) N2,
i=1 i=1

Therefore
N7T'A*MA —zl =N~/ (Z(u, —2ViVi — 2 Z ViV ) N2,
i=r+1
LetA = M'2AN—12 then
A*A = NYV2(NTA*MA)N V2,
Since A*A is Hermitian positive semidefinite and has nonnegative eigenvalues,
N~'A*MA has nonnegative eigenvalues too. The matrix N~'A*MA — z[ is there-

fore nonsingular for z < 0. Its inverse is

(N'A*MA — zI) ™!

-2 (Z(u, —2) v — Z vy ) N2,

i=r+1

Next, form

(N"'A*MA — zI)"'N~'A*M = N1 Z v M2
i=1 M’ -z

Now, we take the limit and get
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lir%(N‘lA*MA —zD7INT'ATM

i (5 2
—>

- Hi T2

,
— NP (Z ui_lviu;‘) M
i=1

i
=Apy:
which is (5.4.1). m]

Corollary 5.4.1 Let A € C™", then
Al = }iir})(A*A —z)71A%, (5.4.2)

where z tends to zero through negative values.

Theorem 5.4.2 Let A € C" with Ind(A) = k, then

Ay = }i_I)I})(Ak“ —z)7AK, (5.4.3)

where z tends to zero through negative values.

Proof From Theorem 2.1.2 of the canonical representations of A and A, there exists
a nonsingular matrix P such that

_[col,.,
A_P|:ON1|P , (5.4.4)

where C is nonsingular and N is nilpotent of index k, i.e., N k=0, and

c'o7.
e[S 0]

From (5.4.4),
k+1 _
Ak“—zlzp[c @40 }P".

(0] —zl

Since C is nonsingular, Ck1 s also nonsingular, and z tends to zero from the left,
C*+! — 71 is also nonsingular. Then
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o o

c'o].
—P[o O]P

k+1 _ =1k
lirr(l)(Ak“—zI)lAk:lin(l)P[(C )= C O:|P1
= —
= Ay,

which leads to (5.4.3). |

Corollary 5.4.2 Let A € C"" with Ind(A) = 1, then

A, = 11%17(/42 —zZ)7'A. (5.4.5)
If A is nonsingular, then
A7l = mg (A—zl)™, (5.4.6)
=0~

where z tends to zero through negative values.

5.4.2 Embedding Methods

In order to find the generalized inverses ALN, AT, Ay, Ayg, and the regular inverse
A~ from (5.4.1), (5.4.2), (5.4.3), (5.4.5) and (5.4.6), we must find the inverse of the
matrix B;(z), an n X n matrix of z,

NA*MA — 71, 1t = 1;

A*A — 2, t=2;
B,(z) = [b'] = { AF+! — 21, r=3;
A% — 7, t =4
A—1z, r=>5.
Let
F,(z) = adj(B/(z)) = [B])] and g(z) = det(B,(2)), (5.4.7)

where adj(B;(z)) is the adjoint of the matrix B,(z), whose elements Bg) are the
cofactors of the jth row and ith column element of B,(z), then

_F(@

B,(2)" ' = )
(B/(2)) 2@

(5.4.8)

Theorem 5.4.3 Let F,(2) and g,(z) be given by (5.4.7), then F,(z) and g;(z) satisfy
the following ordinary differential equations
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dF,  —Fuw(F)+F;

haitl , 5.4.9
& 2 ( )
d

88— _w(F)), (5.4.10)
dz

where F; = F,(z) and g; = g,(2).

Proof Denote B; = B;(z). Premultiplying both sides of (5.4.8) by the matrix B; and
postmultiplying both sides by det(B;), we have

det(B,)I = B;adj(B,), (54.11)
where [ is the identity matrix. Also, by postmultiplying both sides of (5.4.8) by
B; det(B;), we have

det(B;)! = adj(B,)B;. (5.4.12)

Differentiate both sides of (5.4.11) with respect to the parameter z:
(By).adj(B;) + B;(adj(By)), = (det(B,)) 1.
Premultiplying both sides of the above equation by adj(B,), we get
adj(B;)(B;).;adj(B,) + adj(B,)B,(adj(B,)), = adj(B,)(det(B,))..
Applying (5.4.12) to the second term of the above equation, we obtain
adj(B,)(B;).;adj(B;) + det(B,)(adj(B;)), = adj(B,)(det(B,))..
Since det(B;) is a scalar, from the above equation we find

adi(B,). = adj(Bz)(det(Bt))zl;(;d;'(Bt)(Bf)zadj(Bt)_ (5.4.13)

Then differentiating det(B;) with respect to z, we obtain

n (1)
ddet(B,) dbj;

(det(B,)). = Z — (5.4.14)
ij=1 8bij dz
However, we have 5
det(B,
dtB) _ g (54.15)
ab,.j
and
dB,
— = —I. (5.4.16)
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Substituting the above (5.4.15) and (5.4.16) into (5.4.14) gives

n

(det(B))). = ZB(’) by ZB(’) = —tr(F,). (5.4.17)

By substituting (5.4.16) and (5.4.17) into the right-hand side of (5.4.13), we have

adj(B,) (—tr(Fy)) + (adj(B;))?
det(B,) '

(adj(By)); =

Finally, substituting (5.4.7) into the above equation and (5.4.17), we obtain (5.4.9)
and (5.4.10) immediately. m|

For a value of z suitably less than zero, z = zp, we can determine the determinant
and adjoint of the matrix B, (zo) accurately by, for example, Gaussian elimination.
This provides initial conditions at z = zo for the differential equations in (5.4.9) and
(5.4.10), which can now be integrated numerically with z going from z, toward zero.

For convenience, we denote

Ay =An, AT =Ap, Ai=Ap, Ag=Aw, AT =Ag

and if A € C"™*", Jet
D, =N"'A*"M and D, = A%,

and if A € C"™" and Ind(A) = k, let
Dy=A* D,=A, and Ds=1.
Then, as z tends to zero,

F(2)
81(2)

yields an approximation of A, fort =1,2,---,5.
Let us summarize the above in the form of a theorem.

Theorem 5.4.4 Let the matrix F, and the scalar g, be determined by the differential

equations:
dr, F? — F,w(F,)

dz g ’ 5.4.18
- = _tr(Fl)7
dz

with the initial conditions

{ F(z0) = adj(D,A — zol),
8:(z0) = det(D,A — zol),
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where

20 <0, |z0] < miSn |zil, S ={i : z; # 0is an eigenvalue of D;A}.
1€

By integrating this system from zy to z = 0 and forming

F:(2)

_Dt7 t=172""’59
8:(2)

we obtain, in the limit, A.

5.5 Finite Algorithms

Let A € C*" and the characteristic polynomial of A be
g(N) = det\\ —A) = X"+ g A"+ + gui A+ g
where I denotes the identity matrix of order n. Let the adjoint of Al — A be
FO\) =adiM —A) = FIN ' N2 4o+ Fy A+ Fp,

where F| = I, then
o FW»)
M—A)="—""2, 55.1
( ) ) ( )

A well-known finite algorithm attributed to Le Verrier [26] and Fadeev [27] per-
mits simultaneous determination of the coefficients g; and F; by means of the formula

Fi=1, g =—-tr(Ad),
Fi=AF_1+gi1l, g =—i""w(AF), i=23,---,n

When A = 01in (5.5.1), then
Al =2 (5.5.2)

The above algorithm is also called Le Verrier algorithm.

This scheme finds applications in linear control theory [28]. Using an extension
of this scheme, a finite algorithm for computing the Moore-Penrose inverse is given
by Decell [29], and a new proof of Decell’s finite algorithm for the generalized
inverse is given in [30]. The finite algorithm for computing the weighted Moore-
Penrose inverse ALN is given in [31]. A uniform formula for the finite algorithms for
computing the generalized inverses ALN, AT, A4, A, and regular inverse A~! using
the embedding method is given in [25].
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Theorem 5.5.1 ForA € C"™", let M and N be Hermitian positive definite matrices
of orders m and n respectively and denote

Ay =ALy. Ap=A", D =N"'A*M, D,=A"
For A € C" with Ind(A) = k, denote

Az =Ag, Ay =Ag, Ay =A71,
D3=Ak7 D4=A7 D5:I7

and let
rank(D,)) =r <n, t =1,2,3,4, rank(Ds) = n,
and
F/(\) = adj(D,A — ) (5.5.3)
— (_1)n71(F1(I)>\n71 + Fz(l))\n72 N F,Etzl)‘ + F,?))’
g(\) = det(D;A — M) (5.5.4)
= D" ("N + 8N gl A g,
where Flm, Fzm, cee F,E’) are n X n constant matrices and gg) =1, and gft), cee g,(l’)

are scalars, then
F®

A(,) = —%Dt, t= 1,2,3,4,5.

Proof From (5.4.1), (5.4.2), (5.4.3), (5.4.5), (5.4.6), (5.5.3) and (5.5.4), we have

F(N)

DA—-X)"'= .
) % &N

(5.5.5)

Hence

Ag = Aliﬁlgi(D,A —\D)7'D,

, FON 4 PPN 4 FO N+ FO
m - t
A—=0— gét)An + gif)An—l 4+ g,(ltll)\ + g,(ll)

When g # 0, then
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Next, consider the case when g{” = 0 but g,(fll # 0. Since the above limit exists,

according to Theorems 5.4.1 and 5.4.2 and Corollaries 5.4.1 and 5.4.2, we must have
F"D, = 0, and then
(1)
A([) = — n__lD[.

We know
rank (D,A) = rank(A*A) = rank(A*) = rank(D;) = r.

Similarly, we have

rank(D;A) = rank(N 'A*MA)
= rank(N 2 (N TA*MA)N ~1/?)
= rank (M 'PAN~V2* (M '2PANT%))
= rank(M '2AN~1/%)
= rank(A)
= rank (D)

=r.
Since Ind(A) = k, we obtain

rank(D3A) = rank(A¥*!) = rank(4*) = rank(D3) = r,
rank (D4A) = rank(Az) =rank(A) = rank(Dy4) = r,
rank(DsA) = rank(A) = rank(Ds) = n.

So the number of the nonzero eigenvalues of D,A should be r, and we that assume
A1, A2, -+, Asarenonzeroand A\, = A\, = -+ = A\, = 0. Since g,(\) is the char-
acteristic polynomial of D,A, according to Vieta’s relations between the roots and
coefficients of a polynomial, we have

g” #£0 and 8521 28522 =...=g"=0.

Therefore

The proof is completed. O
Now we have the following finite algorithm for computing A ;.

Theorem 5.5.2 The coefficients F ,-(t) and gi(t) in (5.5.3) and (5.5.4) are determined
by the recurrence relations:
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F(t)l — DrAF(t) +glt)1
g0 = —(i+ D 'w(DAFY),
i=1,2,---,r—1.

The initial conditions are

F =1
¢ = —r(D,A).

Proof From (5.5.5), we have

(F(f))\n—] + F(t)/\”_z o F(t)l)‘ 4 F(t))(D;A )\I)

()\n +g(f)/\n l +g(tll)\+g(l))[

From Theorem 5.5.1, we have

3521:" g =0 and F(’)D =0,j=r+1,--

So
D,AFJ.(’) =Fj(’)D,A =0, j=r+1,---,n

,n.

(5.5.6)

(5.5.7)
(5.5.8)

(5.5.9)

By comparing the identical powers of A on both side of (5.5.9), we see that (5.5.6)

holds and

F(f) :F(f) —

— g0 _
r+2 r+3 = Fn =0.

To obtain (5.5.7), from (5.4.18) we have

(_1)’1(7’1)\"_1 + (n— 1)g§t)/\n_2 +-+ (- r)gl(‘l))\n—r—l)

= _(_l)n—l(Athr(Fl(f)) 4+ 4 )\nfrtr(Fr(t)) + )\n—r—ltr(F(t)l))

Equating the coefficients of the like power of A\, we see that
(n =g = uwF).
Now take the trace of both sides of (5.5.6) to obtain
w(F) = w(DAF") +ng".

It then follows that
g =~ + D7 'w(DAFY),

which completes the proof.
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Remarks

As for the numerical computation of the generalized inverses, the book [13] gives
useful suggestions and a list of direct and iterative methods for computing the {1}-
inverse, {1, 2}-inverse, {1, 4}-inverse, Moore-Penrose inverse A, Drazin inverse A,
and group inverse A,. But no perturbation analysis is given there. This chapter is
based on the computational methods for the regular inverse, we derive the numerical
methods for computing the four important generalized inverses: A, AZ,IN, A, and
A,. There are embedding method and finite algorithm for computing the generalized
inverse A(z) [32, 33]. The finite algorithm can also be used to compute the inverse of
matrix polyn0m1a1 AVI, — AV=1A; — ... — XAy _; and the inverses of the singular
pencils uE — A and pi’E — pA; — Ay [34—36]. The Rump’s method for computing
the Moore-Penrose inverse is described in [37]. The gradient methods for computing
the Drazin inverse are presented in [38].

The Moore-Penrose inverse and the Drazin inverse of a 2 x 2 block matrix, the
weighted generalized inverse of a partitioned matrix, the Moore-Penrose inverse of
a rank-1 modified matrix, the Drazin inverse of a modified matrix, and the Drazin
inverse of a Hessenberg matrix are discussed in [8, 11, 39-44]. The algebraic per-
turbation method for the generalized inverse can be found in [45].

The limit representations of the generalized inverses and the alternative limit
expression of the Drazin inverse are given in [46, 47].

Recursive least squares (RLS) algorithm and fast RLS algorithm for linear pre-
diction problems are given in [48, 49]. The iterative methods are referred to Chap. 11
and [50]. .

It is well-known that the important generalized inverses A;,,N, AT Ay, Ag, Ag,w,
AE L)l) and A(T§ can be described as the generalized inverse A(T )S, which has the pre-
scribed range 7" and null space S, and 1s the outer inverse of A. A unified method for
computing the generalized inverse AT s such as the embedding method, (7'-S) split-
ting method, or iterative method can be found in [32, 51-58]. A limit representation
of the outer inverse is given in [59].

The inverse and generalized inverse of a matrix polynomial often occur in the
control theory (see [60]). The finite algorithm in Sect. 5.5 also can be applied to the
computation of such kind of generalized inverse [61], since this kind of matrices is
a special case of block-matrices whose blocks can commute each other [62].

The representations and approximations of the Drazin inverse, weighted Moore-
Penrose inverse, and generalized inverse A(TZ)S are given in [53, 63-65].

Neural networks have been used for computing regular inverse [66], Moore-
Penrose inverse [67], outer inverse [68], Drazin inverse [69], weighted Drazin inverse
[70], and time-varying Drazin inverse [71].

Symbolic computation of the generalized inverses using Maple is presented in
[72].
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Chapter 6 ®)
Structured Matrices and Their Geda
Generalized Inverses

A matrix is considered structured if its structure can be exploited to obtain efficient
algorithms. Examples of structured matrices include Toeplitz, Hankel, circulant,
Vandermonde, Cauchy, sparse. A matrix is called Toeplitz if its entries on the same
diagonal are equal. For example,

321
432
A= 543 (6.0.1)

654

is a Toeplitz matrix. Thus an m x n Toeplitz matrix is determined by its first row and
first column, total of m + n — 1 entries. In comparison, a general m X n matrix is
determined by mn parameters. Thus, fast algorithms are expected for Toeplitz matri-
ces and other structured matrices. This chapter includes two aspects of structured
matrices and generalized inverses. One is about computing the generalized inverses
of structured matrices. Particularly, we present a fast algorithm for computing the
Moore-Penrose inverse of a Toeplitz matrix. The ideas can be applied to other gen-
eralized inverses of other structured matrices such as Hankel and sparse. The other
aspect is about the structure of the generalized inverses of structured matrices.

6.1 Computing the Moore-Penrose Inverse of a Toeplitz
Matrix

This section describes a Newton’s method for computing the Moore-Penrose inverse
of a Toeplitz matrix presented in [1]. How do we define the structure of a Toeplitz
matrix so that it can be exploited to develop fast algorithms? The displacement struc-
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226 6 Structured Matrices and Their Generalized Inverses

ture, defined as follows, is commonly exploited in the computation of the generalized
inverses. A matrix A is said to have the displacement structure if we can find two
dimensionally compatible matrices U and V such that the rank of the Sylvester dis-
placement AU — V A or the Stein displacement A — V AU is much smaller than the
size of A [2]. For example, denoting the n x n shift-down (or shift-left) matrix

0 0
10

Z, = .o ) (6.1.1)
0 10

for the matrix A in (6.0.1), the rank of the Sylvester displacement

(210 000
320 321
AZy=Zih = 430 | 7| 432
540 543
(1 0
0 1
=|o|[210]=],|[001]
0 3

is two, called the Sylvester displacement rank of A. Also, the rank of the Stein
displacement

(321 320
432 430
A=Z{AZs=| 543 |~| 540
[ 654 650
K 1
0 2
=gl [654]+|5|[001]
1 0

is two. In fact, as shown above, it can be proved that the displacement rank of a
Toeplitz matrix is at most two. This low displacement rank property can be exploited
to develop fast algorithms for triangular factorization, inversion, among others [2].
In [1], Wei, Cai, and Ng present a fast Newton’s method for computing the Moore-
Penrose inverse of a Toeplitz matrix by exploiting the displacement structure.

For an m x n Toeplitz matrix A, defining the Sylvester displacement operator

A(A) =Z,A—-AZ,
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we have rank(A(A)) < 2. The following theorem shows that A can be expressed as
a sum of k < 2 structured matrices.

Theorem 6.1.1 ([3]) Suppose that k = rank(A(A)) and A(A) = Zle ghl, g e
R™ and h; € R", then A can be expressed as

k

A=L(Ae)) + ) L(g)U(=Z,h),
i=1

where e, is the first unit vector in R", L(X) isthem X p, p = min(m, n), lower trian-
gular Toeplitz matrix whose first column is X and U (y) is the p X n, p = min(m, n),
upper triangular Toeplitz matrix whose first row is y".

In particular, when A(A) = Zle o;u; v}, where o;, u;, and v; are respectively
the ith singular value, left singular vector, and right singular vector, then

k
A = L(Ae)) + Y oiL(u)U(=Z,vi),

i=1

called the orthogonal displacement representation of A.

Note that L(x) and U (y) are Toeplitz matrices and Toeplitz matrix-vector multi-
plication can be efficiently computed by two FFTs, a componentwise multiplication
and one inverse FFT [4]. Thus the low displacement rank combined with the fast
Toeplitz-vector multiplication can be exploited to develop fast algorithms for com-
puting the Moore-Penrose inverse of a Toeplitz matrix. The method for computing
the Moore-Penrose inverse considered in [1] is the Newton’s iteration:

Xi =2X; — X;AX;, i=0,1,2,..

In [1], X, is initialized to p~' A*AA*, where p is the spectral radius of AA*AA*,
which can be estimated by a few power iterations [5]:

q = (AA"AAY)X;_y;
X; = q;/llqill2; i=1,2,..
hi =X (AATAAY)X;;

with arandom initial x¢. It is proved in [ 1] that with the above initial X, the Newton’s
method converges to the Moore-Penrose inverse A",

Although A can be expressed as a sum of at most three terms, the number of terms
in the intermediate X; grows quickly, as the Newton’s iteration proceeds. To control
the number of terms in the intermediate results, the idea of the truncated singular
value decomposition is applied. Specifically, the singular value decomposition of
W; =2X; — X;AX; is truncated, that is, its small singular values are set to zero,
before being set to the next X;,;. We refer the details to [1]. For example, for
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efficiency, instead of X;, the factor ¥; in X; = A*Y; A* is used. Moreover, instead of
explicitly computing Y;, the factors in the orthogonal displacement representation of
Y; are computed and updated.

Algorithm 6.1.1 ([1]) Newton’s method for computing the Moore-Penrose inverse
of a Toeplitz matrix using the displacement structure.

Input: The first column and first row of the Toeplitz matrix.

Output: An approximation of the Moore-Penrose inverse.

1. Compute the factors in the orthogonal displacement representation of A*AA*;
2. Estimate the spectral radius p of AA*AA™;
3. SetYy = p'A;
i =0;
repeat
4. Compute the factors in the truncated orthogonal displacement representation of
Y;+1 by updating those in the orthogonal displacement representation of Y;;
5. Xip1 = A%Yi 1 A%
i =i+ 1 until X; satisfies a predetermined tolerance.

The experimental results presented in [1] show that the method achieves high
accuracy and performance. The running time grows linearly as the size of A increases.
This Newton’s method is applicable to any low displacement rank matrix. Example
of such matrices can be found in [2]. For more on the Newton’s iteration for the
generalized inverses of structured matrices, see [6, 7].

6.2 Displacement Structure of the Generalized Inverses

As pointed out in the previous section, the displacement rank of a Toeplitz matrix is at
most two. Is the inverse of a nonsingular Toeplitz matrix also structured with respect
to the displacement rank? The answer is: Yes. Indeed, the Sylvester displacement
rank of a nonsingular matrix A equals that of its inverse A~ since, for two dimen-
sionally compatible matrices U and V, AU — VA = A(UA~! — A~'V)A. In other
words, if A is structured with respect to the Sylvester displacement rank associated
with (U, V), then its inverse A~! is also structured with respect to the Sylvester
displacement rank associated with (V, U). In particular, the Sylvester displacement
rank of the inverse of a nonsingular Toeplitz matrix is also at most two. How about
the generalized inverses? In [8], an upper bound for the displacement rank of the
group inverse is presented.

Theorem 6.2.1 ([8]) Let A, U,V € C"" and Ind(A) = 1, then, for the group
inverse A, of A, the Sylvester displacement rank is bounded by

rank(A,V — UA,) <rank(AU — VA) +rank(AV — UA).
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Proof Recall that if Ind(A) = 1, then there exists a nonsingular R of order n such

that
_ cCO|
A_R|:OO:|R ,

where C is a nonsingular matrix and its group inverse A, is given by

c'ol
Ag_R[O O}R :

Defining the two projections

10

_ 00
Q:AAng[OO}Rl and P:I—AAg=R|:

-1
OI]R . (6.2.1)

we have
Ag(AU = VA)A; = QUA, — A,V Q.

It then follows that the Sylvester displacement of A,

AV —UA,
= A,VP+A,VQ—PUA,— QUA,
= A,VP — PUA, — AJ(AU — VA)A,,

implying that
rank(A,V — UA ) <rank(AU — V A) +rank(QV P) +rank(PU Q),
by the definitions of Q and P in (6.2.1). It then remains to show that
rank(QV P) + rank(PU Q) < rank(AV — UA). (6.2.2)
Indeed, partitioning

Vi Vlz]

6.2.3
Vor Voo ( )

_ . _ O 0|,
QVP_R|:OOj|R and PUQ_R|:U120 R™,
implying that

rank(QV P) + rank(PU Q) = rank(V);) + rank(U,y). (6.2.4)
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On the other hand, applying the partitions (6.2.3), we have
_ CVy —UnC CVpp
rank(AV — U A) = rank ([ — Uy C o :|>

Comparing the above with (6.2.4) gives (6.2.2), which completes the proof, recalling
that C is nonsingular. O

This theorem says that the Sylvester displacement rank of A, associated with
(V, U) is bounded above by the sum of the Sylvester displacement ranks of A asso-
ciated with (U, V) and (V, U). In particular, when A is a Toeplitz matrix of index
one, then the displacement rank of its group inverse A, is at most four.

The above result is generalized to the Drazin inverse [9]:

rank(A;V — UAy,) < rank(AU — V A) + rank(AFV — U A%),

where k is the index of A. In [9], the above upper bound is applied to structured
matrices such as Toeplitz, close-to-Toeplitz, generalize Cauchy, among others.

An analogous upper bound for the Sylvester displacement rank of the weighted
Moore-Penrose inverse is presented in [10]:

rank (A%, V — UA]},\) < rank(AU — V A) + rank(AU* — V¥ A),

recalling that U¥ = N~'U*N and V¥ = M~'V*M are the weighted conjugate trans-
poses of U and V respectively.

Remarks

Heinig and Hellinger [11] unified and generalized the Sylvester displacement and the
Stein displacement. The upper bounds for the Sylvester displacement rank of various
generalized inverses presented in Sect.6.2 are all generalized to this generalized
displacement [8—10].

As we know, the Moore-Penrose inverse A" and the Drazin inverse A, are both
special cases of A(ng, the {2}-inverse with prescribed range 7" and null space S. In
[12], an upper bound for the Sylvester displacement rank as well as the generalized
displacement rank of A(ng is established.

As shown in [9], by applying the upper bounds, the group inverse of some struc-
tured matrices, such as close-to-Toeplitz, generalized Cauchy, and Toeplitz-plus-
Hankel, have low displacement ranks. Thus the Newton’s method for the Moore-
Penrose inverse of a Toeplitz matrix described in Sect. 6.1 can be modified for the
group inverse of matrices of low displacement rank. For more on the Moore-Penrose
and group inverses of a Teoplitz matrix, see [13, 14].
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Chapter 7 ®)
Parallel Algorithms for Computing oo
the Generalized Inverses

The UNIVersal Automatic Computer (UNIVAC I) and the machines built in 1940s
and mid 1950s are often referred to as the first generation of computers.

From 1958 to 1964, the second generation of computers was developed based on
transistor technology. During this phase, IBM reengineered its 709 to use transistor
technology and named it the IBM7090. It was able to calculate close to 500,000
additions per second.

In 1964, the third generation of computer was born. The new generation was based
on integrated circuit (IC) technology, which was invented in 1957. An IC device is
a tiny clip of silicon that hosts many transistors and other circuit components.

The Large-Scale Integration (LSI) and the Very Large-Scale Integration (VLSI)
technologies have moved computers from the third to new generations. The comput-
ers developed from 1972 to 1990 are referred to as the forth generation of computers;
from 1991 to present is referred to as the fifth generation.

The progress in increasing the number of transistors on single chip continues to
augment the computational power of computer systems, in particular that of the small
systems (personal computer and workstations). Today, multiprocessor systems are
common. When a computer has multiple processors, multiple instructions can be
executed on multiple processors in parallel. The processors can work independently
on multiple tasks or process different parts of a same task simultaneously. Such a
computer is referred to as a parallel computer.

Algorithms in which operations must be executed step by step are called serial or
sequential. Algorithms in which several operations may be executed simultaneously
are referred to as parallel.

Various approaches may be taken to design a parallel algorithm for a given prob-
lem. One approach is to attempt to convert a sequential algorithm to a parallel algo-
rithm. If a sequential algorithm exists for the problem, then inherent parallelism in
that algorithm may be recognized and implemented. It should be noted that exploiting
inherent parallelism in a sequential algorithm might not always lead to an efficient
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parallel algorithm. Another approach is to design a totally new parallel algorithm
that is more efficient than the existing one.

It follows from the unceasing progress of parallel computers, the research of the
parallel algorithms for many problems get rapid development (see [1-4]).

Inrecent years, the research of the parallel computation of the generalized inverses
is discussed in [5-9]. Some of our results are given in this chapter.

The model of parallel processors are briefly introduced as follows. The detail can
be found in [3, 10-13].

7.1 The Model of Parallel Processors

The parallel processors were constructed in 1970s. According to the computer archi-
tecture systems, there are array processor, pipeline processor and multiprocessor and
so on. Brief examples of them are given as follows.

7.1.1 Array Processor

The first parallel array computer Illiac IV was constructed in 1972. Illiac IV consisted
of N = 64 fast processors, with memories of 2048 64bit words connected inan 8 x 8
array as illustrated in Fig. 7.1. The individual processors were controlled by a separate
control unit and all processors did the same instruction (or nothing) at a given time.

7.1.2  Pipeline Processor

Pipelining is one way of improving the overall processing performance of a processor.
This architectural approach allows the simultaneous execution of several instructions.
The pipeline processor Cray I was constructed in 1976.

The pipeline design technique decomposes a sequential process into several sub-
processes, called stages or segments. A stage performs a particular function and
produces an intermediate result. It consists of an input latch, also called a register,
followed by a processing circuit. The processing circuit of a given stage is connected
to the input latch of the next stage (see Fig.7.2).

An arithmetic pipeline is used for implementing complex arithmetic functions.
These functions can be decomposed into consecutive subfunctions. For example the
floating-point addition can be divided into three stages: mantissa alignment, mantissa
addition, and result normalization.

Figure 7.3 depicts a pipeline architecture for floating-point addition of two num-
bers.
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Fig. 7.1 An 8 x 8 array processor

input Processing Processing Processing | output
— Latch L — Latch [ L —= Latch L. —
circuit circuit circuit

Fig. 7.2 Pipeline

7.1.3 Multiprocessor

A multiprocessor architecture has a memory system that is addressable by each
processor. As such, the memory system consists of one or more memory modules
whose address space is shared by all the processors.

In addition to the central memory system, each processor might also have a small
cache memory. These cache also help reduce memory contention and make the
system more efficient.

A multiprocessor computer has one operating system used by all processors.
The operating system provides interaction between processors and their tasks at the
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Fig. 7.3 A pipeline architecture for floating-point addition

process and data element level. (The term process may be defined as a part of program
that can run on a processor.) Each processor is capable of doing a large task on its
own.

A taxonomy of computer architectures was given by Flynn in 1966. He divided
machines into four categories: SISD (single instruction stream/single data stream),
SIMD (single instruction stream/multiple data stream), MISD (multiple instruction
stream/single data stream), and MIMD (multiple instruction stream/multiple data
stream).

Traditional sequential computers belong to SISD, since instructions are processed
sequentially and result in the movement of data from memory to functional unit and
back to memory; Array processors and pipeline processors belong to SIMD. Since
each processor executes the same instruction (or no instruction) at the same time
but on different data; Multiprocessors belong to MIMD, since the instructions may
differ across the processors, which need not operate synchronously.
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Although these categories give a helpful coarse division, the current situation
is more complicated, with some architectures exhibiting aspects of more than one
category. Indeed, many of today’s machines are really a hybrid design.

The design of parallel algorithms faces the SIMD or MIMD type machines. The
number of parallel processors p is an important parameter in a parallel system. On
SIMD machines, p processors can execute the same instruction at the same time but
on different data. On MIMD machines, instructions may differ across p processors,
which need not operate synchronously.

The parallel algorithms facing the SIMD and MIMD machines are the algorithms
based on “p processors execute the same instruction at the same time but on differ-
ent data” and “instructions may differ across p processors, which need not operate
synchronously” respectively.

For convenience, three ideal assumptions for the model of parallel computers are
proposed as follows.

(1) The model has an arbitrary number of identical processors with independent
control at any time.

(2) The model has an arbitrary large memory with unrestricted access in any time.

(3) Each processor in the model is capable of taking its operands from the memory,
performing any one of the binary operations +, —, X, -+~ and storing the result
in the memory in unit time. This unit time is called a step (the bookkeeping
overhead is ignored). Before starting the computation, the input data is stored in
the memory.

The SIMD and MIMD models can be constructed by SIMD and MIMD system
in addition to the above three ideal assumptions.

7.2 Measures of the Performance of Parallel Algorithms

A mathematical problem can be solved by several parallel algorithms, it is important
to analyze which algorithm is better than the others. This work is both practical and
theoretical.

Next we introduce some criteria for measuring the performance of parallel
algorithms.

The problem size n is the amount of computer storage required to store all the
data that define the problem instance. By the time complexity of an algorithm is
meant the worst case number of steps required for its execution, we assume that it is
a function of , denoted by 7 (n). If the time required for computing » numbers using
some algorithm is cn? steps, where c is a constant, then T'(n) = O (n?). By the space
complexity of an algorithm is meant the upper bound of the processors required for
its execution, denoted by P (n). If the time and space complexity of two different
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parallel algorithms for solving same problem are Ti(n), P;(n) and Tr(n), P»(n)
respectively, and their products (cost-optimality) satisfy

Ti(n) - Py(n) < Ta(n) - Py(n),

then the former is better than the latter.

After one has obtained a parallel algorithm for the problem of size n, it is important
to measure its performance in some way. The most commonly accepted measurement
is speedup.

Let T, (n) denote the execution time using the parallel algorithm on p (>1) pro-
cessors, T1(n) denote the execution time using the fastest sequential algorithm on
one processor. Then

Ty (n)

S =70
p

is called the speedup.

An algorithm with excellent parallel characteristics, that is, a high speedup factor
Sp, still might not yield much actual improvement on p processors as S, would
indicate. Thus we have the following measurement.

The efficiency E,(n) of p-processor system is defined by

E,(n) = Sp(m).

The value of E,(n) expresses, in a relative sense, how busy the processors are kept.
Evidently
0<E,@n) <1

If the speedup and efficiency of two different parallel algorithms for solving some

problem are S, (n), E, (n) and S,,(n), Ep,(n) respectively, and their products
satisfy

Sp; (n) - Ep; (n) > sz(n) : Epz(n)9

then the former is more efficient than the latter.

7.3 Parallel Algorithms

Some basic parallel algorithms are first given before we discuss the parallel algo-
rithms for computing the generalized inverses. In the following the logarithm log p
denotes log, p, [x] denotes an integer such that

x<[x]<x+1
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and | x| denotes an integer such that

x—1<|x] <ux.

7.3.1 Basic Algorithms

(1) The sum of n numbers
To compute the sum

S = Zn:bi, (7.3.1)
i=1

a common parallel method is the binary tree method. For example, when n = §, the
process is shown in Fig.7.4.

This takes log8 = 3 steps and 4 processors. In general, the model of parallel
computation assumes an arbitrary number of identical processors. The binary tree
method for computing the sum of (7.3.1) takes

T (n) = [logn]

steps and

o= [2]

processors.
(2) The product of two matrices

Let A = [qg;;] be anm x p matrix and B = [b;;] be a p x n matrix. The product
of A and B is the m x n matrix C = [¢;;] whose elements are given by

P
Cij = Zaikbkj- (7.3.2)
=1
by b bs by bs bg by bs
NS N S N S N S
b1 + by b3 + by bs + b b7 + bg
~_ - ~_ -
b1+ b2 + b3 + by bs + bs + b7 + bs

\ib/

=1

Fig. 7.4 Binary tree method
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Let the ith row of A and the jth column of B be
a.=[anan - ajp] and b; = [by; by; -+ by;1"
respectively, then
cj=ab;, i=12,--- m, j=12,.--n,

is called the inner product of a; . and b;.

To compute a;xbyj (k = 1,2, -- -, p)inparallel, it takes one step and p processors.
The algorithm for parallelly computing the sum (7.3.2) takes [log p1 steps and p
processors.

If using mnp processors, then the inner product algorithm for parallelly computing
the product of two matrices takes [log p] + 1 steps.

In the special case when m = n = p, the inner product algorithm for parallelly
computing the product C of the matrices A and B of order n takes [logn] + 1 =
O(logn) steps and o3 processors.

The multiplication of two n X n matrices can be done in parallel in time O (log n)
using n®/ log n processors, for some real « satisfying the obvious bounds 2 < « < 3.
The smallest feasible value of « is log 7. The details can be found in [14].

The middle product algorithm for computing the product of m x p matrix A and
p X n matrix B is described as follows. Let

C =AB
= A[b; by --- b,]
= [Ab; Aby --- Ab,]

14 14 P
= | X obpa; Y bpa; - Y bia; |,
j=1 j=1 j=1

where a; denotes the jth column of A.
The following is the dual-middle product algorithm for computing C = AB:

rr
> aijb.
2
al,:B Jp
a,. B Y ajb;.
C = ) =| j=1 ,
a,.B »
> admjbj.:
LJj=1 i

where b; . denotes the jth row of B.
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The outer product algorithm for computing the product C of m x p matrix A and
p x n matrix B is given as the following:

C =AB
b1,:
b2,:
=[a; a al| .
b,

P
= Z[bilai bipa; -+, biya;l.

The following is the dual-outer product algorithm for computing C = AB:

a;ib;
L P | axb;.
C= Zaibi,: = Z .
i=1 i=1 :
amibi,:

The steps and the number of processors required by the above algorithms are left
to the reader as an exercise.
(3) The powers of an n x n matrix

The parallel algorithm for computing the set {B/ | j = 1,2, - - - , w} of powers of
a given n X n matrix B is given in [15].

Procedure POWERS(B, w)

Input: An n x n matrix B and a positive integer w

Output: {B/ | j =1,2,--- , w}

begin

1. ifw=1,

2. return B;

3. else

4. q < [w/27;

5. POWERS(B, q);

6. B = BUPIBU2 j =g+ 1,g+2,---, w;
end.

We denote by P;(w) and T (w) respectively the number of processors and steps
required by POWERS(B, w).
Let

«

T =0O(ogn) and P =

2<a<3,

logn’
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be the steps and the number of processors required for multiplying twon x n matrices
respectively, then
Ti(w) = O(logw logn)

and
w (e}

P =| 7]

n

logn’

Notice that all the |w/2] matrix multiplications in step 6 can be executed in
parallel, given sufficient number of processors. Therefore, since ¢ ~ |w/2], we
obtain the simple recurrence:

Tl(w) = Tl(w/2)+T
= Ty(w/4) + (logd) T

= (logw) T.
Thus, POWERS(B, w) runs in time
Ti(w) = logw O(logn) = O(logw logn)

with

«

w w| n
eHH

2 21 logn
processors.

By using POWERS(B, w), an improved parallel algorithm for computing the
powers of n x n matrices is given in [15].

Procedure SUPERPOWERS(B, t)

Input: An n x n matrix B and a positive integer ¢

Output: {B/ | j =1,2,--- ,t}

begin
ifr=1
return B;
else
a < [logt];
b« |t/a];c <t — |t/a]a;
POWERS(B, b);
fori <— 1step 1 untila — 1 do
Bbi+j (_Bb(i—l)-'erb’ ]: 1’2,“_ ,b;
8. Bhath « Bba=DIkBb - f=1,2,... ¢
end.

NoUnAE LD~
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We denote by P»(¢) the number of processors and 75(¢) the number of steps
required by SUPERPOWERS (B, ¢). It is easy to show that

T,>(t) < O(logw logn)

and
(e}

n
Pt)y=t ———.
2(0) logt logn

Notice that the steps required by SUPERPOWERS(B, ¢) satisfies the inequality
T(t) <Ti(t) +aT,

where the first term on the right side is due to step 6 and the second is due to steps 7
and 8. Since a & logt, b ~ t/logt and T = O (logn), we obtain

t
T,(t) < Tl(ﬁ) +logt O(logn) = O(logt logn).
0g
As the number of processors, step 6 requires
b| n“
2| logn’

Steps 7 and 8 jointly involve the parallel execution, a = log ¢ steps, of b matrix-matrix
multiplications, thereby requiring

n(]f

logn
processors. It follows that

n(l

P,(t) =b
logn

|t n®
" La | logn

tn®

%

logt logn’

(4) The solution of a lower triangular system
We now turn to the problem of solving the lower triangular linear system

Lx =f, (7.3.3)
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M;O) Méo) MS(O) Mio) Méo) MQ(O) Ml(O) f(O)
N S NS N S N S
Mél) M2(1) Ml(l) f(l)
My @

Fig. 7.5 Computation of x = M,,M,,_; - - - M f

where L = [I;;] is a nonsingular lower triangular matrix of order n. It follows from
Sect. 5.1.2, the inverse of a lower triangular matrix L can be written in the form

L' =MM,_--- M,

where

M; = 1 , i=1,2,--n. (7.3.4)
1 g 1

1 1

Thus
X = MnMn—l e M]f

We introduce the following notations for computing x in parallel. Set s = 2/ and
1 = logn, assuming, without loss of generality, n = 2*. Initially, Mi(o) =M, i=
1,2,---,n—1, and f© = f. For example, for n = 8, the computation process is
shown in Fig.7.5.

It is easy to obtain a general computation process:

MI = MM =00 =2 =12,

£OF0 = M7 =01, p— 1,
x = M,f®.
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L)

) 9 70

= 2&1 24 “2i41

Fig. 7.6 Multiplication of Méj il and M,; (] )

The above matrix Mi(j ) can be written as a 3 x 3 block matrix of the form:
1 0 o

M?=| oLV o |.
0 Si(]) 7;(})

where ZQ ) is a lower triangular matrix of order s = 2/, I, Y and T A(] ) are two identity

matrices of orders q(J ) — 1 and r(j ) n+1)—>G+ 1)s respectively. It is
clear that 1 1
L =— and S = ——[lis1; Livai - Ll

ii li;

Partition
)
W _ | U o
Stj = Vl(j) S ’

where Ul.(j )isan s x s matrix.

Multiplying the two partitioned matrices ML/} | and M/, shown in Fig.7.6, we

2i+
have
Z(j+1) _ L(]) O
i - (J) ) "(J)
L21+1U 2z+1
and
(+D ) (/) (G2l 0)]
S; =[S Us" + V57 Syl
Let
)
) (lj)
7 =g” |,
)

23
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where g(’ ) and g(J ) are (s — 1)-vector and s-vector respectively, then

G+ g(j)
1.
fUTD — g;ﬂri) — L(j)g(J) ,
ggH ) S{j)géj) + g(J)

where the two leading vectors gij ) and géj ) form the leading 2s — 1 components of
the solution vector x of (7.3.3).

Next we discuss the number of processors and steps required by the above algo-
rithm.

(1) Forming M; of (7.3.4) requires 2 steps, 1 step division and 1 step subtraction,
using n — i + 1 processors. Thus forming all M;, fori =1, 2, --- , n, requires 2
steps and

Z(n—i+1)=%n(n+l)
i=1

processors.

The products L;jll Uy Séljl U, LVg and §7¢5” can be computed in
parallel, requiring 1 + logs =1+ ] steps to compute the inner product of two s-
vectors. The sums S5/}, Us) 4 V37" and S g5 + i’ can be computed in parallel
requiring one step. Therefore at the (- 1)st level we require

7—(]"“) — 2+]

steps. In addition to the one step for computing M, ¥, in total, we require

p—1

: 3
T:3+ZT(/+1>=3+%

steps for solving the lower triangular linear system (7.3.3). Since ;1 = log n, we have
T=0 (log2 n).

(2) First of all, we consider the processors for computing

G+ () )
M, = M, M,;",
7 (]) () (J) ; :
where Ly, U,y;” and Sy, Us;” in the product can be computed in parallel. To form
each column of Lgll Uz(lj), we use

ik= s(s+1)
k=1 2
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processors to compute the s inner products of 1-vectors, 2-vectors, - - -, and s-vectors.
Thus forming all columns of Lgﬁrl Uz({ ) requires s2(s + 1)/2 processors.

At the same time, forming Sé{ )+1U2(ij ) uses szrz(fjrl processors to compute srz({jrl

inner products of s-vectors. Therefore it requires
N PRI
P:ES (S+ )+S 1’2l~+1
Lon 135 - Lai 439
=—-(2n §°— —(4i s
2 2

processors.

Forming S o

2iJrle(ij) + Vz(ij) uses sr'/) 1.e.,

2i+1
P’ =+ s —2G + 1)s?
processors. Hence the processors required for computing M. i(j g
PYTY = max(P', P"} = P'.
Similarly, we can show that the number of processors required for computing

fU+D g

; 1 3
pUth = E(Zn +3)s — ESZ'

Hence at the (j + 1)st level we require

n/2s—1
G+ — G+D
PUD = 3™ p
k=0

3 1 1
= Es3 -7 Gn+ 12)s? + Z(nZ +7n + 6)s,
for j =0,1,---, u— 2, processors.
Therefore the processors required for solving the lower triangular linear system
(7.3.3) s

P = max { max (PUTD),
0<j=p-2

nn+1)
et

Set
) 3 3 1 2 1 2
f(s) = 55 —Z(5n+12)s +Z(n + 7n + 6)s.
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Since the range of s = 2j,j =0,1,---,p—2,is {1, 2, --- , n/4},itis easy to show
that if n > 16, the maximum value of f(x) can be reached at s = n/8. Thus

. 15
max pUth = L <—n2 + 11n + 12)

0<j=p-2 T 64\ 16

and
(B i) = L owy
64\ 16" " = J024" -

Let us summarize the above in the following theorem.

Theorem 7.3.1 ([16]) Let L be a nonsingular lower triangular matrix of order n,
then there exists an algorithm for computing the solution of the lower triangular
linear system Lx = f in parallel requiring

T 1102 +3lo +3
= — n — n
p OB TS0k

steps and

P=— 0y 00
= J024" "

processors.

7.3.2 Csanky Algorithms

In 1976 Csanky proposed an algorithm for computing the inverse of an n x n matrix
in time O (log? n) using O (n*) processors.

Algorithm 7.3.1 ([17]) Let A € R"*", rank(A) = n. This algorithm computes the
inverse of A.

(1) Parallelly compute AF = [al.(]].‘)], k=1,2,---,n.
(2) Let A\j, A2, -+, A\, denote the roots of the characteristic polynomial a(\) of A,
and the trace of A¥ be

=Y M. k=12, .n
i=1

Parallelly compute

n
Skztl"(Ak)z ai(;‘)’ k=1,2,---,n.
i=1
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(3) Let the characteristic polynomial of A be
a(\) = det(Al — A)
=[Ta-»
i=1
=N 4N+ e At
From the Newton formula

Sk+C1Sk—1+"'+Ck_1S+ka=0, k=1,2,---,n,

we have
1 C1 S
S 2 C 852
sy 8 3 C3 | —_ | 83
Sp—1 Sn—2 Sp—-3 ++ - N Cn Sn

Parallelly compute the solution of the above triangular system.
(4) It follows from the Cayley-Hamilton theorem that a(A) = 0 and

1
Al = —— (A" 4 A" 2+ A+ D). (7.3.5)

Parallelly compute A~' of (7.3.5).

Theorem 7.3.2 Let A € R™", rank(A) = n, then Algorithm 7.3.1 for computing
A~ can be implemented in
I(n) = O(log*n)

P = 0 (Ln?
cP(n) = <§n>

Proof Suppose that the ith stage of Algorithm 7.3.1 can be implemented in 7; steps
using ¢ P; processors.

(1) The parallel computation of Ak = [ai(j].‘) ], k=1,2,--- ,n, by the algorithm
POWERS(A, n) takes T) = O(log® n) steps and

n® 1,
chP=—- ~O|=zn
2 logn 2

steps using

processors.

S

processors.
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(2) The parallel computation of s, = Y 7+ a ® k=12, ,n by the basic algo-

i=19%i »
rithm for sum in Sect.7.3.1 takes 7, = logn steps and cP2 = n?/2 processors.

(3) The parallel computation of ¢;,i = 1, 2, - - - , n by the basic algorithm for solving
lower triangular systems in Sect. 7.3.1 takes T3 O (log? n) steps and cP3 = O (n%)
processors.
(4) The parallel computation of A~' takes T4 = logn + 2 steps and cPy = n’/2
processors.

Thus

In) =T+ T+ T3+ T, = O(log* n)

and

1
cP(n) = max{cP;} = O <§n4) :

which completes the proof. ]

Itis easy to show that the formula (7.3.5) is the same as the finite algorithm formula
(5.5.2) for computmg A~!. The finite algorithms for computing the generalized
inverses Ajy. A%, A; and A, are given in Chap. 5. Consequently we have the
following parallel algorithms for the generalized inverses [6, 18].

Algorithm 7.3.2 Let A € R™*", rank(A) = r. This algorithm computes the Moore-
Penrose inverse A" of A.

(1) Parallelly compute B = AT A.

(2) Parallelly compute B* =[b{)1. k=12,

(3) Let A\, M2, -+, \, denote the roots of the characteristic polynomial 5(\) of B,
and the trace of B¥ be

=Xn:Af, k=1,2,---,r.
i=1

Parallelly compute
Skztr(Bk Zbl(fc)’ :1’ ’...’r.

(4) Let the characteristic polynomial of B be
b(\) = det(A\] — B)
n
=[Ia—-»
i=1
=MN4oN T+t At

Since rank(B) = rank(A) =r,¢,41 =42 = -+ = ¢, = 0.
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From the Newton formula we have

1 Cl S1
51 2 o K
852 S1 3 c3 — |83
Sp—18p—2 83T Cr Sy

Parallelly compute the solution of the above triangular system.
(5) Parallelly compute

. 1
A= ——(ATA) "+ 1 (ATAY 2+ 4 ¢, DAT.

I3

The steps and processors required by Algorithm 7.3.2 are given in [6].

Theorem 7.3.3 Let A € R"*", rank(A) = r. Then Algorithm 7.3.2 for computing
AT can be implemented in

GI(m,n) = O(logr -logn) +logm 4+ 2logn = O(f(m,n,r))

steps using

processors.

Proof Suppose that the ith stage of Algorithm 7.3.2 can be implemented in 7; steps
using G¢ P; processors.

(1) The parallel computation of B = AT A takes T} = 1 + logm steps, one step for
multiplication, and log m steps for addition, using Ge P, = mn? processors.

(2) The parallel computation of BX, k = 1,2, -, r, takes

T, =logr(logn 4+ 1) = O(logr - logn)

steps using G¢ P, = O(rn?/2) processors.

(3) The parallel computation of s, = Y ;_, bi(l]-‘), k=1,2,---,r, by the basic algo-

rithm for sum in Sect.7.3.1 takes 753 = logn steps and Gc¢ P; = rn/2 processors.
(4) The parallel computation of ¢, k = 1,2, ---,r, by the basic algorithm for

solving lower triangular systems in Sect.7.3.1 takes

1 3
T, = Elogzr + 3 logr = O(log*r)

steps and Gc P, = O(r?) processors.
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(5) Since B, B?, --- , B"~! are already available, the parallel computation of

B '+ B2+ - +c 1
takes 1 + logr steps and rn?/2 processors. The parallel computation of A" takes
log n + 2 steps, one step for multiplication, log n steps for addition, and one step for
division, using n?m processors. Thus

Ts =logn +logr +3

and GePs = O (n’m).
It follows that

5
GIl(m,n) = Z T;
i=1

7 1
= logr <logn + 5) + zlogzr +2logn 4 logm +4

= O(logr -logn) +logm 4 2logn

and
n’r nr
=, m A
GceP(m,n) = max (GeP) =14 2 2
1<i<5 2 nr
mn, m> —.
2
The proof is completed. O

Algorithm 7.3.3 Let A € R"*" rank(A) = r, M and N be symmetric positive def-
inite matrices of orders m and n respectively. This algorithm computes the weighted
Moore-Penrose inverse A, of A.

(1) Parallelly compute N~

(2) Parallelly compute A* = N~'ATM and B = A*A = (N"'AT)(MA).

(3) Parallelly compute B¥ = [bfj-‘)], k=1,2,---,r.

(4) Let Ay, Ap, -+, A, denote the roots of the characteristic polynomial of B, and
the trace of B be

=) M, k=12 ,r
i=1
Parallelly compute

>’

n
sx = tr(B") :Zb?’.‘) k=12 ---.r
i=1
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(5) Let the characteristic polynomial 5(\) of B be

b(\) = det(\ — B)
=N 4N 4o N+

Since rank(B) = rank(A) =r, ¢,41 = ¢;12 = - - = ¢, = 0. From the Newton
formula we have

1 C1 S
S1 2 (&) A\Y)
A\ S1 3 C3 — _ | 83
Sp—1 8p—2 83 - T Cr Sy

Parallelly compute the solution of the above triangular system.
(6) Parallelly compute

1 _ .
Ay = = (A L (APAY 2 4 b DA
The steps and processors required for Algorithm 7.3.3 are given in [6].

Theorem 7.3.4 Let A € R™*", rank(A) = r, then Algorithm 7.3.3 for computing
AL y can be implemented in

WGI(m,n) = GI(m,n) + O(log® n + logm)
steps using

nt

=, m< S(/Tt2n—1),
WGcP(m,n) = gl
m*n 4+ mn?*, m > E(\/1+2n—1)

processors.

Proof Suppose that the ith stage of Algorithm 7.3.3 can be implemented in 7; steps
using We P; processors.

(1) It follows from Theorem 7.3.2 that the parallel computation of N~! takes T; =
O (log? n) steps and Wc Py = O(n*/2) processors.

(2) First, the parallel computation of N~'A” and M A takes 1 + logm or 1 + logn
steps and m*n 4+ mn? processors. Then the parallel computation of A* = (N "'AT)M
and B = (N~'AT)(M A) takes 1 + log m steps and m’n + mn? processors. Thus the
parallel computation of A* and B takes 7> = 2(1 + logm) or2 + log m + log n steps
and WcP, = m*n 4+ mn® processors.
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(3) The parallel computation of B k=1,2,---,r takes
T5; =logr(l +logn) = O(logr - logn)

steps and Wc Py = O(n’r/2) processors.

(4) The parallel computation of sz, k =1,2,---,r takes T, = logn steps and

Wec Py = rn/2 processors.
(5) The parallel computation of ¢, k = 1,2, -- - , r takes

15 3 2
Ts = zlog r+ Elogr = O(log”r)

steps and WcPs = o) processors.
(6) The parallel computation of AL  takes

Ts =logr +logn +3

steps and Wc Ps = n’m processors.

Thus
6
WGI(m.n) =) T,
i=1
= GI(m,n) + O(log” n + logm)
and
n4 n
A mi_(\/1+2n—1),
WGcP(m,n) = lm‘ax6(WcPl-) = %
<i<

2n+mn*, m > 5(«/1 +2n —1).

The proof is completed.

O

Remark By using the algorithm SUPERPOWERS(B, r) and some techniques, an
improved parallel algorithm for the generalized inverse A" is given in [8]. It shows
that, under the same assumptions as in [15], the time complexity and the number of

processors using the improved parallel algorithm are

le(m, n) = O(logr -logn)

and
2r/2pe m 2rl/2
, — = )
a?(m,n)z logr -logn n logr
[m/nn® m  2r'/?
_ — >
logn n logr
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respectively, and proves the cost-optimality
GcP(m, n)GI(m,n) < GeP(m,n)GI (m, n).

By using the finite algorithms for the Drazin inverse and the group inverse, the cor-
responding parallel algorithms and their time complexities and the required numbers
of processors can be obtained. It is omitted here.

7.4 Equivalence Theorem

In 1976, Csanky not only proposed the parallel algorithm for computing the inverse
of an n x n matrix A but also gave an important theoretical result [17].

Let I(n), E(n), D(n), and P (n) respectively denote the parallel arithmetic com-
plexities of inverting a matrix of order n, solving a system Ax = b of n linear
equations with n unknowns, computing an order n determinant det(A), and find-
ing the characteristic polynomial a(\) = det(Al — A) of an order n matrix A, then
I(n), E(n), D(n) and P(n) have the same growth rate as follows.

Lemma 7.4.1 2logn < I(n), E(n), D(n), P(n).

Proof The proof follows directly from the fact that in each case, at least one partial
result is a nontrivial function of at least n> variables and fan in argument. |

Theorem 7.4.1

I(n) = O(f(n))
& E(n) = 0(f(n))
< D(n) = O(f(n))
< P(n) = O(f(n)).

Proof (1) D(n) < E(n) +logn + O(1).
Let D; denote an order ¢ determinant and D,, be the determinant to be computed.
Define

l)n—k

Xk = ,
Dy iy
where 1 <k <n—1 and D,_; is a properly chosen minor of D, ;. Since
"\ xip = Di/D,,
D,

n—1
k=1 Yk

D, =
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Thus to compute D,,, we compute x; forall kin E(n — k + 1) parallel steps by solving
the corresponding system of equations, then in log n 4+ O (1) additional steps, we can
compute D,.
2)E(n) <1(n)+2.
Transforming Ax = b into the form A’x = (I),; in two steps by row operations,
where (A),; denotes the jth column of A. Then invert A" in I(n) steps and x =
(A D
3)I(n) < P(n)+1.
It is well know that dicA

= 2R i) = 1A

det(A)

where A j; is the algebraic cofactor of a;, the (j, i)-element of A = [a;;]. There are
n? determinants of order n — 1 and one determinant det(A) of order n for computing

A~!. These n? + 1 determinants can be evaluated in parallel. Let the characteristic
polynomial of any square matrix B is

b(\) = det(B — ),

then det(B) = b(0).
4) P(n) < D(n) +logn+ 0(1).
Let the characteristic polynomial of A be

a(M) = N+ a1 4+ + a1 A+ ap,

and w a primitive (n + 1)st root of unity. First compute a(w/) for all distinct w/ in
parallel by using the algorithm for computing determinants. This computation takes
D(n) + 1 steps, including one step for computing the diagonal elements of A — w/ 1.
Let

1 -1 a, a(l)
w w? e Wt a,_q a(w)
F = lw? wt oW ca=|: b= a(w?)
. . a .
1w w2 .o 1 a(w")
then Fa = b. The coefficients ay, a;, - - - , a, of a(\) can be obtained by the fast

Fourier transform [19]. This takes logn 4+ O (1) steps.
From Lemma 7.4.1 and the four inequalities above, the theorem follows. For
example, to prove I (n) < E(n), we have

I(n) < P(n)+1<D(n)+logn+ O(1)
< E(n)+2logn+ 0() < cE(n),
En) <1(n)+2 < cl(n),

where c; and ¢, are two nonzero constants. Hence I (n) < E(n). O
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In the remaining of the section, we discuss the generalized matrix defined shortly,
its parallel algorithm, relation with the generalized inverses, and equivalence theo-
rems.

LetA € C" and U € C2*" 7 and V* € C2*"") be matrices whose columns

form bases for AV'(A*) and NV (A) respectively. It follows from Corollary 3.1.1 that
AU
n=[ve)

o [AtvT

For convenience, A is called a generalized matrix (but not unique) of A. If A is
nonsingular, we adopt the convention A; = A.

Let adj(A;) be the common adjoint matrix of A;. An n X m submatrix that lies
in the upper left-hand corner of adj(A) is called a generalized adjoint matrix of A
and denoted by Adj(A;). If A is nonsingular, we adopt the convention Adj(A;) =
adj(A). It is clear that

is nonsingular and

4 _ Adi(An)

= iy (7.4.1)

The row echelon form of a matrix is given in Chap. 5. A form which is very closely
related to the row echelon form is the Hermite echelon form. However, the Hermite
echelon form is defined only for square matrices.

Definition 7.4.1 A matrix H € C"*" is said to be in the Hermite echelon form if its
elements h;; satisfy the following conditions:

(1) H is an upper triangular matrix, i.e., h;; = 0,i > j.
(2) h;; is either O or 1.

3) Ifh;; =0,then h;y =0forallk, 1 <k <n.

(4) If h;; = 1, then hy; = 0 for all k # i.

For example, the matrix
1202
0000
0011
0000

is in the Hermite echelon form. Below are some facts about the Hermite echelon
form, the proofs can be found in [20].
Let A € C"*", then

(1) A can always be row reduced to a Hermite echelon form. If A is reduced to its
row echelon form, then a permutation of rows can always be performed to obtain
a Hermite echelon form.
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(2) For a given matrix A, the Hermite echelon form H4 obtained by row reducing
A is unique.

(3) Hi = Hy.

4) N(A) =N(Hy) =R — Hy) and a basis for N'(A) is the set of nonzero
columns of I — Hy.

Algorithm 7.4.1 Let A € R!*", this algorithm computes a generalized matrix A,
of A.

(1) Row reduce A to its Hermite echelon form H,.

(2) Form I — H, and select its nonzero columns vy, v, - - - , V,_, to form the matrix
V=[vv - V.

(3) Row reduce A* to its Hermite echelon form Hy-.

(4) Form I — H,- and select its nonzero columns u;, up, --- , u,_, to form the
matrix U = [u; wp --- w,_,].

(5) Form the nonsingular matrix

AU
a=a8]
Although the above algorithm is stated for square matrices, it is easy to modify it
for non-square ones. If A € C"*", then we pad zero rows or zero columns such that

[A O] or [éi|

is square and use the identity

+ ¥
[A O]T:[f(‘)] or [g] =[A" O].

Let F(U, V) denote the parallel arithmetic complexity of computing the sub-
matrices U and V in the generalized matrix A; of A, then we have the following
bounds.

Lemma 7.4.2 ([6]) Let A € C"*", rank(A) = r, and the number of processors used
in Algorithm 7.4.1 be
(n—1DQ2n — ji1 — j),

where ji and j{ are the indices of the first nonzero columns of A and A* respectively,
then
4dr < F(U,V) <2(n+r).

Proof The proof is left to the reader as an exercise. O

Let A € C"*" rank(A) =r,b e C", and let GI (m,n), GE(m,n), GP(m, n),
and GD(m,n) denote the parallel arithmetic complexity of computing AT, the
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minimum-norm least-squares solution of the inconsistent linear equations Ax = b,
and the characteristic polynomial and the determinant of orderm + n — r generalized
matrix Aj, respectively. The the following lemmas show that GI (m, n), G E(m, n),
G P(m,n), and G D(m, n) have the same growth rate.

Lemma 743 GI(m,n)=Dm+n—r)+ FU,V)+ O(1).

Proof From (7.4.1), there are mn order m + n — r — 1 determinants and one order
m 4+ n — r determinant to be computed. They can be computed in parallel. (]

Lemma 744 GE(m,n)=D(m+n—r)+ FU,V)+ O(1).

Proof From Corollary 3.2.1, the components x; of the minimum-norm least-squares
solution of the inconsistent linear equations Ax = b are given by

_ det(A(j > b))

. U=>b) o 742
i det(A) I " (7.4.2)

where A is a generalized matrix of A, and

~ b
"~ [o]
isan (m 4+ n — r)-vector. From (7.4.2), there are n + 1 order m + n — r determinants
to be computed. They can be computed in parallel. (I
The following results are obvious.
Lemma 7.4.5

GDm,n)=Dm+n—r)+ F(U,V),
GP(m,n)=Pm+n—r)+ FU,V).
From Lemmas 7.4.3-7.4.5 and Theorems 7.4.1 and 7.3.4, we can immediately

obtain the following important result.

Theorem 7.4.2

Gl(m,n) = O(f(m,n,r))
< GE(m,n) = O(f(m,n,r))
< GD(m,n) = O(f(m,n,r))
< GP(m,n) = O(f(m,n,r)).

It follows from Theorem 3.1.1 that the matrix

A MU
A2_|:VN 0 }
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is nonsingular and

P Al vivNvHT
2 (U*M—IU)flU* o)

Let WGI(m,n), WGE(m,n), WGP (m,n), and WG D(m, n) denote the parallel
arithmetic complexity of computing the weighted Moore-Penrose inverse AL - the
minimum-norm(N) least-squares(M) solution x = AL yb of Ax = b, and the char-
acteristic polynomial and the determinant of order m + n — r generalized matrix A,
respectively. The following equivalence theorem is given in [6].

Theorem 7.4.3

WGI(m,n) = O(g(m,n,r))
< WGE(m,n) = O(g(m,n,r))
& WGD(m,n) = O(g(m,n,r))
& WGP(m,n) = O(g(m,n,r)).

Remarks

Besides Algorithm 7.4.1 for computing the generalized inverse A", Wang [9], Wang
and Wei [21, 22] presented a parallel Cramer rule (PCR) for computing A', A, and
AL - Whichis an extension of the parallel Cramer rule for computing A~! by Sridhar
[23].

A parallel algorithm for computing the Moore-Penrose inverse of a bidiagonal
matrix based on SIMD machines is given in [7]. It uses n processors and O (n[logn7)
iterations. Parallel (M-N)SVD algorithm on the SIMD computers can be found
in [24].

Parallel successive matrix squaring algorithms for computing the Moore-Penrose
inverse, the Drazin inverse, and the weighted Moore-Penrose inverse are presented
in [25-27]. Recurrent neural networks for computing the regular inverse, the Moore-
Penrose inverse, and the weighted Moore-Penrose inverse are given in [28-30].

An improved parallel method for computing the weighted Moore-Penrose inverse
A,y is discussed in [31].
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Chapter 8 ®)
Perturbation Analysis of the oo
Moore-Penrose Inverse and the Weighted
Moore-Penrose Inverse

Let A be a given matrix. When computing a generalized inverse of A, due to rounding
error, we actually obtain the generalized inverse of a perturbed matrix B = A + E
of A. It is natural to ask if the generalized inverse of B is close to that of A when
the perturbation E is sufficiently small. Thus, it becomes an important subject to
study the perturbation analysis of the generalized inverses and find ways to reduce
the effect of the perturbation.

8.1 Perturbation Bounds

Recall the perturbation bound of a nonsingular matrix A [1]. We start with the identity
matrix.

Theorem 8.1.1 Let P € C"" and || P|| < 1, then I — P is nonsingular and

—a—pyy =L @11
= 1P|

The inequality (8.1.1) tells us that for an identity matrix /, if the perturbation P
is small, then the error in the inverse (I — P)~! is approximately of the size || P|. In
other words, the error in the inverse of a perturbed identity matrix is about the same
as the perturbation. Now, for a general nonsingular matrix we have the following
theorem.

Theorem 8.1.2 (1) Let A, B= A+ E € C}*", then

1B~ — A .

© Springer Nature Singapore Pte Ltd. and Science Press 2018 263
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(2) If A is nonsingular, B= A+ E and A = |A~"|| | E|| < 1, then B is also non-
singular and
IA~"

1B~ <
1—A

and

1B~ —A _ A
A=Y T 1=A
_ _ K@AIEN/AI
L= rMAIEN/IAN

(8.1.2)

where k(A) = ||A]l |[A7Y.

The left side of the inequality (8.1.2) is the relative error in B~!. If E is sufficiently
small, then the right side of the inequality (8.1.2) is about x(A)| E||/||A|l. Since
IE|l/||A]l is the relative error in B = A + E, the inequality (8.1.2) implies that the
relative error in B may be magnified by a factor of x(A) in the relative error in B~!.
We call k(A) the condition number with respect to the inversion of the matrix A. If
k(A) is large, then the problem of inverting A is sensitive to the perturbation in A.
It is called ill-conditioned. Since

R(A) = Al |AT ] = JAA | = 1) =1,

k(A) is indeed an enlargement constant.

It follows from (8.1.2) that (A + E)~! is close to A~! when the inversion of the
matrix A is not ill-conditioned and the perturbation E is small enough. But it does
not hold for the Moore-Penrose inverse. For example, let

10 01 00
A=[00:|, F:[OO]’ and G:[01:|,

1 [10 . 1o
1+¢2 [50]’ (A +206) _|:0€1i|'

Clearly, lim._,o(A + ¢F)" = AT, however lim._,o(A + ¢G)" does not exist.

The above example shows that the perturbation € F has little effect on the general-
ized inversion of A, but G affects a big effect. Through direct observation, the pos-
sible reason is that rank(A 4 ¢ F) = rank(A), whereas rank(A + eG) > rank(A).
We will discuss the effect of the change of the rank on the Moore-Penrose inverse
and the weighted Moore-Penrose inverse. In the following discussion, M and N rep-
resent Hermitian positive definite matrices of orders m and n, respectively. First, we
consider the weighted Moore-Penrose inverse.

then
AT=A, (A+eF)' =
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Theorem 8.1.3 Let A, E € C"*", B = A+ E, andrank(A) = r.

(1) Ifrank(B) > rank(A), then

1By lvm > TEPS (8.1.3)
@) If 1Ay N lvm IE Ty < 1, then
rank(B) > rank(A). (8.1.4)
Proof (1) Suppose rank(B) = p > r, it follows from Lemma 5.2.2 that
pp(A+ E) < |Ellun + pp(A).
Since rank(A) = r, we have p,(A) = 0. Using (5.2.5), we get
2 P or—
pp(A+ E)
implying that (8.1.3) is true.
() If | A}y llvas IE Ny < 1. then
VAT T —IEllun >0,
and
pr(A) = | Ellmn > 0.
From the (M, N) singular value decomposition in Chap. 5,
pr(B) = i (A) = [ Ellyn > 0.
Consequently, (8.1.4) holds. ([

The Moore-Penrose inverse is a special case of the above theorem.

Corollary 8.1.1 Let A e C"" and B= A+ E.
(1) Ifrank(B) > rank(A), then

BT, >

IEl>
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Q) A2 |Ell2 < 1, then
rank(B) > rank(A).

Theorem 8.1.3 states that (1) if rank(B) > rank(A), even for B = A + E close to
A, that is, the perturbation E is small, || BL ~ |l v can be large and BL  can be totally
different from ALN; (2)if || E|| v ps 1s small enough, and || Ajvuv Ivm |Ellmn < 1,then
the rank of the perturbed matrix B = A + E willnotdecrease. If rank(B) > rank(A),
the above example tells us that BT may not be close to A¥, it may not even exist.
Thus, in the following discussion, we assume that rank(B) = rank(A), that is, the
perturbation maintains the rank.

For convenience, the following conditions are called Conditions I and II.

ConditionI Let A, E € C"*", B = A + E,rank(B) =rank(A) =r,and A| =

1A w s IE Iy < 1.
Condition 1T LetA7 E € men’ B=A+ E7rank(B) — rank(A) — r,and AZ —
IATL IE, < 1.

Theorem 8.1.4 If Condition I holds, then

+
”AMN”NM

8.1.5
- A, (8.1.5)

IBynling <

Proof Suppose the non-zero (M, N) singular values of A and B = A + E are
pA) = (A = = p(A) >0 and A+ E) = A+ E) > >
wr(A+ E) > 0, respectively. It follows from Theorem 5.2.2 and Lemma 5.2.2 that

IBYyx lvhy = 1 (B)
> 11y (A) — ||E | mn

= 1A%y llvh = IElww,
implying that (8.1.5) holds. (]
The Condition II is a special case of Condition I.

Corollary 8.1.2 [f Condition II holds, then

IAT ]I

BT, <
1B < 1

In order to derive a bound for the relative error

f i
”BMN - AMN”NM

AT n vt

we give a decomposition of BL N AL N-
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Lemma 8.1.1 Let A, E € C"*", and B = A + E, then

i P _ _pt T toopt i

BMN - AMN - _BMNEAMN + BMN(BMN) E*(I - AAMN)
— (I = B,yBYE* (AL, )ALy (8.1.6)
Proof From the left side of (8.1.6),
T T
BMN - AMN
= _BITV[NEA;/IN + (BLN - ALN) + BLN(B - A)AZIVIN
= —BlyEALy + By — AAl) — (I — Bl,yB)AlLy.  (8.1.7)

Using
A*M(I — AA), ) = A*M — A*(ALN)*A*M =0,

we get

B;[/IN(I - AALN) = BI/INBB;/IN(I - AATMN)
= B, M "(MBB],\)*(I — AA},\)
= B, M~ '(Bl, ) (A+ E)*M(I — AA},,)
= B, WM~ (B, ) E*M(I — AA},))
= Bl M~ '(Bl, ) NNT'E*M(I — AA},,)
= B, (Bl FE*(I — AAL,).

Similarly, from
(I - Bl,yB)N"'B* =0,

we get
(I — Bl,yB)Aly = —(I — B,y B)E* (A}, )* AL,y (8.1.8)

Thus, (8.1.6) follows. [l
Lemma 8.1.2 I[fO # P € C"" and P> = P = P*, then
IP|lyy = 1.
Proof 1t follows from (1.4.11) that
IPIRy = IP*Pllyn = 1P lny = I Pllww-

thus
IPlinn(IPllyy —1) =O.
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Since P # O, we get | Pllyy = 1. (Il

Now, we have a bound for the relative error in the weighted Moore-Penrose
inverse.

Theorem 8.1.5 [f Condition I holds, then

Biy — Al 1 1
L MNMNMS(H N 2>A1_ (8.1.9)
| A v L=ar A=Ay

Proof Since
(I —AA P =1 —AAL,, = — AAL Y

and .
(I —B},yB=1-B!,,B=(-B},,B*

from Lemma 8.1.2, we have
11— AA}ylmp =1 and |[I = BjyBllyy = 1.
It then follows from Lemma 8.1.1, (1.4.10), and (1.4.11) that

IBin — Abwllvm

< (AL NI IBinllwvas + IBLn s + 1AL 12D I E aw-

From Theorem 8.1.4, we obtain

IBiny — Abyllvm

AWy AN
5( v v WAl o at e g

1—A (1—Ay)? M

which implies (8.1.9). O

The above theorem says that if A has a small perturbation E and rank(A + E) =
rank (A), then the perturbation on Ajw 18 small.

Corollary 8.1.3 If Condition II holds, then

1B = Ao _ (11 A
[AT],  — 1—A,  (1—-Ap2)77

In this special case, if A has a small perturbation E, and rank(A + E) = rank(A),
then the perturbation on A" is small.

In the following, we derive another bound for the relative error of the weighted
Moore-Penrose inverse.
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Lemma 8.1.3 [f Condition I holds, then

IBBj N (I — AAY ) lwm = I AALy (I = BByl (8.1.10)
Proof Suppose thatthe (M, N) singular value decompositions of A and B are respec-
tively:

A=U [%1 8} V¥, and B=U, [%2 8} vy,

where Dy = diag(u1(A), ..., p,(A)), Dy = diag(u1(B), ..., p-(B)), and

UrMU, = 1,, ViN7'V, = I,
UiMU, = 1, V;N7'V, = I,

Thus, we have

Al =NV [Doll 8}U1*M,
Bl =N—1VZ[D51 8}U2*M,
AAL L =U, IO 8} U'M = U, [10 8} U,
I —AAl, =U, :8 I,,?_,] Ul =y [8 Imo_r] UM,
(1., 0

. . o7, -
BB,y = U, OO]UzMzUZ[OO}UZI,

: 0 07, o007,.
I_BBMN=U2 OI;71—Y]U21=U2|:Olm—rj|U2M‘

Let U, = MUy and Uy = MU, then (U))*U, = I, and (U)*U = I,,. Thus
U, and U, are unitary matrices, and

UiMU, = (0,)*U, = W
is also unitary. Partitioning
Wi Wip r
W= W21 W22 m-—r’
rom-—r

we have
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BB}, (I — A& ) lvm

I, O 00
= |u[6o]umun[g 2 Juiml
oo™ O Ly | 7,0

LO||Wh W O O
_ 1/2 r 11 Wiz Y
=[wees[o5) [ wi ][0, Jorw

_ I, O Wi Wi O O
T I{OO || Wa Wa || O Ly,
1 O W2
B O O

[IWi2ll2.

2

2

2

Similarly, we obtain
IAAY N (I = BByl = [ Warlla.
To derive (8.1.10), it remains to show that | W], = ||Wi2]l2. For any x € C"~"

with ||x|l, = 1, we set
{0
Y=1x|m-r"

then, since W is unitary, we obtain
2 2 2 2 2
Ixll2 = llyllz = IWyll; = [IWix]; + | Wax|l5.
Thus | Wiox[I3 = [1X[13 — | Wax|[3. consequently,

2
IWi2ll5

2
max || Wpx||;
[Ixll2=1

. 2
I — min ||[Wyx|;
Ix|l2=1

=1—-0._,(Wn),

where 0,,_,(W>) is the smallest singular value of W»,.
Similarly, it follows from ||x||% = ||y||§ = ||W*y||% = ||W2*1X||% + ||W2*2x||% that

2 2 : 2 2
IWarllz = W50 =1 - in [Woxlly =1 — 0, (W3,).
=

Since 0, (W) = 01— (W), we have |Wiallo = [|Wall2. O

Lemma 8.1.4 If Condition I holds, denoting G = B}, (I — AAl,,), then

IGInm < IBiynllwa 1AL lInas I E N mw- (8.1.11)
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Proof Tt follows from G = Bj, BB,y (I — AA},,) that

IGllvar < IBignllnva | BBy (I — AAL ) L.

Notice that
B*M(I — BB],,) =0

and
(I — BB},\)* =1 — BB}, = (I — BB},,)*.

From Lemma 8.1.2, we have |1 — BBLNMMM = 1. Based on Lemma 8.1.3, we get

IBB} N (I — AA} ) lu
= | AA}, v (I — BB llum
= IM"2AA} (I = BBl )M ™2,
= [M~'2(MAA} ) (I — BB, )M,
= [M~2A}, E*M' M1 — BB}, )M ||,
< IM2AYy E*M P
= [M'2EA} M|,
_ ||M1/2EN’1/2N1/2A;4NM’1/2||2
< IM'PENT'2||, INV2A} M7V,

*

= | Ellun 1A} xlvm-
Thus (8.1.11) follows. [l

From (8.1.7), (8.1.8), Theorem 8.1.4, and Lemma 8.1.4, we have the following
relative perturbation bounds:

1By — Ayylivy (1+ 2 )Al _ 3
”AMN”NM 1 —A 1 —A
and
BT — AT|l; ( 2 ) 3A,
— <1+ Ay < .
A7)l 1—A; 1—A,

If we study the perturbation analysis carefully, we can get some special results.

Theorem 8.1.6 [f Condition I holds, then

T T
”BMN_AMN”NM < Al

IA vl — 1=AF

(8.1.12)
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where

(14 +/5)/2, ifrank(A) < min{m, n},
C =12, ifrank (A) = min{m, n}, (m # n), (8.1.13)
1, ifrank(A) = m = n.

Denote the three terms in (8.1.7) as

F= _B;{NEALN»
G = Bj,y(I — AA},),
H=—(—Bj,yBAl,,.

It follows from Theorem 8.1.4, Lemma 8.1.4, and (8.1.8) that

Ay
1—A

A

+
IFllvms (1Glivm < 1Ay n I vas

IH v < AlAL v,
where
Ar = 1A n s TE Ty = 1AL D ew TE* wvas-
Setting
Ay
a=—,
1 -4,

we have

+
IFlnvms IGlInas 1HlIvm = allAyylivm.

Proof (1) For any x € C" and ||x|l3 = 1, X can be decomposed as x = x| + X3,
where x| = AALNX andx, = (I — AALN)X. clearly, x; and x, are M-orthogonal.
Thus 1 = ||X||ﬁ,1 = ||X1||%,1 + ||X2||ﬁ,, and there exists a ¢ such that cos ¢ = ||X;||p
and sin ¢ = ||Xz|| 7. From (8.1.7), we have

(Bi,y — Aly)X = Fx + Gxo + HX; =y, +¥2 + 3.

Using (I — B}, B)*N B}, = O, itis easy to verify that y3 is N-orthogonal to both
y1 and y». So,
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1By — Ay
lyr + y2lly + llyslly
2 ¥ 2 2 2
AP AL s (X1 sz + X2 lla0)? + %1 13,)
| Ajyy I3 m ((cos @ + sin ©)* + cos” )
AP AL, w130 (B + 25in 29 + cos 2¢) /2
A2l Af 133+ V5)/2. (8.1.14)

Al

IA

Thus

1Biuy = Ay = max [[(Byyy = Alyy)xlly
o

IA

all Ay v (1 +V/5)/2.

(2) When rank(B) = rank(A) = n < m, by BLN = (B*MB) 'B*M, we have I —
BLNB =0.Thus H =0andy; = 0.

When rank(B) = rank(A) = m < n, by A}, = N"TA*(AN"'A*)"!, we have
I —AAl,, =0.Thus G =0Oandy, = 0.

It follows from (8.1.14), where either y, or y3 is zero, that

I(Biyn — A3 < 20211 A% 0 s
Thus

1Biuy = Ay = max [[(Byyy = Alyy)xlly
o

IA

V2l ALy lIvw-

(3) When rank(A) = m = n and rank(B) = m = n. From the proof in (2), we know
that G = O and H = O. Thus the third case in (8.1.13) follows immediately. ([l

Finally, the Moore-Penrose inverse is a special case of the weighted Moore-
Penrose inverse.

Corollary 8.1.4 If Condition II holds, then

1B = ATl _ . A
AT~ T-Ay

where
(1 ++/5)/2 ifrank(A) < min{m, n},
c=3{2 ifrank(A) = min{m, n}, (m # n),
1 ifrank(A) = m = n.
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The perturbation bound for the Moore-Penrose inverse can be found in [2, 3], the
bound for the weighted Moore-Penrose inverse can be found in [4], on which this
section is based.

8.2 Continuity

It follows from Theorem 8.1.2 that if E — O, i.e., B — A, we have |B~! —
A", = 0,ie, B-! — A~!. This implies that the inverse of a nonsingular matrix
is a continuous function of the elements of the matrix. If we replace matrix B with
sequence {Ay}, we have the following conclusion.

Theorem 8.2.1 Let A € C}*", limy_, o Ax = A, then for sufficiently large k, Ay is
nonsingular and
lim A;' = A7 (8.2.1)

k—o00

Proof Suppose E; = Ay — A, then lim;_, || Ex|| = 0. Thus for sufficiently large
k, |JA="| || Ex]l < 1. It follows from Theorem 8.1.2 that A; is nonsingular and
limy_, o0 ||A,:1 — A7 = 0, thus (8.2.1) holds. (]

Just as the continuity of the inversion of nonsingular matrices, the Moore-Penrose
inverse and the weighted Moore-Penrose inverse of full column rank or full row rank
matrices are also continuous.

Theorem 8.2.2 Let A € C!'*", M and N be Hermitian positive definite matrices of
orders m and n, respectively, limy_, o, Ax = A, then for sufficiently large k, Ay is of
full column rank and .

Jlim (A)),y = Ay (8.2.2)

Proof Suppose Ey = Ay — A, then limy_,  ||Ex|| = 0. Since A € C"*", A*A is
nonsingular and

AjAr = (A+ E)"(A+ Ep)
= A*A (I + (A"A) (A + E)*Ex + Ef A)).

Since || Ex|| — 0, we have [[(A*A) "' ((A + Ex)*Ex + EfA)| < 1, thus
I+ (A*A) ' ((A+ E0)'Ec + Ef A)

is norlsingular, and sois A} Ay, i.e., Ag is of full column rank. Also, it can be derived
that Ay = M/2A;N~1/2 is of full column rank. Denote
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Ay = M'"2ANT?
— M'2AN"2 +M1/2EkN—1/2
= X-I— Ek.

Notice that Ek — 0, as k — oo,

lim (A + Ep)* = A%,

— 00 ~ ~ ~ ~ ~ o~
klim (A+ ED*(A+ E)) ' = A*A)~.
— 00

Furthermore,

lim Al = lim (A 4+ E0)*(A + E) (A + Ep)*
k—00 k—o00

(A*A) 1A

_ A

= (M'2ANT%)T

Thus

(Ak);/IN _ N—l/z(Ml/zAkN—1/2)+M1/2
—1/2 %% 2
= N'"2A MY

N N—l/2(M1/2AN—1/2)TM1/2

AT
- AMN’

as k — oo. O

Corollary 8.2.1 Let A € C*", limy_,oc Ay = A, then for sufficiently large k, Ay is
of full column rank and ,

lim A, = A"

k—00

Next we discuss the continuity of the Moore-Penrose inverse and the weighted

Moore-Penrose inverse of a rank-deficient matrix.

Theorem 8.2.3 Let A € C"*", M and N be Hermitian positive definite matrices
of orders m and n, respectively. Suppose {Ay} is an m x n matrix sequence and
Ay — A, then the necessary and sufficient condition for (Ak)LN — Ay IS

rank (Ay) = rank(A). (8.2.3)

for the sufficiently large k.

Proof Let E, = Ay — A. If Ay — A, then E; — O.
Sufficiency: If rank(A;) = rank(Al), then Condition I holds. It follows from Theo-
rem 8.1.6 and E; — O that [|[(A0)},y — Ay llvwr — 0, thus (AL, — Al .
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Necessity: Suppose (Ak)LN — A}LWN. Ifrank (A;) # rank(A), then we have rank (A)
< rank (A + E;) = rank(Ay). It follows from Theorem 8.1.3 that [|(Ag) y,n llvm >
| Ex ||;,11N, which shows that if E; — O, then (Ak);,“\, does not exist. O

Corollary 8.2.2 Suppose A € C"*", {A}isanm x n matrix sequence. If Ay — A,
then the necessary and sufficient condition for A, — At is

rank(A;) = rank(A)

for the sufficiently large k.

The continuity of the Moore-Penrose inverse can be found in [1, 5], that of the
weighted Moore-Penrose inverse can be found in [4], on which this section is based.

8.3 Rank-Preserving Modification

From the discussion in the previous section, we know that after the matrix A is
modifiedto B = A + E, if rank(B) > rank(A), it will cause the discontinuity of the
Moore-Penrose inverse or the weighted Moore-Penrose inverse. The modification E
can be computational errors. Therefore the computed result can be far from the true
solution, which is an serious issue in scientific computing. So, we are interested in
rank-preserving modifications. The rank-preserving modification of a rank deficient
matrix is discussed in [4, 5], which can overcome the discontinuity problem.

The basic idea behind rank-preserving modification is to deal with A + E suitably,
specifically, to construct its rank-preserving matrix Az such that when || E|| — O,

(1) Ap — A;
(2) rank(Ag) = rank(A).

The tool used is the full-rank decomposition. Let A € R**". Without loss of
generality, suppose the first r columns of A are linearly independent. Let the full-
rank factorization of A be

A= QU,

where Q is a product of orthogonal (or elementary lower triangular) matrices of order
m, U is an m X n upper echelon matrix.
Set

0=10: 0:] and U=[§g]

where Q) € R™", 0, € R"*"=") R e R"™*" an upper triangular matrix, and S €
R (=) thus
A= Q[R S].
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Suppose that the full-rank decompositionof B = A+ E = [a; +e; --- a, + €,]
is
B=0U.

where Qisa product of orthogonal (or elementary lower triangular) matrices of order
m and U is an m X n upper echelon matrix. Set

~ o~ o~ ~ [RS
0=[01 Q2] and U = |:O§]’
where Q) € R"™"| 0, € R"<m=r) R e R™" an upper triangular matrix, S €
R 0= and § € R=1)*t1=r) Construct

Ag = QiR §]. (8.3.1)

Obviously, when || E|| — 0, él — 0 and[§ §] — [R S]. Therefore Ap — A.
From the construction of the full-rank decomposition, when E is sufficiently small,
rank(Ag) = rank(A) = r. We call the definition (8.3.1) of Ag the rank-preserving
modification of A + E, thatis, A is a modification of A + E that preserves the rank
of A. From Theorem 8.2.3 and Corollary 8.2.2, we have

lim (Ap)l,, = A} lim A} = Af
Bt Ay = Ay and i A
respectively.
Example Let

then .
_ 1 4
ALN=N1/2(M1/2AN 1/2)TM1/2=g|: :|

and

IT1 -1
P 1
(A+E)MN—E[—11+E]

Whene — 0, B=A + E — A, however, BLN =(A+ E)LN does not exist. Now
consider the full-rank decomposition

1 0 14+€e 1
_[iel]
A+E—[ 1 1}— Ly [ 0o — ]

1+e€ 1+e¢

and modify it into the full-rank decomposition



278 8 Perturbation Analysis of the Moore-Penrose Inverse ...

1
Ap = 1 [I4+€e 1]l=FG

1+¢

to reserve the rank of A. Then when ¢ — 0, we have

(Ap)yy = N'GT(FTMANT'GT)'FT M
1+e€

A+ e? 1
T @+d+o?| 4 4

1+e€
_)i 14
251416

_ Al
= Ajy-

8.4 Condition Numbers

Based on the perturbation bounds presented in Sect. 8.1, this section gives condi-
tion numbers. As before, we start with the nonsingular case. When A € C*", from
(8.1.2), the perturbation bound for the inversion is

IA+E)" — A7 kAWIEN/IIA]
A= T L=RAIEN/NIAI

where k(A) = || Al ||A™"|| is the condition number with respect to the inversion of
matrix A.

When A € C"*", from (8.1.12), the perturbation bound for the weighted Moore-
Penrose inverse is

1A+ E)yy — Ay livm _ c 1ALy lIvas IE l[vn

1A} n I va = 1= 1ALyl I E Ny

Denoting
v (A) = (Al 1 Asyy llwa, (8.4.1)

we have the following result.

Theorem 8.4.1 [f Condition I holds, then

1A+ EYyyy — Ayywllvm _ c N AIE Ly /1Al
1A}yl T = kunDIENmn /1Al MmN
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This implies that if xyn(A) is small, then the effect of the perturbation E on
AL  1s also small; if xyy (A) is large, E may have large effect on AL - Therefore,
kyn (A) is called the condition number with respect to the weighted Moore-Penrose
inverse.

It follows from Lemma 8.1.4 that the perturbation bound for the Moore-Penrose
inverse is .

I(A+ E)" — A"|l - IATI2 I E 2
AT 1= AT IIE]:

Denoting
k2 (A) = | AlLlIAMl2,

we have the following result:

Corollary 8.4.1 If Condition II holds, then

||(A+E)T—A*|I2<C ra (A E 2/ All2
IA™]I> T 1= ra(AIEI/IAlL

and rk,(A) is called the condition number with respect to the Moore-Penrose inverse.

The classical normwise relative condition number measures the sensitivity of
matrix inversion. In this section, we will discuss the normwise relative condition
number for the weighted Moore-Penrose inverse and the Moore-Penrose inverse.
First, for a nonsingular A € C*" with matrix norm || - ||, this normwise relative
condition number is defined by

A E -1 _ A—l
cond(A) = lim sup 1A+ E) - I
=0 E|l<c| Al eflA=H|

That is, we look at an upper bound for the relative change in A~' compared with
a relative change in A of size e. We take the limit as ¢ — 0. Hence a condition
number records the worst case sensitivity to small perturbations. When the matrix
norm is induced by a vector norm, cond(A) can be expressed by

cond(A) = k(A) = | Al 1A~

For more discussion of the condition numbers of nonsingular matrices, see [6].
Now, we give the normwise relative condition numbers for the weighted Moore-
Penrose inverse and the Moore-Penrose inverse.

Theorem 8.4.2 The condition number of the weighted Moore-Penrose inverse
defined by

T il
. (A+E)yy — Aynlivm
cond(A) = hm+ sup | X[TN wn |l
e=>0% g AlIMN €
1By < clLp | Ay n v
R(E¥) C R(A%)




280 8 Perturbation Analysis of the Moore-Penrose Inverse ...

can be expressed by cond(A) = ||Allyn ||ALN I vas-

Proof From [7], the conditions ||E||yy < €l|Allpn, R(E) C R(A), and R(E*) C
R(A*), neglecting O (€*) terms in a standard expansion, we get

(A+ E);/IN - Ajl/IN = _A}LWNEALN'

Let E = ¢||A||yn E, then we have || E| ;v < 1. Since

T oaft il = T
”AMNEAMN”NM < ”AMN”NM ”E”MN ”A}WNHNM

2
< 1A} n 3w
the result follows if we can show that

sup AL NEA N Inw = 1AL x 13- (8.4.2)

IE[py <1
R(E) C R(A)
R(E*) C ’R(A*)

From Theorem 5.2.2,

_ DO * oo -l D7'O *
A_U[OO]V, Ay =N v[ o o|U™M.

and M'2U, N~12v_ U*M'?, and V*N~1/2 are all unitary matrices. Let e; be the
ith column of the identity matrix and £ = Ue,e}V*, then

IEllun = IM'2UeeVN~2|; = |le,ef], = 1
and
AT NEAL N vu

D“O]e *[D—lo
OOo|"| OO0 "

_ |n-12y [D_' 0} e.e* [D_] 0} UM

= N—‘V[ }U*M

oo0|“] 00
_|[p'o LI DO
Il o 0]*%| 0 0

=’

2

2

T 2
= 1Aynlym-

It/i\s easy to see that R(E) C R(A) and R(E*) C R(A*) from the relations of A
and E. Thus, (8.4.2) is proved. U
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In the special case when M =1 € C"™*" and N = I € C"*", we have the fol-

lowing corollary.

Corollary 8.4.2 The condition number of the Moore-Penrose inverse defined by

. A+ E) — AT,
cond(A) = lim sup I¢ )T I
0% g, < oAl ellAT]2
R(E) C R(A)
R(E*) C R(A%)

satisfies cond(A) = || All5 [|AT .

Now we consider another weighted matrix norm:
I ANy = IM'2ANT' 25, for A e C"*"

and
1B, = INV2BM™"?||p, for B e C™".

Then we have the following condition numbers.

Theorem 8.4.3 The condition number of the weighted Moore-Penrose inverse

defined by

1A+ E)yy — Ay v

condp(A) = lim sup
(F)
SO gD <am() el A nllim

R(E) C R(A)
R(E*) C R(A¥)

can be given by
F
1A yn AL 13

condp(A) =
A0 1S

Proof Analogous to the proof of Theorem 8.4.2, we need to show that

PoEAT () i
sup IAyNEAyNIINg = 1A N”NM
IEIy <1
R(E) C R(A)
R(E*)CR(A )

|(F)

The inequality ||E| uy = 1in(8.4.3) implies

F = —
IIAMNEALN”( ) ”NI/ZALNEA/TWNM 12,

_ ||N1/2AT M’l/le/ZEN’I/ZNl/zALNM’

F
< A n v NENSN AT o v

s
< Ay

1/2

(8.4.3)

Il
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where the inequalities | BC||r < [[Bll2 |CllF and [ BC||r < [|B||F [IC]|> are used.
Let E = Ue,e V™, we have
(F)
IEN =

and
Tooqpf (F) __ T 2
IAMNEA NN = 1Ay v

It is easy to see that R(E) C R(A) and R(E*) C R(A*).So (8.4.3) is proved.
As a special case of Theorem 8.4.3, we have:

Corollary 8.4.3 The condition number of the Moore-Penrose inverse defined by

I(A+E)" — AT||F

condg(A) = lim sup
0T i = e ellATlF
R(E)CR

R(E*) C R(A*)

satisfies
Al A3

condr(A) = AT
F

Note that from Corollary 8.4.3 condr(A) # ||A|lF AT F.
This section is based on [8].

8.5 Expression for the Perturbation of Weighted
Moore-Penrose Inverse

In this section, we consider a perturbation formula for the weighted Moore-Penrose
inverse of a rectangular matrix and give an explicit expression for the weighted
Moore-Penrose inverse of a perturbed matrix under the weakest rank condition.

Let B= A+ E € C"™*". We know that rank(B) = rank(A) is the necessary and
sufficient condition for the continuity of the weighted Moore-Penrose inverse. We
first present a condition that is equivalent to rank(B) = rank(A).

Lemma 8.5.1 Let A € C™*" with rank(A) =r and B = A+ E such that I +
ALNE is nonsingular, then rank (B) = rank(A) is equivalent to

(I — AAVE + Ay yE) ' (I — Al,y4) =0 (8.5.1)

or
(I — AAL I+ EAL )TVE( — Al A) = O. (8.5.2)

Proof Denote L = U*MBN~'V e C"™*" Itfollows from the (M, N) singular value
decomposition Theorem 5.2.2 that L can be written as
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Ly Lys D+ POy PLQ> | r
L = = , 8.5.3
|:L21 Lzz} [ P 0, PzQz]m—r ( )
r n—r

where P, = U*ME and Q; = N"'V;,i =1,2.
It is easy to show

I+ A E=1+N"'"V\D'U;ME =1+ Q,D7'P,.

Thus, if 7 + ALNE is nonsingular, then so is D + P; Q. Therefore, rank(B) =
rank (A) is equivalent to

rank (L) = rank(D + P; Q) = rank(L1;). (8.5.4)
From Lemma 4.1.3, we have
rank (L) = rank(D + Py Q1) + rank(P, Q> — P,Q1(D + P1 Q1) "' P Q2).

Combining (8.5.4) and the above equation, we see that rank(B) = rank(A) is equiv-
alent to
P10 — P,01(D + P1Q1)"' P10 = 0. (8.5.5)

Multiplying (8.5.5) with U, on the left and V" on the right, (8.5.5) is equivalent to

(I —AAY, VE(I = NT'Vi(D+ U;MEN~'V)T'UsME)(I — A}, A)
=0. (8.5.6)

Using the Scherman-Morrison-Woodburg formula, we have

N'"V(D+U;MEN'V))'UM
=N"'"Vi(D™' = D'U;ME(I + N"'V\D7'UME)'N~'viD™)

UM
= Ay — ALyEU 4+ A} E) Al
=+ A, E) Al (8.5.7)

Substituting (8.5.7) into (8.5.6), we get
(I — AALVEI — (I 4+ Al E)T' AL VE)T — Al A) = O,

that is,
(I —AAL, VE + Al E)'(I — A},yA) = 0.
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Notice that E(I + A}, E) = (I + EA},\)E, the equivalence of (8.5.1) and (8.5.2)
is obvious and the proof is completed. (|

Now, we are ready to give an expression of BL - the main topic of this section.

Theorem 8.5.1 Let B= A + E € C"*" with rank(B) = rank(A) =r, M and N
be Hermitian positive definite matrices of orders m and n respectively. Assuming
that I + ALNE is nonsingular, we have

By

= (Al yA+ N'X*N)(AL A — X(N + X*NX)"'X*N)
I+ Al E) AL (AAT,, — MY (M Y MY lY)
(AA,, + M~'Y*M), (8.5.8)

where ‘
=+ A E) Al EU — Al A)

and .
= (I — AAWEA, NI+ EAL )7L

Proof Tt can be easily verified that B, = N"'VL'U*M, where L is given in
(8.5.3). From [9, p. 34], we have

L'

[L’fz] (LYy + Ly LoLiy) " Ly (LY 4+ Ly Loy LD 7' (L) L3]

(I + (LzlLll Y Loy L)' (Lo L7

Denote F = Lj'Li; and G = Ly Ly} Then
L= [;} (I + FFY'Li (I + G*G)"'[I G*].

Hence, from VN~ ly, = UMU, = I, we have
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By
=(N"'"Vi + N"'VaF(I + FFH7'LN U+ G*G) ' (Ui M + G*U; M)
= (N"'"Vi + N"FYVINT'VIT + FFHT VNV L]
UrMU\ (I + G*G) 'UMU\(UfM + G*U; M)
= (Al A+ NV VAN VU + FFHTWVENT Y LT
UrMU (I + G*G) ' U M(AA},y + U G*U; M)
= (Al,yA + B2)B4B|Bs(AA,y + B3), (8.5.9)

where

By =N"'"ViL;]UM,

By = N 'V, F*V[,

B; = U,G*U;j M,

By =N"'vi(l + FF"7 v},

and
Bs=U (I +G*G)"'U;M.

We now compute Bj to Bs individually. By (8.5.7), we get

Bl =(+Al, E)'Al,, = Al U+ EAL,)" (8.5.10)
Since
F=L'Ly
= VN 'V\L[ U MU, U MEN""V,
= Vi + Al E) AL AAL VENT Y,
=V I+ A, E) AL ENT'V,. (8.5.11)
Similarly,

G=UMEA}, I+ EA,,)"'U,.
For B, and B3, we have

By = N'WMaViNY AL E) (I + (Al E)) 'V vy
= NN = Al A (Al NE) T+ (A E)) ™ (A y AN
= N7\ = Al A U+ (A E)) (AL E) (Al AN
=N — AL A AL VE) T+ (A E))'N
= N"'X*N, (8.5.12)
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where .
X = +AL E) AL VEU — A}y A)
and
By =M~ ((I — AA},)EA, (I + EAl,\)")*M
=M'Y*'M, (8.5.13)
where

Y = —AA},)EAL (I + EA} )"
From (8.5.11), we have

FF*
= Vi + A E) A VENTVIVSNTI U + Ay E) A E) W
= Vi + AyyE) AL EU — ALy AN+ Al E) T AL E) V)
= Vi + A, E) AL VE(I — Al AN — Al A
(I + Ay E) Al E) Vi
= V/XN'X*V,.

Likewise,
G*G = UjYMYU,,

using the Sherman-Morrison-Woodburg formula again, we have

I+ FF) ' =+ VXN 'x*v)~!
=1 - VXN "I+ X*V\V; XN ) ' x*V,
=1—-VX(N+X*NX)"'x*V,.

As for B4, we obtain

By=Al,yA—X(N+X*NX)"'X*N. (8.5.14)
Finally,
Bs = AAl,y — MY (M +YMyH Y.
Substituting Eqs. (8.5.10)—(8.5.14) into (8.5.9) leads to (8.5.8). (Il

From Theorem 8.5.1, we can immediately obtain the following corollaries.

Corollary 8.5.1 LetB = A + E € C"*" withrank(B) = rank(A) = r. If[ + ATE
is nonsingular, then
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B = (ATA+ X")(ATA - XU+ X*X)7' X")(I + ATE) ' AT
(AAT —Y*(I + YY" 7'Y)(AAT + 1),

where ,
X=U+A"E)yTATE( — ATA)

and .
Y=(—-AANEATI + EAH) .

Corollary 8.5.2 Let B=A+ E € C"" and I + Ajvqu be invertible.
(1) If R(E*) C R(A¥), then

B
MN
=T+ Al E) AL (AALy — MY (M YM YY)
(AAS,y + M~'Y*M).

(2) If R(E) C R(A), then
Bly
= (Al,yA+ NT'X*N)(A}, yA — X(N + X*NX)"'X*N)
¥ 147
I+ Ay NE) Al

B) [7]If R(E) C R(A) and R(E*) C R(A*), then
BJLN =+ ALNE)AA;FWN = Ajvuv(l + EALN)A-

This section is based on [10].
Remarks

It is difficult to compute the condition numbers x(A), ky(A) and Ky y(A). They
involve A~!, AT, and A}LW y or the eigenvalues A;(A) and \,(A), singular values
01(A) and 0,(A), (M, N) singular values y; (A) and p,(A). Many researchers have
tried to alleviate the difficulty by defining new condition numbers that are related to
the known condition numbers whereas easy to compute under certain circumstances.
Readers interested in this topic are referred to [6, 11-13]. Other researchers also
have investigated the minimal problem of condition numbers [7, 14, 15].

The condition numbers in this chapter are given in matrix norms. For more on the
condition numbers for the Moore-Penrose inverse, see [16] for Frobenius normwise
condition numbers, [17—-19] for mixed and componentwise condition numbers, [20]
for condition numbers involving Kronecker products, and [21] for optimal perturba-
tion bounds.



288 8 Perturbation Analysis of the Moore-Penrose Inverse ...

The bounds for the difference between the generalized inverses BT and AT is
discussed in [2, 22, 23] when B is an acute perturbation of A (R(A) and R(B) are
acute, so are R(A*) and R(B*)). More recent results on the acute perturbation of
the weighted M-P inverse can be found in [24].

The perturbation bounds of weighted pseudoinverse and weighted least squares
problem can be found in [25-27].

The continuity of the generalized inverse A(Tz)s is given in [28] and the continuity
of {1} inverse is given in [29].

The condition numbers for the generalized inversion of structured matrices, such
as symmetric, circulant, and Hankel, can be found in [30]. Wei and Zhang [31]
presented a condition number related to the generalized inverse A(TZ)S Condition
numbers for the outer inverse can be found in [32].

There are more types of perturbation analysis, for example, smoothed analysis
[33, 34], weighted acute perturbation [35], multiplicative perturbation [36], stable
perturbation [37, 38], and level-2 condition number [39]. A study of null space
perturbation with applications in presented in [40]. There is a book on the condition
number for PDE [41].
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Chapter 9 ®)
Perturbation Analysis of the Drazin oo
Inverse and the Group Inverse

Having studied the perturbation of the M-P inverse and the weighted M-P inverse, we
now turn to the perturbation analysis of the Drazin and group inverses. Let A € C"*"
with Ind(A) = k. When B = A + E and E is small, we discuss whether the Drazin
inverse of B is close to that of A and how to reduce the effect of the perturbation.

9.1 Perturbation Bound for the Drazin Inverse

When we derived the perturbation bounds for the M-P inverse and the weighted M-P
inverse, we had B — A" and ijv — ALN provided that B — A and rank(B) =
rank(A). In this section, we study the perturbation analysis of the Drazin inverse.
First, let us observe the following example. Let

0100 €000
0000 0000
A=10001]" E={0000]"
0000 0000
and
€100
0000
B=A+E=10001]"
0000

then B — A as ¢ — 0. It can be verified that
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0000 el'e?00
0000 0 000
Ad: 0000 and Bd:(A+E)d: 0 0 00
0000 0 000

This shows that although rank(B) = rank(A) =2, B; / Az ase — 0.

Now we give a perturbation bound for the Drazin inverse. For convenience, we
denote the following condition as Condition (W).
Condition (W) B = A + EwithInd(A) =k, E = AA;EAA;, and A = ||[A4E| <
1.

Lemma 9.1.1 If Condition (W) is satisfied, then R(B*) = R(A*) and N'(B*) =
N (A%, where Ind(B) = k.

Proof From the condition, we have

B=A+E=A+AA;E =A(+ A4E) ©.1.1)
=A+EA; A=+ EA)A, 9.1.2)
in which, since A = ||A4E|| < 1, I + A4E is nonsingular. Also, the eigenvalues of
A4 E are less than unity in absolute value, hence so are those of EA;. Thus I + E Ay,
is also nonsingular.
It follows from (9.1.1) and (9.1.2) that R(B) = R(A) and N (B) = N (A). It then
remains to show that

rank(B') = rank(A"), i=1,...,k,

which follows by induction.
Likewise it follows by induction that

R(B) CR(AY, i=1,....,k,
from which we arrive at

R(B) =R(AH, i=1,... k.
Similarly, we can obtain

NB)Y=NA), j=1,... k.

Thus
R(B*) @ N (B") = R(A"H @ N(A") = C”,
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and
AA; = BBy,

from which the conclusion follows. (]
We are now ready to prove a theorem on a bound for || B; — Ay||/]| Aall-
Theorem 9.1.1 Suppose E = AAjEAA; and A = ||A4E| < 1, then
By=(I+ A4E) "Ay = Ag(I + EAy)~!
and

| Ba — Adll < A '
[ Al 1—A

(9.1.3)

Proof First, we have

By —As=—A4EB;+ By —As+ Ay(B—A)B,;
—A4EB; + (B — AjABy) + (AyBB; — Ay)
— —A,EB,.

The last equality follows from Lemma 9.1.1. Thus,
I+ A4E)B; = Ay.

Similarly, we can prove B; — A; = —BysEA; and B;(I + EA;) = Ag. Since
|A4E] < 1,both I + AyE and I + E A, are nonsingular and

Bs=(I+A4E)Y 'Ay = As(I + EAp)~ .

Consequently,

1Bl < — Al
[ | AJE]

Next, applying the above inequality to

|Ba — Agll < AGE] | Ball,
which can be obtained from B; — A; = —A4E By, we get the inequality (9.1.3). UJ
Corollary 9.1.1 If Condition (W) holds, then

[ Aall [ Aall
= 1Ball = .
I+A 1-A
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Corollary 9.1.2 [f, in addition to Condition (W), ||A4|| |E|l < 1, then

IBa — Aall _ _ ra(DIEN/IAI
IAall ~ 1= ka(AIEN/IAI

where kq(A) = ||A|l ||Aqll is defined as the condition number with respect to the
Drazin inverse.

This section is based on [1].

9.2 Continuity of the Drazin Inverse

The continuity of the Drazin inverse is discussed in [2]. Let A € C"*" with Ind(A) =
k. From Chap. 2, the core-nilpotent decomposition

A=P [g 2} P!
can be written as
A =Cs+ Ny, 9.2.1)
where
cAzp[gg]P—l, NA=P|:8](3:|P‘1, (9.2.2)

P and C are nonsingular matrices of orders n and r, respectively, and N is nilpotent
matrix and N*¥ = O. It is easy to see that rank (A*) = rank(C4) = rank(C¥), i.e., the
rank of A* is the same as the rank of C 4, we call rank (A*) as the core-rank of A and
denote it by Core-rank(A). We will show how the continuity of A, is related to the
core-rank of A.

First, we need the following two lemmas.

Lemma 9.2.1 Let A € C!*" with Ind(A) = k, then
rank(AA,) = Core-rank(A). 9.2.3)

Proof 1t follows from the core-nilpotent decomposition (9.2.1)—(9.2.2) that

k
A":P[% 8]1)1.

Thus
Core-rank(A) = rank(A*) = rank(C*) = r.
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Since '
. c—'oO _1 _ I, O _
Ad_P[OO]P and AAd_P[OO}P ,

where I, is the identity matrix of order r,
rank(AA,) = rank(l,) =r.

Hence (9.2.3) holds. [l

Lemma 9.2.2 Suppose that the P; and P are projectors, not necessarily orthogonal,
onC", and P; — P, then there exists a jo such that rank (P;) = rank(P) for j > jo.

Proof Suppose that P; — P, where P} = P; and P> = P. Since P; — P, we
have rank(P;) > rank(P) for large j from Corollary 81.1. LetE; = P — P, then
P; =P+ Ejand E; — O, as j — o0o. Suppose that there does not exist a jy such
that rank (P; ) = rank(P) for j > jo. Then there is a subsequence P;, = P + E;,
such thatrank (P;,) > rank(P), i.e., dim(R(P;)) > dim(R(P)). But R(P) is com-
plementary to N (P). Hence for every ji, there exists a vector u;, # 0 such that
u;, € R(P;) andu;, € N(P), thus

u, =Pu;, =(P+Eju;, =Eju;.

Let || - || denote an operator norm on C"*", then || E}, || > 1 for all ji, which contra-
dicts the assumption that E;, — 0. Thus the required jj exists. ]

Next we present a theorem on the continuity of the Drazin inverse.

Theorem 9.2.1 Let A € C", Ind(A) = k, and {A} be a square matrix sequence
andlim;_ ., A; = A, then (Aj)q — Ay if and only if there exists an integer jo such
that

Core-rank(A;j) = Core-rank(A) forall j > jo. 9.2.4)

Proof Sufficiency: Suppose that A; = A+ E; and E; — O. If (9.2.4) holds, then
the condition of Theorem 2 in [3] also holds. Thus if || E ;|| — 0, we have [|(A;); —
Agll — 0, therefore (A;); — Ay.

Necessity: Suppose that (A;); — Ay, then (A;)(A;)q — AA,. LetInd(A) = k and
Ind(A;) = k;, then

P = (A )(A )d and P = AAd = P’R(Ak),/\/(Ak)'

R(A )N(A )
It follows Lemma 9.2.1 that
rank((A;)(A;)q) = Core-rank(A;), and rank(AA;) = Core-rank(A),

which implies Core-rank(A ;) = Core-rank(A) for large j from Lemma 9.2.2. [J
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9.3 Core-Rank Preserving Modification of Drazin Inverse

It follows from the discussion in the previous section that when a matrix A is per-
turbed to A + E, if Core-rank(A + E) > Core-rank(A), discontinuity occurs and
the computed solution can be far from the true solution, which is a serious problem.
A core-rank preserving method is presented in [4], which alleviates the discontinuity
problem.

First, we state that if A; — A, j — oo, then for sufficiently large j, we have

Core-rank(A;) > Core-rank(A)

and
Core-rank(A) = the number of the nonzero eigenvalues of A,

where repeated eigenvalues are counted repeatedly.
Suppose {A;} is a sequence of matrices of order n, A; — A, as j — oo,
Core-rank(A) =/, and

-1 B; C;
W;A;W, " = [Oj N; , 9.3.1)
where, for each j, W; is a product of orthogonal or elementary lower triangular
matrices, N; is a strictly upper triangular matrix, B; is a nonsingular matrix of order
[;. Let Core-rank(A;) =I;, and [; > [ for sufficiently large j. Applying similarity
transformation to B;

B, =Q;R; 07",

where R; is upper triangular and setting the /; —/ small (in modular) diagonal
elements in R; to zero, we can get another matrix R Thus B; is modified into

B =0 ]R Q . Denote the diagonal matrix D; = R; — R, then we have
lim D; =O. 9.3.2)
j—o00

In fact, let \;(A), i = 1, ..., n be the eigenvalues of A and
A(A)] = [A(A)] = -+ = [M(A)] > [N (A)] = - = [M(A)] = 0.
By the assumptions A; — A and (9.3.1), when j — 00, we have
AN(Bj)=X(A) =0, i=1+1,...1;.

Thus (9.3.2) holds.
We change A; to

B; C;
o N } w;. 9.3.3)
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Next we will prove A; — A, as j — oo, then
A — A 9.3.4)

Indeed, from (9.3.1)—(9.3.3), we know that as j — oo,
B;—B,0

I -1
A,—A,:Wj[ oo

and ~ ~
Aj—A=(A;—A)+(A; —A) = O,

that is, (9.3.4) holds. ~

It i§, easy to show that Core-rank(A;) = Core-rank(A) for sufficiently large ;.
Thus A; is called the core-rank preserving modification of A ;.

According to the continuity of the Drazin inverse, Theorem 9.2.1, we have

lim (A})g = Ag.
]— 0

It implies that the Drazin inverse is continuous after the core-rank preserving modi-
fication of A;.

Example Let
1240 1 2 4 0
0-111 0—-14+el4+el
A=lo_1q0| ™ A+E=1y | 1130
0000 0 0 0 0
then
1 —410 —4
00 0 0
Ac=1010 0 0
00 00

and A+ FE — A, as ¢ > 0. But (A + E); does not exist when ¢ — 0. Since
Core-rank(A + E) = 3 > Core-rank(A) = 1, we now make the core-rank preserv-
ing modification of A + E. Denote

1 0 0 O

2 2

VY2 V2,
o=| 2 % |
oﬁﬁo

2 2
(000 0 1]
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then B i
132 V2 0
2
0 2 242¢ Y2
0T(A+E)Q = Zﬁ
0 0 2 ——=
2
00 0 0 |
Set B B
132 V2 0
2
o 0 0 242 \/7_ ,
A+E=0Q 0
V2
00 0 —2=
2
(00 0 0 |
Hence

1 —4 — 6¢€ 10 + 66 —4 — 6e

—— 0 0 0 0
(A+E) = 0 0 0 0 — Ay, ase— 0.
0 0 0 0

9.4 Condition Number of the Drazin Inverse

The following condition number of the Drazin inverse A,:

k—1
CA) = <22 TAZIS A 2 (1 + ALl )l Agll2) + ||Ad||2) Al 941
i=0

and the perturbation bound

|Bs — Aall2 IE]2 2
= < C(A) —= + O(IE|3)
I Aall2 Al :

can be found in [3]. This reflects that if the condition number C(A) is small, the
perturbation E of A has little effect on Ay; if the condition number C(A) is large,
the perturbation £ may have large effect on A,.

In this section, we discuss the normwise relative condition number of the Drazin

inverse. We assume that
A:P[CO]P—1

ON
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is the Jordan canonical form of A and define

Alp =P 'AP d AP =P 'AP

Al = | lo and [[Allp," = F-

Theorem 9.4.1 Let A, E € C"" with Ind(A) = k. The condition number defined

by
A+E)y,;,— A
condp(A) = lim sup 1A+ Ela allp
0% gl < clalp ellAallp
R(E) C R(AY)

R(E*) ¢ R(AF")
can be given by condp(A) = ||Allp | Aallp-

Proof Following Theorem 9.1.1 and neglecting O (¢?) and higher order terms in a
standard expansion, we have

(A+ E)g— Ay = —Ay EA,.
Let E = ¢||A|| pE, where | E||p < 1, then
1AGEAqllp < lAallp 1Ellp | Adllp < 1 Aalp-
It then remains to show that

= 2
sup lAdEA4llp = | Aallp-
IEIp <1
R(E) c R(Ak)
R(E*) ¢ R(AK)

Indeed, set
E=P [ﬂ x* 071P",
where |[C~yll = [x*C 'l = |C "}y and [[x[|l2 = [lyll> = 1. Thus
lAGE A4l p
- HP [C(;] 8] PP [ﬂ [x* 071P~'P [CC;I 8} P!
o e] [a)w % C]

=[IClyll IIxX*C 7"
=Cc7'3
= [Aallp.

P

2
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Since

5 p| Y| jer aTip-1 _ p | YX O 51
E—P|:0i|[x 0 1P —P|:Ooi|P ,

it is easy to check that R(E) C R(A*) and R(E*) C R(A*™). The proof is com-
pleted. (]

Next we characterize the condition number of the F-norm.

Theorem 9.4.2 Let A, E € C"" with Ind(A) = k. The condition number defined
by
" . I(A + E)a — Al
cond, '(A) = lim sup )
SO P < garh el Aallp

R(E) ¢ R(AK)
R(E*) ¢ R

can be given by

A (F) A2
cond) () = VAL 1Al
Aallp
Proof The proof is similar to that of Theorem 9.4.1. (I

This section is adopted from [5].

9.5 Perturbation Bound for the Group Inverse

In this section, we present a perturbation bound for the group inverse. The details
can be found in [6, 7].

Lemma 9.5.1 Suppose that B = A + E withInd(A) < | and rank(B) = rank(A).
If

1
IAGIEN < , 9.5.1)
J 1+ Ind(A)/AA,]
then
Ind(B) = Ind(A) and ||Y| < 1,
where
Y=A,(I+EA)"E(I — AA)E(I + A,E)'A,. (9.5.2)

Proof Without loss of generality, we assume that Ind(A) = 1 because Ind(A) =0
implies that A + E is nonsingular and ¥ = O.
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It follows from (9.5.1) that [|A,E|| < |A,]| |E|l < 1 and

[Agll IEN Ind(A)\/|AAgll < 1 —[[AgI I ETl.

Thus 5 5
lAGI=I ENl" Ind(A) [AA |

IYi =
(1= 1IAgI IET)?

Next we will show that Ind(A + E) = 1. Since Ind(A) = 1, there is a nonsingular

matrix P such that
A=P [D O] P,

where D is a nonsingular matrix. Partition

P =[P, P,] and P‘lz[g;]

where P; and Q7 have the same column dimensions as D. Let

PlEPp — |:F11 F12:|.

Fy Fxp
As shown in [6, Theorem 4.1], D + F7; is nonsingular and therefore we have

D + Fy; Fip

P (A+E)P =
(4+E) |: Fy  Fn

} = [é} (D + FiDII T, (9.5.3)

where T and S are defined and expressed as

T =(D+Fi) 'Fo= QiAE + AJE)"' Py, 9.5.4)
S=Fy(D+Fn)'=0.(I +EA)'EA,P. (9.5.5)

It follows that TS = QY P, and
p(TS)=pYPLQ) =p¥) =|Y] <1,
which implies that / 4+ 7'S is nonsingular. It follows from (9.5.3) and [2, Corol-
lary 7.7.5] that
Ind(B) = Ind(P""(A+ E)P) =1,

which completes the proof. (]

The following theorem gives a new general upper bound for the relative error || B, —
Agll/ 11 Agll-
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Theorem 9.5.1 Let B = A + E such that Ind(A) < | and rank(B) = rank(A). If
(9.5.1) holds, then

”Bg - Aq”
Al
A= TAGITEIDA = [[AGIHTEN 4 [ Agll 1] — AAG ETl)
B (L= NAGIIED?> = I1AGIP I EUI — AAYEN)?
(L= [IAGILIET + 1[G NET — AAQHID) — 1. 9.5.6)

Proof We give an outline of the proof and refer the details to [6, 7].
From (9.5.3), we have

B, =P [é] I+TSH'D+F) T+ ' [1T]P " 9.5.7)

By the Eqgs.(9.5.4) and (9.5.5) and the definition (9.5.2) of Y, we get [ + TS =
01(1 4+ Y)P;. Consequently,

I+TS)"'=0,(1+Y)'P.
Applying the above equation and
(D+Fi)™' = Q1A,(I + EA)™ Py = Q1(I + AJE) ' A Py
to (9.5.7), we obtain
By

=P [;] 011+ V) 'POiA,I+EA)'PLO A+ ' [IT]P!

= (Pi+PS)01(1+ V) 'A,(I + EAY~ 1+ Y) ' Pi(Q1 + T Q).
Expanding the right-hand side of the above equation, we get

B,=U+Y)'"U+AE) AT +Y)"!
+ (I —AANUT + EA)'EA,(I+Y) ' U+ AE) A, +Y)!
+ T+ AT+ EA) U +Y) "AJEUI + AJE) (I — AA))
+ (I —AA)I +EA)T'EA,(I+Y)"A,(I + EA)T' I+ 1)!
“AGE(I + AJE) (I — AAy). (9.5.8)

where Y is given in (9.5.2).
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Let the four terms in the summation on the right-hand side of (9.5.8) be denoted

by t1, 2, t3 and t4. Then

Bg—Agztl—Ag+[2+t3+[4.

Now,
h—A,=U+Y) (U +AE)" —DAU+Y)!
— U+ AYT+Y) T -+ Y)Y A,
then
lltr — Agll _ IAGIIE] 21Y | —|IY)?
1A = A =YD = AN IED A —=]Y[)?
1

= -1
A =1 DA = [ AGIIE)
Similarly, we have
Il _ AN — AAYE]
IAGl = (A= YI2(0 = [[AgI 1 EI)?
sl _ IAGNIIEWU — AA
A = A =1YIN2A = [ Ayl I EIN?

sl _ A7 I = AADEIIEU — AA)|l
Agll — (L =1YID*A = 144 IEID?

Applying the above four inequalities to (9.5.9), we have
1By — Ayl
[ Agll
1 Al I — AAYEI

<

T A= YDA = NAGNIED (=Y = Al IEID?
[AGIIIIET — AAY|

(L= 1Y ID*(1 = 1Al IETD?

1A I = AADEINEU — AAYIl :
(L= 1YL = IIAG I ED?

+

+

9.5.9)
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Simplifying the right-hand side of the above inequality, we obtain

”Bg _Ag”
[l Al
= U= TAGNIEN+ AN I — AAY ETD
B (L= YD = IIAG I ED?
A=A NIEN+ AN NET = AAHID — 1. (9.5.10)

It is shown in [6] that

1 _ A —IAGEIDT = EA4ID
L=IYIl = (L= IAGIHIEID?> = [AIF IE(I — AA)E]

The upper bound (9.5.6) then follows from the above inequality and (9.5.10). [

Remarks

The condition number C(A) in (9.4.1) is more complicated than those of regular
inverse, the M-P inverse, and the weighted M-P inverse: || A|l [|A~|], |All2 |AT |2,
and ||A]| MNllALN [|nas- In 1979, Campbell and Meyer discussed this problem in [2]
and pointed out:

If A = PJ P~ !isthe Jordan canonical form of A, P is nonsingular, and Ind(A) =
k, and we compute A,y by Ay = A¥(AZ+1)TAK then ||A||(||Agll + 1) or

CA) =[PP A+ 17715

can be regarded as the condition number.

More results on the continuity and perturbation analysis of the matrix Drazin
inverse and W-weighted Drazin inverse can be found in [8—17]. The sign analysis of
Drazin and group inverses is presented in [18, 19]. Some additive properties of the
Drazin inverse are given in [20, 21]. The stable perturbation of the Drazin inverse
is discussed in [16, 22] and acute perturbation of the group inverse in [23]. In [24],
perturbation bounds are derived by the separation of simple invariant subspaces.

Condition numbers of the Bott-Duffin inverse and their condition numbers are
presented in [25].

The perturbation theories of the Bott-Duffin inverse, the generalized Bott-Duffin
inverse, the W-weighted Drazin inverse and the generalized inverse A(TZ)S are pre-
sented in [26-30].

Index splitting for the Drazin inverse and the singular linear system can be found
in [31-38].

The perturbation and subproper splitting for the generalized inverse A(Tz.)s are
discussed in [39, 40]. '
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Chapter 10 ®)
Generalized Inverses of Polynomial oo
Matrices

A polynomial matrix is a matrix whose entries are polynomials. Equivalently, a poly-
nomial matrix can be expressed as a polynomial with matrix coefficients. Formally
speaking, in the univariable case, (R[x])"*" and (R™*")[x] are isomorphic. In other
words, extending the entries of matrices to polynomials is the same as extending the
coefficients of polynomials to matrices. An example of a 3 x 2 polynomial matrix
of degree 2:

1 x2 01 00 1 0
x 0 =00 |x>+|10|x+]0 O
x+1x2—1 01 10 1 —1

In this chapter, we study the Moore-Penrose and Drazin inverses of a polynomial
matrix and algorithms for computing the generalized inverses.

10.1 Introduction

We start with the scalar nonsingular case. Let A € R"*" be nonsingular and

pN) =detM — A) = coN"+ e N 4l A+ ¢, (10.1.1)
where ¢y = 1, be the characteristic polynomial of A. The Cayley-Hamilton theorem
says

coA" + A" A+ ] = 0.

Thus, we have

e B B
AT = —¢) Py = (= 1) :
det(A)
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308 10 Generalized Inverses of Polynomial Matrices

where
P, =coA" '+ 1 AP 4y A+ i,

which can be efficiently computed using the iterative Horner’s Rule:
Ph=0; co=1;, P=AP_1+cI,i=1,..n.
How can the coefficients ¢;, i = 1, ..., n be obtained efficiently? It turns out that

tr(AP;)
¢ =— —, i=1,..n.

1

Putting all things together, the following algorithm, known as the Faddeev-Le Verrier
algorithm [1, 2] and presented in Sect. 5.5, efficiently computes the coefficients c;,
i =1, ..., n, of the characteristic polynomial of A.

Algorithm 10.1.1 Given a nonsingular matrix A € C"*", this algorithm computes
the coefficients ¢;,i = 1, ..., n, ofits characteristic polynomial (10.1.1) and its inverse
Al
1. P():O;C()Z 1;
2. fori=1ton

Pi=AP_1+ci_11;

¢ = —tr(AP)/i;
3. Al = —¢'P, = (= 1)""1 P,/ det(A);

As pointed out in Sect. 5.5, Decell generalized the above algorithm to general
scalar matrices and the Moore-Penrose inverse [3]. Let B = AA* and

FO) =detM — B) =ap\' +ai N+ -4 ay_ A +a,, as=1, (10.1.2)

be the characteristic polynomial of B. If k > 0 is the largest integer such that a; # 0,
then the Moore-Penrose inverse of A is given by

A" = —a'A* B B D).

If k = 0 is the largest integer such that a; # 0, that is, ay is the only nonzero coeffi-
cient, then AT = O.
Analogous to Algorithm 10.1.1, the following Decell’s algorithm computes A¥.

Algorithm 10.1.2 [3] Given A € C™*" and k the largest integer such that g; in
(10.1.2) is nonzero, this algorithm computes the Moore-Penrose inverse of A.

1. ifk =0return AT = O;
2. B=AA"
3. P():O;A()ZO;CI()Zl;
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4. fori =1tok
P=A_1+a1;
A = BP;
a; = —tr(A;)/1;

5. A" = —a;'A* P

In the following sections, we generalize the above algorithm to polynomial matri-
ces and their generalized inverses.

10.2 Moore-Penrose Inverse of a Polynomial Matrix

The definition of the Moore-Penrose inverse of a polynomial matrix is the same as the
scalar case, that is, it is the polynomial matrix satisfying the four Penrose conditions.

The Decell’s Algorithm 10.1.2 for computing the Moore-Penrose inverse is gen-
eralized to polynomial matrices [4]. Consider the polynomial matrix

AX) = Apx" + Ax" -+ A X+ A,
where A; € R™*" i =0,1,...,n.Let B(x) = A(x)A(x)T and

p(\, x) = det(Al — B(x))
= ag(ON' + N+ a O+ ay(x), (10.2.1)

where a(x) = 1, be the characteristic polynomial of B(x). It is shown in [4] that if
k is the largest integer such that a;(x) # 0 and Z is the set containing the zeros of
ax (x), then the Moore-Penrose inverse A(x)" of A(x) for x € R\Z is given by

A" = —a () TA@T (B + a1 ()BT + - g (0.

If k£ = 0 is the largest integer such that a;(x) # 0, then A(x)T = O. Moreover, for
each x; € Z, if k; < klis the largest integer such that ay, (x;) # 0, then the Moore-
Penrose inverse A(x;)" of A(x;) is given by

Alx)
= —a, () T ACHT (BO) T+ ai ) BGe) TR+ A a1 () )

The algorithm for computing the polynomial matrix A(x)" is completely analogous
to Algorithm 10.1.2, replacing the scalar matrices A, A;, B, and P; with the polyno-
mial matrices A(x), A;(x), B(x), and P (x) respectively and the scalars a; with the
polynomials a; (x). Obviously, the algorithm involves symbolic computation. Also
in [4], a two-dimensional algorithm that avoids symbolic computation is presented.
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From the definition B(x) = A(x)A(x)7, the degree of B(x) can be as high as 2n.
Consequently, A;(x), a;(x), and P;1(x) are of degrees up to 2in. Let

2in
ai(x) = E aijx’, i=1,..k,
=
where a; ; are scalars, and

2(i—Dn
Px)= Y Pyxl, i=1,..k
j=0

where P; ; are scalar matrices, then A()c)T can be written as

1
2kn n 2(k—1)n
Ax) = — Zak,jxj ZAJT»xj E Py jx’
=0 =0 j=0
-1
2%kn @k=Dn j

=— Zak,jxf Z Z(Af_lpk,l)xf ) (10.2.2)
j=0 j=0 1=0

Now we derive a; ; and P; ;. Following Algorithm 10.1.2, first we have

Ai(x) = B(x)P;(x)
2(i—Dn

n n

X Ty. i
E Ajx; E Ajx; E P ix
Jj=0 Jj=0 Jj=0

2n J 2(i—1)n
— . T J )
= E EAJ,,,AP X E P x
Jj=0 \p=0 Jj=0

2in J j=p ‘
> Z( (A,_,,_,A,T)> P, | X
0

j=0 \ p=0 \i=
It then follows that

—i (A (x))

2in J j—pr
=iy | > (Z(Aj_p_,AIT ) P, |«

j=0  \p=0 \i=0

a;(x)

which gives
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a,,:—-tr Z(Z(A, Al ) o | G =0, ..., 2in. (10.2.3)

p=0
Moreover,

Pi(x) = A1 (x) —a;_1(x)]

2(i—Dhn J j—r 2(i—D)n
- . .
- 5 (B () e ) 5 e
j=0 p=0 \I=0 j=0
2(i—Nn J j=p
= Z Z(A et ADPy | | a2
Jj=0 p=

which gives

J o fi=p
Z(Z(A,-,”A,%Pm,p) +ai1 1, (10.2.4)

p=0 \I/=0

for j =0,..,2(0 — Dn.
Finally, we have the following two-dimensional algorithm for computing A (x).

Algorithm 10.2.1 [4] Given a polynomial matrix A(x) € R™*"[x] and k, the largest
integer such that a;(x) in (10.2.1) is nonzero, this algorithm computes the Moore-
Penrose inverse of A(x).

1. if k = O return A(x)T =0
2. Poo=0;a00=1;
3. fori=1tok

compute P; ;, j=0,..,2( — 1n, by (10.2.4);
compute a; j, j =0, ...,2in, by (10.2.3);

4. compute A(x)" by (10.2.2).

Note that in the above algorithm it is assumed that P; ; = O when j > 2(i — 1)n.
This algorithm is called two-dimensional, since it involves the computation of two-
dimensional variables ¢; ; and P; ;.

10.3 Drazin Inverse of a Polynomial Matrix

The definition of the Drazin inverse A(x), of a polynomial matrix A(x) € R"*"[x]
is defined as the same as the scalar case, that is, A(x), is the matrix satisfying the
three conditions:
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AT A, = A,
AX)JAX)AX), = A(x)g,
AX)AMX)y = A(X)AKx),

where k = ind(A(x)), the index of A(x), defined as the smallest integer such that
rank(A(x)k) = rank(A(x)k“).
Let

p(\, x) = det(A — A(x))
= ag()ON" + a (ON 4 -+ @ (DN + a, (x),

where ap(x) = 1, be the characteristic polynomial of A@x)**!, then

a,+1(x)=...=a,(x) =0, and a,(x) #0,

where r = rank (A (x)**!). Let Z be the set containing the zeros of a,(x), then the

Drazin inverse A(x), of A(x) for x € R\Z is given by

Ay = —a, ()T A (AT T+ a () (A 2 4
+ a2 (AT +a, (0.

If r =0, then A(x),; = O.
Following the Decell’s Algorithm 10.1.2, we have the following finite algorithm
for computing the Drazin inverse A(x), of A(x) [5, 6].

Algorithm 10.3.1 [5] Given A(x) € R™"[x], k =1Ind(A(x)) and
r = rank (A (x)**1), this algorithm computes the Drazin inverse A(x), of A(x).
if r = 0 return A(x),; = O;

- B(x) = A0

. Po(x) =05 a0(x) = 1;

.fori=1tor

wa:—

Pi(x) = B(x)Pi_1(x) + a;i—1(x)1;
a; = —tr(B(x) P;(x))/1;

5. A()y = —a, ()T AP (x).

Following derivation of the two-dimensional Algorithm 10.2.1, we can obtain a
two-dimensional algorithm for computing the Drazin inverse of a polynomial matrix
[5, 6].

Notice that the degrees of B(x) = A AOK, Pi(x), and a;(x) are respec-
tively (k + Dn, kn, (i — 1)(k + D)n,and i (k + 1)n. Let

(k+Dn (i—1)(k+Dn

kn
Bx)= Y Bix), A=) A/, Px= Y P,
j=0 j=0 j=0
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where B, A, and P; ; are scalar matrices, and

i(k+1)n

a(x)= Y ax’,
—

where a; ; are scalars, then

A(X)q
r(k+1n B kn (r—=1)(k+1n
=—| 2 @’ | [ 2A > P
j=0 j=0 Jj=0

r(k+1n ' -1 (kr4+r—1)n j o )
—| > ax > (Z(A,-,P,,,))xf . (103.1)
j=0

j=0 1=0
Now we derive a; ; and P, ;. Firstly,

a;(x) = =i~ 'tr(B(x) Pi(x))

(k+1)n (i~ (k+Dn
=—iltr Z Bjx’ Z P; j(x)x’
j=0 Jj=0
itk+n [ j
=—i"'tr Z (Z B‘/‘_1P,"1> x/ 1,
j=0 \I=0
implying that
1 J
aj = -t > BiPu). j=0....ik+Dn. (10.3.2)
=0
Secondly,

Pi(x) =BX)P_1(x) —ai_1(x)]

(k+D)n (i=2)(k+1)n (i—1)(k+1)n
= Z Bjxf Z P,',ij] + Z a,-,lqjlx’
=0 =0 =0
(i—1D(k+1n j (i—1D(k+1n
= Z <Z Bj—lPi—l,l> x4+ Z aiy jx’
j=0  \i=o =0

(i—D)(k+Dn j
= Z ((ZBj—lPi—l,l> ai—l,j1> x/,
1=0

j=0
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implying that

J
P = (Z Bj,ﬂl,,> taiqjl, j=0,.,G—Dk+Dn  (10.3.3)
=0

Finally, we have the following two-dimensional algorithm for computing the
Drazin inverse A(x),; of A(x). Comparing with Algorithm 10.3.1, this algorithm
avoids symbolic computation.

Algorithm 10.3.2 [5] Given A(x) € R""[x], k=Ind(A(x)) and
r = rank(A(x)**1), this algorithm computes the Drazin inverse A (x), of A(x).

1. if k = O return A(x),; = O;
2. Poo=0;a00=1;
3. fori =1tok

compute P; ;, j=0,.., (@ —1)(k+ 1n,by (10.3.3);
compute @; j, j=0,...,i(k+ 1n, by (10.3.2);

4. compute A(x), by (10.3.1).

In the algorithm, it is assumed that B; = O, when j > (k+ 1)n, and P; ; = O,
when j > (i — 1)(k + D)n.

Example 10.3.1 [5] Let

A(x) =

o O O |
OO =
SO = O
O =% OO

thenn = 1.

It can be determined
rank (A(x)?) = rank(A(x)*) =2, whenx # 1.
Thus r = k = 2. Initially, we have
Poo=0 and agpo=1.
Wheni =1, Pjp =1 and

a0 = —tr(BoPrp) =0,
—tr(B1 P1p) = =3,
—tr(ByP1p) =3,
—tr(B3; Py o) = —1.

ar

apn

as
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When i =2,
(-1 100
Pro = BoPro+aiol = 8 (l) 8 8:|
0000
:O—l 0 0
Pyy=BiPio+al = 8_3 _:l; 8
0 0 0-3
:0 111
Pyo =By Pro+axd = 8 8 g (1)
0003
:O 0 0 0
Py3 = BsPio+aizl = 8 _(1) _(1) 8
0 0 0-1
and
1
a0 = —Etr(Bopz,o) =-1
a1 = _%tr(Bl Pro+ BoPr1) =3

an = —%tr(Bsz,o + B1Pyy + BoP2p) = =3
a3 = —%tr(Bﬂ’z,o + BoPry + BiPap+ BoPa3) = 1
arq = _%tr(B3P2,l +ByPyy+ B Py3) =0
as = —%tr(B3P2,z + By P3) =0
are = —%tr(B3P2,3) =0
Finally, we obtain

—(x—=1D% x—1D> x*(x—1 x*2@*—x+1

B 1 0 —x =13 =x(x =13 —x*(x-173
0 0 0 0

for x # 1. The case when x = 1 can be dealt with as a special case. 0
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Remarks

An algorithm for computing the Moore-Penrose inverse of a polynomial matrix
with two variables is presented in [4]. In [7], Karampetakis and Tzekis improved
Algorithm 10.2.1 for the case when there are big gaps between the powers of x, for
example, A(x) = Agx® + Aj9x 4+ Agy. The above algorithms can be generalized to
rational matrices by using the least common denominator of P; (x) [6].
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Chapter 11 ()
Moore-Penrose Inverse of Linear Check for
Operators

Before Moore introduced the generalized inverse of matrices by algebraic methods,
Fredholm, Hilbert, Schmidt, Bounitzky, Hurwitz and other mathematicians had stud-
ied the generalized inverses of integral operators and differential operators. Recently,
due to the development of science and technology and the need for practical prob-
lems, researchers are very interested in the study of the generalized inverses of linear
operators in abstract spaces.

In this and the following chapter, we will introduce the concepts, properties,
representation theorems and computational methods for the generalized inverses of
bounded linear operators in Hilbert spaces. This chapter is based on [1], Chap. 12
contains our recent research results [2, 3].

We introduce the following notations used in these two chapters: X; and X, are
Hilbert spaces over the same field; B(X, X») denotes the set of bounded linear
operators from X to X»; R(T) and N (T) represent the range and null space of
the operator T, respectively; o(T) and o,(T) stand for the spectrum and spectral
radius of the operator T'; T* is the conjugate operator of the operator T'; T | is the
restriction of 7' on the subspace S; M+ represents the orthogonal complement of M.

11.1 Definition and Basic Properties

Suppose that X and X, are Hilbert spaces over the same field of scalars. We consider
the fundamental problem of solving a general linear equation of the type

Tx = b, (11.1.1)
whereb € X, and T € B(Xy, X»).
© Springer Nature Singapore Pte Ltd. and Science Press 2018 317
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The most prevalent example of an equation of the type (11.1.1) is obtained when
X1 =R" X, =R"™ and T is an m-by-n matrix. If X; = X, = L2[0, 1], then the
integral operator defined by

1
(Tx)(s) =/ k(s, )x()dt, s ][O0, 1],
0

where k(s, t) € L*([0, 1] x [0, 1]), provides another important example.

If the inverse T~! of the operator T exists, then the Eq. (11.1.1) always has the
unique solution x = 7~'b. But in general such a linear equation may have more
than one solution when A/ (T') # {0}, or may have no solution at all when b ¢ R(T).
Even if the equation has no solution in the traditional meaning, it is still possible to
assign what is in a sense of a “best possible” solution to the problem. In fact, if we
let P denote the projection of X, onto R(T'), then Pb is the vector in R(7") which
is closest to b and it is reasonable to consider a solution u € X of the equation

Tx = Pb, (11.1.2)

as a generalized solution of (11.1.1).
Another natural approach to assigning generalized solutions to the Eq. (11.1.1) is
to find au € X; which “comes closest” to solving (11.1.1) in the sense that

[Tw—b] < ||Tx — bl

forany x € X;.
The next theorem shows the equivalence between (11.1.2) and the above problem.

Theorem 11.1.1 Suppose T € B(X;, X») has closed range R(T) andb € X, then
the following conditions on u € X are equivalent.

(1) Tu = Pb;

) ||ITu —b|| < ||ITx —Db|| forany x € X;;

(3) T*Tu = T*b.

Proof (1) = (2): Suppose Tu = Pb. Then by applying the Pythagorean theorem
and the fact that Pb — b € R(T)*, we have

ITx —b|* = |ITx — Pb|* + | Pb — b|?
= |Tx — Pb||> + ||Tu —b|?
> | Tu—b|?,

forany x € X;.
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2) = B): If |[Tu—Db| <||Tx—Db]| for all x € X, then again by applying the
Pythagorean theorem and the equality Pb = T'x for some x € X, we have

[Tu— bl
= ||Tu— Pb|* + | Pb — b|)?
= |Tu — Pb|* + | Tx — b|?
> ||Tu— Pb|> + |Tu—Db|>.

Therefore Tu — Pb = 0 and
Tu—b=Pb—be R =N(T¥

implying that 7*(Tu — b) = 0.
3)= (1): If T*Tu = T*b, then Tu — b € R(T)*, therefore

0=P(Tu—Db)=Tu-— Pb.

This completes the proof. O

Definition 11.1.1 A vector u € X satisfying one of the three equivalent conditions
(1) to (3) of Theorem 11.1.1 is called a least squares solution of the equation 7x = b.

Remark: Since R(T) is closed, a least squares solution of (11.1.1) exists for each
b € X,. Also, if N(T) # {0}, then there are infinitely many least squares solutions
of (11.1.1), since if u is a least squares solution, then so is u + v for any v € N (T).
It follows from Theorem 11.1.1 that the set of least squares solutions of (11.1.1)
can be written as
{ue Xy : T*Tu = T*b},

which, by the continuity and linearity of 7 and T, is a closed convex set. This
set contains a unique vector of minimal norm and we choose this vector to be the
least squares solution uniquely associated with b by way of the generalized inversion
process.

Definition 11.1.2 Let T € B(X;, X») have closed range R(T'). The mapping 77 :
X, — X, defined by T7b = u, where u is the minimal norm least squares solution
of the equation Tx = b, is called the generalized inverse of T'.

We will refer to Definition 11.1.2 above as the variational definition, and denote
it by definition (V). Note that if the operator 7 is invertible, then we certainly have
TH =171

The generalized inverse T has the following basic properties.

Theorem 11.1.2 If T € B(X,, X») has closed range R(T), then

R(TY = R(T*) = R(T'T).
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Proof Letb € X,. First, we show that T'b e N(T)*+ = R(T™). Suppose

T'b=u; +w e N(T)* @ N(T),
then u, is a least squares solution of 7x = b, since

Tu, =T (u +w)=TT'b=Pb.
Also, if u, # 0, By the Pythagorean theorem, we have

il < lluy +wa | = 1 77D1%,

contradicting the fact that T b is the least squares solution of minimal norm. There-
fore TTb = u; € N(T)* = R(T*).

Second, suppose thatu € N'(T)*. Letb = Tu. We claim that Tu = PTu = Pb.
Thus u is the least squares solution. Indeed, if x is another least squares solution,
then

Tx=Pb=Tu
and hence x — u = U € N/ (T). It then follows that
Ix[* =[x —u+ul® = @)+ Ju]® = [ju]>.
Hence u is the least squares solution of minimal norm, that is, u = T'b e R(TT)
Thus we see that R(TT) = R(T*).

Note that for any b € X5, T'b = TTPb € R(T'T), thus R(T") Cc R(TTT). It
is obvious that R(TTT) ¢ R(T") and hence R(T") = R(T'T). O
Corollary 11.1.1 IfT € B(X1, X») has closed range R(T), then T™ € B(X», X1).

Proof First we prove that T% is linear. Letb, b € X >, then
TT'b=Pb and TT'b= Pb.

Therefore B B B
TT'™O+TTb=Pb+b)=TT"(b+b)

and hence, by Theorem 11.1.2,
T'b 4+ TTb — TT(b +b) € N(T)* N N(T) = {0}.

Similarly, it can be shown that for any scalar o, T (ab) = aT ' (b).



11.1 Definition and Basic Properties 321

Next we show that 7T is bounded. Since R(TT) = R(T*) = N(T)*, there exists
a positive number m such that

ITT b > m|T b,
forallb € X,. Since TT b = Pb, it follows that

170 _

1
Ibll = [ Pb]| = m|T™b], thatis, —
bl m

and hence T is bounded. O

Next we give some alternative definitions of the generalized inverse 7' and prove
their equivalence.

Definition 11.1.3 If T € B(X,, X») has closed range R(T), then T is the unique
operator in B(X;, X) satisfying

() TT" = Pray; () T'T = Prer.

Definition 11.1.4 If T € B(X,, X») has closed range R(T), then T is the unique
operator in B(X;, X) satisfying

(HTT'T =T; QT TT =TT,
A TTH*=T1TT", 4 TTT)* =T'T.

Definition 11.1.5 If T € B(X;, X») has closed range R(7T), then T is the unique
operator in B(X,, X) satisfying

() TITx =x, x e N(T)*;
Q) Ty=0, yeR(™".

We call Definitions 11.1.3, 11.1.4, and 11.1.5 as the Moore definition, Penrose
definition, and Desoer-Whalen definition, and denote them by definitions (M), (P)
and (D-W), respectively. Next we will prove the uniqueness of 7.

Theorem 11.1.3 There can be at most one operator T' € B(X, X) satisfying the
definition (P).

Proof From (2) and (3) of the definition (P), we have

T =1YTTH =TTV 7" (11.1.3)
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It follows from (2) and (4) of the definition (P) that
T =Tyt =1*77T". (11.1.4)
By (1) and (3) of the definition (P), we have
T ={TTHT =T"T*T (11.1.5)

and therefore, .
T*=T*TT". (11.1.6)

Finally, by (1) and (4) of the definition (P), we see that
T=TT'T=TT*T"".

Therefore,
T =T1'TT* (11.1.7)

Suppose now that X and Y are two operators in B(X,, X ) satisfying the definition
(P), then
X =XX*T* by (11.1.3)
= XX*T*TY by (11.1.6)
= XTY by (11.1.5)
= XTT*Y*Y by (11.1.4)
=T*Y*Y by (11.1.7)
=Y by (11.1.4).

The proof is completed. ]
Theorem 11.1.4 The definitions (M) and (P) are equivalent.

Proof If TT satisfies the definition (M), then we see that 77" and T'7T are self-
adjoint. Also,
TT'T = PreyT =T

and
T'TT = PraenTT = TT.

Hence T satisfies the definition (P).
Conversely, if T satisfies the definition (P), then

(TTYWTTH =T(T'TTH =TT".
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Therefore T T is a self-adjoint idempotent operator and hence is a projection operator
onto the subspace S = {y : TThy = y}. Since TTTT = T, it follows that R(T) C
S. Also, if y € S, then for any z € N'(T*),

(y. 2) =(TT'y, 2) = (T'y, T*z) =0,
hencey € N(T*)* = R(T) and S C R(T). It follows that
TT" = Prr.

It remains to show that if 77 satisfies the definition (P), then T'T = Pr(r+). Its
proof is left as an exercise. U

It follows from Theorem 11.1.4 that the definitions (M) and (P) are equivalent
and we refer to these definitions as the Moore-Penrose inverse definition, denoted
by definition (M-P).

Theorem 11.1.5 The definitions (V), (M-P) and (D-W) are equivalent.

Proof (D-W) = (V): Suppose that T satisfies the definition (D-W). Let
b=b;+by e R(T)® R(T* = X»,

then TT™b = TT'b,. Since b; € R(T), we have Tx = b, for some x € N (T)*,
therefore
TT'b =TT Tx = Tx =b; = Prn)b.

That is, T7b is a least squares solution. Suppose that u is another least squares
solution, then u — T'b € M (T). Also, since b=b; + b, € R(T) @ R(T)* and
T'h, = 0, from (2) of the definition (D-W), we have

Th=T"b, = TTx =x,

for some x € N(T)*. Therefore, T'b € N (T)*, implying that 7™b L (u — T'b).
By the Pythagorean theorem, we have || 77b||> < |u||?> and hence T b is the minimal
norm least squares solution, that is, T satisfies the definition (V).

(V) = (M-P): If T satisfies the definition (V), then clearly 7T = Pr(r). Also for
any X € Xy, by Theorem 11.1.2, we have

X=X, +x e N(T)" ®N(T) =R(T") & N(T).
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Therefore
TT'Tx=TT'Tx, = PryTx; = Tx,
and hence
T'Tx —x; € N(T) NN(T)* = {0},
that is,

TTTX =X] = PR(T")X’

which implies that 77T = Pr(r+). Thus T satisfies the definition (M-P).
(M-P) = (D-W): Suppose that T satisfies the definition (M-P) and y € R(T)*,
then

T'y=T'TT'y = T"Pryy = 0.

It remains to show that TT7Tx = x for x € A/(T)*. Indeed, since TT'T =T,
it follows that T7Tx —x € N(T) for any x € X;. Now if x € N(T)*, by the
Pythagorean theorem, we have

IxII* > | Praoxl? = ITTTx|? = 1T Tx — x + x]|?
= IT"Tx — x| + [Ix]*.

Therefore T7Tx —x = 0 forx € N (T)L, thatis, T7Tx = x. Hence T satisfies the
definition (D-W). ([l

Since R(T") = N(T)*, if uis aleast squares solution and v € A/(T), thenu + v
is also a least squares solution. Thus the set of the least squares solution of (11.1.1)
is T'b + N(T). _

If R(T) is closed, it is well known that R(T*) is also closed. Suppose T =
T*T |r(r+), we have

(Tx, x) = |Tx|*> = m?|x||> (m > 0),

forx € R(T*). Thus we can define T-'on R(T), and R(T) =R(T*T) = R(T*).
Thus T~! € B(R(T*), R(T*)), from which it is easy to prove the following theorem.

Theorem 11.1.6 Suppose that T € B(X1, X,) has closed range R(T) and T =
T*T |7€(T*)’ then

TH=T7'T* (11.1.8)

Proof From (?’IT*)TX =x,forx € N(T)+ = R(T*), and (f’lT*)y = 0,fory €
R(T)* = N(T*), we have T~!T* = T by the definition (D-W). O
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11.2 Representation Theorem

In this section, we will present the representation theorem of the generalized inverse
T of a bounded linear operator. It states that 77 can be represented as the limit of a
sequence of operators.
Before the representation theorem, we provide some necessary background [4].
Suppose A € B(X, X) and self-adjoint, A* = A, let

m = H1nf (Ax, x) and M = sup (AXx, X).
= [x]l=1

If S,,(x) is a continuous real valued function on [m, M], then

1S ()l = max [S,(x)| = 0,(Sx(A)),
xeo(A)

where 0(A) C 2 C (—oo, +00). Let {S,(x)} be a sequence of continuous real
valued functions on 2 with lim,,_, o, S, (x) = S(x) uniformly on o (A), then lim,,_,
S, (A) = S(A) uniformly on B(X, X).

Suppose T € B(X;, Xz) and R(T)isclosed. Let H = R(T*), then H is a Hilbert
space. Define the operator T =TT | 7 . The spectrum of the operator T e B(H, H)
satisfies O’(T) C (0, 4+00). Indeed, H = R(T*) = N(T)*, for every x € H, we
have

(T*T 1%, ) = ITxII> = m*|Ix|>, m > 0.

Thus T*T |y is a self-adjoint positive operator, and a(f) C (0, 400) holds.

Theorem 11.2.1 (Representation theorem) Suppose that the range R(T) of T €
B(X1, X») is closed and let T = T*T |y, where H = R(T*). If Q is an open set
such thata(?) C Q C (0, 400) and {S, (x)} is a sequence of continuous real valued
functions on Q with lim,_, oo S, (x) = x~! uniformly on J(T), then

= lim S,(T)T*,

n—o0o

where the convergence is in the uniform topology for B(X,, X1). Furthermore,

IS/ (T)YT* =TT < sup [xS,(x) — 1] T7].
xeo(T)

Proof Using the spectral theorem for self-adjoint linear operators, we have

lim S,(T)=T""
n—o0
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uniformly in B(H, H). It follows from (11.1.8) that

lim S,(D)T*=T"'T*=T1".

n—00
To obtain the error bound, we note that 7* = TTT and therefore

S(DT* =T = (S,(T)T — DT".

Sincﬁ@ f is self-adjoint and S, (x)x is a real-valued continuous function on o(f),
S, (T)T is also self-adjoint. Using the spectral radius formula for self-adjoint oper-

ators and the spectral mapping theorem, we have

1S.(DYT — 11| = |0,(S, (DT — )|
= sup [Sy(x)x — 1|

xeo(T)
and hence -
I1S(T)T* =TTl < sup [S,(x)x —1[[T7].
xeo(T)
The proof is completed. (]

This theorem suggests that we construct an iterative process of computing a
sequence that converges to the generalized inverse. This is the basis for the com-
putational methods in the next section. Before that, we present the following bound
for o(T) to be used in the computational formulas in the next section.

Theorem 11.2.2 Suppose T € B(X1, X2) has closed range R(T) and let T =
T*T |y, where H = R(T*), then for each \ € o(T), we have

7772 < A < ITI%
Proof Since in the Hilbert space H = R(T™*),
IT*T | I < IT*T,

we have _
ITI < IT*TI < IT*IITI = T

Thus ~
AT < ITI*

On the other hand, if x € H = R(T*), then

x> = || Prerox|* = | T Tx|?
< IT P ITx)? = 1T (Tx, x).
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Therefore -
(Tx, x) = IT"*(x, x) = 0,
that is, ~
T = |71,
from which the result follows. O

11.3 Computational Methods

In this section, we will describe Euler-Knopp methods, Newton methods, hyperpower
methods and the methods based on interpolating function theory for computing the
generalized inverse 7. These methods are based on Theorem 11.2.1 (the Represen-
tation theorem).

11.3.1 Euler-Knopp Methods

Let )
Su(x) =a ) (1—ax) (11.3.1)

k=0

be the Euler-Knopp transformation of the series Yy, (1 — x)* [5], where « is a fixed
parameter. Clearly,

Iim S,(x) = l
n—00 X
uniformly on compact subsets of the set
Eo={x:|1l—ax|<l1}={x:0<x<2/a}.
It follows from Theorem 11.2.2 that o(T) C [ 17772, ||T||~2] c (0, IT|?1, if we

choose the parameter « such that 0 < o < 2||T|| 72, then o(T) C (0, |T|*] C E,.
For such a parameter, applying the Representation theorem, we obtain

o0
T" = lim S,(T)T* =) (I —aT*T)T*.
n—oo k:()



328 11  Moore-Penrose Inverse of Linear Operators

Note thatif weset T, = Y y_o(I — aT*T)*T*, then we get the iterative process:
To = aT™,
{ Too1 = —aT*TT, + aT*. (11.3.2)

Therefore lim, o, 7, = T . In order to apply Theorem 11.2.1 to estimate the error
between T, and T'f, we first estimate |x S, (x) — 1]. From (11.3.1),

So(x) = a,
{ Sir1(x) = (1 — ax) S, (x) + . (11.3.3)

Thus we have
Spp1()x — 1= (1 — ax)(S,(x)x — 1).

Therefore
1S,()x — 1] = |1 — ax|".

It follows from Theorem 11.2.2 that || 77|72 < x < ||T|]? for x € O’(T) and 0 <
a < 2||T|72, thus
11— ax| <0,

where
B =max {1 —allT|*|, [1 — T ?}. (11.3.4)
Therefore
[S,(x)x — 1] < gL, (11.3.5)
Since |T|| |T7| = ITTT|| = |P|| = 1,wehave2 > «||T||* > «|T7||2 > 0, which

implies 0 < § < 1. By Theorem 11.2.1 and (11.3.5), we get the estimate of the error
IT, = T*I < 17718,

which implies that the Euler-Knopp method defined by (11.3.2) is a first order iterative
method. Next we will present a faster convergent iterative sequence.

11.3.2 Newton Methods
Suppose that for o > 0, we define a sequence of functions {S, (x)} by

So(x) = o,
{ Sp1(x) = S, (x)(2 — xS, (x)). (11.3.6)
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We will show that (11.3.6) converges to x ! uniformly on the compact subset o(f)
of the set £, = {x : 0 < x < 2/a}. Specifically,

XS (x) — 1 = x8,(x)(2 — xS, (x)) — 1
= —(x8,(x) — D%

Furthermore
XS, (x) — 1] = [xS,1(x) = 1P = - = Jax — 1]*".

It follows from Theorem 11.2.2 that ||T7|| 72 < x < ||T||* for x € U(?). Choose «
such that 0 < o < 2||T|| 72, then

lax =11 < B <1,
where [ is given by (11.3.4). Thus
xS, (x) — 1] = Jax = 1> < 3% - 0 asn — oo. (11.3.7)

Therefore lim,_, o S, (x) = x~! unifoLmly on a(f).
Let the sequence of operators {S, (T)} defined by (11.3.6) be

So(T) =al, _ ~
Sn+1(T) = Sn(T)(2] - T*TSn(T))a

then {Sn(T)} C B(H, H), H ="R(T*). Applying Theorem 11.2.1, we have

TF = lim S,(T)T*

n—o0
uniformly on B(Xz, X1).

Setting 7,, = S, (T)T*, we obtain the iterative process

{ To =aT™, (11.3.8)

Ty = 7,21 —TT,).

Therefore lim,,_, o, 7, = T". Applying Theorem 11.2.1 and (11.3.7), we get the fol-
lowing bound for the difference between 7, and 7'

1T, — T = IT"|| sup |xS,(x)— 1] <|IT7|B.
xea(f)

Thus the Newton method determined by (11.3.8) is a second order iterative method.
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11.3.3 Hyperpower Methods

The so-called hyperpower method is a technique for extrapolating on the desirable
quadratic convergence property of the Newton methods. It has the pth order conver-
gence rate. But each iteration requires more computation than the Newton method
when p > 2.

Given an integer p > 2, define a sequence of functions {S7 (x)} by

{ So) =a >0, (11.3.9)

SV () = SP) iy (1 — xS k.
If p =2, (11.3.9) coincides (11.3.6). Noting that
xSP, (x) — 1] = [xSP(x) — 117,

we get
|xSP(x) — 1] = |ax — 1|7".

It follows from Theorem 11.2.2 that ||T7||72 < x < ||T|]* for x € a(f). Choose «
such that 0 < o < 2||T|| 72, then

lax = 1] <= B <1,
where (3 is the same as in (11.3.4). Thus
|xSP(x) — 1| =|ax — 1|7 < B — 0 asn — oo. (11.3.10)

Therefore lim,_, oo SY (x) = x~! uniformly on o(T).
Let the sequence of operators (SP(T)) defined by (11.3.9) be

SU(T) = al,
~ ~ p=l ~
SV (T)=S)(T) Y (I = T*TS;(T))*.
k=0
Then {S,f(?)} C B(H, H),where H = R(T*). Applying Theorem 11.2.1, we have
lim S"(T)T*=T"
n—oQ

uniformly on B(X», X;). Note that
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p—1
SP L (DT* = SP(T) Z(I — T*TSP(T))*T*
k=0
p—1
= SHT* Y (I — TSI TH.
k=0

Thus, defining 7,7 = S (T)T*, we get the iterative process
T, = aT*,
), =T/ Z(l — TT) .

Therefore lim, .o, T,/ = T'. Applying Theorem 11.2.1 and (11.3.10), we obtain the
following bound for the difference between T and TT:

177 =TT < IT7] sup [xSP(x) — 1] < ITT) 87"
xeo(T)

It is easy to see that the hyperpower method is a pth order iterative method.

11.3.4 Methods Based on Interpolating Function Theory

In this subsection, we shall use the Representation theorem and the Newton interpo-
lation and the Hermite interpolation for the function f(x) = 1/x to approximate the
generalized inverse 7" and present its error bound.

First we introduce the Newton interpolation method. If p, (x) denotes the unique
polynomial of degree n which interpolates the function f(x) = 1/x at the points x =

1,2,...,n 4+ 1, then the Newton interpolation formula [6] gives the interpolating
polynomial
" (x—1 ;
pax) =" ( ; ) A F(D),
j=0

where A is the forward difference operator defined by

Af@) = fx+1D—f@), Afx) =A@ H),

and

<x—1>_ @=DE =2 (x—))
i) j! :
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It is easy to verify that A/ (1) = (=1)/(j 4+ 1), which gives

n 1 j—1 ¥
pn(x):zm]_[<1—l+l). (11.3.11)
j=0 =0

Here the product from 0 to —1 by convention is defined to be 1. A simple induction
argument shows that

n

l—xpn(x)=]_[(1—l%>, n=0,1,2,---. (11.3.12)

=0

This statement is clearly true for n = 0. Assuming that it is true for n, we have

1 () =1 SN o P
—xXppr1(x)=1—xp,(x) — —— —
Pn+1 P ”+21:0

[+1
X " X
(=)0 -5)
n+1
x
=H<1_1 1)'
1=0 +

Thus (11.3.12) holds for n + 1. Therefore we can prove that the sequence of poly-
nomials {p, (x)} satisfies lim,_, o p,(x) = 1/x uniformly on compact subsets of
(0, +00).

If x > 0, then by (11.3.12)

l—xpn(x)zl_[(l—lil>.

=0

Hence it suffices to show that

n X
I - —0 113,13
L“;Oll_!( 1+1> (1319

uniformly on compact subsets of (0, +00).
If x lies in a fixed compact subset of (0, +00), then there is a constant K > 0
such that

X K
0<l——<1———,
I+1 [+1
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therefore to establish (11.3.13) it suffices to show that

ﬁ(1_1i1>=0

=0

Indeed this is a consequence of a well-known fact about infinite products. Namely, if
{a;} is a sequence of numbers with0 < a; < 1 and Z;X):o aj = 0o, then the sequence
]_['}.:0( 1 — a;) is non-increasing and positive and therefore has a limit a > 0. It is
easy to show by induction that

n+1

a+ Y an[Jd—a)y=1-[]0-a)
i=0 =0 1=0

and hence

n+1

1z1-[Ja-ap=a+) an[J0-a)=a) a.
=0 i=0 1=0 i=0

But it follows from Zj‘)o:o aj = oo thata = 0, and so (11.3.13) holds.
Applying the Representation theorem, we conclude that

lim p,(T)T* =TT,
n—oo

where T = T* T | r(r+). To phrase this result in a form suitable for computation, from
(11.3.11) and (11.3.12), we note that

po(x) =1,

1 " X
= D —_— 1—
Pny1(X) P1(x)+n+2l:0< l+1>

1
= pn(x) + m(l — xpa(X)).

Therefore, setting 7, = pn(T)T*, we have the following Newton interpolation
method

To=T"
Typ1 = post(TT*
~ 1 ~ ~
= p,(DT* + ——(T* = Tp,(T)T*
pu(T) +n+2( pu(T)TT)

=T, + (T* = T*TT,).

n—+2
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Thus lim,_.o 7, = T'. To obtain an asymptotic error bound for this method, we
estimate |1 — xp, (x)|. Note that for

x ea(T) C LTI T

and! > L =[||T|*1], we have

1 Y <e x
——— <exp|— .
+1 - P\

Therefore
" X ! 1
1—l I <exp|—x 1/ n>1L.
I=L + I=L +
Also,
n 1 n+2
—_— > — =In(n+2) —In(L + 1),
> [ =maen —m
and hence

I=L

n 1
exp (—x Z 1+_1> <(L+D"n+2)"
=TIP+D"(n+2)""

Therefore, if we set

¢ = max
xea(T)

L—1
U+MWYH(MViJ,

=0

then it follows from (11.3.12) that
1 —xp,(X)] < c(n+2)~".

Applying the Representation theorem, we get the following bound for the difference
between T, and T: 2
Ty =TT < el T (n +2)7 1717,

We now take the next natural step of investigating the use of the Hermite inter-
polation of the function f(x) = 1/x [7]. We seek the unique polynomial g, (x)
of degree 2n + 1 which satisfies ¢,(x) = 1/x and 4;1 (x) = —1/x? at the points
x=1,2,---,n+ 1. By the Hermite interpolation formula [6]
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2
qn(x) = Z(Z(z+1)—x)]_[<l+l> : (11.3.14)

i=0

Here the product from 1 to 0, by convention, is defined to be 1. We first show that

n 2

X

l—an(x):]_[<1— ) . n=0,1,2,--. (11.3.15)
=0 [+1

This statement is clearly true for n = 0. The left-hand side of (11.3.15) equals
1 —xgo(x) =1—x(@2 —x) = (1 — x)?, which is the right-hand side of (11.3.15).

Assuming the conclusion holds for n, we have

- an+l(x)

n+1 | —x 2
=1—an(x>—x(2<n+2)—x>]_[( )
=1

[+1

I+1-— s (41 —x)/(+1))?
_]_[< T ) ((2n+4)x—x)l_[< TR )

1=0
_1—[<l+1 )(1 (2n+4)x—x2)
I+1 (n+2)?
n+1 2
X
:]_[(1— )
1
1=0

Next, similar to the sequence of polynomials {p,(x)}, we can show that the
sequence of polynomials {g,(x)} satisfies

lim qn(x) =

uniformly on the compact subsets of (0, +00).
Applying the Representation theorem, we have

lim ¢,(T)T* =TT,
n—oo

where T = T*T R(r*) - To get the recurrence formula, by (11.3.14) and (11.3.15),
we get
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qo(x) =2 — X,
n+1 | —x 2
%um=%m+OM+”‘”E(H4)

2+ 1 —=x)/(+1)?
=¢qu(x)+ Q20 +2) —x) < )
11:([ (n+2)2

1
= qn(x) + — (2 -

nr2 )(1 — Xqn(X)).

n+2
Setting T,, = g, (T)T*, we have the following Hermite interpolation method:

To=2T*—-T*TT*,
1
Tn+1 =T, + n_ (21 -

+2

T*T) T*(I —TT,).
n—+2

Thus lim,, .o T, = T'. Similar to the Newton interpolation we can show that
n

2
_L 2y2x —2x
E(l l+1> <A+ITIH*n+2)7>"

If we set

u+wﬂﬂ”ff1— )
[+1

d = max
xeo(T) =0

then
11— xg,(x)| < d(n +2)7>.

Applying the Representation theorem, we get the following bound for the difference
between 7, and T

0T, — T < dI T | (n +2)7 171

Remarks

The steepest descent method, conjugate gradient method and Tikhonov regularization
method for computing the generalized inverse 7" of a bounded linear operator with
closed range can be found in [1]. A method for approximating infinite-dimensional
Moore-Penrose inverses by finite-dimensional settings is presented in [8] and gen-
erally [9] gives various approximation methods for the generalized inverses of
operators.

For a general perturbation theory of linear operators, there is an excellent book
[10]. In particular, the books [11, 12] are about the generalized inverses of linear
operators in Banach spaces. Perturbation analysis of the generalized inverse 71 and
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least squares solution in Hilbert space and Banach space can be found in [13-20]
and perturbation analysis of oblique projections of operators can be found in [21].

Stable perturbations of operators are studied in [22]. In particular, the Moore-
Penrose inverses of stable perturbation of Hilbert C*-module operators are presented
in [23].

A semi-continuity of generalized inverses in Banach algebras is presented in [24].
In [25], generalized condition numbers of bounded linear operators in Banach spaces
are proposed.

Inner, outer and generalized inverses in Banach and Hilbert spaces are given in
[26]. A more recent study of the outer inverse in Banach spaces can be found in
[27]. The metric generalized inverses of linear operators in Banach spaces and their
perturbation analysis are presented in [28, 29].
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Chapter 12 ®)
Operator Drazin Inverse ez

Let X be a Hilbert space and L(X) be the vector space of the linear operators from X
into X. We denote the set of bounded linear operators from X into X by B(X). In this
chapter, we will investigate the definition, basic properties, representation theorem
and computational methods for the Drazin inverse of an operator 7 € B(X), R(T*)
is closed, where k = Ind(T) is the index of T'.

12.1 Definition and Basic Properties

This section introduces the definition of the Drazin inverse of an operator, its unique-
ness, existence, and some basic properties.

Definition 12.1.1 Let7 € L(X).If for some nonnegative integer k > 0, there exists
S € L(X) such that

TST* = T*, (12.1.1)
STS =S, (12.1.2)
ST =TS, (12.1.3)

then S is called the Drazin inverse of 7 and denoted by TP.Ifk = 1, then S is called
the group inverse of 7" and denoted by Ty.

It is easy to prove the uniqueness of the Drazin inverse of 7.

Theorem 12.1.1 If there exists the Drazin inverse of T, then it is unique.

© Springer Nature Singapore Pte Ltd. and Science Press 2018 339
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Proof Suppose both § and §’ satisfy (12.1.1)—(12.1.3), then

S — TS2 — Tksk+1 — S/Tk+lsk+l
— (S/)k+lT2k+ISk+l — (S/)k+1Tk+IS — (S/)k+1Tk
= S/7

which proves the uniqueness. O

In order to show the existence of the Drazin inverse of an operator, we need the
concepts of the ascent and descent of an operator [1].

Definition 12.1.2 Let 7 € L(X). If there exists the smallest nonnegative integer n
such that V/(T") = N (T"*!), then this # is called the ascending index of T, denoted
by a(T). If no such integer exists, then a(7") = oco.

If a(T) = n, it is obvious that
N(T) CNT* C- CNTH=NT"H =NT"?) =",

where C denotes strict inclusion.

If xe N(T"?) then Tx e N (") =N(T"), thus x € N(T"t") and
N(T™2) ¢ N(T™), while N (T"') € N(T"*?) is obvious, therefore N'(T"+!)
— N(TnJrZ)_

Definition 12.1.3 Let 7 € L(X). If there exists the smallest nonnegative integer n
such that R(T") = R(T"*"), then this n is called the descending index of T, denoted
by §(T). If no such integer exists, then 6(7") = oo.

When 6(T) = n, it is obvious that
R(T) DR(TH) D---DR(T") = RAT"™) =R(IT"?) =---.

Some properties of «(7") and 6(7') are listed in the following theorem.

Theorem 12.1.2 Let T € L(X), then

(1) o(T) =0 ifand only if T~" exists;

) 6(T)=0ifand only if R(T) = X;

3) Ifa(T) < ocoand §(T) < oo, then a(T) = 6(T) = p, and X has the direct sum
decomposition X = R(T?) ®@ N(T?);

(4) If X is finite dimensional, then o(T) = 6(T) = p and X = R(T?) & N (T?).

Proof See [1]. m|

Definition 12.1.4 LetT € L(X), a(T) < oo, and §(T) < oo, then the nonnegative
integer k = a(T) = §(T) is called the index of the operator 7', denoted by Ind(7") =
k. In particular, if T is invertible, then Ind(7") = 0. For the zero operator 0, we adopt
Ind(0) = 1 by convention.
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Now that we have defined the index of an operator, we are ready for the existence
theorem of the Drazin inverse of an operator.

Theorem 12.1.3 Let T € B(X), if Ind(T) = k < oo, then there exists the Drazin
inverse TP e L(X). Moreover, if’R(Tk) is closed, then TP € B(X).

Proof Since Ind(T) =k, X has the algebraic direct sum decomposition
X = R(T) EB./\/(T") Set T = T'|R(r+, then T is a one-to-one mapping from
R(T*) onto R(T*). If Tx = 0, where x € R(T*), thenx € N (TX) N R(T*), how-
ever N (T**!) = N(T*), thus x = 0. On the other hand, for any y € R(T*), since
R(T 1) = R(T¥), there exists some x € X such that
y=TT*x = T(T*x) € TR(T"),

which proves the existence of TlandT !¢ L(R(T")). Set

TP =T 10, (12.1.4)

where Q is the projector along A/ (T*) onto R(T*). Next we will show that 77 is
the Drazin inverse of 7. Since any x € X can be uniquely decomposed as

X=X + %, € R(T*) @ N(TH),
by (12.1.4), we have
TP, =T7'0x; =T 'x; and TPx, =T '0Ox, = 0.

Consequently, ~
TPx = T’lxl.

It then follows that

TTPT*x = TT'T*x, = T*x, = T*x,
TPTTPx = TPTT'x; = TPx, = TPx,
TTPx =TT 'x; =x; =T 'Tx; =T '0Tx; = T"Tx.

Thus T2 = T~ ' 0 is the Drazin inverse of 7. If R(T*) is closed, then 7-!isbounded
and TP € B(X). ]

From the above proof, we can deduce that
R(TP) = R(T*) and N(T?) =N (T").

The proof is left as an exercise.
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Corollary 12.1.1 Let T € B(X). If there exists the Drazin inverse TP, for some
nonnegative integer k, satisfying (12.1.1)—(12.1.3), then the smallest k is the index
of T.

Proof For x € R(T*), there exists some y € X such that x = TXy. Due to the exis-
tence of the Drazin inverse of T, which satisfies (12.1.1)—(12.1.3), we know x =
Tky = T*H'TPy e R(T*), therefore R(T*) = R(T**!). On the other hand, for
x e N(THY), Tkx = TPT*x = 0, that is, x € N (T¥), thus N'(T*) = N (T*1).

It follows from Definition 12.1.4 that Ind(7T") < k, but Ind(7") cannot be less than
k. Indeed, if Ind(T) = [ < k, by Theorem 12.1.3, there exists a Drazin inverse of T
satisfying (12.1.1)—(12.1.3), which contradicts the assumption that k is the smallest,
so we have Ind(T) = k. m]

Corollary 12.1.2 Let T € B(X) and Ind(T) = k, then the Drazin inverse of T is
the unique linear operator satisfying

TPTx = TTPx =x, xe R(TH, (12.1.5)
TPy =0, yeN(TH. (12.1.6)

Proof In fact, (12.1.5) is equivalent to TP = (T|’R(Tk))_1 on R(T*) and (12.1.6)
means that 7P maps N(T*) into the zero element. Since X = R(T*) @ N (TY),
such TP is consistent with the T? in Theorem 12.1.3. m]

Now, we present some basic properties of the Drazin inverse of an operator.

Theorem 12.1.4 Let T € B(X), Ind(T) = k, and R(T*) be closed, then T°T =
TTP is the projector along N'(T*) = N'(T?) onto R(T*) = R(TP), that is,

TPT =TT = Prawner = Praovae).
Proof Since TP satisfies (12.1.2), T°T = T TP is idempotent and
TP°T = TT? = Prerroynerro)-
Since TP = (TPT)TP, we have R(T?) C R(TPT), while R(TPT) Cc R(TP) is

obvious, thus R(T?) = R(TPT) = R(TTP). Similarly, we can prove N'(T?) =
N(TTD). O

Definition 12.1.5 Let 7 € B(X), Ind(T) = k, and R(T*) be closed, we call the
product TTPT the core part of T, denoted by Cy. Let Ny = T — Cr, then

T=Cr+ Nr

is the core-nilpotent decomposition of 7.
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It follows from Definition 12.1.5 that N7 is the nilpotent operator with index k,
since
(N =T —=TTPT* =T (1 —TPT) =0,

and
(Np)! =T/ (I —=TTP) #£0, for I <k.

Theorem 12.1.5 Let T € B(X), Ind(T) = k, and R(T*) be closed, then

(1) Ind(T?) =Ind(Cy) = 1, when Ind(T) > 1; 0, when Ind(T) = 0;
(2) NrCr =CrNr =0;
(3) NTTD = TDNT = O,‘
4) CrTTP =TTPCy = Cy;
(5) (TP)P = Cyy
6) T =Crifandonly ifInd(T) < 1;
(T (TP)P)P =TP;
(8) TP =(Cr)?;
(9) (TP)P = (TP)P, where p is an arbitrary positive integer;
(10) (TP)* =(T")".

Proof Ttis left as an exercise. See [2]. |

The above content is presented in [2], which introduces the concept of the Drazin
inverse of a linear operator, discusses the existence and uniqueness and some basic
properties, also studies its relationship with other generalized inverses, however,
it does not include the corresponding representation theorem and computational
methods presented in the following sections. In [3], these problems are partially
addressed.

12.2 Representation Theorem

In [4], a unified representation theorem of the Drazin inverse of a linear operator in
Hilbert space is given. First, we give an expression for T”, which is different from
(12.1.4).

Theorem 12.2.1 Let T € B(X) with Ind(T) = k and R(T") be closed, then
TD — F-lpkps2ktipk

where T = (THT* T | 5 g is the restriction of TFT* ' TF on R(TH).



344 12 Operator Drazin Inverse
Proof 1t follows from [5, p. 247] that
7D = Th(p2+1yipk,
where (T%+1)7 is the Moore-Penrose inverse of %!, Also, it is easy to prove that
R(TAT*H TRy Z R(TPY and N (TFT*17%) = A/(TD),

The conclusion then follows from [6, Theorem 2] and [7, Lemma 3.1]. O

Remark The above theorem is a generalization of a result in [3] in that the conditions
N(T*) ¢ N(T*) and R(T*) ¢ R(T*") required in [3] are removed. Also, this
theorem generalizes Corollary 2.1 in [8] from matrices to linear operators.

Now we are ready to give the representation theorem.

Theorem 12.2.2 Let T € B(X) with Ind(T) = k and R(T*) be closed, and define
T = (TkT*2k+lTk+1)|R(Tk). If Q is an open set such that O'(T) C Q2 C (0, o0) and
{Sn(x)} is a sequence of continuous real valued functions on Q with lim,,_, o Sy(x) =
1/x uniformly on o(T), then

TP = lim S,(T)T*T***'T7*,
n— o0
Furthermore, for any € > 0, there is an operator norm | - ||« on X such that

”Sn(f)TkT*Zk-‘rlTk _ TD”>k
5 < max |S,(x)x — 1]+ O(e). (12.2.1)
”T ”* xeo(T)

Proof Tt follows from [9] that
U(TkT*2k+lTk+l) — U((T2k+l)*(T2k+l))

is nonnegative. Thus the spectrum of T is positive since T is nonsingular. Using
[10, Theorem 10.27], we have

lim S,(T) = T~
n—o0
uniformly in B(R(T*)). It then follows from Theorem 12.2.1 that
lim S (f)TkT*Zk-HTk — T*lTkT*Zk-HTk — TD.
n—o0

To obtain the error bound (12.2.1), we note that 7% T*2*+lrk — TTD, Therefore,

S (TYT*T**H 7k — 7P = (S,(T)T — DTP.
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Also, for any € > 0, there is an operator norm || - ||, such that ||T'||, < p(T) + ¢, see
[11, p. 77]. Thus

”SH(T)T](T*ZIH-IT/( _ TD”*

< IS (DT = 11T

< (max |S,(x)x — 1|+ O T" |,
xeo(T)

which completes the proof. O

To derive the specific error bounds, we need lower and upper bounds for a(?)
given by the following theorem.

Theorem 12.2.3 Let T € B(X) with Ind(T) = k and R(T*) be closed. Define T =
(TkT*ZkHTkH)lR(Tk), then, for any \ € o(T),

I < X < 7%
Proof For any \ € o(T),
0<)\e U(T) C U(TkT*2k+1Tk+1) _ U((T2k+1)*(T2k+1)).

It is obvious that
Ind((T2k+l)* T2k+l) =1

and

Al e o (TP T2k+l)g) — G (((T2+1y* T2k+1yT
= g((T2k+1)'I‘(T2k+1)'['*).

It then follows that
AL < (PN = (T,

that is,
A > (T2

On the other hand, since
k a2k 1 k41 ks 2k+1 k1
I T T T > (T T T Y [ I,

we get | T < |IT|**2. Thus A < | T||**2, forall A € o(T). O
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12.3 Computational Procedures

In this section, we apply Theorem 12.2.2 to five specific cases to derive five specific
representations and five computational procedures for the Drazin inverse of a linear
operator in Hilbert space and their corresponding error bounds.

12.3.1 Euler-Knopp Method

Consider the following sequence:
Su(x) =a ) (1—ax),
j=0

which can be viewed as the Euler-Knopp transform of the series > oo (1 — x)".
Clearly lim,,—, oo S, (x) = 1/x uniformly on any compact subset of the set

E.=x:l-ax|<l}={x:0<x<2/a}.
By Theorem 12.2.3, we get
o(T) C [T D72 T I ] C 0, ITI**2).

If we choose the parameter o, 0 <a <?2|T||~“+»  such that
o(T) C (0, |T||**?] c E,, then we have the following representation of the Drazin
inverse:

o0
TD =a Z([ _ OéTk T*2k+1 Tk+l )n Tk T*2k+1 Tk
n=0
Setting
n
T, =« Z(I _ Tk*2+1 Tk+l)j Thkp*2k+1 Tk
Jj=0
we have the following iterative procedure for the Drazin inverse:

TO — aTkT*ZkJrl Tk
{ Toot = (I — aTFT* R TRANY T 4 qThs2ktiTk,

Therefore lim,_, o T, = T . For the error bound, we note that the sequence {5, (x)}
satisfies
Spr1(0)x — 1= (1 — ax) (S, (x)x — 1).
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Thus
1S, (0)x — 1] =1 —ax|" |So(x)x — 1] = |1 — ozx|”“.

Ifx € o(T)and 0 < o < 2/ T||**2, then we see that |1 — ax| < 3 < 1, where
B =max {|1 = allTII*2), |1 —a(@**H772]}. (12.3.1)

Therefore,
1S, (x)x — 1] < 8" - 0, asn — ooc.

It follows from the above inequality and Theorem 12.2.2 that the error bound is

T,—TP
T, . Il < 3" 1 0.
(V|

12.3.2 Newton Method

Suppose that for o > 0, we define a sequence {S, (x)} of functions by

(12.3.2)

{ So(x) = a,
Sna1(x) = 8 (x)(2 — x5, (x)).

Clearly, the sequence (12.3.2) satisfies
XSy (1) = 1= —(xS,(x) — D™
Iterating on the above equality, we have
xS, (x) = 1| = Jax — 1> <% = 0, asn — oo,

for 0 < o < 2/||T||*+2, where 3 is given by (12.3.1).

One attractive feature of the Newton method is its quadratic rate of convergence
in general. Using the above argument combined with Theorem 12.2.2, we see that
the sequence {S, (7)} defined by

{ So(T) = al. _ o
Sus1(T) = Su(D) @1 = TS,(T))

has the property that ~
lim S, (T)T*T** 1k = 7P,

n—00
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Setting 7, = Sn(f)T"T*ZkJr1 T*, we have the following iterative procedure for

the Drazin inverse:
T() — O(TkT*Zk+1Tk,
Tn+1 = Tn(ZI - TTn)

For the error bound, we have

T, = T" .

< 3% 4 0(e).
172

12.3.3 Limit Expression

We give another limit expression of the Drazin inverse given by Meyer [12]. Specif-
ically, for k = Ind(T),
TP = 11%301 + T~k
—

It can be rewritten as
TD — lim (t] + TkT*2k+lTk+1)71TkT*2k+lTk.
t—0t
Setting S;(x) = (t +x)~! (t > 0), for x € O’(?), we can derive the following
error bound for this method:

to_ t _ @R
XA T T2 4 1 (T2

xS (x) — 1] =
Therefore, from Theorem 12.2.2, we have the error bound for the limit expression

of the Drazin inverse

||([I + TkT*2k+lTk+1)71TkT*2k+lTk _ TD”*
1721,

(T ¢ 0
= 1o (a0 + O(e).

The methods we have considered so far are based on approximating the function
f(x) = 1/x. Next, we will apply Theorem 12.2.2 to polynomial interpolations of
the function f(x) = 1/x to derive iterative methods for computing 7° and their
corresponding asymptotic error bounds.
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12.3.4 Newton Interpolation

Let P,(x) denote the unique polynomial of degree n which interpolates the function
f(x)=1/xatthepoints x =1,2,...,n+ 1.
Just as discussed in Sect. 11.3.4, we have

n 1 j—1
P"(x)zzﬁn(l_ziJ' (12.3.3)
j=0 =0

It is easy to verify that
n

X
l—xPn(x)zl_[(l—l_i_—l), n=0,1,2,..., (12.3.4)
1=0

and the polynomials { P, (x)} in (12.3.3) satisfy lim,,_, o, P,(x) = 1/x uniformly on
any compact subset of (0, 00). It follows from Theorem 12.2.2 that

lim P, (T)TFT**+'17k = TP,
n—oQ

where T = (TkT*Zk_H Tk+] ) |R(Tk)'
In order to phrase this result in a form suitable for computation, we derive
Po(x) =1,
1
P, =P, —— (1 = xP,(x)).
+1(x) (X)+n+2( x Py (x))

Therefore, setting 7, = P,(T)T*T***' Tk, we have the following iterative
method for computing the Drazin inverse T °:

TO — Tk T*2k+1 Tk

~ T
Tn+] — n+l(T)TkT*2k+1Tk — Tn + 0

n+2

(I—TT,).

So, lim,, .o T, = TP.
To derive an asymptotic error bound for this method, note that for

x € o(T) C [T+ )72, |7 )1*+2]

and for [ > L = [||T||**?], we have

- = < * ) forallx € o(T)
_— €X _—— or a .
+1 =P\ ree
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Therefore,
- <1—L><exp(—xi;) n>1L
I=L I+1)= I=L I+1 -
Also,
n 1 /n+2 dt
[ 2 J—
Py [+1 L1 1t
=In(n+2) —In(L + 1)
and hence

+

exp (—x > L) SLHD @+
=1+ T +2)7".

If we set the constant

C = max
xeo(T)

L—1
1 T [|4+2yx T
A+ )||< 1

=0

then from (12.3.3),
1 —xP,(x) <C(n+2)"".

Finally, it follows from Theorem 12.2.2 that

”7;1 - TD”*

o = C+ T+ 09

for sufficiently large n.

12.3.5 Hermite Interpolation

We consider approximating the Drazin inverse T° by the Hermite interpolation of
the function f(x) = 1/x and deriving its asymptotic error bound.
Consider the unique polynomial g, (x) of degree 2n + 1 satisfying

1 1
g() =~ and g)()=——, i=12....n+1,
1 1

then the Hermite interpolation formula yields the representation
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n I — 2
7= Qi+ -0]] (1 ;{) : (12.3.5)

i
i=0 =1

where, by convention, the product term equals 1 when [ = 0.
From the definition of g, (x) in (12.3.5), an inductive argument gives

n 2
l—anu):]—[(l—lj_l) :

i=0

The polynomials g, (x) in (12.3.5) satisfy lim,,—, o, g, (x) = 1/x uniformly on any
compact subset of (0, 4+00). It follows from Theorem 12.2.2 that

n—oo

where T = (THFT*2 TR |2 (.
Let
go(x) =2 —x,

1
G (¥) = g () + —— (2 - n%) (1 = xgu(x)),

and _
T, = qu(T)T*T** 17k,

We obtain the following iterative method for computing the Drazin inverse 7°:

To = (21 — MT)M,

1 1
Tyot =Ty + —— (21 — ——MT MU - TT)),
i +n+2( n+2 ) ( )

where M = T*T***!1Tk and T = MT.
Similar to the Newton interpolation method, we can establish the error bound as
follows. For

[>L=[IT|%?] and x €o(T) c [IT*HT72, |IT1*+],

we have
n

2
1‘[(1— a ) < A+ ITI*)> (m +2) 7>
i I+1
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Define the constant

L—1 2
X

d = max (1 + |T|*> (1— ) ,
o a1 T (15

then
11— xg,(x)| < d(n+2)7.

By Theorem 12.2.2, we arrive at the error bound

1T, = TPl

_ k18T | -2
T AT 4 0(e),

for sufficiently large n.

12.4 Perturbation Bound

The perturbation properties of the Drazin inverse of a matrix were investigated by
Wei [13] and Wei and Wang [14] (see also Sects. 9.1 and 9.5 of Chap. 9).

In this section we study the perturbation of the generalized Drazin inverse intro-
duced by Koliha [15]. We start with the Banach algebra setting, then move to bounded
linear operators.

We denote by A a complex Banach algebra with identity 1. For an elementa € A
we denote by o (a) the spectrum of a. We write acc o (a) for the set of all accumulation
points of g(a). By g Nil(A) we denote the set of all quasi-nilpotent elements of A.
An element x is called a quasinilpotent element of A4 if x commutes with any a € A
and 1 — xa € Inv(A), the set of all invertible elements in A.

Definition 12.4.1 ([15]) Leta € A, we say that a is Drazin invertible if there exists
an element b € A such that

ab=ba, ab’>=b, and a’b—a € gNil(A).

If such b exists, it is unique [15], it is called the generalized Drazin inverse of a, and
denoted by a”. If a®>b — a is in fact nilpotent, then a® is the standard Drazin inverse
of a. The Drazin index ind(a) of a is equal to k if a’b — a is nilpotent of index k,
otherwise, ind(a) = oo.If ind(a) = 1, then a” is denoted by a, and called the group
inverse of a. From this point on we use the term “Drazin inverse” for “generalized
Drazin inverse”. Recall [15] that a has a Drazin inverse if and only if 0 ¢ acc o(a).
Leta € AbeDrazininvertible. Following [14], we say thatb € A obeys Condition
W) ata if
b—a=ad’®b —a)aa® and |a® b -a)| < 1. (12.4.1)
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We remark that the condition
b—a=aa’® - a)aa®
is equivalent to the condition
b—a=ad’®b—a)=b—aaaP. (12.4.2)

Basic auxiliary results are summarized in the following lemma (see also [14,
Theorem 3.1 and 3.2]). For the sake of completeness we include a proof.

Lemma 12.4.1 Let a € A be Drazin invertible and b € A obey Condition (W) at
a, then

(1) b=a(l +a®®B —a));
2) b=(1+ (b —a)aP)a;
B) 1+dPb —a)and 1 + (b — a)a® are invertible, and
(1 +a?b—a)'a®? =a®(1+ B -a)a®) ™" (12.4.3)
Proof To prove (1) and (2) let us remark that by (12.4.2) we have
b=a+®b-—a)=a+ad’b—-a)=al +a’® - a))

and
b=a+0b-a)=a+ b -a)aPa=0+ b -a)aP)a.

Clearly, the condition ||a” (b — a)| < 1 implies that 1 +a?(b —a) and 1 + (b —
a)aP are invertible. Finally, (12.4.3) follows by direct verification. m]

Now we show the main result of this section.

Theorem 12.4.1 Let a € A be Drazin invertible and b € A obey Condition (V) at
a, then b is Drazin invertible and

bb? = aa®, b’ =0 +d’b—a)'a® =1 + b - a)a®) 7!,

and
ind(a) = ind(b).

Proof By Lemma 12.4.1 (3), we know that 1 +a?(b —a) and 1 + (b — a)a® are
invertible and

(1+daP?b—a)"'a? =a?A + (b —a)a®)".
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Settingh = (1 + aPb —a)~'a”? = a1 + (b — a)a®)~", weprove that b is Drazin
invertible and b? = b. First we prove that b and b are commutable. By Lemma 12.4.1
(1) we have

bb =a(l +da”b —a)(1 +a” b —a)'a” = aa® (12.4.4)

and
bb = a1 + (b —a)a®) ' + (b — a)aP)a = aPa. (12.4.5)

Hence, we get
bb = bb.

Therefore

b — bb* = b(1 — bb)
=0+d’b-a)'a’(1 —aPa)
=0

and bb? = b. Finally, using (12.4.2) and (12.4.4), we get

b —b*h = b(1 — bb)

=b(1 — aa®)
=a(l —ad®)+ (b -a)l —aa®)
=a—a%dP, (12.4.6)

which is quasinilpotent. We conclude that b is Drazin invertible with b? = b. The
Egs. (12.4.4) and (12.4.5) show that bb” = aa®. From (12.4.6) we conclude that
ind(a) = ind(b). O

‘We remark that the known result for matrices [14, Theorem 3.2 and Corollaries 3.1
and 3.2] is a direct corollary of Theorem 12.4.1.

Corollary 12.4.1 Let a € A be Drazin invertible and b € A obey Condition (W)
at a, then b is Drazin invertible and

16 —a®) _ _lla®® = a)l|
laPll = 1= laP®—a)l

Corollary 12.4.2 Let a € A be Drazin invertible and b € A obey Condition (W)

at a, then b is Drazin invertible and
lla®|| lla®|

D I |
I+ la?(® —a) I—la?® —a)|



12.4 Perturbation Bound 355

Corollary 12.4.3 Let a € A be Drazin invertible, b € A obey Condition (W) at a,
and ||a® (b — a)|| < 1/2, then b is Drazin invertible and a obeys Condition (W) at
b.

Corollary 12.4.4 Let a € A be Drazin invertible, b € A obey Condition (W) at a,
and ||a® || |b — a|| < 1, then b is Drazin invertible and

15” — a®|| _ _tp@lb—al/llall
lla® |l 1 —kp@lb—al/lall’

where kp(a) = ||a|| |a®| is defined as the condition number with respect to the
Drazin inverse.

This section is based on [16].

12.5 Weighted Drazin Inverse of an Operator

The operator Drazin inverse discussed in the previous sections can be generalized
by introducing a weight operator, as in the matrix case. Cline and Greville [17]
introduced the concept of the W-weighted Drazin inverse of a rectangular matrix.
Qiao [18] proposed the concept of the W-weighted Drazin inverse of a bounded linear
operator and proved its existence, uniqueness and gave some basic properties.

In this section, we first introduce the definition, basic properties, and representa-
tions of the weighted operator Drazin inverse, then we present computational methods
and perturbation analysis.

Let X; and X, be Hilbert spaces and W € B(X,, X;) a weight operator, then the
W-weighted Drazin inverse of a bounded linear operator A is defined as follows.

Definition 12.5.1 Let A € B(X;, X») and W € B(X;, X;). If for some nonnega-
tive integer k, there exists S € L(X;, X»,) satisfying

(AWMISW = (AW)X, (12.5.1)
SWAWS = S, (12.5.2)
AWS = SWA, (12.5.3)

then S is called the W-weighted Drazin inverse of A and denoted by S = A, w.

By comparing with Definition 12.1.1, we can see that the regular operator Drazin
inverse is a special case of the W-weighted operator Drazin inverse, where X; =
X, =X,A€eB(X),and W = 1.

The following theorem shows the uniqueness of the W-weighted Drazin inverse.
Its proof is more involved than the proof of Theorem 12.1.1 of the uniqueness of the
regular operator Drazin inverse, as we have to deal with two spaces X; and X5.
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Theorem 12.5.1 Let A € B(X,, X»). If for some W € B(X,, Xy), there exists an
S € L(X1, Xy) satisfying the Egs. (12.5.1)—(12.5.3), then it must be unique.

Proof Let S, S> € L(X1, X,) satisfy the Egs. (12.5.1)—(12.5.3) for k; and k,, respec-
tively. Set k = max{k;, k»}, it follows from Definition 12.5.1 that

S1 = (AW)2S;(WS))?

= (AW)* S (WS

= (AW S, WS (WS

= S (WA WS (WS-

= S (WAXW(AWS; WS (WS)HK!
= S (WA WS (WSspr!

= SWAWS,.
Repeating the first part of the above deduction, we have
2 = (AW TS (WS
Using AWS,W = S, WAW, we obtain S; W = (S, W)k2(AW)K+!. Thus

S; = SWAWS,
= (S, W 2(AW AW S,
= (S W 2(AW)kHis WA
= (S, W) 2(Aw)ka
= S;(WS) (WA
— (SZW)k+152(WA)k+l
= (S, W)ES, WS, WA (W A
= (S, W)ES, WAW S, (W A
= (S W) S (WA

= (52W)5(WA)
=SWAWS,
=8,

which shows the uniqueness. O
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Next, we will establish a relation between the W-weighted Drazin inverse A, w
and the regular Drazin inverse (AW)P. First, we derive some properties of (AW)?.

Theorem 12.5.2 Let A € B(X;, Xp)and W € B(X,, Xy). Ifthere exists the Drazin
inverse of W A, then there exists the Drazin inverse of AW and

(AW)P = A(WA)P)*W (12.5.4)
and their indices have the relation:
Ind(AW) <Ind(WA) + 1.

Proof Since (W A)P exists, supposing Ind(W A) = k, we have

(WAL (WA = (WA, (12.5.5)
(WAPY(WA) = (WA)P, (12.5.6)
(WAP(WA) = (WAY(WA)P. (12.5.7)

From the above Eqgs. (12.5.5)—(12.5.7), it is easy to verify that

A((WAPYW (AW = (AW)kH (12.5.8)
A((WAPY2WAW)A(W AP W = A(WA)P)> W, (12.5.9)
A((WAPYWAW) = (AW)A(W AP W. (12.5.10)

It then follows from Definition 12.1.1 and Theorem 12.1.1 that
A((WAPYW = (AW)P.

From Corollary 12.1.1, Ind(AW) is the smallest nonnegative integer satisfying
(12.5.1)—(12.5.3). Thus from (12.5.8)—(12.5.10), we know

Ind(AW) <k + 1 =Ind(WA) + 1,

which completes the proof. O

Theorem 12.5.3 Under the assumptions in Theorem 12.5.2, for any positive integer

p, we have
W{(AW)PY = (WAP)YP W (12.5.11)

and
A((WA)PY = (AW)P)PA. (12.5.12)
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Proof When p = 1, it follows from (12.5.4), (12.5.6) and (12.5.7) that

WAW)YP = (WA((WAP)*W
= (WAP)Y’WAwW
= (WA w.

By the induction, (12.5.11) holds. Similarly, we can prove (12.5.12). 0O

The following theorem shows an explicit expression of the W-weighted operator
Drazin inverse A, w in terms of the regular operator Drazin inverse (WA)P. Thus,
it proves the existence of the W-weighted operator Drazin inverse.

Theorem 12.5.4 Let A € B(Xy, X3), W € B(X2, X1), and Ind(AW) =k, then
Agw = A(WA)P)? (12.5.13)
= (AW)P)’A € L(X), X2).
Furthermore, ifR((AW)k) is closed, then Ay w € B(X, X»).

Proof Since Ind(AW) =k, it follows from Theorem 12.1.3 that there exists
(AW)? e L(X,).By Theorems 12.5.2 and 12.5.3, itis easy to velrifythatA((WA)D)2
satisfies

(AW HTA(W AP W = (AW)E,
A(WAPYPWAWA(WA)P) = A(WA)P)?,
AWA(WAP)? = A(WAPY’WA.

It follows from the above equations and Theorem 12.5.1 of the uniqueness of the
W-weighted Drazin inverse that

Aaw = A(WAP)? € L(X1, X2).

If R((AW)¥) is closed, by Theorem 12.1.3, we have (AW)? € B(X;). Similarly,
we can show
(WAP = W({(AW)P)2A € B(X)).

Thus
Aaw = A(WAP)? € B(X1, Xa).

The other expression of A, w in (12.5.13) can be obtained similarly. The proof is
omitted here. O

Theorem 12.5.4 gives an expression of A4 y in terms of (W A). In the following
theorem, A, w is expressed in terms of A and W [19]. The theorem itself is analogous
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to Theorem 12.2.1, however, its proof is more involved than the proof of the regular
case, because we have to deal with two spaces X; and X,. So, we give the theorem
and its proof.

Theorem 12.5.5 Suppose  that A € B(Xy, X»), W e B(X,, X1) with
k = max{Ind(AW), Ind(WA)} and R((AW)*) is closed, then

Agw = ATAW AR (AW A2y AW A,

where ~
A = (AW A (AW AHPFH* AW 2 awar

is the restriction of A(W AYF(A(W A2y (AW) 2 on R(A(W A)F).

Proof Setting G = A(W A)X, we know that R(G) is a closed subspace of X. It is
obvious that R(GWAWG) C R(G). Since

R(G) = R(GWAW Ay w) = RIGWAWGG' Ay w)
C R(GWAWG),

we have R(GWAWG) = R(G). Similarly, we get N(GWAWG) = N (G).
Clearly, R(GTGWAWGG") C R(G"). Now,

R(G" = R(GTG) = R(GTGWAWG) = R(GTGWAWGG'G)
C R(GTGWAWGGY)

implies R(GTGWAWGGT) = R(G"). Now, it follows from [20, p. 70] that
Aaw = (WAW)Q 6 vy = (Pnr WAW Pr) = (GTGWAWGGH'.

Next, we prove that Ay w = G(GWAWG)'G. Set X = G(GWAWG)'G. By
direct computation, we have

G'GWAWGG X = GI(GWAWG(GWAWG)HG
= GTPR(GWAWG)G
=G'G,

and

XG'GWAWGGT = G(GWAWG) GWAWG)G'
= GPr(cwawc)nG'
= GG,

that is
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G'GWAWGG™X = (GTGWAWGG X)*

e XG'GWAWGGT = (XGTGWAWGGT)*.
On the other hand,

(GTGWAWGGHX(GTGWAWGGT) =
and

X(GTGWAWGGHX = G(GWAWG)'G = X.

Thus we arrive at Ay w = G(GWAWG)'G.
Also, it is easy to prove

RIAW A (AW A2 AW A = R(Aaw)

and
N AW A AW APFTH*AWA) = N (A w).

The conclusion then follows from [21, Theorem 2.2]. O

Remark The above theorem is a generalization of aresultin [22] in that the conditions
N(AW) ) € N((AW)E") and R((AW)*) € R((AW)F") are removed.

12.5.1 Computational Methods

The following theorem says that if we have a sequence of real valued functions that
converges to x ! then we can represent A,y as a limit of a sequence of operator
functions.

Theorem 12.5.6 Supposethat A € B(X;, X3), W € B(X,, X) withk = max{Ind
(AW), Ind(WA)} and R((AW)¥) is closed. Define

A = (AW A (AW AP (AWYD) meaow ay-

If Q is an open set such that O'(Z) C Q2 C (0, +00) and {S,(x)} is a sequence
of continuous real valued functions on Q with lim,_, o, S,(x) = 1/x uniformly on
o (A), then

Aqw = lim S, (A)A(W A (AW A)KH2)* A(W A,
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Furthermore, for any € > 0, there is an operator norm || - ||, on X such that
15, (A) AW A)F (AW A)* 2 AW A — Agw .

| Aa,wll« (12.5.14)
< max, .7y [Sn(x)x — 1]+ O(e).

Proof Following the proof of Theorem 12.5.5 and replacing T there with A, we first
can show that the spectrum of A is positive, then using [10, Theorem 10.27], we have

lim S,(A) = A"
n—o0
uniformly in B(R(A(W A)X)). It then follows from Theorem 12.5.5 that
lim S, (A)AWAF (AW A)FT2)* A(W A
n—oo

= A TA(W A (AW A)YKH2)* A(W A)K
= Agw.

To obtain the error bound (12.5.14), we note that
AW A (AW AT AWAK = AAq .
Therefore,
S (A AW A (AW A2 AW A — Agw = (Si(A)A — D) Agw.

Also, for any € > 0, there is an operator norm || - ||, such that ||Z||* < p(;f) + €, see
[11, p. 77]. Thus

115, (D) AW A (AW APH2) AW A — Agw .
< 12 (A)A — Ills [ Agwll-

< (max [S,(x)x — 1]+ O()) | Ag,wll-,
xea(A)

which completes the proof. O

Similarly, replacing T in Theorem 12.2.3 with A, we can derive lower and upper
bounds for A € g(A):

AW APFHT72 < X < A2 |AW[|*+4, (12.5.15)

Now, by using various sequences {S, (x)} that converge to x~!, we can obtain
various methods for computing A, w.
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Euler-Knopp Sequence:
S, (x) =« Z(l —ax)’.
j=0
For a € (0, 2/(|AlI72 |AW ||~#+9)), we have

Agw = a ) (I — aA(WA (AW AH) " (AW) 2y
n=0

AW A (AW A)RF2)* A(W A)X.

Setting

Ay =a Y (I — aAW A (AW A2 (AW)+2)
j=0

AW AR (AW A2 AW A,

we have the following iterative procedure for computing the W-weighted Drazin

inverse:
Ag = aA(WAF(AW AKE2)* A(W A,
Ap1 = (I — aA(WAR (AW A>T (AW)E2) A,
+ aA(WAF (AW A)ZFH2)* A(W A)E.

For the error bound, we note that the sequence {S, (x)} satisfies
Spt1()x — 1 = (1 —ax)(S,(x)x = 1).

Thus
1S, () x — 1] = |1 — ax|" [So(x)x — 1] = |1 — ax|"L.

If x € 0(A) and
2
o< ——\
Al [AW |4+
then |1 — ax| < 3 < 1, where

B =max{|1 — al|A|* [AW ¥, 11 — al (AW AT~}

Therefore,
1S, (x)x — 1] < "' - 0, asn — oo.

(12.5.16)
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It follows from the above limit and Theorem 12.5.6 that the error bound is

A, — Az wll

< B+ 0(e).
1 Ag,wll
Newton’s Iteration:
So(x) = a,
Spr1(x) = $, () (2 — x5, (x)),

for a > 0.
Applying Theorem 12.5.6, we get

lim S, (A)A(WAX(AWA) ) AWA = Agw.

Setting ~
Ay = S (A AW A (AW A)*F)* AW A,

we have the following Newton’s iterative procedure for computing the W-weighted
Drazin inverse:

Ag = aA(W A (AW A)KF2)x A(W A,
A1 = A, 21 —WAWA,),

for a € (0, 2/(|A||? |AW || *+4)), and an error bound

”An - Ad,W”* < ﬁzn
1 Ad,w I

where [ is given by (12.5.16).

One attractive feature of the Newton method is its quadratic rate of convergence
in general.

Considering an alternative real valued function S, (x) = (t +x)~',# > 0,forx €
O'(AN), we have another limit representation of the W-weighted Drazin inverse [23].
Let k = max{Ind(AW), Ind(W A)}, then

+ O (e),

Agw = m&(ﬂ + (AW ~TAaw)kA,
t—

which can be rewritten as

Agw = lir(l)l (t] + X(AW)H"IXA(W A,
t—07t

where
X = A(WAX (AW A)H+2y*,
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Furthermore, from

t
X+t

xS (x) = 1| =
t
<
T IAW AT 2 +- 1
[(AW A )77
L+ [[(A(WA)* )Tt

and Theorem 12.5.6, we have the following error bound.

(T + X(AW) )T X AW A = Agwlls - (AW A7

< —— + O(e).
| Ag,wlls 1+ [[(A(WA)2k+2)7||2¢

Analogous to the regular Drazin inverse case, we can apply Theorem 12.5.6 to
polynomial interpolations of the function f(x) = 1/x to derive iterative methods for
computing A, w and their corresponding asymptotic error bounds.

Newton’s Polynomial Interpolation

Similar to Sect. 12.3.4, considering the Newton’s polynomial interpolation

n 1 j—1 X
PRw=Y —TJ](1-
*) ;j—i—lg( l+1>

of f(x) =x'atx =1,2,...,n+ 1. It can be verified that

l—xPn(x)zl_[(l—lil).

=0

Applying Theorem 12.5.6, we get
lim P, (A)A(WAX(AWA) 2 AWA = Agw,
n— o0

where ~
A = (AW A (AW A (AW raowar-

Setting
A, = P,(A)A(W A (AW A)PTH)* A(W A,
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we have the following iterative method for computing the W-weighted Drazin inverse
Ad,W:
Ag = AWAK (AW A2 AW A,
Ans1 = Pop1 (A) AW A (AW A)PF2)* A(W A
Ao

— A, +
n—+2

(I -—WAWA,),

To derive an asymptotic error bound for this method, note that for
x € o(A) CLIAWA 72 AP AW ¥+

andfor!/ > L,where L = [||A||* | AW ||**+#]is the integer closestto || A||> || AW ||4+4,
we have

X X ~
1—- < exp (——) for all x € o(A).

[+1~ I+1
Therefore
- X " 1
1——) §exp(—xz—>, n>1L.
iy ( I+1 s [+1
Also,
"1 "2t
— > — =In(n+2) —In(L + 1),
L [+1 L+1 I
hence

"1
exp (—x > ﬁ> <L+D'n+27

=L
=1+ AP JAW[I*F)* (n +2)7".

If we set the constant

L—1
X
C = max (1 4 ||A]]? |AW || ¥+~ <1— )
max (14 [A|” 1AW )E T

where L = [||A]|? || AW||*+4] is the integer closest to || A]|> || AW [|**4, then

11— xP,(x)| < C(n+2)"".
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Finally, it follows from Theorem 12.5.6 that

lAn — Agwll

<Cn+ 2)*II(A(WA)2A'+2)?II’2 + 0(e),
lAdwlls

for sufficiently large n.
Hermite Interpolation

Similar to Sect. 12.3.5, consider the unique polynomial g, (x) of degree 2n + 1
which satisfies

1 1
g() =~ and g, ()=——, i=12....n+1L
1 l

The Hermite interpolation formula yields the representation

n i ] — 2
g0 =) Qi+ -0]] (1 ;{) : (12.5.17)
i=0 =1

where, by convention, the product term equals 1 when [ = 0.
Applying Theorem 12.5.6 to the polynomials g, (x) in (12.5.17), we have

Agw = lim g, (A) AW A (AW AP+ A(W A,
n—oo

Setting ~
A = qu(A) AW A (AW AP AW A,

we get the following iterative method for computing the W-weighted Drazin inverse

Agw:
Ay =21 — MWAW)M,
A1 = A, + ﬁ (21 - ﬁMWAW) M —WAWA,),
where

M = A(WA (AW A)FF2)y AW A,
To derive an asymptotic error bound, for / > L = [||A||> || AW [***] and
x € o(A) C (AW A T2, AP |AW |4+,
we have

n 2
X
(1 - —) < (L4 AP AW [ (n + 2)72.
iy [+1
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Let the constant

L—1 2
X

d = max (1+ A2AW4"+4)2"||<1— )
m(x)( AN~ I Il 1

then
11— xg,(x)| < d(n+2)7>.

By Theorem 12.5.6, we arrive at the error bound:

A, — Agwll«

<dn+ 2)*2\\(A(WA)2"+2)"‘H’2 + 0(e),
lAawls ——

for sufficiently large n.

12.5.2 Perturbation Analysis

In this section, we study the perturbation of the W-weighted Drazin inverse of a
bounded linear operator between Banach spaces. Specifically, suppose B = A + E
is a perturbed A, we investigate the error in B, w in terms of the perturbation E.
Fix W € B(X,, X,).For A, B € B(X;, X»), we define the W-product of A and
B by
AxB=AWB.

Also, for A € B(X,, X»,), we denote the W-product of A with itself m times by A*™.
For A € B(X,, X>), define
ANl = A TWII,

then (B(X1, X2), *, ||| - |I]) is a Banach algebra. If W is a one-to-one map of X, to
X, then W—! € B(X;, X,) is the unit of this algebra. If the inverse of W does not
exist, then we adjoin a unit to the algebra. In either case, we may assume that we are
working in a unital algebra. Now suppose that A, B € B(X, X») satisfy:

(1) (AW)HBW = (AW)K,

(2) BWAWB = B,

(3) AWB = BWA.

Postmultiplying (1) with A and then using (3), we have
(]9) (A)*k+2 %« B = (A)*kJrl’

(2’) BxA*xB =B,

(3’) AxB =B=xA.
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Conditions (2°) and (3’) are (2) and (3) written in terms of the W-product. Thus, A
has a Drazin inverse in the algebra constructed above. In this case, we write B = AP
or more precisely B = Ay w.

According to the matrix case [17], the unique solution, if it exists, of (1), (2)
and (3) is called the W-weighted Drazin inverse of A. In this case we say that A is
W-Drazin invertible.

In the following proposition, we give several equivalent conditions for the exis-
tence of the W-Drazin inverse.

Proposition 12.5.1 Ler X| and X, be Banach spaces, A € B(X, X;) and W €
B(X,, X1), then the following five conditions are equivalent:

(1) A is W-Drazin invertible, that is the three equations:

(@) (AWXTIXW = (AW)X, for some nonnegative integer k,
(b) XWAWX = X,
(c) AWX = XWA.

have a common solution X € B(X,, X1);

(2) AW is Drazin invertible;

(3) WA is Drazin invertible;

“4) a(AW) = p < 400, RAW)PHY g closed for some k > 1, and §(WA) <
400, recalling that o(T) is the ascending index of T defined in Definition 12.1.2
and §(T') is the descending index of T defined in Definition 12.1.3;

(5) a(WA) =q < 400, RUW A1) is closed for somel > 1, and §(AW) < +o0.

If any of the five conditions is satisfied, then the above three Egs. (a)—(c) have a
unique solution
X = Agw = A(WAP)? = (AW)P)’A.

Open problem. In connection with Proposition 12.5.1 and the characteristics of the
Drazin inverse of a bounded operator on Banach space, it would be interesting to
prove or disprove that «(AW) < 400 and §(W A) < +o0 imply that AW is Drazin
invertible.

Recalling (12.4.1), b € A is said to obey Condition (W) at a if

b—a=ad’®b—a)aa® and |d®®-a)| < 1.

For convenience, we state the main perturbation result from [16, Theorem 2.1].

Lemma 12.5.1 Let a € A be Drazin invertible and b € A obey Condition (W) at
a, then b is Drazin invertible,

bb? = aa®, PP =1 +d’b—a)'a® =1 + b - a)a®) 7!,

and
ind(a) = ind(b).
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Now, let A, B € B(X;, X;) and W € B(X», X1). Suppose that A is W-Drazin
invertible and B satisfies Condition (W) at A, that is,

B—A=A%AP % (B—A)x Ax AP and |||A” x (B — A)|| < 1,
which can be rewritten as
B—A=AWA;wW(B — A)WAWA, w and |[Aq wW (B — A)||W] < 1.

Set the perturbation £ = B — A. Now, based on the above lemma, we have the
following result

Theorem 12.5.7 Let A, B € B(X1, X»), W € B(X»,, X1), A be W-Drazin invert-
ible and B obey Condition (W) at A, then B is W-Drazin invertible and

(BW)(BawW) =(AW)(AgwW), Ind(BW) =Ind(AW),
and By w can be given by
Biw=U+AgwWEW) "Agw =Agw +WEWAzw)™" (12.5.18)

and
R(Byw) =R(Aqw) and N(Byw)=N(Asw). (12.5.19)

Proof Note that (12.5.18) implies (12.5.19). Because B obeys Condition (W) at
A, we know that I + Ay wWEW and I + WEW A, w are invertible. Now, from
Lemma 12.5.1, we complete the proof of the theorem. O

The next corollary gives absolute and relative perturbation errors and lower and upper
bounds for || B4, w |l

Corollary 12.5.1 Under the assumptions in Theorem 12.5.7, B is W-Drazin invert-
ible and the absolute error

Byw —Agw = —BgwWEWA,w = —-AgwWEWB, w,
the relative error

IBaw — Aawll _ A2 wWEW]
lAgwll — — 1= AgwWEW]|’

and
| Aa,wll | Aa.wll

< 1Bawll = .
L+ [[AgwWEW] L —][AgwWEW]|

Next, we present a condition number that measures the sensitivity of B, w to the
perturbation E.
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Corollary 12.5.2 Under the assumptions in Theorem 12.5.7, we have
(1) if |Agwll IWEW| < 1, then B is W-Drazin invertible and

1Baw — Aawll _ _ saw@IWEWI/IWAW]
[ Aa.wll Tl =R w(DIWEW|/[WAW|

where kg w(A) = ||WAW | ||Ag.w | is the condition number of the W-weighted
Drazin inverse of A;

2) if l1AawWEW]| < 1/2, then B is W-Drazin invertible and A obeys Condi-
tion W) at B.

The following result is motivated by the index splitting of a matrix [24].

Theorem 12.5.8 Let A, U, V € B(X,, X») and W € B(X», X,). Suppose that
A =U —V is W-Drazin invertible, UW is Drazin invertible, Ind(AW) = ky,
Ind(WA) =ky, Ind(UW) =Ind(WU) =1, U wWVW is a compact operator,
RAUW)P) = R((AW)Y and N(WU)P) = N(WA)©), then I — Uyg wWVW
is invertible and

Aqw=U=UspwWVW) Uy =Uswd —WVWU;w)"'.  (12.5.20)
Proof To prove that I — U, wWV W is invertible it suffices to show that N'(1 —
UswWVW) = {0}. Suppose that x e N(I — Uy wWV W), which means that
U;wWVWx =Xx. Since

UawWVW)YUywWV W)X
=U;wWU — A)WU; wWVWx
= (UswWUWU,w)WVWX — Uy wWAW Uy wWVWX)
= Uy wWVWx —U; wWAWX,

we have

UswWAWX = Uy wWVWX — (Ugw WV W) (Ugw WV W)X
=UswWVW(U — UswWVW)X
= 0.

Thus we obtain
WAWX € N(Ugw) = N(WU)P) = N(WA)®) = N(Agw),
and Ay wWAWxX =0, thus x € N (A wWAW) = N ((AW)*). However,

x € R(AW)") NN ((AW)"1) = {0}.
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Hence,x =0and I — U, w WV W is invertible. Notice that

(I =UgwWVW)Auw
= -UswWUW —WAW))Asw
=Agw —UswWUWAsw +UsgwWAW A, w
=Usw.

Thus, we get (12.5.20). O

When W = I and A is a square matrix, Theorem 12.5.8 reduces to the results in
[24].

Corollary 12.5.3 Let A=U — V € C"" and Ind(A) = k. Suppose that R(U) =
R(AY) and N (U) = N (AX), then I — UPV is invertible and

AP = -UPV) U =UuPa -vuPr).

This section is based on [21].
Remarks

The representation theorem of the Drazin inverse of a linear operator in Banach space
is given in [2-4, 7, 25, 26] and more recent results on representations, properties,
and characterizations of the Drazin inverse of a linear operator are given in [26—28].
The necessary and sufficient condition for the existence of the Drazin inverse of a
linear operator in Banach space and the applications in infinite-dimensional linear
systems can be found in [29] and [30], respectively. The Drazin inverse of an element
of a Banach algebra is given in [31, 32]. Additional results for the generalized Drazin
inverse are presented in [33-35] and weighted g-Drazin in [36]. Wang [22, 37, 38]
first studied the iterative methods, the representations and approximations of the
operator W-weighted Drazin inverse in Banach space. Perturbation analysis of the
weighted Drazin inverse of a linear operator can be found in [16, 19, 21, 39—41].
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