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  As   is well known, architects and builders rarely design the structural elements and 
systems within their buildings, instead engaging the services of (and, it is to be 
hoped, collaborating with) structural engineers, or relying upon standard practices 
sanctioned by building codes. Where architects or builders wish to be adventurous 
with their structures, some knowledge of structural behavior and the potential of 
structural materials is certainly useful. On the other hand, where they are content 
to employ generic structural systems — platform framing in wood, simple skeletal 
frames in steel or reinforced concrete — one can get by with little actual knowledge 
of structural design, relying instead on the expertise of structural consultants and 
the knowledge of common spans, heights, and cross-sectional dimensions around 
which many ordinary buildings can be planned. 

 The   heroic stage of modernism, in which architects often sought to reconcile 
structural behavior and overall building form — some fi nding inspiration in the struc-
tural frame or the load-bearing wall — was also the heroic stage of structural educa-
tion for architects: it was hardly necessary, in that context, to explain why architects 
needed to learn about structures. Some of the same excitement about the potential 
of structure in architecture still remains, but it is also true that a  “ mannerist ”  ten-
dency has emerged, interested not necessarily in renouncing the role of structure in 
architecture, but rather reveling in its potential to distort, twist, fragment, and other-
wise subvert modernist conventions and the architectural forms they support. 

 Yet   all structures, whether hidden from view or boldly expressed, follow the 
same laws of equilibrium, are exposed to the same types of forces, and are con-
strained by the same material properties and manufacturing practices. It is, there-
fore, appropriate for architects and builders to study structures in such a way that 
the basic principles underlying all structural form become clear. This can be accom-
plished in three phases: (1) by studying the concepts of statics and strength of 
materials, (2) by learning how these concepts are applied to the design of common 
structural elements fabricated from real materials, and (3) by gaining insight into the 
design of structural systems comprised of structural elements interconnected in a 
coherent pattern. 

 Much   of the material presented in this text can be found elsewhere; the basic 
conditions of equilibrium, historical insights into structural behavior that form the 
basis for structural design, and recommendations for design procedures incorpo-
rated into building codes are all widely disseminated through industry-published 
manuals, government-sanctioned codes, and academic texts. Many excellent struc-
tures texts have been written specifi cally for architects and builders. Thus, the ques-
tion naturally arises: Why write another one? 

 The   primary motivation for writing this text is to organize the material in a man-
ner consistent with the structures curriculum developed within the Department 
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 of Architecture at Cornell University, based on the three sequential  “ phases ”  just 
described — structural concepts, elements, and systems. While this text does contain 
a concise introduction to structural concepts (statics), it is primarily concerned with 
the design and analysis of structural elements: columns, beams, and tension mem-
bers, and their connections. This material is organized into a single volume that is 
concise, comprehensive, and self-suffi cient, including all necessary data for the pre-
liminary design and analysis of these structural elements in wood, steel, and rein-
forced concrete. 

 A   second motivation for writing this text is to present material in a manner con-
sistent with my own priorities and sensibilities. Every chapter contains insight, spec-
ulation, or forms of presentation developed by the author and generally not found 
elsewhere. Additionally, the Appendices included at the end of the text contain 
numerous tables and graphs, based on material contained in industry publications, but 
reorganized and formatted especially for this text to improve clarity and simplicity —
 without sacrifi cing comprehensiveness. 

 Methods   for designing structures and modeling loads are constantly being 
refi ned. Within the past several years, important changes have occurred in the 
design of wood, steel, and reinforced concrete structures, as well as in the model-
ing of loads. These changes include revised procedures for beam and column design 
in wood; the replacement of the standard specifi cation for 36-ksi steel with a new 
standard based on 50-ksi steel for wide-fl ange sections; a major modifi cation in the 
load factors used in reinforced concrete design, aligning them with those recom-
mended by SEI/ASCE 7 and already used in the design of wood and steel structures; 
and numerous refi nements in the modeling of environmental loads. These changes 
have all been incorporated into this text. 

 Finally  , a disclaimer: This text is intended to be used only for the preliminary 
(schematic) design and understanding of structural elements. For the design of an 
actual structure, a competent professional should be consulted.     
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 The   study of structural behavior and structural design begins with the concept of 
load. We represent loads with arrows indicating direction and magnitude. The mag-
nitude is expressed in pounds (lb), kips (1       kip      �      1000       lb), or appropriate SI units 
of  force ; the direction is usually vertical (gravity) or horizontal (wind, earthquake), 
although wind loads on pitched roofs can be modeled as acting perpendicular to the 
roof surface ( Figure 1.1   ). 

 Where   loads are distributed over a surface, we say, for example, 100 pounds 
per square foot, or 100       psf. Where loads are distributed over a linear element, like 
a beam, we say, for example, 2       kips per linear foot, or 2       kips per foot, or 2       kips/ft 
( Figure 1.2   ). Where loads are concentrated at a point, such as the vertical load trans-
ferred to a column, we say, for example, 10       kips or 10       k. 

 Finding   out what the loads are that act on a structure and how these loads are sup-
ported is the prerequisite to all structural design. There are two main reasons for this. 
First, the fact that a structural element is supported at all means that the supporting 
element is being stressed in some way. To fi nd the magnitude of the reactions of an 
element is thus to simultaneously fi nd the magnitude of the loads acting on the support-
ing element. Each action, or load, has an equal reaction; or, as Newton said in defense of 
this third law:  “ If you press a stone with your fi nger, the fi nger is also pressed by the stone. ”  

 The   second reason for fi nding reactions of the structural element is that doing 
so facilitates the further analysis or design of the element itself. That is, determining 
reactions is the prerequisite to the calculation of internal loads and internal stresses, 

                                                           Statics    1 
CHAPTER

 FIGURE 1.1  
       Direction of loads can be  (a)  vertical,  (b)  horizontal, or  (c)  inclined    



2 CHAPTER 1 Statics

values of which are central to the most fundamental questions of structural engi-
neering: Is it strong enough? Is it safe? 

    TRIBUTARY AREAS 
 When   loads are evenly distributed over a surface, it is often possible to  “ assign ”  por-
tions of the load to the various structural elements supporting that surface by subdi-
viding the total area into  tributary areas  corresponding to each member. In  Figure 
1.3   , half the load of the table goes to each lifter. 

 In    Figure 1.4   , half the 20-psf snow load on the cantilevered roof goes to each col-
umn; the tributary area for each column is 10       ft      �      10       ft, so the load on each column 
is 20(10      �      10)      �      2000       lb      �      2       kips. 

    Figure 1.5    shows a framing plan for a steel building. If the total fl oor load is 
100       psf, the load acting on each of the structural elements comprising the fl oor sys-
tem can be found using appropriate tributary areas. Beam  A  supports a total load of 
100(20      �      10)      �      20,000       lb      �      20       kips; but it is more useful to calculate the distributed 
load acting on any linear foot of the beam — this is shown by the shaded tributary 
area in  Figure 1.6 a     and is 100(1      �      10)      �      1000       lb      �      1       kip. Since 1000       lb is acting on 
a 1-ft length of beam, we write 1000       lb/ft or 1.0       kip/ft, as shown in  Figure 1.6 b  . 

 As   shown in  Figure 1.7 a    , Beam  B  (or Girder  B ) supports a total tributary area of 
17.5      �      20      �      350       ft 2 . The load at point  a  is not included in the beam’s tributary area. 
Rather, it is assigned to the edge, or  spandrel , girder where it goes directly into a 

 FIGURE 1.3  
       Tributary areas divide the load among the various supports    

 FIGURE 1.2  
       Distributed loads on a beam    
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 FIGURE 1.4  
       Distributed load on a fl oor carried by two columns    

 FIGURE 1.5  
       Framing plan showing tributary areas for beams, girders, and columns    

 FIGURE 1.6  
       Distributed load on a steel beam, with  (a)  one linear foot of its tributary area shown and  (b)  load 
diagram showing distributed load in kips per foot    

Tributary areas
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column, having no effect on Beam  B . Unlike Beam  A , the fl oor loads are transferred 
to Beam  B  at two points: each concentrated load corresponds to a tributary area of 
17.5      �      10      �      175       ft 2 ; therefore, the two loads each have a magnitude of 100      �      175      �      
17,500       lb      �      17.5       kips. The load diagram for Beam  B  is shown in  Figure 1.7 b  . 

    Spandrel girders 
 Beam    C  (or Spandrel Girder  C ), shown in  Figure 1.5 , is similar to Beam  B  except that 
the tributary area for each concentrated load is smaller, 7.5      �      10      �      75       ft 2 , as shown in 
 Figure 1.8 a    . The two concentrated loads, therefore, have a magnitude of 100      �      75      �      
7500       lb      �      7.5       kips, and the load diagram is as shown in  Figure 1.8 b  . 

 There   are three reasons spandrel girders are often larger than otherwise similar 
girders located in the interior of the building, even though the tributary areas they 
support are smaller. First, spandrel girders often support cladding of various kinds, 
in addition to the fl oor loads included in this example. Second, aside from the added 
weight to be supported, spandrels are often made bigger so that their  defl ection , or 
vertical movement, is reduced. This can be an important consideration where non-
structural cladding is sensitive to movement of the structural frame. Third, when the 
girders are designed to be part of a moment-resisting frame, their size might need to 
be increased to account for the stresses introduced by lateral forces such as wind 
and earthquake.  

 FIGURE 1.7  
       Concentrated loads on a girder  (a)  derived from tributary areas on framing plan and  (b)  shown on 
load diagram    
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    Columns 
 One   way or another, all of the load acting on the fl oor must be carried by columns 
under that fl oor. For most structures, it is appropriate to subdivide the fl oor into 
tributary areas defi ned by the centerlines between columns so that every piece of 
the fl oor is assigned to a column. 

 It   can be seen from  Figure 1.9    that typical interior columns carry twice the load of 
typical exterior columns, and four times the load of corner columns. However, two 
of the conditions described earlier with respect to the enlargement of spandrel gird-
ers can also increase the size of exterior and corner columns: the need to support 

 FIGURE 1.9  
       Framing plan showing tributary areas for columns (one fl oor only)    

Tributary areas

 FIGURE 1.8  
       Concentrated loads on a spandrel girder  (a)  derived from tributary areas on framing plan and 
 (b)  shown on load diagram    
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additional weight of cladding  and the possibility of resisting wind and earthquake 
forces through rigid connections to the spandrel girders. 

 Column    D  supports a tributary area of 35      �      20      �      700       ft 2  so that the load trans-
ferred to Column  D  from the fl oor above is 100      �      700      �      70,000       lb      �      70       kips, assum-
ing that the fl oor above has the same shape and loads as the fl oor shown. But every 
fl oor and roof above also transfers a load to Column  D . Obviously, columns at the 
bottom of buildings support more weight than columns at the top of buildings, 
since all the tributary areas of the fl oors and roof above are assigned to them. As an 
example, if there are nine fl oors and one roof above Column  D , all with the same 
distributed load and tributary area, then the total load on Column  D  would be, not 
70       k, but (9      �      1)      �      70      �      700       kips. 

 In   practice, the entire load as previously calculated is not assigned to columns 
or to other structural elements with large total tributary areas. This is because it is 
unlikely that a large tributary area will be fully loaded at any given time. For example, 
if the live load caused by people and other movable objects is set at 60       psf, and one 
person weighed 180       lb, then a tributary area of 7000       ft 2  (as in the example of Column 
 D ) would have to be populated by more than 2000 people, each occupying 3       ft 2 , 
in order to achieve the specifi ed load. That many people crowded into that large 
a space is an unlikely occurrence in most occupancies, and a  live load reduction  
is often allowed by building codes. As the tributary area gets smaller, however, the 
probability of the full live load being present increases, and no such reduction is 
permitted. Permanent and immovable components of the building, or dead loads, 
have the same probability of being present over large tributary areas as small tribu-
tary areas, so they are never included in this type of probability-based load reduc-
tion. Calculations for live load reduction are explained in the next chapter. 

 The   path taken by a load depends on the ability of the structural elements to 
transfer loads in various directions. Given the choice of two competing load paths 
such as (1) and (2) in  Figure 1.10   , the load is divided between the two paths in 

 FIGURE 1.10  
       Competing load paths on a corrugated steel deck    
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proportion to the  relative stiffness  of each path. Since the corrugated steel deck 
shown in  Figure 1.10  is much stiffer in the direction of load path (1), and, in fact, is 
designed to carry the entire load in that direction, we neglect the possibility of the 
load moving along path (2). 

 For    “ two-way ”  systems, generally only used in reinforced concrete ( Figure 1.11   ), or 
for indeterminate systems in general, the assignment of loads to beams and columns 
also becomes a function of the relative stiffness of the various components of the 
system. Stiffer elements  “ attract ”  more load to them, and the simplistic division into 
tributary areas becomes inappropriate, except in certain symmetrical conditions.   

    EQUILIBRIUM 
 Where   loads or structural geometries are not symmetrical, using tributary areas may 
not accurately predict the effects of loads placed on structures, and other methods 
must be used. We can determine the effects of loads placed on statically determinate 
structures by assuming that such structures remain  “ at rest, ”  in a state of equilibrium. 
The implication of this condition, derived from Newton’s second law, is that the sum-
mation of all forces (or moments) acting on the structure along any given coordi-
nate axis equals zero. For a plane structure — that is, one whose shape and defl ection 
under loads occurs on a planar surface — three equations uniquely defi ne this condi-
tion of equilibrium: two for loads (forces) acting along either of the perpendicular 
axes of the plane’s coordinate system and one for moments acting   “ about ”   the axis 
perpendicular to the structure’s plane. Some examples of plane structures are shown 
in  Figure 1.12   . 

Equilibrium

 FIGURE 1.11  
       Competing load paths on a two-way slab    
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 In   words, the equations of equilibrium state that the sum of all  “ horizontal ”  
forces is zero; the sum of all  “ vertical ”  forces is zero; and — take a deep breath 
here — the sum of all moments about any point, including those resulting from any 
force multiplied by its distance (measured perpendicular to the  “ line of action ”  of 
the force) to the point about which moments are being taken, is zero. 

    “ Horizontal ”  and  “ vertical ”  can be taken as any perpendicular set of coordinate axes. 
Where  x  is used for the horizontal axis and  y  for the vertical, moments in the plane 
of the structure are acting about the  z -axis. This conventional way of representing 
coordinate systems for the consideration of equilibrium is inconsistent with the label-
ing typically used to distinguish between axes of bending. Compare the typical axes of 
bending shown in  Figure 1.13    with the  “ equilibrium ”  coordinate axes in  Figure 1.12 . 
Written symbolically, the equations are: 

  

Σ
Σ

Σ

F

F

M

x

y

pt

=
=

=

0

0

0.   

(1.1)

      

 FIGURE 1.12  
       Examples of plane structures: simply supported beam, three-hinged arch, and rigid (moment-
resisting) frame    
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 For   any plane, rigid-body structure (just  “ structure ”  or  “ structural element ”  from 
now on) subjected to various loads, the three equations of equilibrium provide 
the mathematical basis for determining values for up to three unknown forces and 
moments — the  reactions  of the structure to the loads. Structural elements of this 
type are statically determinate because the magnitudes of the unknown reactions 
can be determined using only the equations of static equilibrium. 

    Free-body diagrams 
 Any   structure (or part of a structure) so defi ned can be represented as a  free-body 
diagram  (FBD). All  “ external ”  loads acting on the FBD, all unknown  “ external ”  
moments or forces at the points where the FBD is connected to other structural 
elements (i.e., all reactions), and all unknown  “ internal ”  moments or forces at points 
where a FBD is  “ cut ”  must be shown on the diagram. 

 Single   or multiple reactions occurring at a given point are often represented by 
standard symbols. These pictures graphically indicate the types of forces and moments 
that can be developed ( Figure 1.14   ). Other combinations of forces and moments can 

Equilibrium

 FIGURE 1.13  
       Coordinate axes for a steel W-shape    

 FIGURE 1.14  
       Abstract symbols for reactions, including  (a)  hinge or pin-end,  (b)  roller,  (c)  fi xed, and  (d)  free end    
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be represented graphically; the three symbols shown, however, cover most com-
monly encountered conditions. 

 Where   an FBD is  “ cut ”  at a point other than at the reactions of the structural 
element, an internal moment as well as two perpendicular internal forces are typi-
cally present, unless an internal constraint, such as a hinge, prevents one or more of 
those forces (or moments) from developing. 

 Where   there are more reactions than equations of equilibrium, the structure is 
said to be statically indeterminate, and equilibrium alone is insuffi cient to determine 
the values of the reactions; other techniques have been developed to fi nd the reac-
tions of indeterminate structures, but these are beyond the scope of this text.   

    REACTIONS 
 The   following examples show how the equations of equilibrium can be used to fi nd 
reactions of various common determinate structures. The procedures have been 
developed so that the equations need not be solved simultaneously. Alternatively, 
where determinate structures are symmetrical in their own geometry as well as in 
their loading (assumed to be vertical), reactions can be found by assigning half of 
the total external loads to each vertical reaction.

       Example 1.1        Find reactions for simply supported beam      

    Problem defi nition 
 Find   the three reactions for a simply supported beam supporting a distributed load of 100 
kips/ft over a span of 20 ft.  Simply supported  means that the beam is supported by a hinge 
and a roller, and is therefore determinate.  

    Solution overview 
 Draw   load diagram with unknown forces and/or moments replacing the reaction (constraint) 
symbols; use the three equations of equilibrium to fi nd these unknown reactions.  

    Problem solution 
        1.     Redraw load diagram ( Figure 1.15 a    ) by replacing constraint symbols with unknown forces, 

 H A  ,  R A  , and  R B  , and by showing a resultant for all distributed loads ( Figure 1.15 b  ).  
    2.     The solution to the horizontal reaction at point  A  is trivial, since no horizontal loads are 

present:  Σ  F x        �       H A        �      0. In this equation, we use a sign convention, where  positive  corre-
sponds to forces pointing to the right and  negative  to forces pointing to the left.  

    3.     The order in which the remaining equations are solved is important: moment equilibrium 
is considered before vertical equilibrium in order to reduce the number of unknown vari-
ables in the vertical equilibrium equation. Moments can be taken about any point in the 
plane; however, unless you wish to solve the two remaining equations simultaneously, it 
is suggested that the point be chosen strategically to eliminate all but one of the unknown 
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variables. Each moment is the product of a force times a distance called the moment arm; 
this moment arm is measured from the point about which moments are taken to the  “ line 
of action ”  of the force and is measured perpendicular to the line of action of the force.    

   Where   the moment arm equals zero, the moment being considered is also zero, and 
the force  “ drops out ”  of the equation. For this reason, it is most convenient to select a 
point about which to take moments that is aligned with the line of action of either of the 
two unknown vertical reactions so that one of those unknown forces drops out of the equa-
tion of equilibrium. The sign of each moment is based on an arbitrary sign convention, with 
 positive  used when the moment causes a clockwise rotation of the beam considered as 
a free-body diagram and  negative  when a counterclockwise rotation results (the opposite 
convention could be chosen as well). In the equation that follows, each product of two 
numbers represents a force times a distance so that, taken together, they represent the 
sum of all moments acting on the beam. Forces whose moment arm is zero are left out. 

  ΣM RB A= − =( ) ( )20 2000 10 0      

    Solving for the vertical reaction at point  A , we get:  R A        �      1000       kips.   

    4.     Finally, we use the third equation of equilibrium to fi nd the last unknown reaction. Another 
sign convention is necessary for vertical equilibrium equations: we arbitrarily choose  positive  
to represent an upward-acting force and  negative  to represent a downward-acting force.    

  
ΣF R Ry A B= + − =2000 0

     

    or, substituting  R A        �      1000       kips:   

  1000 2000 0+ − =RB       

Reactions

 FIGURE 1.15  
       Load diagram for simply supported beam for Example 1.1 showing  (a)  constraint symbols and 
 (b)  unknown forces replacing constraint symbols, and resultant corresponding to distributed load    
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   Solving   for the vertical reaction at point  B , we get  R B        �      1000       kips. 
   The   two vertical reactions in this example are equal and could have been found by simply 

dividing the total load in half, as we did when considering tributary areas. Doing this, however, 
is only appropriate when the structure’s geometry and loads are symmetrical. 

 If   the reactions represent other structural supports such as columns or girders, then 
the  “ upward ”  support they give to the beam occurs simultaneously with the beam’s 
 “ downward ”  weight on the supports: in other words, if the beam in Example 1.1 
is supported on two columns, then those columns (at points  A  and  B ) would have 
load diagrams as shown in  Figure 1.16 a    . The beam and columns, shown together, 
have reactions and loads as shown in  Figure 1.16 b  . These pairs of equal and oppo-
site forces are actually inseparable. In the Newtonian framework, each action, or 
load, has an equal reaction.      

       Example 1.2        Find reactions for three-hinged arch      

    Problem defi nition 
 Find   the reactions for the three-hinged arch shown in  Figure 1.17 a    .  

 FIGURE 1.16  
       Support for the beam from Example 1.1 showing  (a)  load on column supports and  (b)  reactions 
from beam corresponding to load on column supports    
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    Solution overview 
 Draw   load diagram with unknown forces and/or moments replacing the reaction (constraint) 
symbols; use the three equations of equilibrium, plus one additional equation found by consid-
ering the equilibrium of another free-body diagram, to fi nd the four unknown reactions.  

    Problem solution 

        1.     The three-hinged arch shown in this example appears to have too many unknown variables 
(four unknowns versus only three equations of equilibrium); however, the  internal hinge  at 
point  C  prevents the structure from behaving as a rigid body, and a fourth equation can be 
developed out of this condition. The initial three equations of equilibrium can be written as 
follows: 
    a.      Σ  M B        �       R A  (60)      �      20(30)      �      0, from which  R A        �      10       kips.  
    b.      Σ  F y        �       R A        �       R B        �      20      �      0; then, substituting  R A        �      10       kips from the moment equilib-

rium equation solved in step  a , we get 10      �       R B        �      20      �      0, from which  R B        �      10       kips.  
    c.      Σ  F X        �       H  A       �       H B        �      0.       
   Sign   conventions are as described in Example 1.1. This last equation of horizontal equilib-
rium (step  c ) contains two unknown variables and cannot be solved at this point. To fi nd 
 H A  , it is necessary to fi rst cut a new FBD at the internal hinge (point  C ) in order to examine 
the equilibrium of the resulting partial structure shown in  Figure 1.18   . 

 With   respect to this FBD, we show unknown internal forces  H C   and  V C   at the cut, but we 
show no bending moment at that point since none can exist at a hinge. This condition of zero 
moment is what allows us to write an equation that can be solved for the unknown,  H A  : 

  ΣM HC A= − =10 30 20 0( ) ( )      

Reactions

 FIGURE 1.17  
       Load diagram for three-hinged arch for Example 1.2 showing  (a)  constraint symbols and 
 (b)  unknown forces replacing constraint symbols    
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  from which  H A        �      15       kips.   
 Then  , going back to the  “ horizontal ”  equilibrium equation shown in step  c  that was written 

for the entire structure (not just the cut FBD), we get: 

  ΣF H H HX A B B= − = − =15 0      
  from which  H B        �      15       kips.   

 While   the moment equation written for the FBD can be taken about any point in the plane of 
the structure, it is easier to take moments about point  C , so that only  H A   appears in the equa-
tion as an unknown. Otherwise, it would be necessary to fi rst solve for the internal unknown 
forces at point  C , using  “ vertical ”  and  “ horizontal ”  equilibrium. 

 If   there were no hinge at point  C , we would need to add an unknown internal moment 
at  C , in addition to the forces shown ( Figure 1.19   ). The moment equation would then be 
 Σ  M C        �      10(30)      �       H A  (20)      �       M C        �      0. With two unknown variables in the equation ( H A   and  M C  ), 
we cannot solve for  H A  . In other words, unlike the three-hinged arch, this two-hinged arch is 
an  indeterminate  structure.      

       Example 1.3        Find reactions for a cable      

    Problem defi nition 
 Find   the reactions for the fl exible cable structure shown in  Figure 1.20 a    . The actual shape of 
the cable is unknown: all that is specifi ed is the maximum distance of the cable below the level 
of the supports (reactions): the cable’s  sag.   

 FIGURE 1.19  
       Free-body diagram for a two-hinged arch (with internal moment at point  C )    

 FIGURE 1.18  
       Free-body diagram cut at internal hinge at point  C , for Example 1.2    
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    Solution overview 
 Draw   load diagram with unknown forces and/or moments replacing the reaction (constraint) 
symbols; use the three equations of equilibrium, plus one additional equation found by consid-
ering the equilibrium of another free-body diagram, to fi nd the four unknown reactions.  

    Problem solution 
        1.     The cable shown in this example appears to have too many unknown variables (four 

unknowns versus only three equations of equilibrium); however, the cable’s fl exibility pre-
vents it from behaving as a rigid body, and a fourth equation can be developed out of this 
condition. The three equations of equilibrium can be written as follows: 
    a.      Σ  M B        �       R A  (80)      �      10(65)      �      20(40)      �      0, from which  R A        �      18.125        kips.  
    b.      Σ  F y        �       R A        �       R B        �      10      �      20      �      0; then, substituting  R A        �      18.125        kips from the moment 

equilibrium equation solved in step  a , we get 18.125      �       R B        �      10      �      20      �      0, from which 
 R B        �      11.875       kips.  

    c.      Σ  F X        �       H  A       �       H B        �      0.       
    Sign   conventions are as described in Example 1.1. This last equation of horizontal equilib-

rium (step  c ) contains two unknown variables and cannot be solved at this point. By anal-
ogy to the three-hinged arch, we would expect to cut an FBD and develop a fourth equation. 
Like the internal hinge in the arch, the entire cable, being fl exible, is incapable of resist-
ing any bending moments. But unlike the arch, the cable’s geometry is not predetermined; 
it is conditioned by the particular loads placed upon it. Before cutting the FBD, we need 
to fi gure out where the maximum specifi ed  sag  of 10       ft occurs: without this information, 

Reactions

 FIGURE 1.20  
       Load diagram for cable for Example 1.3 showing  (a)  constraint symbols and  (b)  unknown forces 
replacing constraint symbols    
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we would be writing a moment equilibrium equation of an FBD in which the moment arm of 
the horizontal reaction,  H A  , was unknown. 

    2.     We fi nd the location of the sag point by looking at internal vertical forces within the cable. 
When the direction of these internal vertical forces changes, the cable has reached its low-
est point ( Figure 1.21   ). Checking fi rst at point  C , we see that the internal vertical force does 
not change direction on either side of the external load of 10       kips (comparing  Figures 1.22 a  
and 1.22 b    ), so the sag point cannot be at point  C .    

   However  , when we check point  D , we see that the direction of the internal vertical force 
does change, as shown in  Figure 1.23   . 

   Thus  , point  D  is the sag point of the cable (i.e., the low point), specifi ed as being 10 ft 
below the support elevation. 

   We   can also fi nd this sag point by constructing a diagram of cumulative vertical loads, 
beginning on the left side of the cable ( Figure 1.24   ). The sag point then occurs where the 
 “ cumulative force line ”  crosses the baseline. 

    3.     Having determined the sag point, we cut an FBD at that point ( Figure 1.25 a    ) and proceed 
as in the example of the three-hinged arch, taking moments about the sag point: Σ M D        �      
18.125(40)      �      10(25)      �       H A        �      0, from which  H A        �      47.5       kips.    

 FIGURE 1.22  
       Vertical component of cable force for Example 1.3 is found  (a)  just to the left of the external load 
at point  C  and  (b)  just to the right of the load    

 FIGURE 1.21  
       Sag point occurs where the vertical component of internal cable forces changes direction (sign), 
for Example 1.3    
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 Once   the location of the sag point is known, a more accurate sketch of the cable shape can 
be made, as shown in  Figure 1.25 b  . 

 Then  , going back to the  “ horizontal ”  equilibrium equation shown in step 1 c  that was written 
for the entire structure (not just the cut FBD), we get  Σ  F X        �       H  A       �       H B        �           �     47.5      �       H B        �      0, 
from which  H B        �      47.5       kips. In this last equation,  H A   is written with a minus sign since it acts 
toward the left (and our sign convention has  positive  going to the right). 

 We   have thus far assumed particular directions for our unknown forces — for example, that  H A   
acts toward the left. Doing so resulted in a positive answer of 47.5       kips, which confi rmed that 
our guess of the force’s direction was correct. Had we initially assumed that  H A   acted toward 
the right, we would have gotten an answer of  � 47.5       kips, which is equally correct, but less sat-
isfying. In other words, both ways of describing the force shown in  Figure 1.26    are equivalent.  

    INTERNAL FORCES AND MOMENTS 
 Finding   internal forces and moments is no different than fi nding reactions; one need 
only cut an FBD at the cross section where the internal forces and moments are to 

Internal forces and moments

 FIGURE 1.23  
       Vertical component of cable force for Example 1.3 is found  (a)  just to the left of the external load 
at point  D  and  (b)  just to the right of the load    

 FIGURE 1.24  
       Diagram of cumulative vertical loads for Example 1.3    



18 CHAPTER 1 Statics

be computed (after having found any unknown reactions that occur within the dia-
gram). At any cut in a rigid element of a plane structure, two perpendicular forces and 
one moment are potentially present. These internal forces and moments have names, 
depending on their orientation relative to the axis of the structural element where the 
cut is made ( Figure 1.27   ). The force parallel to the axis of the member is called an 
 axial force ; the force perpendicular to the member is called a  shear force ; the moment 
about an axis perpendicular to the structure’s plane is called a  bending moment.  

 In   a three-dimensional environment with  x- ,  y -, and  z -axes as shown in  Figure 
1.27 , three additional forces and moments may be present: another shear force 
(along the  z -axis) and two other moments, one about the  y -axis and one about the 
 x -axis. Moments about the  y -axis cause bending (but bending perpendicular to the two-
dimensional plane); moments about the  x -axis cause twisting or  torsion.  These types 
of three-dimensional structural behaviors are beyond the scope of this discussion. 

    Internal shear forces and bending moments in beams 
 Where   the only external forces acting on beams are perpendicular to a simply 
supported beam’s longitudinal axis, no axial forces can be present. The following 

 FIGURE 1.26  
       Negative and positive signs on force arrows going in opposite directions represent equivalent loads    

 FIGURE 1.25  
       Free-body diagram cut at the sag point for Example 1.3    
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examples show how internal shear forces and bending moments can be computed 
along the length of the beam.       

       Example 1.4        Find internal shear and bending moment for simply supported beam 
with  “ point ”  loads      

    Problem defi nition 
 Find   internal shear forces and bending moments at key points along the length of the beam 
shown in  Figure 1.28   , that is, under each external load and reaction. Reactions have already 
been determined.  

    Solution overview 
 Cut   free-body diagrams at each external load; use equations of equilibrium to compute the 
unknown internal forces and moments at those cut points.  

    Problem solution 

        1.     To fi nd the internal shear force and bending moment at point  A , fi rst cut a free-body dia-
gram there, as shown in  Figure 1.29   .    

 Using   the equation of vertical equilibrium,  Σ  F y        �      5      �       V A        �      0, from which the internal 
shear force  V A        �      5       kips (downward). 

 Moment   equilibrium is used to confi rm that the internal moment at the hinge is zero: 
 Σ  M A        �       M A        �      0. The two forces present (5       kips and  V A        �      5       kips) do not need to be included 
in this equation of moment equilibrium since their moment arms are equal to zero. The 
potential internal moment,  M A  , is entered into the moment equilibrium equation as it is 
(without being multiplied by a moment arm) since it is already, by defi nition, a moment. 

    2.     Shear forces must be computed on  “ both sides ”  of the external load at point  C ; the fact 
that this results in two different values for shear at this point is not a paradox: it simply 

Internal forces and moments

 FIGURE 1.27  
       Internal shear and axial forces and internal bending moment    
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refl ects the discontinuity in the value of shear caused by the presence of a concentrated 
load. In fact, a truly concentrated load acting over an area of zero is impossible, since 
it would result in an infi nitely high stress at the point of application; all concentrated 
loads are really distributed loads over small areas. However, there is only one value for 
bending moment at point  C , whether or not the external load is included in the FBD. In 
other words, unlike shear force, there is no discontinuity in moment resulting from a con-
centrated load. 
    a.     Find internal shear force and bending moment at point  C , just to the left of the external 

load by cutting an FBD at that point, as shown in  Figure 1.30 a    . Using the equation of 
vertical equilibrium:  Σ  F y        �      5      �       V C        �      0, from which the internal shear force  V C        �      5       kips 
(downward). Using the equation of moment equilibrium,  Σ  M C        �      5(8)      �       M C        �      0, from 
which  M C        �      40       ft-kips (counterclockwise).  

 FIGURE 1.30  
       Free-body diagram for Example 1.4  (a)  cut just to the left of the external load at point  C ; and  
(b)  just to the right of the load    

 FIGURE 1.29  
       Free-body diagram cut at left reaction for Example 1.4    

 FIGURE 1.28  
       Load diagram for Example 1.4    



21

    b.     Find internal shear force and bending moment at point  C , just to the right of the exter-
nal load by cutting an FBD at that point, as shown in  Figure 1.30 b  . Using the equa-
tion of vertical equilibrium:  Σ  F y        �      5      �      5  �   V C        �      0, from which the internal shear force 
 V C        �      0       kips. Using the equation of moment equilibrium,  Σ  M C        �      5(8)      �       M C        �      0, from 
which  M C        �      40       ft-kips (counterclockwise), as before.     

    3.     Find shear and moment at point  D . 
    a.     Find internal shear force and bending moment at point  D , just to the left of the exter-

nal load by cutting an FBD at that point, as shown in  Figure 1.31 a    . Using the equa-
tion of vertical equilibrium:  Σ  F y        �      5      �      5  �   V D        �      0, from which the internal shear force 
 V D        �      0       kips. Using the equation of moment equilibrium,  Σ  M D        �      5(16)      �      5(8)      �       M D        �      
0, from which  M D        �      40 ft-kips (counterclockwise).  

    b.     Find internal shear force and bending moment at point  D , just to the right of the exter-
nal load by cutting an FBD at that point, as shown in  Figure 1.31 b  . Using the equation 
of vertical equilibrium,  Σ  F y        �      5      �      5    �    5    –     V D        �      0, from which the internal shear force 
 V D        �           �     5       kips (downward), which is equivalent to 5       kips (upward). Using the equation 
of moment equilibrium,  Σ  M D        �      5(16)      �      5(8)      �       M D        �      0, from which  M D        �      40       ft-kips 
(counterclockwise), as before.     

    4.     Find shear and moment at point  B  by cutting a free-body diagram just to the left of the 
reaction at point  B , as shown in  Figure 1.32   . Using the equation of vertical equilibrium, 

Internal forces and moments

 FIGURE 1.31  
       Free-body diagram for Example 1.4  (a)  cut just to the left of the external load at point  D  and 
 (b)  just to the right of the load    

 FIGURE 1.32  
       Free-body diagram cut just to the left of the reaction at point  B  for Example 1.4    
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 Σ  F y        �      5      �      5    �    5      �       V B        �      0, from which the internal shear force  V B        �           �     5       kips (downward), 
which is equivalent to 5       kips (upward).    

 Moment   equilibrium is used to confi rm that the internal moment at the hinge is zero:  Σ  M B        �      
5(24)      �      5(16)      �      5(8)      �       M B        �      0, from which  M B        �      0. The internal shear force,  V B  , does not need 
to be included in this equation of moment equilibrium since its moment arm is equal to zero. 

 The   forces and moments can be graphically displayed as shown in  Figure 1.33   , by connect-
ing the points found earlier. 

 Some   important characteristics of internal shear forces and bending moments may 
now be summarized: (1) Internal axial forces are always zero in a horizontally ori-
ented simply supported beam with only vertical loads. (2) Moments at hinges at the 
ends of structural members are zero. Only when a continuous member passes over 
a hinge can the moment at a hinge be nonzero. (3) A shear force acting downward 
on the right side of an FBD is arbitrarily called  “ positive ” ; a bending moment acting 
counterclockwise on the right side of an FBD is arbitrarily called  “ positive. ”  As will 
be discussed later in Chapter 8 (beams), positive bending corresponds to  “ tension ”  
on the bottom and  “ compression ”  on the top of a horizontal structural element. 

    General strategy for fi nding internal shear forces and bending moments 
 Shear   and moment diagrams can also be drawn by noting the following rules: (1) 
At any point along the beam, the slope of the shear diagram equals the value of the 
load (the  “ infi nite ”  slope of the shear diagram at concentrated loads can be seen 
as a shorthand approximation to the actual condition of the load being distributed 
over some fi nite length, rather than existing at a point). (2) Between any two points 
along a beam, the change in the value of shear equals the total load (between those 
points). (3) The slope of the moment diagram at any point equals the value of the 
shear force at that point. (4) The change in the value of bending moment between 

 FIGURE 1.33  
       Load, shear, and moment diagrams for Example 1.4    
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any two points equals the  “ area of the shear diagram ”  between those points. These 
rules are derived by applying the equations of equilibrium to an elemental slice of a 
beam, as shown in Table A-1.1.       

       Example 1.5        Find internal shear and bending moments for a simply supported 
cantilever beam with distributed loads      

    Problem defi nition 
 Find   the distribution of internal shear forces and bending moments for the beam shown in 
 Figure 1.34   , fi rst by using FBDs and then by applying the rules from Table A-1.1. 

    Solution overview 
 Find   reactions using the equations of equilibrium; fi nd internal shear force and bending 
moment at key points (at reactions and at location of zero shear).   

    Problem solution 

        1.     Find the resultant of the distributed load, equal to 1       kip/ft      �      25       ft      �      25       kips.  
    2.     To fi nd reactions, fi rst take moments about either point  A  or point  B ; we choose point  B : 

 Σ  M B        �       R A  (20)      �      25(12.5)      �      0, from which  R A        �      15.625       kips. Next, use the equation 
of vertical equilibrium to fi nd the other reaction:  Σ  F y        �       R A        �       R B        �      25      �      15.625      �       R B  
     �      25      �      0, from which  R B        �      9.375       kips.  

    3.     Find shear and moment at point  A . 
    a.     Find internal shear force and bending moment at point  A , just to the left of the reaction by 

cutting an FBD at that point, as shown in  Figure 1.35 a    . Using the equation of vertical equi-
librium,  Σ  F y        �           �     5  �   V A        �      0, from which the internal shear force,  V A        �           �     5       kips (downward) 
or 5       kips (upward). Using the equation of moment equilibrium,  Σ  M A        �           �     5(2.5)      �       M A        �      0, 
from which  M A        �           �     12.5 ft-kips (counterclockwise) or 12.5 ft-kips (clockwise).  

    b.     Find internal shear force and bending moment at point  A , just to the right of the reaction by 
cutting an FBD at that point, as shown in  Figure 1.35 b  . Using the equation of vertical equi-
librium,  Σ  F y        �      15.625      �      5  �   V A        �      0, from which the internal shear force  V A        �      10.625       kips 
(downward). Using the equation of moment equilibrium,  Σ  M A        �           �     5(2.5)      �       M A        �      0, from 
which  M A        �           �     12.5 ft-kips (counterclockwise) or 12.5 ft-kips (clockwise), as before.       

Internal forces and moments

 FIGURE 1.34  
       Load diagram for Example 1.5    
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    The   moment at point  A  is  not  zero, even though there is a hinge at that point. The reason is 
that the beam itself is continuous over the hinge. This continuity is essential for the stability 
of the cantilevered portion of the beam. 

    4.     Find shear and moment at point  B  by cutting a free-body diagram just to the left of the 
reaction at point  B , as shown in  Figure 1.36   . Using the equation of vertical equilibrium, 
 Σ  F y        �      15.625  –  25  –   V B        �      0, from which the internal shear force  V B        �       – 9.375       kips (down-
ward), which is equivalent to 9.375       kips (upward). Moment equilibrium is used to confi rm 
that the internal moment at the hinge is zero: Σ M B        �      15.625(20)  –  25(12.5)      �       M B        �      0, 
from which  M B        �      0. The internal shear force,  V B  , does not need to be included in this equa-
tion of moment equilibrium since its moment arm is equal to zero.  

    5.     The internal shear forces can be graphically displayed as shown in  Figure 1.37   , by connecting 
the points found earlier. The slope of the shear diagram at any point equals the value of the 
load; since the load is  uniformly distributed , or constant, the slope of the shear diagram is also 
constant.    

       The bending moment cannot be adequately diagrammed until one more point is deter-
mined and analyzed: the point somewhere between the two reactions where the shear is 
zero. Since the slope of the moment diagram at any point equals the value of the shear force, 
a change from positive to negative shear indicates at least a  “ local ”  minimum or maximum 
moment ( Figure 1.38   ). 

 FIGURE 1.36  
       Free-body diagram cut just to the left of the reaction at point  B  for Example 1.5    

 FIGURE 1.35  
       Free-body diagram for Example 1.5  (a)  cut just to the left of the reaction at point  A  and  (b)  just to 
the right of the reaction    
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   This   key point, labeled  C  in  Figure 1.39   , can be located by dividing the value of shear 
just to the right of the reaction at point  A  by the distributed load: the distance of point  C  
from point  A , then, is  x       �      10.625/1.0      �      10.625       ft. 

   The   length,  x , can also be found using similar triangles:  x  /10.625      �      20/20. Solving for 
 x , we get the same value as earlier:  x       �      10.625       ft. 

   The   moment at this point can be found by cutting an FBD at point  C , as shown in 
 Figure 1.40   , and applying the equation of moment equilibrium: ΣM C       �      15.625(10.625)      �      
15.625(7.8125)      �       M C        �      0, from which  M C        �      43.9 ft-kips (counterclockwise). 

    6.     Alternatively, shear and moment diagrams may be drawn based on the rules listed in Table 
A-1.1, and illustrated in  Figure 1.41   . The critical points of the shear diagram are derived from 
the load diagram based on Rule 2: the  “ areas ”  of the load diagram (with concentrated loads 
or reactions counting as areas  b  and  d ) between any two points equal the change in shear 
between those points. These  “ area ”  values are summarized in the box between the load and 
shear diagrams. Connecting the points established using Rule 2 is facilitated by reference to 
Rule 1: the slope of the shear diagram equals the value of the load at that point. Therefore, 
where the load diagram is  “ fl at ”  (i.e., has constant value), the shear diagram has constant 

Internal forces and moments

 FIGURE 1.37  
       Load and shear diagrams for Example 1.5    

 FIGURE 1.38  
       Relationship between value of shear diagram and slope of moment diagram    
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slope represented by a straight line that has positive slope for positive values of load, and 
negative slope corresponding to negative values of load. Since almost all distributed loads are 
downward-acting (negative value), shear diagrams often have the characteristic pattern of 
negative slope shown in  Figure 1.41 .    

   Once   the shear diagram has been completed, and any critical lengths have been found 
(see step 5), the moment diagram can be drawn based on Rules 3 and 4 of Table A-1.1. 
Critical moments are fi rst found by examining the  “ areas ”  under the shear diagram, as 
described in Rule 4 of Table A-1.1. These  “ areas ”  — actually forces times distances, 
or moments — are shown in the box between the shear and moment diagrams in  Figure 
1.41  and represent the  change  in moment between the two points bracketed by the shear 
diagram areas — not the value of the moments themselves. For example, the fi rst  “ area 
 e  ”  of  – 12.5 ft-kips is added to the initial moment of zero at the free end of the cantile-
ver, so that the actual moment at point  A  is 0      �           �     12.5      �           �     12.5 ft-kips. The maximum 
moment (where the shear is zero), is found by adding  “ area  f      ”  to the moment at point  A : 
56.45      �           �     12.5      �      43.95 ft-kips, as shown in  Figure 1.41 . Finally, slopes of the moment 
diagram curve can be determined based on Rule 3 of Table A-1.1: the slope of the moment 
diagram is equal to the value of the shear force at any point, as illustrated in  Figure 1.38 . 

 FIGURE 1.40  
       Free-body diagram for Example 1.5, cut at the point of zero shear (where the shear diagram 
crosses the baseline, going from positive to negative value)    

 FIGURE 1.39  
       Shear diagram for Example 1.5, showing distance from reaction at point  A  to the point where the 
shear diagram crosses the baseline, going from positive to negative value    
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 In   drawing the moment diagram, it is important to emphasize the following: 
(1) The area under the shear diagram between any two points corresponds, not to 
the value of the moment, but to the  change  in moment between those two points. 
Therefore, the triangular shear diagram area,  f , of 56.45 ft-kips in Example 1.5 does 
not show up as a moment anywhere in the beam; in fact, the maximum moment turns 
out to be 43.95 ft-kips. (2) The particular curvature of the moment diagram can be 
found by relating the slope of the curve to the changing values of the shear diagram. 
(3) The moment and shear diagrams are created with respect to the actual distribu-
tion of loads on the beam, not the resultants of those loads, which may have been 
used in the calculation of reactions. The location of the maximum moment, therefore, 
has nothing to do with the location of any resultant load but occurs at the point of 
zero shear. (4) Moment diagrams can also be drawn in an alternate form, as shown at 
the bottom of  Figure 1.41 , by reversing the positions of negative and positive values. 
This form has the benefi t of aligning the shape of the moment diagram more closely 
with the defl ected shape of the beam (although it still remains signifi cantly different 
from the defl ected shape), at the expense of being mathematically inconsistent. (5) 
Finally, it may be important in some cases to account for both positive and negative 

Internal forces and moments

 FIGURE 1.41  
       Load, shear, and moment diagrams for Example 1.5, using load diagram  “ areas ”  to fi nd shear 
values, and shear diagram  “ areas ”  to fi nd moment values    
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moments, and not just the maximum moment. In this example, the maximum positive 
moment is 43.95 ft-kips, while the maximum negative moment is 12.5 ft-kips. 

    Internal axial forces in trusses, arches, and cables 
 There   is a class of determinate structures that cannot sustain internal shear forces or 
bending moments, either because their component elements are pinned together or 
because they are inherently fl exible. We will examine three types of these axial-force 
structures. Trusses are made from individual elements organized in a triangular pattern 
and assumed to be pinned at the joints so that they may be analyzed using only equa-
tions of equilibrium. Reactions of trusses are found just like the reactions of beams, 
while the reactions of three-hinged arches and cables — the other two axial-force struc-
tures already examined — require special treatment. In general, the axial forces within 
trusses, three-hinged arches, and cables are found using the three equations of equilib-
rium. The following examples illustrate specifi c techniques and strategies.       

       Example 1.6        Find internal axial forces in a truss (section method)      

    Problem defi nition 
 Find   the internal axial forces in truss bars  C-F ,  C-E , and  D-E  for the truss shown in  Figure 
1.42   . Assume pinned joints, as shown.  

    Solution overview 
 Find   reactions; then, using the so-called section method, cut a free-body diagram through the 
bars for which internal forces are being computed. As there are only three equations of equilib-
rium, no more than three bars may be cut (resulting in three unknown forces); use equations 
of equilibrium to solve for the unknown forces.  

    Problem solution 

        1.     Find reactions: by symmetry,  R A        �       R B        �      (10      �      10      �      10)/2      �      15       kips. Alternatively, one 
could take moments about point  A  or  B , solve for the unknown reaction, and then use the 
equation of vertical equilibrium to fi nd the other unknown reaction.  

    2.     Cut a free-body diagram through the bars being evaluated (cutting through no more than 
three bars) as shown in  Figure 1.43   . Bar forces are labeled according to the nodes that are 
at either end of their bars, so, for example,  F CF   is the force between nodes  C  and  F . 
    a.     Show unknown axial forces as tension forces; a negative result indicates that the bar is 

actually in compression. Tension means that the force is shown  “ pulling ”  on the bar or 
node within the free-body diagram.  

    b.     Use equilibrium equations, chosen strategically, to solve for unknown bar forces. To 
fi nd  F CF  :  Σ  M E        �      15(16)      �      10(8)      �       F CF  (8)      �      0; solving for the unknown bar force, we 
get  F CF        �       � 20       k (compression).  

    c.     To fi nd  F DE  : � M C        �      15(8)      �       F DE  (8)      �      0; solving for the unknown bar force, we get 
 F DE        �      15       k (tension)  

    d.     Finally, to fi nd  F CE  : fi nd force  “ components ”  of inclined internal axial force  F CE  . The 
components can be found using principles of trigonometry, based on the geometry of 
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the triangle determined by the 8       ft      �      8       ft truss panels. For example, the vertical (or hor-
izontal) component equals  F CE   times sin 45 °       �      0.707 F CE  . We then use the equation 
of vertical equilibrium:  Σ  F y        �      15      �      10      �      0.707 F CE        �      0; solving for the unknown bar 
force, we get  F CE        �      7.07       kips (tension).             

 The   assumption that only axial forces exist within a truss is valid when the following 
conditions are met: (1) all bar joints are  “ pinned ”  (hinged), and (2) external loads and 
reactions are placed only at the joints or nodes. Under these circumstances, no internal 
shear forces or bending moments are possible. In practice, modern trusses are rarely 
pinned at each joint; nevertheless, the assumption is often used for preliminary design 
since it facilitates the calculation of internal forces. What is more, actual bar forces in 
 indeterminate  trusses (i.e., where the members are continuous rather than pinned) are 
often reasonably close to the approximate results obtained by assuming pinned joints.

       Example 1.7        Find internal axial forces in a three-hinged arch      

    Problem defi nition 
 Find   the internal axial force in bar  AC  of the three-hinged arch analyzed in Example 1.2.  

Internal forces and moments

 FIGURE 1.43  
       Free-body diagram cut through bars based on the section method for Example 1.6    

 FIGURE 1.42  
       Loading diagram for, and geometry of, truss for Example 1.6    
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    Solution overview 
 Cut   a free-body diagram through the bar in question, as shown in  Figure 1.44 a    ; label unknown 
bar force as if in tension; use the equations of equilibrium to solve for the unknown force.  

    Problem solution 

        1.     Because the far force,  F AC  , is inclined, it is convenient to draw and label its horizontal and 
vertical component forces,  x  and  y . Using the equations of vertical and horizontal equilib-
rium, we can fi nd these component forces directly:  Σ  F y        �      10      �       y       �      0, from which  y       �       
 – 10       kips;  Σ  F x        �      15      �       x       �      0, from which  x       �       – 15       kips. In both cases, the negative sign 
indicates that our initial assumption of tension was incorrect; the bar force is actually in 
compression, as one would expect in such an arch.  

    2.     To fi nd the actual bar force,  F AC  , the most direct approach is to use the Pythagorean theo-
rem, with the unknown force being the hypotenuse of a right triangle, as shown in  Figure 
1.44 b  . Therefore,  F AC        �      ( x    2       �       y     2 ) 0.5       �      (15 2       �      10 2 ) 0.5       �      18.03       kips. The signs of the forces 
are omitted in this calculation.         

       Example 1.8        Find internal axial forces in a cable      

    Problem defi nition 
 Find   the internal axial force in segment  AC  of the cable analyzed in Example 1.3.  

    Solution overview 
 Cut   a free-body diagram through the segment in question, as shown in  Figure 1.45   ; label 
unknown cable force as if in tension; use the equations of equilibrium to solve for the unknown 
force.  

    Problem solution 

        1.     Because the cable force,  F AC  , is inclined, it is convenient to draw and label its horizon-
tal and vertical component forces,  x  and  y . Using the equations of vertical and horizontal 

 FIGURE 1.44  
       Internal bar force for Example 1.7 shown  (a)  in free-body diagram and  (b)  as a  “ force ”  triangle 
with components  x  and  y     
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equilibrium, we can fi nd these component forces directly:  Σ  F y        �      18.125      �       y       �      0, from 
which  y       �      18.125       kips;  Σ  F x        �           �     47.5      �       x       �      0, from which  x       �      47.5       kips. In both cases, 
the positive sign indicates that our initial assumption of tension was correct, as one would 
expect in any cable structure.  

    2.     To fi nd the actual cable force,  F AC  , the most direct approach is to use the Pythagorean 
theorem, with the unknown force being the hypotenuse of a right triangle. Therefore, 
 F AC        �      ( x   2       �       y   2 ) 0.5       �      (47.5 2       �      18.125 2 ) 0.5       �      50.84       kips. The signs of the forces are omitted 
in this calculation.  

    3.     Since the cable is fl exible, the height,  h , is unknown and, in fact, will change if the loads 
are changed. To fi nd  h , we can use the fact that the  “ force triangle ”  and  “ geometry tri-
angle ”  are similar; therefore, the ratio of their sides must be equal:  h /15      �       y / x       �      18.125/
47.5, from which  h       �      5.72       ft. Because the height will change if the loads change, the cable 
is an  unstable  structure.           

    INDETERMINATE STRUCTURES 
 Where   there are more reactions, or constraints, than there are equations of equi-
librium, a structure is said to be statically indeterminate or redundant. Each added 
constraint adds one degree of indeterminacy or redundancy to the structure, making 
it that much more diffi cult to solve mathematically. To understand the basis of the 
mathematical solution to indeterminate structures, we will examine a simply sup-
ported beam with a single concentrated load that has been made 1-degree redun-
dant (indeterminate) by adding a hanger at midspan: the structure now has four 
unknown reactions (constraints), and only three equations of equilibrium are avail-
able, as shown in  Figure 1.46   . 

 The   key to the solution is to fi nd an  additional  equation that includes one or 
more of the structure’s constraint variables; that equation will not be concerned 
with equilibrium, but rather with the compatibility of structural deformations or 
defl ections. Looking at the simply supported beam and the tension hanger sepa-
rately, it is possible to write equations relating the loads acting on them to their 
defl ection (such equations are developed in Chapter 6 for tension elements and 
Chapter 8 for beams). For now, we will simply note that   Δ   1       �       P  1  S  1 , and   Δ   2       �       P  2  S  2  

Indeterminate structures

 FIGURE 1.45  
       Internal bar force for Example 1.8 shown in free-body diagram with components  x  and  y     
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as shown in  Figure 1.47   , where   Δ   1  and   Δ   2  are the defl ections of the beam and 
hanger, respectively;  P  1  and  P  2  are the loads assumed to act separately on the beam 
and hanger; and  S  1  and  S  2  are defl ection constants that include the length or span of 
the elements as well as their stiffness (i.e., their resistance to deformation). 

 These   defl ections, calculated separately for the beam and hanger, must actually 
be equal in the real structure, and the loads  P  1  and  P  2  that correspond to these equal 
defl ections are actually only the parts of the total load,  P , that the beam and hanger 
separately resist. In other words,   Δ   1       �        Δ   2 ; and  P  1       �       P  2       �       P . This can be rewritten 
as follows: 

  P S P S1 1 2 2=   
(1.2)

      

  P P P1 2= −   
(1.3)

      

 Solving   Equation 1.2 for  P  1 , and substituting the result into Equation 1.3, we get: 

  

P S

S
P P2 2

1
2= −

  
(1.4)

     

 FIGURE 1.47  
       Defl ection diagrams for the two components of the structure shown in  Figure 1.46 :  (a)  a simply 
supported beam with a concentrated load,  P  1 , and  (b)  a tension hanger with load  P  2     

 FIGURE 1.46  
       Load diagram for a simply supported beam with an added hanger at midspan    
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  Solving for  P  2 , we get:   

  
P

P

S S2
1 2 1

=
+/   

(1.5)
      

 Since   the load  P  and coeffi cients  S  1  and  S  2  are all known, the force  P  2  can be deter-
mined from Equation 1.5. Then, from  Figure 1.47 b  , it can be seen that the vertical 
reaction,  R D        �       P  2 . With this  “ fourth ”  reaction solved, the other vertical reactions at 
 A  and  B  can easily be determined using the equations of equilibrium. 

 Equation   1.5 also clarifi es the relationship between the element load-deforma-
tion constants, represented by  S  1  and  S  2 , and the overall behavior of the structure. 
For example, if the constants are equal, it can be seen that  P  2       �       P /2; that is, half the 
load is resisted by the hanger and half by the beam. On the other hand, if  S  1  is small 
compared to  S  2  (i.e., if the hanger is more effective in resisting deformation than 
the beam), then  P  2  approaches the value of  P , and the hanger begins to resist virtu-
ally all of the total load, with the beam’s share approaching zero. This is of crucial 
importance in understanding the behavior of indeterminate structures: loads tend 
to follow the path of greatest stiffness, or, put another way, loads follow various com-
peting load paths in proportion to the stiffness of those paths. In these formulations, 
 “ stiffness ”  is used as shorthand for the load-deformation relationship, which includes 
both the actual element stiffness (involving only material and cross-sectional proper-
ties) as well as element length or span. 

 For   highly redundant structures, a greater number of equations, based on com-
patibility of deformations, need to be solved simultaneously. While this becomes 
unwieldy if done by hand, structural analysis software has been developed to solve 
such problems: the designer need only indicate the geometry of the structure 
(including lengths and spans), the nature of each constraint (hinged, fi xed, etc.), 
and the relative stiffness of each element. This last requirement presents a bit of a 
dilemma, since relative member stiffnesses must be assumed  before  the structure can 
be designed. The stiffnesses assumed for the structure determine how the structure 
will respond to its loads, unlike determinate structures, whose internal forces and 
moments are independent of member cross sections and material properties. For 
this reason, experience, trial and error, or a bit of both are crucial in the design of 
indeterminate structures. 

 Once   internal forces and moments have been determined, however, the same 
strategies for the design of structural elements outlined in this book can be used, 
whether the structure is statically determinate or indeterminate.  

    STRENGTH OF MATERIALS 
 The   magnitudes of internal forces and bending moments do not, by themselves, give 
any indication as to whether a particular structural element is safe or unsafe. Instead, 

Strength of materials
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the load or moment that an element can safely resist can only be determined when 
information about the element’s cross section is considered: clearly, a large cross sec-
tion is stronger than a small one. But  “ large ”  in what way? The cross-sectional proper-
ties relevant to the determination of structural safety and serviceability are different 
for tension elements, columns, and beams and are, therefore, discussed more fully in 
their appropriate context (Chapters 6, 7, and 8, respectively). What follows is a brief 
overview and summary of the major cross-section properties encountered in struc-
tural analysis and design. 

    Area 
 Cross  -sectional areas are easily determined: for rectangles, the area  A       �       B       �       H  ( Figure 
1.48 a    ) and for circles,  A       �        π R  2  ( Figure 1.48 c  ). What may not be as immediately clear 
is that the I-shaped cross section ( Figure 1.48 b  ) has an area,  A       �      ( B       �      H)      �      ( b       �       h ), 
and the circular ring ( Figure 1.48 d  ) has an area,  A       �       π  R  2       �       π  r  2 , where  R  is the outer 
and  r  is the inner radius.  

    Moment of inertia 
 The   moment of inertia,  I x  , is defi ned as the sum of all elemental areas above or 
below the centroid ( x -axis) of the cross section multiplied by the square of the dis-
tance from each of the individual elemental centroids to the centroid of the cross 
section as a whole, or 
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 FIGURE 1.48  
       Cross sections typically encountered as structural elements include  (a)  rectangles,  (b)  I-shaped 
sections,  (c)  circles, and  (d)  circular rings    
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  where  y  is the distance from each elemental area (the elemental areas being 
 dA       �       width  �  dy ) to the centroid of the cross section, while  H /2 and  �  H /2 repre-
sent the limits over which the integral is taken for the rectangle and I-shaped sec-
tion shown in  Figure 1.48  (the same equation holds for the circular sections as well, 
except with the integral taken from  R /2 to  �  R /2).   

 This   property is useful in understanding the stiffness of a cross section when 
bent. It can be seen that placing a good deal of the cross-sectional material  away 
from  the centroid — as in the I-shaped section or, to a lesser extent, in the circular 
ring — increases the moment of inertia, and therefore the stiffness, since more  “ area ”  
is multiplied by the square of a  greater  distance from the centroidal axis. Equation 
1.6 can be solved as follows for rectangular and circular shapes: 
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(1.7)

     

  Moments of inertia for the I-shaped section and circular ring can be easily found by 
subtracting the smaller rectangle (or circle) from the larger one: for the I-shaped sec-
tion,  I  x       �       BH   3 /12      �       bh  3 /12; for the circular ring,  I  x       �        π R  4 /4      �        π r  4 /4.   

 For   moments of inertia taken about the  y -axis, the equations for rectangles and 
circles are easily modifi ed: 

  
I

HB
I

R
y y= =

3 4

12 4
( ); ( )rectangles circles

π

  
(1.8)

      

 Moments   of inertia for circular rings ( Figure 1.48 d  ) are determined as before: by 
subtracting the moment of inertia of the smaller from that of the larger circle. For 
the I-shaped section, however, it is not possible to simply subtract the smaller rec-
tangles from the larger, as was done when computing the moment of inertia about 
the  x -axis, since the centroids of the various parts being subtracted do not coincide. 
Instead, one must  add  the three moments of inertia of the two fl anges and web, as 
shown in  Figure 1.49   , each taken about the  y -axis: 
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 FIGURE 1.49  
       Dimensions of an I-shaped section oriented about its  y -axis, for the calculation of moment of inertia    

Strength of materials
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    Section modulus 
 The   elastic section modulus,  S x  , is a single parameter that measures a cross section’s 
strength in bending. For symmetrical sections, such as those shown in  Figures 1.48 a  
and 1.48 b  : 

  
S

I

Hx
x=

( / )2   
(1.10)

     

  For the circular shapes,  S x        �       I  x / R  ( Figures 1.48 c  and 1.48 d   ). In each case, the 
moment of inertia is divided by half the cross-sectional height, or thickness. From 
Equations 1.7 and 1.10, it can be seen that the section modulus for a rectangular 
cross section is  S x        �      ( BH  3 /12)/( H /2)      �       BH  2 /6.    

    Plastic section modulus 
 The   plastic section modulus,  Z x  , is used to determine the limit-state of steel beams, 
defi ned as the point when the entire cross section has yielded. This property is 
unique to steel, since neither of the other materials we are considering (wood and 
reinforced concrete) has the necessary ductility to reach this state. Unlike the elas-
tic section modulus,  S x  , the plastic section modulus has no fi xed relationship to the 
moment of inertia of the cross section. Rather, it is defi ned as the sum of all ele-
mental areas above or below the centroid ( x -axis) of the cross section multiplied by 
the distance from each of the individual elemental centroids to the centroid of the 
cross section as a whole. The plastic section modulus for a rectangular cross section 
can be determined by multiplying each section half (e.g., the shaded area shown in 
 Figure 1.50   ) by the distance from its centroid to the centroid for the whole section: 
 Z x        �       B ( H /2)( H /4)      �       B ( H /2)( H /4)      �       BH  2 /4.  

 FIGURE 1.50  
       Rectangular cross section showing shaded area and distance from centroid of shaded area to 
centroid of the whole cross section, for calculation of plastic section modulus,  Z x      
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    Radius of gyration 
 The   radius of gyration of a cross section,  r  or  ρ , is a distance — but one without any 
obvious physical meaning. It measures the cross section’s resistance to buckling, 
when compressed, and is defi ned as follows: 

  
r

I

Ax
x=

  
(1.11)

     

  where  I x   is the moment of inertia about the  x -axis, and  A  is the cross-sectional area. 
Since buckling might occur about either of the cross-sectional axes, it is the cross 
section’s  smaller  radius of gyration, taken about the  y -axis (the  weaker  axis), that is 
often critical:   
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  From Equation 1.8, the moment of inertia about the  y -axis used to compute the min-
imum radius of gyration for a rectangular cross section is  I y        �       HB  3 /12.         

Strength of materials
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 There   are three broad categories of loads on building structures: dead loads, live 
loads, and  “ environmental ”  loads. 

    DEAD LOADS 
 Dead   loads consist of the weight of the building itself, including structure, parti-
tions, cladding, roofi ng materials, and permanent interior fi nishes such as carpet, 
ceiling systems, etc. These gravity loads are always downward-acting and can be 
calculated with a reasonable degree of accuracy, being the summation of various 
building material weights, which are easily determined and quite predictable. That 
being said, it is sometimes prudent to anticipate unpredictable scenarios that call for 
additional dead load, so that future building modifi cations (such as the addition of a 
heavy tile fl oor or a change from a mechanically attached to a ballasted roof) can be 
made without major structural modifi cations. 

 Dead   loads are calculated by multiplying the unit weight of the materials by their 
quantity. Weights of some common materials and assemblies are listed in Table 
A-2.1.

       Example 2.1        Calculate dead loads      

    Problem defi nition 
 Assume   a typical steel structure with corrugated steel deck and concrete slab, tile fl oor, sus-
pended ceiling system, and allowances for partitions and mechanical ducts, as shown in 
 Figure 2.1   . The spandrel girders carry an additional cladding load consisting of a brick and 
block cavity wall, 12 ft high from fl oor to fl oor. Find the dead load distribution on Beam  A  and 
Spandrel Girder  B .  

                             Loads    2 
CHAPTER
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    Solution overview 
 Find   weights of building elements; compute total dead load on beams and girders.  

    Problem solution 
    Beam  A  
        1.     From Table A-2.1, fi nd weights of building elements: 

    a.     Steel deck, fi nish fl oor, ducts, and ceiling system      �      47       psf.  
    b.     Partitions      �      8       psf.  
    c.     Subtotal      �      55       psf.     

    2.     Compute weight per linear foot of beam by multiplying unit weight by tributary area on one 
linear foot of the beam: 55      �      10      �      550       lb/ft.  

    3.     From Table A-2.1, assume weight of beam: 40       lb/ft.  
    4.     Add beam weight to superimposed dead load to get total dead load,  D       �      550      �      40      �    

  590       lb/ft, as shown in  Figure 2.2   .     

    Girder  B  
        1.     Find concentrated dead loads at third points caused by typical beam reactions, equal to 

the distributed load on the beam times the beam span divided by 2:  P       �      590(30)/2      �    
  8850       lb.  

    2.     From Table A-2.1, fi nd weight of cladding      �      1000       lb/ft.  
    3.     From Table A-2.1, assume weight of girder: 80       lb/ft.  
    4.     Add girder weight to cladding weight      �      80      �      1000      �      1080       lb/ft.  
    5.     The dead load on the girder consists of the distributed load in addition to the concentrated 

loads transferred by typical beams, as shown in  Figure 2.3   .           

 Dead   loads also fi gure prominently in the evaluation of various environmental 
loads, such as those caused by wind and earthquakes. Seismic loads, for example, 
are directly proportional to the inertial mass of the building so that large dead loads 

 FIGURE 2.1  
       Framing plan for Example 2.1    
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are associated with large seismic forces. The effects of wind, on the other hand, 
can often be mitigated by the addition of dead load, since overturning and uplift —
 tendencies that act opposite to the force of gravity — are reduced as the building’s 
weight increases.  

    LIVE LOADS 
 Live   loads are nonpermanent, or movable, loads within buildings caused by the 
weight of people, furnishings, storage of objects, etc. They are relatively unpredict-
able; vary over time; and are often dynamic, rather than static, in their application. 
Since it is not possible to measure these loads absolutely, a probabilistic approach 
is used: values are assigned to various types of occupancies based on  “ worst-case ”  
expectations, taking into consideration actual observed loading conditions and the 
historical record of structural failures. 

 Since   these determinations are generic to various occupancy classifi cations, and 
are not unique to each structure, the problem of determining live loads is taken out 
of the hands of building designers altogether and appears as a mandate of govern-
ment in the form of building codes. Within these codes, the actual complex behav-
ior of live loads is reduced to an array of uniformly distributed values, one for each 
type of occupancy. Examples of these live load values are listed in Table A-2.2. 

 As   fl oor areas become larger, it becomes increasingly improbable that the full live 
load will ever be present; therefore, a reduction in live load is generally permitted 
for structural elements  “ infl uenced ”  by relatively large fl oor areas. These so-called 
infl uence areas are different from the tributary areas used to compute  “ unreduced ”  
loads — they are, in fact, four times larger for columns and two times larger for beams 
( Figure 2.4   ). For this reason, a single reduction equation based on tributary areas 

 FIGURE 2.2  
       Beam  A  load diagram for Example 2.1    

 FIGURE 2.3  
       Girder  B  load diagram for Example 2.1    

Live loads
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cannot be derived for both columns and beams; instead, such a formula is written 
in terms of what used to be called the infl uence area,  A I  , but is now defi ned in terms 
of the tributary area,  A T   (ft 

2 ), times a  “ live load element factor, ”   K LL  : 

  
live load reduction coefficient = +0 25

15
.

K ALL T

  
(2.1)

      

 Live   loads are thus calculated by multiplying the tabulated values from Table 
A-2.2 by the area-dependent reduction coeffi cients (Equation 2.1), where  K LL   is 
defi ned in Table A-2.2 but equals 2.0 for most beams and 4.0 for most columns. 
The reduction coeffi cient is subject to the following limitations: (1) no reduction is 
allowed for values of  K LL A T   smaller than 400       ft 2 ; (2) no live load reduction is permit-
ted for elements supporting a single fl oor with live loads greater than 100       psf (and 
for elements supporting more than one fl oor with live loads greater than 100       psf, no 
reduction greater than 20% is permitted); (3) no reduction coeffi cient smaller than 
0.5 is allowed for ordinary beams or columns supporting one level only; and (4) no 
reduction coeffi cient smaller than 0.4 is allowed for any other condition — that is, for 
columns or beams supporting more than one level. 

 Live   load reduction coeffi cients are plotted in  Figure 2.5    for various tributary 
areas, shown separately for beams and columns. Notice that as the tributary area 
gets larger (and the likelihood of the full live load being present decreases), the live 
load reduction increases. 

 FIGURE 2.4  
        “ Infl uence areas ”  for beams and columns    
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 There   are a few obvious exceptions to the rules governing live load reductions, 
most importantly for structural elements supporting large areas that are expected to 
be fully loaded. In such cases (e.g., in places of public assembly or in garages), no 
live load reduction is allowed. Additionally, reductions are restricted for one- and 
two-way slabs since the failure mode of such slabs is not directly a function of tribu-
tary area, but rather corresponds more closely to any given  “ strip ”  within which 
reinforcing bars are placed. These are minimum values for live loads: other than 
exposing oneself to the potential wrath of developers, owners, project managers, 
and contractors, nothing prevents a designer from using larger, or unreduced, val-
ues if warranted by the particular conditions of the project.

       Example 2.2        Calculate live loads      

    Problem defi nition 
 Find   the live loads for typical Beam  A  and Girder  B  in the 6-story offi ce building shown in 
 Figure 2.6   . What is the live load on fi rst fl oor interior Column  C  (ignoring roof loads)?  

    Solution overview 
 Find   unreduced live loads; apply live load reduction coeffi cient where applicable.  

 FIGURE 2.5  
       Live load reduction coeffi cient graph    

Live loads
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    Problem solution 
    Beam  A  

        1.     From Table A-2.2, the unreduced live load for offi ce occupancy      �      50       psf. The load on a 
linear foot of the beam, found by multiplying the unit load by the tributary area on 1 linear 
foot of the beam, is 50(8)      �      400       lb/ft (as shown in the shaded region of  Figure 2.7   ).  

    2.     From Table A-2.2, consider live load reduction, based on the beam’s tributary area, 
 A T        �      8      �      20      �      160       ft 2 , and a live load element factor,  K LL        �      2. Since  K LL A T        �      2(160)      �      

 FIGURE 2.7  
       Tributary area for live load on one linear foot of beam for Example 2.2, with shaded  “ stress 
block ”  volume of 50      �      8  �  1      �      400       lb/ft being the unreduced live load on one linear foot of 
the beam    

Influence area
Tributary area

Influence area
Tributary area

Influence area
Tributary area Girder B

Column C

Beam A

 FIGURE 2.6  
       Framing plan for Example 2.2    
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320       ft 2       �      400       ft 2 , no reduction is allowed, and the loading diagram remains as shown in 
 Figure 2.8   .     

    Girder  B  
        1.     Find the unreduced live load on the girder, applied at the quarter-points by the reactions of 

the beams, each of which equals the unit load on the beam times its span divided by two, 
or 400(20)/2      �      4000       lb. Since two beams frame into the girder at each point, the unre-
duced live load is 4000(2)      �      8000       lb at each of the quarter-points.  

    2.     Consider live load reduction: 
    a.     Find  K LL A T        �      2(20      �      32)      �      1280       ft 2 . The tributary area is taken as 20       ft      �      32       ft rather 

than 20       ft      �      24       ft since the loads placed outside the middle 24       ft will have a structural 
effect on the girder.  

    b.     From Equation 2.1, apply a reduction coeffi cient of 0.25      �      15/(1280 0.5 )      �      0.67. The 
concentrated live loads at each quarter-point become 0.67      �      8000      �      5354       lb      �      5.4       
kips as shown in  Figure 2.9   .        

    Column  C , fi rst fl oor 
        1.     Find the unreduced live load on the column: Since the fi rst-fl oor column of a six-story 

building supports fi ve fl oors (not including the roof), and the tributary area of each fl oor is 
32      �      20      �      640       ft 2 , the total tributary area supported by the column is 5      �      640      �      3200       ft 2 . 
This results in an unreduced live load of 50      �      3200      �      160,000       lb.  

    2.     Consider live load reduction: 
    a.     Find  K LL A T        �      4(3200)      �      12,800       ft 2 .  
    b.     From Equation 2.1, apply a reduction coeffi cient of 0.25      �      15/(12,800 0.5 )      �      0.38. 

Since the minimum reduction coeffi cient for columns supporting more than one level is 
0.4, we use a total live load of 0.4(160,000)      �      64,000       lb      �      64       kips.               

 FIGURE 2.8  
       Beam  A  load diagram for Example 2.2    

 FIGURE 2.9  
       Girder  B  load diagram for Example 2.2    

Live loads
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    ENVIRONMENTAL LOADS 
 Environmental   loads are those due to snow, wind, rain, soil (and hydrostatic pres-
sure), and earthquake. Unlike live loads, which are assumed to act on all fl oor surfaces 
equally, independent of the geometry or material properties of the structure, most of 
these environmental loads depend not only upon the environmental processes respon-
sible for producing the loads, but upon the geometry or weight of the building itself. 
For snow, wind, and earthquake loads, the  “ global ”  environmental considerations can 
be summarized by location-dependent numbers for each phenomenon: ground snow 
load for snow, basic wind speed for wind, and maximum ground motion (accelera-
tion) for earthquake (Table A-2.3). Considerations specifi c to each building are then 
combined with these  “ global ”  environmental numbers to establish the magnitude and 
direction of forces expected to act on the building. Like live loads, the actual pro-
cedures for calculating environmental loads are not derived independently for each 
building, but are mandated by local building codes. For the actual design of real build-
ings in real places, the governing building code must be consulted; for the preliminary 
design of real or imaginary buildings, the following guidelines will do. 

    Snow loads 
 Determining   the weight of snow that might fall on a structure starts with a ground 
snow load map or a ground snow load value determined by a local building code 
offi cial. These values range from 0 to 100       psf for most regions, although weights of 
up to 300       psf are possible in locations such as Whittier, Alaska. Some typical ground 
snow load values are listed in Table A-2.3. Flat-roof snow loads are generally consid-
ered to be about 30% less than these ground snow load values, and both wind and 
thermal effects — as well as the  “ importance ”  of the structure — are accounted for in 
further modifying this roof load. A thermal factor,  C t        �      1.2, is included in the fl at-
roof load for unheated structures ( C t        �      1.0 for heated structures and 1.1 for heated 
structures with ventilated roofs protected with at least R-25 insulation below the 
ventilated plenum or attic); we will assume a nominal value of 1.0 for both wind 
( “ exposure ” ) and  “ importance. ”  Other possible values for the snow load impor-
tance factor,  I s  , are listed in Table A-2.4. However, the major parameter in determin-
ing snow loads is the slope of the surface expected to carry the load. As the slope 
increases, more snow can be expected to slide off the roof surface, especially if the 
surface is slippery and if the space immediately below the surface is heated. The 
slope-reduction factor,  C S  , which is multiplied by the fl at-roof snow load to obtain 
the actual roof snow load, takes these factors into account: 
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 The   parameter  A  (degrees Fahrenheit) depends on how slippery the roof sur-
face is and whether that surface is allowed to become warm or cold:  A       �      5 °  for 
warm, slippery roofs (where the R-value must be at least 30 for unventilated roofs 
and at least 20 for ventilated roofs); 30 °  for warm, nonslippery roofs (or for slippery 
roofs not meeting the R-value criteria); 15 °  for cold, slippery roofs; 45 °  for cold, 
nonslippery roofs; and, for the intermediate condition, where a roof remains some-
what cold because it is ventilated (with at least R-25 insulation below the ventilated 
space),  A       �      10 °  for slippery roofs and 37.5 °  for nonslippery roofs. Neglecting varia-
tions due to exposure, the snow load can be written as: 

 0 7. ( )C C IS t s ground snow load   
 (2.3)      

 As   an example, for  “ ordinary ”  buildings ( I s        �      1.0) with nonslippery (e.g., asphalt 
shingle) roofs having slopes no greater than 37.5 ° , kept cold by proper ventilation 
(with at least R-25 insulation below the ventilated space), the sloped roof snow 
load, deployed on the horizontal projection of the inclined structural roof members, 
becomes: 

 0 7 1 0 1 1 1 0. ( . )( . )( . )( )ground snow load   
 (2.4)      

 Judgment   should be used where the building geometry provides opportunities 
for drifting snow to accumulate on lower roofs, or when sliding snow from higher 
roofs might fall on lower roofs. Most building codes provide guidelines for these 
situations.

       Example 2.3        Calculate snow loads      

    Problem defi nition 
 Find   the snow load on a house in Portland, Maine, with a conventional roof with an 8:12 slope, 
that is, with an angle      �      tan  � 1  (8/12)      �      33.7 ° . The roof is kept cold by having a ventilated 
attic, with R-30 insulation separating the ventilated attic space from the heated house below. 
Calculate for both asphalt shingles and metal roofi ng.  

    Solution overview 
 Find   ground snow load; compute roof snow load.  

    Problem solution 
        1.     From Table A-2.3, the ground snow load      �      50       psf.  
    2.     Find the roof snow load: 

    a.      Nonslippery surface  ( asphalt shingles ): From Equation 2.4, for this condition only, the 
snow load      �      0.7(1.1)(1.0)(ground snow load)      �      0.7(1.1)(1.0)(50)      �      38.5       psf.  

Environmental loads
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    b.      Slippery surface  ( metal roofi ng ): From Equation 2.2, fi nd the coeffi cient,  C S   for roof angles 
from  A  °  to 70 ° , where  A       �      10 °  for cold, slippery roofs (kept cold by ventilation). In this 
case,  C S        �      1.0  –  (roof angle  –   A  ° )/(70 °       �       A  ° )      �      1.0      �      (33.7      �      10)/(70      �      10)      �      0.61. 
From Equation 2.3, the snow load      �      0.7 C S C t   (ground snow load)      �      0.7(0.61)(1.1)(50)      �    
  23.3       psf.     

    3.     For rafters (sloped roof beams) spaced at 16 in. on center, the snow load on each rafter 
becomes: 
    a.     38.5(16/12)      �      51       lb/ft for the nonslippery roof.  
    b.     23.3(16/12)      �      31       lb/ft for the slippery roof.     

    4.     Both of these loading diagrams are shown in  Figure 2.10   .  
    5.     To account for the effects of wind acting simultaneously with snow on gable-type roofs, it 

is prudent to also check the unbalanced snow load, which can be taken as 1.5 times the 
snow load acting on the leeward side of the gable, with zero snow load on the windward 
side. For this example, the rafter snow load diagram is shown in  Figure 2.11   .           

 FIGURE 2.10  
       Snow load diagram showing  (a)  distributed snow load and  (b)  snow load on a typical rafter, for 
Example 2.3    

 FIGURE 2.11
         Unbalanced snow load for Example 2.3    
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    Wind loads 
 Building   codes take one of two approaches to the mathematical calculation of wind 
pressure on building surfaces: either these pressures are simply given as a function 
of height, or they are calculated as a function of the basic wind speed, modifi ed by 
numerous environmental and building-specifi c factors. 

 The   Building Code of the City of New York historically took the fi rst approach, 
specifying a 30-psf horizontal wind pressure on the surfaces of buildings more than 
100       ft tall. This number was actually reduced to 20       psf in the 1930s and 1940s. Then, 
as buildings grew consistently taller and more data were assembled about wind speed 
at various elevations above grade, wind pressure began to be modeled as a discontinu-
ous function, increasing from 20       psf below 100       ft to 40       psf above 1000       ft ( Figure 2.12   ). 

 In   contrast to this approach, wind pressure can also be calculated directly from 
wind speed: the relationship between the velocity or  “ stagnation ”  pressure,  q , and 
the basic wind speed,  V , is derived from Bernoulli’s equation for streamline fl ow: 

 q pV� 0 5 2.   
 (2.5)     

 FIGURE 2.12  
       Historic values for wind loads, based on 1969 – 1981 New York City Building Codes    

Environmental loads
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where  p  is the mass density of air. Making some assumptions about air temperature 
to calculate  p , and converting the units to pounds per square inch (psf) for  q  and 
miles per hour (mph) for  V , we get:   

 q K K K V Id t W= 0 00256 2. ( )    (2.6)     

  where  K  accounts for heights above ground different from the 10       m above ground 
used to determine nominal wind speeds as well as different  “ boundary layer ”  condi-
tions, or exposures, at the site of the structure;  K d        �      0.85 is used only when com-
puting the effects of load combinations (see Chapter 5) to account for the lower 
probability that an actual wind direction will produce the worst-case outcome when 
the effects of load combinations — not just wind alone — are simultaneously measured; 
and  K t   is a factor used only in special cases of increased wind speeds caused by hills, 
ridges, escarpments, and similar topographic features. An  “ importance factor, ”     I W  , is 
taken as 1.0 for normal buildings but can be lowered to 0.77 for low hazard occupan-
cies (minor storage, etc.) in hurricane-prone regions, or raised to 1.15 for occupancies 
defi ned as essential (hospitals, fi re stations, etc.) or where a substantial hazard to 
human life is likely (schools, jails, places of assembly with 300 or more people, etc.). 

 For   a building with normal occupancy at a height of 10       m above grade in open 
terrain, that is, with  K       �       K d        �       K t        �       I W        �      1.0, a wind speed of 90       mph corresponds 
to a velocity pressure equal to: 

 q = =0 00256 1 0 1 0 1 0 90 1 0 20 72. ( . )( . )( . )( )( . ) . psf    (2.7)     

  The external design wind pressure,  p e  , can be found at any height and for various 
environmental and building conditions by multiplying the velocity pressure,  q , by a 
series of coeffi cients corresponding to those conditions:   

 
p qGCe p=

   (2.8)     

  where  q  is the velocity pressure as defi ned in Equation 2.6;  G  accounts for height-
dependent gustiness; and  C p   is a pressure coeffi cient accounting for variations 
in pressure and suction on vertical, horizontal, and inclined surfaces. Combining 
Equations 2.6 and 2.8, we get:   

 
p K K K GC V Ie d t p W= 0 00256 2. ( )

  
 (2.9)     

  where:   

     p e        �      the external design wind pressure (psf)  

     V       �      the basic wind speed (mph)  

     K       �      the velocity pressure exposure coeffi cient  

     K d        �       0.85 is a wind directionality factor (for use only when computing load 
combinations)  
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     K t        �       a topography factor (can be taken as 1.0 unless the building is situated on 
a hill, ridge, escarpment, etc.)  

     G       �      a coeffi cient accounting for height-dependent gustiness  

     C p        �       a pressure coeffi cient accounting for variations in pressure and suction on 
vertical, horizontal, and inclined surfaces  

     I W        �      an  “ importance factor, ”  taken as 1.0 for normal occupancies    

 Some   values for these coeffi cients, — for buildings in various terrains (exposure cat-
egories) — are given in Table A-2.5 (except that wind velocities,  V , for various cities, 
are found in Table A-2.3). The resulting distribution of wind pressures on all exposed 
surfaces of a generic rectangular building (with a sloped roof) is shown in  Figure 2.13   . 

 Only   on the windward wall of the building does the wind pressure vary with 
height above ground. On all other surfaces, the coeffi cient  K  is taken at mean roof 
height for the entire surface, resulting in a uniform distribution of wind pressure 
(whereas for the windward wall, the coeffi cient  K  is taken at the height at which 
the pressure is being computed). This is consistent with the results of wind tunnel 
tests, which show a much greater variability (related to height) on the windward 
wall than on any other surface. 

 Changes   in the building’s internal pressure as a result of high winds can increase 
or decrease the total pressure on portions of a structure’s exterior  “ envelope. ”  This 
internal pressure,  p i  , is normally taken as 18% of the roof-height velocity pressure 

 FIGURE 2.13  
       Wind pressure on buildings    

Environmental loads
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for enclosed buildings, but it can be as high as 55% of the roof-height velocity pres-
sure for partially enclosed buildings The total design pressure,  p , is therefore: 

 p p pe i� �   
 (2.10)      

 The   actual behavior of wind is infl uenced not only by the surface (or boundary 
layer) conditions of the earth, but also by the geometry of the building. All sorts of 
turbulent effects occur, especially at building corners, edges, roof eaves, cornices, 
and ridges. Some of these effects are accounted for by the pressure coeffi cient  C p  , 
which effectively increases the wind pressure at critical regions of the building enve-
lope. Increasing attention is also being given to localized areas of extremely high 
pressure, which are averaged into the total design pressures used when consider-
ing a structure’s  “ main wind-force resisting system ”  (MWFRS). These high pressures 
need to be considered explicitly when examining the forces acting on relatively 
small surface areas, such as mullions and glazing, plywood sheathing panels, or roof-
ing shingles. Building codes either stipulate higher wind pressures for small surface 
elements like glass and wall panels or provide separate  “ component and cladding ”  
values for the external pressure coeffi cients and gust response factors. 

 Since   both external and internal pressures can be either positive (i.e., with the 
direction of force pushing on the building surface), or negative (i.e., with a suction-
type force pulling away from the building surface), the total design pressure on any 
component or cladding element is always increased by the consideration of both 
external and internal pressures. For certain MWFRS calculations, however, the inter-
nal pressures on opposite walls cancel each other so that only external pressures on 
these walls need to be considered. 

 As   an alternative to the analytic methods described, two other methods are also 
permitted: a simplifi ed analytic procedure for enclosed, more-or-less symmetrical 
low-rise (no more than 60-ft-high) buildings and physical testing of models within 
wind tunnels to determine the magnitudes and directions of wind-induced pressures.

       Example 2.4        Calculate wind loads      

    Problem defi nition 
 Find   the distribution of wind load on the windward and leeward surfaces of a fi ve-story offi ce 
building located in the suburbs of Chicago (assume typical  “ suburban ”  terrain, or Exposure 
Category  B ). Since  K d        �      0.85, the results can be combined with other loads;  K t        �      1.0, since 
no peculiar topographic features are present, and  I W        �      1.0, for  “ normal ”  occupancy. A typical 
section is shown in  Figure 2.14   . Plan dimensions are 100       ft      �      100       ft. Neglect internal pressure.  

    Solution overview 
 Find   basic wind speed; compute external design wind pressures.  
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    Problem solution 
        1.     From Table A-2.3, the basic wind speed,  V       �      90       mph.  
    2.      Windward wall:  From Equation 2.9, the external design wind pressure,  p e        �      0.00256( K )  

K d K t GC p V    2  I W      ; where values for  K ,  G , and  C p   are found in Table A-2.5 ( K d  ,  K t  , and  I W   are 
given in the problem statement). It is convenient to organize the solution in tabular form, as 
shown in  Table 2.1   .    

 The   value of  K  at mean roof height (64       ft) is found by interpolation between the value at 
60       ft and the value at 70       ft: 

K −
−

=
−
−

0 85
0 89 0 85

64 60
70 60

.
. .      

  from which  K       �      0.87. Values for  K t   and  I W   equal 1.0 and are not included in the table.   

 FIGURE 2.14  
       Schematic section through building for Example 2.4    

 Table 2.1          for Example 2.4  

   Height  0.00256   K    K d     G    C p     V   2  (mph)   p e   (psf) 

   70  0.00256  0.89  0.85  0.85  0.8  90      �      90  10.7 

   64  0.00256  0.87  0.85  0.85  0.8  90      �      90  10.4 

   60  0.00256  0.85  0.85  0.85  0.8  90      �      90  10.2 

   50  0.00256  0.81  0.85  0.85  0.8  90      �      90  9.7 

   40  0.00256  0.76  0.85  0.85  0.8  90      �      90  9.1 

   30  0.00256  0.70  0.85  0.85  0.8  90      �      90  8.4 

   20  0.00256  0.62  0.85  0.85  0.8  90      �      90  7.4 

   0 – 15  0.00256  0.57  0.85  0.85  0.8  90      �      90  6.8 

Environmental loads
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    3.      Leeward wall:  From Equation 2.9, the external design wind pressure for the leeward 
wall can be found (there is only one value for the entire leeward wall, based on  K  at the 
mean roof height). From Table A-2.5,  C p        �           � 0.5 (since the ratio  L / B       �      100/100      �      1.0); 
 K       �      0.87 (at mean roof height: see step 2);  G       �      0.85;  K d        �      0.85; and  K t        �       I W        �      1.0. The 
external wind pressure on the leeward side of the building is:    

 pe = − = −( . )( . )( . )( . )( . )( ) .0 00256 0 87 0 85 0 85 0 5 90 6 52 psf       

  The   negative sign indicates that this leeward pressure is acting in  “ suction, ”  pulling away 
from the leeward surface. 

    4.     The distribution of wind pressure on the building section is shown in  Figure 2.15   . The 
direction of the arrows indicates positive pressure (pushing) on the windward side and neg-
ative pressure (suction) on the leeward side. Rather than connecting the points at which 
pressures are computed with straight lines (which would result in triangular stress blocks 
over the surface of the building), it is common to use the more conservative assumption of 
constant pressure from level to level, which results in a discontinuous, or stepped, pattern 
of wind pressure, as shown in  Figure 2.15 .          

 When   computing the magnitude of wind loads that must be resisted by a building’s 
lateral-force-resisting system, internal pressures can be neglected (as they act in oppo-
site directions on the two interior faces of the building, canceling out), leaving only the 
windward and leeward pressures to be considered for each orthogonal plan direction.  

    Seismic loads 
 A   building riding an earthquake is like a cowboy riding a bull in a rodeo: as the 
ground moves in a complex and dynamic pattern of horizontal and vertical displace-
ments, the building sways back and forth like an inverted pendulum. The horizontal 

 FIGURE 2.15  
       Distribution of wind pressure on windward and leeward surfaces for Example 2.4    
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components of this dynamic ground motion, combined with the inertial tendencies 
of the building, effectively subject the building structure to lateral forces that are 
proportional to its weight. In fact, the earliest seismic codes related these seismic 
forces,  F , to building weight,  W , with a single coeffi cient: 

 F CW=    (2.11)     

  where  C  was taken as 0.1.   
 What   this simple equation doesn’t consider are the effects of the building’s geo-

metry, stiffness, and ductility, as well as the characteristics of the soil, on the mag-
nitude and distribution of these equivalent static forces. In particular, the building’s 
fundamental period of vibration, related to its height and type of construction, is a 
critical factor. For example, the periods of short, stiff buildings tend to be similar to 
the periodic variation in ground acceleration characteristic of seismic motion, causing 
a dynamic amplifi cation of the forces acting on those buildings. This is not the case 
with tall, slender buildings having periods of vibration substantially longer than those 
associated with the ground motion. For this reason, tall fl exible buildings tend to per-
form well (structurally) in earthquakes, compared to short, squat, and stiff buildings. 

 But   stiffness can also be benefi cial since the large deformations associated with 
fl exible buildings tend to cause substantial nonstructural damage. The  “ ideal ”  earth-
quake-resistant structure must therefore balance the two contradictory imperatives 
of stiffness and fl exibility. 

 In   modern building codes, the force,  F , has been replaced with a  “ design base 
shear, ”   V , equal to the total lateral seismic force assumed to act on the building. 
Additionally, the single coeffi cient relating this shear force to the building’s weight 
( “ seismic dead load ” ) has been replaced by a series of coeffi cients, each corresponding 
to a particular characteristic of the building or site that affects the building’s response 
to ground motion. Thus, the base shear can be related to the building’s weight with the 
following coeffi cients, using an  “ equivalent lateral force procedure ”  for seismic design: 
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 (2.12)     

  where:   

     V       �      the design base shear  

     C s        �      the seismic response coeffi cient equal to  S DS  /( R / I E  )  

     W       �       the effective seismic weight (including dead load, permanent equipment, 
a percentage of storage and warehouse live loads, partition loads, and cer-
tain snow loads);  

     S DS        �      the design elastic response acceleration at short periods  

Environmental loads
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     R       �       a response modifi cation factor (relating the building’s lateral-force-resisting 
system to its performance under seismic loads)  

     I E        �       the seismic importance factor (with somewhat different values than the 
equivalent factors for wind or snow)    

 The   coeffi cient  C s   has upper and lower bounds that are described in Table A-2.6, 
part  H , so it will only correspond to Equation 2.12 when it falls between the two 
bounding values. The response modifi cation factor,  R , is assigned to specifi c lateral-
force-resisting systems — not all of which can be used in every seismic region or for 
every type of occupancy; Table A-2.6, part  D , indicates which structural systems are 
either not permitted or limited in height, within specifi c seismic design categories. 

 To   approximate the structural effects that seismic ground motion produces at 
various story heights, seismic forces,  F x  , are assigned to each level of the building 
structure in proportion to their weight times height (or height raised to a power no 
greater than 2) above grade: 
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 (2.13)     

  where:   

     V       �      the design base shear, as defi ned above in Equation 2.12  

     w i   and  w x        �      the portions of weight  W  at, or assigned to, a given level,  i  or  x   

     h i   and  h x        �      the heights from the building’s base to level  i  or  x   

     k       �       1 for periods        �       0.5       s and 2 for periods        	       2.5       s (with linear inter-
polation permitted for periods between 0.5 and 2.5       s) and accounts 
for the more complex effect of longer periods of vibration on the 
distribution of forces    

 The    Σ  symbol in Equation 2.13 indicates the  sum  of the product of  ( )w hi i
k     for 

 i  ranging from 1 to  n , where  n  is the number of levels at which seismic forces are 
applied. 

 A   typical distribution of seismic forces resulting from the application of this equa-
tion is shown in  Figure 2.16   . It can be seen that Equation 2.13 for  F x   guarantees that 
these story forces are in equilibrium with the design base shear,  V . 

 For   structures that are in the lowest-risk seismic design category  A  (see Table 
A-2.6, part  G ), it is not necessary to fi nd the base shear,  V , and the seismic response 
coeffi cient,  C s  , and to assign story forces as described in Equations 2.12 and 2.13; 
instead, the story forces can be computed directly, based only on the dead loads for 
each level:  F x        �      0.01 w x  , where  F x   is the story force at each fl oor or roof level and 
 w x   is the dead load assigned to that level. 

 Building   codes require that larger seismic forces be used for the design of indi-
vidual building elements and for the design of fl oor  “ diaphragms. ”  The rationale for 
the separate calculation of these forces is similar to the logic behind the calculation 
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of larger  “ component and cladding ”  loads in wind design: because the actual distribu-
tion of seismic forces is nonuniform, complex, and constantly changing, the average 
force expected to act upon the entire lateral-force-resisting structural system is less 
than the maximum force expected to occur at any one level or upon any one build-
ing element. 

 The    “ equivalent lateral force analysis ”  method described earlier is but one of sev-
eral alternate procedures developed for seismic force calculations. In addition to a 
simple  “ index force analysis ”  method permitted only in regions with extremely low 
seismic risk and a  “ simplifi ed analysis ”  method for most nonhazardous and nonessen-
tial low-rise structures, more sophisticated alternate methods have been developed 
that can be used for any structure in any seismic region. These methods include 
modal response spectrum analysis as well as both linear and nonlinear response his-
tory analysis, all beyond the scope of this text. 

 Whatever   the method of analysis, designers in seismically active regions should 
carefully consider the structural ramifi cations of their  “ architectural ”  design deci-
sions and provide for ductile and continuous  “ load paths ”  from roof to foundation. 
Following are some guidelines: 

    1.     Avoid  “ irregularities ”  in plan and section. In section, these irregularities include 
soft stories and weak stories that are signifi cantly less stiff or less strong than the 
stories above and geometric irregularities and discontinuities (offsets) within the 
structure. Plan irregularities include asymmetries, reentrant corners, discontinui-
ties and offsets that can result in twisting of the structure (leading to additional 
torsional stresses), and other stress amplifi cations. Buildings articulated as mul-
tiple masses can be either literally separated (in which case the distance between 
building masses must be greater than the maximum anticipated lateral drift, or 
movement) or structurally integrated (in which case the plan and/or sectional 
irregularities must be taken into account).  

 FIGURE 2.16  
       Typical distribution of equivalent seismic story forces on a building    

Environmental loads
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    2.     Provide tie-downs and anchors for all structural elements, even those that seem 
secured by the force of gravity: the vertical component of seismic ground accel-
eration can  “ lift ”  buildings off their foundations, roofs off of walls, and walls off 
of framing elements unless they are explicitly and continuously interconnected. 
Nonstructural items such as suspended ceilings and mechanical and plumbing 
equipment must also be adequately secured to the structural frame. 

       The explicit connection of all structural elements is also necessary for build-
ings subjected to high wind loads, since uplift and overturning moments due to 
wind loads can pull apart connections designed on the basis of gravity loads only. 
But unlike seismic forces, which are triggered by the inertial mass of all objects 
and elements within the building, wind pressures act primarily on the exposed 
surfaces of buildings so that the stability of interior nonstructural elements is not 
as much of a concern.  

    3.     Avoid unreinforced masonry or other stiff and brittle structural systems. Ductile 
framing systems can deform inelastically, absorbing large quantities of energy 
without fracturing.   

       Example 2.5        Calculate seismic loads      

    Problem defi nition 
 Find   the distribution of seismic story loads on a fi ve-story offi ce building located in Los Angeles, 
away from the ocean. Plan dimensions are 60       ft      �      80       ft; assume that an  “ effective seismic 
weight ”  of 75       psf can be used for all story levels (primarily due to the dead load). The structure 
is a steel special moment-resisting frame and is built upon dense soil. The typical building sec-
tion is shown in  Figure 2.17   .  

 FIGURE 2.17  
       Schematic section through building, showing story heights, for Example 2.5    
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    Solution overview 
 Find   the effective seismic weight,  W , and the seismic response coeffi cient,  C s  ; compute the 
base shear,  V , and the story forces,  F x  .  

    Problem solution 
        1.      Find  W :  The effective seismic weight for each story is the unit weight times the fl oor area      �   

   75(60      �      80)      �      360,000       lb      �      360       kips per fl oor; the total weight,  W , for the entire building 
is therefore 5      �      360      �      1800       kips.  

    2.      Find  V :  
    a.     From Table A-2.3, fi nd  S s  ,  S 1   (maximum considered earthquake ground motion at short 

and long periods, respectively), and  T L   (long-period transition period) for Los Angeles: 
 S s        �      2.0;  S 1        �      1.0;  T L        �      12.  

    b.     From Table A-2.6, parts  A  and  B , fi nd site coeffi cients  F a   and  F v  ; using dense soil (cor-
responding to Site Class  C ) and the values of  S s   and  S 1   found in part  A,  we fi nd that 
 F a        �      1.0 and  F v        �      1.3.  

    c.     From Table A-2.6, part  C , fi nd the design elastic response accelerations:  S DS        �      2/3( F a S s  )      �      
2/3(1.0)(2.0)      �      1.33;  S D1        �      2/3( F v S 1  )      �      2/3(1.3)(1.0)      �      0.867.  

    d.     From Table A-2.6, part  D , fi nd the response modifi cation factor:  R       �      8 (for special steel 
moment frames). There are no height limits or other restrictions for this structural sys-
tem category; otherwise, it would be necessary to check which seismic design category 
the building falls under, from Table A-2.6, part  G .  

    e.     From Table A-2.6, part  E , the fundamental period of vibration,  T , can be taken as  C T h n  x        �      
0.028(64 0.8 )      �      0.78 second, where  h n        �      64       ft is the building height; and the values 
used for  C T   and  x , taken from Table A-2.6, part  E , correspond to steel moment-resisting 
frames.  

    f.     From Table A-2.6, part  F , the importance factor,  I E  , equals 1.0 for ordinary buildings.  
    g.     It is now possible to fi nd the seismic response factor,  C s  . The provisional value for 

 C s        �       S DS    /( R / I E  )      �      1.33/(8/1.0)      �      0.166. However, this must be checked against 
the upper and lower limits shown in Table A-2.6, part  H : since  S 1        �      1.0      	      0.6 and 
 T       �      0.78      �       T L        �      12, the lower limit for  C s        �      0.5 S 1  /( R / I E  )      �      0.5(1.0)/(8/1.0)      �      0.0625, 
and the upper limit for  C s        �       S D1  /( TR / I E  )      �      0.867/(0.78      �      8/1.0)      �      0.139. The upper limit 
governs in this case, so we use  C s        �      0.139.  

    h.     From Equation 2.12, the base shear,  V       �       C s W       �      0.139(1800)      �      250.2       kips.     
    3.     From Equation 2.13, the story forces can be determined as follows:    
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   In   this equation, since the period,  T       �      0.78       s, is between 0.5 and 2.5, and the limiting 
values of the exponent,  k , are set at 1.0 for  T       �      0.5 and 2.0 for  T       	      2.5, our value of  k  is 
found by linear interpolation: 
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     from which  k       �      1.14. The seismic weight at each story,  w i        �      360       kips (see step 1), and 
the various story heights can be most easily computed in tabular form (see  Table 2.2   ).   
    Once   the values for  hx

1 14.     have been determined for each story level, Equation 2.13 
can be rewritten as: 
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     and values for  F hx x� 0 735 1 14. .     can then be added to the table. Finally, their distribu-
tion on the building can be sketched, as shown in  Figure 2.18   . The sum of all the 
story forces,  F x  , equals the design base shear,  V , as it must to maintain horizontal 
equilibrium.                

 FIGURE 2.18  
       Distribution of story forces,  F x  , for Example 2.5    

 Table 2.2          for Example 2.5  

   Story level  Story height,  h x   (ft) 
      
hx

1.14       F hx x� 0.735 (kips)1.14

   Roof  64  114.56  84.24 

   5  52  90.42  66.49 

   4  40  67.04  49.30 

   3  28  44.64  32.83 

   2  16  23.59  17.35 

   Sum of story forces,  F x        �      base shear  V     �      250.2 
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 Wood  , steel, and concrete are actually extraordinarily complex materials. Of the 
three, wood was used fi rst as a structural material, and some of the otherwise inscru-
table vocabulary of structural analysis derives from this fact: the notion of an    “ outer 
fi ber ”  of a cross section; or even the concept of  “ horizontal shear ”  are rooted in the 
particular material structure of wood. 

 Only   certain material properties are of interest to us here — specifi cally, those that 
have some bearing on the structural behavior of the elements under consideration. 
The most obvious, and important, structural properties are those relating force to 
deformation or stress to strain. Knowing how a material sample contracts or elon-
gates as it is stressed up to failure provides a crucial model for its performance in 
an actual structure. Not only is its ultimate stress (or strength) indicated, but also a 
measure of its resistance to strain (modulus of elasticity), its linear (and presumably 
elastic) and/or nonlinear (plastic) behavior, and its ability to absorb energy without 
fracturing (ductility). 

 Ductility   is important in a structural member because it allows concentrations of 
high stress to be absorbed and redistributed without causing sudden, catastrophic 
failure. Ductile failures are preferred to brittle failures, since the large strains pos-
sible with ductile materials give warning of collapse in advance of the actual fail-
ure. Glass, a nonductile (i.e., brittle) material, is generally unsuitable for use as a 
structural element, in spite of its high strength, because it is unable to absorb 
large amounts of energy and could fail catastrophically as a result of local stress 
concentrations. 

 A   linear relationship between stress and strain is an indicator of elastic behavior — 
the return of a material to its original shape after being stressed and then unstressed. 
Structures are expected to behave elastically under normal  “ service ”  loads; but 
plastic behavior, characterized by permanent deformations, needs to be consid-
ered when ultimate, or failure, loads are being computed. Typical stress – strain 
curves for wood, steel, and concrete are shown in  Figure 3.1   . The modulus of 

               Material properties    3 
CHAPTER
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elasticity,  E , is the slope of the curve — that is, the change in stress,   σ  , divided by the 
change in strain,   ε  . For linear materials: 

  
E =

σ
ε   

(3.1)
      

 The   most striking aspect of these stress – strain curves shown in  Figure 3.1  is 
the incredibly high strength and modulus of elasticity (indicated by the slope 
of the curve) of steel relative to concrete and wood. Of equal importance is the 
information about the strength and ductility of the three materials in tension ver-
sus compression. For example, structural carbon steel, along with its high strength 
and modulus of elasticity, can be strained to a value 60 times greater than shown 
in  Figure 3.1  in both tension and compression, indicating a high degree of ductil-
ity. Concrete, on the other hand, has very little strength in tension and fails in a 
brittle (nonductile) manner in both tension and compression. Wood has high tensile 
strength compared to concrete, but it also fails in a brittle manner when stressed in 
tension; in compression, however, wood shows ductile behavior. 

 FIGURE 3.1  
       Stress – strain curves for structural materials    
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 Aside   from such stress – strain data, material properties can also be affected by 
environmental conditions, manufacturing processes, or the way in which loads are 
applied. These material-dependent responses are discussed in the following sections. 

    WOOD 
  Wood    is the stuff inside trees;  timber  is wood suitable for (or prepared for) use in 
structures;  lumber  is timber cut into standard-sized planks. Since we build with lum-
ber (which is also timber, which is also wood), all three of these terms are used, 
depending on the context. 

 The   basic structure of wood can be understood by examining its situation within 
the tree: the trunk consists of a bundle of cellulose tubes, or fi bers, that serve the 
dual purpose of carrying water and nutrients from the ground to the leaves while 
providing a cellular geometry ( “ structure ” ) capable of supporting those leaves and 
the necessary infrastructure of branches. Various loads stress the tree trunk in axial 
compression (dead load and snow load) and in bending (wind load, eccentric dead 
load, and snow load). When we cut lumber from the tree, we do so in a way that 
allows it to be stressed within building structures in the same manner that it was 
stressed while in the tree. Thus, saw cuts are made parallel to the longitudinal fi bers 
of the wood, since it is the continuity of these fi bers that give the wood strength. 

    Cutting 
 Lumber   cut from a tree immediately has three structural defects, compared to wood 
in the tree itself. First, it is virtually impossible to cut every piece of lumber so that 
the orientation of the fi bers, or grain, is exactly parallel to the edges of the wood 
planks. This means that the full potential of the wood’s strength is rarely achieved. 

 Second  , the continuous path of those fi bers leading from trunk to branch — a 
functional and structural necessity within the tree — becomes a liability when the 
tree is cut, as it results in knots and other imperfections that weaken the boards. 
Wood is graded to account for these and other imperfections. 

 Third  , the shear strength of the wood — that is, its ability to resist sliding of the 
cellular fi bers relative to each other — is much lower than its strength in tension or 
compression parallel to those fi bers. While a low shear strength is perfectly adapted 
to a tree’s circular cross section, it is not necessarily appropriate for the rectangu-
lar cross sections characteristic of lumber. Why this is so can be seen by compar-
ing the two cross-sectional shapes: with a circle, a great deal of material is available 
at the neutral axis (where shear stresses are highest), so the  “ glue ”  or lignin holding 
the fi bers together can be relatively weak; but when the tree is cut into rectangu-
lar cross sections, relatively less material is present at the neutral axis, and shear 
stresses are therefore higher. For this reason, the structural effi ciency of lumber 
with a rectangular cross section — that is, all lumber — is compromised by a dispro-
portionate weakness in shear.  

Wood
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    Seasoning 
 A   dead tree begins losing its internal water until its moisture content reaches equilib-
rium with the surrounding air. Two things then happen: the wood shrinks, especially 
perpendicular to the grain, and the wood gets stronger. As atmospheric humidity 
changes, the wood responds by gaining or losing moisture, by expanding or shrink-
ing, and by becoming weaker or stronger. For structural design, the issue of strength 
versus moisture content is handled by assuming one of two conditions: either the 
wood is indoors, where the humidity is controlled and the moisture content of the 
wood is expected not to exceed 19% (for glued laminated timber, this condition is 
met when the moisture content is less than 16%), or outdoors, where the potential 
exists for the wood to take on added moisture and lose some strength. The wood’s 
moisture content at the time of fabrication also has an impact on its in-service per-
formance, especially for the design of connections among structural elements.  

    Volume 
 Lumber   contains both hidden and visible pockets of low strength, due to imper-
fections within or between the cellular fi bers of the material and larger cracks or 
knots often visible on the surface. It is impossible to know where all these defects 
might be in any particular piece of lumber, but one can safely surmise that there 
will be more of them as the volume of the piece increases. As the number of defects 
increases, the probability that larger, or more damaging, defects will exist within 
critical regions of the structural element also increases. Since these regions of low 
strength can trigger brittle failure (wood is brittle when stressed in tension), large 
pieces of lumber will statistically fail at lower levels of stress than small pieces. This 
does not mean that large beams hold less load than small beams; it simply means 
that the average stress that causes failure will be lower in larger beams. 

 Interestingly  , the theory is validated by test results for all categories of beams 
and tension elements, with one exception: increases in cross-sectional width seem 
to make beams stronger (but not tension members), opposite to what the theory 
of brittle failure predicts. The reason for this anomaly remains unclear, but it may 
have to do with the fact that local failures at regions of low strength are more likely 
to cascade across the entire width of relatively thin cross sections and more likely 
to be contained as cross-sectional width increases. A horizontal break correspond-
ing to a complete discontinuity between the lower and upper parts of a cross sec-
tion drastically reduces the cross section’s ability to resist bending moments, but it 
has no effect on the section’s ability to resist axial tension. This would explain why 
beams, but not tension members, seem to get stronger with increased width. On 
the other hand, increasing the depth of a structural element has no such benefi cial 
effect, since even a complete vertical break within a cross section neither increases 
nor decreases a member’s bending or tensile strength. Because wide beams seem 
to be relatively stronger than narrow ones, the allowable stress in beams used fl at 
(stressed about their weak axes) is higher than when they are used in their normal 
orientation, even though their total volume hasn’t changed.  
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    Duration of load 
 Wood   fails at a lower stress the longer it is loaded. This phenomenon is similar to 
the  “ fatigue ”  of metals, except that where metal fatigue is brought on by repeated 
cycling or reversals of stress, loss of strength in wood is purely time-dependent 
and will occur even under a constant load. Thus, wood can sustain a higher stress 
caused by a short-duration impact load than by a longer-duration wind, snow, or 
live load.  

    Species and grade 
 Many   species of wood can be used as lumber. Within each species, different grades 
are identifi ed, depending on such things as overall density, knots, checks, and other 
imperfections. Grading can be done by visual inspection (for  “ visually graded lum-
ber ” ) or with the aid of machines (for  “ machine stress rated lumber ” ). Since each 
species of wood is subdivided into numerous grades, the result is a multitude of pos-
sible material types, each with different structural properties. Practically speaking, 
the choices in any given geographical region are limited to what is locally available. 
For that reason, the material properties assumed when designing in timber are not 
arbitrarily selected from the lists produced by wood industry organizations but are 
selected from the much shorter list of regionally available species and grades. Several 
common species and grades of wood are listed in Tables A-3.1, A-3-3, A-3.5, and A-3.7, 
along with their  “ allowable stresses ”  in tension, compression, bending, and shear. 
Adjustments to these values, accounting for the effects of such things as moisture, 
volume, and duration of load are listed in Tables A-3.2, A-3.4, A-3.6, A-3.8, and A-3.10. 
The modulus of elasticity and specifi c gravity are listed in Tables A-3.9 and A-3.11, 
respectively.  

    Related products 
 Several   wood-based products have been developed with structural applications: 

     Glued laminated (glulam) lumber  is made by gluing together fl at boards, typically    
13

8    or  1 1
2    in. thick (half that for curved members) to create large cross sections 

of virtually unlimited length. Material properties can be controlled to some extent 
within the cross section — poorer-quality grades may be placed near the neutral 
axis, while higher-strength boards are reserved for the extreme fi bers. A typical 
cross section is shown in  Figure 3.2   .  

     Laminated veneer lumber (LVL)  is similar to glulam except that the laminations 
are much thinner — being sliced off a log like paper pulled off a roll, rather than 
being sawn, and the glued joints between laminations are vertical, rather than 
horizontal. The grain in each lamination is oriented along the longitudinal axis 
of the member so that, like glulam, it mimics the anisotropic fi brous structure of 
an ordinary piece of lumber. LVL is used for beams and girders only and is manu-
factured in standard sizes consistent with the sizes of sawn lumber, while glulam 

Wood



66  CHAPTER 3    Material properties

can be custom fabricated in an unlimited variety of sizes and geometries. A typi-
cal LVL cross section is shown in  Figure 3.3   .  

     Parallel strand lumber (PSL)  is similar to LVL, except that strips of veneer are used 
instead of whole veneers.  

     Plywood  is similar to LVL except that alternate laminations (plies) are oriented per-
pendicular to each other, creating a dimensionally stable structural membrane, used 
typically as a substrate (sheathing) for roofs and exterior walls and as a subfl oor over 
joists in wood-frame construction. Plywood typically contains an odd number of plies, 
except when the middle two plies are  “ doubled up ”  as in 4-ply plywood; in either case, 
the top and bottom fi bers point in the same direction (parallel to the long dimension 
of the plywood sheet). For this reason, plywood is typically oriented so that it spans in 
the direction of its long dimension ( Figure 3.4   ). Where this doesn’t occur (e.g., in cer-
tain panelized roof systems), the lower bending strength of the plywood spanning in 
its short direction needs to be considered.  

 FIGURE 3.2  
       Glulam cross section    

 FIGURE 3.3  
       LVL cross section    
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     Oriented strand board (OSB)  is similar to plywood, except that the various alternat-
ing layers consist of strands of wood glued together.  

     I-joists  are manufactured from various combinations of fl ange and web materials and 
can be used in place of sawn lumber beams. Flange material can be ordinary sawn 
lumber or LVL; web material is typically plywood or particle board. Cold-formed 
metal can also be used as a  “ web ”  material, creating a composite  “ truss-joist ”  con-
sisting of wooden chords and metal diagonals. A typical I-joist cross section is 
shown in  Figure 3.5   .  

     Prefabricated trusses  consisting typically of sawn 2      �      4 or 2      �      6 members joined 
by metal connector plates can be used for both pitched roofs and fl at fl oors. 
These products can be custom fabricated and are often structurally designed 
(engineered) by the manufacturer.      

 FIGURE 3.4  
       Plywood subfl oor    

 FIGURE 3.5  
       I-joist cross section    

Wood
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    STEEL 
 Steel   is subject to corrosion if not protected and loss of strength and stiffness at high 
temperatures if not fi reproofed. While these are extremely important material prop-
erties, the structural design of steel elements presupposes that these issues have 
been addressed within the architectural design process. 

    Stress – strain 
 Steel   has a distinct elastic region in which stresses are proportional to strains and a 
plastic region that begins with the yielding of the material and continues until a so-
called strain-hardening region is reached. The yield stress defi nes the limit of elastic 
behavior and can be taken as 36       ksi for ASTM A36 or 50       ksi for what is becoming the 
de facto standard — at least for wide-fl ange (W) shapes — ASTM A992; both standards 
are published by the American Society for Testing and Materials. 

 Within   the plastic range, yielded material strains considerably under constant 
stress (the yield stress), but it does not rupture. In fact, rupture only occurs at the 
end of the strain-hardening region, at an ultimate or failure stress (strength) much 
higher than the yield stress. Bending cold-formed steel to create structural shapes 
out of fl at-sheet steel stretches the material at the outer edges of these bends beyond 
both the elastic and plastic regions and into the strain-hardening region. This actu-
ally increases the strength of these structural elements, even though the direction of 
stretching is perpendicular to the longitudinal axis of the element. 

 High  -strength steels (with yield stresses up to 100       ksi) are available, but their util-
ity is limited in the following two ways. First, the modulus of elasticity of steel does 
not increase as strength increases but is virtually the same for all steel (29,000       ksi). 
Reducing the size of structural elements because they are stronger makes it more 
likely that problems with serviceability (i.e., defl ections and vibrations) will surface 
since these effects are related not to strength, but to the modulus of elasticity. 

 Second  , increased strength is correlated with decreased ductility and a greater 
susceptibility to fatigue failure. Therefore, where dynamic and cyclic loading are 
expected, high-strength steel is not recommended; where dead load dominates, 
and the load history of the structural element is expected to be relatively stable, 
high-strength steel may be appropriate, as long as the fi rst criterion relating to stiff-
ness (modulus of elasticity) is met. The most commonly used steels, along with their 
yield and ultimate stresses, are listed in Table A-3.12.  

    Residual stress 
 Hot  -rolled steel shapes contain residual stresses even before they are loaded. These 
are caused by the uneven cooling of the shapes after they are rolled at temperatures 
of about 2000 °        F. The exposed fl anges and webs cool and contract sooner than the 
web – fl ange intersections; the contraction of these junction points is then inhibited 
by the adjacent areas which have already cooled, so they are forced into tension 
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as they simultaneously compress the areas that cooled fi rst. The typical pattern of 
residual stresses within a wide-fl ange cross section is shown in  Figure 3.6   . Residual 
stresses have an impact on the inelastic buckling of steel columns, since partial 
yielding of the cross section occurs at a lower compressive stress than would be the 
case if the residual compressive stresses  “ locked ”  into the column were not present.  

    Related products 
 Aside   from standard rolled structural shapes, several other structural applications of 
steel should be noted: 

     Cold-formed steel  is made by bending steel sheet (typically with 90 °  bends) into 
various cross-sectional shapes, used primarily as studs (closely spaced vertical 
compression elements), joists (closely spaced beams), or elements comprising 
lightweight trusses. Manufacturers provide tables for these products containing 
section properties and allowable loads, or stresses.  

     Hollow structural sections (HSS)  are closed tubular steel shapes that can be formed 
and welded in various ways from fl at sheets or plates; these shapes can be circu-
lar, square, or rectangular. Circular  pipes  are similar to round HSS, except that 
they are fabricated with a different grade of steel.  

     Open-web steel joists (OWSJ)  are lightweight prefabricated trusses made from steel 
angles and rods. Spans of up to 144       ft are possible with  “ deep longspan ”  or DLH-
series joists; regular  “ longspan ”  (LH-series) joists span up to 96       ft, while ordinary 
H-series joists span up to 60       ft. These products are relatively fl exible, subject to 

 FIGURE 3.6  
       Residual stresses in steel rolled section, with  “      �      ”  indicating tension and  “  –  ”  indicating 
compression      

Steel
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vibration, and are most often used to support roof structures in large one-story 
commercial or industrial buildings.  

     Space-frame (actually  “ space-truss ” ) systems  consist of linear elements and con-
necting nodes based on various geometries, most commonly tetrahedral or pyra-
mid shaped.  

     Corrugated steel decks  constitute the fl oor and roof system for almost all steel-
framed buildings. For fl oor systems, they are often designed compositely with 
concrete fi ll, effectively creating a reinforced concrete fl oor system in which the 
reinforcement (and formwork) consists of the steel deck itself.  

     Cables and rods  can be used as structural elements where the only expected 
stresses are tension, or where the element is prestressed into tension: the fl exibil-
ity of these elements prevents them from sustaining any compressive or bending 
stresses. Applications include elements within trusses, bridges, and membrane 
structures.      

    REINFORCED CONCRETE 
 The   cylinder strength of concrete,  f   
   c  , is the ultimate (highest) compressive stress 
reached by a 6       in.      �      12       in. test cylinder of concrete after 28 days of curing under 
prescribed conditions. Desired values for  f   
   c   are specifi ed by designers and created 
in batching plants by mixing together predetermined proportions of water, cement, 
aggregate, and admixtures. Typical compressive strengths range from 3000 to 
5000       psi, but can be specifi ed higher for prestressed concrete or for columns sub-
jected to unusually high compressive stresses. 

 Aside   from concrete’s relatively high compressive strength, the material proper-
ties that are most signifi cant in terms of its structural behavior are (1) low tensile 
strength, (2) brittleness, and (3) shrinkage. 

    Low tensile strength 
 The   fi rst property makes  plain  concrete unsuitable for most structural applica-
tions, since even elements subjected to compressive stresses generally need suffi -
cient tensile strength to inhibit buckling. For this reason, and to extend the range of 
its applications to beams and slabs as well as columns, concrete is reinforced with 
steel reinforcing bars, or  “ rebars, ”  in regions of the cross section where tension is 
expected to occur.  

    Brittleness 
 Lack   of ductility is also an undesirable property for a structural material. To prevent 
sudden, catastrophic failure of reinforced concrete beams, for example, the amount 
of reinforcement must be kept small enough so that the steel will yield (in a ductile 
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manner) before the concrete crushes (in a sudden, catastrophic, brittle manner). 
Where this is not possible — in structural elements controlled by compression —
 safety factors are adjusted accordingly (see Chapter 5).  

    Shrinkage 
 Concrete   shrinks as the water not needed in the curing process, but required for 
workability, evaporates. Expansion and contraction due to temperature changes can 
also cause differential movement. To reduce and control cracking in slabs where 
this movement is restrained — for example, by perimeter beams containing steel 
reinforcement — additional temperature and shrinkage reinforcement is added to the 
slab. In one-way slabs, where the concrete spans and is structurally reinforced in 
one direction, temperature and shrinkage reinforcement is only needed perpendicu-
lar to this spanning direction.  

    Related products 
  Precast   concrete  is reinforced concrete that is cast away from the building site, 
and assembled on site. Some (but not all) precast concrete is available in standard 
shapes and dimensions: fl oor and roof planks, tees and double-tees are examples. 
Otherwise, precast concrete may be fabricated in any shape and size consistent with 
the laws of statics; the strength and stiffness of the materials; and the constraints 
imposed by formwork, transportation, handling, and erection. 

 Precasting   may imply a loss of structural continuity if connections are made 
with steel inserts bolted or welded together to create simple supports. On the other 
hand, it is possible to design precast systems whose behavior is identical to that of 
site-cast systems by maintaining the continuity of steel reinforcement from element 
to element. Special products are available to connect rebars that have been left 
exposed at the ends of the concrete pieces; nonshrinking grouts are then used to fi ll 
in the voids and complete the structural connection. 

 Precast   concrete is more widely used as  “ nonstructural ”  cladding than as primary 
structure, at least in the United States. The quotation marks around nonstructural 
hint at the inadequacy of the term: in fact, all cladding is structural since it must 
resist wind, seismic, and impact loads and transfer these loads to the primary lateral-
force resisting structural system of the building.           

Reinforced concrete
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 The   behavior of structural elements is conditioned by the particular shapes into 
which these materials are formed and the particular material qualities selected. Wood, 
steel, and reinforced concrete structures can be fabricated from elements having an 
enormous range of strength, stiffness, size, and geometric confi gurations — subject 
only to the constraints imposed by manufacturing technologies, transportation and 
handling, and safety and serviceability requirements. In practice, though, the usual 
range is smaller, limited to standard shapes and sizes endorsed by industry associa-
tions. These standards are described in this chapter. 

    WOOD 
 Within   each species, lumber is further classifi ed by its size. Various grades of lumber 
are then identifi ed for each size classifi cation. The actual ( “ dressed ” ) sizes of lumber, 
which are currently   12   in. to   3

4
   in. smaller than their nominal dimensions, are shown 

in Table A-4.1, together with some important cross-sectional properties. For our pur-
poses, we shall consider only the following size classifi cations of lumber:  dimen-
sion lumber , consisting of light framing elements, studs, and joists with nominal 
cross-sectional dimensions ranging from 2      �      2 to 4      �      16, and  timbers , consisting of 
all larger cross sections. There are two subcategories within timbers, identifi ed by 
the most common uses for which they are typically selected: (1)  beams and string-
ers , which are more than 2       in. wider than they are thick (and they are at least 5       in. 
thick, nominally), and (2)  posts and timbers , which are no greater than 2       in. wider 
than they are thick. Of course, nothing prevents a designer from using a  “ beam and 
stringer ”  as a post; a  “ post and timber ”  as a beam; or any piece of lumber, classifi ed 
by its most common use, for any other structural purpose. 

 When   describing beams, the standard nomenclature used in timber design can 
be quite confusing: the smaller dimension, or  thickness,  is what we ordinarily call 
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 “ width ” ; the longer dimension, or  width , is what we usually call  “ depth. ”  Thus, the 
section modulus of a timber beam, described in Chapter 8, is not  “ width ”  times 
 “ depth ”  squared, divided by 6 (as it would be in a strength of materials text); but is 
thickness times width squared, divided by 6. Got that? 

 Standard   glulam posts and beams come in depths that are multiples of the lami-
nation size and in an assortment of widths whose fi nished dimensions are different 
from those of dimension lumber. Some typical cross-sectional dimensions are shown 
in Table A-4.2.  

    STEEL 
 Wide  -fl ange shapes are commonly used for both beams and columns within steel-
framed structures. They are designated by a capital W, followed by the cross sec-
tion’s nominal depth and weight (lb) per linear foot. For example, a W14      �      38 has a 
nominal depth of 14       in. and weighs 38       lb per linear foot (see  Figure 4.1   ). Unlike stan-
dard (S)  “ I-beam ”  sections, whose fl ange surfaces are not parallel — the inner surface 
slopes about 16% relative to the outer surface — wide-fl ange (W) sections have parallel 
fl ange surfaces, making it somewhat easier to make connections to other structural 
elements. Wide-fl ange sections are manufactured in groups with a common set of 
inner rollers. Within each of these groups, the dimensions and properties are varied 

 FIGURE 4.1  
       Cross section of a typical steel wide-fl ange (W) section    
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by increasing the overall depth of the section (thereby increasing the fl ange thick-
ness) and then letting the web thickness increase as well. For this reason, actual 
depths may differ considerably from the nominal depths given to each group of 
shapes. 

 Dimensions   of commonly available W shapes are listed in Table A-4.3. Other 
shapes, such as channels (C or MC), angles (L), pipes, and hollow structural sec-
tions (HSS), also have many structural applications; standard dimensions for some of 
these shapes are listed in Tables A-4.4 through A-4.8. The designation for channels 
(C and MC) follows that for wide-fl ange sections, with the nominal depth in inches 
followed by the weight in pounds per linear foot. For angles, three numbers are 
given after the symbol, L: the fi rst two are the overall lengths of the two legs; the 
third is the leg thickness (always the same for both legs). Hollow structural sections 
(HSS) are designated with either two or three numbers corresponding to the diam-
eter and nominal thickness (for round sections) or the two outside dimensions and 
nominal thickness (for rectangular sections). Steel pipe, similar in shape to round 
HSS, is designated by nominal outside diameter in three  “ weights ” : standard, extra 
strong, and double-extra strong.  

    REINFORCED CONCRETE 
 Because   cast-in-place, or site-cast, concrete is literally made at the building site, the 
only real constraint on the sizes and shapes of concrete structural elements is the 
willingness of architects, engineers, owners, and contractors to design the struc-
ture and assemble the formwork into which the concrete and reinforcement is 
placed. The history of reinforced concrete structures is thus fi lled with elaborate, 
structurally expressive, one-of-a-kind projects in which the  “ plasticity ”  of the mate-
rial is exploited. The costs of formwork can be signifi cant, though, and many rein-
forced concrete structures are designed to minimize these costs by rationalizing the 
dimensions of the various concrete elements, in part by reusing standardized forms 
where possible. For these structures, the outside dimensions of beams, slabs, and 
columns are often rounded up to the nearest   12         in., 1       in., or even inch, depending 
on how big the element is. Slabs 6       in. thick or less are rounded up to the nearest   
1

2         in.; thicker slabs are rounded up to the nearest inch. The cross-sectional dimen-
sions of beams and columns are rounded up to the nearest 1       in. or even inch (see 
Table A-4.9). 

 Reinforcing   bar (rebar) spacing in reinforced concrete beams and columns is con-
strained by several factors. First, bars must be far enough apart so that aggregate in 
the concrete mix can pass freely between them — in general, the largest aggregate size 
must be no more than three-fourths of the minimum distance between bars. Looked 
at from the opposite point of view (i.e., with the maximum aggregate size set), the 
minimum space between bars must be   1 1

3   times greater than the largest aggregate. 
For 1-in. aggregate, the minimum clear bar spacing would be   1 1

3         in., or approxi-
mately   1 1

2         in. Additional requirements relate bar spacing to bar size: for beams, the 

Reinforced concrete
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spacing must be not less than the nominal bar diameter, or 1       in.; for columns, the 
spacing must be not less than   1 1

2   times the nominal bar diameter, or   1 1
2         in. 

 In   the United States, rebars were designated and marked by a number corre-
sponding to the bar’s nominal diameter multiplied by 8: for example, a bar with a 
nominal diameter of   1

2          in. would be designated as a No. 4 bar (since  1
2
         �      8      �      4). 

In an increasingly international marketplace, these designations have been replaced 
with SI (international system) units, so the old No. 4 bar is now designated with the 
number 13 (since  1

2         in.      �      12.7       mm, or approximately 13       mm). Even so, the old U.S. 
system of bar numbering is still used by the American Concrete Institute (ACI) in its 
structural concrete codes and commentaries and will be used in this text. Side-by-
side listings of new and old designations can be found in Tables A-4.10 and A-4.11. 

 For   all commonly used beam reinforcing (No. 11 bars or smaller) and with aggre-
gate no larger than 1       in., the minimum bar spacing requirement can be set at  1 1

2           in. 
for beams. For column reinforcing of No. 8 bars or smaller (i.e., 1       in. diameter or 
smaller) and with aggregate no larger than 1       in., the minimum spacing requirement 
can also be set at   1 1

2          in. for columns. However, for bar sizes larger than No. 8, the 
spacing requirement increases to  1 1

2     times the nominal bar diameter. 
 The   implications for minimum width or diameter of reinforced concrete columns 

and beams are shown in  Figure 4.2    and summarized next, assuming   1 1
2   -in. cover 

and  12  -in.-diameter ties, stirrups, or spiral reinforcement. The specifi c function of 
these reinforcement types is explained in Chapter 7 ( ties  and  spirals  for columns) 
and Chapter 8 ( stirrups  for beams). 

 FIGURE 4.2  
       Minimum beam and column width (or diameter) based on bar spacing:  (a)  for tied column or 
beam and  (b)  for spiral column. The nominal bar diameter is  D ; the required clear distance 
between bars is  s ; and, for an angle,   θ  , between longitudinal bars in a spiral column, the 
distance,  A,  is 2(sin   θ  /2)/( D       �   s )    
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    Rectangular columns or beams 
        1.     For beams (with bar size of No. 11 or smaller) and for columns with bar size of No. 

8 or smaller, with two bars along the beam or column face: the minimum width 
(in.) is 5.5  �  2 D , where  D  is the bar diameter (in.). For beams or columns with 
more than two bars in a line, add 1.5       in.  �   D  for each additional bar.  

    2.     For columns with bar size larger than No. 8, with two bars along the column face, 
the minimum width (in.) is 4  �  3.5 D , where  D  is the bar diameter (in.). For col-
umns with more than two bars in a line, add 2.5 D  for each additional bar.     

    Spiral columns 
 For   spiral columns with six bars, No. 8 or smaller: the minimum diameter (in.) is 
7  �  3 D , where  D  is the bar diameter (in.). For columns with bar sizes larger than 
No. 8: the minimum diameter is 4  �  6 D . 

 Minimum   widths for rectangular beams and columns, and minimum diameters 
for spiral columns, are given in Table A-4.11.        

Reinforced concrete
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 Structural   engineering prescriptions tend to be written in the form of unambigu-
ous mathematical relationships. In fact, the seeming authority of these formula-
tions masks a rather different reality: the entire subject area of structures is littered 
with fundamental uncertainties. These uncertainties include not only the nature of 
loads and the strength and stiffness of structural materials in resisting these loads, 
but also the appropriateness of mathematical models used in design and analysis 
and the degree to which actual built structures conform to the plans and specifi -
cations produced by their designers. The basic requirements of safety, serviceabil-
ity, and economy depend on how well designers maneuver within this probabilistic 
environment. 

    ALLOWABLE STRESS DESIGN 
 Structural   design approaches can be characterized by the extent to which these 
uncertainties are made explicit. The simplest approach to designing structures uses 
a single factor of safety to defi ne allowable stresses for a particular material. If actual 
(i.e., calculated) stresses do not exceed these allowable stresses, the structure is con-
sidered to be safe. Rather than using allowable stress, it is also possible to use allow-
able strength, measured in moment or force units. The allowable, or “available,”
  strength is defi ned by applying a safety factor to the structural element’s so-called 
limit state, that is, to the maximum moment or force it can sustain. Then, the ele-
ment is designed such that its available strength (the limit state divided by a safety 
factor) is greater or equal to its required strength (the computed force or moment 
resulting from the application of loads). 

 In   some cases, the factor of safety is actually given. In steel design, for example, the 
available strength is determined by dividing the limit-state moment or force by a safety 
factor (see Table A-3.13). In other cases — for example, timber design — the allowable 
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stress is simply presented as a property of the material, and the degree of safety is 
hidden from the designer. In all cases, however, it is not possible to “fi ne tune” the 
structure’s design by considering the relative uncertainty of various load types. 

 In   allowable stress (or allowable strength) design, dead and live loads are simply 
added together, in spite of the fact that dead loads can be predicted with a higher 
degree of certainty than live loads. Thus, if two structures carry the same total load, 
but one structure has a higher percentage of dead load, the structures will have dif-
ferent degrees of safety if designed using the allowable stress method. In fact, the 
structure with more dead load will be statistically safer, since the actual dead load 
acting on the structure is more likely to correspond to the calculated dead load than 
is the case with live load. Allowable stress design is sometimes called working stress 
design, since the loads used in the method (“service loads”) represent what we 
expect to actually “work” with during the life of the structure. 

 To   account for the improbability of multiple loads simultaneously acting on a 
structure at their maximum intensity, most codes provide load reduction factors for 
various combinations of load types. For example, where several loads are being con-
sidered, the “nondead” loads may be multiplied by 0.75, as long as the total thus 
calculated does not exceed the dead load together with the largest single additional 
load considered in the calculations (earthquake loads are sometimes excluded from 
this provision). The reduction of live loads on relatively large infl uence areas was 
discussed in Chapter 2.  

    STRENGTH DESIGN 
 A   more recent approach to the design of structures explicitly considers the probabi-
listic nature of loads and the resistance of structural materials to those loads. Instead 
of regulating the design of structural elements by defi ning an upper limit to their 
“working stresses,” strength design considers both the limit state of the structural 
element — typically the strength at which the element fails or otherwise becomes 
structurally useless — as well as the relative uncertainty of the various loads acting on 
that element. 

 Using   this method, the required strength of a structural element, calculated using 
loads multiplied by load factors (that correspond to their respective uncertainties), 
must not exceed the design strength of that element, calculated by multiplying the 
strength of the structural element by resistance factors (that account for the variabil-
ity of stresses, and the consequences of failure). If  Q  represents the loads and their 
effects on a structural element and  R  represents the resistance, or strength, of that 
element, then strength design can be schematically represented as follows: 

  λ γ φΣ( )i i nQ R≤   (5.1)     

  where   γ  i   are the load factors (mostly greater than 1.0);   φ   is the strength reduction 
factor (smaller than 1.0); and   λ   is an additional factor (smaller than 1.0) that can be 
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used when multiple load types are assumed to act simultaneously, in which case the 
likelihood of all loads being present at their maximum intensities is reduced.   

 For   reinforced concrete designed with the strength method, some commonly 
used factored load combinations are listed in Table A-5.1. Strength reduction fac-
tors are listed in Table A-5.2. Multiple combinations of loads are less likely to occur 
simultaneously at full magnitude; the load factors listed in Table A-5.1 account for 
these variable probabilities. The load factor for dead loads is sometimes less than 
zero, since this can represent the more dangerous condition (i.e., the more conser-
vative assumption) where wind or earthquake forces cause overturning or uplift. 

 Strength   design is similar to load and resistance factor design (LRFD in wood or 
steel), or  “ limit state design. ”  In the United States, strength design is now used almost 
exclusively in reinforced concrete design, is beginning to be widely used in steel design, 
and is not yet commonly used in timber design. In this text, we will use strength design 
for reinforced concrete and allowable stress (strength) design for timber and steel.

         Example 5.1        Load combinations (Part I)      

    Problem defi nition 
 For   the  “ light manufacturing ”  structure shown in  Figure 5.1   , assume that the dead load con-
sists of the reinforced concrete fl oor structure. The weight of the reinforced concrete can be 

 FIGURE 5.1  
        (a)  Framing plan and  (b)  section for Example 5.1    

Strength design
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taken as 150       pcf. Find the distributed  “ design ”  load on a typical beam for both strength design 
and allowable stress design.  

    Solution overview 
 Find   dead and live loads; add loads together for allowable stress design; apply load factors for 
strength design (strength design is used almost exclusively for the design of reinforced con-
crete structures).  

    Problem solution 
        1.     From Table A-2.2, fi nd live load:  L       �      125       psf; or, considering the distributed load on a 

 typical beam,  L       �      125      �      10      �      1250        lb/ft.  
    2.     Find dead load. 

    a.     Slab: (150)(6/12)(10)      �      750        lb/ft.  
    b.     Beam: (150)(12/12)(12/12)      �      150        lb/ft.  
    c.     Total dead load      �      750      �      150      �      900        lb/ft.     

    3.     Allowable stress design: Total load  �   D       �       L       �      900      �      1250      �      2150       lb/ft ( Figure 5.2 a    ).  
    4.     Strength design: From Table A-5.1, the total load      �      1.2 D       �      1.6 L       �      1.2(900)      �      1.6(1250)      

�      3080       lb/ft ( Figure 5.2 b  ).         

       Example 5.2        Load combinations (Part II)      

    Problem defi nition 
 Now  , repeat Example 5.1, except change the occupancy to that of a restaurant, and add 
ceramic tile (weighing 25       psf) to the surface of the slab.  

    Solution overview 
 Find   dead and live loads; add loads together for allowable stress design; apply load factors for 
strength design.  

    Problem solution 
        1.     From Table A-2.2, fi nd live load:  L       �      100       psf; or, considering the distributed load on a typi-

cal beam,  L       �      100      �      10      �      1000        lb/ft.  
    2.     Find dead load. 

    a.     Slab: Concrete  �  Tile  �  (150)(6/12)(10)      �      25(10)      �      1000        lb/ft.  

 FIGURE 5.2  
       Load diagrams for Example 5.1 using  (a)  allowable stress design and  (b)  strength design    
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    b.     Beam: (150)(12/12)(12/12)      �      150        lb/ft.  
    c.     Total dead load  �  1000      �      150      �      1150        lb/ft.     

    3.     Allowable stress design: Total load  �   D       �       L       �      1150      �      1000      �      2150       lb/ft ( Figure 5.3 a    ).  
    4.     Strength design: From Table A-5.1, the total load  �  1.2 D       �      1.6 L       �      1.2(1150)      �      1.6

(1000)      �      2980       lb/ft ( Figure 5.3 b  ).          

 Examples   5.1 and 5.2 were admittedly rigged to make a point: even though the 
total unfactored loads are the same in both cases, the factored loads used in strength 
design are different, since the proportion of live to dead loads has changed. The 
allowable stress procedure would result in exactly the same beam design in both 
cases, whereas the strength method would permit a smaller beam for the restaurant 
in Example 5.2 (since the total design loads are smaller). However, according to the 
probabilistic logic of strength design, even though the restaurant beams are smaller, 
the degree of safety would be the same for both beams.

       Example 5.3        Load combinations (Part III)      

    Problem defi nition 
 Assuming   strength design, fi nd the various combinations of load acting on the 9th- and 10th-
fl oor columns shown in  Figure 5.4   . Assume that the dead load for each fl oor level is 40       psf; 
the live load for the 10th fl oor is 60       psf; the roof live load,  L r   (maintenance, etc.), is 20       psf; 
and the wind load acting on the roof is 30       psf (acting upward). The tributary area shown is 
25      �      10      �      250       ft 2  per fl oor.  

    Solution overview 
 Find   loads (including live load reduction coeffi cient); compute load combinations; identify criti-
cal (governing) combinations.  

    Problem solution 
    10th-fl oor column: 
        1.     Find loads: 

    a.      D       �      250(40)      �      10,000       lb      �      10       kips.  
    b.      L  r       �      250(20)      �      250(20)      �      5000       lb      �      5       kips.  
    c.      W       �      250( – 30)      �        – 7500       lb      �        – 7.5       kips.     

 FIGURE 5.3  
       Load diagrams for Example 5.2 using  (a)  allowable stress design and  (b)  strength design    

Strength design
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    2.     From Table A-5.1 (strength design), compute load combinations: 
    a.     1.4 D       �      1.4(10)      �      14       kips.  
    b.     1.2 D       �      1.6 L       �      0.5( L r   or S)      �      1.2(10)      �      0  �  0.5(5)      �      14.5       kips.  
    c.     1.2 D       �      1.6( L r   or  S )      �      (0.5 L  or 0.8 W  )      �      1.2(10)      �      1.6(5)      �      0.5(  0)      �      20       kips.  
    d.     1.2 D       �      1.6 W       �      0.5 L       �      0.5( L r   or  S )      �      1.2(10)      �      1.6( � 7.5)      �      0  �  0.5(5)      �      2.5       kips.  
    e.     1.2 D       �      1.0 E       �      0.5 L       �      0.2 S       �      1.2(10)      �      0  �  0      �      0      �      12       kips.  
    f.     0.9 D       �      1.6 W       �      0.9(10)      �      1.6( � 7.5)      �             �     3       kips.  
    g.     0.9 D       �      1.0 E       �      0.9(10)      �      0      �      9       kips.     

    3.     Conclusions: For the 10th-fl oor column, the critical load combinations are 20       kips from live 
and dead load plus roof live load (combination c) and  � 3       kips from dead and wind load 
(combination f). The negative force due to wind uplift must be considered since it places 
the upper level column in tension. In equations c, d, and e, the live load factor is taken as 
0.5 (see Note 2 in Table A-5.1).     

    9th-fl oor column: 
        1.     Find loads: 

    a.      D       �      500(40)      �      20,000       lb      �      20       kips.  
    b.      L r        �      250(20)      �      250(20)      �      5000       lb      �      5       kips.  
    c.     The live load reduction coeffi cient can be found from Table A-2.2 and is equal to 

0.25      �      15/(4      �      250) 0.5       �      0.72.  
    d.      L       �      (250      �      60)(reduction coeffi cient)  �  (250      �      60)(0.72)      �      10,800       lb      �      10.8       kips.  
    e.      W       �      250( � 30)      �           �     7500       lb      �           �     7.5       kips.     

    2.     From Table A-5.1 (strength design), compute load combinations:  
    a.     1.4 D       �      1.4(20)      �      28       kips.  
    b.     1.2 D       �      1.6 L       �      0.5( L  r  or  S )      �      1.2(20)      �      1.6(10.8)      �      0.5(5)      �      43.78       kips  

 FIGURE 5.4  
       Tributary fl oor areas for Example 5.3    
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    c.     There are two choices here: (1) using  W : 1.2 D       �      1.6( L r   or  S )      �      (0.5 L  or 0.8 W  )      �      1.2
(20)      �      1.6(5)      �      0.8( � 7.5)      �      26.0       kips; or (2) using  L : 1.2 D       �      1.6( L r   or  S )      �      (0.5 L  or 
0. 8W )      �      1.2(20)      �      1.6(5)      �      0.5(10.8)      �      37.4       kips.  

    d.     1.2 D       �      1.6 W       �      0.5 L       �      0.5( L r   or  S )      �      1.2(20)      �      1.6( � 7.5)      �      0.5(10.8)      �      0.5(5)      �    
  19.9       kips.  

    e.     1.2 D       �      1.0 E       �      0.5 L       �      0.2 S       �      1.2(20)      �      0 � 0.5(10.8)      �      0      �      29.4       kips.  
    f.     0.9 D       �      1.6 W       �      0.9(20)      �      1.6( – 7.5)      �      6       kips.  
    g.     0.9 D       �      1.0 E       �      0.9(20)      �      0      �      18       kips.  

    3.     Conclusions: For the 9th-fl oor column, the critical load combination is 43.78       kips from live 
and dead load plus roof live load (combination  b ). No combination of loads places the col-
umn in tension. In equations  c ,  d , and  e , the live load factor is taken as 0.5 (see Note 2 in 
Table A-5.1).           

 In   a reinforced concrete structure, columns typically are also subjected to bend-
ing moments due to their continuity with beams, girders, or slabs. Where the  com-
bined  effects of axial loads and bending moments are accounted for — something 
that is beyond the scope of this text — the axial loads computed from other load 
combinations (together with the bending moments associated with them) might 
turn out to be critical.    

Strength design
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 Elements   subjected to tension provide us with the simplest mathematical model 
relating internal force and stress:   

  
axial stress

force

area
�

  
(6.1)

      

 This   equation is simple and straightforward because it corresponds to the sim-
plest pattern of strain that can develop within the cross section of a structural ele-
ment. As shown in  Figure 6.1   , this strain is assumed to be uniformly distributed 
across the entire cross section; for this reason, the stress can be defi ned as force per 
unit area. Classical  “ strength of materials ”  texts use the symbol,  σ , for axial stress, so 
that we get: 

  
σ �

P

A  
 (6.2)

     

  where  P  is the internal force at a cross section with area,  A . By axial stress, we mean 
stress  “ acting ”      parallel to the longitudinal axis of the structural element, or stress 
causing the element to strain in the direction of its longitudinal axis. Tension is an 
axial stress causing elongation; compression is an axial stress causing shortening or 
contraction. 

 Where   bolt holes reduce the cross-sectional area of a tension element, the 
remaining area at the cross section,  A n  , is called the net area. Failure or  “ rupture ”  of 
an element stressed in tension occurs at a failure surface defi ned by the location and 
quantity of such bolt holes. Where the holes are arrayed in an orthogonal grid, as 
shown in  Figure 6.2 a    , the failure surface is easily determined. For staggered rows of 
bolts, as shown in  Figure 6.2 b  , more than one possible failure surface may exist: the 
net area in each case can be determined by multiplying the net width of the section 

                      Tension elements    6 
CHAPTER
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by its thickness,  t . This net width is found by subtracting from the gross width,  W , 
the sum of hole diameters,  d h  , and then adding spacing-gage   terms,  s  2 /(4        g ), for each 
diagonal line in the failure surface. In these calculations,  s  is the spacing between 
bolt centerlines parallel to the direction of load, and  g  is the  “ gage, ”  or spacing 
between bolt centerlines perpendicular to the direction of load. 

 When   we discuss particular structural materials, stresses are often represented by 
the letter  F  rather than  σ , and capitalized when referring to allowable, yield, or ulti-
mate stresses in timber and steel. For example,  F y   refers to the yield stress of steel; 
 F u   refers to the ultimate stress of steel (the highest stress, or  “ strength, ”  of steel 
reached within the strain-hardening region); while  F t   symbolizes allowable tensile 
stress in both timber and steel. Lowercase  f , with appropriate subscripts, is often 
used to refer to the actual stress being computed. An exception to this convention 

 FIGURE 6.1  
       Illustrations of  (a)  tension element and  (b)  free-body diagram cut at any cross section with area,  A     

 FIGURE 6.2  
       Net area of a cross section, shown in darker tone,   with  (a)  one possible failure surface when bolt 
holes are arrayed in orthogonal grid and  (b)  multiple possible failure surfaces when bolt holes are 
staggered    
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occurs in reinforced concrete strength design, where the yield stress of reinforc-
ing steel ( F y   in steel design) is given a lowercase designation,  f y   (as is the cylinder 
strength of concrete,  fc
    ). In any case, for axial tension in steel and wood, allowable 
stress design requires that:   

  f Ft t�   (6.3)      

 The   elongation of an element in tension can be computed based on the defi ni-
tion of modulus of elasticity given in Equation 3.1; since  E       �       σ / � , and substituting 
 P / A  for  σ  and (elongation)/(original length) for  � , we get: 

  
E

P

A
�

( )

( )

(original length)

(elongation)   
(6.4)

      

 Solving   for elongation, and letting  L       �      original length, the equation becomes: 

  
elongation �

PL

AE   
(6.5)

     

       Example 6.1        Find elongation in tension element      

    Problem defi nition 
 Compute   the elongation, or change in length, for a steel bar with a cross-sectional area of 4       in 2 , 
3       ft in length, with  E       �      29,000,000       psi, subjected to a tensile load of 10 kips.  

    Solution overview 
 Find   elongation      �      ( PL )/( AE ). Units must be consistent.  

    Problem solution 
 From   Equation 6.5, elongation      �      ( PL )/( AE )      �      (10 kips      �      36       in.)/(4       in 2       �      29,000       ksi)      �      0.0031 in.       

    WOOD 
 Basic   tabular values of allowable stresses in tension are shown in Table A-3.1 for 
some common species and grades of visually graded lumber. The allowable stress in 
tension (parallel to the grain) for timber elements needs to be modifi ed, or adjusted, 
to account for the variations in material properties discussed in Chapter 3. The three 
most important adjustment factors, corresponding to these material properties, are 
as follows:  C M   for wood structural elements exposed to wet service conditions, 

Wood
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 C F   for certain cross sections larger or smaller than 2      �      12, and  C D   for timber ele-
ments exposed to a total cumulative  “ duration of load ”  different from the time 
period associated with normal  “ occupancy ”  live loads. This adjusted stress,  Ft
   ,   is 
computed by multiplying the basic tabular value,  F t  , by the appropriate adjustment 
factors,  C D  ,  C M  , and  C F   (see Table A-3.2). For an explanation of how the duration of 
load factor,  C D  , is used, see Table A-3.10. 

 The   actual tension stress within the structural element is computed by dividing 
the internal tension force by the cross-sectional area available to resist that force. 
Where bolt holes are present, the gross area,  A g  , of the cross section is reduced 
by the nominal hole area, as shown in  Figure 6.2 a  . The resulting net area,  A n  , is, 
therefore: 

  
A A d tn g h� � �( )( )number of holes

  
(6.6)

     

  where  d h   is the bolt hole diameter, taken somewhat larger than the bolt diameter, 
and  t  is the thickness of the cross section. Timber industry specifi cations recom-
mend that the bolt hole diameter be  132      in. to  116    in. larger than the bolt diameter; 
in the examples that follow, a  116    in. increase will be assumed. The actual stress,  f t  , 
is, therefore:   

  
f P At g� /

  
(6.7)

     

  where no bolt holes are used; and   

  f P At n� /   (6.8)     

  where bolt holes are present. These equations can be rewritten to solve for the 
capacity (allowable load), using the adjusted allowable stress,  Ft
   , instead of the 
actual stress. Where tension elements are nailed rather than bolted, no reduction for 
nail holes is made; the full gross area is assumed to be available to resist the internal 
forces:   

  
P F Aallow t g� 
 �

  
(6.9)

      

 Where   bolt holes are used: 

  P F Aallow t n� 
 �   (6.10)      

 Where   wood element are loaded in tension parallel to grain, another poten-
tial mode of failure must be checked where closely spaced groups of bolts (or lag 
screws that fully penetrate the main member) are used as fasteners — this phenom-
enon does not apply to small-diameter nailed connections. As shown in  Figure 6.3   , 
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the forces transmitted through a fastener group could cause entire  “ slots ”  of 
wood — either within each row of fasteners or for the entire fastener group taken as 
a whole — to tear out under the load. To prevent failure in the fi rst case ( “ row tear-
out, ”   Figure 6.3 b  ), and in spite of the fact that the forces acting on the element itself 
are  tensile,  the external force acting on the connection must be no greater than the 
total allowable  shear  force that can be developed on all the potential failure planes 
along the rows of fasteners. In the second case ( “ group tear-out, ”   Figure 6.3 c  ), the 
external force must be no greater than the allowable shear  and  tension forces that 
can be safely resisted by the three surfaces forming the boundary failure planes for 
the group of fasteners as a whole. Of these three surfaces, the resistance of the top 
and bottom parallel planes, stressed in shear, is equivalent to a single row subjected 
to row tear-out; the third surface, labeled  A t   in  Figure 6.3 c  , is stressed in tension. 

 In   calculating row and group tear-out, adjusted allowable stresses for shear and 
tension are used that correspond to the species and grade of the wood elements 

 FIGURE 6.3  
       Forces on a wood member  (a)  loaded parallel to grain can cause  (b)  row tear-out or  (c)  group 
tear-out    

Wood
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being checked. The total length of the surface assumed to be resisting shear stress 
along a given row of fasteners is taken as the smallest distance between fasteners (or 
between the end of the wood member and the fi rst fastener) multiplied by the num-
ber of fasteners in that row. This accounts for the fact that shear stress along the 
potential failure planes defi ned by fastener rows is not uniform, but is higher where 
the area between fasteners along the shear plane is smallest. Additionally, this shear 
stress is not uniformly distributed between fasteners, but is assumed to step up and 
down in a triangular pattern, from maximum to zero, so that the  average  value of 
shear stress is actually half of its maximum value (corresponding to the average 
height of such a triangle). 

 Taking   all these caveats into consideration, the allowable maximum force at a 
connection using bolts or lag screws — where the load is parallel to grain — is limited 
by the smaller of the following values for row and group tear-out: 

    a.      For row tear-out:  Multiply the force safely resisted by the two shear planes at 
each row of fasteners by the number of rows (or, if not all rows of fasteners 
are the same, add the values for each row computed separately). The force 
resisted by a single row (arbitrarily called  row 1 ) is equal to:    

  Z n F s t n F s tRT v crit v crit�
 � 
 � 
1 1 12 2( ) ( ) ( ) ( )/   (6.11)     

  where  n  1       �      the number of fasteners in  row 1 ,  Fv
          �      the adjusted allowable shear 
stress for the wood element,  s crit        �      the minimum spacing between fasteners in  row 
1  (or the distance of the fi rst fastener to the end of the member, if smaller), and 
 t       �      the member thickness.   

 The   force resisted by all fasteners, assuming that all rows are identical, is, there-
fore, the force resisted by a single row multiplied by the number of rows,  r n  , or: 

  Z r Z r n F s tRT n RT n v crit
 � 
 � 
�1 1( ) ( )   (6.12)      

    b.      For group tear-out:  Add the shear force resisted at the parallel planes defi ned 
by the top and bottom fastener rows (in typical cases where the top and 
bottom fastener rows have the same geometry, this is equal to the value of  
ZRT �
 1    computed earlier for single row tear-out; otherwise, add  ZRT �
 1 2/    for 
the top and bottom rows) plus the tension force resisted by the plane sur-
face joining, and perpendicular to, these shear planes. For  A t   representing the 
area subjected to tension stress between the top and bottom rows of fasten-
ers (see  Figure 6.3 c  ), and  Ft
    being the adjusted allowable tensile stress for the 
wood, the force resisted, in terms of group tear-out, is:    

  Z Z F AGT RT t t
 � 
 � 
�1   (6.13)      

 These   limitations based on row and group tear-out are summarized in Table A-6.2.



93

       Example 6.2        Analyze wood tension element      

    Problem defi nition 
 Find   the maximum load that can be applied to a 2      �      8 tension element connected with six 
 1

2
   -in.-diameter bolts. The wood used is Hem-Fir No. 1. Assume live, dead, and wind loads 

only, dry conditions, and spacing as shown in  Figure 6.4   .  

    Problem overview 
 Find   gross area and net area; compute adjusted allowable stress; fi nd capacity,  P F At n� 
    , 
with the net area as shown in  Figure 6.5 a    . Check row tear-out, based on the shear failure 
planes shown in  Figure 6.5 b  , and group tear-out, based on the shear and tension failure 
planes shown in  Figure 6.5 c  . Adjust capacity based on tear-out calculations if necessary.  

    Problem solution 
        1.     From Table A-4.1 the cross-sectional area,  A g        �      10.875       in 2 .  
    2.     Use Equation 6.6 to fi nd the net area,  A n  : notice that even though there are six bolt holes, 

only two of them are subtracted from the gross area in calculating the net area, since 
the  “ failure plane ”  passes through only two holes. The hole diameter is taken as  116    in. 
larger than the bolt diameter, so  d h        �       916         �      0.5625 in. Therefore,  A n        �       A g    –  (number of 
holes)( d h        �       t )      �      10.875  –  2(0.5625      �      1.5)      �      9.19       in 2 .  

    3.     From Table A-3.1 fi nd the tabular value of allowable tension stress,  F t        �      625       psi.  
    4.     Compute adjusted allowable tension stress: 

    a.     From Table A-3.2, fi nd adjustments to tabular value:  C D        �      1.6;  C M        �      1.0;  C F        �      1.2.  
    b.      F F C C Ct t D M F
 � � �625 1 6 1 0 1 2 1200( . )( . )( . ) psi.         

    5.     Using Equation 6.1, fi nd capacity (allowable load) based on failure through the net area:  
P F At n� � � �
 1200 9 19 11 028. , lb   .  

    6.     From Table A-6.2, check capacity based on row and group tear-out, since the orien-
tation of the load is parallel to grain and the member is in tension. The adjusted allow-
able stress in shear is found from Tables A-3.7 and A-3.8:  F v        �      150       psi and the 
relevant adjustments are for wet service ( C M        �      1.0) and duration of load ( C D        �      1.6), 
so  Fv
 � �150 1 0 1 6 240( . )( . ) psi    . The adjusted allowable tension stress is as found 

 FIGURE 6.4  
       Bolted 2      �      8 cross sections for Example 6.2    

Wood
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earlier:  Ft
 � 1200 psi    . Other parameters needed for this step are as follows: the num-
ber of rows,  r n        �      2; the number of fasteners in a typical row,  n  1       �      3; the area subjected 
to tension stress (measured between the top and bottom rows of fasteners),  A t        �      (3.25)
(1.5)      �      4.875       in 2 ; the minimum spacing between fasteners (or the end distance, if 
smaller),  s crit        �      2       in.; and the member thickness,  t       �      1.5       in.  

    The capacities based on row and group tear-out can now be determined: 
    a.      Z r n F s tRT n v crit
 
� � �1 2 3 240 2 1 5 4320( ) ( ) ( )( )( )( )( . ) lb   .  
    b.      Z n F s t F AGT v crit t t
 
 
� � � � �1 3 240 2 1 5 1200 4 875( ) ( ) ( )( )( )( . ) ( )( . ) 88010 lb   .     
    Because the smaller of these two values (4320 lb) is  smaller  than the capacity found in 
step 4, row tear-out governs the connection design, and the total adjusted connection 
capacity,  P       �      4320       lb.  

    7.      Conclusion:  the capacity of the 2      �      8 tension element,  P       �      4320       lb. The capacity of the 
bolts themselves has not been checked: the design and analysis of such fasteners is dis-
cussed in Chapter 9, Example 9.2.         

       Example 6.3        Design wood tension element      

    Problem defi nition 
 Find   an appropriate 2 �  cross section (Hem-Fir No. 2) to support a tensile load of 5 
kips. Use two lines of three  3 8   -in.-diameter bolts, as shown in  Figure 6.6   , to connect 

 FIGURE 6.5  
       Possible failure modes for Example 6.3 include  (a)  tension failure on net area,  (b)  row tear-out, 
and  (c)  group tear-out.    
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the wood element to another part of the structure. The bolt hole diameter      �      bolt 
diameter      �       116           in.      �       716           in.      �      0.4375        in.  

    Solution overview 
 Compute   provisional adjusted allowable stress; fi nd required net area; fi nd required gross 
area; select provisional cross section; check cross section by fi nding adjusted allowable stress, 
required net area, and required gross area. Check row and group tear-out.  

    Problem solution 

        1.     From Table 3.1, fi nd the tabular value of the allowable tension stress,  F t        �      525       psi (use 
 “ dimension lumber ”  for 2 �  element).  

    2.     Compute provisional adjusted allowable tension stress: 
    a.     From Table A-3.2, fi nd adjustments to tabular value:  C D        �      1.0;  C M        �      1.0; assume 

 C F        �      1.0 (the actual value is unknown at this time).  
    b.      F F C C Ct t D M F
 � � �525 1 0 1 0 1 0 525( . )( . )( . ) psi   .     

    3.     Find required net area,  A n        �      load/stress      �      5000/525      �      9.52       in 2 .  
    4.     Using Equation 6.6, and referring to  Figure 6.6 , fi nd the required gross area,  A n        �       A g    –  

(number of holes)( d h        �       t )      �      9.52      �      2(0.4375      �      1.5)      �      10.83        in 2 .  
    5.     We need a provisional 2 �  cross section with  A g        	      10.83       in 2 : from Table A-4.1, select a 

2      �      8 with  A g        �      10.88        in 2 . Not only must this cross section be analyzed (using the actual 
value of  C F  ), but also the next smaller section (since it has a larger value of  C F  ).    

    Trial 1: 2      �      8 
 Because   the actual value of the size factor for a 2      �      8,  C F        �      1.2, is larger than the value ini-
tially assumed, the adjusted allowable stress will be higher than assumed, and therefore a 
2      �      8 cross section will certainly work. However, it is necessary to analyze (check) the next 

 FIGURE 6.6  
       Bolted 2 �  cross section for Example 6.3    

Wood
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smaller cross section, since this cross section has an even larger size factor than does the 
2      �      8, and so has an even higher adjusted allowable stress.  

    Trial 2: 2      �      6 
        1.     From Table A-4.1, the cross-sectional area of a 2      �      6,  A g        �      8.25       in 2 .  
    2.     Use Equation 6.6 to fi nd the net area,  A n        �       A g    –  (number of holes)( d h        �       t )      �      8.25  –  

2(0.4375      �      1.5)      �      6.94       in 2 .  
    3.     As before, fi nd the tabular value of allowable tension stress,  F t        �      525       psi.  
    4.     Compute adjusted allowable tension stress: 

    a.     From Table A-3.2, fi nd adjustments to tabular value:  C D        �      1.0;  C M        �      1.0;  C F        �      1.3.  
    b.      F F C C Ct t D M F
 � � �525 1 0 1 0 1 3 682 5( . )( . )( . ) . psi   .     

    5.     Using Equation 6.1, fi nd capacity (allowable load),  P F At n� � � �
 682 5 6 94 4737. . lb   . 
This is insuffi cient capacity to support a load of 5000 lb: the 2      �      6 is too small. Therefore, the 
2      �      8 must be provisionally selected, pending a check of row and group tear-out.     

    Check row and group tear-out 
        1.     From Table A-6.2, check capacity based on row and group tear-out, since the orien-

tation of the load is parallel to grain and the member is in tension. The adjusted allow-
able stress in shear is found from Tables A-3.7 and A-3.8:  F v        �      150       psi and the 
relevant adjustments are for wet service ( C M        �      1.0) and duration of load ( C D        �      1.0), so  
Fv
 � �150 1 0 1 0 150( . )( . ) psi   . The adjusted allowable tension stress for the 2      �      8 was 
never actually determined earlier; with a size factor,  C F        �      1.2, it is  Ft
 � �525 1 2 630( . ) psi   . 
Other parameters needed for this step are as follows: the number of rows,  r n        �      2; the num-
ber of fasteners in a typical row,  n 1        �      3. Based on the provisional selection of a 2      �      8, let 
the spacing between bolts in a row, and the distance from the last bolt to the end of the 
wood element, equal 4 in., and the distance between rows of bolts equal 3-1⁄2       in. Then, the 
area subjected to tension stress (measured between the left and right rows of fasteners), 
 A t        �      (3.5)(1.5)      �      5.25       in 2 ; the minimum spacing between fasteners (or the end distance, 
if smaller),  s crit        �      4       in.; and the member thickness,  t       �      1.5       in.  

     The capacities based on row and group tear-out can now be determined: 
    a.      Z r n F s tRT n v crit
 
� � �1 2 3 150 4 1 5 5400( ) ( ) ( )( )( )( )( . ) lb   .  
    b.      Z n F s t F AGT v crit t t
 
 
� � � � �1 3 150 4 1 5 630 5 25 60( ) ( ) ( )( )( )( . ) ( )( . ) 007 lb   .     

    2.      Conclusion:  Because the smaller of the capacities for row and group tear-out (5400 lb) is 
 larger  than the actual load of 5000 lb, neither row nor group tear-out governs the connec-
tion design, and the 2      �      8 provisionally selected earlier may be used.            

    STEEL 
 Unlike   tension elements designed in timber, two modes of  “ failure ”  are consid-
ered when designing tension members in steel. First, the element might become 
 functionally useless if yielding occurs across its gross area, at the yield stress,  F y  . 



97

Since internal tensile forces are generally uniform throughout the entire length of 
the element, yielding would result in extremely large deformations. On the other 
hand, if yielding commenced on the net area (where bolt holes reduce the gross 
area), the part of the element subjected to yield strains would be limited to the local 
area around the bolts, and excessive deformations would not occur. However, a sec-
ond mode of failure might occur at these bolt holes: rupture of the element could 
occur if, after yielding, the stresses across the net area reached the ultimate stress, 
 F u  . As in wood design, typical bolt hole diameters are  116        in. larger than the actual 
bolt diameter. However, because a small amount of material surrounding the bolt 
hole is damaged as the hole is punched, an additional  116        in. is added to the hole 
diameter for the purpose of calculating net area, resulting in a bolt hole diameter 
taken as  18           in. larger than the nominal bolt diameter for steel elements. 

 Another   difference in the design of wood and steel tension elements occurs 
because nonrectangular cross sections are often used in steel. If connections are 
made through only certain parts of the cross section, as illustrated in  Figure 6.7   , the 
net area in the vicinity of the connection will be effectively reduced, depending on 
the geometry of the elements being joined and the number of bolts being used. This 
effective net area,  A e  , is obtained by multiplying the net area,  A n  , by a coeffi cient,  U , 
defi ned in Table A-6.1. 

 Where   all parts (i.e., fl anges, webs, etc.) of a cross section are connected, and 
the so-called  shear lag  effect described earlier cannot occur, the coeffi cient  U  is 
taken as 1.0, and the effective net area equals the net area, just as in timber design. 
For short connection fi ttings like splice plates and gusset plates,  U  is also taken as 
1.0, but  A e        �       A n   cannot exceed 0.85 times the gross area. These short connecting 
elements may have an effective width less than their actual width to account for 
the shear lag effect, based on what is known as the  “ Whitmore section, ”  shown in 
 Figure 6.8   . For a length,  L , of the fastener group measured in the direction of load, 
and a distance,  W , between the outer rows of bolts or welds, the effective width is 

 FIGURE 6.7  
       Shear lag in steel tension element showing unstressed or understressed areas    

Steel
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computed by extending a 30 °  line out from both sides of the fastener group; it can 
be seen that the effective width,  l w  , is equal to 2 L tan 30 °       �       W . 

 Finally  , the lengths of tension members, other than rods and cables, are limited 
to a slenderness ratio — defi ned as the ratio of effective length to least radius of gyra-
tion — of 300, to prevent excessive vibrations and protect against damage during 
transportation and erection. The radius of gyration, a property of the cross section, 
is equal to ( I / A ) 0.5 , where  I  is the moment of inertia and  A  is the cross-sectional area 
of the element. 

 From   the preceding discussion, it can be seen that two values for available 
strength, or allowable stress, in tension need to be determined: one for yielding of 
the gross area and one for failure (rupture) of the effective net area. These two val-
ues are: 

  
F Ft

gross
y� 0 6.

  
(6.14)

     

  and   

  F Ft
net

u� 0 5.   (6.15)     

  where  Ft
gross   and  Ft

net    are the allowable tensile stresses for steel corresponding to the 
two modes of failure, or limit states;  F y   is the yield stress; and  F u   is the ultimate stress 
for steel (Table A-3.12). The tensile stress is computed on the gross area in the same 
manner as for wood (see Equation 6.7). Rupture on a failure surface through bolted 

 FIGURE 6.8  
       The Whitmore section for connecting plates limits the effective width of the plate to 
2 L  tan 30 °       �      W for both  (a)  welded connections and  (b)  bolted connections    



99

or welded connections, however, is determined using the effective net area rather 
than the net area, so Equation 6.8 must be modifi ed for steel connections as follows:   

  f P At e� /   
(6.16)

      

 When   computing the capacity based on yielding, the full gross area is available to 
resist the internal forces: 

  
P F Aallow t

gross
g� �

  (6.17)      

 When   computing the capacity on the effective net area: 

  P F Aallow t
net

e� �   (6.18)      

 The    “ available strength ”  limit states listed in Table A-3.13 are equivalent to these for-
mulations based on allowable stress. 

 The   following example illustrates the application of these principles to a steel 
tension problem. Different procedures are used for cables, eyebars, threaded rods, 
and pin-connected plates.

       Example 6.4        Analyze steel tension element      

    Problem defi nition 
 Find   the maximum tension load,  P , that can be applied to a W8      �      24 element connected to 
gusset plates within a truss with  3 4   -in.-diameter bolts, as shown in  Figure 6.9   . Use A36 steel. 
Find the required thickness of the gusset plates so that their capacity is no smaller than 
that of the W8      �      24 tension element. The bolt hole diameter      �      bolt diameter      �       18           in.      �       
7

8           in.      �      0.875        in.  

    Solution overview 
 Find   cross-sectional dimensions and material properties; fi nd gross area capacity; fi nd effec-
tive net area capacity; the governing capacity is the lower of these two values. For gusset plate 
thickness, fi nd effective width based on Whitmore section; apply equations for gross and net 
area capacity to determine required plate thickness.  

    Problem solution 
        1.     From Table A-4.3, fi nd cross-sectional dimensions ( Figure 6.10   ):    
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    2.     From Table A-3.12, fi nd  F y        �      36 ksi and  F u        �      58       ksi.  
    3.      Gross area:  Find capacity,  P : 

    a.     Using Equation 6.14 (or Table A-3.13), fi nd  F Ft
gross

y� � �0 6 0 6 36 21 6. . ( ) . ksi    .  
    b.     Using Equation 6.17,  P F At

gross
g� � � �21 6 7 08 153. ( . ) kips    .     

 FIGURE 6.9  
       Truss elevation, connection detail at gusset plate, and sections through gross and net area for 
Example 6.4    

 FIGURE 6.10  
       Cross-sectional dimensions of W8      �      24 for Example 6.4    
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    4.      Effective net area:  Find capacity,  P :    
    a.     From Table A-6.1, fi nd the shear lag coeffi cient,  U :  

     U       �      0.90 since the following criteria are met: 
     •      Bolts connect wide-fl ange (W) shape? Yes.  
     •      Flange width,  b f   no less than 0.67 d ? In other words, 6.5      	      0.67(7.93)      �      

5.3? Yes.  
     •      Flange is connected with at least three bolts per line? Yes.     

    b.     Using Equ ation 6.6, fi nd the net area,  A n  . As shown in  Figure 6.11   :    

     
A A d tn g h� � � � � � �( )( ) . ( . . ) .number of holes in .7 08 4 0 875 0 400 5 68 2

      
    c.      A e        �       U ( A n  )      �      0.9(5.68)      �      5.11       in 2 .  
    d.     Using Equation 6.15, fi nd  F Ft

net
u� � �0 5 0 5 58 29. . ( ) ksi   .  

    e.     Using Equation 6.18, fi nd  P F At
net

e� � � �29 5 11 148( . ) kips   .    
    5.      Conclusion:  Failure on the effective net area governs since 148 kips      �      153 kips. The 

capacity (allowable load) is 148 kips.  
    6.     We now can determine the thickness of the gusset plate, stressed in tension, with 

two lines of bolt holes per plate, using the Whitmore section to determine the effective 
width of the plate. As can be seen in  Figure 6.8 , the effective width,  l w        �      2(6)(tan 
30 ° )      �      3      �      9.9       in. The tensile capacity of the gusset plates may be based on either yield-
ing of the gross area or rupture of the net area. First, the capacity based on yielding of the 
gross area of both plates is  F t  A g        �      0.6(36)(2)(9.9 t p  )      �      428 t p   kips. Next, the effective net 
area  A e        �      (2)(9.9      �      2      �      7⁄8) t p        �      16.3 t p   in 2 , which cannot exceed 85% of the gross area for 
small gusset plates; that is, it must be no larger than 0.85(2)(9.9 t p  )      �      16.8 t p         in 2 . Therefore, 
the capacity based on rupture is 0.5(58)(16.3 t p  )      �      473 t p  . Yielding governs, so the required 
thickness of the plate can be found by setting the required tensile capacity, 428 t p   equal to 
the governing load of 148 kips, from which  t p        �      0.35       in. Rounding up, we select a 3⁄8-in.-
thick gusset plate with  t p        �      0.375       in.         

 FIGURE 6.11  
       Net area diagram for Example 6.4    

Steel
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       Example 6.5        Design steel tension element      

    Problem defi nition 
 Select   a W section bolted as shown in  Figure 6.12    with  5 8   -in.-diameter bolts, and three 
bolts per line, to resist a tension force of 100 kips. Assume A36 steel. The effective bolt hole 
diameter      �      bolt diameter      �       18           in.      �       5 8         �       18         �       3 4           in.      �      0.75        in.  

    Solution overview 
 Find   the required area based on net area capacity, assuming values for shear lag coeffi cient, 
 U , and fl ange thickness,  t f  ; fi nd required area based on gross area capacity; use the larger of 
the two area values to provisionally select a W section; check using  “ analysis ”  method if either 
 U  is smaller or  t f   is larger than assumed values. The area of the selected W section can be 
somewhat smaller than the  “ required ”  area if either  U  is larger or  t f   is smaller than assumed 
values — check using analysis method.  

    Problem solution 
        1.      Gross area:  Find required gross area based on yielding. From Equation 6.17, the required 

gross area,  A P Fg t
gross� � � �/ / in100 0 6 36 4 63 2( . ) .    .  

    2.      Effective net area:  Find required gross area after determining effective net area based on 
rupture through failure surface (assume  U       �      0.9 and  t f        �      0.4       in.): 
    a.     From Equation 6.18, the required effective net area,  A P Fe t

net� �/     
100/(0.5      �      36)      �      3.44 in 2   

    b.     Working backward, the required net area,  A n        �       A e    / U       �      3.45/0.9      �      3.83       in 2 .  
    c.     Finally, the required gross area can be computed:  A g        �       A n        �      (bolt hole 

area)      �      3.83      �      4(0.75      �      0.4)      �      5.03       in 2 .     
    3.     Since 5.03 in 2       �      4.63       in 2 , the calculation based on effective net area governs, and 

a W section must be selected with  A g        �      5.03       in 2 . Many wide-fl ange shapes could be 

 FIGURE 6.12  
       Net area diagram for Example 6.5    
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selected. From Table A-4.3, the following candidates are among those that could be 
considered: 
    a.     Check a W8      �      18 with  A g        �      5.26       in 2 . Two assumptions need to be tested: that  U       �      0.9 

and that  t f        �      0.4. From Table A-4.3,  b f        �      5.25       in.,  d       �      8.14       in., and  t f        �      0.330       in. From 
Table A-6.1, the criteria for  U       �      0.9 requires that  b f        �      5.25      	      0.67 d       �      0.67(8.14)      �      5.4
5       in. Since this condition is not met, we must use  U       �      0.85. Additionally, the fl ange thick-
ness is different from our assumed value of 0.40       in., so that the calculation of net and effec-
tive area will change:  A n        �       A g        �      (bolt hole area)      �      5.26      �      4(0.75      �      0.330)      �      4.27       in. and 
 A e        �       U       �       A n        �      0.85(4.27)      �      3.63       in 2 . The capacity based on rupture through the effec-
tive net area is  P F At

net
e� � � � �( . )( . )0 5 58 3 63 105 kips   . The capacity based on 

yielding on the gross area has already been found satisfactory (since the gross area of the 
W8      �      18 is greater or equal to the required gross area computed earlier). Therefore, the 
W8      �      18 is acceptable.  

    b.     Check a W6      �      20 with  A g        �      5.87       in 2 . The same two assumptions need to be tested: 
that  U       �      0.9 and that  t f        �      0.4. From Table A-4.3,  b f        �      6.02       in.,  d       �      6.20       in., and 
 t f        �      0.365       in. From Table A-6.1, the criteria for  U       �      0.9 requires that  b f        �      6.02      	      
0.67 d       �      0.67(6.20)      �      4.15       in. Since this condition is met, and since its net area is 
greater than assumed (this is so because its fl ange thickness,  t f  , is less than the value 
assumed, so that the bolt hole area is less than assumed, and therefore the net area is 
 greater  than assumed), the W6      �      20 is acceptable.       

 Both   the W8      �      18 and the W6      �      20 would work, as would many other wide-fl ange 
shapes. Of the two sections considered, the W8      �      18 is lighter (based on the second 
number in the W-designation that refers to beam weight in pounds per linear foot), and 
therefore would be less expensive.       

    Steel threaded rods 
 Threaded   rods are designed using an allowable tensile stress,  F t        �      0.375 F u  , which 
is assumed to be resisted by the gross area of the unthreaded part of the rod. This 
value for the allowable stress is found by dividing the nominal rod tensile strength of 
0.75 F u   by a safety factor,  Ω       �      2.00. While there are no limits on slenderness, diame-
ters are normally at least  1500    of the length, and the minimum diameter rod for struc-
tural applications is usually set at  58           in. Assuming A36 steel, with  F u        �      58       ksi (Table 
A-3.12), the smallest acceptable rod with area,  A � π( )5

16
2
   , can support a tensile 

load,  P F A Ft u� � � � � � �0 375 21 75 0 3068 6 675
16

2. ( ) . . .π kips   .  

    Pin-connected plates 
 Where   plates are connected with a single pin, as shown in  Figure 6.13   , the net area, 
 A n  , is defi ned, not by the length,  b , on either side of the pin hole, but rather by an 
effective length,  b eff        �      2 t       �      0.63      �       b , where  t  is the thickness of the plate: 

  
A tbn eff� 2

  
(6.19)

      

Steel
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 The   plate capacity is then governed by either yielding on the gross area or rup-
ture on the net area, whichever is smaller (there is no  effective  net area in this case), 
with  P gross.        �      0.6 F y        �       A g   and  P net.        �      0.5 F u        �       A n   as before. It is possible to cut the 
plate at a 45 °  angle as shown in  Figure 6.13 , as long as length  c  is greater or equal to 
length  a , which in turn must be greater or equal to 1.33 b eff  . 

 For   pin-connected plates, as well as for all other bolted connections, the fasten-
ers themselves, as well as the stresses they produce on the elements being joined, 
must also be checked. This aspect of connection design is discussed more thor-
oughly in Chapter 9.   

    REINFORCED CONCRETE 
 Concrete  , having very little tensile stress, is ordinarily not used for tension elements. 
Where it is used, its strength in tension can be taken as approximately 10% of its 
compressive strength, or  0.1fc
    . The cylinder strength of concrete,  fc
    , is the ulti-
mate (highest) compressive stress reached by a 6       in.  �  12       in. cylinder of concrete 
after 28 days of curing. Reinforced concrete, consisting of steel bars embedded 
within a concrete element, would not normally be a good choice for a pure tension 
element, since the steel reinforcement would be doing all the work. In this case, 
one might wonder what would justify the added expense of casting concrete around 
the steel. In fact, two justifi cations are possible: fi rst, in a reinforced concrete 

 FIGURE 6.13  
       Defi nition of net area for pin-connected plates    
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building consisting largely of compressive and bending elements, the use of reinforced 
concrete for occasional tension elements would allow a similar mode of expres-
sion and of detailing throughout the building; second, where the steel in tension 
requires fi reproofi ng, the use of reinforced concrete in tension (where the concrete 
cover provides the fi reproofi ng) might prove advantageous, compared to other 
solutions.             

Reinforced concrete
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 Columns   are vertical elements subjected to compressive stress; nothing, however, 
prevents us from applying the same design and analysis methods to any compressive 
element, whether vertical, horizontal, or inclined. Only axially loaded compression 
elements (with no bending moments present) will be considered here. 

 Compression   is similar to tension, since both types of structural action result in a 
uniform distribution of axial stress over a cross section taken through the element. 
But allowable stress in compression is often limited by the phenomenon of buck-
ling, in which the element deforms out of its axial alignment at a stress that may be 
signifi cantly lower than the stress causing compressive crushing. 

 To   understand why an axially loaded column will buckle rather than simply com-
press, consider the case of an eccentrically loaded column, as shown in  Figure 7.1   . 
Unlike a beam whose internal bending moments are not infl uenced by load-induced 
defl ections ( Figure 7.2   ), the eccentrically loaded column will defl ect more than 
might be expected if only the initial moment,  M  1 , is considered, since the  “ initial 
defl ections ”    increase bending moments throughout the column, in turn causing 
further defl ection, as shown in  Figure 7.1 b  . What the mathematician Leonard Euler 

                     Columns    7 
CHAPTER

 FIGURE 7.1  
       Increase of bending moment in a column due to load-induced defl ection    
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(1707 – 1783) fi gured out was that these defl ections increase rapidly in the vicinity 
of a particular ( “ critical ” ) load, at which point the column is assumed to fail, and 
that the value of this load is independent of the initial eccentricity. In other words, 
even with the smallest imaginable deviation from axiality, a column is assumed to 
buckle at some critical load. Since no perfectly axial columns (or loads) can exist, 
all columns behaving elastically are assumed to buckle at the critical buckling stress 
derived by Euler: 

  

σ
π

cr
E

KL r
�

2

2( / )   
(7.1)     

  where   

     E       �       the modulus of elasticity  

     K         �       a coeffi cient that depends on the column’s end constraints (see Table A-7.1)  

     L        �       the unbraced length of the column  

     r          �        the radius of gyration with respect to the unbraced length (sometimes given 
the symbol,   ρ  ), equal to ( I / A ) 0.5 , where  I  is the moment of inertia and  A  is 
area of the cross section    

 For   the typical case in which the unbraced length is the same for both axes of 
the column,  r  (or  I ) is taken as the smaller of the two possible values, that is,  r min   
(or  I min  ). The term  L / r , or  KL / r , is called the column’s  slenderness ratio.  Although 
this formulation for buckling is widely used, it is actually an approximation of a 
more accurate equation derived by Euler that does not indicate any catastrophic 
buckling point at all. Instead, as may be confi rmed by physically buckling a slender 
piece of wood or other material, the initiation of buckling (at a stress approximated 
by Equation 7.1) leads to a gradually increasing lateral defl ection up until the point 
of failure, which is initiated when the stresses in the material exceed the material’s 
strength. Certainly, the capacity of such a column is thereby reduced (compared 
with a hypothetical case in which the column remains perfectly straight), and 

 FIGURE 7.2  
       No increase of bending moment in a beam due to load-induced defl ection    
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Euler’s approximate formula does give a conservative value for the point at which 
such failure occurs; however, it is incorrect to imagine the actual behavior of a com-
pression element as failing catastrophically and suddenly at a precise  “ critical buck-
ling ”  point. 

 The   strength of wood and steel columns is limited in two ways: either they 
will crush at their maximum compressive stress, or they will buckle at some criti-
cal stress that is different from, and independent of, their strength in compression. 
Euler’s equation for critical buckling stress works well for slender columns but 
gives increasingly inaccurate results as the slenderness of columns decreases and 
the effects of crushing begin to interact with the idealized conditions from which 
Euler’s equation was derived.  Figure 7.3    shows schematically the relationship among 
Euler critical buckling stress, crushing strength, and test results for columns with dif-
ferent slenderness ratios. It can be seen that only for slender columns can the Euler 
curve be used as a basis for design. 

    WOOD 
 The   reduction in allowable compressive stress,  F c  , to account for buckling is accom-
plished by multiplying  F c*       by the column stability factor,  C P  . The value,  F *c,     is the 
tabular value of compressive stress found in Table A-3.3,  F c  , modifi ed by all of the 
adjustment factors found in Table A-3.4 except  C P  . If all columns behaved according 
to the idealized model analyzed by Euler, the stability factor would be unnecessary, 
and  σ   cr   modifi ed by some factor of safety would simply replace  F c   as the allowable 
stress. That is, we would have: 

  idealized (safety factor)/C FP cr c� σ   (7.2)      

 In   practice, given the pattern of column failure represented in  Figure 7.3 , the 
Euler equation must be modifi ed to account for crushing and nonelastic behavior, 

 FIGURE 7.3  
       Schematic relationship between critical stress and column slenderness    

Wood
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especially at low slenderness ratios. The column stability factor,  C P  , does just that 
and more, replacing  σ   cr   with  F cE   (basically Euler’s formula with a safety factor); add-
ing a coeffi cient,  c , to account for the nonideal condition of various wood materials; 
and using statistical curve-fi tting methods to match the empirical data. The slender-
ness ratio is simplifi ed for a rectangular section, as only one cross-sectional dimen-
sion remains when values of  I       �       dh  3 /12 and  A       �       dh  are inserted into the equation 
for radius of gyration:  r       �      ( I/A ) 0.5       �      ( dh  3 /12 dh ) 0.5       �      0.289 d . One can still see the 
Euler buckling equation struggling to assert itself within  F cE        �      0.822 E 
  min  /( l e  / d ) 2 , 
which appears in both of the terms  A  and  B  within this opaque formulation for the 
column stability factor:   

  
C A A Bp � � �2

 
 (7.3)     

  In Equation 7.3,  A       �      [1      �      ( F cE  / Fc*    )]/(2 c ) and B      �      ( F cE  / Fc*    )/ c .   
 A   full description of  C P   can be found in Table A-3.4, along with other adjustments 

to the allowable compressive stress. 
 For   non-pin-ended columns, the unbraced length,  l e  , is multiplied by an effective 

length coeffi cient (Table A-7.1) to account for the change in critical buckling stress 
resulting from more or less restraint at the column ends.

       Example 7.1        Analyze wood column      

    Problem defi nition 
 Check   the capacity (allowable load) of a 10      �      10 Douglas Fir-Larch Select Structural column 
8.5       ft. high, used indoors, supporting live load ( L ), roof live load (i.e., construction live load)  L R  , 
dead load ( D ), and snow load ( S ) as follows: 

  L L D SR� � � �40 20 50 20kips; kips; kips; kips        

    Solution overview 
 Find   relevant material properties and adjustment factors; compute adjusted allowable stress; 
fi nd capacity by multiplying cross-sectional area by adjusted allowable stress; compare capac-
ity to governing load combination.  

    Problem solution 

        1.     From Tables A-3.3 and A-3.9, fi nd material properties  F c   and  E min  ; the tabular (unadjusted) 
values are  F c        �      1150       psi and  E min        �      580,000       psi. These values are taken from  “ posts and 
timbers ”  since the cross section being analyzed is larger than 5      �      5 and the larger of the 
two cross-sectional dimensions is less than 4       in. greater than the smaller dimension.  
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    2.     Find adjustment factors for  F  c : 
    a.     From Table A-3.4,  C M        �      1.0.  
    b.     From Table A-3.4,  C F        �      1.0.  
    c.     Find load duration factor,  C D  , and the governing load combination. Two load combina-

tions from Table A-5.1 (for allowable stress design) should be considered:  D       �       L ; and 
also  D       �      0.75 L       �      0.75( L R   or  S ). Wind and earthquake forces are not included, as they 
do not appear in the problem defi nition. The other listed load combinations in Table 
A-5.1 need not be considered, since it is evident that their effect will not be as severe. 
For the two selections, we divide each possible load combination by the load duration 
factor corresponding to the shortest load duration within that combination, as explained 
in Table A-3.10. The roof construction live load and snow load are not considered to act 
simultaneously. Starting with  D       �       L , we get:       

  ( )/ ( )/ kipsD L CD� � � �50 40 1 0 90 0. .       

              Then, looking at  D       �      0.75 L       �      0.75( L R   or  S ), we get either:          

  ( )/ ( )/ kipsD L S CD� � � � � �0 75 75 50 30 15 1 15 82 61. . . .       

              or          

  ( )/ ( )/1.25 kipsD L L CR D� � � � � �0 75 0 75 50 30 15 76 0. . .            

          Dead plus live load ( D       �       L ) governs, so  C D        �      1.00, and the load used to design (or 
analyze) the column is ( L       �       D )      �      (40      �      50)      �      90       kips. The duration of load factor, 
used to determine the governing condition, does  not  appear in the governing load itself. 
Rather, it will be applied to the allowable stress.     

    d.     From Table A-3.4, fi nd the column stability factor,  C P   (to account for buckling): 

    From Table A-3.9, fi nd  E 
  min        �       E min        �       C M  . Since  C M        �      1.0 for timbers (do not confuse this 
adjustment with the value for  C M   applied to the allowable compressive stress,  F c  ), we get:          

         E min        �      580,000       psi;  E 
  min        �      580,000      �      1.0      �      580,000       psi.  
     l e        �      8.5       ft      �      102       in.  
     d       �      9.5       in.  
     F cE        �      0.822 E 
  min  /( l e   / d ) 2       �      0.822(580,000)/(102/9.5) 2       �      4135.7       psi.  
     Fc*          �       F c C D C M C F        �      1150(1.00)(1.0)(1.0)      �      1150       psi.  
     c       �      0.8 for sawn lumber.  
     A       �      [1      �      ( F cE  / Fc*   )]/(2 c )      �      [1      �      (4135.7/1150)]/1.6      �      2.87.  
w     B       �      ( F cE  / F c*   )/c      �      (4135.7/1150)/0.8      �      4.50.  
     C P        �       A       �      ( A  2       �       B ) 0.5       �      2.87      �      (2.87 2       �      4.50) 0.5       �      0.934.    

        3.     Compute adjusted allowable stress in compression: from step 2,  Fc*          �      1150       psi and 
 C P        �      0.934; so  Fc
         �       F c*   ( C P  )      �      1150(0.934)      �      1074.6       psi.  

Wood
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    4.     Find capacity,  P       �       Fc
          �       A . From Table A-4.1 the cross-sectional area for 10      �      10, 
 A       �      90.25       in 2 ; therefore,  P       �      1074.6(90.25)      �      96,979       lb      �      97.0       kips.  

    5.      Check capacity:  Since the capacity of 97.0       kips      	      governing load combination of 90       kips, 
the column is OK.    

 The   value of  C P        �      0.934 indicates that buckling has reduced the column’s allowable compres-
sive stress to 93.4% of its  “ crushing ”  strength.      

       Example 7.2        Design wood column      

    Problem defi nition 
 Find   the lightest cross section for a wood column (Douglas Fir-Larch Select Structural) that is 
8.5       ft high, used indoors, on the second fl oor of the three-story building shown in  Figure 7.4   , 
supporting live load ( L ), roof live load (i.e., construction live load)  L R  , dead load ( D ), and snow 
load ( S ) as follows: 

  L L D SR� � � �40 20 25 30psf; psf; psf; psf        

    Solution overview 
 Find   relevant material properties and adjustment factors (assuming a provisional value for  C P  ); 
compute adjusted allowable stress; fi nd cross-sectional area by dividing load by adjusted 
allowable stress; select provisional cross section and analyze; repeat this step by selecting new 
cross section until capacity is just larger than load.  

    Problem solution 

        1.     Using Tables A-3.3 and A-3.9, fi nd material properties  F c   and  E min  ; as in Example 7.1, 
the tabular (unadjusted) value of  F c   is 1150       psi, and the minimum modulus of elasticity is 
 E min        �      580,000       psi. The value of  F c   assumes a  “ post and timber ”  size.  

    2.     Find adjustment factors for  F c  , except for  C P  : 
    a.     From Table A-3.4,  C M        �      1.0.  
    b.     From Table A-3.4,  C F        �      1.0 (assuming that  “ dimension lumber ”  will not be used).  

 FIGURE 7.4  
       Framing plan and building section for Example 7.2    
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    c.     From Tables A-3.10 and A-5.1,  C D   depends on which load combination proves to be 
critical. To fi nd  C D  , divide each possible load combination by the load duration factor 
corresponding to the shortest load duration within each combination. The tributary area 
for the typical column is 15      �      20      �      300       ft 2  per fl oor for both the third fl oor live and dead 
load, and for the roof construction live load (or snow load) and dead load. Referring 
to Table A-2.2, live load reduction for the third fl oor live load is appropriate since  K LL   
times its tributary area of 300       ft 2 , or 1200       ft 2 , is greater than 400       ft 2 . For such an  “ infl u-
ence area, ”  the live load reduction coeffi cient is 0.25      �      15/(4      �      300) 0.5       �      0.68, 
so the reduced live load is 0.68(40)      �      27.2       psf. Roof construction/maintenance 
live loads are not reduced. The duration of load factor,  C D  , is found by dividing the 
 various load combinations by the appropriate load duration factors (where loads are 
computed by multiplying each square foot value by the corresponding tributary area). 
Only two load combinations from Table A-5.1 need be considered, since the oth-
ers evidently will not produce effects as severe. These combinations are  D       �       L  and 
 D       �      0.75 L       �      0.75( L R   or  S ). In the latter combination, wind and earthquake forces are 
not included, as they do not appear in the problem defi nition. We divide each  possible 
load combination by the load duration factor corresponding to the shortest load 
duration within that combination, as explained in Table A-3.10. The roof construc-
tion live load and snow load are not considered to act simultaneously. Starting with 
 D       �       L , we get:       

  ( )/ [ ( ) ( )]/ lbD L CD� � � �25 600 27 2 300 1 0 23 160. . ,      
  Then, looking at  D       �      0.75 L       �      0.75( L R   or  S ), we get:   

  

( . )/ [ ( ) ( )( )
( )( )

D L S CD� � � �

  �

0 75 75 25 600 0 75 27 2 300
0 75 30 300

. . .
. ]]/ lb1 15 24 235. ,�       

              or          

  

( )/ [ ( ) ( )( )
( )(

D L LR� � � �

�

0 75 0 75 1 25 25 600 0 75 27 2 300
0 75 20 30

. . . . .
. 00 1 25 20 496)]/ lb. ,�       

              The fi rst case of the second load combination governs (using dead, live, and snow load), 
so  C D        �      1.15, and the load used to design the column is ( D       �      0.75 L       �      0.75 S ), or:          

  25 600 0 75 27 2 300 0 75 30 300 27 870( ) ( )( ) ( )( ) lb� � �. . . ,       

    3.     Select cross section by trial. The stability factor,  C P  , cannot be determined directly, since 
it depends on the cross-sectional dimensions of the column, which have not yet been 
found. Design, therefore, turns into an iterative process, repeatedly making and testing 
assumptions about the column’s stability until the tests (i.e., column analyses) confi rm the 
assumptions. To begin the iterative process: 
    a.     Assume a value for  C P  , for example,  C P        �      0.8.  
    b.     Compute  Fc*         �       F c  C D  C M  C F        �      1150(1.15)(1.0)(1.0)      �      1322.5       psi.  

Wood
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    c.     Compute  Fc
         �       F c*    ( C P  )      �      1322.5(0.80)      �      1058       psi.  
    d.     Compute the provisional required cross-sectional area:       

  
Arequired � � �axial load/stress  in27 870 1058 26 3 2, / .

      

    Trial 1: 

        1.     From Table A-4.1, select trial cross section based on provisional required area of 26.3       in 2 : 
a 6      �      6 has an area of 30.25       in 2 , but since the provisional required area of 26.3       in 2  was 
based on an assumption about the column’s stability ( C P        �      0.8), it is not immediately clear 
whether the choice is correct; what we must enter into at this point is the fi rst step of an 
iterative process. We start by checking the 6      �      6 for its actual capacity and comparing this 
capacity to the applied load. This process is identical to the timber column analysis method 
illustrated in the Example 7.1.  

    2.     From Table A-3.4, fi nd the actual column stability factor,  C P  , for the 6      �      6 column:        

    From Table A-3.9, fi nd  Emin
′          �      the adjusted minimum modulus of elasticity      �       E mi   n       �       C M  ; 

since  C M        �      1.0 for timbers,  Emin
′          �      580,000       psi.  

     l e        �      8.5       ft      �      102       in.  
     d       �      5.5       in.  
     F cE        �      0.822 Emin

′    /( l e   / d ) 2       �      0.822(580,000)/(102/5.5) 2       �      1386.2       psi.  
     Fc*         �       F c  C D  C M  C F        �      1150(1.15)(1.0)(1.0)      �      1322.5       psi (unchanged from earlier).  
     c       �      0.8 for sawn lumber.  
     A       �      [1      �      ( F cE   / Fc*   )]/(2 c )      �      [1      �      (1386.2/1322.5)]/1.6      �      1.28.  
     B       �      ( F cE   / Fc*   )/ c       �      (1386.2/1322.5)/0.8      �      1.31.  
     C P        �      A      �      (A 2       �      B) 0.5       �      1.28      �      (1.28 2       �      1.31) 0.5       �      0.71.        

    3.     Compute the adjusted allowable stress in compression:    

  F F Cc c P
 � � �* . . .( ) ( ) psi1322 5 0 71 935 0       

    4.     Find capacity,  P       �       Fc
         �       A . From Table A-4.1, fi nd cross-sectional area for 6      �      6: 
 A       �      30.25       in 2 ; then,  P       �      935.0(30.25)      �      28,284       lb.  

    5.      Check capacity:  The capacity of 28,284       lb is greater than the actual load of 27,870       lb. In 
other words, analysis shows that the 6      �      6 column is acceptable. If the capacity of a 6      �      6 
column were insuffi cient, we would try the next largest size, that is, a 6      �      8; and then 
an 8      �      8, etc., until a cross section was found with adequate capacity. In this case, how-
ever, even though the 6      �      6 is acceptable, it is possible that a  smaller  column size will 
also work, for two reasons: fi rst, the next smaller size (4      �      6) falls under the dimension 
lumber size classifi cation, which has a higher allowable compressive stress than what was 
assumed for posts and timbers; second, allowable stresses for dimension lumber generally 
increase as the cross-sectional area gets smaller, due to the size factor adjustment. For 
these reasons, we now check a 4      �      6 column.     
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    Trial 2: 

        1.     From Table A-4.1, a 4      �      6 has an area of 19.25       in 2 .  
    2.     From Table A-3.4, fi nd the actual column stability factor,  C P  , for the 4      �      6 column:        

    From Table A-3.9, fi nd  Emin
′          �      the adjusted minimum modulus of elasticity      �       E min          �       C M  ; 

since  C M        �      1.0 for any dry service condition,  Emin
′          �      690,000       psi.  

     l e        �      8.5       ft      �      102       in.  
     d       �      3.5       in.  
     F cE        �      0.822 Emin

′    /( l e  / d ) 2       �      0.822(690,000)/(102/3.5) 2       �      667.8       psi.  
     Fc*         �        F c  C D  C M  C F        �      1700(1.15)(1.0)(1.10)      �      2150.5       psi (with the allowable stress,  F c  , 

taken for dimension lumber).  
     c       �      0.8 for sawn lumber.  
     A       �      [1      �      ( F cE   / Fc*   )]/(2 c )      �      [1      �      (667.8/2150.5)]/1.6      �      0.82.  
     B       �      ( F cE   / Fc*   )/ c       �      (667.8/2150.5)/0.8      �      0.39.  
     C P        �      A      �      (A 2       �      B) 0.5       �      0.82      �      (0.82 2       �      0.39) 0.5       �      0.287.    

        3.     Compute the adjusted allowable stress in compression:    

  F F Cc c P
 � � �*( ) ( ) psi2150 5 0 287 618 0. . .       

    4.     Find capacity,  P       �       Fc
         �       A . From Table A-4.1, fi nd cross-sectional area for 4      �      6: 
 A       �      19.25       in 2 ; then,  P       �      618.0(19.25)      �      11,896       lb.  

    5.      Check capacity:  The capacity of 11,896       lb is less than the actual load of 27,870       lb. 
Therefore, the 4      �      6 column is not OK: select the 6      �      6 column from Trial 1.            

    STEEL 
   Steel columns with high slenderness ratios are designed using the Euler  buckling 
equation, while “fatter” columns, which buckle inelastically or crush without 
 buckling, are designed according to formulas corresponding to test results. Residual 
compressive stresses within hot-rolled steel sections precipitate this inelastic buck-
ling, as they cause local yielding to occur sooner than might otherwise be expected. 
Unlike timber column design, the two design equations corresponding to elastic 
and inelastic buckling have not been integrated into a single unifi ed formula, so the 
underlying rationale remains more apparent. The slenderness ratio dividing elastic 
from inelastic buckling is set, somewhat arbitrarily, at the point where the Euler crit-
ical buckling stress equals 0.44 times the yield stress; that is, at the stress: 

  
σcr

2/( / )� �π2 0 44E KL r Fy.
  

(7.4)     

Steel
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  This particular slenderness ratio separating elastic from inelastic buckling is found 
by solving for ( KL / r ) in Equation 7.4:   

  

KL r
E

Fy

/
.

�
π2

0 44
 

 (7.5)      

 For    F y        �      50       ksi, the value of  KL / r  is 114; for  F y        �      36       ksi, the value is 134. For a 
column with a slenderness ratio greater than this separating value, elastic buck-
ling is assumed, and the allowable ( “ available ” ) axial compressive stress, based on 
Euler’s equation (multiplied by a factor of 0.877, and divided by a safety factor, 
 Ω       �      1.67), is: 

  

F
E
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E

KL r
c � �
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1 67
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π π

  
(7.6)     

  The coeffi cient, 0.525, in Equation 7.6 corresponds to the safety factor of 12/23   pre-
viously used for elastic buckling of steel columns.   

 Where    KL / r  is less than the value separating elastic from inelastic buckling, 
inelastic buckling governs, and the allowable ( “ available ” ) axial compressive stress 
is found by dividing the critical stress for inelastic buckling by the same factor of 
safety,  Ω       �      1.67: 

  
F

F
c

F F
y

y e

�
0 658

1 67

.

.

( / )

 
 (7.7)     

  In this equation,  F e   is the elastic buckling stress shown in Equation 7.1; that is:   

  

F
E

KL r
e �

π2

2( / )  
 (7.8)     

  The slenderness ratio,  KL / r , should not exceed 200 for steel axial compression 
elements. Values for  K  are shown in Table A-7.1.   

 The   two curves representing allowable stresses for elastic and inelastic buck-
ling make a smooth transition at the slenderness ratio separating them, as shown in 
 Figure 7.5   . Rather than apply these equations to the solution of axial compression 
problems in steel, allowable stress tables (for analysis, Tables A-7.3 through A-7.6) 
or allowable load tables (for design, Table A-7.2) are more often used. If values for 
allowable load are plotted instead of tabulated, the curves have the same pattern 
schematically represented in  Figure 7.5 . Examples of these axial column load curves 
are shown in  Figure 7.6   .
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 FIGURE 7.5  
       Inelastic and elastic critical stress curves for column buckling    

 FIGURE 7.6  
       Allowable axial column load plotted against unbraced length    

Steel



118  CHAPTER 7    Columns

       Example 7.3        Analyze steel column      

    Problem defi nition 
 Find   the capacity (allowable load) of a W14      �      61 pin-ended column with an unbraced length 
of 10       ft. Assume A36 steel.  

    Solution overview 
 Find   relevant section properties; compute slenderness ratio; fi nd allowable stress and capacity.  

    Problem solution 

        1.     From Table A-4.3,  r min        �      2.45       in.  
    2.     Compute slenderness ratio: 

    a.     From Table A-7.1, the effective length coeffi cient,  K       �      1.0.  
    b.     The unbraced length,  L       �      10.0      �      12      �      120       in.  
    c.      KL / r min          �      (1.0)(120)/2.45      �      48.98. Round up to 49.     

    3.     From Table A-7.6, the allowable stress is  F c        �      19.0       ksi.  
    4.      Find capacity:  From Table A-4.3, the area of the steel column is  A       �      17.9       in 2 . The capacity 

is  P       �       F c        �       A       �      19.0(17.9)      �      340       kips.    

 From   Equation 7.5, the slenderness ratio separating elastic and inelastic column 
behavior is 134 for A36 steel. The column analyzed in Example 7.3 has a slenderness 
ratio of 48.98, which is less than this separating value; therefore, it fails inelastically. 
Using Equation 7.7 to determine the  “ inelastic ”  allowable stress, we get the same result 
as was obtained in the example. The calculations are as follows, using  F y        �      36       ksi: 

 From   Equation 7.8,  F e        �       π  2 (29,000)/(48.98 2 )      �      119.3. Then, from Equation 7.7:   
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  It can be seen that this is the same allowable stress as was obtained in Example 7.3.        

       Example 7.4        Design steel column      

    Problem defi nition 
 Select   the lightest (most economical) wide-fl ange section for the fi rst-fl oor column shown in 
 Figure 7.7   . Assume offi ce occupancy, a roof (construction) live load of 20       psf, a typical steel 
fl oor system, and an allowance for steel stud partitions. Assume pin-ended (simple) connec-
tions. Use A992 steel.  

    Solution overview 
 Find   total load on column; fi nd effective length; select lightest section.  
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    Problem solution 

        1.     Find total column load: 
    a.     From Table 2.2, the live load ( L ) for offi ce occupancy      �      50       psf.  
    b.     From Table 2.1, the typical dead load ( D )      �      47       psf (steel fl oor system, etc.)      �      8       psf 

(steel stud partition allowance)      �      55       psf.  
    c.     The roof live load ( L R  )      �      20       psf, according to the Problem Defi nition.  
    d.      Find tributary area  (see Figure 1.5): The column’s tributary area is 

25       ft      �      40       ft      �      1000       ft 2  per fl oor, or 5000       ft 2  for the fi ve levels on which occupancy live 
loads are computed (excluding the roof).  

    e.     Using Table A-2.2, compute the reduced live load; the live load reduction factor 
is 0.25      �      15/(4      �      5000) 0.5       �      0.36, but no reduction less than 0.40 is permitted. 
Therefore, the live load can be reduced to 0.40(50)      �      20       psf for the fi rst-fl oor column 
under consideration.  

    f.     Using Table A-5.1 for allowable stress design, fi nd the total column load, accounting 
for reductions due to load combinations: 
     L            �      (25       ft      �      40       ft)      �      (20       psf)      �      5 fl oors      �      100,000       lb  
     D           �      (25       ft      �      40       ft)      �      (55       psf)      �      6 fl oors      �      330,000       lb  
     L R        �      (25       ft      �      40       ft)      �      (20       psf)      �      1 fl oor      �      20,000       lb              

    For the three loads potentially present, only two load combinations need be considered 
(the others listed will produce less severe effects). For the second load combination, wind 
or seismic effects on the column may also be considered. However, in this example, we 
assume that the column is not part of the lateral force-resisting system for wind or seismic 

 FIGURE 7.7  
       Framing plan and building section for Example 7.4    

Steel
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and that any negative (uplift) wind load on the roof can be conservatively ignored. The two 
relevant load combinations to consider are as follows:    

  D L� � � �330 000 100 000 430 000, , , lb       

  

D L LR� � � � �

� �

0 75 0 75 330 000 0 75 100 000 0 75 20 000
330 000

. . , . , . ,
,

( ) ( )
775 000 15 000 420 000, , ,� � lb       

    The fi rst case governs; therefore the total column load      �      430,000       lb      �      430       kips.        

    2.     Using Table A-7.1, fi nd the unbraced effective length:  KL       �      (1.0)(14)      �      14       ft.  
    3.     Select the most economical section: 

    a.     Using Table A-7.2, pick the lightest acceptable section from each  “ nominal depth ”  
group (i.e., one W8, one W10, one W12, and so on), to assemble a group of  “ likely 
candidates. ”  Some columns are clearly either too small or too large; the three possible 
candidates for a load of 430       kips and an effective length of 14       ft. are:       

     •      W10      �      68 can support 440       kips,  
     •      W12      �      65 can support 456       kips,  
     •      W14      �      74 can support 466       kips.         

    b.      Choose lightest section:  The W12      �      65 is the most economical since its weight per lin-
ear foot (65 pounds) is smallest.             

 To   check the result in Example 7.4, fi rst determine the slenderness ratio of the 
W12      �      65, fi nding  r       �      3.02       in. from Table A-4.3. Then,  KL / r       �      (1.0)(14      �      12)/3.02      �      
55.63. From Equation 7.5, the slenderness ratio separating elastic from inelastic 
behavior for A992 steel is 114, so the column fails inelastically. Using Equation 7.7 
to determine the  “ inelastic ”  allowable stress, we get the same result as was obtained 
in the example. The calculations are as follows, using  F y        �      50       ksi: 

 From   Equation 7.8,  F e        �       π  2 (29,000)/(55.63 2 )      �      92.5. Then, from Equation 7.7:   
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 From   Table A-4.3, the area of the W12      �      65,  A       �      19.1       in 2 . Therefore, the capacity, 
 P       �       F c        �       A       �      23.9      �      19.1      �      456       kips, the same value found in Example 7.4.  

    REINFORCED CONCRETE 
 Concrete   columns are cast into forms containing a matrix of steel reinforcement. 
This reinforcement is distributed just inside the perimeter of the forms in a pattern 
designed to confi ne the concrete, much like sand would be confi ned when placed 
into a steel drum. In both cases (sand in a steel drum; concrete in a steel  “ cage ” ), the 
ability of the material to sustain an axial compressive stress is enormously increased 
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by the presence of the confi ning steel, whether or not the steel contributes directly 
to the support of the external load. 

    Ties and spirals 
 Two   patterns of steel reinforcement are commonly used for columns: a series of 
square or rectangular  ties  ( Figure 7.8 a    ) placed horizontally around a minimum 
of four longitudinal steel bars or a continuous circular  spiral  wire ( Figure 7.8 b  ) 
wrapped around a minimum of six longitudinal bars. Tied columns are usually rec-
tangular and spiral columns are usually circular, but either pattern of reinforcement 
can be used for any column cross section. In general, spiral reinforcement provides 
more reliable confi nement of the concrete and a more ductile type of failure than 
tied columns; strength reduction factors for spiral versus tied columns take this 
relative safety into account. The actual design of ties and spirals is based on fairly 
straightforward guidelines, summarized in Table A-7.7. The design and analysis 
examples that follow do not include the calculation of tie or spiral spacing and size.  

    Design of concrete and longitudinal steel 
 The   amount of longitudinal steel in reinforced concrete columns, measured accord-
ing to the ratio of steel area to gross column area  (reinforcement ratio),  must fall 
between two limiting values. The lower limit of 1% provides a minimum amount 
of steel to protect against tension failures due to unanticipated bending moments; 
the upper limit of 8% prevents overcrowding of steel bars within the concrete form-
work. The reinforcement ratio is defi ned as: 
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 (7.9)     

  where   ρ  g        �      the reinforcement ratio of longitudinal steel area to gross area;  
A st        �      the cross-sectional area of longitudinal reinforcement; and  A g        �      the gross 

Reinforced concrete

 FIGURE 7.8  
       Containment of longitudinal bars using  (a)  ties and  (b)  spiral reinforcement    
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cross-sectional area of the concrete column, whether the column is rectangular or 
circular in section.   

 It   is assumed in this chapter that reinforced concrete column stability is not a 
factor in the column’s strength; that is, the column is not slender enough for buck-
ling to be a problem. As a general rule of thumb, concrete columns braced against 
lateral misalignment ( “ sidesway ” ), with a slenderness ratio,  KL / r , no greater than 
40, are rarely infl uenced by stability considerations. Taking the radius of gyration of 
a rectangular column as approximately equal to 0.3 times the smaller cross-sectional 
column dimension,  h  (i.e., assuming  r       �      0.3        h ), and taking the effective length coef-
fi cient,  K       �      1.0, we get  KL / r       �      1.0 L /(0.3        h )      �      40. Solving for the ratio of unbraced 
length,  L , to minimum cross-sectional dimension,  h , we fi nd that slenderness effects 
may typically be neglected in axially loaded reinforced concrete columns when 
 L / h       �      12. For slender concrete columns, other techniques must be used to account 
for the possibility of buckling. 

 For   columns, at least 11⁄2       in  . of concrete is left outside the matrix of reinforcement 
to protect it from corrosion (2       in. for No.6 or larger bars if the concrete is exposed 
to the weather, or the earth; 3       in. for all bars if the concrete is cast directly against 
the earth — see Table A-4.9). For typical reinforcement sizes, the distance from the 
outside of the concrete column to the centerline of the longitudinal reinforcement 
can be taken as about 21⁄2       in. or 3       in. ( Figure 7.9   ). 

 For   a reinforced concrete column subjected to pure axial compression, the ulti-
mate load at failure is simply the concrete strength (failure stress) times its area, 
plus the yield stress of the longitudinal steel rebars times their area ( Figure 7.10   ). 
The failure strength of concrete is taken as 85% of its cylinder strength,  f  
 c , since the 
more rapid rate of loading of the test cylinders ( Figure 7.11   , curve  a ), compared 
to loading of actual structural columns ( Figure 7.11 , curve  b ), results in a higher 
measured strength than can be expected for real structures. The strain at which 
steel longitudinal reinforcement bars yield depends on their yield stress. For grade 
60 rebars (  f y        �      60       ksi), the yield strain (stress divided by modulus of elasticity) is 
60/29,000      �      0.002. For grade 40 (  f y        �      40       ksi), the yield strain is 40/29,000      �      0.001. 
In either case, the failure stress of the steel can be taken as its yield stress,  f y  , since 
yielding would have already occurred when the concrete reaches its crushing strain 

 FIGURE 7.9  
       Detail of reinforced concrete element showing approximate distance from centerline of rebar to 
outside face of concrete    
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 FIGURE 7.10  
       Nominal stresses at failure of axially loaded reinforced concrete column    

 FIGURE 7.11  
       Stress-strain diagrams for plain concrete showing  (a)  fast-loading characteristic of test cylinders 
and  (b)  slow-loading characteristic of actual structures    

Reinforced concrete
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(precipitating column failure) of about 0.003. Combining the failure stresses for con-
crete and steel, we get an ultimate failure load for an axially loaded column of: 

  
P f A f An c conc y st� 
 �0.85 ( )

 
 (7.10)     

  where  A st   is the longitudinal steel area, and  A conc   is the net area of concrete, that is, 
the gross cross-sectional area minus the steel area. The parameters  f y   and  fc

′    corre-
spond to the yield stress of steel and the cylinder strength of concrete, respectively.   

 There   are two strength reduction safety factors for axially loaded reinforced 
concrete columns:   φ   is the ordinary factor, while   α   accounts for the possibility 
of nonaxial loading. Both factors depend on whether the column is tied or spiral 
(see Table A-5.2). Combining these strength reduction factors with factored loads 
(see Table A-5.1), we get equations for the design and analysis of axially loaded rein-
forced concrete columns. An example of such an equation for dead load ( D ) and 
live load ( L ) only, where  P u   is the factored or  “ design ”  load, is: 

  
P D L f A f Au c conc y st� � � 
 �1 2 1 6 0 85. . .φα( )

  
(7.11)     

       Example 7.5        Analyze axially loaded reinforced concrete column      

    Problem defi nition 
 Assuming    fc
         �      4       ksi and  f y        �      60       ksi, fi nd the nominal failure capacity of a 10       in.      �      10       in. axi-
ally loaded tied rectangular column with four No. 9 bars, as shown in  Figure 7.12   . Can this 
column support a live load of 100       kips and a dead load of 100       kips?  

    Solution overview 
 Find   concrete and steel areas; multiply by failure stresses for concrete and steel and add 
together for ultimate capacity. Multiply ultimate capacity by strength reduction factors and 
compare with factored loads to determine whether capacity is adequate for given loads.  

 FIGURE 7.12  
       Column cross section for Example 7.5    
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    Problem solution 

        1.     From Table A-4.10, the steel area for four No. 9 bars is  A st        �      4.00       in 2 .  
    2.     The concrete area,  A conc        �       A g        �       A st        �      10      �      10      �      4.00      �      96       in 2 .  
    3.     From Equation 7.10, the nominal capacity or failure load is  P n        �      0.85 fc
    ( A conc  )      �       f y A st        �      

0.85(4)(96)      �      60(4.00)      �      566.4       kips.  
    4.     From Table A-5.2, strength reduction factors for a tied column are   φ        �      0.65 and   α        �      0.80.  
    5.     Based on Equation 7.11, check whether  P u        �      1.2 D       �      1.6 L       �        φ  α  ( P n  ). We get  P u        �      

1.2 D       �      1.6 L       �      1.2(100)      �      1.6(100)      �      280       kips and   φ  α  ( P n  )      �      (0.65)(0.80)(566.4)      �      
294.5       kips. Therefore, since  P u        �        φ  α  ( P n  ), the capacity is adequate and the column 
is OK.  

    6.     In this example, all column parameters were given. However, we can still check that the 
column has an acceptable reinforcement ratio and that the bars fi t within the cross section. 
Using Equation 7.9, we check that reinforcement ratio is between 1 and 8% (i.e., between 
0.01 and 0.08):   ρ   g       �       A st   / A g        �      4.00/100      �      0.040, so the reinforcement ratio is OK. Using 
Table A-4.11, we fi nd that for two No.9 bars in one line, we need 7.94       in. Since we actually 
have 10       in., the bars fi t.         

       Example 7.6        Design axially loaded reinforced concrete column with cross-
sectional dimensions assumed      

    Problem defi nition 
 Assuming    fc
         �      3       ksi and  f y        �      60       ksi, fi nd the required steel area for an axially loaded 
12-in.-square tied reinforced concrete column supporting a dead load ( D ) of 150       kips and a 
live load ( L ) of 100       kips. Select bar size.  

    Solution overview 
 Use   Equation 7.11, relating reduced strength to factored loads, and solve for steel area. The 
area of concrete within the column cross section is found by subtracting the steel area from 
the gross cross-sectional dimensions; that is,  A conc        �       A g        �       A st  . Check reinforcement ratio 
limits and bar fi t.  

    Problem solution 

        1.     From Equation 7.11,  P u        �      1.2 D       �      1.6 L       �        φ  α  (0.85 fc
     A conc        �       f y  A st  ). Finding strength 
reduction factors,   φ   and   α  , from Table A-5.2, we get: 

    1.2(150)      �      1.6(100)      �      (0.65)(0.80)[0.85(3)(144      �       A st  )      �      60 A st  ].  
    340      �      (0.52)[367.2      �      2.55 A st        �      60A st ].  
    653.85      �      367.2      �      57.45 A st  .  
    57.45 A st        	      286.65.  
     A st        	      4.99       in 2 . This is the required steel area for longitudinal bars.     

Reinforced concrete
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    2.     From Table A-4.10, choose four No. 10 bars with actual  A st        �      5.08       in 2 . For symmetry, the 
choice of bars is limited to four, six, eight, and so on.  

    3.     Using Equation 7.9, check that the reinforcement ratio is between 1 and 8% (i.e., between 
0.01 and 0.08):   ρ   g       �       A st  / A g        �      5.08/144      �      0.035, so the reinforcement ratio is OK. Using 
Table A-4.11, we fi nd that for two No. 10 bars in one line, we need 8.38       in. Since we actu-
ally have 12       in., the bars fi t.         

       Example 7.7        Design axially loaded reinforced concrete column with reinforcement 
ratio assumed      

    Problem defi nition 
 Assuming    fc
         �      5       ksi and  f y        �      60       ksi, select a diameter and fi nd the required steel area for an 
axially loaded, spirally reinforced circular reinforced concrete column supporting a dead load 
( D ) of 150       kips and a live load ( L ) of 125       kips. Select bar size. Check reinforcement ratio and 
bar fi t.  

    Solution overview 
 Use   Equation 7.11, relating reduced strength to factored loads, and solve for gross area. With 
the reinforcement ratio,   ρ   g , assumed, the area of concrete within the column cross section, 
 A conc        �      (1.00      �        ρ   g ) A g   and the steel area,  A st        �        ρ   g  A g . Find the required gross area, select col-
umn dimensions (in this case, the column diameter), and proceed as in Example 7.6 with 
gross area known. Check reinforcement ratio limits and bar fi t.  

    Problem solution 

        1.     From Equation 7.11:  P u        �      1.2 D       �      1.6 L       �        φ  α   (0.85 fc
     A conc        �       f y A st  ). Since  A conc        �      (1.00      �        ρ   g ) A g   
and the steel area is  A st        �        ρ   g  A g , we get:    

  
P D L f A f Au c g g y g g� � � 
 � �1 2 1 6 0 85 100. . .φα ρ ρ[ ( ) ]

      
    The choice of a reinforcement ratio is somewhat arbitrary; we select   ρ   g       �      0.04; then, with 
strength reduction factors,   φ   and   α  , found from Table A-5.2, we get: 

    1.2(150)      �      1.6(125)      �      (0.75)(0.85)[0.85(5)(1.00      �      0.04) A g        �      60(0.04) A g  ].  
    380      �      (0.6375)[4.08 A g        �      2.40 A g  ].  
    596.1      �      6.48 A g  .  
     A g        	      91.99       in 2 ; since  A g        �       π  r  2 , the required radius for the concrete column,  r       �      (91.99/ π ) 0.5       �    
  5.41       in. Therefore, the required diameter,  d       �      2 r       �      2(5.41)      �      10.8       in.     

    The actual diameter that we select may be either bigger or smaller than this  “ required ”  
diameter, since it was computed on the basis of a desired reinforcement ratio, which need 
not be — and  cannot  be — matched precisely in practice (since the actual bar area selected 
typically exceeds the required area and since the actual diameter of the column is rounded 
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to the nearest or  “ even ”  inch). We therefore select a column diameter close to the required 
value, say, 10       in., and proceed as in Example 7.6, with the gross column area given.        

    2.     From Equation 7.11:  P u        �      1.2 D       �      1.6 L       �        φ  α  (0.85 fc
     A conc        �       f y  A st  ). The strength reduction 
factors,   φ   and   α  , from Table A-5.2, have already been found, the gross area of a circular 
column with a 10       in. diameter is  π  r   2       �       π 5 2       �      78.54       in 2 , and we get: 

    1.2(150)      �      1.6(125)      �      (0.75)(0.85)[0.85(5)(78.54      �       A st  )      �      60 A st  ].  
    380      �      (0.6375)[333.8      �      4.25 A st        �      60 A st  ].  
    596.1      �      333.8      �      55.75 A st  .  
    55.75 A st        	      262.3.  
     A st        	      4.71       in 2 . This is the required steel area for longitudinal bars.     

    3.     From Table A-4.10, choose six No. 8 bars with actual  A st        �      4.74       in 2 . For spiral columns, 
the number of bars must be at least six.  

    4.     Using Equation 7.9, check that the reinforcement ratio is between 1 and 8% (i.e., between 
0.01 and 0.08):   ρ   g       �       A st   / A g        �      4.74/78.54      �      0.060, so the reinforcement ratio is OK. Using 
Table A-4.11, we fi nd that for six No. 8 bars in the column, we need a 10-in. diameter. 
Since we actually have a 10-in. diameter, the bars fi t.    

 The   actual reinforcement ratio,   ρ   g       �      0.060, is much  higher  than our initial assumed value 
of   ρ   g       �      0.04. Had we selected a 12-in.-diameter column instead of a 10-in.-diameter 
column at the end of step 1, the actual steel ratio would have been much  lower  than 0.04. 
In other words, the practical requirement to use whole even numbers for column diameter, 
together with the need to select bar areas corresponding to actual rebar sizes, often makes 
it diffi cult to precisely defi ne the reinforcement ratio in advance. This method does, however, 
lead to a reasonable size for the column in cases where a range of reasonable sizes is not 
initially known.                      

Reinforced concrete
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 Like   all structural elements, beams are both stressed and subject to deformations 
when loaded. Both of these considerations must be accounted for in the design of 
beams. 

    DEFLECTION 
 While   the elongation or contraction of axially loaded members along their longitu-
dinal axes is usually of little consequence, beams may experience excessive defl ec-
tion perpendicular to their longitudinal axes, making them unserviceable. Limits 
on defl ection are based on several considerations, including minimizing vibrations, 
thereby improving occupant comfort; preventing cracking of ceiling materials, par-
titions, or cladding supported by the beams; and promoting positive drainage (for 
roof beams) in order to avoid ponding of water at midspan. These limits are gener-
ally expressed as a fraction of the span,  L  (Table A-8.1). Formulas for the calculation 
of maximum defl ection are shown in Table A-8.2, along with additional values for 
the recommended minimum depth of reinforced concrete spanning elements. The 
maximum (midspan) defl ection,  Δ , of a uniformly loaded simple span can also be 
found from the equation: 

  
Δ �

5

384

4wL

EI   (8.1)     

  where  w       �      distributed load (lb/in. or kips/in.),  L       �      span (in.),  E       �      modulus of elas-
ticity (psi or ksi), and  I       �      moment of inertia (in 4 ). When using Equation 8.1 with  L  in 
feet,  w  in lb/ft or kips/ft,  E  in psi or ksi (compatible with load,  w ), and  I  in in 4 , as is 
most commonly done, multiply the expression by 12 3  to make the units consistent.           

                                                                  Beams    8 
CHAPTER
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    BENDING STRESS 
 Beams   are stressed when they bend because the action of bending causes an elonga-
tion on one side, resulting in tension, and a shortening on the other side, resulting 
in compression. By exaggerating the curvature of the beam as it bends, this elonga-
tion and shortening can be visualized. Exactly where the tension and compression 
are depends on how the beam is loaded and how it is supported. 

 For    simply supported beams  with downward-acting loads (i.e., with gravity 
loads), the beam is stretched on the bottom (tension) and shortened on the top 
(compression) as shown in  Figure 8.1   . 

 For    cantilevered beams  fi xed at one end, with downward-acting loads, the beam 
is stretched on the top and shortened on the bottom ( Figure 8.2   ). 

 For    continuous beams  spanning over several supports, the changing curvature 
causes the position of tension and compression zones to reverse a number of times 
over the length of the beam, as illustrated in  Figure 8.3   . 

 The   relative position of tension and compression within the beam’s cross section 
is directly related to the sign of the bending moment at that cross section. As can 

 FIGURE 8.1  
       Behavior of a simply supported beam    

 FIGURE 8.2  
       Behavior of a cantilevered beam    

 FIGURE 8.3  
       Behavior of a continuous beam    
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be seen from  Figure 8.4 a    , a counterclockwise moment on the right side of a free-
body diagram is equivalent to a distribution of bending stress with compression on 
the top and tension on the bottom of the beam:  “ positive ”  bending (and  “ positive ”  
bending moment).  Figure 8.4 b   shows a free-body diagram cut through a cantilever 
beam with  “ negative ”  bending — that is, tension on the top and compression on the 
bottom corresponding to a clockwise moment as shown. The reversing curvature 
of a continuous beam, such as that shown in  Figure 8.3 , corresponds precisely to a 
reversal in the sign of the bending moment. As shown in  Figure 8.5   , points of infl ec-
tion (points where the curvature changes) always occur at points of zero moment. 

 Bending   stresses within these beams can be computed if we assume that the 
stretching and shortening that take place at any cross section are linear; that is, 

 FIGURE 8.4  
       Comparison of  “ positive ”  and  “ negative ”  bending in  (a)  a simply supported beam and  
(b)  a cantilevered beam    

 FIGURE 8.5  
       Continuous beam showing correspondence of points of infl ection (change from positive to 
negative curvature) and points of zero moment    

Bending stress
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a straight line connecting a stretched point with a shortened point on any cross-
 sectional cut will accurately describe the shape of the beam throughout the entire 
cross section ( Figure 8.6   ). 

 Three   observations can be made once this assumption is accepted: (1) maximum 
elongation and shortening occur at the top and bottom of the beam (the  “ extreme 
fi bers ” ); (2) a surface exists somewhere between the extreme fi bers that is neither 
elongated nor shortened — this  “ plane ”  is called the  “ neutral axis ”  or  “ neutral sur-
face ” ; and 3) strain can be defi ned as the elongation or shortening of any portion 
of the beam, divided by its original (unloaded) length. Since the original length is a 
constant, a strain diagram has the same shape as an  “ elongation-shortening diagram. ”  
For materials with linear stress-strain relationships (where stress equals strain times 
a constant  modulus of elasticity ), a stress diagram will also have the same shape as 
the strain or  “ elongation-shortening diagram. ”   Figure 8.7    compares these diagram 
shapes for materials with linear stress-strain relationships. 

 For   materials with nonlinear stress-strain relationships, a stress diagram can be 
pieced together by plotting points from a stress-strain curve for the material. Thus, 
a steel beam stressed beyond its elastic region would have stress and strain distri-
butions as shown in  Figure 8.8   . The elongation and shortening, shown in  Figure 
8.8 a  , and therefore the strain, shown in  Figure 8.8 b  , are assumed to remain linear 
even when the stress, shown in  Figure 8.8 d   through  Figure 8.8 f  , becomes nonlin-
ear. In  Figure 8.8 c  , the stresses at the extreme fi bers of the cross section just reach 
the limit of elastic behavior (with stress,   σ   y ), which corresponds to the so-called 
 elastic moment ,  M e  . In  Figure 8.8 f  , the strain at the outer fi ber is extremely large 

 FIGURE 8.6  
       Shortening and stretching (compression and tension) at a typical beam cross section    

 FIGURE 8.7  
       Elongation, strain, and stress diagrams for a linear, elastic material    
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(theoretically infi nite), and the entire cross section is assumed to have yielded at the 
stress,   σ   y , that is, moved past the linear-elastic yield strain labeled  “ 1 ”  in  Figure 8.8 g  . 
This condition represents the limit state for a steel beam, and corresponds to the 
so-called  plastic moment ,  M p  . For reinforced concrete, a nonlinear stress-strain rela-
tionship is most often assumed for design; special procedures have been developed 
to simplify the construction of these stress diagrams. 

 The   shape of the stress diagram is a key element in determining the magnitudes 
of stresses within the beam: when combined with the cross-sectional shape, the 
requirements of equilibrium can be used to fi nd the magnitudes of the stresses. 
Typical stress diagrams are shown in  Figure 8.9    corresponding to the allowable 
moment for wood and the limit states for steel and reinforced concrete. 

    Allowable stress design 
 As   an example of how the stress-moment relationship is computed using the allow-
able stress design method, consider a free-body diagram cut from a rectangular 
cross section of width,  b , and height,  h  (assuming a linear stress-strain relationship 
resulting in a linear stress diagram), as shown in  Figure 8.9 a  . From the requirements 
of horizontal equilibrium, the total compressive force,  C , must equal the total ten-
sion force,  T . For this to occur, the neutral axis must be at the center of the beam, 
and the maximum compressive stress must equal the maximum tension stress. Any 
other linear distribution of stresses would be inconsistent with these requirements 

 FIGURE 8.8  
       Elongation, strain, and stress diagrams for an elastic-plastic material such as steel showing 
 (a)  elongation and shortening of the actual material,  (b)  strain diagrams,  (c)  stress diagram at 
the point where the outer fi ber has just yielded,  (d)  stress diagram corresponding to strain just 
beyond the elastic limit,  (e)  stress diagram corresponding to continued strain beyond the elastic 
limit,  (f)  stress diagram corresponding to the plastic moment (where the entire cross section has 
yielded), and  (g)  stress-strain diagram    

Bending stress
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of  equilibrium. The couple of equal and opposite forces represented by  C  and  T , 
multiplied by the moment arm between them, must equal the bending moment,  M , 
caused by the loads acting on the beam. The basic bending stress equation derives 
from this simple fact:  M  equals  C  (or  T ) times the moment arm,   τ  ; that is: 

  M C� τ   (8.2)     

  Accounting for beam width,  b ,  C       �      1/2( F b  )( h /2)( b ) and   τ        �      2/3( h ); substituting 
these values into Equation 8.2, we get:   

  
M F

bh
F

bh

hb b� �
2 3

6

12

2

/

/   
(8.3)

     

  Defi ning  “  bh  2 /6 ”  as the section modulus,  S , and  “  bh  3 /12 ”  as the moment of inertia, 
 I , for a rectangular cross section, and solving for the maximum allowable stress,  F b  , 
we get the basic bending stress equations for allowable stress design:   

  
F

M

S

Mc

Ib � �
  

(8.4) 
    

  where  F b   is the allowable bending stress for the material (psi or ksi),  M  is the 
bending moment (in-lb or in-kips),  S  is the required section modulus (in 3 ),  I  is the 
required moment of inertia (in 4 ), and  c       �       h/2  is the distance from the neutral axis 
to the extreme fi ber (in.).           

    Stress-moment relationships 
 Equation   8.4 shows the relationship between bending stress, bending moment, and 
section modulus for a material stressed within its linear-elastic range. It is the basis for 
wood beam design. Steel and reinforced concrete, however, are no longer designed 

 FIGURE 8.9  
       Bending stresses acting on rectangular cross sections corresponding to the  (a)  allowable moment 
for wood and the limit states (maximum moment at failure) for  (b)  steel and  (c)  reinforced concrete    
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on the basis of assumed linear-elastic behavior. Even so, the basic relationship among 
moment, stress, and some sort of section modulus property remains essentially the 
same for all three materials, as can be seen by comparing the stress and resultant 
force diagrams shown in  Figure 8.9 . While specifi c derivations will be covered in the 
sections that follow, the requirements of horizontal equilibrium ( C       �       T ) and rota-
tional equilibrium ( M       �       C τ        �       T τ  ) lead to design equations with essentially the same 
form for all three materials: Equation 8.5 (solving for the required section modulus,  S , 
in Equation 8.4) applies to allowable stress design in wood, Equation 8.6 to available 
strength design in steel, and Equation 8.7 to strength design in reinforced concrete. 

  
S M Freq b� 
/

  
(8.5)      

  
Z M Freq a y� Ω/

  
(8.6)

      

  bd M Ru
2 	 /( )φ   (8.7)      

 In   each case, the section modulus term ( S ,  Z , or  bd  2 ) must be greater or equal to 
the bending moment divided by a bending stress term. The stress terms in Equations 
8.5, 8.6, and 8.7 vary: for wood, an adjusted allowable stress,  Fb
   , is used directly; 
for steel, the yield stress,  F y  , is used; for reinforced concrete, the stress term,  R , is 
more complex as it must account for the limit state of both concrete (in compres-
sion) and steel (in tension), as well as the ratio of steel to gross area within the beam 
cross section. Factors of safety are also handled differently for the three materials: 
in wood  “ allowable stress ”  design, the factor of safety is hidden within the stress 
term,  F b  ; in steel  “ available strength ”  design, the factor of safety,  Ω  (normally 1.67 
for bending), is applied, not to the stress, but to the plastic moment capacity of the 
cross section in order to determine its  “ available strength ” ; in reinforced concrete 
 “ strength ”  design, the factor of safety,   φ   (normally 0.9 for bending), is a strength 
reduction factor applied to the moment capacity of the section. Load safety factors 
are also included within the reinforced concrete design moment,  M u  . 

 The   triangular stress distribution in allowable stress design for wood corre-
sponds to the elastic section modulus,  S       �       bd  2  /6, derived in Equation 8.3 for rec-
tangular cross sections. For steel, the plastic section modulus,  Z , is used, and is 
equal to  bd  2  /4 for a rectangular section — this is easily derived from the equilibrium 
of stresses shown in  Figure 8.9 b  , although it should be noted that rectangular solid 
shapes are virtually nonexistent in steel beams. The term  bd  2  , used in reinforced 
concrete Equation 8.7, has no offi cial status as a  “ section modulus, ”  yet it consists of 
the same basic variables and has the same units as wood’s  S  and steel’s  Z .  

    Bending design methods 
 Equations   8.5, 8.6, and 8.7 are  “ design ”  equations, since they provide guidance for 
the size and shape of bending elements that are capable of resisting a given  bending 

Bending stress
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moment. In practice, after bending moments are determined (e.g., by the construc-
tion of load, shear, and moment diagrams; from moment value tables; or with the 
use of structural analysis software), the required section modulus term is calculated, 
and a cross section is then selected. In the case of wood and steel, tables of standard 
cross sections and their corresponding section moduli facilitate the direct selection of 
appropriate shapes. The design of a reinforced concrete beam is less direct, since the 
ratio of steel to concrete may vary, producing a range of acceptable  bd  2   terms, each 
of which may sponsor a range of choices for cross-sectional dimensions  b  and  d .  

    SHEAR STRESS 
 Internal   forces perpendicular to the longitudinal axis of beams may also exist along 
with bending moments at any cross section, consistent with the requirements of 
equilibrium (see, e.g., the force  V  shown in the free-body diagrams within  Figure 
8.4 ). These  shear forces  are distributed over the cross-sectional surface according to 
the equation: 

  
τ �

VQ

Ib   
(8.8)

     

  where  τ       �      shear stress at a distance,  y , from the extreme fi ber (psi or ksi);  V  is the 
total shear force at the cross section (lb or kips);  Q  is the  “ static moment ”  of the par-
tial cross-sectional area (from the extreme fi ber to the distance,  y ) about the neutral 
axis of the cross section (in 3 );  I  is the moment of inertia of the cross section (in 4 ); 
and  b  is the width of the cross section at a distance,  y , from the extreme fi ber (in.).           

    Rectangular sections 
 For   rectangular cross sections, the maximum shear stress, which occurs at the neu-
tral axis, becomes: 

  
τmax �

1 5. V

bh   
(8.9)

     

  where  h  is the height of the rectangular cross section; all other variables are as 
defi ned for Equation 8.8. Alternatively, one can solve for the required cross-sectional 
area,  A req        �       bh  (in 2 ) as the basis for designing or analyzing a rectangular beam for 
shear, corresponding to an allowable shear stress,   τ   allow  (psi or ksi) for maximum 
shear force,  V  (lb or kips). In this case, one gets:   

  
A

V
req

allow

�
1 5.

τ   
(8.10)

      



137

 This   is the basis for checking shear in timber beams, which are almost always 
rectangular ( Figure 8.10   ). Reinforced concrete beams behave in a more complex 
manner, and special procedures for dealing with shear, or diagonal tension, have 
been developed. 

 In   the vicinity of supports, loads are transferred by compression directly to those 
supports ( Figure 8.11   ), and the maximum shear force is therefore somewhat less 
than the computed maximum value. In the design of wood and reinforced concrete 
beams, the shear force within a distance,  d , of the face of the supports can be con-
sidered equal to the value of the shear force at that distance,  d . For wood beams,  d  
is the total beam height; for reinforced concrete, it represents the effective depth, 
measured to the centerline of the tension reinforcement.  

    Wide-fl ange sections 
 For   steel wide-fl ange sections, the maximum shear stress, also at the neutral axis, can 
be found by computing the static moment,  Q , of the partial area (above the  neutral 

 FIGURE 8.10  
       Distribution of shear stress on a rectangular cross section    

 FIGURE 8.11  
       Reduction of shear force,  V max  , in the vicinity of the beam’s reaction (support)    

  Shear stress
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axis) about the neutral axis and solving Equation 8.8, as shown in  Figure 8.12   . For 
steel wide-fl ange shapes, simplifi ed procedures have been developed, based on 
the average stress on the cross section, neglecting the overhanging fl ange areas; 
that is: 

  
τmax �

V

dtw   
(8.11)

     

  where   τ  max        �      the maximum shear stress within the cross section,  V       �      the total 
shear force at the cross section,  d       �      the cross-sectional depth, and  t w        �      the web 
thickness (see  Figure 8.13   ).            

 FIGURE 8.12  
       Distribution of shear stress on a fl anged cross section, and calculation of maximum shear stress,  τ   max      

 FIGURE 8.13  
       Comparison of actual and assumed maximum shear stress,  τ   max  , for a steel wide-fl ange beam    
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    WOOD 
 Wood   beams are generally designed for bending stress and then checked for shear 
and defl ection. Using allowable stress design, the required section modulus is found 
by dividing the maximum bending moment by the adjusted allowable bending stress, 
    F
b, as shown in Equation 8.5. This adjusted value is found by multiplying the tabular 
value,  F b   (Table A-3.5), by various adjustment factors. In addition to factors for load 
duration, wet service conditions, and size, three new adjustment factors are intro-
duced for bending: a fl at use factor, a repetitive member factor, and a beam stability 
factor (Table A-3.6). 

 The   fl at use factor,  C f   u , accounts for the apparent increase in bending strength 
when beams are stressed about their weak axes. The repetitive member factor,  C r  , 
accounts for the increased safety of joists and rafters made from dimension lumber 
when they are joined by fl oor or roof decks and spaced not more than 24       in. on cen-
ter. Wood beams acting individually must be designed according to the most conser-
vative assumptions regarding their actual strength, whereas closely spaced joists or 
rafters enjoy an additional margin of safety — particularly heavy concentrated loads 
(or unusually weak joists or rafters) are  “ helped out ”  by the adjacent members. The 
beam stability factor,  C L  , accounts for the possibility of lateral-torsional buckling 
when the compression edge of a beam is not adequately braced. For beams con-
tinuously braced by roof or fl oor decks, as is often the case with dimension lum-
ber,  C L        �      1.0. Otherwise, an effective length is found by multiplying the distance 
between lateral braces (often determined by the location of concentrated loads) by 
a coeffi cient and applying the formulas found in Table A-3.6. 

 For   glued laminated (glulam) beams only, the size factor is replaced by a  “ vol-
ume ”  factor,  C V  . Like the size factor, the volume factor is designed to account for the 
increased probability of brittle tensile failure in larger structural elements. Because 
the beam stability factor,  C L  , accounts for compressive buckling, while the volume 
factor accounts for tensile failure, it is not necessary to combine both of these fac-
tors when adjusting the allowable bending stress. Instead, only the smaller value of 
 C V   or  C L   is used for glulam beams. 

 Because   some adjustment factors cannot be determined until the cross-sectional 
dimensions of the beam are known, the design process may become an iterative 
one, based on the analysis of trial sections. In this process, tabular values of allow-
able bending stress and modulus of elasticity are found in Tables A-3.5 and A-3.9; 
values for allowable shear stress,  F v  , are found in Table A-3.7. Shear stress is only 
adjusted for duration of load and wet service conditions (Table A-3.8). When com-
puting defl ections, the only adjustment to modulus of elasticity,  E , is for wet service 
conditions (Table A-3.9). The average modulus of elasticity ( E ), and not the mini-
mum modulus of elasticity ( E min  ), is used in defl ection calculations. 

 In   the examples that follow, the maximum shear force,  V , could have been 
reduced by considering the value at a distance,  d , from the face of the supports, as 
illustrated in  Figure 8.11 . Where shear does not appear to be a critical factor in the 

Wood
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design of the beam, this reduction is usually unnecessary; however, if shear appears 
to govern the beam design, it may be benefi cial to use the reduced value of  V  in the 
calculation of actual shear stress.

       Example 8.1        Analyze wood beam, dimension lumber      

    Problem defi nition 
 Can   a 2      �      8 Hem-Fir No. 2 joist, spaced 16       in. on center, be used in a residential application, 
spanning 12       ft? Assume a dead load corresponding to that listed in Table A-2.1 for wood fl oor 
systems with 2      �      10 joists.  

    Solution overview 
 Find   loads; check bending stress (or required section modulus); check shear stress (or 
required cross-sectional area); check defl ection.  

    Problem solution 
        1.     Find loads: 

    a.     From Table A-2.2, the live load,  L       �      40       psf; the live load distributed on 1 linear foot of 
the joist is  L       �      40(16/12)      �      53.33       lb/ft. Live load reduction does not apply since  K LL A t   
(the tributary area multiplied by the live load element factor — see Table A-2.2) is less 
than 400       ft 2 .  

    b.     From Table A-2.1, the dead load,  D       �      10.5       psf; the dead load distributed on 1 linear 
foot of the joist is  D       �      10.5 (16/12)      �      14       lb/ft.  

    c.     The total distributed load,  w       �      53.33      �      14.0      �      67.33       lb/ft.     
    2.     Create load, shear, and moment diagrams as shown in  Figure 8.14    to determine critical 

(i.e., maximum) shear force and bending moment.  
    3.     Find adjusted allowable bending stress: 

    a.     From Table A-3.5, fi nd the tabular allowable bending stress:  F b        �      850       psi.  
    b.     From Table A-3.6, fi nd all relevant adjustments:  C F        �      1.2;  C r        �      1.15;  C M        �       C D        �      1.0.  
    c.     Multiply the tabular stress value by the adjustments to get the adjusted allowable stress: 

 Fb
         �      850(1.2)(1.15)      �      1173       psi.     

 FIGURE 8.14  
       Load, shear, and moment diagrams for Example 8.1    



141

     4.     From Equation 8.5, compute the required section modulus:  S req        �       M / Fb
         �      14,544/
1173      �      12.4       in 3 .  

     5.     From Table A-4.1, check the actual section modulus for a 2      �      8, bent about its strong ( x ) 
axis:  S x        �      13.14       in 3 ; since the actual  S x        �      13.14       in 3       	      required  S x        �      12.4       in 3 , the 2      �      8 
section is OK for bending.  

     6.     Find adjusted allowable shear stress: 
    a.     From Table A-3.7, the tabular allowable shear stress,  F v        �      150       psi.  
    b.     From Table A-3.8, fi nd all relevant adjustments:  C M        �      1.0;  C D        �      1.0.  
    c.     Multiply the tabular stress value by the adjustments to get the adjusted allowable 

stress:  Fv
         �      150(1.0)(1.0)      �      150       psi.     
     7.     From Equation 8.10, compute the required area,  A req        �      1.5 V / Fv
         �      1.5(404)/

150      �      4.04       in 2 .  
     8.     From Table A-4.1, check the actual area of the cross section:  A actual        �      10.88       in 2 ; since 

 A actual        �      10.88       in 2       	       A req        �      4.04       in 2 , the 2      �      8 section is OK for shear.  
     9.     From Table A-8.1, fi nd the allowable total-load defl ection for a fl oor joist:  Δ   allow        �      span/

240      �      12(12)/240      �      0.6       in.; and the allowable live-load defl ection for a fl oor joist: 
 Δ   allow        �      span/360      �      12(12)/360      �      0.4       in.  

    10.     Using Table A-8.2, check the actual  total-load  defl ection.  Δ   actual        �       CPL  3 /( EI ), where:           
     C       �      22.46.  
     P       �       wL       �      67.33(12)      �      808       lb.  
     L       �      12       ft. (We are using the same symbol,  L , for span and  “ live load ” ; the meaning should 

be clear from context.)  
    From Table A-3.9, the modulus of elasticity,  E       �      1,300,000       psi.  
    From Table A-4.1, the moment of inertia about the strong ( x ) axis,  I x        �      47.63       in 4 .           

    11.      Δ       �      22.46(808)(12 3 )/(1,300,000      �      47.63)      �      0.5       in. Since  Δ   actual        �      0.5       in.      �       Δ   allow        �      
0.6       in., the beam is OK for total-load defl ection.  

    12.     Using Table A-8.2, check the actual  live-load  defl ection.  Δ   actual        �       CPL  3 /( EI ), where:           
     C       �      22.46.  
     P       �       wL       �      53.33(12)      �      640       lb. (Use live load only!)  
     L       �      12       ft. (We are using the same symbol,  L , for span and  “ live load ” ; the meaning should 

be clear from context.)  
    From Table A-3.9, the modulus of elasticity,  E       �      1,300,000       psi.  
    From Table A-4.1, the moment of inertia about the strong ( x ) axis,  I x        �      47.63       in 4 .           

    13.      Δ       �      22.46(640)(12 3 )/(1,300,000      �      47.63)      �      0.4       in. Since  Δ   actual        �      0.4       in.      �       Δ   allow        �      
0.4       in., the beam is OK for live-load defl ection.  

    14.      Conclusion:  The 2      �      8 is OK for bending, shear and defl ection. Therefore, it is acceptable.         

       Example 8.2        Analyze wood beam, timbers      

    Problem defi nition 
 Can   a 14      �      20 Hem-Fir No. 2 girder be used in a  “ heavy timber ”  offi ce building application, 
as shown in  Figure 8.15   ? Assume that beams framing into the girder provide lateral bracing 
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at the third points. Assume a total dead load of 20       psf and a live load corresponding to offi ce 
occupancy.  

    Solution overview 
 Find   loads; check bending stress (or required section modulus); check shear stress (or 
required cross-sectional area); check defl ection.  

    Problem solution 
        1.     Find loads: 

    From Table A-2.2, the live load for offi ce occupancy,  L       �      50       psf; with live load reduction, 
we get  L       �      50[0.25      �      15/(2      �      24      �      10) 0.5 ]      �      50(0.935)      �      46.7       psf.  

    The dead load,  D       �      20       psf (given).  
    A total concentrated load,  P , acts on tributary area of 10      �      8      �      80       ft 2 , so P      �      ( D       �       L )(80)      �      

(20      �      46.7)(80)      �      5336       lb.     
    2.     Create load, shear, and moment diagrams as shown in  Figure 8.16    to determine critical 

(i.e., maximum) shear force and bending moment.  
    3.     From Table A-3.5, the tabular value is  F b        �      675       psi.  
    4.     Find the adjustments to the allowable bending stress: 

    From Table A-3.6:  C F        �      (12/19.5) 1/9       �      0.95.  
    From Table A-3.6:  C r        �      1.0.  
    From Table A-3.6:  C M        �      1.0.  
    From Table A-3.6:  C D        �      1.0.  

 FIGURE 8.15  
       Framing plan and view of girder for Example 8.2    

 FIGURE 8.16  
       Load, shear, and moment diagrams for Example 8.2    
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    In addition, the beam stability factor must be computed:  C L        �       A       �      ( A  2       �       B ) 0.5  where:  
     l e        �      1.68 l u        �      (1.68)(8      �      12)      �      161       in. (for point loads providing lateral support at the 

third points)  .
     E 
min          �      400,000       psi (from Table A-3.9).  

     b       �      13.5       in.;  d       �      19.5       in. (actual dimensions of a 14      �      20 from Table A-4.1).  
     Fb*         �       F b C M C D C F        �      675(1.0)(1.0)(0.95)      �      640       psi.  
     F bE        �      1.20(13.5) 2 (400,000)/(161      �      19.5)      �      27,864.  

     A       �      (1      �      27,864/640)/1.9      �      23.44.  
     B       �      (27,864/640)/0.95      �      45.83.  
     C L        �       A       �      ( A  2       �       B ) 0.5       �      23.44      �      (23.44 2       �      45.83) 0.5       �      0.999.     

     5.     The adjusted allowable stress,  Fb
         �       Fb*    C L        �      640(0.999)      �      639       psi.  
     6.     From Equation 8.5, compute the required section modulus:  S req        �       M / Fb
          �      

512,256/639      �      802       in 3 .  
     7.     From Table A-4.1, check the actual section modulus about the strong ( x ) axis: 

 S x        �      855.6       in 3 ; since the actual  S x        �      855.6       in 3       	      the required  S x        �      802       in 3 , the section is 
OK for bending.  

     8.     Find the adjusted allowable shear stress: 
    From Table A-3.7, the tabular allowable shear stress,  F v        �      140       psi.  
    From Table A-3.8, fi nd all relevant adjustments:  C M        �      1.0;  C D        �      1.0.  
    The adjusted allowable shear stress,  Fv
          �      140(1.0)(1.0)      �      140       psi.     

     9.     From Equation 8.10, compute the required area,  A req        �      1.5 V / Fv
          �      1.5(5336)/
140      �      57.2       in 2 .  

    10.     From Table A-4.1, check the actual area of a 14      �      20 cross section:  A actual        �      263.3       in 2 . 
Since  A actual        �      263.3       in 2       	       A req        �      57.2       in 2 , the section is OK for shear.  

    11.     From Table A-8.1, fi nd the allowable total-load defl ection for a fl oor beam:  Δ   allow        �      span/
240      �      24(12)/240      �      1.2       in.; and the allowable live-load defl ection for a fl oor joist: 
 Δ   allow        �      span/360      �      24(12)/360      �      0.8       in.  

    12.     From Table A-8.2, check the actual  total-load  defl ection:  Δ       �       CPL  3 /( EI ), where: 
     C       �      61.34.  
     P       �      (46.7      �      20)(10      �      8)      �      5336       lb.  
     L       �      24       ft.  
     E       �      1,100,000       psi (from Table A-3.9).  
     I       �      8342       in 4  (from Table A-4.1).  

     Δ       �      61.34(5336)(24 3 )/(1,100,000      �      8342)      �      0.49       in.              
    Since  Δ   actual        �      0.49       in.      �       Δ   allow        �      1.2       in., the girder is OK for total-load defl ection.           

    13.     From Table A-8.2, check the actual  live-load  defl ection:  Δ       �       CPL  3 /( EI ), where: 
     C       �      61.34.  
     P       �      46.7(10      �      8)      �      3736       lb. (Use live load only!)  
     L       �      24       ft.  
     E       �      1,100,000       psi (from Table A-3.9).  
     I       �      8342       in 4  (from Table A-4.1).  

     Δ       �      61.34(3736)(24 3 )/(1,100,000      �      8342)      �      0.35       in.              
    Since  Δ   actual        �      0.35       in.      �       Δ   allow        �      0.8       in., the girder is OK for live-load defl ection.           

    14.      Conclusion:  The 14      �      20 is OK for bending, shear, and defl ection. Therefore, it is 
 acceptable.                
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       Example 8.3        Design wood beam, glulam      

    Problem defi nition 
 Design   a 32       ft-long glulam roof girder of stress class 20F-1.5E for the one-story industrial 
building shown in the framing plan ( Figure 8.17   ). Assume a snow load,  S       �      30       psf, and a 
dead load,  D       �      20       psf. Use a beam width of 8¾       in., with 1½-in. laminations (i.e., assume that 
 “ Western Species ”  will be used). Beams framing into the girder provide lateral bracing at the 
quarter points. Use snow load only in computing  “ live-load ”  defl ection, and assume that the 
defl ection criteria will be based on a roof structure with no ceiling.  

    Solution overview 
 Find   loads; begin iterative design process by assuming unknown adjustments to allowable 
stresses; then check bending stress (required section modulus), shear stress (required cross-
sectional area) and defl ection, as in analysis examples. Recompute if necessary with bigger (or 
smaller) cross section until bending, shear, and defl ection are OK.  

    Problem solution 
        1.     Find loads: 

     S       �      30       psf (given).  
     D       �      20       psf (given).  
    From Table A-5.1, it can be seen by examining the various load combinations that the most 
severe effects occur with the combination: dead load plus snow load, or  D       �       S .  

    Using  D       �       S , the total concentrated load,  P , acts on a tributary area of 28      �      8      �      224       ft 2 , 
so  P       �      ( D       �       S )(tributary area)      �      (30      �      20)(224)      �      11,200       lb.     

    2.     Create load, shear, and moment diagrams as shown in  Figure 8.18    to determine critical 
(i.e., maximum) shear force and bending moment.  

    3.     Find provisional adjusted allowable bending stress: 
    From Table A-3.5, part  D , the design (tabular) value for bending is  F b        �      2000       psi.  

    From Table A-3.6, the relevant adjustments are as follows:  C r        �      1.0;  C M        �      1.0; 
 C D        �      1.15.  C L   and  C V   cannot yet be determined, since they depend on the actual cross-
section size; for now, choose any reasonable value for the smaller of  C L   or  C V  ; for example, 
assume that the smaller of  C L   or  C V        �      0.9.  

    The adjusted value for allowable bending stress,  Fb
         �      2000(1.15)(0.9)      �      2070       psi.     

 FIGURE 8.17  
       Framing plan for Example 8.3    
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    4.     From Equation 8.5, compute the required section modulus:  S req        �       M / Fb
         �      2,150,400/
2070      �      1039       in 3 .  

    5.     Compute the required depth,  d , based on the section modulus for a rectangular cross sec-
tion,  S       �       bd   2 / 6       �      1039 and  b       �      8.75       in. (given). In this case, 8.75 d   2 /6      �      1039, from 
which  d       �      26.7       in. Rounding up to the fi rst multiple of 1.5       in. (the depth of an individual 
lamination), we get:  d       �      27       in.    

    Trial 1: 8¾-in.      �      27-in. cross section 
        1.     Find allowable bending stress: as before,  F b        �      2000       psi.  
    2.     Find adjustments to allowable bending stress (Table A-3.6): 

     C r        �      1.0.  
     C M        �      1.0.  
     C D        �      1.15.  
    We still need to determine the smaller of  C L   or  C V   :  
     C V        �      (21/ 32) 1/10 (12/27) 1/10 (5.125/8.75) 1/10       �      0.84.  
     C L        �       A       �      ( A  2       �       B ) 0.5  where:  
           l e        �      1.54 l u        �      (1.54)(8      �      12)      �      148       in.  
           E 
min          �      780,000       psi, from Table A-3.9, parts  B  and  C .  
           b   �      8.75       in.;  d       �      27       in.  
           Fb*         �       F b C D        �      2000(1.15)      �      2300       psi.  
           F bE        �      1.20(8.75 2 )(780,000)/(148      �      27)      �      17,934.  
           A       �      (1      �      17,934/2300)/1.9      �      4.63.  
           B       �      (17,934/2300)/0.95      �      8.21.  
           C L        �       A       �      ( A  2   –   B ) 0.5       �      4.63  –  (4.63 2   –  8.21) 0.5       �      0.99.  
    Since  C V        �      0.84      �       C L        �      0.99, use  C V   only.     

    3.     The adjusted design value for bending is  Fb
          �       Fb*    C V        �      2300(0.84)      �      1932       psi.  
    4.     From Equation 8.5, compute the required section modulus:  S req        �       M / Fb
         �      2,150,400/

1932      �      1113       in 3 .  
    5.     Check that actual section modulus is greater or equal to the required section modulus: 

actual  S x        �       bd   2 /6      �      8.75(27) 2 /6      �      1063       in 3 ; since actual  S x        �      1063       in 3       �      required 
 S x        �      1113       in 3 , the section is not OK for bending. Try next larger section (increase depth, 
not width!).     

 FIGURE 8.18  
       Load, shear, and moment diagrams for Example 8.3    
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    Trial 2: 8¾-in.      �      28½-in. cross section ( Figure 8.19 )            
    1.     Find allowable bending stress: as before,  F b        �      2000       psi.  
    2.     Find adjustments to allowable bending stress (Table A-3.6): 

     C r        �      1.0.  
     C M        �      1.0.  
     C D        �      1.15.  
    We still need to determine the smaller of  C L   or  C V   :  
     C V        �      (21/ 32) 1/10 (12/28.5) 1/10 (5.125/8.75) 1/10       �      0.83.  
     C L        �       A       �      ( A  2       �       B ) 0.5  where:  
           l e        �      1.54 l u        �      (1.54)(8      �      12)      �      148       in.  
           E 
min          �      780,000       psi, from Table A-3.9, parts  B  and  C .  
           b       �      8.75       in.;  d       �      28.5       in.  
           F b*          �       F b C D        �      2000(1.15)      �      2300       psi.  
           F bE        �      1.20(8.75 2 )(780,000)/(148      �      28.5)      �      16,990.  
           A       �      (1      �      16,990/2300)/1.9      �      4.41.  
           B       �      (16,990/2300)/0.95      �      7.78.  
           C L        �       A       �      ( A  2       �       B ) 0.5       �      4.41      �      (4.41 2       �      7.78) 0.5       �      0.99.  
    Since  C V        �      0.83      �       C L        �      0.99, use  C V   only.     

    3.     The adjusted design value for bending is  Fb
         �      ( F b*   )( C V  )      �      2300(0.83)      �      1909       psi.  
    4.     From Equation 8.5, compute the required section modulus:  S req        �       M / Fb
         �      2,150,400/

1909      �      1126       in 3 .  
    5.     Check that actual section modulus is greater or equal to required section modulus: 

actual  S x        �       bd   2 /6      �      8.75(28.5) 2 /6      �      1185       in 3 ; since actual  S x        �      1185       in 3       �      required 
 S x        �      1126       in 3 , the section is OK for bending.  

    6.     Find adjusted allowable shear stress: 
    From Table A-3.7, part  C , the design value for shear,  F v        �      210       psi.  
    From Table A-3.8, the relevant adjustments are as follows:  C M        �      1.0;  C D        �      1.15.  
    The adjusted allowable stress for shear,  Fv
         �      210(1.15)      �      241.5       psi.     

    7.     Based on Equation 8.10, the required cross-sectional area to resist shear,  A req        �      1.5 V / 
Fv
          �      1.5(16,800)/241.5      �      104.3       in 2 .  

    8.     Check actual cross-sectional area      �      8.75      �      28.5      �      249.4       in 2 ; since  A actual        �      249.4       in 2   
    	       A req        �      104.3       in 2 , section is OK for shear.  

 FIGURE 8.19  
       Glued laminated cross section corresponding to trial 2 for Example 8.3    
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     9.     From Table A-8.1, the allowable total load defl ection for a roof with no ceiling, 
 Δ   allow        �      span/120      �      32(12)/120      �      3.20       in.; and the allowable (snow load) defl ection for 
a roof with no ceiling,  Δ   allow        �      span/180      �      32(12)/180      �      2.13       in.  

    10.     From Table A-8.2, the actual  total-load  defl ection is  Δ       �       CPL  3 /( EI ), where: 
     C       �      85.54.  
     P       �      ( S       �       D )(tributary area)      �      (30      �      20)(28      �      8)      �      11,200       lb.  
     L       �      32       ft.  

     E  
        �       1,500,000       psi, from Table A-3.9, parts  A  and  C . The  “ average ”  adjusted modulus 
of elasticity,  E  
  , is used for defl ection calculations, whereas the adjusted minimum 
modulus of elasticity,  E 
min   , is used in buckling or stability calculations.  

     I       �       bd   3 /12      �      (8.75)(28.5 3 )/12      �      16,879.6       in 4 .     
    11.      Δ   actual        �      85.54(11,200)(32 3 )/(1,500,000      �      16,880)      �      1.24       in. Since  Δ   actual        �      1.24       in.      �   

    Δ   allow        �      3.20       in., the beam is OK for total-load defl ection.  
    12.     From Table A-8.2, the actual  snow-load  defl ection is  Δ       �       CPL  3 /( EI ), where: 

     C       �      85.54.  
     P       �      ( S )(tributary area)      �      (30)(28      �      8)      �      6720       lb. (Use snow load only!)  
     L       �      32       ft.  

     E  
        �       1,500,000       psi, from Table A-3.9 (parts  A  and  C ). The  “ average ”  adjusted modulus 
of elasticity,  E  
  , is used for defl ection calculations, whereas the adjusted minimum 
modulus of elasticity,  E 
min,    is used in buckling or stability calculations.  

     I       �       bd   3 /12      �      (8.75)(28.5 3 )/12      �      16,880       in 4 .     
    13.      Δ   actual        �      85.54(6720)(32 3 )/(1,500,000      �      16,880)      �      0.74       in. Since  Δ   actual        �      0.74       in.      �       

Δ   allow        �      2.13       in., the beam is OK for snow-load defl ection.  
    14.      Conclusion:  The 8¾-in.      �      28½-in. section is OK for bending, shear, and defl ection. 

Therefore, it is acceptable.                 

       Example 8.4        Design wood beam, dimension lumber      

    Problem defi nition 
 Design   a Douglas Fir-Larch (North) No.1/No.2 girder using 4   �      lumber to support a residential 
live load as shown in  Figure 8.20   . Assume 10.5       psf for dead load. Loads on the girder can be 
modeled as being uniformly distributed since joists are spaced closely together.  

    Solution overview 
 Find   loads; fi nd known adjustments to allowable bending stress; use Table A-8.3 to directly 
compute lightest cross section for bending; check for shear and defl ection. Alternatively, begin 
iterative design process by assuming unknown adjustments to allowable stresses; then check 
bending stress (required section modulus), shear stress (required cross-sectional area), and 
defl ection, as in analysis examples. Recompute if necessary with bigger (or smaller) cross sec-
tion until bending, shear, and defl ection are OK.  

Wood
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    Problem solution 
        1.     Find loads: 

    From Table A-2.2, the live load for a residential occupancy,  L       �      40       psf.  
    The dead load,  D       �      10.5       psf (given).  

    The total distributed load,  w       �      ( D       �       L )(tributary area)      �      (10.5      �      40)(6)      �      303       lb/ft. Live 
load reduction does not apply since  K LL   times the tributary area is less than 400       ft 2 . The 
tributary area for  w  is measured along one linear foot of the girder, in the direction of its 
span, as shown in the framing plan ( Figure 8.20 ).     

    2.     Create load, shear, and moment diagrams as shown in  Figure 8.21    to determine critical 
(i.e., maximum) shear force and bending moment.  

    3.     Find partially adjusted allowable bending stress: 
    From Table A-3.5, the design (tabular) value for bending stress,  F b        �      850       psi.  

    From Table A-3.6, the following adjustments can be determined:  C r        �      1.0;  C M        �      1.0; 
 C D        �      1.0;  C L        �      1.0 (assume continuous bracing by fl oor deck). The size factor,  C F  , cannot 
be determined at this point.  

    The adjusted value for bending stress, with all adjustments known except for  C F  , is  
Fb
         �      850 C F   psi.     

    4.     From Equation 8.5, compute the required section modulus:  S req        �       M / Fb
         �      M/
(850 C F  )      �      25,566/(850 C F  ). This can be rewritten as  C F S req        �       M / Fb
         �      M/(850)      �      
25,566/(850)      �      30.08       in 3 .  

    5.     Rather than doing several  “ trial ”  designs, it is possible to fi nd the correct cross section 
for bending directly, by using a table of combined size factors ( C F  ) and section moduli 
( S x  ) with the lightest values highlighted. In this method, the adjusted allowable stress is 
computed  without  the size factor, since  C F   is combined with the section modulus in the 
table. Table A-8.3 indicates directly that the lightest 4     �      section for bending is a 4      �      8, 
based on a combined  C F S x   value of 32.19       in 3 , which is larger than the required value of 
 C F S req        �      30.08       in 3  found in Step 4. Table A-8.3 also shows that a 2      �      12 is actually the 
lightest acceptable section for bending, since it is the fi rst bold-faced entry with a value of 
 C F S x   greater than or equal to 30.08       in 3 . However, in this problem, a 4     �      section was called 
for, so we provisionally select the 4      �      8 section.  

 FIGURE 8.20  
       Framing plan for Example 8.4    
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     6.     Find adjusted allowable shear stress: 
    From Table A-3.7, the design (tabular) allowable shear stress  F v        �      180       psi.  
    From Table A-3.8, there are no adjustments for shear stress; that is:  C M        �      1.0;  C D        �      1.0.  
    The adjusted value for allowable shear stress,  Fv
         �      180       psi.     

     7.     Based on Equation 8.10, the required cross-sectional area to resist shear,  A req        �      1.5 V / 
Fv
         �      1.5(1136)/180      �      9.47       in 2 .  

     8.     From Table A-4.1, we can check the actual area of the cross section,  A actual        �      25.38       in 2 ; 
since  A actual        �      25.38       in 2       	       A req        �      9.47       in 2 , the section is OK for shear.  

     9.     From Table A-8.1, fi nd the allowable total-load defl ection for a fl oor beam:  Δ   allow        �      span/
240      �      12(7.5)/240      �      0.375       in.; and the allowable live-load defl ection for a fl oor beam: 
 Δ   allow        �      span/360      �      12(7.5)/360      �      0.25       in.  

    10.     From Table A-8.2, we can check the actual  total-load  defl ection:  Δ   actual        �       CPL  3 /( EI ), 
where: 
     C       �      22.46.  
     P       �       wL       �      (40      �      10.5)(6)(7.5)      �      2272.5       lb.  
     L       �      7.5       ft.  
     E       �       E  
        �      1,600,000       psi (from Table A-3.9).  
     I       �      111.1       in 4  (directly from Table A-4.1, or from the equation,  I       �       bd   3 /12).     

    11.      Δ   actual        �      22.46(2272.5)(7.5 3 )/(1,600,000      �      111.1)      �      0.12       in. Since  Δ   actual        �      0.12       in.      �       
Δ   allow        �      0.375       in., the beam is OK for total-load defl ection.  

    12.     From Table A-8.2, we can check the actual  live-load  defl ection:  Δ   actual        �       CPL  3 /( EI ), 
where: 
     C       �      22.46.  
     P       �       wL       �      (40      �      6)7.5      �      1800       lb. (Use live load only!)  
     L       �      7.5       ft.  
     E       �       E  
        �      1,600,000       psi (from Table A-3.9).  
     I       �      111.1       in 4  (directly from Table A-4.1, or from the equation,  I       �       bd   3 /12).     

    13.      Δ   actual        �      22.46(1800)(7.5 3 )/(1,600,000      �      111.1)      �      0.096       in. Since  Δ  actual       �      0.096       in.      �       
Δ   allow        �      0.25       in., the beam is OK for defl ection.  

    14.      Conclusion:  The 4      �      8 section is OK for bending, shear, and defl ection. Therefore, it is 
acceptable.     

 FIGURE 8.21  
       Load, shear, and moment diagrams for Example 8.4    

Wood



150  CHAPTER 8    Beams

    Alternate method 
 It   is also possible to fi nd the lightest 4     �      section using an iterative design process without Table 
A-8.3. Using this method, the size factor,  C F  , would need to be assumed and then checked 
after a provisional cross section is found, as follows: 

    1.     Assuming a size factor,  C F        �      1.0, the adjusted allowable bending stress becomes  
Fb
          �      850(1.0)      �      850       psi. Then, from Equation 8.5, we compute the required section 
modulus:  S req        �       M / Fb
         �      M/850      �      25,566/850      �      30.08       in 3 .  

    2.     From Table A-4.1, we provisionally select a 4      �      10 with actual  S  x       �      32.38       in 3 .    

    Trial 1: 4      �      10 cross section 
        1.     Find actual adjusted allowable bending stress: the design (tabular) value remains 

 F b        �      850       psi; the actual size factor for a 4      �      10 is  C F        �      1.20, so the adjusted allowable 
bending stress,  Fb
          �      850(1.20)      �      1020       psi. Since this value for a 4      �      10 is greater than 
the allowable stress initially assumed, the 4      �      10 must be OK for bending. But is it the 
 lightest  acceptable choice? Because the size factor actually increases for smaller sections, 
we must try the next smaller size.     

    Trial 2: 4      �      8 cross section 
        1.     Find actual adjusted allowable bending stress for the 4      �      8: the size factor,  C F        �      1.3, so 

the adjusted allowable bending stress,  Fb
          �      850(1.3)      �      1105       psi.  
    2.     From Equation 8.5, compute the required section modulus:  S req        �       M / Fb
         �      

25,566/1105      �      23.14       in 3 .  
    3.     From Table A-4.1, the actual section modulus for a 4      �      8,  S x        �      30.66       in 3 ; since actual 

 S x        �      30.66       in 3       	       S req        �      23.14       in 3 , the 4      �      8 section is OK for bending.  
    4.     Shear and defl ection for the 4      �      8 are checked as shown earlier, using the fi rst method, 

and are both OK.  
    5.      Conclusion:  The 4      �      8 section is OK for bending, shear, and defl ection. Therefore, it is 

acceptable. But what about a 4      �      6, with a size factor just as large?     

    Trial 3: 4      �      6 cross section 
        1.     Find actual adjusted allowable bending stress for the 4      �      6: the size factor,  C F        �      1.3, so 

the adjusted allowable bending stress,  Fb
          �      850(1.3)      �      1105       psi.  
    2.     From Equation 8.5, compute the required section modulus:  S req        �       M / Fb
         �      25,566/

1105      �      23.14       in 3 .  
    3.     From Table A-4.1, the actual section modulus for a 4      �      6,  S x        �      17.65       in 3 ; since actual 

 S x        �      17.65       in 3       �       S req        �      23.14       in 3 , the 4      �      6 section is not OK for bending.  
    4.      Conclusion:  Since the 4      �      6 is not OK, select the 4      �      8 section.                   

    STEEL 
 The   design of steel wide-fl ange beams using the  “ allowable strength design ”  method 
is quite similar to the procedures used to design timber beams. Cross sections are 
selected based on their strength in bending, and then checked for shear and defl ection. 
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    Bending of laterally braced and compact beams 
 Unlike   wood beams, however, steel beams are designed based on their  “ available ”  
strength, rather than on the more conventional notion of an  “ allowable ”  stress. 
Whereas the strength of a wood beam corresponds to its outer fi bers reaching a fail-
ure stress, steel beams do not fail when their outer fi bers fi rst begin to yield at the 
stress,  F y  . A steel cross section is able to carry increased loads beyond the so-called 
 elastic  moment, shown in  Figure 8.22 a    , up until the entire cross section has yielded, 
as shown in  Figure 8.22 b  . The plastic section modulus corresponds to this so-called 
 plastic  moment, reached when the strain at a cross section is of suffi cient magnitude 
so that virtually the entire section has yielded. 

 Previously  , steel used an  “ allowable stress ”  method based on a limit state corre-
sponding to the elastic moment; if the plastic moment was always stronger than the 
elastic moment to the same extent for all cross sections, one could simply adjust the 
factor of safety for allowable  strength  (plastic moment) design so that the method 
corresponded precisely to allowable  stress  (elastic moment) design. However, it can 
be shown that the extra margin of safety gained by moving beyond the elastic, to 
the plastic moment (i.e., from the condition of  Figure 8.22 a   to  Figure 8.22 b  ), is not 
the same for all cross sections, so that allowable stress design for steel does not pro-
vide a consistent margin of safety against the limit state of complete yielding. 

 For   wide-fl ange ( Ι -shaped) sections, the extremes can be represented by a hypo-
thetical section with no web (i.e., consisting entirely of fl anges of infi nite density, 
or no thickness, as shown in  Figures 8.22 c   and  8.22 d  ), and, at the other extreme, 
a section whose fl anges merge together at the neutral axis (i.e., a rectangular sec-
tion, as shown in  Figures 8.22 g   and  8.22 h  ). In the fi rst case, it is clear that the elastic 
moment and plastic moment coincide, and the so-called shape factor, defi ning the 
ratio of plastic to elastic section modulus,  Z x   / S x  , equals 1.0. In the second case, the 
elastic section modulus can be computed by examining the rotational equilibrium 
of the force resultants shown in  Figure 8.22 g  . Since the moment arm between them 
equals 2/3        h , and the resultant force,  C , equals (1/2)( h /2)( b )( F y  ), the moment,  M,  
equals 2/3        h (1/2)( h /2)( b )( F y  ) and, solving for the section modulus,  S x        �       M / F y  , we 
get  S x        �       bh  2 /6. Performing the same equilibrium calculation on  Figure 8.22 h   (with a 
moment arm equal to  h /2), and solving for the plastic section modulus,  Z x        �       M / F y  , 
we get  Z x        �       bh  2 /4. The shape factor in this case is  Z x   / S x        �      1.5. 

 Clearly  , all Ι-shaped sections must have a shape factor between these two 
extremes, that is, between 1.0 and 1.5. The shape factor for a typical W-shape 
(W30      �      90), shown in  Figures 8.22 e   and  8.22 f  , can be determined in the same 
manner, abstracting from the complexities of the actual shape by considering 
only perfectly rectangular fl ange and web areas. Using the dimensions shown, 
and performing the same equilibrium calculations as in the previous cases, we get 
 S x        �      240       in 3  and  Z x        �      277       in 3 , so the shape factor,  Z x   / S x        �      277/240      �      1.15. The 
actual values for elastic and plastic section modulus are found in Table A-4.3, and it 
can be seen that the approximate calculations are both conservative and reasonably 
accurate: the correct values are actually  S x        �      245       in 3  and  Z x        �      283       in 3 , so the real 
shape factor,  Z x   / S x        �      283/245      �      1.16. 

Steel
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 FIGURE 8.22  
       Bending stresses acting on steel wide-fl ange ( Ι -shaped) cross section corresponding to the  
(a)  elastic moment and  (b)  plastic moment, with three examples:  (c)  and  (d)  illustrate elastic 
and plastic moments for a hypothetical section with all its area at the extreme fi bers,  (e)  and  
(f)  illustrate elastic and plastic moments for a typical W30      �      90 section, while  (g)  and  
(h)  illustrate elastic and plastic moments for a rectangular section    
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 The   equation for plastic section modulus,  Z x        �       M / F y  , presumes that the cross 
section is able to reach a state of complete yielding before one of two types of buck-
ling occurs: either lateral-torsional buckling within any unbraced segment along the 
length of the span or local fl ange or web buckling. Therefore, to use this equation in 
design, based on the maximum moment encountered, the beam must be protected 
from both of these buckling modes — in the fi rst case by limiting the unbraced length 
and, in the second case, by regulating the proportions of the beam fl ange and web 
(i.e., using a so-called compact section). Then, rewriting this equation in the form 
most useful for steel design, we get: 

  
Z M Freq y� Ω max /

  
(8.12)

     

  where  M max        �      the maximum bending moment (in-kips),  F y   is the yield stress of the 
steel, and  Ω  is a safety factor equal to 1.67 for bending.   

 We   found earlier that the shape factor for a W30      �      90 section equals 1.16. By 
looking at the ratio of plastic to elastic section modulus for all wide-fl ange shapes, it 
can be seen that these shape factors fall between 1.098 (for a W14      �      90), and 1.297 
(for a W14      �      730). One could therefore conservatively create a safety factor for elas-
tic allowable  stress  design by assuming a shape factor of 1.10 and by multiplying 
this value by the safety factor for allowable  strength  design, 1/ Ω       �      1/1.67      �      0.60 
(inverted to be consistent with the conventions for allowable stress safety factors). 
Equation 8.12 would then become  S req        �      1 . 1(0 . 60) M max  / F y        �      0 . 66 M max  / F y  . This, in 
fact, is the design equation for what used to be called  “ allowable stress design ”  in 
steel. It may still be used, but it will give slightly conservative values compared with 
the available stress method using the plastic section modulus,  Z x  . 

 Choosing   the lightest (i.e., most economical) laterally braced, compact section is 
facilitated by the use of tables in which steel cross sections are ranked, fi rst in terms 
of plastic section modulus and then by least weight. Table A-8.4 is an example of 
such a list, in which only the lightest sections appear. Thus, a W30      �      191 (with a 
plastic section modulus of 675       in 3 ) is not listed, since a lighter section, W40      �      167, 
has a higher plastic section modulus (693       in 3 ).  

    Bending of laterally unsupported or noncompact beams 
 When   the compression fl ange of a beam is not continuously braced, lateral- torsional 
buckling can reduce the available bending moment below the value of  M  p / Ω  
assumed earlier for laterally braced beams. How much this stress is reduced depends 
on whether the beam buckles before or after the cross section begins to yield and 
how bending stresses vary over the beam’s unbraced length.  Figure 8.8  shows 
several possible stress stages for a cross-sectional shape as the bending moment 
increases. At  Figure 8.8 c  , the outer fi bers begin to yield, and the  elastic moment , 
 M y  , is reached. At  Figure 8.8 d   and  Figure 8.8 e  , yielding progresses further into the 
cross section, as the moment increases. Finally, at  Figure 8.8 f  , the entire cross sec-
tion has yielded at the maximum  plastic moment  that the section can sustain. 

Steel
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 Being   able to resist the full plastic moment represents an extra margin of safety: 
if a beam can develop this plastic moment without buckling, the maximum available 
bending moment of  M  p / Ω  is used, as shown in Equation 8.12. In addition to lateral-
torsional buckling ( Figure 8.23 a    ), various types of local fl ange and web buckling 
must also be prevented from occurring before the plastic moment is reached ( Figure 
8.23 b  ). Local buckling is prevented by limiting the ratio of fl ange width to fl ange 
thickness, as well as web width to web thickness. Sections proportioned so that local 
buckling will not occur are called  compact sections;  these sections must be used 
to qualify for the full available moment of  M p  / Ω . As it turns out, all but one of the 
wide-fl ange shapes listed in Table A-4.3 is a compact section when made from A36 
steel (the exception being W6      �      15). For 50-ksi steel, all but 10 (W6      �      8.5, W6      �      9, 
W6      �      15, W8      �      10, W8      �      31, W10      �      12, W12      �      65, W14      �      90, W14      �      99, and 
W21      �      48) are compact. 

 For   sections that are compact and laterally braced, Equation 8.12 applies, and the 
full strength of the beam is utilized. However, as shown in  Figure 8.24   , this available 
strength must be reduced if either local fl ange buckling (where the section is not 
compact) or lateral-torsional buckling (where the section is not adequately braced) 
occurs before the plastic moment is reached. 

    Lateral-torsional buckling 
 For   beams with an unbraced length,  L b  , that falls within the  “ middle zone ”  illus-
trated in  Figure 8.24 a   (i.e., where the onset of buckling occurs before a full plastic 
moment, but after the elastic moment, is reached), the nominal bending strength 
is linearly reduced from the full plastic moment,  M p        �       F y  Z x  , to 70% of the elas-
tic moment, or 0.7 F y  S x  . The two boundaries (unbraced lengths) that bracket this 

 FIGURE 8.23  
       Two modes of buckling limiting the strength of a wide-fl ange (Ι-shaped) beam:  (a)  lateral-
torsional buckling and  (b)  local fl ange buckling    
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condition of  inelastic  lateral-torsional buckling are called  L p   and  L r  . For an unbraced 
length,  L b  , less than  L p  , lateral-torsional buckling is not an issue, as the full plastic 
moment can be reached. For an unbraced length greater than  L r  , the onset of  lateral-
torsional buckling is characterized entirely by  elastic  behavior, and the nominal 
bending strength must be reduced even further. These boundaries are defi ned as 
follows:  L p   is set at 1.76 r y  ( E / F y  ) 

0.5 , where  E  is the modulus of elasticity (29,000       ksi 
for all steel),  F y   is the yield stress (50       ksi for A992 steel and 36       ksi for A36 steel), 
and  r y   is the minimum radius of gyration about the  y -axis (see Table A-4.3 for 

 FIGURE 8.24  
       Infl uence of lateral-torsional buckling and fl ange slenderness on available moment: three zones 
are defi ned for  (a)  lateral torsional buckling, with the boundaries established by the unbraced 
length,  L p   (the greatest unbraced length where the section can reach a plastic moment without 
lateral torsional buckling) and  L r   (the greatest unbraced length where the section will buckle 
inelastically before reaching the plastic moment); and for  (b)  fl ange slenderness, with the 
boundaries established by the ratio of half the fl ange width to fl ange thickness,  λ       �       b f   /(2 t f  ), 
set equal to  λ   p   (the greatest fl ange slenderness where the section can reach a plastic moment 
without local fl ange buckling) and  λ   r   (the greatest fl ange slenderness where the fl ange will buckle 
locally in an inelastic manner before reaching the plastic moment)    

Steel
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wide-fl ange shapes). The other boundary,  L r  , can be conservatively approximated as 
 π  r ts  [ E /(0.7 F y  )] 

0.5 , where  r ts   may itself be approximated as the radius of gyration for 
the compression fl ange and part of the web; that is,  r ts        �       b f   /[12      �      2 ht w   /( b f   t f  )] 

0.5 . 
In this equation,  b f   and  t f   are the fl ange width and thickness, respectively, and  h  is 
the length of the  “ straight ”  part of the web (i.e., the clear distance between fl anges, 
minus the radius at the web-fl ange intersection). 

 However  , all these equations are based on the assumption that the beam is subject 
to a uniform bending moment along its entire length; where the moment varies, as is 
almost always the case, this assumption is overly conservative, since lateral-torsional 
buckling is less likely to be triggered where bending stresses are not entirely at their 
maximum value along the whole length of an unbraced segment. For this reason, a 
coeffi cient,  C b  , should be applied to the available strength of  each  unbraced segment 
of the beam, based on the distribution and magnitude of bending moments along that 
segment’s length. This  “ lateral-torsional buckling modifi er ”  is defi ned as follows for 
doubly symmetric bending elements such as wide-fl ange beams: 
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  where  M max   is the greatest moment within the unbraced segment; and  M A  ,  M B  , and  M C   
are the bending moments at the quarter point, midpoint, and three-quarters point, respec-
tively, along the segment. Where a segment is not braced at its endpoint (e.g., where the 
end of a cantilevered beam is not braced),  C b   should be taken as 1.0. Of course,  C b   is not 
used where a beam is laterally braced and, in any case, can never increase the nominal 
bending strength beyond the plastic moment,  M p  , as shown in  Figure 8.24 a  .           

    Local fl ange buckling 
 Compact   sections are proportioned so that neither the fl ange nor the web will 
buckle locally before the onset of a plastic moment. Since all wide-fl ange  webs  meet 
the standards for compact sections, only the  fl ange  slenderness, defi ned as  λ       �       b f   /
(2 t f  ), is at issue (where  b f   and  t f   are the fl ange width and thickness, respectively). 
In much the same way that boundaries are established for unbraced length that 
defi ne the reduction in the bending strength due to lateral-torsional buckling ( Figure 
8.24 a  ), similar boundaries are established for fl ange slenderness, with similar conse-
quences for beam strength ( Figure 8.24 b  ). The limit for compact behavior — that is, 
the maximum fl ange slenderness for which beams are still able to reach the plastic 
moment without local fl ange buckling — is defi ned by  λ   p        �      0.38( E / F y  ) 

0.5 . The other 
boundary (i.e., the maximum fl ange slenderness for which inelastic behavior char-
acterizes the onset of local fl ange buckling) is defi ned by  λ   r        �      1.0( E / F y  ) 

0.5 . In these 
equations,  E  is the modulus of elasticity of steel (29,000       ksi) and  F y   is the material’s 
yield stress (50       ksi for A992 steel and 36       ksi for A36 steel). 

 As   with reductions for lateral-torsional buckling, the nominal bending strength 
begins with the plastic moment,  M p        �       F y  Z x  , for compact sections and is linearly 
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reduced to 70% of the elastic moment, or 0.7 F y S x  , between  λ   p   and  λ   r  , with further 
reductions beyond  λ   r  . 

 Where   a beam is both noncompact and laterally unbraced, both criteria illus-
trated in  Figure 8.24  are tested, and the smaller capacity governs. For beams that 
are both compact and laterally braced, Table A-8.4 can be used to select the light-
est W-shape for bending. For A992 wide-fl ange beams that are not adequately braced 
laterally (i.e., where  L b        �       L p  ), Table A-8.5 can be used to select the lightest beam. Of 
course, by setting the unbraced length to zero, Table A-8.5 can be used for laterally 
braced beams as well.   

    Shear 
 Once   a selection is made based on bending stress, the section is then checked for 
shear and defl ection. The nominal shear strength,  V n  , equals 0.6 F y  A w  , where  F y   is 
the yield stress of the steel and  A w   is the web area (equal, for a W-shape, to the 
beam depth times the web thickness,  d       �       t w  ). For most cross sections, the safety 
factor can be taken as  Ω       �      1.5, so that the available strength is  V n  / Ω       �      0.6/
 Ω ( F y  A w  )      �      0.4 F y  A w  . This can be converted into an  “ allowable stress ”  equation by 
defi ning the allowable shear stress,  F v        �      0.4 F y  , and solving for the required web 
area for a given shear force,  V : 

  required /A V Fw v�   (8.14)     

  For a small group of wide-fl ange beams with slender webs, the safety factor for shear 
is increased from 1.5 to 1.67, and so the allowable shear stress becomes  F v        �      (0.6/
1.67) F y        �      0.36 F y  . These sections are listed in Table A-4.3 (see Note 3).          

    Block shear 
 Where   the top fl ange of a steel beam is coped (so that it may be fastened to the web 
of a girder while keeping the top surfaces of girder and beam fl anges aligned), a 
mode of failure combining both shear and tension stresses in the beam web must be 
checked, with the shear and tension failure planes assumed to occur at the surface 
defi ned by the bolt centerline, as shown in  Figure 8.25   . 

 The   nominal capacity of such a connection is found by adding the capacity of the 
net shear area subject to rupture (or the gross shear area subject to yielding) to the 
capacity of the net tension area subject to rupture. Where both net areas are sub-
ject to rupture, the capacity is defi ned as  R n        �      0.6 F u  A nv        �       U bs  F u  A nt  . Where yield-
ing governs the failure of the shear area, the capacity is defi ned as  R n        �      0.6 F y  A gv        �       
U bs F u  A nt  . The smaller of these two values determines the capacity of the connection 
for resisting block shear. In these equations,  F u   is the minimum tension strength of 
the material (equal to 58       ksi for A36 steel and 65       ksi for A992 steel);  A nv   and  A nt   are 
the net areas for shear and tension, respectively;  A gv   is the gross shear area; and  U bs   
equals 1.0 for conditions that correspond to uniform tension stress, as in the coped 
beam with a single line of bolts shown in  Figure 8.25 a  , while  U bs   equals 0.5 for con-
ditions that lead to a triangular (nonuniform) tension stress, as in the coped beam 

Steel
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with two lines of bolts shown in  Figure 8.25 b  . The available strength is then found 
by dividing the nominal capacity by the safety factor,  Ω       �      2.00. 

 It   is also possible that a mode of shear failure alone, with no tension compo-
nent, could govern the connection design. In such a case, both yielding on the gross 
area of the cross section and rupture on the net area need to be checked. For yield-
ing, the nominal capacity,  R n        �      0.60 F y  A gv  , and the available strength,  Ω  R n  , is deter-
mined using a safety factor,  Ω       �      1.50 ( not   Ω       �      2.00). For rupture on the net area, 
 R n        �      0.60 F u  A nv  , and the available strength,  Ω  R n  , is determined using a safety factor, 
 Ω       �      2.00. All the parameters are as defi ned earlier for block shear. The lower safety 
factor for yielding refl ects the relative safety of a yielding mode of failure compared 
with the more sudden and catastrophic type of failure associated with rupture.

       Example 8.5        Find capacity of beam web based on block shear      

    Problem defi nition 
 Find   the capacity of a bolted double-angle connection to the web of a coped W18      �      86 
wide-fl ange beam, considering only block shear in the web. Assume A992 ( F y        �      50       ksi and 
 F u        �      65       ksi) steel for the beam, and 3/4-in.-diameter bolts. The bolt spacing,  s       �      3       in., the 
vertical edge distance,  L ev        �      1.5       in., and the horizontal edge distance,  L eh        �      1.5       in. are defi ned 
in  Figure 8.26   .  

    Problem overview 
 Find   the smaller of the capacities based on rupture and yielding of shear area, rupture of ten-
sion area, and bolt bearing on the web.  

 FIGURE 8.25  
       Block shear at coped beam with  (a)  coeffi cient  U bs        �      1.0 where tension stress is uniform (single line 
of bolts) and  (b) U bs        �      0.5 where tension stress has a triangular distribution (double line of bolts)    
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    Problem solution 
        1.     Find capacity based on net areas subject to rupture. Lengths along net areas are found 

by subtracting the lengths of bolt hole diameters from the total (gross) dimension. The 
net area for shear,  A nv        �       t w  (4 s       �       L ev        �      4.5 d bh  )      �      0.480(4      �      3      �      1.5      �      4.5      �      0.875)      �     
 4.59       in 2 , where  t w   is the web thickness (from Table A-4.3),  s  is the bolt spacing of 3       in.,  L ev   
is the vertical edge distance of 1.5       in., and  d bh   is the bolt hole diameter (found by adding 
1/8       in. to the bolt diameter of 3/4       in.). The net area for tension,  A nt        �       t w  ( L eh        �      0.5 d bh  )      �      
0.480(1.5      �      0.5      �      0.875)      �      0.51       in 2 , where  L eh   is the horizontal edge spacing and  d bh   is 
the bolt hole diameter. 

    The capacity based on rupture of these net areas is defi ned as  R n        �      0.6 F u A nv        �    
   U bs F u A nt  , where  U bs        �      1.0 for a single line of bolt holes. Using the material properties 
defi ned earlier, we get:  R n        �      0.6(65)(4.59)      �      (1.0)(65)(0.51)      �      212.2       kips.     

    2.     Find capacity based on gross area (yielding) for shear and net area (rupture) for tension. 
The gross area for shear,  A gv        �       t w  (4 s       �       L ev  )      �      0.480(4      �      3      �      1.5)      �      6.48       in 2 , where  t w   is 
the web thickness (from Table A-4.3),  s  is the bolt spacing of 3       in.,  L ev   is the vertical edge 
distance of 1.5       in., and  d bh   is the bolt hole diameter. The net area for tension, as in step 1, 
is 0.51       in 2 . 

    The capacity based on yielding of the shear area and rupture of the tension area is defi ned 
as  R n        �      0.6 F y  A gv        �       U bs F u  A nt  , where  U bs        �      1.0 as before. Using the material properties 
defi ned above, we get  R n        �      0.6(50)(6.48)      �      (1.0)(65)(0.51)      �      227.6       kips.     

    3.     The governing capacity is the smaller value from steps 1 and 2:  R n        �      212.2       kips based on 
rupture of the net areas.                   

 FIGURE 8.26  
       Block shear in a coped beam for Example 8.5    
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    Defl ection 
 Defl ection   is based on the same criteria discussed earlier for wood beams and 
involves a comparison of an allowable defl ection, typically set at span/240 for total 
loads and span/360 for live loads on fl oor beams, to the actual computed defl ection. 
Allowable defl ection guidelines can be found in Table A-8.1; actual defl ections can 
be computed based on the coeffi cients in Table A-8.2.

       Example 8.6        Design steel beam      

    Problem defi nition 
 Using   A992 steel, design the typical beam and girder for the library stack area shown in  Figure 
8.27   . Use the generic dead load for steel fl oor systems. Assume that the beams are continu-
ously braced by the fl oor deck and that the girders are braced only by the beams framing 
into them.  

    Solution overview 
 Find   loads; compute maximum bending moment and shear force; use appropriate tables to 
select beams for bending; then check for shear and defl ection.  

    Problem solution 
        1.     Find loads: 

    From Table A-2.1, the dead load,  D       �      47       psf.  
    From Table A-2.2, the live load,  L       �      150       psf       

    Beam design 
        1.     Create load, shear, and moment diagrams as shown in  Figure 8.28    to determine critical 

(i.e., maximum) shear force and bending moment. The total distributed load,  w       �      (dead      �      
live)(tributary area for 1 linear foot)      �      (47      �      150)(6)      �      1182       lb/ft      �      1.18       kips/ft. Live load 
reduction would not apply even if the  “ infl uence ”  area was not less than 400       ft 2 , because 

 FIGURE 8.27  
       Framing plan for Example 8.6    
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of the library stack occupancy (i.e., the probability of full loading makes live load reduction 
a dangerous assumption).  

    2.     Find allowable bending stress: since the beam is laterally braced by the fl oor 
deck and the cross section is assumed to be compact, use Equation 8.12 to fi nd 
 Z req        �       Ω  M max   / F y        �      1.67 M max  / F y  . From Table A-3.12,  F y        �      50       ksi for A992 steel, so 
 Z req        �      1.67(399)/50      �      13.33       in 3 .  

    3.     From Table A-8.4, select a W12      �      14 with  actual Z x        �      17.4       in 3       	       Z req  ; this section is, by 
defi nition, OK for bending.  

    4.     Check section for shear: from Table A-4.3, the actual web area,  A w        �       d       �       t w        �      11.9      �      0.2
0      �      2.38       in 2 .  

    5.     From Equation 8.14, the required  A w        �       V / F v        �      8.86/(0.36      �      50)      �      0.49       in 2  where, 
from Table A-3.13, the allowable shear stress,  F v        �      0.36 F y   (and not the usual value of 
 F v        �      0.40 F y  ) because the beam web is unusually slender. Beams requiring such reduced 
allowable shear stresses are noted in Table A-4.3. Since the actual web area is greater than 
the required web area, the beam is OK for shear.  

    6.     From Table A-8.1, fi nd the allowable total-load defl ection for a fl oor beam:  Δ   allow        �      span/
240      �      12(15)/240      �      0.75       in.; and the allowable live-load defl ection for a fl oor joist: 
 Δ   allow        �      span/360      �      12(15)/360      �      0.5       in.  

    7.     From Table A-8.2, the actual  total-load  defl ection,  Δ   actual        �       CPL  3 /( EI ), where: 
     C       �      22.46.  
     L       �      15       ft.  
     P       �       wL       �      (150      �      47)(6)(15)      �      17,730       lb      �      17.73       kips.  
     E       �      29,000       ksi (Table A-3.12, Note 1).  
     I       �      88.6       in 4  (Table A-4.3).  

     Δ   actual        �      22.46(17.73)(15 3 )/(29,000      �      88.6)      �      0.523       in.              
    Since  Δ   actual        �      0.523       in.      �       Δ   allow        �      0.75       in., beam is OK for total-load defl ection.           

    8.     From Table A-8.2, the actual  live-load  defl ection,  Δ   actual        �       CPL  3 /( EI ), where: 
     C       �      22.46.  
     L       �      15       ft.  
     P       �       wL       �      (150      �      6)15      �      13,500       lb      �      13.5       kips. (Use live load only!)  
     E       �      29,000       ksi (Table A-3.12, Note 1).  

 FIGURE 8.28  
       Load, shear, and moment diagrams for beam in Example 8.6    
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     I       �      88.6       in 4  (Table A-4.3).  
     Δ   actual        �      22.46(13.5)(15 3 )/(29,000      �      88.6)      �      0.398       in.              
    Since  Δ   actual        �      0.398       in.      �       Δ   allow        �      0.5       in., beam is OK for live-load defl ection.           

    9.      Conclusion:  The W12      �      14 section is OK for bending, shear, and defl ection. Therefore, it is 
acceptable.     

    Girder design 
        1.     Create load, shear, and moment diagrams as shown in  Figure 8.29    to determine the critical 

(i.e., maximum) shear force and bending moment. Each concentrated load is twice the typ-
ical beam reaction, or 17.73       kips. Alternatively, compute using tributary areas; that is,  P       �      
(47      �      150)(15      �      6)      �      17,730       lb      �      17.73       kips. Live load reduction does not apply even 
though the  “ infl uence ”  area is greater than 400       ft 2 , because of the library stack occupancy 
(i.e., the probability of full loading makes live load reduction a dangerous assumption).  

    2.     Find allowable bending stress: the girder is not continuously braced by the fl oor deck; rather, it 
is braced every 6       ft by the beams framing into it, so the unbraced length,  L b        �      6       ft. Use Table 
A-8.5 to directly fi nd the lightest cross section for bending, based on  M max        �      212.76       ft-kips, 
 L b        �      6       ft, and assuming (conservatively) that the  “ lateral-torsional buckling modifi er, ”   C b        �      1.0. 
Find the intersection of moment and unbraced length (follow the dotted lines shown in  Figure 
8.30   ) and then move up or to the right to the fi rst solid line representing the available moment 
capacity of wide-fl ange beams. Select a W21      �      44.  

    3.     Check section for shear: from Table A-4.3, the  actual  web area,  A w        �       d       �       t w        �      20.7      �      0.3
5      �      7.25       in 2 .  

    4.     From Equation 8.14, the required  A w        �       V / F v        �      26.595/(0.40      �      50)      �      1.33       in 2 , where, 
from Table A-3.13, the allowable shear stress,  F v        �      0.40 F y   (the usual value of  F v        �      0.40 F y   
can be used in this case). Since the actual web area is greater than the required web area, 
the beam is OK for shear.  

    5.     From Table A-8.1, fi nd the allowable total-load defl ection for a fl oor beam:  Δ   allow        �      span/
240      �      12(24)/240      �      1.2       in.; and the allowable live-load defl ection for a fl oor joist: 
 Δ   allow        �      span/360      �      12(24)/360      �      0.8       in.  

    6.     From Table A-8.2, the actual  total-load  defl ection,  Δ   actual        �       CPL  3 /( EI ), where: 
     C       �      85.54.  

    span,  L       �      24       ft.  

 FIGURE 8.29  
       Load, shear, and moment diagrams for girder in Example 8.6    
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     P       �      (47      �      150)(15      �      6)      �      17,730       lb      �      17.73       kips.  
     E       �      29,000       ksi (Table A-3.12, Note 1).  
     I       �      843       in 4  (Table A-4.3).  

     Δ   actual        �      85.54(17.73)(24 3 )/(29,000      �      843)      �      0.86       in.              
    Since  Δ   actual        �      0.86       in.      �       Δ   allow        �      1.2       in., beam is OK for total-load defl ection.           

    7.     From Table A-8.2, the actual  live-load  defl ection,  Δ   actual        �       CPL  3 /( EI ), where: 
     C       �      85.54.  

    span,  L       �      24       ft.  
     P       �      150(15      �      6)      �      13,500       lb      �      13.5       kips. (Use live load only!)  
     E       �      29,000       ksi (Table A-3.12, Note 1).  
     I       �      843       in 4  (Table A-4.3).  

     Δ   actual        �      85.54(13.5)(24 3 )/(29,000      �      843)      �      0.65       in.              
    Since  Δ   actual        �      0.65       in.      �       Δ   allow        �      0.80       in., beam is OK for live-load defl ection.           

    8.      Conclusion:  The W21      �      44 section is OK for bending, shear, and defl ection. Therefore, it is 
acceptable.                 

       Example 8.7        Analyze rectangular HSS (hollow structural section)      

    Problem defi nition 
 Determine   whether a HSS12      �      4 � 1/4 can be used as a typical beam for the library stack area 
shown in Example 8.6.  

    Solution overview 
 Find   loads; compute maximum bending moment and shear force; check beam for bending, 
shear, and defl ection.  

 FIGURE 8.30  
       Selection of W21      �      44 beam based on available moment graphs (Table A-8.5) for Example 8.6    
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    Problem solution 
        1.     Find loads and moment (same as Example 8.6): 

    The dead load,  D       �      47       psf.  
    The live load,  L       �      150       psf  
    Maximum moment,  M max        �      399       in-kips     

    2.     Find allowable bending stress: since the beam is laterally braced by the fl oor deck and 
the cross section is assumed to be compact, use Equation 8.12 to fi nd  Z req        �       Ω  M max   /
 F y        �      1.67 M max   / F y  . From Table A-3.12,  F y        �      46       ksi for HSS rectangular shapes (A500 grade 
B), so  Z req        �      1.67(399)/46      �      14.49       in 3 .  

    3.     From Table A-4.6, the actual plastic section modulus for a HSS12      �      4 � 1/4,  Z x        �      25.6       in 3 . 
Since the  actual Z x   is greater than  Z req  , this HSS section is OK for bending.  

    4.     Check section for shear: from Table A-3.13 (Note 3), the web area,  A w  , is taken as 2 ht  (where  t  
is the wall thickness of the web and  h  can be assumed to equal the nominal depth minus 3 t ). 
From A-4.4, this web area,  A w        �      2 ht       �      2(12      �      3      �      0.233)(0.233)      �      5.27       in 2 .  

    5.     From Equation 8.14, the required  A w        �       V / F v        �      8.86/(0.36      �      50)      �      0.49       in 2 , where, from 
Table A-3.13, the allowable shear stress,  F v        �      0.36 F y   (and not the value of  F v        �      0.40 F y   
used for most wide-fl ange beams). Since the actual web area is greater than the required 
web area, the HSS beam is OK for shear.  

    6.     From Table A-8.1, fi nd the allowable total-load defl ection for a fl oor beam:  Δ   allow        �      span/
240      �      12(15)/240      �      0.75       in.; and the allowable live-load defl ection for a fl oor joist: 
 Δ   allow        �      span/360      �      12(15)/360      �      0.5       in.  

    7.     From Table A-8.2, the actual  total-load  defl ection,  Δ   actual        �       CPL  3 /( EI ), where: 
     C       �      22.46.  

    span,  L       �      15       ft.  
     P       �       wL       �      (47      �      150)(6)(15)      �      17,730       lb      �      17.73       kips.  
     E       �      29,000       ksi (Table A-3.12, Note 1).  
     I       �      88.6       in 4  (Table A-4.6).  

     Δ   actual        �      22.46(17.73)(15 3 )/(29,000      �      119)      �      0.389       in.              
    Since  Δ   actual        �      0.389       in.      �       Δ   allow        �      0.75       in., the HSS beam is OK for total-load defl ection.           

    8.     From Table A-8.2, the actual  live-load  defl ection,  Δ   actual        �       CPL  3 /( EI ), where: 
     C       �      22.46.  
     L       �      15       ft.  
     P       �       wL       �      (150      �      6)15      �      13,500       lb      �      13.5       kips. (Use live load only!)  
     E       �      29,000       ksi (Table A-3.12, Note 1).  
     I       �      88.6       in 4  (Table A-4.6).  

     Δ   actual        �      22.46(13.5)(15 3 )/(29,000      �      119)      �      0.300       in.              
    Since  Δ   actual        �      0.300       in.      �       Δ   allow        �      0.5       in., the HSS beam is OK for live-load defl ection.           

    9.      Conclusion:  The HSS12      �      4 � 1/4 section is OK for bending, shear, and defl ection. 
Therefore, it is acceptable.                   

    REINFORCED CONCRETE 
 Concrete   beams are reinforced with steel rods (reinforcing bars) in order to resist 
internal tension forces within the cross section. Unlike wood and steel, which can 
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withstand substantial tension stress, concrete may be safely stressed only in compres-
sion. The pattern of steel reinforcement thus corresponds to the pattern of positive 
and negative bending moments within the beam: in regions of positive bending, steel 
is placed at the bottom of the cross section; in regions of negative bending, steel is 
placed at the top ( Figure 8.31   ). Like concrete columns, 2½       in. to 3       in. of cover, mea-
sured from the outside face of the beam to the centerline of the reinforcing steel, is 
used to protect the steel from corrosion and provide adequate bond between the 
steel and concrete (see Figure 7.9). 

 The   strength, or capacity, of a reinforced concrete beam can be determined by 
considering the equilibrium of tensile and compressive forces at any cross section. 
Failure of the beam occurs either with crushing of the concrete within the compres-
sion region; or yielding of the tension steel, followed by compressive crushing of 
the concrete. Since tension yielding is the preferred mode of failure — compressive 
crushing of the concrete would be sudden and catastrophic, whereas yielding of 
the steel provides warning signs of collapse — concrete beams are often deliberately 
 under-reinforced  to guarantee that, in the case of failure, the steel reinforcing bars 
begin to yield before the concrete in the compressive zone crushes. 

 At   the point of failure, the stresses in a reinforced concrete cross section are as 
shown in  Figure 8.32   . The curved distribution of stresses within the compressive 

 FIGURE 8.31  
       Relationship of bending moment and position of tension steel reinforcement    

 FIGURE 8.32  
       Strain and stress diagrams for tension-reinforced concrete beam at point of failure    

Reinforced concrete
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zone (above the neutral axis for  “ positive ”  bending) corresponds to the nonlinear 
stress-strain curves characteristic of plain concrete, with a value of 0.85 f c
    taken for 
the strength of concrete corresponding to its behavior in an actual structure ( Figure 
8.33   , curve  b ). Testing of many reinforced concrete beams has shown that the aver-
age stress within the compressive zone is 0.85  β  1   f c
   , and the resultant location is 
  β  1 c /2 from the face of the concrete beam, as shown in  Figure 8.34 a    . The coeffi cient 
  β  1   ranges from 0.85 for  f c
         �      4000       psi, to 0.65 for  f c
         	      8000       psi ( Figure 8.35   ). Thus, 
for a cross section of width,  b , the total compressive force,  C , is 

  C f bcc� 
0 85 1. β   (8.15)      

 Since   the steel yields before the concrete crushes (assuming that the beam has 
been designed to be  under-reinforced ), the steel stress is  f y   and the total tensile 
force,  T , is: 

  
T A fs y�

  
(8.16)

     

  where  A s   is the steel area. (As the steel is now used in the context of concrete 
design, the designation for its yield stress changes from  F y   to  f y  .)   

 Alternatively  , a different, but equivalent, rectangular stress distribution can be 
used in place of the actual nonlinear distribution, as shown in  Figure 8.34 b  . In this 

 FIGURE 8.33  
       Stress-strain diagrams for plain concrete showing  (a)  fast loading characteristic of test cylinders 
and  (b)  slow loading characteristic of actual structures (same as Figure 7.11)    
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version, fi rst formulated by C. S. Whitney and known as the  “ Whitney stress block, ”  
the dimensions of the rectangle are adjusted so as to be consistent with the empiri-
cally determined resultant location. The defi nition of   β  1   remains the same, as does 
the total compressive force,  C . 

 FIGURE 8.34  
       Comparison of  (a)  actual stresses in reinforced concrete beam with  (b)  equivalent rectangular 
( “ Whitney ” ) stress block    

 FIGURE 8.35  
       Relationship of coeffi cient   β  1   to concrete cylinder strength,  fc
       

Reinforced concrete
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 Referring   to the Whitney stress block diagram in  Figure 8.34 b  , we can write 
equations of horizontal and moment equilibrium to determine the section’s capacity. 
From horizontal equilibrium, the resultants of the compressive and tensile stresses 
must be equal in magnitude; that is,  T       �       C , or: 

  
A f f abs y c� 
0 85.

  
(8.17)

     

  Solving for the stress block depth,  a , we get:   

  
a A f f bs y c� 
/( )0 85.

  
(8.18)

      

 From   moment equilibrium, the resisting moment within the cross section must 
equal the force  T  (or  C ) times the moment arm between  T  and  C . This moment arm 
equals  d       �       a /2, so we can write the moment at failure,  M n        �       T ( moment arm ); or: 

  
M A f d an s y� �( / )2

  
(8.19)

     

  Substituting the expression for  a  from Equation 8.18, we get:   

  

M A f
d A f

f b
n s y

s y

c

�
�

( )( . )2 0 85 ′

⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
  

(8.20)

     

  We defi ne a steel ratio,   ρ        �       A s  /( bd ), so that   

  A bds � ρ   (8.21)     

  Then, substituting this expression for  A s   into Equation (8.20), we get:   

  
M f bd f fn y y c� � 
ρ ρ2[ / ]1 0 59.

  
(8.22)

      

 This   moment represents the nominal strength of the cross section when it fails. 
In the strength design method used for the design of reinforced concrete elements, 
we reduce this moment by a strength reduction factor,   φ  , so that the useful capacity 
of the section becomes: 

  φ φ φM bd R M bd Rn u� �2 2 or   (8.23)     

  where   

      φ        �      capacity reduction factor, 0.9 for bending  

     M n        �      the nominal strength of the cross section (in-kips)  
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     M u        �      the  “ design moment ”  based on factored loads (in-kips)  

     b       �      the width of the cross section (in.)  

     d       �       the effective depth of the cross section measured to the centerline of the 
steel reinforcement (in.)  

     R  is defi ned in Equation 8.24, as follows:    

  
R f f fy y c� 
ρ ρ( / )1 0 59� .

  
(8.24)

     

  where   

     f y        �       the yield stress of the steel reinforcement (we will use 60       ksi in all 
examples)  

     f c
         �      the compressive cylinder strength of the concrete (ksi)  

      ρ        �      the steel ratio,  A s  /( bd )    

 For   given values of  f y   and  fc
,    the relationship between  R  and   ρ   can be computed 
from Equation 8.24. Table A-8.9 gives typical values of  R  and   ρ   for  f y        �      60       ksi, and  fc
     
ranging from 3000       psi to 5000       psi. Requirements for reinforcing bar cover and typical 
overall dimensions are the same as for reinforced concrete columns (see Table A-4.9).

       Example 8.8        Analyze reinforced concrete beam      

    Problem defi nition 
 Check   the capacity of the reinforced concrete cross section shown in  Figure 8.36   . Can it 
be safely used for the  “ service ”  (i.e., unfactored) loads shown in  Figure 8.36 ? Assume that 
the dead load,  D , equals the weight of the beam (assume 150       pcf for  reinforced  concrete), 
 f y        �      60       ksi, and  fc
         �      3000       psi. Reinforcing steel areas are listed in Table A-4.10; for minimum 
beam widths consistent with the number of bars selected, see Table A-4.11.  

    Solution overview 
 Find   factored loads and maximum moment; compute bending capacity.  

    Problem solution 
        1.     From Table 5.1, the typical factored load combination for a fl oor beam is 1.2 D       �      1.6 L . The 

factored dead load consists of 1.2 times the beam weight and is expressed in weight per 
linear foot of beam:  D       �      1.2(150)(12/12)(28/12)      �      420       lb/ft      �      0.42       kips/ft. The factored 
live load,  L       �      1.6(20)      �      32       kips.  

    2.     Create load and moment diagrams as shown in  Figure 8.37    to determine critical (i.e., 
 maximum) bending moment. One can fi nd the maximum moment for the concentrated 
and distributed loads separately and then add them together (since they both occur at the 
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beam’s midpoint), or, as is shown in  Figure 8.37 b  , the maximum moment may be com-
puted directly by applying the equation of moment equilibrium to a free-body diagram cut 
at midspan.  

    3.     Compute (bending) capacity of beam: 
    From Table A-5.2,   φ        �      0.9 for bending.  
    From Table A-4.10, the area of four No. 8 bars is  A s        �      3.16       in 2 .  
    The steel ratio,   ρ        �       A s  /( bd )      �      3.16/(12      �      25)      �      0.0105.  

 FIGURE 8.36  
       Reinforced concrete beam showing  (a)  loading diagram and  (b)  cross section through beam for 
Example 8.8    

 FIGURE 8.37  
       To fi nd maximum moment for Example 8.8, draw  (a)  loading and moment diagram and  (b)  free-
body diagram cut at midpoint with equation of moment equilibrium    
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    From Table A-8.9 or from Equation 8.24,  R       �      0.552       ksi (this is obtained directly from 
Equation 8.24; when using Table A-8.9, interpolate between values for   ρ  , or, conservatively, 
use the closest but smaller value of   ρ   to fi nd  R ).  

    From Equation 8.23,   φ M n        �        φ bd   2  R       �      0.9(12)(25 2 )(0.552)      �      3726       in-kips     
    4.     Check actual design moment: since the actual design moment      �      3098       in-kips      �    

    φ  M n       �      3726       in-kips (the available moment capacity of the beam), the section is OK for 
bending.                 

    Continuous beams and T-beams 
 For   simply supported, determinate beams, no special guidelines are required for the 
calculation of shear and moment. In reality, though, reinforced concrete beams are 
rarely simply supported. Instead, concrete fl oor and roof structures are most often 
cast monolithically and designed as indeterminate, continuous structures. As an aid 
in computing the maximum negative and positive bending moments characteristic 
of such structures (e.g., see  Figure 8.5 ),  “ moment values ”  have been tabulated for 
various support conditions. These can be used for uniformly loaded fl oor structures 
with at least two more-or-less equal spans (differing in length by no more than 20%), 
as long as the dead load is greater or equal to one third of the live load (Table A-8.7). 

 Where   slabs are cast monolithically with beams, as is most often the case (the use 
of precast elements being the most common exception), the beam thickness is mea-
sured to the top of the slab, as shown in  Figure 8.38 a    . Where negative moments are 
being computed, corresponding to tension at the top, the beam width is not infl u-
enced by the presence of the slab (which is entirely in tension), and the capacity of 
the cross section is equivalent to that of a  “ pure ”  rectangular shape, as shown in  Figure 
8.38 b  . With positive bending, however, the compression zone is not limited by the 
web or stem of the beam, but extends out into the slab, as shown in  Figure 8.38 c  . The 
effective width,  b , of such a T-beam is considered to be the smaller of the following: 

  

b

b

�

�

1 4/  beam span; or

centerline distance between beams; or

bb � �web width  times slab thickness.16   

(8.25)

      

 Positive   moments can thus be resisted with a much greater effective cross-
sectional width than can negative moments, by taking advantage of the concrete 
already present within the slab. As long as the entire compression zone (or the 
equivalent stress block depth,  a ) is within the slab, the design of such a T-beam is 
quite similar to the design of a rectangular beam of width,  b . Whether the compres-
sive stress block is, in fact, within the slab can be checked by computing the stress 
block depth,  a  (from Equation 8.18), substituting   ρ        �       A s   /( bd ), and comparing  a  to 
the slab thickness, as follows: 

  
a A f f b f d fs y c y c� 
 � 
/( ) /( )0 85 0 85. .ρ

  (8.26)     
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  For  a       �      slab thickness, the effective beam width,  b , can be used. Otherwise, the 
design of T-beams is somewhat more complex, since the compression zone extends 
into the web ( Figure 8.39   ). The design of such beams is not considered in this text.   

 Where   both positive and negative moments occur over the span of a beam, it is 
most common to fi rst design the beam for negative moment (where only the beam web 
width is available to resist compression stresses), thereby establishing the cross- sectional 
dimensions for the entire span. The beam is then designed for positive moment as a 
T-beam with all cross-sectional dimensions given. Proceeding from the opposite direc-
tion, that is, positive moment fi rst, would lead to a much smaller effective depth (since 
the T-beam is designed with a much larger effective width,  b ), which in turn could 
result in an inordinately high steel ratio within the regions of negative moment. 

 FIGURE 8.38  
       The total thickness of a T-beam  (a)  extends into the slab; such beams subjected to negative 
bending  (b)  can be designed as an ordinary rectangular beam, while positive-moment T-beams 
 (c)  have a greater compressive  “ fl ange ”  width    

 FIGURE 8.39  
       The compressive zone in a positive-moment T-beam rarely extends into the  “ web ”  of the beam    
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 The   question of whether a T-beam can be designed as a simple rectangular beam 
with effective width,  b , is infl uenced to a considerable extent by the reinforcement 
ratio,   ρ  . Equation 8.26 for stress block depth shows that, for given values of  f y   and  
fc
,     the ratio of effective beam depth to stress block depth is inversely proportional 

to the steel ratio,   ρ  . That is, dividing both sides of Equation 8.26 by  d , we get: 

  
a d f f d a f fy c c y/ /( ); or / /( )� 
 � 
ρ ρ0 85 0 85. .

  
(8.27)

      

 As   an extreme example, for   ρ   taken as   ρ  max   (assume  f y        �      60       ksi,  fc
         �      4000       psi, 
and   ρ  max   taken with steel strain at 0.005),  d / a       �      3.13. This means that only beams 
and slabs proportioned so that the effective depth is no more than 3.13 times the 
slab thickness would be able to be designed as simple rectangular beams with effec-
tive width,  b . For   ρ   taken as 0.5  ρ  max  ,  d / a  is 6.26; and the range of beam-slab pro-
portions for which the compressive stress block remains within the slab thickness 
would be somewhat greater. For the very low steel ratios characteristic of real-world 
positive moment T-beam design, the stress block remains within the slab thickness 
for all but the most extreme proportions.  

    Design for bending (fl exure) 
 To   create under-reinforced beams, where yielding of the tension steel precedes 
crushing of the concrete in the event of failure, we fi rst determine the amount of 
steel corresponding to the so-called balanced failure condition (where yielding and 
crushing occur simultaneously) and then provide an added margin of safety against 
brittle (concrete crushing) failure. Current code guidelines stipulate that the strain in 
the reinforcing steel be no less than 0.004 (or 0.005 for so-called  tension-controlled 
members,  allowing a simple and uniform strength reduction factor,   φ        �      0.9). As 
shown later, this strain is greater than the yield strain of steel, guaranteeing that the 
steel has  already  yielded when the concrete begins to crush. To determine the bal-
anced steel area, or balanced steel ratio,   ρ   b       �       A s   /( bd ), we assume that the concrete 
strain at failure is 0.003 as shown in  Figure 8.33  and that the yield strain in the steel 
equals  f y   / E       �      60/29,000      �      0.00207 for 60-ksi reinforcing steel ( Figure 8.40   ). From 
the linear strain diagram, we can express the ratio of  c  to  d  as  c / d       �      0.003/0.00507; 
from which we get  c       �      0.5917 d . Since  a       �        β   1  c ; and  c       �       a /  β   1 ; we get: 

  a d a d/ ; or β β1 10 5917 0 5917� �. .   
(8.28)

      

 From   horizontal equilibrium,  T       �       C ; or  A s    f y        �      0.85 fc
    ab . Substituting  A s        �        ρ  b bd ; 
 a       �      0.5917  β   1  d ; and solving for   ρ  b  , we get: 

  
ρ βb c yf f� 
0 503 1. ( / )

  
(8.29)

     

  where   ρ  b        �      the balanced steel ratio,  A s   /( bd ); and   β   1       �      0.85 for  fc
         �      4000       psi (see 
 Figure 8.35 ).   
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 The   maximum steel ratio (  ρ  max  ), whether derived from the lowest permissible 
steel strain of 0.004 or the simpler value of 0.005, sets an upper limit to the amount 
of steel in a reinforced concrete beam where failure, should it occur, is initiated by 
yielding of the tensile reinforcement. By comparing the stress and strain diagrams 
of the balanced condition ( Figure 8.40 ) with the condition where the steel strain at 
failure is 0.005, it can be shown that the steel ratio corresponding to a steel strain of 
0.005 is   ρ  max        �      0.63375  ρ  b  . For beams, a lower limit for the steel ratio (  ρ  min  ) is also 
prudent and is set at 200/ f y   for concrete strengths in the 3000- to 4000-psi range 
and 3( fc
   ) 

0.5 / f y   for 5000-psi or higher concrete (where  f c
    and  f y   are in psi units). 
A minimum  slab  steel ratio is set at 0.0018, consistent with slab requirements for 
minimum temperature and shrinkage reinforcement perpendicular to the direction 
of span. These lower bounds protect against a type of sudden failure that might oth-
erwise occur in very lightly reinforced beams if the redistribution of stresses brought 
about by the initial cracking of concrete in the tension zone exceeds the capacity of 
the  “ cracked ”  cross section assumed in the calculation of steel area. Typical mini-
mum and maximum values for the steel ratio,   ρ  , are shown in Table A-8.8. 

 There   is a subtle, but important, important difference between positive-moment 
T-beam design (with effective  “ fl ange ”  width,  b , and web or stem width,  b w  ) and 
rectangular beam design (with constant width,  b ): the minimum steel ratio,   ρ  min  , is 
much lower for the T-beam when expressed in terms of width,  b . This is because 
  ρ  min  , derived from a consideration of the beam’s moment capacity before tensile 
cracking of the concrete, is defi ned in terms of the beam  “ web ”  width in the tension 
zone,  b w  , and not the effective  “ fl ange ”  width,  b . When using steel ratios expressed 
in terms of the effective width,  b , the minimum steel ratio values computed with 
 b w   must be divided by the ratio  b / b w  . To account for these lower minimum steel 
ratios in T-beam design, the  R -  ρ   table provided (Table A-8.9) includes additional 
steel ratio values below those that would ordinarily be listed for rectangular beam 
design. Depending on the ratio of the effective width,  b , to the web width,  b w  , the 
minimum steel ratio, written in terms of  b , can easily be determined, and the design 
can proceed as it would for a rectangular cross section. 

 FIGURE 8.40  
       Balanced failure in a reinforced concrete beam    
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 It   is permissible to design minimum steel areas for T-beams subjected to negative 
bending as if they were rectangular beams with  b       �       b w  , in spite of the large area of 
concrete in the tension fl ange that could, in fact, sustain a much larger  “ uncracked ”  
moment. The reason for this appears to have something to do with the redundancy of 
continuous (indeterminate) T-beam fl oor systems: redistribution of moments from sup-
ports to midspan is possible if failure at the negative-moment supports renders them 
incapable of sustaining bending stress, essentially turning the system into a series of 
simply supported spans with positive moment only. This logic does not apply in the 
following two situations. First, for statically  determinate  T-beams (such as precast can-
tilevered tees) where redistribution of moments is not possible, the minimum negative 
steel is calculated based on the fl ange width or twice the web (stem) width, which-
ever is smaller (see Note 3 in Table A-8.9). Second, for any other negative moment 
where a T-beam cantilever occurs (i.e., where moment redistribution cannot occur), 
the minimum steel should be increased as it is for determinate T-beams. 

 Reinforced   concrete beams can be safely designed within a range of sizes brack-
eted by these minimum and maximum steel ratios. Using   ρ  max   results in the small-
est under-reinforced cross section, while   ρ  min   corresponds to the largest. Unlike 
wood and steel design, where the smallest, or lightest, cross section can usually be 
taken as the most economical, the best choice for a reinforced concrete beam is 
not necessarily the smallest cross section: the higher cost of  steel relative to con-
crete, the potential diffi culty of placing many steel reinforcing bars within a small 
cross- sectional area, and the reduced stiffness of a smaller cross section often sug-
gest some intermediate steel ratio as the best choice. For example, steel ratios in the 
range of 0.5  ρ  max   seem to produce reasonably proportioned beams.  

    Steel ratio given 
 If   the design of a reinforced concrete beam starts with the selection of a steel ratio, 
such as 0.5  ρ  max  , we can solve for  bd  2  in Equation 8.23 to get: 

  bd M Ru
2 	 /( )φ   (8.30)     

  where   

     b       �      the width (in.) of the cross section  

     d       �      the effective depth (in.) of the cross section  

     M u        �      the design moment found using factored loads (in-kips)  

      φ        �      0.9 for bending  

     R       �         ρ f y  (1  �  0.59  ρ f y  / fc
    ), as defi ned in Equation 8.24 (ksi units; values can also 
be found in Table A-8.9)    

 While   any values of width,  b , and effective depth,  d , consistent with the preced-
ing equation are acceptable in principle, these cross-sectional dimensions are often 
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constrained by three practical considerations. First, beam widths must be consistent 
with requirements for clear space between reinforcing bars and for concrete cover, 
as shown in Table A-4.11. Second, beam widths and depths are often made to align 
with other structural elements, such as column cross sections, other beams, or dif-
ferent sections of the same beam. Third, the actual depth of the cross section may 
be chosen to prevent excessive defl ection, as indicated in Table A-8.2. It can be seen 
that one, but not both, of the cross-sectional dimensions must be assumed before the 
other dimension can be found. If the effective depth,  d , is assumed as given, then: 

  
b

M

Rd
u	

φ 2
  

(8.31)
     

  If the width,  b , is assumed as given, then:   

  
d

M

Rb
u	

φ   
(8.32)

     

  Given a steel ratio, and knowing both cross-sectional beam dimensions, the required 
steel area can then be found from Equation 8.21 — that is,  A s        �        ρ bd .           

    Cross-sectional dimensions given 
 Where   both cross-sectional dimensions  b  and  d  are assumed as given, the steel ratio 
cannot also be selected, but must be calculated. From Equation 8.30, we found that: 
 bd  2       	       M u  /(  φ R ). We can fi nd the steel ratio,   ρ  , by fi rst solving for  R  as follows: 

  
R

M

bd
u	

φ 2
  

(8.33)
     

  Then, the corresponding steel ratio can be determined from Table A-8.9. If the value 
of  R  does not appear in the table, two things are possible. Either the value is too 
low, corresponding to a required steel ratio,   ρ        �        ρ  min  , or the value is too high, cor-
responding to a required steel ratio,   ρ        �        ρ  max  . In the latter case, the cross-sectional 
dimensions must be changed and  R  recomputed. Where   ρ        �        ρ  min  , one can either 
adjust the cross-sectional dimensions or simply use the larger quantity of steel corre-
sponding to   ρ  min  . Alternatively, an acceptable steel ratio can be assumed, along with 
one cross-sectional dimension, and the procedures outlined earlier for  “ steel ratio 
given ”  can be followed.           

    Slabs 
 Reinforced   concrete slabs, at least those designed to span in one direction, are no 
different conceptually from any other beams, with the following three caveats. First, 
only 3/4-in. concrete cover is required (see Table A-4.9) so that the effective depth, 
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 d , measured to the centerline of the reinforcing steel, can generally be taken as the 
slab thickness minus one inch. Second, special shear reinforcement is rarely needed. 
Finally, rather than computing the steel area for a slab, the required spacing of rein-
forcing bars is computed based on an assumed steel bar area. This reinforcement 
spacing is determined by computing the required steel area,  As*   , for any slab width, 
 b , as shown in  Figure 8.41 a    . The equivalent spacing,  s , using bars with actual area, 
 A s  , is shown in  Figure 8.41 b  ;  s  can be found by equating the ratios  As*   / b       �       A s  / s . 
Solving for the bar spacing,  s , we get: 

  s b A As s� ( / )*   (8.34)     

  where   

     b       �      the slab width used in the calculation (e.g., 1       ft)  

     A s        �      the area of one reinforcing bar, typically No. 3 to 5  

     As*         �      the required area of steel for the slab width,  b     

 Given   a steel ratio,   ρ        �       As*    /( bd ), we can substitute  As*         �        ρ bd  into the equation for  s  
and obtain the following alternative expression for the required bar spacing: 

  s A ds� /( )ρ   (8.35)     

  where   

     A s        �      the area of one reinforcing bar, typically No. 3 to 5  

      ρ        �      the computed steel reinforcing ratio  

     d       �      the effective slab depth    

 FIGURE 8.41  
       Steel in one-way slabs showing  (a)  equivalent steel area,  A s*,    for a given width,  b , and  
(b)  spacing,  s , for a slab with bar area,  A s      
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 The   spacing must not exceed 18       in., nor three times the slab thickness, in any case. 
Reinforcement may be required perpendicular to the main longitudinal slab rein-
forcement (i.e., perpendicular to the reinforcement placed parallel to the span) for 
two reasons. First, a minimum amount of perpendicular steel — with a minimum 
steel ratio,   ρ  min        �      0.01810 — is required to protect against cracking due to shrinkage 
of the concrete or thermal (temperature) expansion. The spacing of such shrink-
age-temperature steel cannot exceed 18       in., or 5        h , where  h  is the slab thickness. 
Second, in cases where a T-beam is oriented so that it is parallel to the main slab 
reinforcement (e.g., where a T-beam girder is supporting T-beams that in turn are 
supporting slabs, as shown in  Figure 8.42   ), the overhanging fl anges of the T-beam 
girder must be reinforced as if they were negative-moment cantilevers, with a design 
moment,  M u        �       w u  ( b       �       b w  ) 2 /8. This reinforcement is not designed to improve the 
spanning capability of the slab itself, but rather to ensure that the effective width of 
the T-beam can function as assumed.  

    Defl ection 
 The   rigorous calculation of reinforced concrete beam or slab defl ection is compli-
cated by the diffi culty of determining the stiffness,  EI , of such bending elements that 
would be required in any defl ection equation: in particular, the moment of inertia of 
a cracked section (cracked in the tension zone) containing two very different types 
of materials (steel and concrete) is complex and uncertain. While such procedures 
exist, we can control defl ection — for preliminary design — by establishing minimum 
thicknesses for beam and slab elements based on their clear span, as shown in Table 
A-8.2. For example, the minimum thickness for a continuous reinforced concrete 

 FIGURE 8.42  
       Slab steel for T-beams parallel to main slab reinforcement:  (a)  calculation of design moment, 
 M u        �      resultant force      �      distance      �       w u  ( b       �       b w  )/2      �      ( b       �       b w  )/4      �       w u  ( b       �       b w  ) 2 /8, and  (b)  view of 
T-beam with effective width,  b , and web width,  b w      
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beam is set equal to its clear span divided by 21, while the minimum thickness for a 
continuous slab is set equal to its clear span divided by 28.

       Example 8.9        Design reinforced concrete beam, with steel ratio assumed      

    Problem defi nition 
 Assuming   a steel ratio,   ρ        �      0.5  ρ  max  , design a continuous rectangular concrete beam with a 
clear span of 36       ft to resist a positive design moment,  M u        �      350       ft-kips. Assume  f y        �      60       ksi 
and  fc
         �      3000       psi. The beam width is set at 16       in. to align with rectangular columns. Assume 
3-in. cover, measured to the centerline of reinforcement, and use even numbers for both 
cross-sectional dimensions. Check thickness for defl ection control.  

    Solution overview 
 Find    R ; compute unknown cross-sectional dimension; recompute steel ratio; compute steel 
area; select reinforcement.  

    Problem solution 
        1.     From Table A-8.8, fi nd steel ratio: 

      ρ  max        �      0.0135.  
      ρ        �      0.5  ρ  max        �      0.00675.     

    2.     From Table A-8.9, fi nd  R  based on   ρ        �      0.00675. Since this value of   ρ   falls between the 
tabular values of 0.00667 and 0.00700, we can interpolate by comparing ratios of the dif-
ferences between   ρ   and  R  values as follows:    

  

R �

�
�

�

�

0 369
0 385 0 369

0 00675 0 00667
0 00700 0 00667

.
. .

. .

. .      
     from which  R       �      0.373. Alternatively, we can use Equation 8.24 directly to obtain 

 R       �        ρ f y   (1      �      0.59  ρ f y   / fc
   )      �      0.00675(60)[1      �      0.59(0.00675)(60)/3)]      �      0.373.   
    3.     From Equation 8.32, compute cross-sectional dimensions: since  b       �      16       in., we get:    

  
d

M
Rb

u	 �
�

�
φ

350 12
0 9 0 373 16

28
. ( . )( )

in.
      

    4.     Adjust the effective depth,  d , so that the total thickness of the cross section is an even 
number. Since the assumed cover is 3       in., we can select an effective depth of either 27       in. 
(for a total thickness of 30       in.) or an effective depth of 29       in. (for a total thickness of 32       in.). 
Either choice is potentially correct, since even if the depth is less than what is required 
based on Equation 8.32, a revised steel ratio will be computed in the next step: a smaller 
depth will result in a larger steel ratio (more steel and less concrete), while a larger depth 
will result in a smaller steel ratio (less steel and more concrete). We will choose an effective 
depth,  d       �      29       in.  
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     5.     Find  R  using the actual cross-sectional dimensions,  b       �      16       in. and  d       �      29       in. From 
Equation 8.33, we get:    

  
R

M

bd
u	 �

�
�

φ 2 2

350 12

0 9 16 29
0 347

. ( )( )
.

      

     6.     From Table A-8.9, we can either use  R       �      0.369 and a corresponding value of 
  ρ        �      0.00667, or we can interpolate between  R       �      0.335 and  R       �      0.369 to get:    

  

0 347 0 335
0 369 0 335

0 00600
0 00667 0 00600

. .

. .
.

. .
�

�
�

�

�

ρ

      

       from which   ρ        �      0.00624. We will use the more accurate value of   ρ        �      0.00624.           

     7.     From Equation 8.21, compute steel area:  A s        �        ρ bd       �      0.00624(16)(29)      �      2.90       in 2 .  
     8.     From Table A-4.10 and Table A-4.11, select reinforcement that will fi t in the beam, as 

shown in  Figure 8.43   : 
    Two No. 11 bars (with actual  A s        �      3.12       in 2 ).  
    Three 3 No. 9 bars (with actual  A s        �      3.00       in 2 )     

     9.     From Table A-4.11, check whether either choice fi ts within the beam width of 16       in. Two 
No. 11 bars require 8.13       in. and three No. 9 bars require 10.04       in., so either choice works 
in a 16-in.-wide beam.  

    10.     It is unlikely that our steel ratio will fall outside the limits for   ρ  min   and   ρ  max  , since our 
starting point was the selection of a steel ratio positioned between these two extremes. 
However, since the actual steel ratio being used is somewhat different than what we 
started with, a quick check is prudent. From Table A-8.8 (or A-8.9), the range of accept-
able steel ratios is 0.0033 to 0.0135. For two No. 11 bars, the steel ratio,   ρ        �      3.12/(16      �      
29)      �      0.0067, which falls between the two limiting values (the steel ratio for three No. 9 
bars is also acceptable).  

 FIGURE 8.43  
       Alternate bar selection for Example 8.9    



181

    11.     Check beam thickness for defl ection control: from Table A-8.2, the minimum thick-
ness for a continuous beam with clear span,  L  (ft), is 12 L /21      �      12(36)/21      �      20.6       in. 
This is no greater than the actual thickness of the beam,  h       �       d       �      3      �      29      �      3      �      32       in., 
so the beam is acceptable for defl ection control.                

       Example 8.10        Design reinforced concrete slab and T-beam, with cross-sectional 
dimensions assumed      

    Problem defi nition 
 Design   a continuous reinforced concrete slab and typical beam to accommodate heavy man-
ufacturing, as shown in  Figure 8.44   . Assume  f y        �      60       ksi and  fc
          �      5000       psi. Consider both 
negative and positive moment values on typical interior spans (Table A-8.7). Assume a beam 
width of 12       in., and a slab thickness of 3       in. as shown. The beams have a clear span of 30       ft. 
Assume that the dead load consists of the reinforced concrete weight (150       pcf). Span dimen-
sions are measured from the inside face of supporting elements, rather than from their cen-
terlines, when computing shear and moment. Design beam and slab for typical interior spans. 
Assume 3-in. cover for beams, and 1       in. for slabs (measured to centerline of reinforcement).  

    Solution overview 
  For   slab:  fi nd factored loads; compute design moment; compute  R ; fi nd   ρ  ; compute rebar 
spacing.  For beam:  fi nd factored loads; compute design moment; compute  R ; fi nd   ρ  ; compute 
steel area,  A s  ; select reinforcement. Check bar fi t for beam and defl ection control for both 
beam and slab.  

    Problem solution 
    Slab design, negative moment 
        1.     Find loads: 

    From Table A-2.2, the live load,  L       �      250       psf      �      250       lb/ft (for 1-ft. strip of slab). Live load 
reduction does not apply to one-way slabs.  

    The dead load,  D  (for 1-ft. strip of slab)      �      150(3/12)      �      37.5       lb/ft (see  Figure 8.45   ).  
    From Table A-5.1, the factored (design) load,  w u        �      1.2 D       �      1.6 L       �      1.2(37.5)      �      1.6(250)      �      

445       lb/ft      �      0.455       kips/ft.     

 FIGURE 8.44  
       Cross section through slab and T-beam for Example 8.10    
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    2.     Using moment values from Table A-8.7, compute the negative design moment for a typical 
interior span. Because the clear span of the slab is no greater than 10       ft (see Note 2, Table 
A-8.7), the moment value is  M u        �       w u l n   2 /12      �      0.455(3 2 )/12      �      0.34       ft-kips      �      4.095       in-
kips. The initial calculation used kips/ft units for  w u   and feet units for  l n  , with the resulting 
moment value in ft-kips units. This value was then multiplied by 12 to convert the moment 
value to in-kips units.  

    3.     From Equation 8.33,  R       	       M u  /(  φ  bd 2 )      �      4.095/(0.9      �      12      �      2 2 )      �      0.0948. In this equation, 
the effective slab depth,  d , is taken as 1       in. less than the given slab thickness,  h       �      3       in., 
consistent with typical requirements for slab cover.  

    4.     From Table A-8.9, we can either use  R       �      0.099 and a corresponding value of 
  ρ        �      0.00167, or we can interpolate between  R       �      0.0661 and  R       �      0.099. In this case, the 
minimum steel ratio for a slab,   ρ  min        �      0.00180, so there is no point interpolating: the result 
will be less than   ρ  min  . Therefore, we use the minimum value,   ρ        �      0.00180.  

    5.     From Table A-4.10, we select a value for  A s  : assuming No. 3 reinforcing bars for the slab, 
 A s        �      0.11       in 2 .  

    6.     From Equation 8.36, fi nd rebar spacing:  s       �       A s  /(  ρ d )      �      0.11/(0.0018      �      2)      �      30.6       in. 
However, the maximum permitted bar spacing for a slab is the smaller of 18       in. or three 
times the slab thickness, 3        h       �      9       in. We must use 9-in. spacing, so the negative slab 
moments are resisted by No. 3 bars at 9       in. on center.  

    7.     Checking the steel ratio, we fi nd the limits from Table A-8.9 to be   ρ  min        �      0.00180 (see 
Note 4 for slabs) and   ρ  max        �      0.02130. The actual steel ratio can be found by dividing a 
single bar area by the gross concrete area determined by its spacing and effective depth: 
  ρ        �      0.11/(9      �      2)      �      0.00611, which falls between these limiting values.  

    8.     Defl ection control can be checked using Table A-8.2: for a continuous slab, the minimum 
thickness equals the clear span divided by 28, or (3      �      12)/28      �      1.29       in. The actual slab 
thickness,  h       �      3       in., exceeds this minimum, so the slab is thick enough for defl ection 
control.     

    Slab design, positive moment 
        1.     Find loads: same as for negative moment:  w u        �      0.455       kips/ft.  
    2.     From Table A-8.7, compute the positive design moment value,  M u        �       w u l n   2 /16. Rather than 

going through the computation process, notice that the positive moment is  smaller  than 
the negative moment already computed; since the negative moment in this case was gov-
erned by the maximum spacing criteria, the positive moment (which is even smaller) will 
have the same result. Therefore, use the same bars and spacing computed for the negative 
moment: No. 3 bars at 9       in. on center.     

 FIGURE 8.45  
       Tributary area for calculation of slab weight for Example 8.10    
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    Beam design, negative moment 
        1.     Find loads: 

    From Table A-2.2, the live load,  L       �      250       psf, so the distributed load per foot of 
beam      �      250(tributary area)      �      250(4)      �      1000       lb/ft; live load reduction does not apply 
since the  “ infl uence ”  area      �      400       ft 2 .  

    The dead load can be found by adding the slab and beam-stem weight as shown in 
 Figure 8.46   :  D       �      slab weight      �      beam-stem weight      �      150(3/12)(4)      �      150(14/12)(12/12)      
�      150      �      175      �      325       lb/ft.  

    From Table A-5.1, the factored (design) load      �      1.2 D       �      1.6 L       �      1.2(325)      �      1.6(1000)      �      
1990       lb/ft      �      1.99       kips/ft.     

    2.     Using moment values from Table A-8.7, compute negative design moment for a typical 
interior span:  M u        �       w u l n   2 /11      �      1.99(30 2 )/11      �      162.8       ft-kips      �      1953.8       in-kips.  

    3.     From Equation 8.34,  R       	       M u   /(  φ  bd 2 )      �      1953.8/(0.9      �      12      �      14 2 )      �      0.923. In this equation, 
the effective beam depth,  d , is taken as 3       in. less than the total beam thickness,  h       �      17       in., 
measured from the bottom of the beam  “ web ”  or  “ stem ”  to the top of the slab.  

    4.     From Table A-8.9, we can either use  R       �      0.943 and a corresponding value of 
  ρ        �      0.01800, or we can interpolate between  R       �      0.898 and  R       �      0.943 to get:    
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       from which   ρ        �      0.01756. We will use the more accurate value of   ρ        �      0.01756.           
    5.     From Equation 8.21, compute steel area:  A s        �        ρ bd       �      0.01756(12)(14)      �      2.95       in 2 .  
    6.     From Table A-4.10 and Table A-4.11, select reinforcement that will fi t in the beam, as 

shown in  Figure 8.47   : 
    Two No. 11 bars (with actual  A s        �      3.12       in 2 ).  
    Three No. 9 bars (with actual  A s        �      3.00       in 2 ).     

    7.     From Table A-4.11, check whether either choice fi ts within the beam web (or stem) width 
of 12       in. Two No. 11 bars require 8.13       in. and three No. 9 bars require 10.04       in., so either 
choice works in a 12-in.-wide beam.  

    8.     Checking the steel ratio, we fi nd the limits from Table A-8.9 to be   ρ  min        �      0.00333 (see 
Note 1 for negative-moment T-beams) and   ρ  max        �      0.02130. The actual steel ratio can be 
found by dividing the bar area by the gross concrete area determined by width and effec-
tive depth: for the two No. 11 bars,   ρ        �      3.12/(12      �      14)      �      0.0186, which falls between 
these limiting values.  

 FIGURE 8.46  
       Tributary area for calculation of beam weight for Example 8.10    
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    9.     Defl ection control can be checked using Table A-8.2: for a continuous beam, the minimum 
thickness equals the clear span divided by 21, or (30      �      12)/21      �      17.14       in. The actual 
beam thickness,  h       �      17       in., is approximately equal to this minimum, so the beam is mar-
ginally thick enough for defl ection control.     

    Beam design, positive moment (T-beam design) 
        1.     Find loads: same as for negative-moment design.  
    2.     Using moment values from Table A-8.7, compute negative design moment for a typical 

interior span:  M u        �       w u l n   2 /16      �      1.99(30 2 )/16      �      111.9       ft-kips      �      1343.3       in-kips.  
    3.     From Equation 8.25, the effective width,  b  is the smaller of the following: 

     b       �      1/4 span      �      30      �      12/4      �      90       in.  
     b       �      centerline distance between beams      �      48       in.  
     b       �      web width      �      16      �      slab thickness      �      12      �      16      �      3      �      60       in.              
    The effective width,  b       �      48       in.           

    4.     From Equation 8.33,  R       	       M u  /(  φ  bd 2 )      �      1343.3/(0.9      �      48      �      14 2 )      �      0.159. In this equation, 
the effective beam depth,  d , is taken as 3       in. less than the total beam thickness,  h       �      17       in., 
measured from the bottom of the beam web or stem to the top of the slab.  

    5.     From Table A-8.9, we can either use  R       �      0.195 and a corresponding value of 
  ρ        �      0.00333, or we can interpolate between  R       �      0.107 and  R       �      0.195 to get:    
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    from which   ρ        �      0.00270. We will use the more accurate value of   ρ        �      0.00270.  
    For positive moment T-beams, the minimum steel ratio is determined by the ratio 

 b / b w        �      48/12      �      4, for which   ρ  min        �    0.00083   (see Note 2 in Table A-8-9). Our value of 
  ρ   is not smaller than   ρ  min  , so it is acceptable. Assuming that a value for   ρ   was found, the 
maximum steel ratio need not be checked when using Table A-8.9, since no values greater 
than   ρ  max   are listed.           

 FIGURE 8.47  
       Bar selection options for negative moment in T-beam for Example 8.10    
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     6.     From Equation 8.26, check that the stress block depth,  a , falls within slab thickness: 
 a       �        ρ f y d /(0.85 fc
    )      �      0.00270(60)(14)/(0.85      �      5)      �      0.53       in.      �      slab thickness      �      3       in., so 
T-beam assumptions are valid.  

     7.     From Equation 8.21, compute steel area:  A s        �        ρ bd       �      0.00270(48)(14)      �      1.81       in 2 .  
     8.     From Tables A-4.10 and A-4.11, we select steel reinforcement, as shown in  Figure 8.48   : 

two No. 9 bars with  A s        �      2.0       in 2 .  
     9.     From Table A-4.11, check whether this choice fi ts within the beam web (or stem) width of 

12       in. Two No. 9 bars require 7.58       in., so the choice works in a 12-in.-wide beam.  
    10.     The steel ratio has already been checked (step 5). The check for defl ection control is the 

same as for negative moment and need not be repeated.            

    Shear 
 Wood   and steel beams are generally designed for bending and checked for shear. 
If a beam selected for bending cannot safely resist the shear stresses, a larger sec-
tion must be used. Reinforced concrete beams are almost never acceptable for shear 
after they are designed for bending, because shear stresses, combined with bending 
stresses, produce diagonal tension within the beam. Since concrete is so weak in 
tension, excessive shear (really diagonal tension) would cause the beam to fail cata-
strophically. Rather than increase the size of the cross section to the point where 
the concrete can safely resist all diagonal tension stresses, shear (web) reinforce-
ment is used where the shear stress exceeds the capacity of the concrete. 

 Web   reinforcement, consisting of U- or rectangular-shaped steel stirrups, is gener-
ally made from No. 3 or No. 4 bars, bent as shown in  Figure 8.49   . The force resisted 
by each stirrup is based on an area twice the size of the bent bar, or 2 A s  , since two 
prongs of each stirrup are present at any diagonal tension crack ( Figure 8.50   ). Thus, 
assuming that diagonal tension cracks form at a 45 °  angle, the number of stirrups 

 FIGURE 8.48  
       Bar selection for positive moment in T-beam for Example 8.10    
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resisting tension within each crack is  d/s , where  d       �      the effective depth of the beam 
and  s       �      the stirrup spacing. 

 At   failure, corresponding to yielding of the stirrups, the total force resisted by 
the steel web reinforcement is, therefore, equal to the number of stirrups times the 
force resisted by each; that is,  V s        �      ( d / s )(2 A s   f y  ) or: 

  
V A f d ss s y� 2 /

  
(8.36)

     

  where   

     V s        �      the total force resisted by web reinforcement  

     d       �      the effective depth of the beam  

     s       �      the stirrup spacing  

     A s        �      the area of the reinforcing bar from which the stirrup is made  

     f y        �      the yield stress of the reinforcing bar, 60       ksi in all text examples    

 FIGURE 8.49  
       Typical web steel (stirrups) to resist diagonal tension associated with shear stress in beams    

 FIGURE 8.50  
       Assumed crack geometry for calculation of web steel capacity to resist shear forces (at diagonal 
tension cracks)    
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 Solving   for the stirrup spacing, we get: 

  
s A f d Vs y s� 2 /

  
(8.37)

     

  The concrete itself also inhibits the formation of diagonal tension cracks; its contri-
bution can be taken as:   

  
V f bdc c� 2 


  
(8.38)

     

  where   

     V c        �      the total force resisted by the concrete (lb)  

     fc
         �      the cylinder strength of the concrete (psi)  

     b       �      the width of the beam (in.)  

     d       �      the effective depth of the beam (in.)    

 The   strength design method for shear in concrete beams stipulates that the 
design shear force,  V u  , at any section (produced by factored loads) not exceed the 
available capacity of the concrete and web steel combined. When the strength 
reduction factor for shear,   φ  , is included, we get: 

  V V Vu c s� �φ( )   (8.39)     

  where   

     V u        �      the design shear force  

      φ        �      capacity reduction factor      �      0.75 for shear (Table A-5.2)  

     V s   and  V c        �      the values defi ned in Equations 8.36 and 8.38    

 There   are several practical limitations concerning web steel, as follows: 

    The closest practical stirrup spacing is 3 to 4       in.  

    The fi rst stirrup is generally placed at a distance  s /2 from the face of the support.  

    The maximum stirrup spacing is the smaller of  d /2, 24       in., or 2 A s  f y  /(50 b ); except 
when  V s        �      2 V c  , in which case the fi rst two criteria are reduced by half (to the 
smaller of  d /4 or 12       in.). Both  f y   and  f c
    are expressed in psi units;  b  (in.) is the 
beam width, and  d  is the effective depth (in.).  

    A minimum amount of web steel is required, even if  V u        �        φ V c  ; only when 
 V u        �      0.5   φ V c   can shear reinforcement be discontinued.    

 A   single stirrup size is used throughout a given beam; the spacing of these stir-
rups varies to account for changing values of shear along the span of the beam. For 
uniformly loaded spans, except as noted later, the maximum shear force at the face 
of the support is: 

  V w lu u u� /2   (8.40)     

Reinforced concrete
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  where  w u   is the uniformly distributed factored, design load (lb/ft or kips/ft), and  l u   
is the clear span (ft). This applies for plan geometries with relatively equal spans and 
unfactored live loads that are no more than three times the unfactored dead load, just 
as for the moment values listed in Table A-8.7. The one exception is at the  “ interior ”  
support of end spans in continuous structures, for which the design shear should 
be taken as 1.15 times the value in Equation 8.40. Since the point of critical (maxi-
mum) shear is actually measured at a distance  d  from the face of the beam’s support —
 whether that support consists of wall, column, or girder — it makes no difference if 
the span used in Equation 8.40 is measured from face of support or support center-
line. In either case, the  “ theoretical ”  value shown in Equation 8.40 must be reduced to 
the value computed at the critical section.  Figure 8.51 b     shows such a critical section 
measured from the face of support as well as a typical pattern of shear force and web 
reinforcement for a uniformly loaded beam ( Figure 8.51 c  ). The stirrup spacing is sym-
metrical; only half is shown. Equations for web steel are reproduced in Table A-8.6.      

 FIGURE 8.51  
       Shear diagram  (a)  for a uniformly loaded beam; with  (b)  half of the shear diagram enlarged and 
 (c)  beam elevation showing typical stirrup spacing    
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       Example 8.11        Design shear reinforcement (stirrups) for reinforced concrete beam      

    Problem defi nition 
 Design   the distribution of web steel (use No. 3 bars) for the cross section shown in  Figure 
8.52   , assuming a factored design load,  w u        �      6       kips/ft on a clear interior span,  l u        �      30       ft. Use  
fc
          �      4000       psi and  f y        �      60       ksi.  

    Solution overview 
 Compute   concrete capacity; fi nd minimum, maximum and intermediate (optional) spacing for 
stirrups; sketch distribution of stirrups along length of beam.  

    Problem solution 
 All   equations can be found in Table A-8.6 with lb or psi units; these have been converted to 
kips or ksi units in what follows, except where lb or psi units are specifi cally required (Table 
A-8.6, parts  C  and  F  ). 

    1.     Compute concrete shear capacity (Table A-8.6, part  C ):    

  
V bd fc c� � � �2 2 12 24 4000 36 429 36 43′ ( )( ) , .lb kips

      

    2.     Find minimum spacing of No. 3 stirrups at critical  V u   (at distance  d  from support), as 
shown in  Figure 8.53   : 

    The maximum design shear at the face of support,  V u  , can be taken as  w u l u   /2      �      90       kips 
for interior spans. The design shear at the critical distance,  d , from the face of support can 
be found using similar triangles ( Figure 8.53 ):  V u   at distance,  d       �      78       kips.  

 FIGURE 8.52  
       Cross section, load, and shear diagrams for Example 8.10    

 FIGURE 8.53  
       Shear diagram for calculation of critical design shear for Example 8.10    

Reinforced concrete
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    From Table 8.6, part  E : the steel capacity,  V s        	       V u   /  φ        �       V c        �      78/0.75      �      36.43      �    
  67.57       kips.  

    From Table A-4.10, the area of a No. 3 bar is  A s        �      0.11       in 2 . From Table 8.6, part  B : 
the required spacing,  s       �      2 A s f y d / V s        �      2(0.11)(60)(24)/67.57)      �      4.69       in. Round down the 
required spacing to the fi rst half-inch increment:  s       �      4.5       in.     

    3.     Find maximum spacing of No. 3 stirrups: 
    From Table A-8.6 part  F , and since  V s        �      67.57       kips      �      2 V c        �      2(36.43)      �      72.86       kips, 
the maximum stirrup spacing is governed by the smaller of  d /2      �      12       in., 24       in., or 2 A s f y   /
(50 b )      �      22       in. ( f y   must be in psi units in this equation!). The maximum spacing is, there-
fore, 12       in.  

    The location along the beam elevation where this maximum stirrup spacing can begin 
is found as follows. First, fi nd the steel capacity corresponding to the maximum spacing 
from Table 8.6, part  A :  V s        �      2 A s f y d / s       �      2(0.11)(60)(24)/12      �      26.4       kips. Next, fi nd the total 
design shear corresponding to the steel and concrete capacities at this location from Table 
8.6, part  D :  V u        �        φ  ( V c        �       V s  )      �      0.75(36.43      �      26.4)      �      47.12       kips. Finally, use similar tri-
angles to determine the distance from the beam centerline corresponding to the location 
where maximum stirrup spacing can begin, as shown in  Figure 8.54   . The starting point for 
maximum spacing is no further than 94.24       in. from the beam centerline.     

    4.     Find location where no stirrups are needed: 
    From Table 8.6, part  G ,  V u        �      0.5  φ  V c       �      0.5(0.75)(36.43)      �      13.66       kips.  

    The location along the beam elevation where no stirrups are required can be found by 
using similar triangles, as shown in  Figure 8.55   . The starting point for no stirrups is no fur-
ther than 27.32       in. from the beam centerline.     

    5.     (Optional) Select intermediate spacing between minimum and maximum values deter-
mined earlier: 

    Choose a spacing between the smallest required at the support (4.5       in.) and the maxi-
mum (12       in.), for example,  s       �      8       in.  

 FIGURE 8.54  
       Shear diagram for calculation of location where maximum stirrup spacing can begin for Example 8.10    

 FIGURE 8.55  
       Shear diagram for calculation of location where no stirrups are required for Example 8.10    
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    Determine starting point for intermediate spacing as follows. First, fi nd the steel capac-
ity corresponding to the chosen spacing: from Table A-8.6, part  A ,  V s        �      2 A s f y d / s       �    
  2(0.11)(60)(24)/8      �      39.6       kips. Next, fi nd the total design shear corresponding to the 
steel and concrete capacities at this location from Table 8.6, part  D :  V u        �        φ  ( V c        �       V s  )      �      
0.75(36.43      �      39.6)      �      57.02       kips. Finally, use similar triangles to determine the distance 
from the beam centerline corresponding to the location where this intermediate stirrup 
spacing can begin, as shown in  Figure 8.56   . The starting point for intermediate spacing, 
 s       �      8       in., is no further than 114       in. from the beam centerline.     

    6.     Sketch the distribution of web steel (stirrups) for one-half of the beam. The fi rst stirrup is 
generally placed at a distance  s /2      �      4.5/2      �      2¼       in. from the face of the support (round 
down to 2       in.). The remaining stirrups are arranged within the zones of minimum, inter-
mediate (optional) and maximum spacing, as shown in  Figure 8.57   . In this example, the 
middle 38       in. (i.e., 19       in.      �      2) of the beam is not required to have stirrups.                        

 FIGURE 8.56  
       Shear diagram for calculation of location where intermediate stirrup spacing may begin for 
Example 8.10    

 FIGURE 8.57  
       Elevation of beam showing spacing of stirrups for Example 8.10    
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 Structural   elements are connected to form structural systems; the connections 
thus constitute an intermediate condition between elements and systems and are 
not, strictly speaking, part of the elements themselves. Such connections, how-
ever, do have a direct bearing on the types of assumptions made when the individ-
ual elements (or systems) are analyzed. Specifi cally, when the various elements of 
 structure — columns, beams, and so on — are considered individually, we show them 
either as constrained by hinges and rollers, free to translate and rotate, or fi xed in 
such a way that all relative movement is prevented. 

 These   abstract constraints are models of the actual conditions encountered 
by such elements when they are connected within actual structural systems. For 
example, beams are attached to girders, walls, or columns; columns are attached to 
foundations, transfer girders, or other columns; and tension elements are hung from 
beams or inserted within truss systems. It may seem surprising that the conventional 
means of attaching structural elements to each other with nails, screws, bolts, welds, 
and reinforcing bars corresponds to the abstract hinges, rollers, or fi xed constraints 
encountered in the discussion of individual elements, or in the introductory chapter 
on statics: we rarely see connections in typical building structures that look anything 
like the diagrammatic representation of the constraints shown in  Figure 9.1   . 

                                                   Connections    9 
CHAPTER

 FIGURE 9.1  
       Abstract symbols for constraints, including  (a)  hinge or pin-end,  (b)  roller,  (c)  fi xed, and  (d)  free 
end (same as Figure 1.14)    



194  CHAPTER 9    Connections

 In   fact, the relationship between the reality of a connection and the abstract 
modeling of it as hinge, roller, etc., is quite interesting. On the one hand, it is pos-
sible to design a real connection so that it both appears and behaves just like the 
abstract model. 

 More   commonly, however, one starts with a convenient means for connecting 
real materials and then chooses a constraint model that approximates the behav-
ior of this connection. Of course, such typical and  “ convenient ”  connections have 
evolved over time so that their behavior is in line with the assumptions we make 
about the types of movement, and the magnitude of forces and moments transmit-
ted, between the elements being connected. It is the latter group of typical connec-
tion strategies that are discussed in the following sections about wood, steel, and 
reinforced concrete. These connections must resist the same sort of forces already 
encountered in the design of the structural elements themselves: direct compression 
and tension, as well as shear. Bending does not often show up directly in the design 
of fasteners, as it can usually be resolved into the other forces already mentioned. 

    WOOD 
 Were   it only the force of gravity — the resistance to live and dead loads — that wood 
structures encountered, it would be possible to assemble structural elements by 
literally resting one upon the other — that is, by stacking them so that the ends of 
beams or the bottom of posts  bear  upon plates, beams, or posts positioned below 
them, with the surfaces in contact between elements subject only to compressive 
stress. However, because there are always other loads, including both the horizontal 
and upward components of wind and earthquake forces, and various impact loads 
that could dislodge or overturn elements designed exclusively for downward- acting 
loads, the idealized condition represented by this model must be adjusted by using 
fasteners that respond to those nongravity forces as well. That being said, the basic 
idea of stacking one wood element on top of the other remains an important strat-
egy for assembling many wood structures, as can be seen by examining a typical sec-
tion for light wood framing ( Figure 9.2   ): in such cases, the necessary resistance to 
lateral and upward loads, from foundation to roof, is often accomplished by super-
imposing metal straps and other fasteners at key joints. 

 Aside   from the use of metal straps, plates, and other more complex hangers and 
brackets, wood elements are typically connected using nails, bolts, and screws (we 
will be considering only lag screws, sometimes referred to as  “ lag bolts, ”  here). 
These fasteners can be used in two distinct ways: primarily as  “ dowels ”  inserted per-
pendicular to the direction of load, but also in  “ withdrawal, ”  that is, subject to ten-
sion forces parallel to the direction of load. The designation for the capacity of a 
dowel-type fastener (i.e., a fastener stressed in shear) is  Z ; the capacity of a fastener 
used in withdrawal is designated as  W , as shown in  Figure 9.3   . In both cases, the 
capacity must be multiplied by adjustment factors; the adjusted capacities are desig-
nated  Z  
  and  W  
  respectively. 
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 Where   the head of a lag screw or bolt, or the nut of a bolt, comes in contact 
with a wood member, a circular or square washer is inserted between the metal and 
wood surfaces in order to distribute the load imparted by the metal fastener over 
a greater surface area of wood. This is a requirement for bolts and lag screws sub-
jected to either shear or tension. 

 FIGURE 9.2  
       Platform framing showing joists bearing on plates, plates bearing on studs, and studs bearing on 
plates (siding, building paper, insulation, vapor retarder, and interior fi nishes not shown)    

 FIGURE 9.3  
       Wood fasteners with  (a)  dowel action; or  (b)  in withdrawal    

Wood
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    Shear 
 With   respect to dowel-type action, nails and screws typically connect only two mem-
bers (the  “ side member ”  being the piece into which the nail is fi rst hammered or the 
screw is fi rst inserted; the  “ main member ”  being the piece connected behind the 
side member). Such connections are in  “ single shear, ”  since there is only a single 
shear plane between the side and main member ( Figure 9.4 a    ). Bolts can connect 
two members in single shear, but also can connect three members in  “ double shear. ”  
In the latter case, the main member is in the center, with the two outside members 
defi ned as side members, as shown in  Figure 9.4 b  . Where bolts are used in single 
shear, the main member is defi ned as the thicker piece (if any), since either side 
could serve as the point of insertion without altering the behavior of the connection. 

 Typical   idealized diagrams representing the forces on dowel-type fasteners in 
single shear are often misleading, since neither the structure ( Figure 9.5 a    ) nor the 
fasteners themselves ( Figure 9.5 b  ) would be in rotational equilibrium with only a 
single force couple. 

 The   actual pattern of forces acting on such fasteners is more complex, since 
these forces must satisfy all three equations of equilibrium. Several possibilities exist 
for the arrangement of forces on the fasteners that are consistent with the require-
ments for equilibrium. For example, as shown in  Figure 9.6 a    , the force acting down-
ward on the left-hand member can be  “ balanced ”  by two forces in the right-hand 
member; critical stress patterns applied to the wood by the fasteners are shown 
schematically in  Figure 9.6 b  , assuming that only stresses in the left-hand member 
have reached critical values. This pattern of stress is designated Mode I. 

 Several   other patterns of force and stress can develop in the wood connection. 
 Figure 9.7    illustrates Mode II, in which critical stresses develop in both members. 
The inclination of the fastener ( Figure 9.7 b  ) is exaggerated to show how the pattern 
of critical stresses develops alternately on opposite sides of the fastener. 

 FIGURE 9.4  
       Examples of  (a)  single shear and  (b)  double shear.  “  S  ”  indicates side member;  “  M  ”  indicates 
main member    
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 FIGURE 9.5  
       Simple single-shear model with two equal and opposite forces, but rotational equilibrium 
unaccounted for  (a)  forces acting on wood members and  (b)  forces acting on dowel-type fastener    

 FIGURE 9.6  
       Mode I behavior of fastener in single shear, showing  (a)  pattern of forces on fastener and 
 (b)  corresponding critical stresses on wood member    

 FIGURE 9.7  
       Mode II behavior of fastener in single shear, showing  (a)  pattern of forces on fastener and 
 (b)  corresponding critical stresses on wood member    

Wood
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 All   together, researchers have identifi ed four behavioral modes with dowel-type 
fasteners. For Modes III and IV (not illustrated), yielding of the fastener itself is pre-
sumed to have occurred; in these two latter cases, not only is the resistance of the 
wood to the pressure exerted by the fastener considered, but also the strength of 
the steel fastener itself. With these four modes, plus two variations each for Modes 
I and III (where critical stresses might occur either in the main or side member), 
there are six possible ways in which stress can develop in a single-shear connection, 
resulting in six possible values for the force that a single fastener can safely develop. 
Clearly, it is the  smallest  of these six allowable forces that governs the connection 
design. For members connected in double shear, two of the modes are not consid-
ered, as they are incompatible with the geometry of elements in double shear. Thus, 
only four equations need to be checked for double-shear connections. 

 Because   the equations that have been developed for these six behavioral modes 
(four for double shear) acknowledge possible yielding of the steel fasteners, they are 
known as  “ yield limit ”  equations. They can be used for bolts, lag screws, or nails —
 and not only for wood-to-wood connections, but also where steel plates are used 
for the side member(s). They are really not intended to be solved by hand; instead, 
three alternative strategies are commonly employed to design wood fasteners: 
(1) the use of spreadsheets or structural analysis software to solve the equations, (2) 
the use of tables containing commonly encountered fastener capacities, and (3) the 
use of  “ rules of thumb ”  in the form of tables and fi gures showing fastener details 
sanctioned by building codes. In most of the examples that follow, tables are used 
to fi nd lateral design values. For a more detailed look at the use of yield limit equa-
tions, see Example 9.7 and Table A-9.15. 

 In   general, fasteners should be placed in wood connections in such a way that 
the lines of force in the members being joined are aligned; a misaligned force is 
just another word for a force couple, which results in bending at the joint. Single-
shear connections, as shown in  Figure 9.4 a  , are inherently subject to such bending, 
whereas double-shear connections, as shown in  Figure 9.4 b  , are inherently symmet-
rical and, therefore, less likely to be subject to unanticipated bending stresses. On 
the other hand, many single-shear connections are embedded within, and attached 
to, a matrix of structural elements — sheathing, transverse members, and so on — that 
effectively relieve the fasteners themselves of the burden of resisting stresses aris-
ing out of the misalignment. In the single-shear examples that follow, it is assumed 
that such additional structural elements (not shown in the examples) are actually 
present. 

 Aside   from material properties for wood and steel, two other relationships 
between fastener and wood member must be accounted for: the  penetration  of lag 
screws and nails into the main member of the connection, as described in Appendix 
A-9.3; and the  grain orientation  of the various members being connected, with 
respect to the direction of load, as shown in  Figure 9.8   . To obtain full lateral design 
values, lag screw penetration must be at least equal to 8 D  and nail penetration must 
be at least equal to 10 D  (where  D  is the fastener diameter). 
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 Just   as the allowable stresses for wood structural elements in tension, compres-
sion, or bending are adjusted to account for the actual behavioral properties of 
wood, the design values for wood fasteners are also adjusted in several ways. Two 
of these adjustments have already been discussed in the chapter on material proper-
ties, although there are subtle differences in their application to fasteners. The dura-
tion of load factor ( C D  ) accounts for changes in the strength of wood connections 
based on the length of time (duration) that the load is applied. However, because 
the yield limit equations used to analyze single- and double-shear connections can 
also be used where steel side members are combined with wood main members, 
the allowable stress for such  steel  members has been reduced by a factor of 1.6, cor-
responding to the maximum duration-of-load adjustment for  wood  members under 
wind or seismic loading. In this way,  C D   may be applied to the entire connection 
design (so that the steel stress, already reduced, is increased up to its actual value in 
cases where the load combination includes wind or seismic forces), simplifying the 
design process, although making the steel side member design conservative for load 
combinations that do not include wind or seismic forces (since in those cases, the 
steel stress is still initially reduced, but not increased by the same amount). 

 The   wet service factor ( C M  ) accounts for the increased strength of wood when 
used  “ dry. ”  For connection design, it is also important to consider the moisture content 
of the wood when it was fi rst fabricated, since a change from an initial  “ wet ”  fabrica-
tion condition to a  “ dry ”  service condition can weaken the connection in some cases. 

 Two   additional adjustments apply to dowel-type fasteners only, and only when 
the fastener diameter is greater or equal to ¼       in. (i.e., for bolts and lag screws). The 
group action adjustment ( C g  ) accounts for reductions in strength that may occur 
when comparing the behavior of a single fastener to that of a group of fasteners; 

 FIGURE 9.8  
       For dowel-type fasteners, three orientations of load to wood grain are possible, shown with their 
commonly used designations and equivalent keyboard-friendly designations,  Z par  ,  Z s   -   per  , and 
 Z m   -   per  . The latter designations are used in this text:  (a) Z par   is the fastener capacity, where both 
the side and main members are loaded parallel to grain;  (b) Z s   -   per   is the fastener capacity where 
the side member is loaded perpendicular to grain while the main member is loaded parallel to 
grain; and  (c) Z m   -   per   is the fastener capacity, where the main member is loaded perpendicular 
to grain while the side member is loaded parallel to grain. The case where both members are 
loaded perpendicular to grain is uncommon and is, therefore, not considered here    

Wood
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the geometry factor ( C   Δ  ) includes a series of possible reductions that come into play 
when fasteners are closely spaced or are placed too close to the edge or end of a 
wood member, as shown in  Figure 9.9   . The orientation of the wood grain deter-
mines the  “ edge ”  and  “ end ”  of the members, irrespective of the load direction, 
whereas  “ row spacing ”  parameters are measured with respect to the direction of 
the load (a  “ row of fasteners ”  being parallel to the direction of load). 

 For   nails only, a toe-nail factor adjustment,  C tn  , is used for lateral or withdrawal 
design values (see Table A-9.8) when the side and main members are fastened with 
nails driven at a 30 °  angle to the face of the side member. 

 The   general strategy for designing wood connections is to fi rst fi nd the capacity 
of a  single  fastener, using one of the strategies discussed (i.e., using yield limit equa-
tions or various tabular design aids), and then to multiply that capacity by the num-
ber of fasteners comprising the connection. As already suggested, this total capacity 
for multiple fasteners is explicitly modifi ed using the group action adjustment fac-
tor  C g  ; the other adjustments —  C D  ,  C M  , and  C   Δ   — can be applied to either the entire 
connection or just a single fastener, but should only be applied once each per con-
nection. A temperature factor,  C t  , should be applied to wood elements subjected to 
sustained high temperatures: see Table A-9.9. 

 The   complete dowel-type fastener design process for wood elements is summa-
rized here; this summary constitutes the  “ Solution overview ”  within the examples 

 FIGURE 9.9  
       Geometry factor parameters:  (a)  a three-member connection is illustrated, with the grain 
represented by parallel lines on the surface of the members, and  (b)  a free-body diagram shows 
how the geometry factor parameters are measured on the middle member    
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that follow (with steps 4 and 5 eliminated where the connection consists of a single 
fastener only): 

    1.     Find the capacity for a single fastener,  Z .  

    2.     For lag screws and nails, check that penetration into the main member is at least 
4 D  (for lag screws) or 6 D  (for nails), and adjust capacity,  Z , accordingly.  

    3.     Adjust for duration of load, wet service conditions, and geometry.  

    4.     For multiple-fastener connections only, adjust for group action, and then mul-
tiply the adjusted single-fastener capacity by the number of fasteners in the 
connection.  

    5.     Remember that in addition to the fasteners, the  element itself  must be designed 
in a manner that accounts for the presence of bolt or lag screw holes (nail holes 
are not considered in structural element design). For multiple-fastener connec-
tions only, and only where forces are parallel to grain and in tension, also check 
the element for row and group tear-out (see Chapter 6).    

 Tables   for computing fastener capacity are included in the appendices; specifi c 
guidelines for the use of these tables are provided in the examples that follow.

       Example 9.1        Analyze wood single-shear connection using one bolt      

    Problem defi nition 
 Find   the capacity of a connection (single shear) consisting of a 2      �      10 beam connected to a 
6      �      6 post using one ¾-in.-diameter bolt, as shown in  Figure 9.10   . The wood used is Hem-Fir, 

 FIGURE 9.10  
       Single-shear bolted connection with a single fastener for Example 9.1    

Wood
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and the bolts are fabricated from ordinary, low-strength, A307 steel, as is typical for wood con-
nections. Assume live and dead loads only, dry fabrication and service conditions, and spacing 
as shown.  

    Solution overview 
        1.     Find the capacity for a single fastener,  Z.   
    2.     For lag screws and nails, check that penetration into the main member is at least 4 D  (for 

lag screws) or 6 D  (for nails), and reduce capacity,  Z , if necessary.  
    3.     Adjust for duration of load, moisture, and geometry.  
    4.     Adjust for group action (not applicable for single fastener connections).  
    5.     Check that the element itself is designed in a manner that accounts for the presence of 

bolt or lag screw holes (not included in this example).     

    Problem solution 
        1.     From Table A-9.10, the lateral design value,  Z s    –    per  , is 460       lb. The value of  Z  chosen corre-

sponds to the following condition: the side member (for bolted connections in single shear, 
the side member is defi ned as the  thinner  of the two members) is oriented so that the load 
is perpendicular to the direction of grain, while the main member is oriented so that the 
load is parallel to the direction of grain. This corresponds to  Z s    –    per  , as defi ned in  Figure 9.8 .  

    2.     From Table A-9.3 (Note 4), penetration is only an issue with lag screws and nails, since 
bolts must always fully penetrate the members being connected. Therefore, no reduction 
of the tabular lateral design value is necessary, and it remains equal to  Z s    –    per        �      460       lb.  

    3.     Adjustments are as follows: 
     C D   for typical values of live and dead load is 1.0 (Table A-9.4).  
     C M   for members fabricated and used dry is 1.0 (Table A-9.5).  
     C g   does not apply to single-fastener connections.  
     C   Δ   is found by testing four separate criteria (Table A-9.7): spacing between fasteners in a 
row (not applicable where only one fastener is used), spacing between rows of fasteners 
(not applicable where only one fastener is used), end distance, and edge distance. It is 
sometimes useful to sketch the members separately, showing dimensions for the relevant 
geometry factor parameters ( Figure 9.11   ).  

    In the calculations that follow, the fastener diameter is  D       �      ¾       in.      �      0.75       in.  
     Spacing criteria:  For a single fastener connection, the spacing criteria (for spacing 

between rows and spacing of fasteners within a row) do not apply.  
     End distance:  Adjustment criteria for end distance appear in Table A-9.7, part  C . 

For the horizontal member, the loading direction is perpendicular to grain, so the mini-
mum end distance for full value (i.e., for  C   Δ        �      1.0) is 4 D       �      4(0.75)      �      3       in. Since the 
actual end distance of 4       in. exceeds this value (and the other, unspecifi ed, end dis-
tance is clearly larger), the geometry factor is  C   Δ        �      1.0 for horizontal member end dis-
tance. For the vertical member, the loading direction is parallel to grain and the specifi ed 
wood is a  “ softwood, ”  so the minimum end distance for full value for  “ tension ”  (i.e., for 
 C   Δ        �      1.0) is 7 D       �      7(0.75)      �      5.25       in. Since the actual end distance, although unspecifi ed, 
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clearly exceeds this, the geometry factor is  C   Δ        �      1.0 for vertical member end  distance 
(tension). For the full value in  “ compression, ”  we need a minimum end distance of 
4 D       �      4(0.75)      �      3       in., which the actual end distance of 4¼       in. exceeds. The geometry fac-
tor, therefore, is also  C   Δ        �      1.0 for vertical member end distance (compression).  

     Edge distance:  Adjustment criteria for edge distance appear in Table A-9.7, part  D . For 
the horizontal member, the loading direction is perpendicular to grain, so the loaded and 
unloaded edges must be determined separately. The minimum distance for the loaded 
edge (i.e., the edge toward which the fastener itself is bearing) is 4 D       �      4(0.75)      �      3       in., 
which the actual loaded edge distance of 4¼       in. exceeds. The minimum distance for the 
unloaded edge (i.e., the opposite edge away from which the fastener itself is bearing) is 
1.5 D       �      1.5(0.75)      �      1.125       in., which the actual unloaded edge distance of 5       in. exceeds. 
For the vertical member, the loading direction is parallel to grain, so the minimum edge 
distance is determined from the so-called  “ slenderness ratio ”  of the fastener,  l/D . The 
length of the fastener,  l , within the main member is 5½       in., so  l/D       �      5.5/0.75      �      7.33. Since 
this value is greater than 6, the minimum edge distance is 1.5 D       �      1.5(0.75)      �      1.125       in., 
which the actual edge distance of 2.75       in. exceeds. Since all the criteria for full value are 
met, the geometry factor for edge distance is  C   Δ        �      1.0.  

    The geometry factor for the entire connection is found by using the smallest of the geom-
etry factors found for any of the four conditions just tested (end, edge, and the two spacing 
conditions where applicable); therefore, we use  C   Δ        �      1.0.  

    The adjusted lateral design value for the single fastener in the connection is found by 
multiplying the lateral design value from step 2 by the various adjustment factors deter-
mined in step 3:  Z  
        �       Z ( C D  )( C M  )( C   Δ  )      �      460(1.0)(1.0)(1.0)      �      460       lb.     

    4.     The group action factor,  C g  , is 1.0 for all single-fastener connections (since only multiple-
fastener connections can have  “ group action ” ). Therefore, the connection capacity is equal 
to  Z  
  ( C g  )      �      460(1.0)      �      460       lb.  

 FIGURE 9.11  
       Geometry factor parameters for Example 9.1    

Wood
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    5.     We are not considering the design of the structural elements themselves in this example.  
    6.      Conclusion:  The total capacity of the connection (consisting of a single ¾-in.-diameter bolt) 

is 460       lb.         

       Example 9.2        Analyze wood single-shear connection using multiple bolts      

    Problem defi nition 
 Find   the capacity of a connection (single shear) consisting of two 2      �      8 tension elements con-
nected by a 2      �      8 member using six ½-in.-diameter bolts in each member. The wood used is 
Hem-Fir No. 1, and the bolts are fabricated from ordinary, low-strength, A307 steel, as is typi-
cal for wood connections. Assume live, dead, and wind loads only, dry fabrication and service 
conditions, and spacing as shown in  Figure 9.12   .  

    Solution overview 
        1.     Find the capacity for a single fastener,  Z .  
    2.     For lag screws and nails, check that penetration into the main member is at least 4 D  (for 

lag screws) or 6 D  (for nails), and reduce capacity,  Z , if necessary.  
    3.     Adjust for duration of load, moisture, and geometry.  
    4.     Adjust for group action, and then multiply the adjusted single-fastener capacity by the 

number of fasteners in the connection.  
    5.     Check that the element itself is designed in a manner that accounts for the presence of 

bolt or lag screw holes (not included in this example).     

    Problem solution 
        1.     From Table A-9.10, the lateral design value,  Z par  , is 410       lb. The value of  Z  chosen corre-

sponds to the following condition: both the side and main member are oriented so that the 
load is parallel to the direction of grain, as defi ned in  Figure 9.8 .  

 FIGURE 9.12  
       Single-shear bolted connection with multiple fasteners for Example 9.2    
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    2.     From Table A-9.3 (Note 4), penetration is only an issue with lag screws and nails, since 
bolts must always fully penetrate the members being connected. Therefore, no reduction of 
the tabular lateral design value is necessary, and it remains equal to  Z par        �      410       lb.  

    3.     Adjustments are as follows: 
     C D   for live, dead, and wind load is 1.6 (Table A-9.4).  
     C M   for members fabricated and used dry is 1.0 (Table A-9.5).  
     C   Δ   is found by testing four separate criteria (Table A-9.7): spacing between fasteners in a 

row, spacing between rows of fasteners, end distance, and edge distance. It is some-
times useful to sketch the members separately, showing dimensions for the relevant 
geometry factor parameters ( Figure 9.13   ).  

    In the calculations that follow,  D  is the fastener diameter of 0.5       in.  
     Spacing criteria:  Adjustment criteria for spacing appear in Table A-9.7, parts  A  and  B . 

For spacing between fasteners in a row, where the loading direction is parallel to grain, 
the minimum spacing for full value is 4 D       �      4(0.5)      �      2       in. Since the actual spacing is 2       in., 
the full value applies, and  C   Δ        �      1.0 for spacing between fasteners in a row. For spacing 
between rows of fasteners, again with the loading direction parallel to grain, the minimum 
required spacing is 1.5 D       �      1.5(0.5)      �      0.75       in. Since the actual spacing (between rows) 
of 3.25       in. exceeds this value and is no greater than 5       in. (the maximum distance allowed 
between the outer rows of fasteners), the geometry factor is  C   Δ        �      1.0 for spacing between 
rows of fasteners.  

     End distance:  Adjustment criteria for end distance appear in Table A-9.7, part  C . For all the 
members, the loading direction is parallel to grain. Where the fasteners are bearing toward 
the member end (in  “ tension ” ) and where the wood is softwood, the minimum end distance 
for full value (i.e., for  C   Δ        �      1.0) is 7 D       �      7(0.5)      �      3.5       in. For the primary members, the actual 
end distance of 3.5       in. is no less than this, so the geometry factor is  C   Δ        �      1.0. However, 
for the connecting member, shown to the right in  Figure 9.13 , the actual distance of 2       in. 
is between the absolute minimum (3.5 D       �      1.75       in.) and the required distance for full value 
(7 D       �      3.5       in.); therefore, the geometry factor is taken as the actual end distance divided by 
the minimum distance for full value, or  C   Δ        �      2/3.5      �      0.571.  

     Edge distance:  Adjustment criteria for edge distance appear in Table A-9.7, part  D . For 
all the members, the loading direction is parallel to grain, so the minimum edge distance 

 FIGURE 9.13  
       Geometry factor parameters for Example 9.2    
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is determined from the so-called slenderness ratio of the fastener,  l/D . The length of the 
fastener,  l , within all members is 1½       in., so  l/D       �      1.5/0.5      �      3.0. Since this value is less 
than or equal to 6, the minimum edge distance is 1.5 D       �      1.5(0.5)      �      0.75       in., which the 
actual edge distance of 2.0       in. exceeds. The geometry factor for edge distance is, therefore, 
 C   Δ        �      1.0.  

    The geometry factor for the entire connection is found by using the smallest of the geom-
etry factors found for any of the four conditions just tested (end, edge, and the two spacing 
conditions where applicable): therefore, we use  C   Δ        �      0.571, which was computed for the 
end distance of the connecting member.  

    The adjusted lateral design value for a single bolt in the connection is found by multiply-
ing the lateral design value from step 2 by the various adjustment factors determined in 
step 3:  Z  
        �       Z ( C D  )( C M  )( C   Δ  )      �      410(1.6)(1.0)(0.571)      �      374.6       lb.     

    4.     From Table A-9.6, the group action factor,  C g  , is 0.993, a conservative value based on 2      �      8 
main and side members ( A m        �       A s        �      approximately 11       in 2 ), with three fasteners in a single 
row. The actual modulus of elasticity (Table A-3.9) for Hem-Fir No.1 is  E       �      1,500,000       psi, 
which is larger than the nominal value of 1,400,000       psi assumed in Table A-9.6; the actual 
fastener spacing,  s       �      2       in., is smaller than the value,  s       �      3       in., assumed in the table; and 
the actual fastener diameter,  D       �      ½       in., is smaller than the value,  D       �      ¾       in., assumed 
in the table. Therefore, the tabular value,  C g        �      0.993, is conservative and can be used. 
Alternatively, a more accurate value for  C g   can be found, based on the method described in 
Note 3 of Table A-9.6 and illustrated in Example 9.7. 

    Adjusting for group action and multiplying the single-fastener value for  Z  
   found in step 3 
by the number of fasteners in the connection, we get a total adjusted connection capacity 
equal to 374.6(0.993)(6)      �      2232       lb.     

    5.     We are not considering the design of the structural elements themselves in this example. 
Tension, row, and group tear-out are considered in Chapter 6, Example 6.2.  

    6.      Conclusion:  The total capacity of the connection (consisting of six ½-in.-diameter bolts) is 
2232       lb.         

       Example 9.3        Analyze wood double-shear connection using multiple bolts      

    Problem defi nition 
 Find   the capacity of a connection (double shear) consisting of two 2      �      8 tension elements 
connected by two shorter 2      �      8 members, using six ½-in.-diameter bolts in each member. 
The wood used is Hem-Fir No.1, and the bolts are fabricated from ordinary, low-strength, A307 
steel, as is typical for wood connections. Assume live, dead, and wind loads only, dry fabrica-
tion and service conditions, and spacing as shown in  Figure 9.14   .  

    Solution overview 
        1.     Find the capacity for a single fastener,  Z .  
    2.     For lag screws and nails, check that penetration into the main member is at least 4 D  (for 

lag screws) or 6 D  (for nails), and reduce capacity,  Z , if necessary.  
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    3.     Adjust for duration of load, moisture, and geometry.  
    4.     Adjust for group action, and then multiply the adjusted single-fastener capacity by the 

number of fasteners in the connection.  
    5.     Not included in this example (check that the element itself is designed in a manner that 

accounts for the presence of bolt or lag screw holes).     

    Problem solution 
        1.     From Table A-9.11, the lateral design value,  Z par  , is 900       lb. The value of  Z  chosen corre-

sponds to the following condition: both the side and main member are oriented so that the 
load is parallel to the direction of grain, as defi ned in  Figure 9.8 .  

    2.     From Table A-9.3 (Note 4), penetration is only an issue with lag screws and nails, since 
bolts must always fully penetrate the members being connected. Therefore, no reduction 
of the tabular lateral design value is necessary, and it remains equal to  Z par        �      900       lb.  

    3.     Adjustments are as follows: 
     C D   for live, dead, and wind load is 1.6 (Table A-9.4).  
     C M   for members fabricated and used dry is 1.0 (Table A-9.5).  
     C   Δ   is found by testing four separate criteria (Table A-9.7): spacing between fasteners in a 
row, spacing between rows of fasteners, end distance, and edge distance. It is sometimes 
useful to sketch the members separately, showing dimensions for the relevant geometry 
factor parameters ( Figure 9.15   ).  

    In the calculations that follow,  D  is the fastener diameter of 0.5       in.  
     Spacing criteria:  Adjustment criteria for spacing appear in Table A-9.7, parts  A  and  B . 

For spacing between fasteners in a row, where the loading direction is parallel to grain, 
the minimum spacing for full value is 4 D       �      4(0.5)      �      2       in. Since the actual spacing is 2       in., the 
full value applies, and  C   Δ        �      1.0. For spacing between rows of fasteners, again with 
the loading direction parallel to grain, the minimum required spacing is 1.5 D       �      1.5(.5)      �      
0.75       in. Since the actual spacing (between rows) of 3.25       in. exceeds this value and is no 
greater than 5       in. (the maximum distance allowed between the outer rows of fasteners), the 
geometry factor is  C   Δ        �      1.0.  

 FIGURE 9.14  
       Double-shear bolted connection with multiple fasteners for Example 9.3    

Wood
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     End distance:  Adjustment criteria for end distance appear in Table A-9.7, part  C . For all 
the members, the loading direction is parallel to grain. Where the fasteners are bearing 
toward the member end (i.e., in  “ tension ”  and for softwood) the minimum end distance for 
full value (i.e., for  C   Δ        �      1.0) is 7 D       �      7(0.5)      �      3.5       in. For the main members, the actual 
end distance of 3.5       in. is no less than this, so the geometry factor is  C   Δ        �      1.0. However, 
for the connecting member, shown to the right in  Figure 9.15 , the actual distance of 2       in. is 
between the absolute minimum (3.5 D       �      1.75       in.) and the required distance for full value 
(7 D       �      3.5       in.); therefore, the geometry factor is taken as the actual end distance divided by 
the minimum distance for full value, or  C   Δ        �      2/3.5      �      0.571.  

     Edge distance:  Adjustment criteria for edge distance appear in Table A-9.7, part  D . For 
all the members, the loading direction is parallel to grain, so the minimum edge distance is 
determined from the so-called slenderness ratio of the fastener,  l/D . The fastener length,  l , 
within all members is 1½       in., so  l/D       �      1.5/0.5      �      3.0. Since this value is less than or equal 
to 6, the minimum edge distance is 1.5 D       �      1.5(0.5)      �      0.75       in., which the actual edge dis-
tance of 2.0       in. exceeds. The geometry factor, therefore, is  C   Δ        �      1.0.  

    The geometry factor for the entire connection is found by using the smallest of the geom-
etry factors found for any of the four conditions just tested (end, edge, and the two spacing 
conditions where applicable); therefore, we use  C   Δ        �      0.571, which was computed for the 
end distance of the connecting member.  

    The adjusted lateral design value for a single bolt in the connection is found by multiply-
ing the lateral design value from step 2 by the various adjustment factors determined in 
step 3:  Z  
        �       Z ( C D  )( C M  )( C   Δ  )      �      900(1.6)(1.0)(0.571)      �      822.2       lb.     

    4.     From Table A-9.6, the group action factor,  C g  , is 0.983, a conservative value based on a 
single 2      �      8 main member and two 2      �      8 side members ( A m        �      approximately 11       in 2 ; 
 A s        �      approximately 17       in 2 ), with three fasteners in a single row. The actual modulus of elasticity 
(Table A-3.9) for Hem-Fir No.1 is  E       �      1,500,000       psi, which is larger than the nominal value of 
1,400,000       psi assumed in the table; the actual fastener spacing,  s       �      2       in., is smaller than the 
value,  s       �      3       in., assumed in the table; and the actual fastener diameter,  D       �      ½       in., is smaller 
than the value,  D       �      ¾       in., assumed in the table. Therefore, the tabular value,  C g        �      0.983, is 
conservative and can be used. Alternatively, a more accurate value for  C g   can be found, based 
on the method described in Note 3 of Table A-9.6 and illustrated in Example 9.7. 

 FIGURE 9.15  
       Geometry factor parameters for Example 9.3    
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    Adjusting for group action and multiplying the single-fastener value for  Z  
   found in step 
3 by the number of fasteners in the connection, we get a total adjusted connection capac-
ity equal to 822.2(0.983)(6)      �      4849       lb.     

    5.     We are not considering the design of the structural elements themselves in this example. 
Tension, row, and group tear-out are considered in Chapter 6, Example 6.2.  

    6.      Conclusion:  The total capacity of the connection (consisting of six ½-in.-diameter bolts) is 
4849       lb.         

       Example 9.4        Analyze wood double-shear connection using multiple bolts and 
steel side plates      

    Problem defi nition 
 Find   the capacity of a connection (double shear) consisting of a 6      �      6 tension member con-
nected by two ¼-in. steel side plates, using four 5⁄8-in.-diameter bolts. The wood used is 
Douglas Fir-Larch (North) No. 1; the steel plates are ASTM A36 steel; and the bolts are fab-
ricated from ordinary, low-strength, A307 steel, as is typical for wood connections. Assume 
live and dead loads only, dry fabrication and service conditions, and spacing as shown in 
 Figure 9.16   .  

    Solution overview 
        1.     Find the capacity for a single fastener,  Z .  
    2.     For lag screws and nails, check that penetration into the main member is at least 4 D  (for 

lag screws) or 6 D  (for nails), and reduce capacity,  Z , if necessary.  
    3.     Adjust for duration of load, moisture, and geometry.  

 FIGURE 9.16  
       Double-shear bolted connection with multiple fasteners and steel side plates for Example 9.4    

Wood
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    4.     Adjust for group action, and then multiply the adjusted single-fastener capacity by the 
number of fasteners in the connection.  

    5.     Not included in this example (check that the element itself is designed in a manner that 
accounts for the presence of bolt or lag screw holes).     

    Problem solution 
        1.     From Table A-9.12, the lateral design value,  Z par  , is 2390       lb. The value of  Z  chosen corre-

sponds to the following condition: the main member is oriented so that the load is parallel 
to the direction of grain, as defi ned in  Figure 9.8 . The orientation of the steel side plates to 
the direction of load is not relevant, since there is no  “ grain ”  in the steel plates that infl u-
ences its strength.  

    2.     From Table A-9.3 (Note 4), penetration is only an issue with lag screws and nails, since 
bolts must always fully penetrate the members being connected. Therefore, no reduction 
of the tabular lateral design value is necessary, and it remains equal to  Z par        �      2390       lb.  

    3.     Adjustments are as follows: 
     C D   for typical values of live and dead load is 1.0 (Table A-9.4).  
     C M   for members fabricated and used dry is 1.0 (Table A-9.5).  
     C   Δ   is found by testing four separate criteria (Table A-9.7): spacing between fasteners in 
a row, spacing between rows of fasteners, end distance, and edge distance. It is some-
times useful to sketch the members separately, showing dimensions for the relevant geom-
etry factor parameters ( Figure 9.17   ). Only the wood main member is considered here; the 
tension capacity and bolt spacing in the steel plate must be considered separately (see 
Chapter 6 for discussion of steel subjected to tension and the steel section of this chapter 
for discussion of bolt spacing).  

    In the calculations that follow,  D  is the fastener diameter of 5⁄8     in.      �      0.625       in.  
     Spacing criteria:  Adjustment criteria for spacing appear in Table A-9.7, parts  A  and  B . 

For spacing between fasteners in a row, where the loading direction is parallel to grain, 
the minimum spacing for full value is 4 D       �      4(0.625)      �      2.5       in. Since the actual spacing 

 FIGURE 9.17  
       Geometry factor parameters for Example 9.4    
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is 2.5       in., the full value applies, and  C   Δ        �      1.0. For spacing between rows of fasteners, 
again with the loading direction parallel to grain, the minimum required spacing is 1.5 D       �    
  1.5(0.625)      �      0.9375       in. Since the actual spacing (between rows) of 2.5       in. exceeds this 
value and is no greater than 5       in. (the maximum distance allowed between the outer rows 
of fasteners), the geometry factor is  C   Δ        �      1.0.  

     End distance:  Adjustment criteria for end distance appear in Table A-9.7, part  C . For the 
main member, the loading direction is parallel to grain. Where the fasteners are bearing 
toward the member end (in tension) and where the wood is softwood, the minimum end 
distance for full value (i.e., for  C   Δ        �      1.0) is 7 D       �      7(0.625)      �      4.375       in. The actual end dis-
tance of 5       in. is greater than this, so the geometry factor,  C   Δ        �      1.0.  

     Edge distance:  Adjustment criteria for edge distance appear in Table A-9.7, part  D . 
For the main member, the loading direction is parallel to grain, so the minimum 
edge distance is determined from the so-called slenderness ratio of the fastener,  l/D . 
The fastener length,  l , within the main member is 5½       in., so  l/D       �      5.5/0.625      �      8.8. 
Since this value is greater than 6, the minimum edge distance is either 1.5 D       �      1.5
(0.625)      �      0.9375       in. or one-half of the spacing between rows      �      0.5(2.5)      �      1.25       in., 
whichever is greater: the minimum edge distance is therefore 1.25       in., which the actual 
edge distance of 1.5       in. exceeds. The geometry factor, therefore, is  C   Δ        �      1.0.  

    The geometry factor for the entire connection is found by using the smallest of the geom-
etry factors found for any of the four conditions just tested (end, edge, and the two spacing 
conditions where applicable); therefore, we use  C   Δ        �      1.0.  

    The adjusted lateral design value for a single bolt in the connection is found by multiply-
ing the lateral design value from step 2 by the various adjustment factors determined in 
step 3:  Z  
        �       Z ( C D  )( C M  )( C   Δ  )      �      2390(1.0)(1.0)(1.0)      �      2390       lb.     

    4.     From Table A-9.6 (part  B  for steel side members) the group action factor,  C g  , is 0.997, 
a conservative value based on a 6      �      6 main member and two ¼-in. steel side plates 
( A m        �      approximately 30       in 2 ;  A s        �      approximately 3       in 2 ), with two fasteners in a single 
row. The actual modulus of elasticity (Table A-3.9) for Douglas Fir-Larch (North) No.1 is 
 E       �      1,600,000       psi (for posts and timbers), which is larger than the nominal value of 
1,400,000       psi assumed in the table; the actual fastener spacing,  s       �      2.5       in., is smaller than 
the value,  s       �      3       in., assumed in the table; and the actual fastener diameter,  D       �      5⁄8     in., 
is smaller than the value,  D       �      ¾       in., assumed in the table; therefore, the tabular value, 
 C g        �      0.997, is conservative and can be used. Alternatively, a more accurate value for  C g   
can be found, based on the method described in Note 3 of Table A-9.6 and illustrated in 
Example 9.7. 

    Adjusting for group action and multiplying the single-fastener value for  Z  
   found in step 3 
by the number of fasteners in the connection, we get a total adjusted connection capacity 
equal to 2390(0.997)(4)      �      9531       lb.     

    5.     We are not considering the design of the structural elements themselves in this example. 
Tension, row, and group tear-out are considered in Chapter 6, Example 6.2.  

    6.      Conclusion:  The total capacity of the connection (consisting of six ½-in.-diameter bolts) is 
9531       lb.         

Wood
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       Example 9.5        Analyze wood single-shear connection using multiple lag screws      

    Problem defi nition 
 Find   the capacity of a connection (single shear) consisting of a 4      �      10 beam connected to an 
8      �      8 post using six 6-in.-long, ½-in.-diameter lag screws. The wood used is Douglas Fir-Larch 
No.2, and the lag screws are fabricated from ordinary, low-strength, A307 steel. Assume live and 
dead loads only, dry fabrication and service conditions, and spacing as shown in  Figure 9.18   .  

    Solution overview 
        1.     Find the capacity for a single fastener,  Z .  
    2.     For lag screws and nails, check that penetration into the main member is at least 4 D  (for 

lag screws) or 6 D  (for nails), and reduce capacity,  Z , if necessary.  
    3.     Adjust for duration of load, moisture, and geometry.  
    4.     Adjust for group action, and then multiply the adjusted single-fastener capacity by the 

number of fasteners in the connection.  
    5.     Not included in this example (check that the element itself is designed in a manner that 

accounts for the presence of bolt or lag screw holes).     

    Problem solution 
        1.     From Table A-9.13, the lateral design value,  Z s    –    per  , is 270       lb. The value of  Z  chosen 

corresponds to the following condition: the side member is oriented so that the load is 

 FIGURE 9.18  
       Single-shear lag screw connection with multiple fasteners for Example 9.5    
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 perpendicular to the direction of grain, while the main member is oriented so that the load 
is parallel to its grain, as defi ned in  Figure 9.8 .  

    2.     Penetration must be checked for lag screws (see Table A-9.3 for notes on penetra-
tion; lag screw dimensions can be found in Table A-9.1). The actual penetration, 
 p       �      2.1875       in., can be found by fi rst subtracting the side member thickness of 3.5       in. 
from the lag screw length,  L       �      6       in., to get 2.5       in.; and then subtracting the length of the 
tapered tip,  E       �      0.3125       in., from the 2.5       in. length within the main member, as illustrated 
in  Figure 9.19   . 

    This actual penetration is then compared to the minimum lengths for lag screw penetra-
tion in Table A-9.3: the absolute minimum is 4 D       �      4(0.5)      �      2       in.; the minimum penetration 
to obtain the full value of  Z  is 8 D       �      8(0.5)      �      4       in. Since the actual penetration is between 
these two values, the lateral design value,  Z , is reduced by multiplying it by  p /(8 D )      �      
2.1875/4      �      0.547. Therefore, we use a lateral design value of 270      �      0.547      �      148       lb.     

    3.     Adjustments are as follows: 
     C D   for typical values of live and dead load is 1.0 (Table A-9.4).  
     C M   for members fabricated and used dry is 1.0 (Table A-9.5).  
     C   Δ   is found by testing four separate criteria (Table A-9.7): spacing between fasteners in a 
row, spacing between rows of fasteners, end distance, and edge distance. It is sometimes 
useful to sketch the members separately, showing dimensions for the relevant geometry 
factor parameters ( Figure 9.20   ).  

    In the calculations that follow,  D  is the fastener diameter of 0.5       in. (however, for lag 
screws, the so-called reduced body diameter,  D r        �      0.371       in., is used to calculate lateral 
design values).  

     Spacing criteria:  Adjustment criteria for spacing appear in Table A-9.7, parts  A  and  B . For 
spacing between fasteners in a row for the horizontal member, where the loading direction is 
perpendicular to grain, the minimum spacing for full value is determined by the required val-
ues for the attached member (i.e., for the vertical member with loading parallel to grain). For 
spacing between rows of fasteners, again with the loading direction perpendicular to grain, the 
minimum required spacing is determined from the so-called slenderness ratio of the fastener, 
 l/D . For lag screws, the dowel bearing length equals the penetration within the main mem-
ber found in step 2, as noted in Table A.9.3. Therefore, the dowel bearing length,  l , equals 

 FIGURE 9.19  
       Penetration of lag screw into main member, for Example 9.5    

Wood
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2.1875       in., and  l/D       �      2.1875/0.5      �      4.375. Since this value is between 2 and 6, the mini-
mum spacing between rows of fasteners is (5 l       �      10 D )/8      �      (5      �      2.1875      �      10      �      0.5)/8      �      
1.992       in., which the actual spacing between rows of 3.5       in. exceeds. Therefore, the geometry 
factor is  C   Δ        �      1.0.  

    For spacing between fasteners in a row, where the loading direction is parallel to grain, 
the minimum spacing for full value is 4 D       �      4(0.5)      �      2       in. Since the actual spacing is 
21⁄8       in., the full value applies here (and also to the horizontal member), and  C   Δ        �      1.0. 
For spacing between rows of fasteners, again with the loading direction parallel to grain, 
the minimum required spacing is 1.5 D       �      1.5(0.5)      �      0.75       in. Since the actual spacing 
(between rows) of 3.5       in. exceeds this value and is no greater than 5       in. (the maximum dis-
tance allowed between the outer rows of fasteners), the geometry factor is  C   Δ        �      1.0.  

     End distance:  Adjustment criteria for end distance appear in Table A-9.7, part  C . For 
the horizontal member, the loading direction is perpendicular to grain, so the minimum 
end distance for full value (i.e., for  C   Δ        �      1.0) is  4D       �      4(0.5)      �      2       in. Since the actual 
end distance of 2       in. equals this value (and the other, unspecifi ed, end distance is clearly 
larger), the geometry factor,  C   Δ        �      1.0. For the vertical member, the loading direction is 
parallel to grain and the specifi ed wood is a softwood, so the minimum end distance for 
full value for tension (i.e., for  C   Δ        �      1.0) is  7D       �      7(0.5)      �      3.5       in. Since the actual end 
distance, although unspecifi ed, clearly exceeds this, the geometry factor is  C   Δ        �      1.0. For 
the full value in  “ compression, ”  we need a minimum end distance of 4 D       �      4(0.5)      �      2       in., 
which the actual end distance of 2½       in. exceeds. The geometry factor therefore is also 
 C   Δ        �      1.0.  

     Edge distance:  Adjustment criteria for edge distance appear in Table A-9.7, part  D . For 
the horizontal member, the loading direction is perpendicular to grain, so the loaded and 
unloaded edges must be determined separately. The minimum distance for the loaded edge 
(i.e., the edge toward which the fastener itself is bearing) is 4 D       �      4(0.5)      �      2       in., which the 

 FIGURE 9.20  
       Geometry factor parameters for Example 9.5    
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actual loaded edge distance of 2½       in. exceeds. The minimum distance for the unloaded edge 
(i.e., the opposite edge away from which the fastener itself is bearing) is 1.5 D       �      1.5(0.5)      �      
0.75       in., which the actual unloaded edge distance of 2½       in. exceeds. For the vertical member, 
the loading direction is parallel to grain, so the minimum edge distance is determined from 
the so-called slenderness ratio of the fastener,  l/D . The dowel bearing length,  l , within the 
main member is 2.1875       in., so  l/D       �      2.1875/0.5      �      4.375. Since this value is less than or 
equal to 6, the minimum edge distance is 1.5 D       �      1.5(0.5)      �      0.75       in., which the actual edge 
distance of 2.0       in. exceeds. The geometry factor therefore is  C   Δ        �      1.0.  

    The geometry factor for the entire connection is found by using the smallest of the geom-
etry factors found for any of the four conditions just tested (end, edge, and the two spacing 
conditions where applicable); therefore, we use  C   Δ        �      1.0.  

    The adjusted lateral design value for a single lag screw in the connection is found by 
multiplying the lateral design value from step 2 by the various adjustment factors deter-
mined in step 3:  Z  
        �       Z ( C D  )( C M  )( C   Δ  )      �      148(1.0)(1.0)(1.0)      �      148       lb.     

    4.     From Table A-9.6, the group action factor,  C g  , is 0.970, a value based on an 8      �      8 main 
member and a side member with an effective area of 12.25       in 2  (because the side member 
is loaded perpendicular to grain, its effective area is taken as its thickness of 3.5       in. mul-
tiplied by the distance between the outer rows of fasteners, also 3.5       in.). For use in Table 
A-9.6, these areas are rounded as follows:  A m        �      56       in 2  and  A s        �      11       in 2 . The actual fastener 
spacing, s =  2 in., is smaller than the value, s =  3 in., assumed in the table; and the actual 
fastener diameter, D =  ½ in., is smaller than the value, D =  ¾ in., assumed in the table. 
However, the values for modulus of elasticity for dimension lumber and timbers in Table 
A-3.9 (1,600,000 psi for the side member; 1,300,000 psi for the main member) are not 
both larger than the nominal value of 1,400,000 psi assumed in the table. Therefore, the 
tabular value, Cg =  0.970, may not be conservative. Alternatively, a more accurate value for 
 C g   can be found, based on the method described in Note 3 of Table A-9.6 and illustrated in 
Example 9.7. 

    Adjusting for group action (using  C g        �      0.970), and multiplying the single-fastener value 
for  Z  
   found in step 3 by the number of fasteners in the connection, we get a total adjusted 
connection capacity equal to 148(0.970)(6)      �      861       lb.     

    5.     We are not considering the design of the structural elements themselves in this example.  
    6.      Conclusion:  The total capacity of the connection (consisting of six ½      �      6       in. lag screws) is 

861       lb.         

       Example 9.6        Design wood single-shear connection using common nails      

    Problem defi nition 
 Determine   the number of 10d common nails needed to connect a typical 2      �      10 fl oor joist, 
spanning 11.5       ft and spaced at 16       in. on center, to a 2      �      6 stud, as shown in  Figure 9.21   . The 
wood used is Spruce-Pine-Fir No.1/No.2, the distributed loads on the fl oor consist of 40       psf 
live load and 10.5       psf dead load, and the wood is fabricated and used dry.  

Wood
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    Solution overview 
        1.     Find the capacity for a single fastener,  Z .  
    2.     For lag screws and nails, check that penetration into the main member is at least 4 D  (for 

lag screws) or 6 D  (for nails), and reduce capacity,  Z , if necessary.  
    3.     Adjust for duration of load, moisture, and geometry.  
    4.     Group action does not apply to nailed connections.  
    5.     Check that the element itself is designed in a manner that accounts for the presence of 

bolt or lag screw holes (not applicable).  
    6.     Find the total force acting on the connection and divide by the adjusted capacity for a 

single fastener to fi nd the number of fasteners required.     

    Problem solution 
        1.     From Table A-9.14, the lateral design value,  Z , is 100       lb, for a 10d nail and a 1½-in. side 

member.  
    2.     In general, penetration must be checked for nails (see Table A-9.3): however, tabular val-

ues in Table A-9.14 already include reductions for penetration, so this step is only neces-
sary when lateral design values are computed using other means. We can confi rm that a 
penetration reduction is not necessary by computing the actual penetration,  p       �      1.5       in., 
as shown in  Figure 9.22   . First, subtract the side member thickness of 1.5       in. from the nail 
length of 3       in., to get 1.5       in. (nail dimensions can be found in Table A-9.2). 

    Next, the actual penetration is compared to the minimum requirements for nail penetra-
tion in Table A-9.3. Since  p       �      1.5       in.      	      10 D       �      10(0.148)      �      1.48       in., we can use the full lat-
eral design value. For  p       �      10 D , in addition to the necessary reduction in lateral capacity, the 

 FIGURE 9.21  
       Single-shear nailed connection for Example 9.6    
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dowel bearing length in the main member,  l  m , is taken as the penetration minus the length of 
the tapered tip so that tabular lateral design values, which do not consider this reduced dowel 
bearing length, may be slightly nonconservative in some cases (specifi cally, they may differ in 
cases where the governing yield limit equation includes the dowel bearing length parameter).  

    The lateral design value,  Z , remains 100       lb.     
    3.     Adjustments are as follows: 

     C D   for live and dead load is 1.0 (Table A-9.4).  
     C M   for members fabricated and used dry is 1.0 (Table A-9.5).  
     C   Δ        �      1.0 for dowel-type fasteners with  D       �      ¼       in. This applies to virtually all nails, certainly 
for 10d nails with  D       �      0.148       in. (see Table A-9.2). While no specifi c numerical require-
ments are given for nail spacing and edge or end distances, nails should be confi gured so 
that splitting of the wood members does not occur.  

    The adjusted lateral design value for the connection is found by multiplying the lateral 
design value from step 2 by the various adjustment factors determined in step 3:  Z  
        �       
Z ( C D  )( C M  )( C   Δ  )      �      100(1.0)(1.0)(1.0)      �      100       lb.     

    4.     The group action factor,  C g        �      1.0, for fasteners with diameter,  D       �      ¼       in., that is, for most 
nailed connections.  

    5.     We are not considering the design of the structural elements themselves in this example.  
    6.     To determine the number of nails needed, we fi rst fi nd the total force acting at the 

 connection — that is, the reaction of a typical joist — by multiplying the fl oor loads by the 
tributary area for half of a single joist: (40      �      10.5)(5.75      �      1.33)      �      387.2       lb. Dividing this 
total force by 100       lb (the capacity of a single fastener), we get the required number of fas-
teners,  n       �      387.2/100      �      3.87; that is, we need four 10d nails.         

       Example 9.7        Analyze wood double-shear bolted connection using yield limit and 
group action equations      

    Problem defi nition 
 Find   the capacity of a connection (double shear) consisting of a 6      �      6 tension member con-
nected by two ¼-in. steel side plates, using four 5⁄8-in.-diameter bolts. The wood used is 

 FIGURE 9.22  
       Penetration of nail into main member for Example 9.6    

Wood
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Douglas Fir-Larch (North) No. 1; the side plates are ASTM A36 steel; and the bolts are fabri-
cated from ordinary, low-strength, A307 steel, as is typical for wood connections. Assume live 
and dead loads only, dry fabrication and service conditions, and spacing as shown in  Figure 
9.23   . Use yield limit and group action equations, rather than tabular values (see Example 9.4 
for solution using tabular values).  

    Solution overview 
        1.     Find the capacity for a single fastener,  Z , using yield limit equations.  
    2.     For lag screws and nails, check that penetration into the main member is at least 4 D  (for 

lag screws) or 6 D  (for nails), and reduce capacity,  Z , if necessary.  
    3.     Adjust for duration of load, moisture, and geometry.  
    4.     Adjust for group action using group action factor equations, and then multiply the adjusted 

single-fastener capacity by the number of fasteners in the connection.  
    5.     Check that the element itself is designed in a manner that accounts for the presence of 

bolt or lag screw holes (not included in this example).     

    Problem solution 
        1.     To fi nd the lateral design value,  Z , for a single fastener using yield limit equations, follow 

the step-by-step method outlined in Table A-9.15. The main member is oriented so that 
the load is parallel to the direction of grain, as defi ned in  Figure 9.8 . The orientation of the 
steel side plates to the direction of load is not relevant, since there is no  “ grain ”  in the steel 
plates that infl uences its strength. 

    From Table A-3.11 (specifi c gravity),  G       �      0.49 for Douglas Fir-Larch (North).  
     D       �      5⁄8       in.      �      0.625       in.  

 FIGURE 9.23  
       Double-shear bolted connection with multiple fasteners and steel side plates for Example 9.7 
(same as  Figure 9.16  for Example 9.4)    
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     Main member  ( D       �      0.25       in., wood, loaded parallel to grain):  F em        �      11,200 G       �      11,200
(0.49)      �      5488       psi.  Side member  (A36 steel):  F es        �      87,000       psi. It is common to round 
these values to the nearest 50       psi, so we will use  F em        �      5500       psi.  

     F yb        �      45,000       psi for bolts.  
    Dowel bearing lengths are  l m        �      5.5       in. and  l s        �      0.25       in.  
    Compute the terms  R e        �       F em  / F es        �      5500/87,000      �      0.06322; and  R t        �       l m   / l s        �      

5.5/0.25      �      22.0.  
     R d        �      4 K  θ         �      4(1.0)      �      4 (for Yield Modes I  m   and I  s  );  R d        �      3.6 K  θ         �      3.6(1.0)      �      3.6 (for 

Yield Mode II); and  R d        �      3.2 K  θ         �      3.2(1.0)      �      3.2 (for Yield Modes III  m  . III  s  , IV). In these 
equations,  K  θ         �      1      �      0.25(  θ  /90)      �      1.0, since   θ        �      0 ° .  
    Compute the following coeffi cients:       
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    Compute  Z  for all applicable yield modes (four applicable modes for double shear):  
    For Yield Mode I  m  ,  Z       �       Dl m F em  / R d        �      0.625(5.5)(5500)/4      �      4726.6       lb.  
    For Yield Mode I  s  ,  Z       �      2 Dl s F es   / R d        �      2(0.625)(0.25)(87,000)/4      �      6796.9       lb for double shear.  
    Yield Mode II does not apply to double-shear connections.  
    Yield Mode III  m   does not apply to double-shear connections.  
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    The smallest of the various yield mode values is then selected:  Z       �      2394.1       lb based on 
Yield Mode III  s  .              

    2.     Penetration is only an issue with lag screws and nails, since bolts must always fully pen-
etrate the members being connected. Therefore, no reduction of the lateral design value is 
necessary, and it remains equal to  Z       �      2394.1       lb.  

    3.     Adjustments are as follows (same as for Example 9.4): 
     C D   for typical values of live and dead load is 1.0 (Table A-9.4).  
     C M   for members fabricated and used dry is 1.0 (Table A-9.5).  
     C   Δ   is found by testing four separate criteria (Table A-9.7): spacing between fasteners in 
a row, spacing between rows of fasteners, end distance, and edge distance. It is some-
times useful to sketch the members separately, showing dimensions for the relevant geom-
etry factor parameters ( Figure 9.24   ). Only the wood main member is considered here; the 
tension capacity and bolt spacing in the steel plate must be considered separately (see 
Chapter 6 for discussion of tension and the steel section of this chapter for discussion of 
bolt spacing).  

    In the calculations that follow,  D  is the fastener diameter of 5⁄8       in.      �      0.625       in.  
     Spacing criteria:  Adjustment criteria for spacing appear in Table A-9.7, parts  A  and  B . For 

spacing between fasteners in a row, where the loading direction is parallel to grain, the mini-
mum spacing for full value is 4 D       �      4(0.625)      �      2.5       in. Since the actual spacing is 2.5       in., 
the full value applies, and  C   Δ        �      1.0. For spacing between rows of fasteners, again with the 
loading direction parallel to grain, the minimum required spacing is 1.5 D       �      1.5(0.625)      �      
0.9375       in. Since the actual spacing (between rows) of 2.5       in. exceeds this value and is no 
greater than 5       in. (the maximum distance allowed between the outer rows of fasteners), the 
geometry factor is  C   Δ        �      1.0.  

     End distance:  Adjustment criteria for end distance appear in Table A-9.7, part  C . For the 
main member, the loading direction is parallel to grain. Where the fasteners are bearing 
toward the member end (in tension) and for softwood, the minimum end distance for full 
value (i.e., for  C   Δ        �      1.0) is 7 D       �      7(0.625)      �      4.375       in. The actual end distance of 5       in. is 
greater than this, so the geometry factor is  C   Δ        �      1.0.  

     Edge distance:  Adjustment criteria for edge distance appear in Table A-9.7, part  D . For 
the main member, the loading direction is parallel to grain, so the minimum edge distance 

 FIGURE 9.24  
       Geometry factor parameters for Example 9.7 (same as  Figure 9.17  for Example 9.4)    



221

is determined from the so-called slenderness ratio of the fastener,  l/D . The fastener length, 
 l , within the main member is 5½       in., so  l/D       �      5.5/0.625      �      8.8. Since this value is greater 
than 6, the minimum edge distance is either 1.5 D       �      1.5(0.625)      �      0.9375       in., or one-half 
of the spacing between rows      �      0.5(2.5)      �      1.25       in., whichever is greater: the minimum 
edge distance is therefore 1.25       in., which the actual edge distance of 1.5       in. exceeds. The 
geometry factor, therefore, is  C   Δ        �      1.0.  

    The geometry factor for the entire connection is found by using the smallest of the geom-
etry factors found for any of the four conditions just tested (end, edge, and the two spacing 
conditions where applicable); therefore, we use  C   Δ        �      1.0.  

    The adjusted lateral design value for a single bolt in the connection is found by multiply-
ing the lateral design value from step 2 by the various adjustment factors determined in 
step 3:  C D  ,  C M  , and  C   Δ  :  Z  
        �       Z ( C D  )( C M  )( C   Δ  )      �      2394.1(1.0)(1.0)(1.0)      �      2394.1       lb.     

    4.     The group action factor,  C g  , can be found based on the method described in Note 3 of 
Table A-9.6: 
     D       �      0.625       in.  
     γ       �      270,000( D  1.5 )      �      270,000(0.625 1.5 )      �      133,409.  
     s       �      2.5       in.  
     E m        �      1,600,000       psi (Table A-3.9);  E s        �      29,000,000       psi (Table A-3.12, Note 1).  
     A m        �      30.25       in 2 ;  A s        �      2(0.25      �      5.5)      �      2.75       in 2  (Table A-4.1).  
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    Adjusting for group action and multiplying the single-fastener value for  Z  
   found in step 3 
by the number of fasteners in the connection, we get a total adjusted connection capacity 
equal to 2394.1(0.999)(4)      �      9567       lb.     

    5.     We are not considering the design of the structural elements themselves in this example. 
Tension, row, and group tear-out are considered in Chapter 6, Example 6.2.  

    6.      Conclusion:  The total capacity of the connection (consisting of six ½-in.-diameter bolts) is 
9567       lb.           

    Withdrawal 
 Where   a fastener is itself stressed in tension, it is considered to be loaded in  “ with-
drawal, ”  as a failure of the connection would cause it to  “ withdraw ”  — pull out —
 from the member into which it was inserted. For lag screws and nails, selected 
withdrawal design values, designated  W  to distinguish them from lateral design 

Wood
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values,  Z , are tabulated in Tables A-9.16 and A-9.17. These tabular values increase 
with higher wood specifi c gravity,  G , and larger shaft diameter,  D , and are based 
on the following empirical equations: for lag screws,  W       �      1800 G  3/2  D  3/4 ; for nails, 
 W       �      1380 G  5/2  D . In these equations,  W  is the withdrawal design value per inch of 
penetration (lb),  G  is the specifi c gravity of the wood, and  D  is the fastener diam-
eter (in.). While it is permitted to use nails in withdrawal, it is advisable to alter the 
connection geometry, if possible, so that such unthreaded fasteners are stressed in 
shear, rather than in tension. Unlike the penetration length of lag screws stressed in 
shear (laterally), the penetration of lag screws in withdrawal only includes that por-
tion of the shank length that is both embedded in the main member  and  threaded 
(excluding the tapered tip). 

 Lag   screw withdrawal values must be reduced by 75% when the lag screws 
are inserted into the end grain of a wood member; nails are  not permitted  to be 
loaded in withdrawal from the end grain of wood members. Aside from comput-
ing the capacity of a connection based on computed withdrawal values,  W , the ten-
sile strength of lag screws loaded in withdrawal must also be checked, and, where 
the head (or washer) of the lag screw is in contact with a wood member, the bear-
ing stress of the washer on this member must also be checked. Finally, the adjusted 
withdrawal capacity per inch of penetration,  W 
  , is computed by multiplying  W  by 
the appropriate adjustment factors: where in-service temperatures are no more than 
100 ° F, only duration of load and wet service factors apply to fasteners in withdrawal 
(see Tables A-9.4 and A-9.5). 

 For   bolted connections,  “ withdrawal ”  is not possible; instead, where bolts are 
placed in tension, the tensile strength of the bolt itself, as well as the bearing of the 
bolt (or washer) on the surface of the wood member, must be checked.

       Example 9.8        Design wood connection in withdrawal, using lag screws      

    Problem defi nition 
 Determine   the number of 3-in.-long, ½-in.-diameter, lag screws needed to connect a ¼-in. 
steel plate holding a 2800-lb load to a 4      �      10 wood beam, as shown in  Figure 9.25   . The wood 
used is Spruce-Pine-Fir No.1/No.2, the loads are dead and live only (so that  C D        �      1.0), and 
the wood is fabricated and used dry. Assume that the steel plate capacity is adequate.  

    Solution overview 
 Find   the capacity of a single lag screw in withdrawal; divide the total load by this value to deter-
mine the required number of lag screws.  

    Problem solution 
        1.     From Table A-9.16, the withdrawal design value,  W , per inch of penetration, is 291       lb, 

for a 3-in.-long, ½-in.-diameter, lag screw. The adjusted value,  W  
       �       W ( C D  )( C M  )      �      291
(1.0)(1.0)      �      291       lb.  
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    2.     From Table A-9.1, it can be seen that the actual penetration into the main member (i.e., 
the length of the threaded portion of the lag screw that engages the main member, not 
including the tapered tip, or  T       �       E )      �      1.6875       in. Therefore, each lag screw resists 
(291)(1.6875)      �      491       lb in withdrawal.  

    3.     Since the total load to be resisted is 2800       lb, the required number of lag screws is 
2800/491      �      5.7. Round up and use six 3-in.-long, ½-in.-diameter lag screws.         

        Example 9.9 Analyze wood connection in withdrawal, using common nails      

    Problem defi nition 
 A   steel bracket designed to hold heavy items is fastened to the fl oor joist above it using four 
16d common nails, as shown in  Figure 9.26   . These nails must go through a ½-in. drywall ceil-
ing, as well as the 1⁄8-in.-thick steel bracket itself, before reaching the wood joist, fabricated 
from Douglas Fir-Larch. How much load can the bracket carry, based on the capacity of the 
fasteners (and assuming that the strength of the bracket itself is adequate)?  

    Solution overview 
 Find   the capacity of a single nail in withdrawal; multiply the single-nail capacity by the number 
of nails to fi nd the capacity of the bracket.  

    Problem solution 
        1.     From Table A-9.17, the withdrawal design value for a single 16d nail,  W , per inch of pene-

tration, is 40       lb. The adjusted value,  W  
        �       W ( C D  )( C M  )      �      40(0.9)(1.0)      �      36       lb. The decision 
to use a value of  C D        �      0.9 is based on an evaluation of the loads, which are essentially of a 
permanent nature (i.e., dead loads).  

    2.     The actual penetration into the main member is the total nail length minus the drywall and 
steel thickness; from Table A-9.2, we see that  p       �      3.5      �      (½      �      1⁄8)      �      2.875       in. Therefore, 
each nail resists (36)(2.875)      �      103.5       lb in withdrawal.  

 FIGURE 9.25  
       Withdrawal load on lag screws for Example 9.8    

Wood
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    3.     Since there are four nails, the total capacity of the rack is  P       �      4(103.5)      �      414       lb. However, 
it would be wiser to use a threaded connector (such as a screw or lag screw) instead of a 
nail in this situation.           

    Bearing 
 Where   a wooden column or beam bears on another structural element, a compres-
sive stress acts on the bearing surfaces. The use of the plural ( “ surfaces ” ) indicates 
that bearing always acts in two directions, so that, for example, a joist bearing on a 
plate implies that the plate is also bearing on the joist. In theory, the bearing stress is 
the same on both surfaces; in practice, the effective bearing area in some cases may 
be increased by adding 3⁄8       in. in the direction of the bearing length — measured in the 
direction parallel to the grain of the wood — to account for the ability of the wood 
grain to distribute the load across a larger area. For the beam and post shown in  Figure 
9.27   , the bearing stress of the post on the beam, or the beam on the post, is equal to 
the load,  P , divided by the bearing area,  W       �       T . Since wood is weaker when stressed 
perpendicular to its grain, the critical bearing stress will almost always occur acting 
downward on the surface of the beam, rather than upward on the post. If the dis-
tance,  D , measured from the edge of the post to the end of the beam, is greater than 
3       in., and the bearing length,  W , of the post is less than 6       in., we can reduce the effec-
tive bearing stress of the post on the beam by dividing the load,  P , by the larger effec-
tive bearing area,  T  ( W       �      3⁄8       in.). This stress is then compared to the adjusted allowable 
compressive stress (perpendicular to grain). For joists and other beams, the allowable 
stress is in compression, perpendicular to the grain of the wood, whereas when con-
sidering the bearing stress on columns, the allowable stress value is taken for compres-
sion parallel to grain (but without including the adjustment factor for stability, since 
buckling is not relevant at the surface where bearing stresses are being measured). 

 For   compressive stresses parallel to grain, a steel plate must be used at the point 
of bearing to distribute such stresses more evenly across the surfaces in contact, but 
only in cases when these stresses exceed 75% of F *c     . See Table A-3.4 for adjustments 
to allowable compressive stresses.

 FIGURE 9.26  
       Withdrawal load on nailed bracket for Example 9.9    
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       Example 9.10        Check wood connection in bearing      

    Problem defi nition 
 A   4      �      4 post bears at the midpoint of a 4      �      10 girder. The 5000-lb load transferred to the 
girder through the post consists of live, dead, and wind loads. Check whether the bearing 
capacity is adequate, assuming that both members are Hem-Fir No.2.  

    Solution overview 
 Find   the effective bearing area of the post on the girder; fi nd the actual  “ effective ”  bearing stress 
on the girder; compare this stress to the allowable compressive stress perpendicular to grain.  

    Problem solution 
        1.     Because the post has a bearing length less than 6       in., and is more than 3       in. from the end 

of the girder, we can use an effective bearing length 3⁄8       in. greater than its actual bear-
ing length of 3.5       in. (see Table A-4.1 for cross-sectional dimensions). The effective bear-
ing area is therefore      �       T       �      ( W       �      3⁄8)      �      3.5(3.5      �      0.375)      �      13.56       in 2 . The actual bearing 
stress on surface of the girder is 5000/13.56      �      369       psi.  

    2.     This value is compared with the adjusted allowable bearing stress,  Fc per
-    . From Table 
A-3.3, the design value for compression perpendicular to grain for the Hem-Fir girder is 
 F c-per        �      405       psi.  

    3.     Assuming that the members are used indoors, the relevant adjustment factors are for size 
( C F        �      1.0) and wet service ( C M        �      1.0) only; duration of load does not apply to compression 
perpendicular to grain. Therefore,  Fc per
-          �      405(1.0)(1.0)      �      405       psi, which is greater than the 
actual effective bearing stress. The connection is satisfactory with respect to bearing.  

    4.     The 4      �      4 post need not be directly checked for bearing stress (since its allowable stress in 
compression parallel to grain will be greater than the girder’s allowable stress perpendicular 
to grain). However, we check to see whether the actual stress on the post exceeds 75% 
of  Fc*,    the allowable compressive stress parallel to grain with all adjustments except for the 

 FIGURE 9.27  
       Bearing of post on beam: the direction of grain is indicated by the parallel lines on each surface    

Wood
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 column stability factor; if it does, a steel bearing plate should be specifi ed. The actual stress 
is the load divided by the post area, or 5000/(3.5      �      3.5)      �      408       psi, where the cross- sectional 
dimensions can be found in Table A-4.1. From Tables A-3.3 and A-3.4, the adjusted allow-
able stress (without  C p  ) multiplied by 75% is (0.75)1300(1.15)(1.0)      �      1121       psi (the size fac-
tor is  C F        �      1.15 for the 4      �      4 post). Since this value is greater than the actual stress, no 
bearing plates are required between the post and girder. 

    In the design of such a connection, it must not be assumed that gravity will hold the post 
fi rmly against the girder under all conditions; the two members must also be mechanically 
connected to guard against unintended movement.               

    STEEL 
 Steel   structural elements are typically connected to each other using high-strength 
bolts or welds. Especially in so-called fi eld connections — those that take place 
at the construction site — bolts are preferred, as they are easier, and generally less 
expensive, to execute in such contexts (outdoors, with unpredictable weather con-
ditions, and without convenient access to welding equipment). Often, when weld-
ing is found to be either necessary or expedient, it occurs at the fabricating shop, 
although fi eld welding is sometimes unavoidable. 

 Steel   connections are designated according to the types of forces and/or bending 
moments that are intended to be resisted and that are symbolized by the hinges, roll-
ers, or fi xed constraints that populate load diagrams in statics texts (see  Figure 9.1 ). 
In practice (see  Figure 9.28   ), hinges and rollers become  simple  connections (previ-
ously designated as Type 2); fi xed joints become  fully restrained,  or  FR,  connec-
tions (previously designated as Type 1); and the intermediate conditions between 
 simple  and  fully restrained  become  partially restrained,  or  PR,  connections (previ-
ously designated as Type 3). 

    Bolted connections 
 High  -strength bolts typically used to connect steel elements are stronger than the 
bolts most often used to connect wood elements: the two most commonly speci-
fi ed bolts used in steel structures are designated A325 (with an ultimate strength, 
 F u        �      105       ksi or 120       ksi) and A490 (with  F u        �      150       ksi). In contrast, A307 bolts typi-
cally used in wood connections have an ultimate strength,  F u        �      60       ksi. Bolts used to 
connect steel elements are stressed most commonly in shear, tension, or a combina-
tion of shear and tension, as illustrated in  Figure 9.29   . 

 For   shear connections, most bolts are designed so that they  “ bear ”  against the 
edge of the bolt holes into which they are inserted. These are bearing-type, or  “ snug-
tightened ”  joints, and a small amount of slip of the bolt within the slightly larger bolt 
hole is permitted. In the less common cases where no slip is desired — for example, 
in structures subjected to repeated stress reversals — so-called slip-critical connec-
tions are designed on the basis of the clamping force that the bolts place on the 
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steel elements being joined so that friction between the surfaces clamped together 
resists the tendency of the bolts to slip within the bolt holes. In either case (bearing 
or slip-critical bolt design), two separate strength criteria must be satisfi ed: (1) the 
shear strength of the bolt itself and (2) the compressive capacity of the elements 
being joined, as the bolts  “ bear ”  on the inside surface of the bolt holes. 

 FIGURE 9.28  
       Typical bolted connections for steel members:  (a) simple  column – beam connection — formerly 
designated as Type 2,  (b) simple  beam – girder connection — formerly designated as Type 2, and 
 (c) fully restrained  ( FR ) frame connection between column and girder — formerly designated 
as Type 1    

 FIGURE 9.29  
       Bolts stressed in  (a)  shear,  (b)  tension, and  (c)  shear and tension    

Steel
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    Shear capacity 
 The   nominal bolt shear stress can be taken as 60       ksi for A325 bolts and 75       ksi for 
A490 bolts: when divided by the safety factor for bolt shear,  Ω       �      2.00, the allow-
able stresses become 30       ksi for A325 bolts and 37.5       ksi for A490 bolts. These values 
assume that the threaded part of the bolt shaft does not penetrate as far as the actual 
shear planes (designated as condition  X , for threads   “ eXcluded ”   from the shear 
planes); in cases where the threaded portions of the shaft penetrate, or are included 
within, the shear planes (condition  N  for   “ iNcluded ”  ), these available strengths are 
reduced by 80% to 24       ksi for A325 bolts and 30       ksi for A490 bolts. The capacity of 
a single bolt in shear is found by multiplying the appropriate available stress by the 
nominal bolt area and then by the number of shear planes in the connection (typi-
cally, either one or two, corresponding to single or double shear). Typical values for 
the available shear strength of bolts can be found in Table A-9.18. The shear capac-
ity of the connection is the sum of the capacities of the individual bolts, that is, the 
single-bolt capacity times the number of bolts in the connection. Slip-critical bolts 
are given a lower nominal shear stress, effectively requiring more bolts per connec-
tion and thereby ensuring that no slip will occur.  

    Bearing capacity 
 The   nominal bearing capacity  R n        �      3.0 d b tF u  , of a bolt depends on the strength of the 
material being bolted, measured by its minimum tensile strength,  F u  , but it may be 
reduced if the bolt holes are too closely spaced or too close to the edge of the mate-
rial being connected (when such clear spacing between bolt holes, or between a hole 
and the material edge, is less than 2       in., multiply  R n   by  L c  /2, where  L c   is the smallest 
clear distance measured in the direction of the applied force). In this equation,  d b   
is the nominal bolt diameter and  t  is the thickness of the material upon which the 
bolt is bearing. For bolts in single shear, the governing thickness is the thickness of 
the thinner element being joined. For bolts in double shear, the relevant thickness is 
either that of the middle piece or the combined thicknesses of the two outer (side) 
pieces, whichever is less (assuming that all elements being joined are made from the 
same material). For connections made from different types of steel, bearing capacity 
should be computed for each element, based on its own thickness and material prop-
erties, with the smaller capacity governing the connection design for bearing. 

 Dividing   the nominal bearing capacity by the safety factor for bearing,  Ω       �      2.0, 
we get the available strength for a bolt in bearing,  R n  / Ω       �      1.5 d b tF u  , multiplied by 
 L c   /2 as before, where the clear bolt hole spacing (or distance to the edge) is less 
than 2       in. The available strength is reduced by 80% for cases where the small defor-
mations associated with bolt bearing, at ordinary service loads, are considered to 
be a design issue. Typical values for the available bearing strength of bolts can be 
found in Table A-9.19. The bearing capacity of the connection is the sum of the 
capacities of the individual bolts, that is, the single-bolt capacity times the number 
of bolts in the connection. The bolt hole diameter (assuming standard holes) used in 
the calculation of bolt hole spacing can be taken as 1⁄16       in. greater than the nominal 
bolt diameter, rather than using a bolt hole diameter 1⁄8       in. larger as is required in 
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the calculation of net area for steel tension elements (see Chapter 6). For example, 
the clear bolt hole spacing for ¾-in.-diameter bolts spaced 3       in. on center in the 
direction of the force,  L c        �      23⁄16       in., is found by subtracting the bolt hole diameter 
(¾      �      1⁄16      �      13⁄16       in.) from the centerline spacing (3       in.).  

    Minimum and maximum spacing 
 Bolts   that are used to connect steel elements are also subjected to minimum and 
maximum spacing rules. The basic suggested minimum centerline spacing between 
bolts is three times the nominal bolt diameter,  d b  , although a spacing no greater 
than 22⁄3 times  d b   is permitted. The minimum centerline distance to any edge varies, 
depending on the bolt diameter. Minimum spacing and edge distance requirements 
are given in Table A-9.20 for typical bolt sizes. 

 In   addition to these minimum spacing requirements, bolts are also subjected to 
maximum spacing rules, with 12       in. being the maximum centerline bolt spacing, in 
the direction of the applied load, permitted for plates bolted to another element 
(e.g., to another plate, or to a rolled section). Where either element being joined is 
less than ½       in. thick, this maximum spacing may be reduced to 24 times the thick-
ness of the thinner element. Similarly, the maximum edge distance, measured from 
the bolt centerline, is 6       in., which may be reduced for elements less than ½       in. 
thick to 12 times the element thickness. These requirements can be found in Table 
A-9.20, part  C , for typical member thicknesses.  

    Tension, shear and block shear 
 Where   bolt holes reduce the cross-sectional area of a tension element, the design of 
the tension element itself must account for this reduced net, or effective net, area, 
as described in Chapter 6. For coped beams bolted to the webs of girders, block 
shear must be checked, as described in Chapter 8.

       Example 9.11        Design bolted connection for steel tension element      

    Problem defi nition 
 Examine   the W8      �      24 wide-fl ange shape used as a tension element in a steel truss (the sec-
tion’s capacity was determined to be 148       kips in Example 6.4 when using two lines of ¾       in. 
diameter bolts). Find the required number of bolts so that their available strength is no less 
than the beam’s tension capacity. Assume A36 steel for the W8      �      24 section, and A490 high-
strength bearing-type bolts (threads included in the shear plane).  

    Problem overview 
 Find   the required number of bolts based on bolt shear; check for bolt bearing.  

    Problem solution 
        1.      Required number of bolts  (design based on shear): From Table A-9.18, part  A , for 

A490 bolts and ¾-in. bolt diameter, the shear capacity per bolt is 16.6       kips, assuming 

Steel



230  CHAPTER 9    Connections

threads excluded from the single shear plane. Based on Note 1 (for threads  included  
in shear plane), this value is reduced by 80%, so the capacity per bolt becomes 
0.80(16.6)      �      13.28       kips per bolt. The required number of bolts is equal to the total capac-
ity divided by the capacity per bolt, or 148/13.28      �      11.1 bolts. Clearly, this number must 
be rounded up to an integer that is divisible by 4, so that the four lines of bolts distributed 
on the two fl anges all have the same number; therefore, we provisionally select 12 bolts, as 
shown in  Figure 9.30   .  

    2.      Check required number of bolts  (based on bearing capacity): From Table A-9.19, the bearing 
capacity per bolt, per inch of A36 material thickness, is 65.3       kips. As can be seen from Table 
A-4.3, the fl ange thickness of a W8      �      24 section is 0.40       in. Therefore, the capacity of a single 
bolt, based on bearing on the fl ange thickness, is 0.40(65.3)      �      26.12       kips. The total capacity 
of the 12-bolt connection, again based on bearing, is 12(26.12)      �      313       kips. Since this capac-
ity is no smaller than the capacity determined in step 1 for shear, the provisional selection of 
12 bolts is satisfactory. For a bearing capacity less than that determined for shear, the number 
of bolts would need to be increased accordingly, and the bolt design would be governed by 
bearing instead of shear.            

    Welded connections 
 Two   pieces of steel may be welded together, not by directly melting one piece into 
the other, but rather by depositing melted steel contained in a separate electrode 
along the surfaces of the two steel pieces to be joined. Naturally, some melting of 
the joined pieces occurs as the  “ weld ”  steel is deposited; however, the weld and 
adjacent surfaces rapidly cool and harden as the electrode moves along the weld 
line, effectively connecting the pieces together. While there are numerous types of 
weld geometries — including groove welds, plug welds, and slot welds — the most 
common is the triangular fi llet weld. In what follows, we discuss the strength of fi l-
let welds subjected to loads parallel, perpendicular, or angled to the weld line. 

 FIGURE 9.30  
       Connection of W8      �      24 tension element using two lines per fl ange of high-strength bolts for 
Example 9.10    
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 As   can be seen in  Figure 9.31   , a fi llet weld is assumed to fail along the surface 
defi ned by its throat, labeled  t  in  Figure 9.31 a  , whether the weld itself is stressed 
in tension, compression, or shear. With symmetrical welds angled at 45 °  to the sur-
faces being joined, it can be seen that the throat dimension,  t , equals 0.707 w  (where 
 w  is the hypotenuse of a 45 °  right triangle with both legs equal to  t ). For a weld of 
length,  L , the surface area resisting either tension, compression, or shear is, there-
fore,  A w        �       tL       �      0.707 wL . A typical 1-in. length of weld (i.e., with  L       �      1), therefore, 
has a failure surface area of  A w1        �      0.707 w . The nominal strength (capacity) of a 
weld loaded  “ longitudinally ”  — that is, as shown in  Figure 9.31 c   — is found by multi-
plying this surface area by the weld strength, taken as 0.6 F EXX  , where  F EXX   depends 
on the strength of the electrode used. For A36 ( F y        �      36       ksi) and A992 ( F y        �      50       ksi) 
steel, an electrode is typically specifi ed with  F EXX        �      70       ksi, designated generically 
as E70XX. Putting this all together, we can compute the nominal strength of a 
1-in.-long longitudinal weld:  R wl        �      0.707(0.6      �      70)( w )      �      29.69 w  kips per inch of 
weld length. The available strength is found by dividing this nominal capacity by the 
safety factor,  Ω       �      2.0, so that  R wl  / Ω       �      14.85 w  kips per inch of weld. 

 The   general equation for all fi llet welds, loaded longitudinally as shown in  Figure 
9.31 c  , transversely as shown in  Figure 9.31 b  , or at any angle in between, is: 

  R wn/ ( sin )Ω � �14 85 1 0 0 50 1 5. . . . θ   (9.1)     

  where   

     R n  / Ω       �      the available strength of a 1-in.-long weld (kips).  

      θ        �      the angle (from 0 °  to 90 ° ) between the weld line and the direction of load.  

     w       �      the weld size, or leg length (in.).    

 FIGURE 9.31  
       Three views of a typical fi llet weld illustrating  (a)  the root, size (leg length),  w , and throat dimension, 
 t , as well as two modes of failure on the throat surface, based on either  (b)  tension or  (c)  shear    
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 It   can be seen that for longitudinal welds, with   θ        �      0 ° , the parenthetical term drops 
out, and Equation 9.1 is as derived earlier. For   θ        �      90 °  (a transverse weld), the 
capacity increases by a factor of (1.0      �      0.50       sin 1.5  90 ° )      �      1.5. The available strengths 
for longitudinal and transverse welds are, therefore, as follows: for a 1-in.-long longi-
tudinal weld, we get 

  R wwl /Ω � 14 85.   (9.2)     

  while the available strength for a 1-in.-long transverse weld is   

  R w wwt / ( )Ω � �1 5 14 85 22 27. . .   (9.3)      

 In   these equations,  R wl  / Ω  and  R wt  / Ω  are the available strengths (kips) of a 
1-in.-long weld oriented, respectively, longitudinally or transversely to the load, and 
 w  is the weld size, or leg length (in.). Where both longitudinal and transverse welds 
occur in the same connection, the available strength is taken as either ( R wl  / Ω       �    
   R wt  / Ω ) or (0.85 R wl  / Ω       �      1.5 R wt  / Ω ), whichever is greater. Other constraints on fi llet 
weld design are discussed next. 

    Weld size limits 
 Weld   sizes cannot simply be determined on the basis of Equations 9.2 or 9.3 in order 
to satisfy the requirements for available strength of a connection. Rather, they are also 
constrained by the dimensions of the material welded together. Minimum weld sizes 
must be proportioned according to the thickness of the materials being joined; while 
maximum weld sizes must be no larger than the edge along which the weld is depos-
ited or, where the edge is ¼       in. or more thick, must be at least 1⁄16       in. smaller than any 
such edge (these size constraints are summarized in Table A-9.21). For this reason, 
it is more common to fi rst establish a provisional weld size according to these mini-
mum and maximum limits and then determine the required total weld length. For 
connections with combinations of longitudinal and transverse welds, the design pro-
cess is necessarily iterative, unless one of the weld lengths, either for the longitudinal 
or transverse portion, can be initially determined from the connection geometry. 

 The   minimum length of a fi llet weld is required to be at least four times its leg 
size. Otherwise, the effective size of the weld, used in calculations, must be taken as 
no more than one-fourth of the weld length. For example, the minimum weld length 
for a ½-in. leg size is 4      �      ½      �      2       in. If a ½-in. weld size is used with a shorter weld 
length — say, 1       in. — the effective weld size used in calculating the available strength 
of the weld would be no more than the actual length (1       in.) divided by 4, or ¼       in., 
even though the actual weld size is ½       in.  

    Longitudinal welds 
 For   symmetrical and parallel longitudinal welds, the weld length,  L , must be no 
smaller than the distance between the two weld lines,  W , as shown in  Figure 9.32   . 
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 Where   such welds transmit force to the  “ end ”  of an element subject to tension 
or compression (i.e., through an  “ end-loaded ”  weld), an effective length  L e        �        β L  is 
used to compute the weld capacity, where   β   is defi ned as follows: 

  0 6 1 2 0 002 1 0. . . .� � � �β ( / )L w   (9.4)     

  In other words, where the ratio of weld length to weld size is  L / w       �      100, 
  β        �      1.0, and the effective length equals the actual weld length. Otherwise, 
  β        �      1.2      �      0.002( L / w ), with a lower limit of   β        �      0.60 where the ratio of weld length 
to weld size,  L / w       	      300.           

    Fillet weld terminations 
 In   certain cases, fi llet welds must be terminated before reaching the edge of the 
steel elements they are connecting in order to prevent damage (notching, gouging) 
of the element’s edge.  Figure 9.33 a     illustrates a condition where the fi llet weld at 
the underside of a plate (shown as a dotted line) must be interrupted at the cor-
ners before turning 90 °  and being deposited on the opposite side of the same plate. 

 FIGURE 9.32  
       Parallel, longitudinal welds    

 FIGURE 9.33  
       Termination of fi llet welds where  (a)  welds occur on opposite sides of a common plane and  (b)  a 
lap joint extends beyond a tension element    
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 Figure 9.33 b   illustrates a lap joint that extends beyond a tension element; in such 
cases, the fi llet weld must terminate a distance equal to the weld size,  w , from the 
edge of the tension element.  

    Shear strength of connecting elements 
 Where   welded connecting elements such as gussets, angles, or other plates are sub-
jected to shear, the required thickness,  t , of such elements can be found by equat-
ing the available shear strength of the connector, per unit length, to the available 
longitudinal weld strength, again per unit length. The available shear strength of the 
connector is 0.6 F u t / Ω , while that of a single longitudinal weld, from Equation 9.2, 
is  R wl  / Ω       �      14.85 w . For a connector welded on both sides of the plate, the available 
strength of the weld doubles to 2      �      14.85 w       �      29.69 w . Equating these strengths 
using a safety factor,  Ω       �      2.00 and a tensile strength,  F u        �      58       ksi (corresponding 
to a connector fabricated from A36 steel), we get the following required connec-
tor thickness,  t min   (in.) for a given weld size,  w  (in.), where the connector plate is 
welded on both sides: 

  t w wmin � � �29 69 2 0 0 6 58 1 71. . . .( )/( )   (9.5)     

       Example 9.12        Find capacity of welded connectors with transverse 
or longitudinal welds      

    Problem defi nition 
 Find   the capacities of the 6-in.-wide, 7⁄8-in.-thick plates shown in  Figure 9.34   , welded to 
(1) a wide-fl ange shape with transverse welds and (2) an 8-in.-deep channel shape with longi-
tudinal welds. In each case, assume that the plates are fabricated from A36 steel and that the 
weld size is 3⁄8       in. Use an E70xx electrode with  F u        �      70       ksi.  

 FIGURE 9.34  
       Connector plate capacity for Example 9.11 using  (a)  transverse welds and  (b)  longitudinal welds    
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    Solution overview 
 Find   the capacity of the welds; confi rm that the tensile capacity of the plates is no smaller than 
the weld capacity.  

    Problem solution 
        1.     Based on Equations 9.2 and 9.3, we can express the capacity of the transverse and longi-

tudinal welds as follows: 
    For the transverse weld, the unit capacity is  R wt   / Ω       �      1.5(14.85 w )      �      
1.5(14.85)(3⁄8)      �      8.35       kips per inch of weld. There is a total of 6      �      2      �      12       in. of transverse 
weld on the two plates (since the plate width is  W       �      6       in.), so the total capacity for the 
transverse welds is  P t        �      8.35(12)      �      100.2       kips.  

    For the longitudinal weld, the unit capacity is  R wl   / Ω       �      14.85 w       �      14.85(3⁄8)      �      5.57       kips per 
inch of weld. Since this is an  “ end-loaded ”  condition, the ratio of weld length to weld size 
must be checked:  L / w       �      8/(3⁄8)      �      21.3 is no greater than 100, so the effective weld length 
equals the actual length, which is 8       in. There is a total of 8      �      2      �      16       in. of longitudinal weld 
on the plate, so the total capacity for the longitudinal welds is  P l        �      5.57(16)      �      89.1       kips. The 
weld length,  L       �      8       in., cannot be smaller than the distance between the two weld lines, in this 
case equal to the plate width of 6       in.     

    2.     The tensile capacity of both plates is based on the smaller of the following: either the 
 capacity to resist tensile yielding on the gross area or to resist rupture on the net area. The 
capacity based on yielding (see Chapter 6) is 0.6 F y  A g        �      0.6(36)(7⁄8      �      6)      �      113.4       kips. 
The  capacity based on rupture is 0.5 F u A n        �      0.5(58)(7⁄8      �      6)      �      152.2       kips. The governing 
tensile capacity, 113.4       kips, is larger than the actual capacity of either weld condition, so 
the strength of the welds governs both designs. For short gusset plates, the effective net 
area is taken as equal to the net area, so long as it is no bigger than 85% of the gross area.  

    3.      Conclusion:  The capacity of Plate  a ,  P t  , equals 100.2       kips; and the capacity of Plate  b ,  P l  , 
equals 89.1       kips.         

       Example 9.13        Find capacity of welded connector with angled load      

    Problem defi nition 
 Find   the capacity of the ½-in.-thick plate shown in  Figure 9.35   , welded to a wide-fl ange col-
umn shape. Assume that the plate is fabricated from A36 steel and that the weld size is 3⁄16       in., 
on both sides of the plate. Use an E70xx electrode with  F u        �      70       ksi.  

    Solution overview 
 Confi rm   that the shear capacity of the plate is greater than the capacity of the weld; compute 
the available strength of the weld.  

    Problem solution 
        1.     From Equation 9.5, the required thickness of the plate (i.e., the plate thickness consistent 

with the maximum available shear strength of a weld on both sides of a connector plate) 
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is  t min        �      1.71 w       �      1.71(3⁄16)      �      0.32       in. In this calculation, we have compared the weld and 
plate shear strength as if the load were parallel to the weld, even though the actual load on 
the connector is oriented at a 60 °  angle to the weld line.  

    2.     Since the actual plate thickness of ½       in. is larger than the required thickness, 
 t min        �      0.32       in., the weld will fail in shear before the plate does. For this reason, we can fi nd 
the capacity (available strength) of the connector by determining the available strength of 
the weld, per inch of length, according to Equation 9.1: 
     R n  / Ω       �      14.85 w  (1.0      �      0.50 sin 1.5    θ  )      �      14.85(3⁄16)(1.0      �      0.50 sin 1.5  60)      �      3.91       kips per inch 
of weld.     

    3.     The total weld length is 6      �      2      �      12       in., so the total available strength of the connector, 
 P       �      12(3.91)      �      46.9       kips.         

       Example 9.14        Design a welded connector with both longitudinal and transverse 
welds      

    Problem defi nition 
 Find   the required longitudinal weld length,  L , on the two ½-in.-thick plates shown in  Figure 
9.36   , to resist a load,  P       �      80       kips. Assume that the plate is fabricated from A36 steel. Use an 
E70xx electrode with  F u        �      70       ksi.  

    Solution overview 
 Confi rm   that capacity of both plates is no less than 80       kips; fi nd the required longitudinal weld 
length so that the total weld capacity is no less than 80       kips.  

 FIGURE 9.35  
       Connector plate capacity for Example 9.12: a gusset plate welded to a W-shape is shown 
 (a)  in elevation,  (b)  in section, and  (c)  in a schematic  “ cut-away ”  view showing the potential 
shear failure planes for the plate and fi llet welds    
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    Problem solution 
        1.     The tensile capacity of the both plates is based on the smaller of the following: either the 

capacity to resist tensile yielding on the gross area or to resist rupture on the net area. The 
capacity based on yielding (see Chapter 6) is 0.6 F y  A g        �      0.6(36)(½      �      4 � 2)      �      86.4       kips. 
The capacity based on rupture is 0.5 F u A n        �      0.5(58)(½      �      4 � 2)      �      116       kips. The govern-
ing tensile capacity, 86.4       kips, is larger than the actual load of 80       kips, so the plates are 
satisfactory. For short gusset plates, the effective net area is taken as equal to the net area, 
so long as it is no bigger than 85% of the gross area.  

    2.     From Table A-9.21, for a ½-in.-thick plate, the minimum weld size is 3⁄16       in., and the maxi-
mum weld size is ½      �      1⁄16      �      7⁄16       in. For this example, we will choose a weld size between 
those limits, with  w       �      3⁄8       in.  

    3.     Based on Equations 9.2 and 9.3, we can express the capacity of the longitudinal and trans-
verse welds as follows: 
    For the longitudinal weld, the unit capacity,  R wl   / Ω       �      14.85 w       �      14.85(3⁄16)      �      2.784       kips per 
inch of weld. There is a total of 4 L  in. of longitudinal weld on the two plates (where  L  is 
the length of each longitudinal segment), so the total capacity for the longitudinal welds is 
 P l        �      2.784(4 L )      �      11.138 L  kips.  

    For the transverse weld, the unit capacity,  R wt   / Ω       �      1.5(14.85 w )      �      
1.5(14.85)(3⁄16)      �      4.177       kips per inch of weld. There is a total of 4      �      2      �      8       in. of trans-
verse weld on the two plates (since the plate width is  W       �      4       in.), so the total capacity for 
the transverse welds is  P t        �      4.177(8)      �      33.413       kips.     

    4.     Where both longitudinal and transverse welds occur in the same connection, the 
available strength is taken as either (a)  R wl   / Ω       �       R wt   / Ω  or (b) 0.85 R wl   / Ω       �      1.5 R wt   / Ω , 
whichever is greater. The terms  R wl   / Ω  and  R wt   / Ω  refer to the available strengths (capaci-
ties) of the longitudinal and transverse welds, respectively; therefore, we must test both 

 FIGURE 9.36  
       View of welded plate connectors for Example 9.13    
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alternatives, setting the capacities equal to the load,  P       �      80       kips, and solving for the 
required length,  L : 
     R wl   / Ω       �       R wt   / Ω       �      11.138 L       �      33.413      �      80; from which  L       �      4.18       in.  
    0.85 R wl   / Ω       �      1.5 R wt   / Ω       �      0.85(11.138 L )      �      1.5(33.413)      �      80; from which  L       �      3.16       in.     

    5.     Since the  greater  capacity of the two alternatives may be used, the  smaller  length, 
 L       �      3.16       in., is acceptable. Looked at another way, if the length for both alternatives were 
set at  L       �      3.16       in., case (a) would have a capacity smaller than 80       kips, while case (b) 
would have a capacity exactly equal to 80       kips; it can be seen that case (b) has the greater 
capacity and, therefore, would govern the design. Increasing the length to 4.18       in. found in 
case (a) is not required. We round up the required length for the longitudinal weld to 3½       in.             

    REINFORCED CONCRETE 
 Reinforced   concrete elements are not ordinarily  “ connected ”  in the usual sense of 
the term; rather, they are most often cast together into a monolithic assembly. Of 
course, there are construction joints between sections of the structure cast sepa-
rately, but even at such joints, opposite faces of concrete brought together in com-
pression bear against each other just as if they had been monolithically cast, and 
steel reinforcement in tension is made to extend through each construction joint so 
that tensile forces in the bars continue from one side of the joint to the other. 

 The   following discussion, therefore, does not include any reference to the types 
of welds, bolts, screws, or nails commonly found in wood or steel construction, 
where discrete structural elements subjected to tension, compression, or bend-
ing must be explicitly connected in order to function together as a coherent struc-
tural system. Instead, two  “ quasi-connections, ”  both typical of reinforced concrete 
construction, shall be examined: the end condition of a continuous beam and the 
lapped splicing of reinforcing bars where the bottom of one column is cast against 
the top of another column. 

    Development length, tension 
 The   fact that much reinforcing steel is subjected to tension raises an important ques-
tion: what prevents such steel bars from being pulled out of, or slipping within, 
the concrete into which they have been placed? As can be seen in  Figure 9.37   , any 
bending of a structural element literally stretches the tension region while the com-
pression region shortens. 

 If   the surface between the reinforcing bars and adjacent concrete were smooth 
and frictionless, the bars would remain  “ unstretched ”  as the beam bent; in general, 
it is the bond between the steel bars and concrete that guarantees that such slippage 
will not occur. This bond is primarily a result of bumps, or deformations, placed on 
the surface of the reinforcement that create a mechanical interlocking of the steel 
and concrete surfaces, as shown schematically in  Figure 9.38   . 

 The   strength of this bond, per unit of bar length, has been measured experimen-
tally, so the total necessary bar length required to resist any tendency for the bar to 
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be pulled through the concrete can be determined for any given tension stress. This 
required bar length is called the development length,  l d  , and is shown in Equation 
9.6 for No. 7 or larger uncoated bars with normal-weight concrete and adequate bar 
spacing, or adequate spacing plus confi nement with ties or stirrups, to prevent split-
ting of the concrete. Specifi cally, as illustrated in  Figure 9.39   , the bars must have a 
clear space between them at least equal to twice the bar diameter, that is, at least 
equal to 2 d b  , and clear cover at least equal to the bar diameter,  d b  . Alternatively, 
if adequate stirrups or ties are used throughout the development length region to 
confi ne the bars and prevent splitting of the concrete, the minimum clear spacing 
requirement may be reduced to  d b  : 
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 FIGURE 9.37  
       Extension of rebar in tension zone of reinforced concrete element    

 FIGURE 9.38  
       Schematic representation of a deformed reinforcing bar (rebar)    
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 In   Equation 9.6,  l d   is the development length for tension (in.);  f y   is the yield 
stress of the steel reinforcement (psi);  f c
    is the compressive strength of the con-
crete (psi);   ψ  t   is a coeffi cient equal to 1.0, except when there is at least 12       in. of 
freshly cast concrete below the steel bars, in which case   ψ  t        �      1.3 (accounting for 
the negative impact on the bond between steel and concrete caused by rising air 
and water within a large mass of freshly cast concrete); and  d b   is the reinforcing 
bar diameter (in.). Where the minimum conditions for spacing and stirrups (or ties) 
described here are not met, the development length must be increased by a factor of 
1.5. Where the bar size is smaller than No. 7, the development length is multiplied 
by 0.8. In no case may the development length be less than 12       in. Typical values for 
development length are tabulated in Table A-9.22 for common bar sizes. 

 Development   length is infl uenced primarily by three factors: assuming adequate 
bar spacing and/or ties to prevent splitting of the concrete, the required devel-
opment length becomes larger if the tensile strength of the concrete decreases 
(concrete’s tensile strength is proportional to the square root of its compressive 
strength); the required development length also increases if the stress in the bar 
increases (that stress being at most equal to the yield stress of the steel); and the 
development length increases as well if the surface area of the bar decreases (the 
surface area being proportional to the bar diameter). These three parameters can all 
be found in Equation  9.6 . 

 If   we imagine an isolated and discrete concrete beam within a continuous con-
crete structure, it is easier to see where and how the concept of development 
length becomes important. As can be seen in  Figure 9.40   , a typical reinforced con-
crete beam – girder  “ connection ”  must resist the shear force and bending moment 

 FIGURE 9.39  
       Clear cover and spacing requirements for reinforced concrete beams    
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that occur at the surface where they come together. The shear force is resisted 
through the shear resistance of the concrete itself, the longitudinal steel bars, and 
the steel ties or stirrups provided for that purpose (the latter not shown in  Figure 
9.40  for clarity). The bending moment, in turn, is resolved into a compressive force 

 FIGURE 9.40  
       Development length of straight bars and standard hook:  (a)  section through typical slab and 
girder,  (b)  exploded view showing  “ connection ”  between beam and girder (with slab omitted for 
clarity), and  (c)  required development length of hook (in girder) and straight bar (in beam)    

Reinforced concrete
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(the resultant of the stress distribution shown below the neutral axis for  “ negative ”  
bending) and a tensile force (carried by the longitudinal steel reinforcement shown 
above the neutral axis). The compressive force presents no particular problems, as 
the concrete in the beam  “ pushes ”  against the concrete in the girder. The tensile 
force, however, could pull the bars out of the girder and beam, unless those bars 
develop suffi cient bond with the concrete to resist that tendency or are otherwise 
anchored into the concrete. In the case of the beam, suffi cient space is available to 
develop that bond strength by making sure that the bars extend into the beam for a 
distance at least as great as the required development length,  l d   (see Equation 9.6). 
For an exterior girder, however, it is likely that suffi cient space is not available, and 
a 90 °  or 180 °  hook is often required. 

 As   shown in  Figure 9.40 c  , a 90 °  hook must be extended a distance of 12 d b   below 
the bent portion of the bar, which in turn is defi ned by an inner radius that cannot 
be less than 3 d b   for bars smaller than No. 9; 4 d b   for No. 9, No. 10, and No. 11 bars; 
and 5 d b   for No. 14 and No. 18 bars. In these guidelines,  d b   refers to the bar diam-
eter. The required development length for such hooks,  l dh  , is given by the following 
equation for uncoated bars and normal-weight concrete: 
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  In this equation,  l dh   is the development length for hooks (in.),   f y        �      the yield stress 
of the steel reinforcement (psi),  fc
    is the compressive strength of the concrete (psi), 
and  d b   is the bar diameter (in.). In no case may the development length for a hook 
be less than 8 d b   or 6       in. Typical values are tabulated in Table A-9.23 for common bar 
sizes.   

 It   is possible to reduce this length even further, if certain requirements are met 
that increase the level of confi nement of the hook, making it less likely to split the 
concrete: 

     l dh   may be multiplied by 0.7 for all bar hooks (except those with No. 14 and 
No. 18 bars) with side cover of at least 2.5       in. and, for 90 °  hooks only, cover 
beyond the hook of at least 2       in.  

     l dh   may be multiplied by 0.8 for all bar hooks (except those with No. 14 and No. 
18 bars) where perpendicular ties or stirrups, spaced no more than 3 d b   along 
the development length, enclose them; or, for 90 °  hooks only, where parallel 
ties or stirrups enclose the  “ vertical ”  and  “ bent ”  parts of the hook, also spaced 
no more than 3 d b  .  

     l dh   may also be multiplied by the ratio of required steel bar area to provided 
steel bar area, except in cases where the yield stress,  f y  , must be specifi cally 
accounted for.    

 These   reduction factors are cumulative; that is, they may be combined.
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       Example 9.15        Find required development length for straight bar and 90 °  hook 
in reinforced concrete structure      

    Problem defi nition 
 A   reinforced concrete beam frames into an exterior girder, as shown in  Figure 9.41   , and 
the negative moment at the connection is resisted using No. 8 bars with 2       in. clear spacing 
between them. The required area for each bar,  A s    –    required        �      0.74       in. Perpendicular ties (not 
shown) are provided along the development length of the hook within the girder, spaced at 
3       in. on center, and side cover of 3       in. is provided. Assume  fc
          �      4000       psi and  f y        �      60,000       psi. 
Find the required development length,  l d  , of the bars within the beam, the hook development 
length,  l dh  , and hook extension beyond the bend, within the girder.  

    Solution overview 
 Find   the nominal development lengths for a No. 8 bar, using 4000-psi concrete, in Table 
A-9.22 (for the beam) and Table A-9.23 (for the hook in the girder). Multiply these base values 
by the appropriate factors shown in the notes accompanying each table.  

    Problem solution 
        1.     The nominal development length required for the No. 8 bar in the beam is 48       in. 

(Table A-9.22). This value is multiplied by 1.3 (see Note 2) and  A s    -    required   / A s    -    provided        �      
0.74/0.79      �      0.937 (see Note 3) so that the fi nal value for the required development length 
is  l d        �      48(1.3)(0.937)      �      58.5       in. or, rounded up to the nearest inch, 59       in. The value for 
 A s    -    required        �      0.74 was given (or otherwise would be computed); the value for  A s - provided   is 
simply the actual area of a No. 8 bar (see Table A-4.10). The computed development 
length exceeds the absolute minimum of 12       in. (see Note 5).  

    2.     The nominal development length for the 90 °  hook in the beam is 19       in. (Table A-9.23). 
This value is multiplied by 0.7 (see Note 1), 0.8 (see Note 2), and  A s    -    required   / A s    -    provided        �      
0.74/0.79      �      0.937 (see Note 3) so that the fi nal value for the required hook development 
length is  l dh        �      19(0.7)(0.8)(0.937)      �      9.97       in. or, rounded up to the nearest inch, 10       in. 
The actual dimensions of the girder would need to be able to accommodate this required 
length. The computed development length for hooks exceeds the two absolute minimums 

 FIGURE 9.41  
       Required rebar development length for Example 9.14    

Reinforced concrete
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(see Note 6): 8 d b        �      8(1.0)      �      8       in., or 6       in. Checking the minimum radius and minimum 
length of the  “ vertical ”  portion of the hook (see Note 5), we see that the required extension 
of the bar below the bend is 12 d b        �      12(1.0)      �      12       in., and the minimum inner radius for a 
No. 8 bar is 3 d b        �      3(1.0)      �      3       in.          

 There   are two other requirements for tension reinforcement in continuous 
beams. First, for so-called positive-moment reinforcement — where tension occurs 
at the  bottom  of reinforced concrete beams — one-fourth of the rebars need to 
be extended at least 6       in. into the supports at each end of the beam. Second, for 
 negative-moment reinforcement — where tension occurs at the  top  of the beam, 
typically in the vicinity of supports — at least one-third of the rebars need to extend 
beyond the point of infl ection (where the negative moment becomes zero, and the 
curvature changes from negative to positive), a distance of  d , 12 d b  , or  l n  /16, which-
ever is greater;  d  is the effective depth of the beam;  d b   is the rebar diameter; and  l n   
is the clear span, measured between the faces of supports.  

    Development length, compression 
 For   a steel reinforcing bar in compression, much of the stress in the steel can be 
transferred to the concrete through direct bearing of the bar end on the concrete. 
For that reason, the required development length in compression,  l dc  , is smaller than 
that required when bars are stressed in tension, and is given by the greater of the 
following values: 

  

l
f

f
d l f ddc

y

c
b dc y b�



�

0 02
0 0003

.
. and 

  

(9.8)

      

 In   these equations,  l dc   is the development length (in.) for normal-weight con-
crete in compression,  f y            is   the yield stress of the steel reinforcement (psi),  f c
    is 
the compressive strength of the concrete (psi), and  d b   is the bar diameter (in.). As 
with bars in tension, it is possible to reduce this required length by multiplying the 
greater value found in Equation 9.8 by the ratio of  A s    –    required  / A s    –    provided  . In addition, 
the required development length may be multiplied by 0.75       in columns with ade-
quate spirals or ties (specifi cally, with a minimum ¼-in. spiral at no more than a 4-in. 
pitch or with No. 4 ties spaced at no more than 4       in. on center). In no case can the 
development length for compression be less than 8       in. Typical values are tabulated 
in Table A-9.24 for common bar sizes.  

    Bar splices in tension 
 Since   the length of reinforcing bars is limited by manufacturing and transportation 
constraints, it is often necessary to splice them together, at least in cases where the 
continuity assumed in design indicates lengths greater than those available from a 
single bar. While it is possible to weld bars together, or to use special mechanical 
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splicing devices, the most common method for creating continuity between two 
bars in tension is by lapping them a suffi cient distance so that tensile stresses can 
be transferred through the bond developed between the steel bars and adjacent 
concrete. For virtually all tension splices, the required lap distance is taken as 1.3 l d  , 
where the development length,  l d  , is defi ned as in Equation 9.6 (or as tabulated in 
Table A-9.22), except that the 12-in.-minimum length does not apply, and a reduc-
tion of the development length based on the ratio of provided to required steel area 
is not permitted. There are some limits placed on larger bar sizes: No. 14 and No. 18 
bars cannot be lap spliced in tension.  

    Bar splices in compression 
 Columns   are almost always cast fl oor by fl oor, with longitudinal reinforcement left 
extending vertically beyond the current fl oor level so that it can be spliced into the 
column steel for the next fl oor being cast. For  f y        �      60       ksi and  f c
         	      3000       psi, the 
required lap distance for compression is taken as: 

  
required compressive lap distance � 0 0005. f dy b   

(9.9)
     

  This required lap distance equals 30 d b   for 60-ksi steel bars, with an absolute mini-
mum lap distance of 12       in. In these equations,  f y   is the yield stress of the steel rein-
forcement (psi),  f c
    is the compressive strength of the concrete (psi), and  d b   is the 
bar diameter (in.). It should be emphasized that in many reinforced concrete col-
umns, especially those explicitly designed to resist bending moment as well as com-
pressive force, a given lap splice may need to resist tension, compression, or both 
tension and compression under different loading scenarios. For bars that resist only 
compression, and where confi nement is provided by ties or spirals, it is possible to 
create splices, not by lapping the bars, but instead by placing their ends in contact 
so that they bear directly upon each other. However, even in such cases where no 
tension is anticipated, all columns must maintain some ability to resist unexpected 
tension forces so that either additional  “ tension ”  steel must be provided in such 
cases or compressive lap splices must be used (since compressive lap splices pro-
vide suffi cient resistance to unexpected tension forces in the bars). The required 
length of column lap splices in compression may be reduced where suffi cient con-
fi nement, in the form of ties or spirals, is provided. Specifi cally, if the bar area of 
a tie (taken as the total tie area cut in section, as shown in  Figure 9.42   ) is greater 
or equal to 0.0015 hs  — where  h       �      the greater column cross-sectional thickness (in.) 
and  s       �      the tie spacing (in.) — the required lap distance may be multiplied by 0.83. 
With spirals, the required lap length may be multiplied by 0.75. In any case, the lap 
length can never be taken less than 12       in. Limits placed on larger bars are relaxed 
somewhat for lap splices in compression: No. 14 and No. 18 bars cannot be lap 
spliced to each other but may be lap spliced to No. 11 and smaller bars. In cases 
where two different bar sizes are lap spliced together in compression, the required 
splice length is found by (1) computing the required development length for the 

Reinforced concrete
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larger bar, (2) computing the required lap splice length for the smaller bar, and 
(3) using the larger of these two values.   

 For   a column resisting only compressive forces, the required lap length is deter-
mined for the bars originating in the upper column; the bars extended upward from 
the lower column that terminate in the upper column must satisfy the requirements 
for compressive development length (Equation 9.8). In practice, the larger of these 
two criteria (compressive development length for the lower bars and required lap 
splice length for the upper bars) determines the minimum splice length. Since loads 
typically are smaller in upper-level columns, it is possible that smaller bar sizes can 

 FIGURE 9.42  
       Column lap splice parameters    
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be used in the upper columns; these smaller bars can be spliced with larger bars 
extending upward from the lower column. In such cases, different bar diameters, 
 d b  , must be used in determining lap splice length and development length.

       Example 9.16        Find required length of compression column splice in reinforced 
concrete structure      

    Problem defi nition 
 A   12       in.      �      16       in. reinforced concrete column is confi gured as shown in  Figure 9.42 . The lon-
gitudinal (vertical) bars in the lower column consist of four No. 9 bars, which extend into the 
upper column. Four No. 8 bars originate in the upper column and are spliced to the lower col-
umn bars as shown. The longitudinal steel is confi ned by No. 3 ties spaced at 9       in. on center. 
Assuming only compressive stress in the column, with  f y        �      60       ksi and  f c
         �      3000       psi, what is 
the required splice length?  

    Solution overview 
 Find   the compressive lap splice length based on the diameter of the No. 8 bars in the upper 
column. Find the required compressive development length based on the No. 9 bars extended 
into the upper column. Use the larger of these two values for the column splice length.  

    Problem solution 
        1.      Lap splice . From Equation 9.9, the minimum lap splice length for the No. 8 bars is 

0.0005 f y d b        �      0.0005(60,000)(1.0)      �      30       in. To check whether the 0.83 reduction fac-
tor may be used, it is necessary to see if the No. 3 bar area for the ties is greater than 
or equal to 0.0015 hs , where  h       �      16       in. (the larger of the overall column dimensions) and 
 s       �      9       in. (the tie spacing). Using twice the area of a single tie (Table A-4.10), we fi nd that 
2(0.11)      �      0.22      	      0.0015(16)(9)      �      0.216, so the lap splice length may be reduced to 
30(0.83)      �      24.9       in. or, rounding up, 25       in.  

    2.      Development length . From Equation 9.8, we get:    

  
l ldc dc� � �

0 02 60 000

3000
1 128 21 9 0 0003 60 000

. ( , )
( . ) . . , in. and ( ))(1.128) in.� 20 3.

      

    The bar diameter,  d b  , is found in Table A-4.10. Using the larger value and rounding up, the 
minimum development length is  l dc        �      22       in. Because the tie spacing is greater than 4       in. 
on center, no reduction in development length may be taken.           

    3.     Comparing the requirements for lap splice length and development length, the larger of the 
two values will be used: 25       in.                

Reinforced concrete
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 Table A-1.1        Derivation of rules for drawing shear and moment diagrams 1   

            

 Take any beam with variable load, as shown 
at left (diagram  a ). Then take an elemental 
slice of the beam with length,  dx , and average 
load,  w , over that length (diagram  b ). There is 
a shear force and moment on the left face of 
the element ( V  and  M ), and, because the load, 
 w , is assumed to act in an upward direction 
(positive), there is a slightly smaller shear and 
moment on the right face (diagram  c ). 
 Rules 1 and 2 derive from the horizontal 
equilibrium of that elemental slice, while Rules 
3 and 4 derive from the rotational equilibrium of 
the same element. 

    From horizontal equilibrium: 
 Σ    F y          �         wdx         �         V         �         V         �         dV         �      0  
   Solving for  w , we get Rule 1 (at right): 

    

  Rule 1:    w         �         dV/dx   
 Solving fo r dv , we get  dV        �        wdx,  or, integrating, 
we get Rule 2: 

  Rule 2:   ΔV wdxA
B

A

B

� ∫     
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Table A-1.1 (Continued)

    From rotational (moment) equilibrium:  
Σ M B       �       �    Vdx         �         wdx   (   dx    /2)      �         
M         �      (   M         �         dM    )      �      0  
   We can omit the  dx  2  term, because it is so 
small, and, solving for  V , get Rule 3 (at right):     

  Rule 3:    V         �         dM   /   dx   
 Solving for  dM , we get  dM       �       Vdx , or, 
integrating, we get Rule 4: 

 Rule 4:  ΔM VdxA
B

A

B

� ∫     

 Note: 

  1. The four rules are expressed mathematically in Table A-1.1; they may also be expressed in words, as 
follows: 

 Rule 1: At any point along a beam, the slope of the shear diagram equals the value of the load (the  “ infi nite ”  
slope of the shear diagram at concentrated loads can be seen as a shorthand approximation to the actual 
condition of the load being distributed over some fi nite length, rather than existing at a point). 

 Rule 2: Between any two points along a beam, the change in the value of shear equals the total load (between 
those points). 

 Rule 3: The slope of the moment diagram at any point equals the value of the shear force at that point. 

 Rule 4: The change in the value of bending moment between any two points equals the  “ area of the shear 
diagram ”  between those points.  
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   Stone: 
          Sandstone 
          Granite 
          Marble 

  
 144 
 165 
 173 

         Brick/CMU/concrete: 
          Normal-weight reinforced concrete 

 100 – 145 
 150 

   Metals: 
          Aluminum 
          Steel 
          Lead 

  
 165 
 492 
 710 

   Glass  160 

   Wood  165 

   Water   64 

   Earth: 
          Dry clay 
          Silt, moist and packed 
          Wet sand and gravel 

  
  63 
  96 
 120 

   Insulation: 
          Glass fi ber batts 
          Expanded polystyrene boards 
          Extruded polystyrene boards 
          Polyisocyanurate boards 
          Fiberboard 

  
 0.8 
 0.9 – 1.8 
 2.2 
 2.0 
 1.5 

 (Continued) 

  Tables for Chapter 2 
(loads)       2

   APPENDIX

 Table A-2.1        Dead loads  
   A. Basic volumetric weights in pounds per cubic foot (pcf) 
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 Table A-2.1        (Continued)  
        B. Distributed loads in pounds per square feet (psf)  

    Wood fl oor system:  2      �      10 joists at 16       in. on center, wood fi nish fl oor and 
subfl oor, gypsum board ceiling 

 10.5 

    Steel fl oor system:  4½-in. corrugated steel deck with concrete slab, tile fl oor, 
mechanical ducts, suspended tile ceiling 

 47 

    Concrete fl oor system:  6-in. reinforced concrete slab, tile fl oor, mechanical 
ducts, suspended tile ceiling 

 80 

    Floor-ceiling components:    
   Harwood fi nish fl oor, 7⁄8   in.  4.0 
   Wood subfl oor, ¾       in.  2.5 
   Acoustical tile with suspended steel channels  3.0 
   Mechanical duct allowance  4.0 
   Steel stud partition allowance  8.0 

    Sheathing:    
   Plywood, per 1⁄8-in. thickness  0.40 
   Gypsum board, per 1⁄8-in. thickness  0.55 

   C. Linear loads in pounds per foot (lb/ft) 

   Steel beam, ordinary span and spacing  30 – 50 

   Steel girder, ordinary span and spacing  60 – 100 

   Wood joist, 2      �      10  4.0 

   Brick-CMU cavity wall, 12       ft high  1000 
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 Table A-2.2        Live loads  
   A. Typical live loads based on occupancy (psf) 

   Assembly areas with fi xed seats  60 

   Assembly areas with movable seats  100 

   Lobbies, corridors (fi rst fl oor)  100 

   Dining rooms and restaurants  100 

   Garages for passenger cars  50 

   Libraries, reading rooms  60 

   Libraries, stack areas (not less than)  150 

   Manufacturing, light  125 

   Manufacturing, heavy  250 

   Offi ce buildings  50 

   Dwellings and hotels (except as noted later)  40 

   Note: Residential sleeping areas  30 

   Schools (classrooms)  40 

   Schools (corridors above fi rst fl oor)  80 

   Stadium and arena bleachers  100 

   Stairs and exitways  100 

   Stores, retail (fi rst fl oor)  100 

   Stores, retail (upper fl oors)  75 

   Stores, wholesale (all fl oors)  125 

   B. Live load reduction coeffi cient  1   ,   2   ,   3   ,   4   

    

Live load reduction coefficient � �0 25
15

.
K ALL T     

  Notes for Part  B :                
   1.     K LL   is the live load element factor and is defi ned as follows for selected common beam and column 
confi gurations: 

  K LL        �      4 for columns without cantilever slabs 
   K LL        �      3 for edge columns with cantilever slabs 
  K LL        �      2 for corner columns with cantilever slabs 
  K LL        �      2 for beams (except as noted later) 
  K LL        �       1 for one-way and two-way slabs; edge beams with cantilever slabs; and anything else not previously 

mentioned. 
   2.     A T   is the tributary area of the element being considered (ft  2 ).  
   3.    No live load reduction applies when  K LL A T        <      400       ft  2 .  
   4.    Reduction coeffi cient cannot be taken greater than 1.0; nor can it be smaller than 0.5 for elements 
supporting a single fl oor level or smaller than 0.4 for all other conditions. See Chapter 2 for additional 
restrictions.  
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 Table A-2.4        Snow load Importance factor,  I s    

   Category  Description  Factor 

   I  Low hazard (minor storage, etc.)  0.8 

   II  Regular (ordinary buildings)  1.0 

   III  Substantial hazard (schools, jails, places of assembly with no 
fewer than 300 occupants) 

 1.1 

   IV  Essential facilities (hospitals, fi re stations, etc.)  1.2 

 Table A-2.3        Environmental loads 1   

   City, State      Ground Snow 
Load (psf)   

 Basic Wind Speed, 
 V  (mph)   

 Seismic Ground Motion 2  

 S s   S 1   T L  

   Boston, MA  35  105  0.35  0.08   6 

   Chicago, IL  25  90  0.20  0.06  12 

   Little Rock, AR  5  90  0.50  0.17  12 

   Houston, TX  0  120  0.10  0.05  12 

   Ithaca, NY  35  90  0.20  0.07   6 

   Los Angeles, CA    0  85  2.00  1.00 3   12 

   Miami, FL  0  150  0.06  0.02   8 

   New York, NY  30  105  0.40  0.09   6 

   Philadelphia, PA  25  90  0.30  0.08   6 

   Phoenix, AZ  0  90  0.25  0.10   6 

   Portland, ME  50  100  0.37  0.10   6 

  Notes:  
  1. Approximate values taken from snow, wind, and seismic maps.  
  2.  S s   and  S 1   are, respectively, the maximum considered earthquake ground motions of 0.2-second (short) 
and 1-second (long) spectral response acceleration (5% of critical damping) for site class  B , measured as a 
fraction of the acceleration due to gravity.  T L   is the so-called long-period transition period (in seconds).  
  3. Los Angeles regions adjacent to the ocean have a value of  T L        �      8.  
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 Table A-2.5        Wind coeffi cients  
   A. Velocity pressure coeffi cient,  K  1  

   Height above Grade, 2   z  (ft)  Exposure  B   3   Exposure  C   4   Exposure  D   5  

   500  1.57  1.78  1.90 

   400  1.47  1.69  1.82 

   300  1.35  1.59  1.73 

   200  1.20  1.46  1.62 

   100  0.99  1.27  1.43 

    90  0.96  1.24  1.41 

    80  0.93  1.21  1.38 

    70  0.89  1.17  1.35 

    60  0.85  1.14  1.31 

    50  0.81  1.09  1.27 

    45  0.79  1.07  1.25 

    40  0.76  1.04  1.22 

    35  0.73  1.01  1.19 

    30  0.70  0.98  1.16 

    25  0.67  0.95  1.13 

    20  0.62  0.90  1.08 

   0 – 15  0.57  0.85  1.03 

  Notes for Part  A : 
 1. Values of  K  are based on the following equation, where  z  is the height above grade (ft);  α       �      7.0 for Exposure 
 B , 9.5 for Exposure  C , and 11.5 for Exposure  D ; and  z g        �      1200 for Exposure  B , 900 for Exposure  C , and 700 
for Exposure  D :  

    

K
z
zg

� 2 01

2

.

/⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

α

   

When using tabular values for  K , linear interpolation between values is permitted.  
  2. When computing pressures on windward surfaces, use height  z  corresponding to height for which pressure 
is being computed; for all other surfaces, use  z       �       h  (mean roof height: i.e., use this single value of  z  for the 
entire surface). See Table A-2.5, Part  H , for graphic explanation of building geometry parameters.  
  3. Exposure  B  refers to urban or suburban areas, wooded areas, etc.  
  4. Exposure  C  refers to open terrain with scattered obstructions, including water surfaces in hurricane regions.  
  5. Exposure  D  refers to fl at, unobstructed areas like mud fl ats, salt fl ats, or water outside of hurricane regions.  

(Continued)
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   Table A-2.5 (Continued)
B. External pressure coeffi cient for walls,  C p   1  

   Orientation  0      <       L / B       ≤      1   L / B       =      2   L / B       ≥      4 

   Windward  0.8  0.8  0.8 

   Leeward   � 0.5   � 0.3   � 0.2 

   Side   � 0.7   � 0.7   � 0.7 

  Note for Part  B : 
 1.  L  and  B  are the plan dimensions of the rectangular building, with  B  being the dimension of the windward 
and leeward walls, and  L  the dimension of the sidewalls. See Table A-2.5, Part  H , for graphic explanation of 
building geometry parameters.  

   C. External pressure coeffi cient on windward slope of roof,  C p  , for wind direction normal to 
ridge 1,2,7  

   Roof Angle,  θ  (deg)   h  / L       ≤      0.25   h  / L       =      0.50   h  / L       ≥      1.0 
6      θ       <      10  0      <       D       ≤       h /2   � 0.9,  � 0.18   � 0.9,  � 0.18 3        �     1.3,  � 0.18 

     h /2      <       D       ≤       h    � 0.9,  � 0.18   � 0.9,  � 0.18   � 0.7,  � 0.18 

    h       <       D       ≤      2 h    � 0.5,  � 0.18   � 0.5,  � 0.18   � 0.7,  � 0.18 

   2 h       <       D    � 0.3,  � 0.18   � 0.3,  � 0.18   � 0.7,  � 0.18 

6      θ       �      10   � 0.7,  � 0.18   � 0.9,  � 0.18       3�     1.3,  � 0.18 

     θ       �      15   � 0.5,   40.0   � 0.7,  � 0.18   � 1.0,  � 0.18 

     θ       �      20   � 0.3, 0.2   � 0.4,   40.0   � 0.7,  � 0.18 

     θ       �      25   � 0.2, 0.3   � 0.3, 0.2   � 0.5,   40.0 

     θ       �      30   � 0.2, 0.3   � 0.2, 0.2   � 0.3, 0.2 

     θ       �      35    40.0, 0.4   � 0.2, 0.3   � 0.2, 0.2 

     θ       �      45  0.4    40.0, 0.4 4   0.0, 0.3 

5      θ       ≥      60  0.01 θ   0.01 θ   0.01 θ  

  Notes for Part  C :  
  1. Where two values are given, either may apply, and both must be considered. Interpolation between adjacent 
values is permitted, but must be between numbers of the same sign; where no number of the same exists, use 0.0.  
  2. Values are used with  K  taken at mean roof height. Units of length for  D ,  h , and  L  must be consistent with 
each other. For roof angles less than 10 ° ,  D  refers to the range of horizontal distances from the windward eave 
(edge) for which the value of  C p   applies;  h  is the height of the eave above grade for roof angles no greater than 
10 ° , otherwise,  h  is the mean roof height above grade;  L  is the horizontal length of the building parallel to the 
wind direction. See Table A-2.5, Part  H , for graphic explanation of building geometry parameters.  
  3. Value of  � 1.3 may be reduced depending on the area it is acting on: for areas no greater than 100       ft  2 , no 
reduction; for areas of 200       ft  2 , multiply by 0.9; for areas no smaller than 1000       ft  2 , multiply by 0.8; interpolate 
between given values.  
4. Values of 0.0 are used only to interpolate between adjacent fi elds.  
  5. Roof angles greater than 80 °  are treated as windward walls, with  C p        �      0.8.  
  6. See Note 2 for roof height,  h , where roof angle is no greater than 10 ° .  
  7. Negative numbers indicate  “ suction, ”  that is, forces acting away from the building surface; positive 
numbers indicate forces  “ pushing ”  against the building surface.  

(Continued)
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  Table A-2.5 (Continued)
 D. External pressure coeffi cient on leeward slope of roof,  C p  , for wind direction normal to ridge 1,2,3  

   Roof Angle,  θ  (deg)   h  / L       ≤      0.25   h  / L       �      0.50   h  / L       ≥      1.0 

    θ       �      10   � 0.3   � 0.5   � 0.7 

    θ       �      15   � 0.5   � 0.5   � 0.6 

    θ       	      20   � 0.6   � 0.6   � 0.6 

  Notes for Part  D : 
 1. The height  h  is measured to the eave for roof angles equal to 10 ° , otherwise,  h  is the mean roof height 
above grade;  L  is the horizontal length of the building parallel to the wind direction. See Table A-2.5, Part  H , for 
graphic explanation of building geometry parameters.  
  2. For roof angles less than 10 ° , the roof is considered to be fl at, and no leeward pressures are computed. 
Instead, use the values in Table A.2.4, Part  C , for the entire roof. 
 3. Interpolation is permitted between values. 
 4. Negative numbers indicate  “ suction, ”  that is, forces acting away from the building surface; positive numbers 
indicate forces  “ pushing ”  against the building surface.  

   E. External pressure coeffi cient on roof,  C p  , for wind direction parallel to ridge, for all roof 
angles 1,2,3,4,5  

   Applicable Roof Area   h  / L       ≤      0.25   h  / L       =      0.50   h  / L       ≥      1.0 

   0      <       D       ≤       h /2   � 0.9,  � 0.18   � 0.9,  � 0.18 3        �     1.3,  � 0.18 

    h /2      <       D       ≤       h    � 0.9,  � 0.18   � 0.9,  � 0.18   � 0.7,  � 0.18 

    h       <       D       ≤      2 h    � 0.5,  � 0.18   � 0.5,  � 0.18   � 0.7,  � 0.18 

   2 h       <       D    � 0.3,  � 0.18   � 0.3,  � 0.18   � 0.7,  � 0.18 

  Notes for Part  E :  
  1. Where two values are given, either may apply, and both must be considered. Interpolation between adjacent 
values is permitted, but must be between numbers of the same sign.  
  2. Values are used with  K  taken at mean roof height. Units of length for  D ,  h , and  L  must be consistent with 
each other. For all roof angles,  D  refers to the range of horizontal distances from the windward eave (edge) 
for which the value of  C p   applies;  h  is the height of the eave above grade for roof angles no greater than 10 ° , 
otherwise,  h  is the mean roof height above grade;  L  is the horizontal length of the building parallel to the wind 
direction. See Table A-2.5, Part  H , for graphic explanation of building geometry parameters.  
  3. Value of  � 1.3 may be reduced depending on the area it is acting on: for areas no greater than 100       ft 2 , no 
reduction; for areas of 200       ft 2 , multiply by 0.9; for areas no smaller than 1000       ft 2 , multiply by 0.8; interpolate 
between given values.  
  4. Roof angles greater than 80 °  are treated as windward walls, with  C p        �      0.8.  
  5. Negative numbers indicate  “ suction, ”  that is, forces acting away from the building surface; positive numbers 
indicate forces  “ pushing ”  against the building surface.  

   F. Gust effect factor,  G  

   In lieu of more complex calculations, use  G       �      0.85 for so-called rigid buildings: such buildings 
are in most cases no more than four times taller than their minimum width, and have a 
fundamental frequency of at least 1       Hz (1 cycle per second). 

(Continued)
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   Table A-2.5       (Continued)  
G. Importance factor,  I W   

   Category  Description  Factor 

   I  Low hazard (minor storage, etc.) 1 0.87   

   II  Regular (ordinary buildings)  1.0 

   III  Substantial hazard (schools, jails, places of assembly with no fewer 
than 300 occupants) 

 1.15 

   IV  Essential facilities (hospitals, fi re stations, etc.)  1.15 

  Note for Part  G : 
 1. The low hazard factor may be reduced to 0.77 in hurricane-prone regions with wind speed,  V       �     100       mph.  

   H. Graphic defi nition of building parameters 1  

        

  Note for Part  H :  
1. When using Table A-2.5, Parts  C ,  D , and  E , the roof height,  h , is measured to the mean roof elevation, 
except for roof angles less than or equal to 10 ° , in which case  h  is measured to the eave, as indicated by the 
dotted line.  
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 Table A-2.6        Seismic coeffi cients  
   A. Site coeffi cient,  F a   

   Site Class  S s  

      ≤ 0.25  0.5  0.75  1.0   ≥ 1.25 

   A      �      hard rock 
   B      �      rock 
   C      �      dense soil or soft rock 
   D      �      stiff soil 
   E      �      soft soil 

 0.8 
 1.0 
 1.2 
 1.6 
 2.5 

 0.8 
 1.0 
 1.2 
 1.4 
 1.7 

 0.8 
 1.0 
 1.1 
 1.2 
 1.2 

 0.8 
 1.0 
 1.0 
 1.1 
 0.9 

 0.8 
 1.0 
 1.0 
 1.0 
 0.9 

   F      �      liquifi able soils, etc.  Need site-specifi c investigation 

   B. Site coeffi cient,  F v   

   Site Class  S 1  

      ≤ 0.1  0.2  0.3  0.4   ≥ 0.5 

   A      �      hard rock 
   B      �      rock 
   C      �      dense soil or soft rock 
   D      �      stiff soil 
   E      �      soft soil 

 0.8 
 1.0 
 1.7 
 2.4 
 3.5 

 0.8 
 1.0 
 1.6 
 2.0 
 3.2 

 0.8 
 1.0 
 1.5 
 1.8 
 2.8 

 0.8 
 1.0 
 1.4 
 1.6 
 2.4 

 0.8 
 1.0 
 1.3 
 1.5 
 2.4 

   F      �      liquifi able soils, etc.  Need site-specifi c investigation 

   C. Design elastic response acceleration,  S DS   and  S D1   

    1  S DS        �      2⁄3( F a  )( S s  )   1  S D1        �      2⁄3( F v  )( S 1  ) 

  Note for Part  C :  
  1. See Table A-2.3 for selected values of  S s   and  S 1  . See Table A-2.5, Parts  A  and  B , for  F a   and  F v  , respectively.  

   D. Response modifi cation coeffi cient,  R  (including height and other limitations based on 
seismic design category 1 ) 

   Bearing Wall Systems    06.       Ordinary precast shear walls (  1  not 
permitted in categories  C – F ) 

   07.       Special reinforced masonry shear 
walls (  1  categories  D ,  E  limited to 
160       ft;  F  limited to 100       ft) 

   08.       Intermediate reinforced masonry 
shear walls (  1  not permitted in 
categories  D  –  F ) 

   09.       Ordinary reinforced masonry shear 
walls (  1  not permitted in categories 
 D  –  F ;  C  limited to 160       ft) 

   10.       Detailed plain masonry shear walls 
(  1  not permitted in categories  C – F ) 

 3 
 

5 
 

3.5 
 

2 
 

2 

   01.       Special reinforced concrete shear 
walls (  1  categories  D ,  E  limited to 
160       ft;  F  limited to 100       ft  1  ) 

   02.       Ordinary reinforced concrete shear 
walls (  1  not permitted in categories 
 D  –  F ) 

   03.       Detailed plain concrete shear walls 
(  1  not permitted in categories  C – F ) 

   04.       Ordinary plain concrete shear 
walls (not permitted in categories  C – F ) 

   05.       Intermediate precast shear walls 
(       1,2 categories  D – F  limited to 40       ft) 

 5 

 

4 

 

2 

 
1.5 

 
4 

(Continued)
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Bearing Wall Systems (Continued)    10.       Ordinary precast shear walls (  1  not 
permitted in categories  C  –  F ) 

   11.       Composite steel and concrete 
eccentrically braced frames 
(  1  categories  D ,  E  limited to 160       ft;  F  
limited to 100       ft) 

   12.       Composite steel and concrete 
concentrically braced frames 
(  1  categories  D ,  E  limited to 160       ft;  F  
limited to 100       ft) 

   13.       Ordinary composite steel and 
concrete braced frames (  1  not 
permitted in categories  D  –  F ) 

   14.       Composite steel plate shear walls 
(  1  categories  D ,  E  limited to 160       ft;  F  
limited to 100       ft) 

   15.       Special composite reinforced 
concrete shear walls with steel 
elements (  1  categories  D ,  E  limited to 
160       ft;  F  limited to 100       ft) 

   16.       Ordinary composite reinforced 
concrete shear walls with steel 
elements (  1  not permitted in categories 
 D  –  F ) 

   17.       Special reinforced masonry shear 
walls (  1  categories  D ,  E  limited to 
160       ft;  F  limited to 100       ft) 

   18.       Intermediate reinforced masonry 
shear walls (  1  not permitted in 
categories  D  –  F ) 

   19.       Ordinary reinforced masonry shear 
walls (  1  category  C  limited to 160       ft; not 
permitted in categories  D  –  F ) 

   20.       Detailed plain masonry shear walls 
(  1  not permitted in categories  C  –  F ) 

   21.       Ordinary plain masonry shear 
walls (  1  not permitted in categories 
 C  –  F ) 

   22.       Prestressed masonry shear walls 
(  1  not permitted in categories  C  –  F ) 

   23.       Light-framed walls with wood-
structural/sheet-steel shear panels 
(  1  categories  D  –  F  limited to 65       ft) 

 4 

 8 

 5 

 3 

 6.5 

 6 

 5

5.5 

 4 

 2 

 2 

 1.5 

 1.5 

 7 

   11.       Ordinary plain masonry shear walls 
(  1  not permitted in categories  C – F ) 

   12.       Prestressed masonry shear walls 
(  1  not permitted in categories  C – F ) 

   13.       Light-framed walls, wood-
structural/sheet-steel shear panels 
(  1  categories  D  –  F  limited to 65       ft) 

   14.       Light-framed walls with shear 
panels — all other materials (  1  not 
permitted in categories  E ,  F ;  D  limited 
to 35       ft) 

   15.       Light-framed wall systems using 
fl at strap bracing (  1  categories  D  –  F  
limited to 65       ft) 

    Building frame systems  

   01.       Steel eccentrically braced frames, 
moment-resisting, connections at 
columns away from links (  1  categories 
 D ,  E  limited to 160       ft;  F  limited to 
100       ft) 

   02.       Steel eccentrically braced frames, 
non-moment-resisting, connections at 
columns away from links (  1  categories 
 D ,  E  limited to 160       ft;  F  limited to 
100       ft) 

   03.       Special steel concentrically braced 
frames (  1  categories  D ,  E  limited to 
160       ft;  F  limited to 100       ft) 

   04.       Ordinary steel concentrically 
braced frames (       1,2 categories  D ,  E  
limited to 35       ft;  F  not permitted) 

   05.       Special reinforced concrete shear 
walls (  1  categories  D ,  E  limited to 
160       ft;  F  limited to 100       ft) 

   06.       Ordinary reinforced concrete shear 
walls (  1  not permitted in categories  D  –  F ) 

   07.       Detailed plain concrete shear walls 
(  1  not permitted in categories  C  –  F ) 

   08.       Ordinary plain concrete shear walls 
(  1  not permitted in categories  C  –  F ) 

   09.       Intermediate precast shear walls 
(       1,2 categories  D  –  F  limited to 40       ft) 

 1.5 
 

1.5 

 6.5 

 2 
 

4 

 8 

 7 

 6 

 3.25 

 6 

 5 

 2 

 1.5 

 5 

(Continued)
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   24.       Light-framed walls with shear 
panels — all other materials (  1  not 
permitted in categories  E ,  F ;  D  limited 
to 35       ft) 

   25.       Buckling-restrained braced 
frames, non-moment-resisting beam-
column connections (  1  categories  D ,  E  
limited to 160       ft;  F  limited to 100       ft) 

   26.       Buckling-restrained braced 
frames, moment-resisting beam-
column connections (  1  categories  D ,  E  
limited to 160       ft;  F  limited to 100       ft) 

   27.       Special steel plate shear wall 
(  1  categories  D ,  E  limited to 160       ft;  F  
limited to 100       ft) 

    —  

    —  

    Moment-Resisting Frame Systems  

   01.       Special steel moment frames (no 
limits) 

   02.       Special steel truss moment frames 
(  1  category  D  limited to 160       ft;  E  limited 
to 100       ft; not permitted in category  F ) 

   03.       Intermediate steel moment frames 
(       1,2 category  D  limited to 35       ft; not 
permitted in categories  E – F ) 

   04.       Ordinary steel moment frames 
(       1,2 not permitted in categories  D – F ) 

   05.       Special reinforced concrete 
moment frames (no limits) 

   06.       Intermediate reinforced concrete 
moment frames (  1  not permitted in 
categories  D  –  F ) 

   07.       Ordinary reinforced concrete 
moment frames (  1  not permitted in 
categories  C  –  F ) 

   08.       Special composite steel and 
concrete moment frames (no limits) 

   09.       Intermediate composite moment 
frames (  1  not permitted in categories 
 D  –  F ) 

 2.5 

 7 

 8 

 7 

  —  

  —  

 8 

 7 

 4.5 

 3.5 

 8 

 5 

 3 

 8 

 5 

   10.       Composite partially restrained 
moment frames (  1  categories  B ,  C  
limited to 160       ft;  D  limited to 100       ft; 
not permitted in categories  E ,  F ) 

   11.       Ordinary composite moment frames 
(  1  not permitted in categories  C  –  F   1  ) 

    Dual systems with special moment 
frames that resist at least 25% of 
seismic forces  

   01.       Steel eccentrically braced frames 
(no limits) 

   02.       Special steel concentrically braced 
frames (no limits) 

   03.       Special reinforced concrete shear 
walls (no limits) 

   04.       Ordinary reinforced concrete 
shear walls (  1  not permitted in 
categories  D  –  F ) 

   05.       Composite steel and concrete 
eccentrically braced frames (no limits) 

   06.       Composite steel and concrete 
concentrically braced frames (no 
limits) 

   07.       Composite steel plate shear walls 
(no limits) 

   08.       Special composite reinforced 
concrete shear walls with steel 
elements (no limits) 

   09.       Ordinary composite reinforced 
concrete shear walls with steel 
elements (  1  not permitted in categories 
 D  –  F ) 

   10.       Special reinforced masonry shear 
walls (no limits) 

   11.       Intermediate reinforced masonry 
shear walls (  1  not permitted in 
categories  D  –  F ) 

   12.       Buckling-restrained braced frame 
(no limits) 

   13.       Special steel plate shear walls (no 
limits) 

 6 

 3 
 

8 

 7 

 7 

 6 

 8 

 6 

 7.5 

 7 

 6 

 5.5 

 4 

 8 

 8 
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          Dual systems with intermediate 
moment frames that resist at least 25% 
of seismic forces  

   01.       Special steel concentrically braced 
frames (  1  not permitted in categories 
 E  –  F ;  D  limited to 35       ft) 

   02.       Special reinforced concrete shear 
walls (  1  category  D  limited to 160       ft; 
 E – F  limited to 100       ft) 

03.       Ordinary reinforced masonry shear 
walls (  1  category  C  limited to 160       ft; not 
permitted in categories  D – F )

   04.       Intermediate reinforced masonry 
shear walls (  1  not permitted in 
categories  D  –  F ) 

   05.       Composite steel and concrete 
concentrically braced frames (  1  not 
permitted in category  F ;  D  limited to 
160       ft;  E  limited to 100       ft) 

   06.       Ordinary composite braced frames 
(  1  not permitted in categories  D  –  F ) 

   07.       Ordinary composite reinforced 
concrete shear walls with steel 
elements (  1  not permitted in categories 
 D  –  F ) 

   08.       Ordinary reinforced concrete shear 
walls (  1  not permitted in categories 
 D  –  F ) 

        Cantilevered column systems detailed 
to conform with:  

   01.       Special steel moment frames 
(  1  categories  B  –  F  limited to 35       ft) 

     6 

 6.5 

 3 

 3.5 
 

5.5 

 3.5 
 

5 

 5.5 

 2.5 

   02.       Intermediate steel moment 
frames (       1,2 categories  B  –  D  limited 
to 35       ft; not permitted in categories 
 E ,  F ) 

   03.       Ordinary steel moment frames 
(       1,2 categories  B ,  C  limited to 35       ft; not 
permitted in categories  D  –  F ) 

   04.       Special reinforced concrete 
moment frames (  1  categories  B  –  F  
limited to 35       ft) 

   05.       Intermediate concrete moment 
frames (  1  categories  B ,  C  limited 
to 35       ft; not permitted in categories 
 D  –  F ) 

   06.       Ordinary concrete moment frames 
(  1  category  B  limited to 35       ft; not 
permitted in categories  C  –  F ) 

   07.       Timber frames (  1  categories 
 B  –  D  limited to 35       ft; not permitted in 
categories  E ,  F ) 

    Miscellaneous other systems  

   Steel systems not specifi cally detailed 
for seismic resistance, excluding 
cantilevered column systems (  1  not 
permitted in categories  C  –  F ) 

   Shear wall-frame interactive system 
with ordinary reinforced concrete 
moment frames and shear walls (  1  not 
permitted in categories  D  –  F ) 

  1.5 

 1.25 

2.5 

 1.5 

 
1 

 1.5 

3

 4.5 

  Notes for Part  D :  
   1   Seismic design categories are described in Table A-2.6, Part  G , and range from  A  (least severe) to  F  (most 
severe).  
   2   Height limits may be increased in certain cases, and buildings may be permitted in certain cases for this 
seismic force-resisting system (refer to building codes).  

(Continued)
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 E. Fundamental period of vibration,  T  (seconds) — approximate value, and 2exponent,  k     

    T   1   Structure  C  T   x 

    
T C hT n

x�                  Steel moment-resisting frame 
 Concrete moment-resisting frame 
 Steel eccentrically braced frame 
 All other structural types 

 0.028 
 0.016 
 0.030 
 0.020 

 0.8 
 0.9 
 0.75 
 0.75 

  Notes for Part  E :  
  1.  h n   is the building height (ft).  
  2.  k  accounts for the more complex effect of longer periods of vibration on the distribution of story forces and 
equals 1 for periods      ≤      0.5 second, and 2 for periods      ≥      2.5 seconds (with linear interpolation permitted for 
periods between 0.5 and 2.5 seconds).  

   F. Importance factor,  I E   

   Occupancy 
Category 

 Description  Factor 

   I  Low hazard (minor storage, etc.)  1.0 

   II  Regular (ordinary buildings)  1.0 

   III  Substantial hazard (schools, jails, places of assembly with no 
fewer than 300 occupants) 

 1.25 

   IV  Essential facilities (hospitals, fi re stations, etc.)  1.50 

   G. Seismic design category 1  

   Occupancy 
Category 

 20        ≤       S DS        <      
0.167 or 
0      ≤       S D1        <      
0.067 

2 0.167        ≤       S DS        <      
0.33 or 
0.067      ≤       S D1        <      
0.133 

2 0.33        ≤       S DS        <      
0.50 or 
0.133      ≤       S D1        <      
0.20 

2 0.50        ≤       S DS   
or 
0.20      ≤       S D1   

  S 1        ≥      0.75 

   I   A    B    C    D    E  

   II   A    B    C    D    E  

   III   A    B    C    D    E  

   IV   A    C    D    D    F  

  Notes for Part  G : 
 1. Where more than one category applies, use the more severe category (i.e.,  B  before  A ;  C  before  B , etc.) 
 2. For buildings with  S 1        <      0.75, it is permissible to use only the  S DS   criteria (i.e., one need not consider the 
criteria involving  S D1  ), but only where all of the following apply:  
(a) T       <      0.8 S D1  / S DS   where the period  T  is found in Table A-2.5, Part  E , and  S D1   and  S DS   are found in Table 
A-2.6, Part  C .
(b)  Floor-roof systems (acting as regular structural  “ diaphragms ”  with span-depth ratios no greater than 3) 
are concrete slabs or metal decks with concrete infi ll; or, for fl exible diaphragms, lateral-force-resisting vertical 
elements (such as shear walls or trusses) are no more than 40       ft apart.   

  Table A-2.6     (Continued)
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   H. Seismic response coeffi cient,  1  C s   

    S 1   and  T   Upper Limit for  C s    Lower Limit for  C s   2 Provisional    C s   

    S 1        �      0.6 and  T       ≤       T L   
  

S
TR I

D

E

1

( )/
    

 0.01   

  

S

R I
DS

E( / )
          

    S 1        �      0.6 and  T       �       T L   
  

S T

T R I
D L

E

1
2( )/     

    S 1        ≥      0.6 and  T       ≤       T L   
  

S
TR I

D

E

1

( / )
    

  

0 5 1.
( )

S
R IE/

      
    S 1     ≥         0.6 and  T       �       T L   

  

S T

T R I
D L

E

1
2( )/

    

  Notes for Part  H :  
  1. Values for  S 1   and  T L   for selected cities can be found in Table A-2.3; values for  S DS   and  S D1   are found in 
Table A-2.6, Part  C ; values for  R  are found in Table A-2.6, Part  D ; approximate values for  T  are found in Table 
A-2.6, Part  E ; and values for  I E   are found in Table A-2.6, Part  F .  
  2. Use the  “ provisional ”  value for  C s   when it falls between the lower and upper limits; otherwise, use the lower 
limit (when the provisional value is below the lower limit) or the upper limit (when the provisional value is above 
the upper limit).  
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 Table A-3.1        Design values for tension,  F t   (psi) for visually graded lumber and glued laminated 
timber  
   A. Dimension lumber (2 to 4       in. thick) 

   Species  Select 
Structural 

 No. 1  No. 2  No. 3  Miscellaneous 

   Douglas Fir-Larch 
   Douglas Fir-Larch (North) 
   Douglas Fir-South 
   Hem-Fir 
   Hem-Fir (North) 
   Spruce-Pine-Fir 
   Spruce-Pine-Fir (South) 
   Southern Pine  3   

 1000 
 825 
 900 
 925 
 775 
 700 
 575 

 1000 

 675 
 n/a 
 600 
 625 
 n/a 
 n/a 
 400 
 650 

 575 
 n/a 
 525 
 525 
 n/a 
 n/a 
 350 
 525 

 325 
 300 
 300 
 300 
 325 
 250 
 200 
 300 

1     800 
2     500 
  
1     725 
2     575 
2     450     

   B. Beams and stringers  4   

   Species  Select 
Structural 

 No. 1  No. 2  No. 3  Miscellaneous 

   Douglas Fir-Larch 
   Douglas Fir-Larch (North) 
   Douglas Fir-South 
   Hem-Fir 
   Hem-Fir (North) 
   Spruce-Pine-Fir 
   Spruce-Pine-Fir (South) 
   Southern Pine  5   

 950 
 950 
 900 
 750 
 725 
 650 
 625 
 900 

 675 
 675 
 625 
 525 
 500 
 450 
 450 
 550 

 425 
 425 
 425 
 350 
 325 
 300 
 300 
 525 

 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 

  
  
  
  
  
  
  
  

  Tables for Chapter 3 
(material properties)       3
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 Table A-3.1        (Continued)  
   C. Posts and timbers  6   

   Species  Select 
Structural 

 No. 1  No. 2  No. 3  Miscellaneous 

   Douglas Fir-Larch 
   Douglas Fir-Larch (North) 
   Douglas Fir-South 
   Hem-Fir 
   Hem-Fir (North) 
   Spruce-Pine-Fir 
   Spruce-Pine-Fir (South) 
   Southern Pine  5   

 1000 
 1000 
 950 
 800 
 775 
 700 
 675 
 900 

 825 
 825 
 775 
 650 
 625 
 550 
 550 
 550 

 475 
 475 
 450 
 375 
 375 
 325 
 325 
 525 

 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 

  
  
  
  
  
  
  
  

   D. Glued laminated softwood timber 

   Species  Grade (and Identifi cation No.) 

L3 (ID#1) L2 (ID#2) L2D (ID#3) L1D (ID#5)

       Douglas Fir-Larch (DF)    900    1250    1450    1600 

L3 (ID#22)

       Softwood Species (SW)    525       

L3 (ID#69) L2 (ID#70) L1D (ID#71) L1S (ID#72)

       Alaska Cedar (AC)    725    975    1250    1250 

 N2M14 (ID#47) N2D14 (ID#48) N1M16 (ID#49) N1D14 (ID#50)

       Southern Pine (SP)  1200    1400    1350    1550 

  Notes:  
    1. No.1 and better.  
    2. No.1/No.2.  
    3. Values for Southern Pine for dimension lumber are approximate: typical published values include the size factor 
and, therefore, list different values for each lumber width, whereas the values in this table have been normalized 
(i.e., do  not  include the size factor) and have been rounded down to values that may be slightly conservative.  
    4. Beams and stringers are a subset of the  “ timbers ”  size category, 5       in.      �      5       in. or larger, where the width is at 
least 4       in. bigger than the thickness.  
    5. Southern Pine values for timbers (beams and stringers; posts and timbers) are for wet service conditions.  
    6. Posts and timbers are a subset of the  “ timbers ”  size category, 5       in.      �      5       in. or larger, where the width is equal 
to, or no more than 2       in. bigger than, the thickness.  
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 Table A-3.2        Adjustments to allowable stress in tension,  F t  , for visually graded lumber and 
glued laminated softwood timber  
   A. Size factor 

    Size factor ,  C F        �      1.0 for tension stress, except for the following sizes of dimension lumber: 

   Size   C F    Size   C F    Size   C F    Size   C F   

   2      �      2  1.5  2      �      8  1.2 1 2      �      14, 4      �      14    0.9  4      �      8  1.2 

   2      �      4  1.5  2      �      10  1.1  4      �      4  1.5  4      �      10  1.1 

   2      �      6  1.3  2      �      12  1.0  4      �      6  1.3  4      �      12  1.0 

   B. Wet service factor 

    Wet service factor ,  C M        �      1.0, except for glulam with a moisture content of at least 16% (e.g., 
used outdoors), in which case  C M        �      0.8. In any dry service condition,  C M        �      1.0. 

   C. Load duration factor 

   Load duration factor,  C D  , is as follows: 

   Load Type  Duration   C D   

   Dead load,  D   Permanent  0.90 

   Live load,  L   10 years  1.00 

   Snow load,  S   2 months  1.15 

   Construction load,  L r    1 week  1.25 

   Wind or seismic load,  W  or  E   10 minutes  1.60 

   Impact load,  I   Instant  2.00 

   D. Temperature factor,  C t   

   Temperature,  T  ( ° F)   C t   

    T       ≤      100 ° F 
   100 ° F      <       T       ≤      150 ° F 

 1.0 
 0.9 

  Note:  
1.  C F        �      0.9 for all 2 �  or 4 �  dimension lumber having nominal width greater or equal to 14.  



 Table A-3.3        Design values for compression (psi), parallel to grain ( F c  ) and perpendicular to 
grain ( F c-per  ) for visually graded lumber and glued laminated softwood timber  
   A. Dimension lumber (2 to 4       in. thick) 

   Species   F c   (parallel to grain)   F c-per   
(perpendicular 
to grain) 

     Select 
Structural 

 No. 1  No. 2  No. 3  Miscellaneous  All Grades 7  

   Douglas Fir-Larch 
   Douglas Fir-Larch (North) 
   Douglas Fir-South 
   Hem-Fir 
   Hem-Fir (North) 
   Spruce-Pine-Fir 
   Spruce-Pine-Fir (South) 
   Southern Pine 3  

 1700 
 1900 
 1600 
 1500 
 1700 
 1400 
 1200 
 1800 

 1500 
 n/a 

 1450 
 1350 
 n/a 
 n/a 

 1050 
 1575 

 1350 
 n/a 

 1450 
 1300 
 n/a 
 n/a 

 1000 
 1425 

 775 
 825 
 775 
 725 
 850 
 650 
 575 
 825 

1   1550 
2   1400 

  
1   1350 
2   1450 
2   1150 

  
  

 625 
 625 
 520 
 405 
 405 
 425 
 335 
 565 

   B. Beams and stringers 4  

   Species   F c   (parallel to grain)   F c-per   
(perpendicular 
to grain) 

     Select 
Structural 

 No. 1  No. 2  No. 3  Miscellaneous  All Grades 7  

   Douglas Fir-Larch 
   Douglas Fir-Larch (North) 
   Douglas Fir-South 
   Hem-Fir 
   Hem-Fir (North) 
   Spruce-Pine-Fir 
   Spruce-Pine-Fir (South) 
   Southern Pine 5  

 1100 
 1100 
 1000 
 925 
 900 
 775 
 675 
 950 

 925 
 925 
 850 
 750 
 750 
 625 
 550 
 825 

 600 
 600 
 550 
 500 
 475 
 425 
 375 
 525 

 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 

  
  
  
  
  
  
  
  

 625 
 625 
 520 
 405 
 405 
 425 
 335 
 375 

   C. Posts and timbers 6  

   Species   F c   (parallel to grain)   F c-per   
(perpendicular 
to grain) 

     Select 
Structural 

 No. 1  No. 2  No. 3  Miscellaneous  All Grades 7  

   Douglas Fir-Larch 
   Douglas Fir-Larch (North) 
   Douglas Fir-South 
   Hem-Fir 
   Hem-Fir (North) 
   Spruce-Pine-Fir 
   Spruce-Pine-Fir (South) 
   Southern Pine 5  

 1150 
 1150 
 1050 
 975 
 950 
 800 
 700 
 950 

 1000 
 1000 
 925 
 850 
 850 
 700 
 625 
 825 

 700 
 700 
 650 
 575 
 575 
 500 
 425 
 525 

 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 

  
  
  
  
  
  
  
  

 625 
 625 
 520 
 405 
 405 
 425 
 335 
 375 

(Continued)



     Table A-3.3        (Continued)      
   D. Glued laminated softwood timber 

   Species  Grade (and Identifi cation No.) 

      F c   (parallel to grain)   F c-per   (perpendicular to grain) 

L3 
(ID#1)

L2 
(ID#2)

L2D 
(ID#3)

L1D 
(ID#5)

L3 
(ID#1)

 L2 
(ID#2) 

L2D 
(ID#3)

L1D 
(ID#5)

       Douglas 
Fir-Larch 8  (DF) 
   (less than 4 
laminations) 

   1550 

 1200 

   1950 

 1600 

   2300 

 1850 

   2400 

 2100 

   560 

 560 

 560 

 560 

   650 

 650 

   650 

 650 

L3 (ID#22) L3 (ID#22)

       Softwood 
Species 8  (SW) 
   (less than 4 
laminations) 

   850 

 675 

   315 

 315 

L3 
(ID#69)

L2 
(ID#70)

L1D 
(ID#71)

L1S 
(ID#72)

L3 
(ID#69)

L2 
(ID#70)

L1D 
(ID#71)

L1S 
(ID#72)

       Alaska Cedar 8  
(AC) 
   (less than 4 
laminations) 

   1150 

 1100 

   1450 

 1450 

   1900 

 1900 

   1900 

 1900 

   470 

 470 

   470 

 470 

   560 

 560 

   560 

 560 

     N2M14 
(ID#47) 

 N2D14 
(ID#48) 

 N1M16 
(ID#49) 

 N1D14 
(ID#50) 

 N2M14 
(ID#47) 

 N2D14 
(ID#48) 

 N1M16 
(ID#49) 

 N1D14 
(ID#50) 

   Southern Pine 8  
(SP) 

 1900  2200  2100  2300  650  740  650  740 

   (less than 4 
laminations) 

 1150  1350  1450  1700  650  740  650  740 

   Species  Combination Symbol 

      F c   (parallel to grain)   F c-per   (perpendicular to grain) 

16F-1.3E 20F-1.5E 24F-1.7E 24F-1.8E 16F-1.3E 20F-1.5E 24F-1.7E 24F-1.8E

       Various species 9     925    925    1000    1600    315    425    500    650 

  Notes: 
 1. No.1 and better. 
 2. No.1/No.2. 
 3. Values for Southern Pine for dimension lumber are approximate: typical published values include the size factor 
and, therefore, list different values for each lumber width, whereas the values in this table have been normalized 
(i.e., do  not  include the size factor) and have been rounded down to values that may be slightly conservative. 
 4. Beams and stringers are a subset of the  “ timbers ”  size category, 5       in.      �      5       in. or larger, where the width is at 
least 4       in. bigger than the thickness. 
 5. Southern Pine values for timbers (beams and stringers; posts and timbers) are for wet service conditions. 
 6. Posts and timbers are a subset of the  “ timbers ”  size category, 5       in.      �      5       in. or larger, where the width is equal 
to, or no more than 2       in. bigger than, the thickness. 
 7. Values for compression perpendicular to grain apply to all the size categories listed in this table (i.e., listed 
under compression  parallel  to grain). However,  “ dense ”  variations of Douglas Fir-Larch and Southern Pine, not 
listed here, have higher values. 
 8. These species designations are designed primarily for axially loaded elements (compression and tension). 
 9. These combination designations are designed primarily for bending elements, although they can be 
used in axial compression or tension with the values that appear in this table. Values for  F c-per   (compression 
perpendicular to grain) are based on loading perpendicular to the wide face of the laminations.  
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 Table A-3.4        Adjustments to allowable stress in compression,  F c  , for visually graded lumber 
and glued laminated softwood timber  
   A. Size factor 3  

    Size factor,   C F        �      1.0 for compression stress, except for the following sizes of dimension lumber: 

   Size   C F    Size   C F    Size   C F    Size   C F   

   2      �      2  1.15  2      �      8  1.05 1 2      �      14, 4      �      14    0.9  4      �      8  1.05 

   2      �      4  1.15  2      �      10  1.00  4      �      4  1.15  4      �      10  1.00 

   2      �      6  1.10  2      �      12  1.00  4      �      6  1.10  4      �      12  1.00 

   B. Wet service factor 

    Wet service factor,    C M   , is as follows: for  2 dimension lumber,  C M        �      0.8; for timbers,  C M        �      0.91; for 
glulam,  C M        �      0.73. In any dry service condition,  C M        �      1.0. 

   C. Load duration factor 4  

   Load duration factor,  C D  , is as follows: 

   Load Type  Duration   C D   

   Dead load,  D   Permanent  0.90 

   Live load,  L   10 years  1.00 

   Snow load,  S   2 months  1.15 

   Construction load,  L r    1 week  1.25 

   Wind or seismic load,  W  or  E   10 minutes  1.60 

   Impact load,  I   Instant  2.00 

   D. Column stability factor 5  

   The column stability factor,  C P  , is as follows: 

    
C A A BP � � �2

    
   where: 

    A       �      [1      �      ( F cE  / Fc*   )]/(2 c ) 
    B       �      ( F cE   / Fc*   )/ c  

    F cE        �      0.822 Emin
    /( l e  / d ) 2  
    Fc*         �       F c C D C M C F   

    Emin
          �       E min C M   (see Table A-3.9 for adjustments to  E  and  E min  ) 
    d       �       cross-sectional dimension (in.) corresponding to the unbraced length,  l e  ; where the 

unbraced length is the same for both axes of the cross section,  d  should be taken as the 
smaller cross-sectional dimension; otherwise, use the larger value of  l e   / d  

    l e        �      the unbraced length corresponding to the cross-sectional dimension,  d  
    c       �      0.8 for sawn lumber, and 0.9 for glulam 

(Continued)
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     Table A-3.4        (Continued)      
   E. Temperature factor,  C t   

   Temperature,  T  ( ° F)   C t   (used dry)   C t   (used wet) 

    T       ≤      100 ° F  1.0  1.0 

   100 ° F      <       T       ≤      125 ° F  0.8  0.7 

   125 ° F      <       T    ≤       150 ° F  0.7  0.5 

  Notes: 
 1.  C F        �      0.9 for all 2 �  or 4 �  dimension lumber having nominal width greater or equal to 14. 
 2.  C M        �      1.0 for dimension lumber when  F c C F        ≤      750       psi. 
 3. Size factor adjustments are not used for compression perpendicular to grain. 
 4. Load duration adjustments are not used for compression perpendicular to grain. 
 5. Column stability factor adjustments are not used for compression perpendicular to grain.  

 Table A-3.5        Design values for bending,  F b   (psi) for visually graded lumber and glued 
laminated softwood timber  
   A. Dimension lumber (2 to 4       in. thick) 

   Species  Select 
Structural 

 No. 1  No. 2  No. 3  Miscellaneous 

   Douglas Fir-Larch 
   Douglas Fir-Larch (North) 
   Douglas Fir-South 
   Hem-Fir 
   Hem-Fir (North) 
   Spruce-Pine-Fir 
   Spruce-Pine-Fir (South) 
   Southern Pine 3  

 1500 
 1350 
 1350 
 1400 
 1300 
 1250 
 1300 
 1700 

 1000 
 n/a 

  925 
  975 
 n/a 
 n/a 

  875 
 1075 

 900 
 n/a 
 850 
 850 
 n/a 
 n/a 
 775 
 875 

 525 
 475 
 500 
 500 
 575 
 500 
 450 
 500 

1   1200 
 2   850 

  
1 1100   
2 1000   
 2 875   

  
  

   B. Beams and stringers 4  

   Species  Select 
Structural 

 No. 1  No. 2  No. 3  Miscellaneous 

   Douglas Fir-Larch 
   Douglas Fir-Larch (North) 
   Douglas Fir-South 
   Hem-Fir 
   Hem-Fir (North) 
   Spruce-Pine-Fir 
   Spruce-Pine-Fir (South) 
   Southern Pine 5  

 1600 
 1600 
 1550 
 1300 
 1250 
 1100 
 1050 
 1500 

 1350 
 1300 
 1300 
 1050 
 1000 
  900 
  900 
 1350 

 875 
 875 
 825 
 675 
 675 
 600 
 575 
 850 

 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 

  
  
  
  
  
  
  
  

(Continued)
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     Table A-3.5        (Continued)      
   C. Posts and timbers 6  

   Species  Select 
Structural 

 No. 1  No. 2  No. 3  Miscellaneous 

   Douglas Fir-Larch 
   Douglas Fir-Larch (North) 
   Douglas Fir-South 
   Hem-Fir 
   Hem-Fir (North) 
   Spruce-Pine-Fir 
   Spruce-Pine-Fir (South) 
   Southern Pine 5  

 1500 
 1500 
 1450 
 1200 
 1150 
 1050 
 1000 
 1500 

 1200 
 1200 
 1150 
  975 
  925 
  850 
  800 
 1350 

 750 
 725 
 675 
 575 
 550 
 500 
 475 
 850 

 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 

  
  
  
  
  
  
  
  

   D. Glued laminated softwood timber bent about  x -axis (loaded perpendicular to wide face of 
laminations) 

   Species  Grade (and Identifi cation No.) 

      F b   (for beams with  d       >>      15       in.)   F b   (for beams with  d       ≤      15       in.) 

L3 
(ID#1)

 L2 
(ID#2) 

 L2D 
(ID#3) 

 L1D 
(ID#5) 

L3 
(ID#1)

L2 
(ID#2)

L2D 
(ID#3)

L1D 
(ID#5)

       Douglas 
Fir-Larch 7  (DF) 

   1100  1496  1760  1936    1250    1700    2000    2200 

 L3 (ID#22)  L3 (ID#22) 

       Softwood 
Species 7  (SW) 

 638  725 

L3 
(ID#69)

L2 
(ID#70)

L1D 
(ID#71)

L1S 
(ID#72)

L3 
(ID#69)

L2 
(ID#70)

L1D 
(ID#71)

L1S 
(ID#72)

       Alaska Cedar 7  
(AC) 

   880    1188    1496    1672    1000    1350    1700    1900 

     N2M14 
(ID#47) 

 N2D14 
(ID#48) 

 N1M16 
(ID#49) 

 N1D14 
(ID#50) 

 N2M14 
(ID#47) 

 N2D14 
(ID#48) 

 N1M16 
(ID#49) 

 N1D14 
(ID#50) 

   Southern Pine 7  
(SP) 

 1232  1408  1584  1848  1400  1600  1800  2100 

   Species  Combination Symbols for Stress Classes 

      F b   (for positive bending 9 )   F b   (for negative bending 9 ) 

16F-1.3E 20F-1.5E 24F-1.7E 24F-1.8E 16F-1.3E 20F-1.5E 24F-1.7E 24F-1.8E

       Various species 8     1600    2000    2400    2400    925    1100    1450    1450 

(Continued)
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   E. Glued laminated softwood timber bent about  y -axis (loaded parallel to wide face of laminations) 

   Species  Grade (and Identifi cation No.) 

      F b   (for 4 or more laminations)   F b   (for 3 laminations) 

L3 
(ID#1)

 L2 
(ID#2) 

 L2D 
(ID#3) 

L1D 
(ID#5)

 L3 
(ID#1) 

 L2 
(ID#2) 

 L2D 
(ID#3) 

 L1D 
(ID#5) 

       Douglas 
Fir-Larch 7  (DF) 

   1450  1800  2100    2400  1250  1600  1850  2100 

L3 (ID#22)  L3 (ID#22) 

       Softwood 
Species 7  (SW) 

   800  700 

L3 
(ID#69)

L2 
(ID#70)

L1D 
(ID#71)

L1S 
(ID#72)

L3 
(ID#69)

L2 
(ID#70)

L1D 
(ID#71)

L1S 
(ID#72)

       Alaska Cedar 7  
(AC) 

   1100    1400    1850    1850    975    1250    1650    1650 

N2M14 
(ID#47)

N2D14 
(ID#48)

N1M16 
(ID#49)

N1D14 
(ID#50)

N2M14 
(ID#47)

N2D14 
(ID#48)

N1M16 
(ID#49)

N1D14 
(ID#50)

       Southern Pine 7  
(SP) 

   1750    2000    1950    2300    1550    1800    1750    2100 

   Species  Combination Symbols for Stress Classes 

      F b   (all cases) 

 16F-1.3E  20F-1.5E  24F-1.7E  24F-1.8E 

       Various species 8   800  800  1050  1450 

  Notes: 
 1. No.1 and better. 
 2. No.1/No.2. 
 3. Values for Southern Pine for dimension lumber are approximate: typical published values include the size factor 
and, therefore, list different values for each lumber width, whereas the values in this table have been normalized 
(i.e., do  not  include the size factor) and have been rounded down to values that may be slightly conservative. 
 4. Beams and stringers are a subset of the  “ timbers ”  size category, 5       in.      �      5       in. or larger, where the width is at 
least 4       in. bigger than the thickness. 
 5. Southern Pine values for timbers (beams and stringers; posts and timbers) are for wet service conditions. 
 6. Posts and timbers are a subset of the  “ timbers ”  size category, 5       in.      �      5       in. or larger, where the width is equal 
to, or no more than 2       in. bigger than, the thickness. 
 7. These species designations are designed primarily for axially loaded elements (compression and tension), 
although they can be used for bending with the values that appear in this table. For bending about the  x -axis 
only, these elements are assumed to have no special tension laminations; such special tension laminations 
would increase the bending design values (for all cross-section sizes bent about the  x -axis) to the values shown 
for  d       �      15       in. multiplied by a factor of 1.18. 
 8. These combination designations are designed primarily for simply supported bending elements (i.e., for 
beams with only  positive  bending moments), and are manufactured with higher strength grades of wood used 
in the extreme fi bers (for bending about the  x -axis) where bending stresses are greatest. 
 9. The combination symbols in this table refer to cross sections that are  “ unbalanced ” ; that is, they are 
manufactured to optimize the behavior of simply supported beams with only positive curvature. Where such 
unbalanced combinations are used for beams subjected to  negative  bending moments — that is, for continuous or 
cantilevered beams — lower values for  F b   must be used at those cross sections with negative moment. For beams 
subjected to reversals of curvature (and, therefore, both positive and negative bending),  “ balanced ”  (symmetrical) 
combinations can be specifi ed where  F b   is the same for both positive and negative bending; for example, 
combination symbols 16F-V6 with  F b        �      1600       psi; 20F-V7 with  F b        �      2000       psi; and 24F-V8 with  F b        �      2400       psi.  

 Table A-3.5        (Continued)  
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 Table A-3.6        Adjustments to allowable stress in bending,  F b  , for visually graded lumber and 
glued laminated softwood timber  
   A. Size factor 

    Size factor,    C F   . (1) For glulam, size factor does not apply (use smaller of  C V   and  C L   — see Table 
A-3.6, Parts  C  and  F ). (2) For timbers (beams and stringers; posts and timbers): when  d       �      12       in., 
 C F        �      (12/ d )1⁄9; when loaded on the wide face,  C F        �      0.86 (select structural), 0.74 (No. 1), or 1.00 
(No. 2); otherwise,  C F        �      1.00. (3) For dimension lumber,  C F   is as shown here: 

   Size   C F    Size   C F    Size   C F    Size   C F   

   2      �      2  1.5  2      �      8  1.2 1 2      �      14    0.9  4      �      8  1.3 

   2      �      4  1.5  2      �      10  1.1  4      �      4  1.5  4      �      10  1.2 

   2      �      6  1.3  2      �      12  1.0  4      �      6  1.3 1 4      �      12    1.1 

   B. Flat use factor 

    Flat use factor,    C fu     ,  is used only when dimension lumber (or glulam) is oriented about its weak 
axis: 
    (1) For dimension lumber:  

   Size   C fu    Size   C fu    Size   C fu    Size   C fu   

   2      �      4  1.10  2      �      10  1.20  4      �      6  1.05  4      �      12  1.10 

   2      �      6  1.15  2      �      12  1.20  4      �      8  1.05  4      �      14  1.10 

   2      �      8  1.15  2      �      14  1.20  4      �      10  1.10  4      �      16  1.10 

    (2) For glulam:  

   For glulam beams bent about their weak ( y ) axis, and where 
the depth,  d       <      12       in.: 

    C fu        �      (12/ d )1⁄9 

   The approximate values shown below can be used as an 
alternative: 

      

   Depth,  d  (in.)   C fu    Depth,  d  (in.)   C fu   

   2½ 
   3 or 31⁄8 
   5 or 51⁄8 

 1.19 
 1.16 
 1.10 

 6¾ 
 8½ or 8¾ 
 10½ or 10¾ 

 1.07 
 1.04 
 1.01 

(Continued)
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(Continued)

       Table A-3.6        (Continued)      
 C. Volume factor 

    The volume factor,    C V   , is used only for glulam beams loaded about their strong axes, and only if 
smaller than  C L   (see later discussion). For these conditions: 

    
C

L d bV

x x

�
21 12 5 125

1 1 1⎛
⎝
⎜⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

/ /
.

//x

≤ 1 0.
    

   where 
    L       �       the length of the simply supported beam, or, for other beam types, the distance between 

points of zero moment (ft) 
    d       �      beam depth (in.) 
    b       �      beam width (in.) 
    x       �      10 (except  x       �      20 for Southern Pine only) 

   D. Wet service factor 

    Wet service factor,    C M ,   is as follows: for 2dimension lumber,    C M        �      0.85; for timbers,  C M        �      1.0; for 
glulam,  C M        �      0.8. In any dry service condition,  C  M       �      1.0. 

   E. Repetitive member factor 

    Repetitive member factor,    C r         �      1.15, is used only for dimension lumber spaced 24       in. on center or 
less (typically the case with joists and rafters). 



(Continued)

   Table A-3.6     (Continued)
F. Beam stability factor 

    The beam stability factor,    C L   , may apply to glulam and timber beams but not ordinarily to 
dimension lumber — and only when the compression edge of the beam is unbraced by a roof or 
fl oor deck. For continuously braced beams — that is, when  l e        �      0 —  C L        �      0. For glulam, use only 
the smaller value of  C L   or  C V  . For timbers, combine  C L   with the size factor,  C F  . Use only when the 
beam depth is greater than its width. For these conditions: 

    C A A BL � � �2
    

   Where 

    
A

F FbE b�
�1

1 9

( / )*

.     

    
B

F FbE b�
( / )*

.0 95     

    
F

b E
l dbe

min

e

�
1 20 2. 


    

    Fb*         �       F b   with all adjustments except  C V  ,  C L  , and  C fu   
    Emin
          �       E min C M   (see Table A-3.9 for adjustments to  E  and  E min  ) 

    d       �      beam depth (in.) 
    b       �      beam width (in.) 
    l u        �       the unsupported (unbraced) length (in.), that is, the greatest distance between lateral 

braces, including bridging or blocking, along the length of the beam 
    l e        �       the effective unsupported length (in.) where continuous lateral support is not provided as 

shown in these selected loading patterns: 

   Load Arrangement  Effective Length,  l e   

        
  l e        �      2.06 l u   for  l u   / d       <      7 

   Uniform load: no lateral support except at ends.   l e        �      1.63 l u        �      3 d  for  l u   / d       ≥      7 

        
  l e        �      1.80 l  u  for  l u   / d       <      7 

   Single point load at midspan: no lateral support except at 
ends. 

  l e        �      1.37 l u        �      3 d  for  l u   / d       ≥      7 

        
  l e        �      1.11 l u   

   Single point load at midspan: lateral support under load and 
ends only. 

  

        
  l e        �      1.68 l u   

   Point loads at third points: lateral support under loads and 
ends only. 

  

        

  l e        �      1.54 l u   

   Point loads at quarter points: lateral support under loads and 
ends only. 

  

  Notes: 
 1.  C F        �      0.9 for all 2 �  dimension lumber having nominal width greater or equal to 14.  C F        �      1.0 for all 4 �  
dimension lumber having nominal width greater or equal to 14. 
 2.  C M        �      1.0 for dimension lumber when  F b C F        ≤      1150       psi.  
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   Table A-3.6     (Continued)
G. Load duration factor 

    Load duration factor,    C D    ,  is as follows: 

   Load Type  Duration   C D   

   Dead load,  D   Permanent  0.90 

   Live load,  L   10 years  1.00 

   Snow load,  S   2 months  1.15 

   Construction load,  L r    1 week  1.25 

   Wind or seismic load,  W  or  E   10 minutes  1.60 

   Impact load,  I   Instant  2.00 

   H. Temperature factor, C t  

   Temperature,  T  ( ° F)   C t   (used dry)   C t   (used wet) 

    T       ≤      100 ° F  1.0  1.0 

   100 ° F      <       T       ≤      125 ° F  0.8  0.7 

   125 ° F      <       T       ≤      150 ° F  0.7  0.5 



 Table A-3.7        Design values for shear,  F v   (psi) for visually graded lumber and glued laminated 
softwood timber  
   A. Dimension lumber (2 to 4       in. thick) 

   Species  Select 
Structural 

 No. 1  No. 2  No. 3  Miscellaneous 

   Douglas Fir-Larch 
   Douglas Fir-Larch (North) 
   Douglas Fir-South 
   Hem-Fir 
   Hem-Fir (North) 
   Spruce-Pine-Fir 
   Spruce-Pine-Fir (South) 
   Southern Pine 

 180 
 180 
 180 
 150 
 145 
 135 
 135 
 175 

 180 
 n/a 
 180 
 150 
 n/a 
 n/a 
 135 
 175 

 180 
 n/a 
 180 
 150 
 n/a 
 n/a 
 135 
 175 

 180 
 180 
 180 
 150 
 145 
 135 
 135 
 175 

1   180 
2 180   

  
1   150 
2   145 
2 135   

  
  

   B. Timbers 3  

   Species  Select 
Structural 

 No. 1  No. 2  No. 3  Miscellaneous 

   Douglas Fir-Larch 
   Douglas Fir-Larch (North) 
   Douglas Fir-South 
   Hem-Fir 
   Hem-Fir (North) 
   Spruce-Pine-Fir 
   Spruce-Pine-Fir (South) 
   Southern Pine 4  

 170 
 170 
 165 
 140 
 135 
 125 
 125 
 165 

 170 
 170 
 165 
 140 
 135 
 125 
 125 
 165 

 170 
 170 
 165 
 140 
 135 
 125 
 125 
 165 

 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 

  
  
  
  
  
  
  
  

   C. Glued laminated softwood timber bent about  x -axis (loaded perpendicular to wide face of 
laminations) 

   Species  Grade (and Identifi cation No.) 

      F v   (for bending about  x -axis 7 ) 

L3 (ID#1)  L2 (ID#2) L2D (ID#3) L1D (ID#5)

       Douglas Fir-Larch 5  (DF)    265  265    265    265 

L3 (ID#22)

       Softwood Species 5  (SW)    195             

 L3 (ID#69)  L2 (ID#70) L1D (ID#71) L1S (ID#72)

       Alaska Cedar 5  (AC)  265  265    265    265 

N2M14 (ID#47) N2D14 (ID#48) N1M16 (ID#49) N1D14 (ID#50)

       Southern Pine 5  (SP)    300    300    300    300 

   Species  Combination Symbols for Stress Classes 

      F v   (for bending about  x -axis 7 ) 

 16F-1.3E 20F-1.5E 24F-1.7E 24F-1.8E

       Various species 6   195    210    210    265 

(Continued)
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    Table A-3.7     (Continued)
 D. Glued laminated softwood timber bent about  y -axis (loaded parallel to wide face of laminations) 

   Species  Grade (and Identifi cation No.) 

      F v   (for bending about  y -axis 7 ) 

 L3 (ID#1) L2 (ID#2)  L2D (ID#3) L1D (ID#5)

       Douglas Fir-Larch 5  (DF)  230    230  230    230 

L3 (ID#22)

       Softwood Species 5  (SW)    170             

 L3 (ID#69) L2 (ID#70)  L1D (ID#71) L1S (ID#72)

       Alaska Cedar 5  (AC)  230    230  230    230 

 N2M14 (ID#47) N2D14 (ID#48) N1M16 (ID#49) N1D14 (ID#50)

       Southern Pine 5  (SP)  260    260    260    260 

   Species  Combination Symbols for Stress Classes 

      F v   (for bending about  y -axis 7 ) 

16F-1.3E 20F-1.5E 24F-1.7E 24F-1.8E

       Various species 6     170    185    185    230 

  Notes: 
 1. No.1 and better. 
 2. No.1/No.2. 
 3. Timbers include  “ beams and stringers ”  and  “ posts and timbers, ”  that is, all cross sections 5       in.      �      5       in. or 
larger. 
 4. Southern Pine values for timbers (beams and stringers; posts and timbers) are for wet service conditions. 
 5. These species designations are designed primarily for axially loaded elements (compression and tension), 
although they can be used for bending with the shear values that appear in this table. 
 6. These combination designations are designed primarily for bending elements, and are manufactured with 
higher-strength grades of wood used in the extreme fi bers where bending stresses are greatest when bent 
about the  x -axis. 
 7. These values for horizontal shear must be reduced by a factor of 0.72 when used in the design of 
mechanical connections.  
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 Table A-3.8        Adjustments to allowable stress in shear,  F v  , for visually graded lumber and glued 
laminated softwood timber  
   A. Wet service factor 

    Wet service factor   , C M   , is as follows: for dimension lumber,  C M        �      0.97; for timbers,  C M        �      1.0; for 
glulam,  C M        �      0.875. In any dry service condition,  C M        �      1.0. 

   B. Load duration factor 

    Load duration factor ,  C D  , is as follows:     

   Load Type  Duration   C D   

   Dead load,  D   Permanent  0.90 

   Live load,  L   10 years  1.00 

   Snow load,  S   2 months  1.15 

   Construction load,  L r    1 week  1.25 

   Wind or seismic load,  W  or  E   10 minutes  1.60 

   Impact load,  I   Instant  2.00 

   C. Temperature factor,  C t   

   Temperature,  T  ( ° F)   C t   (used dry)   C t   (used wet) 

    T       ≤      100 ° F  1.0  1.0 

   100 ° F      <       T       ≤      125 ° F  0.8  0.7 

   125 ° F      <       T       ≤      150 ° F  0.7  0.5 
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 Table A-3.9        Design values for modulus of elasticity,  E  and  E min   (psi) for visually graded 
lumber and glued laminated softwood timber (values and adjustments)  
   A. Modulus of elasticity,  E  (psi) 5  

   Dimension Lumber (2 to 
4       in. thick) 

 Select 
Structural 

 No. 1  No. 2  No. 3  Miscellaneous 

   Douglas Fir-Larch 
   Douglas Fir-Larch (North) 
   Douglas Fir-South 
   Hem-Fir 
   Hem-Fir (North) 
   Spruce-Pine-Fir 
   Spruce-Pine-Fir (South) 
   Southern Pine 

 1,900,000 
 1,900,000 
 1,400,000 
 1,600,000 
 1,700,000 
 1,500,000 
 1,300,000 
 1,800,000 

 1,700,000 
 n/a 
 1,300,000 
 1,500,000 
 n/a 
 n/a 
 1,200,000 
 1,700,000 

 1,600,000 
 n/a 
 1,200,000 
 1,300,000 
 n/a 
 n/a 
 1,100,000 
 1,600,000 

 1,400,000 
 1,400,000 
 1,100,000 
 1,200,000 
 1,400,000 
 1,200,000 
 1,000,000 
 1,400,000 

1 1,800,000   
 21,600,000   
  
1 1,500,000   
2   1,600,000 
 21,400,000   
  
  

   Timbers 3   Select 
Structural 

 No. 1  No. 2  No. 3  Miscellaneous 

   Douglas Fir-Larch 
   Douglas Fir-Larch (North) 
   Douglas Fir-South 
   Hem-Fir 
   Hem-Fir (North) 
   Spruce-Pine-Fir 
   Spruce-Pine-Fir (South) 
   Southern Pine 4  

 1,600,000 
 1,600,000 
 1,200,000 
 1,300,000 
 1,300,000 
 1,300,000 
 1,200,000 
 1,500,000 

 1,600,000 
 1,600,000 
 1,200,000 
 1,300,000 
 1,300,000 
 1,300,000 
 1,200,000 
 1,500,000 

 1,300,000 
 1,300,000 
 1,000,000 
 1,100,000 
 1,100,000 
 1,100,000 
 1,000,000 
 1,200,000 

 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 

  
  
  
  
  
  
  
  

   Glued Laminated 
Softwood Timber 

 Grade (and Identifi cation No.) 

 L3 (ID#1)  L2 (ID#2)  L2D (ID#3) L1D (ID#5)

       Douglas Fir-Larch 7  (DF)  1,500,000  1,600,000  1,900,000      2,000,000 

 L3 (ID#22) 

       Softwood Species 7,9  (SW)  1,000,000             

L3 (ID#69) L2 (ID#70) L1D (ID#71)  L1S (ID#72) 

       Alaska Cedar 7  (AC)    1,200,000    1,300,000    1,600,000  1,600,000 

N2M14 (ID#47) N2D14 (ID#48) N1M16 (ID#49)  N1D14 (ID#50) 

       Southern Pine 7  (SP)    1,400,000    1,700,000    1,700,000  1,900,000 

     Combination Symbols for Stress Classes 

16F-1.3E 20F-1.5E 24F-1.7E 24F-1.8E

       Various species (bending 
about  x -axis) 8  
   Various species (bending 
about  y -axis) 8  

   1,300,000 

 1,100,000 

   1,500,000 

 1,200,000 

   1,700,000 

 1,300,000 

   1,800,000 

 1,600,000 

(Continued)
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  Table A-3.9     (Continued)
 B. Minimum modulus of elasticity,  E min   (psi) 6  

   Dimension Lumber 
(2 to 4       in. thick) 

 Select 
Structural 

 No. 1  No. 2  No. 3  Miscellaneous 

   Douglas Fir-Larch 
   Douglas Fir-Larch (North) 
   Douglas Fir-South 
   Hem-Fir 
   Hem-Fir (North) 
   Spruce-Pine-Fir 
   Spruce-Pine-Fir (South) 
   Southern Pine 

 690,000 
 690,000 
 510,000 
 580,000 
 620,000 
 550,000 
 470,000 
 660,000 

 620,000 
 n/a 
 470,000 
 550,000 
 n/a 
 n/a 
 440,000 
 620,000 

 580,000 
 n/a 
 440,000 
 470,000 
 n/a 
 n/a 
 400,000 
 580,000 

 510,000 
 510,000 
 400,000 
 440,000 
 510,000 
 440,000 
 370,000 
 510,000 

1 660,000   
2   580,000 
  
1   550,000 
2   580,000 
2   510,000 
  
  

   Timbers 3   Select 
Structural 

 No. 1  No. 2  No. 3  Miscellaneous 

   Douglas Fir-Larch 
   Douglas Fir-Larch (North) 
   Douglas Fir-South 
   Hem-Fir 
   Hem-Fir (North) 
   Spruce-Pine-Fir 
   Spruce-Pine-Fir (South) 
   Southern Pine 4  

 580,000 
 580,000 
 440,000 
 470,000 
 470,000 
 470,000 
 440,000 
 550,000 

 580,000 
 580,000 
 440,000 
 470,000 
 470,000 
 470,000 
 440,000 
 550,000 

 470,000 
 470,000 
 370,000 
 400,000 
 400,000 
 370,000 
 370,000 
 440,000 

 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 
 n/a 

  
  
  
  
  
  
  
  

   Glued Laminated Softwood 
Timber 

 Grade (and Identifi cation No.) 

L3 (ID#1) L2 (ID#2)  L2D (ID#3) L1D (ID#5)

       Douglas Fir-Larch 7  (DF)    780,000    830,000  980,000    104,000 

L3 (ID#22)

       Softwood Species 7,10  (SW)    520,000 

 L3 (ID#69) L2 (ID#70) L1D (ID#71) L1S (ID#72)

       Alaska Cedar 7  (AC)  620,000    670,000    830,000    830,000 

 N2M14 
(ID#47) 

N2D14 
(ID#48)

N1M16 
(ID#49)

N1D14 
(ID#50)

       Southern Pine 7  (SP)  730,000    880,000    880,000    980,000 

     Combination Symbols for Stress Classes 

 16F-1.3E 20F-1.5E 24F-1.7E 24F-1.8E

       Various species (bending 
about  x -axis) 8  
   Various species (bending 
about  y -axis) 8  

 670,000 

 570,000 

   780,000 

 620,000 

   880,000 

 670,000 

   930,000 

 830,000 

(Continued)
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   Table A-3.9 (Continued)
C. Wet service adjustment ( C M  ) to  E  and  E min   

   When applicable, the wet service factor,  C M  , is as follows: for dimension lumber,  C M        �      0.9; for 
glulam,  C M        �      0.833; for any other condition,  C M        �      1.0. In any dry service condition,  C M        �      1.0. 

   D. Temperature factor adjustment ( C t  ) to  E  and  E min   

   Temperature,  T  ( ° F)   C t   

    T       ≤      100 ° F 
   100 ° F      <       T       ≤      150 ° F 

 1.0 
 0.9 

  Notes: 
 1. No.1 and better. 
 2. No.1/No.2. 
 3. Timbers include  “ beams and stringers ”  and  “ posts and timbers, ”  that is, all cross sections 5       in.      �      5       in. or larger. 
 4. Southern Pine values for timbers (beams and stringers; posts and timbers) are for wet service conditions.
  5. The modulus of elasticity,  E , is an average value, used in the calculation of beam defl ections, but not for 
column or beam stability calculations. 
 6. The minimum modulus of elasticity,  E min  , is a conservative (low) value, based on statistical analyses of moduli 
for tested samples and is used in calculations of column buckling ( C P  ) and beam stability ( C L  ). 
 7. These species designations are designed primarily for axially loaded elements (compression and tension), 
although they can be used in any context with the values that appear in this table. 
 8. These combination designations are designed primarily for bending elements, although they can be used in 
any context with the values that appear in this table. 
 9. The design values for  E  shown for  “ softwood species ”  must be reduced from 1,000,000       psi to 900,000       psi 
when the following species are used in combination: Western Cedars, Western Cedars (North), Western Woods, 
and Redwood (open grain). 
 10. The design values for  E min   shown for  “ softwood species ”  must be reduced from 520,000       psi to 470,000       psi 
when the following species are used in combination: Western Cedars, Western Cedars (North), Western Woods, 
and Redwood (open grain).  



284 APPENDIX 3 Tables for Chapter 3 (material properties)

 Table A-3.10        Use of load duration factor,  C D  , for wood elements  

   Where more than one load type acts on a wood structural element,  C D   corresponds to the load 
of shortest duration. Values of  C D   for tension, compression, bending, and shear can be found in 
Tables A-3.2, A-3.4, A-3.6, and A-3.8, respectively. It is sometimes necessary to check various 
combinations of loads (where the corresponding value of  C D   changes) to determine the critical 
loading condition. Because the strength of lumber depends on the duration of loading, it is 
possible that a smaller load, with a longer duration, will be more critical than a larger load that 
acts on the element for less time. 

   For example, consider a wooden column supporting the following loads:     

    ■      A  “ construction ”  or roof live load,  L R        �      6000       lb.  
    ■      A live load,  L       �      20,000       lb.  
    ■      A dead load,  D       �      15,000       lb.  
    ■      A snow load,  S       �      16,000       lb.    

    L R   and  S  are not considered simultaneously because it is unlikely that roof maintenance or 
construction will occur during a major snow storm. 

   Several load combinations should be analyzed, per Table A-5.1 (using Allowable Stress Design for 
wood):     

  1.      D       �       L  with  C D        �      1.0 (corresponding to the live load).  
  2.      D       �       S  with  C D        �      1.15 (corresponding to the snow load).  
  3.      D       �      0.75 L       �      0.75 S  with  C D        �      1.15 (corresponding to the snow load).    

   It is usually unnecessary to go through the entire design procedure for each load combination; 
instead, divide the loads in each case by the corresponding load duration factor to get a measure 
of the relative  “ load effects ” ; that is:     

  1.     (15,000      �      20,000)/1.00      �      35,000/1.0      �      35,000       lb.  
  2.     (15,000      �      8,000)/1.15      �      23,000/1.15      �      20,000       lb.  
  3.     (15,000      �      0.75      �      20,000      �      0.75      �      16,000)/1.15      �       42,000 /1.15      �      36,522       lb.    

   The third load combination is the critical one in this case, based on the underlined value being 
largest of the three choices. However, the structural element should be designed for the bold-
faced value of 42,000       lb — and not the underlined value of 36,522       lb, which is used only to 
determine the governing load value. The governing duration of load factor,  C D        �      1.15, will then be 
applied, not to the loads, but to the allowable stress. 

   Where only  “ occupancy ”  live loads and dead loads are present,  C D   can almost always be taken as 
1.0 (corresponding to the load duration factor for live loads). The case of dead load acting alone, 
with  C D        �      0.9, is critical only when more than 90% of the total load is dead load. 
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 Table A-3.11        Specifi c gravity for selected wood species  

   Species or Species Combination  Specifi c Gravity (based on oven-dry weight and volume) 

   Douglas Fir-Larch  0.50 
   Douglas Fir-Larch (North)  0.49 
   Douglas Fir-South  0.46 
   Hem-Fir  0.43 
   Hem-Fir (North)  0.46 
   Spruce-Pine-Fir  0.42 
   Spruce-Pine-Fir (South)  0.36 
   Southern Pine  0.55 

 Table A-3.12        Steel properties 1   

   Category  ASTM 
Designation 

 Yield Stress, 
 F y   (ksi) 

 (Ultimate) 
Tensile Stress, 
 F u   (ksi) 

 Preferred for these 
Shapes 

   Carbon 
    
    
    

 A36 

 A500 Gr. B 
 A500 Gr. B 
 A53 Gr. B 

 36 

 42 
 46 

2   35 

  58 

  58 
  58 
  60 

 M, S, C, MC, L, plates 4  
and bars 
 HSS round 
 HSS rectangular 
 Pipe 

   High-strength, 
low-alloy     

 A992 
 A572 Gr. 50 

 50 
 50 

  65 
  65 

3 W   
 HP 

   Corrosion resistant, 
high-strength, low-alloy     

 A588 
 A242 

 50 
 42 – 50 

  70 
  63 – 70 

  
  

   Low-alloy reinforcing 
bars 
    
    

 A615 
  
  

 40 
 60 
 75 

  60 
  90 
 100 

 Rebar 
  
  

   Bolts 
    
    
    

 A325 

  

 n/a 

 n/a 

 120 

 105 

 High-strength bolts, 
0.5- to 1-in. diameter 
 High-strength bolts,
     �     1- to 1.5-in. 
diameter 

 A490  n/a  150  High-strength bolts, 
0.5- to 1.5-in. diameter 

 A307 Gr. A  n/a   60  Common bolts 

   Cold-formed  A653 Gr. 33  33   45  Connector plates 4  in 
wood construction 

  Notes: 
 1. The modulus of elasticity for these steels can be taken as 29,000       ksi. 
 2. Steel with  F y        �      35       ksi may be designed as if yield stress were  F y        �      36       ksi. 
 3. W-shapes have formerly been specifi ed in A36; current practice in the United States is to use A992 with 
 F y        �      50       ksi. 
 4. In wood fastener design, the dowel bearing strength of connector plates is  F e        �      1.5 F u   (for A36 hot-rolled 
steel) and 1.375 F u   (for A653 GR 33 cold-formed steel). These values are 1.6 times  less  than those permitted 
in steel structures so that they can be used in yield limit equations for wood members that have load duration 
adjustments (adjustments that may be as high as 1.6 for wind or seismic).  
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 Table A-3.13        Steel allowable stresses and available strengths  

   Type of Structural Action  Allowable Stress 1  (same units 
as  F y   or  F u  ) 

 Available Strength Limit 
States (with safety factor,  Ω ) 4  

   Tension     
  
Ft

gross         �      0.60 F y   (yielding) 

  Ft
net          �      0.50 F u   (rupture) 

  
P

P F A
a

n y g≤
Ω

�
1 67.     

  
P

P F A
a

n u≤
Ω

� e

2 0.     

   Compression  See Tables A-7.3–A-7.6 (analysis) or A-7.2 (design)   

   Bending, 2  assuming laterally 
braced, compact section 

  F b        �      0.60 F y   (used with plastic 
section modulus,  Z x  ) or   

M
M F Z

a
n y x≤

Ω
�

1 67.     
      F b        �      0.66 F y   (used with elastic 

section modulus,  S x  ) 
 The available strength method 
has no offi cial limit state for the 
elastic moment 

   Shear 3    F v        �      0.40 F y   

  
V

V F A
a

n y w
≤

Ω
�

0 6

1 50

.

.     

  Notes: 
 1. Allowable stresses, although no longer offi cially sanctioned by the American Institute of Steel Construction, 
result in the same values that are obtained when considering available strength, except in the case of bending. 
For bending, the limit state defi ned by the  elastic  moment, formerly the basis of allowable stress design, is no 
longer applicable, although it can still be used with somewhat conservative results for laterally braced, compact 
sections. On the other hand, an allowable stress equation can be formulated based on the  plastic  section 
modulus that is equivalent to the available strength equation for laterally braced, compact sections. 
 2. The allowable stress for bending, 0.66  F b  , used with the elastic section modulus,  S x  , gives a generally 
conservative value compared with using  Ω       �      1.67 and the plastic section modulus,  Z x  . To reconcile these two 
different safety factors, it is necessary to approximate the ratio of  Z x  / S x  , which varies depending on the cross 
section. This ratio can be taken conservatively as 1.1 for W-shapes; therefore,  Z x        �      1.1 S x  , and the allowable 
moment,  M p  /  Ω       �       F y Z x   /  Ω       �      1.1 F y S x  /  Ω       �      1.1 F b S x   /1.67      �      0.66 F b S x  , which corresponds to the assumptions 
used for an allowable bending stress. 
 3. Both the allowable stress and available strength values for shear assume I-shaped rolled members meeting 
the slenderness criteria for beam webs. For beam webs that do not meet slenderness criteria for shear, a 
reduced allowable shear stress,  F v        �      0.36  F y  , is used. This is equivalent to using an increased allowable 
strength design safety factor,  Ω       �      1.67, and applies to the following W-shapes: W12      �      14, W16      �      26, 
W24      �      55, W30      �      90, W33      �      118, W36      �      135, W40      �      149, and W44      �      230. For the rectangular HSS listed 
in Table A-4.6, the reduced shear stress,  F v        �      0.36  F y  , is also used, with a web area,  A w  , equal to 2 ht  (where 
 t  is the wall thickness of the web and  h  can be assumed to equal the nominal depth minus 3 t ). The value for 
the coeffi cient  C v   is equal to 1.0 for all W-shapes and is not included in the shear equations. For cross sections 
with very thin webs, this coeffi cient needs to be considered. 
 4. In these equations for various limit states, the subscript  “a”  refers to the available strength of the cross 
section, that is, the strength that is considered safe. The subscript  “n”  refers to the nominal strength of the 
cross section, that is, the actual limit state of the material. In other words,  P a   is equivalent to the maximum 
tension force that the cross section can safely sustain;  M a   is equivalent to the maximum bending moment that 
the cross section can safely sustain; and  V a   is equivalent to the maximum shear force that the cross section 
can safely sustain.  
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   APPENDIX 

 Table A-4.1        Dimensions and properties of lumber  

        

  Properties of rectangular cross sections:  
 Cross-sectional area,  A       �       bd  
 Section modulus,  S x        �       bd   2 /6 
 Moment of inertia,  I x        �       bd   3 /12 
 Moment of inertia,  I y        �       db   3 /12 

   A. Dimension Lumber 

   Dimension Lumber, 
Nominal Size 

 Actual Size, 
 b       �       d  (in.) 

 Area (in 2 )   S x   (in 3 )   I  x  (in 4 )   I y   (in 4 ) 

   2      �      3  1.5      �      2.5  3.75  1.563  1.953  0.703 
   2      �      4  1.5      �      3.5  5.25  3.063  5.359  0.984 
   2      �      6  1.5      �      5.5  8.25  7.563  20.80  1.547 
   2      �      8  1.5      �      7.25  10.88  13.14  47.63  2.039 
   2      �      10  1.5      �      9.25  13.88  21.39  98.93  2.602 
   2      �      12  1.5      �      11.25  16.88  31.64  178.0  3.164 
   2      �      14  1.5      �      13.25  19.88  43.89  290.8  3.727 

   4      �      4  3.5      �      3.5  12.25  7.146  12.51  12.51 
   4      �      6  3.5      �      5.5  19.25  17.65  48.53  19.65 
   4      �      8  3.5      �      7.25  25.38  30.66  111.1  25.90 
   4      �      10  3.5      �      9.25  32.38  49.91  230.8  33.05 
   4      �      12  3.5      �      11.25  39.38  73.83  415.3  40.20 
   4      �      14  3.5      �      13.25  46.38  102.4  678.5  47.34 
   4      �      16  3.5      �      15.25  53.38  135.7  1034.4  54.49 

(Continued)
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  Table A-4.1 (Continued)
 B. Beams and stringers 

   Beams and Stringers, 
Nominal Size 

 Actual Size, 
 b       �       d  (in.) 

 Area (in 2 )   S x   (in 3 )   I x   (in 4 )   I y   (in 4 ) 

   6      �      10  5.5      �      9.5  52.25  82.73  393.0  131.7 
   6      �      12  5.5      �      11.5  63.25  121.2  697.1  159.4 
   6      �      14  5.5      �      13.5  74.25  167.1  1128  187.2 
   6      �      16  5.5      �      15.5  85.25  220.2  1707  214.9 
   6      �      18  5.5      �      17.5  96.25  280.7  2456  242.6 
   6      �      20  5.5      �      19.5  107.3  348.6  3398  270.4 

   8      �      12  7.5      �      11.5  86.25  165.3  950.5  404.3 
   8      �      14  7.5      �      13.5  101.3  227.8  1538  474.6 
   8      �      16  7.5      �      15.5  116.3  300.3  2327  544.9 
   8      �      18  7.5      �      17.5  131.3  382.8  3350  615.2 
   8      �      20  7.5      �      19.5  146.3  475.3  4634  685.5 

   10      �      14  9.5      �      13.5  128.3  288.6  1948  964.5 
   10      �      16  9.5      �      15.5  147.3  380.4  2948  1107 
   10      �      18  9.5      �      17.5  166.3  484.9  4243  1250 

   12      �      16  11.5      �      15.5  178.3  460.5  3569  1964 
   12      �      18  11.5      �      17.5  201.3  587.0  5136  2218 
   12      �      20  11.5      �      19.5  224.3  728.8  7106  2471 

   14      �      18  13.5      �      17.5  236.3  689.1  6029  3588 
   14      �      20  13.5      �      19.5  263.3  855.6  8342  3998 

   16      �      20  15.5      �      19.5  302.3  982.3  9578  6051 

   C. Posts and timbers 

   Posts and Timbers, 
Nominal Size 

 Actual Size, 
 b       �       d  (in.) 

 Area (in 2 )   S x   (in 3 )   I x   (in 4 )   I y   (in 4 ) 

   6      �      6  5.5      �      5.5  30.25  27.73  76.26  76.26 
   6      �      8  5.5      �      7.5  41.25  51.56  193.4  104.0 

   8      �      8  7.5      �      7.5  56.25  70.31  263.7  263.7 
   8      �      10  7.5      �      9.5  71.25  112.8  535.9  334.0 

   10      �      10  9.5      �      9.5  90.25  142.9  678.8  678.8 
   10      �      12  9.5      �      11.5  109.3  209.4  1204  821.7 

   12      �      12  11.5      �      11.5  132.3  253.5  1458  1458 
   12      �      14  11.5      �      13.5  155.3  349.3  2358  1711 

   14      �      14  13.5      �      13.5  182.3  410.1  2768  2768 
   14      �      16  13.5      �      15.5  209.3  540.6  4189  3178 

   16      �      16  15.5      �      15.5  240.3  620.6  4810  4810 
   16      �      18  15.5      �      17.5  271.3  791.1  6923  5431 

   18      �      18  17.5      �      17.5  306.3  893.2  7816  7816 
   18      �      20  17.5      �      19.5  341.3  1109  10,810  8709 
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 Table A-4.2        Dimensions of typical glulam posts and beams  

   Southern Pine (13⁄8    -in. laminations)  Western Species 1  (1½-in. laminations) 

   Width (in.)  Depth (in.)  Width (in.)  Depth (in.) 

       21⁄8 or 2½  5½ to 24¾  2     or 2½  6 to 27 
   3 or 31⁄8      5½ to 24¾  31⁄8      6 to 27 
   5 or 51⁄8      5½ to 35¾  51⁄8      6 to 36 
   6¾  67⁄8     to 481⁄8      6¾  7½ to 48 
   8½  8¼ to 63¼  8¾  9 to 63 
   10½  95⁄8     to 77  10¾  10½ to 81 
   12  11 to 865⁄8      12¼  12 to 88½ 
   14  13¾ to 1003⁄8      14¼  13½ to 102 

  Note:  
1. Western Species (WS) consists of numerous species groups, not all of which are produced in the western 
United States, including Alaska Cedar (AC), Douglas Fir-Larch (DF) and Douglas Fir South (DFS), Eastern 
Spruce (ES), Hem-Fir (HF), Softwood Species (SW), and Spruce Pine Fir (SPF).  

 Table A-4.3        Dimensions and properties of steel W-sections  

         Cross-sectional area      �       A  

 Moment of inertia      �       I  

 Section modulus , S x        �      2 I x  /d  

 Sectional modulus,  S y        �      2 I y  /b f   

 Radius of gyration,  r I Ax x� ( )/
    

 Radius of gyration, 
 
r I Ay y� ( )/

    

   Designation   A  
(in  2  ) 

  d  
(in.) 

  t w   
(in.) 

  b f   
(in.) 

  t f   
(in.) 

  S x   
(in  3  ) 

  Z x   
(in  3  ) 

  I x   
(in 4 ) 

  I y   
(in.) 

  r  y  
(in.) 

   W4      �      13  3.83  4.16  0.280  4.06 0.345  5.46  6.28  11.3  3.86  1.00 

   W5      �      16  4.71  5.01  0.240  5.00  0.360  8.55  9.63  21.4  7.51  1.26 
   W5      �      19  5.56  5.15  0.270  5.03  0.430  10.2  11.6  26.3  9.13  1.28 

   W6      �      8.5  2    2.52  5.83  0.170  3.94  0.195  5.10  5.73  14.9  1.99  0.890 
   W6      �      9  2    2.68  5.90  0.170  3.94  0.215  5.56  6.23  16.4  2.20  0.905 
   W6      �      12  3.55  6.03  0.230  4.00  0.280  7.31  8.30  22.1  2.99  0.918 
   W6      �      16  4.74  6.28  0.260  4.03  0.405  10.2  11.7  32.1  4.43  0.967 

   W6      �      15  1    4.43  5.99  0.230  5.99  0.260  9.72  10.8  29.1  9.32  1.45 
   W6      �      20  5.87  6.20  0.260  6.02  0.365  13.4  14.9  41.4  13.3  1.50 
   W6      �      25  7.34  6.38  0.320  6.08  0.455  16.7  18.9  53.4  17.1  1.52 

   W8      �      10  2    2.96  7.89  0.170  3.94  0.205  7.81  8.87  30.8  2.09  0.841 
   W8      �      13  3.84  7.99  0.230  4.00  0.255  9.91  11.4  39.6  2.73  0.843 
   W8      �      15  4.44  8.11  0.245  4.02  0.315  11.8  13.6  48.0  3.41  0.876 

   W8      �      18  5.26  8.14  0.230  5.250  0.330  15.2  17.0  61.9  7.97  1.23 
   W8      �      21  6.16  8.28  0.250  5.270  0.400  18.2  20.4  75.3  9.77  1.26 

(Continued)
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   W8      �      24  7.08  7.93  0.245  6.50  0.400  20.9  23.1  82.7  18.3  1.61 
   W8      �      28  8.24  8.06  0.285  6.54  0.465  24.3  27.2  98.0  21.7  1.62 

   W8      �      31  2     9.12  8.00  0.285  8.00  0.435  27.5  30.4  110  37.1  2.02 
   W8      �      35  10.3  8.12  0.310  8.02  0.495  31.2  34.7  127  42.6  2.03 
   W8      �      40  11.7  8.25  0.360  8.07  0.560  35.5  39.8  146  49.1  2.04 
   W8      �      48  14.1  8.50  0.400  8.11  0.685  43.2  49.0  184  60.9  2.08 
   W8      �      58  17.1  8.75  0.510  8.22  0.810  52.0  59.8  228  75.1  2.10 
   W8      �      67  19.7  9.00  0.570  8.28  0.935  60.4  70.1  272  88.6  2.12 

   W10      �      12  2    3.54  9.87  0.190  3.96  0.210  10.9  12.6  53.8  2.18  0.785 
   W10      �      15  4.41  10.0  0.230  4.00  0.270  13.8  16.0  68.9  2.89  0.810 
   W10      �      17  4.99  10.1  0.240  4.01  0.330  16.2  18.7  81.9  3.56  0.845 
   W10      �      19  5.62  10.2  0.250  4.02  0.395  18.8  21.6  96.3  4.29  0.874 

   W10      �      22  6.49  10.2  0.240  5.75  0.360  23.2  26.0  118  11.4  1.33 
   W10      �      26  7.61  10.3  0.260  5.77  0.440  27.9  31.3  144  14.1  1.36 
   W10      �      30  8.84  10.5  0.300  5.81  0.510  32.4  36.6  170  16.7  1.37 

   W10      �      33  9.71  9.73  0.290  7.96  0.435  35.0  38.8  171  36.6  1.94 
   W10      �      39  11.5  9.92  0.315  7.99  0.530  42.1  46.8  209  45.0  1.98 
   W10      �      45  13.3  10.10  0.350  8.02  0.620  49.1  54.9  248  53.4  2.01 

   W10      �      49  14.4  10.0  0.340  10.0  0.560  54.6  60.4  272  93.4  2.54 
   W10      �      54  15.8  10.1  0.370  10.0  0.615  60.0  66.6  303  103  2.56 
   W10      �      60  17.6  10.2  0.420  10.1  0.680  66.7  74.6  341  116  2.57 
   W10      �      68  20.0  10.4  0.470  10.1  0.770  75.7  85.3  394  134  2.59 
   W10      �      77  22.6  10.6  0.530  10.2  0.870  85.9  97.6  455  154  2.60 
   W10      �      88  25.9  10.8  0.605  10.3  0.990  98.5  113  534  179  2.63 
   W10      �      100  29.4  11.1  0.680  10.3  1.120  112  130  623  207  2.65 
   W10      �      112  32.9  11.4  0.755  10.4  1.250  126  147  716  236  2.68 

   W12      �      14  3    4.16  11.9  0.200  3.97  0.225  14.9  17.4  88.6  2.36  0.753 
   W12      �      16  4.71  12.0  0.220  3.99  0.265  17.1  20.1  103  2.82  0.773 
   W12      �      19  5.57  12.2  0.235  4.01  0.350  21.3  24.7  130  3.76  0.822 
   W12      �      22  6.48  12.3  0.260  4.03  0.425  25.4  29.3  156  4.66  0.848 

   W12      �      26  7.65  12.2  0.230  6.49  0.380  33.4  37.2  204  17.3  1.51 
   W12      �      30  8.79  12.3  0.260  6.52  0.440  38.6  43.1  238  20.3  1.52 
   W12      �      35  10.3  12.5  0.300  6.56  0.520  45.6  51.2  285  24.5  1.54 

   W12      �      40  11.7  11.9  0.295  8.01  0.515  51.5  57.0  307  44.1  1.94 
   W12      �      45  13.1  12.1  0.335  8.05  0.575  57.7  64.2  348  50.0  1.95 
   W12      �      50  14.6  12.2  0.370  8.08  0.640  64.2  71.9  391  56.3  1.96 

   W12      �      53  15.6  12.1  0.345  10.0  0.575  70.6  77.9  425  95.8  2.48 
   W12      �      58  17.0  12.2  0.360  10.0  0.640  78.0  86.4  475  107  2.51 

Designation A 
(in2)

d 
(in.)

tw 
(in.)

bf 
(in.)

tf 
(in.)

Sx 
(in3)

Zx 
(in3)

Ix 
(in4)

Iy 
(in.)

ry 
(in.)
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   W12      �      65  2    19.1  12.1  0.390  12.0  0.605  87.9  96.8  533  174  3.02 
   W12      �      72  21.1  12.3  0.430  12.0  0.670  97.4  108  597  195  3.04 
   W12      �      79  23.2  12.4  0.470  12.1  0.735  107  119  662  216  3.05 
   W12      �      87  25.6  12.5  0.515  12.1  0.810  118  132  740  241  3.07 
   W12      �      96  28.2  12.7  0.550  12.2  0.900  131  147  833  270  3.09 
   W12      �      106  31.2  12.9  0.610  12.2  0.990  145  164  933  301  3.11 
   W12      �      120  35.3  13.1  0.710  12.3  1.11  163  186  1070  345  3.13 
   W12      �      136  39.9  13.4  0.790  12.4  1.25  186  214  1240  398  3.16 
   W12      �      152  44.7  13.7  0.870  12.5  1.40  209  243  1430  454  3.19 
   W12      �      170  50.0  14.0  0.960  12.6  1.56  235  275  1650  517  3.22 
   W12      �      190  55.8  14.4  1.06  12.7  1.74  263  311  1890  589  3.25 
   W12      �      210  61.8  14.7  1.18  12.8  1.90  292  348  2140  664  3.28 
   W12      �      230  67.7  15.1  1.29  12.9  2.07  321  386  2420  742  3.31 
   W12      �      252  74.0  15.4  1.40  13.0  2.25  353  428  2720  828  3.34 
   W12      �      279  81.9  15.9  1.53  13.1  2.47  393  481  3110  937  3.38 
   W12      �      305  89.6  16.3  1.63  13.2  2.71  435  537  3550  1050  3.42 
   W12      �      336  98.8  16.8  1.78  13.4  2.96  483  603  4060  1190  3.47 

   W14      �      22  6.49  13.7  0.230  5.00  0.335  29.0  33.2  199  7.00  1.04 
   W14      �      26  7.69  13.9  0.255  5.03  0.420  35.3  40.2  245  8.91  1.08 

   W14      �      30  8.85  13.8  0.270  6.73  0.385  42.0  47.3  291  19.6  1.49 
   W14      �      34  10.0  14.0  0.285  6.75  0.455  48.6  54.6  340  23.3  1.53 
   W14      �      38  11.2  14.1  0.310  6.77  0.515  54.6  61.5  385  26.7  1.55 

   W14      �      43  12.6  13.7  0.305  8.00  0.530  62.6  69.6  428  45.2  1.89 
   W14      �      48  14.1  13.8  0.340  8.03  0.595  70.2  78.4  484  51.4  1.91 
   W14      �      53  15.6  13.9  0.370  8.06  0.660  77.8  87.1  541  57.7  1.92 

   W14      �      61  17.9  13.9  0.375  10.0  0.645  92.1  102  640  107  2.45 
   W14      �      68  20.0  14.0  0.415  10.0  0.720  103  115  722  121  2.46 
   W14      �      74  21.8  14.2  0.450  10.1  0.785  112  126  795  134  2.48 
   W14      �      82  24.0  14.3  0.510  10.1  0.855  123  139  881  148  2.48 

   W14      �      90  2    26.5  14.0  0.440  14.5  0.710  143  157  999  362  3.70 
   W14      �      99  2    29.1  14.2  0.485  14.6  0.780  157  173  1110  402  3.71 
   W14      �      109  32.0  14.3  0.525  14.6  0.860  173  192  1240  447  3.73 
   W14      �      120  35.3  14.5  0.590  14.7  0.940  190  212  1380  495  3.74 
   W14      �      132  38.8  14.7  0.645  14.7  1.03  209  234  1530  548  3.76 

   W14      �      145  42.7  14.8  0.680  15.5  1.09  232  260  1710  677  3.98 
   W14      �      159  46.7  15.0  0.745  15.6  1.19  254  287  1900  748  4.00 
   W14      �      176  51.8  15.2  0.830  15.7  1.31  281  320  2140  838  4.02 
   W14      �      193  56.8  15.5  0.890  15.7  1.44  310  355  2400  931  4.05 
   W14      �      211  62.0  15.7  0.980  15.8  1.56  338  390  2660  1030  4.07 
   W14      �      233  68.5  16.0  1.07  15.9  1.72  375  436  3010  1150  4.10 
   W14      �      257  75.6  16.4  1.18  16.0  1.89  415  487  3400  1290  4.13 
   W14      �      283  83.3  16.7  1.29  16.1  2.07  459  542  3840  1440  4.17 

Designation A 
(in2)

d 
(in.)

tw 
(in.)

bf 
(in.)

tf 
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Sx 
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Zx 
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   W14      �      311  91.4  17.1  1.41  16.2  2.26  506  603  4330  1610  4.20 
   W14      �      342  101  17.5  1.54  16.4  2.47  558  672  4900  1810  4.24 
   W14      �      370  109  17.9  1.66  16.5  2.66  607  736  5440  1990  4.27 
   W14      �      398  117  18.3  1.77  16.6  2.85  656  801  6000  2170  4.31 
   W14      �      426  125  18.7  1.88  16.7  3.04  706  869  6600  2360  4.34 
   W14      �      455  134  19.0  2.02  16.8  3.21  756  936  7190  2560  4.38 
   W14      �      500  147  19.6  2.19  17.0  3.50  838  1050  8210  2880  4.43 
   W14      �      550  162  20.2  2.38  17.2  3.82  931  1180  9430  3250  4.49 
   W14      �      605  178  20.9  2.60  17.4  4.16  1040  1320  10800  3680  4.55 
   W14      �      665  196  21.6  2.83  17.7  4.52  1150  1480  12400  4170  4.62 
   W14      �      730  215  22.4  3.07  17.9  4.91  1280  1660  14300  4720  4.69 

   W16      �      26  3    7.68  15.7  0.250  5.50  0.345  38.4  44.2  301  9.59  1.12 
   W16      �      31  9.13  15.9  0.275  5.53  0.440  47.2  54.0  375  12.4  1.17 

   W16      �      36  10.6  15.9  0.295  6.99  0.430  56.5  64.0  448  24.5  1.52 
   W16      �      40  11.8  16.0  0.305  7.00  0.505  64.7  73.0  518  28.9  1.57 
   W16      �      45  13.3  16.1  0.345  7.04  0.565  72.7  82.3  586  32.8  1.57 
   W16      �      50  14.7  16.3  0.380  7.07  0.630  81.0  92.0  659  37.2  1.59 
   W16      �      57  16.8  16.4  0.430  7.12  0.715  92.2  105  758  43.1  1.60 

   W16      �      67  19.7  16.3  0.395  10.2  0.665  117  130  954  119  2.46 
   W16      �      77  22.6  16.5  0.455  10.3  0.760  134  150  1110  138  2.47 
   W16      �      89  26.2  16.8  0.525  10.4  0.875  155  175  1300  163  2.49 
   W16      �      100  29.5  17.0  0.585  10.4  0.985  175  198  1490  186  2.51 

   W18      �      35  10.3  17.7  0.300  6.00  0.425  57.6  66.5  510  15.3  1.22 
   W18      �      40  11.8  17.9  0.315  6.02  0.525  68.4  78.4  612  19.1  1.27 
   W18      �      46  13.5  18.1  0.360  6.06  0.605  78.8  90.7  712  22.5  1.29 

   W18      �      50  14.7  18.0  0.355  7.50  0.570  88.9  101  800  40.1  1.65 
   W18      �      55  16.2  18.1  0.390  7.53  0.630  98.3  112  890  44.9  1.67 
   W18      �      60  17.6  18.2  0.415  7.56  0.695  108  123  984  50.1  1.68 
   W18      �      65  19.1  18.4  0.450  7.59  0.750  117  133  1070  54.8  1.69 
   W18      �      71  20.8  18.5  0.495  7.64  0.810  127  146  1170  60.3  1.70 

   W18      �      76  22.3  18.2  0.425  11.0  0.680  146  163  1330  152  2.61 
   W18      �      86  25.3  18.4  0.480  11.1  0.770  166  186  1530  175  2.63 
   W18      �      97  28.5  18.6  0.535  11.1  0.870  188  211  1750  201  2.65 
   W18      �      106  31.1  18.7  0.590  11.2  0.940  204  230  1910  220  2.66 
   W18      �      119  35.1  19.0  0.655  11.3  1.06  231  262  2190  253  2.69 
   W18      �      130  38.2  19.3  0.670  11.2  1.20  256  290  2460  278  2.70 
   W18      �      143  42.1  19.5  0.730  11.2  1.32  282  322  2750  311  2.72 
   W18      �      158  46.3  19.7  0.810  11.3  1.44  310  356  3060  347  2.74 
   W18      �      175  51.3  20.0  0.890  11.4  1.59  344  398  3450  391  2.76 
   W18      �      192  56.4  20.4  0.960  11.5  1.75  380  442  3870  440  2.79 
   W18      �      211  62.1  20.7  1.06  11.6  1.91  419  490  4330  493  2.82 
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   W18      �      234  68.8  21.1  1.16  11.7  2.11  466  549  4900  558  2.85 
   W18      �      258  75.9  21.5  1.28  11.8  2.30  514  611  5510  628  2.88 
   W18      �      283  83.3  21.9  1.40  11.9  2.50  565  676  6170  704  2.91 
   W18      �      311  91.6  22.3  1.52  12.0  2.74  624  754  6970  795  2.95 

   W21      �      44  13.0  20.7  0.350  6.50  0.450  81.6  95.4  843  20.7  1.26 
   W21      �      50  14.7  20.8  0.380  6.53  0.535  94.5  110  984  24.9  1.30 
   W21      �      57  16.7  21.1  0.405  6.56  0.650  111  129  1170  30.6  1.35 

   W21      �      48  2    14.1  20.6  0.350  8.14  0.430  93.0  107  959  38.7  1.66 
   W21      �      55  16.2  20.8  0.375  8.22  0.522  110  126  1140  48.4  1.73 
   W21      �      62  18.3  21.0  0.400  8.24  0.615  127  144  1330  57.5  1.77 
   W21      �      68  20.0  21.1  0.430  8.27  0.685  140  160  1480  64.7  1.80 
   W21      �      73  21.5  21.2  0.455  8.30  0.740  151  172  1600  70.6  1.81 
   W21      �      83  24.3  21.4  0.515  8.36  0.835  171  196  1830  81.4  1.83 
   W21      �      93  27.3  21.6  0.580  8.42  0.930  192  221  2070  92.9  1.84 

   W21      �      101  29.8  21.4  0.500  12.3  0.800  227  253  2420  248  2.89 
   W21      �      111  32.7  21.5  0.550  12.3  0.875  249  279  2670  274  2.90 
   W21      �      122  35.9  21.7  0.600  12.4  0.960  273  307  2960  305  2.92 
   W21      �      132  38.8  21.8  0.650  12.4  1.04  295  333  3220  333  2.93 
   W21      �      147  43.2  22.1  0.720  12.5  1.15  329  373  3630  376  2.95 
   W21      �      166  48.8  22.5  0.750  12.4  1.36  380  432  4280  435  2.99 
   W21      �      182  53.6  22.7  0.830  12.5  1.48  417  476  4730  483  3.00 
   W21      �      201  59.2  23.0  0.910  12.6  1.63  461  530  5310  542  3.02 

   W24      �      55  3    16.2  23.6  0.395  7.01  0.505  114  134  1350  29.1  1.34 
   W24      �      62  18.2  23.7  0.430  7.04  0.590  131  153  1550  34.5  1.38 

   W24      �      68  20.1  23.7  0.415  8.97  0.585  154  177  1830  70.4  1.87 
   W24      �      76  22.4  23.9  0.440  8.99  0.680  176  200  2100  82.5  1.92 
   W24      �      84  24.7  24.1  0.470  9.02  0.770  196  224  2370  94.4  1.95 
   W24      �      94  27.7  24.3  0.515  9.07  0.875  222  254  2700  109  1.98 
   W24      �      103  30.3  24.5  0.550  9.00  0.980  245  280  3000  119  1.99 

   W24      �      104  30.6  24.1  0.500  12.8  0.750  258  289  3100  259  2.91 
   W24      �      117  34.4  24.3  0.550  12.8  0.850  291  327  3540  297  2.94 
   W24      �      131  38.5  24.5  0.605  12.9  0.960  329  370  4020  340  2.97 
   W24      �      146  43.0  24.7  0.650  12.9  1.09  371  418  4580  391  3.01 
   W24      �      162  47.7  25.0  0.705  13.0  1.22  414  468  5170  443  3.05 
   W24      �      176  51.7  25.2  0.750  12.9  1.34  450  511  5680  479  3.04 
   W24      �      192  56.3  25.5  0.810  13.0  1.46  491  559  6260  530  3.07 
   W24      �      207  60.7  25.7  0.870  13.0  1.57  531  606  6820  578  3.08 
   W24      �      229  67.2  26.0  0.960  13.1  1.73  588  675  7650  651  3.11 
   W24      �      250  73.5  26.3  1.04  13.2  1.89  644  744  8490  724  3.14 
   W24      �      279  82.0  26.7  1.16  13.3  2.09  718  835  9600  823  3.17 
   W24      �      306  89.8  27.1  1.26  13.4  2.28  789  922  10700  919  3.20 
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   W24      �      335  98.4  27.5  1.38  13.5  2.48  864  1020  11900  1030  3.23 
   W24      �      370  109  28.0  1.52  13.7  2.72  957  1130  13400  1160  3.27 

   W27      �      84  24.8  26.7  0.460  10.0  0.640  213  244  2850  106  2.07 
   W27      �      94  27.7  26.9  0.490  10.0  0.745  243  278  3270  124  2.12 
   W27      �      102  30.0  27.1  0.515  10.0  0.830  267  305  3620  139  2.15 
   W27      �      114  33.5  27.3  0.570  10.1  0.930  299  343  4080  159  2.18 
   W27      �      129  37.8  27.6  0.610  10.0  1.10  345  395  4760  184  2.21 

   W27      �      146  43.1  27.4  0.605  14.0  0.975  414  464  5630  443  3.20 
   W27      �      161  47.6  27.6  0.660  14.0  1.08  458  515  6310  497  3.23 
   W27      �      178  52.5  27.8  0.725  14.1  1.19  505  570  7020  555  3.25 
   W27      �      194  57.2  28.1  0.750  14.0  1.34  559  631  7860  619  3.29 
   W27      �      217  64.0  28.4  0.830  14.1  1.50  627  711  8910  704  3.32 
   W27      �      235  69.4  28.7  0.910  14.2  1.61  677  772  9700  769  3.33 
   W27      �      258  76.0  29.0  0.980  14.3  1.77  745  852  10800  859  3.36 
   W27      �      281  82.9  29.3  1.06  14.4  1.93  814  936  11900  953  3.39 
   W27      �      307  90.4  29.6  1.16  14.4  2.09  887  1030  13100  1050  3.41 
   W27      �      336  98.9  30.0  1.26  14.6  2.28  972  1130  14600  1180  3.45 
   W27      �      368  108  30.4  1.38  14.7  2.48  1060  1240  16200  1310  3.48 
   W27      �      539  159  32.5  1.97  15.3  3.54  1570  1890  25600  2110  3.65 

   W30      �      90  3    26.4  29.5  0.470  10.4  0.610  245  283  3610  115  2.09 
   W30      �      99  29.1  29.7  0.520  10.5  0.670  269  312  3990  128  2.10 
   W30      �      108  31.7  29.8  0.545  10.5  0.760  299  346  4470  146  2.15 
   W30      �      116  34.2  30.0  0.565  10.5  0.850  329  378  4930  164  2.19 
   W30      �      124  36.5  30.2  0.585  10.5  0.930  355  408  5360  181  2.23 
   W30      �      132  38.9  30.3  0.615  10.5  1.00  380  437  5770  196  2.25 
   W30      �      148  43.5  30.7  0.650  10.5  1.18  436  500  6680  227  2.28 

   W30      �      173  51.0  30.4  0.655  15.0  1.07  541  607  8230  598  3.42 
   W30      �      191  56.3  30.7  0.710  15.0  1.19  600  675  9200  673  3.46 
   W30      �      211  62.2  30.9  0.775  15.1  1.32  665  751  10300  757  3.49 
   W30      �      235  69.2  31.3  0.830  15.1  1.50  748  847  11700  855  3.51 
   W30      �      261  76.9  31.6  0.930  15.2  1.65  829  943  13100  959  3.53 
   W30      �      292  85.9  32.0  1.02  15.3  1.85  930  1060  14900  1100  3.58 
   W30      �      326  95.8  32.4  1.14  15.4  2.05  1040  1190  16800  1240  3.60 
   W30      �      357  105  32.8  1.24  15.5  2.24  1140  1320  18700  1390  3.64 
   W30      �      391  115  33.2  1.36  15.6  2.44  1250  1450  20700  1550  3.67 

   W33      �      118  3    34.7  32.9  0.550  11.5  0.740  359  415  5900  187  2.32 
   W33      �      130  38.3  33.1  0.580  11.5  0.855  406  467  6710  218  2.39 
   W33      �      141  41.6  33.3  0.605  11.5  0.960  448  514  7450  246  2.43 
   W33      �      152  44.8  33.5  0.635  11.6  1.06  487  559  8160  273  2.47 
   W33      �      169  49.5  33.8  0.670  11.5  1.22  549  629  9290  310  2.50 
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   W33      �      201  59.2  33.7  0.715  15.7  1.15  686  773  11600  749  3.56 
   W33      �      221  65.2  33.9  0.775  15.8  1.28  759  857  12900  840  3.59 
   W33      �      241  71.0  34.2  0.830  15.9  1.40  831  940  14200  933  3.62 
   W33      �      263  77.5  34.5  0.870  15.8  1.57  919  1040  15900  1040  3.66 
   W33      �      291  85.7  34.8  0.960  15.9  1.73  1020  1160  17700  1160  3.68 
   W33      �      318  93.6  35.2  1.04  16.0  1.89  1110  1270  19500  1290  3.71 
   W33      �      354  104  35.6  1.16  16.1  2.09  1240  1420  22000  1460  3.74 
   W33      �      387  114  36.0  1.26  16.2  2.28  1350  1560  24300  1620  3.77 

   W36      �      135  3    39.7  35.6  0.600  12.0  0.790  439  509  7800  225  2.38 
   W36      �      150  44.2  35.9  0.625  12.0  0.940  504  581  9040  270  2.47 
   W36      �      160  47.0  36.0  0.650  12.0  1.02  542  624  9760  295  2.50 
   W36      �      170  50.1  36.2  0.680  12.0  1.10  581  668  10500  320  2.53 
   W36      �      182  53.6  36.3  0.725  12.1  1.18  623  718  11300  347  2.55 
   W36      �      194  57.0  36.5  0.765  12.1  1.26  664  767  12100  375  2.56 
   W36      �      210  61.8  36.7  0.830  12.2  1.36  719  833  13200  411  2.58 
   W36      �      232  68.1  37.1  0.870  12.1  1.57  809  936  15000  468  2.62 
   W36      �      256  75.4  37.4  0.960  12.2  1.73  895  1040  16800  528  2.65 

   W36      �      231  68.1  36.5  0.760  16.5  1.26  854  963  15600  940  3.71 
   W36      �      247  72.5  36.7  0.800  16.5  1.35  913  1030  16700  1010  3.74 
   W36      �      262  77.0  36.9  0.840  16.6  1.44  972  1100  17900  1090  3.76 
   W36      �      282  82.9  37.1  0.885  16.6  1.57  1050  1190  19600  1200  3.80 
   W36      �      302  88.8  37.3  0.945  16.7  1.68  1130  1280  21100  1300  3.82 
   W36      �      330  97.0  37.7  1.02  16.6  1.85  1240  1410  23300  1420  3.83 
   W36      �      361  106  38.0  1.12  16.7  2.01  1350  1550  25700  1570  3.85 
   W36      �      395  116  38.4  1.22  16.8  2.20  1490  1710  28500  1750  3.88 
   W36      �      441  130  38.9  1.36  17.0  2.44  1650  1910  32100  1990  3.92 
   W36      �      487  143  39.3  1.50  17.1  2.68  1830  2130  36000  2250  3.96 
   W36      �      529  156  39.8  1.61  17.2  2.91  1990  2330  39600  2490  4.00 
   W36      �      652  192  41.1  1.97  17.6  3.54  2460  2910  50600  3230  4.10 
   W36      �      800  236  42.6  2.38  18.0  4.29  3040  3650  64700  4200  4.22 

   W40      �      149  3    43.8  38.2  0.630  11.8  0.830  513  598  9800  229  2.29 
   W40      �      167  49.2  38.6  0.650  11.8  1.03  600  693  11600  283  2.40 
   W40      �      183  53.3  39.0  0.650  11.8  1.20  675  774  13200  331  2.49 
   W40      �      211  62.0  39.4  0.750  11.8  1.42  786  906  15500  390  2.51 
   W40      �      235  69.0  39.7  0.830  11.9  1.58  875  1010  17400  444  2.54 
   W40      �      264  77.6  40.0  0.960  11.9  1.73  971  1130  19400  493  2.52 
   W40      �      278  82.0  40.2  1.03  12.0  1.81  1020  1190  20500  521  2.52 
   W40      �      294  86.3  40.4  1.06  12.0  1.93  1080  1270  21900  562  2.55 
   W40      �      327  96.0  40.8  1.18  12.1  2.13  1200  1410  24500  640  2.58 
   W40      �      331  97.5  40.8  1.22  12.2  2.13  1210  1430  24700  644  2.57 
   W40      �      392  115  41.6  1.42  12.4  2.52  1440  1710  29900  803  2.64 
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   W40      �      199  58.5  38.7  0.650  15.8  1.07  770  869  14900  695  3.45 
   W40      �      215  63.4  39.0  0.650  15.8  1.22  859  964  16700  796  3.54 
   W40      �      249  73.3  39.4  0.750  15.8  1.42  993  1120  19600  926  3.55 
   W40      �      277  81.4  39.7  0.830  15.8  1.58  1100  1250  21900  1040  3.58 
   W40      �      297  87.4  39.8  0.930  15.8  1.65  1170  1330  23200  1090  3.54 
   W40      �      324  95.3  40.2  1.00  15.9  1.81  1280  1460  25600  1220  3.58 
   W40      �      362  107  40.6  1.12  16.0  2.01  1420  1640  28900  1380  3.60 
   W40      �      372  109  40.6  1.16  16.1  2.05  1460  1680  29600  1420  3.60 
   W40      �      397  117  41.0  1.22  16.1  2.20  1560  1800  32000  1540  3.64 
   W40      �      431  127  41.3  1.34  16.2  2.36  1690  1960  34800  1690  3.65 
   W40      �      503  148  42.1  1.54  16.4  2.76  1980  2310  41600  2040  3.72 
   W40      �      593  174  43.0  1.79  16.7  3.23  2340  2760  50400  2520  3.80 

   W44      �      230  3    67.7  42.9  0.710  15.8  1.22  971  1100  20800  796  3.43 
   W44      �      262  76.9  43.3  0.785  15.8  1.42  1110  1270  24100  923  3.47 
   W44      �      290  85.4  43.6  0.865  15.8  1.58  1240  1410  27000  1040  3.49 
   W44      �      335  98.5  44.0  1.03  15.9  1.77  1410  1620  31100  1200  3.49 

  Notes:  
   1   . Section not compact for steel with  F y        �      36       ksi or  F y        �      50       ksi.  
   2   . Section compact for steel with  F y        �      36       ksi, but not compact for steel with  F y        �      50       ksi.  
   3   . Section webs do not meet slenderness criteria for shear for which the allowable stress can be taken as 
 F v        �      0.4 F y  ; instead, use a reduced allowable shear stress,  F v        �      0.36 F y  .  
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 Table A-4.4        Dimensions and properties of steel C and MC channels  

         Cross-sectional area      �       A  

 Dimension to y-axis      �       e  

 Moment of inertia      �       I  

 Section modulus,  S x        �      2 I x  /d  

 Radius of gyration, 
 
r I Ax x� ( )/

    

 Radius of gyration, 
 
r Iy y� ( )/A

    

   Designation   A  (in 2 )   d  (in.)   t w   (in.)   b f   (in.)   e  (in.)   I x   (in 4 )   I y   (in 4 ) 

   C3      �      3.5  1.09  3.00  0.132  1.37  0.443  1.57  0.169 
   C3      �      4.1  1.20  3.00  0.170  1.41  0.437  1.65  0.191 
   C3      �      5  1.47  3.00  0.258  1.50  0.439  1.85  0.241 
   C3      �      6  1.76  3.00  0.356  1.60  0.455  2.07  0.300 
   C4      �      4.5  1.38  4.00  0.125  1.58  0.493  3.65  0.289 
   C4      �      5.4  1.58  4.00  0.184  1.58  0.457  3.85  0.312 
   C4      �      7.2  2.13  4.00  0.321  1.72  0.459  4.58  0.425 
   C5      �      6.7  1.97  5.00  0.190  1.75  0.484  7.48  0.470 
   C5      �      9  2.64  5.00  0.325  1.89  0.478  8.89  0.624 
   C6      �      8.2  2.39  6.00  0.200  1.92  0.512  13.1  0.687 
   C6      �      10.5  3.08  6.00  0.314  2.03  0.500  15.1  0.860 
   C6      �      13  3.81  6.00  0.437  2.16  0.514  17.3  1.05 
   C7      �      9.8  2.87  7.00  0.210  2.09  0.541  21.2  0.957 
   C7      �      12.2  3.60  7.00  0.314  2.19  0.525  24.2  1.16 
   C7      �      14.7  4.33  7.00  0.419  2.30  0.532  27.2  1.37 
   C8      �      11.5  3.37  8.00  0.220  2.26  0.572  32.5  1.31 
   C8      �      13.7  4.04  8.00  0.303  2.34  0.554  36.1  1.52 
   C8      �      18.5  5.51  8.00  0.487  2.53  0.565  43.9  1.97 
   C9      �      13.4  3.94  9.00  0.233  2.43  0.601  47.8  1.75 
   C9      �      15  4.41  9.00  0.285  2.49  0.586  51.0  1.91 
   C9      �      20  5.87  9.00  0.448  2.65  0.583  60.9  2.41 
   C10      �      15.3  4.48  10.0  0.240  2.60  0.634  67.3  2.27 
   C10      �      20  5.87  10.0  0.379  2.74  0.606  78.9  2.80 
   C10      �      25  7.34  10.0  0.526  2.89  0.617  91.1  3.34 
   C10      �      30  8.81  10.0  0.673  3.03  0.649  103  3.93 
   C12      �      20.7  6.08  12.0  0.282  2.94  0.698  129  3.86 
   C12      �      25  7.34  12.0  0.387  3.05  0.674  144  4.45 
   C12      �      30  8.81  12.0  0.510  3.17  0.674  162  5.12 
   C15      �      33.9  10.0  15.0  0.400  3.40  0.788  315  8.07 
   C15      �      40  11.8  15.0  0.520  3.52  0.778  348  9.17 
   C15      �      50  14.7  15.0  0.716  3.72  0.799  404  11.0 
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   MC3      �      7.1  2.11  3.00  0.312  1.94  0.653  2.72  0.666 
   MC4      �      13.8  4.03  4.00  0.500  2.50  0.849  8.85  2.13 
   MC6      �      6.5  1.95  6.00  0.155  1.85  0.513  11.0  0.565 
   MC6      �      7  2.09  6.00  0.179  1.88  0.501  11.4  0.603 
   MC6      �      12  3.53  6.00  0.310  2.50  0.704  18.7  1.85 
   MC6      �      15.1  4.44  6.00  0.316  2.94  0.940  24.9  3.46 
   MC6      �      16.3  4.79  6.00  0.375  3.00  0.927  26.0  3.77 
   MC6      �      15.3  4.49  6.00  0.340  3.50  1.05  25.3  4.91 
   MC6      �      18  5.29  6.00  0.379  3.50  1.12  29.7  5.88 
   MC7      �      19.1  5.61  7.00  0.352  3.45  1.08  43.1  6.06 
   MC7      �      22.7  6.67  7.00  0.503  3.60  1.04  47.4  7.24 
   MC8      �      8.5  2.50  8.00  0.179  1.87  0.428  23.3  0.624 
   MC8      �      18.7  5.50  8.00  0.353  2.98  0.849  52.4  4.15 
   MC8      �      20  5.88  8.00  0.400  3.03  0.840  54.4  4.42 
   MC8      �      21.4  6.28  8.00  0.375  3.45  1.02  61.5  6.58 
   MC8      �      22.8  6.70  8.00  0.427  3.50  1.01  63.8  7.01 
   MC9      �      23.9  7.02  9.00  0.400  3.45  0.981  84.9  7.14 
   MC9      �      25.4  7.47  9.00  0.450  3.50  0.970  87.9  7.57 
   MC10      �      6.5  1.95  10.0  0.152  1.17  0.194  22.9  0.133 
   MC10      �      8.4  2.46  10.0  0.170  1.50  0.284  31.9  0.326 
   MC10      �      22  6.45  10.0  0.290  3.32  0.990  102  6.40 
   MC10      �      25  7.35  10.0  0.380  3.41  0.953  110  7.25 
   MC10      �      28.5  8.37  10.0  0.425  3.95  1.12  126  11.3 
   MC10      �      33.6  9.87  10.0  0.575  4.10  1.09  139  13.1 
   MC10      �      41.1  12.1  10.0  0.796  4.32  1.09  157  15.7 
   MC12      �      10.6  3.10  12.0  0.190  1.50  0.269  55.3  0.378 
   MC12      �      31  9.12  12.0  0.370  3.67  1.08  202  11.3 
   MC12      �      35  10.3  12.0  0.465  3.77  1.05  216  12.6 
   MC12      �      40  11.8  12.0  0.590  3.89  1.04  234  14.2 
   MC12      �      45  13.2  12.0  0.710  4.01  1.04  251  15.8 
   MC12      �      50  14.7  12.0  0.835  4.14  1.05  269  17.4 
   MC13      �      31.8  9.35  13.0  0.375  4.00  1.00  239  11.4 
   MC13      �      35  10.3  13.0  0.447  4.07  0.980  252  12.3 
   MC13      �      40  11.8  13.0  0.560  4.19  0.963  273  13.7 
   MC13      �      50  14.7  13.0  0.787  4.41  0.974  314  16.4 
   MC18      �      42.7  12.6  18.0  0.450  3.95  0.877  554  14.3 
   MC18      �      45.8  13.5  18.0  0.500  4.00  0.866  578  14.9 
   MC18      �      51.9  15.3  18.0  0.600  4.10  0.858  627  16.3 
   MC18      �      58  17.1  18.0  0.700  4.20  0.862  675  17.6 

Designation A (in2) d (in.) tw (in.) bf (in.) e (in.) Ix (in4) Iy (in4)
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 Table A-4.5        Dimensions and properties of selected steel L angles  
   A. Angles with equal legs 

    

 Cross-sectional area      �       A  
 Dimension to  x - or  y -axis      �       e  
 Moment of inertia      �       I  
 Radius of gyration,  r r I Ax y x� � /

    

 Radius of gyration, 
 
r I Az z� /

    

   Designation   A  (in 2 )   d  (in.)   t w   (in.)   e  (in.)   I x   or  I y   (in 4 )   I z   (in 4 ) 

   L2      �      2  �   18     1,2   0.484  2.00  0.1250  0.534  0.189  0.0751 

   L2      �      2  �   14      0.938  2.00  0.2500  0.586  0.346  0.141 

   L2      �      2  �   516      1.15  2.00  0.3125  0.609  0.414  0.173 

   L2      �      2  �   3 8      1.36  2.00  0.3750  0.632  0.476  0.203 

   L3      �      3  �   316     1,2   1.09  3.00  0.1875  0.812  0.948  0.374 

   L3      �      3  �   14      1.44  3.00  0.2500  0.836  1.23  0.491 

   L3      �      3  �   3 8          2.11  3.00  0.3750  0.884  1.75  0.712 

   L3      �      3  �   12      2.75  3.00  0.5000  0.929  2.20  0.924 

   L4      �      4  �   14     1,2   1.94  4.00  0.2500  1.08  3.00  1.18 

   L4      �      4  �   3 8          2.86  4.00  0.3750  1.13  4.32  1.73 

   L4      �      4 �  12      3.75  4.00  0.5000  1.18  5.52  2.25 

   L4      �      4  �   3 4      5.44  4.00  0.7500  1.27  7.62  3.25 

   L5      �      5  �   516         1,2   3.03  5.00  0.3125  1.35  7.44  3.01 

   L5      �      5  �   716          4.18  5.00  0.4375  1.40  10.0  4.08 

   L5      �      5  �   5 8          5.86  5.00  0.6250  1.47  13.6  5.61 

   L5      �      5  �   7 8          7.98  5.00  0.8750  1.56  17.8  7.56 

   L6      �      6  �   516         1,2   3.67  6.00  0.3125  1.60  13.0  5.20 

   L6      �      6  �   12      5.77  6.00  0.5000  1.67  19.9  8.04 

   L6      �      6  �   3 4      8.46  6.00  0.7500  1.77  28.1  11.6 

   L6      �      6  �  1  11.0  6.00  1.0000  1.86  35.4  15.0 

   L8      �      8  �   12     1,2   7.75  8.00  0.5000  2.17  48.8  19.7 

   L8      �      8  �    5 8         9.61  8.00  0.6250  2.21  59.6  24.2 

   L8      �      8  �   7 8          13.2  8.00  0.8750  2.31  79.7  32.7 

   L8      �      8  �  1 18          16.7  8.00  1.1250  2.40  98.1  40.9 

(Continued)



300 APPENDIX 4     Tables for Chapter 4 (sectional properties)

   B. Angles with unequal legs 

    

 Cross-sectional area      �       A  

 Dimension to  y -axis      �       e  

 Moment of inertia      �       I  
 Radius of gyration, 

 
r I Ax x� /

    
 Radius of gyration,  r I Ay y� /

    
 Radius of gyration, 

 
r I Az z� /

    

   Designation   A  
(in 2 ) 

  d  
(in.) 

  b  
(in.) 

  t w   
(in.) 

  e  
(in.) 

  I x   
(in 4 ) 

  I y   
(in 4 ) 

  I z   
(in 4 ) 

   α   
( ° ) 

   L3      �      2  �   14      1.19  3.00  2.00  0.2500  0.487  1.09  0.390  0.223  23.6 

   L3      �      2  �   
5

16    1.46  3.00  2.00  0.3125  0.511  1.32  0.467  0.271  23.4 

   L3      �      2  �    3 8      1.73  3.00  2.00  0.3750  0.535  1.54  0.539  0.318  23.1 

   L3      �      2  �   12      2.25  3.00  2.00  0.5000  0.580  1.92  0.667  0.409  22.4 

   L3      �      2½      �       14      1.31  3.00  2.50  0.2500  0.653  1.16  0.734  0.356  34.3 

   L3      �      2½      �       516      1.67  3.00  2.50  0.3125  0.677  1.41  0.888  0.437  34.2 

   L3      �      2½      �       3 8      1.92  3.00  2.50  0.3750  0.701  1.65  1.03  0.514  34.0 

   L3      �      2½      �       12      2.50  3.00  2.50  0.5000  0.746  2.07  1.29  0.666  33.7 

   L3½      �      2½      �       14     2   1.44  3.50  2.50  0.2500  0.607  1.81  0.775  0.425  26.7 

   L3½      �      2½      �       516      1.78  3.50  2.50  0.3125  0.632  2.20  0.937  0.518  26.6 

   L3½      �      2½      �       3 8      2.11  3.50  2.50  0.3750  0.655  2.56  1.09  0.608  26.3 

   L3½      �      2½      �       12      2.75  3.50  2.50  0.5000  0.701  3.24  1.36  0.782  25.9 

   L4      �      3  �   14     1,2   1.69  4.00  3.00  0.2500  0.725  2.75  1.33  0.691  29.2 

   L4      �      3  �   3 8      2.48  4.00  3.00  0.3750  0.775  3.94  1.89  1.01  28.9 

   L4      �      3  �   12      3.25  4.00  3.00  0.5000  0.822  5.02  2.40  1.30  28.5 

   L4      �      3  �   5 8      3.89  4.00  3.00  0.6250  0.867  6.01  2.85  1.59  28.1 

   L4      �      3½      �       14     1,2   1.81  4.00  3.50  0.2500  0.897  2.89  2.07  0.950  37.2 

   L4      �      3½      �       
5

16      2.25  4.00  3.50  0.3125  0.923  3.53  2.52  1.17  37.1 

   L4      �      3½      �       3 8      2.67  4.00  3.50  0.3750  0.947  4.15  2.96  1.38  37.1 

   L4      �      3½      �       12      3.50  4.00  3.50  0.5000  0.994  5.30  3.76  1.808  36.9 

   L5      �      3  �   14     1,2   1.94  5.00  3.00  0.2500  0.648  5.09  1.41  0.825  20.4 

   L5      �      3  �   516     1,2   2.40  5.00  3.00  0.3125  0.673  6.24  1.72  1.01  20.2 

   L5      �      3  �   3 8     2   2.86  5.00  3.00  0.3750  0.698  7.35  2.01  1.20  20.0 

   L5      �      3  �   12      3.75  5.00  3.00  0.5000  0.746  9.43  2.55  1.55  19.6 

Table A-4.5 (Continued)

(Continued)



301Tables for Chapter 4 (sectional properties)

   L5      �      3½      �       14     1,2   2.06  5.00  3.50  0.2500  0.804  5.36  2.20  1.19  26.1 

   L5      �      3½      �       3 8     2   3.05  5.00  3.50  0.3750  0.854  7.75  3.15  1.74  25.9 

   L5      �      3½      �       12      4.00  5.00  3.50  0.5000  0.901  9.96  4.02  2.25  25.6 

   L5      �      3½      �       3 4      5.81  5.00  3.50  0.7500  0.993  13.9  5.52  3.22  24.9 

   L6      �      3½      �       516     1,2   2.87  6.00  3.50  0.3125  0.756  10.9  2.84  1.70  19.4 

   L6      �      3½      �       3 8     1,2   3.42  6.00  3.50  0.3750  0.781  12.9  3.33  2.00  19.2 

   L6      �      3½      �      12     4.50  6.00  3.50  0.5000  0.829  16.6  4.24  2.58  18.9 

   L6      �      4  �   3 8     1,2   3.61  6.00  4.00  0.3750  0.933  13.4  4.86  2.73  24.0 

   L6      �      4  �  12     4.75  6.00  4.00  0.5000  0.981  17.3  6.22  3.55  23.7 

   L6      �      4  �   5 8      5.86  6.00  4.00  0.6250  1.03  21.0  7.48  4.32  23.5 

   L6      �      4  �   7 8      7.98  6.00  4.00  0.8750  1.12  27.7  9.70  5.82  22.8 

   L7      �      4  �   3 8     1,2   3.98  7.00  4.00  0.3750  0.861  20.5  5.06  3.05  18.7 

   L7      �      4  �  12    2   5.25  7.00  4.00  0.5000  0.910  26.6  6.48  3.95  18.5 

   L7      �      4  �   5 8      6.48  7.00  4.00  0.6250  0.958  32.4  7.79  4.80  18.2 

   L7      �      4  �  3 4     7.69  7.00  4.00  0.7500  1.00  37.8  9.00  5.64  18.0 

   L8      �      4  �  12    1,2   5.75  8.00  4.00  0.5000  0.854  38.6  6.75  4.32  14.9 

   L8      �      4  �   5 8      7.11  8.00  4.00  0.6250  0.902  47.0  8.11  5.24  14.7 

   L8      �      4  �  3 4     8.44  8.00  4.00  0.7500  0.949  55.0  9.37  6.13  14.4 

   L8      �      4  �  1  11.0  8.00  4.00  1.0000  1.04  69.7  11.6  7.87  13.9 

   L8      �      6  �  12    1,2   6.75  8.00  6.00  0.5000  1.46  44.4  21.7  11.5  29.1 

   L8      �      6  �   5 8      8.36  8.00  6.00  0.6250  1.51  54.2  26.4  14.1  29.0 

   L8      �      6  �   7 8      11.5  8.00  6.00  0.8750  1.60  72.4  34.9  18.9  28.6 

   L8      �      6  �  1  13.0  8.00  6.00  1.0000  1.65  80.9  38.8  21.3  28.5 

  Notes:  
1. Section not compact for steel with  F y        �      36       ksi.  
2. Section slender for steel with  F y        �      36       ksi.  

Designation A 
(in2)

d 
(in.)

b 
(in.)

tw 
(in.)

e 
(in.)

Ix 
(in4)

Iy 
(in4)

Iz 
(in4)

α 
(°)
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 Table A-4.6        Dimensions and properties of selected steel rectangular and square hollow 
structural sections (HSS)  

         Cross-sectional area      �       A  
 Cross-sectional dimensions appear in designation as follows: 
HSS  H       �       B       �       t , where: 
 Larger dimension (in.)      �       H  
 Smaller dimension (in.)      �       B  
 Nominal wall thickness (in.) 1       �       t  
 Moment of inertia      �       I  
 Section modulus,  S x        �      2 I x  /H  
 Section modulus,  S y        �      2 I y  /B  

 Radius of gyration, 
 
r I Ax x� ( )/

    

 Radius of gyration,  r I Ay y� ( )/
    

   Designation   A  
(in 2 ) 

 Design 
wall 

thickness, 
t (in.) 1  

  S x   
(in 3 ) 

  Z x   
(in 3 ) 

  I x   
(in 4 ) 

  I y   
(in 4 ) 

  r y   
(in.) 

   HSS2      �      2  �   316      1.19  0.174  0.641  0.797  0.641  0.641  0.733 

   HSS2      �      2  �   14      1.51  0.233  0.747  0.964  0.747  0.747  0.704 

   HSS2½      �      2½      �       
3

16      1.54  0.174  1.08  1.32  1.35  1.35  0.937 

   HSS2½      �      2½      �       516      2.35  0.291  1.46  1.88  1.82  1.82  0.880 

   HSS3      �      3  �   316      1.89  0.174  1.64  1.97  2.46  2.46  1.14 

   HSS3      �      3  �   3 8      3.39  0.349  2.52  3.25  3.78  3.78  1.06 

   HSS3½      �      3½      �       316      2.24  0.174  2.31  2.76  4.05  4.05  1.35 

   HSS3½      �      3½      �       3 8      4.09  0.349  3.71  4.69  6.49  6.49  1.26 

   HSS4      �      3  �   316      2.24  0.174  2.47  3.00  4.93  3.16  1.19 

   HSS4      �      3  �   3 8      4.09  0.349  3.97  5.12  7.93  5.01  1.11 

   HSS4      �      4  �   14      3.37  0.233  3.90  4.69  7.80  7.80  1.52 

   HSS4      �      4  �   12      6.02  0.465  5.97  7.70  11.9  11.9  1.41 

   HSS6      �      4  �   14      4.30  0.233  6.96  8.53  20.9  11.1  1.61 

   HSS6      �      4  �  12       7.88  0.465  11.3  14.6  34.0  17.8  1.50 

   HSS6      �      6  �   14      5.24  0.233  9.54  11.2  28.6  28.6  2.34 

   HSS6      �      6  �   5 8      11.7  0.581  18.4  23.2  55.2  55.2  2.17 

   HSS8      �      4  �   14      5.24  0.233  10.6  13.3  42.5  14.4  1.66 

   HSS8      �      4  �   
5

8      11.7  0.581  20.5  27.4  82.0  26.6  1.51 

(Continued)



303Tables for Chapter 4 (sectional properties)

   HSS8      �      8  �  14      2   7.10  0.233  17.7  20.5  70.7  70.7  3.15 

   HSS8      �      8  �   5 8      16.4  0.581  36.5  44.7  146  146  2.99 

   HSS12      �      4  �   14      7.10  0.233  19.9  25.6  119  21.0  1.72 

   HSS12      �      4  �   5 8      16.4  0.581  40.8  55.5  245  40.4  1.57 

   HSS12      �      8  �  14      2   8.96  0.233  30.6  36.6  184  98.8  3.32 

   HSS12      �      8  �   5 8      21.0  0.581  66.1  82.1  397  210  3.16 

   HSS12      �      12      �       14     2   10.8  0.233  41.4  47.6  248  248  4.79 

   HSS12      �      12      �       5 8      25.7  0.581  91.4  109  548  548  4.62 

   HSS16      �      4  �   516      11.1  0.291  38.5  51.1  308  33.2  1.73 

   HSS16      �      4  �   5 8      21.0  0.581  67.3  92.9  539  54.1  1.60 

   HSS16      �      8  �   516      13.4  0.291  56.4  69.4  451  155  3.40 

   HSS16      �      8  �   5 8      25.7  0.581  102  129  815  274  3.27 

   HSS16      �      12      �       516     2   15.7  0.291  74.4  87.7  595  384  4.94 

   HSS16      �      12      �       5 8      30.3  0.581  136  165  1090  700  4.80 

   HSS16      �      16      �       3 8      21.5  0.349  109  126  873  873  6.37 

   HSS16      �      16      �       5 8      35.0  0.581  171  200  1370  1370  6.25 

   HSS20      �      4  �   3 8      16.0  0.349  65.7  89.3  657  47.6  1.73 

   HSS20      �      4  �   12      20.9  0.465  83.8  115  838  58.7  1.68 

   HSS20      �      8  �   
3

8      18.7  0.349  92.6  117  926  222  3.44 

   HSS20      �      8  �   5 8      30.3  0.581  144  185  1440  338  3.34 

   HSS20      �      12      �       3 8    2   21.5  0.349  120  144  1200  547  5.04 

   HSS20      �      12      �       5 8      35.0  0.581  188  230  1880  851  4.93 

  Notes:  
1. The nominal wall thickness,  t , in the designation for an HSS shape (e.g., ½ in. or ¼ in.) is different from the 
 “ design wall thickness, ”   t , which is tabulated for each section and which is permitted to be smaller than the 
nominal value.  
2. Section is not compact, based on fl ange slenderness; use reduced nominal bending 
strength,  M n  , as follows: 
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 Table A-4.7        Dimensions and properties of selected steel round hollow structural sections (HSS)  

         Cross-sectional area      �       A  
 Cross-sectional dimension appear in designation as follows: 
HSS  H       �       t , where: 
 Diameter (in.)      �       H  
 Nominal wall thickness (in.) 1       �       t  
 Moment of inertia      �       I  
 Section modulus,  S       �      2 I/H  
 Radius of gyration ,   r I A� /     

   Designation   A  (in 2 )  Design wall 
thickness, t (in.) 1  

  I  (in 4 )   r  (in.) 

   HSS1.660      �      0.140  0.625  0.130  0.184  0.543 

   HSS1.990      �      0.120  0.624  0.111  0.251  0.634 
   HSS1.990      �      0.188  0.943  0.174  0.355  0.613 

   HSS2.375      �      0.125  0.823  0.116  0.527  0.800 
   HSS2.375      �      0.250  1.57  0.233  0.910  0.762 

   HSS2.500      �      0.125  0.869  0.116  0.619  0.844 
   HSS2.500      �      0.250  1.66  0.233  1.08  0.806 

   HSS3.000      �      0.125  1.05  0.116  1.09  1.02 
   HSS3.000      �      0.250  2.03  0.233  1.95  0.982 

   HSS3.500      �      0.125  1.23  0.116  1.77  1.20 
   HSS3.500      �      0.313  2.93  0.291  3.81  1.14 

   HSS4.000      �      0.125  1.42  0.116  2.67  1.37 
   HSS4.000      �      0.313  3.39  0.291  5.87  1.32 

   HSS6.000      �      0.250  4.22  0.233  17.6  2.04 
   HSS6.000      �      0.500  8.09  0.465  31.2  1.96 

   HSS8.625      �      0.250  6.14  0.233  54.1  2.97 
   HSS8.625      �      0.625  14.7  0.581  119  2.85 

   HSS10.000      �      0.250  7.15  0.233  85.3  3.45 
   HSS10.000      �      0.625  17.2  0.581  191  3.34 

   HSS12.750      �      0.375  13.6  0.349  262  4.39 
   HSS12.750      �      0.500  17.9  0.465  339  4.35 

   HSS14.000      �      0.375  15.0  0.349  349  4.83 
   HSS14.000      �      0.625  24.5  0.581  552  4.75 

   HSS16.000      �      0.375  17.2  0.349  526  5.53 
   HSS16.000      �      0.625  28.1  0.581  838  5.46 

   HSS18.000      �      0.500  25.6  0.465  985  6.20 
   HSS20.000      �      0.500  28.5  0.465  1360  6.91 

  Note:  
1. The nominal wall thickness,  t , in the designation for an HSS shape (e.g., ½       in. or ¼       in.) is different from the 
 “ design wall thickness, ”   t , which is tabulated for each section and which is permitted to be smaller than the 
nominal value.  
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 Table A-4.8        Dimensions and properties of selected steel pipe  

         Cross-sectional area      �       A  
 Diameter (in.)      �       H  
 Moment of inertia      �       I  
 Section modulus,  S       �      2 I/H  
 Radius of gyration ,   r I A� /     

   Designation   A  (in 2 )  Design wall 
thickness, t (in.) 

 Diameter 
(in.) 

  I  (in 4 )   r  (in.) 

   Standard weight steel pipe 

   Pipe 2       Std.  1.00  0.143  2.38  0.627  0.791 
   Pipe 2½       Std.  1.59  0.189  2.88  1.45  0.952 
   Pipe 3       Std.  2.08  0.201  3.50  2.85  1.17 
   Pipe 3½       Std.  2.51  0.211  4.00  4.52  1.34 
   Pipe 4       Std.  2.97  0.221  4.50  6.82  1.51 
   Pipe 5       Std.  4.03  0.241  5.56  14.3  1.88 
   Pipe 6       Std.  5.22  0.261  6.63  26.5  2.25 
   Pipe 8       Std.  7.85  0.300  8.63  68.1  2.95 
   Pipe 10       Std.  11.1  0.340  10.8  151  3.68 
   Pipe 12       Std.  13.6  0.349  12.8  262  4.39 

   Extra strong steel pipe 

   Pipe 2 x-Strong  1.39  0.204  2.38  0.827  0.771 
   Pipe 2½ x-Strong  2.11  0.257  2.88  1.83  0.930 
   Pipe 3 x-Strong  2.83  0.280  3.50  3.70  1.14 
   Pipe 3½ x-Strong  3.44  0.296  4.00  5.94  1.31 
   Pipe 4 x-Strong  4.14  0.315  4.50  9.12  1.48 
   Pipe 5 x-Strong  5.72  0.349  5.56  19.5  1.85 
   Pipe 6 x-Strong  7.88  0.403  6.63  38.3  2.20 
   Pipe 8 x-Strong  11.9  0.465  8.63  100  2.89 
   Pipe 10 x-Strong  15.0  0.465  10.8  199  3.64 
   Pipe 12 x-Strong  17.9  0.465  12.8  339  4.35 

   Double-extra strong steel pipe 

   Pipe 2 xx-Strong  2.51  0.406  2.38  1.27  0.711 
   Pipe 2½ xx-Strong  3.81  0.514  2.88  2.78  0.854 
   Pipe 3 xx-Strong  5.16  0.559  3.50  5.79  1.06 
   Pipe 4 xx-Strong  7.64  0.628  4.50  14.7  1.39 
   Pipe 5 xx-Strong  10.7  0.699  5.56  32.2  1.74 
   Pipe 6 xx-Strong  14.7  0.805  6.63  63.5  2.08 
   Pipe 8 xx-Strong  20.0  0.816  8.63  154  2.78 
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 Table A-4.9        Dimensions of reinforced concrete beams, columns, and slabs  
   A. Cover requirements (from outside face of concrete to face of closest rebar) 

   Interior  1½ in. (or ¾ in. for slabs) 
   Exterior or exposed to ground  2       in. (or 1½ in. for No. 5 bars or smaller) 
   Formed directly to ground  3       in. 

   B. Typical gross dimensions 

   Beams and columns  Round to the nearest inch, or 2-in. increment, for all outside (gross) 
dimensions 

   Slabs  Round to ½-in. increment (or 1-in. increment if more than 6       in. thick) 

 Table A-4.10        Steel reinforcement — rebar — areas (in 2 ) for groups of bars  

   Designation and 
diameter 

 Number of bars 

   Bar 
No. 1  

 Bar 
No. 2  
(SI 

units) 

 Dia. 
(in.) 

 1  2  3  4  5  6  7  8  9  10 

   3  10  0.375  0.11   
   4  13  0.500  0.20  0.40  0.60  0.80  1.00  1.20  1.40  1.60  1.80  2.00 
   5  16  0.625  0.31  0.62  0.93  1.24  1.55  1.86  2.17  2.48  2.79  3.10 
   6  19  0.750  0.44  0.88  1.32  1.76  2.20  2.64  3.08  3.52  3.96  4.40 
   7  22  0.875  0.60  1.20  1.80  2.40  3.00  3.60  4.20  4.80  5.40  6.00 
   8  25  1.000  0.79  1.58  2.37  3.16  3.95  4.74  5.53  6.32  7.11  7.90 
   9  29  1.128  1.00  2.00  3.00  4.00  5.00  6.00  7.00  8.00  9.00  10.00 

   10  32  1.270  1.27  2.54  3.81  5.08  6.35  7.62  8.89  10.16  11.43  12.70 
   11  36  1.410  1.56  3.12  4.68  6.24  7.80  9.36  10.92  12.48  14.04  15.60 
   14  43  1.693  2.25  4.50  6.75  9.00  11.25  13.50  15.75  18.00  20.25  22.50 
   18  57  2.257  4.00  8.00  12.00  16.00  20.00  24.00  28.00  32.00  36.00  40.00 

  Notes:  
1. Rebars in the United States were traditionally designated by the nominal diameter (in.) multiplied by 8. 
Rebars are no longer marked using this designation (see Note 2).  
2. Rebars are currently marked by the approximate number of millimeters in their diameter, although 
designation by nominal diameter (in.) multiplied by 8 is still widely used in the United States.  



 Table A-4.11        Reinforced concrete minimum width or diameter (in.) based on bar spacing  
   A. Minimum width (in.) for beams 3  

   Designation  Number of bars in one line 

   Bar No. 1   Bar No. 2  
(SI units) 

 2  3  4  5  6 

    4  13  6.33  8.17  10.00  11.83  13.67 
    5  16  6.58  8.54  10.50  12.46  14.42 
    6  19  6.83  8.92  11.00  13.08  15.17 
    7  22  7.08  9.29  11.50  13.71  15.92 
    8  25  7.33  9.67  12.00  14.33  16.67 
    9  29  7.58  10.04  12.50  14.96  17.42 
   10  32  7.83  10.42  13.00  15.58  18.17 
   11  36  8.13  10.88  13.63  16.38  19.13 

    

   Designation  Number of bars in one line 

   Bar No. 1   Bar No. 2  
(SI units) 

 2  3  4  5  6 

   4  13  6.50  8.50  10.50  12.50  14.50 
   5  16  6.75  8.88  11.00  13.13  15.25 
   6  19  7.00  9.25  11.50  13.75  16.00 
   7  22  7.25  9.63  12.00  14.38  16.75 
   8  25  7.50  10.00  12.50  15.00  17.50 
   9  29  7.94  10.75  13.56  16.38  19.19 

   10  32  8.38  11.50  14.63  17.75  20.88 
   11  36  8.81  12.25  15.69  19.13  22.56 
   14  43  10.13  14.50  18.88  23.25  27.63 
   18  57  11.88  17.50  23.13  28.75  34.38 

B. Minimum width (in.) for tied columns 3 

(Continued)



308 APPENDIX 4     Tables for Chapter 4 (sectional properties)

    

   Designation  Number of bars in column 

   Bar No. 1   Bar No. 2  
(SI units) 

 6  8  10  12  14 

   4  13  8.50  9.73  10.97  12.23  13.49 
   5  16  8.88  10.18  11.50  12.84  14.17 
   6  19  9.25  10.63  12.03  13.44  14.86 
   7  22  9.63  11.08  12.56  14.05  15.55 
   8  25  10.00  11.53  13.09  14.66  16.23 
   9  29  10.75  12.47  14.23  15.99  17.76 

   10  32  11.50  13.42  15.36  17.32  19.29 
   11  36  12.25  14.36  16.50  18.66  20.82 
   14  43  14.50  17.18  19.91  22.65  25.41 
   18  57  17.50  20.95  24.45  27.98  31.53 

  Notes:  
1. Rebars in the United States were traditionally designated by the nominal diameter (in.) divided by 8. Rebars 
are no longer marked using this designation.  
2. Rebars are currently designated (and marked) by the approximate number of millimeters in their diameter.  
3. These minimum dimensions assume 1-in. maximum aggregate; 1½-in. cover (measured from outside face 
of rebar or spiral to face of concrete); and ½-in.-diameter stirrups, ties, or spiral. Minimum widths or diameters 
are typically rounded up to nearest inch, or to the nearest  even  inch. The amount of column steel is also 
limited by required reinforcement ratio,   ρ  g  , between 0.01 and 0.08.  

Table A-4.11 (Continued)
C. Minimum diameter (in.) for spiral columns 3 
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   B. Allowable stress design   

   Load Combinations  Combined Loads and Factors 

   Dead load 
   Dead and live 
   Dead and roof or snow 
   Dead, live, and roof or snow 
   Dead and wind or earthquake 
   Dead, wind or earthquake, live, and roof or snow 
   Dead and wind 
   Dead and earthquake 

  D  
  D       �       L  
  D       �      ( L R   or  S ) 
  D       �      0.75 L       �      0.75( L R   or  S ) 
  D       �      ( W  or 0.7 E ) 
  D       �      0.75( W  or 0.7 E )      �      0.75 L       �      0.75( L R   or  S )
    0.6 D       �       W  
 0.6 D       �      0.7 E  

   Where only  D ,  L ,  S , and  L R   are present, the allowable stress load combinations are commonly 
reduced to the following: 

   Load Combinations  Combined Loads and Factors 

   Dead and live 
   Dead and roof or snow 
   Dead, live, and roof or snow 

  D       �       L  
  D       �      ( L R   or  S ) 
  D       �      0.75 L       �      0.75( L R   or  S ) 

  Notes: 
 1. Only the following loads are considered in this table: 
  D       �      dead load;  L       �      live load;  L R        �      roof live load (construction, maintenance);  W       �      wind load;  S       �      snow load; 
 E       �      earthquake load (omitted are fl uid, fl ood, lateral earth pressure, rain, and self-straining forces). 
 2. The load factor for  L  in these three cases only can be taken as 0.5 when L      �      100       psf (except for garages or 
places of public assembly).  

 Table A-5.1        Combined load factors 1   
   A. Strength design   

   Load Combinations  Combined Loads and Factors 

   Dead load 
   Dead, live, and roof or snow 
   Dead, roof or snow, and live 2  or wind 
   Dead, wind, live, 2  and roof or snow 
   Dead, earthquake, live, 2  and snow 
   Dead and wind 
   Dead and seismic 

 1.4 D  
 1.2 D       �      1.6 L       �      0.5( L R   or  S ) 
 1.2 D       �      1.6( L R   or  S )      �      ( L  or 0.8 W  ) 
 1.2 D       �      1.6 W       �       L       �      0.5( L R   or  S ) 
 1.2 D       �      1.0 E       �       L       �      0.2 S  
 0.9 D       �      1.6 W  
 0.9 D       �      1.0 E  
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 Table A-5.2        Reinforced concrete strength reduction factors,   φ   and   α    

   Type of Behavior    φ      α    1   

   Bending 
   Axial tension 
   Axial compression: spiral columns 
   Axial compression: tied columns 
   Shear 

2     0.9 
 0.9 

3 0.75     
3 0.65     
 0.75 

 n/a 
 n/a 
 0.85 
 0.80 
 n/a 

  Notes:  
   1   .   α   accounts for unintended eccentricity or bending moment.  
   2   .   φ   decreases linearly from value listed at   ε  t        �      0.005 to 0.817 at   ε  t        �      0.004.  
   3   .   φ   increases linearly from value listed at   ε  t        �      0.002 to 0.9 at   ε  t        �      0.005.  

APPENDIX 5 Tables for Chapter 5 (design approaches)
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 Table A-6.1        Shear lag coeffi cient,  U , for bolted and welded steel connections in tension  

   Condition  Shear Lag 
Coeffi cient,  U  

 Diagram 

   All parts of the 
element (e.g., web, 
fl anges, legs) are 
connected by bolts 
or welds. 

  U       �      1.0 

      

   Transverse welds 
connecting some, 
but not all, of the 
cross-sectional 
 “ parts. ”  

  U       �      1.0, but the net 
area,  A n  , is taken as 
only that portion of 
the element cross 
section (consisting of 
fl anges, webs, legs, 
and so on) that is 
directly connected 
by the transverse 
welds. 

      

(Continued)
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 Table A-6.1   (    Continued )

   Condition  Shear Lag 
Coeffi cient,  U  

 Diagram 

   Longitudinal welds 
connecting steel 
plates. 
    
    

  U       �      1.0 where 
 l       ≥      2 w . 
  U       �      0.87 where 
2 w       >       l       ≥      1.5 w . 
  U       �      0.75 where 
1.5 w       >       l       ≥       w . 

          

   Bolts connecting 
wide-fl ange (W) 
shapes; M, S, HP 
shapes; or Tees 
made from any of 
those sections. 
    
    

  U       �      0.90 where 
 b f        ≥      0.67 d  and 
fl ange is connected 
with at least 3 bolts 
per line. 
  U       �      0.85 where 
 b f        <      0.67 d  and 
fl ange is connected 
with at least 3 bolts 
per line. 
  U       �      0.70 where 
only the web is 
connected with at 
least 4 bolts per line.           

   Bolts connecting 
single angles (L). 
    

  U       �      0.80 where one 
leg of the angle is 
connected with at 
least 4 bolts per line. 
  U       �      0.75 where one 
leg of the angle is 
connected with 2 or 
3 bolts per line. 

        

     APPENDIX 6 Tables for Chapter 6 (tension elements)
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 Table A-6.2        Allowable force (lb) based on row and group tear-out 1,2   

   Row Tear-out  Group Tear-out 

    ZRT

          �       r n n  1 ( Fv


   ) s crit  ( t )   ZGT

          �       n  1 ( Fv


   ) s cri   t ( t )      �       Ft

    A t   

  Notes: 
 1. The terms in the equations for  ZRT


     and  ZGT

     are defi ned as follows: 

  ZRT

          �      the maximum force that can be safely resisted by all fasteners subjected to row tear-out (lb) 

  ZGT

          �       the maximum force that can be safely resisted by all fasteners subjected to group tear-out (lb)   
r n        �      the number of rows of fasteners 
    n 1    �      the number of fasteners in a typical  row 
   Fv


    �      the adjusted allowable shear stress for the wood element (psi) 
  Ft


   �      the adjusted allowable tension stress for the wood element (psi) 
  A t    �       the area subjected to tension stress between the top and bottom rows of fasteners (in 2 )   

s crit        �       the minimum spacing between fasteners, or the distance of the fi rst fastener to the end of 
the member, if smaller (in.) 

  t       �      the member thickness (in.) 
 2. Row and group tear-out apply to wood tension members when the following conditions are met: (a) the 
direction of the tension force is parallel to the grain of the tension element, (b) the fasteners consist of bolts or 
lag screws, and (c) the connection consists of multiple fasteners in a row for row tear-out and multiple rows of 
fasteners for group tear-out.  
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 Table A-7.1        Effective length coeffi cient,  K , for wood and steel columns  

    

                                    

   Description  Pinned at 
both ends 

 Fixed at 
one end; 
pinned at 
the other 

 Fixed 
at one 
end; only 
horizontal 
translation 
allowed at 
the other 
end 

 Fixed at 
both ends 

 Fixed at 
one end; 
free at the 
other end 
(cantilever) 

 Pinned 
at one 
end; only 
horizontal 
translation 
allowed at 
the other 
end 

    “ Ideal ”   K   1.0  0.7  1.0  0.5  2.0  2.0 

    “ Code ”   K   1.0  0.8  1.2  0.65  2.1  2.0 – 2.4  1   

  Note:  
    1. Use 2.0 for steel columns; 2.4 for wood columns.  

  Tables for Chapter 7 
(columns)       7

   APPENDIX
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 Table A-7.2        Allowable axial loads (kips), A992 steel wide-fl ange columns ( F y        �      50       ksi)  

     Effective (unbraced) length,  KL  (ft) 

     6  7  8  9  10  11  12  13  14  15  16  17  18 

   W4      �      13  78.4  68.4  58.4  48.8  39.9  33.0  27.7  23.6  20.3  17.7  15.6  n/a 1   n/a 1  

   W5      �      16  111  101  92.2  82.4  72.6  63.2  54.2  46.1  39.8  34.6  30.4  27.0  24.0 

   W5      �      19  132  121  110  98.9  87.5  76.4  65.9  56.2  48.5  42.2  37.1  32.9  29.3 

   W6      �      8.5  46.7  39.3  32.2  25.7  20.8  17.2  14.4  12.3  10.6  n/a  1  n/a  1  n/a  1  n/a  1 

   W6      �      9  50.5  42.7  35.2  28.2  22.9  18.9  15.9  13.5  11.6  10.1  n/a  1  n/a  1  n/a  1 

   W6      �      12  67.7  57.6  47.7  38.5  31.2  25.8  21.6  18.4  15.9  13.8  n/a  1  n/a  1  n/a  1 

   W6      �      16  94.6  81.7  69.0  57.0  46.2  38.2  32.1  27.3  23.6  20.5  18.0  n/a  1  n/a  1 

   W6      �      20  148  139  130  120  110  99.7  89.5  79.6  70.2  61.2  53.8  47.7  42.5 

   W6      �      25  186  175  164  151  139  126  114  101  89.9  78.6  69.1  61.2  54.6 

   W8      �      31  248  240  231  221  210  199  188  176  164  152  141  129  118 

   W8      �      35  281  272  261  250  238  226  213  200  186  173  160  147  134 

   W8      �      40  319  309  297  285  271  257  243  228  213  198  183  168  154 

   W8      �      48  386  374  361  346  330  314  297  279  262  244  226  208  191 

   W8      �      58  469  455  439  421  403  383  363  341  320  299  277  256  236 

   W8      �      67  542  525  507  487  466  444  420  396  372  348  323  299  276 

   W10      �      33  262  253  243  231  219  207  194  181  168  154  142  129  117 

   W10      �      39  312  301  289  276  263  248  233  218  203  188  173  158  144 

   W10      �      45  362  350  337  322  306  290  273  256  238  221  204  187  171 

   W10      �      49  406  398  388  377  366  353  340  327  313  298  283  269  254 

   W10      �      54  446  437  426  415  402  389  375  360  345  329  313  297  281 

   W10      �      60  497  487  475  463  449  434  418  402  385  368  350  332  314 

   W10      �      68  565  554  541  527  511  495  477  459  440  420  400  380  360 

   W10      �      77  639  626  612  596  579  560  540  520  498  476  454  431  408 

   W10      �      88  734  719  703  685  665  645  622  599  575  550  525  499  473 

   W10      �      100  833  817  799  779  757  734  709  683  656  628  599  570  541 

   W10      �      112  934  916  896  874  850  824  797  768  739  708  676  644  612 

   W12      �      40  316  305  292  279  264  249  234  218  202  186  171  156  141 

   W12      �      45  355  342  328  313  297  280  263  245  227  210  193  176  159 

   W12      �      50  396  382  366  350  332  313  294  275  255  235  216  197  179 

(Continued )
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 Table A-7.2       (Continued) 

     Effective (unbraced) length,  KL  (ft) 

     6  7  8  9  10  11  12  13  14  15  16  17  18 

   W12      �      53  439  429  418  406  393  379  365  349  333  317  301  284  268 

   W12      �      58  479  468  457  444  430  415  400  383  366  349  331  314  296 

   W12      �      65  548  540  531  520  509  497  484  470  456  441  425  409  393 

   W12      �      72  606  597  587  576  563  550  536  521  505  488  471  454  436 

   W12      �      79  666  657  646  633  620  605  590  573  556  538  519  500  481 

   W12      �      87  736  725  713  700  685  669  652  634  615  596  575  554  533 

   W12      �      96  811  799  786  772  756  738  720  700  680  658  636  613  590 

   W12      �      106  898  885  871  855  837  818  798  777  754  731  706  681  656 

   W12      �      120  1016  1002  986  968  949  928  905  881  856  829  802  774  746 

   W12      �      136  1150  1134  1116  1096  1075  1051  1026  999  971  942  912  880  848 

   W12      �      152  1289  1272  1252  1230  1206  1180  1153  1123  1092  1060  1026  992  957 

   W12      �      170  1443  1424  1402  1378  1352  1323  1293  1260  1226  1191  1154  1116  1077 

   W12      �      190  1611  1591  1567  1541  1512  1480  1447  1411  1374  1335  1294  1252  1209 

   W12      �      210  1786  1763  1737  1709  1677  1643  1607  1568  1527  1484  1440  1394  1347 

   W12      �      230  1958  1933  1906  1875  1841  1804  1764  1723  1678  1632  1584  1535  1484 

   W12      �      252  2141  2115  2085  2052  2016  1976  1934  1888  1841  1791  1740  1686  1631 

   W12      �      279  2372  2343  2311  2275  2236  2193  2147  2098  2046  1992  1936  1878  1819 

   W12      �      305  2597  2566  2532  2493  2451  2405  2356  2304  2248  2190  2130  2068  2003 

   W12      �      336  2866  2834  2797  2755  2710  2661  2608  2551  2492  2429  2364  2297  2228 

   W14      �      43  339  326  312  297  280  264  246  229  211  194  177  160  144 

   W14      �      48  380  366  350  334  316  297  278  259  239  220  201  183  165 

   W14      �      53  421  406  389  370  351  330  309  288  266  245  224  204  185 

   W14      �      61  503  491  479  464  449  433  416  398  380  361  342  322  303 

   W14      �      68  562  549  535  520  503  485  466  446  425  404  383  362  340 

   W14      �      74  613  600  584  568  550  530  510  488  466  444  421  397  374 

   W14      �      82  675  660  643  625  605  584  561  538  513  488  463  438  412 

   W14      �      90  771  764  755  745  734  722  710  696  682  667  651  635  618 

   W14      �      99  847  839  829  818  807  794  780  765  749  733  716  698  680 

   W14      �      109  932  923  912  901  888  874  859  843  826  808  789  769  749 

(Continued )
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 Table A-7.2       (Continued) 

     Effective (unbraced) length,  KL  (ft) 

     6  7  8  9  10  11  12  13  14  15  16  17  18 

   W14      �      120  1028  1018  1007  994  980  964  948  930  911  892  871  850  828 

   W14      �      132  1130  1120  1107  1093  1078  1061  1043  1024  1003  982  960  936  912 

   W14      �      145  1248  1237  1225  1211  1196  1179  1161  1142  1122  1100  1078  1055  1030 

   W14      �      159  1365  1353  1340  1325  1309  1291  1271  1251  1229  1205  1181  1156  1129 

   W14      �      176  1514  1502  1487  1471  1453  1433  1412  1389  1364  1339  1312  1284  1255 

   W14      �      193  1661  1647  1632  1614  1594  1573  1550  1525  1499  1471  1442  1412  1381 

   W14      �      211  1814  1799  1782  1763  1741  1718  1693  1667  1638  1608  1577  1544  1510 

   W14      �      233  2005  1988  1970  1949  1926  1901  1874  1844  1813  1781  1747  1711  1674 

   W14      �      257  2213  2196  2175  2153  2127  2100  2070  2039  2005  1969  1932  1893  1853 

   W14      �      283  2440  2421  2399  2374  2347  2317  2285  2251  2214  2176  2135  2093  2049 

   W14      �      311  2678  2657  2633  2607  2577  2545  2511  2473  2434  2392  2348  2302  2255 

   W14      �      342  2960  2938  2912  2883  2851  2817  2779  2738  2696  2650  2602  2553  2501 

   W14      �      370  3196  3172  3145  3114  3080  3043  3003  2960  2914  2865  2814  2761  2706 

   W14      �      398  3432  3407  3378  3345  3309  3270  3228  3183  3134  3083  3029  2973  2915 

   W14      �      426  3667  3641  3610  3576  3539  3497  3453  3405  3354  3300  3243  3184  3122 

   W14      �      455  3933  3905  3873  3837  3797  3754  3707  3656  3602  3545  3486  3423  3358 

   W14      �      500  4317  4287  4252  4214  4171  4124  4073  4019  3961  3900  3836  3769  3698 

   W14      �      550  4759  4727  4690  4649  4603  4553  4498  4440  4378  4312  4243  4170  4095 

   W14      �      605  5232  5198  5158  5114  5065  5011  4952  4890  4823  4753  4678  4600  4519 

   W14      �      665  5764  5728  5685  5638  5585  5528  5465  5398  5327  5251  5172  5088  5001 

   W14      �      730  6327  6287  6242  6192  6136  6074  6008  5936  5860  5779  5694  5605  5512 

  Note: 
 1. Slenderness ratio,  KL / r       >      200, for this effective length.  



319Tables for Chapter 7 (columns)

 Table A-7.3        Allowable stresses for A992 steel columns ( F y        �      50       ksi)  

    KL / r    F c   (ksi)     KL / r    F c   (ksi)     KL / r    F c   (ksi) 

    1  29.9    34  27.5    67  21.6 

    2  29.9    35  27.4    68  21.4 

    3  29.9    36  27.2    69  21.1 

    4  29.9    37  27.1    70  20.9 

    5  29.9     38  26.9    71  20.7 

    6  29.9    39  26.8    72  20.5 

    7  29.8    40  26.6    73  20.3 

    8  29.8    41  26.5    74  20.1 

    9  29.8    42  26.3    75  19.8 

   10  29.7    43  26.2    76  19.6 

   11  29.7    44  26.0    77  19.4 

   12  29.6    45  25.8    78  19.2 

   13  29.6    46  25.6    79  19.0 

   14  29.5    47  25.5    80  18.8 

   15  29.5    48  25.3    81  18.5 

   16  29.4    49  25.1    82  18.3 

   17  29.3    50  24.9    83  18.1 

   18  29.2    51  24.8    84  17.9 

   19  29.2    52  24.6    85  17.7 

   20  29.1    53  24.4    86  17.4 

   21  29.0    54  24.2    87  17.2 

   22  28.9    55  24.0    88  17.0 

   23  28.8    56  23.8    89  16.8 

   24  28.7    57  23.6    90  16.6 

   25  28.6    58  23.4    91  16.3 

   26  28.5    59  23.2    92  16.1 

   27  28.4    60  23.0    93  15.9 

   28  28.3    61  22.8    94  15.7 

   29  28.2    62  22.6    95  15.5 

   30  28.0    63  22.4    96  15.3 

   31  27.9    64  22.2    97  15.0 

   32  27.8    65  22.0    98  14.8 

   33  27.6    66  21.8    99  14.6 
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 Table A-7.3        (Continued)  

    KL / r    F c   (ksi)     KL / r    F c   (ksi)     KL / r    F c   (ksi) 

   100  14.4    134  8.37    168  5.33 

   101  14.2    135  8.25    169  5.26 

   102  14.0    136  8.13    170  5.20 

   103  13.8    137  8.01    171  5.14 

   104  13.6    138  7.89    172  5.08 

   105  13.4    139  7.78    173  5.02 

   106  13.2    140  7.67    174  4.96 

   107  13.0    141  7.56    175  4.91 

   108  12.8    142  7.45    176  4.85 

   109  12.6    143  7.35    177  4.80 

   110  12.4    144  7.25    178  4.74 

   111  12.2    145  7.15    179  4.69 

   112  12.0    146  7.05    180  4.64 

   113  11.8    147  6.96    181  4.59 

   114  11.6    148  6.86    182  4.54 

   115  11.4    149  6.77    183  4.49 

   116  11.2    150  6.68    184  4.44 

   117  11.0    151  6.59    185  4.39 

   118  10.8    152  6.51    186  4.34 

   119  10.6    153  6.42    187  4.30 

   120  10.4    154  6.34    188  4.25 

   121  10.3    155  6.26    189  4.21 

   122  10.1    156  6.18    190  4.16 

   123  9.94    157  6.10    191  4.12 

   124  9.78    158  6.02    192  4.08 

   125  9.62    159  5.95    193  4.04 

   126  9.47    160  5.87    194  3.99 

   127  9.32    161  5.80    195  3.95 

   128  9.17    162  5.73    196  3.91 

   129  9.03    163  5.66    197  3.87 

   130  8.89    164  5.59    198  3.83 

   131  8.76    165  5.52    199  3.80 

   132  8.63    166  5.45    200  3.76 

   133  8.50    167  5.39 



321Tables for Chapter 7 (columns)

 Table A-7.4        Allowable stresses for A500 Grade B HSS rectangular columns ( F y        �      46       ksi)  

    KL / r    F c   (ksi)     KL / r    F c   (ksi)     KL / r    F c   (ksi) 

    1  27.5    34  25.5    67  20.4 

    2  27.5    35  25.4    68  20.2 

    3  27.5    36  25.2    69  20.0 

    4  27.5    37  25.1    70  19.8 

    5  27.5    38  25.0    71  19.6 

    6  27.5    39  24.9    72  19.4 

    7  27.5    40  24.7    73  19.2 

    8  27.4    41  24.6    74  19.1 

    9  27.4    42  24.5    75  18.9 

   10  27.4    43  24.3    76  18.7 

   11  27.3    44  24.2    77  18.5 

   12  27.3    45  24.0    78  18.3 

   13  27.2    46  23.9    79  18.1 

   14  27.2    47  23.7    80  17.9 

   15  27.1    48  23.6    81  17.7 

   16  27.1    49  23.4    82  17.5 

   17  27.0    50  23.3    83  17.3 

   18  27.0    51  23.1    84  17.1 

   19  26.9    52  23.0    85  16.9 

   20  26.8    53  22.8    86  16.7 

   21  26.7    54  22.6    87  16.6 

   22  26.7    55  22.5    88  16.4 

   23  26.6    56  22.3    89  16.2 

   24  26.5    57  22.1    90  16.0 

   25  26.4    58  22.0    91  15.8 

   26  26.3    59  21.8    92  15.6 

   27  26.2    60  21.6    93  15.4 

   28  26.1    61  21.4    94  15.2 

   29  26.0    62  21.3    95  15.0 

   30  25.9    63  21.1    96  14.8 

   31  25.8    64  20.9    97  14.6 

   32  25.7    65  20.7    98  14.4 

   33  25.6    66  20.5    99  14.2 
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 Table A-7.4        (Continued)  

    KL / r    F c   (ksi)     KL / r    F c   (ksi)     KL / r    F c   (ksi) 

   100  14.1    134  8.37    168  5.33 

   101  13.9    135  8.25    169  5.26 

   102  13.7    136  8.13    170  5.20 

   103  13.5    137  8.01    171  5.14 

   104  13.3    138  7.89    172  5.08 

   105  13.1    139  7.78    173  5.02 

   106  12.9    140  7.67    174  4.96 

   107  12.8    141  7.56    175  4.91 

   108  12.6    142  7.45    176  4.85 

   109  12.4    143  7.35    177  4.80 

   110  12.2    144  7.25    178  4.74 

   111  12.0    145  7.15    179  4.69 

   112  11.8    146  7.05    180  4.64 

   113  11.7    147  6.96    181  4.59 

   114  11.5    148  6.86    182  4.54 

   115  11.3    149  6.77    183  4.49 

   116  11.1    150  6.68    184  4.44 

   117  11.0    151  6.59    185  4.39 

   118  10.8    152  6.51    186  4.34 

   119  10.6    153  6.42    187  4.30 

   120  10.4    154  6.34    188  4.25 

   121  10.3    155  6.26    189  4.21 

   122  10.1    156  6.18    190  4.16 

   123  9.94    157  6.10    191  4.12 

   124  9.78    158  6.02    192  4.08 

   125  9.62    159  5.95    193  4.04 

   126  9.47    160  5.87    194  3.99 

   127  9.32    161  5.80    195  3.95 

   128  9.17    162  5.73    196  3.91 

   129  9.03    163  5.66    197  3.87 

   130  8.89    164  5.59    198  3.83 

   131  8.76    165  5.52    199  3.80 

   132  8.63    166  5.45    200  3.76 

   133  8.50    167  5.39 
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 Table A-7.5        Allowable stresses for A500 Grade B HSS round columns ( F y        �      42       ksi)  

    KL / r    F c   (ksi)     KL / r    F c   (ksi)     KL / r    F c   (ksi) 

    1  25.1    34  23.4    67  19.1 

    2  25.1    35  23.3    68  18.9 

    3  25.1    36  23.2    69  18.8 

    4  25.1    37  23.1    70  18.6 

    5  25.1    38  23.0    71  18.5 

    6  25.1    39  22.9    72  18.3 

    7  25.1    40  22.8    73  18.1 

    8  25.1    41  22.7    74  18.0 

    9  25.0    42  22.6    75  17.8 

   10  25.0    43  22.4    76  17.6 

   11  25.0    44  22.3    77  17.5 

   12  24.9    45  22.2    78  17.3 

   13  24.9    46  22.1    79  17.1 

   14  24.8    47  22.0    80  17.0 

   15  24.8    48  21.8    81  16.8 

   16  24.8    49  21.7    82  16.6 

   17  24.7    50  21.6    83  16.5 

   18  24.7    51  21.4    84  16.3 

   19  24.6    52  21.3    85  16.1 

   20  24.5    53  21.2    86  16.0 

   21  24.5    54  21.0    87  15.8 

   22  24.4    55  20.9    88  15.6 

   23  24.3    56  20.7    89  15.5 

   24  24.3    57  20.6    90  15.3 

   25  24.2    58  20.5    91  15.1 

   26  24.1    59  20.3    92  15.0 

   27  24.0    60  20.2    93  14.8 

   28  24.0    61  20.0    94  14.6 

   29  23.9    62  19.9    95  14.4 

   30  23.8    63  19.7    96  14.3 

   31  23.7    64  19.6    97  14.1 

   32  23.6    65  19.4    98  13.9 

   33  23.5    66  19.2    99  13.8 
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 Table A-7.5        (Continued)  

    KL / r    F c   (ksi)     KL / r    F c   (ksi)     KL / r    F c   (ksi) 

   100  13.6    134  8.37    168  5.33 

   101  13.4    135  8.25    169  5.26 

   102  13.3    136  8.13    170  5.20 

   103  13.1    137  8.01    171  5.14 

   104  12.9    138  7.89    172  5.08 

   105  12.8    139  7.78    173  5.02 

   106  12.6    140  7.67    174  4.96 

   107  12.4    141  7.56    175  4.91 

   108  12.3    142  7.45    176  4.85 

   109  12.1    143  7.35    177  4.80 

   110  12.0    144  7.25    178  4.74 

   111  11.8    145  7.15    179  4.69 

   112  11.6    146  7.05    180  4.64 

   113  11.5    147  6.96    181  4.59 

   114  11.3    148  6.86    182  4.54 

   115  11.2    149  6.77    183  4.49 

   116  11.0    150  6.68    184  4.44 

   117  10.8    151  6.59    185  4.39 

   118  10.7    152  6.51    186  4.34 

   119  10.5    153  6.42    187  4.30 

   120  10.4    154  6.34    188  4.25 

   121  10.2    155  6.26    189  4.21 

   122  10.1    156  6.18    190  4.16 

   123  9.93    157  6.10    191  4.12 

   124  9.78    158  6.02    192  4.08 

   125  9.62    159  5.95    193  4.04 

   126  9.47    160  5.87    194  3.99 

   127  9.32    161  5.80    195  3.95 

   128  9.17    162  5.73    196  3.91 

   129  9.03    163  5.66    197  3.87 

   130  8.89    164  5.59    198  3.83 

   131  8.76    165  5.52    199  3.80 

   132  8.63    166  5.45    200  3.76 

   133  8.50    167  5.39 
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 Table A-7.6        Allowable stresses for A36 1  steel columns ( F y        �      36       ksi)  

    KL / r    F c   (ksi)     KL / r    F c   (ksi)     KL / r    F c   (ksi) 

    1  21.6    34  20.3    67  17.0 

    2  21.6    35  20.2    68  16.9 

    3  21.5    36  20.1    69  16.8 

    4  21.5    37  20.1    70  16.7 

    5  21.5    38  20.0    71  16.5 

    6  21.5    39  19.9    72  16.4 

    7  21.5    40  19.8    73  16.3 

    8  21.5    41  19.7    74  16.2 

    9  21.5    42  19.6    75  16.0 

   10  21.4    43  19.6    76  15.9 

   11  21.4    44  19.5    77  15.8 

   12  21.4    45  19.4    78  15.6 

   13  21.4    46  19.3    79  15.5 

   14  21.3    47  19.2    80  15.4 

   15  21.3    48  19.1    81  15.3 

   16  21.3    49  19.0    82  15.1 

   17  21.2    50  18.9    83  15.0 

   18  21.2    51  18.8    84  14.9 

   19  21.2    52  18.7    85  14.7 

   20  21.1    53  18.6    86  14.6 

   21  21.1    54  18.5    87  14.5 

   22  21.0    55  18.4    88  14.3 

   23  21.0    56  18.3    89  14.2 

   24  20.9    57  18.2    90  14.1 

   25  20.9    58  18.1    91  13.9 

   26  20.8    59  17.9    92  13.8 

   27  20.7    60  17.8    93  13.7 

   28  20.7    61  17.7    94  13.5 

   29  20.6    62  17.6    95  13.4 

   30  20.6    63  17.5    96  13.3 

   31  20.5    64  17.4    97  13.1 

   32  20.4    65  17.3    98  13.0 

   33  20.4    66  17.1    99  12.9 

(Continued )
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 Table A-7.6        (Continued)  

    KL / r    F c   (ksi)     KL / r    F c   (ksi)     KL / r    F c   (ksi) 

   100  12.7    134  8.38    168  5.33 

   101  12.6    135  8.25    169  5.26 

   102  12.5    136  8.13    170  5.20 

   103  12.3    137  8.01    171  5.14 

   104  12.2    138  7.89    172  5.08 

   105  12.1    139  7.78    173  5.02 

   106  11.9    140  7.67    174  4.96 

   107  11.8    141  7.56    175  4.91 

   108  11.7    142  7.45    176  4.85 

   109  11.5    143  7.35    177  4.80 

   110  11.4    144  7.25    178  4.74 

   111  11.3    145  7.15    179  4.69 

   112  11.1    146  7.05    180  4.64 

   113  11.0    147  6.96    181  4.59 

   114  10.9    148  6.86    182  4.54 

   115  10.7    149  6.77    183  4.49 

   116  10.6    150  6.68    184  4.44 

   117  10.5    151  6.59    185  4.39 

   118  10.4    152  6.51    186  4.34 

   119  10.2    153  6.42    187  4.3 

   120  10.1    154  6.34    188  4.25 

   121  9.97    155  6.26    189  4.21 

   122  9.85    156  6.18    190  4.16 

   123  9.72    157  6.10    191  4.12 

   124  9.59    158  6.02    192  4.08 

   125  9.47    159  5.95    193  4.04 

   126  9.35    160  5.87    194  3.99 

   127  9.22    161  5.80    195  3.95 

   128  9.10    162  5.73    196  3.91 

   129  8.98    163  5.66    197  3.87 

   130  8.86    164  5.59    198  3.83 

   131  8.73    165  5.52    199  3.80 

   132  8.61    166  5.45    200  3.76 

   133  8.49    167  5.39 

  Note:  
1. Steel pipe fabricated with A53 Grade B steel and  F y        �      35       ksi may be analyzed using this table for 
 F y        �      36       ksi.  
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 Table A-7.7        Specifi cations for steel ties and spirals in reinforced concrete columns  

   Ties 

   Use minimum No. 3 bars to confi ne longitudinal steel up to No. 10; use minimum No. 4 bars for 
No. 11, 14, and 18 longitudinal steel. 
   Spacing of ties is the smaller of: 
        ●      16      �      longitudinal bar diameter    
  ●      48      �      tie bar diameter    
  ●      Smallest column dimension    

   Ties must be arranged so that corner bars are bounded by a tie bent at a 90 °  angle, and alternate 
longitudinal bars (between the corners) are restrained by a tie bent to at least 135 ° . No unsupported 
longitudinal bar shall be farther than 6       in. clear on either side of a laterally supported bar. 

   Spirals 

   Use a continuous bar or wire of at least 3⁄8-in. diameter, with the clear space measured between 
turns of the spiral no more than 3       in. and no less than 1       in. A minimum ratio,   ρ  s  , of the volume of 
spiral steel to the volume of concrete inside the spiral (the  “ core ” ) is also specifi ed: 
     ρ  s        �      0.45( A g   / A  c       �      1)(f ′c     / f y  ) with  f y        ≤      60       ksi;  A g        �      the gross concrete area, and  A c        �      the area of 
the  “ core ”  within the spiral. 
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 Table A-8.1        Allowable defl ection for span,  L  1   
   A. Live, snow, or wind load only   

   Floor Beams  Roof Beams 

   Basic:  L  /360  No ceiling:  L  /180 

     Nonplaster ceiling:  L  /240 

     Plaster ceiling:  L  /360 

   B. Combined live and dead load   

   Floor Beams  Roof Beams 

   Basic:  L  /240  No ceiling:  L  /120 

     Nonplaster ceiling:  L  /180 

     Plaster ceiling:  L  /240 

  Note: 
 1. Use span,  L , in inch units for allowable defl ection in inch units; for cantilevers, use twice the actual 
cantilevered span for  L .  

  Tables for Chapter 8 
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   B. Recommended minimum thickness (in.) of reinforced concrete beams and slabs for 
defl ection control 3,4  

                            

   Beams  12 L /16  12 L /18.5  12 L /21  12 L /8 

   Slabs  12 L /20  12 L /24  12 L /28  12 L /10 

  Notes: 
 1. Beam diagram symbols in top row of tables represent the following conditions (from left to right): simply 
supported, one end pinned and one end continuous, both ends continuous, and cantilever. 
 2. Units for maximum defl ection equation are as follows:          

Δ       �      maximum defl ection (in.)          
 C        �      defl ection coeffi cient (already accounts for unit conversion)          
  L       �      span (ft)          
 E       �      modulus of elasticity (psi when load is in lb; or ksi when load is in kips)          
  I       �      moment of inertia (in 4 )          
 P       �      concentrated load or resultant of uniformly distributed load (lb or kips)       
    w        �      uniformly distributed load (lb/ft or kips/ft) 

 3. Concrete recommendations are for normal-weight concrete where adjacent construction is not likely to be 
damaged by excessive defl ections. 
 4. Units for span,  L , are feet, for minimum thickness in inches.  

 Table A-8.2        Defl ection calculations 1   
   A. Defl ection coeffi cient,  C , for maximum defl ection, 2   Δ  (in.), where  Δ       �       CPL  3 /( EI x  ) 

      
                      

        

 22.46  9.33  4.49  216 

        
 35.94  16.07  8.99  n/a 

        
 61.34  26.27  13.31  n/a 

        
 85.54  36.12  17.97  n/a 

        
 n/a  n/a  n/a  576 
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 Table A-8.3         “ Adjusted ”  section modulus ( C F S x  ) values for wood sections in bending (lightest 
shown in bold face)  

   Shape   C F S x   (in 3 )  Shape   C F S x   (in 3 )  Shape   C F S x   (in 3 ) 

    2       �       4    4.594    6      �      10  82.73    8       �       22    541.6  

   Double 2      �      4  1    9.188  Triple 2      �      12  1    94.92  12      �      18  562.9 

    2       �       6    9.831     4       �       14    102.4   10      �      20  570.4 

   Triple 2      �      4  1    13.78  Triple 2      �      14  1    118.5   8      �      24   640.6  

    2       �       8    15.77    6      �      12  121.2  14      �      18  660.8 

   Double 2      �      6  1    19.66    4       �       16    135.7    10       �       22    686.0  

   4      �      6  22.94    6       �       14    164.9   12      �      20  690.5 

    2       �       10    23.53    8      �      12  165.3  14      �      20  810.6 

   Triple 2      �      6  1    29.49    6       �       16    214.1    10       �       24    811.5  

   Double 2      �      8  1    31.54   8      �      14  224.9   12       �       22    830.4  

    2       �       12    31.64     6       �       18    269.2   16      �      20  930.7 

    2       �       14    39.50   10      �      14  284.8  14      �      22  974.8 

    4       �       8    39.86    8      �      16  291.9   12       �       24    982.3  

    Double 2       �       10   1     47.06     6       �       20    330.3   16      �      22  1119 

   Triple 2      �      8  1    47.31   8      �      18  367.1   14       �       24    1153  

    4       �       10    59.89   10      �      16  369.7  18      �      22  1264 

    Double 2       �       12   1     63.28     6       �       22    397.1    16      �      24    1324  

   Triple 2      �      10  1    70.59  12      �      16  447.6   18      �      24    1495  

   Double 2      �      14  1    79.00    8      �      20    450.4    20      �      24    1666  

    4      �      12    81.21   10      �      18  465.0     

  Note:  
    1.  “ Double ”  or  “ triple ”  indicates that two or three sections, respectively, are nailed together to create a single 
bending element.  
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 Table A-8.4        Plastic section modulus ( Z x  ) values: lightest laterally braced steel compact 
shapes for bending,  F y        �      50       ksi  

   Shape   Z x   
(in 3 ) 

  2  L p   (ft)  Shape   Z x   
(in 3 ) 

  2  L p   (ft)  Shape   Z x   
(in 3 ) 

  2  L p   (ft) 

     W6       �       8.5 1   5.59  3.14  W21       �       50  110  4.59  W36       �       182  718  9.01 

     W6       �       9 1   6.23  3.20  W18       �       55  112  5.90  W40       �       183  774  8.80 

     W8        �       10 1   8.77  3.14  W21       �       55  126  6.11  W40       �       199  869  12.2 

   W10       �       12 1   12.5  2.87  W24       �       55  134  4.73  W40       �       211  906  8.87 

   W12       �       14  17.4  2.66  W21       �       62  1441  6.25  W40       �       215  964  12.5 

   W12       �       16  20.1  2.73  W24       �       62  153  4.87  W44       �       230  1100  12.1 

   W10       �       19  21.6  3.09  W21       �       68  160  6.36  W40       �       249  1120  12.5 

   W12       �       19  24.7  2.90  W24       �       68  177  6.61  W44       �       262  1270  12.3 

   W10       �       22  26.0  4.70  W24       �       76  200  6.78  W44       �       290  1410  12.3 

   W12       �       22  29.3  3.00  W24       �       84  224  6.89  W40       �       324  1460  12.6 

   W14       �       22  33.2  3.67  W27       �       84  244  7.31  W44       �       335  1620  12.3 

   W12       �       26  37.2  5.33  W30       �       90  283  7.38  W40       �       362  1640  12.7 

   W14       �       26  40.2  3.81  W30       �       99  312  7.42  W40       �       372  1680  12.7 

   W16       �       26  44.2  3.96  W30       �       108  346  7.59  W40       �       392  1710  9.33 

   W14       �       30  47.3  5.26  W30       �       116  378  7.74  W40       �       397  1800  12.9 

   W16       �       31  54.0  4.13  W33       �       118  415  8.19  W40       �       431  1960  12.9 

   W14       �       34  54.6  5.40  W33       �       130  467  8.44  W36       �       487  2130  14.0 

   W18       �       35  66.5  4.31  W36       �       135  509  8.41  W40       �       503  2310  13.1 

   W16       �       40  73.0  5.55  W33       �       141  514  8.58  W36       �       529  2330  14.1 

   W18       �       40  78.4  4.49  W40       �       149  598  8.09  W40       �       593  2760  13.4 

   W21       �       44  95.4  4.45  W36       �       160  624  8.83  W36       �       652  2910  14.5 

   W21       �       48  107  6.09  W40       �       167  693  8.48  W36       �       800  3650  14.9 

  Notes: 
 1. Section is just out of range to qualify as compact for  F y        �      50       ksi steel. Because the nominal fl exural strength 
of the section must be reduced a small percentage to account for slenderness of the noncompact fl anges, the 
value for plastic section modulus has been reduced by the same percentage so that it may be used, as is, in 
the bending strength equation:  Z req        �       Ω  M max   /  F y  . 
 2.  L p  , the largest unbraced length for which the section can be considered compact, is computed for 
 F y        �      50       ksi steel. The comparable unbraced length for A36 steel is larger and is equal to 4.16 r y   (ft), where  r y   is 
the section’s radius of gyration about the  y -axis (in.) — see Table A-4.3.  
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 Table A-8.5        Available moment for A992 wide-fl ange (W) shapes 1,2   
   A. Available moments from 0 to 100       ft-kips 

        

(Continued )
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 Table A-8.5       (Continued) 
   B. Available moments from 100 to 200       ft-kips 

        

(Continued )
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 Table A-8.5       (Continued) 
   C. Available moments from 200 to 400       ft-kips 

        

(Continued )
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 Table A-8.5       (Continued) 
   D. Available moments from 400 to 600       ft-kips 

        

(Continued )
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 Table A-8.5       (Continued) 
   E. Available moments from 600 to 1000       ft-kips 

        

(Continued )
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 Table A-8.5       (Continued) 
   F. Available moments from 1000 to 2000       ft-kips 

        

(Continued )
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 Table A-8.5       (Continued) 
   G. Available moments from 2000 to 5000       ft-kips 

        

(Continued )
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 Table A-8.5       (Continued) 
   H. Available moments from 5000 to 10,000       ft-kips 

        

  Notes: 
 1. Values are based on the conservative assumption that the  “ lateral-torsional buckling modifi er, ”   C b        �      1.0. 
This conservative value of  C b        �      1.0 is quite close to the actual value for simply supported beams with equally 
spaced point loads of equal weight, where the beam is braced at those points only, except for the special 
case of a single point load at midspan, in which case  C b        �      1.364. Actual values for  C b   can be found for each 
unbraced beam segment by calculating the bending moments at the quarter-points along each segment ( M A  , 
 M B  , and  M C  , with  M B   being the moment at the midpoint of the segment), as well as the maximum moment, 
 M max  , within each segment, and then inserting these values into Equation 8.13, reproduced as follows:  

C
M

M M M Mb
A B C

�
� � �

12 5
2 5 3 4 3

3 0
.

.
.max

max

≤
    

 In any case, the available moment cannot exceed  M p   /  Ω , the value for braced, compact sections given in Table A-8.4. 
 2. Solid circles represent the maximum unbraced length,  L p  , for which a plastic moment can be achieved 
before the onset of lateral-torsional buckling; open circles represent the maximum unbraced length,  L r  , for 
which an elastic moment can be achieved before the onset of lateral-torsional buckling (see Figure 8.24).  
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 Table A-8.6         “ Shear ”  equations for reinforced concrete beams 1   

   A. Capacity of steel stirrups 2  (lb) 

  
V

A f d

ss
s y

�
2

    

   B. Required stirrup spacing 2  (in.) 

  
s

A f d

V
s y

s

≤
2

    

   C. Capacity of concrete 3  (lb) 
  
V bd fc c� 2 


    

   D. Strength design equation 2    
V V Vu c s≤ φ( )�

    

   E. Required steel capacity (lb) from strength design 
equation 2  

  
V

V
Vs

u
c≥

φ
�

    

   F. Maximum stirrup spacing 3  (in.) 
    

 For  V s        ≤      2 V c  , the smaller of: 
      ●       d /2  
    ●      24       in.  
    ●      2 A s f y   /(50 b )    

    
    

 For  V s        >      2 V c  , the smaller of: 
      ●       d /4  
    ●      12       in.  
    ●      2 A s f y   /(50 b )    

   G. Design shear where no stirrups are needed 2  (lb)   V u        �      0.5  φ V c   

  Notes: 
 1. Units are as follows:        

     b       �      cross section width (in.)        
     d       �      cross section effective depth (in.)         
     s       �      stirrup spacing (in.)         
 A s        �      stirrup bar area, one  “ prong ”  only (in. 2 )        
    f y        �      yield stress of steel stirrup (psi)      
      fc
         �      cylinder strength of concrete (psi)        
  V u        �      design (factored) shear force (lb)         
 V c        �      capacity of concrete to resist shear (lb)         
 V s        �      capacity of steel stirrups to resist shear (lb)          
    φ        �      0.75 for shear (see Table A-5.2) 

 2. Units specifi ed for lb and psi units according to Note 1 may be changed to kips and ksi in these equations 
only. 
 3. The concrete cylinder strength fc
     must be in psi units in Table 8.6, part  C  (with the resulting value of  V c   in lb 
units), and the steel yield stress  f y   must be psi units in part  F  (with in. units resulting).  



 Table A-8.7        Moment values for continuous reinforced concrete beams and slabs 1   

        

   End Restraints for Two Spans 
    
    

 Positive Moment  Negative Moment 

 End Span    End Span 

 At Interior 
Support 2  

 At Exterior 
Support 2  

   Discontinuous end unrestrained   w u l n   2 /11  n/a  n/a 

   Discontinuous end restrained by spandrel girder   w u l n   2 /14   w u l n   2 /9   w u l n   2 /24 

   Discontinuous end restrained by column   w u l n   2 /14   w u l n   2 /9   w u l n   2 /16 

   End Restraints for Three or More 
Spans 
    
    

 Positive Moment  Negative Moment 

 Interior 
Span   

 End 
Span   

 Typical 
Interior 
Support 2    

 End Span 

 At Interior 
Support 2  

 At Exterior 
Support 2  

   Discontinuous end unrestrained   w u l n   2 /16   w u l n   2 /11  n/a  n/a  n/a 

   Discontinuous end restrained by 
spandrel girder 

  w u l n   2 /16   w u l n   2 /14   w u l n   2 /11   w u l n   2 /10   w u l n   2 /24 

   Discontinuous end restrained by 
column 

  w u l n   2 /16   w u l n   2 /14   w u l n   2 /11   w u l n   2 /10   w u l n   2 /16 

  Notes:  
1. These moment values are valid only for continuous reinforced concrete beams or slabs with uniformly 
distributed design loads,  w u  , and clear span,  l n  , when the following conditions are met:        

 a.   Lengths of adjacent spans do not differ by more than 20%.        
 b.   The unfactored live load is less than or equal to three times the unfactored dead load. 

 2. The negative moment (at the face of support) can be taken as  w u l n   2 /12 for slabs with clear spans no greater 
than 10       ft and for beams framing into relatively stiff columns (specifi cally, the sum of column stiffness divided 
by the sum of beam stiffness at each end of the beam must be greater than 8). Stiffness is the product of 
modulus of elasticity and moment of inertia, neither of which are straightforward quantities for structural 
elements consisting of two materials bonded together. For normal-weight concrete, the modulus of elasticity, 
 E c   (psi), may be taken as 57,000( f 
c     0.5 ), where the cylinder strength of concrete,  f 
c    , is in psi units. The 
calculation of moment of inertia is left to the designer, with the American Concrete Institute (ACI) permitting 
 “ any set of reasonable assumptions. ”  One suggestion is to use gross  E c I  values for both beams and columns: 
where  E c   is the same for all members, a typical joint with columns and beams at all four orthogonal points, 
and constant width for column and beam sections, would qualify for the  w u l n   2 /12 negative beam moment only 
when the column thickness at that joint becomes more than twice the beam thickness.  



 Table A-8.8        Limits on steel ratio for  “ tension-controlled ”  reinforced concrete beams 1   

    fc�    (psi)  Limits on Steel Ratio,   ρ   min       �        ρ   max  

   3000  0.00333      �      0.01350 

   4000  0.00333      �      0.01810 

   5000  0.00354      �      0.02130 
  Note:  
1. Values are for  f y        �      60       ksi,   φ        �      0.9, and steel strain,   ε  t        �      0.005 for   ρ  max  .  

 Table A-8.9        Values of  R  and   ρ   for reinforced concrete beams, T-beams, and one-way slabs 
(using 60-ksi steel)1  

    R  (ksi)   r  
  

  b / b w   
      fc�         �      3       ksi   fc�         �      4       ksi   fc�         �      5       ksi 

   0.0197  0.0197  0.0198    b0.00033   10  

   0.0221  0.0221  0.0221    b0.00037   9  

   0.0251  0.0251  0.0251 b 0.00042     8  

   0.0286  0.0287  0.0287  b0.00048     7  

   0.0334  0.0334  0.0335 b 0.00056     6  

   0.0493  0.0494  0.0495  b0.00083     4  

   0.0657  0.0659  0.0661    b0.00111   3  

   0.0982  0.0987  0.099 b   0.00167   2  

   0.106  0.106  0.107    d0.00180   1.83  

   0.192  0.194  0.195    a0.00333   1  

   0.229  0.232  0.233    c0.00400   0.83  

   0.282  0.287  0.289  c0.00500     0.67  

   0.335  0.341  0.345  c0.00600     0.56  

   0.369  0.377  0.381  c0.00667     0.50  

   0.385  0.394  0.399  0.00700   —  

   0.435  0.446  0.453  0.00800   —  

   0.483  0.497  0.506  0.00900   —  

   0.529  0.547  0.558  0.01000   —  

   0.575  0.596  0.609  0.01100   —  

   0.618  0.644  0.659  0.01200   —  

   0.661  0.691  0.708  0.01300   —  

   0.681  0.714  0.733  e0.01350     —  

    —   0.736  0.757  0.01400   —  

    —   0.781  0.805  0.01500   —  

    —   0.824  0.852  0.01600   —  

    —   0.867  0.898  0.01700   —  

    —   0.908  0.943  0.01800   —  

    —   0.913  0.947  e0.01810   —  

    —    —   0.987  0.01900   —  

    —    —   1.031  0.02000   —  

    —    —   1.073  0.02100   —  

    —    —   1.086  e0.02130   —  

(Continued )



  Note:
 1. M u        �        φ bd   2  R , where   φ        �      0.9,  R       �        ρ f y  (1      �      0.59  ρ f y   / f 
c    ), and   ρ        �       A s   / bd . When using this table,  R ,  f y  , and  
f 
c     are in ksi units;  b  is the compressive zone cross-sectional width (or effective width);  b w   is the tension zone 
width; and  d  is the effective depth, all in inch units. For positive-moment T-beams, results are valid only when 
compressive stress block depth,  a       �        ρ f y d /(0.85 f 
c    )      �      slab thickness,  h . Steel strain at failure,   ε  t        �      0.005 for 
  ρ  max   (i.e., only tension-controlled sections are considered).  

 Table A-8.9       (Continued) 

    Keyed Notes for Minimum and Maximum Steel Ratio,     ρ  min     and     ρ  max    

    a. Minimum steel ratio for rectangular beams and negative-moment, indeterminate T-beams:  

    b / b w        �      1.0 and   ρ  min        �      0.00333 (or 0.00354 for        fc
    �      5       ksi) 

    

    b. Minimum steel ratio for positive- moment T-beams:  

     ρ  min        �      0.00333 and is shown for  b / b w   between 1 and 10 

   The effective width,  b , of a positive- moment T-beam is 
considered to be the smaller of the following: 

    b       �      ¼ beam span 

    b       �      centerline distance between beams 

    b       �      web width      �      16 times slab thickness 

    c. Minimum steel ratio for negative- moment determinate T-beams (e.g., precast sections and 
cantilevers)  

     ρ  min        �      0.00333 and is shown for  b / b w   between 1.0 and 0.5 (with   ρ  min        �      0.00667 for values of 
 b / b w        �      0.5) 

    d. Minimum steel ratio for one-way slabs  

     ρ  min        �      0.00180 for slabs; the same steel ratio applies to shrinkage and temperature control steel 
perpendicular to slab longitudinal bar 

    e. Maximum steel ratio  

     ρ  max        �      0.01350 for fc
          �      3       ksi 

     ρ  max        �      0.01800 for fc
          �      4       ksi 

     ρ  max        �      0.02130 for  fc
         �      5       ksi 
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 Table A-9.1        Selected lag screw (lag bolt) dimensions  

        

    L  (in.)   D  (in.)   D r   (in.)   T  (in.)   T-E  (in.)   E  (in.) 

   3  0.250  0.173  2.0  1.8125  0.1875 
   3  0.375  0.265  2.0  1.7500  0.2500 
   3  0.500  0.371  2.0  1.6875  0.3125 
   3  0.625  0.471  2.0  1.6250  0.3750 
   4  0.250  0.173  2.5  2.3125  0.1875 
   4  0.375  0.265  2.5  2.2500  0.2500 
   4  0.500  0.371  2.5  2.1875  0.3125 
   4  0.625  0.471  2.5  2.1250  0.3750 
   5  0.250  0.173  3.0  2.8125  0.1875 
   5  0.375  0.265  3.0  2.7500  0.2500 
   5  0.500  0.371  3.0  2.6875  0.3125 
   5  0.625  0.471  3.0  3.6250  0.3750 
   6  0.250  0.173  3.5  3.3125  0.1875 
   6  0.375  0.265  3.5  3.2500  0.2500 
   6  0.500  0.371  3.5  3.1875  0.3125 
   6  0.625  0.471  3.5  3.1250  0.3750 
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 Table A-9.2        Selected common wire nail dimensions  

        

   Designation  1     L  (in.)   D  (in.)   E  (in.)  2   

    6d  2.00  0.113  0.226 
    8d  2.50  0.131  0.262 
   10d  3.00  0.148  0.296 
   12d  3.25  0.148  0.296 
   16d  3.50  0.162  0.324 
   20d  4.00  0.192  0.384 
   30d  4.50  0.207  0.414 
   40d  5.00  0.225  0.450 
   50d  5.50  0.244  0.488 

  Notes:  
    1. The designation for nails once had some relation to the cost of 100 nails; it now refers only to the nail’s 
size. The letter  “ d ”  in the designation refers to the pennyweight of the nails and is said to be derived from the 
biblical use of  denarius  (hence  “ d ” ) as the historical equivalent of the modern penny (hence  “ pennyweight ” ). 
We continue to use the abbreviation  “ d ”  to stand for  “ penny ”  and we say  “ 10-penny nail ”  when reading  “ 10d 
nail. ”   
    2.  E       �      approximate length of tapered tip, assumed to be equal to  2D .  
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 Table A-9.3        Penetration and dowel bearing length 1   

   Type of Fastener 
    

 Required Penetration 
Distance,  p  

 Absolute 
Minimum 

 Minimum for 
Full Value of  Z  

   Lag screw 2  

      

 4 D   8 D  

Nail 3 6 D 10 D 

   Bolt 4   n/a  n/a 

  Notes:  
1. The dowel bearing length in the main member, used in yield limit calculations, may be different from 
the penetration as defi ned earlier: for lag screws, the dowel bearing length in the main member equals the 
penetration (which excludes the tapered tip); however, for nailed connections, the dowel bearing length in the 
main member includes the tapered tip where  p       ≥      10 D , but otherwise excludes the tapered tip (the length of 
which can be approximated as 2 D ). 
 2. For lag screws where the penetration,  p , falls between the two values shown in the table, the lateral design 
value,  Z , is multiplied by  p /(8 D ). Therefore, where the penetration equals the absolute minimum value of 4 D , 
the lateral design value is taken as one half the tabular (or computed) value of  Z.  
 3. For nails where the penetration,  p , falls between the two values shown in the table, the lateral design value, 
 Z , is multiplied by  p /(10 D ). Therefore, where the penetration equals the absolute minimum value of 6 D , the 
lateral design value is taken as 0.6 times the tabular (or computed) value of  Z.  
 4. For bolts,  “ penetration ”  is always, by defi nition, 100% through both the main member and side member(s), 
so there is no need to calculate its effect on the lateral design value,  Z.   
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 Table A-9.5        Wet service adjustment factor,  C M  , for wood connectors 1,2   

   Fastener Type with Lateral Load   C M   

    “ Dowel-type, ”  wet when made, dry in-service:  Varies as follows: 

          1   fastener only  1.00 

          2   fasteners in row parallel to grain  1.00 

   Multiple rows of fasteners parallel to grain, separate splice plate each row  1.00 

   Fastener with diameter      <      ½       in.  0.70 

    “ Dowel-type, ”  wet when used (in-service)  0.70 

   Fastener Type with Withdrawal Load   C M   

   Nails, wet when made, dry in-service  0.25 

   Nails, dry when made, wet in-service  0.25 

   Nails, wet when made, wet in-service  0.25 

   Lag screws and wood screws, wet in-service  0.70 

  Notes: 
 1. Applies to both dowel-type connectors and connectors subject to withdrawal loads. 
 2.  C M        �      1.0 for fasteners that are dry when fabricated and when used (in-service).  

 Table A-9.4        Duration of load adjustment factor,  C D  , for wood connectors 1   

   Load Type  Duration   C D   

   Dead load  Permanent  0.90 
   Live load  10 years  1.00 
   Snow  2 months  1.15 
   Construction  1 week  1.25 
   Wind/seismic  10 minutes  1.60 

  Note:  
  1. Applies to both dowel-type connectors and connectors subject to withdrawal loads.  
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 Table A-9.6        Group action adjustment factor,  Cg , for wood connectors 1,2,3,4   

   A.  C g   for bolt (or lag screw) connections for wood members with same properties:  E       �      1,400,000       psi; 
bolt or lag screw diameter,  D       �      ¾ in.; spacing between fasteners in a row,  s       �      3       in. 

    A m        �      Area 
of Main 
Member, 
in 2      

 Number 
of 
Fasteners 
in Row   

  A s        �      Area of Side Member(s), in 2  

 5  8  11  14  17  30  40  56  64 

   5   2  1.000  0.991  0.987  0.985  0.983  0.980  0.979  0.978  0.978 
      3  0.984  0.962  0.952  0.947  0.943  0.936  0.933  0.931  0.931 
      4  0.954  0.918  0.902  0.893  0.887  0.875  0.871  0.868  0.867 
      5  0.914  0.866  0.844  0.831  0.823  0.807  0.802  0.798  0.796 
      6  0.867  0.809  0.783  0.768  0.758  0.739  0.733  0.728  0.726 
      7  0.817  0.752  0.723  0.707  0.696  0.675  0.688  0.662  0.660 
      8  0.766  0.698  0.667  0.650  0.638  0.616  0.608  0.602  0.600 
      9  0.716  0.647  0.616  0.598  0.587  0.563  0.556  0.549  0.547 
     10  0.669  0.601  0.570  0.552  0.540  0.517  0.510  0.503  0.501 

   8   2  0.991  1.000  0.996  0.993  0.992  0.989  0.988  0.987  0.987 
      3  0.962  0.990  0.979  0.973  0.970  0.962  0.959  0.957  0.956 
      4  0.918  0.971  0.953  0.942  0.936  0.922  0.918  0.914  0.913 
      5  0.866  0.943  0.918  0.903  0.894  0.875  0.869  0.863  0.862 
      6  0.809  0.910  0.877  0.859  0.847  0.823  0.815  0.809  0.806 
      7  0.752  0.873  0.834  0.812  0.798  0.770  0.761  0.753  0.751 
      8  0.698  0.833  0.790  0.766  0.750  0.719  0.708  0.700  0.697 
      9  0.647  0.792  0.746  0.720  0.703  0.670  0.659  0.650  0.647 
     10  0.601  0.751  0.704  0.677  0.659  0.624  0.613  0.603  0.600 

   11   2  0.987  0.996  1.000  0.998  0.996  0.993  0.992  0.991  0.991 
      3  0.952  0.979  0.993  0.986  0.983  0.975  0.972  0.97  0.969 
      4  0.902  0.953  0.978  0.967  0.961  0.947  0.942  0.938  0.937 
      5  0.844  0.918  0.958  0.942  0.932  0.911  0.905  0.899  0.897 
      6  0.783  0.877  0.932  0.911  0.898  0.871  0.862  0.855  0.853 
      7  0.723  0.834  0.903  0.877  0.861  0.828  0.818  0.809  0.806 
      8  0.667  0.790  0.870  0.841  0.822  0.785  0.772  0.762  0.759 
      9  0.616  0.746  0.836  0.804  0.783  0.741  0.728  0.717  0.713 
     10  0.570  0.704  0.801  0.766  0.744  0.700  0.685  0.673  0.669 

   14   2  0.985  0.993  0.998  1.000  0.998  0.995  0.994  0.993  0.993 
      3  0.947  0.973  0.986  0.994  0.990  0.982  0.979  0.977  0.976 
      4  0.893  0.942  0.967  0.983  0.976  0.961  0.956  0.952  0.951 
      5  0.831  0.903  0.942  0.966  0.956  0.934  0.927  0.921  0.919 
      6  0.768  0.859  0.911  0.945  0.931  0.902  0.893  0.885  0.883 
      7  0.707  0.812  0.877  0.921  0.903  0.867  0.856  0.846  0.843 
      8  0.650  0.766  0.841  0.894  0.873  0.831  0.817  0.805  0.802 
      9  0.598  0.720  0.804  0.864  0.841  0.793  0.778  0.765  0.761 
     10  0.552  0.677  0.766  0.834  0.808  0.756  0.739  0.725  0.721 

(Continued )



350    APPENDIX 9  Tables for Chapter 9 (connections)

   17   2  0.983  0.992  0.996  0.998  1.000  0.997  0.996  0.995  0.995 
      3  0.943  0.970  0.983  0.990  0.995  0.987  0.984  0.982  0.981 
      4  0.887  0.936  0.961  0.976  0.986  0.971  0.966  0.962  0.961 
      5  0.823  0.894  0.932  0.956  0.972  0.950  0.943  0.936  0.934 
      6  0.758  0.847  0.898  0.931  0.954  0.924  0.914  0.906  0.904 
      7  0.696  0.798  0.861  0.903  0.934  0.895  0.883  0.873  0.869 
      8  0.638  0.750  0.822  0.873  0.910  0.864  0.850  0.837  0.833 
      9  0.587  0.703  0.783  0.841  0.885  0.832  0.815  0.801  0.797 
     10  0.540  0.659  0.744  0.808  0.858  0.799  0.781  0.765  0.760 

   30   2  0.980  0.989  0.993  0.995  0.997  1.000  0.999  0.998  0.998 
      3  0.936  0.962  0.975  0.982  0.987  0.997  0.995  0.992  0.991 
      4  0.875  0.922  0.947  0.961  0.971  0.992  0.987  0.983  0.981 
      5  0.807  0.875  0.911  0.934  0.950  0.984  0.976  0.969  0.967 
      6  0.739  0.823  0.871  0.902  0.924  0.973  0.963  0.953  0.950 
      7  0.675  0.770  0.828  0.867  0.895  0.961  0.947  0.935  0.931 
      8  0.616  0.719  0.785  0.831  0.864  0.946  0.929  0.914  0.909 
      9  0.563  0.670  0.741  0.793  0.832  0.930  0.909  0.891  0.886 
     10  0.517  0.624  0.700  0.756  0.799  0.912  0.888  0.867  0.861 

   40   2  0.979  0.988  0.992  0.994  0.996  0.999  1.000  0.999  0.999 
      3  0.933  0.959  0.972  0.979  0.984  0.995  0.998  0.996  0.995 
      4  0.871  0.918  0.942  0.956  0.966  0.987  0.994  0.989  0.988 
      5  0.802  0.869  0.905  0.927  0.943  0.976  0.988  0.981  0.979 
      6  0.733  0.815  0.862  0.893  0.914  0.963  0.980  0.970  0.967 
      7  0.668  0.761  0.818  0.856  0.883  0.947  0.970  0.957  0.954 
      8  0.608  0.708  0.772  0.817  0.850  0.929  0.959  0.943  0.938 
      9  0.556  0.659  0.728  0.778  0.815  0.909  0.946  0.927  0.921 
     10  0.510  0.613  0.685  0.739  0.781  0.888  0.932  0.909  0.902 

   56   2  0.978  0.987  0.991  0.993  0.995  0.998  0.999  1.000  1.000 
      3  0.931  0.957  0.970  0.977  0.982  0.992  0.996  0.999  0.998 
      4  0.868  0.914  0.938  0.952  0.962  0.983  0.989  0.996  0.994 
      5  0.798  0.863  0.899  0.921  0.936  0.969  0.981  0.991  0.989 
      6  0.728  0.809  0.855  0.885  0.906  0.953  0.970  0.985  0.982 
      7  0.662  0.753  0.809  0.846  0.873  0.935  0.957  0.978  0.974 
      8  0.602  0.700  0.762  0.805  0.837  0.914  0.943  0.970  0.965 
      9  0.549  0.650  0.717  0.765  0.801  0.891  0.927  0.961  0.954 
     10  0.503  0.603  0.673  0.725  0.765  0.867  0.909  0.950  0.942 

Table A-9.6 (Continued)

Am � Area 
of Main 
Member, 
in2

Number 
of 
Fasteners 
in Row

As � Area of Side Member(s), in2

5 8 11 14 17 30 40 56 64
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   B.  C g   for bolt (or lag screw) connections for wood main member with  E       �      1,400,000       psi; steel 
side member(s) with  E       �      29,000,000       psi; bolt or lag screw diameter,  D       �      ¾       in.; spacing between 
fasteners in a row,  s       �      3       in. 

    A m        �      Area 
of Main 
Member, 
in 2      

 Number 
of 
Fasteners 
in Row   

  A s        �      Area of Steel Side Member(s), in 2  

 1  2  3  4  5  7  10  12  15 

   5   2  0.973  0.969  0.968  0.967  0.967  0.966  0.966  0.966  0.966 
      3  0.915  0.905  0.902  0.900  0.899  0.898  0.897  0.897  0.896 
      4  0.838  0.824  0.819  0.816  0.815  0.813  0.812  0.811  0.811 
      5  0.758  0.739  0.733  0.73  0.728  0.726  0.724  0.724  0.723 
      6  0.682  0.660  0.653  0.650  0.648  0.645  0.643  0.643  0.642 
      7  0.613  0.591  0.583  0.579  0.577  0.575  0.573  0.572  0.571 
      8  0.554  0.531  0.523  0.519  0.517  0.514  0.512  0.512  0.511 
      9  0.502  0.480  0.472  0.468  0.466  0.463  0.461  0.461  0.460 
     10  0.458  0.436  0.429  0.425  0.423  0.420  0.419  0.418  0.417 

   8   2  0.986  0.982  0.980  0.980  0.979  0.979  0.978  0.978  0.978 
      3  0.951  0.941  0.937  0.935  0.934  0.933  0.932  0.932  0.932 
      4  0.901  0.884  0.878  0.875  0.874  0.872  0.870  0.870  0.869 
      5  0.843  0.819  0.812  0.808  0.806  0.803  0.801  0.800  0.799 
      6  0.782  0.754  0.744  0.740  0.737  0.734  0.731  0.730  0.729 
      7  0.722  0.691  0.680  0.675  0.672  0.668  0.666  0.664  0.663 
      8  0.666  0.633  0.621  0.616  0.612  0.609  0.606  0.605  0.604 
      9  0.615  0.580  0.569  0.563  0.560  0.556  0.553  0.552  0.550 
     10  0.569  0.534  0.522  0.517  0.513  0.509  0.506  0.505  0.504 
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Table A-9.6 (Continued)

Am � Area 
of Main 
Member, 
in2

Number 
of 
Fasteners 
in Row

As � Area of Side Member(s), in2

5 8 11 14 17 30 40 56 64

   64   2  0.978  0.987  0.991  0.993  0.995  0.998  0.999  1.000  1.000 
      3  0.931  0.956  0.969  0.976  0.981  0.991  0.995  0.998  0.999 
      4  0.867  0.913  0.937  0.951  0.961  0.981  0.988  0.994  0.996 
      5  0.796  0.862  0.897  0.919  0.934  0.967  0.979  0.989  0.992 
      6  0.726  0.806  0.853  0.883  0.904  0.950  0.967  0.982  0.987 
      7  0.660  0.751  0.806  0.843  0.869  0.931  0.954  0.974  0.981 
      8  0.600  0.697  0.759  0.802  0.833  0.909  0.938  0.965  0.974 
      9  0.547  0.647  0.713  0.761  0.797  0.886  0.921  0.954  0.965 
     10  0.501  0.600  0.669  0.721  0.760  0.861  0.902  0.942  0.956 



   11   2  0.992  0.988  0.986  0.986  0.985  0.985  0.984  0.984  0.984 
      3  0.970  0.959  0.955  0.953  0.952  0.951  0.950  0.950  0.949 
      4  0.935  0.916  0.910  0.907  0.905  0.903  0.902  0.901  0.900 
      5  0.892  0.866  0.857  0.853  0.850  0.847  0.845  0.844  0.843 
      6  0.844  0.811  0.800  0.795  0.792  0.788  0.785  0.784  0.783 
      7  0.794  0.756  0.743  0.737  0.733  0.729  0.726  0.725  0.723 
      8  0.745  0.703  0.689  0.682  0.678  0.673  0.670  0.668  0.667 
      9  0.698  0.653  0.639  0.631  0.627  0.622  0.618  0.616  0.615 
     10  0.654  0.608  0.592  0.585  0.580  0.575  0.571  0.569  0.568 

   14   2  0.996  0.991  0.990  0.989  0.989  0.988  0.988  0.988  0.988 
      3  0.981  0.969  0.966  0.964  0.963  0.961  0.960  0.960  0.960 
      4  0.956  0.936  0.930  0.927  0.925  0.923  0.921  0.920  0.920 
      5  0.924  0.896  0.886  0.882  0.879  0.876  0.873  0.873  0.872 
      6  0.886  0.850  0.838  0.832  0.829  0.825  0.822  0.820  0.819 
      7  0.846  0.802  0.788  0.781  0.777  0.772  0.768  0.767  0.766 
      8  0.804  0.755  0.739  0.731  0.726  0.721  0.716  0.715  0.713 
      9  0.762  0.709  0.691  0.683  0.677  0.671  0.667  0.665  0.664 
     10  0.721  0.665  0.647  0.638  0.632  0.626  0.621  0.619  0.617 

   17   2  0.998  0.994  0.992  0.991  0.991  0.990  0.990  0.990  0.990 
      3  0.988  0.976  0.973  0.971  0.970  0.968  0.967  0.967  0.967 
      4  0.970  0.950  0.943  0.940  0.938  0.936  0.934  0.934  0.933 
      5  0.946  0.917  0.907  0.902  0.899  0.896  0.893  0.892  0.892 
      6  0.917  0.878  0.865  0.859  0.855  0.851  0.848  0.847  0.845 
      7  0.884  0.837  0.822  0.814  0.809  0.804  0.800  0.799  0.797 
      8  0.849  0.795  0.777  0.768  0.763  0.757  0.752  0.750  0.749 
      9  0.813  0.753  0.733  0.723  0.717  0.711  0.706  0.704  0.702 
     10  0.777  0.712  0.691  0.680  0.674  0.667  0.661  0.659  0.657 

   30   2  0.997  0.998  0.997  0.996  0.996  0.995  0.995  0.995  0.994 
      3  0.987  0.991  0.988  0.986  0.984  0.983  0.982  0.982  0.981 
      4  0.970  0.980  0.973  0.969  0.967  0.965  0.963  0.962  0.962 
      5  0.947  0.964  0.953  0.948  0.945  0.941  0.938  0.937  0.936 
      6  0.919  9.944  0.929  0.922  0.918  0.913  0.909  0.908  0.906 
      7  0.888  0.921  0.902  0.893  0.888  0.881  0.877  0.875  0.873 
      8  0.855  0.896  0.873  0.862  0.856  0.848  0.842  0.840  0.838 
      9  0.821  0.869  0.843  0.830  0.822  0.813  0.807  0.804  0.802 
     10  0.786  0.841  0.812  0.797  0.788  0.779  0.771  0.768  0.765 

   40   2  0.996  1.000  0.998  0.998  0.997  0.997  0.996  0.996  0.996 
      3  0.983  0.996  0.993  0.991  0.989  0.988  0.987  0.987  0.986 
      4  0.963  0.990  0.983  0.979  0.977  0.975  0.973  0.972  0.971 
      5  0.936  0.981  0.970  0.964  0.961  0.957  0.954  0.953  0.952 
      6  0.905  0.968  0.953  0.945  0.941  0.936  0.932  0.930  0.929 
      7  0.871  0.954  0.934  0.924  0.918  0.911  0.906  0.904  0.902 
      8  0.835  0.937  0.913  0.900  0.893  0.885  0.879  0.876  0.874 
      9  0.798  0.919  0.890  0.875  0.867  0.857  0.849  0.847  0.844 
     10  0.761  0.899  0.865  0.849  0.839  0.828  0.819  0.816  0.813 
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   56   2  0.994  0.999  1.000  0.999  0.998  0.998  0.998  0.997  0.997 
      3  0.980  0.994  0.997  0.995  0.994  0.992  0.991  0.991  0.991 
      4  0.957  0.985  0.992  0.988  0.986  0.983  0.982  0.981  0.980 
      5  0.927  0.974  0.984  0.979  0.975  0.971  0.969  0.967  0.966 
      6  0.893  0.959  0.975  0.967  0.962  0.957  0.953  0.951  0.949 
      7  0.856  0.942  0.963  0.953  0.947  0.939  0.934  0.932  0.930 
      8  0.817  0.922  0.950  0.937  0.929  0.920  0.914  0.911  0.908 
      9  0.778  0.901  0.935  0.919  0.910  0.899  0.891  0.888  0.885 
     10  0.740  0.879  0.919  0.901  0.890  0.877  0.868  0.864  0.860 

   64   2  0.994  0.998  1.000  0.999  0.999  0.998  0.998  0.998  0.998 
      3  0.979  0.993  0.998  0.996  0.995  0.994  0.993  0.992  0.992 
      4  0.955  0.983  0.994  0.991  0.989  0.986  0.984  0.984  0.983 
      5  0.925  0.971  0.987  0.983  0.980  0.976  0.973  0.972  0.971 
      6  0.890  0.955  0.980  0.974  0.969  0.963  0.959  0.958  0.956 
      7  0.852  0.936  0.970  0.962  0.956  0.949  0.943  0.941  0.939 
      8  0.812  0.916  0.959  0.949  0.941  0.932  0.925  0.922  0.920 
      9  0.772  0.893  0.946  0.935  0.925  0.914  0.905  0.902  0.899 
     10  0.733  0.869  0.932  0.919  0.907  0.894  0.884  0.881  0.877 

  Notes: 
 1. Values in this table are conservative when using smaller fastener diameter, smaller fastener spacing, and 
greater modulus of elasticity. 
 2. For both the table and the exact method shown here, cross-sectional areas are used for  A m   and  A s   when 
the member is loaded parallel to grain; when loaded perpendicular to grain, an equivalent area is used for 
 A m   or  A s  , based on the member thickness (measured in a direction parallel to the fastener) multiplied by an 
equivalent member width. This equivalent width is taken as the distance between the outer rows of fasteners 
or, where there is only one row of fasteners, as the minimum spacing between rows that would be computed  if  
there were multiple rows of fasteners. 
 3.  C g        �      1.0 for dowel-type fasteners with diameter,  D        <     0.25       in. Other values for  C g   can be determined exactly 
(for fastener diameters      >      0.25       in. and      ≤      1.0       in.) based on the following method: 
        a. Find the bolt or lag screw diameter,  D . 
        b. Find the so-called load/slip modulus,  γ , as follows: 
                γ       �      180,000( D  1.5 ) for dowel-type fasteners in wood-wood connections. 
                γ       �      270,000( D  1.5 ) for dowel-type fasteners in wood-metal connection. 
        c. Find  s , the spacing (center-to-center) between fasteners in a row. 
        d. Find  E m   and  E s  , the moduli of elasticity (psi) for the main and secondary members, respectively. 
        e. Find  A m   and  A s  , the cross-sectional areas (in 2 ) for the main member and for the side member (or the sum 
of the areas of the side members, if there are more than one), respectively. 
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        g. Find  R EA        �      ( E s A s  )/( E m A m  ) or ( E m A m  )/( E s A s  ), whichever is smaller. 
        h. Find  n       �      the number of fasteners in a row. 
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 4. Applies to dowel-type connectors only.  

Table A-9.6 (Continued)

Am � Area 
of Main 
Member, 
in2

Number 
of 
Fasteners 
in Row

As � Area of Steel Side Member(s), in2

5 8 11 14 17 30 40 56 64
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 Table A-9.7        Geometry adjustment factor,  C   Δ  , for wood connectors (bolts and lag screws)  
   A. Spacing (in.) between fasteners in a row a,b,c  

   Loading Direction  Absolute Minimum  Minimum for Full Value 

   Parallel to grain   3D    4D  
   Perpendicular to grain   3D   Whatever is required for 

attached members d  

  Notes for Part  A : 
 a. Required spacing (in.) is a multiple of the fastener diameter,  D  (in.). 
 b. A distance below the absolute minimum is, of course, not permitted — in that case, the geometry factor 
is  C   Δ        �      0. For any distance equal to or greater than the  “ minimum for full value, ”  the geometry factor is 
 C   Δ        �      1.0. For spacing between the two values shown in the table, the geometry factor,  C   Δ  , is taken as the 
actual spacing divided by the minimum spacing for full value. For example, if the actual spacing between 
fasteners in a row, where the load was parallel to grain, is 3.5 D , the geometry factor,  C   Δ        �      3.5 D/ (4 D )      �      0.875. 
If the spacing in this case equaled the absolute minimum of 3 D , the geometry factor,  C   Δ        �      3 D/ (4 D )      �      0.75. 
 c. See general notes below. 
 d. For fasteners in a row, where the loading is perpendicular to grain, the minimum spacing necessary to 
obtain the full value of the geometry factor, that is,  C   Δ        �      1.0, is based on meeting the requirements for the 
member  to which it is attached  (i.e., the member whose load is parallel to grain), as long as this distance is no 
less than the absolute minimum value of 3 D  (assuming that both members in the connection are not oriented 
so that the load is perpendicular to grain).  

   B. Spacing (in.) between rows of fasteners a,b,c  

   Loading Direction  Condition  Minimum Spacing 

   Parallel to grain  All conditions  1.5D 
   Perpendicular to grain d    l / D       ≤      2  2.5 D  
     2      <       l / D       <      6  (5 l       �      10 D )/8 
      l / D       ≥      6  5 D  

  Notes for Part  B : 
 a. Required spacing (in.) is a multiple of the fastener diameter,  D  (in.). 
 b. Where the minimum spacing between rows of fasteners is met, the geometry factor is  C   Δ        �      1.0. Otherwise, 
where the spacing is below the minimum allowed, the connection is not permitted — that is,  C   Δ        �      0. 
Interestingly, the  maximum  spacing between rows of fasteners is also limited in the following way: 
a 5-in.-maximum limit is placed on the spacing between the  outer  rows of fasteners, in cases where the rows 
are parallel to the grain of the wood. This reduces the possibility of splitting as the wood member shrinks or 
expands (due to changes in its moisture content) perpendicular to the grain, while the bolts are fi xed in place 
by a connecting member. 
 c. See general notes below. 
 d. The fastener length,  l  (in.), is defi ned as the length of the fastener that is actually embedded within either 
the main member (the dowel bearing length — see Table A-9.3) or the total length within one or more secondary 
members, whichever is smaller.  D  is the fastener diameter (in.).  

(Continued )
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  Table A-9.7 (Continued)  
   C. End distance (in.) a,b,c  

   Loading Direction  Absolute Minimum  Minimum for Full Value 

   Parallel to grain     
    Compression  2 D   4 D  
    Tension-softwood  3.5 D   7 D  
    Tension-hardwood  2.5 D   5 D  

   Perpendicular to grain  2 D   4 D  

  Notes for Part  C : 
 a, Required end distance (in.) is a multiple of the fastener diameter,  D  (in.). 
 b. A distance below the absolute minimum is, of course, not permitted — in that case, the geometry factor 
is  C   Δ        �      0; for any distance equal to or greater than the  “ minimum for full value, ”  the geometry factor is 
 C   Δ        �      1.0. For end distances between the two values shown in the table, the geometry factor,  C   Δ  , is taken as 
the actual end distance divided by the minimum distance for full value. For example, if the end distance of a 
fastener loaded parallel to grain in compression is 3 D , the geometry factor is  C   Δ        �      3 D/ (4 D )      �      0.75. If the end 
distance in this case equaled the absolute minimum of 2 D , the geometry factor is  C   Δ        �      2 D/ (4 D )      �      0.50. 
 c. See general notes below.  

   D. Edge distance (in.) a,b,c,d  

   Loading Direction  Condition 1   Minimum Edge Distance 

   Parallel to grain   1 / D       ≤      6  1.5 D  
      1 / D    >         6  the greater of 1.5 D  or ½ spacing 

between rows 

   Perpendicular to grain e   Loaded edge  4 D  
     Unloaded edge  1.5 D  

  Notes for Part  D : 
 a. Required edge distance (in.) is a multiple of the fastener diameter,  D  (in.). 
 b. Where the loading direction is parallel to grain, let  l  be the fastener length that is actually embedded within 
either the main member (the dowel bearing length — see Table A-9.3), or the total length within one or more 
secondary members, whichever is smaller.  D  is the bolt or lag screw diameter. 
 c. Loads should not be suspended in such a way that fasteners are stressing the wood members perpendicular 
to grain where such fasteners are inserted below the neutral axis (i.e., in the tension region) of a single beam. 
 d. See general notes below.  
e. Where the minimum edge distance is met, the geometry factor is  C   Δ        �      1.0. Otherwise, the connection is not 
permitted — that is,  C   Δ        �      0.  

(Continued )
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  Table A-9.7 (Continued)  
   E. Spacing and end-edge distances for loading parallel and perpendicular to grain 

    

    
    
    
    
    

  End distance  is measured parallel 
to grain at the end of the member. 
Where the load is also parallel to grain, 
a distinction is made between the 
two member ends — one of which is 
in tension (i.e., where the fastener is 
bearing towards the member end) and 
one of which is in compression (where 
the fastener is bearing away from the 
member end) 

  Edge distance  is measured perpendicular 
to grain, for load parallel to grain 

  Loaded edge distance  is measured 
perpendicular to grain, for load 
perpendicular to grain; it refers to the 
edge that is  “ pushing ”  on the fasteners, 
that is, the edge where the fasteners are 
pushing against the member edge 

  Unloaded edge distance  is measured 
perpendicular to grain, for load 
perpendicular to grain; it refers to the 
opposite edge that isn’t loaded, that is, 
the edge where the fasteners are  not  
pushing against the member edge 

 Both  spacing between fasteners in a row  
and  spacing between rows of fasteners  
are self-evident, requiring only that a 
 “ row of fasteners ”  is clearly understood 
as being  parallel  to the direction of load, 
and having no necessary relationship 
to the direction of grain in the wood 
members 

  General notes for Table A-9.7: 
 1. The geometry factor for any connection is taken as the smallest single value computed for any fastener in 
the connection, based on any of the criteria listed in Table A-9.7, parts  A ,  B ,  C , or  D , that is, for both spacing 
requirements as well as for end and edge distance. All such required spacing and distances are computed as 
multiples of the fastener diameter,  D , for all wood fasteners comprising the connection; but only the smallest 
geometry factor found within the entire connection is applied to the connection design. 
 2.  C   Δ        �      1.0 for  “ end distance ”  and  “ spacing between fasteners in a row ”  when minimum conditions for 
the full value are met. There are also smaller allowable lengths for these parameters (although subject to an 
 absolute  minimum) that, while permitted, reduce the geometry factor to a value less than 1.0. 
 3. A fastener row refers to a minimum of two fasteners in a line parallel to the direction of the  load , whether or not 
it is parallel or perpendicular to the direction of the grain of wood. On the other hand, end and edge distance is 
measured parallel and perpendicular, respectively, to the direction of  grain , not load, as shown in Table A-9.7, part  E . 
 4. Applies to dowel-type connectors only, and only when the fastener diameter,  D       ≥      ¼       in. Otherwise,  C   Δ        �      1.0.  
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 Table A-9.8        Toe-nail adjustment factor,  C tn  , for nails 1   

        

   Diagram  Direction of Applied Force   C tn   

                        

 For lateral design values,  Z : 
 Bearing lengths are as follows: 
        In main member:  l m        �       l n   cos 30 °       �       l n   /3 
        In side member:  l s        �       l n   /3 
 where  l n        �      length of nail 

 0.83 
  
  
  
  

            

 For withdrawal design values,  W : 
 Depth of penetration,  p w   is actual length of nail in 
main member. 

 0.67 
  

  Note: 
 1. Toe-nailing values are based on two assumptions:  
That the nail is driven at an angle of approximately 30 °  to the face of the side member. 
 That the nail insertion point is one-third of the nail length ( l n   /3) above the end of the side member.  

 Table A-9.9        Temperature factor,  C t  , for wood fasteners  

   Temperature,  T  ( ° F)   C t   (used dry)   C t   (used wet) 

    T       ≤      100 ° F  1.0  1.0 

   100 ° F      <       T       ≤      125 ° F  0.8  0.7 

   125 ° F      <       T       ≤      150 ° F  0.7  0.5 
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 Table A-9.10        Lateral design value,  Z  (lb) for bolts: single-shear connections, with 1½-in. side 
member thickness, both members same species (or same specifi c gravity) 1   
   A. Designation for single-shear lateral design values according to direction of grain 2  

        

   B. 1½-in. main member thickness 

   Species or Species 
Combination     

 ½-in.-diameter Bolts  ¾-in.-diameter Bolts  1-in.-diameter Bolts 

  Z par     Z s-per     Z m-per     Z par     Z s-per     Z m-per     Z par     Z s-per     Z m-per   

   Douglas Fir-Larch  480  300  300  720  420  420  970  530  530 

   Douglas Fir-Larch (North)  470  290  290  710  400  400  950  510  510 

   Douglas Fir-South  440  270  270  670  380  380  890  480  480 

   Hem-Fir  410  250  250  620  350  350  830  440  440 

   Hem-Fir (North)  440  270  270  670  380  380  890  480  480 

   Spruce-Pine-Fir  410  240  240  610  340  340  810  430  430 

   Spruce-Pine-Fir (South)  350  200  200  520  280  280  700  360  360 

   Southern Pine  530  330  330  800  460  460  1060  580  580 

   C. 3½-in. main member thickness 

   Species or Species 
Combination     

 ½-in.-diameter Bolts  ¾-in.-diameter Bolts  1-in.-diameter Bolts 

  Z par     Z s-per     Z m-per     Z par     Z s-per     Z m-per     Z par     Z s-per     Z m-per   

   Douglas Fir-Larch  610  370  430  1200  590  610  1830  680  740 

   Douglas Fir-Larch (North)  610  360  420  1190  560  490  1790  650  710 

   Douglas Fir-South  580  340  400  1140  520  550  1680  600  660 

   Hem-Fir  550  320  380  1100  460  500  1570  540  600 

   Hem-Fir (North)  580  340  400  1140  520  550  1680  600  660 

   Spruce-Pine-Fir  540  320  370  1080  450  480  1530  530  590 

   Spruce-Pine-Fir (South)  490  280  300  990  360  400  1320  420  480 

   Southern Pine  660  400  470  1270  660  690  2010  770  830 

(Continued )
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  Table A-9.10 (Continued)  
   D. 5½-in. main member thickness 

   Species or Species 
Combination     

 5⁄8-in.-diameter Bolts  ¾-in.-diameter Bolts      1-in.-diameter Bolts 

  Z par     Z s-per     Z m-per     Z par     Z s-per     Z m-per     Z par     Z s-per     Z m-per   

   Douglas Fir-Larch  610  370  430  1200  590  790  2050  680  1060 

   Douglas Fir-Larch (North)  610  360  420  1190  560  780  2030  650  1010 

   Douglas Fir-South  580  340  400  1140  520  740  1930  600  940 

   Hem-Fir  550  320  380  1100  460  700  1800  540  860 

   Hem-Fir (North)  580  340  400  1140  520  740  1930  600  940 

   Spruce-Pine-Fir  540  320  370  1080  450  690  1760  530  830 

   Spruce-Pine-Fir (South)  490  280  330  990  360  570  1520  420  680 

   Southern Pine  660  400  470  1270  660  850  2150  770  1190 

  Notes: 
 1. Member thickness is measured parallel to the axis of the fastener. 
 2. Designations for lateral design values are as illustrated: (a)  Z par   for both members with direction of grain 
parallel to load, (b)  Z s-per   for side member with grain perpendicular to load and main member with grain 
parallel to load, and (c)  Z m-per   for main member with grain perpendicular to load and side member with grain 
parallel to load. A fourth possibility, with both members having grain perpendicular to the direction of load, 
is rarely encountered and not included here. The offi cial designations also shown beneath the illustrations 
contain  “ parallel ”  and  “ perpendicular ”  symbols instead of the abbreviations,  “ par ”  and  “ per, ”  used in these 
tables and text.  
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   B. 1½-in. main member thickness 

   Species or Species 
Combination     

 ½-in.-diameter Bolts  ¾-in.-diameter Bolts  1-in.-diameter Bolts 

  Z par     Z s-per     Z m-per     Z par     Z s-per     Z m-per     Z par     Z s-per     Z m-per   

   Douglas Fir-Larch  1050  730  470  1580  1170  590  2100  1350  680 

   Douglas Fir-Larch (North)  1030  720  460  1550  1130  560  2060  1290  650 

   Douglas Fir-South  970  680  420  1450  1040  520  1930  1200  600 

   Hem-Fir  900  650  380  1350  920  460  1800  1080  540 

   Hem-Fir (North)  970  680  420  1450  1040  520  1930  1200  600 

   Spruce-Pine-Fir  880  640  370  1320  900  450  1760  1050  530 

   Spruce-Pine-Fir (South)  760  560  290  1140  720  360  1520  840  420 

   Southern Pine  1150  800  550  1730  1330  660  2310  1530  770 

   C. 3½-in. main member thickness 

   Species or Species 
Combination     

 ½-in.-diameter Bolts  ¾-in.-diameter Bolts  1-in.-diameter Bolts 

  Z par     Z s-per     Z m-per     Z par     Z s-per     Z m-per     Z par     Z s-per     Z m-per   

   Douglas Fir-Larch  1230  730  860  2400  1170  1370  4090  1350  1580 

   Douglas Fir-Larch (North)  1210  720  850  2380  1130  1310  4050  1290  1510 

   Douglas Fir-South  1160  680  810  2280  1040  1210  3860  1200  1400 

   Hem-Fir  1100  650  760  2190  920  1080  3600  1080  1260 

   Hem-Fir (North)  1160  680  810  2280  1040  1210  3860  1200  1400 

   Spruce-Pine-Fir  1080  640  740  2160  900  1050  3530  1050  1230 

   Spruce-Pine-Fir (South)  980  560  660  1990  720  840  3040  840  980 

   Southern Pine  1320  800  940  2550  1330  1550  4310  1530  1790 

(Continued )

 Table A-9.11        Lateral design value,  Z  (lb) for bolts: double-shear connections, with 1½-in. side 
member thickness, both members same species (or same specifi c gravity) 1   
   A. Designation for double-shear lateral design values according to direction of grain 2  
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Table A-9.11 (Continued)
   D. 5½-in. main member thickness 

   Species or Species 
Combination     

 5⁄8-in.-diameter Bolts  ¾-in.-diameter Bolts  1-in.-diameter Bolts 

  Z par     Z s-per     Z m-per     Z par     Z s-per     Z m-per     Z par     Z s-per     Z m-per   

   Douglas Fir-Larch  1760  1040  1190  2400  1170  1580  4090  1350  2480 

   Douglas Fir-Larch (North)  1740  1030  1170  2380  1130  1550  4050  1290  2370 

   Douglas Fir-South  1660  940  1110  2280  1040  1480  3860  1200  2200 

   Hem-Fir  1590  840  1050  2190  920  1400  3600  1080  1980 

   Hem-Fir (North)  1660  940  1110  2280  1040  1480  3860  1200  2200 

   Spruce-Pine-Fir  1570  830  1040  2160  900  1380  3530  1050  1930 

   Spruce-Pine-Fir (South)  1430  660  920  1990  720  1230  3040  840  1540 

   Southern Pine  1870  1130  1290  2550  1330  1690  4310  1530  2700 

  Notes: 
 1. Member thickness is measured parallel to the axis of the fastener. 
 2. Designations for lateral design values are as illustrated: (a)  Z par   for all members with direction of grain parallel 
to load, (b)  Z s-per   for side members with grain perpendicular to load and main member with grain parallel to load, 
and (c)  Z m-per   for main member with grain perpendicular to load and side members with grain parallel to load. 
A fourth possibility, with all members having grain perpendicular to the direction of load, is rarely encountered 
and not included here. The offi cial designations also shown beneath the illustrations contain  “ parallel ”  and 
 “ perpendicular ”  symbols instead of the abbreviations,  “ par ”  and  “ per, ”  used in these tables and text.  
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   C. 3½-in. main member thickness 

   Species or Species 
Combination     

 ½-in.-diameter Bolts  ¾-in.-diameter Bolts  1-in.-diameter Bolts 

  Z par     Z per     Z par     Z per     Z par     Z per   

   Douglas Fir-Larch  1650  1030  3340  1370  4090  1580 

   Douglas Fir-Larch (North)  1640  1010  3320  1310  4810  1510 

   Douglas Fir-South  1590  970  3220  1210  4510  1400 

   Hem-Fir  1540  890  3120  1080  4200  1260 

   Hem-Fir (North)  1590  970  3220  1210  4510  1400 

   Spruce-Pine-Fir  1530  860  3080  1050  4110  1230 

   Spruce-Pine-Fir (South)  1430  680  2660  840  3540  980 

   Southern Pine  1720  1100  3480  1550  5380  1790 

 Table A-9.12        Lateral design value,  Z  (lb) for bolts: double-shear connections, with two ¼-in. 
A36 steel side plates 1   
   A. Designation for double-shear lateral design values according to direction of grain 2  

        

   B. 1½-in. main member thickness 

   Species or Species 
Combination     

 ½-in.-diameter Bolts  ¾-in.-diameter Bolts  1-in.-diameter Bolts 

  Z par     Z per     Z par     Z per     Z par     Z per   

   Douglas Fir-Larch  1050  470  1580  590  2100  680 

   Douglas Fir-Larch (North)  1030  460  1550  560  2060  650 

   Douglas Fir-South  970  420  1450  520  1930  600 

   Hem-Fir  900  380  1350  460  1800  540 

   Hem-Fir (North)  970  420  1450  520  1930  600 

   Spruce-Pine-Fir  880  370  1320  450  1760  530 

   Spruce-Pine-Fir (South)  760  290  1140  360  1520  420 

   Southern Pine  1150  550  1730  660  2310  770 

(Continued ) 
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Table A-9.12 (Continued)
   D. 5½-in. main member thickness 

   Species or Species 
Combination     

 5⁄8-in.-diameter Bolts  ¾-in.-diameter Bolts  1-in.-diameter Bolts 

  Z par     Z per     Z par     Z per     Z par     Z per   

   Douglas Fir-Larch  2410  1420  3340  1890  5720  2480 

   Douglas Fir-Larch (North)  2390  1400  3320  1850  5670  2370 

   Douglas Fir-South  2330  1340  3220  1780  5510  2200 

   Hem-Fir  2260  1280  3120  1690  5330  1980 

   Hem-Fir (North)  2330  1340  3220  1780  5510  2200 

   Spruce-Pine-Fir  2230  1270  3090  1650  5280  1930 

   Spruce-Pine-Fir (South)  2090  1140  2890  1320  4930  1540 

   Southern Pine  2510  1510  3480  2000  5960  2810 

  Notes: 
 1. Member thickness is measured parallel to the axis of the fastener. 
 2. Designations for lateral design values are as illustrated: (a)  Z par   for main member with direction of grain 
parallel to load and (b)  Z per   for main member with grain perpendicular to load. The offi cial designations also 
shown beneath the illustrations contain  “ parallel ”  and  “ perpendicular ”  symbols instead of the abbreviations, 
 “ par ”  and  “ per, ”  used in these tables and text.  
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 Table A-9.13        Lateral design value,  Z  (lb) for lag screws: single-shear connections, both 
members same species (or same specifi c gravity) 1,2,3,4   

   A. Designation for single-shear lateral design values according to direction of grain 2  

        

   B. 1½-in. side member thickness 

   Species or Species 
Combination     

 ½-in.-diameter Lag 
Screws 

 ¾-in.-diameter Lag 
Screws 

 1-in.-diameter Lag 
Screws 

 Z par   Z s-per   Z m-per   Z par   Z s-per   Z m-per   Z par   Z s-per   Z m-per  

   Douglas Fir-Larch  390  220  270  770  440  510  1290  530  810 

   Douglas Fir-Larch (North)  390  220  260  760  430  510  1280  500  790 

   Douglas Fir-South  370  210  250  730  400  480  1230  470  760 

   Hem-Fir  350  190  240  700  360  450  1180  420  720 

   Hem-Fir (North)  370  210  250  730  400  480  1230  470  760 

   Spruce-Pine-Fir  350  190  240  690  350  440  1160  410  710 

   Spruce-Pine-Fir (South)  310  160  210  620  280  390  1070  330  630 

   Southern Pine  410  250  290  830  470  560  1360  600  870 

(Continued )
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Table A-9.13 (Continued)
   C. 3½-in. side member thickness 

   Species or Species 
Combination     

 ½-in.-diameter Lag 
Screws 

 ¾-in.-diameter Lag 
Screws 

 1-in.-diameter Lag 
Screws 

 Z par   Z s-per   Z m-per   Z par   Z s-per   Z m-per   Z par   Z s-per   Z m-per  

   Douglas Fir-Larch  390  270  270  960  600  610  1740  850  1060 

   Douglas Fir-Larch (North)  390  260  260  950  580  600  1730  830  1040 

   Douglas Fir-South  380  250  250  920  550  580  1670  790  1000 

   Hem-Fir  360  240  240  890  500  550  1610  740  950 

   Hem-Fir (North)  380  250  250  920  550  580  1670  790  1000 

   Spruce-Pine-Fir  360  240  240  880  490  540  1600  720  940 

   Spruce-Pine-Fir (South)  340  220  220  820  420  490  1450  630  850 

   Southern Pine  410  290  290  1010  650  650  1830  930  1120 

  Notes: 
 1. Member thickness is measured parallel to the axis of the fastener. 
 2. Designations for lateral design values are as illustrated: (a)  Z par   for all members with direction of grain parallel 
to load, (b)  Z s-per   for side members with grain perpendicular to load and main member with grain parallel to load, 
and (c)  Z m-per   for main member with grain perpendicular to load and side members with grain parallel to load. 
A fourth possibility, with all members having grain perpendicular to the direction of load, is rarely encountered 
and not included here. The offi cial designations also shown beneath the illustrations contain  “ parallel ”  and 
 “ perpendicular ”  symbols instead of the abbreviations,  “ par ”  and  “ per, ”  used in these tables and text. 
 3. Tabular values are based on full value minimum penetration,  p , into main member. For penetration into 
main member between 4 D  and 8 D , multiply tabular values by  p/ (8 D ). 
 4. The reduced body diameter,  D r  , is used in yield limit calculations for these lag screw lateral design values, 
except in the calculation of the dowel bearing strength for loading perpendicular to grain,  F e-perp  , in which case 
the nominal diameter,  D , is used.  
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 Table A-9.14        Lateral design value,  Z  (lb) for common nails: single-shear connections, 
both members same species (or same specifi c gravity) 1,2   

   A. ¾-in. side member thickness 

   Species or Species 
Combination     

 Nail Size (pennyweight) 

 6d  8d  10d  12d  16d  20d  30d  40d  50d 

   Douglas Fir-Larch  72  90  105  105  121  138  147  158  162 
   Douglas Fir-Larch (North)  71  87  102  102  117  134  143  154  158 
   Douglas Fir-South  65  80  94  94  108  125  133  144  147 
   Hem-Fir  58  73  85  85  99  114  122  132  136 
   Hem-Fir (North)  65  80  94  94  108  125  133  144  147 
   Spruce-Pine-Fir  57  70  83  83  96  111  119  129  132 
   Spruce-Pine-Fir (South)  46  58  69  69  80  93  101  110  113 
   Southern Pine  79  104  121  121  138  157  166  178  182 

   B. 1½-in. side member thickness 

   Species or Species 
Combination     

 Nail Size (pennyweight) 

 6d  8d  10d  12d  16d  20d  30d  40d  50d 

   Douglas Fir-Larch   —  3   69  118  118  141  170  186  205  211 
   Douglas Fir-Larch (North)   —    3 66  115  115  138  166  182  201  206 
   Douglas Fir-South   —     361  109  109  131  157  172  190  196 
   Hem-Fir   —     355  102  102  122  147  161  178  181 
   Hem-Fir (North)   —     361  109  109  131  157  172  190  196 
   Spruce-Pine-Fir   —     353  100  100  120  144  158  172  175 
   Spruce-Pine-Fir (South)   —     344   87   87  104  126  131  138  141 
   Southern Pine   —     379  128  128  154  185  203  224  230 

  Notes: 
 1. Member thickness is measured parallel to the axis of the fastener. 
 2. Where values are not indicated, nail penetration into main member does not satisfy minimum 
requirements. Otherwise, except as indicated in Note 3, it is assumed that the minimum penetration of 
the nail into the main member is equal to 10 D  (see Table A-9.3 for notes on penetration). 
 3. These values include a reduction for penetration into main member because the penetration falls below 
the minimum for full value. The dowel bearing length in the main member,  l m  , used in the calculation of 
these lateral design values does  not  include the length of the tapered tip, for the same reason (see Table 
A-9.2 for nail dimensions).  
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 Table A-9.15        Method for determining lateral design value,  Z , based on yield limit equations  

          For wood-wood or wood-metal connections that do not correspond to the parameters listed in the 
various Appendix tables, lateral design values may be determined using yield limit equations.  
  1.     Using Table A-3.11 (specifi c gravity for wood members), fi nd the specifi c gravity ( G ) for wood 

main and side member(s).  
  2.     Find fastener diameter: use diameter,  D , for bolts and nails (unthreaded shanks in contact with 

members) and reduced body diameter,  D r  , for lag screws (in either case, designated as  “  D  ”  in 
what follows);  

  3.     Find dowel bearing strength,  F e  , for main ( F em  ) and side ( F es  ) member(s), in psi units, using 
the appropriate specifi c gravity value for each wood member: 
  a.     For  D       >      0.25       in. and wood members loaded parallel to grain,  F e        �      11,200 G .  

  
b.     For  D    >

   
      0.25       in. and wood members loaded perpendicular to grain,

  
F

G

D
e �

6100 1 45.

   
.
  

  c.     For  D       ≤      0.25       in. and wood members,  F e        �      16,600G 1.84 .  
  d.     For A36 steel,  F e        �      87,000.  
  e.     For A653 GR33 steel (used in certain die-formed galvanized connector plates), 

 F e        �      61,850.       
      4.     Find the dowel bending yield strength,  F yb  , in psi units: 

  a.     For bolts, use  F yb        �      45,000.  
  b.     For lag screws with  D       �      ¼       in., use  F yb        �      70,000; with  D       �     5⁄16        in., use  F yb        �      60,000; for 

 D       	     3⁄8            in., use  F yb        �      45,000.  
  c.     For nails with 0.099       in.      ≤       D       ≤      0.142       in., use  F yb        �      100,000; with 0.142       in.      <       D       ≤      0.177       in., 

use  F yb        �      90,000; with 0.177       in.      <       D       ≤      0.236       in., use  F yb        �      80,000; with 
0.236 in.      <       D       ≤      0.273       in., use  F yb        �      70,000.       

      5.     Find the main member and side member dowel bearing lengths,  l m   and  l s  , in inches (see 
Table A-9.3 for guidance). Even where there are two side members, the side member bearing 
length only includes the bearing length in a single side member.  

  6.     Compute the terms  R e        �       F em   / F es   and  R t        �       l m   / l s  .  
  7.     Compute the  “ reduction term, ”   R d  , which varies according to yield mode and fastener 

diameter, as follows: 
  a.     For  D       ≤      0.17       in. (i.e., for nails 16d or smaller),  R d        �      2.2.  
  b.     For 0.17       in.      <       D       <      0.25       in. (i.e., for most nails larger than 16d),  R d        �      10 D       �      0.5.  
  c.     For 0.25       in.      ≤       D       ≤      1       in. (i.e., for most bolts and lag screws),  R d        �      4 K  θ    (for Yield Modes I m  

and I s );  R d        �      3.6 K  θ    (for Yield Mode II); and  R d        �      3.2 K  θ    (for Yield Modes III m . III s , IV).     
      In these equations,  K  θ         �      1      �      0.25(  θ  /90), where   θ        �      the maximum angle (degrees) between 
the load and the direction of grain for either member: for example, where the load is parallel 
to the direction of grain in all members,   θ        �      0 ° , and  K  θ         �      1.0; where one or more member’s 
grain is perpendicular to the load,   θ        �      90 ° , and  K  θ         �      1.25. For angles other than 0 or 90 ° ,   θ   is 
always measured in such a way that it falls between 0 and 90 (i.e., instead of using   θ        �      120 ° , or 
  θ        �       � 45 ° , use   θ        �      60 °  or   θ        �      45 ° , respectively).    
      8.     Compute the coeffi cients  k 1  ,  k 2  , and  k 3  , as follows: 

  
a.

      
k
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 Table A-9.15       (Continued) 

      9.     Compute the lateral design value,  Z , for all applicable yield modes (i.e., for all six modes in 
single shear, and for all modes except II and III m  in double shear), and select the smallest 
value: 
  a.     For Yield Mode I m , Z      �       Dl m F em   / R d    
  b.     For Yield Mode I s , Z      �       Dl s F es   / R d   for single shear and Z      �      2 Dl s F es   / R d   for double shear.  
  c.     For Yield Mode II (single shear only), Z      �       k 1 Dl s F es   /  R d .   

  
d.     For Yield Mode III m  (single shear only),

  
Z

k Dl F

R R
m em

e d

�
�
2

1 2( )
     

  
e.     For Yield Mode III s ,

  
Z

k Dl F

R R
s em

e d

�
�
3

2( )
    
for single shear and

  
Z

k Dl F

R R
s em
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�
�

2

2
3

( )
    
for double shear.

  

  
f.     For Yield Mode IV,

  
Z

D
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for single shear and
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double shear.       

 Table A-9.16        W i thdrawal design value,  W , per inch of penetration (lb) for lag screws 1,2   

   Species or Species Combination      Unthreaded Shank Diameter,  D  (in.) 

 ¼  5⁄16  3⁄8  7⁄16  ½  5⁄8  ¾  7⁄8  1 

   Douglas Fir-Larch  225  266  305  342  378  447  513  576  636 
   Douglas Fir-Larch (North)  218  258  296  332  367  434  498  559  617 
   Douglas Fir-South  199  235  269  302  334  395  453  508  562 
   Hem-Fir  179  212  243  273  302  357  409  459  508 
   Hem-Fir (North)  199  235  269  302  334  395  453  508  562 
   Spruce-Pine-Fir  173  205  235  264  291  344  395  443  490 
   Spruce-Pine-Fir (South)  137  163  186  209  231  273  313  352  389 
   Southern Pine  260  307  352  395  437  516  592  664  734 

  Notes:  
1. Penetration length for lag screws excludes tapered tip; see Table A-9.1 for dimensions and Table A-9.3 for 
notes on penetration.  
2. Withdrawal design values assume penetration into  side  grain of wood member and must be reduced by 
75% when inserted into  end  grain.  
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 Table A-9.17        Withdrawal design value,  W , per inch of penetration (lb) for nails 1,2   

   Species or Species Combination 
    

 Nail Size (pennyweight) 

 6d  8d  10d  12d  16d  20d  30d  40d  50d 

   Douglas Fir-Larch  28  32  36  36  40  47  50  55  60 
   Douglas Fir-Larch (North)  26  30  34  34  38  45  48  52  57 
   Douglas Fir-South  22  26  29  29  32  38  41  45  48 
   Hem-Fir  19  22  25  25  27  32  35  38  41 
   Hem-Fir (North)  22  26  29  29  32  38  41  45  48 
   Spruce-Pine-Fir  18  21  23  23  26  30  33  35  38 
   Spruce-Pine-Fir (South)  12  14  16  16  17  21  22  24  26 
   Southern Pine  35  41  46  46  50  59  64  70  76 

  Notes:  
1. Penetration length for nails includes tapered tip; see Table A-9.2 for dimensions and Table A-9.3 for notes 
on penetration.  
2. Withdrawal design values assume penetration into  side  grain of wood member. Nails subject to withdrawal 
are not permitted to be inserted into  end  grain of wood member.  

 Table A-9.18        Shear capacity, or available strength, for a high-strength bolt subjected to single 
shear with threads excluded from shear plane (kips)  
   A. Bearing-type connections 1  

   Bolt Type  Nominal Bolt Diameter (in.) 

     5⁄8  ¾  7⁄8  1  11⁄8  1¼  13⁄8  1½ 

   A325  9.20  13.3  18.0  23.6  29.8  36.8  44.5  53.0 
   A490  11.5  16.6  22.5  29.5  37.3  46.0  55.7  66.3 

   B. Slip-critical connections (based on strength rather than serviceability) 2  

   Bolt Type 
    

 Nominal Bolt Diameter (in.) 

 5⁄8  ¾  7⁄8  1  11⁄8  1¼  13⁄8  1½ 

   A325  4.29  6.33  8.81  11.5  12.7  16.0  19.2  23.3 

   A490  5.42  7.91  11.1  14.5  18.1  23.1  27.3  33.4 

  Notes:  
1. Capacities are tabulated for single-shear connections, with bolt threads excluded from all shear planes 
(condition  X ). For double shear, multiply values by 2; for threads included within shear planes (condition  N ), 
multiply values by 0.8. For double shear  and  threads included, multiply by 2      �      0.8      �      1.6.  
2. Slip-critical capacities are based on standard holes and single-shear. For double shear, multiply values by 2. 
Slip-critical bolts must also satisfy bearing capacity values in Table A-9.19.  
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 Table A-9.19        Bearing capacity, or available strength, for a high-strength bolt bearing on 
material 1       in. thick, with clear spacing between bolts (or edge)      ≥      2       in. (kips) 1   

   Material Being 
Connected     

 Nominal Bolt Diameter (in.) 

 5⁄8      ¾  7⁄8  1  11⁄8  1¼  13⁄8  1½ 

   A36,  F u        �      58       ksi  54.4  65.3  76.1  87.0  97.9  109  120  131 
   A992,  F u        �      65       ksi  60.9  73.1  85.3  97.5  110  122  134  146 

  Note: 
 1. Capacity (available strength) is tabulated assuming that the bolt hole clear spacing (or clear spacing 
between bolt hole and material edge) in direction of force is no less than 2       in. For clear spacing less than 2       in., 
multiply capacity by  L c   /2, where  L c   is the actual clear spacing (in.). For cases where the small deformations 
associated with bolt bearing, at ordinary service loads, are considered to be a design issue, multiply capacity 
by 0.8. Where the thickness,  t , of the material is other than 1       in., multiply the capacity by the thickness,  t  
(in.). These multiplications are cumulative so that, for example, the capacity of a material with  t       �      5⁄8 in., clear 
spacing between bolts of 1.75       in., and consideration of bearing deformations, would be equal to the tabular 
value multiplied by (5⁄8)(1.75⁄2)(0.8)      �      (tabular value      �      0.4375).  

 Table A-9.20        Minimum and maximum spacing and edge distance measured from bolt 
centerline for standard holes  
   A. Minimum bolt spacing (in.) 

     Nominal Bolt Diameter (in.) 

     5⁄8  ¾  7⁄8  1  11⁄8  1¼  13⁄8  1½ 

   Suggested  17⁄8  2¼  25⁄8  3  33⁄8  3¾  41⁄8  4½ 
   Required  12⁄3  2  21⁄3  22⁄3  3  31⁄3  32⁄3  4 

   B. Minimum edge distance (in.) 1  

   Type of Edge      Nominal Bolt Diameter (in.) 

 5⁄8  ¾  7⁄8  1  11⁄8  1¼  13⁄8  1½ 

   Sheared edge  11⁄8  1¼   2 1½   2 1¾  2  2¼  213⁄32  25⁄8 
   Rolled or thermally 
cut edge 

 7⁄8  1  11⁄8  1¼  1½  15⁄8  123⁄32  17⁄8 

   C. Maximum bolt spacing and edge distance (in.) 

     Member Thickness (in.) 

     ¼  3⁄8  ½  3⁄8  ¾  7⁄8  1  11⁄8 

   Centerline spacing 3   6  9  12  12  12  12  12  12 
   Edge distance  3  4½  6  6  6  6  6  6 

  Notes: 
 1. Minimum edge distances, measured in the direction of force, may be reduced below these values, as long 
as bearing capacity is appropriately reduced (see Note 1 in Table A-9.19). 
 2. A value of 1¼       in. may be used for bolts at the ends of beam connection angles and shear end plates.  
3. Maximum centerline spacing is measured in the direction of the applied load (longitudinally) and is valid 
for members not subject to corrosion, whether painted or not. For unpainted weathering steel, the maximum 
spacing is 7       in. or, where the thinner member is less than ½       in., 14 times that member’s thickness.  
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 Table A-9.21        Size limitations (leg size,  w ) for fi llet welds (in.)  

            

 Thickness,  T , of Material Being Joined (in.) 1  

  T       <      ¼       in.   T       �      ¼       in.  ¼      <       T       <      ½       in.  ½      <       T       <      ¾       in.  ¾      <       T  

   Minimum weld size,  w   1⁄8  1⁄8  3⁄16  ¼  5⁄16 

   Maximum weld size,  w    T   3⁄16   T       �      1⁄16       in.     T       �      1⁄16       in.     T       �      1⁄16       in. 

  Note:  
1. For minimum weld size, the thickness,  T , is the thinner of the two plate thicknesses being joined (either 
 T 1   or  T 2  ); for maximum weld size, the thickness,  T , is the smallest thickness (edge) that the weld leg actually 
comes into contact with ( T 1  ).  

 Table A-9.22        Development length in inches,  l d  , for deformed bars in tension, uncoated, 
normal-weight concrete, with adequate spacing and/or stirrups 1,2,3,4,5   

    fc�    (psi)  Bar Number [ “ in-lb. ”  designation, with nominal diameter (in.)      �      bar number/8] 

     3  4  5  6  7  8  9  10  11  14  18 

   3000  17  22  28  33  48  55  62  70  78  93  124 
   4000  15  19  24  29  42  48  54  61  67  81  108 
   5000  13  17  22  26  38  43  48  54  60  72  96 

  Notes: 
 1. Bars must have a clear space between them at least equal to twice the bar diameter — that is, at least equal 
to 2 d b   — and a clear cover at least equal to the bar diameter,  d b  . Alternatively, if adequate stirrups or ties are 
used throughout the development length region to confi ne the bars and prevent splitting of the concrete, the 
minimum clear spacing requirement may be reduced to  d b  . For bars not meeting these conditions, multiply 
values by 1.5. 
 2. Values assume  “ bottom ”  bars in tension (i.e., bars placed for positive moment in beams); for  “ top ”  bars in 
tension with at least 12       in. of freshly placed concrete below them, multiply values by 1.3. 
 3. Values may be multiplied by the ratio of required steel bar area to provided steel bar area, except in cases 
where the anchorage is required to reach the yield stress,  f y  , or in certain high-risk seismic zones. 
 4. All of the modifi cations mentioned in Notes 1, 2, and 3 are cumulative; that is, a value may be multiplied by 
one or more of the applicable modifi cation factors. 
 5. In any case, the development length,  l d  , cannot be less than 12       in.  
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 Table A-9.23        Development length for standard hooks in inches,  l dh  , for uncoated bars, 
normal-weight concrete 1,2,3,4,5,6   

    fc�    (psi)  Bar Number [ “ in-lb. ”  designation, with nominal diameter      �      bar number/8] 

     3  4  5  6  7  8  9  10  11  14  18 

   3000  9  11  14  17  20  22  25  28  31  38  50 
   4000  8  10  12  15  17  19  22  25  27  33  43 
   5000  7  9  11  13  15  17  20  22  24  29  39 

  Notes:  
1. Values may be multiplied by 0.7 for all bar hooks (except those fabricated with No. 14 and No. 18 bars) 
with side cover of at least 2.5       in. and, for 90 °  hooks only, cover beyond the hook of at least 2       in.  
2. Values may be multiplied by 0.8 for all bar hooks (except those fabricated with No. 14 and No. 18 bars) 
where perpendicular ties or stirrups, spaced no more than 3 d b   along the development length, enclose them; 
or, for 90 °  hooks only, where parallel ties or stirrups enclose the  “ vertical ”  and  “ bent ”  parts of the hook, also 
spaced no more than 3 d b  .  
3. Values may be multiplied by the ratio of required steel bar area to provided steel bar area, except in cases 
where the anchorage is required to reach the yield stress,  f y  , or in certain high-risk seismic zones.  
4. All of the modifi cations mentioned in Notes 1, 2, and 3 are cumulative; that is, a value may be multiplied by 
one or more of the applicable modifi cation factors.  
5. A 90 °  hook must be extended a distance of 12 d b   below the bent portion of the bar, which in turn is defi ned 
by an inner radius that cannot be less than 3 d b   for bars smaller than No. 9; 4 d b   for No. 9, No. 10, and No. 11 
bars; and 5 d b   for No. 14 and No. 18 bars.  
6. In any case, the development length for hooks,  l dh  , cannot be less than 8 d b   or 6       in.  

 Table A-9.24        Development length in inches,  l dc  , for deformed bars in compression 1,2,3,4   

    fc�    (psi)  Bar Number [ “ in-lb. ”  designation, with nominal diameter      �      bar number/8] 

     3  4  5  6  7  8  9  10  11  14  18 

   3000  9  11  14  17  20  22  25  28  31  38  50 

   4000  8  10  12  15  17  19  22  25  27  33  43 

   5000  8  9  12  14  16  18  21  23  26  31  41 

  Notes:  
1. Values may be multiplied by 0.75 where adequately confi ned by a spiral or ties (specifi cally, with a 
minimum ¼-in. spiral at no more than a 4-in. pitch or with No. 4 ties spaced at no more than 4       in. on center).  
2. Values may be multiplied by the ratio of required steel bar area to provided steel bar area, except in cases 
where the anchorage is required to reach the yield stress,  f y  , or in certain high-risk seismic zones.  
3. All of the modifi cations mentioned in Notes 1 and 2 are cumulative; that is, a value may be multiplied by 
one or more of the applicable modifi cation factors.  
4. In any case, the development length for compression,  l dc  , cannot be less than 8       in.  
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 Table A-10.1        Unit abbreviations  

   SI (international system) Units  Inch-pound Units 

   m      �      meter  in.      �      inch 
   mm      �      millimeter  ft      �      foot 
   MPa      �      megapascal  kip  is unabbreviated  
   N      �      newton  lb      �      pound 
   kN      �      kilonewton  psi      �      pounds per square inch 
   kg      �      kilogram  ksi      �      kips per square inch 
   km/h      �      kilometers per hour  psf      �      pounds per square foot 
     pcf      �      pounds per cubic foot 
     mph      �      miles per hour 

 Table A-10.2        Conversions from SI (international system) to inch-pound units  

   Length, Area, Volume, 
Section Modulus, and 
Moment of Inertia 

 Weight, Moment, and Speed  Pressure, Load per Unit 
Length, and Density 

   1       m      �      3.2808       ft  1       N      �      0.2248       lb  1       MPa      �      145.0377       psi 
   1       mm      �      0.0394       in.  1       kN      �      0.2248       kips  1       MPa      �      0.1450       ksi 
   1       mm 2       �      0.00155       in 2   1       N-m      �      0.738       ft-lb  1       kN/m      �      0.0685       kips/ft 
   1       m 2       �      10.7639       ft 2   1       kN-m      �      0.738       ft-kips  1       kN/m 2       �      20.8854       psf 
   1       m 3       �      35.3147       ft 3   1       N-m      �      8.850       in-lb  1       kg/m 3       �      0.0624       pcf 
   1       mm 3       �      6.1024      �      10  � 5        in 3   1       kN-m      �      8.850       in-kips   
   1       mm 4       �      2.4025      �      10  � 6        in 4   1       km/h      �      0.6214       mph   

  Unit abbreviations 
and conversion       10

   APPENDIX
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 Table A-10.3        Conversions from inch-pound to SI (international system) units  

   Length, Area, Volume, Section 
Modulus, and Moment of 
Inertia 

 Weight, Moment, and Speed  Pressure, Load per Unit 
Length, and Density 

   1       ft      �      0.3048       m  1       lb      �      4.4482       N  1       psi      �      0.006895       MPa 
   1       in      �      25.40       mm  1       kip      �      4.4482       kN  1       ksi      �      6.895       MPa 
   1       in 2       �      645.16       mm 2   1       ft-lb      �      1.3558       N-m  1       kip/ft      �      14.59       kN/m 
   1       ft 2       �      0.0929       m 2   1       ft-kip      �      1.3558       kN-m  1       psf      �      0.0479       kN/m 2  
   1       ft 3       �      0.0283       m 3   1       in-lb      �      0.11298       N-m  1       pcf      �      16.03       kg/m 3  
   1       in 3       �      16,387       mm 3   1       in-kip      �      0.11298       kN-m   
   1       in 4       �      416,231       mm 4   1       mph      �      1.609       km/h   
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  about     [as in: compute moment  about  the neutral axis]  prep.  The term  “ about ”  is equivalent to saying, 
 “ by measuring moment arms perpendicularly from each force to. ”   

  axial force      n.  A force parallel to the longitudinal axis of a structural element.  

  beams and stringers      n.  A subcategory of  “ timbers ” ; refers to lumber whose smaller nominal cross-
sectional dimension exceeds 4 in. and whose larger nominal cross-sectional dimension is at least 
4 in. bigger than the smaller dimension, thereby forming a rectangular shape appropriate for use 
as a beam, but not limited to that use.  

  bearing      ger.  The force exerted, in compression, by the surface of a structural element in contact with 
(i.e., pressing against) the surface of another element.  

  bending moment      n.  An effect on a structural element caused by the action of at least two parallel 
force components that are not co-linear, and resulting in a distribution of stress within the ele-
ment’s cross section characterized by maximum stress at the  “ extreme fi bers ”  (opposite edges) 
and zero stress at the neutral axis.  

  bolt      n . A type of fastener used in both wood and steel construction consisting of a head and threaded 
shank, onto which is placed a nut; bolts are fi rst inserted into a bolt hole before being tightened.  

  brittle      adj.  Lacking ductility, that is, lacking the ability to absorb energy, therefore being susceptible 
to catastrophic and sudden failure, especially under dynamic loading.  

  cantilevered beam      n.  A beam that   extends beyond one or both of its supports.  

  compact section      n.  Steel shapes proportioned so that, when used in bending, the strength and 
reserve capacity of the element will not be compromised by local fl ange or web buckling within 
those portions of the cross section subjected to compressive stress; this is primarily a function 
of the relative thickness of fl anges and webs; for noncompact shapes, the available strength is 
reduced.  

  continuous beam      n.  Any beam that extends over more than two supports and is, therefore,  stati-
cally indeterminate .  

  couple     [of equal and opposite forces on a cross section in bending]  n.  Two equal and opposite 
forces,  F , separated by a moment arm,   τ   (i.e., two such forces that are not co-linear), and therefore 
causing a moment,  M       �       F       �        τ  .  

  curing     [of concrete]  ger.  The chemical process by which concrete hardens; the reaction of portland 
cement and water within the concrete mix.  

  cylinder strength     [of concrete]  n.  The compressive stress at which a 6 in.      �      12 in. cylinder of con-
crete, which has cured for 28 days, fractures.  

  defl ection      n.  The movement measured perpendicular to the longitudinal axis of a structural ele-
ment under load, typically a beam; the term usually refers to the  maximum  defl ection, often at 
midspan.  

  determinate      adj.  Pertaining to a class of structures whose reactions can be determined using only 
equations of equilibrium; includes simply supported beams, cables, three-hinged arches, and 
pinned trusses formed from simple triangles.  

  development length      n.  For reinforcement in reinforced concrete structures, the minimum bar 
length such that any tendency for the bar to slip relative to the concrete is counteracted.  

     Glossary        
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  dimension lumber      n.  Lumber whose smaller nominal cross-sectional dimension is 4 in. or less; used 
extensively in light wood framing.  

  ductile      adj.  Having the capacity to absorb energy without fracturing; a quality of steel, but not of cast 
iron; of wood (in compression), but not of unreinforced concrete or masonry; see  brittle .  

  elastic     [behavior of material]  adj.  A material property characterized by a return to the initial shape 
after a load is fi rst applied and then removed; associated with  linear  stress-strain behavior.  

  elastic moment      n.  The largest bending moment that can be sustained by a structural element such 
that all stresses within a given cross section are within the elastic range; in steel, the distribution 
of stresses coinciding with an elastic moment is linear, with a maximum value equal to the yield 
stress,  F y  .  

  equilibrium      n.  A state of  “ rest, ”  or balance, characterized by the sum of all forces in any direction 
being zero and the sum of all moments about any axis being zero; in a  “ plane ”  (two-dimensional) 
structure, conditions of static equilibrium are met when all forces in the  x-  and  y- directions (i.e., 
those axes that defi ne the plane in which the structural element exists) equal zero, and all mo-
ments about the  z -axis equal zero  .  

  free-body diagram     [FBD]  n.  A diagram of a structural element (or portion thereof) abstracted from 
its context, together with all forces and moments acting on the element, both externally (ordi-
nary loads and reactions) and internally (at cross sections where the element has been  “ cut, ”  
representing internal shears, axial forces, and bending moments).  

  force      n.  A vector with magnitude and direction represented by an arrow, ordinarily described as a 
 load  or  weight , and measured in units of pounds or kips.  

  graded     [lumber]  adj.  Having a mark that describes the quality of a given piece of lumber; typical 
grades include  select structural, No. 1, No. 2, No. 3, stud, construction, standard,  and  utility .  

  grain     [of lumber]  n.  The directional pattern observed on the surface of lumber (or manufactured 
products such as plywood) corresponding to the groups of cellulose fi bers originally running 
longitudinally up the trunk of the tree.  

  indeterminate      adj.  Pertaining to a class of structures whose reactions cannot be determined using 
only equations of equilibrium; analysis of such structures requires, in addition to equilibrium, 
consideration of compatibility of displacements, and therefore of the  relative stiffness  of struc-
tural elements; such structures are also described as  redundant , in that they contain elements, or 
constraints, beyond what is required for  equilibrium .  

  infl uence area      n.  The area in plan   within which a load will have an effect upon (i.e., infl uence) 
a structural element, formerly used in the calculation of  live load reduction ; not to be con-
fused with  tributary area , but rather equal to the tributary area times the live load element 
factor,  K LL  .  

  internal hinge      n.  A connecting device within a structural form that prevents translation (vertical or 
horizontal moment) of one side relative to the other, but allows rotation; present in three-hinged 
arches and multi-span determinate beams.  

  joist     [steel or wood]  n.  One of a series of closely spaced and parallel beams supporting a fl oor; 
in wood-frame construction, joists are commonly made from  dimension lumber  and spaced at 
16 in. or 24 in. on center.  

  knot     [in lumber]  n.  A defect in a piece of lumber characterized by the interruption of the board’s 
parallel grain by circular rings corresponding to the former position of a branch.  

  lag screw      n.  A type of fastener used in wood construction consisting of a head, shank, and tapered 
tip; part of the shank and tapered tip are threaded; sometimes called  lag bolt .  
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  leeward      adj.  Referring to the side of a building on the far side relative to the direction of the wind; 
see  windward .  

  lignin      n.  The  “ glue ”  binding cellulose fi bers together within a wood cross section.  

  linear     [e.g., stretching and shortening on a cross section subjected to bending]  adj.  In a straight line; 
referring to the straight-line stress-strain (or load-deformation) curves of certain materials, within 
their elastic ranges.  

  live load reduction      n.  The permitted reduction of live loads assumed to be present on relatively 
large areas, justifi ed by the probabilistic argument that the worst-case live load values found in 
building codes (determined for relatively small areas) are increasingly less likely to be valid as 
the areas being considered get larger; calculations for live load reduction were formerly based on 
the so-called  infl uence area , but now are based on the  tributary area  multiplied by a live load 
element factor,  K LL  .  

  live load element factor     [see infl uence area]  

  main member      n . Where two structural elements are connected using nails or lag screws, the mem-
ber into which the fastener end terminates; with bolts, the thicker of the two members, if any; or 
the middle member in three-member (usually bolted) connections.  

  moisture content      n.  A measure of the water within a piece of wood, defi ned as the weight of wa-
ter divided by the dry weight of the wood and expressed as a percentage; the moisture content 
(m.c.) separating dry ( “ seasoned ” ) and wet ( “ green ” ) lumber is about 19%.  

  modulus of elasticity      n.  A material property defi ned as the change in stress divided by the change 
in strain; therefore, the slope of a stress-strain curve, implicated in the  “ stiffness, ”  but not the 
strength, of a material.  

  moment of inertia      n.  For structural elements subjected to bending, a cross-sectional property in-
dicating the section’s contribution to stiffness; calculated by fi nding the sum of the products of 
areas and the square of their distances to the centroidal axis of the section.  

  nail      n . A type of fastener used to connect two pieces of wood consisting of a head, shank, and 
tapered tip; typically driven into the wood by means of a hammer or pneumatic device.  

  penetration      n . For nails and lag screws, the length of the fastener within the main member.  

  plane structure      n.  A structure or structural element that can be modeled as existing, and moving 
under the application of loads, on a two-dimensional (plane) surface.  

  plastic     [behavior of material]  adj.  A material property characterized by a failure to return to the 
initial shape after a load is fi rst applied and then removed; steel, for example, has a distinct plastic 
range beyond its  elastic range .  

  plastic moment      n.  In steel, the bending moment at a cross section within a structural element cor-
responding to a stress distribution in which all stresses are assumed to be equal to the yield stress, 
 F y  , half in tension and half in compression.  

  point of infection      n.  A point along a structural element subject to bending marking the transition 
from positive to negative moment; a point of zero moment between regions of bending with 
opposite curvature.  

  ponding      ger.  A phenomenon associated with fl at or low-slope roofs in which rain water, collecting 
in the defl ected areas at the midspan of roof beams, causes increased defl ection as it accumulates, 
leading to progressively larger defl ections and, potentially, structural failure; can be prevented by 
providing adequate slope, proper drainage, and camber for large spans.  

  posts and timbers      n.  A subcategory of  “ timbers ” ; refers to lumber whose smaller nominal cross-
sectional dimension exceeds 4 in. and whose other nominal cross-sectional dimension is the 
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same or no more than 2 in. bigger than the smaller dimension, thereby forming a relatively square 
shape appropriate for use as a column (post), but not limited to that use.  

  reaction      n.  For any structural element, the forces and moments at its supports necessary to resist the 
action of applied loads, thereby maintaining a condition of  equilibrium .  

  redundant     [see  indeterminate ]  

  reinforcement (steel) ratio  [in reinforced concrete]  n.  The ratio of the area of reinforcing steel to 
the gross area, for columns; for beams, the ratio of the area of reinforcing steel to the area defi ned 
by the beam width times the beam depth measured from the face of concrete in the compression 
zone to the centerline of tensile steel reinforcement.  

  relative stiffness      n.  The stiffness of one element (stiffness defi ned for elements subjected to bend-
ing as the  modulus of elasticity  times the  moment of inertia ; for elements subjected to axial 
force, as the  modulus of elasticity  times the cross-sectional area) compared to that of another; 
where two or more elements combine to resist the same loads, those loads are resisted by each 
element in proportion to its relative stiffness.  

  residual stress      n.  Stress  “ locked in ”  to a structural element, usually as an unintended but unavoidable 
result of heating and cooling during the manufacturing process (e.g., hot-rolled steel sections), 
but sometimes as a deliberate technique for improving material qualities (e.g., tempered glass).  

  sag     [of a cable]  n.  The vertical distance measured from the low-point of a cable to the level of the 
supports.  

  sag point      n.  The position along the length of a cable corresponding to the lowest point; see  sag .  

  section modulus      n.  A cross-sectional property indicating that section’s relative strength in bend-
ing; equals the  moment of inertia  divided by half the height of the section (for symmetrical 
sections).  

  shear force      n.  An internal force within a cross section perpendicular to the longitudinal axis of the 
structural element.  

  side member      n . Where two structural elements are connected using nails or lag screws, the member 
into which the fastener is fi rst inserted; with bolts, the thinner of the two members, if any; or the 
two outside members in three-member (usually bolted) connections.  

  sign     [of a  bending moment  or  shear force ]  n.  An arbitrary assignment of  “ positive ”  or  “ negative ”  
corresponding to rotational direction (for a  bending moment ) or vertical direction (for  shear  in 
a beam); for beams, positive bending corresponds to tension on the bottom and compression on 
the top of the cross section, with a counterclockwise moment acting on the right side of a  free-
body diagram ; positive shear corresponds to an downward-acting force on the same  free-body 
diagram .  

  simply supported beam      n.  A beam supported by a hinge and a roller, the hinge preventing all 
translation but allowing rotation, and the roller preventing translation perpendicular to the lon-
gitudinal axis of the beam while allowing  “ horizontal ”  translation and rotation; such a model is 
commonly applied to ordinary steel and wood beams and joists, which both approximates their 
actual behavior and allows them to be analyzed as  statically determinate  structures.  

  shear lag      n.  A phenomenon encountered when a connection is made to only a portion of a steel 
element in tension so that the cross section in the vicinity of that connection is only partially, and 
incompletely, stressed.  
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  slenderness ratio      n.  A dimensionless property of a structural element subjected to axial compres-
sion, indicating its susceptibility to buckling, and defi ned as the effective length divided by the 
radius of gyration; the more  “ slender ”  the element, the greater the tendency to buckle.  

  spandrel     [beam or girder]  adj.  At the outside face of a building.  

  specifi c gravity      n.  A material property equal to the relative density of the material compared to 
that of water.  

  spiral     [in a reinforced concrete column]  n.  A continuous steel wire in the shape of a spiral used to 
confi ne both longitudinal reinforcing steel and concrete within a round cross section.  

  stagnation pressure     [see velocity pressure]  

  statically determinate     [see determinate]  

  statically indeterminate     [see  indeterminate ]  

  stud     [steel or wood]  n.  One of a series of closely spaced and parallel posts comprising a wall; 
in wood-frame construction, studs are commonly made from  dimension lumber  and spaced at 
16 in. or 24 in. on center.  

  tension-controlled member      n.  A reinforced concrete element in which failure is initiated by yield-
ing of reinforcing steel in tension, rather than by crushing of concrete in compression.  

  thickness     [of wood cross section]  n.  The smaller dimension of a wood cross section.  

  tie     [in a reinforced concrete column]  n.  One of a series of steel reinforcing bars placed around the 
perimeter of reinforced concrete columns and used to confi ne both longitudinal reinforcing steel 
and concrete within rectangular cross sections.  

  timbers      n.  Lumber whose smaller nominal cross-sectional dimension is greater than 4 in.  

  torsion      n.  An effect on a structural element caused by the action of a moment about the element’s 
longitudinal axis; also referred to as torque or twisting.  

  tributary area      n.  The fl oor or roof area assigned to each structural element, measured from the cen-
terlines between those elements; used to determine the distribution of loads; results in accurate 
load values only in special cases without cantilevers or continuous  (indeterminate)  elements, 
and with symmetrical placement of loads; otherwise, still useful as an approximate means for 
assigning loads.  

  unbraced length     [between lateral supports on a beam]  n.  The distance between lateral supports on 
a beam, used to determine the beam’s susceptibility to lateral-torsional buckling and, therefore, 
the reduction in allowable bending stress.  

  under-reinforced     [concrete beams]  adj.  Having the desirable property that failure is initiated by 
yielding of reinforcing steel in tension rather than by crushing of concrete in compression; such 
behavior is implemented by requiring a minimum steel strain at failure of 0.004 (or 0.005 to take 
advantage of the highest  “ strength reduction ”  factor for bending).  

  uniformly distributed     [load]  adj.  Spread out evenly over a fl oor or roof (in which case it is mea-
sured in units of pounds per square foot), or over a linear element such as a beam (in which case 
it is measured in units of pounds or kips per linear foot).  

  unserviceable      adj.  Not useful or adequate for its intended purpose, due to such things as excessive 
vibration or defl ection under normal loads.  

  velocity (or stagnation) pressure      n.  The pressure (uniformly distributed load) assumed to act on 
the surface of a building, caused by the force of a constant wind; proportional to the square of 
the wind’s speed.  
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  weld      n . A type of fastening used in steel construction in which molten steel deposited by an 
electrode cools and joins two structural steel elements together.  v . To engage in the activity of 
depositing such electrode-steel in order to connect two steel structural elements together.  

  width     [of wood cross section]  n.  The larger dimension of a wood cross section.  

  windward      adj.  Referring to the side of a building directly in the path of the wind; see  leeward .  

  withdrawal      n.  A mode of failure for nails or lag screws caused by the action of a tensile force that 
pulls (withdraws) the fastener out from its intended position.  

  workability     [of concrete]  n.  Being of a consistency that permits proper mixing and placement; not 
too stiff.  

  yielding     [of steel]  ger.  A characteristic property of steel in the plastic range in which the material 
is able to strain without any increase in stress — that is, deformations can increase at a constant 
load; the stress at which yielding occurs, marking the end of the  elastic  range, is called the yield 
stress.           
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 Adjustment factor  

 beam stability   ,  139   ,  275   
 column stability   ,  109   ,  110   ,  270   
 duration of load   ,  349   
 fl at use   ,  274   
 geometry   ,  200   ,  202   ,  203   ,  206   ,  208   ,  214   ,  356   
 group action   ,  350 – 5   
 repetitive member   ,  275   
 size   ,  139   
 temperature   ,  267   ,  271   ,  277   ,  279   ,  282   ,  359   
 toe-nail   ,  200   ,  359   
 volume   ,  274 – 5   
 wet service   ,  199   ,  279   ,  281   ,  350    

 Allowable strength design   ,  80   ,  150   
 Allowable stress design   ,  79 – 80   ,  133 – 4   ,  153   ,  311   
 Arch, three-hinged   ,  12 – 14   ,  29 – 30   
 Arch, two-hinged   ,  14   
 Area, effective net   ,  97   ,  99   
 Area, gross   ,  90   ,  96 – 9   
 Area, infl uence   ,  41   ,  42   
 Area, net   ,  90   
 Area, tributary   ,  2 – 7   ,  183    

 B  
 Beam   ,  2   ,  10   ,  18   ,  129   ,  193   
 Beam, continuous   ,  130   ,  131   ,  171   
 Beam, simply supported   ,  8   ,  10 – 12   ,  19 – 22   ,  130   ,  131   , 
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 Beams and stringers   ,  73   
 Bending   ,  8   ,  18   ,  131   ,  151 – 7   ,  173 – 5   
 Bending moment   ,  see   Moment   
 Bernoulli, Daniel   ,  49   
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 Cable   ,  14   ,  28   ,  30   ,  70   
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 Constraint   ,  11   ,  13   ,  15   ,  31   ,  71   ,  75   ,  193   ,  194   
 Corrosion   ,  68   ,  122   ,  165   
 Couple   ,  134   ,  198   
 Cover   ,  10   ,  76   ,  105   ,  135   ,  165   ,  169   ,  176   ,  239   ,  240   
 Curing   ,  70   ,  71   ,  104   
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 D  
 Defl ection   ,  4   ,  129   ,  160   ,  178 – 9   
 Deformation   ,  31   ,  33   ,  61   ,  97   
 Determinate   ,  7   ,  9   ,  10   ,  28   ,  33   ,  171   ,  175   
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 82   ,  83   
 Dimension lumber   ,  see  Lumber  dimension   
 Ductility   ,  61   ,  68   ,  70    

 E  
 Earthquake   ,  1   ,  4   ,  6   ,  40   ,  46   ,  54   ,  55   ,  81   ,  194   
 Elastic   ,  36   ,  61   ,  68   ,  115 – 16   ,  117   ,  132   ,  151   ,  152   ,  
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 Elongation   ,  89   ,  129   ,  132   ,  133   
 Equilibrium   ,  7 – 10   
 Euler, Leonard   ,  107 – 8   ,  109   ,  110   ,  115   
 Exposure   ,  46   ,  47   ,  51    

 F  
 Fastener   ,  see   Connection   
 Fatigue   ,  65   
 Fireproofi ng   ,  105   
 Flexure   ,  see   Bending   
 Force   ,  1   ,  17   ,  18   ,  22   ,  28   ,  29   ,  30   ,  87   ,  92   
 Force, axial   ,  18   ,  19   ,  22   ,  28   ,  29   ,  30   
 Force couple   ,  see   Couple   
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 G  
 Gage   ,  88   
 Girder   ,  2   ,  3   ,  4   ,  5   ,  157   ,  162   ,  193   ,  242   
 Glued-laminated lumber   ,  64   ,  65   ,  139   ,  265   ,  266   ,  267   , 

 268   ,  271   ,  272 – 3   ,  274   ,  277   ,  278   ,  279   
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 H  
 Hinge   ,  9   ,  10   ,  12   ,  29   ,  193   ,  194   ,  226   
 Hinge, internal   ,  13 – 14   
 Hollow structural section (HSS)   ,  69   ,  75   ,  163   ,  302   ,  304   
 Hook   ,  241   ,  242   ,  243   ,  372    

 I  
 I-joist   ,  67   
 Importance factor   ,  46   ,  50   ,  254   ,  257   ,  263   
 Indeterminate   ,  7   ,  29   ,  31 – 3   ,  171   
 Inelastic   ,  69   ,  115 – 17   ,  155   
 Infl ection, point of   ,  244    

 K  
 Knot   ,  63   ,  64   ,  65    

 L  
 Lag screw   ,  90   ,  92   ,  194   ,  195   ,  198   ,  201   ,  212   ,  222   ,  

347   ,  348   
 Laminated veneer lumber (LVL)   ,  65 – 6   
 Lap splice   ,  see   Splice   
 Leeward   ,  48   ,  52   ,  54   ,  255   ,  256   
 Length, effective   ,  98   ,  122   ,  139   ,  233   ,  317   
 Length, unbraced   ,  108   ,  110   ,  117   ,  122   ,  153   ,  154   ,  

156   ,  157   
 Lignin   ,  63   
 Line of action   ,  8   ,  11   
 Linear   ,  1   ,  57   ,  61   ,  62   ,  132   ,  133   
 Live load   ,  see   load, live 
 Live load element factor   ,  42   
 Live load reduction   ,  6   ,  42   ,  43   
   Load   ,  1   ,  2   ,  39 – 60   ,  65   ,  82   ,  83   
 Load, concentrated   ,  4   ,  5   ,  139   
 Load, dead   ,  39 – 41   
 Load, distributed   ,  2   ,  3   ,  23   
 Load, earthquake   ,  46   
 Load, environmental   ,  46 – 60   ,  253   
 Load, live   ,  41 – 5   ,  46   ,  252   
 Load, seismic   ,  54 – 60   
 Load, snow   ,  46 – 9   ,  254   
 Load, wind   ,  49 – 54   
 Load factor   ,  80 – 1   ,  199   ,  311   
 Load path   ,  6 – 7   ,  57   

 Load resistance factor design   ,  81   
 LRFD   ,  see   load resistance factor design   
 Lumber, dimension   ,  73 – 4   ,  139   ,  140   ,  147   ,  265    

 M  
 Main member   ,  90   ,  196   ,  213   ,  217   ,  360 – 4   
 Method of sections   ,  see   Section method   
 Modulus of elasticity   ,  61   ,  62   ,  68   ,  132   ,  279   ,  280   
 Moisture content   ,  64   ,  199   
 Moment   ,  17 – 31   ,  107   ,  108   ,  134 – 5   ,  140   ,  142   ,  161   
 Moment, elastic   ,  132   ,  151   ,  152   ,  153   ,  154   
 Moment, internal   ,  10   
 Moment, plastic   ,  133   ,  135   ,  151   ,  152   ,  153   ,  154   ,  156   
 Moment arm   ,  11   
 Moment of inertia   ,  34 – 5    

 N  
 Nail   ,  90   ,  193   ,  194   ,  196   ,  198   ,  200   ,  201   ,  215   ,  222   ,  223   
 Neutral axis   ,  63   ,  132   ,  133   ,  137 – 8   
 Newton, Isaac   ,  1   ,  7   
 Nonlinear   ,  57   ,  61   ,  132   ,  133   ,  166    

 O  
 Open-web steel joist (OWSJ)   ,  69 – 70   
 Oriented strand board (OSB)   ,  67    

 P  
 Parallel strand lumber (PSL)   ,  66   
 Period   ,  see   Fundamental period of vibration   
 Plastic   ,  36   ,  61   ,  151   ,  153   ,  154   
 Plate   ,  194   ,  195   ,  209   ,  237   
 Plate, gusset   ,  97   ,  100   
 Plate, pin-connected   ,  99   ,  103 – 4   
 Plywood   ,  66   ,  67   
 Ponding   ,  129   
 Posts and timbers   ,  73   ,  266   ,  268   ,  272   ,  288   
 Pressure, velocity   ,  49   ,  50   ,  51 – 2    

 R  
 R-value   ,  47   
 Radius of gyration   ,  37   ,  98   ,  108   ,  122   
 Reaction   ,  1   ,  9   ,  10 – 17   
 Rebar   ,  see   Reinforcing bar   
 Redundant   ,  see   Indeterminate   
 Reinforcement ratio   ,  121   ,  126   
 Reinforcing bar   ,  70   ,  75   ,  164   ,  165   ,  175   ,  176   ,  177   ,  193   , 

 238   ,  239   ,  244   
 Response modifi cation factor   ,  56   
 Roof   ,  1   ,  46 – 7   ,  194   
 Rupture   ,  68   ,  87   ,  97   ,  98 – 9    
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 S  
 Sag   ,  14   ,  16   
 Section method   ,  28 – 9   
 Section modulus   ,  36   ,  134 – 5   ,  151   ,  153   
 Seismic   ,  see   Earthquake   
 Seismic design category   ,  259   ,  263   
 Seismic load   ,  see   Load earthquake   
 Seismic response coeffi cient   ,  263   
 Seismic weight   ,  see   Weight seismic   
 Shear   ,  18   ,  19   ,  22   ,  23   ,  91   ,  145   ,  157 – 9   ,  185 – 91   ,  196 – 221   , 

 228   ,  229   
 Shear, double   ,  196   ,  198   ,  199   ,  206   ,  209   ,  217   ,  361   ,  363   
 Shear, single   ,  196   ,  197   ,  198   ,  201   ,  204   ,  212   ,  215   ,  

360   ,  365   
 Shear lag   ,  97   ,  313   
 Shrinkage (of concrete)   ,  71   ,  178   
 Side member   ,  196   ,  198   ,  199   ,  365   ,  366   ,  367   
 Sign convention   ,  10   ,  11   ,  13   
 Slenderness ratio   ,  98   ,  108   ,  110   ,  115 – 16   
 Space frame   ,  70   
 Spandrel   ,  2   ,  4   ,  5   
 Spiral   ,  76   ,  77   ,  121   ,  245   ,  328   
 Splice   ,  97   ,  244   ,  245   ,  246   ,  247   
 Stagnation pressure   ,  see   Pressure velocity   
 Statics   ,  1 – 37   ,  249 – 50   
 Steel   ,  61   ,  68 – 70   ,  74 – 5   ,  96 – 104   ,  115 – 20   ,  121   ,  150 – 64   , 

 226 – 38   
 Steel ratio   ,  see   Reinforcement ratio   
 Stiffness   ,  33   ,  35   ,  55   
 Stiffness, relative   ,  7   
 Stirrup   ,  76   ,  185   ,  186   ,  187   ,  189   
 Story, soft   ,  57   
 Story, weak   ,  57   
 Strain   ,  61 – 2   ,  68   ,  123   ,  132   ,  133   ,  165   ,  166   
 Strength   ,  33 – 7   ,  70   ,  109   ,  122   ,  151   ,  165   ,  234   
 Strength, cylinder   ,  70   ,  104   ,  167   
 Strength design   ,  80 – 5   ,  150   ,  153   ,  168   ,  187   ,  311   
 Strength reduction factor   ,  80 – 1   ,  312   
 Stress   ,  61   ,  68   ,  79   ,  151   ,  153   
 Stress, axial   ,  87   ,  107   
 Stress, bending   ,  130 – 8   
 Stress, buckling   ,  108   ,  109   ,  115   ,  116   
 Stress, compressive   ,  69   ,  70   ,  107   ,  109   ,  224   
 Stress, residual   ,  68 – 9   ,  115   
 Stress, shear   ,  92   ,  136   ,  137   ,  138   ,  139   ,  157   ,  185   
 Stress, tension   ,  90   ,  133   ,  157 – 8   ,  164 – 5   
 Stress block   ,  44   ,  168   ,  171   ,  173   

 Stringers   ,  see   Beams and stringers   
 Structure, axial-force   ,  18   ,  28 – 9   ,  30   
 Structure, plane   ,  7   ,  8   
 Structure, rigid-body   ,  9   
 Stud   ,  69   ,  73   
 Symmetry   ,  7   ,  10   ,  36   ,  232    

 T  
 Tear-out, group   ,  91   ,  92   ,  94   ,  315   
 Tear-out, row   ,  91   ,  92   ,  94   ,  315   
 Tension   ,  22   ,  64   ,  87 – 105   ,  229   ,  238 – 44   ,  244 – 5   ,  265   , 

 284   ,  313   
 Tension-controlled   ,  173   ,  343   
 Ties   ,  121   ,  328   
 Timbers   ,  73   ,  141   
 Truss   ,  28 – 9   ,  67   ,  100    

 U  
 Under-reinforced beam   ,  165   ,  166   ,  173   ,  175   
 Units   ,  1   ,  375 – 6   
 Unserviceable   ,  129    

 V  
 Velocity pressure   ,  see   pressure, velocity    

 W  
 Weight, seismic   ,  55   ,  58 – 9   ,  60   
 Weld   ,  98   ,  193   ,  226   ,  230 – 8   
 Weld, fi llet   ,  230   ,  231   ,  232   ,  233 – 4   ,  371   
 Weld, groove   ,  230   
 Weld, plug   ,  230   
 Weld, slot   ,  230   
 Whitmore section   ,  97   ,  98   
 Whitney, C.S.   ,  167   
 Wind   ,  1   ,  4   ,  6   ,  46   ,  51   ,  52   ,  194   
 Wind speed   ,  46   ,  49   ,  50   
 Windward   ,  51   
 Wood   ,  61   ,  62   ,  63 – 7   ,  73 – 4   ,  89 – 96   ,  109 – 15   ,  139 – 50   , 

 185   ,  194 – 226   
 Workability   ,  71    

 Y  
 Yield limit equations   ,  199   
 Yielding   ,  68   ,  69   ,  96   ,  97   ,  98   ,  115   ,  122   ,  158   ,  165   ,  173   , 

 186   ,  198              
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