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Preface

As is well known, architects and builders rarely design the structural elements and
systems within their buildings, instead engaging the services of (and, it is to be
hoped, collaborating with) structural engineers, or relying upon standard practices
sanctioned by building codes. Where architects or builders wish to be adventurous
with their structures, some knowledge of structural behavior and the potential of
structural materials is certainly useful. On the other hand, where they are content
to employ generic structural systems—platform framing in wood, simple skeletal
frames in steel or reinforced concrete—one can get by with little actual knowledge
of structural design, relying instead on the expertise of structural consultants and
the knowledge of common spans, heights, and cross-sectional dimensions around
which many ordinary buildings can be planned.

The heroic stage of modernism, in which architects often sought to reconcile
structural behavior and overall building form—some finding inspiration in the struc-
tural frame or the load-bearing wall—was also the heroic stage of structural educa-
tion for architects: it was hardly necessary, in that context, to explain why architects
needed to learn about structures. Some of the same excitement about the potential
of structure in architecture still remains, but it is also true that a “mannerist” ten-
dency has emerged, interested not necessarily in renouncing the role of structure in
architecture, but rather reveling in its potential to distort, twist, fragment, and other-
wise subvert modernist conventions and the architectural forms they support.

Yet all structures, whether hidden from view or boldly expressed, follow the
same laws of equilibrium, are exposed to the same types of forces, and are con-
strained by the same material properties and manufacturing practices. It is, there-
fore, appropriate for architects and builders to study structures in such a way that
the basic principles underlying all structural form become clear. This can be accom-
plished in three phases: (1) by studying the concepts of statics and strength of
materials, (2) by learning how these concepts are applied to the design of common
structural elements fabricated from real materials, and (3) by gaining insight into the
design of structural systems comprised of structural elements interconnected in a
coherent pattern.

Much of the material presented in this text can be found elsewhere; the basic
conditions of equilibrium, historical insights into structural behavior that form the
basis for structural design, and recommendations for design procedures incorpo-
rated into building codes are all widely disseminated through industry-published
manuals, government-sanctioned codes, and academic texts. Many excellent struc-
tures texts have been written specifically for architects and builders. Thus, the ques-
tion naturally arises: Why write another one?

The primary motivation for writing this text is to organize the material in a man-
ner consistent with the structures curriculum developed within the Department
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of Architecture at Cornell University, based on the three sequential “phases” just
described—structural concepts, elements, and systems. While this text does contain
a concise introduction to structural concepts (statics), it is primarily concerned with
the design and analysis of structural elements: columns, beams, and tension mem-
bers, and their connections. This material is organized into a single volume that is
concise, comprehensive, and self-sufficient, including all necessary data for the pre-
liminary design and analysis of these structural elements in wood, steel, and rein-
forced concrete.

A second motivation for writing this text is to present material in a manner con-
sistent with my own priorities and sensibilities. Every chapter contains insight, spec-
ulation, or forms of presentation developed by the author and generally not found
elsewhere. Additionally, the Appendices included at the end of the text contain
numerous tables and graphs, based on material contained in industry publications, but
reorganized and formatted especially for this text to improve clarity and simplicity—
without sacrificing comprehensiveness.

Methods for designing structures and modeling loads are constantly being
refined. Within the past several years, important changes have occurred in the
design of wood, steel, and reinforced concrete structures, as well as in the model-
ing of loads. These changes include revised procedures for beam and column design
in wood; the replacement of the standard specification for 36-ksi steel with a new
standard based on 50-ksi steel for wide-flange sections; a major modification in the
load factors used in reinforced concrete design, aligning them with those recom-
mended by SEI/ASCE 7 and already used in the design of wood and steel structures;
and numerous refinements in the modeling of environmental loads. These changes
have all been incorporated into this text.

Finally, a disclaimer: This text is intended to be used only for the preliminary
(schematic) design and understanding of structural elements. For the design of an
actual structure, a competent professional should be consulted.
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CHAPTER

Statics

The study of structural behavior and structural design begins with the concept of
load. We represent loads with arrows indicating direction and magnitude. The mag-
nitude is expressed in pounds (Ib), kips (1kip = 10001b), or appropriate SI units
of force; the direction is usually vertical (gravity) or horizontal (wind, earthquake),
although wind loads on pitched roofs can be modeled as acting perpendicular to the
roof surface (Figure 1.1).

Where loads are distributed over a surface, we say, for example, 100 pounds
per square foot, or 100 psf. Where loads are distributed over a linear element, like
a beam, we say, for example, 2Kkips per linear foot, or 2kips per foot, or 2kips/ft
(Figure 1.2). Where loads are concentrated at a point, such as the vertical load trans-
ferred to a column, we say, for example, 10kips or 10k.

Finding out what the loads are that act on a structure and how these loads are sup-
ported is the prerequisite to all structural design.There are two main reasons for this.
First, the fact that a structural element is supported at all means that the supporting
element is being stressed in some way. To find the magnitude of the reactions of an
element is thus to simultaneously find the magnitude of the loads acting on the support-
ing element. Each action, or load, has an equal reaction; or, as Newton said in defense of
this third law:“If you press a stone with your finger, the finger is also pressed by the stone”

The second reason for finding reactions of the structural element is that doing
so facilitates the further analysis or design of the element itself. That is, determining
reactions is the prerequisite to the calculation of internal loads and internal stresses,

AV vy
L e~ %
I |
(a) (b) (c)
FIGURE 1.1
Direction of loads can be (a) vertical, (b) horizontal, or (c) inclined

© 2010 Elsevier Inc. All rights reserved.
Doi: 10.1016/B978-1-85617-771-9.00001-5 1
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| Resultant, or
| total load = 40 kips
|

N/ 2 kips/ft

| = L

FIGURE 1.2

Distributed loads on a beam

&{G—':’,:} —
-

FIGURE 1.3
Tributary areas divide the load among the various supports

values of which are central to the most fundamental questions of structural engi-
neering: Is it strong enough? Is it safe?

TRIBUTARY AREAS

When loads are evenly distributed over a surface, it is often possible to “assign” por-
tions of the load to the various structural elements supporting that surface by subdi-
viding the total area into tributary areas corresponding to each member. In Figure
1.3, half the load of the table goes to each lifter.

In Figure 1.4, half the 20-psf snow load on the cantilevered roof goes to each col-
umn; the tributary area for each column is 10ft X 10ft, so the load on each column
is 20(10 X 10) = 20001b = 2kips.

Figure 1.5 shows a framing plan for a steel building. If the total floor load is
100 psf, the load acting on each of the structural elements comprising the floor sys-
tem can be found using appropriate tributary areas. Beam A supports a total load of
100(20 X 10) = 20,0001b = 20kips; but it is more useful to calculate the distributed
load acting on any linear foot of the beam—this is shown by the shaded tributary
area in Figure 1.6a and is 100(1 X 10) = 10001b = 1kip. Since 10001b is acting on
a 1-ft length of beam, we write 10001b/ft or 1.0Kkip/ft, as shown in Figure 1.6b.

As shown in Figure 1.7a, Beam B (or Girder B) supports a total tributary area of
17.5 X 20 = 350ft% The load at point a is not included in the beam’s tributary area.
Rather, it is assigned to the edge, or spandrel, girder where it goes directly into a
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, /‘K
AQ

q 20 psi

FIGURE 1.4
Distributed load on a floor carried by two columns
E
4 " " L T
A -
&
H Dm H—%
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[ - | —t —_—
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& A _| Cyll L
| 300 | s | 30 |

FIGURE 1.5
Framing plan showing tributary areas for beams, girders, and columns

FIGURE 1.6
Distributed load on a steel beam, with (a) one linear foot of its tributary area shown and (b) load
diagram showing distributed load in kips per foot
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FIGURE 1.7

Concentrated loads on a girder (a) derived from tributary areas on framing plan and (b) shown on
load diagram

column, having no effect on Beam B. Unlike Beam A, the floor loads are transferred
to Beam B at two points: each concentrated load corresponds to a tributary area of
17.5 X 10 = 175ft?; therefore, the two loads each have a magnitude of 100 X 175 =
17,5001b = 17.5kips. The load diagram for Beam B is shown in Figure 1.7b.

Spandrel girders

Beam C (or Spandrel Girder C), shown in Figure 1.5, is similar to Beam B except that
the tributary area for each concentrated load is smaller, 7.5 X 10 = 75 ft?, as shown in
Figure 1.8a. The two concentrated loads, therefore, have a magnitude of 100 X 75 =
75001b = 7.5kips, and the load diagram is as shown in Figure 1.8b.

There are three reasons spandrel girders are often larger than otherwise similar
girders located in the interior of the building, even though the tributary areas they
support are smaller. First, spandrel girders often support cladding of various kinds,
in addition to the floor loads included in this example. Second, aside from the added
weight to be supported, spandrels are often made bigger so that their deflection, or
vertical movement, is reduced. This can be an important consideration where non-
structural cladding is sensitive to movement of the structural frame.Third, when the
girders are designed to be part of a moment-resisting frame, their size might need to
be increased to account for the stresses introduced by lateral forces such as wind
and earthquake.
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7.5 kips‘l' 4,7.5 kips
= 2>

| 30’ i

L] L

(b)

FIGURE 1.8

Concentrated loads on a spandrel girder (a) derived from tributary areas on framing plan and
(b) shown on load diagram
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| 15| 200 | 20

30 l w | 30 |

[rI—

FIGURE 1.9
Framing plan showing tributary areas for columns (one floor only)

Columns

One way or another, all of the load acting on the floor must be carried by columns
under that floor. For most structures, it is appropriate to subdivide the floor into
tributary areas defined by the centerlines between columns so that every piece of
the floor is assigned to a column.

It can be seen from Figure 1.9 that typical interior columns carry twice the load of
typical exterior columns, and four times the load of corner columns. However, two
of the conditions described earlier with respect to the enlargement of spandrel gird-
ers can also increase the size of exterior and corner columns: the need to support
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FIGURE 1.10
Competing load paths on a corrugated steel deck

additional weight of cladding and the possibility of resisting wind and earthquake
forces through rigid connections to the spandrel girders.

Column D supports a tributary area of 35 X 20 = 700ft? so that the load trans-
ferred to Column D from the floor above is 100 X 700 = 70,0001b = 70kips, assum-
ing that the floor above has the same shape and loads as the floor shown. But every
floor and roof above also transfers a load to Column D. Obviously, columns at the
bottom of buildings support more weight than columns at the top of buildings,
since all the tributary areas of the floors and roof above are assigned to them. As an
example, if there are nine floors and one roof above Column D, all with the same
distributed load and tributary area, then the total load on Column D would be, not
70k, but (9 + 1) X 70 = 700kips.

In practice, the entire load as previously calculated is not assigned to columns
or to other structural elements with large total tributary areas. This is because it is
unlikely that a large tributary area will be fully loaded at any given time. For example,
if the live load caused by people and other movable objects is set at 60 psf, and one
person weighed 1801b, then a tributary area of 7000 ft* (as in the example of Column
D) would have to be populated by more than 2000 people, each occupying 3 ft?,
in order to achieve the specified load. That many people crowded into that large
a space is an unlikely occurrence in most occupancies, and a live load reduction
is often allowed by building codes. As the tributary area gets smaller, however, the
probability of the full live load being present increases, and no such reduction is
permitted. Permanent and immovable components of the building, or dead loads,
have the same probability of being present over large tributary areas as small tribu-
tary areas, so they are never included in this type of probability-based load reduc-
tion. Calculations for live load reduction are explained in the next chapter.

The path taken by a load depends on the ability of the structural elements to
transfer loads in various directions. Given the choice of two competing load paths
such as (1) and (2) in Figure 1.10, the load is divided between the two paths in
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FIGURE 1.11
Competing load paths on a two-way slab

proportion to the relative stiffness of each path. Since the corrugated steel deck
shown in Figure 1.10 is much stiffer in the direction of load path (1), and, in fact, is
designed to carry the entire load in that direction, we neglect the possibility of the
load moving along path (2).

For “two-way” systems, generally only used in reinforced concrete (Figure 1.11), or
for indeterminate systems in general, the assignment of loads to beams and columns
also becomes a function of the relative stiffness of the various components of the
system. Stiffer elements “attract” more load to them, and the simplistic division into
tributary areas becomes inappropriate, except in certain symmetrical conditions.

EQUILIBRIUM

Where loads or structural geometries are not symmetrical, using tributary areas may
not accurately predict the effects of loads placed on structures, and other methods
must be used. We can determine the effects of loads placed on statically determinate
structures by assuming that such structures remain “at rest,” in a state of equilibrium.
The implication of this condition, derived from Newton’s second law, is that the sum-
mation of all forces (or moments) acting on the structure along any given coordi-
nate axis equals zero. For a plane structure—that is, one whose shape and deflection
under loads occurs on a planar surface—three equations uniquely define this condi-
tion of equilibrium: two for loads (forces) acting along either of the perpendicular
axes of the plane’s coordinate system and one for moments acting “about” the axis
perpendicular to the structure’s plane. Some examples of plane structures are shown
in Figure 1.12.

7
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FIGURE 1.12

Examples of plane structures: simply supported beam, three-hinged arch, and rigid (moment-
resisting) frame

In words, the equations of equilibrium state that the sum of all “horizontal”
forces is zero; the sum of all “vertical” forces is zero; and—take a deep breath
here—the sum of all moments about any point, including those resulting from any
force multiplied by its distance (measured perpendicular to the “line of action” of
the force) to the point about which moments are being taken, is zero.

“Horizontal” and “vertical” can be taken as any perpendicular set of coordinate axes.
Where x is used for the horizontal axis and y for the vertical, moments in the plane
of the structure are acting about the z-axis. This conventional way of representing
coordinate systems for the consideration of equilibrium is inconsistent with the label-
ing typically used to distinguish between axes of bending. Compare the typical axes of
bending shown in Figure 1.13 with the “equilibrium” coordinate axes in Figure 1.12.
Written symbolically, the equations are:

YF, =0
YF, =0 a.n
SM,, =0

pt.
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FIGURE 1.13

Coordinate axes for a steel W-shape

(a) (b) (c) (d)
FIGURE 1.14

Abstract symbols for reactions, including (a) hinge or pin-end, (b) roller, (c) fixed, and (d) free end

For any plane, rigid-body structure (just “structure” or “structural element” from
now on) subjected to various loads, the three equations of equilibrium provide
the mathematical basis for determining values for up to three unknown forces and
moments—the reactions of the structure to the loads. Structural elements of this
type are statically determinate because the magnitudes of the unknown reactions
can be determined using only the equations of static equilibrium.

Free-body diagrams

Any structure (or part of a structure) so defined can be represented as a free-body
diagram (FBD). All “external” loads acting on the FBD, all unknown “external”
moments or forces at the points where the FBD is connected to other structural
elements (i.e., all reactions), and all unknown “internal” moments or forces at points
where a FBD is “cut” must be shown on the diagram.

Single or multiple reactions occurring at a given point are often represented by
standard symbols. These pictures graphically indicate the types of forces and moments
that can be developed (Figure 1.14). Other combinations of forces and moments can
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be represented graphically; the three symbols shown, however, cover most com-
monly encountered conditions.

Where an FBD is “cut” at a point other than at the reactions of the structural
element, an internal moment as well as two perpendicular internal forces are typi-
cally present, unless an internal constraint, such as a hinge, prevents one or more of
those forces (or moments) from developing.

Where there are more reactions than equations of equilibrium, the structure is
said to be statically indeterminate, and equilibrium alone is insufficient to determine
the values of the reactions; other techniques have been developed to find the reac-
tions of indeterminate structures, but these are beyond the scope of this text.

REACTIONS

The following examples show how the equations of equilibrium can be used to find
reactions of various common determinate structures. The procedures have been
developed so that the equations need not be solved simultaneously. Alternatively,
where determinate structures are symmetrical in their own geometry as well as in
their loading (assumed to be vertical), reactions can be found by assigning half of
the total external loads to each vertical reaction.

[
Example 1.1 Find reactions for simply supported beam

Problem definition

Find the three reactions for a simply supported beam supporting a distributed load of 100
kips/ft over a span of 20 ft. Simply supported means that the beam is supported by a hinge
and a roller, and is therefore determinate.

Solution overview
Draw load diagram with unknown forces and/or moments replacing the reaction (constraint)
symbols; use the three equations of equilibrium to find these unknown reactions.

Problem solution

1. Redraw load diagram (Figure 1.15a) by replacing constraint symbols with unknown forces,
Hy, R4, and Rg, and by showing a resultant for all distributed loads (Figure 1.15b).

2. The solution to the horizontal reaction at point A is trivial, since no horizontal loads are
present: XF, = H, = 0. In this equation, we use a sign convention, where positive corre-
sponds to forces pointing to the right and negative to forces pointing to the left.

3. The order in which the remaining equations are solved is important: moment equilibrium
is considered before vertical equilibrium in order to reduce the number of unknown vari-
ables in the vertical equilibrium equation. Moments can be taken about any point in the
plane; however, unless you wish to solve the two remaining equations simultaneously, it
is suggested that the point be chosen strategically to eliminate all but one of the unknown
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FIGURE 1.15

Load diagram for simply supported beam for Example 1.1 showing (a) constraint symbols and
(b) unknown forces replacing constraint symbols, and resultant corresponding to distributed load

variables. Each moment is the product of a force times a distance called the moment arm;
this moment arm is measured from the point about which moments are taken to the “line
of action” of the force and is measured perpendicular to the line of action of the force.
Where the moment arm equals zero, the moment being considered is also zero, and
the force “drops out” of the equation. For this reason, it is most convenient to select a
point about which to take moments that is aligned with the line of action of either of the
two unknown vertical reactions so that one of those unknown forces drops out of the equa-
tion of equilibrium. The sign of each moment is based on an arbitrary sign convention, with
positive used when the moment causes a clockwise rotation of the beam considered as
a free-body diagram and negative when a counterclockwise rotation results (the opposite
convention could be chosen as well). In the equation that follows, each product of two
numbers represents a force times a distance so that, taken together, they represent the
sum of all moments acting on the beam. Forces whose moment arm is zero are left out.

$My = R,(20) — 2000(10) = 0

Solving for the vertical reaction at point A, we get: R4 = 1000kips.

4. Finally, we use the third equation of equilibrium to find the last unknown reaction. Another
sign convention is necessary for vertical equilibrium equations: we arbitrarily choose positive
to represent an upward-acting force and negative to represent a downward-acting force.

¥F, = Ry + Rg — 2000 = 0
or, substituting R4 = 1000kips:

1000 + Rz — 2000 = O
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FIGURE 1.16
Support for the beam from Example 1.1 showing (a) load on column supports and (b) reactions
from beam corresponding to load on column supports
Solving for the vertical reaction at point B, we get Rg = 1000kips.

The two vertical reactions in this example are equal and could have been found by simply
dividing the total load in half, as we did when considering tributary areas. Doing this, however,
is only appropriate when the structure’s geometry and loads are symmetrical. -
If the reactions represent other structural supports such as columns or girders, then
the “upward” support they give to the beam occurs simultaneously with the beam’s
“downward” weight on the supports: in other words, if the beam in Example 1.1
is supported on two columns, then those columns (at points A and B) would have
load diagrams as shown in Figure 1.16a. The beam and columns, shown together,
have reactions and loads as shown in Figure 1.16b. These pairs of equal and oppo-
site forces are actually inseparable. In the Newtonian framework, each action, or
load, has an equal reaction.

|

Example 1.2 Find reactions for three-hinged arch

Problem definition
Find the reactions for the three-hinged arch shown in Figure 1.17a.
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FIGURE 1.17

Load diagram for three-hinged arch for Example 1.2 showing (a) constraint symbols and
(b) unknown forces replacing constraint symbols

Solution overview

Draw load diagram with unknown forces and/or moments replacing the reaction (constraint)
symbols; use the three equations of equilibrium, plus one additional equation found by consid-
ering the equilibrium of another free-body diagram, to find the four unknown reactions.

Problem solution

1. The three-hinged arch shown in this example appears to have too many unknown variables
(four unknowns versus only three equations of equilibrium); however, the internal hinge at
point C prevents the structure from behaving as a rigid body, and a fourth equation can be
developed out of this condition. The initial three equations of equilibrium can be written as
follows:

a. XMg= R,(60) — 20(30) = O, from which R4 = 10Kkips.

b. XF,= Ry + Rg— 20 = 0; then, substituting R, = 10kips from the moment equilib-
rium equation solved in step a, we get 10 + Rg — 20 = O, from which Rg = 10Kkips.

C. ZFX:HA_HB:O.

Sign conventions are as described in Example 1.1. This last equation of horizontal equilib-

rium (step ¢) contains two unknown variables and cannot be solved at this point. To find

H,, it is necessary to first cut a new FBD at the internal hinge (point C) in order to examine

the equilibrium of the resulting partial structure shown in Figure 1.18.

With respect to this FBD, we show unknown internal forces H; and V, at the cut, but we
show no bending moment at that point since none can exist at a hinge. This condition of zero
moment is what allows us to write an equation that can be solved for the unknown, Hy:

SM, = 10(30) — H4(20) = 0

13
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FIGURE 1.18
Free-body diagram cut at internal hinge at point C, for Example 1.2
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FIGURE 1.19
Free-body diagram for a two-hinged arch (with internal moment at point C)

from which H, = 15Kkips.
Then, going back to the “horizontal” equilibrium equation shown in step c that was written
for the entire structure (not just the cut FBD), we get:

SFy = Hy —Hg = 15— Hy = 0

from which Hg = 15Kips.

While the moment equation written for the FBD can be taken about any point in the plane of
the structure, it is easier to take moments about point C, so that only H, appears in the equa-
tion as an unknown. Otherwise, it would be necessary to first solve for the internal unknown
forces at point C, using “vertical” and “horizontal” equilibrium.

If there were no hinge at point C, we would need to add an unknown internal moment
at C, in addition to the forces shown (Figure 1.19). The moment equation would then be
SMc = 10(30) — Hx(20) + M. = 0. With two unknown variables in the equation (H, and M),
we cannot solve for H,. In other words, unlike the three-hinged arch, this two-hinged arch is
an indeterminate structure. -

Example 1.3 Find reactions for a cable

Problem definition

Find the reactions for the flexible cable structure shown in Figure 1.20a. The actual shape of
the cable is unknown: all that is specified is the maximum distance of the cable below the level
of the supports (reactions): the cable’s sag.
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FIGURE 1.20

Load diagram for cable for Example 1.3 showing (a) constraint symbols and (b) unknown forces
replacing constraint symbols

Solution overview

Draw load diagram with unknown forces and/or moments replacing the reaction (constraint)
symbols; use the three equations of equilibrium, plus one additional equation found by consid-
ering the equilibrium of another free-body diagram, to find the four unknown reactions.

Problem solution
1. The cable shown in this example appears to have too many unknown variables (four
unknowns versus only three equations of equilibrium); however, the cable’s flexibility pre-
vents it from behaving as a rigid body, and a fourth equation can be developed out of this
condition. The three equations of equilibrium can be written as follows:
a. Mg = R480) — 10(65) — 20(40) = O, from which R, = 18.125 kips.
b. ¥F,= R4+ Rg— 10 — 20 = O; then, substituting R4 = 18.125 kips from the moment
equilibrium equation solved in step a, we get 18.125 + Rz — 10 — 20 = O, from which
Rg = 11.875Kkips.
C. ZFX:HA_HB:O.
Sign conventions are as described in Example 1.1. This last equation of horizontal equilib-
rium (step c¢) contains two unknown variables and cannot be solved at this point. By anal-
ogy to the three-hinged arch, we would expect to cut an FBD and develop a fourth equation.
Like the internal hinge in the arch, the entire cable, being flexible, is incapable of resist-
ing any bending moments. But unlike the arch, the cable’s geometry is not predetermined;
it is conditioned by the particular loads placed upon it. Before cutting the FBD, we need
to figure out where the maximum specified sag of 10ft occurs: without this information,
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‘KSag point
FIGURE 1.21

Sag point occurs where the vertical component of internal cable forces changes direction (sign),
for Example 1.3

10 kips external load
, hot included

10 kips
&= AJ;

18.125 kips N——>Hc

ZF, =18.125-V. =0 ZF, =18.125-10-V; =0
V. = 18.125 kips (downward) V. = 8.125 kips (downward)

(a) (b)
FIGURE 1.22

Vertical component of cable force for Example 1.3 is found (a) just to the left of the external load
at point Cand (b) just to the right of the load

we would be writing a moment equilibrium equation of an FBD in which the moment arm of
the horizontal reaction, H,, was unknown.

2. We find the location of the sag point by looking at internal vertical forces within the cable.
When the direction of these internal vertical forces changes, the cable has reached its low-
est point (Figure 1.21). Checking first at point C, we see that the internal vertical force does
not change direction on either side of the external load of 10kips (comparing Figures 1.22a
and 1.22b), so the sag point cannot be at point C.

However, when we check point D, we see that the direction of the internal vertical force
does change, as shown in Figure 1.23.

Thus, point D is the sag point of the cable (i.e., the low point), specified as being 10 ft
below the support elevation.

We can also find this sag point by constructing a diagram of cumulative vertical loads,
beginning on the left side of the cable (Figure 1.24). The sag point then occurs where the
“cumulative force line” crosses the baseline.

3. Having determined the sag point, we cut an FBD at that point (Figure 1.25a) and proceed
as in the example of the three-hinged arch, taking moments about the sag point: XMp =
18.125(40) — 10(25) — H, = 0, from which H, = 47.5kips.
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Vertical component of cable force for Example 1.3 is found (a) just to the left of the external load
at point Dand (b) just to the right of the load
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FIGURE 1.24
Diagram of cumulative vertical loads for Example 1.3

Once the location of the sag point is known, a more accurate sketch of the cable shape can
be made, as shown in Figure 1.25b.

Then, going back to the “horizontal” equilibrium equation shown in step 1c¢ that was written
for the entire structure (not just the cut FBD), we get XFy= Hy — Hg= —47.5 + Hg =0,
from which Hg = 47.5kips. In this last equation, H, is written with a minus sign since it acts
toward the left (and our sign convention has positive going to the right).

We have thus far assumed particular directions for our unknown forces—for example, that H,
acts toward the left. Doing so resulted in a positive answer of 47.5kips, which confirmed that
our guess of the force’s direction was correct. Had we initially assumed that H, acted toward
the right, we would have gotten an answer of —47.5kips, which is equally correct, but less sat-

isfying. In other words, both ways of describing the force shown in Figure 1.26 are equivalent.
|

INTERNAL FORCES AND MOMENTS

Finding internal forces and moments is no different than finding reactions; one need
only cut an FBD at the cross section where the internal forces and moments are to

17
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FIGURE 1.25

Free-body diagram cut at the sag point for Example 1.3

47.5 kips - 47.5 kips

FIGURE 1.26

Negative and positive signs on force arrows going in opposite directions represent equivalent loads

be computed (after having found any unknown reactions that occur within the dia-
gram). At any cut in a rigid element of a plane structure, two perpendicular forces and
one moment are potentially present. These internal forces and moments have names,
depending on their orientation relative to the axis of the structural element where the
cut is made (Figure 1.27). The force parallel to the axis of the member is called an
axial force; the force perpendicular to the member is called a shear force; the moment
about an axis perpendicular to the structure’s plane is called a bending moment.

In a three-dimensional environment with x-, -, and z-axes as shown in Figure
1.27, three additional forces and moments may be present: another shear force
(along the z-axis) and two other moments, one about the y-axis and one about the
x-axis. Moments about the y-axis cause bending (but bending perpendicular to the two-
dimensional plane); moments about the x-axis cause twisting or forsion. These types
of three-dimensional structural behaviors are beyond the scope of this discussion.

Internal shear forces and bending moments in heams

Where the only external forces acting on beams are perpendicular to a simply
supported beam’s longitudinal axis, no axial forces can be present. The following
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FIGURE 1.27

Internal shear and axial forces and internal bending moment

examples show how internal shear forces and bending moments can be computed
along the length of the beam.

Example 1.4 Find internal shear and bending moment for simply supported beam
with “point” loads

Problem definition

Find internal shear forces and bending moments at key points along the length of the beam
shown in Figure 1.28, that is, under each external load and reaction. Reactions have already
been determined.

Solution overview
Cut free-body diagrams at each external load; use equations of equilibrium to compute the
unknown internal forces and moments at those cut points.

Problem solution

1. To find the internal shear force and bending moment at point A, first cut a free-body dia-
gram there, as shown in Figure 1.29.
Using the equation of vertical equilibrium, Xf, =5 — V, = O, from which the internal
shear force V4 = 5kips (downward).
Moment equilibrium is used to confirm that the internal moment at the hinge is zero:
XMy = My = 0. The two forces present (5kips and V, = 5kips) do not need to be included
in this equation of moment equilibrium since their moment arms are equal to zero. The
potential internal moment, M,, is entered into the moment equilibrium equation as it is
(without being multiplied by a moment arm) since it is already, by definition, a moment.
2. Shear forces must be computed on “both sides” of the external load at point C; the fact
that this results in two different values for shear at this point is not a paradox: it simply
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Load diagram for Example 1.4
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FIGURE 1.29
Free-body diagram cut at left reaction for Example 1.4
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FIGURE 1.30

Free-body diagram for Example 1.4 (a) cut just to the left of the external load at point C; and
(b) just to the right of the load

reflects the discontinuity in the value of shear caused by the presence of a concentrated
load. In fact, a truly concentrated load acting over an area of zero is impossible, since
it would result in an infinitely high stress at the point of application; all concentrated
loads are really distributed loads over small areas. However, there is only one value for
bending moment at point C, whether or not the external load is included in the FBD. In
other words, unlike shear force, there is no discontinuity in moment resulting from a con-
centrated load.

a. Find internal shear force and bending moment at point C, just to the left of the external
load by cutting an FBD at that point, as shown in Figure 1.30a. Using the equation of
vertical equilibrium: ¥F, = 5 — V¢ = O, from which the internal shear force V, = 5kips
(downward). Using the equation of moment equilibrium, XM, = 5(8) — M, = O, from
which Mg = 40ft-kips (counterclockwise).
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FIGURE 1.31

Free-body diagram for Example 1.4 (a) cut just to the left of the external load at point D and
(b) just to the right of the load
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FIGURE 1.32
Free-body diagram cut just to the left of the reaction at point B for Example 1.4

b. Find internal shear force and bending moment at point C, just to the right of the exter-
nal load by cutting an FBD at that point, as shown in Figure 1.30b. Using the equa-
tion of vertical equilibrium: ¥f, =5 — 5 — V; = O, from which the internal shear force
Ve = Okips. Using the equation of moment equilibrium, XM, = 5(8) — M, = 0, from
which M. = 40ft-kips (counterclockwise), as before.

3. Find shear and moment at point D.

a. Find internal shear force and bending moment at point D, just to the left of the exter-
nal load by cutting an FBD at that point, as shown in Figure 1.31a. Using the equa-
tion of vertical equilibrium: ¥f, =5 — 5 — V, = 0, from which the internal shear force
Vp = Okips. Using the equation of moment equilibrium, SMp = 5(16) — 5(8) — Mp =
0, from which Mp = 40 ft-kips (counterclockwise).

b. Find internal shear force and bending moment at point D, just to the right of the exter-
nal load by cutting an FBD at that point, as shown in Figure 1.31b. Using the equation
of vertical equilibrium, ¥, =5 — 5 — 5-Vj, = 0, from which the internal shear force
Vp = —5kips (downward), which is equivalent to 5kips (upward). Using the equation
of moment equilibrium, XMp = 5(16) — 5(8) — Mp = 0, from which Mp = 40ft-kips
(counterclockwise), as before.

4. Find shear and moment at point B by cutting a free-body diagram just to the left of the
reaction at point B, as shown in Figure 1.32. Using the equation of vertical equilibrium,

21
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Load, shear, and moment diagrams for Example 1.4

YF,=5-5-5— Vg =0, from which the internal shear force V3 = —5Kkips (downward),
which is equivalent to 5kips (upward).

Moment equilibrium is used to confirm that the internal moment at the hinge is zero: Mg =
5(24) — 5(16) — 5(8) — Mg = 0, from which Mg = 0. The internal shear force, Vg, does not need
to be included in this equation of moment equilibrium since its moment arm is equal to zero.

The forces and moments can be graphically displayed as shown in Figure 1.33, by connect-
ing the points found earlier. -

Some important characteristics of internal shear forces and bending moments may
now be summarized: (1) Internal axial forces are always zero in a horizontally ori-
ented simply supported beam with only vertical loads. (2) Moments at hinges at the
ends of structural members are zero. Only when a continuous member passes over
a hinge can the moment at a hinge be nonzero. (3) A shear force acting downward
on the right side of an FBD is arbitrarily called “positive”; a bending moment acting
counterclockwise on the right side of an FBD is arbitrarily called “positive.” As will
be discussed later in Chapter 8 (beams), positive bending corresponds to “tension”
on the bottom and “compression” on the top of a horizontal structural element.

General strategy for finding internal shear forces and bending moments

Shear and moment diagrams can also be drawn by noting the following rules: (1)
At any point along the beam, the slope of the shear diagram equals the value of the
load (the “infinite” slope of the shear diagram at concentrated loads can be seen
as a shorthand approximation to the actual condition of the load being distributed
over some finite length, rather than existing at a point). (2) Between any two points
along a beam, the change in the value of shear equals the total load (between those
points). (3) The slope of the moment diagram at any point equals the value of the
shear force at that point. (4) The change in the value of bending moment between
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any two points equals the “area of the shear diagram” between those points. These
rules are derived by applying the equations of equilibrium to an elemental slice of a
beam, as shown in Table A-1.1.

Example 1.5 Find internal shear and bending moments for a simply supported
cantilever beam with distributed loads

Problem definition
Find the distribution of internal shear forces and bending moments for the beam shown in
Figure 1.34, first by using FBDs and then by applying the rules from Table A-1.1.

Solution overview
Find reactions using the equations of equilibrium; find internal shear force and bending
moment at key points (at reactions and at location of zero shear).

Problem solution

1. Find the resultant of the distributed load, equal to 1kip/ft X 25ft = 25Kkips.

2. To find reactions, first take moments about either point A or point B; we choose point B:
YMpg = R4(20) — 25(12.5) = 0, from which R, = 15.625kips. Next, use the equation
of vertical equilibrium to find the other reaction: ¥f, = R4+ Rg— 25 =15.625 + Rp
— 25 = 0, from which Rg = 9.375kips.

3. Find shear and moment at point A.

a. Find internal shear force and bending moment at point A, just to the left of the reaction by
cutting an FBD at that point, as shown in Figure 1.35a. Using the equation of vertical equi-
librium, XF, = =5 — V, = O, from which the internal shear force, V, = —5Kkips (downward)
or 5kips (upward). Using the equation of moment equilibrium, XM, = —5(2.5) — My =0,
from which M, = —12.5 ft-kips (counterclockwise) or 12.5 ft-kips (clockwise).

b. Find internal shear force and bending moment at point A, just to the right of the reaction by
cutting an FBD at that point, as shown in Figure 1.35b. Using the equation of vertical equi-
librium, £F, = 15.625 — 5 — V, = O, from which the internal shear force V, = 10.625kips
(downward). Using the equation of moment equilibrium, XM, = —5(2.5) — M, = 0, from
which M, = —12.5 ft-kips (counterclockwise) or 12.5 ft-kips (clockwise), as before.

Resultant of distributed load
125 kips

: w = 1 kip/ft

FIGURE 1.34
Load diagram for Example 1.5
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FIGURE 1.35

Free-body diagram for Example 1.5 (a) cut just to the left of the reaction at point A and (b) just to
the right of the reaction

Resultant of distributed load
125 kips

1 kip/ft<, Mg
A"y
B B 1
\_Jr_E{uI_ITA L8}
15.625 kips J-L.

sl "

FIGURE 1.36
Free-body diagram cut just to the left of the reaction at point B for Example 1.5

The moment at point A is not zero, even though there is a hinge at that point. The reason is
that the beam itself is continuous over the hinge. This continuity is essential for the stability
of the cantilevered portion of the beam.

4. Find shear and moment at point B by cutting a free-body diagram just to the left of the
reaction at point B, as shown in Figure 1.36. Using the equation of vertical equilibrium,
¥F,=15.625-25- Vg =0, from which the internal shear force Vg = -9.375kips (down-
ward), which is equivalent to 9.375kips (upward). Moment equilibrium is used to confirm
that the internal moment at the hinge is zero: X Mg = 15.625(20) — 25(12.5) + Mg =0,
from which Mg = 0. The internal shear force, Vg, does not need to be included in this equa-
tion of moment equilibrium since its moment arm is equal to zero.

5. The internal shear forces can be graphically displayed as shown in Figure 1.37, by connecting
the points found earlier. The slope of the shear diagram at any point equals the value of the
load; since the load is uniformly distributed, or constant, the slope of the shear diagram is also
constant.

The bending moment cannot be adequately diagrammed until one more point is deter-
mined and analyzed: the point somewhere between the two reactions where the shear is
zero. Since the slope of the moment diagram at any point equals the value of the shear force,
a change from positive to negative shear indicates at least a “local” minimum or maximum
moment (Figure 1.38).
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FIGURE 1.37
Load and shear diagrams for Example 1.5

Positive value, getting smaller from left
to right

Negative value, getting
smaller (more negative)

{Shear

Local maximum

Negative slope
Moment

Positive slope, getting smaller from left
to right
FIGURE 1.38

Relationship between value of shear diagram and slope of moment diagram

This key point, labeled C in Figure 1.39, can be located by dividing the value of shear
just to the right of the reaction at point A by the distributed load: the distance of point C
from point A, then, is x = 10.625/1.0 = 10.625ft.

The length, x, can also be found using similar triangles: x/10.625 = 20/20. Solving for
X, we get the same value as earlier: x = 10.625ft.

The moment at this point can be found by cutting an FBD at point C, as shown in
Figure 1.40, and applying the equation of moment equilibrium: XM, = 15.625(10.625) —
15.625(7.8125) — M, = 0, from which M, = 43.9 ft-kips (counterclockwise).

6. Alternatively, shear and moment diagrams may be drawn based on the rules listed in Table
A-1.1, and illustrated in Figure 1.41. The critical points of the shear diagram are derived from
the load diagram based on Rule 2: the “areas” of the load diagram (with concentrated loads
or reactions counting as areas b and d) between any two points equal the change in shear
between those points. These “area” values are summarized in the box between the load and
shear diagrams. Connecting the points established using Rule 2 is facilitated by reference to
Rule 1: the slope of the shear diagram equals the value of the load at that point. Therefore,
where the load diagram is “flat” (i.e., has constant value), the shear diagram has constant
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20’

19.375 kips
|
FIGURE 1.39

Shear diagram for Example 1.5, showing distance from reaction at point A to the point where the
shear diagram crosses the baseline, going from positive to negative value

/:1 0.625 kips
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15.625 kipsT | rag2g | 0

5| 10.625°
15.625’

FIGURE 1.40

Free-body diagram for Example 1.5, cut at the point of zero shear (where the shear diagram
crosses the baseline, going from positive to negative value)

slope represented by a straight line that has positive slope for positive values of load, and
negative slope corresponding to negative values of load. Since almost all distributed loads are
downward-acting (negative value), shear diagrams often have the characteristic pattern of
negative slope shown in Figure 1.41.

Once the shear diagram has been completed, and any critical lengths have been found
(see step 5), the moment diagram can be drawn based on Rules 3 and 4 of Table A-1.1.
Critical moments are first found by examining the “areas” under the shear diagram, as
described in Rule 4 of Table A-1.1. These “areas”—actually forces times distances,
or moments—are shown in the box between the shear and moment diagrams in Figure
1.41 and represent the change in moment between the two points bracketed by the shear
diagram areas—not the value of the moments themselves. For example, the first “area
e’ of —12.5 ft-kips is added to the initial moment of zero at the free end of the cantile-
ver, so that the actual moment at point Ais O + —12.5 = —12.5 ft-kips. The maximum
moment (where the shear is zero), is found by adding “area f” to the moment at point A:
56.45 + —12.5 = 43.95 ft-kips, as shown in Figure 1.41. Finally, slopes of the moment
diagram curve can be determined based on Rule 3 of Table A-1.1: the slope of the moment
diagram is equal to the value of the shear force at any point, as illustrated in Figure 1.38.
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FIGURE 1.41

Load, shear, and moment diagrams for Example 1.5, using load diagram “areas” to find shear
values, and shear diagram “areas” to find moment values

In drawing the moment diagram, it is important to emphasize the following:
(1) The area under the shear diagram between any two points corresponds, not to
the value of the moment, but to the change in moment between those two points.
Therefore, the triangular shear diagram area, f, of 56.45 ft-kips in Example 1.5 does
not show up as a moment anywhere in the beam; in fact, the maximum moment turns
out to be 43.95 ftkips. (2) The particular curvature of the moment diagram can be
found by relating the slope of the curve to the changing values of the shear diagram.
(3) The moment and shear diagrams are created with respect to the actual distribu-
tion of loads on the beam, not the resultants of those loads, which may have been
used in the calculation of reactions.The location of the maximum moment, therefore,
has nothing to do with the location of any resultant load but occurs at the point of
zero shear. (4) Moment diagrams can also be drawn in an alternate form, as shown at
the bottom of Figure 1.41, by reversing the positions of negative and positive values.
This form has the benefit of aligning the shape of the moment diagram more closely
with the deflected shape of the beam (although it still remains significantly different
from the deflected shape), at the expense of being mathematically inconsistent. (5)
Finally, it may be important in some cases to account for both positive and negative
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moments, and not just the maximum moment. In this example, the maximum positive
moment is 43.95 ft-kips, while the maximum negative moment is 12.5 ft-kips.

Internal axial forces in trusses, arches, and cables

There is a class of determinate structures that cannot sustain internal shear forces or
bending moments, either because their component elements are pinned together or
because they are inherently flexible. We will examine three types of these axial-force
structures. Trusses are made from individual elements organized in a triangular pattern
and assumed to be pinned at the joints so that they may be analyzed using only equa-
tions of equilibrium. Reactions of trusses are found just like the reactions of beams,
while the reactions of three-hinged arches and cables—the other two axial-force struc-
tures already examined—require special treatment. In general, the axial forces within
trusses, three-hinged arches, and cables are found using the three equations of equilib-
rium. The following examples illustrate specific techniques and strategies.

Example 1.6 Find internal axial forces in a truss (section method)

Problem definition
Find the internal axial forces in truss bars C-F, C-E, and D-E for the truss shown in Figure
1.42. Assume pinned joints, as shown.

Solution overview

Find reactions; then, using the so-called section method, cut a free-body diagram through the
bars for which internal forces are being computed. As there are only three equations of equilib-
rium, no more than three bars may be cut (resulting in three unknown forces); use equations
of equilibrium to solve for the unknown forces.

Problem solution

1. Find reactions: by symmetry, R4y = Rg = (10 + 10 + 10)/2 = 15kips. Alternatively, one
could take moments about point A or B, solve for the unknown reaction, and then use the
equation of vertical equilibrium to find the other unknown reaction.

2. Cut a free-body diagram through the bars being evaluated (cutting through no more than
three bars) as shown in Figure 1.43. Bar forces are labeled according to the nodes that are
at either end of their bars, so, for example, Fqris the force between nodes Cand F.

a. Show unknown axial forces as tension forces; a negative result indicates that the bar is
actually in compression. Tension means that the force is shown “pulling” on the bar or
node within the free-body diagram.

b. Use equilibrium equations, chosen strategically, to solve for unknown bar forces. To
find Fer Mg = 15(16) — 10(8) + FA8) = O; solving for the unknown bar force, we
get Fop = —20k (compression).

c. To find Fpe ZMq= 15(8) — Fpd8) = 0O; solving for the unknown bar force, we get
Fpe = 15k (tension)

d. Finally, to find Fqg find force “components” of inclined internal axial force Fqr The
components can be found using principles of trigonometry, based on the geometry of
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FIGURE 1.42

Loading diagram for, and geometry of, truss for Example 1.6

10 kips

Component:

FIGURE 1.43

Free-body diagram cut through bars based on the section method for Example 1.6

the triangle determined by the 8ft X 8ft truss panels. For example, the vertical (or hor-
izontal) component equals F¢r times sin 45° = 0.707F¢. We then use the equation
of vertical equilibrium: XF, =15 — 10 — 0.707F¢ = 0; solving for the unknown bar
force, we get For = 7.07kips (tension). -

The assumption that only axial forces exist within a truss is valid when the following
conditions are met: (1) all bar joints are “pinned” (hinged), and (2) external loads and
reactions are placed only at the joints or nodes. Under these circumstances, no internal
shear forces or bending moments are possible. In practice, modern trusses are rarely
pinned at each joint; nevertheless, the assumption is often used for preliminary design
since it facilitates the calculation of internal forces. What is more, actual bar forces in
indeterminate trusses (i.e., where the members are continuous rather than pinned) are
often reasonably close to the approximate results obtained by assuming pinned joints.

|
Example 1.7 Find internal axial forces in a three-hinged arch

Problem definition
Find the internal axial force in bar AC of the three-hinged arch analyzed in Example 1.2.
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FIGURE 1.44

Internal bar force for Example 1.7 shown (a) in free-body diagram and (b) as a “force” triangle
with components xand y

Solution overview
Cut a free-body diagram through the bar in question, as shown in Figure 1.44a; label unknown
bar force as if in tension; use the equations of equilibrium to solve for the unknown force.

Problem solution

1. Because the far force, Fy, is inclined, it is convenient to draw and label its horizontal and
vertical component forces, x and y. Using the equations of vertical and horizontal equilib-
rium, we can find these component forces directly: F, = 10 + y = 0, from which y =
—10kips; XF,= 15+ x =0, from which x = -15kips. In both cases, the negative sign
indicates that our initial assumption of tension was incorrect; the bar force is actually in
compression, as one would expect in such an arch.

2. To find the actual bar force, Fye, the most direct approach is to use the Pythagorean theo-
rem, with the unknown force being the hypotenuse of a right triangle, as shown in Figure
1.44b. Therefore, Fae = (X2 + y?2)05 = (152 + 102)%5 = 18.03kips. The signs of the forces

are omitted in this calculation.
|

Example 1.8 Find internal axial forces in a cable

Problem definition
Find the internal axial force in segment AC of the cable analyzed in Example 1.3.

Solution overview

Cut a free-body diagram through the segment in question, as shown in Figure 1.45; label
unknown cable force as if in tension; use the equations of equilibrium to solve for the unknown
force.

Problem solution

1. Because the cable force, Fye, is inclined, it is convenient to draw and label its horizon-
tal and vertical component forces, x and y. Using the equations of vertical and horizontal
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FIGURE 1.45

Internal bar force for Example 1.8 shown in free-body diagram with components x and y

equilibrium, we can find these component forces directly: ¥F, = 18.125 — y = 0, from
which y = 18.125kips; XF, = —47.5 + x =0, from which x = 47.5kips. In both cases,
the positive sign indicates that our initial assumption of tension was correct, as one would
expect in any cable structure.

2. To find the actual cable force, F4c, the most direct approach is to use the Pythagorean
theorem, with the unknown force being the hypotenuse of a right triangle. Therefore,
Fac = (x2 + y2)05 = (47.52 + 18.1252)%5 = 50.84 kips. The signs of the forces are omitted
in this calculation.

3. Since the cable is flexible, the height, h, is unknown and, in fact, will change if the loads
are changed. To find h, we can use the fact that the “force triangle” and “geometry tri-
angle” are similar; therefore, the ratio of their sides must be equal: /15 = y/x = 18.125/
47.5, from which h = 5.72ft. Because the height will change if the loads change, the cable
is an unstable structure. -

INDETERMINATE STRUCTURES

Where there are more reactions, or constraints, than there are equations of equi-
librium, a structure is said to be statically indeterminate or redundant. Each added
constraint adds one degree of indeterminacy or redundancy to the structure, making
it that much more difficult to solve mathematically. To understand the basis of the
mathematical solution to indeterminate structures, we will examine a simply sup-
ported beam with a single concentrated load that has been made 1-degree redun-
dant (indeterminate) by adding a hanger at midspan: the structure now has four
unknown reactions (constraints), and only three equations of equilibrium are avail-
able, as shown in Figure 1.46.

The key to the solution is to find an additional equation that includes one or
more of the structure’s constraint variables; that equation will not be concerned
with equilibrium, but rather with the compatibility of structural deformations or
deflections. Looking at the simply supported beam and the tension hanger sepa-
rately, it is possible to write equations relating the loads acting on them to their
deflection (such equations are developed in Chapter 6 for tension elements and
Chapter 8 for beams). For now, we will simply note that A, = P;§;, and A, = P,S,
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FIGURE 1.46

Load diagram for a simply supported beam with an added hanger at midspan

FIGURE 1.47

Deflection diagrams for the two components of the structure shown in Figure 1.46: (a) a simply
supported beam with a concentrated load, P, and (b) a tension hanger with load P,

as shown in Figure 1.47, where A; and A, are the deflections of the beam and
hanger, respectively; P; and P, are the loads assumed to act separately on the beam
and hanger; and §; and S, are deflection constants that include the length or span of
the elements as well as their stiffness (i.e., their resistance to deformation).

These deflections, calculated separately for the beam and hanger, must actually
be equal in the real structure, and the loads P; and P, that correspond to these equal
deflections are actually only the parts of the total load, P, that the beam and hanger
separately resist. In other words, A; = A,; and P; + P, = P. This can be rewritten
as follows:

BS, = PS, 1.2
P, =P-—-P 1.3
Solving Equation 1.2 for P;, and substituting the result into Equation 1.3, we get:

B,

=pP_ P 1.4
s, S a.4
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Solving for P,, we get:

P

S a.5)
$,/8, +1

P,

Since the load P and coefficients §; and §, are all known, the force P, can be deter-
mined from Equation 1.5. Then, from Figure 1.47b, it can be seen that the vertical
reaction, Ry = P,. With this “fourth” reaction solved, the other vertical reactions at
A and B can easily be determined using the equations of equilibrium.

Equation 1.5 also clarifies the relationship between the element load-deforma-
tion constants, represented by §; and §,, and the overall behavior of the structure.
For example, if the constants are equal, it can be seen that P, = P/2; that is, half the
load is resisted by the hanger and half by the beam. On the other hand, if §; is small
compared to §, (i.e., if the hanger is more effective in resisting deformation than
the beam), then P, approaches the value of P, and the hanger begins to resist virtu-
ally all of the total load, with the beam’s share approaching zero. This is of crucial
importance in understanding the behavior of indeterminate structures: loads tend
to follow the path of greatest stiffness, or, put another way, loads follow various com-
peting load paths in proportion to the stiffness of those paths. In these formulations,
“stiffness” is used as shorthand for the load-deformation relationship, which includes
both the actual element stiffness (involving only material and cross-sectional proper-
ties) as well as element length or span.

For highly redundant structures, a greater number of equations, based on com-
patibility of deformations, need to be solved simultaneously. While this becomes
unwieldy if done by hand, structural analysis software has been developed to solve
such problems: the designer need only indicate the geometry of the structure
(including lengths and spans), the nature of each constraint (hinged, fixed, etc.),
and the relative stiffness of each element. This last requirement presents a bit of a
dilemma, since relative member stiffnesses must be assumed before the structure can
be designed. The stiffnesses assumed for the structure determine how the structure
will respond to its loads, unlike determinate structures, whose internal forces and
moments are independent of member cross sections and material properties. For
this reason, experience, trial and error, or a bit of both are crucial in the design of
indeterminate structures.

Once internal forces and moments have been determined, however, the same
strategies for the design of structural elements outlined in this book can be used,
whether the structure is statically determinate or indeterminate.

STRENGTH OF MATERIALS

The magnitudes of internal forces and bending moments do not, by themselves, give
any indication as to whether a particular structural element is safe or unsafe. Instead,
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the load or moment that an element can safely resist can only be determined when
information about the element’s cross section is considered: clearly, a large cross sec-
tion is stronger than a small one. But “large” in what way? The cross-sectional proper-
ties relevant to the determination of structural safety and serviceability are different
for tension elements, columns, and beams and are, therefore, discussed more fully in
their appropriate context (Chapters 6, 7, and 8, respectively). What follows is a brief
overview and summary of the major cross-section properties encountered in struc-
tural analysis and design.

Area

Cross-sectional areas are easily determined: for rectangles, the area A = B X H (Figure
1.48a) and for circles, A = wR* (Figure 1.48¢). What may not be as immediately clear
is that the I-shaped cross section (Figure 1.48b) has an area, A = (B X H) — (b X h),
and the circular ring (Figure 1.48d) has an area, A = ©R? — 7r?, where R is the outer
and 7 is the inner radius.

Moment of inertia

The moment of inertia, I, is defined as the sum of all elemental areas above or
below the centroid (x-axis) of the cross section multiplied by the square of the dis-
tance from each of the individual elemental centroids to the centroid of the cross
section as a whole, or

H/2

= [ yau 1.6)
—H/2
-

7
|

' 'R
Hl x| _ x [ )
Ty b/2['|b/2 y

(a) (b) (c) (d)

FIGURE 1.48

Cross sections typically encountered as structural elements include (a) rectangles, (b) I-shaped
sections, (c) circles, and (d) circular rings
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where y is the distance from each elemental area (the elemental areas being
dA = width X dy) to the centroid of the cross section, while H/2 and —H/2 repre-
sent the limits over which the integral is taken for the rectangle and I-shaped sec-
tion shown in Figure 1.48 (the same equation holds for the circular sections as well,
except with the integral taken from R/2 to —R/2).

This property is useful in understanding the stiffness of a cross section when
bent. It can be seen that placing a good deal of the cross-sectional material away
Jfrom the centroid—as in the I-shaped section or, to a lesser extent, in the circular
ring—increases the moment of inertia, and therefore the stiffness, since more “area”
is multiplied by the square of a greater distance from the centroidal axis. Equation
1.6 can be solved as follows for rectangular and circular shapes:

BH? R*
I, = 5 (rectangles); I, = 7TT(circles) an

X

Moments of inertia for the I-shaped section and circular ring can be easily found by
subtracting the smaller rectangle (or circle) from the larger one: for the I-shaped sec-
tion, I, = BH3/12 — bb3/12; for the circular ring, I, = ©R*/4 — 7r'/4.

For moments of inertia taken about the y-axis, the equations for rectangles and
circles are easily modified:

3 4
= bil; (rectangles); I, = 7714? (circles) .8

y

Moments of inertia for circular rings (Figure 1.484) are determined as before: by
subtracting the moment of inertia of the smaller from that of the larger circle. For
the I-shaped section, however, it is not possible to simply subtract the smaller rec-
tangles from the larger, as was done when computing the moment of inertia about
the x-axis, since the centroids of the various parts being subtracted do not coincide.
Instead, one must add the three moments of inertia of the two flanges and web, as
shown in Figure 1.49, each taken about the y-axis:

_th3 w3 t.B

T w4 f (1.9
Y 12 12 12
T{{r Fla?ge
o
B AR PLLLE ) B
L h %

FIGURE 1.49
Dimensions of an I-shaped section oriented about its y-axis, for the calculation of moment of inertia
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FIGURE 1.50

Rectangular cross section showing shaded area and distance from centroid of shaded area to
centroid of the whole cross section, for calculation of plastic section modulus, Z,

Section modulus

The elastic section modulus, S, is a single parameter that measures a cross section’s
strength in bending. For symmetrical sections, such as those shown in Figures 1.48a
and 1.48b:

= (];/XZ) (1.10)

X

For the circular shapes, S, = /R (Figures 1.48c and 1.48d). In each case, the
moment of inertia is divided by half the cross-sectional height, or thickness. From
Equations 1.7 and 1.10, it can be seen that the section modulus for a rectangular
cross section is S, = (BH>/12)/(H/2) = BH?*/6.

Plastic section modulus

The plastic section modulus, Z,, is used to determine the limit-state of steel beams,
defined as the point when the entire cross section has yielded. This property is
unique to steel, since neither of the other materials we are considering (wood and
reinforced concrete) has the necessary ductility to reach this state. Unlike the elas-
tic section modulus, S,, the plastic section modulus has no fixed relationship to the
moment of inertia of the cross section. Rather, it is defined as the sum of all ele-
mental areas above or below the centroid (x-axis) of the cross section multiplied by
the distance from each of the individual elemental centroids to the centroid of the
cross section as a whole. The plastic section modulus for a rectangular cross section
can be determined by multiplying each section half (e.g., the shaded area shown in
Figure 1.50) by the distance from its centroid to the centroid for the whole section:
Z, = B(H/2)(H/4) + B(H/2)(H/4) = BH*/4.
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Radius of gyration

The radius of gyration of a cross section, 7 or p, is a distance—but one without any
obvious physical meaning. It measures the cross section’s resistance to buckling,
when compressed, and is defined as follows:

r. = |- .11

where I, is the moment of inertia about the x-axis, and A is the cross-sectional area.
Since buckling might occur about either of the cross-sectional axes, it is the cross
section’s smaller radius of gyration, taken about the y-axis (the weaker axis), that is
often critical:

N ) (1.12)

From Equation 1.8, the moment of inertia about the y-axis used to compute the min-
imum radius of gyration for a rectangular cross section is I, = HB3/12.
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CHAPTER

Loads

There are three broad categories of loads on building structures: dead loads, live
loads, and “environmental” loads.

DEAD LOADS

Dead loads consist of the weight of the building itself, including structure, parti-
tions, cladding, roofing materials, and permanent interior finishes such as carpet,
ceiling systems, etc. These gravity loads are always downward-acting and can be
calculated with a reasonable degree of accuracy, being the summation of various
building material weights, which are easily determined and quite predictable. That
being said, it is sometimes prudent to anticipate unpredictable scenarios that call for
additional dead load, so that future building modifications (such as the addition of a
heavy tile floor or a change from a mechanically attached to a ballasted roof) can be
made without major structural modifications.

Dead loads are calculated by multiplying the unit weight of the materials by their
quantity. Weights of some common materials and assemblies are listed in Table
A-2.1.

|
Example 2.1 Calculate dead loads

Problem definition

Assume a typical steel structure with corrugated steel deck and concrete slab, tile floor, sus-
pended ceiling system, and allowances for partitions and mechanical ducts, as shown in
Figure 2.1. The spandrel girders carry an additional cladding load consisting of a brick and
block cavity wall, 12 ft high from floor to floor. Find the dead load distribution on Beam A and
Spandrel Girder B.

© 2010 Elsevier Inc. All rights reserved.
Doi: 10.1016/B978-1-85617-771-9.00002-7 39
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FIGURE 2.1

Framing plan for Example 2.1

Solution overview
Find weights of building elements; compute total dead load on beams and girders.

Problem solution
Beam A

1.

From Table A-2.1, find weights of building elements:

a. Steel deck, finish floor, ducts, and ceiling system = 47 psf.
b. Partitions = 8 psf.

c. Subtotal = b5 psf.

2. Compute weight per linear foot of beam by multiplying unit weight by tributary area on one
linear foot of the beam: 55 X 10 = 5501b/ft.

3. From Table A-2.1, assume weight of beam: 401b/ft.

4. Add beam weight to superimposed dead load to get total dead load, D = 550 + 40 =
5901b/ft, as shown in Figure 2.2.

Girder B

1. Find concentrated dead loads at third points caused by typical beam reactions, equal to
the distributed load on the beam times the beam span divided by 2: P = 590(30)/2 =
88501b.

2. From Table A-2.1, find weight of cladding = 1000 Ib/ft.

3. From Table A-2.1, assume weight of girder: 80Ib/ft.

4. Add girder weight to cladding weight = 80 + 1000 = 1080 Ib/ft.

5. The dead load on the girder consists of the distributed load in addition to the concentrated

loads transferred by typical beams, as shown in Figure 2.3. -

Dead loads also figure prominently in the evaluation of various environmental

loads, such as those caused by wind and earthquakes. Seismic loads, for example,
are directly proportional to the inertial mass of the building so that large dead loads
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Beam A load diagram for Example 2.1
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FIGURE 2.3
Girder B load diagram for Example 2.1

are associated with large seismic forces. The effects of wind, on the other hand,
can often be mitigated by the addition of dead load, since overturning and uplift—
tendencies that act opposite to the force of gravity—are reduced as the building’s
weight increases.

LIVE LOADS

Live loads are nonpermanent, or movable, loads within buildings caused by the
weight of people, furnishings, storage of objects, etc. They are relatively unpredict-
able; vary over time; and are often dynamic, rather than static, in their application.
Since it is not possible to measure these loads absolutely, a probabilistic approach
is used: values are assigned to various types of occupancies based on “worst-case”
expectations, taking into consideration actual observed loading conditions and the
historical record of structural failures.

Since these determinations are generic to various occupancy classifications, and
are not unique to each structure, the problem of determining live loads is taken out
of the hands of building designers altogether and appears as a mandate of govern-
ment in the form of building codes. Within these codes, the actual complex behav-
ior of live loads is reduced to an array of uniformly distributed values, one for each
type of occupancy. Examples of these live load values are listed in Table A-2.2.

As floor areas become larger, it becomes increasingly improbable that the full live
load will ever be present; therefore, a reduction in live load is generally permitted
for structural elements “influenced” by relatively large floor areas. These so-called
influence areas are different from the tributary areas used to compute “unreduced”
loads—they are, in fact, four times larger for columns and two times larger for beams
(Figure 2.4). For this reason, a single reduction equation based on tributary areas
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“Influence areas” for beams and columns

cannot be derived for both columns and beams; instead, such a formula is written
in terms of what used to be called the influence area, 4, but is now defined in terms
of the tributary area, A, (ft?), times a “live load element factor,” K 1L

live load reduction coefficient = 0.25 + 5 .D
KLLAT

Live loads are thus calculated by multiplying the tabulated values from Table
A-2.2 by the area-dependent reduction coefficients (Equation 2.1), where Kj; is
defined in Table A-2.2 but equals 2.0 for most beams and 4.0 for most columns.
The reduction coefficient is subject to the following limitations: (1) no reduction is
allowed for values of K;;A; smaller than 400ft%; (2) no live load reduction is permit-
ted for elements supporting a single floor with live loads greater than 100 psf (and
for elements supporting more than one floor with live loads greater than 100 psf, no
reduction greater than 20% is permitted); (3) no reduction coefficient smaller than
0.5 is allowed for ordinary beams or columns supporting one level only; and (4) no
reduction coefficient smaller than 0.4 is allowed for any other condition—that is, for
columns or beams supporting more than one level.

Live load reduction coefficients are plotted in Figure 2.5 for various tributary
areas, shown separately for beams and columns. Notice that as the tributary area
gets larger (and the likelihood of the full live load being present decreases), the live
load reduction increases.
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Live load reduction coefficient graph

There are a few obvious exceptions to the rules governing live load reductions,
most importantly for structural elements supporting large areas that are expected to
be fully loaded. In such cases (e.g., in places of public assembly or in garages), no
live load reduction is allowed. Additionally, reductions are restricted for one- and
two-way slabs since the failure mode of such slabs is not directly a function of tribu-
tary area, but rather corresponds more closely to any given “strip” within which
reinforcing bars are placed. These are minimum values for live loads: other than
exposing oneself to the potential wrath of developers, owners, project managers,
and contractors, nothing prevents a designer from using larger, or unreduced, val-
ues if warranted by the particular conditions of the project.

Example 2.2 Calculate live loads

Problem definition
Find the live loads for typical Beam A and Girder B in the 6-story office building shown in
Figure 2.6. What is the live load on first floor interior Column C (ignoring roof loads)?

Solution overview
Find unreduced live loads; apply live load reduction coefficient where applicable.
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FIGURE 2.6
Framing plan for Example 2.2

FIGURE 2.7

Tributary area for live load on one linear foot of beam for Example 2.2, with shaded “stress
block” volume of 50 X 8 X 1 = 400Ib/ft being the unreduced live load on one linear foot of
the beam

Problem solution
Beam A

1. From Table A-2.2, the unreduced live load for office occupancy = 50psf. The load on a
linear foot of the beam, found by multiplying the unit load by the tributary area on 1 linear
foot of the beam, is 50(8) = 400 Ib/ft (as shown in the shaded region of Figure 2.7).

2. From Table A-2.2, consider live load reduction, based on the beam’s tributary area,
Ar=8 % 20 = 160ft?, and a live load element factor, K, = 2. Since K Ar = 2(160) =
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Beam A load diagram for Example 2.2
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Girder B load diagram for Example 2.2

320ft? < 400ft?, no reduction is allowed, and the loading diagram remains as shown in
Figure 2.8.

Girder B

1. Find the unreduced live load on the girder, applied at the quarter-points by the reactions of
the beams, each of which equals the unit load on the beam times its span divided by two,
or 400(20)/2 = 40001b. Since two beams frame into the girder at each point, the unre-
duced live load is 4000(2) = 80001b at each of the quarter-points.

2. Consider live load reduction:

a. Find K Ar = 2(20 x 32) = 1280 ft2. The tributary area is taken as 20ft X 32ft rather
than 20ft X 24ft since the loads placed outside the middle 24 ft will have a structural
effect on the girder.

b. From Equation 2.1, apply a reduction coefficient of 0.25 + 15/(1280°%) = 0.67. The
concentrated live loads at each quarter-point become 0.67 X 8000 = 53541b = 5.4
Kips as shown in Figure 2.9.

Column C, first floor
1. Find the unreduced live load on the column: Since the first-floor column of a six-story
building supports five floors (not including the roof), and the tributary area of each floor is
32 X 20 = 640ft?, the total tributary area supported by the column is 5 X 640 = 3200ft2.
This results in an unreduced live load of 50 X 3200 = 160,0001b.
2. Consider live load reduction:
a. Find K, Ar = 4(3200) = 12,800ft?.
b. From Equation 2.1, apply a reduction coefficient of 0.25 + 15/(12,8009%) = 0.38.
Since the minimum reduction coefficient for columns supporting more than one level is
0.4, we use a total live load of 0.4(160,000) = 64,0001b = 64 kips. -
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ENVIRONMENTAL LOADS

Environmental loads are those due to snow, wind, rain, soil (and hydrostatic pres-
sure), and earthquake. Unlike live loads, which are assumed to act on all floor surfaces
equally, independent of the geometry or material properties of the structure, most of
these environmental loads depend not only upon the environmental processes respon-
sible for producing the loads, but upon the geometry or weight of the building itself.
For snow, wind, and earthquake loads, the “global” environmental considerations can
be summarized by location-dependent numbers for each phenomenon: ground snow
load for snow, basic wind speed for wind, and maximum ground motion (accelera-
tion) for earthquake (Table A-2.3). Considerations specific to each building are then
combined with these “global” environmental numbers to establish the magnitude and
direction of forces expected to act on the building. Like live loads, the actual pro-
cedures for calculating environmental loads are not derived independently for each
building, but are mandated by local building codes. For the actual design of real build-
ings in real places, the governing building code must be consulted; for the preliminary
design of real or imaginary buildings, the following guidelines will do.

Snow loads

Determining the weight of snow that might fall on a structure starts with a ground
snow load map or a ground snow load value determined by a local building code
official. These values range from 0 to 100 psf for most regions, although weights of
up to 300 psf are possible in locations such as Whittier, Alaska. Some typical ground
snow load values are listed in Table A-2.3. Flat-roof snow loads are generally consid-
ered to be about 30% less than these ground snow load values, and both wind and
thermal effects—as well as the “importance” of the structure—are accounted for in
further modifying this roof load. A thermal factor, C, = 1.2, is included in the flat-
roof load for unheated structures (C, = 1.0 for heated structures and 1.1 for heated
structures with ventilated roofs protected with at least R-25 insulation below the
ventilated plenum or attic); we will assume a nominal value of 1.0 for both wind
(“exposure”) and “importance.” Other possible values for the snow load impor-
tance factor, [, are listed in Table A-2.4. However, the major parameter in determin-
ing snow loads is the slope of the surface expected to carry the load. As the slope
increases, more snow can be expected to slide off the roof surface, especially if the
surface is slippery and if the space immediately below the surface is heated. The
slope-reduction factor, Cs, which is multiplied by the flat-roof snow load to obtain
the actual roof snow load, takes these factors into account:

a. Cy = 1.0 for roof angles from 0° to A°.
o

roof angle — A

70° — A°
c. Cy = 0 for roof angles greater or equal to 70°.

b.Cy =1.0 — for roof angles from A° to 70°. 22
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The parameter A (degrees Fahrenheit) depends on how slippery the roof sur-
face is and whether that surface is allowed to become warm or cold: A = 5° for
warm, slippery roofs (where the R-value must be at least 30 for unventilated roofs
and at least 20 for ventilated roofs); 30° for warm, nonslippery roofs (or for slippery
roofs not meeting the R-value criteria); 15° for cold, slippery roofs; 45° for cold,
nonslippery roofs; and, for the intermediate condition, where a roof remains some-
what cold because it is ventilated (with at least R-25 insulation below the ventilated
space), A = 10° for slippery roofs and 37.5° for nonslippery roofs. Neglecting varia-
tions due to exposure, the snow load can be written as:

0.7C,C, I (ground snow load) @3

As an example, for “ordinary” buildings (J; = 1.0) with nonslippery (e.g., asphalt
shingle) roofs having slopes no greater than 37.5°, kept cold by proper ventilation
(with at least R-25 insulation below the ventilated space), the sloped roof snow
load, deployed on the horizontal projection of the inclined structural roof members,
becomes:

0.7(1.0)(1.1)(1.0)(ground snow load) Q.49

Judgment should be used where the building geometry provides opportunities
for drifting snow to accumulate on lower roofs, or when sliding snow from higher
roofs might fall on lower roofs. Most building codes provide guidelines for these
situations.

Example 2.3 Calculate snow loads

Problem definition

Find the snow load on a house in Portland, Maine, with a conventional roof with an 8:12 slope,
that is, with an angle = tan™! (8/12) = 33.7°. The roof is kept cold by having a ventilated
attic, with R-30 insulation separating the ventilated attic space from the heated house below.
Calculate for both asphalt shingles and metal roofing.

Solution overview
Find ground snow load; compute roof snow load.

Problem solution
1. From Table A-2.3, the ground snow load = 50 psf.
2. Find the roof snow load:
a. Nonslippery surface (asphalt shingles): From Equation 2.4, for this condition only, the
snow load = 0.7(1.1)(1.0)(ground snow load) = 0.7(1.1)(1.0)(50) = 38.5 psf.
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Snow load diagram showing (a) distributed snow load and (b) snow load on a typical rafter, for
Example 2.3
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Unbalanced snow load for Example 2.3

b. Slippery surface (metal roofing): From Equation 2.2, find the coefficient, Cq for roof angles
from A° to 70°, where A = 10° for cold, slippery roofs (kept cold by ventilation). In this
case, Cs= 1.0-(roof angle — A°)/(70° — A°) = 1.0 — (33.7 — 10)/(70 — 10) = 0.61.
From Equation 2.3, the snow load = 0.7 CsC;(ground snow load) = 0.7(0.61)(1.1)(50) =
23.3psf.

3. For rafters (sloped roof beams) spaced at 16 in. on center, the snow load on each rafter

becomes:

a. 38.5(16/12) = 51Ib/ft for the nonslippery roof.

b. 23.3(16/12) = 31 Ib/ft for the slippery roof.

Both of these loading diagrams are shown in Figure 2.10.

5. To account for the effects of wind acting simultaneously with snow on gable-type roofs, it
is prudent to also check the unbalanced snow load, which can be taken as 1.5 times the
snow load acting on the leeward side of the gable, with zero snow load on the windward
side. For this example, the rafter snow load diagram is shown in Figure 2.11. -

b
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FIGURE 2.12
Historic values for wind loads, based on 1969-1981 New York City Building Codes

Wind loads

Building codes take one of two approaches to the mathematical calculation of wind
pressure on building surfaces: either these pressures are simply given as a function
of height, or they are calculated as a function of the basic wind speed, modified by
numerous environmental and building-specific factors.

The Building Code of the City of New York historically took the first approach,
specifying a 30-psf horizontal wind pressure on the surfaces of buildings more than
100ft tall. This number was actually reduced to 20 psf in the 1930s and 1940s. Then,
as buildings grew consistently taller and more data were assembled about wind speed
at various elevations above grade, wind pressure began to be modeled as a discontinu-
ous function, increasing from 20 psf below 100 ft to 40 psf above 1000 ft (Figure 2.12).

In contrast to this approach, wind pressure can also be calculated directly from
wind speed: the relationship between the velocity or “stagnation” pressure, g, and
the basic wind speed, V, is derived from Bernoulli’s equation for streamline flow:

q = 0.5pV* 2.5
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where p is the mass density of air. Making some assumptions about air temperature
to calculate p, and converting the units to pounds per square inch (psf) for g and
miles per hour (mph) for V, we get:

q = 0.00256(K)K,K,V*I,, 2.6)

where K accounts for heights above ground different from the 10m above ground
used to determine nominal wind speeds as well as different “boundary layer” condi-
tions, or exposures, at the site of the structure; K; = 0.85 is used only when com-
puting the effects of load combinations (see Chapter 5) to account for the lower
probability that an actual wind direction will produce the worst-case outcome when
the effects of load combinations—not just wind alone—are simultaneously measured;
and K, is a factor used only in special cases of increased wind speeds caused by hills,
ridges, escarpments, and similar topographic features. An “importance factor,” Iy, is
taken as 1.0 for normal buildings but can be lowered to 0.77 for low hazard occupan-
cies (minor storage, etc.) in hurricane-prone regions, or raised to 1.15 for occupancies
defined as essential (hospitals, fire stations, etc.) or where a substantial hazard to
human life is likely (schools, jails, places of assembly with 300 or more people, etc.).

For a building with normal occupancy at a height of 10m above grade in open
terrain, that is, with K = K; = K; = Iy = 1.0, a wind speed of 90 mph corresponds
to a velocity pressure equal to:

q = 0.00256(1.0)(1.0)(1.0)(90*)(1.0) = 20.7psf Q.7

The external design wind pressure, p,, can be found at any height and for various
environmental and building conditions by multiplying the velocity pressure, g, by a
series of coefficients corresponding to those conditions:

b. = qGC, 2.8

where ¢ is the velocity pressure as defined in Equation 2.6; G accounts for height-
dependent gustiness; and C, is a pressure coefficient accounting for variations
in pressure and suction on vertical, horizontal, and inclined surfaces. Combining
Equations 2.6 and 2.8, we get:

p, = 0.00256(K)K,K,GC, VI, .9)
where:
P. = the external design wind pressure (psf)
V' = the basic wind speed (mph)
K = the velocity pressure exposure coefficient

K, = 0.85 is a wind directionality factor (for use only when computing load
combinations)
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Wind pressure on buildings

K, = a topography factor (can be taken as 1.0 unless the building is situated on

a hill, ridge, escarpment, etc.)
= a coefficient accounting for height-dependent gustiness

C, = a pressure coefficient accounting for variations in pressure and suction on
vertical, horizontal, and inclined surfaces

Iy = an “importance factor,” taken as 1.0 for normal occupancies

Some values for these coefficients,—for buildings in various terrains (exposure cat-
egories)—are given in Table A-2.5 (except that wind velocities, V, for various cities,
are found in Table A-2.3). The resulting distribution of wind pressures on all exposed
surfaces of a generic rectangular building (with a sloped roof) is shown in Figure 2.13.

Only on the windward wall of the building does the wind pressure vary with
height above ground. On all other surfaces, the coefficient K is taken at mean roof
height for the entire surface, resulting in a uniform distribution of wind pressure
(whereas for the windward wall, the coefficient K is taken at the height at which
the pressure is being computed). This is consistent with the results of wind tunnel
tests, which show a much greater variability (related to height) on the windward
wall than on any other surface.

Changes in the building’s internal pressure as a result of high winds can increase
or decrease the total pressure on portions of a structure’s exterior “envelope.” This
internal pressure, p;, is normally taken as 18% of the roof-height velocity pressure
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for enclosed buildings, but it can be as high as 55% of the roof-height velocity pres-
sure for partially enclosed buildings The total design pressure, p, is therefore:

D= D+ D 2.10)

The actual behavior of wind is influenced not only by the surface (or boundary
layer) conditions of the earth, but also by the geometry of the building. All sorts of
turbulent effects occur, especially at building corners, edges, roof eaves, cornices,
and ridges. Some of these effects are accounted for by the pressure coefficient C,,
which effectively increases the wind pressure at critical regions of the building enve-
lope. Increasing attention is also being given to localized areas of extremely high
pressure, which are averaged into the total design pressures used when consider-
ing a structure’s “main wind-force resisting system” (MWEFRS). These high pressures
need to be considered explicitly when examining the forces acting on relatively
small surface areas, such as mullions and glazing, plywood sheathing panels, or roof-
ing shingles. Building codes either stipulate higher wind pressures for small surface
elements like glass and wall panels or provide separate “component and cladding”
values for the external pressure coefficients and gust response factors.

Since both external and internal pressures can be either positive (i.e., with the
direction of force pushing on the building surface), or negative (i.e., with a suction-
type force pulling away from the building surface), the total design pressure on any
component or cladding element is always increased by the consideration of both
external and internal pressures. For certain MWEFRS calculations, however, the inter-
nal pressures on opposite walls cancel each other so that only external pressures on
these walls need to be considered.

As an alternative to the analytic methods described, two other methods are also
permitted: a simplified analytic procedure for enclosed, more-orless symmetrical
low-rise (no more than 60-ft-high) buildings and physical testing of models within
wind tunnels to determine the magnitudes and directions of wind-induced pressures.

Example 2.4 Calculate wind loads

Problem definition

Find the distribution of wind load on the windward and leeward surfaces of a five-story office
building located in the suburbs of Chicago (assume typical “suburban” terrain, or Exposure
Category B). Since K; = 0.85, the results can be combined with other loads; K; = 1.0, since
no peculiar topographic features are present, and /, = 1.0, for “normal” occupancy. A typical
section is shown in Figure 2.14. Plan dimensions are 100ft X 100ft. Neglect internal pressure.

Solution overview
Find basic wind speed; compute external design wind pressures.
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Problem solution

1. From Table A-2.3, the basic wind speed, V = 90 mph.

2. Windward wall: From Equation 2.9, the external design wind pressure, p, = 0.00256(K)
KthGCpVZIW; where values for K, G, and C, are found in Table A-2.5 (K,, K, and /y are
given in the problem statement). It is convenient to organize the solution in tabular form, as
shown in Table 2.1.

The value of K at mean roof height (64 ft) is found by interpolation between the value at
60ft and the value at 70ft:

K-085  64—60
0.89 —0.85 70 — 60

from which K = 0.87. Values for K;and /,yequal 1.0 and are not included in the table.

| 100’ |
i
Wind I
? |
Q 3
pee
©

FIGURE 2.14
Schematic section through building for Example 2.4

Table 2.1 for Example 2.4

Height 0.00256 K K, G C, V2 (mph)  p, (psf)
70 0.00256 0.89 0.85 0.85 0.8 90 x 90 10.7
64 0.00256  0.87 0.85 0.85 0.8 90 X 90 10.4
60 0.00256 085 085 08 08 90 x90 10.2
50 0.00256 0.81 0.85 0.85 0.8 90 x 90 9.7
40 0.00256 0.76 0.85 0.85 0.8 90 x 90 9.1
30 0.00256 070 085 085 08 90 x 90 8.4
20 0.00256 0.62 0.85 0.85 0.8 90 x 90 7.4
0-15 0.002% 0.57 0.85 0.85 0.8 90 x 90 6.8
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Distribution of wind pressure on windward and leeward surfaces for Example 2.4

3. Leeward wall: From Equation 2.9, the external design wind pressure for the leeward

wall can be found (there is only one value for the entire leeward wall, based on K at the
mean roof height). From Table A-2.5, C, = —0.5 (since the ratio /B = 100/100 = 1.0);
K = 0.87 (at mean roof height: see step 2); G = 0.85; K, = 0.85; and K; = I, = 1.0. The
external wind pressure on the leeward side of the building is:

p. = (0.00256)(0.87)(0.85)(0.85)(—0.5)(90%) = —6.5psf

The negative sign indicates that this leeward pressure is acting in “suction,” pulling away
from the leeward surface.

. The distribution of wind pressure on the building section is shown in Figure 2.15. The

direction of the arrows indicates positive pressure (pushing) on the windward side and neg-
ative pressure (suction) on the leeward side. Rather than connecting the points at which
pressures are computed with straight lines (which would result in triangular stress blocks
over the surface of the building), it is common to use the more conservative assumption of
constant pressure from level to level, which results in a discontinuous, or stepped, pattern
of wind pressure, as shown in Figure 2.15. -

When computing the magnitude of wind loads that must be resisted by a building’s

lateral-force-resisting system, internal pressures can be neglected (as they act in oppo-
site directions on the two interior faces of the building, canceling out), leaving only the
windward and leeward pressures to be considered for each orthogonal plan direction.

Seismic loads

A building riding an earthquake is like a cowboy riding a bull in a rodeo: as the
ground moves in a complex and dynamic pattern of horizontal and vertical displace-
ments, the building sways back and forth like an inverted pendulum. The horizontal
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components of this dynamic ground motion, combined with the inertial tendencies
of the building, effectively subject the building structure to lateral forces that are
proportional to its weight. In fact, the earliest seismic codes related these seismic
forces, F, to building weight, W, with a single coefficient:

F=cw 21D

where C was taken as 0.1.

What this simple equation doesn’t consider are the effects of the building’s geo-
metry, stiffness, and ductility, as well as the characteristics of the soil, on the mag-
nitude and distribution of these equivalent static forces. In particular, the building’s
fundamental period of vibration, related to its height and type of construction, is a
critical factor. For example, the periods of short, stiff buildings tend to be similar to
the periodic variation in ground acceleration characteristic of seismic motion, causing
a dynamic amplification of the forces acting on those buildings. This is not the case
with tall, slender buildings having periods of vibration substantially longer than those
associated with the ground motion. For this reason, tall flexible buildings tend to per-
form well (structurally) in earthquakes, compared to short, squat, and stiff buildings.

But stiffness can also be beneficial since the large deformations associated with
flexible buildings tend to cause substantial nonstructural damage. The “ideal” earth-
quake-resistant structure must therefore balance the two contradictory imperatives
of stiffness and flexibility.

In modern building codes, the force, F, has been replaced with a “design base
shear,” V, equal to the total lateral seismic force assumed to act on the building.
Additionally, the single coefficient relating this shear force to the building’s weight
(“seismic dead load”) has been replaced by a series of coefficients, each corresponding
to a particular characteristic of the building or site that affects the building’s response
to ground motion. Thus, the base shear can be related to the building’s weight with the
following coefficients, using an “equivalent lateral force procedure” for seismic design:

V =CW =

S
—D5__lw (2.12)
(R/1Ig)
where:

V= the design base shear

C; = the seismic response coefficient equal to Spe/(R/I)

W = the effective seismic weight (including dead load, permanent equipment,
a percentage of storage and warehouse live loads, partition loads, and cer-
tain snow loads);

Sps = the design elastic response acceleration at short periods
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R = a response modification factor (relating the building’s lateral-force-resisting
system to its performance under seismic loads)

I; = the seismic importance factor (with somewhat different values than the
equivalent factors for wind or snow)

The coefficient C; has upper and lower bounds that are described in Table A-2.6,
part H, so it will only correspond to Equation 2.12 when it falls between the two
bounding values. The response modification factor, R, is assigned to specific lateral-
force-resisting systems—not all of which can be used in every seismic region or for
every type of occupancy; Table A-2.6, part D, indicates which structural systems are
either not permitted or limited in height, within specific seismic design categories.

To approximate the structural effects that seismic ground motion produces at
various story heights, seismic forces, F,, are assigned to each level of the building
structure in proportion to their weight times height (or height raised to a power no
greater than 2) above grade:

k&
F, = Lb (2.13)
Yw,bf
where:
|4 = the design base shear, as defined above in Equation 2.12

w, and w, = the portions of weight W at, or assigned to, a given level, 7 or x
b;and b, = the heights from the building’s base to level 7 or x

k =1 for periods = 0.5s and 2 for periods = 2.5s (with linear inter-
polation permitted for periods between 0.5 and 2.5s) and accounts
for the more complex effect of longer periods of vibration on the
distribution of forces

The X symbol in Equation 2.13 indicates the sum of the product of (wihf) for
i ranging from 1 to n, where n is the number of levels at which seismic forces are
applied.

A typical distribution of seismic forces resulting from the application of this equa-
tion is shown in Figure 2.16. It can be seen that Equation 2.13 for F, guarantees that
these story forces are in equilibrium with the design base shear, V.

For structures that are in the lowest-risk seismic design category A (see Table
A-2.6, part G), it is not necessary to find the base shear, V, and the seismic response
coefficient, C;, and to assign story forces as described in Equations 2.12 and 2.13;
instead, the story forces can be computed directly, based only on the dead loads for
each level: F, = 0.01w,, where F, is the story force at each floor or roof level and
w, is the dead load assigned to that level.

Building codes require that larger seismic forces be used for the design of indi-
vidual building elements and for the design of floor “diaphragms.” The rationale for
the separate calculation of these forces is similar to the logic behind the calculation
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FIGURE 2.16

Typical distribution of equivalent seismic story forces on a building

of larger “component and cladding” loads in wind design: because the actual distribu-
tion of seismic forces is nonuniform, complex, and constantly changing, the average
force expected to act upon the entire lateral-force-resisting structural system is less
than the maximum force expected to occur at any one level or upon any one build-
ing element.

The “equivalent lateral force analysis” method described earlier is but one of sev-
eral alternate procedures developed for seismic force calculations. In addition to a
simple “index force analysis” method permitted only in regions with extremely low
seismic risk and a “simplified analysis” method for most nonhazardous and nonessen-
tial low-rise structures, more sophisticated alternate methods have been developed
that can be used for any structure in any seismic region. These methods include
modal response spectrum analysis as well as both linear and nonlinear response his-
tory analysis, all beyond the scope of this text.

Whatever the method of analysis, designers in seismically active regions should
carefully consider the structural ramifications of their “architectural” design deci-
sions and provide for ductile and continuous “load paths” from roof to foundation.
Following are some guidelines:

1. Avoid “irregularities” in plan and section. In section, these irregularities include
soft stories and weak stories that are significantly less stiff or less strong than the
stories above and geometric irregularities and discontinuities (offsets) within the
structure. Plan irregularities include asymmetries, reentrant corners, discontinui-
ties and offsets that can result in twisting of the structure (leading to additional
torsional stresses), and other stress amplifications. Buildings articulated as mul-
tiple masses can be either literally separated (in which case the distance between
building masses must be greater than the maximum anticipated lateral drift, or
movement) or structurally integrated (in which case the plan and/or sectional
irregularities must be taken into account).
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2. Provide tie-downs and anchors for all structural elements, even those that seem

secured by the force of gravity: the vertical component of seismic ground accel-
eration can “lift” buildings off their foundations, roofs off of walls, and walls off
of framing elements unless they are explicitly and continuously interconnected.
Nonstructural items such as suspended ceilings and mechanical and plumbing
equipment must also be adequately secured to the structural frame.

The explicit connection of all structural elements is also necessary for build-
ings subjected to high wind loads, since uplift and overturning moments due to
wind loads can pull apart connections designed on the basis of gravity loads only.
But unlike seismic forces, which are triggered by the inertial mass of all objects
and elements within the building, wind pressures act primarily on the exposed
surfaces of buildings so that the stability of interior nonstructural elements is not
as much of a concern.

. Avoid unreinforced masonry or other stiff and brittle structural systems. Ductile

framing systems can deform inelastically, absorbing large quantities of energy
without fracturing.

Example 2.5 Calculate seismic loads

Problem definition

Find the distribution of seismic story loads on a five-story office building located in Los Angeles,
away from the ocean. Plan dimensions are 60ft X 80ft; assume that an “effective seismic
weight” of 75 psf can be used for all story levels (primarily due to the dead load). The structure
is a steel special moment-resisting frame and is built upon dense soil. The typical building sec-
tion is shown in Figure 2.17.
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FIGURE 2.17

Schematic section through building, showing story heights, for Example 2.5
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Solution overview
Find the effective seismic weight, W, and the seismic response coefficient, Cs; compute the
base shear, V, and the story forces, F,.

Problem solution

1. Find W: The effective seismic weight for each story is the unit weight times the floor area =
75(60 X 80) = 360,0001b = 360kips per floor; the total weight, W, for the entire building
is therefore 5 X 360 = 1800Kkips.

2. FindV:

a.

h.

From Table A-2.3, find S, S; (maximum considered earthquake ground motion at short
and long periods, respectively), and T, (long-period transition period) for Los Angeles:
Ss=20;,5=10; T, = 12.

From Table A-2.6, parts A and B, find site coefficients f, and F,; using dense soil (cor-
responding to Site Class C) and the values of Ss and S; found in part A, we find that
F,=10and F,=1.3.

From Table A-2.6, part C, find the design elastic response accelerations: Sps = 2/3(F,Ss) =
2/3(1.0)(2.0) = 1.33; Sp; = 2/3(F,S;) = 2/3(1.3)(1.0) = 0.867.

From Table A-2.6, part D, find the response modification factor: R = 8 (for special steel
moment frames). There are no height limits or other restrictions for this structural sys-
tem category; otherwise, it would be necessary to check which seismic design category
the building falls under, from Table A-2.6, part G.

From Table A-2.6, part E, the fundamental period of vibration, T, can be taken as C+h,* =
0.028(64°8) = 0.78 second, where h, = 64ft is the building height; and the values
used for Crand x, taken from Table A-2.6, part E, correspond to steel moment-resisting
frames.

From Table A-2.6, part F, the importance factor, /¢, equals 1.0 for ordinary buildings.

It is now possible to find the seismic response factor, Cs. The provisional value for
Cs = Sps/(RIlg) = 1.33/(8/1.0) = 0.166. However, this must be checked against
the upper and lower limits shown in Table A-2.6, part H: since S; = 1.0=0.6 and
T=0.78<T, =12, the lower limit for C; = 0.5S/(R/lf) = 0.5(1.0)/(8/1.0) = 0.0625,
and the upper limit for Cs = Sp;/(TR/Ig) = 0.867/(0.78 X 8/1.0) = 0.139. The upper limit
governs in this case, so we use C; = 0.139.

From Equation 2.12, the base shear, V= C,W = 0.139(1800) = 250.2kips.

3. From Equation 2.13, the story forces can be determined as follows:

Vw i
Fo = —%%
Swh;

In this equation, since the period, T = 0.78s, is between 0.5 and 2.5, and the limiting
values of the exponent, k, are set at 1.0 for 7= 0.5 and 2.0 for T= 2.5, our value of ks
found by linear interpolation:

k—10 _ 078-05
20-10 25-05
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Table 2.2 for Example 2.5
Story level ~ Story height, b, (ft)  h}™*  F, = 0.735h)"*(kips)

Roof 64 114.56 84.24
5 52 90.42 66.49
4 40 67.04 49.30
3 28 44.64 32.83
2 16 23.59 17.35

Sum of story forces, F, = base shear V = 250.2

84.24 kips Sk

\ 66.49 )I 5
49.30

> 4
32.83 \ N 3
17.35 2
1

&—— v=250.2 kips

FIGURE 2.18
Distribution of story forces, F,, for Example 2.5

from which k = 1.14. The seismic weight at each story, w; = 360kips (see step 1), and
the various story heights can be most easily computed in tabular form (see Table 2.2).

Once the values for h}'* have been determined for each story level, Equation 2.13
can be rewritten as:

(250.2)(360)n1

F, = = 0.735h11
(360)(23.59 + 44.64 + 67.04 + 90.42 + 114.56)

and values for F, = 0.735h:* can then be added to the table. Finally, their distribu-
tion on the building can be sketched, as shown in Figure 2.18. The sum of all the
story forces, F,, equals the design base shear, V, as it must to maintain horizontal
equilibrium. -
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Material properties

Wood, steel, and concrete are actually extraordinarily complex materials. Of the
three, wood was used first as a structural material, and some of the otherwise inscru-
table vocabulary of structural analysis derives from this fact: the notion of an “outer
fiber” of a cross section; or even the concept of “horizontal shear” are rooted in the
particular material structure of wood.

Only certain material properties are of interest to us here—specifically, those that
have some bearing on the structural behavior of the elements under consideration.
The most obvious, and important, structural properties are those relating force to
deformation or stress to strain. Knowing how a material sample contracts or elon-
gates as it is stressed up to failure provides a crucial model for its performance in
an actual structure. Not only is its ultimate stress (or strength) indicated, but also a
measure of its resistance to strain (modulus of elasticity), its linear (and presumably
elastic) and/or nonlinear (plastic) behavior, and its ability to absorb energy without
fracturing (ductility).

Ductility is important in a structural member because it allows concentrations of
high stress to be absorbed and redistributed without causing sudden, catastrophic
failure. Ductile failures are preferred to brittle failures, since the large strains pos-
sible with ductile materials give warning of collapse in advance of the actual fail-
ure. Glass, a nonductile (i.e., brittle) material, is generally unsuitable for use as a
structural element, in spite of its high strength, because it is unable to absorb
large amounts of energy and could fail catastrophically as a result of local stress
concentrations.

A linear relationship between stress and strain is an indicator of elastic behavior—
the return of a material to its original shape after being stressed and then unstressed.
Structures are expected to behave elastically under normal “service” loads; but
plastic behavior, characterized by permanent deformations, needs to be consid-
ered when ultimate, or failure, loads are being computed. Typical stress-strain
curves for wood, steel, and concrete are shown in Figure 3.1. The modulus of

© 2010 Elsevier Inc. All rights reserved.
Doi: 10.1016/B978-1-85617-771-9.00003-9
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FIGURE 3.1
Stress—strain curves for structural materials

elasticity, E, is the slope of the curve—that is, the change in stress, o, divided by the
change in strain, €. For linear materials:

=12 3.1
13

The most striking aspect of these stress-strain curves shown in Figure 3.1 is
the incredibly high strength and modulus of elasticity (indicated by the slope
of the curve) of steel relative to concrete and wood. Of equal importance is the
information about the strength and ductility of the three materials in tension ver-
sus compression. For example, structural carbon steel, along with its high strength
and modulus of elasticity, can be strained to a value 60 times greater than shown
in Figure 3.1 in both tension and compression, indicating a high degree of ductil-
ity. Concrete, on the other hand, has very little strength in tension and fails in a
brittle (nonductile) manner in both tension and compression. Wood has high tensile
strength compared to concrete, but it also fails in a brittle manner when stressed in
tension; in compression, however, wood shows ductile behavior.
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Aside from such stress-strain data, material properties can also be affected by
environmental conditions, manufacturing processes, or the way in which loads are
applied. These material-dependent responses are discussed in the following sections.

WooD

Wood is the stuff inside trees; timber is wood suitable for (or prepared for) use in
structures; lumber is timber cut into standard-sized planks. Since we build with lum-
ber (which is also timber, which is also wood), all three of these terms are used,
depending on the context.

The basic structure of wood can be understood by examining its situation within
the tree: the trunk consists of a bundle of cellulose tubes, or fibers, that serve the
dual purpose of carrying water and nutrients from the ground to the leaves while
providing a cellular geometry (“structure”) capable of supporting those leaves and
the necessary infrastructure of branches. Various loads stress the tree trunk in axial
compression (dead load and snow load) and in bending (wind load, eccentric dead
load, and snow load). When we cut lumber from the tree, we do so in a way that
allows it to be stressed within building structures in the same manner that it was
stressed while in the tree. Thus, saw cuts are made parallel to the longitudinal fibers
of the wood, since it is the continuity of these fibers that give the wood strength.

Cutting

Lumber cut from a tree immediately has three structural defects, compared to wood
in the tree itself. First, it is virtually impossible to cut every piece of lumber so that
the orientation of the fibers, or grain, is exactly parallel to the edges of the wood
planks. This means that the full potential of the wood’s strength is rarely achieved.

Second, the continuous path of those fibers leading from trunk to branch—a
functional and structural necessity within the tree—becomes a liability when the
tree is cut, as it results in knots and other imperfections that weaken the boards.
Wood is graded to account for these and other imperfections.

Third, the shear strength of the wood—that is, its ability to resist sliding of the
cellular fibers relative to each other—is much lower than its strength in tension or
compression parallel to those fibers. While a low shear strength is perfectly adapted
to a tree’s circular cross section, it is not necessarily appropriate for the rectangu-
lar cross sections characteristic of lumber. Why this is so can be seen by compar-
ing the two cross-sectional shapes: with a circle, a great deal of material is available
at the neutral axis (where shear stresses are highest), so the “glue” or lignin holding
the fibers together can be relatively weak; but when the tree is cut into rectangu-
lar cross sections, relatively less material is present at the neutral axis, and shear
stresses are therefore higher. For this reason, the structural efficiency of lumber
with a rectangular cross section—that is, all lumber—is compromised by a dispro-
portionate weakness in shear.
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Seasoning

A dead tree begins losing its internal water until its moisture content reaches equilib-
rium with the surrounding air. Two things then happen: the wood shrinks, especially
perpendicular to the grain, and the wood gets stronger. As atmospheric humidity
changes, the wood responds by gaining or losing moisture, by expanding or shrink-
ing, and by becoming weaker or stronger. For structural design, the issue of strength
versus moisture content is handled by assuming one of two conditions: either the
wood is indoors, where the humidity is controlled and the moisture content of the
wood is expected not to exceed 19% (for glued laminated timber, this condition is
met when the moisture content is less than 16%), or outdoors, where the potential
exists for the wood to take on added moisture and lose some strength. The wood’s
moisture content at the time of fabrication also has an impact on its in-service per-
formance, especially for the design of connections among structural elements.

Volume

Lumber contains both hidden and visible pockets of low strength, due to imper-
fections within or between the cellular fibers of the material and larger cracks or
knots often visible on the surface. It is impossible to know where all these defects
might be in any particular piece of lumber, but one can safely surmise that there
will be more of them as the volume of the piece increases. As the number of defects
increases, the probability that larger, or more damaging, defects will exist within
critical regions of the structural element also increases. Since these regions of low
strength can trigger brittle failure (wood is brittle when stressed in tension), large
pieces of lumber will statistically fail at lower levels of stress than small pieces. This
does not mean that large beams hold less load than small beams; it simply means
that the average stress that causes failure will be lower in larger beams.

Interestingly, the theory is validated by test results for all categories of beams
and tension elements, with one exception: increases in cross-sectional width seem
to make beams stronger (but not tension members), opposite to what the theory
of brittle failure predicts. The reason for this anomaly remains unclear, but it may
have to do with the fact that local failures at regions of low strength are more likely
to cascade across the entire width of relatively thin cross sections and more likely
to be contained as cross-sectional width increases. A horizontal break correspond-
ing to a complete discontinuity between the lower and upper parts of a cross sec-
tion drastically reduces the cross section’s ability to resist bending moments, but it
has no effect on the section’s ability to resist axial tension. This would explain why
beams, but not tension members, seem to get stronger with increased width. On
the other hand, increasing the depth of a structural element has no such beneficial
effect, since even a complete vertical break within a cross section neither increases
nor decreases a member’s bending or tensile strength. Because wide beams seem
to be relatively stronger than narrow ones, the allowable stress in beams used flat
(stressed about their weak axes) is higher than when they are used in their normal
orientation, even though their total volume hasn’t changed.
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Duration of load

Wood fails at a lower stress the longer it is loaded. This phenomenon is similar to
the “fatigue” of metals, except that where metal fatigue is brought on by repeated
cycling or reversals of stress, loss of strength in wood is purely time-dependent
and will occur even under a constant load. Thus, wood can sustain a higher stress
caused by a short-duration impact load than by a longer-duration wind, snow, or
live load.

Species and grade

Many species of wood can be used as lumber. Within each species, different grades
are identified, depending on such things as overall density, knots, checks, and other
imperfections. Grading can be done by visual inspection (for “visually graded lum-
ber”) or with the aid of machines (for “machine stress rated lumber”). Since each
species of wood is subdivided into numerous grades, the result is a multitude of pos-
sible material types, each with different structural properties. Practically speaking,
the choices in any given geographical region are limited to what is locally available.
For that reason, the material properties assumed when designing in timber are not
arbitrarily selected from the lists produced by wood industry organizations but are
selected from the much shorter list of regionally available species and grades. Several
common species and grades of wood are listed in Tables A-3.1,A-3-3,A-3.5, and A-3.7,
along with their “allowable stresses” in tension, compression, bending, and shear.
Adjustments to these values, accounting for the effects of such things as moisture,
volume, and duration of load are listed in Tables A-3.2, A-3.4,A-3.6,A-3.8, and A-3.10.
The modulus of elasticity and specific gravity are listed in Tables A-3.9 and A-3.11,
respectively.

Related products

Several wood-based products have been developed with structural applications:

Glued laminated (glulam) lumber is made by gluing together flat boards, typically
1% or 1% in. thick (half that for curved members) to create large cross sections
of virtually unlimited length. Material properties can be controlled to some extent
within the cross section—poorer-quality grades may be placed near the neutral
axis, while higher-strength boards are reserved for the extreme fibers. A typical
cross section is shown in Figure 3.2.

Laminated veneer lumber (LVL) is similar to glulam except that the laminations
are much thinner—being sliced off a log like paper pulled off a roll, rather than
being sawn, and the glued joints between laminations are vertical, rather than
horizontal. The grain in each lamination is oriented along the longitudinal axis
of the member so that, like glulam, it mimics the anisotropic fibrous structure of
an ordinary piece of lumber. LVL is used for beams and girders only and is manu-
factured in standard sizes consistent with the sizes of sawn lumber, while glulam

65



66 CHAPTER 3 Material properties

FIGURE 3.2

Glulam cross section

FIGURE 3.3
LVL cross section

can be custom fabricated in an unlimited variety of sizes and geometries. A typi-
cal LVL cross section is shown in Figure 3.3.

Parallel strand lumber (PSL) is similar to LVL, except that strips of veneer are used
instead of whole veneers.

Plywood is similar to LVL except that alternate laminations (plies) are oriented per-
pendicular to each other, creating a dimensionally stable structural membrane, used
typically as a substrate (sheathing) for roofs and exterior walls and as a subfloor over
joists in wood-frame construction. Plywood typically contains an odd number of plies,
except when the middle two plies are “doubled up” as in 4-ply plywood; in either case,
the top and bottom fibers point in the same direction (parallel to the long dimension
of the plywood sheet). For this reason, plywood is typically oriented so that it spans in
the direction of its long dimension (Figure 3.4). Where this doesn’t occur (e.g., in cer-
tain panelized roof systems), the lower bending strength of the plywood spanning in
its short direction needs to be considered.
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FIGURE 3.4

Plywood subfloor

o~

FIGURE 3.5
I-joist cross section

Oriented strand board (OSB) is similar to plywood, except that the various alternat-
ing layers consist of strands of wood glued together.

Ljoists are manufactured from various combinations of flange and web materials and
can be used in place of sawn lumber beams. Flange material can be ordinary sawn
lumber or LVL; web material is typically plywood or particle board. Cold-formed
metal can also be used as a “web” material, creating a composite “truss-joist” con-
sisting of wooden chords and metal diagonals. A typical Ijoist cross section is
shown in Figure 3.5.

Prefabricated trusses consisting typically of sawn 2 X 4 or 2 X 6 members joined
by metal connector plates can be used for both pitched roofs and flat floors.
These products can be custom fabricated and are often structurally designed
(engineered) by the manufacturer.
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STEEL

Steel is subject to corrosion if not protected and loss of strength and stiffness at high
temperatures if not fireproofed. While these are extremely important material prop-
erties, the structural design of steel elements presupposes that these issues have
been addressed within the architectural design process.

Stress—strain

Steel has a distinct elastic region in which stresses are proportional to strains and a
plastic region that begins with the yielding of the material and continues until a so-
called strain-hardening region is reached. The yield stress defines the limit of elastic
behavior and can be taken as 36ksi for ASTM A36 or 50ksi for what is becoming the
de facto standard—at least for wide-flange (W) shapes—ASTM A992; both standards
are published by the American Society for Testing and Materials.

Within the plastic range, yielded material strains considerably under constant
stress (the yield stress), but it does not rupture. In fact, rupture only occurs at the
end of the strain-hardening region, at an ultimate or failure stress (strength) much
higher than the yield stress. Bending cold-formed steel to create structural shapes
out of flat-sheet steel stretches the material at the outer edges of these bends beyond
both the elastic and plastic regions and into the strain-hardening region. This actu-
ally increases the strength of these structural elements, even though the direction of
stretching is perpendicular to the longitudinal axis of the element.

High-strength steels (with yield stresses up to 100ksi) are available, but their util-
ity is limited in the following two ways. First, the modulus of elasticity of steel does
not increase as strength increases but is virtually the same for all steel (29,000 ksi).
Reducing the size of structural elements because they are stronger makes it more
likely that problems with serviceability (i.e., deflections and vibrations) will surface
since these effects are related not to strength, but to the modulus of elasticity.

Second, increased strength is correlated with decreased ductility and a greater
susceptibility to fatigue failure. Therefore, where dynamic and cyclic loading are
expected, high-strength steel is not recommended; where dead load dominates,
and the load history of the structural element is expected to be relatively stable,
high-strength steel may be appropriate, as long as the first criterion relating to stiff-
ness (modulus of elasticity) is met. The most commonly used steels, along with their
yield and ultimate stresses, are listed in Table A-3.12.

Residual stress

Hot-rolled steel shapes contain residual stresses even before they are loaded. These
are caused by the uneven cooling of the shapes after they are rolled at temperatures
of about 2000°F. The exposed flanges and webs cool and contract sooner than the
web-flange intersections; the contraction of these junction points is then inhibited
by the adjacent areas which have already cooled, so they are forced into tension
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Residual stresses in steel rolled section, with “+” indicating tension and “~” indicating
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as they simultaneously compress the areas that cooled first. The typical pattern of
residual stresses within a wide-flange cross section is shown in Figure 3.6. Residual
stresses have an impact on the inelastic buckling of steel columns, since partial
yielding of the cross section occurs at a lower compressive stress than would be the
case if the residual compressive stresses “locked” into the column were not present.

Related products

Aside from standard rolled structural shapes, several other structural applications of
steel should be noted:

Cold-formed steel is made by bending steel sheet (typically with 90° bends) into
various cross-sectional shapes, used primarily as studs (closely spaced vertical
compression elements), joists (closely spaced beams), or elements comprising
lightweight trusses. Manufacturers provide tables for these products containing
section properties and allowable loads, or stresses.

Hollow structural sections (HSS) are closed tubular steel shapes that can be formed
and welded in various ways from flat sheets or plates; these shapes can be circu-
lar, square, or rectangular. Circular pipes are similar to round HSS, except that
they are fabricated with a different grade of steel.

Open-web steel joists (OWS]) are lightweight prefabricated trusses made from steel
angles and rods. Spans of up to 144 ft are possible with “deep longspan” or DLH-
series joists; regular “longspan” (LH-series) joists span up to 96ft, while ordinary
H-series joists span up to 60ft. These products are relatively flexible, subject to
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vibration, and are most often used to support roof structures in large one-story
commercial or industrial buildings.

Space-frame (actually “space-truss”) systems consist of linear elements and con-
necting nodes based on various geometries, most commonly tetrahedral or pyra-
mid shaped.

Corrugated steel decks constitute the floor and roof system for almost all steel-
framed buildings. For floor systems, they are often designed compositely with
concrete fill, effectively creating a reinforced concrete floor system in which the
reinforcement (and formwork) consists of the steel deck itself.

Cables and rods can be used as structural elements where the only expected
stresses are tension, or where the element is prestressed into tension: the flexibil-
ity of these elements prevents them from sustaining any compressive or bending
stresses. Applications include elements within trusses, bridges, and membrane
structures.

REINFORCED CONCRETE

The cylinder strength of concrete, f/, is the ultimate (highest) compressive stress
reached by a 6in. X 12in. test cylinder of concrete after 28 days of curing under
prescribed conditions. Desired values for f/ are specified by designers and created
in batching plants by mixing together predetermined proportions of water, cement,
aggregate, and admixtures. Typical compressive strengths range from 3000 to
5000 psi, but can be specified higher for prestressed concrete or for columns sub-
jected to unusually high compressive stresses.

Aside from concrete’s relatively high compressive strength, the material proper-
ties that are most significant in terms of its structural behavior are (1) low tensile
strength, (2) brittleness, and (3) shrinkage.

Low tensile strength

The first property makes plain concrete unsuitable for most structural applica-
tions, since even elements subjected to compressive stresses generally need suffi-
cient tensile strength to inhibit buckling. For this reason, and to extend the range of
its applications to beams and slabs as well as columns, concrete is reinforced with
steel reinforcing bars, or “rebars,” in regions of the cross section where tension is
expected to occur.

Brittleness

Lack of ductility is also an undesirable property for a structural material. To prevent
sudden, catastrophic failure of reinforced concrete beams, for example, the amount
of reinforcement must be kept small enough so that the steel will yield (in a ductile
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manner) before the concrete crushes (in a sudden, catastrophic, brittle manner).
Where this is not possible—in structural elements controlled by compression—
safety factors are adjusted accordingly (see Chapter 5).

Shrinkage

Concrete shrinks as the water not needed in the curing process, but required for
workability, evaporates. Expansion and contraction due to temperature changes can
also cause differential movement. To reduce and control cracking in slabs where
this movement is restrained—for example, by perimeter beams containing steel
reinforcement—additional temperature and shrinkage reinforcement is added to the
slab. In one-way slabs, where the concrete spans and is structurally reinforced in
one direction, temperature and shrinkage reinforcement is only needed perpendicu-
lar to this spanning direction.

Related products

Precast concrete is reinforced concrete that is cast away from the building site,
and assembled on site. Some (but not all) precast concrete is available in standard
shapes and dimensions: floor and roof planks, tees and double-tees are examples.
Otherwise, precast concrete may be fabricated in any shape and size consistent with
the laws of statics; the strength and stiffness of the materials; and the constraints
imposed by formwork, transportation, handling, and erection.

Precasting may imply a loss of structural continuity if connections are made
with steel inserts bolted or welded together to create simple supports. On the other
hand, it is possible to design precast systems whose behavior is identical to that of
site-cast systems by maintaining the continuity of steel reinforcement from element
to element. Special products are available to connect rebars that have been left
exposed at the ends of the concrete pieces; nonshrinking grouts are then used to fill
in the voids and complete the structural connection.

Precast concrete is more widely used as “nonstructural” cladding than as primary
structure, at least in the United States. The quotation marks around nonstructural
hint at the inadequacy of the term: in fact, all cladding is structural since it must
resist wind, seismic, and impact loads and transfer these loads to the primary lateral-
force resisting structural system of the building.
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CHAPTER

Sectional properties

The behavior of structural elements is conditioned by the particular shapes into
which these materials are formed and the particular material qualities selected. Wood,
steel, and reinforced concrete structures can be fabricated from elements having an
enormous range of strength, stiffness, size, and geometric configurations—subject
only to the constraints imposed by manufacturing technologies, transportation and
handling, and safety and serviceability requirements. In practice, though, the usual
range is smaller, limited to standard shapes and sizes endorsed by industry associa-
tions. These standards are described in this chapter.

WO00oD

Within each species, lumber is further classified by its size. Various grades of lumber
are then identified for each size classification. The actual (“dressed”) sizes of lumber,
which are currently )/ in. to % in. smaller than their nominal dimensions, are shown
in Table A-4.1, together with some important cross-sectional properties. For our pur-
poses, we shall consider only the following size classifications of lumber: dimen-
sion lumber, consisting of light framing elements, studs, and joists with nominal
cross-sectional dimensions ranging from 2 X 2 to 4 X 16, and timbers, consisting of
all larger cross sections. There are two subcategories within timbers, identified by
the most common uses for which they are typically selected: (1) beams and string-
ers, which are more than 2in. wider than they are thick (and they are at least 5in.
thick, nominally), and (2) posts and timbers, which are no greater than 2in. wider
than they are thick. Of course, nothing prevents a designer from using a “beam and
stringer” as a post; a “post and timber” as a beam; or any piece of lumber, classified
by its most common use, for any other structural purpose.

When describing beams, the standard nomenclature used in timber design can
be quite confusing: the smaller dimension, or thickness, is what we ordinarily call

© 2010 Elsevier Inc. All rights reserved.
Doi: 10.1016/B978-1-85617-771-9.00004-0
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“width”; the longer dimension, or width, is what we usually call “depth.” Thus, the
section modulus of a timber beam, described in Chapter 8, is not “width” times
“depth” squared, divided by 6 (as it would be in a strength of materials text); but is
thickness times width squared, divided by 6. Got that?

Standard glulam posts and beams come in depths that are multiples of the lami-
nation size and in an assortment of widths whose finished dimensions are different
from those of dimension lumber. Some typical cross-sectional dimensions are shown
in Table A-4.2.

STEEL

Wide-flange shapes are commonly used for both beams and columns within steel-
framed structures. They are designated by a capital W, followed by the cross sec-
tion’s nominal depth and weight (Ib) per linear foot. For example, a W14 X 38 has a
nominal depth of 14in. and weighs 381b per linear foot (see Figure 4.1). Unlike stan-
dard (S) “I'beam” sections, whose flange surfaces are not parallel—the inner surface
slopes about 16% relative to the outer surface—wide-flange (W) sections have parallel
flange surfaces, making it somewhat easier to make connections to other structural
elements. Wide-flange sections are manufactured in groups with a common set of
inner rollers. Within each of these groups, the dimensions and properties are varied

b=677in.
1 y

Y4

t,~0.310 in__\ﬂ

t,= 0.515in,£+_'
14.1in. )

d=

[ ]
W14x38

FIGURE 4.1
Cross section of a typical steel wide-flange (W) section
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by increasing the overall depth of the section (thereby increasing the flange thick-
ness) and then letting the web thickness increase as well. For this reason, actual
depths may differ considerably from the nominal depths given to each group of
shapes.

Dimensions of commonly available W shapes are listed in Table A-4.3. Other
shapes, such as channels (C or MC), angles (L), pipes, and hollow structural sec-
tions (HSS), also have many structural applications; standard dimensions for some of
these shapes are listed in Tables A-4.4 through A-4.8. The designation for channels
(C and MC) follows that for wide-flange sections, with the nominal depth in inches
followed by the weight in pounds per linear foot. For angles, three numbers are
given after the symbol, L: the first two are the overall lengths of the two legs; the
third is the leg thickness (always the same for both legs). Hollow structural sections
(HSS) are designated with either two or three numbers corresponding to the diam-
eter and nominal thickness (for round sections) or the two outside dimensions and
nominal thickness (for rectangular sections). Steel pipe, similar in shape to round
HSS, is designated by nominal outside diameter in three “weights”: standard, extra
strong, and double-extra strong.

REINFORCED CONCRETE

Because cast-in-place, or site-cast, concrete is literally made at the building site, the
only real constraint on the sizes and shapes of concrete structural elements is the
willingness of architects, engineers, owners, and contractors to design the struc-
ture and assemble the formwork into which the concrete and reinforcement is
placed. The history of reinforced concrete structures is thus filled with elaborate,
structurally expressive, one-of-a-kind projects in which the “plasticity” of the mate-
rial is exploited. The costs of formwork can be significant, though, and many rein-
forced concrete structures are designed to minimize these costs by rationalizing the
dimensions of the various concrete elements, in part by reusing standardized forms
where possible. For these structures, the outside dimensions of beams, slabs, and
columns are often rounded up to the nearest %in., lin., or even inch, depending
on how big the element is. Slabs 6in. thick or less are rounded up to the nearest
1 in.; thicker slabs are rounded up to the nearest inch. The cross-sectional dimen-
sions of beams and columns are rounded up to the nearest 1in. or even inch (see
Table A-4.9).

Reinforcing bar (rebar) spacing in reinforced concrete beams and columns is con-
strained by several factors. First, bars must be far enough apart so that aggregate in
the concrete mix can pass freely between them—in general, the largest aggregate size
must be no more than three-fourths of the minimum distance between bars. Looked
at from the opposite point of view (i.e., with the maximum aggregate size set), the
minimum space between bars must be 1% times greater than the largest aggregate.
For 1-in. aggregate, the minimum clear bar spacing would be l%in., or approxi-
mately 1 in. Additional requirements relate bar spacing to bar size: for beams, the
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spacing must be not less than the nominal bar diameter, or 1in.; for columns, the
spacing must be not less than 1Y} times the nominal bar diameter, or 1 %in.

In the United States, rebars were designated and marked by a number corre-
sponding to the bar’s nominal diameter multiplied by 8: for example, a bar with a
nominal diameter of % in. would be designated as a No. 4 bar (since % X 8 = 4).
In an increasingly international marketplace, these designations have been replaced
with SI (international system) units, so the old No. 4 bar is now designated with the
number 13 (since % in. = 12.7 mm, or approximately 13 mm). Even so, the old U.S.
system of bar numbering is still used by the American Concrete Institute (ACI) in its
structural concrete codes and commentaries and will be used in this text. Side-by-
side listings of new and old designations can be found in Tables A-4.10 and A-4.11.

For all commonly used beam reinforcing (No. 11 bars or smaller) and with aggre-
gate no larger than 1in., the minimum bar spacing requirement can be set at 1Y in.
for beams. For column reinforcing of No. 8 bars or smaller (i.e., 1in. diameter or
smaller) and with aggregate no larger than 1in., the minimum spacing requirement
can also be set at 1Y in. for columns. However, for bar sizes larger than No. 8, the
spacing requirement increases to 1%, times the nominal bar diameter.

The implications for minimum width or diameter of reinforced concrete columns
and beams are shown in Figure 4.2 and summarized next, assuming 1% -in. cover
and ! -in.-diameter ties, stirrups, or spiral reinforcement. The specific function of
these reinforcement types is explained in Chapter 7 (ties and spirals for columns)
and Chapter 8 (stirrups for beams).

(a)
FIGURE 4.2

Minimum beam and column width (or diameter) based on bar spacing: (a) for tied column or
beam and (b) for spiral column. The nominal bar diameter is D; the required clear distance
between bars is s; and, for an angle, 6, between longitudinal bars in a spiral column, the
distance, A, is 2(sin 6/2)/(D+ s)
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Rectangular columns or heams

1. For beams (with bar size of No. 11 or smaller) and for columns with bar size of No.
8 or smaller, with two bars along the beam or column face: the minimum width
(@in) is 5.5 + 2D, where D is the bar diameter (in.). For beams or columns with
more than two bars in a line, add 1.5in. + D for each additional bar.

2. For columns with bar size larger than No. 8, with two bars along the column face,
the minimum width (in.) is 4 + 3.5D, where D is the bar diameter (in.). For col-
umns with more than two bars in a line, add 2.5D for each additional bar.

Spiral columns

For spiral columns with six bars, No. 8 or smaller: the minimum diameter (in.) is
7 + 3D, where D is the bar diameter (in.). For columns with bar sizes larger than
No. 8: the minimum diameter is 4 + 6D.

Minimum widths for rectangular beams and columns, and minimum diameters
for spiral columns, are given in Table A-4.11.
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Design approaches

Structural engineering prescriptions tend to be written in the form of unambigu-
ous mathematical relationships. In fact, the seeming authority of these formula-
tions masks a rather different reality: the entire subject area of structures is littered
with fundamental uncertainties. These uncertainties include not only the nature of
loads and the strength and stiffness of structural materials in resisting these loads,
but also the appropriateness of mathematical models used in design and analysis
and the degree to which actual built structures conform to the plans and specifi-
cations produced by their designers. The basic requirements of safety, serviceabil-
ity, and economy depend on how well designers maneuver within this probabilistic
environment.

ALLOWABLE STRESS DESIGN

Structural design approaches can be characterized by the extent to which these
uncertainties are made explicit. The simplest approach to designing structures uses
a single factor of safety to define allowable stresses for a particular material. If actual
(i.e., calculated) stresses do not exceed these allowable stresses, the structure is con-
sidered to be safe. Rather than using allowable stress, it is also possible to use allow-
able strength, measured in moment or force units. The allowable, or “available,”
strength is defined by applying a safety factor to the structural element’s so-called
limit state, that is, to the maximum moment or force it can sustain. Then, the ele-
ment is designed such that its available strength (the limit state divided by a safety
factor) is greater or equal to its required strength (the computed force or moment
resulting from the application of loads).

In some cases, the factor of safety is actually given. In steel design, for example, the
available strength is determined by dividing the limit-state moment or force by a safety
factor (see Table A-3.13). In other cases—for example, timber design—the allowable

© 2010 Elsevier Inc. All rights reserved.
Doi: 10.1016/B978-1-85617-771-9.00005-2
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stress is simply presented as a property of the material, and the degree of safety is
hidden from the designer. In all cases, however, it is not possible to “fine tune” the
structure’s design by considering the relative uncertainty of various load types.

In allowable stress (or allowable strength) design, dead and live loads are simply
added together, in spite of the fact that dead loads can be predicted with a higher
degree of certainty than live loads. Thus, if two structures carry the same total load,
but one structure has a higher percentage of dead load, the structures will have dif-
ferent degrees of safety if designed using the allowable stress method. In fact, the
structure with more dead load will be statistically safer, since the actual dead load
acting on the structure is more likely to correspond to the calculated dead load than
is the case with live load. Allowable stress design is sometimes called working stress
design, since the loads used in the method (“service loads”) represent what we
expect to actually “work” with during the life of the structure.

To account for the improbability of multiple loads simultaneously acting on a
structure at their maximum intensity, most codes provide load reduction factors for
various combinations of load types. For example, where several loads are being con-
sidered, the “nondead” loads may be multiplied by 0.75, as long as the total thus
calculated does not exceed the dead load together with the largest single additional
load considered in the calculations (earthquake loads are sometimes excluded from
this provision). The reduction of live loads on relatively large influence areas was
discussed in Chapter 2.

STRENGTH DESIGN

A more recent approach to the design of structures explicitly considers the probabi-
listic nature of loads and the resistance of structural materials to those loads. Instead
of regulating the design of structural elements by defining an upper limit to their
“working stresses,” strength design considers both the limit state of the structural
element—typically the strength at which the element fails or otherwise becomes
structurally useless—as well as the relative uncertainty of the various loads acting on
that element.

Using this method, the required strength of a structural element, calculated using
loads multiplied by load factors (that correspond to their respective uncertainties),
must not exceed the design strength of that element, calculated by multiplying the
strength of the structural element by resistance factors (that account for the variabil-
ity of stresses, and the consequences of failure). If Q represents the loads and their
effects on a structural element and R represents the resistance, or strength, of that
element, then strength design can be schematically represented as follows:

AX(7,0,) < 9R, G.D

where ~; are the load factors (mostly greater than 1.0); ¢ is the strength reduction
factor (smaller than 1.0); and A is an additional factor (smaller than 1.0) that can be
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used when multiple load types are assumed to act simultaneously, in which case the
likelihood of all loads being present at their maximum intensities is reduced.

For reinforced concrete designed with the strength method, some commonly
used factored load combinations are listed in Table A-5.1. Strength reduction fac-
tors are listed in Table A-5.2. Multiple combinations of loads are less likely to occur
simultaneously at full magnitude; the load factors listed in Table A-5.1 account for
these variable probabilities. The load factor for dead loads is sometimes less than
zero, since this can represent the more dangerous condition (i.e., the more conser-
vative assumption) where wind or earthquake forces cause overturning or uplift.

Strength design is similar to load and resistance factor design (LRFD in wood or
steel), or “limit state design.” In the United States, strength design is now used almost
exclusively in reinforced concrete design, is beginning to be widely used in steel design,
and is not yet commonly used in timber design. In this text, we will use strength design
for reinforced concrete and allowable stress (strength) design for timber and steel.

Example 5.1 Load combinations (Part I)

Problem definition
For the “light manufacturing” structure shown in Figure 5.1, assume that the dead load con-
sists of the reinforced concrete floor structure. The weight of the reinforced concrete can be

/Tributary area for beam
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FIGURE 5.1
(a) Framing plan and (b) section for Example 5.1

81



82

CHAPTER 5 Design approaches
2150 Ib/ft 3080 Ib/ft
| 20’ | | 20’
Allowable stress design Strength design
(a) (b)

FIGURE 5.2
Load diagrams for Example 5.1 using (a) allowable stress design and (b) strength design
taken as 150 pcf. Find the distributed “design” load on a typical beam for both strength design
and allowable stress design.
Solution overview
Find dead and live loads; add loads together for allowable stress design; apply load factors for
strength design (strength design is used almost exclusively for the design of reinforced con-
crete structures).
Problem solution
1. From Table A-2.2, find live load: L = 125psf; or, considering the distributed load on a

typical beam, L = 125 X 10 = 1250 Ib/ft.
2. Find dead load.

a. Slab: (150)(6/12)(10) = 750 Ib/ft.

b. Beam: (150)(12/12)(12/12) = 150 Ib/ft.

c. Total dead load = 750 + 150 = 900 Ib/ft.
3. Allowable stress design: Total load = D + L = 900 + 1250 = 2150Ib/ft (Figure 5.2a).
4. Strength design: From Table A-5.1, the total load = 1.2D + 1.6L = 1.2(900) + 1.6(1250)

= 30801b/ft (Figure 5.2b). -

Example 5.2 Load combinations (Part 1)

Problem definition
Now, repeat Example 5.1, except change the occupancy to that of a restaurant, and add
ceramic tile (weighing 25 psf) to the surface of the slab.

Solution overview
Find dead and live loads; add loads together for allowable stress design; apply load factors for
strength design.

Problem solution

1. From Table A-2.2, find live load: L = 100 psf; or, considering the distributed load on a typi-
cal beam, L = 100 X 10 = 1000 Ib/ft.

2. Find dead load.
a. Slab: Concrete + Tile = (150)(6/12)(10) + 25(10) = 1000 Ib/ft.
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2150 Ib/ft 2980 Ib/ft
| 20’ | | 20’ |
Allowable stress design Strength design
(a) (b)

FIGURE 5.3
Load diagrams for Example 5.2 using (a) allowable stress design and (b) strength design

b. Beam: (150)(12/12)(12/12) = 150 Ib/ft.
c. Total dead load = 1000 + 150 = 1150 Ib/ft.

3. Allowable stress design: Total load = D + L = 1150 + 1000 = 2150 Ib/ft (Figure 5.3a).

4. Strength design: From Table A-5.1, the total load = 1.2D+ 1.6L = 1.2(1150) + 1.6
(1000) = 2980 b/ft (Figure 5.3b). -

Examples 5.1 and 5.2 were admittedly rigged to make a point: even though the
total unfactored loads are the same in both cases, the factored loads used in strength
design are different, since the proportion of live to dead loads has changed. The
allowable stress procedure would result in exactly the same beam design in both
cases, whereas the strength method would permit a smaller beam for the restaurant
in Example 5.2 (since the total design loads are smaller). However, according to the
probabilistic logic of strength design, even though the restaurant beams are smaller,
the degree of safety would be the same for both beams.

|
Example 5.3 Load combinations (Part 1)

Problem definition

Assuming strength design, find the various combinations of load acting on the 9th- and 10th-
floor columns shown in Figure 5.4. Assume that the dead load for each floor level is 40 psf;
the live load for the 10th floor is 60 psf; the roof live load, L, (maintenance, etc.), is 20 psf;
and the wind load acting on the roof is 30psf (acting upward). The tributary area shown is
25 x 10 = 250ft? per floor.

Solution overview
Find loads (including live load reduction coefficient); compute load combinations; identify criti-
cal (governing) combinations.

Problem solution

10th-floor column:

1. Find loads:
a. D= 250(40) = 10,0001b = 10kips.
b. L, = 250(20) = 250(20) = 50001b = 5kips.
c. W=250(-30) = -75001lb = —7.5kips.
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Roof

10th-floor column

9th-floor column

FIGURE 5.4

Tributary floor areas for Example 5.3

2. From Table A-5.1 (strength design), compute load combinations:

o oo oUW

g.

1.4D = 1.4(10) = 14Kkips.

1.2D+ 1.6L 4+ 0.5(L,0r S) = 1.2(10) + 0 + 0.5(5) = 14.5kips.

12D+ 1.6(L,or S) + (0.5Lor 0.8W) = 1.2(10) + 1.6(5) + 0.5(0) = 20kips.
12D+ 1.6W+ 0.5L + 0.5(L,or S) = 1.2(10) + 1.6(—7.5) + 0 + 0.5(5) = 2.5kips.
12D+ 1.0E+05L 4+ 0.25=1.2(10) + 0 + 0 + 0 = 12kips.

09D+ 1.6W=10.9(10) + 1.6(=7.5) = —3kips.

0.9D + 1.0E = 0.9(10) + O = 9kips.

3. Conclusions: For the 10th-floor column, the critical load combinations are 20kips from live
and dead load plus roof live load (combination ¢) and —3kips from dead and wind load
(combination f). The negative force due to wind uplift must be considered since it places
the upper level column in tension. In equations ¢, d, and e, the live load factor is taken as
0.5 (see Note 2 in Table A-5.1).

9th-floor column:
1. Find loads:

a.
b.
c.

d.
e.

D = 500(40) = 20,0001b = 20kips.

L, = 250(20) = 250(20) = 50001b = 5Kkips.

The live load reduction coefficient can be found from Table A-2.2 and is equal to
0.25 + 15/(4 x 250)%° = 0.72.

L = (250 x 60)(reduction coefficient) = (250 X 60)(0.72) = 10,8001b = 10.8kips.

W = 250(-30) = —75001b = —7.5kips.

2. From Table A-5.1 (strength design), compute load combinations:

a.
b.

1.4D = 1.4(20) = 28Kkips.
12D+ 1.6L 4+ 0.5(L, or §) = 1.2(20) + 1.6(10.8) + 0.5(5) = 43.78kips



e.

f.

g.

Strength design

There are two choices here: (1) using W: 1.2D + 1.6(L, or S) + (0.5L or 0.8W) = 1.2
(20) + 1.6(5) + 0.8(—=7.5) = 26.0kips; or (2) using L: 1.2D + 1.6(L, or S) + (0.5L or
0.8W) = 1.2(20) + 1.6(5) + 0.5(10.8) = 37.4kKips.

12D+ 1.6W+ 0.5L + 0.5(L, or S)=1.2(20) + 1.6(—7.5) + 0.5(10.8) + 0.5(5) =
19.9kips.

1.2D+ 1.0E+ 0.5L + 0.25 = 1.2(20) + 0+0.5(10.8) + 0 = 29.4Kips.

0.9D + 1.6W = 0.9(20) + 1.6(-7.5) = 6kips.

0.9D + 1.0E = 0.9(20) + O = 18Kkips.

3. Conclusions: For the 9th-floor column, the critical load combination is 43.78kips from live
and dead load plus roof live load (combination b). No combination of loads places the col-
umn in tension. In equations ¢, d, and e, the live load factor is taken as 0.5 (see Note 2 in
Table A-5.1).

In a reinforced concrete structure, columns typically are also subjected to bend-
ing moments due to their continuity with beams, girders, or slabs. Where the com-
bined effects of axial loads and bending moments are accounted for—something
that is beyond the scope of this text—the axial loads computed from other load
combinations (together with the bending moments associated with them) might
turn out to be critical.
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CHAPTER

Tension elements

Elements subjected to tension provide us with the simplest mathematical model
relating internal force and stress:

force

©6.1D

axial stress =
area

This equation is simple and straightforward because it corresponds to the sim-
plest pattern of strain that can develop within the cross section of a structural ele-
ment. As shown in Figure 6.1, this strain is assumed to be uniformly distributed
across the entire cross section; for this reason, the stress can be defined as force per
unit area. Classical “strength of materials” texts use the symbol, o, for axial stress, so
that we get:

6.2)

Q
Il
N

where P is the internal force at a cross section with area, A. By axial stress, we mean
stress “acting” parallel to the longitudinal axis of the structural element, or stress
causing the element to strain in the direction of its longitudinal axis. Tension is an
axial stress causing elongation; compression is an axial stress causing shortening or
contraction.

Where bolt holes reduce the cross-sectional area of a tension element, the
remaining area at the cross section, 4,,, is called the net area. Failure or “rupture” of
an element stressed in tension occurs at a failure surface defined by the location and
quantity of such bolt holes. Where the holes are arrayed in an orthogonal grid, as
shown in Figure 6.2a, the failure surface is easily determined. For staggered rows of
bolts, as shown in Figure 6.2b, more than one possible failure surface may exist: the
net area in each case can be determined by multiplying the net width of the section

© 2010 Elsevier Inc. All rights reserved.
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FIGURE 6.1

lllustrations of (a) tension element and (b) free-body diagram cut at any cross section with area, A

FIGURE 6.2

Net area of a cross section, shown in darker tone, with (a) one possible failure surface when bolt
holes are arrayed in orthogonal grid and (b) multiple possible failure surfaces when bolt holes are
staggered

by its thickness, ¢. This net width is found by subtracting from the gross width, W,
the sum of hole diameters, d,, and then adding spacing-gage terms, s%/(4 ), for each
diagonal line in the failure surface. In these calculations, s is the spacing between
bolt centerlines parallel to the direction of load, and g is the “gage,” or spacing
between bolt centerlines perpendicular to the direction of load.

When we discuss particular structural materials, stresses are often represented by
the letter F rather than o, and capitalized when referring to allowable, yield, or ulti-
mate stresses in timber and steel. For example, F, refers to the yield stress of steel;
F,, refers to the ultimate stress of steel (the highest stress, or “strength,” of steel
reached within the strain-hardening region); while F, symbolizes allowable tensile
stress in both timber and steel. Lowercase f, with appropriate subscripts, is often
used to refer to the actual stress being computed. An exception to this convention
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occurs in reinforced concrete strength design, where the yield stress of reinforc-
ing steel (F, in steel design) is given a lowercase designation, f, (as is the cylinder
strength of concrete, f!).In any case, for axial tension in steel and wood, allowable
stress design requires that:

L =F 6.3)
The elongation of an element in tension can be computed based on the defini-
tion of modulus of elasticity given in Equation 3.1; since E = o/g, and substituting

P/A for o and (elongation)/(original length) for &, we get:

_ (P)(original length)
(A)(elongation)

6.9
Solving for elongation, and letting L = original length, the equation becomes:

elongation = PL (6.5)

Example 6.1 Find elongation in tension element

Problem definition
Compute the elongation, or change in length, for a steel bar with a cross-sectional area of 4in?,
3ftin length, with £= 29,000,000 psi, subjected to a tensile load of 10 kips.

Solution overview
Find elongation = (PL)/(AE). Units must be consistent.

Problem solution
From Equation 6.5, elongation = (PL)/(AE) = (10 kips X 36in.)/(4in? X 29,000ksi) = 0.0031 in.
|

WooD

Basic tabular values of allowable stresses in tension are shown in Table A-3.1 for
some common species and grades of visually graded lumber. The allowable stress in
tension (parallel to the grain) for timber elements needs to be modified, or adjusted,
to account for the variations in material properties discussed in Chapter 3. The three
most important adjustment factors, corresponding to these material properties, are
as follows: Cj; for wood structural elements exposed to wet service conditions,
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Cy for certain cross sections larger or smaller than 2 X 12, and Cp, for timber ele-
ments exposed to a total cumulative “duration of load” different from the time
period associated with normal “occupancy” live loads. This adjusted stress, F/, is
computed by multiplying the basic tabular value, F,, by the appropriate adjustment
factors, Cp, Cy;, and Cp (see Table A-3.2). For an explanation of how the duration of
load factor, C), is used, see Table A-3.10.

The actual tension stress within the structural element is computed by dividing
the internal tension force by the cross-sectional area available to resist that force.
Where bolt holes are present, the gross area, Ag, of the cross section is reduced
by the nominal hole area, as shown in Figure 6.2a. The resulting net area, A4,,, is,
therefore:

4, = A, — (number of holes)(d,, X t) 6.6)

where d), is the bolt hole diameter, taken somewhat larger than the bolt diameter,
and ¢ is the thickness of the cross section. Timber industry specifications recom-
mend that the bolt hole diameter be %2 in. to Y in. larger than the bolt diameter;
in the examples that follow, a %6 in. increase will be assumed. The actual stress, f;,
is, therefore:

P/A,

I 6.7

where no bolt holes are used; and
f; = P/A, 6.8)

where bolt holes are present. These equations can be rewritten to solve for the
capacity (allowable load), using the adjusted allowable stress, F/, instead of the
actual stress. Where tension elements are nailed rather than bolted, no reduction for
nail holes is made; the full gross area is assumed to be available to resist the internal
forces:

= F X 4, 6.9

allow

Where bolt holes are used:

P

allow — Ft, X An (6‘10)

Where wood element are loaded in tension parallel to grain, another poten-
tial mode of failure must be checked where closely spaced groups of bolts (or lag
screws that fully penetrate the main member) are used as fasteners—this phenom-
enon does not apply to small-diameter nailed connections. As shown in Figure 6.3,
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FIGURE 6.3

Forces on a wood member (a) loaded parallel to grain can cause (b) row tear-out or (c) group
tear-out

the forces transmitted through a fastener group could cause entire “slots” of
wood—either within each row of fasteners or for the entire fastener group taken as
a whole—to tear out under the load. To prevent failure in the first case (“row tear-
out,” Figure 6.3b), and in spite of the fact that the forces acting on the element itself
are tensile, the external force acting on the connection must be no greater than the
total allowable shear force that can be developed on all the potential failure planes
along the rows of fasteners. In the second case (“group tear-out,” Figure 6.3¢), the
external force must be no greater than the allowable shear and tension forces that
can be safely resisted by the three surfaces forming the boundary failure planes for
the group of fasteners as a whole. Of these three surfaces, the resistance of the top
and bottom parallel planes, stressed in shear, is equivalent to a single row subjected
to row tear-out; the third surface, labeled A, in Figure 6.3¢, is stressed in tension.

In calculating row and group tear-out, adjusted allowable stresses for shear and
tension are used that correspond to the species and grade of the wood elements
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being checked. The total length of the surface assumed to be resisting shear stress
along a given row of fasteners is taken as the smallest distance between fasteners (or
between the end of the wood member and the first fastener) multiplied by the num-
ber of fasteners in that row. This accounts for the fact that shear stress along the
potential failure planes defined by fastener rows is not uniform, but is higher where
the area between fasteners along the shear plane is smallest. Additionally, this shear
stress is not uniformly distributed between fasteners, but is assumed to step up and
down in a triangular pattern, from maximum to zero, so that the average value of
shear stress is actually half of its maximum value (corresponding to the average
height of such a triangle).

Taking all these caveats into consideration, the allowable maximum force at a
connection using bolts or lag screws—where the load is parallel to grain—is limited
by the smaller of the following values for row and group tear-out:

a. For row tear-out: Multiply the force safely resisted by the two shear planes at
each row of fasteners by the number of rows (or, if not all rows of fasteners
are the same, add the values for each row computed separately). The force
resisted by a single row (arbitrarily called row 1) is equal to:

Zigpy = 2m (/D005 (0 = m(E}S 0 () 11

where n; = the number of fasteners in row 1, F, = the adjusted allowable shear
stress for the wood element, s.,;; = the minimum spacing between fasteners in row
1 (or the distance of the first fastener to the end of the member, if smaller), and
t = the member thickness.

The force resisted by all fasteners, assuming that all rows are identical, is, there-
fore, the force resisted by a single row multiplied by the number of rows, r,,, or:

n

Zrr = TaZrr—1 = L (F)Se (D) ©6.12)

b. For group tear-out: Add the shear force resisted at the parallel planes defined
by the top and bottom fastener rows (in typical cases where the top and
bottom fastener rows have the same geometry, this is equal to the value of
Zpr—1 computed earlier for single row tear-out; otherwise, add Z;;_,/ 2 for
the top and bottom rows) plus the tension force resisted by the plane sur-
face joining, and perpendicular to, these shear planes. For 4, representing the
area subjected to tension stress between the top and bottom rows of fasten-
ers (see Figure 6.3¢), and F/ being the adjusted allowable tensile stress for the
wood, the force resisted, in terms of group tear-out, is:

Zip = Zipy + F A, ©.13)

These limitations based on row and group tear-out are summarized in Table A-6.2.
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Example 6.2 Analyze wood tension element

Problem definition

Find the maximum load that can be applied to a 2 X 8 tension element connected with six
%—in.—diameter bolts. The wood used is Hem-Fir No. 1. Assume live, dead, and wind loads
only, dry conditions, and spacing as shown in Figure 6.4.

Problem overview

Find gross area and net area; compute adjusted allowable stress; find capacity, P = F/A,,
with the net area as shown in Figure 6.5a. Check row tear-out, based on the shear failure
planes shown in Figure 6.5b, and group tear-out, based on the shear and tension failure
planes shown in Figure 6.5¢. Adjust capacity based on tear-out calculations if necessary.

Problem solution

1. From Table A-4.1 the cross-sectional area, Ag = 10.875in%.

2. Use Equation 6.6 to find the net area, A,: notice that even though there are six bolt holes,
only two of them are subtracted from the gross area in calculating the net area, since
the “failure plane” passes through only two holes. The hole diameter is taken as ¥ in.
larger than the bolt diameter, so d, = %6 = 0.5625 in. Therefore, A, = Ag — (number of
holes)(dj, X ) = 10.875 - 2(0.5625 X 1.5) = 9.19in°.

3. From Table A-3.1 find the tabular value of allowable tension stress, F; = 625 psi.

4. Compute adjusted allowable tension stress:

a. From Table A-3.2, find adjustments to tabular value: Cp = 1.6; Cj; = 1.0; Cr = 1.2.
b. F/ = FCyC,Cr = 625(1.6)(1.0)(1.2) = 1200 psi.

5. Using Equation 6.1, find capacity (allowable load) based on failure through the net area:
P = F'A, = 1200 x 9.19 = 11,028 Ib.

6. From Table A-6.2, check capacity based on row and group tear-out, since the orien-
tation of the load is parallel to grain and the member is in tension. The adjusted allow-
able stress in shear is found from Tables A-3.7 and A-3.8: F,= 150psi and the
relevant adjustments are for wet service (Cy = 1.0) and duration of load (Cp = 1.6),
so F, =150(1.0)(1.6) = 240 psi. The adjusted allowable tension stress is as found

FIGURE 6.4
Bolted 2 X 8 cross sections for Example 6.2
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P
Tension
(a)
e I
Shear
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Tension Shear
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FIGURE 6.5

Possible failure modes for Example 6.3 include (a) tension failure on net area, (b) row tear-out,
and (c) group tear-out.

earlier: F/ = 1200 psi- Other parameters needed for this step are as follows: the num-
ber of rows, r, = 2; the number of fasteners in a typical row, n; = 3; the area subjected
to tension stress (measured between the top and bottom rows of fasteners), A; = (3.25)
(1.5) = 4.875in% the minimum spacing between fasteners (or the end distance, if
smaller), s¢; = 2in.; and the member thickness, t = 1.5in.

The capacities based on row and group tear-out can now be determined:
a. Zpr = r,m(F))s,: () = (2)(3)(240)(2)(1.5) = 4320 Ib.
b. Zgr = m(F))s,; () + FA, = (3)(240)(2)(1.5) + (1200)(4.875) = 8010 Ib.
Because the smaller of these two values (4320 Ib) is smaller than the capacity found in
step 4, row tear-out governs the connection design, and the total adjusted connection
capacity, P = 43201b.

. Conclusion: the capacity of the 2 X 8 tension element, P = 43201Ib. The capacity of the

bolts themselves has not been checked: the design and analysis of such fasteners is dis-

cussed in Chapter 9, Example 9.2.
p p -

Example 6.3 Design wood tension element

Problem definition
Find an appropriate 2X cross section (Hem-Fir No. 2) to support a tensile load of 5
kips. Use two lines of three %—in.—diameter bolts, as shown in Figure 6.6, to connect
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FIGURE 6.6
Bolted 2 cross section for Example 6.3

the wood element to another part of the structure. The bolt hole diameter = bolt
diameter + 1, in. = 7/ in. = 0.4375 in.

Solution overview

Compute provisional adjusted allowable stress; find required net area; find required gross
area; select provisional cross section; check cross section by finding adjusted allowable stress,
required net area, and required gross area. Check row and group tear-out.

Problem solution

1. From Table 3.1, find the tabular value of the allowable tension stress, f; = 525psi (use
“dimension lumber” for 2X element).

2. Compute provisional adjusted allowable tension stress:
a. From Table A-3.2, find adjustments to tabular value: Cp= 1.0; Cy = 1.0; assume

Cr = 1.0 (the actual value is unknown at this time).

b. F/ = FC,CyCr = 525(1.0)(1.0)(1.0) = 525 psi.

3. Find required net area, A, = load/stress = 5000/525 = 9.52in2.

4. Using Equation 6.6, and referring to Figure 6.6, find the required gross area, A, = A, -
(number of holes)(d, X #) = 9.52 + 2(0.4375 X 1.5) = 10.83 in2.

5. We need a provisional 2X cross section with Ay = 10.83in% from Table A-4.1, select a
2 X 8 with A, = 10.88 in?. Not only must this cross section be analyzed (using the actual
value of Cp), but also the next smaller section (since it has a larger value of Cp).

Trial 1: 2 X 8

Because the actual value of the size factor for a 2 X 8, Cr = 1.2, is larger than the value ini-
tially assumed, the adjusted allowable stress will be higher than assumed, and therefore a
2 X 8 cross section will certainly work. However, it is necessary to analyze (check) the next
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smaller cross section, since this cross section has an even larger size factor than does the
2 X 8, and so has an even higher adjusted allowable stress.

Trial 2: 2 X 6

1.
2.

3.

From Table A-4.1, the cross-sectional area of a 2 X 6, Ay = 8.25in2.

Use Equation 6.6 to find the net area, A, = A, — (number of holes)(dj, X f) = 8.25 -
2(0.4375 x 1.5) = 6.94in%.

As before, find the tabular value of allowable tension stress, F; = 525 psi.

Compute adjusted allowable tension stress:

a. From Table A-3.2, find adjustments to tabular value: Cp = 1.0; Cyy = 1.0; Cr= 1.3.

b. F/ = FCyC\Cr = 525(1.0)(1.0)(1.3) = 682.5 psi.

Using Equation 6.1, find capacity (allowable load), P = F/A, = 682.5 X 6.94 = 4737 Ib.
This is insufficient capacity to support a load of 5000 Ib: the 2 X 6 is too small. Therefore, the
2 X 8 must be provisionally selected, pending a check of row and group tear-out.

Check row and group tear-out

1.

From Table A-6.2, check capacity based on row and group tear-out, since the orien-
tation of the load is parallel to grain and the member is in tension. The adjusted allow-
able stress in shear is found from Tables A-3.7 and A-3.8: F,= 150psi and the
relevant adjustments are for wet service (Cy = 1.0) and duration of load (Cp = 1.0), so
F, =150(1.0)(1.0) = 150 psi, The adjusted allowable tension stress for the 2 X 8 was
never actually determined earlier; with a size factor, Cr = 1.2, itis f{ = 525(1.2) = 630 psi.
Other parameters needed for this step are as follows: the number of rows, r, = 2; the num-
ber of fasteners in a typical row, n; = 3. Based on the provisional selection of a 2 X 8, let
the spacing between bolts in a row, and the distance from the last bolt to the end of the
wood element, equal 4 in., and the distance between rows of bolts equal 3-%2in. Then, the
area subjected to tension stress (measured between the left and right rows of fasteners),
A= (3.5)(1.5) = 5.25in?%; the minimum spacing between fasteners (or the end distance,
if smaller), s.;; = 4in.; and the member thickness, t = 1.5in.

The capacities based on row and group tear-out can now be determined:
a. Zpr = rm(F))s.; () = (2)(3)(150)(4)(1.5) = 5400 Ib.
b. Zi;r = m(F))s.;(t) + F/A = (3)(150)(4)(1.5) + (630)(5.25) = 6007 Ib.
Conclusion: Because the smaller of the capacities for row and group tear-out (5400 Ib) is
larger than the actual load of 5000 Ib, neither row nor group tear-out governs the connec-
tion design, and the 2 X 8 provisionally selected earlier may be used. -

STEEL

Unlike tension elements designed in timber, two modes of “failure” are consid-
ered when designing tension members in steel. First, the element might become
functionally useless if yielding occurs across its gross area, at the yield stress, F,.
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Since internal tensile forces are generally uniform throughout the entire length of
the element, yielding would result in extremely large deformations. On the other
hand, if yielding commenced on the net area (where bolt holes reduce the gross
area), the part of the element subjected to yield strains would be limited to the local
area around the bolts, and excessive deformations would not occur. However, a sec-
ond mode of failure might occur at these bolt holes: rupture of the element could
occur if, after yielding, the stresses across the net area reached the ultimate stress,
F,. As in wood design, typical bolt hole diameters are ¥/, in. larger than the actual
bolt diameter. However, because a small amount of material surrounding the bolt
hole is damaged as the hole is punched, an additional Y in. is added to the hole
diameter for the purpose of calculating net area, resulting in a bolt hole diameter
taken as !4 in. larger than the nominal bolt diameter for steel elements.

Another difference in the design of wood and steel tension elements occurs
because nonrectangular cross sections are often used in steel. If connections are
made through only certain parts of the cross section, as illustrated in Figure 6.7, the
net area in the vicinity of the connection will be effectively reduced, depending on
the geometry of the elements being joined and the number of bolts being used. This
effective net area, 4,, is obtained by multiplying the net area, 4,,, by a coefficient, U,
defined in Table A-6.1.

Where all parts (i.e., flanges, webs, etc.) of a cross section are connected, and
the so-called shear lag effect described earlier cannot occur, the coefficient U is
taken as 1.0, and the effective net area equals the net area, just as in timber design.
For short connection fittings like splice plates and gusset plates, U is also taken as
1.0, but 4, = A4,, cannot exceed 0.85 times the gross area. These short connecting
elements may have an effective width less than their actual width to account for
the shear lag effect, based on what is known as the “Whitmore section,” shown in
Figure 6.8. For a length, L, of the fastener group measured in the direction of load,
and a distance, W, between the outer rows of bolts or welds, the effective width is

Unstressed or under-stressed area

FIGURE 6.7

Shear lag in steel tension element showing unstressed or understressed areas
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By |
Effective width, fy~_

(b) Bolts

(a) Welds

FIGURE 6.8

The Whitmore section for connecting plates limits the effective width of the plate to
2L tan 30° + W for both (a) welded connections and (b) bolted connections

computed by extending a 30° line out from both sides of the fastener group; it can
be seen that the effective width, /,,, is equal to 2Ltan 30° + W.

Finally, the lengths of tension members, other than rods and cables, are limited
to a slenderness ratio—defined as the ratio of effective length to least radius of gyra-
tion—of 300, to prevent excessive vibrations and protect against damage during
transportation and erection. The radius of gyration, a property of the cross section,
is equal to 1/4)°>, where I is the moment of inertia and A is the cross-sectional area
of the element.

From the preceding discussion, it can be seen that two values for available
strength, or allowable stress, in tension need to be determined: one for yielding of
the gross area and one for failure (rupture) of the effective net area. These two val-
ues are:

ES"% = 0.6F, 6.19
and
F'" = 0.5F, (6.15)

where F£"**and F are the allowable tensile stresses for steel corresponding to the
two modes of failure, or limit states; F, is the yield stress; and F,, is the ultimate stress
for steel (Table A-3.12). The tensile stress is computed on the gross area in the same
manner as for wood (see Equation 6.7). Rupture on a fajlure surface through bolted
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or welded connections, however, is determined using the effective net area rather
than the net area, so Equation 6.8 must be modified for steel connections as follows:

f, = PIA, 6.16)

When computing the capacity based on yielding, the full gross area is available to
resist the internal forces:

P

allow

= F¥™ X 4, 617
When computing the capacity on the effective net area:

P

allow

= F'" X A, (6.18)
The “available strength” limit states listed in Table A-3.13 are equivalent to these for-
mulations based on allowable stress.

The following example illustrates the application of these principles to a steel
tension problem. Different procedures are used for cables, eyebars, threaded rods,
and pin-connected plates.

|
Example 6.4 Analyze steel tension element

Problem definition

Find the maximum tension load, P, that can be applied to a W8 X 24 element connected to
gusset plates within a truss with 3/-in.-diameter bolts, as shown in Figure 6.9. Use A36 steel.
Find the required thickness of the gusset plates so that their capacity is no smaller than
that of the W8 X 24 tension element. The bolt hole diameter = bolt diameter + £ in. =
7% in. = 0.875 in.

Solution overview

Find cross-sectional dimensions and material properties; find gross area capacity; find effec-
tive net area capacity; the governing capacity is the lower of these two values. For gusset plate
thickness, find effective width based on Whitmore section; apply equations for gross and net
area capacity to determine required plate thickness.

Problem solution
1. From Table A-4.3, find cross-sectional dimensions (Figure 6.10):

A, = 7.08 in®
d = 793in.
b, = 6.50in.

t, = 0.400in.
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Section at Section at
gross area net area

FIGURE 6.9

Truss elevation, connection detail at gusset plate, and sections through gross and net area for
Example 6.4

6.5"

T 1

¥
x
FIGURE 6.10

7.93"

,0.400”

Cross-sectional dimensions of W8 X 24 for Example 6.4

2. From Table A-3.12, find F, = 36 ksi and F, = 58ksi.

3. Gross area: Find capacity, P
a. Using Equation 6.14 (or Table A-3.13), find F£* = 0.6F, = 0.6(36) = 21.6 ksi.
b. Using Equation 6.17, P = F£%* X A, = 21.6(7.08) = 153 kips .
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£0.400"

¥ Hole diameter =
3/4+1/8=7/8"

FIGURE 6.11

Net area diagram for Example 6.4

4,

5.

6.

Effective net area: Find capacity, P
a. From Table A-6.1, find the shear lag coefficient, U:
U = 0.90 since the following criteria are met:
¢ Bolts connect wide-flange (W) shape? Yes.
e Flange width, bf no less than 0.67d? In other words, 6.5=0.67(7.93) =
5.3? Yes.
e Flange is connected with at least three bolts per line? Yes.
b. Using Equation 6.6, find the net area, A,. As shown in Figure 6.11:

A, = Ay — (number of holes)(d), X t) = 7.08 — 4(0.875 X 0.400) = 5.68 in?.

c. A= UA,) =0.9(568)=511in%

d. Using Equation 6.15, find £ = 0.5F, = 0.5(58) = 29 ksi.

e. Using Equation 6.18, find P = F x A, = 29(5.11) = 148 kips.

Conclusion: Failure on the effective net area governs since 148 kips < 153 kips. The
capacity (allowable load) is 148 kips.

We now can determine the thickness of the gusset plate, stressed in tension, with
two lines of bolt holes per plate, using the Whitmore section to determine the effective
width of the plate. As can be seen in Figure 6.8, the effective width, /, = 2(6)(tan
30°) + 3 = 9.9in. The tensile capacity of the gusset plates may be based on either yield-
ing of the gross area or rupture of the net area. First, the capacity based on yielding of the
gross area of both plates is F;A; = 0.6(36)(2)(9.91,) = 428t, kips. Next, the effective net
area A, = (2)(9.9 — 2 X %4)t, = 16.3t, in?, which cannot exceed 85% of the gross area for
small gusset plates; that is, it must be no larger than 0.85(2)(9.9t,) = 16.8tpin2. Therefore,
the capacity based on rupture is 0.5(58)(16.3t,) = 4731, Yielding governs, so the required
thickness of the plate can be found by setting the required tensile capacity, 428t equal to
the governing load of 148 kips, from which f, = 0.35in. Rounding up, we select a %-in.-
thick gusset plate with ¢, = 0.375in. -
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Example 6.5 Design steel tension element

Problem definition

Select a W section bolted as shown in Figure 6.12 with %-in.-diameter bolts, and three
bolts per line, to resist a tension force of 100 kips. Assume A36 steel. The effective bolt hole
diameter = bolt diameter + 14 in. = 5 + I/ = 3/ in. = 0.75 in.

Solution overview

Find the required area based on net area capacity, assuming values for shear lag coefficient,
U, and flange thickness, t; find required area based on gross area capacity; use the larger of
the two area values to provisionally select a W section; check using “analysis” method if either
U is smaller or tris larger than assumed values. The area of the selected W section can be
somewhat smaller than the “required” area if either U is larger or t;is smaller than assumed
values—check using analysis method.

Problem solution
1. Gross area: Find required gross area based on yielding. From Equation 6.17, the required
gross area, A, = PIFF* =100/(0.6 x 36) = 4.63in" .
2. Effective net area: Find required gross area after determining effective net area based on
rupture through failure surface (assume U = 0.9 and t; = 0.4in.):
a. From Equation 6.18, the required effective net area, A, = F’/F[’er =
100/(0.5 X 36) = 3.44 in?
b. Working backward, the required net area, A, = A./U = 3.45/0.9 = 3.83in°.
. Finally, the required gross area can be computed: Ag= A,+ (bolt hole
area) = 3.83 + 4(0.75 X 0.4) = 5.03in°.
3. Since 5.03 in? > 4.63in?, the calculation based on effective net area governs, and
a W section must be selected with A, > 5.03in%. Many wide-flange shapes could be

5/8” bolts, 3
bolts per line

W section
FIGURE 6.12
Net area diagram for Example 6.5
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selected. From Table A-4.3, the following candidates are among those that could be

considered:

a. Check a W8 x 18 with A, = 5. 26in2. Two assumptions need to be tested: that U= 0.9
and that t= 0.4. From Table A-4.3, b= 5.25in., d = 8.14in., and = 0.330in. From
Table A-6.1, the criteria for U = 0.9 requires that by= 5.25 = 0.67d = 0.67(8.14) =
5in. Since this condition is not met, we must use U = 0.85. Additionally, the flange th|ck—
ness is different from our assumed value of 0.40in., so that the calculation of net and effec-
tive area will change: A, = Ay — (bolt hole area) = 5.26 — 4(0.75 X 0.330) = 4.27in. and
A= UX A,=0.85(4.27) = 3.63in?. The capacity based on rupture through the effec-
tive net area is P = F™ X A, = (0.5 X 58)(3.63) = 105 kips. The capacity based on
yielding on the gross area has already been found satisfactory (since the gross area of the
W8 X 18 is greater or equal to the required gross area computed earlier). Therefore, the
W8 X 18 is acceptable.

b. Check a W6 X 20 with A, = 5.87in?. The same two assumptions need to be tested:
that U=0.9 and that &= 0.4. From Table A-4.3, b;= 6.02in., d = 6.20in., and

= 0.365in. From Table A-6.1, the criteria for U = 0.9 requires that b;= 6.02 =
O.67d 0.67(6.20) = 4.15in. Since this condition is met, and since its net area is
greater than assumed (this is so because its flange thickness, t; is less than the value
assumed, so that the bolt hole area is less than assumed, and therefore the net area is
greater than assumed), the W6 X 20 is acceptable.

Both the W8 X 18 and the W6 X 20 would work, as would many other wide-flange
shapes. Of the two sections considered, the W8 X 18 is lighter (based on the second
number in the W-designation that refers to beam weight in pounds per linear foot), and
therefore would be less expensive. -

Steel threaded rods

Threaded rods are designed using an allowable tensile stress, F; = 0.375F,,, which
is assumed to be resisted by the gross area of the unthreaded part of the rod. This
value for the allowable stress is found by dividing the nominal rod tensile strength of
0.75F,, by a safety factor, {2 = 2.00. While there are no limits on slenderness, diame-
ters are normally at least ', of the length, and the minimum diameter rod for struc-
tural applications is usually set at / in. Assuming A306 steel, Wlth F,, = 58ksi (Table
A-3.12), the smallest acceptable rod with area, A = T( 4 6) can support a tensile
load, P = F, X A = 0.375F, X ©(¥)* = 21.75 X 0.3068 = 6.67 kips.

Pin-connected plates

Where plates are connected with a single pin, as shown in Figure 6.13, the net area,
A, is defined, not by the length, b, on either side of the pin hole, but rather by an
effective length, b,; = 2t + 0.63 =< b, where t is the thickness of the plate:

A, = 2tb,; 6.19
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FIGURE 6.13
Definition of net area for pin-connected plates

The plate capacity is then governed by either yielding on the gross area or rup-
ture on the net area, whichever is smaller (there is no effective net area in this case),
with Py, = 0.6F, X A, and P,,, = 0.5F, X A,, as before. It is possible to cut the
plate at a 45° angle as shown in Figure 6.13, as long as length c is greater or equal to
length a, which in turn must be greater or equal to 1.33D-

For pin-connected plates, as well as for all other bolted connections, the fasten-
ers themselves, as well as the stresses they produce on the elements being joined,
must also be checked. This aspect of connection design is discussed more thor-
oughly in Chapter 9.

REINFORCED CONCRETE

Concrete, having very little tensile stress, is ordinarily not used for tension elements.
Where it is used, its strength in tension can be taken as approximately 10% of its
compressive strength, or 0.1f7. The cylinder strength of concrete, f!, is the ulti-
mate (highest) compressive stress reached by a 6in. X 12in. cylinder of concrete
after 28 days of curing. Reinforced concrete, consisting of steel bars embedded
within a concrete element, would not normally be a good choice for a pure tension
element, since the steel reinforcement would be doing all the work. In this case,
one might wonder what would justify the added expense of casting concrete around
the steel. In fact, two justifications are possible: first, in a reinforced concrete



Reinforced concrete

building consisting largely of compressive and bending elements, the use of reinforced
concrete for occasional tension elements would allow a similar mode of expres-
sion and of detailing throughout the building; second, where the steel in tension
requires fireproofing, the use of reinforced concrete in tension (where the concrete

cover provides the fireproofing) might prove advantageous, compared to other
solutions.
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CHAPTER

Columns

Columns are vertical elements subjected to compressive stress; nothing, however,
prevents us from applying the same design and analysis methods to any compressive
element, whether vertical, horizontal, or inclined. Only axially loaded compression
elements (with no bending moments present) will be considered here.

Compression is similar to tension, since both types of structural action result in a
uniform distribution of axial stress over a cross section taken through the element.
But allowable stress in compression is often limited by the phenomenon of buck-
ling, in which the element deforms out of its axial alignment at a stress that may be
significantly lower than the stress causing compressive crushing.

To understand why an axially loaded column will buckle rather than simply com-
press, consider the case of an eccentrically loaded column, as shown in Figure 7.1.
Unlike a beam whose internal bending moments are not influenced by load-induced
deflections (Figure 7.2), the eccentrically loaded column will deflect more than
might be expected if only the initial moment, M, is considered, since the “initial
deflections” increase bending moments throughout the column, in turn causing
further deflection, as shown in Figure 7.16. What the mathematician Leonard Euler

s F ¢
\’jfh \[}\Mz
. Tﬂez

M1 = Peq M2 = Peg > My
(a (b)

FIGURE 7.1

Increase of bending moment in a column due to load-induced deflection

© 2010 Elsevier Inc. All rights reserved.
Doi: 10.1016/B978-1-85617-771-9.00007-6 1 07
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M, = (P/2)(L) M. = (P/2)(L) = M,
(a) (b)
FIGURE 7.2

No increase of bending moment in a beam due to load-induced deflection

(1707-1783) figured out was that these deflections increase rapidly in the vicinity
of a particular (“critical”) load, at which point the column is assumed to fail, and
that the value of this load is independent of the initial eccentricity. In other words,
even with the smallest imaginable deviation from axiality, a column is assumed to
buckle at some critical load. Since no perfectly axial columns (or loads) can exist,
all columns behaving elastically are assumed to buckle at the critical buckling stress
derived by Euler:

mE

U = —_—
(KL/r)*

cr

7.D

where
= the modulus of elasticity
= a coefficient that depends on the column’s end constraints (see Table A-7.1)
= the unbraced length of the column

r = the radius of gyration with respect to the unbraced length (sometimes given
the symbol, p), equal to (I/4)">, where I is the moment of inertia and 4 is
area of the cross section

For the typical case in which the unbraced length is the same for both axes of
the column, » (or D) is taken as the smaller of the two possible values, that is, 7,,;,
(or I,,,,,). The term L/r, or KL/r, is called the column’s slenderness ratio. Although
this formulation for buckling is widely used, it is actually an approximation of a
more accurate equation derived by Euler that does not indicate any catastrophic
buckling point at all. Instead, as may be confirmed by physically buckling a slender
piece of wood or other material, the initiation of buckling (at a stress approximated
by Equation 7.1) leads to a gradually increasing lateral deflection up until the point
of failure, which is initiated when the stresses in the material exceed the material’s
strength. Certainly, the capacity of such a column is thereby reduced (compared
with a hypothetical case in which the column remains perfectly straight), and
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Schematic relationship between critical stress and column slenderness

Euler’s approximate formula does give a conservative value for the point at which
such failure occurs; however, it is incorrect to imagine the actual behavior of a com-
pression element as failing catastrophically and suddenly at a precise “critical buck-
ling” point.

The strength of wood and steel columns is limited in two ways: either they
will crush at their maximum compressive stress, or they will buckle at some criti-
cal stress that is different from, and independent of, their strength in compression.
Euler’s equation for critical buckling stress works well for slender columns but
gives increasingly inaccurate results as the slenderness of columns decreases and
the effects of crushing begin to interact with the idealized conditions from which
Euler’s equation was derived. Figure 7.3 shows schematically the relationship among
Euler critical buckling stress, crushing strength, and test results for columns with dif-
ferent slenderness ratios. It can be seen that only for slender columns can the Euler
curve be used as a basis for design.

woaobD

The reduction in allowable compressive stress, F,., to account for buckling is accom-
plished by multiplying F¥ by the column stability factor, Cp. The value, F7, is the
tabular value of compressive stress found in Table A-3.3, F., modified by all of the
adjustment factors found in Table A-3.4 except Cp. If all columns behaved according
to the idealized model analyzed by Euler, the stability factor would be unnecessary,
and o, modified by some factor of safety would simply replace F, as the allowable
stress. That is, we would have:

idealized Cp = o, (safety factor)/F, 7.2

In practice, given the pattern of column failure represented in Figure 7.3, the
Euler equation must be modified to account for crushing and nonelastic behavior,
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especially at low slenderness ratios. The column stability factor, Cp, does just that
and more, replacing o, with F_; (basically Euler’s formula with a safety factor); add-
ing a coefficient, ¢, to account for the nonideal condition of various wood materials;
and using statistical curve-fitting methods to match the empirical data. The slender-
ness ratio is simplified for a rectangular section, as only one cross-sectional dimen-
sion remains when values of I = dh?/12 and A = db are inserted into the equation
for radius of gyration: r = (I/A)°> = (dh*/12dh)*> = 0.289d. One can still see the
Euler buckling equation struggling to assert itself within F = 0.822E,,,,,/(l,/d)*,
which appears in both of the terms A and B within this opaque formulation for the
column stability factor:

C,=A4-A*-B 7.3

In Equation 7.3, 4 = [1 + (F.s/ F2)1/Qc) and B = (F/ FX)/c.

A full description of Cp can be found in Table A-3.4, along with other adjustments
to the allowable compressive stress.

For non-pin-ended columns, the unbraced length, /,, is multiplied by an effective
length coefficient (Table A-7.1) to account for the change in critical buckling stress
resulting from more or less restraint at the column ends.

Example 7.1 Analyze wood column

Problem definition

Check the capacity (allowable load) of a 10 X 10 Douglas Fir-Larch Select Structural column
8.51t. high, used indoors, supporting live load (L), roof live load (i.e., construction live load) Lg,
dead load (D), and snow load (S) as follows:

L = 40kips; Ly = 20 kips; D = 50 kips; S = 20 kips

Solution overview

Find relevant material properties and adjustment factors; compute adjusted allowable stress;
find capacity by multiplying cross-sectional area by adjusted allowable stress; compare capac-
ity to governing load combination.

Problem solution

1. From Tables A-3.3 and A-3.9, find material properties F. and E,,;,; the tabular (unadjusted)
values are F. = 1150psi and E,;;, = 580,000 psi. These values are taken from “posts and
timbers” since the cross section being analyzed is larger than 5 X 5 and the larger of the
two cross-sectional dimensions is less than 4in. greater than the smaller dimension.
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2. Find adjustment factors for F.:

a.

From Table A-3.4, Cy, = 1.0.

b. From Table A-3.4, C-= 1.0.

C.

Find load duration factor, Cp, and the governing load combination. Two load combina-
tions from Table A-5.1 (for allowable stress design) should be considered: D + L; and
also D + 0.75L + 0.75(Lg or S). Wind and earthquake forces are not included, as they
do not appear in the problem definition. The other listed load combinations in Table
A-5.1 need not be considered, since it is evident that their effect will not be as severe.
For the two selections, we divide each possible load combination by the load duration
factor corresponding to the shortest load duration within that combination, as explained
in Table A-3.10. The roof construction live load and snow load are not considered to act
simultaneously. Starting with D + L, we get:

(D + L)/Cy = (50 + 40)/1.0 = 90.0 kips

Then, looking at D + 0.75L + 0.75(Lz or S), we get either:

(D + 0.75L +.758)/C, = (50 + 30 + 15)/1.15 = 82.61 kips

or
(D +0.75L + 0.75L3)/C, = (50 + 30 + 15)/1.25 = 76.0 kips

Dead plus live load (D + L) governs, so Cp = 1.00, and the load used to design (or
analyze) the column is (L + D) = (40 + 50) = 90Kkips. The duration of load factor,
used to determine the governing condition, does not appear in the governing load itself.
Rather, it will be applied to the allowable stress.

From Table A-3.4, find the column stability factor, Cp (to account for buckling):

From Table A-3.9, find £/, = E,;in X Cy. Since Cy; = 1.0 for timbers (do not confuse this
adjustment with the value for Cy, applied to the allowable compressive stress, F.), we get:

Enin = 580,000 psi; £, = 580,000 X 1.0 = 580,000 psi.

I, =85ft=102in.

d =95in.

Fee = 0.822E0,./(l/d)? = 0.822(580,000)/(102/9.5)? = 4135.7 psi.
F: = F.CpCyCr = 1150(1.00)(1.0)(1.0) = 1150 psi.

c = (0.8 for sawn lumber.

A =11+ (FdFOI2c) =11 + (4135.7/1150))/1.6 = 2.87.

wB = (F/F%)/c =(4135.7/1150)/0.8 = 4.50.

Cp =A— (A — B)°5=287—(2.87%2 — 4.50)°° = 0.934.

3. Compute adjusted allowable stress in compression: from step 2, F% = 1150psi and
Cp=0.934;s0 F. = F¥(Cp) = 1150(0.934) = 1074.6psi.
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4. Find capacity, P= F/ X A. From Table A-4.1 the cross-sectional area for 10 X 10,
A = 90.25in?; therefore, P = 1074.6(90.25) = 96,9791b = 97.0kips.

5. Check capacity: Since the capacity of 97.0kips = governing load combination of 90kips,
the column is OK.

The value of Cp = 0.934 indicates that buckling has reduced the column’s allowable compres-
sive stress to 93.4% of its “crushing” strength. -

|
Example 7.2 Design wood column

Problem definition

Find the lightest cross section for a wood column (Douglas Fir-Larch Select Structural) that is
8.5ft high, used indoors, on the second floor of the three-story building shown in Figure 7.4,
supporting live load (L), roof live load (i.e., construction live load) Lg, dead load (D), and snow
load (S) as follows:

L = 40 psf; L, = 20 psf; D = 25 psf; S = 30 psf

Tributary area

74 -
1 o < n roofn =
= : @
1,771 LI sl =
el conmn ] Y
l 20’1_ 20’ _l ZO’I\Cqumn | | ” 1|
Framing plan Section

FIGURE 7.4
Framing plan and building section for Example 7.2

Solution overview

Find relevant material properties and adjustment factors (assuming a provisional value for Cp);
compute adjusted allowable stress; find cross-sectional area by dividing load by adjusted
allowable stress; select provisional cross section and analyze; repeat this step by selecting new
cross section until capacity is just larger than load.

Problem solution

1. Using Tables A-3.3 and A-3.9, find material properties F. and E,,,; as in Example 7.1,
the tabular (unadjusted) value of F.is 1150psi, and the minimum modulus of elasticity is
Emin = 580,000 psi. The value of F.assumes a “post and timber” size.

2. Find adjustment factors for £, except for Cp:

a. From Table A-3.4, C); = 1.0.
b. From Table A-3.4, Cr = 1.0 (assuming that “dimension lumber” will not be used).
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c. From Tables A-3.10 and A-5.1, Cp depends on which load combination proves to be
critical. To find Cp, divide each possible load combination by the load duration factor
corresponding to the shortest load duration within each combination. The tributary area
for the typical column is 15 x 20 = 300ft? per floor for both the third floor live and dead
load, and for the roof construction live load (or snow load) and dead load. Referring
to Table A-2.2, live load reduction for the third floor live load is appropriate since K;;
times its tributary area of 300ft?, or 1200ft?, is greater than 400ft2. For such an “influ-
ence area,” the live load reduction coefficient is 0.25 + 15/(4 X 300)%5 = 0.68,
so the reduced live load is 0.68(40) = 27.2psf. Roof construction/maintenance
live loads are not reduced. The duration of load factor, Cp, is found by dividing the
various load combinations by the appropriate load duration factors (where loads are
computed by multiplying each square foot value by the corresponding tributary area).
Only two load combinations from Table A-5.1 need be considered, since the oth-
ers evidently will not produce effects as severe. These combinations are D + L and
D+ 0.75L + 0.75(Lg or S). In the latter combination, wind and earthquake forces are
not included, as they do not appear in the problem definition. We divide each possible
load combination by the load duration factor corresponding to the shortest load
duration within that combination, as explained in Table A-3.10. The roof construc-
tion live load and snow load are not considered to act simultaneously. Starting with
D+ L, we get:

(D + L)/ICy = [25(600) + 27.2(300)1/1.0 = 23,160 Ib
Then, looking at D + 0.75L + 0.75(Lz or S), we get:

(D + 0.75L +.758)/Cp = [25(600) + 0.75(27.2)(300)
+ 0.75(30)(300)1/1.15 = 24,235 1b

or
(D +0.75L + 0.75L5)/1.25 = [25(600) + 0.75(27.2)(300)
+0.75(20)(300)1/1.25 = 20,496 Ib

The first case of the second load combination governs (using dead, live, and snow load),
so Cp = 1.15, and the load used to design the column is (D + 0.75L + 0.75S), or:

25(600) + 0.75(27.2)(300) + 0.75(30)(300) = 27,870 b

3. Select cross section by trial. The stability factor, Cp, cannot be determined directly, since
it depends on the cross-sectional dimensions of the column, which have not yet been
found. Design, therefore, turns into an iterative process, repeatedly making and testing
assumptions about the column’s stability until the tests (i.e., column analyses) confirm the
assumptions. To begin the iterative process:

a. Assume a value for Cp, for example, Cp = 0.8.
b. Compute FF = F. Cp Cy Cr= 1150(1.15)(1.0)(1.0) = 1322.5psi.
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c. Compute F{ = F¥ (Cp) = 1322.5(0.80) = 1058 psi.
d. Compute the provisional required cross-sectional area:

A = axial load/stress = 27,870/1058 = 26.3 in°

required

Trial 1:

1.

From Table A-4.1, select trial cross section based on provisional required area of 26.3in?:
a 6 X 6 has an area of 30.25in?, but since the provisional required area of 26.3in? was
based on an assumption about the column’s stability (Cp = 0.8), it is not immediately clear
whether the choice is correct; what we must enter into at this point is the first step of an
iterative process. We start by checking the 6 X 6 for its actual capacity and comparing this
capacity to the applied load. This process is identical to the timber column analysis method
illustrated in the Example 7.1.

From Table A-3.4, find the actual column stability factor, Cp, for the 6 X 6 column:

’

From Table A-3.9, find £,,, = the adjusted minimum modulus of elasticity = E,;, X Cy;
since Cy, = 1.0 for timbers, £,,,, = 580,000 psi.

I, =85ft=102in.

d =5.5in.

Foe = 0.822E, /(l/d)? = 0.822(580,000)/(102/5.5)2 = 1386.2 psi.

F* = F.CpCy Cr=1150(1.15)(1.0)(1.0) = 1322.5psi (unchanged from earlier).
c = 0.8 for sawn lumber.

A =11+ (Fe/FHOW2c) =1 + (1386.2/1322.5)1/1.6 = 1.28.

B = (F/F¥)c=(1386.2/1322.5)/0.8 = 1.31.
Cr=A—(A2-B)%%=128-(1.282-1.31)%%=0.71.

. Compute the adjusted allowable stress in compression:

FI= F*(Cp) = 1322.5(0.71) = 935.0 psi

Find capacity, P = F.X A. From Table A-4.1, find cross-sectional area for 6 X 6:
A = 30.25in?; then, P = 935.0(30.25) = 28,2841b.

Check capacity: The capacity of 28,284 1b is greater than the actual load of 27,8701b. In
other words, analysis shows that the 6 X 6 column is acceptable. If the capacity of a 6 X 6
column were insufficient, we would try the next largest size, that is, a 6 X 8; and then
an 8 X 8, etc., until a cross section was found with adequate capacity. In this case, how-
ever, even though the 6 X 6 is acceptable, it is possible that a smaller column size will
also work, for two reasons: first, the next smaller size (4 X 6) falls under the dimension
lumber size classification, which has a higher allowable compressive stress than what was
assumed for posts and timbers; second, allowable stresses for dimension lumber generally
increase as the cross-sectional area gets smaller, due to the size factor adjustment. For
these reasons, we now check a 4 X 6 column.
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Trial 2:

1. From Table A-4.1, a4 X 6 has an area of 19.25in2.
2. From Table A-3.4, find the actual column stability factor, Cp, for the 4 X 6 column:

From Table A-3.9, find E;m-n = the adjusted minimum modulus of elasticity = E,;, X Cuy;
since Cy = 1.0 for any dry service condition, £,,, = 690,000 psi.

[, = 8.5ft=102in.

d = 3.5in.

Foe = 0.822E,, /(l/d)? = 0.822(690,000)/(102/3.5)? = 667.8psi.

F& =F, Cp Cy Cr=1700(1.15)(1.0)(1.10) = 2150.5psi (with the allowable stress, F
taken for dimension lumber).

¢ = 0.8 for sawn lumber.

A =114 (Fe/FOI20) =11 + (667.8/2150.5)1/1.6 = 0.82.

B = (F/Fd)ic = (667.8/2150.5)/0.8 = 0.39.

Cp = A — (A2 — B)?5 =0.82 — (0.82%2 — 0.39)%° = 0.287.

3. Compute the adjusted allowable stress in compression:
Fé= FZ(Cp) = 2150.5(0.287) = 618.0 psi

4. Find capacity, P= F. X A. From Table A-4.1, find cross-sectional area for 4 X 6:
A =19.25in% then, P = 618.0(19.25) = 11,8961b.

5. Check capacity: The capacity of 11,8961b is less than the actual load of 27,8701b.
Therefore, the 4 X 6 column is not OK: select the 6 X 6 column from Trial 1. -

STEEL

Steel columns with high slenderness ratios are designed using the Euler buckling
equation, while “fatter” columns, which buckle inelastically or crush without
buckling, are designed according to formulas corresponding to test results. Residual
compressive stresses within hot-rolled steel sections precipitate this inelastic buck-
ling, as they cause local yielding to occur sooner than might otherwise be expected.
Unlike timber column design, the two design equations corresponding to elastic
and inelastic buckling have not been integrated into a single unified formula, so the
underlying rationale remains more apparent. The slenderness ratio dividing elastic
from inelastic buckling is set, somewhat arbitrarily, at the point where the Euler crit-
ical buckling stress equals 0.44 times the yield stress; that is, at the stress:

cr

6. = TE/KL/r)? = 0.44F, 7.9
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This particular slenderness ratio separating elastic from inelastic buckling is found
by solving for (KL/r) in Equation 7.4:

2
KL/r= |[E£_ 7.5)

0.44F,

For F), = 50ksi, the value of KL/r is 114; for F, = 36ksi, the value is 134. For a
column with a slenderness ratio greater than this separating value, elastic buck-
ling is assumed, and the allowable (“available”) axial compressive stress, based on
Euler’s equation (multiplied by a factor of 0.877, and divided by a safety factor,
Q= 1.67),is:

2 2
F = 0877 7°E _ = 0525 T E . 76
1.67 (KL/r) (KL/r)

The coefficient, 0.525, in Equation 7.6 corresponds to the safety factor of 12/23 pre-
viously used for elastic buckling of steel columns.

Where KL/r is less than the value separating elastic from inelastic buckling,
inelastic buckling governs, and the allowable (“available”) axial compressive stress
is found by dividing the critical stress for inelastic buckling by the same factor of
safety, 2 = 1.67:

0658 F,

F, 7.7
‘ 1.67
In this equation, F, is the elastic buckling stress shown in Equation 7.1; that is:
= —ﬂZE 7.8
© T (KLY 7

The slenderness ratio, KL/r, should not exceed 200 for steel axial compression
elements. Values for K are shown in Table A-7.1.

The two curves representing allowable stresses for elastic and inelastic buck-
ling make a smooth transition at the slenderness ratio separating them, as shown in
Figure 7.5. Rather than apply these equations to the solution of axial compression
problems in steel, allowable stress tables (for analysis, Tables A-7.3 through A-7.6)
or allowable load tables (for design, Table A-7.2) are more often used. If values for
allowable load are plotted instead of tabulated, the curves have the same pattern
schematically represented in Figure 7.5. Examples of these axial column load curves
are shown in Figure 7.6.
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Example 7.3 Analyze steel column
Problem definition
Find the capacity (allowable load) of a W14 X 61 pin-ended column with an unbraced length
of 10ft. Assume A36 steel.
Solution overview
Find relevant section properties; compute slenderness ratio; find allowable stress and capacity.
Problem solution
1. From Table A-4.3, r,,;, = 2.45in.
2. Compute slenderness ratio:

a. From Table A-7.1, the effective length coefficient, K = 1.0.

b. The unbraced length, L = 10.0 X 12 = 120in.

c. KUy, = (1.0)(120)/2.45 = 48.98. Round up to 49.
3. From Table A-7.6, the allowable stress is F, = 19.0ksi.
4. Find capacity: From Table A-4.3, the area of the steel column is A = 17.9in. The capacity

is P=F.x A=19.0(17.9) = 340Kkips.

c p -

From Equation 7.5, the slenderness ratio separating elastic and inelastic column
behavior is 134 for A36 steel. The column analyzed in Example 7.3 has a slenderness
ratio of 48.98, which is less than this separating value; therefore, it fails inelastically.
Using Equation 7.7 to determine the “inelastic” allowable stress, we get the same result
as was obtained in the example. The calculations are as follows, using F,, = 36ksi:

From Equation 7.8, F, = ©%(29,000)/(48.98% = 119.3. Then, from Equation 7.7:

£ [ 36 ]
0.658' %/ F 0.658'\1193)3¢
F. = y _ 005 30 _ 19.0ksi
1.67 1.67
It can be seen that this is the same allowable stress as was obtained in Example 7.3.

Example 7.4 Design steel column

Problem definition
Select the lightest (most economical) wide-flange section for the first-floor column shown in
Figure 7.7. Assume office occupancy, a roof (construction) live load of 20psf, a typical steel
floor system, and an allowance for steel stud partitions. Assume pin-ended (simple) connec-
tions. Use A992 steel.

Solution overview
Find total load on column; find effective length; select lightest section.
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Framing plan and building section for Example 7.4

Problem solution

1. Find total column load:

a.
b.

From Table 2.2, the live load (L) for office occupancy = 50 psf.

From Table 2.1, the typical dead load (D) = 47 psf (steel floor system, etc.) + 8psf
(steel stud partition allowance) = 55 psf.

The roof live load (Lg) = 20 psf, according to the Problem Definition.

Find tributary area (see Figure 1.5): The column’s tributary area is
25ft X 40ft = 1000ft? per floor, or 5000ft? for the five levels on which occupancy live
loads are computed (excluding the roof).

Using Table A-2.2, compute the reduced live load; the live load reduction factor
is 0.25 + 15/(4 x 5000)%° = 0.36, but no reduction less than 0.40 is permitted.
Therefore, the live load can be reduced to 0.40(50) = 20 psf for the first-floor column
under consideration.

Using Table A-5.1 for allowable stress design, find the total column load, accounting
for reductions due to load combinations:

L = (25ft X 40ft) X (20psf) X 5 floors = 100,0001b

D = (25ft X 40ft) X (55psf) X 6 floors = 330,0001b

Lg = (25ft X 40ft) X (20psf) X 1 floor = 20,0001b

For the three loads potentially present, only two load combinations need be considered
(the others listed will produce less severe effects). For the second load combination, wind
or seismic effects on the column may also be considered. However, in this example, we
assume that the column is not part of the lateral force-resisting system for wind or seismic
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and that any negative (uplift) wind load on the roof can be conservatively ignored. The two
relevant load combinations to consider are as follows:

D + L = 330,000 + 100,000 = 430,000 Ib

D+ 0.75L + 0.75L, = 330,000 + 0.75(100,000) + 0.75(20,000)
= 330,000 + 75,000 + 15,000 = 420,000 Ib

The first case governs; therefore the total column load = 430,0001b = 430kips.

2. Using Table A-7.1, find the unbraced effective length: KL = (1.0)(14) = 14ft.
3. Select the most economical section:

a. Using Table A-7.2, pick the lightest acceptable section from each “nominal depth”
group (i.e., one W8, one W10, one W12, and so on), to assemble a group of “likely
candidates.” Some columns are clearly either too small or too large; the three possible
candidates for a load of 430kips and an effective length of 14ft. are:

e W10 X 68 can support 440kips,
e W12 X 65 can support 456 kips,
e W14 X 74 can support 466 kips.

b. Choose lightest section: The W12 X 65 is the most economical since its weight per lin-
ear foot (65 pounds) is smallest.
(65p ) -
To check the result in Example 7.4, first determine the slenderness ratio of the
W12 X 65, finding » = 3.02in. from Table A-4.3. Then, KL/r = (1.0)(14 X 12)/3.02 =
55.63. From Equation 7.5, the slenderness ratio separating elastic from inelastic
behavior for A992 steel is 114, so the column fails inelastically. Using Equation 7.7
to determine the “inelastic” allowable stress, we get the same result as was obtained
in the example. The calculations are as follows, using F), = 50ksi:
From Equation 7.8, F, = ©%(29,000)/(55.63%) = 92.5. Then, from Equation 7.7:

0.658 " F,0.658%0/29)50
1.67 1.67

= 239 ksi

[

From Table A-4.3, the area of the W12 X 65, A = 19.1in%. Therefore, the capacity,
P=F X A=239X19.1 = 456kips, the same value found in Example 7.4.

REINFORCED CONCRETE

Concrete columns are cast into forms containing a matrix of steel reinforcement.
This reinforcement is distributed just inside the perimeter of the forms in a pattern
designed to confine the concrete, much like sand would be confined when placed
into a steel drum. In both cases (sand in a steel drum; concrete in a steel “cage”), the
ability of the material to sustain an axial compressive stress is enormously increased
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FIGURE 7.8

Containment of longitudinal bars using (a) ties and (b) spiral reinforcement

by the presence of the confining steel, whether or not the steel contributes directly
to the support of the external load.

Ties and spirals

Two patterns of steel reinforcement are commonly used for columns: a series of
square or rectangular ties (Figure 7.8a) placed horizontally around a minimum
of four longitudinal steel bars or a continuous circular spiral wire (Figure 7.8b)
wrapped around a minimum of six longitudinal bars. Tied columns are usually rec-
tangular and spiral columns are usually circular, but either pattern of reinforcement
can be used for any column cross section. In general, spiral reinforcement provides
more reliable confinement of the concrete and a more ductile type of failure than
tied columns; strength reduction factors for spiral versus tied columns take this
relative safety into account. The actual design of ties and spirals is based on fairly
straightforward guidelines, summarized in Table A-7.7. The design and analysis
examples that follow do not include the calculation of tie or spiral spacing and size.

Design of concrete and longitudinal steel

The amount of longitudinal steel in reinforced concrete columns, measured accord-
ing to the ratio of steel area to gross column area (reinforcement ratio), must fall
between two limiting values. The lower limit of 1% provides a minimum amount
of steel to protect against tension failures due to unanticipated bending moments;
the upper limit of 8% prevents overcrowding of steel bars within the concrete form-
work. The reinforcement ratio is defined as:

Ast
Ag

Py = 7.9)

where p, = the reinforcement ratio of longitudinal steel area to gross area;
A = the cross-sectional area of longitudinal reinforcement; and 4, = the gross
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cross-sectional area of the concrete column, whether the column is rectangular or
circular in section.

It is assumed in this chapter that reinforced concrete column stability is not a
factor in the column’s strength; that is, the column is not slender enough for buck-
ling to be a problem. As a general rule of thumb, concrete columns braced against
lateral misalignment (“sidesway”), with a slenderness ratio, KL/r, no greater than
40, are rarely influenced by stability considerations. Taking the radius of gyration of
a rectangular column as approximately equal to 0.3 times the smaller cross-sectional
column dimension, » (i.e., assuming » = 0.3 »), and taking the effective length coef-
ficient, K = 1.0, we get KL/r = 1.0L/(0.3h) = 40. Solving for the ratio of unbraced
length, L, to minimum cross-sectional dimension, b, we find that slenderness effects
may typically be neglected in axially loaded reinforced concrete columns when
L/b = 12.For slender concrete columns, other techniques must be used to account
for the possibility of buckling.

For columns, at least 1%2in. of concrete is left outside the matrix of reinforcement
to protect it from corrosion (2in. for No.6 or larger bars if the concrete is exposed
to the weather, or the earth; 3in. for all bars if the concrete is cast directly against
the earth—see Table A-4.9). For typical reinforcement sizes, the distance from the
outside of the concrete column to the centerline of the longitudinal reinforcement
can be taken as about 2} in. or 3in. (Figure 7.9).

For a reinforced concrete column subjected to pure axial compression, the ulti-
mate load at failure is simply the concrete strength (failure stress) times its area,
plus the yield stress of the longitudinal steel rebars times their area (Figure 7.10).
The failure strength of concrete is taken as 85% of its cylinder strength, f., since the
more rapid rate of loading of the test cylinders (Figure 7.11, curve a), compared
to loading of actual structural columns (Figure 7.11, curve b), results in a higher
measured strength than can be expected for real structures. The strain at which
steel longitudinal reinforcement bars yield depends on their yield stress. For grade
60 rebars ( 5= 60ksi), the yield strain (stress divided by modulus of elasticity) is
60/29,000 = 0.002. For grade 40 (f, = 40ksi), the yield strain is 40/29,000 = 0.001.
In either case, the failure stress of the steel can be taken as its yield stress, Jy» since
yielding would have already occurred when the concrete reaches its crushing strain

LApproximately 2.5 in. or 3 in.

1.5in. cover
NI AR

s 1.5 in. cover

FIGURE 7.9

Detail of reinforced concrete element showing approximate distance from centerline of rebar to
outside face of concrete
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FIGURE 7.11

Stress-strain diagrams for plain concrete showing (a) fast-loading characteristic of test cylinders
and (b) slow-loading characteristic of actual structures
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(precipitating column failure) of about 0.003. Combining the failure stresses for con-
crete and steel, we get an ultimate failure load for an axially loaded column of:

B, = 0.85f/(Asp,) + [, Ay (7.10)

where A, is the longitudinal steel area, and A4, is the net area of concrete, that is,
the gross cross-sectional area minus the steel area. The parameters f, and fc/ corre-
spond to the yield stress of steel and the cylinder strength of concrete, respectively.

There are two strength reduction safety factors for axially loaded reinforced
concrete columns: ¢ is the ordinary factor, while o accounts for the possibility
of nonaxial loading. Both factors depend on whether the column is tied or spiral
(see Table A-5.2). Combining these strength reduction factors with factored loads
(see Table A-5.1), we get equations for the design and analysis of axially loaded rein-
forced concrete columns. An example of such an equation for dead load (D) and
live load (L) only, where P, is the factored or “design” load, is:

P, = 12D +1.6L = ¢a(0.85 ! Ap,e + [, A, 711D

|
Example 7.5 Analyze axially loaded reinforced concrete column

Problem definition

Assuming f¢ = 4ksi and f, = 60ksi, find the nominal failure capacity of a 10in. X 10in. axi-
ally loaded tied rectangular column with four No. 9 bars, as shown in Figure 7.12. Can this
column support a live load of 100kips and a dead load of 100kips?

Solution overview

Find concrete and steel areas; multiply by failure stresses for concrete and steel and add
together for ultimate capacity. Multiply ultimate capacity by strength reduction factors and
compare with factored loads to determine whether capacity is adequate for given loads.

10"

10"

N\ -~ 4 No.9 bars

-

FIGURE 7.12
Column cross section for Example 7.5
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Problem solution

1. From Table A-4.10, the steel area for four No. 9 bars is Ay = 4.00in?.

2. The concrete area, A = Ag — A = 10 X 10 — 4.00 = 96in?.

3. From Equation 7.10, the nominal capacity or failure load is P, = 0.85f! (Acone) + f,Ast =
0.85(4)(96) + 60(4.00) = 566.4kips.

4. From Table A-5.2, strength reduction factors for a tied column are ¢ = 0.65 and o = 0.80.

5. Based on Equation 7.11, check whether P, = 12D+ 1.6L = ¢a(P,). We get P, =
1.2D+ 1.6L = 1.2(100) + 1.6(100) = 280kips and ¢a(P,) = (0.65)(0.80)(566.4) =
294 5kips. Therefore, since P, = ¢a(P,), the capacity is adequate and the column
is OK.

6. In this example, all column parameters were given. However, we can still check that the
column has an acceptable reinforcement ratio and that the bars fit within the cross section.
Using Equation 7.9, we check that reinforcement ratio is between 1 and 8% (i.e., between
0.01 and 0.08): p, = Ay/A; = 4.00/100 = 0.040, so the reinforcement ratio is OK. Using
Table A-4.11, we find that for two No.9 bars in one line, we need 7.94in. Since we actually
have 10in., the bars fit. -

[
Example 7.6 Design axially loaded reinforced concrete column with cross-

sectional dimensions assumed

Problem definition

Assuming f! = 3ksi and f, = 60ksi, find the required steel area for an axially loaded
12-in.-square tied reinforced concrete column supporting a dead load (D) of 150kips and a
live load (L) of 100kips. Select bar size.

Solution overview

Use Equation 7.11, relating reduced strength to factored loads, and solve for steel area. The
area of concrete within the column cross section is found by subtracting the steel area from
the gross cross-sectional dimensions; that is, A, = A; — As. Check reinforcement ratio
limits and bar fit.

Problem solution

1. From Equation 7.11, P,=12D+ 1.6L = ¢a(0.857, Aconc + f,As). Finding strength
reduction factors, ¢ and «, from Table A-5.2, we get:

1.2(150) + 1.6(100) = (0.65)(0.80)[0.85(3)(144 — Asp) + 60Ag].
340 = (0.52)[367.2 — 2.55A4 + 60A4].

653.85 = 367.2 + 57.45A,;.

57.45A4 = 286.65.

Ay = 4.99in°. This is the required steel area for longitudinal bars.
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2. From Table A-4.10, choose four No. 10 bars with actual Ay = 5.08in2. For symmetry, the
choice of bars is limited to four, six, eight, and so on.

3. Using Equation 7.9, check that the reinforcement ratio is between 1 and 8% (i.e., between
0.01 and 0.08): p, = As/Ag = 5.08/144 = 0.035, so the reinforcement ratio is OK. Using
Table A-4.11, we find that for two No. 10 bars in one line, we need 8.38in. Since we actu-
ally have 12in., the bars fit. -

Example 7.7 Design axially loaded reinforced concrete column with reinforcement
ratio assumed

Problem definition

Assuming f{ = 5ksi and f, = 60ksi, select a diameter and find the required steel area for an
axially loaded, spirally reinforced circular reinforced concrete column supporting a dead load
(D) of 150kips and a live load (L) of 125kips. Select bar size. Check reinforcement ratio and
bar fit.

Solution overview

Use Equation 7.11, relating reduced strength to factored loads, and solve for gross area. With
the reinforcement ratio, pg, assumed, the area of concrete within the column cross section,
Aconc = (1.00 — pgolAg and the steel area, Ay = pyAg. Find the required gross area, select col-
umn dimensions (in this case, the column diameter), and proceed as in Example 7.6 with
gross area known. Check reinforcement ratio limits and bar fit.

Problem solution

1. From Equation 7.11: P, = 12D + 1.6L = ¢a (0.85F, Acne + 1,As). Since Agppe = (1.00 — pgAg
and the steel area is A = pgAg, We get:

P, =1.2D +1.6L = ¢al0.85f((100 — p,)A, + 1,p,A.]
The choice of a reinforcement ratio is somewhat arbitrary; we select p, = 0.04; then, with
strength reduction factors, ¢ and «, found from Table A-5.2, we get:

1.2(150) + 1.6(125) = (0.75)(0.85)[0.85(5)(1.00 — 0.04)A, + 60(0.04)A,l.

380 = (0.6375)[4.08A, + 2.40A,].

596.1 < 6.484,

Ag = 91.99in?; since Ag = =r?, the required radius for the concrete column, r = (91.99/m)%5 =
5.41in. Therefore, the required diameter, d = 2r = 2(5.41) = 10.8in.

The actual diameter that we select may be either bigger or smaller than this “required”
diameter, since it was computed on the basis of a desired reinforcement ratio, which need
not be—and cannot be—matched precisely in practice (since the actual bar area selected
typically exceeds the required area and since the actual diameter of the column is rounded
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to the nearest or “even” inch). We therefore select a column diameter close to the required
value, say, 10in., and proceed as in Example 7.6, with the gross column area given.

. From Equation 7.11: P, = 1.2D + 1.6L = ¢a(0.857¢ Asone + f,As). The strength reduction
factors, ¢ and «, from Table A-5.2, have already been found, the gross area of a circular
column with a 10in. diameter is «r2 = =52 = 78.54in?, and we get:

1.2(150) + 1.6(125) = (0.75)(0.85)[0.85(5)(78.54 — Ag) + 60A.
380 = (0.6375)[333.8 — 4.25A4 + 60A4].

596.1 = 333.8 + 55.75A.

55.75A4 = 262.3.

Ay = 4.71in2. This is the required steel area for longitudinal bars.

. From Table A-4.10, choose six No. 8 bars with actual Ay = 4.74in°. For spiral columns,
the number of bars must be at least six.

. Using Equation 7.9, check that the reinforcement ratio is between 1 and 8% (i.e., between
0.01 and 0.08): pg = Ag/Ag = 4.74/78.54 = 0.060, so the reinforcement ratio is OK. Using
Table A-4.11, we find that for six No. 8 bars in the column, we need a 10-in. diameter.
Since we actually have a 10-in. diameter, the bars fit.

The actual reinforcement ratio, p, = 0.060, is much higher than our initial assumed value
of py=0.04. Had we selected a 12-in.-diameter column instead of a 10-in.-diameter
column at the end of step 1, the actual steel ratio would have been much Jower than 0.04.
In other words, the practical requirement to use whole even numbers for column diameter,
together with the need to select bar areas corresponding to actual rebar sizes, often makes
it difficult to precisely define the reinforcement ratio in advance. This method does, however,
lead to a reasonable size for the column in cases where a range of reasonable sizes is not
initially known.
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CHAPTER

Beams

Like all structural elements, beams are both stressed and subject to deformations
when loaded. Both of these considerations must be accounted for in the design of
beams.

DEFLECTION

While the elongation or contraction of axially loaded members along their longitu-
dinal axes is usually of little consequence, beams may experience excessive deflec-
tion perpendicular to their longitudinal axes, making them unserviceable. Limits
on deflection are based on several considerations, including minimizing vibrations,
thereby improving occupant comfort; preventing cracking of ceiling materials, par-
titions, or cladding supported by the beams; and promoting positive drainage (for
roof beams) in order to avoid ponding of water at midspan. These limits are gener-
ally expressed as a fraction of the span, L (Table A-8.1). Formulas for the calculation
of maximum deflection are shown in Table A-8.2, along with additional values for
the recommended minimum depth of reinforced concrete spanning elements. The
maximum (midspan) deflection, A, of a uniformly loaded simple span can also be
found from the equation:

_ swr!
384 FI @S.D

where w = distributed load (Ib/in. or kips/in.), L = span (in.), E = modulus of elas-
ticity (psi or ksi), and I = moment of inertia (in%). When using Equation 8.1 with L in
feet, w in Ib/ft or kips/ft, E in psi or ksi (compatible with load, w), and I in in4, as is
most commonly done, multiply the expression by 12 to make the units consistent.

© 2010 Elsevier Inc. All rights reserved.
Doi: 10.1016/B978-1-85617-771-9.00008-8 1 29
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BENDING STRESS

Beams are stressed when they bend because the action of bending causes an elonga-
tion on one side, resulting in tension, and a shortening on the other side, resulting
in compression. By exaggerating the curvature of the beam as it bends, this elonga-
tion and shortening can be visualized. Exactly where the tension and compression
are depends on how the beam is loaded and how it is supported.

For simply supported beams with downward-acting loads (i.e., with gravity
loads), the beam is stretched on the bottom (tension) and shortened on the top
(compression) as shown in Figure 8.1.

For cantilevered beams fixed at one end, with downward-acting loads, the beam
is stretched on the top and shortened on the bottom (Figure 8.2).

For continuous beams spanning over several supports, the changing curvature
causes the position of tension and compression zones to reverse a number of times
over the length of the beam, as illustrated in Figure 8.3.

The relative position of tension and compression within the beam’s cross section
is directly related to the sign of the bending moment at that cross section. As can

Load

FIGURE 8.1
Behavior of a simply supported beam
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FIGURE 8.2
Behavior of a cantilevered beam
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FIGURE 8.3

Behavior of a continuous beam
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be seen from Figure 8.4a, a counterclockwise moment on the right side of a free-
body diagram is equivalent to a distribution of bending stress with compression on
the top and tension on the bottom of the beam: “positive” bending (and “positive”
bending moment). Figure 8.4b shows a free-body diagram cut through a cantilever
beam with “negative” bending—that is, tension on the top and compression on the
bottom corresponding to a clockwise moment as shown. The reversing curvature
of a continuous beam, such as that shown in Figure 8.3, corresponds precisely to a
reversal in the sign of the bending moment. As shown in Figure 8.5, points of inflec-
tion (points where the curvature changes) always occur at points of zero moment.
Bending stresses within these beams can be computed if we assume that the
stretching and shortening that take place at any cross section are linear; that is,
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FIGURE 8.4
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V’I\Free-body diagrams  Cross section

(b)

Comparison of “positive” and “negative” bending in (a) a simply supported beam and

(b) a cantilevered beam

= ~——| Moment

FIGURE 8.5

Continuous beam showing correspondence of points of inflection (change from positive to
negative curvature) and points of zero moment
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a straight line connecting a stretched point with a shortened point on any cross-
sectional cut will accurately describe the shape of the beam throughout the entire
cross section (Figure 8.6).

Three observations can be made once this assumption is accepted: (1) maximum
elongation and shortening occur at the top and bottom of the beam (the “extreme
fibers”); (2) a surface exists somewhere between the extreme fibers that is neither
elongated nor shortened—this “plane” is called the “neutral axis” or “neutral sur-
face”; and 3) strain can be defined as the elongation or shortening of any portion
of the beam, divided by its original (unloaded) length. Since the original length is a
constant, a strain diagram has the same shape as an “elongation-shortening diagram.”
For materials with linear stress-strain relationships (where stress equals strain times
a constant modulus of elasticity), a stress diagram will also have the same shape as
the strain or “elongation-shortening diagram.” Figure 8.7 compares these diagram
shapes for materials with linear stress-strain relationships.

For materials with nonlinear stress-strain relationships, a stress diagram can be
pieced together by plotting points from a stress-strain curve for the material. Thus,
a steel beam stressed beyond its elastic region would have stress and strain distri-
butions as shown in Figure 8.8. The elongation and shortening, shown in Figure
8.8a, and therefore the strain, shown in Figure 8.8b, are assumed to remain linear
even when the stress, shown in Figure 8.8d through Figure 8.8f, becomes nonlin-
ear. In Figure 8.8c, the stresses at the extreme fibers of the cross section just reach
the limit of elastic behavior (with stress, a,), which corresponds to the so-called
elastic moment, M,. In Figure 8.8f, the strain at the outer fiber is extremely large
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FIGURE 8.6
Shortening and stretching (compression and tension) at a typical beam cross section
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FIGURE 8.7
Elongation, strain, and stress diagrams for a linear, elastic material
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(theoretically infinite), and the entire cross section is assumed to have yielded at the
stress, 0y, that is, moved past the linear-elastic yield strain labeled “1” in Figure 8.8g.
This condition represents the limit state for a steel beam, and corresponds to the
so-called plastic moment, M - For reinforced concrete, a nonlinear stress-strain rela-
tionship is most often assumed for design; special procedures have been developed
to simplify the construction of these stress diagrams.

The shape of the stress diagram is a key element in determining the magnitudes
of stresses within the beam: when combined with the cross-sectional shape, the
requirements of equilibrium can be used to find the magnitudes of the stresses.
Typical stress diagrams are shown in Figure 8.9 corresponding to the allowable
moment for wood and the limit states for steel and reinforced concrete.

Allowable stress design

As an example of how the stress-moment relationship is computed using the allow-
able stress design method, consider a free-body diagram cut from a rectangular
cross section of width, b, and height, » (assuming a linear stress-strain relationship
resulting in a linear stress diagram), as shown in Figure 8.9a. From the requirements
of horizontal equilibrium, the total compressive force, C, must equal the total ten-
sion force, T. For this to occur, the neutral axis must be at the center of the beam,
and the maximum compressive stress must equal the maximum tension stress. Any
other linear distribution of stresses would be inconsistent with these requirements
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FIGURE 8.8

Elongation, strain, and stress diagrams for an elastic-plastic material such as steel showing

(a) elongation and shortening of the actual material, (b) strain diagrams, (c) stress diagram at
the point where the outer fiber has just yielded, (d) stress diagram corresponding to strain just
beyond the elastic limit, (e) stress diagram corresponding to continued strain beyond the elastic
limit, (f) stress diagram corresponding to the plastic moment (where the entire cross section has
yielded), and (g) stress-strain diagram
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FIGURE 8.9

Bending stresses acting on rectangular cross sections corresponding to the (a) allowable moment
for wood and the limit states (maximum moment at failure) for (b) steel and (c) reinforced concrete

of equilibrium. The couple of equal and opposite forces represented by C and T,
multiplied by the moment arm between them, must equal the bending moment, M,
caused by the loads acting on the beam. The basic bending stress equation derives
from this simple fact: M equals C (or 7) times the moment arm, 7; that is:

M = CT @8.2)
Accounting for beam width, b, C = 1/2(F,)(h/2)(b) and T = 2/3(b); substituting

these values into Equation 8.2, we get:

’ 6 b b2

8.3

Defining “bbh?/6” as the section modulus, S, and “bb3/12” as the moment of inertia,
I, for a rectangular cross section, and solving for the maximum allowable stress, F,,
we get the basic bending stress equations for allowable stress design:

(€XY)

where F, is the allowable bending stress for the material (psi or ksi), M is the
bending moment (in-Ib or in-kips), S is the required section modulus (in3), I is the
required moment of inertia (in®), and ¢ = b/2 is the distance from the neutral axis
to the extreme fiber (in.).

Stress-moment relationships

Equation 8.4 shows the relationship between bending stress, bending moment, and
section modulus for a material stressed within its linear-elastic range. It is the basis for
wood beam design. Steel and reinforced concrete, however, are no longer designed
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on the basis of assumed linear-elastic behavior. Even so, the basic relationship among
moment, stress, and some sort of section modulus property remains essentially the
same for all three materials, as can be seen by comparing the stress and resultant
force diagrams shown in Figure 8.9. While specific derivations will be covered in the
sections that follow, the requirements of horizontal equilibrium (C = T) and rota-
tional equilibrium (M = Ct = T7) lead to design equations with essentially the same
form for all three materials: Equation 8.5 (solving for the required section modulus, S,
in Equation 8.4) applies to allowable stress design in wood, Equation 8.6 to available
strength design in steel, and Equation 8.7 to strength design in reinforced concrete.

Sreqg = M/F,, (8.5)
Z,y = M,SYF, (8.6)
bd> = M, /(OR) 8.7

In each case, the section modulus term (S, Z, or bd?) must be greater or equal to
the bending moment divided by a bending stress term. The stress terms in Equations
8.5, 8.6, and 8.7 vary: for wood, an adjusted allowable stress, F,, is used directly;
for steel, the yield stress, F,, is used; for reinforced concrete, the stress term, R, is
more complex as it must account for the limit state of both concrete (in compres-
sion) and steel (in tension), as well as the ratio of steel to gross area within the beam
cross section. Factors of safety are also handled differently for the three materials:
in wood “allowable stress” design, the factor of safety is hidden within the stress
term, F,; in steel “available strength” design, the factor of safety, Q) (normally 1.67
for bending), is applied, not to the stress, but to the plastic moment capacity of the
cross section in order to determine its “available strength”; in reinforced concrete
“strength” design, the factor of safety, ¢ (normally 0.9 for bending), is a strength
reduction factor applied to the moment capacity of the section. Load safety factors
are also included within the reinforced concrete design moment, M,,.

The triangular stress distribution in allowable stress design for wood corre-
sponds to the elastic section modulus, S = bd?/6, derived in Equation 8.3 for rec-
tangular cross sections. For steel, the plastic section modulus, Z, is used, and is
equal to bd?/4 for a rectangular section—this is easily derived from the equilibrium
of stresses shown in Figure 8.9b, although it should be noted that rectangular solid
shapes are virtually nonexistent in steel beams. The term bd?, used in reinforced
concrete Equation 8.7, has no official status as a “section modulus,” yet it consists of
the same basic variables and has the same units as wood’s § and steel’s Z.

Bending design methods

Equations 8.5, 8.6, and 8.7 are “design” equations, since they provide guidance for
the size and shape of bending elements that are capable of resisting a given bending
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moment. In practice, after bending moments are determined (e.g., by the construc-
tion of load, shear, and moment diagrams; from moment value tables; or with the
use of structural analysis software), the required section modulus term is calculated,
and a cross section is then selected. In the case of wood and steel, tables of standard
cross sections and their corresponding section moduli facilitate the direct selection of
appropriate shapes. The design of a reinforced concrete beam is less direct, since the
ratio of steel to concrete may vary, producing a range of acceptable bd? terms, each
of which may sponsor a range of choices for cross-sectional dimensions b and d.

SHEAR STRESS

Internal forces perpendicular to the longitudinal axis of beams may also exist along
with bending moments at any cross section, consistent with the requirements of
equilibrium (see, e.g., the force V shown in the free-body diagrams within Figure
8.4). These shear forces are distributed over the cross-sectional surface according to
the equation:

_ e
T=— 8.8

where 7 = shear stress at a distance, y, from the extreme fiber (psi or ksi); V'is the
total shear force at the cross section (Ib or kips); Q is the “static moment” of the par-
tial cross-sectional area (from the extreme fiber to the distance, y) about the neutral
axis of the cross section (in’); I is the moment of inertia of the cross section (in®);
and b is the width of the cross section at a distance, y, from the extreme fiber (in.).

Rectangular sections

For rectangular cross sections, the maximum shear stress, which occurs at the neu-
tral axis, becomes:

Toax — (8. 9)

where b is the height of the rectangular cross section; all other variables are as
defined for Equation 8.8. Alternatively, one can solve for the required cross-sectional
area, A,,, = bb (@in?) as the basis for designing or analyzing a rectangular beam for
shear, corresponding to an allowable shear stress, 7,;,,, (psi or ksi) for maximum
shear force, V (Ib or kips). In this case, one gets:

1.5V
Ay = (8.10)

T aliow




Shear stress

Tmax

Cross section Shear stress
FIGURE 8.10

Distribution of shear stress on a rectangular cross section
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FIGURE 8.11
Reduction of shear force, V., in the vicinity of the beam’s reaction (support)

This is the basis for checking shear in timber beams, which are almost always
rectangular (Figure 8.10). Reinforced concrete beams behave in a more complex
manner, and special procedures for dealing with shear, or diagonal tension, have
been developed.

In the vicinity of supports, loads are transferred by compression directly to those
supports (Figure 8.11), and the maximum shear force is therefore somewhat less
than the computed maximum value. In the design of wood and reinforced concrete
beams, the shear force within a distance, d, of the face of the supports can be con-
sidered equal to the value of the shear force at that distance, d. For wood beams, d
is the total beam height; for reinforced concrete, it represents the effective depth,
measured to the centerline of the tension reinforcement.

Wide-flange sections

For steel wide-flange sections, the maximum shear stress, also at the neutral axis, can
be found by computing the static moment, Q, of the partial area (above the neutral
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Distribution of shear stress on a flanged cross section, and calculation of maximum shear stress, T .x
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Comparison of actual and assumed maximum shear stress, T, for a steel wide-flange beam

axis) about the neutral axis and solving Equation 8.8, as shown in Figure 8.12. For
steel wide-flange shapes, simplified procedures have been developed, based on
the average stress on the cross section, neglecting the overhanging flange areas;
that is:

T =

v
max = @.11)

where 7,,,, = the maximum shear stress within the cross section, V = the total
shear force at the cross section, d = the cross-sectional depth, and ¢, = the web
thickness (see Figure 8.13).
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Wood beams are generally designed for bending stress and then checked for shear
and deflection. Using allowable stress design, the required section modulus is found
by dividing the maximum bending moment by the adjusted allowable bending stress,
F;, as shown in Equation 8.5.This adjusted value is found by multiplying the tabular
value, F, (Table A-3.5), by various adjustment factors. In addition to factors for load
duration, wet service conditions, and size, three new adjustment factors are intro-
duced for bending: a flat use factor, a repetitive member factor, and a beam stability
factor (Table A-3.6).

The flat use factor, Cp,, accounts for the apparent increase in bending strength
when beams are stressed about their weak axes. The repetitive member factor, C,,
accounts for the increased safety of joists and rafters made from dimension lumber
when they are joined by floor or roof decks and spaced not more than 24in. on cen-
ter. Wood beams acting individually must be designed according to the most conser-
vative assumptions regarding their actual strength, whereas closely spaced joists or
rafters enjoy an additional margin of safety—particularly heavy concentrated loads
(or unusually weak joists or rafters) are “helped out” by the adjacent members. The
beam stability factor, C;, accounts for the possibility of lateral-torsional buckling
when the compression edge of a beam is not adequately braced. For beams con-
tinuously braced by roof or floor decks, as is often the case with dimension lum-
ber, C; = 1.0. Otherwise, an effective length is found by multiplying the distance
between lateral braces (often determined by the location of concentrated loads) by
a coefficient and applying the formulas found in Table A-3.6.

For glued laminated (glulam) beams only, the size factor is replaced by a “vol-
ume” factor, Cy. Like the size factor, the volume factor is designed to account for the
increased probability of brittle tensile failure in larger structural elements. Because
the beam stability factor, C;, accounts for compressive buckling, while the volume
factor accounts for tensile failure, it is not necessary to combine both of these fac-
tors when adjusting the allowable bending stress. Instead, only the smaller value of
Cy or Cj is used for glulam beams.

Because some adjustment factors cannot be determined until the cross-sectional
dimensions of the beam are known, the design process may become an iterative
one, based on the analysis of trial sections. In this process, tabular values of allow-
able bending stress and modulus of elasticity are found in Tables A-3.5 and A-3.9;
values for allowable shear stress, F,, are found in Table A-3.7. Shear stress is only
adjusted for duration of load and wet service conditions (Table A-3.8). When com-
puting deflections, the only adjustment to modulus of elasticity, E, is for wet service
conditions (Table A-3.9). The average modulus of elasticity (E), and not the mini-
mum modulus of elasticity (E,,;,), is used in deflection calculations.

In the examples that follow, the maximum shear force, V, could have been
reduced by considering the value at a distance, d, from the face of the supports, as
illustrated in Figure 8.11. Where shear does not appear to be a critical factor in the
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design of the beam, this reduction is usually unnecessary; however, if shear appears
to govern the beam design, it may be beneficial to use the reduced value of V in the
calculation of actual shear stress.

Example 8.1 Analyze wood beam, dimension lumber

Problem definition

Can a 2 X 8 Hem-Fir No. 2 joist, spaced 16in. on center, be used in a residential application,
spanning 12ft? Assume a dead load corresponding to that listed in Table A-2.1 for wood floor
systems with 2 X 10 joists.

Solution overview
Find loads; check bending stress (or required section modulus); check shear stress (or
required cross-sectional area); check deflection.

Problem solution
1. Find loads:
a. From Table A-2.2, the live load, L = 40psf; the live load distributed on 1 linear foot of
the joist is L = 40(16/12) = 53.33Ib/ft. Live load reduction does not apply since K A;
(the tributary area multiplied by the live load element factor—see Table A-2.2) is less
than 400 ft2.
b. From Table A-2.1, the dead load, D = 10.5psf; the dead load distributed on 1 linear
foot of the joist is D = 10.5 (16/12) = 14 1b/ft.
c. The total distributed load, w = 53.33 + 14.0 = 67.331b/ft.
2. Create load, shear, and moment diagrams as shown in Figure 8.14 to determine critical
(i.e., maximum) shear force and bending moment.
3. Find adjusted allowable bending stress:
a. From Table A-3.5, find the tabular allowable bending stress: F, = 850 psi.
b. From Table A-3.6, find all relevant adjustments: Cr= 1.2; C, = 1.15; Cyy = Cp = 1.0.
c. Multiply the tabular stress value by the adjustments to get the adjusted allowable stress:
F{ =850(1.2)(1.15) = 1173 psi.

w=67.33 Ib/ft

404 IbT

T404 Ib

404 Ib . —_—

60" | 404 Ib

Moment

M, = 1/2(404)(6) =1212 ft-Ib
= 14,544 in-Ib

FIGURE 8.14
Load, shear, and moment diagrams for Example 8.1
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From Equation 8.5, compute the required section modulus: S, = M/Fy = 14,544/

1173 = 12.4in3.

From Table A-4.1, check the actual section modulus for a 2 X 8, bent about its strong (x)

axis: S, = 13.14in3; since the actual S, = 13.14in3 = required S, = 12.4in3, the 2 X 8

section is OK for bending.

Find adjusted allowable shear stress:

a. From Table A-3.7, the tabular allowable shear stress, F, = 150 psi.

b. From Table A-3.8, find all relevant adjustments: Cy, = 1.0; Cp = 1.0.

c. Multiply the tabular stress value by the adjustments to get the adjusted allowable
stress: F, = 150(1.0)(1.0) = 150psi.

From Equation 8.10, compute the required area, A,,= 1.5V/IF, = 1.5(404)/

150 = 4.04in2.

From Table A-4.1, check the actual area of the cross section: A,q, = 10.88in?%; since

Asctuas = 10.88in2 = Areqg = 4.04in?, the 2 X 8 section is OK for shear.

From Table A-8.1, find the allowable total-load deflection for a floor joist: Ay, = span/

240 = 12(12)/240 = 0.6in.; and the allowable live-load deflection for a floor joist:

Ajow = Span/360 = 12(12)/360 = 0.4in.

Using Table A-8.2, check the actual total-load deflection. A e = CPL3/(EN, where:

C=2246.

P=wlL=67.33(12) = 808Ib.

L = 12ft. (We are using the same symbol, L, for span and “live load”; the meaning should
be clear from context.)

From Table A-3.9, the modulus of elasticity, £ = 1,300,000 psi.

From Table A-4.1, the moment of inertia about the strong (x) axis, I, = 47.63in%.

A = 22.46(808)(12%)/(1,300,000 X 47.63) = 0.5in. Since A = 0.5iN. = Aoy =

0.6in., the beam is OK for total-load deflection.

Using Table A-8.2, check the actual five-load deflection. A g, = CPL3/(ED), where:

C=2246.

P = wlL = 53.33(12) = 6401b. (Use live load only!)

L = 12ft. (We are using the same symbol, L, for span and “live load”; the meaning should
be clear from context.)

From Table A-3.9, the modulus of elasticity, £ = 1,300,000 psi.

From Table A-4.1, the moment of inertia about the strong (x) axis, I, = 47.63in%.

A = 22.46(640)(12%)/(1,300,000 X 47.63) = 0.4in. Since A = 0.4in. = Aoy =

0.4in., the beam is OK for live-load deflection.

Conclusion: The 2 X 8 is OK for bending, shear and deflection. Therefore, it is acceptable.

Example 8.2 Analyze wood beam, timbers

Problem definition
Can a 14 X 20 Hem-Fir No. 2 girder be used in a “heavy timber” office building application,
as shown in Figure 8.15? Assume that beams framing into the girder provide lateral bracing
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FIGURE 8.15
Framing plan and view of girder for Example 8.2

P |P=(46.7 +20)(10 x8) = 5336 Ib
5336 1] B T
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v"“‘t My =5336(8) = 42,688 ft-Ib

=512,256 in-lb

FIGURE 8.16
Load, shear, and moment diagrams for Example 8.2

at the third points. Assume a total dead load of 20 psf and a live load corresponding to office
occupancy.

Solution overview
Find loads; check bending stress (or required section modulus); check shear stress (or
required cross-sectional area); check deflection.

Problem solution
1. Find loads:
From Table A-2.2, the live load for office occupancy, L = 50 psf; with live load reduction,
we get L = 50[0.25 + 15/(2 X 24 x 10)%5] = 50(0.935) = 46.7 psf.
The dead load, D = 20 psf (given).
Atotal concentrated load, P, acts on tributary area of 10 X 8 = 80ft?, so P = (D + L)(80) =
(20 + 46.7)(80) = 53361b.
2. Create load, shear, and moment diagrams as shown in Figure 8.16 to determine critical
(i.e., maximum) shear force and bending moment.
3. From Table A-3.5, the tabular value is F, = 675psi.
4. Find the adjustments to the allowable bending stress:
From Table A-3.6: Cr = (12/19.5)1° = 0.95.
From Table A-3.6: C, = 1.0.
From Table A-3.6: Cy, = 1.0.
From Table A-3.6: Cp = 1.0.
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In addition, the beam stability factor must be computed: C, = A — (A2 — B)% where:
le = 1.68/, = (1.68)(8 X 12) = 161in. (for point loads providing lateral support at the
third points).
E..i, = 400,000 psi (from Table A-3.9).
b = 13.5in.; d = 19.5in. (actual dimensions of a 14 X 20 from Table A-4.1).
Fy = FoCuCpCr = 675(1.0)(1.0)(0.95) = 640 psi.
Fpe = 1.20(13.5)2(400,000)/(161 X 19.5) = 27,864,
A= (1 + 27,864/640)/1.9 = 23.44.
B = (27,864/640)/0.95 = 45.83.
C = A— (A — B)OS> =23.44 — (23.44% — 45.83)°° = 0.999.

. The adjusted allowable stress, F, = F; C, = 640(0.999) = 639 psi.
. From Equation 8.5, compute the required section modulus: Seq= M/F; =

512,256/639 = 802in3.

. From Table A-4.1, check the actual section modulus about the strong (x) axis:

S, = 855.6in3; since the actual S, = 855.6in% = the required S, = 802in3, the section is
OK for bending.

. Find the adjusted allowable shear stress:

From Table A-3.7, the tabular allowable shear stress, F, = 140psi.
From Table A-3.8, find all relevant adjustments: Cy; = 1.0; Cp = 1.0.
The adjusted allowable shear stress, F, = 140(1.0)(1.0) = 140psi.

. From Equation 8.10, compute the required area, A., = 1.5V/F, = 1.5(5336)/

140 = 57.2in%.

From Table A-4.1, check the actual area of a 14 X 20 cross section: A,e, = 263.3in2.
Since A,epue = 263.3in2 = Apeqg = 57.2 in2, the section is OK for shear.

From Table A-8.1, find the allowable total-load deflection for a floor beam: A, = span/
240 = 24(12)/240 = 1.2in.; and the allowable live-load deflection for a floor joist:
Aow = Span/360 = 24(12)/360 = 0.8in.

From Table A-8.2, check the actual total-load deflection: A = CPL3/(El), where:
C=61.34.

P=(46.7 + 20)(10 X 8) = 53361b.

L = 241t

£ = 1,100,000 psi (from Table A-3.9).

| = 8342in* (from Table A-4.1).
A = 61.34(5336)(24%)/(1,100,000 x 8342) = 0.49in.
Since Aoty = 0.49in. = A = 1.2in., the girder is OK for total-load deflection.
From Table A-8.2, check the actual /ive-load deflection: A = CPL3/(El), where:
C=61.34.

P=46.7(10 X 8) = 37361b. (Use live load only!)

L = 241t

£ = 1,100,000 psi (from Table A-3.9).

| = 8342in* (from Table A-4.1).
A = 61.34(3736)(24%)/(1,100,000 x 8342) = 0.35in.
Since Aoy = 0.35in. = Ay = 0.8in., the girder is OK for live-load deflection.
Conclusion: The 14 X 20 is OK for bending, shear, and deflection. Therefore, it is

acceptable.
P -
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Example 8.3 Design wood beam, glulam

Problem definition

Design a 32ft-long glulam roof girder of stress class 20F-1.5E for the one-story industrial
building shown in the framing plan (Figure 8.17). Assume a snow load, S = 30psf, and a
dead load, D = 20psf. Use a beam width of 8%4in., with 1%-in. laminations (i.e., assume that
“Western Species” will be used). Beams framing into the girder provide lateral bracing at the
quarter points. Use snow load only in computing “live-load” deflection, and assume that the
deflection criteria will be based on a roof structure with no ceiling.

Solution overview

Find loads; begin iterative design process by assuming unknown adjustments to allowable
stresses; then check bending stress (required section modulus), shear stress (required cross-
sectional area) and deflection, as in analysis examples. Recompute if necessary with bigger (or
smaller) cross section until bending, shear, and deflection are OK.

Problem solution
1. Find loads:
S = 30psf (given).
D = 20 psf (given).
From Table A-5.1, it can be seen by examining the various load combinations that the most
severe effects occur with the combination: dead load plus snow load, or D + S.
Using D + S, the total concentrated load, P, acts on a tributary area of 28 X 8 = 224ft2,
so P = (D + S)(tributary area) = (30 + 20)(224) = 11,2001b.
2. Create load, shear, and moment diagrams as shown in Figure 8.18 to determine critical
(i.e., maximum) shear force and bending moment.
3. Find provisional adjusted allowable bending stress:
From Table A-3.5, part D, the design (tabular) value for bending is f;, = 2000 psi.
From Table A-3.6, the relevant adjustments are as follows: C,= 1.0; Cy = 1.0;
Cp = 1.15. C, and Cy cannot yet be determined, since they depend on the actual cross-
section size; for now, choose any reasonable value for the smaller of C, or Cy; for example,
assume that the smaller of C, or C, = 0.9.
The adjusted value for allowable bending stress, f; = 2000(1.15)(0.9) = 2070 psi.

Girder

28", 28’

FIGURE 8.17

Framing plan for Example 8.3
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4. From Equation 8.5, compute the required section modulus: S,, = M/F} = 2,150,400/
2070 = 1039in3.

5. Compute the required depth, d, based on the section modulus for a rectangular cross sec-
tion, S= bd?/6 = 1039 and b= 8.75in. (given). In this case, 8.75d%/6 = 1039, from
which d = 26.7in. Rounding up to the first multiple of 1.5in. (the depth of an individual
lamination), we get: d = 27in.

Trial 1: 834-in. X 27-in. cross section
1. Find allowable bending stress: as before, F;, = 2000 psi.
2. Find adjustments to allowable bending stress (Table A-3.6):

¢, =10.
Cy = 1.0.
Cp = 1.15.

We still need to determine the smaller of C; or Cy:
Cy = (21/32)V10(12/27)119(5.125/8.75)1/10 = 0.84.
C, =A-— (A — B)°®where:
le = 154/,=(1.54)(8 X 12) = 148in.
E’, = 780,000 psi, from Table A-3.9, parts B and C.
b =8.75in.;d=27in.
Fz = F,Cp=2000(1.15) = 2300 psi.
Fpe = 1.20(8.752)(780,000)/(148 x 27) = 17,934.
A = (1+4 17,934/2300)/1.9 = 4.63.
B = (17,934/2300)/0.95 = 8.21.
C, =A—-(A-B)P%=463-(4.632-8.21)%5=0.99.
Since Cy= 0.84 < C; = 0.99, use Cyonly.
3. The adjusted design value for bending is f; = F}Cy = 2300(0.84) = 1932 psi.
4. From Equation 8.5, compute the required section modulus: S., = M/F; = 2,150,400/
1932 = 1113ind.
5. Check that actual section modulus is greater or equal to the required section modulus:
actual S, = bd?/6 = 8.75(27)%/6 = 1063in3; since actual S, = 1063in® < required
S, = 1113in3, the section is not OK for bending. Try next larger section (increase depth,

not width!).
IP P [P=(30+20)(28 x8)=11,200 b
16,800 IbI 32’ T
I 11,250
16,800 Ib
L@—\ﬁf} Shear
L8lsy
Moment
Max= 16,800(8) + 5,600(8) =
179,200 ft-Ib = 2,150,400 in-Ib
FIGURE 8.18

Load, shear, and moment diagrams for Example 8.3
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8%"

28%"

FIGURE 8.19

Glued laminated cross section corresponding to trial 2 for Example 8.3

Trial 2: 834-in. x 28%2-in. cross section (Figure 8.19)

1.
2.

Find allowable bending stress: as before, f;, = 2000 psi.
Find adjustments to allowable bending stress (Table A-3.6):

¢, =10.
CIVI = 1.0.
Cp = 1.15.

We still need to determine the smaller of C, or Cy:

Cy, = (21/32)119(12/28.5)/19(5.125/8.75)110 = 0.83.
C, =A— (A — B> where:

le = 154/,=(1.54)8 X 12) = 148in.

E}i» = 780,000 psi, from Table A-3.9, parts Band C.

b =8.75in.,; d = 28.5in.

Fy = FpCp = 2000(1.15) = 2300 psi.

Fpe = 1.20(8.75%)(780,000)/(148 x 28.5) = 16,990.
A =(1+16,990/2300)/1.9 = 4.41.

B = (16,990/2300)/0.95 = 7.78.

C, =A—(A—BP5=441— (4412 - 7.78)°% = 0.99.
Since Cy = 0.83 < C; = 0.99, use Cyonly.

. The adjusted design value for bending is F5 = (F})(C)) = 2300(0.83) = 1909 psi.

From Equation 8.5, compute the required section modulus: S, = M/F, = 2,150,400/
1909 = 1126in3.

. Check that actual section modulus is greater or equal to required section modulus:

actual S, = bd%6 = 8.75(28.5)%/6 = 1185in3; since actual S, = 1185in3 < required
S, = 1126in3, the section is OK for bending.

Find adjusted allowable shear stress:

From Table A-3.7, part C, the design value for shear, f, = 210psi.

From Table A-3.8, the relevant adjustments are as follows: Cy, = 1.0; Cp = 1.15.

The adjusted allowable stress for shear, F, = 210(1.15) = 241.5psi.

. Based on Equation 8.10, the required cross-sectional area to resist shear, Agq = 1.5V/

F, = 1.5(16,800)/241.5 = 104.3in’.

. Check actual cross-sectional area = 8.75 X 28.5 = 249.4in%; since A,cua = 249.4in?

= Anq = 104.3in?, section is OK for shear.
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9. From Table A-8.1, the allowable total load deflection for a roof with no ceiling,
Agjow = span/120 = 32(12)/120 = 3.20in.; and the allowable (snow load) deflection for
a roof with no ceiling, A, = Span/180 = 32(12)/180 = 2.13in.

10. From Table A-8.2, the actual fotal-load deflection is A = CPL3/(El), where:

C = 85.54.
P = (S + Ditributary area) = (30 + 20)(28 X 8) = 11,2001b.
L= 32ft.

£’ = 1,500,000 psi, from Table A-3.9, parts A and C. The “average” adjusted modulus
of elasticity, £', is used for deflection calculations, whereas the adjusted minimum
modulus of elasticity, £/,,, is used in buckling or stability calculations.
= bd3/12 = (8.75)(28.5%)/12 = 16,879.6in*.
11. A g = 85.54(11,200)(323)/(1,500,000 X 16,880) = 1.24in. Since A gy = 1.24in. <
Agow = 3.20in., the beam is OK for total-load deflection.

12. From Table A-8.2, the actual snow-load deflection is A = CPL3/(El), where:

C = 85.54.
P = (S)(tributary area) = (30)(28 X 8) = 67201b. (Use snow load only!)
L = 32ft.

£’ = 1,500,000 psi, from Table A-3.9 (parts A and C). The “average” adjusted modulus
of elasticity, £', is used for deflection calculations, whereas the adjusted minimum
modulus of elasticity, £}, is used in buckling or stability calculations.
= bd3/12 = (8.75)(28.5%)/12 = 16,880in".
13. A g = 85.54(6720)(323)/(1,500,000 X 16,880) = 0.74in. Since A,uy = 0.74in. <
Aow = 2.13in., the beam is OK for snow-load deflection.
14. Conclusion: The 8%-in. X 28%-in. section is OK for bending, shear, and deflection.

Therefore, it is acceptable.
P -

|
Example 8.4 Design wood beam, dimension lumber

Problem definition

Design a Douglas Fir-Larch (North) No.1/No.2 girder using 4X lumber to support a residential
live load as shown in Figure 8.20. Assume 10.5psf for dead load. Loads on the girder can be
modeled as being uniformly distributed since joists are spaced closely together.

Solution overview

Find loads; find known adjustments to allowable bending stress; use Table A-8.3 to directly
compute lightest cross section for bending; check for shear and deflection. Alternatively, begin
iterative design process by assuming unknown adjustments to allowable stresses; then check
bending stress (required section modulus), shear stress (required cross-sectional area), and
deflection, as in analysis examples. Recompute if necessary with bigger (or smaller) cross sec-
tion until bending, shear, and deflection are OK.
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Problem solution

1.

Find loads:
From Table A-2.2, the live load for a residential occupancy, L = 40 psf.
The dead load, D = 10.5 psf (given).

The total distributed load, w = (D + L)(tributary area) = (10.5 + 40)(6) = 303 Ib/ft. Live
load reduction does not apply since K, times the tributary area is less than 400ft2. The
tributary area for w is measured along one linear foot of the girder, in the direction of its
span, as shown in the framing plan (Figure 8.20).

Create load, shear, and moment diagrams as shown in Figure 8.21 to determine critical
(i.e., maximum) shear force and bending moment.

Find partially adjusted allowable bending stress:

From Table A-3.5, the design (tabular) value for bending stress, f, = 850 psi.

From Table A-3.6, the following adjustments can be determined: C, = 1.0; Cy, = 1.0;
Cp = 1.0; C, = 1.0 (assume continuous bracing by floor deck). The size factor, Cr, cannot
be determined at this point.

The adjusted value for bending stress, with all adjustments known except for Cp, is
F; = 850Ck psi.

From Equation 8.5, compute the required section modulus: Sy, = MIFy = M/
(850CK) = 25,566/(850CF). This can be rewritten as CgSeq = M/IF, = M/(850) =
25,566/(850) = 30.08in3.

Rather than doing several “trial” designs, it is possible to find the correct cross section
for bending directly, by using a table of combined size factors (Cp) and section moduli
(S,) with the lightest values highlighted. In this method, the adjusted allowable stress is
computed without the size factor, since Cr is combined with the section modulus in the
table. Table A-8.3 indicates directly that the lightest 4X section for bending is a 4 X 8,
based on a combined CrS, value of 32.19in3, which is larger than the required value of
CrSreq = 30.08in® found in Step 4. Table A-8.3 also shows that a 2 X 12 is actually the
lightest acceptable section for bending, since it is the first bold-faced entry with a value of
CrS, greater than or equal to 30.08in3. However, in this problem, a 4 section was called
for, so we provisionally select the 4 X 8 section.

6-0" 1.0" Tributary area for w
F i ¥ e

7 —

- Girder
L~

'F/ g f://

1 2’—0\

|
}

/ 120"

— Open to
—-—" floor below

76"

FIGURE 8.20

Framing plan for Example 8.4
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11.

12.

13.

14.

Wood

Find adjusted allowable shear stress:

From Table A-3.7, the design (tabular) allowable shear stress F, = 180 psi.

From Table A-3.8, there are no adjustments for shear stress; that is: Cy, = 1.0; Cp = 1.0.
The adjusted value for allowable shear stress, F, = 180psi.

Based on Equation 8.10, the required cross-sectional area to resist shear, Ay, = 1.5/
F, = 1.5(1136)/180 = 9.47in?.

From Table A-4.1, we can check the actual area of the cross section, A, = 25.38in%;
since A,sa = 25.38in% = Areqg = 9.47in?, the section is OK for shear.

From Table A-8.1, find the allowable total-load deflection for a floor beam: A, = span/
240 = 12(7.5)/240 = 0.375in.; and the allowable live-load deflection for a floor beam:
Aow = Span/360 = 12(7.5)/360 = 0.25in.

From Table A-8.2, we can check the actual total-load deflection: A qa = CPLIED,
where:

C = 22.46.

P = wL = (40 + 10.5)(6)(7.5) = 2272.5Ib.

L =7.5ft

E= E’' = 1,600,000psi (from Table A-3.9).

/= 111.1in* (directly from Table A-4.1, or from the equation, / = bd3/12).

A etua = 22.46(2272.5)(7.5%)/(1,600,000 X 111.1) = 0.12in. Since A s = 0.12in. =
Aow = 0.375i0n., the beam is OK for total-load deflection.

From Table A-8.2, we can check the actual live-load deflection: A, = CPLED,
where:

C = 22.46.

P=wL = (40 X 6)7.5 = 1800Ib. (Use live load only!)

L =7.5ft

E= E’' = 1,600,000psi (from Table A-3.9).

/= 111.1in* (directly from Table A-4.1, or from the equation, / = bd3/12).

Aetua) = 22.46(1800)(7.5%)/(1,600,000 X 111.1) = 0.096in. Since A,ga = 0.096in. =<
Aow = 0.250n., the beam is OK for deflection.

Conclusion: The 4 X 8 section is OK for bending, shear, and deflection. Therefore, it is
acceptable.

& 1 w = (40 + 10.5)6 = 303 Ib/ft

1136 u:ﬂ“ 75 T
1136 Ib
[375 Shear
Moment

M,a = 2130 ft-Ib = 25,566 in-Ib

FIGURE 8.21

Load, shear, and moment diagrams for Example 8.4
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Alternate method

It is also possible to find the lightest 4 X section using an iterative design process without Table
A-8.3. Using this method, the size factor, Cr, would need to be assumed and then checked
after a provisional cross section is found, as follows:

1.

2.

Assuming a size factor, Cr= 1.0, the adjusted allowable bending stress becomes
Fj; = 850(1.0) = 850psi. Then, from Equation 8.5, we compute the required section
modulus: Spq = MIF, = M/850 = 25,566/850 = 30.08in3.

From Table A-4.1, we provisionally select a 4 X 10 with actual S, = 32.38in3.

Trial 1: 4 x 10 cross section

1.

Find actual adjusted allowable bending stress: the design (tabular) value remains
Fp, = 850psi; the actual size factor for a 4 X 10 is Cr = 1.20, so the adjusted allowable
bending stress, F; = 850(1.20) = 1020psi. Since this value for a 4 X 10 is greater than
the allowable stress initially assumed, the 4 X 10 must be OK for bending. But is it the
lightest acceptable choice? Because the size factor actually increases for smaller sections,
we must try the next smaller size.

Trial 2: 4 x 8 cross section

1.

2.

Find actual adjusted allowable bending stress for the 4 X 8: the size factor, Cr = 1.3, so
the adjusted allowable bending stress, F, = 850(1.3) = 1105 psi.

From Equation 8.5, compute the required section modulus: Sy, = M/F) =
25,566/1105 = 23.14in°.

From Table A-4.1, the actual section modulus for a 4 X 8, S, = 30.66in3; since actual
Sy = 30.66in% = S, = 23.141in%, the 4 x 8 section is OK for bending.

Shear and deflection for the 4 X 8 are checked as shown earlier, using the first method,
and are both OK.

Conclusion: The 4 X 8 section is OK for bending, shear, and deflection. Therefore, it is
acceptable. But what about a 4 X 6, with a size factor just as large?

Trial 3: 4 x 6 cross section

1.

Find actual adjusted allowable bending stress for the 4 X 6: the size factor, Cr = 1.3, so
the adjusted allowable bending stress, F, = 850(1.3) = 1105 psi.

2. From Equation 8.5, compute the required section modulus: S,, = M/F; = 25,566/
1105 = 23.14in3.

3. From Table A-4.1, the actual section modulus for a 4 X 6, S, = 17.65in3; since actual
S, = 17.65in3 < Sreq = 23.14in%, the 4 X 6 section is not OK for bending.

4. Conclusion: Since the 4 X 6 is not OK, select the 4 X 8 section. -

STEEL

The design of steel wide-flange beams using the “allowable strength design” method
is quite similar to the procedures used to design timber beams. Cross sections are
selected based on their strength in bending, and then checked for shear and deflection.
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Bending of laterally braced and compact beams

Unlike wood beams, however, steel beams are designed based on their “available”
strength, rather than on the more conventional notion of an “allowable” stress.
Whereas the strength of a wood beam corresponds to its outer fibers reaching a fail-
ure stress, steel beams do not fail when their outer fibers first begin to yield at the
stress, F,. A steel cross section is able to carry increased loads beyond the so-called
elastic moment, shown in Figure 8.22a, up until the entire cross section has yielded,
as shown in Figure 8.22b. The plastic section modulus corresponds to this so-called
plastic moment, reached when the strain at a cross section is of sufficient magnitude
so that virtually the entire section has yielded.

Previously, steel used an “allowable stress” method based on a limit state corre-
sponding to the elastic moment; if the plastic moment was always stronger than the
elastic moment to the same extent for all cross sections, one could simply adjust the
factor of safety for allowable strength (plastic moment) design so that the method
corresponded precisely to allowable stress (elastic moment) design. However, it can
be shown that the extra margin of safety gained by moving beyond the elastic, to
the plastic moment (i.e., from the condition of Figure 8.22a to Figure 8.22b), is not
the same for all cross sections, so that allowable stress design for steel does not pro-
vide a consistent margin of safety against the limit state of complete yielding.

For wide-flange (I-shaped) sections, the extremes can be represented by a hypo-
thetical section with no web (i.e., consisting entirely of flanges of infinite density,
or no thickness, as shown in Figures 8.22¢ and 8.22d), and, at the other extreme,
a section whose flanges merge together at the neutral axis (i.e., a rectangular sec-
tion, as shown in Figures 8.22g and 8.22h). In the first case, it is clear that the elastic
moment and plastic moment coincide, and the so-called shape factor, defining the
ratio of plastic to elastic section modulus, Z,/S,, equals 1.0. In the second case, the
elastic section modulus can be computed by examining the rotational equilibrium
of the force resultants shown in Figure 8.22g. Since the moment arm between them
equals 2/3h, and the resultant force, C, equals (1/2)(h/2)(b)(F)), the moment, M,
equals 2/3h(1/2)(h/2)(b)(F,) and, solving for the section modulus, S, = M/F,, we
get S, = bb?/6. Performing the same equilibrium calculation on Figure 8.22h (with a
moment arm equal to »/2), and solving for the plastic section modulus, Z, = M/F,,
we get Z,. = bb?/4. The shape factor in this case is Z,./S, = 1.5.

Clearly, all I-shaped sections must have a shape factor between these two
extremes, that is, between 1.0 and 1.5. The shape factor for a typical W-shape
(W30 X 90), shown in Figures 8.22e and 8.22f, can be determined in the same
manner, abstracting from the complexities of the actual shape by considering
only perfectly rectangular flange and web areas. Using the dimensions shown,
and performing the same equilibrium calculations as in the previous cases, we get
S, = 240in® and Z, = 277in>, so the shape factor, Z,/S, = 277/240 = 1.15. The
actual values for elastic and plastic section modulus are found in Table A-4.3, and it
can be seen that the approximate calculations are both conservative and reasonably
accurate: the correct values are actually S, = 245in® and Z, = 283in?, so the real
shape factor, Z,. /S, = 283/245 = 1.16.
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] 7, =
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(9) (h)
FIGURE 8.22

Bending stresses acting on steel wide-flange (I-shaped) cross section corresponding to the
(a) elastic moment and (b) plastic moment, with three examples: (¢) and (d) illustrate elastic
and plastic moments for a hypothetical section with all its area at the extreme fibers, (e) and
(f) illustrate elastic and plastic moments for a typical W30 X 90 section, while (g) and

(h) illustrate elastic and plastic moments for a rectangular section
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The equation for plastic section modulus, Z, = M/F,, presumes that the cross
section is able to reach a state of complete yielding before one of two types of buck-
ling occurs: either lateral-torsional buckling within any unbraced segment along the
length of the span or local flange or web buckling. Therefore, to use this equation in
design, based on the maximum moment encountered, the beam must be protected
from both of these buckling modes—in the first case by limiting the unbraced length
and, in the second case, by regulating the proportions of the beam flange and web
(i.e., using a so-called compact section). Then, rewriting this equation in the form
most useful for steel design, we get:

Z., =M _ /F

req max!" y

(8.12)

where M, = the maximum bending moment (in-kips), F, is the yield stress of the
steel, and 2 is a safety factor equal to 1.67 for bending.

We found earlier that the shape factor for a W30 X 90 section equals 1.16. By
looking at the ratio of plastic to elastic section modulus for all wide-flange shapes, it
can be seen that these shape factors fall between 1.098 (for a W14 X 90), and 1.297
(for a W14 X 730). One could therefore conservatively create a safety factor for elas-
tic allowable stress design by assuming a shape factor of 1.10 and by multiplying
this value by the safety factor for allowable strength design, 1/Q2 = 1/1.67 = 0.60
(inverted to be consistent with the conventions for allowable stress safety factors).
Equation 8.12 would then become S,,, = 1.1(0.60)M,,,,,,/F, = 0.66M,,,,,/F,. This, in
fact, is the design equation for what used to be called “allowable stress design” in
steel. It may still be used, but it will give slightly conservative values compared with
the available stress method using the plastic section modulus, Z,..

Choosing the lightest (i.e., most economical) laterally braced, compact section is
facilitated by the use of tables in which steel cross sections are ranked, first in terms
of plastic section modulus and then by least weight. Table A-8.4 is an example of
such a list, in which only the lightest sections appear. Thus, a W30 X 191 (with a
plastic section modulus of 675in?) is not listed, since a lighter section, W40 X 167,
has a higher plastic section modulus (693 in?).

Bending of laterally unsupported or noncompact heams

When the compression flange of a beam is not continuously braced, lateral-torsional
buckling can reduce the available bending moment below the value of M/}
assumed earlier for laterally braced beams. How much this stress is reduced depends
on whether the beam buckles before or after the cross section begins to yield and
how bending stresses vary over the beam’s unbraced length. Figure 8.8 shows
several possible stress stages for a cross-sectional shape as the bending moment
increases. At Figure 8.8¢, the outer fibers begin to yield, and the elastic moment,
M,, is reached. At Figure 8.84 and Figure 8.8e, yielding progresses further into the
cross section, as the moment increases. Finally, at Figure 8.8f, the entire cross sec-
tion has yielded at the maximum plastic moment that the section can sustain.
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FIGURE 8.23

Two modes of buckling limiting the strength of a wide-flange (I-shaped) beam: (a) lateral-
torsional buckling and (b) local flange buckling

Being able to resist the full plastic moment represents an extra margin of safety:
if a beam can develop this plastic moment without buckling, the maximum available
bending moment of M/} is used, as shown in Equation 8.12. In addition to lateral-
torsional buckling (Figure 8.23a), various types of local flange and web buckling
must also be prevented from occurring before the plastic moment is reached (Figure
8.23D). Local buckling is prevented by limiting the ratio of flange width to flange
thickness, as well as web width to web thickness. Sections proportioned so that local
buckling will not occur are called compact sections; these sections must be used
to qualify for the full available moment of M,/). As it turns out, all but one of the
wide-flange shapes listed in Table A-4.3 is a compact section when made from A36
steel (the exception being W6 X 15). For 50-ksi steel, all but 10 (W6 X 8.5, W6 X 9,
W6 X 15, W8 X 10, W8 X 31, W10 X 12, W12 X 65, W14 X 90, W14 X 99, and
W21 X 48) are compact.

For sections that are compact and laterally braced, Equation 8.12 applies, and the
full strength of the beam is utilized. However, as shown in Figure 8.24, this available
strength must be reduced if either local flange buckling (where the section is not
compact) or lateral-torsional buckling (where the section is not adequately braced)
occurs before the plastic moment is reached.

Lateral-torsional buckling

For beams with an unbraced length, L,, that falls within the “middle zone” illus-
trated in Figure 8.24a (i.e., where the onset of buckling occurs before a full plastic
moment, but after the elastic moment, is reached), the nominal bending strength
is linearly reduced from the full plastic moment, M, = F, Z,, to 70% of the elas-
tic moment, or 0.7F,,S,. The two boundaries (unbraced lengths) that bracket this
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FIGURE 8.24

Influence of lateral-torsional buckling and flange slenderness on available moment: three zones
are defined for (a) lateral torsional buckling, with the boundaries established by the unbraced
length, L, (the greatest unbraced length where the section can reach a plastic moment without
lateral torsional buckling) and L, (the greatest unbraced length where the section will buckle
inelastically before reaching the plastic moment); and for (b) flange slenderness, with the
boundaries established by the ratio of half the flange width to flange thickness, X\ = b/(2t),

set equal to X, (the greatest flange slenderness where the section can reach a plastic moment
without local flange buckling) and \, (the greatest flange slenderness where the flange will buckle
locally in an inelastic manner before reaching the plastic moment)

condition of inelastic lateral-torsional buckling are called L, and L,. For an unbraced
length, L,, less than L, lateral-torsional buckling is not an issue, as the full plastic
moment can be reached. For an unbraced length greater than L,, the onset of lateral-
torsional buckling is characterized entirely by elastic behavior, and the nominal
bending strength must be reduced even further. These boundaries are defined as
follows: L, is set at 1.76r,(E/F,)*>, where E is the modulus of elasticity (29,000ksi
for all steel), F, is the yield stress (50ksi for A992 steel and 36ksi for A36 steel),
and ), is the minimum radius of gyration about the y-axis (see Table A-4.3 for

155



156

CHAPTER 8 Beams

wide-flange shapes). The other boundary, L,, can be conservatively approximated as
’TW",S[E/(O.7FJ,)]O'5, where 7, may itself be approximated as the radius of gyration for
the compression flange and part of the web; that is, r,, = be/[12 + 2htw/(bft/)]05.
In this equation, b, and #; are the flange width and thickness, respectively, and b is
the length of the “straight” part of the web (i.e., the clear distance between flanges,
minus the radius at the web-flange intersection).

However, all these equations are based on the assumption that the beam is subject
to a uniform bending moment along its entire length; where the moment varies, as is
almost always the case, this assumption is overly conservative, since lateral-torsional
buckling is less likely to be triggered where bending stresses are not entirely at their
maximum value along the whole length of an unbraced segment. For this reason, a
coefficient, Cj,, should be applied to the available strength of each unbraced segment
of the beam, based on the distribution and magnitude of bending moments along that
segment’s length. This “lateral-torsional buckling modifier” is defined as follows for
doubly symmetric bending elements such as wide-flange beams:

12.5M =30 (8.13)
T30, + 4M, + 3M,

C =
bo2s5Mm

max

where M, is the greatest moment within the unbraced segment; and My, Mg, and M,
are the bending moments at the quarter point, midpoint, and three-quarters point, respec-
tively, along the segment. Where a segment is not braced at its endpoint (e.g., where the
end of a cantilevered beam is not braced), C;, should be taken as 1.0. Of course, G, is not
used where a beam is laterally braced and, in any case, can never increase the nominal
bending strength beyond the plastic moment, M), as shown in Figure 8.24a.

Local flange buckling
Compact sections are proportioned so that neither the flange nor the web will
buckle locally before the onset of a plastic moment. Since all wide-flange webs meet
the standards for compact sections, only the flange slenderness, defined as X\ = b,/
(21, is at issue (where by and I are the flange width and thickness, respectively).
In much the same way that boundaries are established for unbraced length that
define the reduction in the bending strength due to lateral-torsional buckling (Figure
8.24a), similar boundaries are established for flange slenderness, with similar conse-
quences for beam strength (Figure 8.24b). The limit for compact behavior—that is,
the maximum flange slenderness for which beams are still able to reach the plastic
moment without local flange buckling—is defined by X\, = 0.38(E/Fy)0'5. The other
boundary (i.e., the maximum flange slenderness for which inelastic behavior char-
acterizes the onset of local flange buckling) is defined by A\, = 1.O(E/Fy)°'5. In these
equations, E is the modulus of elasticity of steel (29,000ksi) and F, is the material’s
yield stress (50ksi for A992 steel and 36ksi for A36 steel).

As with reductions for lateral-torsional buckling, the nominal bending strength
begins with the plastic moment, M,, = F,Z,, for compact sections and is linearly
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reduced to 70% of the elastic moment, or 0.7F,S, between >\p and \,, with further
reductions beyond \,.

Where a beam is both noncompact and laterally unbraced, both criteria illus-
trated in Figure 8.24 are tested, and the smaller capacity governs. For beams that
are both compact and laterally braced, Table A-8.4 can be used to select the light-
est W-shape for bending. For A992 wide-flange beams that are not adequately braced
laterally (i.e., where L, > Lp),Table A-8.5 can be used to select the lightest beam. Of
course, by setting the unbraced length to zero, Table A-8.5 can be used for laterally
braced beams as well.

Shear

Once a selection is made based on bending stress, the section is then checked for
shear and deflection. The nominal shear strength, V,,, equals 0.6F,4,,, where F), is
the yield stress of the steel and A,, is the web area (equal, for a W-shape, to the
beam depth times the web thickness, d X t,). For most cross sections, the safety
factor can be taken as ) = 1.5, so that the available strength is V,/Q) = 0.6/
Q(F,A,) = 0.4F,A,,. This can be converted into an “allowable stress” equation by
defining the allowable shear stress, F, = 0.4F,, and solving for the required web
area for a given shear force, V:

required A,, = V/F, (8.19

For a small group of wide-flange beams with slender webs, the safety factor for shear
is increased from 1.5 to 1.67, and so the allowable shear stress becomes F,, = (0.6/
1.67)Fy = 0.36Fy. These sections are listed in Table A-4.3 (see Note 3).

Block shear

Where the top flange of a steel beam is coped (so that it may be fastened to the web
of a girder while keeping the top surfaces of girder and beam flanges aligned), a
mode of failure combining both shear and tension stresses in the beam web must be
checked, with the shear and tension failure planes assumed to occur at the surface
defined by the bolt centerline, as shown in Figure 8.25.

The nominal capacity of such a connection is found by adding the capacity of the
net shear area subject to rupture (or the gross shear area subject to yielding) to the
capacity of the net tension area subject to rupture. Where both net areas are sub-
ject to rupture, the capacity is defined as R, = 0.6F,A,,, + U, F, A,,. Where yield-
ing governs the failure of the shear area, the capacity is defined as R,, = 0.6F,4,, +
UysF, A, The smaller of these two values determines the capacity of the connection
for resisting block shear. In these equations, F,, is the minimum tension strength of
the material (equal to 58ksi for A36 steel and 65ksi for A992 steel); A,,, and A4, are
the net areas for shear and tension, respectively; A, is the gross shear area; and Uy,
equals 1.0 for conditions that correspond to uniform tension stress, as in the coped
beam with a single line of bolts shown in Figure 8.25a, while U, equals 0.5 for con-
ditions that lead to a triangular (nonuniform) tension stress, as in the coped beam
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FIGURE 8.25

Block shear at coped beam with (a) coefficient Uys = 1.0 where tension stress is uniform (single line
of bolts) and (b) Ups = 0.5 where tension stress has a triangular distribution (double line of bolts)

with two lines of bolts shown in Figure 8.25b. The available strength is then found
by dividing the nominal capacity by the safety factor, 2 = 2.00.

It is also possible that a mode of shear failure alone, with no tension compo-
nent, could govern the connection design. In such a case, both yielding on the gross
area of the cross section and rupture on the net area need to be checked. For yield-
ing, the nominal capacity, R, = 0.60FyAg1,, and the available strength, (2R, is deter-
mined using a safety factor, 2 = 1.50 (not €2 = 2.00). For rupture on the net area,
R, = 0.60F, A,,, and the available strength, QR,, is determined using a safety factor,
Q = 2.00. All the parameters are as defined earlier for block shear. The lower safety
factor for yielding reflects the relative safety of a yielding mode of failure compared
with the more sudden and catastrophic type of failure associated with rupture.

Example 8.5 Find capacity of beam web based on block shear

Problem definition

Find the capacity of a bolted double-angle connection to the web of a coped W18 X 86
wide-flange beam, considering only block shear in the web. Assume A992 (F, = 50ksi and
F, = 65ksi) steel for the beam, and 3/4-in.-diameter bolts. The bolt spacing, s = 3in., the
vertical edge distance, L, = 1.5in., and the horizontal edge distance, L., = 1.5in. are defined
in Figure 8.26.

Problem overview
Find the smaller of the capacities based on rupture and yielding of shear area, rupture of ten-
sion area, and bolt bearing on the web.
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FIGURE 8.26
Block shear in a coped beam for Example 8.5

Problem solution

1. Find capacity based on net areas subject to rupture. Lengths along net areas are found
by subtracting the lengths of bolt hole diameters from the total (gross) dimension. The
net area for shear, A,, = t(4s + L., — 4.5d,,) = 0.480(4 X 3 + 1.5 - 4.5 X 0.875) =
4.59in?, where t, is the web thickness (from Table A-4.3), s is the bolt spacing of 3in., L,
is the vertical edge distance of 1.5in., and d,, is the bolt hole diameter (found by adding
1/8in. to the bolt diameter of 3/4in.). The net area for tension, A,; = t,(Lep — 0.5d,p) =
0.480(1.5 — 0.5 X 0.875) = 0.51in?, where L, is the horizontal edge spacing and d,, is
the bolt hole diameter.

The capacity based on rupture of these net areas is defined as R,= 0.6FA,, +
UpsF Anty Where Ups = 1.0 for a single line of bolt holes. Using the material properties
defined earlier, we get: R, = 0.6(65)(4.59) + (1.0)(65)(0.51) = 212.2kips.

2. Find capacity based on gross area (yielding) for shear and net area (rupture) for tension.
The gross area for shear, Ag, = t(4s + L,) = 0.480(4 X 3 + 1.5) = 6.48in°, where t,, is
the web thickness (from Table A-4.3), s is the bolt spacing of 3in., L, is the vertical edge
distance of 1.5in., and dpy, is the bolt hole diameter. The net area for tension, as in step 1,
is 0.51in2.

The capacity based on yielding of the shear area and rupture of the tension area is defined
as R,=0.6FAg + UpsF Ay where Ups = 1.0 as before. Using the material properties
defined above, we get R, = 0.6(50)(6.48) + (1.0)(65)(0.51) = 227.6kips.

3. The governing capacity is the smaller value from steps 1 and 2: R, = 212.2kips based on
rupture of the net areas. -
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Deflection

Deflection is based on the same criteria discussed earlier for wood beams and
involves a comparison of an allowable deflection, typically set at span/240 for total
loads and span/360 for live loads on floor beams, to the actual computed deflection.
Allowable deflection guidelines can be found in Table A-8.1; actual deflections can
be computed based on the coefficients in Table A-8.2.

Example 8.6 Design steel beam

Problem definition

Using A992 steel, design the typical beam and girder for the library stack area shown in Figure
8.27. Use the generic dead load for steel floor systems. Assume that the beams are continu-
ously braced by the floor deck and that the girders are braced only by the beams framing
into them.

Solution overview
Find loads; compute maximum bending moment and shear force; use appropriate tables to
select beams for bending; then check for shear and deflection.

Problem solution

1. Find loads:
From Table A-2.1, the dead load, D = 47 psf.
From Table A-2.2, the live load, L = 150 psf

Beam design

1. Create load, shear, and moment diagrams as shown in Figure 8.28 to determine critical
(i.e., maximum) shear force and bending moment. The total distributed load, w = (dead +
live)(tributary area for 1 linear foot) = (47 + 150)(6) = 1182 Ib/ft = 1.18Kkips/ft. Live load
reduction would not apply even if the “influence” area was not less than 400ft2, because

o———

Beam ¥ ©

24

Girder

Framing plan
FIGURE 8.27
Framing plan for Example 8.6
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of the library stack occupancy (i.e., the probability of full loading makes live load reduction
a dangerous assumption).

2. Find allowable bending stress: since the beam is laterally braced by the floor
deck and the cross section is assumed to be compact, use Equation 8.12 to find
Ziog = QMo Fy = 1.67 Moyl Fy. From Table A-3.12, F,=50ksi for A992 steel, so
Zeg = 1.67(399)/50 = 13.33in°.

3. From Table A-8.4, select a W12 X 14 with actual Z, = 17.4in® = Zyeq; this section is, by
definition, OK for bending.

4. Check section for shear: from Table A-4.3, the actual web area, A, = d X f, =119 X 0.2
0 = 2.38in°

5. From Equation 8.14, the required A, = V/F, = 8.86/(0.36 X 50) = 0.49in® where,
from Table A-3.13, the allowable shear stress, F, = 0.36F, (and not the usual value of
F, = 0.40F,) because the beam web is unusually slender. Beams requiring such reduced
allowable shear stresses are noted in Table A-4.3. Since the actual web area is greater than
the required web area, the beam is OK for shear.

6. From Table A-8.1, find the allowable total-load deflection for a floor beam: A, = span/
240 = 12(15)/240 = 0.75in.; and the allowable live-load deflection for a floor joist:
Aow = Span/360 = 12(15)/360 = 0.5in.

7. From Table A-8.2, the actual total-load deflection, A s, = CPL3/(EN), where:

C=2246.
L = 15ft.
P = wL = (150 + 47)(6)(15) = 17,7301b = 17.73kips.
E = 29,000ksi (Table A-3.12, Note 1).
| = 88.6in* (Table A-4.3).
A ena = 22.46(17.73)(15%)/(29,000 X 88.6) = 0.523in.
Since A, = 0.523in. = A,y = 0.75in., beam is OK for total-load deflection.

8. From Table A-8.2, the actual live-load deflection, A . = CPL3/(ED, where:

C=2246.
L = 15ft.
P=wL = (150 X 6)15 = 13,5001b = 13.5kips. (Use live load only!)
E = 29,000ksi (Table A-3.12, Note 1).

w = (150 + 47)6 = 1182 Ib/ft = 1.18 kips/ft

8.86 kips‘r 15 TS,SES kips
8.86 kips
75 Shear
Moment
Mnax = 1/2(8.86 x 7.5) = 33.24 ft-kips = 399 in-kips
FIGURE 8.28

Load, shear, and moment diagrams for beam in Example 8.6
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P LP JP=17-73 kips

26.595 kipST 24' T26.595 kips

p—F——f
) 17.73 kips
26.595 kips 8.865 ki‘:)s
Shear

L@l Moment
_-IMsze_sgs(e) + 8.865(8)

= 212.76 ft-kips

FIGURE 8.29

Load, shear, and moment diagrams for girder in Example 8.6

I =88.6in* (Table A-4.3).
A e = 22.46(13.5)(15%)/(29,000 x 88.6) = 0.398in.
Since Aty = 0.398in. = A,y = 0.5in., beam is OK for live-load deflection.

9. Conclusion: The W12 X 14 section is OK for bending, shear, and deflection. Therefore, it is
acceptable.

Girder design

1. Create load, shear, and moment diagrams as shown in Figure 8.29 to determine the critical

(i.e., maximum) shear force and bending moment. Each concentrated load is twice the typ-
ical beam reaction, or 17.73kips. Alternatively, compute using tributary areas; that is, P =
(47 + 150)(15 x 6) = 17,7301b = 17.73kips. Live load reduction does not apply even
though the “influence” area is greater than 400ft?, because of the library stack occupancy
(i.e., the probability of full loading makes live load reduction a dangerous assumption).
Find allowable bending stress: the girder is not continuously braced by the floor deck; rather, it
is braced every 6ft by the beams framing into it, so the unbraced length, L, = 6ft. Use Table
A-8.5 to directly find the lightest cross section for bending, based on M,,,, = 212.76ft-kips,
L, = 6ft, and assuming (conservatively) that the “lateral-torsional buckling modifier,” C, = 1.0.
Find the intersection of moment and unbraced length (follow the dotted lines shown in Figure
8.30) and then move up or to the right to the first solid line representing the available moment
capacity of wide-flange beams. Select a W21 X 44.
Check section for shear: from Table A-4.3, the actual web area, A, = d X t, = 20.7 X 0.3
5 =17.25in°
From Equation 8.14, the required A, = V/F, = 26.595/(0.40 X 50) = 1.33in°, where,
from Table A-3.13, the allowable shear stress, F, = 0.40f, (the usual value of f, = 0.40F,
can be used in this case). Since the actual web area is greater than the required web area,
the beam is OK for shear.
From Table A-8.1, find the allowable total-load deflection for a floor beam: A, = span/
240 = 12(24)/240 = 1.2in.; and the allowable live-load deflection for a floor joist:
Ajow = Span/360 = 12(24)/360 = 0.8in.
From Table A-8.2, the actual total-load deflection, A e = CPL3I(ED), where:

C = 85.54.
span, L = 24ft.
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FIGURE 8.30
Selection of W21 X 44 beam based on available moment graphs (Table A-8.5) for Example 8.6

P= (47 + 150)(15 X 6) = 17,7301b = 17.73kips.
£ = 29,000ksi (Table A-3.12, Note 1).
| = 843in* (Table A-4.3).
Acwar = 85.54(17.73)(243)/(29,000 x 843) = 0.86in.
Since A eruar = 0.86in. = Ay = 1.210n., beam is OK for total-load deflection.
7. From Table A-8.2, the actual live-load deflection, A qar = CPL(ED, where:
C = 85.54.
span, L = 241t.
P = 150(15 X 6) = 13,5001b = 13.5kips. (Use live load only!)
E = 29,000ksi (Table A-3.12, Note 1).
| = 843in* (Table A-4.3).
Ao = 85.54(13.5)(24%)/(29,000 X 843) = 0.65in.
Since Aoy = 0.651in. = Ay = 0.80in., beam is OK for live-load deflection.
8. Conclusion: The W21 X 44 section is OK for bending, shear, and deflection. Therefore, it is

acceptable.
P -

Example 8.7 Analyze rectangular HSS (hollow structural section)

Problem definition
Determine whether a HSS12 X 4X1/4 can be used as a typical beam for the library stack area
shown in Example 8.6.

Solution overview
Find loads; compute maximum bending moment and shear force; check beam for bending,
shear, and deflection.
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Problem solution

1.

Find loads and moment (same as Example 8.6):
The dead load, D = 47 psf.
The live load, L = 150 psf
Maximum moment, M,,,, = 399in-kips
Find allowable bending stress: since the beam is laterally braced by the floor deck and
the cross section is assumed to be compact, use Equation 8.12 to find Z; = QMpp,,/
Fy, = 1.67M,,/F,. From Table A-3.12, F, = 46ksi for HSS rectangular shapes (A500 grade
B), SO Zeq = 1.67(399)/46 = 14.49in3.
From Table A-4.6, the actual plastic section modulus for a HSS12 X 4x1/4, Z, = 25.6in3.
Since the actual Z,is greater than Z,, this HSS section is OK for bending.
Check section for shear: from Table A-3.13 (Note 3), the web area, A,, is taken as 2ht (where t
is the wall thickness of the web and h can be assumed to equal the nominal depth minus 3%).
From A-4.4, this web area, A, = 2ht = 2(12 — 3 X 0.233)(0.233) = 5.27in°.
From Equation 8.14, the required A, = V/F, = 8.86/(0.36 X 50) = 0.49in°, where, from
Table A-3.13, the allowable shear stress, F, = 0.36F, (and not the value of F, = 0.40F,
used for most wide-flange beams). Since the actual web area is greater than the required
web area, the HSS beam is OK for shear.
From Table A-8.1, find the allowable total-load deflection for a floor beam: A, = span/
240 = 12(15)/240 = 0.75in.; and the allowable live-load deflection for a floor joist:
A jow = Span/360 = 12(15)/360 = 0.5in.
From Table A-8.2, the actual total-load deflection, A . = CPL3I(ED), where:

C = 22.46.
span, L = 15ft.

P=wL= (47 + 150)(6)(15) = 17,730Ib = 17.73Kips.

E = 29,000ksi (Table A-3.12, Note 1).

| = 88.6in* (Table A-4.6).
Aeuar = 22.46(17.73)(15%)/(29,000 x 119) = 0.389in.

Since A e = 0.389in. = A,y = 0.750n., the HSS beam is OK for total-load deflection.
From Table A-8.2, the actual /ive-load deflection, A,u,. = CPLY(El), where:

C = 22.46.

L = 15ft.

P = wlL = (150 X 6)15 = 13,5001b = 13.5kips. (Use live load only!)

E = 29,000ksi (Table A-3.12, Note 1).

| = 88.6in* (Table A-4.6).
A e = 22.46(13.5)(15%)/(29,000 x 119) = 0.300in.
Since At = 0.300in. = A, = 0.5in., the HSS beam is OK for live-load deflection.
Conclusion: The HSS12 X 4X1/4 section is OK for bending, shear, and deflection.

Therefore, it is acceptable.
P -

REINFORCED CONCRETE

Concrete beams are reinforced with steel rods (reinforcing bars) in order to resist
internal tension forces within the cross section. Unlike wood and steel, which can
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withstand substantial tension stress, concrete may be safely stressed only in compres-
sion. The pattern of steel reinforcement thus corresponds to the pattern of positive
and negative bending moments within the beam: in regions of positive bending, steel
is placed at the bottom of the cross section; in regions of negative bending, steel is
placed at the top (Figure 8.31). Like concrete columns, 2¥2in. to 3in. of cover, mea-
sured from the outside face of the beam to the centerline of the reinforcing steel, is
used to protect the steel from corrosion and provide adequate bond between the
steel and concrete (see Figure 7.9).

The strength, or capacity, of a reinforced concrete beam can be determined by
considering the equilibrium of tensile and compressive forces at any cross section.
Failure of the beam occurs either with crushing of the concrete within the compres-
sion region; or yielding of the tension steel, followed by compressive crushing of
the concrete. Since tension yielding is the preferred mode of failure—compressive
crushing of the concrete would be sudden and catastrophic, whereas yielding of
the steel provides warning signs of collapse—concrete beams are often deliberately
under-reinforced to guarantee that, in the case of failure, the steel reinforcing bars
begin to yield before the concrete in the compressive zone crushes.

At the point of failure, the stresses in a reinforced concrete cross section are as
shown in Figure 8.32. The curved distribution of stresses within the compressive
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Relationship of bending moment and position of tension steel reinforcement
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FIGURE 8.32

Strain and stress diagrams for tension-reinforced concrete beam at point of failure
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zone (above the neutral axis for “positive” bending) corresponds to the nonlinear
stress-strain curves characteristic of plain concrete, with a value of 0.85 f taken for
the strength of concrete corresponding to its behavior in an actual structure (Figure
8.33, curve b). Testing of many reinforced concrete beams has shown that the aver-
age stress within the compressive zone is 0.850, f/, and the resultant location is
(51¢/2 from the face of the concrete beam, as shown in Figure 8.34a. The coefficient
0, ranges from 0.85 for f, = 4000 psi, to 0.65 for f, = 8000 psi (Figure 8.35). Thus,
for a cross section of width, b, the total compressive force, C, is

C = 0.858,f.bc (8.15)

Since the steel yields before the concrete crushes (assuming that the beam has
been designed to be under-reinforced), the steel stress is Sy and the total tensile
force, T, is:

T = Af, (8.16)

where A, is the steel area. (As the steel is now used in the context of concrete
design, the designation for its yield stress changes from F,, to f,.)

Alternatively, a different, but equivalent, rectangular stress distribution can be
used in place of the actual nonlinear distribution, as shown in Figure 8.34b. In this

fr \
0.85f% 7 — <
(a) (b)
w
8
b7
0 0.001 0.002 0.003
Strain

FIGURE 8.33

Stress-strain diagrams for plain concrete showing (a) fast loading characteristic of test cylinders
and (b) slow loading characteristic of actual structures (same as Figure 7.11)
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version, first formulated by C. S. Whitney and known as the “Whitney stress block,”
the dimensions of the rectangle are adjusted so as to be consistent with the empiri-
cally determined resultant location. The definition of 3; remains the same, as does
the total compressive force, C.

L. T
?Zﬁ:‘cm
]

—% @©

i g Whitney stress block
o N Neutral axis

+——T=A,
(b)
FIGURE 8.34

Comparison of (a) actual stresses in reinforced concrete beam with (b) equivalent rectangular
(“Whitney”) stress block
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FIGURE 8.35

Relationship of coefficient ; to concrete cylinder strength, .
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Referring to the Whitney stress block diagram in Figure 8.34b, we can write
equations of horizontal and moment equilibrium to determine the section’s capacity.
From horizontal equilibrium, the resultants of the compressive and tensile stresses
must be equal in magnitude; that is, 7= C, or:

A f, = 0.85f ab @8.17)
Solving for the stress block depth, a, we get:

a = Af,/(0.85f.b) 8.18)

From moment equilibrium, the resisting moment within the cross section must
equal the force T (or C) times the moment arm between T and C. This moment arm
equals d — a/2, so we can write the moment at failure, M,, = T(moment arm); or:

M, = A f,(d — a/2) 8.19)

Substituting the expression for a from Equation 8.18, we get:

M, = Ay f, ﬂ} (8.20)
(2)(0.85) f/b
We define a steel ratio, p = A,/(bd), so that
A, = pbd (8.21)
Then, substituting this expression for A into Equation (8.20), we get:
M, = pf,bd*[l — 0.59f,/f!] (8.22)

This moment represents the nominal strength of the cross section when it fails.
In the strength design method used for the design of reinforced concrete elements,
we reduce this moment by a strength reduction factor, ¢, so that the useful capacity
of the section becomes:

¢M, = ¢bd’R or M,, < ¢bd’R (8.23)

where
¢ = capacity reduction factor, 0.9 for bending

M,, = the nominal strength of the cross section (in-kips)
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M, = the “design moment” based on factored loads (in-kips)
b = the width of the cross section (in.)

d = the effective depth of the cross section measured to the centerline of the
steel reinforcement (in.)

R is defined in Equation 8.24, as follows:

R = pf, (=059 f,/f) (8.29)

where

J, = the yield stress of the steel reinforcement (we will use 60ksi in all
examples)

J¢ = the compressive cylinder strength of the concrete (ksi)
p = the steel ratio, A/(bd)

For given values of f, and [+, the relationship between R and p can be computed
from Equation 8.24. Table A-8.9 gives typical values of R and p for f, = 60ksi, and f
ranging from 3000 psi to 5000 psi. Requirements for reinforcing bar cover and typical
overall dimensions are the same as for reinforced concrete columns (see Table A-4.9).

|
Example 8.8 Analyze reinforced concrete beam

Problem definition

Check the capacity of the reinforced concrete cross section shown in Figure 8.36. Can it
be safely used for the “service” (i.e., unfactored) loads shown in Figure 8.36? Assume that
the dead load, D, equals the weight of the beam (assume 150 pcf for reinforced concrete),
f, = 60ksi, and f, = 3000 psi. Reinforcing steel areas are listed in Table A-4.10; for minimum
beam widths consistent with the number of bars selected, see Table A-4.11.

Solution overview
Find factored loads and maximum moment; compute bending capacity.

Problem solution

1. From Table 5.1, the typical factored load combination for a floor beam is 1.2D + 1.6L. The
factored dead load consists of 1.2 times the beam weight and is expressed in weight per
linear foot of beam: D = 1.2(150)(12/12)(28/12) = 4201b/ft = 0.42kips/ft. The factored
live load, L = 1.6(20) = 32kips.

2. Create load and moment diagrams as shown in Figure 8.37 to determine critical (i.e.,
maximum) bending moment. One can find the maximum moment for the concentrated
and distributed loads separately and then add them together (since they both occur at the
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FIGURE 8.36

Reinforced concrete beam showing (a) loading diagram and (b) cross section through beam for
Example 8.8
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FIGURE 8.37

To find maximum moment for Example 8.8, draw (a) loading and moment diagram and (b) free-
body diagram cut at midpoint with equation of moment equilibrium

beam’s midpoint), or, as is shown in Figure 8.37b, the maximum moment may be com-
puted directly by applying the equation of moment equilibrium to a free-body diagram cut
at midspan.

3. Compute (bending) capacity of beam:
From Table A-5.2, ¢ = 0.9 for bending.
From Table A-4.10, the area of four No. 8 bars is A; = 3.16in2.
The steel ratio, p = As/(bd) = 3.16/(12 X 25) = 0.0105.
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From Table A-8.9 or from Equation 8.24, R = 0.552ksi (this is obtained directly from
Equation 8.24; when using Table A-8.9, interpolate between values for p, or, conservatively,
use the closest but smaller value of p to find R).

From Equation 8.23, M, = ¢bd?R = 0.9(12)(25%)(0.552) = 3726in-kips

4. Check actual design moment: since the actual design moment = 3098in-kips <
oM, = 3726in-kips (the available moment capacity of the beam), the section is OK for
bending. -

Continuous heams and T-beams

For simply supported, determinate beams, no special guidelines are required for the
calculation of shear and moment. In reality, though, reinforced concrete beams are
rarely simply supported. Instead, concrete floor and roof structures are most often
cast monolithically and designed as indeterminate, continuous structures. As an aid
in computing the maximum negative and positive bending moments characteristic
of such structures (e.g., see Figure 8.5), “moment values” have been tabulated for
various support conditions. These can be used for uniformly loaded floor structures
with at least two more-or-less equal spans (differing in length by no more than 20%),
as long as the dead load is greater or equal to one third of the live load (Table A-8.7).
Where slabs are cast monolithically with beams, as is most often the case (the use
of precast elements being the most common exception), the beam thickness is mea-
sured to the top of the slab, as shown in Figure 8.38a. Where negative moments are
being computed, corresponding to tension at the top, the beam width is not influ-
enced by the presence of the slab (which is entirely in tension), and the capacity of
the cross section is equivalent to that of a “pure” rectangular shape, as shown in Figure
8.38b. With positive bending, however, the compression zone is not limited by the
web or stem of the beam, but extends out into the slab, as shown in Figure 8.38c. The
effective width, b, of such a T-beam is considered to be the smaller of the following:

b = 1/4 beam span; or
b = centerline distance between beams; or (8.25)

b = web width + 16 times slab thickness.

Positive moments can thus be resisted with a much greater effective cross-
sectional width than can negative moments, by taking advantage of the concrete
already present within the slab. As long as the entire compression zone (or the
equivalent stress block depth, ) is within the slab, the design of such a T-beam is
quite similar to the design of a rectangular beam of width, . Whether the compres-
sive stress block is, in fact, within the slab can be checked by computing the stress
block depth, a (from Equation 8.18), substituting p = A,;/(bd), and comparing a to
the slab thickness, as follows:

a = A f,/(0.85f.b) = pf,d/(0.85f) (8.26)
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FIGURE 8.38

The total thickness of a T-beam (a) extends into the slab; such beams subjected to negative
bending (b) can be designed as an ordinary rectangular beam, while positive-moment T-beams
(c) have a greater compressive “flange” width

FIGURE 8.39
The compressive zone in a positive-moment T-beam rarely extends into the “web” of the beam

For a = slab thickness, the effective beam width, b, can be used. Otherwise, the
design of T-beams is somewhat more complex, since the compression zone extends
into the web (Figure 8.39). The design of such beams is not considered in this text.

Where both positive and negative moments occur over the span of a beam, it is
most common to first design the beam for negative moment (where only the beam web
width is available to resist compression stresses), thereby establishing the cross-sectional
dimensions for the entire span. The beam is then designed for positive moment as a
T-beam with all cross-sectional dimensions given. Proceeding from the opposite direc-
tion, that is, positive moment first, would lead to a much smaller effective depth (since
the T-beam is designed with a much larger effective width, »), which in turn could
result in an inordinately high steel ratio within the regions of negative moment.
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The question of whether a T-beam can be designed as a simple rectangular beam
with effective width, b, is influenced to a considerable extent by the reinforcement
ratio, p. Equation 8.26 for stress block depth shows that, for given values of f,, and
f., the ratio of effective beam depth to stress block depth is inversely proportional
to the steel ratio, p. That is, dividing both sides of Equation 8.26 by d, we get:

ald = pf,/(0.85f.); or d/a = 0.85f./(pf,) 8.27)

As an extreme example, for p taken as p,,,, (assume f, = 60ksi, Je = 4000 psi,
and p,,,,., taken with steel strain at 0.005), d/a = 3.13. This means that only beams
and slabs proportioned so that the effective depth is no more than 3.13 times the
slab thickness would be able to be designed as simple rectangular beams with effec-
tive width, b. For p taken as 0.5p,,,,,, d/a is 6.26; and the range of beam-slab pro-
portions for which the compressive stress block remains within the slab thickness
would be somewhat greater. For the very low steel ratios characteristic of real-world
positive moment T-beam design, the stress block remains within the slab thickness
for all but the most extreme proportions.

Design for bending (flexure)

To create under-reinforced beams, where yielding of the tension steel precedes
crushing of the concrete in the event of failure, we first determine the amount of
steel corresponding to the so-called balanced failure condition (where yielding and
crushing occur simultaneously) and then provide an added margin of safety against
brittle (concrete crushing) failure. Current code guidelines stipulate that the strain in
the reinforcing steel be no less than 0.004 (or 0.005 for so-called tension-controlled
members, allowing a simple and uniform strength reduction factor, ¢ = 0.9). As
shown later, this strain is greater than the yield strain of steel, guaranteeing that the
steel has already yielded when the concrete begins to crush. To determine the bal-
anced steel area, or balanced steel ratio, p, = A,/(bd), we assume that the concrete
strain at failure is 0.003 as shown in Figure 8.33 and that the yield strain in the steel
equals f,/E = 60/29,000 = 0.00207 for 60-ksi reinforcing steel (Figure 8.40). From
the linear strain diagram, we can express the ratio of ¢ to d as ¢/d = 0.003/0.00507;
from which we get ¢ = 0.5917d. Since a = (3,c; and ¢ = a/[3;; we get:

a/B, = 0.5917d; ora = 0.59175,d (8.28)

From horizontal equilibrium, T'= C; or A,f, = 0.85f, .ab. Substituting A, = p,bd,
a = 0.5917,d,; and solving for p,, we get:

Py = 0.5036,(fL/f,) (8.29)

where p, = the balanced steel ratio, A;/(bd); and 3, = 0.85 for f. = 4000psi (see
Figure 8.35).
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Balanced failure in a reinforced concrete beam

The maximum steel ratio (p,,,,), whether derived from the lowest permissible
steel strain of 0.004 or the simpler value of 0.005, sets an upper limit to the amount
of steel in a reinforced concrete beam where failure, should it occur, is initiated by
yielding of the tensile reinforcement. By comparing the stress and strain diagrams
of the balanced condition (Figure 8.40) with the condition where the steel strain at
failure is 0.005, it can be shown that the steel ratio corresponding to a steel strain of
0.005 iS P, = 0.63375p,. For beams, a lower limit for the steel ratio (p,,;,) is also
prudent and is set at 200/f, for concrete strengths in the 3000- to 4000-psi range
and 3(/f, é)o‘s/jj, for 5000-psi or higher concrete (where f, and ]j, are in psi units).
A minimum slab steel ratio is set at 0.0018, consistent with slab requirements for
minimum temperature and shrinkage reinforcement perpendicular to the direction
of span. These lower bounds protect against a type of sudden failure that might oth-
erwise occur in very lightly reinforced beams if the redistribution of stresses brought
about by the initial cracking of concrete in the tension zone exceeds the capacity of
the “cracked” cross section assumed in the calculation of steel area. Typical mini-
mum and maximum values for the steel ratio, p, are shown in Table A-8.8.

There is a subtle, but important, important difference between positive-moment
T-beam design (with effective “flange” width, b, and web or stem width, b,,) and
rectangular beam design (with constant width, b): the minimum steel ratio, p,,;,, is
much lower for the T-beam when expressed in terms of width, b. This is because
Pmin, derived from a consideration of the beam’s moment capacity before tensile
cracking of the concrete, is defined in terms of the beam “web” width in the tension
zone, b,,, and not the effective “flange” width, b. When using steel ratios expressed
in terms of the effective width, b, the minimum steel ratio values computed with
b,, must be divided by the ratio b/b,,. To account for these lower minimum steel
ratios in T-beam design, the R-p table provided (Table A-8.9) includes additional
steel ratio values below those that would ordinarily be listed for rectangular beam
design. Depending on the ratio of the effective width, b, to the web width, b,,, the
minimum steel ratio, written in terms of b, can easily be determined, and the design
can proceed as it would for a rectangular cross section.
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It is permissible to design minimum steel areas for T-beams subjected to negative
bending as if they were rectangular beams with b = b,,, in spite of the large area of
concrete in the tension flange that could, in fact, sustain a much larger “uncracked”
moment. The reason for this appears to have something to do with the redundancy of
continuous (indeterminate) T-beam floor systems: redistribution of moments from sup-
ports to midspan is possible if failure at the negative-moment supports renders them
incapable of sustaining bending stress, essentially turning the system into a series of
simply supported spans with positive moment only. This logic does not apply in the
following two situations. First, for statically determinate T-beams (such as precast can-
tilevered tees) where redistribution of moments is not possible, the minimum negative
steel is calculated based on the flange width or twice the web (stem) width, which-
ever is smaller (see Note 3 in Table A-8.9). Second, for any other negative moment
where a T-beam cantilever occurs (i.e., where moment redistribution cannot occur),
the minimum steel should be increased as it is for determinate T-beams.

Reinforced concrete beams can be safely designed within a range of sizes brack-
eted by these minimum and maximum steel ratios. Using p,,,, results in the small-
est under-reinforced cross section, while p,,;, corresponds to the largest. Unlike
wood and steel design, where the smallest, or lightest, cross section can usually be
taken as the most economical, the best choice for a reinforced concrete beam is
not necessarily the smallest cross section: the higher cost of steel relative to con-
crete, the potential difficulty of placing many steel reinforcing bars within a small
cross-sectional area, and the reduced stiffness of a smaller cross section often sug-
gest some intermediate steel ratio as the best choice. For example, steel ratios in the
range of 0.5p,,,,, seem to produce reasonably proportioned beams.

Steel ratio given

If the design of a reinforced concrete beam starts with the selection of a steel ratio,
such as 0.5p,,,,., we can solve for bd* in Equation 8.23 to get:

bd*> = M,/($R) (8.30)

where
b = the width (in.) of the cross section
d = the effective depth (in.) of the cross section
M,, = the design moment found using factored loads (in-kips)
¢ = 0.9 for bending

R = pf,(1 — 0.590f,/ [, as defined in Equation 8.24 (ksi units; values can also
be found in Table A-8.9)

While any values of width, b, and effective depth, d, consistent with the preced-
ing equation are acceptable in principle, these cross-sectional dimensions are often
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constrained by three practical considerations. First, beam widths must be consistent
with requirements for clear space between reinforcing bars and for concrete cover,
as shown in Table A-4.11. Second, beam widths and depths are often made to align
with other structural elements, such as column cross sections, other beams, or dif-
ferent sections of the same beam. Third, the actual depth of the cross section may
be chosen to prevent excessive deflection, as indicated in Table A-8.2. It can be seen
that one, but not both, of the cross-sectional dimensions must be assumed before the
other dimension can be found. If the effective depth, d, is assumed as given, then:

MM
b= - 831)
oRd

If the width, b, is assumed as given, then:

Mu
d = ,qub (8.32)

Given a steel ratio, and knowing both cross-sectional beam dimensions, the required
steel area can then be found from Equation 8.21—that is, A; = pbd.

Cross-sectional dimensions given

Where both cross-sectional dimensions b and d are assumed as given, the steel ratio
cannot also be selected, but must be calculated. From Equation 8.30, we found that:
bd* = M,,/(¢R). We can find the steel ratio, p, by first solving for R as follows:

Mu
R=— 833
obd

Then, the corresponding steel ratio can be determined from Table A-8.9. If the value
of R does not appear in the table, two things are possible. Either the value is too
low, corresponding to a required steel ratio, p < p,,;,, Or the value is too high, cor-
responding to a required steel ratio, p > p,,..- In the latter case, the cross-sectional
dimensions must be changed and R recomputed. Where p < p,,;,,, one can either
adjust the cross-sectional dimensions or simply use the larger quantity of steel corre-
sponding to p,,;,. Alternatively, an acceptable steel ratio can be assumed, along with
one cross-sectional dimension, and the procedures outlined earlier for “steel ratio
given” can be followed.

Slabs

Reinforced concrete slabs, at least those designed to span in one direction, are no
different conceptually from any other beams, with the following three caveats. First,
only 3/4-in. concrete cover is required (see Table A-4.9) so that the effective depth,
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d, measured to the centerline of the reinforcing steel, can generally be taken as the
slab thickness minus one inch. Second, special shear reinforcement is rarely needed.
Finally, rather than computing the steel area for a slab, the required spacing of rein-
forcing bars is computed based on an assumed steel bar area. This reinforcement
spacing is determined by computing the required steel area, A%, for any slab width,
b, as shown in Figure 8.41a. The equivalent spacing, s, using bars with actual area,
A, is shown in Figure 8.41b; s can be found by equating the ratios A%*/b = Ays.
Solving for the bar spacing, s, we get:

s = D(A,/A*) (8.34)

where
b = the slab width used in the calculation (e.g., 1 ft)
A = the area of one reinforcing bar, typically No. 3 to 5
A% = the required area of steel for the slab width, b
Given a steel ratio, p = A%/(bd), we can substitute A% = pbd into the equation for s
and obtain the following alternative expression for the required bar spacing:

s = A /(pd) (8.35)

where
A, = the area of one reinforcing bar, typically No. 3 to 5
p = the computed steel reinforcing ratio

d = the effective slab depth

- S b)

FIGURE 8.41

Steel in one-way slabs showing (a) equivalent steel area, A%, for a given width, b, and
(b) spacing, s, for a slab with bar area, A
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The spacing must not exceed 18in., nor three times the slab thickness, in any case.
Reinforcement may be required perpendicular to the main longitudinal slab rein-
forcement (i.e., perpendicular to the reinforcement placed parallel to the span) for
two reasons. First, a minimum amount of perpendicular steel—with a minimum
steel ratio, p,,;, = 0.01810—is required to protect against cracking due to shrinkage
of the concrete or thermal (temperature) expansion. The spacing of such shrink-
age-temperature steel cannot exceed 18in., or 5h, where b is the slab thickness.
Second, in cases where a T-beam is oriented so that it is parallel to the main slab
reinforcement (e.g., where a T-beam girder is supporting T-beams that in turn are
supporting slabs, as shown in Figure 8.42), the overhanging flanges of the T-beam
girder must be reinforced as if they were negative-moment cantilevers, with a design
moment, M, = w,(b — b,)*/8. This reinforcement is not designed to improve the
spanning capability of the slab itself, but rather to ensure that the effective width of
the T-beam can function as assumed.

Deflection

The rigorous calculation of reinforced concrete beam or slab deflection is compli-
cated by the difficulty of determining the stiffness, EI, of such bending elements that
would be required in any deflection equation: in particular, the moment of inertia of
a cracked section (cracked in the tension zone) containing two very different types
of materials (steel and concrete) is complex and uncertain. While such procedures
exist, we can control deflection—for preliminary design—by establishing minimum
thicknesses for beam and slab elements based on their clear span, as shown in Table
A-8.2. For example, the minimum thickness for a continuous reinforced concrete

Wu(b-\bw}
-

ikt

(b)

FIGURE 8.42

Slab steel for T-beams parallel to main slab reinforcement: (a) calculation of design moment,

M, = resultant force X distance = w(b — b,)/2 X (b — b,)/4 = w(b — b,)%8, and (b) view of
T-beam with effective width, b, and web width, b,
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beam is set equal to its clear span divided by 21, while the minimum thickness for a
continuous slab is set equal to its clear span divided by 28.

|
Example 8.9 Design reinforced concrete beam, with steel ratio assumed

Problem definition

Assuming a steel ratio, p = 0.5p,,. design a continuous rectangular concrete beam with a
clear span of 36ft to resist a positive design moment, M, = 350ft-kips. Assume f, = 60ksi
and f, = 3000psi. The beam width is set at 16in. to align with rectangular columns. Assume
3-in. cover, measured to the centerline of reinforcement, and use even numbers for both
cross-sectional dimensions. Check thickness for deflection control.

Solution overview
Find R; compute unknown cross-sectional dimension; recompute steel ratio; compute steel
area; select reinforcement.

Problem solution

1. From Table A-8.8, find steel ratio:
Pmax = 0.0135.
p = 0.5p,., = 0.00675.

2. From Table A-8.9, find R based on p = 0.00675. Since this value of p falls between the
tabular values of 0.00667 and 0.00700, we can interpolate by comparing ratios of the dif-
ferences between p and R values as follows:

R—-0369 _ 0.00675 — 0.00667
0.385-0.369  0.00700 — 0.00667

from which R = 0.373. Alternatively, we can use Equation 8.24 directly to obtain
R = pf,(1 — 0.59pf,/ ) = 0.00675(60)[1 — 0.59(0.00675)(60)/3)] = 0.373.
3. From Equation 8.32, compute cross-sectional dimensions: since b = 16in., we get:

d= | M :\/35O><12:28m,
¢Rb 0.9(0.373)(16)

4. Adjust the effective depth, d, so that the total thickness of the cross section is an even
number. Since the assumed cover is 3in., we can select an effective depth of either 27in.
(for a total thickness of 30in.) or an effective depth of 29in. (for a total thickness of 32in.).
Either choice is potentially correct, since even if the depth is less than what is required
based on Equation 8.32, a revised steel ratio will be computed in the next step: a smaller
depth will result in a larger steel ratio (more steel and less concrete), while a larger depth
will result in a smaller steel ratio (less steel and more concrete). We will choose an effective
depth, d = 29in.
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5.

10.

Find R using the actual cross-sectional dimensions, b = 16in. and d = 29in. From
Equation 8.33, we get:

R M _ 350x12 _ o5,
obd®  0.9(16)(29%)

From Table A-89, we can either use R = 0.369 and a corresponding value of
p = 0.00667, or we can interpolate between R = 0.335 and R = 0.369 to get:

0.347 - 0.335 _ p — 0.00600
0.369 — 0.335  0.00667 — 0.00600

from which p = 0.00624. We will use the more accurate value of p = 0.00624.

From Equation 8.21, compute steel area: A; = pbd = 0.00624(16)(29) = 2.90in?.

From Table A-4.10 and Table A-4.11, select reinforcement that will fit in the beam, as
shown in Figure 8.43:

Two No. 11 bars (with actual A; = 3.12in?).

Three 3 No. 9 bars (with actual A; = 3.00in?)

From Table A-4.11, check whether either choice fits within the beam width of 16in. Two
No. 11 bars require 8.13in. and three No. 9 bars require 10.04in., so either choice works
ina 16-in.-wide beam.

It is unlikely that our steel ratio will fall outside the limits for p,;, and ppax, Since our
starting point was the selection of a steel ratio positioned between these two extremes.
However, since the actual steel ratio being used is somewhat different than what we
started with, a quick check is prudent. From Table A-8.8 (or A-8.9), the range of accept-
able steel ratios is 0.0033 to 0.0135. For two No. 11 bars, the steel ratio, p = 3.12/(16 X
29) = 0.0067, which falls between the two limiting values (the steel ratio for three No. 9
bars is also acceptable).

29"
2 g "

2 No.11 bars 3 No.9 bars
& 8 T -——9

16" L | 16" L

FIGURE 8.43

Alternate bar selection for Example 8.9
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11. Check beam thickness for deflection control: from Table A-8.2, the minimum thick-
ness for a continuous beam with clear span, L (ft), is 12[/21 = 12(36)/21 = 20.6in.
This is no greater than the actual thickness of the beam, h=d + 3 =29 + 3 = 32in,,

so the beam is acceptable for deflection control. -

Example 8.10 Design reinforced concrete slab and T-beam, with cross-sectional
dimensions assumed

Problem definition

Design a continuous reinforced concrete slab and typical beam to accommodate heavy man-
ufacturing, as shown in Figure 8.44. Assume f, = 60ksi and f. = 5000psi. Consider both
negative and positive moment values on typical interior spans (Table A-8.7). Assume a beam
width of 12in., and a slab thickness of 3in. as shown. The beams have a clear span of 30ft.
Assume that the dead load consists of the reinforced concrete weight (150 pcf). Span dimen-
sions are measured from the inside face of supporting elements, rather than from their cen-
terlines, when computing shear and moment. Design beam and slab for typical interior spans.
Assume 3-in. cover for beams, and 1in. for slabs (measured to centerline of reinforcement).

Solution overview

For slab: find factored loads; compute design moment; compute R; find p; compute rebar
spacing. For beam: find factored loads; compute design moment; compute R; find p; compute
steel area, Ag; select reinforcement. Check bar fit for beam and deflection control for both
beam and slab.

Problem solution
Slab design, negative moment
1. Find loads:
From Table A-2.2, the live load, L = 250 psf = 2501b/ft (for 1-ft. strip of slab). Live load
reduction does not apply to one-way slabs.
The dead load, D (for 1-ft. strip of slab) = 150(3/12) = 37.51b/ft (see Figure 8.45).
FromTable A-5.1, thefactored (design)load, w, = 1.2D + 1.6L = 1.2(37.5) + 1.6(250) =
4451b/ft = 0.455kips/ft.

Beam, Slab
] \ ] |7’
~d=14" %
33" | 25
2] 36" 127

FIGURE 8.44
Cross section through slab and T-beam for Example 8.10
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FIGURE 8.45

Tributary area for calculation of slab weight for Example 8.10

. Using moment values from Table A-8.7, compute the negative design moment for a typical

interior span. Because the clear span of the slab is no greater than 10ft (see Note 2, Table
A-8.7), the moment value is M, = w,/,2/12 = 0.455(3%)/12 = 0.34ft-kips = 4.095in-
kips. The initial calculation used kips/ft units for w,, and feet units for /,, with the resulting
moment value in ft-kips units. This value was then multiplied by 12 to convert the moment
value to in-kips units.

. From Equation 8.33, R = M,/(¢bd?) = 4.095/(0.9 X 12 X 22) = 0.0948. In this equation,

the effective slab depth, d, is taken as 1in. less than the given slab thickness, h = 3in.,
consistent with typical requirements for slab cover.

. From Table A-89, we can either use R=0.099 and a corresponding value of

p = 0.00167, or we can interpolate between R = 0.0661 and R = 0.099. In this case, the
minimum steel ratio for a slab, p,,;; = 0.00180, so there is no point interpolating: the result
will be less than p,,. Therefore, we use the minimum value, p = 0.00180.

. From Table A-4.10, we select a value for As: assuming No. 3 reinforcing bars for the slab,

A= 0.11in2.

. From Equation 8.36, find rebar spacing: s = A/(pd) = 0.11/(0.0018 X 2) = 30.6in.

However, the maximum permitted bar spacing for a slab is the smaller of 18in. or three
times the slab thickness, 3h = 9in. We must use 9-in. spacing, so the negative slab
moments are resisted by No. 3 bars at 9in. on center.

. Checking the steel ratio, we find the limits from Table A-8.9 to be p,;;; = 0.00180 (see

Note 4 for slabs) and pm. = 0.02130. The actual steel ratio can be found by dividing a
single bar area by the gross concrete area determined by its spacing and effective depth:
p=0.11/(9 X 2) = 0.00611, which falls between these limiting values.

. Deflection control can be checked using Table A-8.2: for a continuous slab, the minimum

thickness equals the clear span divided by 28, or (3 X 12)/28 = 1.29in. The actual slab
thickness, h = 3in., exceeds this minimum, so the slab is thick enough for deflection
control.

Slab design, positive moment
1. Find loads: same as for negative moment: w,, = 0.455kips/ft.
2. From Table A-8.7, compute the positive design moment value, M, = w,/,%/16. Rather than

going through the computation process, notice that the positive moment is smaller than
the negative moment already computed; since the negative moment in this case was gov-
erned by the maximum spacing criteria, the positive moment (which is even smaller) will
have the same result. Therefore, use the same bars and spacing computed for the negative
moment: No. 3 bars at 9in. on center.
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Beam design, negative moment

1. Find loads:

From Table A-2.2, the live load, L = 250psf, so the distributed load per foot of
beam = 250(tributary area) = 250(4) = 10001b/ft; live load reduction does not apply
since the “influence” area < 400ft?.

The dead load can be found by adding the slab and beam-stem weight as shown in
Figure 8.46: D = slab weight + beam-stem weight = 150(3/12)(4) + 150(14/12)(12/12)
= 150 + 175 = 325Ib/ft.

From Table A-5.1, the factored (design) load = 1.2D + 1.6L = 1.2(325) + 1.6(1000) =
19901b/ft = 1.99kips/ft.

2. Using moment values from Table A-8.7, compute negative design moment for a typical
interior span: M, = w,/,%/11 = 1.99(30%)/11 = 162.8ft-kips = 1953.8in-kips.

3. From Equation 8.34, R = M,/(¢bd?) = 1953.8/(0.9 X 12 X 14%) = 0.923. In this equation,
the effective beam depth, d, is taken as 3in. less than the total beam thickness, h = 17in.,
measured from the bottom of the beam “web” or “stem” to the top of the slab.

4. From Table A-8.9, we can either use R=0.943 and a corresponding value of
p = 0.01800, or we can interpolate between R = 0.898 and R = 0.943 to get:

0.923 — 0.898 _ p — 0.01700
0.943 - 0.898 0.01800 — 0.01700
from which p = 0.01756. We will use the more accurate value of p = 0.01756.

5. From Equation 8.21, compute steel area: A; = pbd = 0.01756(12)(14) = 2.95in°.

6. From Table A-4.10 and Table A-4.11, select reinforcement that will fit in the beam, as
shown in Figure 8.47:

Two No. 11 bars (with actual A; = 3.12in?).
Three No. 9 bars (with actual A; = 3.00in?).

7. From Table A-4.11, check whether either choice fits within the beam web (or stem) width
of 12in. Two No. 11 bars require 8.13in. and three No. 9 bars require 10.04in., so either
choice works in a 12-in.-wide beam.

8. Checking the steel ratio, we find the limits from Table A-8.9 to be p,,;; = 0.00333 (see
Note 1 for negative-moment T-beams) and p,,.x = 0.02130. The actual steel ratio can be
found by dividing the bar area by the gross concrete area determined by width and effec-
tive depth: for the two No. 11 bars, p = 3.12/(12 X 14) = 0.0186, which falls between
these limiting values.

3t 4
=
Ly
FIGURE 8.46

Tributary area for calculation of beam weight for Example 8.10
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FIGURE 8.47

Bar selection options for negative moment in T-beam for Example 8.10

Deflection control can be checked using Table A-8.2: for a continuous beam, the minimum
thickness equals the clear span divided by 21, or (30 X 12)/21 = 17.14in. The actual
beam thickness, h = 17in., is approximately equal to this minimum, so the beam is mar-
ginally thick enough for deflection control.

Beam design, positive moment (T-beam design)

1.
2.

3.

Find loads: same as for negative-moment design.

Using moment values from Table A-8.7, compute negative design moment for a typical
interior span: M, = w,/,/16 = 1.99(30%)/16 = 111.9ft-kips = 1343.3in-kips.

From Equation 8.25, the effective width, b is the smaller of the following:

b= 1/4 span = 30 X 12/4 = 90in.

b = centerline distance between beams = 48in.

b = web width + 16 X slab thickness = 12 + 16 X 3 = 60in.

The effective width, b = 48in.

From Equation 8.33, R = M,/(¢bd?) = 1343.3/(0.9 X 48 X 14?) = 0.159. In this equation,
the effective beam depth, d, is taken as 3in. less than the total beam thickness, h = 17in.,
measured from the bottom of the beam web or stem to the top of the slab.

From Table A-8.9, we can either use R=0.195 and a corresponding value of
p = 0.00333, or we can interpolate between R = 0.107 and R = 0.195 to get:

0.159 — 0.107 _ p — 0.00180
0.195 - 0.107  0.00333 — 0.00180

from which p = 0.00270. We will use the more accurate value of p = 0.00270.

For positive moment T-beams, the minimum steel ratio is determined by the ratio
b/b,, = 48/12 = 4, for which p.,;, = 0.00083 (see Note 2 in Table A-8-9). Our value of
p is not smaller than p,,;,, SO it is acceptable. Assuming that a value for p was found, the
maximum steel ratio need not be checked when using Table A-8.9, since no values greater
than pp..x are listed.
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FIGURE 8.48
Bar selection for positive moment in T-beam for Example 8.10

6. From Equation 8.26, check that the stress block depth, a, falls within slab thickness:
a = pf,d/l(0.85 fc’) = 0.00270(60)(14)/(0.85 x 5) = 0.53in. = slab thickness = 3in., so
T-beam assumptions are valid.

7. From Equation 8.21, compute steel area: A, = pbd = 0.00270(48)(14) = 1.81in°.

8. From Tables A-4.10 and A-4.11, we select steel reinforcement, as shown in Figure 8.48:
two No. 9 bars with A, = 2.0in?.

9. From Table A-4.11, check whether this choice fits within the beam web (or stem) width of
12in. Two No. 9 bars require 7.58in., so the choice works in a 12-in.-wide beam.

10. The steel ratio has already been checked (step 5). The check for deflection control is the
same as for negative moment and need not be repeated. -

Shear

Wood and steel beams are generally designed for bending and checked for shear.
If a beam selected for bending cannot safely resist the shear stresses, a larger sec-
tion must be used. Reinforced concrete beams are almost never acceptable for shear
after they are designed for bending, because shear stresses, combined with bending
stresses, produce diagonal tension within the beam. Since concrete is so weak in
tension, excessive shear (really diagonal tension) would cause the beam to fail cata-
strophically. Rather than increase the size of the cross section to the point where
the concrete can safely resist all diagonal tension stresses, shear (web) reinforce-
ment is used where the shear stress exceeds the capacity of the concrete.

Web reinforcement, consisting of U- or rectangular-shaped steel stirrups, is gener-
ally made from No. 3 or No. 4 bars, bent as shown in Figure 8.49.The force resisted
by each stirrup is based on an area twice the size of the bent bar, or 24, since two
prongs of each stirrup are present at any diagonal tension crack (Figure 8.50).Thus,
assuming that diagonal tension cracks form at a 45° angle, the number of stirrups
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FIGURE 8.49

Typical web steel (stirrups) to resist diagonal tension associated with shear stress in beams

Bar area, 2A,

Assumed crack
geometry

FIGURE 8.50

Assumed crack geometry for calculation of web steel capacity to resist shear forces (at diagonal
tension cracks)

resisting tension within each crack is d/s, where d = the effective depth of the beam
and s = the stirrup spacing.

At failure, corresponding to yielding of the stirrups, the total force resisted by
the steel web reinforcement is, therefore, equal to the number of stirrups times the
force resisted by each; that is, V; = (d/s)(24; f) or:

Ve = 24, fyd/s (8.36)

where
V, = the total force resisted by web reinforcement
d = the effective depth of the beam
s = the stirrup spacing
A, = the area of the reinforcing bar from which the stirrup is made

J, = the yield stress of the reinforcing bar, 60ksi in all text examples
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Solving for the stirrup spacing, we get:

s = 24,f,d/V, (8.37)

The concrete itself also inhibits the formation of diagonal tension cracks; its contri-
bution can be taken as:

V. = 2 bd (8.38)

where
V. = the total force resisted by the concrete (Ib)
f. = the cylinder strength of the concrete (psi)
b = the width of the beam (in.)
d = the effective depth of the beam (in.)

The strength design method for shear in concrete beams stipulates that the
design shear force, V,,, at any section (produced by factored loads) not exceed the
available capacity of the concrete and web steel combined. When the strength
reduction factor for shear, ¢, is included, we get:

Ve = oV, + V) (8.39

where
V,, = the design shear force
¢ = capacity reduction factor = 0.75 for shear (Table A-5.2)
V, and V. = the values defined in Equations 8.36 and 8.38
There are several practical limitations concerning web steel, as follows:
The closest practical stirrup spacing is 3 to 4in.
The first stirrup is generally placed at a distance s/2 from the face of the support.

The maximum stirrup spacing is the smaller of d/2, 24in., or 24,f,/(50b); except
when V; > 2V, in which case the first two criteria are reduced by half (to the
smaller of d/4 or 12in.). Both fy and f/ are expressed in psi units; b (in.) is the
beam width, and 4 is the effective depth (in.).

A minimum amount of web steel is required, even if V, < ¢V, only when
V,, < 0.5 ¢V, can shear reinforcement be discontinued.

A single stirrup size is used throughout a given beam; the spacing of these stir-
rups varies to account for changing values of shear along the span of the beam. For
uniformly loaded spans, except as noted later, the maximum shear force at the face
of the support is:

Vv, = w,l,/2 (8.40)
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where w,, is the uniformly distributed factored, design load (Ib/ft or kips/ft), and /,,
is the clear span (ft). This applies for plan geometries with relatively equal spans and
unfactored live loads that are no more than three times the unfactored dead load, just
as for the moment values listed in Table A-8.7. The one exception is at the “interior”
support of end spans in continuous structures, for which the design shear should
be taken as 1.15 times the value in Equation 8.40. Since the point of critical (maxi-
mum) shear is actually measured at a distance d from the face of the beam’s support—
whether that support consists of wall, column, or girder—it makes no difference if
the span used in Equation 8.40 is measured from face of support or support center-
line. In either case, the “theoretical” value shown in Equation 8.40 must be reduced to
the value computed at the critical section. Figure 8.51b shows such a critical section
measured from the face of support as well as a typical pattern of shear force and web
reinforcement for a uniformly loaded beam (Figure 8.51¢). The stirrup spacing is sym-
metrical; only half is shown. Equations for web steel are reproduced in Table A-8.6.

i

* b .
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Shear
| 112 |
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Vu at critical section at distance d from
face of support
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Ly =¢V¢.-’2_\_ ~ !
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A >
/2
(b) !
7 Stirrups
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L
1|.|'3@ ,‘I- 2@ .,]- 2@ qLNone ”|.
1/2 Space to start
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FIGURE 8.51

Shear diagram (a) for a uniformly loaded beam; with (b) half of the shear diagram enlarged and
(c) beam elevation showing typical stirrup spacing
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Example 8.11 Design shear reinforcement (stirrups) for reinforced concrete beam

Problem definition

Design the distribution of web steel (use No. 3 bars) for the cross section shown in Figure
8.52, assuming a factored design load, w, = 6kips/ft on a clear interior span, /, = 30ft. Use
f; = 4000psi and f, = 60ksi.

Solution overview
Compute concrete capacity; find minimum, maximum and intermediate (optional) spacing for
stirrups; sketch distribution of stirrups along length of beam.

Problem solution

All equations can be found in Table A-8.6 with Ib or psi units; these have been converted to
kips or ksi units in what follows, except where Ib or psi units are specifically required (Table
A-8.6, parts Cand F).

1. Compute concrete shear capacity (Table A-8.6, part C):
V, = 2bdyf; = 2(12)(24)v4000 = 36429 b = 36.43 kips

2. Find minimum spacing of No. 3 stirrups at critical V,, (at distance d from support), as
shown in Figure 8.53:
The maximum design shear at the face of support, V,, can be taken as w,/,/2 = 90kips
for interior spans. The design shear at the critical distance, d, from the face of support can
be found using similar triangles (Figure 8.53): V,, at distance, d = 78Kkips.

6 kips/ft
90 kipsT" 55 P90 kips
< * +
B 90 kips

—k ‘ : shear
| 12" & |15=180
FIGURE 8.52

Cross section, load, and shear diagrams for Example 8.10

+‘ E eriticaI \, = 90(156/180) = 78 kips
241, 156"

FIGURE 8.53

90 kips

Shear diagram for calculation of critical design shear for Example 8.10
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From Table 8.6, part E: the steel capacity, Vo=V, /¢ — V.= 78/0.75 - 36.43 =
67.57 kips.

From Table A-4.10, the area of a No. 3 bar is A; = 0.11in2. From Table 8.6, part B:
the required spacing, s = 2A4/,d/Vs = 2(0.11)(60)(24)/67.57) = 4.69in. Round down the
required spacing to the first half-inch increment: s = 4.5in.

. Find maximum spacing of No. 3 stirrups:

From Table A-8.6 part F, and since Vi = 67.57kips = 2V, = 2(36.43) = 72.86kips,
the maximum stirrup spacing is governed by the smaller of d/2 = 12in., 24in., or 2Af,/
(50b) = 22in. (f, must be in psi units in this equation!). The maximum spacing is, there-
fore, 12in.

The location along the beam elevation where this maximum stirrup spacing can begin
is found as follows. First, find the steel capacity corresponding to the maximum spacing
from Table 8.6, part A: Vs = 2Asf,d/s = 2(0.11)(60)(24)/12 = 26.4kips. Next, find the total
design shear corresponding to the steel and concrete capacities at this location from Table
8.6, part D: V, = o(V, + V) = 0.75(36.43 + 26.4) = 47.12kips. Finally, use similar tri-
angles to determine the distance from the beam centerline corresponding to the location
where maximum stirrup spacing can begin, as shown in Figure 8.54. The starting point for
maximum spacing is no further than 94.24in. from the beam centerline.

. Find location where no stirrups are needed:

From Table 8.6, part G, V, = 0.5¢V. = 0.5(0.75)(36.43) = 13.66kips.

The location along the beam elevation where no stirrups are required can be found by
using similar triangles, as shown in Figure 8.55. The starting point for no stirrups is no fur-
ther than 27.32in. from the beam centerline.

. (Optional) Select intermediate spacing between minimum and maximum values deter-

mined earlier:
Choose a spacing between the smallest required at the support (4.5in.) and the maxi-
mum (12in.), for example, s = 8in.

w0
1 47.12 Kips
9 x__180
A - 47127790
+— X =94.24"
180"

FIGURE 8.54

Shear diagram for calculation of location where maximum stirrup spacing can begin for Example 8.10

w
£ 13.66 kips
S x __180
- 1366 90
+—1180" b x=27.32

FIGURE 8.55

Shear diagram for calculation of location where no stirrups are required for Example 8.10
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57.02 kips

90 kips

x__180
57.02 90

=X x=1#

180"

FIGURE 8.56

Shear diagram for calculation of location where intermediate stirrup spacing may begin for
Example 8.10

<<— Face of support 180" Beam centerline;)lL
ﬂ
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L 2" 14@4.5" = 63“ 24" 6@12"=72" 19"

FIGURE 8.57
Elevation of beam showing spacing of stirrups for Example 8.10

Determine starting point for intermediate spacing as follows. First, find the steel capac-
ity corresponding to the chosen spacing: from Table A-8.6, part A, V,=2Adfd/s =
2(0.11)(60)(24)/8 = 39.6kips. Next, find the total design shear corresponding to the
steel and concrete capacities at this location from Table 8.6, part D: V, = ¢(V, + V) =
0.75(36.43 + 39.6) = 57.02kips. Finally, use similar triangles to determine the distance
from the beam centerline corresponding to the location where this intermediate stirrup
spacing can begin, as shown in Figure 8.56. The starting point for intermediate spacing,
s = 8in., is no further than 114in. from the beam centerline.

6. Sketch the distribution of web steel (stirrups) for one-half of the beam. The first stirrup is
generally placed at a distance s/2 = 4.5/2 = 2%in. from the face of the support (round
down to 2in.). The remaining stirrups are arranged within the zones of minimum, inter-
mediate (optional) and maximum spacing, as shown in Figure 8.57. In this example, the
middle 38in. (i.e., 19in. X 2) of the beam is not required to have stirrups.
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CHAPTER

Connections

Structural elements are connected to form structural systems; the connections
thus constitute an intermediate condition between elements and systems and are
not, strictly speaking, part of the elements themselves. Such connections, how-
ever, do have a direct bearing on the types of assumptions made when the individ-
ual elements (or systems) are analyzed. Specifically, when the various elements of
structure—columns, beams, and so on—are considered individually, we show them
either as constrained by hinges and rollers, free to translate and rotate, or fixed in
such a way that all relative movement is prevented.

These abstract constraints are models of the actual conditions encountered
by such elements when they are connected within actual structural systems. For
example, beams are attached to girders, walls, or columns; columns are attached to
foundations, transfer girders, or other columns; and tension elements are hung from
beams or inserted within truss systems. It may seem surprising that the conventional
means of attaching structural elements to each other with nails, screws, bolts, welds,
and reinforcing bars corresponds to the abstract hinges, rollers, or fixed constraints
encountered in the discussion of individual elements, or in the introductory chapter
on statics: we rarely see connections in typical building structures that look anything
like the diagrammatic representation of the constraints shown in Figure 9.1.

—%%i 2 Q +

(a) (b) (c) (d)
FIGURE 9.1

Abstract symbols for constraints, including (a) hinge or pin-end, (b) roller, (c) fixed, and (d) free
end (same as Figure 1.14)

© 2010 Elsevier Inc. All rights reserved.
Doi: 10.1016/B978-1-85617-771-9.00009-X

193




194

CHAPTER 9 Connections

In fact, the relationship between the reality of a connection and the abstract
modeling of it as hinge, roller, etc., is quite interesting. On the one hand, it is pos-
sible to design a real connection so that it both appears and behaves just like the
abstract model.

More commonly, however, one starts with a convenient means for connecting
real materials and then chooses a constraint model that approximates the behav-
ior of this connection. Of course, such typical and “convenient” connections have
evolved over time so that their behavior is in line with the assumptions we make
about the types of movement, and the magnitude of forces and moments transmit-
ted, between the elements being connected. It is the latter group of typical connec-
tion strategies that are discussed in the following sections about wood, steel, and
reinforced concrete. These connections must resist the same sort of forces already
encountered in the design of the structural elements themselves: direct compression
and tension, as well as shear. Bending does not often show up directly in the design
of fasteners, as it can usually be resolved into the other forces already mentioned.

WOooD

Were it only the force of gravity—the resistance to live and dead loads—that wood
structures encountered, it would be possible to assemble structural elements by
literally resting one upon the other—that is, by stacking them so that the ends of
beams or the bottom of posts bear upon plates, beams, or posts positioned below
them, with the surfaces in contact between elements subject only to compressive
stress. However, because there are always other loads, including both the horizontal
and upward components of wind and earthquake forces, and various impact loads
that could dislodge or overturn elements designed exclusively for downward-acting
loads, the idealized condition represented by this model must be adjusted by using
fasteners that respond to those nongravity forces as well. That being said, the basic
idea of stacking one wood element on top of the other remains an important strat-
egy for assembling many wood structures, as can be seen by examining a typical sec-
tion for light wood framing (Figure 9.2): in such cases, the necessary resistance to
lateral and upward loads, from foundation to roof, is often accomplished by super-
imposing metal straps and other fasteners at key joints.

Aside from the use of metal straps, plates, and other more complex hangers and
brackets, wood elements are typically connected using nails, bolts, and screws (we
will be considering only lag screws, sometimes referred to as “lag bolts,” here).
These fasteners can be used in two distinct ways: primarily as “dowels” inserted per-
pendicular to the direction of load, but also in “withdrawal,” that is, subject to ten-
sion forces parallel to the direction of load. The designation for the capacity of a
dowel-type fastener (i.e., a fastener stressed in shear) is Z; the capacity of a fastener
used in withdrawal is designated as W, as shown in Figure 9.3. In both cases, the
capacity must be multiplied by adjustment factors; the adjusted capacities are desig-
nated Z' and W’ respectively.
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FIGURE 9.2

Platform framing showing joists bearing on plates, plates bearing on studs, and studs bearing on
plates (siding, building paper, insulation, vapor retarder, and interior finishes not shown)

Top plates
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{a) Dowel action {b) Withdrawal

FIGURE 9.3
Wood fasteners with (a) dowel action; or (b) in withdrawal

Where the head of a lag screw or bolt, or the nut of a bolt, comes in contact
with a wood member, a circular or square washer is inserted between the metal and
wood surfaces in order to distribute the load imparted by the metal fastener over
a greater surface area of wood. This is a requirement for bolts and lag screws sub-
jected to either shear or tension.
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Shear

With respect to dowel-type action, nails and screws typically connect only two mem-
bers (the “side member” being the piece into which the nail is first hammered or the
screw is first inserted; the “main member” being the piece connected behind the
side member). Such connections are in “single shear,” since there is only a single
shear plane between the side and main member (Figure 9.4a). Bolts can connect
two members in single shear, but also can connect three members in “double shear.”
In the latter case, the main member is in the center, with the two outside members
defined as side members, as shown in Figure 9.4b. Where bolts are used in single
shear, the main member is defined as the thicker piece (if any), since either side
could serve as the point of insertion without altering the behavior of the connection.

Typical idealized diagrams representing the forces on dowel-type fasteners in
single shear are often misleading, since neither the structure (Figure 9.5a) nor the
fasteners themselves (Figure 9.5b) would be in rotational equilibrium with only a
single force couple.

The actual pattern of forces acting on such fasteners is more complex, since
these forces must satisfy all three equations of equilibrium. Several possibilities exist
for the arrangement of forces on the fasteners that are consistent with the require-
ments for equilibrium. For example, as shown in Figure 9.6a, the force acting down-
ward on the left-hand member can be “balanced” by two forces in the right-hand
member; critical stress patterns applied to the wood by the fasteners are shown
schematically in Figure 9.6b, assuming that only stresses in the left-hand member
have reached critical values. This pattern of stress is designated Mode I.

Several other patterns of force and stress can develop in the wood connection.
Figure 9.7 illustrates Mode II, in which critical stresses develop in both members.
The inclination of the fastener (Figure 9.7b) is exaggerated to show how the pattern
of critical stresses develops alternately on opposite sides of the fastener.

\Shear plane \S:ear plane \Shear plane Shear planes
M Y Y PN

[ | = [ |

S M S M S M S M s
Bolt Lag screw Nail Bolt
(a) Single shear (b) Double shear

FIGURE 9.4

Examples of (a) single shear and (b) double shear. “S” indicates side member; “M” indicates
main member
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fa)/l\ (b)
FIGURE 9.5

Simple single-shear model with two equal and opposite forces, but rotational equilibrium
unaccounted for (a) forces acting on wood members and (b) forces acting on dowel-type fastener
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FIGURE 9.6

Mode | behavior of fastener in single shear, showing (a) pattern of forces on fastener and
(b) corresponding critical stresses on wood member

(b)

FIGURE 9.7

Mode Il behavior of fastener in single shear, showing (a) pattern of forces on fastener and
(b) corresponding critical stresses on wood member
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All together, researchers have identified four behavioral modes with dowel-type
fasteners. For Modes III and IV (not illustrated), yielding of the fastener itself is pre-
sumed to have occurred; in these two latter cases, not only is the resistance of the
wood to the pressure exerted by the fastener considered, but also the strength of
the steel fastener itself. With these four modes, plus two variations each for Modes
I and IIT (where critical stresses might occur either in the main or side member),
there are six possible ways in which stress can develop in a single-shear connection,
resulting in six possible values for the force that a single fastener can safely develop.
Clearly, it is the smallest of these six allowable forces that governs the connection
design. For members connected in double shear, two of the modes are not consid-
ered, as they are incompatible with the geometry of elements in double shear. Thus,
only four equations need to be checked for double-shear connections.

Because the equations that have been developed for these six behavioral modes
(four for double shear) acknowledge possible yielding of the steel fasteners, they are
known as “yield limit” equations. They can be used for bolts, lag screws, or nails—
and not only for wood-to-wood connections, but also where steel plates are used
for the side member(s). They are really not intended to be solved by hand; instead,
three alternative strategies are commonly employed to design wood fasteners:
(1) the use of spreadsheets or structural analysis software to solve the equations, (2)
the use of tables containing commonly encountered fastener capacities, and (3) the
use of “rules of thumb” in the form of tables and figures showing fastener details
sanctioned by building codes. In most of the examples that follow, tables are used
to find lateral design values. For a more detailed look at the use of yield limit equa-
tions, see Example 9.7 and Table A-9.15.

In general, fasteners should be placed in wood connections in such a way that
the lines of force in the members being joined are aligned; a misaligned force is
just another word for a force couple, which results in bending at the joint. Single-
shear connections, as shown in Figure 9.4a, are inherently subject to such bending,
whereas double-shear connections, as shown in Figure 9.4b, are inherently symmet-
rical and, therefore, less likely to be subject to unanticipated bending stresses. On
the other hand, many single-shear connections are embedded within, and attached
to, a matrix of structural elements—sheathing, transverse members, and so on—that
effectively relieve the fasteners themselves of the burden of resisting stresses aris-
ing out of the misalignment. In the single-shear examples that follow, it is assumed
that such additional structural elements (not shown in the examples) are actually
present.

Aside from material properties for wood and steel, two other relationships
between fastener and wood member must be accounted for: the penetration of lag
screws and nails into the main member of the connection, as described in Appendix
A-9.3; and the grain orientation of the various members being connected, with
respect to the direction of load, as shown in Figure 9.8. To obtain full lateral design
values, lag screw penetration must be at least equal to 8D and nail penetration must
be at least equal to 10D (where D is the fastener diameter).
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FIGURE 9.8

For dowel-type fasteners, three orientations of load to wood grain are possible, shown with their
commonly used designations and equivalent keyboard-friendly designations, Z,,, Zs.per, and
Zm.per- The latter designations are used in this text: (a) Zp,, is the fastener capacity, where both
the side and main members are loaded parallel to grain; (b) Zs e, is the fastener capacity where
the side member is loaded perpendicular to grain while the main member is loaded parallel to
grain; and (¢) Zy, e, is the fastener capacity, where the main member is loaded perpendicular
to grain while the side member is loaded parallel to grain. The case where both members are
loaded perpendicular to grain is uncommon and is, therefore, not considered here

Just as the allowable stresses for wood structural elements in tension, compres-
sion, or bending are adjusted to account for the actual behavioral properties of
wood, the design values for wood fasteners are also adjusted in several ways. Two
of these adjustments have already been discussed in the chapter on material proper-
ties, although there are subtle differences in their application to fasteners. The dura-
tion of load factor (Cp) accounts for changes in the strength of wood connections
based on the length of time (duration) that the load is applied. However, because
the yield limit equations used to analyze single- and double-shear connections can
also be used where steel side members are combined with wood main members,
the allowable stress for such steel members has been reduced by a factor of 1.6, cor-
responding to the maximum duration-of-load adjustment for wood members under
wind or seismic loading. In this way, Cp, may be applied to the entire connection
design (so that the steel stress, already reduced, is increased up to its actual value in
cases where the load combination includes wind or seismic forces), simplifying the
design process, although making the steel side member design conservative for load
combinations that do not include wind or seismic forces (since in those cases, the
steel stress is still initially reduced, but not increased by the same amount).

The wet service factor (C,p accounts for the increased strength of wood when
used “dry.” For connection design, it is also important to consider the moisture content
of the wood when it was first fabricated, since a change from an initial “wet” fabrica-
tion condition to a “dry” service condition can weaken the connection in some cases.

Two additional adjustments apply to dowel-type fasteners only, and only when
the fastener diameter is greater or equal to %in. (i.e., for bolts and lag screws). The
group action adjustment (Cy) accounts for reductions in strength that may occur
when comparing the behavior of a single fastener to that of a group of fasteners;
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the geometry factor (Cn) includes a series of possible reductions that come into play
when fasteners are closely spaced or are placed too close to the edge or end of a
wood member, as shown in Figure 9.9. The orientation of the wood grain deter-
mines the “edge” and “end” of the members, irrespective of the load direction,
whereas “row spacing” parameters are measured with respect to the direction of
the load (a “row of fasteners” being parallel to the direction of load).

For nails only, a toe-nail factor adjustment, C,,, is used for lateral or withdrawal
design values (see Table A-9.8) when the side and main members are fastened with
nails driven at a 30° angle to the face of the side member.

The general strategy for designing wood connections is to first find the capacity
of a single fastener, using one of the strategies discussed (i.e., using yield limit equa-
tions or various tabular design aids), and then to multiply that capacity by the num-
ber of fasteners comprising the connection. As already suggested, this total capacity
for multiple fasteners is explicitly modified using the group action adjustment fac-
tor Cy; the other adjustments—C),, Cy, and Cx—can be applied to either the entire
connection or just a single fastener, but should only be applied once each per con-
nection. A temperature factor, C,, should be applied to wood elements subjected to
sustained high temperatures: see Table A-9.9.

The complete dowel-type fastener design process for wood elements is summa-
rized here; this summary constitutes the “Solution overview” within the examples

1“““ End distance (compression)

Spacing between fasteners in a row
End distance (tension)

Spacing between rows of fasteners
Edge distance
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(b)

Loaded edge distance

Spacing between fasteners in a row
Unloaded edge distance

Spacing between rows of fasteners
End distance

FIGURE 9.9

Geometry factor parameters: (a) a three-member connection is illustrated, with the grain
represented by parallel lines on the surface of the members, and (b) a free-body diagram shows
how the geometry factor parameters are measured on the middle member
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that follow (with steps 4 and 5 eliminated where the connection consists of a single
fastener only):

1. Find the capacity for a single fastener, Z.

2. For lag screws and nails, check that penetration into the main member is at least
4D (for lag screws) or 6D (for nails), and adjust capacity, Z, accordingly.

3. Adjust for duration of load, wet service conditions, and geometry.

4. For multiple-fastener connections only, adjust for group action, and then mul-
tiply the adjusted single-fastener capacity by the number of fasteners in the
connection.

5. Remember that in addition to the fasteners, the element itself must be designed
in a manner that accounts for the presence of bolt or lag screw holes (nail holes
are not considered in structural element design). For multiple-fastener connec-
tions only, and only where forces are parallel to grain and in tension, also check
the element for row and group tear-out (see Chapter 6).

Tables for computing fastener capacity are included in the appendices; specific
guidelines for the use of these tables are provided in the examples that follow.

Example 9.1 Analyze wood single-shear connection using one bolt

Problem definition
Find the capacity of a connection (single shear) consisting of a 2 X 10 beam connected to a
6 X 6 post using one %-in.-diameter bolt, as shown in Figure 9.10. The wood used is Hem-Fir,

4”

44/4”
5,,

-2x10

— 6x6

FIGURE 9.10
Single-shear bolted connection with a single fastener for Example 9.1
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and the bolts are fabricated from ordinary, low-strength, A307 steel, as is typical for wood con-
nections. Assume live and dead loads only, dry fabrication and service conditions, and spacing
as shown.

Solution overview

1.
2.

3.
4.
5.

Find the capacity for a single fastener, Z.

For lag screws and nails, check that penetration into the main member is at least 4D (for
lag screws) or 6D (for nails), and reduce capacity, Z, if necessary.

Adjust for duration of load, moisture, and geometry.

Adjust for group action (not applicable for single fastener connections).

Check that the element itself is designed in a manner that accounts for the presence of
bolt or lag screw holes (not included in this example).

Problem solution

1.

From Table A-9.10, the lateral design value, Zs pe, is 4601b. The value of Z chosen corre-
sponds to the following condition: the side member (for bolted connections in single shear,
the side member is defined as the thinner of the two members) is oriented so that the load
is perpendicular to the direction of grain, while the main member is oriented so that the
load is parallel to the direction of grain. This corresponds to Z ., as defined in Figure 9.8.
From Table A-9.3 (Note 4), penetration is only an issue with lag screws and nails, since
bolts must always fully penetrate the members being connected. Therefore, no reduction
of the tabular lateral design value is necessary, and it remains equal to Zg_p., = 4601b.
Adjustments are as follows:

Cp for typical values of live and dead load is 1.0 (Table A-9.4).

Cy for members fabricated and used dry is 1.0 (Table A-9.5).

Cg does not apply to single-fastener connections.

Cy is found by testing four separate criteria (Table A-9.7): spacing between fasteners in a
row (not applicable where only one fastener is used), spacing between rows of fasteners
(not applicable where only one fastener is used), end distance, and edge distance. It is
sometimes useful to sketch the members separately, showing dimensions for the relevant
geometry factor parameters (Figure 9.11).

In the calculations that follow, the fastener diameter is D = 34in. = 0.75in.

Spacing criteria: For a single fastener connection, the spacing criteria (for spacing
between rows and spacing of fasteners within a row) do not apply.

End distance: Adjustment criteria for end distance appear in Table A-9.7, part C.
For the horizontal member, the loading direction is perpendicular to grain, so the mini-
mum end distance for full value (i.e., for Cy = 1.0) is 4D = 4(0.75) = 3in. Since the
actual end distance of 4in. exceeds this value (and the other, unspecified, end dis-
tance is clearly larger), the geometry factor is Cn = 1.0 for horizontal member end dis-
tance. For the vertical member, the loading direction is parallel to grain and the specified
wood is a “softwood,” so the minimum end distance for full value for “tension” (i.e., for
Ca = 1.0)is 7D = 7(0.75) = 5.25in. Since the actual end distance, although unspecified,
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Geometry factor parameters for Example 9.1

clearly exceeds this, the geometry factor is Co = 1.0 for vertical member end distance
(tension). For the full value in “compression,” we need a minimum end distance of
4D = 4(0.75) = 3in., which the actual end distance of 4%in. exceeds. The geometry fac-
tor, therefore, is also C, = 1.0 for vertical member end distance (compression).

Edge distance: Adjustment criteria for edge distance appear in Table A-9.7, part D. For
the horizontal member, the loading direction is perpendicular to grain, so the loaded and
unloaded edges must be determined separately. The minimum distance for the loaded
edge (i.e., the edge toward which the fastener itself is bearing) is 4D = 4(0.75) = 3in.,
which the actual loaded edge distance of 4%in. exceeds. The minimum distance for the
unloaded edge (i.e., the opposite edge away from which the fastener itself is bearing) is
1.5D = 1.5(0.75) = 1.125in., which the actual unloaded edge distance of 5in. exceeds.
For the vertical member, the loading direction is parallel to grain, so the minimum edge
distance is determined from the so-called “slenderness ratio” of the fastener, I/D. The
length of the fastener, /, within the main member is 5%in., so /D = 5.5/0.75 = 7.33. Since
this value is greater than 6, the minimum edge distance is 1.5D = 1.5(0.75) = 1.125in.,
which the actual edge distance of 2.75in. exceeds. Since all the criteria for full value are
met, the geometry factor for edge distance is C, = 1.0.

The geometry factor for the entire connection is found by using the smallest of the geom-
etry factors found for any of the four conditions just tested (end, edge, and the two spacing
conditions where applicable); therefore, we use C, = 1.0.

The adjusted lateral design value for the single fastener in the connection is found by
multiplying the lateral design value from step 2 by the various adjustment factors deter-
mined in step 3: Z' = ZCp)(Cy)(Ca) = 460(1.0)(1.0)(1.0) = 4601b.

4. The group action factor, C,, is 1.0 for all single-fastener connections (since only multiple-
fastener connections can have “group action”). Therefore, the connection capacity is equal
to Z'(Cg) = 460(1.0) = 4601b.



204 CHAPTER 9 Connections

5. We are not considering the design of the structural elements themselves in this example.

6.

Conclusion: The total capacity of the connection (consisting of a single 34-in.-diameter bolt)
is 4601b.
|

Example 9.2 Analyze wood single-shear connection using multiple bolts

Problem definition

Find the capacity of a connection (single shear) consisting of two 2 X 8 tension elements con-
nected by a 2 X 8 member using six ¥2-in.-diameter bolts in each member. The wood used is
Hem-Fir No. 1, and the bolts are fabricated from ordinary, low-strength, A307 steel, as is typi-
cal for wood connections. Assume live, dead, and wind loads only, dry fabrication and service
conditions, and spacing as shown in Figure 9.12.

Solution overview

1.
2.

3.

Find the capacity for a single fastener, Z.

For lag screws and nails, check that penetration into the main member is at least 4D (for
lag screws) or 6D (for nails), and reduce capacity, Z, if necessary.

Adjust for duration of load, moisture, and geometry.

Adjust for group action, and then multiply the adjusted single-fastener capacity by the
number of fasteners in the connection.

Check that the element itself is designed in a manner that accounts for the presence of
bolt or lag screw holes (not included in this example).

Problem solution

1. From Table A-9.10, the lateral design value, Z,,, is 4101b. The value of Z chosen corre-
sponds to the following condition: both the side and main member are oriented so that the
load is parallel to the direction of grain, as defined in Figure 9.8.

FIGURE 9.12

Single-shear bolted connection with multiple fasteners for Example 9.2
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2. From Table A-9.3 (Note 4), penetration is only an issue with lag screws and nails, since
bolts must always fully penetrate the members being connected. Therefore, no reduction of
the tabular lateral design value is necessary, and it remains equal to Z,,, = 4101b.

3. Adjustments are as follows:

Cp for live, dead, and wind load is 1.6 (Table A-9.4).

Cy for members fabricated and used dry is 1.0 (Table A-9.5).

Ca is found by testing four separate criteria (Table A-9.7): spacing between fasteners in a
row, spacing between rows of fasteners, end distance, and edge distance. It is some-
times useful to sketch the members separately, showing dimensions for the relevant
geometry factor parameters (Figure 9.13).

In the calculations that follow, D is the fastener diameter of 0.5in.

Spacing criteria: Adjustment criteria for spacing appear in Table A-9.7, parts A and B.
For spacing between fasteners in a row, where the loading direction is parallel to grain,
the minimum spacing for full value is 4D = 4(0.5) = 2in. Since the actual spacing is 2in.,
the full value applies, and Cx = 1.0 for spacing between fasteners in a row. For spacing
between rows of fasteners, again with the loading direction parallel to grain, the minimum
required spacing is 1.5D = 1.5(0.5) = 0.75in. Since the actual spacing (between rows)
of 3.25in. exceeds this value and is no greater than 5in. (the maximum distance allowed
between the outer rows of fasteners), the geometry factor is C, = 1.0 for spacing between
rows of fasteners.

End distance: Adjustment criteria for end distance appear in Table A-9.7, part C. For all the
members, the loading direction is parallel to grain. Where the fasteners are bearing toward
the member end (in “tension”) and where the wood is softwood, the minimum end distance
for full value (i.e., for Co = 1.0)is 7D = 7(0.5) = 3.5in. For the primary members, the actual
end distance of 3.5in. is no less than this, so the geometry factor is Co = 1.0. However,
for the connecting member, shown to the right in Figure 9.13, the actual distance of 2in.
is between the absolute minimum (3.50 = 1.75in.) and the required distance for full value
(7D = 3.5in.); therefore, the geometry factor is taken as the actual end distance divided by
the minimum distance for full value, or Co = 2/3.5 = 0.571.

Edge distance: Adjustment criteria for edge distance appear in Table A-9.7, part D. For
all the members, the loading direction is parallel to grain, so the minimum edge distance

Spacing between End distance (tension)
fasteners in a row. pracing between fasteners in a row
T LT
i g g»
:I:I:I s
*"HeHe

Spacing between rows
Edge distance

FIGURE 9.13
Geometry factor parameters for Example 9.2
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is determined from the so-called slenderness ratio of the fastener, I/D. The length of the
fastener, / within all members is 1%2in., so I/D = 1.5/0.5 = 3.0. Since this value is less
than or equal to 6, the minimum edge distance is 1.5D = 1.5(0.5) = 0.75in., which the
actual edge distance of 2.0in. exceeds. The geometry factor for edge distance is, therefore,
Car=1.0.

The geometry factor for the entire connection is found by using the smallest of the geom-
etry factors found for any of the four conditions just tested (end, edge, and the two spacing
conditions where applicable): therefore, we use Co = 0.571, which was computed for the
end distance of the connecting member.

The adjusted lateral design value for a single bolt in the connection is found by multiply-
ing the lateral design value from step 2 by the various adjustment factors determined in
step 3: Z' = ZACp)(Cip)(Ca) = 410(1.6)(1.0)(0.571) = 374.61b.

. From Table A-9.6, the group action factor, C,, is 0.993, a conservative value based on 2 X 8

main and side members (A,, = A, = approximately 11in?), with three fasteners in a single
row. The actual modulus of elasticity (Table A-3.9) for Hem-Fir No.1 is £= 1,500,000 psi,
which is larger than the nominal value of 1,400,000 psi assumed in Table A-9.6; the actual
fastener spacing, s = 2in., is smaller than the value, s = 3in., assumed in the table; and
the actual fastener diameter, D = %2in., is smaller than the value, D = 34in., assumed
in the table. Therefore, the tabular value, Cg = 0.993, is conservative and can be used.
Alternatively, a more accurate value for C, can be found, based on the method described in
Note 3 of Table A-9.6 and illustrated in Example 9.7.

Adjusting for group action and multiplying the single-fastener value for Z’ found in step 3
by the number of fasteners in the connection, we get a total adjusted connection capacity
equal to 374.6(0.993)(6) = 22321b.

. We are not considering the design of the structural elements themselves in this example.

Tension, row, and group tear-out are considered in Chapter 6, Example 6.2.

. Conclusion: The total capacity of the connection (consisting of six Y-in.-diameter bolts) is

22321b.
.

Example 9.3 Analyze wood double-shear connection using multiple bolts

Problem definition

Find the capacity of a connection (double shear) consisting of two 2 X 8 tension elements
connected by two shorter 2 X 8 members, using six ¥.-in.-diameter bolts in each member.
The wood used is Hem-Fir No.1, and the bolts are fabricated from ordinary, low-strength, A307
steel, as is typical for wood connections. Assume live, dead, and wind loads only, dry fabrica-
tion and service conditions, and spacing as shown in Figure 9.14.

Solution overview
1. Find the capacity for a single fastener, Z.
2. For lag screws and nails, check that penetration into the main member is at least 4D (for

lag screws) or 6D (for nails), and reduce capacity, Z, if necessary.
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FIGURE 9.14

Double-shear bolted connection with multiple fasteners for Example 9.3

w

Adjust for duration of load, moisture, and geometry.

Adjust for group action, and then multiply the adjusted single-fastener capacity by the
number of fasteners in the connection.

Not included in this example (check that the element itself is designed in a manner that
accounts for the presence of bolt or lag screw holes).

Problem solution

1.

From Table A-9.11, the lateral design value, Z,, is 900Ib. The value of Z chosen corre-
sponds to the following condition: both the side and main member are oriented so that the
load is parallel to the direction of grain, as defined in Figure 9.8.

From Table A-9.3 (Note 4), penetration is only an issue with lag screws and nails, since
bolts must always fully penetrate the members being connected. Therefore, no reduction
of the tabular lateral design value is necessary, and it remains equal to Z,,, = 9001b.

. Adjustments are as follows:

Cp for live, dead, and wind load is 1.6 (Table A-9.4).

Cy for members fabricated and used dry is 1.0 (Table A-9.5).

Cx is found by testing four separate criteria (Table A-9.7): spacing between fasteners in a
row, spacing between rows of fasteners, end distance, and edge distance. It is sometimes
useful to sketch the members separately, showing dimensions for the relevant geometry
factor parameters (Figure 9.15).

In the calculations that follow, D is the fastener diameter of 0.5in.

Spacing criteria: Adjustment criteria for spacing appear in Table A-9.7, parts A and B.
For spacing between fasteners in a row, where the loading direction is parallel to grain,
the minimum spacing for full value is4D = 4(0.5) = 2in. Since the actual spacingis 2in., the
full value applies, and C, = 1.0. For spacing between rows of fasteners, again with
the loading direction parallel to grain, the minimum required spacing is 1.5D = 1.5(.5) =
0.75in. Since the actual spacing (between rows) of 3.25in. exceeds this value and is no
greater than 5in. (the maximum distance allowed between the outer rows of fasteners), the
geometry factor is C, = 1.0.

207
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FIGURE 9.15

Geometry factor parameters for Example 9.3

End distance: Adjustment criteria for end distance appear in Table A-9.7, part C. For all
the members, the loading direction is parallel to grain. Where the fasteners are bearing
toward the member end (i.e., in “tension” and for softwood) the minimum end distance for
full value (i.e., for Co = 1.0) is 7D = 7(0.5) = 3.5in. For the main members, the actual
end distance of 3.5in. is no less than this, so the geometry factor is C, = 1.0. However,
for the connecting member, shown to the right in Figure 9.15, the actual distance of 2in. is
between the absolute minimum (3.5D0 = 1.75in.) and the required distance for full value
(7D = 3.5in.); therefore, the geometry factor is taken as the actual end distance divided by
the minimum distance for full value, or C, = 2/3.5 = 0.571.

Edge distance: Adjustment criteria for edge distance appear in Table A-9.7, part D. For
all the members, the loading direction is parallel to grain, so the minimum edge distance is
determined from the so-called slenderness ratio of the fastener, //D. The fastener length, /,
within all members is 1%in., so /D = 1.5/0.5 = 3.0. Since this value is less than or equal
to 6, the minimum edge distance is 1.5D = 1.5(0.5) = 0.75in., which the actual edge dis-
tance of 2.0in. exceeds. The geometry factor, therefore, is C, = 1.0.

The geometry factor for the entire connection is found by using the smallest of the geom-
etry factors found for any of the four conditions just tested (end, edge, and the two spacing
conditions where applicable); therefore, we use Co = 0.571, which was computed for the
end distance of the connecting member.

The adjusted lateral design value for a single bolt in the connection is found by multiply-
ing the lateral design value from step 2 by the various adjustment factors determined in
step 3: Z' = ZCp)(Cy)(Ca) = 900(1.6)(1.0)(0.571) = 822.21b.

. From Table A-9.6, the group action factor, C,, is 0.983, a conservative value based on a

single 2 X 8 main member and two 2 X 8 side members (A,, = approximately 11in%
As = approximately 17in?), with three fasteners in a single row. The actual modulus of elasticity
(Table A-3.9) for Hem-Fir No.1 is £ = 1,500,000 psi, which is larger than the nominal value of
1,400,000 psi assumed in the table; the actual fastener spacing, s = 2in., is smaller than the
value, s = 3in., assumed in the table; and the actual fastener diameter, D = %in., is smaller
than the value, D = %in., assumed in the table. Therefore, the tabular value, C, = 0.983, is
conservative and can be used. Alternatively, a more accurate value for C, can be found, based
on the method described in Note 3 of Table A-9.6 and illustrated in Example 9.7.
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Adjusting for group action and multiplying the single-fastener value for Z' found in step
3 by the number of fasteners in the connection, we get a total adjusted connection capac-
ity equal to 822.2(0.983)(6) = 48491b.
5. We are not considering the design of the structural elements themselves in this example.
Tension, row, and group tear-out are considered in Chapter 6, Example 6.2.
6. Conclusion: The total capacity of the connection (consisting of six ¥2-in.-diameter bolts) is
48491b. -

Example 9.4 Analyze wood double-shear connection using multiple bolts and
steel side plates

Problem definition

Find the capacity of a connection (double shear) consisting of a 6 X 6 tension member con-
nected by two %-in. steel side plates, using four %-in.-diameter bolts. The wood used is
Douglas Fir-Larch (North) No. 1; the steel plates are ASTM A36 steel; and the bolts are fab-
ricated from ordinary, low-strength, A307 steel, as is typical for wood connections. Assume
live and dead loads only, dry fabrication and service conditions, and spacing as shown in
Figure 9.16.

Solution overview

1. Find the capacity for a single fastener, Z.

2. For lag screws and nails, check that penetration into the main member is at least 4D (for
lag screws) or 6D (for nails), and reduce capacity, Z, if necessary.

3. Adjust for duration of load, moisture, and geometry.

1/4” A36 steel
side plates

6x6 tension
member

FIGURE 9.16
Double-shear bolted connection with multiple fasteners and steel side plates for Example 9.4
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. Adjust for group action, and then multiply the adjusted single-fastener capacity by the

number of fasteners in the connection.

. Not included in this example (check that the element itself is designed in a manner that

accounts for the presence of bolt or lag screw holes).

Problem solution
1. From Table A-9.12, the lateral design value, Zy,, is 23901b. The value of Z chosen corre-

sponds to the following condition: the main member is oriented so that the load is parallel
to the direction of grain, as defined in Figure 9.8. The orientation of the steel side plates to
the direction of load is not relevant, since there is no “grain” in the steel plates that influ-
ences its strength.

. From Table A-9.3 (Note 4), penetration is only an issue with lag screws and nails, since

bolts must always fully penetrate the members being connected. Therefore, no reduction
of the tabular lateral design value is necessary, and it remains equal to Z,,, = 23901b.

. Adjustments are as follows:

Cp for typical values of live and dead load is 1.0 (Table A-9.4).
Cy for members fabricated and used dry is 1.0 (Table A-9.5).
Ca is found by testing four separate criteria (Table A-9.7): spacing between fasteners in
a row, spacing between rows of fasteners, end distance, and edge distance. It is some-
times useful to sketch the members separately, showing dimensions for the relevant geom-
etry factor parameters (Figure 9.17). Only the wood main member is considered here; the
tension capacity and bolt spacing in the steel plate must be considered separately (see
Chapter 6 for discussion of steel subjected to tension and the steel section of this chapter
for discussion of bolt spacing).

In the calculations that follow, D is the fastener diameter of %&in. = 0.625in.

Spacing criteria: Adjustment criteria for spacing appear in Table A-9.7, parts A and B.
For spacing between fasteners in a row, where the loading direction is parallel to grain,
the minimum spacing for full value is 4D = 4(0.625) = 2.5in. Since the actual spacing

f
ﬁ.n_;

Edge distance
—y Spacing between rows

PR §”«~End distance (tension)
s & 2%".—Spacing between fasteners in a row

FIGURE 9.17

Geometry factor parameters for Example 9.4
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is 2.5in., the full value applies, and C, = 1.0. For spacing between rows of fasteners,
again with the loading direction parallel to grain, the minimum required spacing is 1.5D =
1.5(0.625) = 0.9375in. Since the actual spacing (between rows) of 2.5in. exceeds this
value and is no greater than 5in. (the maximum distance allowed between the outer rows
of fasteners), the geometry factor is Co = 1.0.

End distance: Adjustment criteria for end distance appear in Table A-9.7, part C. For the
main member, the loading direction is parallel to grain. Where the fasteners are bearing
toward the member end (in tension) and where the wood is softwood, the minimum end
distance for full value (i.e., for C, = 1.0) is 7D = 7(0.625) = 4.375in. The actual end dis-
tance of bin. is greater than this, so the geometry factor, C, = 1.0.

Edge distance: Adjustment criteria for edge distance appear in Table A-9.7, part D.
For the main member, the loading direction is parallel to grain, so the minimum
edge distance is determined from the so-called slenderness ratio of the fastener, I/D.
The fastener length, /, within the main member is 5%in., so /D = 5.5/0.625 = 8.8.
Since this value is greater than 6, the minimum edge distance is either 1.5D0 =1.5
(0.625) = 0.9375in. or one-half of the spacing between rows = 0.5(2.5) = 1.25in,,
whichever is greater: the minimum edge distance is therefore 1.25in., which the actual
edge distance of 1.5in. exceeds. The geometry factor, therefore, is C, = 1.0.

The geometry factor for the entire connection is found by using the smallest of the geom-
etry factors found for any of the four conditions just tested (end, edge, and the two spacing
conditions where applicable); therefore, we use C, = 1.0.

The adjusted lateral design value for a single bolt in the connection is found by multiply-

ing the lateral design value from step 2 by the various adjustment factors determined in
step 3: Z' = ZACp)(C)(Ca) = 2390(1.0)(1.0)(1.0) = 23901b.
. From Table A-9.6 (part B for steel side members) the group action factor, C,, is 0.997,
a conservative value based on a 6 X 6 main member and two Y-in. steel side plates
(A, = approximately 30in% A, = approximately 3in®), with two fasteners in a single
row. The actual modulus of elasticity (Table A-3.9) for Douglas Fir-Larch (North) No.1 is
£ =1,600,000psi (for posts and timbers), which is larger than the nominal value of
1,400,000 psi assumed in the table; the actual fastener spacing, s = 2.5in., is smaller than
the value, s = 3in., assumed in the table; and the actual fastener diameter, D = %in.,
is smaller than the value, D = 34in., assumed in the table; therefore, the tabular value,
Cg = 0.997, is conservative and can be used. Alternatively, a more accurate value for C,
can be found, based on the method described in Note 3 of Table A-9.6 and illustrated in
Example 9.7.

Adjusting for group action and multiplying the single-fastener value for Z’ found in step 3
by the number of fasteners in the connection, we get a total adjusted connection capacity
equal to 2390(0.997)(4) = 9531 1Ib.

. We are not considering the design of the structural elements themselves in this example.
Tension, row, and group tear-out are considered in Chapter 6, Example 6.2.

. Conclusion: The total capacity of the connection (consisting of six ¥%-in.-diameter bolts) is
95311b. -
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Example 9.5 Analyze wood single-shear connection using multiple lag screws

Problem definition

Find the capacity of a connection (single shear) consisting of a 4 X 10 beam connected to an
8 X 8 post using six 6-in.-long, Y2-in.-diameter lag screws. The wood used is Douglas Fir-Larch
No.2, and the lag screws are fabricated from ordinary, low-strength, A307 steel. Assume live and
dead loads only, dry fabrication and service conditions, and spacing as shown in Figure 9.18.

Solution overview

1. Find the capacity for a single fastener, Z

2. For lag screws and nails, check that penetration into the main member is at least 4D (for
lag screws) or 6D (for nails), and reduce capacity, Z, if necessary.

3. Adjust for duration of load, moisture, and geometry.

4. Adjust for group action, and then multiply the adjusted single-fastener capacity by the
number of fasteners in the connection.

5. Not included in this example (check that the element itself is designed in a manner that
accounts for the presence of bolt or lag screw holes).

Problem solution
1. From Table A-9.13, the lateral design value, Zs e, is 270Ib. The value of Z chosen
corresponds to the following condition: the side member is oriented so that the load is

FIGURE 9.18
Single-shear lag screw connection with multiple fasteners for Example 9.5




Wood 213

perpendicular to the direction of grain, while the main member is oriented so that the load
is parallel to its grain, as defined in Figure 9.8.

2. Penetration must be checked for lag screws (see Table A-9.3 for notes on penetra-
tion; lag screw dimensions can be found in Table A-9.1). The actual penetration,
p = 2.1875in., can be found by first subtracting the side member thickness of 3.5in.
from the lag screw length, L = 6in., to get 2.5in.; and then subtracting the length of the
tapered tip, £ = 0.3125in., from the 2.5in. length within the main member, as illustrated
in Figure 9.19.

This actual penetration is then compared to the minimum lengths for lag screw penetra-
tion in Table A-9.3: the absolute minimum is 4D = 4(0.5) = 2in.; the minimum penetration
to obtain the full value of Zis 8D = 8(0.5) = 4in. Since the actual penetration is between
these two values, the lateral design value, Z, is reduced by multiplying it by p/(8D) =
2.1875/4 = 0.547. Therefore, we use a lateral design value of 270 X 0.547 = 148Ib.

3. Adjustments are as follows:

Cp for typical values of live and dead load is 1.0 (Table A-9.4).

Cy for members fabricated and used dry is 1.0 (Table A-9.5).

Ca is found by testing four separate criteria (Table A-9.7): spacing between fasteners in a
row, spacing between rows of fasteners, end distance, and edge distance. It is sometimes
useful to sketch the members separately, showing dimensions for the relevant geometry
factor parameters (Figure 9.20).

In the calculations that follow, D is the fastener diameter of 0.5in. (however, for lag
screws, the so-called reduced body diameter, D, = 0.371in., is used to calculate lateral
design values).

Spacing criteria: Adjustment criteria for spacing appear in Table A-9.7, parts A and B. For
spacing between fasteners in a row for the horizontal member, where the loading direction is
perpendicular to grain, the minimum spacing for full value is determined by the required val-
ues for the attached member (i.e., for the vertical member with loading parallel to grain). For
spacing between rows of fasteners, again with the loading direction perpendicular to grain, the
minimum required spacing is determined from the so-called slenderness ratio of the fastener,
I/D. For lag screws, the dowel bearing length equals the penetration within the main mem-
ber found in step 2, as noted in Table A.9.3. Therefore, the dowel bearing length, /, equals

3.5” 7.5”
Side Main
member member
p=2.1875"

E =0.3125"
g
_,r_rT

6" |

1 1
FIGURE 9.19

Penetration of lag screw into main member, for Example 9.5
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FIGURE 9.20

Geometry factor parameters for Example 9.5

2.1875in., and /D = 2.1875/0.5 = 4.375. Since this value is between 2 and 6, the mini-
mum spacing between rows of fasteners is (5/+ 10D)/8 = (5 X 2.1875 + 10 X 0.5)/8 =
1.992in., which the actual spacing between rows of 3.5in. exceeds. Therefore, the geometry
factoris Co = 1.0.

For spacing between fasteners in a row, where the loading direction is parallel to grain,
the minimum spacing for full value is 4D = 4(0.5) = 2in. Since the actual spacing is
2%in., the full value applies here (and also to the horizontal member), and C, = 1.0.
For spacing between rows of fasteners, again with the loading direction parallel to grain,
the minimum required spacing is 1.5D0 = 1.5(0.5) = 0.75in. Since the actual spacing
(between rows) of 3.5in. exceeds this value and is no greater than 5in. (the maximum dis-
tance allowed between the outer rows of fasteners), the geometry factor is C, = 1.0.

End distance: Adjustment criteria for end distance appear in Table A-9.7, part C. For
the horizontal member, the loading direction is perpendicular to grain, so the minimum
end distance for full value (i.e., for Co = 1.0) is 4D = 4(0.5) = 2in. Since the actual
end distance of 2in. equals this value (and the other, unspecified, end distance is clearly
larger), the geometry factor, C, = 1.0. For the vertical member, the loading direction is
parallel to grain and the specified wood is a softwood, so the minimum end distance for
full value for tension (i.e., for Co = 1.0) is 7D = 7(0.5) = 3.5in. Since the actual end
distance, although unspecified, clearly exceeds this, the geometry factor is C, = 1.0. For
the full value in “compression,” we need a minimum end distance of 4D = 4(0.5) = 2in.,
which the actual end distance of 2%in. exceeds. The geometry factor therefore is also
Ca =1.0.

Edge distance: Adjustment criteria for edge distance appear in Table A-9.7, part D. For
the horizontal member, the loading direction is perpendicular to grain, so the loaded and
unloaded edges must be determined separately. The minimum distance for the loaded edge
(i.e., the edge toward which the fastener itself is bearing) is 4D = 4(0.5) = 2in., which the
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actual loaded edge distance of 2%in. exceeds. The minimum distance for the unloaded edge
(i.e., the opposite edge away from which the fastener itself is bearing) is 1.5D = 1.5(0.5) =
0.75in., which the actual unloaded edge distance of 2%in. exceeds. For the vertical member,
the loading direction is parallel to grain, so the minimum edge distance is determined from
the so-called slenderness ratio of the fastener, //D. The dowel bearing length, /, within the
main member is 2.1875in., so /D = 2.1875/0.5 = 4.375. Since this value is less than or
equal to 6, the minimum edge distance is 1.50 = 1.5(0.5) = 0.75in., which the actual edge
distance of 2.0in. exceeds. The geometry factor therefore is C, = 1.0.

The geometry factor for the entire connection is found by using the smallest of the geom-
etry factors found for any of the four conditions just tested (end, edge, and the two spacing
conditions where applicable); therefore, we use C, = 1.0.

The adjusted lateral design value for a single lag screw in the connection is found by

multiplying the lateral design value from step 2 by the various adjustment factors deter-
mined in step 3: Z’ = Z(Cp)(Ci)(Cx) = 148(1.0)(1.0)(1.0) = 148Ib.
From Table A-9.6, the group action factor, C,, is 0.970, a value based on an 8 X 8 main
member and a side member with an effective area of 12.25in? (because the side member
is loaded perpendicular to grain, its effective area is taken as its thickness of 3.5in. mul-
tiplied by the distance between the outer rows of fasteners, also 3.5in.). For use in Table
A-9.6, these areas are rounded as follows: A,, = 56in% and As = 11in2. The actual fastener
spacing, s = 2in., is smaller than the value, s = 3in., assumed in the table; and the actual
fastener diameter, D = %in., is smaller than the value, D = 34in., assumed in the table.
However, the values for modulus of elasticity for dimension lumber and timbers in Table
A-3.9 (1,600,000 psi for the side member; 1,300,000 psi for the main member) are not
both larger than the nominal value of 1,400,000 psi assumed in the table. Therefore, the
tabular value, C, = 0.970, may not be conservative. Alternatively, a more accurate value for
Cg can be found, based on the method described in Note 3 of Table A-9.6 and illustrated in
Example 9.7.

Adjusting for group action (using Cg = 0.970), and multiplying the single-fastener value
for Z' found in step 3 by the number of fasteners in the connection, we get a total adjusted
connection capacity equal to 148(0.970)(6) = 861 Ib.

We are not considering the design of the structural elements themselves in this example.
Conclusion: The total capacity of the connection (consisting of six ¥ X 6in. lag screws) is
8611b. -

Example 9.6 Design wood single-shear connection using common nails

Problem definition

Determine the number of 10d common nails needed to connect a typical 2 X 10 floor joist,
spanning 11.5ft and spaced at 16in. on center, to a 2 X 6 stud, as shown in Figure 9.21. The
wood used is Spruce-Pine-Fir No.1/No.2, the distributed loads on the floor consist of 40 psf
live load and 10.5 psf dead load, and the wood is fabricated and used dry.
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FIGURE 9.21

Single-shear nailed connection for Example 9.6

Solution overview

1.
2.

b

Find the capacity for a single fastener, Z

For lag screws and nails, check that penetration into the main member is at least 4D (for
lag screws) or 6D (for nails), and reduce capacity, Z, if necessary.

Adjust for duration of load, moisture, and geometry.

Group action does not apply to nailed connections.

Check that the element itself is designed in a manner that accounts for the presence of
bolt or lag screw holes (not applicable).

Find the total force acting on the connection and divide by the adjusted capacity for a
single fastener to find the number of fasteners required.

Problem solution

1.

2.

From Table A-9.14, the lateral design value, Z, is 1001b, for a 10d nail and a 1%-in. side
member.
In general, penetration must be checked for nails (see Table A-9.3): however, tabular val-
ues in Table A-9.14 already include reductions for penetration, so this step is only neces-
sary when lateral design values are computed using other means. We can confirm that a
penetration reduction is not necessary by computing the actual penetration, p = 1.5in.,
as shown in Figure 9.22. First, subtract the side member thickness of 1.5in. from the nail
length of 3in., to get 1.5in. (nail dimensions can be found in Table A-9.2).

Next, the actual penetration is compared to the minimum requirements for nail penetra-
tion in Table A-9.3. Since p = 1.5in. = 10D = 10(0.148) = 1.48in., we can use the full lat-
eral design value. For p < 10D, in addition to the necessary reduction in lateral capacity, the
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FIGURE 9.22
Penetration of nail into main member for Example 9.6

dowel bearing length in the main member, I, is taken as the penetration minus the length of
the tapered tip so that tabular lateral design values, which do not consider this reduced dowel
bearing length, may be slightly nonconservative in some cases (specifically, they may differ in
cases where the governing yield limit equation includes the dowel bearing length parameter).

The lateral design value, Z, remains 1001b.

3. Adjustments are as follows:

Cp for live and dead load is 1.0 (Table A-9.4).

Cy for members fabricated and used dry is 1.0 (Table A-9.5).

Cx = 1.0 for dowel-type fasteners with D < %in. This applies to virtually all nails, certainly
for 10d nails with D = 0.148in. (see Table A-9.2). While no specific numerical require-
ments are given for nail spacing and edge or end distances, nails should be configured so
that splitting of the wood members does not occur.

The adjusted lateral design value for the connection is found by multiplying the lateral
design value from step 2 by the various adjustment factors determined in step 3: Z' =
Z(Cp)(Cy)(Cx) = 100(1.0)(1.0)(1.0) = 1001b.

4. The group action factor, Cg = 1.0, for fasteners with diameter, D < %ain., that is, for most
nailed connections.

5. We are not considering the design of the structural elements themselves in this example.

6. To determine the number of nails needed, we first find the total force acting at the
connection—that is, the reaction of a typical joist—by multiplying the floor loads by the
tributary area for half of a single joist: (40 + 10.5)(5.75 X 1.33) = 387.21b. Dividing this
total force by 1001b (the capacity of a single fastener), we get the required number of fas-
teners, n = 387.2/100 = 3.87; that is, we need four 10d nails. -

|
Example 9.7 Analyze wood double-shear bolted connection using yield limit and

group action equations

Problem definition
Find the capacity of a connection (double shear) consisting of a 6 X 6 tension member con-
nected by two Y%-in. steel side plates, using four %-in.-diameter bolts. The wood used is
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1/4” A36 steel
side plates
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FIGURE 9.23

Double-shear bolted connection with multiple fasteners and steel side plates for Example 9.7
(same as Figure 9.16 for Example 9.4)

Douglas Fir-Larch (North) No. 1; the side plates are ASTM A36 steel; and the bolts are fabri-
cated from ordinary, low-strength, A307 steel, as is typical for wood connections. Assume live
and dead loads only, dry fabrication and service conditions, and spacing as shown in Figure
9.23. Use yield limit and group action equations, rather than tabular values (see Example 9.4
for solution using tabular values).

Solution overview

1.
2.

3.

Find the capacity for a single fastener, Z, using yield limit equations.

For lag screws and nails, check that penetration into the main member is at least 4D (for
lag screws) or 6D (for nails), and reduce capacity, Z, if necessary.

Adjust for duration of load, moisture, and geometry.

Adjust for group action using group action factor equations, and then multiply the adjusted
single-fastener capacity by the number of fasteners in the connection.

Check that the element itself is designed in a manner that accounts for the presence of
bolt or lag screw holes (not included in this example).

Problem solution

1.

To find the lateral design value, Z, for a single fastener using yield limit equations, follow
the step-by-step method outlined in Table A-9.15. The main member is oriented so that
the load is parallel to the direction of grain, as defined in Figure 9.8. The orientation of the
steel side plates to the direction of load is not relevant, since there is no “grain” in the steel
plates that influences its strength.

From Table A-3.11 (specific gravity), G = 0.49 for Douglas Fir-Larch (North).
D = %in. = 0.625in.
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Main member (D > 0.25in., wood, loaded parallel to grain): F.,, = 11,200G = 11,200
(0.49) = 5488psi. Side member (A36 steel): Fos = 87,000psi. It is common to round
these values to the nearest 50 psi, so we will use Fg,;,, = 5500 psi.

Fy» = 45,000 psi for bolts.

Dowel bearing lengths are /,, = 5.5in. and /; = 0.25in.

Compute the terms R, = F.,/Fes = 5500/87,000 = 0.06322; and R;= I,/ls =
5.5/0.25 = 22.0.

Ry= 4K, = 4(1.0) = 4 (for Yield Modes I, and I); Ry= 3.6K, = 3.6(1.0) = 3.6 (for
Yield Mode II); and Ry = 3.2K, = 3.2(1.0) = 3.2 (for Yield Modes lll,,,. lllg, V). In these
equations, K, = 1 + 0.25(6/90) = 1.0, since 6 = 0°.

Compute the following coefficients:

_JR +2R20+ R +RD +RPRE —RA+R)

kl
1+R,)
_ J0.06322 + 2(0.06322)2(1 + 22 + 222) + 22%0.06322% — 0.06322(1 + 22)
(1 + 0.06322)
= 0.5687
2F , (1 + 2R.)D?
ky = =1+ [20+R)+ =L
3Fem/m

2(45,000)(1 + 2x0.06322)(0.625)
3(5500)(5.5)°

-1+ \/2(1 + 0.06322) +

0.4852

2F (2 + R,)D?
k3:_1+\/2(1+Re)+ o2+ R,)

R, 3F,,/°

_ 1y \/2(1 +0.06322) | 2(45,000)(2 + 0.06322)(0.625)°
0.06322 3(5500)(0.25)

= 9.1967

Compute Z for all applicable yield modes (four applicable modes for double shear):

For Yield Mode |, Z = Di,Fom/Ry = 0.625(5.5)(5500)/4 = 4726.61b.

For Yield Mode |, Z = 2DIsFs/Ry = 2(0.625)(0.25)(87,000)/4 = 6796.91b for double shear.
Yield Mode Il does not apply to double-shear connections.

Yield Mode lll,,, does not apply to double-shear connections.

For Yield Mode ll, z = 2KaDFen _ 209.1967)(0.625)(0.25)(5500)
2+ RR, (2 + 0.06322)(3.2)

= 2394.11b.

20? [2FenFy _ (2)(0.625)° [2(5500)(45,000)

For Yield Mode IV, Z = — = 3041.4Ib.
31+R,) 3.2 3(1 + 0.06322)




220 CHAPTER 9 Connections

The smallest of the various yield mode values is then selected: Z = 2394.11b based on
Yield Mode lll.

. Penetration is only an issue with lag screws and nails, since bolts must always fully pen-

etrate the members being connected. Therefore, no reduction of the lateral design value is
necessary, and it remains equal to Z = 2394.11b.

. Adjustments are as follows (same as for Example 9.4):

Cp for typical values of live and dead load is 1.0 (Table A-9.4).

Cy for members fabricated and used dry is 1.0 (Table A-9.5).

Ca is found by testing four separate criteria (Table A-9.7): spacing between fasteners in
a row, spacing between rows of fasteners, end distance, and edge distance. It is some-
times useful to sketch the members separately, showing dimensions for the relevant geom-
etry factor parameters (Figure 9.24). Only the wood main member is considered here; the
tension capacity and bolt spacing in the steel plate must be considered separately (see
Chapter 6 for discussion of tension and the steel section of this chapter for discussion of
bolt spacing).

In the calculations that follow, D is the fastener diameter of %in. = 0.625in.

Spacing criteria: Adjustment criteria for spacing appear in Table A-9.7, parts A and B. For
spacing between fasteners in a row, where the loading direction is parallel to grain, the mini-
mum spacing for full value is 4D = 4(0.625) = 2.5in. Since the actual spacing is 2.5in.,
the full value applies, and C, = 1.0. For spacing between rows of fasteners, again with the
loading direction parallel to grain, the minimum required spacing is 1.5D = 1.5(0.625) =
0.9375in. Since the actual spacing (between rows) of 2.5in. exceeds this value and is no
greater than 5in. (the maximum distance allowed between the outer rows of fasteners), the
geometry factor is C, = 1.0.

End distance: Adjustment criteria for end distance appear in Table A-9.7, part C. For the
main member, the loading direction is parallel to grain. Where the fasteners are bearing
toward the member end (in tension) and for softwood, the minimum end distance for full
value (i.e., for Co = 1.0) is 7D = 7(0.625) = 4.375in. The actual end distance of 5in. is
greater than this, so the geometry factor is C, = 1.0.

Edge distance: Adjustment criteria for edge distance appear in Table A-9.7, part D. For
the main member, the loading direction is parallel to grain, so the minimum edge distance

R
.‘ ‘"ﬁls Edge distance
Spacing between rows

2_ |5"“'= End distance (tension)

__Lz%'k— Spacing between fasteners in a row

FIGURE 9.24

Geometry factor parameters for Example 9.7 (same as Figure 9.17 for Example 9.4)
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is determined from the so-called slenderness ratio of the fastener, I/D. The fastener length,
I, within the main member is 5%in., so I/D = 5.5/0.625 = 8.8. Since this value is greater
than 6, the minimum edge distance is either 1.5D = 1.5(0.625) = 0.9375in., or one-half
of the spacing between rows = 0.5(2.5) = 1.25in., whichever is greater: the minimum
edge distance is therefore 1.25in., which the actual edge distance of 1.5in. exceeds. The
geometry factor, therefore, is Co = 1.0.

The geometry factor for the entire connection is found by using the smallest of the geom-
etry factors found for any of the four conditions just tested (end, edge, and the two spacing
conditions where applicable); therefore, we use C, = 1.0.

The adjusted lateral design value for a single bolt in the connection is found by multiply-
ing the lateral design value from step 2 by the various adjustment factors determined in
step 3: Cp, Cy, and Ca: Z' = ZCp)(Cy)(Cp) = 2394.1(1.0)(1.0)(1.0) = 2394.11b.

4. The group action factor, Cg, can be found based on the method described in Note 3 of
Table A-9.6:

D = 0.625in.
~ = 270,000(D'%) = 270,000(0.625%) = 133,409.
s=2.5in.

E, = 1,600,000 psi (Table A-3.9); Es = 29,000,000 psi (Table A-3.12, Note 1).
An = 30.25in% A, = 2(0.25 X 5.5) = 2.75in? (Table A-4.1).

U =1+ (133,409)22 1 + 1 — 1.0055; and
2 |(1,600,000(30.25)  (29,000,000)(2.75)

m = 1.0055 — 41.0055° — 1 = 0.900.

Rey = [(1,600,000)(30.25)1/[(29,000,000)(2.75)] = 0.607.
n=2.

1+ 0.607
1-0.900

0.900(1 - 0.9002@)
2[(1 + 0.607 x 0.900%)(1 + 0.900) — 1 + 0.9002(2’]

Ce

] = 0.999.

Adjusting for group action and multiplying the single-fastener value for Z’ found in step 3
by the number of fasteners in the connection, we get a total adjusted connection capacity
equal to 2394.1(0.999)(4) = 9567 Ib.

5. We are not considering the design of the structural elements themselves in this example.
Tension, row, and group tear-out are considered in Chapter 6, Example 6.2.

6. Conclusion: The total capacity of the connection (consisting of six ¥2-in.-diameter bolts) is
9567 Ib. -

Withdrawal

Where a fastener is itself stressed in tension, it is considered to be loaded in “with-
drawal,” as a failure of the connection would cause it to “withdraw”—pull out—
from the member into which it was inserted. For lag screws and nails, selected
withdrawal design values, designated W to distinguish them from lateral design
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values, Z, are tabulated in Tables A-9.16 and A-9.17. These tabular values increase
with higher wood specific gravity, G, and larger shaft diameter, D, and are based
on the following empirical equations: for lag screws, W = 1800G>?D%%; for nails,
W = 1380G”2D. In these equations, W is the withdrawal design value per inch of
penetration (Ib), G is the specific gravity of the wood, and D is the fastener diam-
eter (in.). While it is permitted to use nails in withdrawal, it is advisable to alter the
connection geometry, if possible, so that such unthreaded fasteners are stressed in
shear, rather than in tension. Unlike the penetration length of lag screws stressed in
shear (laterally), the penetration of lag screws in withdrawal only includes that por-
tion of the shank length that is both embedded in the main member and threaded
(excluding the tapered tip).

Lag screw withdrawal values must be reduced by 75% when the lag screws
are inserted into the end grain of a wood member; nails are not permitted to be
loaded in withdrawal from the end grain of wood members. Aside from comput-
ing the capacity of a connection based on computed withdrawal values, W, the ten-
sile strength of lag screws loaded in withdrawal must also be checked, and, where
the head (or washer) of the lag screw is in contact with a wood member, the bear-
ing stress of the washer on this member must also be checked. Finally, the adjusted
withdrawal capacity per inch of penetration, W', is computed by multiplying W by
the appropriate adjustment factors: where in-service temperatures are no more than
100°F, only duration of load and wet service factors apply to fasteners in withdrawal
(see Tables A-9.4 and A-9.5).

For bolted connections, “withdrawal” is not possible; instead, where bolts are
placed in tension, the tensile strength of the bolt itself, as well as the bearing of the
bolt (or washer) on the surface of the wood member, must be checked.

|
Example 9.8 Design wood connection in withdrawal, using lag screws

Problem definition

Determine the number of 3-in.-long, Y-in.-diameter, lag screws needed to connect a %-in.
steel plate holding a 2800-Ib load to a 4 X 10 wood beam, as shown in Figure 9.25. The wood
used is Spruce-Pine-Fir No.1/No.2, the loads are dead and live only (so that Cp = 1.0), and
the wood is fabricated and used dry. Assume that the steel plate capacity is adequate.

Solution overview
Find the capacity of a single lag screw in withdrawal; divide the total load by this value to deter-
mine the required number of lag screws.

Problem solution

1. From Table A-9.16, the withdrawal design value, W, per inch of penetration, is 291 1b,
for a 3-in.-long, “%-in.-diameter, lag screw. The adjusted value, W’'= W(Cp)(Cy) = 291
(1.0)(1.0) = 291 1b.



Wood

0.3125"

w

TTvE= 1 .GB?S"T

1/4"-thick plate
2800 Ib (a) (b)
FIGURE 9.25

Withdrawal load on lag screws for Example 9.8

2. From Table A-9.1, it can be seen that the actual penetration into the main member (i.e.,
the length of the threaded portion of the lag screw that engages the main member, not
including the tapered tip, or T— E) = 1.6875in. Therefore, each lag screw resists
(291)(1.6875) = 491 Ib in withdrawal.

3. Since the total load to be resisted is 28001Ib, the required number of lag screws is

2800/491 = 5.7. Round up and use six 3-in.-long, ¥2-in.-diameter lag screws. -

Example 9.9 Analyze wood connection in withdrawal, using common nails

Problem definition

A steel bracket designed to hold heavy items is fastened to the floor joist above it using four
16d common nails, as shown in Figure 9.26. These nails must go through a ¥-in. drywall ceil-
ing, as well as the %-in.-thick steel bracket itself, before reaching the wood joist, fabricated
from Douglas Fir-Larch. How much load can the bracket carry, based on the capacity of the
fasteners (and assuming that the strength of the bracket itself is adequate)?

Solution overview
Find the capacity of a single nail in withdrawal; multiply the single-nail capacity by the number
of nails to find the capacity of the bracket.

Problem solution

1. From Table A-9.17, the withdrawal design value for a single 16d nail, W, per inch of pene-
tration, is 401b. The adjusted value, W' = W(Cp)(Cyy) = 40(0.9)(1.0) = 361b. The decision
to use a value of Cp = 0.9 is based on an evaluation of the loads, which are essentially of a
permanent nature (i.e., dead loads).

2. The actual penetration into the main member is the total nail length minus the drywall and
steel thickness; from Table A-9.2, we see that p = 3.5 — (Y2 + %) = 2.875in. Therefore,
each nail resists (36)(2.875) = 103.51b in withdrawal.
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FIGURE 9.26

Withdrawal load on nailed bracket for Example 9.9

3. Since there are four nails, the total capacity of the rack is P = 4(103.5) = 414 1b. However,
it would be wiser to use a threaded connector (such as a screw or lag screw) instead of a

nail in this situation.
|

Bearing

Where a wooden column or beam bears on another structural element, a compres-
sive stress acts on the bearing surfaces. The use of the plural (“surfaces”) indicates
that bearing always acts in two directions, so that, for example, a joist bearing on a
plate implies that the plate is also bearing on the joist. In theory, the bearing stress is
the same on both surfaces; in practice, the effective bearing area in some cases may
be increased by adding %in. in the direction of the bearing length—measured in the
direction parallel to the grain of the wood—to account for the ability of the wood
grain to distribute the load across a larger area. For the beam and post shown in Figure
9.27, the bearing stress of the post on the beam, or the beam on the post, is equal to
the load, P, divided by the bearing area, W X T. Since wood is weaker when stressed
perpendicular to its grain, the critical bearing stress will almost always occur acting
downward on the surface of the beam, rather than upward on the post. If the dis-
tance, D, measured from the edge of the post to the end of the beam, is greater than
3in., and the bearing length, W, of the post is less than 6in., we can reduce the effec-
tive bearing stress of the post on the beam by dividing the load, P, by the larger effec-
tive bearing area, T(W + %in.). This stress is then compared to the adjusted allowable
compressive stress (perpendicular to grain). For joists and other beams, the allowable
stress is in compression, perpendicular to the grain of the wood, whereas when con-
sidering the bearing stress on columns, the allowable stress value is taken for compres-
sion parallel to grain (but without including the adjustment factor for stability, since
buckling is not relevant at the surface where bearing stresses are being measured).

For compressive stresses parallel to grain, a steel plate must be used at the point
of bearing to distribute such stresses more evenly across the surfaces in contact, but
only in cases when these stresses exceed 75% of F;. See Table A-3.4 for adjustments
to allowable compressive stresses.
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FIGURE 9.27
Bearing of post on beam: the direction of grain is indicated by the parallel lines on each surface

Example 9.10 Check wood connection in bearing

Problem definition

A 4 X 4 post bears at the midpoint of a 4 X 10 girder. The 5000-Ib load transferred to the
girder through the post consists of live, dead, and wind loads. Check whether the bearing
capacity is adequate, assuming that both members are Hem-Fir No.2.

Solution overview
Find the effective bearing area of the post on the girder; find the actual “effective” bearing stress
on the girder; compare this stress to the allowable compressive stress perpendicular to grain.

Problem solution

1. Because the post has a bearing length less than 6in., and is more than 3in. from the end
of the girder, we can use an effective bearing length 3in. greater than its actual bear-
ing length of 3.5in. (see Table A-4.1 for cross-sectional dimensions). The effective bear-
ing area is therefore = T X (W + %) = 3.5(3.5 + 0.375) = 13.56in°. The actual bearing
stress on surface of the girder is 5000/13.56 = 369 psi.

2. This value is compared with the adjusted allowable bearing stress, F/ .. From Table
A-3.3, the design value for compression perpendicular to grain for the Hem-Fir girder is
Feper = 405 psi.

3. Assuming that the members are used indoors, the relevant adjustment factors are for size
(Cr=1.0) and wet service (Cy, = 1.0) only; duration of load does not apply to compression
perpendicular to grain. Therefore, F/ ., = 405(1.0)(1.0) = 405psi, which is greater than the
actual effective bearing stress. The connection is satisfactory with respect to bearing.

4. The 4 X 4 post need not be directly checked for bearing stress (since its allowable stress in
compression parallel to grain will be greater than the girder’s allowable stress perpendicular
to grain). However, we check to see whether the actual stress on the post exceeds 75%
of F7, the allowable compressive stress parallel to grain with all adjustments except for the
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column stability factor; if it does, a steel bearing plate should be specified. The actual stress
is the load divided by the post area, or 5000/(3.5 X 3.5) = 408 psi, where the cross-sectional
dimensions can be found in Table A-4.1. From Tables A-3.3 and A-3.4, the adjusted allow-
able stress (without C,) multiplied by 75% is (0.75)1300(1.15)(1.0) = 1121 psi (the size fac-
tor is Cp= 1.15 for the 4 X 4 post). Since this value is greater than the actual stress, no
bearing plates are required between the post and girder.

In the design of such a connection, it must not be assumed that gravity will hold the post
firmly against the girder under all conditions; the two members must also be mechanically
connected to guard against unintended movement. -

STEEL

Steel structural elements are typically connected to each other using high-strength
bolts or welds. Especially in so-called field connections—those that take place
at the construction site—bolts are preferred, as they are easier, and generally less
expensive, to execute in such contexts (outdoors, with unpredictable weather con-
ditions, and without convenient access to welding equipment). Often, when weld-
ing is found to be either necessary or expedient, it occurs at the fabricating shop,
although field welding is sometimes unavoidable.

Steel connections are designated according to the types of forces and/or bending
moments that are intended to be resisted and that are symbolized by the hinges, roll-
ers, or fixed constraints that populate load diagrams in statics texts (see Figure 9.1).
In practice (see Figure 9.28), hinges and rollers become simple connections (previ-
ously designated as Type 2); fixed joints become fully restrained, or FR, connec-
tions (previously designated as Type 1); and the intermediate conditions between
simple and fully restrained become partially restrained, or PR, connections (previ-
ously designated as Type 3).

Bolted connections

High-strength bolts typically used to connect steel elements are stronger than the
bolts most often used to connect wood elements: the two most commonly speci-
fied bolts used in steel structures are designated A325 (with an ultimate strength,
F,, = 105ksi or 120ksi) and A490 (with F,, = 150ksi). In contrast, A307 bolts typi-
cally used in wood connections have an ultimate strength, F,, = 60ksi. Bolts used to
connect steel elements are stressed most commonly in shear, tension, or a combina-
tion of shear and tension, as illustrated in Figure 9.29.

For shear connections, most bolts are designed so that they “bear” against the
edge of the bolt holes into which they are inserted. These are bearing-type, or “snug-
tightened” joints, and a small amount of slip of the bolt within the slightly larger bolt
hole is permitted. In the less common cases where no slip is desired—for example,
in structures subjected to repeated stress reversals—so-called slip-critical connec-
tions are designed on the basis of the clamping force that the bolts place on the
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(c)

FIGURE 9.28

Typical bolted connections for steel members: (a) simple column—beam connection—formerly
designated as Type 2, (b) simple beam-girder connection—formerly designated as Type 2, and
(c) fully restrained (FR) frame connection between column and girder—formerly designated

as Type 1

il ;

(b) (c)

FIGURE 9.29

Bolts stressed in (a) shear, (b) tension, and (c) shear and tension

steel elements being joined so that friction between the surfaces clamped together
resists the tendency of the bolts to slip within the bolt holes. In either case (bearing
or slip-critical bolt design), two separate strength criteria must be satisfied: (1) the
shear strength of the bolt itself and (2) the compressive capacity of the elements
being joined, as the bolts “bear” on the inside surface of the bolt holes.
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Shear capacity

The nominal bolt shear stress can be taken as 60ksi for A325 bolts and 75ksi for
A490 bolts: when divided by the safety factor for bolt shear, 2 = 2.00, the allow-
able stresses become 30ksi for A325 bolts and 37.5ksi for A490 bolts. These values
assume that the threaded part of the bolt shaft does not penetrate as far as the actual
shear planes (designated as condition X, for threads “eXcluded” from the shear
planes); in cases where the threaded portions of the shaft penetrate, or are included
within, the shear planes (condition N for “iINcluded”), these available strengths are
reduced by 80% to 24ksi for A325 bolts and 30ksi for A490 bolts. The capacity of
a single bolt in shear is found by multiplying the appropriate available stress by the
nominal bolt area and then by the number of shear planes in the connection (typi-
cally, either one or two, corresponding to single or double shear). Typical values for
the available shear strength of bolts can be found in Table A-9.18. The shear capac-
ity of the connection is the sum of the capacities of the individual bolts, that is, the
single-bolt capacity times the number of bolts in the connection. Slip-critical bolts
are given a lower nominal shear stress, effectively requiring more bolts per connec-
tion and thereby ensuring that no slip will occur.

Bearing capacity
The nominal bearing capacity R,, = 3.0d,tF,,, of a bolt depends on the strength of the
material being bolted, measured by its minimum tensile strength, F,,, but it may be
reduced if the bolt holes are too closely spaced or too close to the edge of the mate-
rial being connected (when such clear spacing between bolt holes, or between a hole
and the material edge, is less than 2in., multiply R, by L./2, where L, is the smallest
clear distance measured in the direction of the applied force). In this equation, d,,
is the nominal bolt diameter and ¢ is the thickness of the material upon which the
bolt is bearing. For bolts in single shear, the governing thickness is the thickness of
the thinner element being joined. For bolts in double shear, the relevant thickness is
either that of the middle piece or the combined thicknesses of the two outer (side)
pieces, whichever is less (assuming that all elements being joined are made from the
same material). For connections made from different types of steel, bearing capacity
should be computed for each element, based on its own thickness and material prop-
erties, with the smaller capacity governing the connection design for bearing.
Dividing the nominal bearing capacity by the safety factor for bearing, {2 = 2.0,
we get the available strength for a bolt in bearing, R,/C) = 1.5d,tF,, multiplied by
L./2 as before, where the clear bolt hole spacing (or distance to the edge) is less
than 2in. The available strength is reduced by 80% for cases where the small defor-
mations associated with bolt bearing, at ordinary service loads, are considered to
be a design issue. Typical values for the available bearing strength of bolts can be
found in Table A-9.19. The bearing capacity of the connection is the sum of the
capacities of the individual bolts, that is, the single-bolt capacity times the number
of bolts in the connection. The bolt hole diameter (assuming standard holes) used in
the calculation of bolt hole spacing can be taken as Ysin. greater than the nominal
bolt diameter, rather than using a bolt hole diameter %in. larger as is required in
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the calculation of net area for steel tension elements (see Chapter 6). For example,
the clear bolt hole spacing for 3%-in.-diameter bolts spaced 3in. on center in the
direction of the force, L. = 2%¢in., is found by subtracting the bolt hole diameter
(34 + Yis = Wein.) from the centerline spacing (3in.).

Minimum and maximum spacing

Bolts that are used to connect steel elements are also subjected to minimum and
maximum spacing rules. The basic suggested minimum centerline spacing between
bolts is three times the nominal bolt diameter, d,, although a spacing no greater
than 2% times d, is permitted. The minimum centerline distance to any edge varies,
depending on the bolt diameter. Minimum spacing and edge distance requirements
are given in Table A-9.20 for typical bolt sizes.

In addition to these minimum spacing requirements, bolts are also subjected to
maximum spacing rules, with 12in. being the maximum centerline bolt spacing, in
the direction of the applied load, permitted for plates bolted to another element
(e.g., to another plate, or to a rolled section). Where either element being joined is
less than %2in. thick, this maximum spacing may be reduced to 24 times the thick-
ness of the thinner element. Similarly, the maximum edge distance, measured from
the bolt centerline, is 6in., which may be reduced for elements less than %in.
thick to 12 times the element thickness. These requirements can be found in Table
A-9.20, part C, for typical member thicknesses.

Tension, shear and block shear

‘Where bolt holes reduce the cross-sectional area of a tension element, the design of
the tension element itself must account for this reduced net, or effective net, area,
as described in Chapter 6. For coped beams bolted to the webs of girders, block
shear must be checked, as described in Chapter 8.

Example 9.11 Design bolted connection for steel tension element

Problem definition

Examine the W8 X 24 wide-flange shape used as a tension element in a steel truss (the sec-
tion’s capacity was determined to be 148kips in Example 6.4 when using two lines of 34in.
diameter bolts). Find the required number of bolts so that their available strength is no less
than the beam’s tension capacity. Assume A36 steel for the W8 X 24 section, and A490 high-
strength bearing-type bolts (threads included in the shear plane).

Problem overview
Find the required number of bolts based on bolt shear; check for bolt bearing.

Problem solution
1. Required number of bolts (design based on shear): From Table A-9.18, part A, for
A490 bolts and 34-in. bolt diameter, the shear capacity per bolt is 16.6kips, assuming
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FIGURE 9.30

Connection of W8 X 24 tension element using two lines per flange of high-strength bolts for
Example 9.10

threads excluded from the single shear plane. Based on Note 1 (for threads included
in shear plane), this value is reduced by 80%, so the capacity per bolt becomes
0.80(16.6) = 13.28kips per bolt. The required number of bolts is equal to the total capac-
ity divided by the capacity per bolt, or 148/13.28 = 11.1 bolts. Clearly, this number must
be rounded up to an integer that is divisible by 4, so that the four lines of bolts distributed
on the two flanges all have the same number; therefore, we provisionally select 12 bolts, as
shown in Figure 9.30.

. Check required number of bolts (based on bearing capacity): From Table A-9.19, the bearing

capacity per bolt, per inch of A36 material thickness, is 65.3kips. As can be seen from Table
A-4.3, the flange thickness of a W8 X 24 section is 0.40in. Therefore, the capacity of a single
bolt, based on bearing on the flange thickness, is 0.40(65.3) = 26.12kips. The total capacity
of the 12-bolt connection, again based on bearing, is 12(26.12) = 313kips. Since this capac-
ity is no smaller than the capacity determined in step 1 for shear, the provisional selection of
12 bolts is satisfactory. For a bearing capacity less than that determined for shear, the number
of bolts would need to be increased accordingly, and the bolt design would be governed by

bearing instead of shear.
& -

Welded connections

Two pieces of steel may be welded together, not by directly melting one piece into
the other, but rather by depositing melted steel contained in a separate electrode
along the surfaces of the two steel pieces to be joined. Naturally, some melting of
the joined pieces occurs as the “weld” steel is deposited; however, the weld and
adjacent surfaces rapidly cool and harden as the electrode moves along the weld
line, effectively connecting the pieces together. While there are numerous types of
weld geometries—including groove welds, plug welds, and slot welds—the most
common is the triangular fillet weld. In what follows, we discuss the strength of fil-
let welds subjected to loads parallel, perpendicular, or angled to the weld line.
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F , Weld N /, l/

(a) (b) (c)
FIGURE 9.31

Three views of a typical fillet weld illustrating (a) the root, size (leg length), w, and throat dimension,
t as well as two modes of failure on the throat surface, based on either (b) tension or (c) shear

As can be seen in Figure 9.31, a fillet weld is assumed to fail along the surface
defined by its throat, labeled ¢ in Figure 9.31a, whether the weld itself is stressed
in tension, compression, or shear. With symmetrical welds angled at 45° to the sur-
faces being joined, it can be seen that the throat dimension, ¢, equals 0.707w (where
w is the hypotenuse of a 45° right triangle with both legs equal to #). For a weld of
length, L, the surface area resisting either tension, compression, or shear is, there-
fore, A,, = tL = 0.707wL. A typical 1-in. length of weld (i.e., with L = 1), therefore,
has a failure surface area of 4,,; = 0.707w. The nominal strength (capacity) of a
weld loaded “longitudinally”—that is, as shown in Figure 9.31¢c—is found by multi-
plying this surface area by the weld strength, taken as 0.6Fyy, where Fyxy depends
on the strength of the electrode used. For A36 (F), = 36ksi) and A992 (F,, = 50ksi)
steel, an electrode is typically specified with Fgyy = 70ksi, designated generically
as E70XX. Putting this all together, we can compute the nominal strength of a
l-in.-long longitudinal weld: R,; = 0.707(0.6 X 70)(w) = 29.69w kips per inch of
weld length. The available strength is found by dividing this nominal capacity by the
safety factor, 2 = 2.0, so that R,,,/$2 = 14.85w kips per inch of weld.

The general equation for all fillet welds, loaded longitudinally as shown in Figure
9.31c, transversely as shown in Figure 9.31b, or at any angle in between, is:

R,/ = 14.85w(1.0 + 0.50 sin"*0) ©.D

where
R,/€) = the available strength of a 1-in.-long weld (kips).
f = the angle (from 0° to 90°) between the weld line and the direction of load.

w = the weld size, or leg length (in.).
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It can be seen that for longitudinal welds, with § = 0°, the parenthetical term drops
out, and Equation 9.1 is as derived earlier. For 6§ = 90° (a transverse weld), the
capacity increases by a factor of (1.0 + 0.50sin'> 90°) = 1.5. The available strengths
for longitudinal and transverse welds are, therefore, as follows: for a 1-in.-long longi-
tudinal weld, we get

R,,/Q) = 14.85w 0.2
while the available strength for a 1-in.-long transverse weld is
R,,/Q =1.5(14.85w) = 2227w .3)

In these equations, R,/ and R,/) are the available strengths (kips) of a
1-in.-long weld oriented, respectively, longitudinally or transversely to the load, and
w is the weld size, or leg length (in.). Where both longitudinal and transverse welds
occur in the same connection, the available strength is taken as either (R,,/2 +
R,,,/$) or (0.85R,,,/C) + 1.5R,,/S)), whichever is greater. Other constraints on fillet
weld design are discussed next.

Weld size limits

Weld sizes cannot simply be determined on the basis of Equations 9.2 or 9.3 in order
to satisfy the requirements for available strength of a connection. Rather, they are also
constrained by the dimensions of the material welded together. Minimum weld sizes
must be proportioned according to the thickness of the materials being joined; while
maximum weld sizes must be no larger than the edge along which the weld is depos-
ited or, where the edge is % in. or more thick, must be at least Yisin. smaller than any
such edge (these size constraints are summarized in Table A-9.21). For this reason,
it is more common to first establish a provisional weld size according to these mini-
mum and maximum limits and then determine the required total weld length. For
connections with combinations of longitudinal and transverse welds, the design pro-
cess is necessarily iterative, unless one of the weld lengths, either for the longitudinal
or transverse portion, can be initially determined from the connection geometry.

The minimum length of a fillet weld is required to be at least four times its leg
size. Otherwise, the effective size of the weld, used in calculations, must be taken as
no more than one-fourth of the weld length. For example, the minimum weld length
for a Y-in. leg size is 4 X % = 2in. If a %-in. weld size is used with a shorter weld
length—say, 1in.—the effective weld size used in calculating the available strength
of the weld would be no more than the actual length (1in.) divided by 4, or %in.,
even though the actual weld size is Y2 in.

Longitudinal welds
For symmetrical and parallel longitudinal welds, the weld length, L, must be no
smaller than the distance between the two weld lines, W, as shown in Figure 9.32.
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FIGURE 9.32
Parallel, longitudinal welds

(b)
FIGURE 9.33

Termination of fillet welds where (a) welds occur on opposite sides of a common plane and (b) a
lap joint extends beyond a tension element

Where such welds transmit force to the “end” of an element subject to tension
or compression (i.e., through an “end-loaded” weld), an effective length L, = (L is
used to compute the weld capacity, where (3 is defined as follows:

0.6 =3 =12-0.0020/w) = 1.0 (CX)

In other words, where the ratio of weld length to weld size is L/w = 100,
£ =1.0, and the effective length equals the actual weld length. Otherwise,
8= 1.2 — 0.002(L/w), with a lower limit of 5 = 0.60 where the ratio of weld length
to weld size, L/w = 300.

Fillet weld terminations

In certain cases, fillet welds must be terminated before reaching the edge of the
steel elements they are connecting in order to prevent damage (notching, gouging)
of the element’s edge. Figure 9.33a4 illustrates a condition where the fillet weld at
the underside of a plate (shown as a dotted line) must be interrupted at the cor-
ners before turning 90° and being deposited on the opposite side of the same plate.
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Figure 9.33b illustrates a lap joint that extends beyond a tension element; in such
cases, the fillet weld must terminate a distance equal to the weld size, w, from the
edge of the tension element.

Shear strength of connecting elements

Where welded connecting elements such as gussets, angles, or other plates are sub-
jected to shear, the required thickness, ¢, of such elements can be found by equat-
ing the available shear strength of the connector, per unit length, to the available
longitudinal weld strength, again per unit length. The available shear strength of the
connector is 0.6F, /2, while that of a single longitudinal weld, from Equation 9.2,
is R,;/) = 14.85w. For a connector welded on both sides of the plate, the available
strength of the weld doubles to 2 X 14.85w = 29.69w. Equating these strengths
using a safety factor, ) = 2.00 and a tensile strength, F,, = 58ksi (corresponding
to a connector fabricated from A36 steel), we get the following required connec-
tor thickness, ,,,, (in.) for a given weld size, w (in.), where the connector plate is
welded on both sides:

= 29.69w(2.0)/(0.6 X 58) = 1.71w .5

tmz‘n

Example 9.12 Find capacity of welded connectors with transverse
or longitudinal welds

Problem definition

Find the capacities of the 6-in.-wide, 7-in.-thick plates shown in Figure 9.34, welded to
(1) a wide-flange shape with transverse welds and (2) an 8-in.-deep channel shape with longi-
tudinal welds. In each case, assume that the plates are fabricated from A36 steel and that the
weld size is %sin. Use an E70xx electrode with f, = 70Kksi.

FIGURE 9.34
Connector plate capacity for Example 9.11 using (a) transverse welds and (b) longitudinal welds
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Solution overview
Find the capacity of the welds; confirm that the tensile capacity of the plates is no smaller than
the weld capacity.

Problem solution

1. Based on Equations 9.2 and 9.3, we can express the capacity of the transverse and longi-

tudinal welds as follows:
For the transverse weld, the unit capacity is R,/Q = 1.5(14.85w) =
1.5(14.85)(3%) = 8.35kips per inch of weld. There is a total of 6 X 2 = 12in. of transverse
weld on the two plates (since the plate width is W = 6in.), so the total capacity for the
transverse welds is P; = 8.35(12) = 100.2kips.

For the longitudinal weld, the unit capacity is R,/ = 14.85w = 14.85(3%) = 5.57 kips per
inch of weld. Since this is an “end-loaded” condition, the ratio of weld length to weld size
must be checked: L/w = 8/(3%) = 21.3 is no greater than 100, so the effective weld length
equals the actual length, which is 8in. There is a total of 8 X 2 = 16in. of longitudinal weld
on the plate, so the total capacity for the longitudinal welds is P, = 5.57(16) = 89.1kips. The
weld length, L = 8in., cannot be smaller than the distance between the two weld lines, in this
case equal to the plate width of 6in.

2. The tensile capacity of both plates is based on the smaller of the following: either the
capacity to resist tensile yielding on the gross area or to resist rupture on the net area. The
capacity based on yielding (see Chapter 6) is 0.6f,A, = 0.6(36)("% X 6) = 113.4Kkips.
The capacity based on rupture is 0.5F A, = 0.5(58)(7s X 6) = 152.2kips. The governing
tensile capacity, 113.4kips, is larger than the actual capacity of either weld condition, so
the strength of the welds governs both designs. For short gusset plates, the effective net
area is taken as equal to the net area, so long as it is no bigger than 85% of the gross area.

3. Conclusion: The capacity of Plate a, P, equals 100.2kips; and the capacity of Plate b, P,
equals 89.1kips. -

Example 9.13 Find capacity of welded connector with angled load

Problem definition

Find the capacity of the ¥2-in.-thick plate shown in Figure 9.35, welded to a wide-flange col-
umn shape. Assume that the plate is fabricated from A36 steel and that the weld size is %sin.,
on both sides of the plate. Use an E70xx electrode with £, = 70ksi.

Solution overview
Confirm that the shear capacity of the plate is greater than the capacity of the weld; compute
the available strength of the weld.

Problem solution
1. From Equation 9.5, the required thickness of the plate (i.e., the plate thickness consistent
with the maximum available shear strength of a weld on both sides of a connector plate)
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P=4/"
B
6L __Shear plane in plate
Gusset plate
(a)
—Shear plane in weld
3/16"
X =21/
Gusset plate
Fillet weld
(b)

FIGURE 9.35

Connector plate capacity for Example 9.12: a gusset plate welded to a W-shape is shown
(a) in elevation, (b) in section, and (c) in a schematic “cut-away” view showing the potential
shear failure planes for the plate and fillet welds

iS tmin = 1.71w = 1.71(%6) = 0.32in. In this calculation, we have compared the weld and
plate shear strength as if the load were parallel to the weld, even though the actual load on
the connector is oriented at a 60° angle to the weld line.

. Since the actual plate thickness of Y%in. is larger than the required thickness,

tmin = 0.32in., the weld will fail in shear before the plate does. For this reason, we can find
the capacity (available strength) of the connector by determining the available strength of
the weld, per inch of length, according to Equation 9.1:

R,/Q = 14.85w(1.0 + 0.50sin129) = 14.85(36)(1.0 + 0.50sin'®60) = 3.91 kips perinch
of weld.

. The total weld length is 6 X 2 = 12in., so the total available strength of the connector,

P =12(3.91) = 46.9kips.
( ) ips -

Example 9.14 Design a welded connector with both longitudinal and transverse
welds

Problem definition

Find the required longitudinal weld length, L, on the two -in.-thick plates shown in Figure
9.36, to resist a load, P = 80kips. Assume that the plate is fabricated from A36 steel. Use an

E70xx electrode with F,, = 70ksi.

Solution overview

Confirm that capacity of both plates is no less than 80kips; find the required longitudinal weld

length so that the total weld capacity is no less than 80kips.
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P =80 kips

FIGURE 9.36

View of welded plate connectors for Example 9.13

Problem solution

1. The tensile capacity of the both plates is based on the smaller of the following: either the
capacity to resist tensile yielding on the gross area or to resist rupture on the net area. The
capacity based on yielding (see Chapter 6) is 0.6F,A, = 0.6(36)(% X 4X2) = 86.4Kkips.
The capacity based on rupture is 0.5F,A, = 0.5(58)(%2 X 4X2) = 116kips. The govern-
ing tensile capacity, 86.4kips, is larger than the actual load of 80kips, so the plates are
satisfactory. For short gusset plates, the effective net area is taken as equal to the net area,
so long as it is no bigger than 85% of the gross area.

2. From Table A-9.21, for a ¥-in.-thick plate, the minimum weld size is %sin., and the maxi-
mum weld size is %2 — Y16 = 7sin. For this example, we will choose a weld size between
those limits, with w = 3in.

3. Based on Equations 9.2 and 9.3, we can express the capacity of the longitudinal and trans-

verse welds as follows:
For the longitudinal weld, the unit capacity, R,,/Q2 = 14.85w = 14.85(%s) = 2.784kips per
inch of weld. There is a total of 4L in. of longitudinal weld on the two plates (where L is
the length of each longitudinal segment), so the total capacity for the longitudinal welds is
Py=2.784(4L) = 11.138L kips.

For the transverse weld, the unit capacity, R,/Q = 1.5(14.85w) =
1.5(14.85)(%e) = 4.177 kips per inch of weld. There is a total of 4 X 2 = 8in. of trans-
verse weld on the two plates (since the plate width is W = 4in.), so the total capacity for
the transverse welds is P, = 4.177(8) = 33.413Kkips.

4. Where both longitudinal and transverse welds occur in the same connection, the
available strength is taken as either (a) R,/ + R,/ or (b) 0.85R,,/Q2 + 1.5R,:/2,
whichever is greater. The terms R,,/Q2 and R,/ refer to the available strengths (capaci-
ties) of the longitudinal and transverse welds, respectively; therefore, we must test both
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alternatives, setting the capacities equal to the load, P = 80kips, and solving for the
required length, L:

R/ + R,/Q = 11.138L + 33.413 = 80; from which L = 4.18in.

0.85R,,/Q + 1.5R,,/Q = 0.85(11.138L) + 1.5(33.413) = 80; from which L = 3.16in.

5. Since the greater capacity of the two alternatives may be used, the smaller length,
L = 3.16in., is acceptable. Looked at another way, if the length for both alternatives were
set at L = 3.16in., case (a) would have a capacity smaller than 80kips, while case (b)
would have a capacity exactly equal to 80kips; it can be seen that case (b) has the greater
capacity and, therefore, would govern the design. Increasing the length to 4.18in. found in
case (a) is not required. We round up the required length for the longitudinal weld to 31/2'E

REINFORCED CONCRETE

Reinforced concrete elements are not ordinarily “connected” in the usual sense of
the term; rather, they are most often cast together into a monolithic assembly. Of
course, there are construction joints between sections of the structure cast sepa-
rately, but even at such joints, opposite faces of concrete brought together in com-
pression bear against each other just as if they had been monolithically cast, and
steel reinforcement in tension is made to extend through each construction joint so
that tensile forces in the bars continue from one side of the joint to the other.

The following discussion, therefore, does not include any reference to the types
of welds, bolts, screws, or nails commonly found in wood or steel construction,
where discrete structural elements subjected to tension, compression, or bend-
ing must be explicitly connected in order to function together as a coherent struc-
tural system. Instead, two “quasi-connections,” both typical of reinforced concrete
construction, shall be examined: the end condition of a continuous beam and the
lapped splicing of reinforcing bars where the bottom of one column is cast against
the top of another column.

Development length, tension

The fact that much reinforcing steel is subjected to tension raises an important ques-
tion: what prevents such steel bars from being pulled out of, or slipping within,
the concrete into which they have been placed? As can be seen in Figure 9.37, any
bending of a structural element literally stretches the tension region while the com-
pression region shortens.

If the surface between the reinforcing bars and adjacent concrete were smooth
and frictionless, the bars would remain “unstretched” as the beam bent; in general,
it is the bond between the steel bars and concrete that guarantees that such slippage
will not occur. This bond is primarily a result of bumps, or deformations, placed on
the surface of the reinforcement that create a mechanical interlocking of the steel
and concrete surfaces, as shown schematically in Figure 9.38.

The strength of this bond, per unit of bar length, has been measured experimen-
tally, so the total necessary bar length required to resist any tendency for the bar to
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Original
bar length

Extension
Reinforcing bar

FIGURE 9.37
Extension of rebar in tension zone of reinforced concrete element

FIGURE 9.38
Schematic representation of a deformed reinforcing bar (rebar)

be pulled through the concrete can be determined for any given tension stress. This
required bar length is called the development length, /,, and is shown in Equation
9.6 for No. 7 or larger uncoated bars with normal-weight concrete and adequate bar
spacing, or adequate spacing plus confinement with ties or stirrups, to prevent split-
ting of the concrete. Specifically, as illustrated in Figure 9.39, the bars must have a
clear space between them at least equal to twice the bar diameter, that is, at least
equal to 2d,, and clear cover at least equal to the bar diameter, d,. Alternatively,
if adequate stirrups or ties are used throughout the development length region to
confine the bars and prevent splitting of the concrete, the minimum clear spacing
requirement may be reduced to d,:

fy/li[}t
1, =—2"gq
d 20\/76, b

9.6)
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FIGURE 9.39
Clear cover and spacing requirements for reinforced concrete beams

In Equation 9.6, [, is the development length for tension (in.); f, is the yield
stress of the steel reinforcement (psi); f, is the compressive strength of the con-
crete (psi); 1, is a coefficient equal to 1.0, except when there is at least 12in. of
freshly cast concrete below the steel bars, in which case 1), = 1.3 (accounting for
the negative impact on the bond between steel and concrete caused by rising air
and water within a large mass of freshly cast concrete); and 4, is the reinforcing
bar diameter (in.). Where the minimum conditions for spacing and stirrups (or ties)
described here are not met, the development length must be increased by a factor of
1.5. Where the bar size is smaller than No. 7, the development length is multiplied
by 0.8. In no case may the development length be less than 12in. Typical values for
development length are tabulated in Table A-9.22 for common bar sizes.

Development length is influenced primarily by three factors: assuming adequate
bar spacing and/or ties to prevent splitting of the concrete, the required devel-
opment length becomes larger if the tensile strength of the concrete decreases
(concrete’s tensile strength is proportional to the square root of its compressive
strength); the required development length also increases if the stress in the bar
increases (that stress being at most equal to the yield stress of the steel); and the
development length increases as well if the surface area of the bar decreases (the
surface area being proportional to the bar diameter). These three parameters can all
be found in Equation 9.6.

If we imagine an isolated and discrete concrete beam within a continuous con-
crete structure, it is easier to see where and how the concept of development
length becomes important. As can be seen in Figure 9.40, a typical reinforced con-
crete beam-girder “connection” must resist the shear force and bending moment
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FIGURE 9.40

Development length of straight bars and standard hook: (a) section through typical slab and
girder, (b) exploded view showing “connection” between beam and girder (with slab omitted for
clarity), and (c) required development length of hook (in girder) and straight bar (in beam)

that occur at the surface where they come together. The shear force is resisted
through the shear resistance of the concrete itself, the longitudinal steel bars, and
the steel ties or stirrups provided for that purpose (the latter not shown in Figure
9.40 for clarity). The bending moment, in turn, is resolved into a compressive force
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(the resultant of the stress distribution shown below the neutral axis for “negative”
bending) and a tensile force (carried by the longitudinal steel reinforcement shown
above the neutral axis). The compressive force presents no particular problems, as
the concrete in the beam “pushes” against the concrete in the girder. The tensile
force, however, could pull the bars out of the girder and beam, unless those bars
develop sufficient bond with the concrete to resist that tendency or are otherwise
anchored into the concrete. In the case of the beam, sufficient space is available to
develop that bond strength by making sure that the bars extend into the beam for a
distance at least as great as the required development length, /, (see Equation 9.6).
For an exterior girder, however, it is likely that sufficient space is not available, and
a 90° or 180° hook is often required.

As shown in Figure 9.40c, a 90° hook must be extended a distance of 12d,, below
the bent portion of the bar, which in turn is defined by an inner radius that cannot
be less than 3d,, for bars smaller than No. 9; 44, for No. 9, No. 10, and No. 11 bars;
and 54, for No. 14 and No. 18 bars. In these guidelines, d,, refers to the bar diam-
eter. The required development length for such hooks, /,,, is given by the following
equation for uncoated bars and normal-weight concrete:

_0.02f,
Je

d, ©.7D

db

In this equation, /,, is the development length for hooks (in.), f, = the yield stress
of the steel reinforcement (psi), f; is the compressive strength of the concrete (psi),
and d,, is the bar diameter (in.). In no case may the development length for a hook
be less than 84, or 6in.Typical values are tabulated in Table A-9.23 for common bar
sizes.

It is possible to reduce this length even further, if certain requirements are met
that increase the level of confinement of the hook, making it less likely to split the
concrete:

1, may be multiplied by 0.7 for all bar hooks (except those with No. 14 and
No. 18 bars) with side cover of at least 2.5in. and, for 90° hooks only, cover
beyond the hook of at least 2in.

1, may be multiplied by 0.8 for all bar hooks (except those with No. 14 and No.
18 bars) where perpendicular ties or stirrups, spaced no more than 3d,, along
the development length, enclose them; or, for 90° hooks only, where parallel
ties or stirrups enclose the “vertical” and “bent” parts of the hook, also spaced
no more than 3d,,.

14, may also be multiplied by the ratio of required steel bar area to provided
steel bar area, except in cases where the yield stress, f,, must be specifically
accounted for.

These reduction factors are cumulative; that is, they may be combined.
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|
Example 9.15 Find required development length for straight bar and 90° hook
in reinforced concrete structure

Problem definition

A reinforced concrete beam frames into an exterior girder, as shown in Figure 9.41, and
the negative moment at the connection is resisted using No. 8 bars with 2in. clear spacing
between them. The required area for each bar, As equieq = 0.74in. Perpendicular ties (not
shown) are provided along the development length of the hook within the girder, spaced at
3in. on center, and side cover of 3in. is provided. Assume f. = 4000 psi and f, = 60,000 psi.
Find the required development length, /,, of the bars within the beam, the hook development
length, /4, and hook extension beyond the bend, within the girder.

Solution overview

Find the nominal development lengths for a No. 8 bar, using 4000-psi concrete, in Table
A-9.22 (for the beam) and Table A-9.23 (for the hook in the girder). Multiply these base values
by the appropriate factors shown in the notes accompanying each table.

Problem solution

1. The nominal development length required for the No. 8 bar in the beam is 48in.
(Table A-9.22). This value is multiplied by 1.3 (see Note 2) and A equired!As-provided =
0.74/0.79 = 0.937 (see Note 3) so that the final value for the required development length
is ;= 48(1.3)(0.937) = 58.5in. or, rounded up to the nearest inch, 59in. The value for
As requied = 0.74 was given (or otherwise would be computed); the value for As_poyigeq IS
simply the actual area of a No. 8 bar (see Table A-4.10). The computed development
length exceeds the absolute minimum of 12in. (see Note 5).

2. The nominal development length for the 90° hook in the beam is 19in. (Table A-9.23).
This value is multiplied by 0.7 (see Note 1), 0.8 (see Note 2), and Ag.requirea! As-provided =
0.74/0.79 = 0.937 (see Note 3) so that the final value for the required hook development
length is I, = 19(0.7)(0.8)(0.937) = 9.97in. or, rounded up to the nearest inch, 10in.
The actual dimensions of the girder would need to be able to accommodate this required
length. The computed development length for hooks exceeds the two absolute minimums

Tg:’ lan Iy
r+d, "3 - —43”
r No. 8 bar
124, 17"
5 Beam
Girder

FIGURE 9.41

Required rebar development length for Example 9.14
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(see Note 6): 8d, = 8(1.0) = 8in., or 6in. Checking the minimum radius and minimum
length of the “vertical” portion of the hook (see Note 5), we see that the required extension
of the bar below the bend is 12d, = 12(1.0) = 12in., and the minimum inner radius for a
No. 8 bar is 3d, = 3(1.0) = 3in. -

There are two other requirements for tension reinforcement in continuous
beams. First, for so-called positive-moment reinforcement—where tension occurs
at the bottom of reinforced concrete beams—one-fourth of the rebars need to
be extended at least Gin. into the supports at each end of the beam. Second, for
negative-moment reinforcement—where tension occurs at the fop of the beam,
typically in the vicinity of supports—at least one-third of the rebars need to extend
beyond the point of inflection (where the negative moment becomes zero, and the
curvature changes from negative to positive), a distance of d, 12d,, or I,/16, which-
ever is greater; d is the effective depth of the beam; d, is the rebar diameter; and /,,
is the clear span, measured between the faces of supports.

Development length, compression

For a steel reinforcing bar in compression, much of the stress in the steel can be
transferred to the concrete through direct bearing of the bar end on the concrete.
For that reason, the required development length in compression, /., is smaller than
that required when bars are stressed in tension, and is given by the greater of the
following values:

002/,

lC
“on

In these equations, /. is the development length (in.) for normal-weight con-
crete in compression, f, is the yield stress of the steel reinforcement (psi), f, is
the compressive strength of the concrete (psi), and 4, is the bar diameter (in.). As
with bars in tension, it is possible to reduce this required length by multiplying the
greater value found in Equation 9.8 by the ratio of Ay_,cquirea/As-_providea- 101 addition,
the required development length may be multiplied by 0.75 in columns with ade-
quate spirals or ties (specifically, with a minimum %-in. spiral at no more than a 4-in.
pitch or with No. 4 ties spaced at no more than 4in. on center). In no case can the
development length for compression be less than 8in. Typical values are tabulated
in Table A-9.24 for common bar sizes.

d,, and I, = 0.0003 f,d, ©.8

Bar splices in tension

Since the length of reinforcing bars is limited by manufacturing and transportation
constraints, it is often necessary to splice them together, at least in cases where the
continuity assumed in design indicates lengths greater than those available from a
single bar. While it is possible to weld bars together, or to use special mechanical
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splicing devices, the most common method for creating continuity between two
bars in tension is by lapping them a sufficient distance so that tensile stresses can
be transferred through the bond developed between the steel bars and adjacent
concrete. For virtually all tension splices, the required lap distance is taken as 1.3/,
where the development length, ,, is defined as in Equation 9.6 (or as tabulated in
Table A-9.22), except that the 12-in.-minimum length does not apply, and a reduc-
tion of the development length based on the ratio of provided to required steel area
is not permitted. There are some limits placed on larger bar sizes: No. 14 and No. 18
bars cannot be lap spliced in tension.

Bar splices in compression

Columns are almost always cast floor by floor, with longitudinal reinforcement left
extending vertically beyond the current floor level so that it can be spliced into the
column steel for the next floor being cast. For f, = 60ksi and f, = 3000psi, the
required lap distance for compression is taken as:

required compressive lap distance = 0.0005 f, d,, ©.9

This required lap distance equals 304, for 60-ksi steel bars, with an absolute mini-
mum lap distance of 12in. In these equations, f), is the yield stress of the steel rein-
forcement (psi), f, is the compressive strength of the concrete (psi), and d,, is the
bar diameter (in.). It should be emphasized that in many reinforced concrete col-
umns, especially those explicitly designed to resist bending moment as well as com-
pressive force, a given lap splice may need to resist tension, compression, or both
tension and compression under different loading scenarios. For bars that resist only
compression, and where confinement is provided by ties or spirals, it is possible to
create splices, not by lapping the bars, but instead by placing their ends in contact
so that they bear directly upon each other. However, even in such cases where no
tension is anticipated, all columns must maintain some ability to resist unexpected
tension forces so that either additional “tension” steel must be provided in such
cases or compressive lap splices must be used (since compressive lap splices pro-
vide sufficient resistance to unexpected tension forces in the bars). The required
length of column lap splices in compression may be reduced where sufficient con-
finement, in the form of ties or spirals, is provided. Specifically, if the bar area of
a tie (taken as the total tie area cut in section, as shown in Figure 9.42) is greater
or equal to 0.0015hs—where b = the greater column cross-sectional thickness (in.)
and s = the tie spacing (in.)—the required lap distance may be multiplied by 0.83.
With spirals, the required lap length may be multiplied by 0.75. In any case, the lap
length can never be taken less than 12in. Limits placed on larger bars are relaxed
somewhat for lap splices in compression: No. 14 and No. 18 bars cannot be lap
spliced to each other but may be lap spliced to No. 11 and smaller bars. In cases
where two different bar sizes are lap spliced together in compression, the required
splice length is found by (1) computing the required development length for the
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(a) Plan view

Lap splice length

Beam and slab
reinforcement
not shown

(b) Sectional view
FIGURE 9.42
Column lap splice parameters

larger bar, (2) computing the required lap splice length for the smaller bar, and
(3) using the larger of these two values.

For a column resisting only compressive forces, the required lap length is deter-
mined for the bars originating in the upper column; the bars extended upward from
the lower column that terminate in the upper column must satisfy the requirements
for compressive development length (Equation 9.8). In practice, the larger of these
two criteria (compressive development length for the lower bars and required lap
splice length for the upper bars) determines the minimum splice length. Since loads
typically are smaller in upper-level columns, it is possible that smaller bar sizes can
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be used in the upper columns; these smaller bars can be spliced with larger bars
extending upward from the lower column. In such cases, different bar diameters,
d,, must be used in determining lap splice length and development length.

Example 9.16 Find required length of compression column splice in reinforced
concrete structure

Problem definition

A 12in. X 16in. reinforced concrete column is configured as shown in Figure 9.42. The lon-
gitudinal (vertical) bars in the lower column consist of four No. 9 bars, which extend into the
upper column. Four No. 8 bars originate in the upper column and are spliced to the lower col-
umn bars as shown. The longitudinal steel is confined by No. 3 ties spaced at 9in. on center.
Assuming only compressive stress in the column, with £, = 60ksi and fi. = 3000 psi, what is
the required splice length?

Solution overview

Find the compressive lap splice length based on the diameter of the No. 8 bars in the upper
column. Find the required compressive development length based on the No. 9 bars extended
into the upper column. Use the larger of these two values for the column splice length.

Problem solution

1. Lap splice. From Equation 9.9, the minimum lap splice length for the No. 8 bars is
0.0005f,d}, = 0.0005(60,000)(1.0) = 30in. To check whether the 0.83 reduction fac-
tor may be used, it is necessary to see if the No. 3 bar area for the ties is greater than
or equal to 0.0015hs, where h = 16in. (the larger of the overall column dimensions) and
s = 9in. (the tie spacing). Using twice the area of a single tie (Table A-4.10), we find that
2(0.11) = 0.22 = 0.0015(16)(9) = 0.216, so the lap splice length may be reduced to
30(0.83) = 24.9in. or, rounding up, 25in.

2. Development length. From Equation 9.8, we get:

_ 0.02(60,000)

) (1.128) = 21.9in. and /,, = 0.0003(60,000)(1.128) = 20.3in.
dc (—3000 dc

The bar diameter, d,, is found in Table A-4.10. Using the larger value and rounding up, the
minimum development length is ;. = 22in. Because the tie spacing is greater than 4in.
on center, no reduction in development length may be taken.

3. Comparing the requirements for lap splice length and development length, the larger of the
two values will be used: 25in. -
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APPENDIX

Tables for Chapter 1
(statics)

Table A-1.1 Derivation of rules for drawing shear and moment diagrams!

Any load Any beam Take any beam with variable load, as shown
%?/ﬁ at left (diagram a). Then take an elemental
- slice of the beam with length, dx, and average

(a) ,I, load, w, over that length (diagram b). There is
a shear force and moment on the left face of

- the element (Vand M), and, because the load,
—\rﬁ | | ’ﬁ w, is assumed to act in an upward direction
w

9 A |_g (positive), there is a slightly smaller shear and
(b) moment on the right face (diagram c).

Rules 1 and 2 derive from the horizontal

equilibrium of that elemental slice, while Rules

3 and 4 derive from the rotational equilibrium of

the same element.

M V\L F—d\/ M-dm

A B
(c) dx
From horizontal equilibrium: Rule 1: w = dWidx
SF,=wdx—V+V-dV=0 Solving for dv, we get dV = wdx, or, integrating,
Solving for w, we get Rule 1 (at right): we get Rule 2:

B
Rule 2: AV? = fwdx
4

(Continued)

© 2010 Elsevier Inc. All rights reserved.
Doi: 10.1016/B978-1-85617-771-9.00014-3 249
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Table A-1.1 (Continued)

From rotational (moment) equilibrium: Rule 3: V= dM/dx
Mg = —Vdx + wdx(dx/2) + Solving for dM, we get dM = Vdx, or,
M- (M-dM) =0 integrating, we get Rule 4:

We can omit the dx? term, because it is so 5 B
small, and, solving for V, get Rule 3 (at right): ~ Rule 4: AM, = deX
A

Note:

1. The four rules are expressed mathematically in Table A-1.1; they may also be expressed in words, as
follows:

Rule 1: At any point along a beam, the slope of the shear diagram equals the value of the load (the “infinite”
slope of the shear diagram at concentrated loads can be seen as a shorthand approximation to the actual
condition of the load being distributed over some finite length, rather than existing at a point).

Rule 2: Between any two points along a beam, the change in the value of shear equals the total load (between
those points).

Rule 3: The slope of the moment diagram at any point equals the value of the shear force at that point.

Rule 4: The change in the value of bending moment between any two points equals the “area of the shear
diagram” between those points.
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Tables for Chapter 2

(loads)

Table A-2.1 Dead loads

A. Basic volumetric weights in pounds per cubic foot (pcf)

Stone:
Sandstone 144
Granite 165
Marble 173
Brick/CMU/concrete: 100-145
Normal-weight reinforced concrete 150
Metals:
Aluminum 165
Steel 492
Lead 710
Glass 160
Wood 165
Water 64
Earth:
Dry clay 63
Silt, moist and packed 96
Wet sand and gravel 120
Insulation:
Glass fiber batts 0.8
Expanded polystyrene boards 09-1.8
Extruded polystyrene boards 2.2
Polyisocyanurate boards 2.0
Fiberboard 15

© 2010 Elsevier Inc. All rights reserved.
Doi: 10.1016/B978-1-85617-771-9.00015-5

(Continued)
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Table A-2.1 (Continued)
B. Distributed loads in pounds per square feet (psf)

Wood floor system: 2 X 10 joists at 16in. on center, wood finish floor and 10.5
subfloor, gypsum board ceiling

Steel floor system: 4%2-in. corrugated steel deck with concrete slab, tile floor, 47
mechanical ducts, suspended tile ceiling

Concrete floor system: 6-in. reinforced concrete slab, tile floor, mechanical 80
ducts, suspended tile ceiling

Floor-ceiling components:

Harwood finish floor, 7in. 4.0
Wood subfloor, 34in. 2.5
Acoustical tile with suspended steel channels 3.0
Mechanical duct allowance 4.0
Steel stud partition allowance 8.0
Sheathing:

Plywood, per %-in. thickness 0.40
Gypsum board, per %-in. thickness 0.55

C. Linear loads in pounds per foot (Ib/ft)

Steel beam, ordinary span and spacing 30-50
Steel girder, ordinary span and spacing 60-100
Wood joist, 2 X 10 4.0

Brick-CMU cavity wall, 12ft high 1000
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Table A-2.2 Live loads
A. Typical live loads based on occupancy (psf)

Assembly areas with fixed seats 60
Assembly areas with movable seats 100
Lobbies, corridors (first floor) 100
Dining rooms and restaurants 100
Garages for passenger cars 50
Libraries, reading rooms 60
Libraries, stack areas (not less than) 150
Manufacturing, light 125
Manufacturing, heavy 250
Office buildings 50
Dwellings and hotels (except as noted later) 40
Note: Residential sleeping areas 30
Schools (classrooms) 40
Schools (corridors above first floor) 80
Stadium and arena bleachers 100
Stairs and exitways 100
Stores, retail (first floor) 100
Stores, retail (upper floors) 75
Stores, wholesale (all floors) 125
B. Live load reduction coefficient!>34

Live load reduction coefficient = 0.25 + 15

JKuAr

Notes for Part B:
1. Ky, is the live load element factor and is defined as follows for selected common beam and column
configurations:

K, = 4 for columns without cantilever slabs

K, = 3 for edge columns with cantilever slabs

K, = 2 for corner columns with cantilever slabs

Ky = 2 for beams (except as noted later)

K, = 1 for one-way and two-way slabs; edge beams with cantilever slabs; and anything else not previously

mentioned.

2. Ar is the tributary area of the element being considered (ft2).
3. No live load reduction applies when K Ay < 400ft°.
4. Reduction coefficient cannot be taken greater than 1.0; nor can it be smaller than 0.5 for elements
supporting a single floor level or smaller than 0.4 for all other conditions. See Chapter 2 for additional
restrictions.
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Table A-2.3 Environmental loads!

City, State Ground Snow Basic Wind Speed, Seismic Ground Motion?

Load (psf) V (mph) s, s, T,
Boston, MA 35 105 0.35 0.08 6
Chicago, IL 25 90 0.20 0.06 12
Little Rock, AR 5 90 0.50 0.17 12
Houston, TX 0 120 0.10 0.05 12
Ithaca, NY 35 90 0.20 0.07 6
Los Angeles, CA 0 85 2.00 1.00 312
Miami, FL 0 150 0.06 0.02 8
New York, NY 30 105 0.40 0.09 6
Philadelphia, PA 25 90 0.30 0.08 6
Phoenix, AZ 0 90 0.25 0.10 6
Portland, ME 50 100 0.37 0.10 6
Notes:

1. Approximate values taken from snow, wind, and seismic maps.
2. Sgand S; are, respectively, the maximum considered earthquake ground motions of 0.2-second (short)
and 1-second (long) spectral response acceleration (5% of critical damping) for site class B, measured as a

fraction of the acceleration due to gravity. T, is the so-called long-period transition period (in seconds).

3. Los Angeles regions adjacent to the ocean have a value of T, = 8.

Table A-2.4 Snow load Importance factor, /g

Category Description Factor

| Low hazard (minor storage, etc.) 0.8

Il Regular (ordinary buildings) 1.0

1] Substantial hazard (schools, jails, places of assembly with no 1.1
fewer than 300 occupants)

v Essential facilities (hospitals, fire stations, etc.) 1.2
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Table A-2.5 Wind coefficients
A. Velocity pressure coefficient, K?

Height ahove Grade,? z (ft) Exposure B3 Exposure C* Exposure D°
500 1.57 1.78 1.90
400 1.47 1.69 1.82
300 1.35 1.59 1.73
200 1.20 1.46 1.62
100 0.99 1.27 1.43
90 0.96 1.24 1.41
80 0.93 1.21 1.38
70 0.89 1.17 1.35
60 0.85 1.14 1.31
50 0.81 1.09 1.27
45 0.79 1.07 1.25
40 0.76 1.04 1.22
35 0.73 1.01 1.19
30 0.70 0.98 1.16
25 0.67 0.95 1.13
20 0.62 0.90 1.08
0-15 0.57 0.85 1.03

Notes for Part A:

1. Values of K are based on the following equation, where z is the height above grade (ft); o« = 7.0 for Exposure
B, 9.5 for Exposure C, and 11.5 for Exposure D; and z, = 1200 for Exposure B, 900 for Exposure C, and 700
for Exposure D:

2/

K =201%

Zg

When using tabular values for K, linear interpolation between values is permitted.

2. When computing pressures on windward surfaces, use height z corresponding to height for which pressure
is being computed; for all other surfaces, use z = h (mean roof height: i.e., use this single value of z for the
entire surface). See Table A-2.5, Part H, for graphic explanation of building geometry parameters.

3. Exposure B refers to urban or suburban areas, wooded areas, etc.

4. Exposure C refers to open terrain with scattered obstructions, including water surfaces in hurricane regions.
5. Exposure D refers to flat, unobstructed areas like mud flats, salt flats, or water outside of hurricane regions.

(Continued)

255



256 APPENDIX 2 Tables for Chapter 2 (loads)

Tahle A-2.5 (Continued)
B. External pressure coefficient for walls, Cé

Orientation 0< UBL1 LUB=2 LUB> 4

Windward 0.8 0.8 0.8
Leeward -0.5 -0.3 -0.2
Side -0.7 -0.7 -0.7

Note for Part B:

1. L and B are the plan dimensions of the rectangular building, with B being the dimension of the windward
and leeward walls, and L the dimension of the sidewalls. See Table A-2.5, Part H, for graphic explanation of
building geometry parameters.

C. External pressure coefficient on windward slope of roof, C,, for wind direction normal to

ridgel27
Roof Angle, 6 (deg) h/L < 0.25 h/L = 0.50 h/L> 1.0
69 < 10 O<D< h2 -0.9, -0.18 -0.9, -0.18 5-1.3,-0.18
hi2<D<h -0.9, -0.18 -0.9, -0.18 -0.7, -0.18
h<D<2h —0.5, —-0.18 -0.5, —-0.18 -0.7, -0.18
2h< D -0.3, -0.18 -0.3, -0.18 -0.7, -0.18
69 = 10 -0.7,-0.18 -0.9, -0.18 8-1.3,-0.18
0 =15 —-0.5,%0.0 -0.7,-0.18 -1.0, -0.18
0 =20 -0.3,0.2 —-0.4,40.0 -0.7, -0.18
0 =25 -0.2,03 -0.3,0.2 -0.5,40.0
0 =30 -0.2,0.3 -0.2,0.2 -0.3,0.2
0 =35 40.0,0.4 -0.2,0.3 -0.2,0.2
0 =45 0.4 40.0,04 40.0,0.3
59 > 60 0.010 0.010 0.016
Notes for Part C:

1. Where two values are given, either may apply, and both must be considered. Interpolation between adjacent
values is permitted, but must be between numbers of the same sign; where no number of the same exists, use 0.0.
2. Values are used with K taken at mean roof height. Units of length for D, h, and L must be consistent with
each other. For roof angles less than 10°, D refers to the range of horizontal distances from the windward eave
(edge) for which the value of C, applies; h is the height of the eave above grade for roof angles no greater than
10°, otherwise, h is the mean roof height above grade; L is the horizontal length of the building parallel to the
wind direction. See Table A-2.5, Part H, for graphic explanation of building geometry parameters.

3. Value of — 1.3 may be reduced depending on the area it is acting on: for areas no greater than 1001t%, no
reduction; for areas of 20012, multiply by 0.9: for areas no smaller than 1000ft¢, multiply by 0.8; interpolate
between given values.

4. Values of 0.0 are used only to interpolate between adjacent fields.

5. Roof angles greater than 80° are treated as windward walls, with C, = 0.8.

6. See Note 2 for roof height, h, where roof angle is no greater than 10°.

7. Negative numbers indicate “suction,” that is, forces acting away from the building surface; positive
numbers indicate forces “pushing” against the building surface.

(Continued)
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Table A-2.5 (Continued)
D. External pressure coefficient on leeward slope of roof, C,, for wind direction normal to ridgel-23

Roof Angle, 6 (deg) h/L < 0.25 h/L = 0.50 h/L> 1.0
0 =10 -0.3 -0.5 -0.7
0=15 -0.5 -0.5 -0.6
0=20 -0.6 -0.6 -0.6
Notes for Part D:

1. The height h is measured to the eave for roof angles equal to 10°, otherwise, h is the mean roof height
above grade; L is the horizontal length of the building parallel to the wind direction. See Table A-2.5, Part H, for
graphic explanation of building geometry parameters.

2. For roof angles less than 10°, the roof is considered to be flat, and no leeward pressures are computed.
Instead, use the values in Table A.2.4, Part C, for the entire roof.

3. Interpolation is permitted between values.

4. Negative numbers indicate “suction,” that is, forces acting away from the building surface; positive numbers
indicate forces “pushing” against the building surface.

E. External pressure coefficient on roof, C,, for wind direction parallel to ridge, for all roof
angles 2345

Applicable Roof Area h/L < 0.25 h/L = 0.50 h/L> 1.0

O0< DL h2 -0.9, -0.18 -0.9, -0.18 5-1.3,-0.18
h2<D<h -0.9, -0.18 -0.9, -0.18 -0.7, -0.18
h<D<2h -0.5, -0.18 -0.5, -0.18 -0.7, -0.18
2h< D -0.3, -0.18 -0.3, -0.18 -0.7, -0.18

Notes for Part E:

1. Where two values are given, either may apply, and both must be considered. Interpolation between adjacent
values is permitted, but must be between numbers of the same sign.

2. Values are used with K taken at mean roof height. Units of length for D, h, and L must be consistent with
each other. For all roof angles, D refers to the range of horizontal distances from the windward eave (edge)

for which the value of C, applies; h is the height of the eave above grade for roof angles no greater than 10°,
otherwise, h is the mean roof height above grade; L is the horizontal length of the building parallel to the wind
direction. See Table A-2.5, Part H, for graphic explanation of building geometry parameters.

3. Value of — 1.3 may be reduced depending on the area it is acting on: for areas no greater than 100f¥, no
reduction; for areas of 200, multiply by 0.9: for areas no smaller than 10001, multiply by 0.8; interpolate
between given values.

4. Roof angles greater than 80° are treated as windward walls, with C, = 0.8.

5. Negative numbers indicate “suction,” that is, forces acting away from the building surface; positive numbers
indicate forces “pushing” against the building surface.

F. Gust effect factor, G

In lieu of more complex calculations, use G = 0.85 for so-called rigid buildings: such buildings
are in most cases no more than four times taller than their minimum width, and have a
fundamental frequency of at least 1 Hz (1 cycle per second).

(Continued)
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258 APPENDIX 2 Tables for Chapter 2 (loads)

Table A-2.5 (Continued)
G. Importance factor, I

Category Description Factor

| Low hazard (minor storage, etc.) 10.87

Il Regular (ordinary buildings) 1.0

I Substantial hazard (schools, jails, places of assembly with no fewer 1.15
than 300 occupants)

% Essential facilities (hospitals, fire stations, etc.) 1.15

Note for Part G:

1. The low hazard factor may be reduced to 0.77 in hurricane-prone regions with wind speed, V > 100 mph.

H. Graphic definition of building parameters!

Note for Part H:
1. When using Table A-2.5, Parts C, D, and E, the roof height, h, is measured to the mean roof elevation,

except for roof angles less than or equal to 10°, in which case h is measured to the eave, as indicated by the
dotted line.



Table A-2.6 Seismic coefficients
A. Site coefficient, F,

Tables for Chapter 2 (loads)

Site Class S

<0.25 0.5 0.75 1.0 >1.25
A = hard rock 0.8 0.8 0.8 0.8 0.8
B = rock 1.0 1.0 1.0 1.0 1.0
C = dense soil or soft rock 1.2 1.2 1.1 1.0 1.0
D = stiff sail 1.6 1.4 1.2 1.1 1.0
E = soft sail 2.5 1.7 1.2 0.9 0.9
F = liquifiable soils, etc. Need site-specific investigation
B. Site coefficient, F,
Site Class S

<0.1 0.2 0.3 0.4 >0.5
A = hard rock 0.8 0.8 0.8 0.8 0.8
B = rock 1.0 1.0 1.0 1.0 1.0
C = dense soil or soft rock 1.7 1.6 15 1.4 1.3
D = stiff soil 2.4 2.0 1.8 1.6 1.5
E = soft sall 35 3.2 2.8 2.4 2.4

F = liquifiable soils, etc.

Need site-specific investigation

C. Design elastic response acceleration, Spsand Sp;

LSps = %(F2)(Sy)

LSp; = %(F)(S)

Note for Part C:

1. See Table A-2.3 for selected values of Sg and S;. See Table A-2.5, Parts A and B, for F, and F,, respectively.

D. Response modification coefficient, R (including height and other limitations based on

seismic design category!)

Bearing Wall Systems

01.Special reinforced concrete shear 5
walls (Icategories D, E limited to
160ft; Flimited to 100ft!)

02.0rdinary reinforced concrete shear 4
walls (not permitted in categories
D-F)

03. Detailed plain concrete shear walls 2
(*not permitted in categories C—F)
04.Ordinary plain concrete shear 15
walls (not permitted in categories C—F)

05. Intermediate precast shear walls 4
(12categories D-F limited to 40ft)

06. Ordinary precast shear walls (Inot 3
permitted in categories C—F)

07.Special reinforced masonry shear 5
walls (Icategories D, E limited to
160ft; Flimited to 100ft)

08. Intermediate reinforced masonry 3.5
shear walls (*not permitted in
categories D-F)

09. Ordinary reinforced masonry shear 2
walls (not permitted in categories
D-F; Climited to 160ft)

10. Detailed plain masonry shear walls 2
(*not permitted in categories C-F)

(Continued)
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260 APPENDIX 2 Tables for Chapter 2 (loads)

Tahle A-2.6 (Continued)

Bearing Wall Systems (Continued) 10.Ordinary precast shear walls (‘not 4

11.Ordinary plain masonry shear walls 1.5 permitted in categories C-F)

(*not permitted in categories C—F) 11.Composite steel and concrete 8
eccentrically braced frames

(*categories D, E limited to 160ft; F
limited to 100ft)

12. Prestressed masonry shear walls 1.5
(*not permitted in categories C-F)

13. Light-framed walls, wood- 6.5 }
structural/sheet-steel shear panels 12.Composite steel and concrete 5
(Icategories D-F limited to 65ft) concentrically braced frames
, , (Icategories D, E limited to 160ft; F
14. Light-framed walls WIth s?ear 2 limited to 100ft)
panels—all other materials (“not ) )
13. Ordinary composite steel and 3

permitted in categories E, F; D limited 1
to 35ft) concrete braced frames (*not

) ) permitted in categories D-F)
15. Light-framed wall systems using 4

flat strap bracing (lcategories D-F
limited to 65ft)

Building frame systems

14. Composite steel plate shear walls 6.5
(Icategories D, E limited to 160ft; F
limited to 100ft)

15. Special composite reinforced 6
concrete shear walls with steel
elements (Icategories D, E limited to

01. Steel eccentrically braced frames, 8
moment-resisting, connections at

colunjng away from Iink; (fcategories 1601t Flimited to 100ft)
D, E limited to 160ft; F limited to i ) )
100ft) 16. Ordinary composite reinforced 5
) concrete shear walls with steel

02. Steel eccentr{cqlly braced frgmes, 7 elements (*not permitted in categories
non-moment-resisting, connections at D-F)
columns away from links (lcategories
D, E limited to 160ft; Flimited to 17.Special reinforced masonry shear 55
100ft) walls (*categories D, E limited to

160ft; Flimited to 1001t
03. Special steel concentrically braced 6 ; Fhmitedto )
frames (*categories D, E limited to 18. Intermediate reinforced masonry 4
160ft; Flimited to 100ft) shear walls (Inot permitted in
04.Ordinary steel concentrically 3.25 categories D-F)
braced frames (}2categories D, E 19. Ordinary reinforced masonry shear 2
limited to 35ft; F not permitted) walls (*category C limited to 160ft; not
05. Special reinforced concrete shear 6 permitted in categories D-F)
walls (*categories D, E limited to 20. Detailed plain masonry shear walls 2
160ft; Flimited to 100ft) (*not permitted in categories C-F)
06. Ordinary reinforced concrete shear 5 21.0rdinary plain masonry shear 1.5
walls (*not permitted in categories D-F) walls (Inot permitted in categories
07. Detailed plain concrete shear walls C-h
(*not permitted in categories C-F) 2 22.Prestressed masonry shear walls 1.5
08.Ordinary plain concrete shear walls (*not permitted in categories C-F)
(*not permitted in categories C-F) 1.5 23. Light-framed walls with wood- 7
09. Intermediate precast shear walls structural/sheet-steel shear panels
(Y2categories D-F limited to 40ft) 5 (Icategories D-F limited to 65ft)

(Continued)



Table A-2.6 (Continued)

Tables for Chapter 2 (loads)

24. Light-framed walls with shear
panels—all other materials (*not
permitted in categories E, F; D limited
to 35ft)

25. Buckling-restrained braced
frames, non-moment-resisting beam-
column connections (*categories D, £
limited to 160ft; Flimited to 100ft)

26. Buckling-restrained braced
frames, moment-resisting beam-
column connections (categories D, E
limited to 160ft; Flimited to 100ft)

27.Special steel plate shear wall
(*categories D, E limited to 160ft; F
limited to 100ft)

Moment-Resisting Frame Systems

01. Special steel moment frames (no
limits)

02.Special steel truss moment frames
(Icategory D limited to 160ft; E limited
to 100ft; not permitted in category F)

03. Intermediate steel moment frames
(12category D limited to 35ft; not
permitted in categories E—F)

04.Ordinary steel moment frames
(12not permitted in categories D-F)

05. Special reinforced concrete
moment frames (no limits)

06. Intermediate reinforced concrete
moment frames (*not permitted in
categories D-F)

07.0rdinary reinforced concrete
moment frames (*not permitted in
categories C-F)

08.Special composite steel and
concrete moment frames (no limits)

09. Intermediate composite moment
frames (*not permitted in categories
D-F)

2.5

4.5

35

10. Composite partially restrained
moment frames (lcategories B, C
limited to 160ft; D limited to 100ft;
not permitted in categories E, F)

11.Ordinary composite moment frames
(*not permitted in categories C-F1)

Dual systems with special moment
frames that resist at least 25% of
seismic forces

01. Steel eccentrically braced frames
(no limits)

02. Special steel concentrically braced
frames (no limits)

03. Special reinforced concrete shear
walls (no limits)

04.Ordinary reinforced concrete
shear walls (!not permitted in
categories D-F)

05. Composite steel and concrete
eccentrically braced frames (no limits)

06.Composite steel and concrete
concentrically braced frames (no
limits)

07.Composite steel plate shear walls
(no limits)

08. Special composite reinforced
concrete shear walls with steel
elements (no limits)

09. Ordinary composite reinforced
concrete shear walls with steel
elements (not permitted in categories
D-F)

10. Special reinforced masonry shear
walls (no limits)

11. Intermediate reinforced masonry
shear walls (*not permitted in
categories D-F)

12. Buckling-restrained braced frame
(no limits)

13.Special steel plate shear walls (no
limits)

7.5

5.5

4

8

8

(Continued)
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262 APPENDIX 2 Tables for Chapter 2 (loads)

Tahle A-2.6 (Continued)

Dual systems with intermediate 02. Intermediate steel moment 1.5
moment frames that resist at least 25% frames (12categories B-D limited
of seismic forces to 35ft; not permitted in categories

E,
01. Special steel concentrically braced 6 ) .
frames (!not permitted in categories 03. Ordinary steel moment frames 1.25

E-F; Dlimited to 35ft) (Y2categories B, Climited to 35ft; not

02.Special reinforced concrete shear 6.5 permitted in categories D-F)

walls (*category D limited to 160ft; 04.Special reinforced concrete 2.5
E—F limited to 100ft) moment frames (lcategories B-F

03. Ordinary reinforced masonry shear 3 limited to 35ft)

walls (Lcategory C limited to 160ft; not 05. Intermediate concrete moment 15
permitted in categories D-F) frames (lcategories B, C limited

04. Intermediate reinforced masonry 3.5 to 35ft; not permitted in categories

shear walls (*not permitted in b-h)
categories D-F) 06. Ordinary concrete moment frames 1
(*category B limited to 35ft; not

05. Composite steel and concrete 5.5 ; . )

concentrically braced frames (*not permitted in categories C-F)

permitted in category F; D limited to 07.Timber frames (!categories 15
160ft; E limited to 100ft) B-D limited to 35ft; not permitted in

06. Ordinary composite braced frames 3.5 categories £, F)

(*not permitted in categories D-F)

. ) ) Miscellaneous other systems
07.0Ordinary composite reinforced 5

concrete shear walls with steel o .

1 . : . Steel systems not specifically detailed 3

elements (“not permitted in categories o . :

DA for seismic resistance, excluding
cantilevered column systems (not

08. Ordinary reinforced concrete shear 5.5 permitted in categories C-F)

1 s .
walls (*not permitted in categories Shear wall-frame interactive system 45

b-F) with ordinary reinforced concrete
Cantilevered column systems detailed moment frames and shear walls (‘not
to conform with: permitted in categories D-F)

01. Special steel moment frames 2.5

(Icategories B-F limited to 35ft)

Notes for Part D:

ISeismic design categories are described in Table A-2.6, Part G, and range from A (least severe) to F (most
severe).

2Height limits may be increased in certain cases, and buildings may be permitted in certain cases for this
seismic force-resisting system (refer to building codes).

(Continued)



Tables for Chapter 2 (loads)

Table A-2.6 (Continued)
E. Fundamental period of vibration, T (seconds)—approximate value, and 2exponent, k

T! Structure Cr X

T =Ch} Steel moment-resisting frame 0.028 0.8
Concrete moment-resisting frame 0.016 0.9
Steel eccentrically braced frame 0.030 0.75
All other structural types 0.020 0.75

Notes for Part E:

1. h, is the building height (ft).

2. k accounts for the more complex effect of longer periods of vibration on the distribution of story forces and
equals 1 for periods < 0.5 second, and 2 for periods > 2.5 seconds (with linear interpolation permitted for
periods between 0.5 and 2.5 seconds).

F. Importance factor, /¢

Occupancy Description Factor

Category

| Low hazard (minor storage, etc.) 1.0

Il Regular (ordinary buildings) 1.0

I Substantial hazard (schools, jails, places of assembly with no 1.25
fewer than 300 occupants)

v Essential facilities (hospitals, fire stations, etc.) 1.50

G. Seismic design category!

Occupancy 0 < Sps < °0.167 < Sps < °0.33 < Sps < 20.50 < Sp)s $;>0.75
Category 0.167 or 0.33 or 0.50 or or
0< Sy < 0067<Sy;< 0133<S;< 020<S),
0.067 0.133 0.20
| A B C D E
Il A B C D E
I A B C D E
v A C D D F
Notes for Part G:

1. Where more than one category applies, use the more severe category (i.e., B before A; C before B, etc.)

2. For buildings with S; < 0.75, it is permissible to use only the Sps criteria (i.e., one need not consider the
criteria involving Sp;), but only where all of the following apply:

(a) T < 0.85p1/Sps where the period T is found in Table A-2.5, Part E, and Sp; and Sps are found in Table
A-2.6, Part C.

(b) Floor-roof systems (acting as regular structural “diaphragms” with span-depth ratios no greater than 3)
are concrete slabs or metal decks with concrete infill; or, for flexible diaphragms, lateral-force-resisting vertical
elements (such as shear walls or trusses) are no more than 401t apart.
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Tahle A-2.6 (Continued)
H. Seismic response coefficient, 1CS

S;and T Upper Limit for C; Lower Limit for C; “Provisional C
SDl
S] < 0.6and TS TL (TR//E)
0.01
SDlTL
SJ <0.6and T> TL (TQR// )
g SDS
Soy (R/1¢)
£ 0.55,
SpiT, (RIg)
S;>06and T>T; (T2R//E)

Notes for Part H:

1. Values for S; and T, for selected cities can be found in Table A-2.3; values for Sps and Sp; are found in
Table A-2.6, Part C; values for R are found in Table A-2.6, Part D; approximate values for T are found in Table
A-2.6, Part E; and values for Ig are found in Table A-2.6, Part F.

2. Use the “provisional” value for Cs when it falls between the lower and upper limits; otherwise, use the lower
limit (when the provisional value is below the lower limit) or the upper limit (when the provisional value is above
the upper limit).



APPENDIX

Tables for Chapter 3
(material properties)

Table A-3.1 Design values for tension, F; (psi) for visually graded lumber and glued laminated
timber
A. Dimension lumber (2 to 4in. thick)

Species Select No. 1 No. 2 No. 3 Miscellaneous
Structural

Douglas Fir-Larch 1000 675 575 325 1800
Douglas Fir-Larch (North) 825 n/a n/a 300 2500
Douglas Fir-South 900 600 525 300

Hem-Fir 925 625 525 300 1725
Hem-Fir (North) 775 n/a n/a 325 2575
Spruce-Pine-Fir 700 n/a n/a 250 2450
Spruce-Pine-Fir (South) 575 400 350 200

Southern Pine? 1000 650 525 300

B. Beams and stringers®

Species Select No. 1 No. 2 No. 3 Miscellaneous
Structural
Douglas Fir-Larch 950 675 425 n/a
Douglas Fir-Larch (North) 950 675 425 n/a
Douglas Fir-South 900 625 425 n/a
Hem-Fir 750 525 350 n/a
Hem-Fir (North) 725 500 325 n/a
Spruce-Pine-Fir 650 450 300 n/a
Spruce-Pine-Fir (South) 625 450 300 n/a
Southern Pine® 900 550 525 n/a
(Continued)
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266 APPENDIX 3 Tables for Chapter 3 (material properties)

Table A-3.1 (Continued)
C. Posts and timbers®

Species Select No. 1 No. 2 No. 3 Miscellaneous
Structural
Douglas Fir-Larch 1000 825 475 n/a
Douglas Fir-Larch (North) 1000 825 475 n/a
Douglas Fir-South 950 775 450 n/a
Hem-Fir 800 650 375 n/a
Hem-Fir (North) 775 625 375 n/a
Spruce-Pine-Fir 700 550 325 n/a
Spruce-Pine-Fir (South) 675 550 325 n/a
Southern Pine® 900 550 525 n/a

D. Glued laminated softwood timber

Species Grade (and Identification No.)
L3 (ID#1) L2 (ID#2) L2D (ID#3) L1D (ID#5)
Douglas Fir-Larch (DF) 900 1250 1450 1600
L3 (ID#22)
Softwood Species (SW) 525
L3 (ID#69) L2 (ID#70) L1D (ID#71) L1S (ID#72)
Alaska Cedar (AC) 725 975 1250 1250
N2M14 (ID#47) N2D14 (ID#48) N1M16 (ID#49) N1D14 (ID#50)
Southern Pine (SP) 1200 1400 1350 1550
Notes:
1. No.1 and better.
2. No.1/No.2.

3. Values for Southern Pine for dimension lumber are approximate: typical published values include the size factor
and, therefore, list different values for each lumber width, whereas the values in this table have been normalized
(i.e., do not include the size factor) and have been rounded down to values that may be slightly conservative.

4. Beams and stringers are a subset of the “timbers” size category, 5in. X 5in. or larger, where the width is at
least 4in. bigger than the thickness.

5. Southern Pine values for timbers (beams and stringers; posts and timbers) are for wet service conditions.

6. Posts and timbers are a subset of the “timbers” size category, 5in. X 5in. or larger, where the width is equal
to, or no more than 2in. bigger than, the thickness.



Tables for Chapter 3 (material properties)

Table A-3.2 Adjustments to allowable stress in tension, £, for visually graded lumber and
glued laminated softwood timber
A. Size factor

Size factor, C- = 1.0 for tension stress, except for the following sizes of dimension lumber:

Size Cr Size Cr Size Cr Size Cr
2X2 1.5 2x8 1.2 12x14,4%x14 09 4x8 1.2
2X4 1.5 2% 10 1.1 4 X 4 1.5 4% 10 1.1
2X6 1.3 2% 12 1.0 4 X6 1.3 4x12 1.0

B. Wet service factor

Wet service factor, Cy, = 1.0, except for glulam with a moisture content of at least 16% (e.g.,
used outdoors), in which case Cy, = 0.8. In any dry service condition, Cy = 1.0.

C. Load duration factor

Load duration factor, Cp, is as follows:

Load Type Duration Cp

Dead load, D Permanent 0.90
Live load, L 10 years 1.00
Snow load, S 2 months 1.15
Construction load, L, 1 week 1.25
Wind or seismic load, Wor E 10 minutes 1.60
Impact load, / Instant 2.00

D. Temperature factor, C;

Temperature, T (°F) C;

T < 100°F 1.0
100°F < T < 150°F 0.9
Note:

1. Cr = 0.9 for all 2X or 4X dimension lumber having nominal width greater or equal to 14.
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Table A-3.3 Design values for compression (psi), parallel to grain (F.) and perpendicular to

grain (Fc_pe,) for visually graded lumber and glued laminated softwood timber
A. Dimension lumber (2 to 4in. thick)

Species F. (parallel to grain) o
(perpendicular
to grain)

Select No.1 No.2 No.3 Miscellaneous All Grades’
Structural

Douglas Fir-Larch 1700 1500 1350 775 11550 625

Douglas Fir-Larch (North) 1900 n/a n/a 825 21400 625

Douglas Fir-South 1600 1450 1450 775 520

Hem-Fir 1500 1350 1300 725 11350 405

Hem-Fir (North) 1700 n/a nfa 850 21450 405

Spruce-Pine-Fir 1400 n/a n/a 650 21150 425

Spruce-Pine-Fir (South) 1200 1050 1000 575 335

Southern Pine3 1800 1575 1425 825 565

B. Beams and stringers?

Species F. (parallel to grain) Vo
(perpendicular
to grain)

Select No.1 No.2 No.3 Miscellaneous All Grades’
Structural

Douglas Fir-Larch 1100 925 600 n/a 625

Douglas Fir-Larch (North) 1100 925 600 n/a 625

Douglas Fir-South 1000 850 550 n/a 520

Hem-Fir 925 750 500 n/a 405

Hem-Fir (North) 900 750 475 n/a 405

Spruce-Pine-Fir 775 625 425 n/a 425

Spruce-Pine-Fir (South) 675 550 375 n/a 335

Southern Pine® 950 825 525 n/a 375

C. Posts and timbers®

Species F. (parallel to grain) Feper
(perpendicular
to grain)

Select No.1 No.2 No.3 Miscellaneous All Grades’
Structural

Douglas Fir-Larch 1150 1000 700 n/a 625

Douglas Fir-Larch (North) 1150 1000 700 n/a 625

Douglas Fir-South 1050 925 650 n/a 520

Hem-Fir 975 850 575 n/a 405

Hem-Fir (North) 950 850 575 nl/a 405

Spruce-Pine-Fir 800 700 500 n/a 425

Spruce-Pine-Fir (South) 700 625 425 n/a 335

Southern Pine® 950 825 525 n/a 375

(Continued)



Table A-3.3 (Continued)
D. Glued laminated softwood timber

Species Grade (and Identification No.)
F. (parallel to grain) Fc_ser (perpendicular to grain)
L3 L2 L2D L1D L3 L2 L2D L1D
(ID#1) (ID#2) (ID#3) (ID#5) (ID#1)  (ID#2) (ID#3)  (ID#5)
Douglas 1550 1950 2300 2400 560 560 650 650
Fir-Larch® (DF)
(less than 4 1200 1600 1850 2100 560 560 650 650
laminations)
L3 (ID#22) L3 (ID#22)
Softwood 850 315
Species® (SW)
(less than 4 675 315
laminations)
L3 L2 L1D L1S L3 L2 L1D L1S
(ID#69) (ID#70) (ID#71) (ID#72) (ID#69) (ID#70) (ID#71) (ID#72)
Alaska Cedar® 1150 1450 1900 1900 470 470 560 560
(AC)
(less than 4 1100 1450 1900 1900 470 470 560 560
laminations)
N2M14 N2D14 Ni1M16 Ni1D14 N2M14 N2D14 NiIM16 Ni1D14
(ID#47) (ID#48) (ID#49) (ID#50) (ID#47) (ID#48) (ID#49) (ID#50)
Southern Pine® 1900 2200 2100 2300 650 740 650 740
(SP)
(less than 4 1150 1350 1450 1700 650 740 650 740
laminations)
Species Combination Symbol
F. (parallel to grain) Fc.ser (perpendicular to grain)
16F-1.3E  20F-1.5E 24F-1.7E 24F-1.8E 16F-1.3E 20F-1.5E 24F-1.7E  24F-1.8E
Various species® 925 925 1000 1600 315 425 500 650
Notes:
1. No.1 and better.
2. No.1/No.2.

3. Values for Southern Pine for dimension lumber are approximate: typical published values include the size factor
and, therefore, list different values for each lumber width, whereas the values in this table have been normalized
(i.e., do not include the size factor) and have been rounded down to values that may be slightly conservative.

4. Beams and stringers are a subset of the “timbers” size category, 5in. X 5in. or larger, where the width is at

least 4in. bigger than the thickness.

5. Southern Pine values for timbers (beams and stringers; posts and timbers) are for wet service conditions.
6. Posts and timbers are a subset of the “timbers” size category, 5in. X 5in. or larger, where the width is equal

to, or no more than 2in. bigger than, the thickness.

7. Values for compression perpendicular to grain apply to all the size categories listed in this table (i.e., listed
under compression parallel to grain). However, “dense” variations of Douglas Fir-Larch and Southern Pine, not

listed here, have higher values.

8. These species designations are designed primarily for axially loaded elements (compression and tension).
9. These combination designations are designed primarily for bending elements, although they can be

used in axial compression or tension with the values that appear in this table. Values for F.pe, (compression
perpendicular to grain) are based on loading perpendicular to the wide face of the laminations.
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APPENDIX 3 Tables for Chapter 3 (material properties)

Table A-3.4 Adjustments to allowable stress in compression, F, for visually graded lumber
and glued laminated softwood timber
A. Size factor®

Size factor, Cr = 1.0 for compression stress, except for the following sizes of dimension lumber:

Size Cr Size Cr Size Cr Size Cr

2X?2 1.15 2X8 1.05 12x14,4%x14 09 4x8 1.05
2x4 1.15 2% 10 1.00 4 x4 1.15 4 x 10 1.00
2X6 1.10 2x12 1.00 4 X6 1.10 4 %12 1.00

B. Wet service factor

Wet service factor, Cy, is as follows: for 2dimension lumber, Cy, = 0.8; for timbers, Cy, = 0.91; for

glulam, Cy; = 0.73. In any dry service condition, Cy, = 1.0.

C. Load duration factor?

Load duration factor, Cp, is as follows:

Load Type Duration Cp

Dead load, D Permanent 0.90
Live load, L 10 years 1.00
Snow load, S 2 months 1.15
Construction load, L, 1 week 1.25
Wind or seismic load, Wor E 10 minutes 1.60
Impact load, / Instant 2.00

D. Column stability factor®

The column stability factor, Cp, is as follows:
Cp=A—JA*-B

where:
A= 11+ (Fe/F)IN2c)
B = (FlF})lc
Fee = 0.822E7 . /(I/d)?
F; = FCCDCMCF
rin = EminCy (see Table A-3.9 for adjustments to £and £,

d = cross-sectional dimension (in.) corresponding to the unbraced length, /;; where the
unbraced length is the same for both axes of the cross section, d should be taken as the
smaller cross-sectional dimension; otherwise, use the larger value of /./d

l, = the unbraced length corresponding to the cross-sectional dimension, d

¢ = 0.8 for sawn lumber, and 0.9 for glulam

(Continued)




Table A-3.4 (Continued)
E. Temperature factor, C;

Tables for Chapter 3 (material properties)

Temperature, T (°F) C; (used dry) C; (used wet)

T < 100°F 1.0 1.0
100°F < T< 125°F 0.8 0.7
125°F < T < 150°F 0.7 0.5

Notes:

1. Cr = 0.9 for all 2x or 4X dimension lumber having nominal width greater or equal to 14.
2. Cy = 1.0 for dimension lumber when F.Cr < 750psi.
3. Size factor adjustments are not used for compression perpendicular to grain.

4. Load duration adjustments are not used for compression perpendicular to grain.

5. Column stability factor adjustments are not used for compression perpendicular to grain.

Table A-3.5 Design values for bending, F, (psi) for visually graded lumber and glued

laminated softwood timber

A. Dimension lumber (2 to 4in. thick)

Species Select No. 1 No.2 No.3  Miscellaneous
Structural

Douglas Fir-Larch 1500 1000 900 525 11200
Douglas Fir-Larch (North) 1350 n/a n/a 475 2850
Douglas Fir-South 1350 925 850 500

Hem-Fir 1400 975 850 500 11100
Hem-Fir (North) 1300 n/a n/a 575 21000
Spruce-Pine-Fir 1250 n/a n/a 500 2875
Spruce-Pine-Fir (South) 1300 875 775 450

Southern Pine3 1700 1075 875 500
B. Beams and stringers®

Species Select No. 1 No.2 No.3  Miscellaneous

Structural

Douglas Fir-Larch 1600 1350 875 n/a

Douglas Fir-Larch (North) 1600 1300 875 n/a

Douglas Fir-South 1550 1300 825 n/a

Hem-Fir 1300 1050 675 n/a

Hem-Fir (North) 1250 1000 675 n/a
Spruce-Pine-Fir 1100 900 600 n/a
Spruce-Pine-Fir (South) 1050 900 575 n/a

Southern Pine® 1500 1350 850 n/a

(Continued)
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Table A-3.5 (Continued)
C. Posts and timbers®

Species Select No. 1 No.2 No.3  Miscellaneous
Structural
Douglas Fir-Larch 1500 1200 750 n/a
Douglas Fir-Larch (North) 1500 1200 725 n/a
Douglas Fir-South 1450 1150 675 n/a
Hem-Fir 1200 975 575 n/a
Hem-Fir (North) 1150 925 550 n/a
Spruce-Pine-Fir 1050 850 500 n/a
Spruce-Pine-Fir (South) 1000 800 475 n/a
Southern Pine® 1500 1350 850 n/a

D. Glued laminated softwood timber bent about x-axis (loaded perpendicular to wide face of

laminations)
Species Grade (and Identification No.)
F, (for beams with d > 15in.) F, (for beams with d < 15in.)
L3 L2 L2D L1D L3 L2 L2D L1D
(ID#1)  (ID#2) (ID#3) (ID#5) (ID#1) (ID#2) (ID#3)  (ID#5)
Douglas 1100 1496 1760 1936 1250 1700 2000 2200
Fir-Larch’ (DF)
L3 (ID#22) L3 (ID#22)
Softwood 638 725
Species’ (SW)
L3 L2 L1D L1S L3 L2 L1D L1S
(ID#69) (ID#70) (ID#71) (ID#72) (ID#69) (ID#70) (ID#71) (ID#72)
Alaska Cedar’ 830 1188 1496 1672 1000 1350 1700 1900
(AC)

N2M14 N2D14 N1M16 N1D14 N2M14 N2D14 N1IM16 N1D14
(ID#47) (ID#48) (ID#49) (ID#50) (ID#47) (ID#48) (ID#49) (ID#50)

Southern Pine’ 1232 1408 1584 1848 1400 1600 1800 2100
(SP)

Species Combination Symbols for Stress Classes
F, (for positive hending®) F, (for negative bending®)
16F-1.3E  20F-1.5E 24F-1.7E 24F-1.8E 16F-1.3E 20F-1.5E 24F-1.7E  24F-1.8E
Various species® 1600 2000 2400 2400 925 1100 1450 1450

(Continued)
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Table A-3.5 (Continued)
E. Glued laminated softwood timber bent about y-axis (loaded parallel to wide face of laminations)

Species Grade (and Identification No.)
Fy (for 4 or more laminations) Fy (for 3 laminations)

L3 L2 L2D L1D L3 L2 L2D L1D

(ID#1) (ID#2) (ID#3) (ID#5)  (ID#1)  (ID#2) (ID#3)  (ID#5)
Douglas 1450 1800 2100 2400 1250 1600 1850 2100
Fir-Larch’ (DF)

L3 (ID#22) L3 (ID#22)

Softwood 800 700
Species’ (SW)

L3 L2 L1D L1S L3 L2 L1D L1S

(ID#69) (ID#70) (ID#71) (ID#72) (ID#69) (ID#70) (ID#71) (ID#72)
Alaska Cedar’ 1100 1400 1850 1850 975 1250 1650 1650
(AC)

N2M14 N2D14 N1M16 N1D14 N2M14 N2D14 Ni1IM16 Ni1D14

(ID#47) (ID#48) (ID#49) (ID#50) (ID#47) (ID#48) (ID#49) (ID#50)
Southern Pine’ 1750 2000 1950 2300 1550 1800 1750 2100
(SP)
Species Combination Symbols for Stress Classes

F, (all cases)

16F-1.3E 20F-1.5E 24F-1.7E 24F-1.8E
Various species® 800 800 1050 1450
Notes:
1. No.1 and better.
2. No.1/No.2.

3. Values for Southern Pine for dimension lumber are approximate: typical published values include the size factor
and, therefore, list different values for each lumber width, whereas the values in this table have been normalized
(i.e., do not include the size factor) and have been rounded down to values that may be slightly conservative.

4. Beams and stringers are a subset of the “timbers” size category, 5in. X 5in. or larger, where the width is at
least 4in. bigger than the thickness.

5. Southern Pine values for timbers (beams and stringers; posts and timbers) are for wet service conditions.

6. Posts and timbers are a subset of the “timbers” size category, 5in. X 5in. or larger, where the width is equal
to, or no more than 2in. bigger than, the thickness.

7. These species designations are designed primarily for axially loaded elements (compression and tension),
although they can be used for bending with the values that appear in this table. For bending about the x-axis
only, these elements are assumed to have no special tension laminations; such special tension laminations
would increase the bending design values (for all cross-section sizes bent about the x-axis) to the values shown
for d = 15in. multiplied by a factor of 1.18.

8. These combination designations are designed primarily for simply supported bending elements (i.e., for
beams with only positive bending moments), and are manufactured with higher strength grades of wood used
in the extreme fibers (for bending about the x-axis) where bending stresses are greatest.

9. The combination symbols in this table refer to cross sections that are “unbalanced”; that is, they are
manufactured to optimize the behavior of simply supported beams with only positive curvature. Where such
unbalanced combinations are used for beams subjected to negative bending moments—that is, for continuous or
cantilevered beams—Iower values for F,, must be used at those cross sections with negative moment. For beams
subjected to reversals of curvature (and, therefore, both positive and negative bending), “balanced” (symmetrical)
combinations can be specified where F,, is the same for both positive and negative bending; for example,
combination symbols 16F-V6 with F, = 1600psi; 20F-V7 with F, = 2000psi; and 24F-V8 with F, = 2400psi.
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Table A-3.6 Adjustments to allowable stress in bending, F,, for visually graded lumber and

glued laminated softwood timber

A. Size factor

Size factor, Cr. (1) For glulam, size factor does not apply (use smaller of C,,and C,—see Table
A-3.6, Parts Cand F). (2) For timbers (beams and stringers; posts and timbers): when d > 12in.,
Cr = (12/d)"%; when loaded on the wide face, Cr = 0.86 (select structural), 0.74 (No. 1), or 1.00
(No. 2); otherwise, Cr = 1.00. (3) For dimension lumber, Cris as shown here:

Size Cr Size Cr Size Cr Size Cr
2X2 1.5 2X8 1.2 12 x 14 0.9 4 X8 1.3
2X4 1.5 2% 10 1.1 4 x4 1.5 4 x 10 1.2
2X6 1.3 2x12 1.0 4 X6 1.3 14 x 12 1.1

B. Flat use factor

axis:
(1) For dimension lumber:

Flat use factor, Cy,, is used only when dimension lumber (or glulam) is oriented about its weak

Size Cy Size Cy Size Cy Size Cy

2 X4 1.10 2x10 1.20 4 X6 1.05 4x12 1.10
2X6 1.15 2x12 1.20 4x8 1.05 4 x 14 1.10
2X8 1.15 2x 14 1.20 4 x 10 1.10 4% 16 1.10

(2) For glulam:

the depth, d < 12in.:
Cpy = (12/)*

alternative:

Depth, d (in.) Cy
2% 1.19
3or3% 1.16
5orbk 1.10

For glulam beams bent about their weak (y) axis, and where

Load direction on beam

| H_ﬂa <1z

The approximate values shown below can be used as an

Depth, d (in.)

6%
8% or 8%
10% or 10%

cfu

1.07
1.04
1.01

(Continued)
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Table A-3.6 (Continued)
C. Volume factor

The volume factor, Cy, is used only for glulam beams loaded about their strong axes, and only if
smaller than C; (see later discussion). For these conditions:

211" (12 (5.125
¢, == |25 |2==2
L) la b

1/x
<1.0

where

L = the length of the simply supported beam, or, for other beam types, the distance between
points of zero moment (ft)

d = beam depth (in.)

b = beam width (in.)

x = 10 (except x = 20 for Southern Pine only)

D. Wet service factor

Wet service factor, Cy, is as follows: for 2dimension lumber, Cy, = 0.85; for timbers, Cy; = 1.0; for
glulam, Cy; = 0.8. In any dry service condition, Cy = 1.0.

E. Repetitive member factor

Repetitive member factor, €, = 1.15, is used only for dimension lumber spaced 24in. on center or
less (typically the case with joists and rafters).

(Continued)



Table A-3.6 (Continued)
F. Beam stability factor

The beam stability factor, C;, may apply to glulam and timber beams but not ordinarily to
dimension lumber—and only when the compression edge of the beam is unbraced by a roof or
floor deck. For continuously braced beams—that is, when /, = 0—C,; = 0. For glulam, use only
the smaller value of C, or C,. For timbers, combine C; with the size factor, Cr. Use only when the
beam depth is greater than its width. For these conditions:

C,=A-VA -8B
Where
A = Lt (FulF)
19
(FoelF)

0.95
_ 1.200°E;

min
Fbe /ed
Ft = Fpwith all adjustments except Cy, C, and Cy,
En = EminCu (see Table A-3.9 for adjustments to Eand Ep)
d = beam depth (in.)
b = beam width (in.)
I, = the unsupported (unbraced) length (in.), that is, the greatest distance between lateral
braces, including bridging or blocking, along the length of the beam
lo = the effective unsupported length (in.) where continuous lateral support is not provided as
shown in these selected loading patterns:

Load Arrangement Effective Length, /,
m I, = 2.061,for I,/d < 7
Uniform load: no lateral support except at ends. l, = 1.63/, + 3dfor I,/d > 7

* le = 1.80}, for /,/d < 7
Single point load at midspan: no lateral support except at l,=1.371,+ 3dfor I,/d >7
ends.

s l,=1.11,
s

Single point load at midspan: lateral support under load and
ends only.

N I, = 1.68,

Point loads at third points: lateral support under loads and
ends only.

,|: :|, \l, I, = 1.541,
A “y

Point loads at quarter points: lateral support under loads and
ends only.

Notes:

1. Cr= 0.9 for all 2X dimension lumber having nominal width greater or equal to 14. Cr = 1.0 for all 4X
dimension lumber having nominal width greater or equal to 14.

2. Cy = 1.0 for dimension lumber when F,Cr < 1150psi.

(Continued)



Table A-3.6 (Continued)
G. Load duration factor

Tables for Chapter 3 (material properties)

Load duration factor, Cp, is as follows:

Load Type Duration Cp
Dead load, D Permanent 0.90
Live load, L 10 years 1.00
Snow load, S 2 months 1.15
Construction load, L, 1 week 1.25
Wind or seismic load, Wor £ 10 minutes 1.60
Impact load, / Instant 2.00
H. Temperature factor, C;
Temperature, T (°F) C; (used dry) C; (used wet)
T < 100°F 1.0 1.0
100°F < T< 125°F 0.8 0.7
125°F < T < 150°F 0.7 0.5
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Table A-3.7 Design values for shear, F, (psi) for visually graded lumber and glued laminated

softwood timber

A. Dimension lumber (2 to 4in. thick)

Species Select No. 1 No. 2 No. 3 Miscellaneous
Structural

Douglas Fir-Larch 180 180 180 180 1180
Douglas Fir-Larch (North) 180 n/a n/a 180 2180
Douglas Fir-South 180 180 180 180

Hem-Fir 150 150 150 150 1150
Hem-Fir (North) 145 n/a n/a 145 2145
Spruce-Pine-Fir 135 n/a n/a 135 2135
Spruce-Pine-Fir (South) 135 135 135 135

Southern Pine 175 175 175 175
B. Timbers?

Species Select No. 1 No. 2 No. 3 Miscellaneous

Structural

Douglas Fir-Larch 170 170 170 n/a

Douglas Fir-Larch (North) 170 170 170 n/a

Douglas Fir-South 165 165 165 n/a

Hem-Fir 140 140 140 n/a

Hem-Fir (North) 135 135 135 n/a
Spruce-Pine-Fir 125 125 125 n/a
Spruce-Pine-Fir (South) 125 125 125 n/a

Southern Pine? 165 165 165 n/a

C. Glued laminated softwood timber bent about x-axis (loaded perpendicular to wide face of

laminations)

Species

Grade (and Identification No.)

F, (for bending about x-axis’)

L3 (ID#1) L2 (ID#2) L2D (ID#3) L1D (ID#5)
Douglas Fir-Larch® (DF) 265 265 265 265

L3 (ID#22)
Softwood Species® (SW) 195

L3 (ID#69) L2 (ID#70) L1D (ID#71) L1S (ID#72)
Alaska Cedar® (AC) 265 265 265 265

N2M14 (ID#47) N2D14 (ID#48) N1M16 (ID#49) N1D14 (ID#50)
Southern Pined (SP) 300 300 300 300

Species

Various species®

Combination Symbols for Stress Classes
F, (for bending about x-axis’)
16F-1.3E 20F-1.5E 24F-1.7E 24F-1.8E
195 210 210 265

(Continued)
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Table A-3.7 (Continued)
D. Glued laminated softwood timber bent about y-axis (loaded parallel to wide face of laminations)

Species Grade (and Identification No.)
F, (for bending about y-axis’)

L3 (ID#1) L2 (ID#2) L2D (ID#3) L1D (ID#5)
Douglas Fir-Larch® (DF) 230 230 230 230

L3 (ID#22)
Softwood Species® (SW) 170

L3 (ID#69) L2 (ID#70) L1D (ID#71) L1S (ID#72)
Alaska Cedar® (AC) 230 230 230 230

N2M14 (ID#47) N2D14 (ID#48) N1M16 (ID#49) N1D14 (ID#50)
Southern Pine® (SP) 260 260 260 260
Species Combination Symbols for Stress Classes

F, (for bending about y-axis’)

16F-1.3E 20F-1.5E 24F-1.7E 24F-1.8E
Various species® 170 185 185 230
Notes:
1. No.1 and better.
2. No.1/No.2.

3. Timbers include “beams and stringers” and “posts and timbers,” that is, all cross sections 5in. X 5in. or
larger.

4. Southern Pine values for timbers (beams and stringers; posts and timbers) are for wet service conditions.
5. These species designations are designed primarily for axially loaded elements (compression and tension),
although they can be used for bending with the shear values that appear in this table.

6. These combination designations are designed primarily for bending elements, and are manufactured with
higher-strength grades of wood used in the extreme fibers where bending stresses are greatest when bent
about the x-axis.

7. These values for horizontal shear must be reduced by a factor of 0.72 when used in the design of
mechanical connections.
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Table A-3.8 Adjustments to allowable stress in shear, F,, for visually graded lumber and glued
laminated softwood timber
A. Wet service factor

Wet service factor, Cy, is as follows: for dimension lumber, Cy, = 0.97; for timbers, Cy, = 1.0; for
glulam, Cy, = 0.875. In any dry service condition, Cy, = 1.0.

B. Load duration factor

Load duration factor, Cp, is as follows:

Load Type Duration Cp

Dead load, D Permanent 0.90
Live load, L 10 years 1.00
Snow load, S 2 months 1.15
Construction load, L, 1 week 1.25
Wind or seismic load, Wor E 10 minutes 1.60
Impact load, / Instant 2.00

C. Temperature factor, C;

Temperature, T (°F) C; (used dry) C; (used wet)
T < 100°F 1.0 1.0
100°F < T < 125°F 0.8 0.7

125°F < T < 150°F 0.7 0.5
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Table A-3.9 Design values for modulus of elasticity, £and £, (psi) for visually graded
lumber and glued laminated softwood timber (values and adjustments)
A. Modulus of elasticity, £ (psi)®

Dimension Lumber (2 to
4in. thick)

Douglas Fir-Larch
Douglas Fir-Larch (North)
Douglas Fir-South
Hem-Fir

Hem-Fir (North)
Spruce-Pine-Fir
Spruce-Pine-Fir (South)
Southern Pine

Timbers?

Douglas Fir-Larch
Douglas Fir-Larch (North)
Douglas Fir-South
Hem-Fir

Hem-Fir (North)
Spruce-Pine-Fir
Spruce-Pine-Fir (South)
Southern Pine?

Glued Laminated

Select No. 1 No. 2 No. 3
Structural

1,900,000 1,700,000 1,600,000 1,400,000
1,900,000 n/a n/a 1,400,000

1,400,000 1,300,000 1,200,000 1,100,000
1,600,000 1,500,000 1,300,000 1,200,000
1,700,000 n/a n/a 1,400,000
1,500,000 n/a n/a 1,200,000
1,300,000 1,200,000 1,100,000 1,000,000
1,800,000 1,700,000 1,600,000 1,400,000

Select No. 1 No. 2 No. 3
Structural

1,600,000 1,600,000 1,300,000 n/a
1,600,000 1,600,000 1,300,000 n/a
1,200,000 1,200,000 1,000,000 n/a
1,300,000 1,300,000 1,100,000 n/a
1,300,000 1,300,000 1,100,000 n/a
1,300,000 1,300,000 1,100,000 n/a
1,200,000 1,200,000 1,000,000 n/a
1,500,000 1,500,000 1,200,000 n/a

Grade (and Identification No.)

Miscellaneous

11,800,000
21,600,000

11,500,000

21,600,000
21,400,000

Miscellaneous

Softwood Timber
L3 (ID#1) L2 (ID#2) L2D (ID#3) L1D (ID#5)
Douglas Fir-Larch’ (DF) 1,500,000 1,600,000 1,900,000 2,000,000
L3 (ID#22)
Softwood Species’? (SW) 1,000,000
L3 (ID#69) L2 (ID#70) L1D (ID#71) L1S (ID#72)
Alaska Cedar’ (AC) 1,200,000 1,300,000 1,600,000 1,600,000
N2M14 (ID#47) N2D14 (ID#48) N1M16 (ID#49) N1D14 (ID#50)
Southern Pine” (SP) 1,400,000 1,700,000 1,700,000 1,900,000
Combination Symbols for Stress Classes
16F-1.3E 20F-1.5E 24F-1.7E 24F-1.8E
Various species (bending 1,300,000 1,500,000 1,700,000 1,800,000
about x-axis)®
Various species (bending 1,100,000 1,200,000 1,300,000 1,600,000

about y-axis)®

(Continued)
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Tahle A-3.9 (Continued)

B. Minimum modulus of elasticity, £, (psi)®

about y-axis)®

Dimension Lumber Select No. 1 No. 2 No. 3 Miscellaneous
(2 to 4in. thick) Structural
Douglas Fir-Larch 690,000 620,000 580,000 510,000 1660,000
Douglas Fir-Larch (North) 690,000 n/a n/a 510,000 2580,000
Douglas Fir-South 510,000 470,000 440,000 400,000
Hem-Fir 580,000 550,000 470,000 440,000 1550,000
Hem-Fir (North) 620,000 n/a n/a 510,000 2580,000
Spruce-Pine-Fir 550,000 n/a n/a 440,000 2510,000
Spruce-Pine-Fir (South) 470,000 440,000 400,000 370,000
Southern Pine 660,000 620,000 580,000 510,000
Timbers3 Select No. 1 No. 2 No. 3 Miscellaneous
Structural
Douglas Fir-Larch 580,000 580,000 470,000 n/a
Douglas Fir-Larch (North) 580,000 580,000 470,000 n/a
Douglas Fir-South 440,000 440,000 370,000 n/a
Hem-Fir 470,000 470,000 400,000 n/a
Hem-Fir (North) 470,000 470,000 400,000 n/a
Spruce-Pine-Fir 470,000 470,000 370,000 n/a
Spruce-Pine-Fir (South) 440,000 440,000 370,000 n/a
Southern Pine* 550,000 550,000 440,000 n/a
Glued Laminated Softwood Grade (and Identification No.)
Timber
L3 (ID#1) L2 (ID#2) L2D (ID#3) L1D (ID#5)
Douglas Fir-Larch’ (DF) 780,000 830,000 980,000 104,000
L3 (ID#22)
Softwood Species”1° (SW) 520,000
L3 (ID#69) L2 (ID#70) L1D (ID#71) L1S (ID#72)
Alaska Cedar’ (AC) 620,000 670,000 830,000 830,000
N2M14 N2D14 N1M16 N1D14
(ID#47) (ID#48) (ID#49) (ID#50)
Southern Pine’ (SP) 730,000 880,000 880,000 980,000
Combination Symbols for Stress Classes
16F-1.3E 20F-1.5E 24F-1.7E 24F-1.8E
Various species (bending 670,000 780,000 880,000 930,000
about x-axis)®
Various species (bending 570,000 620,000 670,000 830,000

(Continued)
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Table A-3.9 (Continued)
C. Wet service adjustment (Cy) to E and E,

When applicable, the wet service factor, Cy, is as follows: for dimension lumber, Cy; = 0.9; for

glulam, Cy, = 0.833; for any other condition, Cy, = 1.0. In any dry service condition, Cy, = 1.0.

D. Temperature factor adjustment (Cy) to E and E,,;,

Temperature, T (°F) C;
T < 100°F 1.0
100°F < T < 150°F 0.9
Notes:

1. No.I and better.

2. No.1/No.2.

3. Timbers include “beams and stringers” and “posts and timbers,” that is, all cross sections 5in. X 5in. or larger.
4. Southern Pine values for timbers (beams and stringers; posts and timbers) are for wet service conditions.

5. The modulus of elasticity, E, is an average value, used in the calculation of beam deflections, but not for
column or beam stability calculations.

6. The minimum modulus of elasticity, E,, is a conservative (low) value, based on statistical analyses of moduli
for tested samples and is used in calculations of column buckling (Cp) and beam stability (C,).

7. These species designations are designed primarily for axially loaded elements (compression and tension),
although they can be used in any context with the values that appear in this table.

8. These combination designations are designed primarily for bending elements, although they can be used in
any context with the values that appear in this table.

9. The design values for E shown for “softwood species” must be reduced from 1,000,000 psi to 900,000 psi
when the following species are used in combination: Western Cedars, Western Cedars (North), Western Woods,
and Redwood (open grain).

10. The design values for E,,;, shown for “softwood species” must be reduced from 520,000 psi to 470,000 psi
when the following species are used in combination: Western Cedars, Western Cedars (North), Western Woods,
and Redwood (open grain).
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Table A-3.10 Use of load duration factor, Cp, for wood elements

Where more than one load type acts on a wood structural element, Cp corresponds to the load
of shortest duration. Values of Cp for tension, compression, bending, and shear can be found in
Tables A-3.2, A-3.4, A-3.6, and A-3.8, respectively. It is sometimes necessary to check various
combinations of loads (where the corresponding value of Cp changes) to determine the critical
loading condition. Because the strength of lumber depends on the duration of loading, it is
possible that a smaller load, with a longer duration, will be more critical than a larger load that
acts on the element for less time.

For example, consider a wooden column supporting the following loads:

® A “construction” or roof live load, Lg = 60001b.
= Alive load, L = 20,0001b.

® A dead load, D = 15,0001b.

® A snow load, S = 16,0001b.

Lg and S are not considered simultaneously because it is unlikely that roof maintenance or
construction will occur during a major snow storm.

Several load combinations should be analyzed, per Table A-5.1 (using Allowable Stress Design for
wood):

1. D+ L with Cp = 1.0 (corresponding to the live load).
2. D+ Swith Cp = 1.15 (corresponding to the snow load).
3. D+ 0.75L + 0.75S with Cp = 1.15 (corresponding to the snow load).

It is usually unnecessary to go through the entire design procedure for each load combination;
instead, divide the loads in each case by the corresponding load duration factor to get a measure
of the relative “load effects”; that is:

1. (15,000 + 20,000)/1.00 = 35,000/1.0 = 35,0001b.
2. (15,000 + 8,000)/1.15 = 23,000/1.15 = 20,0001b.
3. (15,000 + 0.75 x 20,000 + 0.75 x 16,000)/1.15 = 42,000/1.15 = 36,522 1b.

The third load combination is the critical one in this case, based on the underlined value being
largest of the three choices. However, the structural element should be designed for the bold-
faced value of 42,000Ib—and not the underlined value of 36,522 1b, which is used only to
determine the governing load value. The governing duration of load factor, Cp = 1.15, will then be
applied, not to the loads, but to the allowable stress.

Where only “occupancy” live loads and dead loads are present, Cp can almost always be taken as
1.0 (corresponding to the load duration factor for live loads). The case of dead load acting alone,
with Cp = 0.9, is critical only when more than 90% of the total load is dead load.
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Table A-3.11 Specific gravity for selected wood species

Species or Species Combination Specific Gravity (based on oven-dry weight and velume)

Douglas Fir-Larch 0.50
Douglas Fir-Larch (North) 0.49
Douglas Fir-South 0.46
Hem-Fir 0.43
Hem-Fir (North) 0.46
Spruce-Pine-Fir 0.42
Spruce-Pine-Fir (South) 0.36
Southern Pine 0.55

Table A-3.12 Steel properties!

Category ASTM Yield Stress, (Ultimate) Preferred for these
Designation  F, (ksi) Tensile Stress, Shapes
F, (ksi)
Carbon A36 36 58 M, S, C, MC, L, plates?
and bars
A500 Gr. B 42 58 HSS round
A500 Gr. B 46 58 HSS rectangular
A53Gr. B 235 60 Pipe
High-strength, A992 50 65 Sw
low-alloy A572 Gr. 50 50 65 HP
Corrosion resistant, AB88 50 70
high-strength, low-alloy A242 42-50 63-70
Low-alloy reinforcing A615 40 60 Rebar
bars 60 90
75 100
Bolts A325 n/a 120 High-strength bolts,
0.5- to 1-in. diameter
n/a 105 High-strength bolts,
>1-to0 1.5-in.
diameter
A490 n/a 150 High-strength bolts,
0.5- to 1.5-in. diameter
A307 Gr. A n/a 60 Common bolts
Cold-formed A653 Gr. 33 33 45 Connector plates? in

wood construction

Notes:

1. The modulus of elasticity for these steels can be taken as 29,000Kksi.

2. Steel with F,, = 35ksi may be designed as if yield stress were F, = 36Ksi.

3. W-shapes have formerly been specified in A36; current practice in the United States is to use A992 with

F, = 50ksi.

4}./ In wood fastener design, the dowel bearing strength of connector plates is F, = 1.5F, (for A36 hot-rolled
steel) and 1.375F, (for A653 GR 33 cold-formed steel). These values are 1.6 times less than those permitted
in steel structures so that they can be used in yield limit equations for wood members that have load duration
adjustments (adjustments that may be as high as 1.6 for wind or seismic).
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Table A-3.13 Steel allowable stresses and available strengths

Type of Structural Action Allowable Stress® (same units Available Strength Limit
as F,or F) States (with safety factor, 2)*
P F A
Tension F&°% = 0.60F, (yieldin P <=5
f y ielding) =0 167
P F,A
F® = 0.50F, (rupture) <= %0
Compression See Tables A-7.3-A-7.6 (analysis) or A-7.2 (design)
Bending,? assuming laterally Fp, = 0.60F, (used with plastic M,  FZ,
braced, compact section section modulus, Z,) or M, < QO 167
Fp, = 0.66F, (used with elastic ~ The available strength method
section modulus, S,) has no official limit state for the
elastic moment
Shear? F, = 0.40F, ¥ v, _ 0.6F, A,

< R
T Q 1.50

Notes:

1. Allowable stresses, although no longer officially sanctioned by the American Institute of Steel Construction,
result in the same values that are obtained when considering available strength, except in the case of bending.
For bending, the limit state defined by the elastic moment, formerly the basis of allowable stress design, is no
longer applicable, although it can still be used with somewhat conservative results for laterally braced, compact
sections. On the other hand, an allowable stress equation can be formulated based on the plastic section
modulus that is equivalent to the available strength equation for laterally braced, compact sections.

2. The allowable stress for bending, 0.66 F,, used with the elastic section modulus, S,, gives a generally
conservative value compared with using Q = 1.67 and the plastic section modulus, Z,. To reconcile these two
different safety factors, it is necessary to approximate the ratio of Z,/S,, which varies depending on the cross
section. This ratio can be taken conservatively as 1.1 for W-shapes; therefore, Z, = 1.1S,, and the allowable
moment, M/ = F,Z,/Q = 1.1F,S5/Q = 1.1F,S,/1.67 = 0.66F,S,, which corresponds to the assumptions
used for an allowable bending stress.

3. Both the allowable stress and available strength values for shear assume I-shaped rolled members meeting
the slenderness criteria for beam webs. For beam webs that do not meet slenderness criteria for shear, a
reduced allowable shear stress, F, = 0.36 Fy, is used. This is equivalent to using an increased allowable
strength design safety factor, Q = 1.67, and applies to the following W-shapes: W12 X 14, W16 X 26,

W24 x 55, W30 x 90, W33 X 118, W36 X 135, W40 x 149, and W44 X 230. For the rectangular HSS listed
in Table A-4.6, the reduced shear stress, F, = 0.36F,, is also used, with a web area, A,, equal to 2ht (where

t is the wall thickness of the web and h can be assumed to equal the nominal depth minus 3t). The value for
the coefficient C, is equal to 1.0 for all W-shapes and is not included in the shear equations. For cross sections
with very thin webs, this coefficient needs to be considered.

4. In these equations for various limit states, the subscript “a” refers to the available strength of the cross
section, that is, the strength that is considered safe. The subscript “n” refers to the nominal strength of the
cross section, that is, the actual limit state of the material. In other words, P, is equivalent to the maximum
tension force that the cross section can safely sustain; M, is equivalent to the maximum bending moment that
the cross section can safely sustain; and V, is equivalent to the maximum shear force that the cross section
can safely sustain.
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Tables for Chapter 4
(sectional properties)

Table A-4.1 Dimensions and properties of lumber

b Properties of rectangular cross sections:
| y Cross-sectional area, A = bd
Section modulus, S, = bd?%/6
Moment of inertia, /, = bd3/12
x x |d Moment of inertia, /, = db%/12

A. Dimension Lumber

Dimension Lumber, Actual Size, Area (in?) S, (in%) LGn* 1, (in%
Nominal Size b x d(in.)

2X%X3 15x25 3.75 1.563 1.953 0.703
2X4 15x35 5.25 3.063 5.359 0.984
2X6 1555 8.25 7.563 20.80 1.547
2X8 15%x7.25 10.88 13.14 47.63 2.039
2 x 10 1.5x9.25 13.88 21.39 98.93 2.602
2% 12 1.5%x11.25 16.88 31.64 178.0 3.164
2% 14 1.5 %X 13.25 19.88 43.89 290.8 3.727
4 X 4 3.5%X 35 12.25 7.146 12.51 12.51
4 X6 3.5 %55 19.25 17.65 48.53 19.65
4 X8 3.5X%X7.25 25.38 30.66 111.1 25.90
4 x 10 3.5X9.25 32.38 4991 230.8 33.05
4 X 12 35X 11.25 39.38 73.83 415.3 40.20
4 X 14 3.5 X 13.25 46.38 102.4 678.5 47.34
4 X 16 3.5 X 15.25 53.38 135.7 1034.4 54.49

(Continued)
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Table A-4.1 (Continued)
B. Beams and stringers

Beams and Stringers, Actual Size, Area (in?) S, (in3) I, (in%) I, (in*)
Nominal Size b X d (in.)
6 X 10 55xX95 52.25 82.73 393.0 131.7
6 X 12 55 %115 63.25 121.2 697.1 159.4
6 X 14 55X 135 74.25 167.1 1128 187.2
6 X 16 55X 155 85.25 220.2 1707 2149
6 X 18 55X 175 96.25 280.7 2456 242.6
6 X 20 55 %195 107.3 348.6 3398 270.4
8 X 12 75 %115 86.25 165.3 950.5 404.3
8 X 14 7.5 X% 135 101.3 227.8 1538 474.6
8 X 16 75X 155 116.3 300.3 2327 5449
8 X 18 75 %175 131.3 382.8 3350 615.2
8 X 20 7.5 %195 146.3 475.3 4634 685.5
10 X 14 9.5 %X 13.5 128.3 288.6 1948 964.5
10 X 16 9.5 x 15.5 147.3 380.4 2948 1107
10 X 18 95x%x 175 166.3 484.9 4243 1250
12 X 16 11.5x 155 178.3 460.5 3569 1964
12 X 18 11.5x 175 201.3 587.0 5136 2218
12 X 20 11.5x 19.5 224.3 728.8 7106 2471
14 x 18 135 x 175 236.3 689.1 6029 3588
14 X 20 135 x 19.5 263.3 855.6 8342 3998
16 X 20 15,5 x 19.5 302.3 982.3 9578 6051

C. Posts and timbers

Posts and Timbers, Actual Size, Area (in?) S, (in%) I, (in%) I, (in%)
Nominal Size b X d(in.)
6X6 55X 5.5 30.25 27.73 76.26 76.26
6X8 55x%x75 41.25 51.56 1934 104.0
8 X 8 75X%X75 56.25 70.31 263.7 263.7
8 X 10 7.5x%x95 71.25 112.8 5359 334.0
10 x 10 9.5%x95 90.25 1429 678.8 678.8
10 X 12 95 %115 109.3 209.4 1204 821.7
12 X 12 11.5x 11.5 132.3 253.5 1458 1458
12 x 14 115 x 135 155.3 349.3 2358 1711
14 X 14 135X 13.5 182.3 410.1 2768 2768
14 X 16 135 x 155 209.3 540.6 4189 3178
16 X 16 155 % 15.5 240.3 620.6 4810 4810
16 X 18 155 % 17.5 271.3 791.1 6923 5431
18 X 18 175 %X 175 306.3 893.2 7816 7816

18 x 20 175 x 19.5 341.3 1109 10,810 8709
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Table A-4.2 Dimensions of typical glulam posts and beams

Southern Pine (1%-in. laminations)

Western Species! (1%-in. laminations)

Width (in.) Depth (in.) Width (in.) Depth (in.)
2% or 2% 5% to 2434 20r 2% 6 to 27
3or3% 5% to 24% 3% 61to 27
5or 5% 5% to 35% 5% 61036
6% 67 to 48Ys 6% 7% 1048
8% 8% to 63% 8% 910 63
10% 9% to 77 10% 10% to 81
12 11 to 86% 12Y% 12 to 88%
14 133 to 100% 14% 13% 10 102
Note:

1. Western Species (WS) consists of numerous species groups, not all of which are produced in the western

United States, including Alaska Cedar (AC), Douglas Fir-Larch (DF) and Douglas Fir South (DFS), Eastern

Spruce (ES), Hem-Fir (HF), Softwood Species (SW), and Spruce Pine Fir (SPF).

Table A-4.3 Dimensions and properties of steel W-sections

Flange width, by Cross-sectional area = A
y Moment of inertia = /
F|3nge thickness, (r;' 5 Section mOdUlUS, SX = 2/X/d
Web thickness, ty— = = Sectional modulus, S, = 21,/bs
X X =
§ Radius of gyration, r, = \/(/,/A)
v Radius of gyration, r, = 1/(/y/A)
Designation A d t, by t; Sz Z, I, Iy I
(in) (in) (n) (@n) (@n) (¥ (@n®) (0% (in)  (in)
W4 x 13 383 416 0280 406 0345 546 6.28 113 3.86 1.00
W5 X 16 471 501 0240 500 0360 855 9.63 214 751 1.26
W5 x 19 556 515 0270 503 0430 102 116 263 9.13 1.28
W6 x 8.52 252 583 0170 394 0.195 510 573 149 199 0.890
W6 x 92 268 590 0.170 394 0215 b5 623 164 220 0.905
W6 X 12 355 6.03 0230 400 028 731 830 221 299 00918
W6 X 16 474 628 0260 4.03 0405 102 11.7 32.1 443 0967
W6 x 151 443 599 0230 599 0260 9.72 108 29.1 932 1.45
W6 X 20 587 620 0260 6.02 0365 134 149 414 133 1.50
W6 X 25 734 638 0320 6.08 0455 16.7 189 534 17.1 1.52
W8 x 107 296 789 0170 394 0205 781 887 30.8 2.09 0.841
W8 X 13 384 799 0230 400 0255 991 114 396 273 0843
W8 X 15 444 811 0245 402 0315 11.8 136 480 341 0.876
W8 x 18 526 814 0230 5250 0330 152 170 619 797 1.23
W8 x 21 6.16 828 0250 5270 0400 182 204 753 9.77 1.26

(Continued)
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Table A-4.3 (Continued)

Designation A d ffy by t; Sy Z, I I, Iy
(in?) (in) (in)  (n) (n)  (@n®) (n®) (%) (in)  (in)

W8 x 24 708 793 0245 650 0400 209 231 82.7 183 1.61
W8 X 28 824 806 0285 654 0465 243 27.2 98.0 21.7 1.62
W8 x 312 9.12 800 028 800 0435 275 304 110 37.1 2.02
W8 X 35 103 812 0310 8.02 049 312 347 127 426 2.03
W8 X 40 11.7 825 0360 807 0560 355 398 146 49.1 2.04
W8 X 48 141 850 0400 8.11 0685 432 49.0 184 609 2.08
W8 X 58 171 875 0510 822 0810 520 598 228 75.1 2.10
W8 X 67 19.7 9.00 0570 828 0935 604 70.1 272 88.6 2.12
W10 x 122 354 987 0.190 396 0.210 109 126 53.8 2.18 0.785
W10 X 15 4.41 100 0230 400 0270 138 160 689 289 0.810
W10 X 17 499 10.1 0240 401 0330 162 187 819 356 0.845
W10 X 19 562 102 0250 402 039 188 216 963 429 0874
W10 X 22 6.49 102 0240 575 0360 232 260 118 114 1.33
W10 X 26 7.61 103 0260 577 0440 279 313 144  14.1 1.36
W10 X 30 884 105 0300 5.81 0510 324 366 170 16.7 1.37
W10 X 33 971 973 0290 796 0435 350 388 171 36.6 194
W10 X 39 115 992 0315 799 0530 42.1 468 209 45.0 1.98
W10 X 45 13.3 10.10 0350 8.02 0.620 49.1 549 248 534 2.01
W10 X 49 144 100 0340 10.0 0560 546 604 272 934 2.54
W10 x 54 158 10.1 0370 10.0 0615 600 66.6 303 103 2.56
W10 X 60 176 102 0420 10.1 0680 66.7 746 341 116 2.57
W10 X 68 200 104 0470 101 0.770 75.7 853 394 134 2.59
W10 x 77 226 106 0530 102 0870 859 976 455 154 2.60
W10 X 88 259 108 0605 103 0.990 985 113 534 179 2.63
W10 x 100 294 11.1 0680 103 1.120 112 130 623 207 2.65
WIO0 X 112 329 114 0.755 104 1.250 126 147 716 236 2.68
W12 x 143 416 119 0200 397 0225 149 174 886 236 0.753
W12 X 16 4.71 120 0220 399 0265 17.1 20.1 103 282 0.773
W12 X 19 557 122 0235 401 0350 213 247 130 3.76 0.822
W12 X 22 648 123 0260 403 0425 254 293 156 466 0.848
W12 X 26 765 122 0230 649 0380 334 372 204 173 1.51
W12 X 30 879 123 0260 652 0440 386 431 238 203 1.52
W12 x 35 103 125 0300 656 0520 456 51.2 285 245 1.54
W12 X 40 11.7 119 0295 801 0515 515 57.0 307 44.1 1.94
W12 X 45 13.1 121 0335 805 0575 57.7 64.2 348 50.0 1.95
W12 X 50 146 122 0370 808 0640 642 719 391 563 1.96
W12 X 53 156 121 0345 100 0575 706 779 425 958 2.48
W12 X 58 170 122 0360 10.0 0640 780 864 475 107 2.51

(Continued)
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Table A-4.3 (Continued)

Designation A d t, by t Sy Z, I I I
(i) (in) (@n) (Gn) (@n) Gn®)  (@(n®) (0% (@n)  (in)

W12 x 652 191 121 0390 120 0605 879 968 533 174 3.02
W12 X 72 21.1 123 0430 120 0.670 974 108 597 195 3.04
W12 X 79 232 124 0470 121 0735 107 119 662 216 3.05
W12 x 87 256 125 0515 121 0.810 118 132 740 241 3.07
W12 X 96 282 127 0550 12.2 0.900 131 147 833 270 3.09
W12 X 106 312 129 0610 122 0.990 145 164 933 301 3.11
W12 x 120 3563 131 0.710 123 1.11 163 186 1070 345 3.13
W12 X 136 399 134 0790 124 1.25 186 214 1240 398 3.16
W12 x 152 447 137 0870 125 1.40 209 243 1430 454 3.19
W12 x 170 50.0 140 0960 126 1.56 235 275 1650 517 3.22
W12 x 190 5.8 144 1.06 12.7 1.74 263 311 1890 589 3.25
W12 x 210 61.8 14.7 1.18 128 1.90 292 348 2140 664 3.28
W12 x 230 67.7 151 1.29 129 2.07 321 386 2420 742 3.31
W12 x 252 740 154 140 13.0 2.25 353 428 2720 828 3.34
W12 x279 819 159 153 131 247 393 481 3110 937 338
W12 x 305 89.6 163 163 132 271 435 537 3550 1050 3.42
W12 x 336 98.8 16.8 1.78 134 2.96 483 603 4060 1190 3.47
W14 x 22 6.49 137 0230 500 0335 29.0 332 199 7.00 1.04
W14 x 26 7.69 139 0255 503 0420 353 402 245 891 1.08
W14 x 30 885 138 0270 6.73 038 420 473 291 196 1.49
W14 x 34 100 140 028 6.75 0455 486 546 340 233 1.53
W14 X 38 11.2 141 0310 6.77 0515 5b46 615 385 26.7 1.55
W14 x 43 126 137 0305 800 0530 626 696 428 452  1.89
W14 x 48 141 138 0340 803 059 70.2 784 484 5l.4 191
W14 x 53 156 139 0370 806 0660 778 87.1 541 57.7 1.92
W14 x 61 179 139 0375 100 0645 921 102 640 107 2.45
W14 X 68 200 140 0415 100 0.720 103 115 722 121 2.46
W14 X 74 21.8 142 0450 10.1 0.785 112 126 795 134 2.48
W14 x 82 240 143 0510 10.1 0.855 123 139 881 148 2.48
W14 x 902 265 140 0440 145 0.710 143 157 999 362 3.70
W14 x 992 29.1 142 0485 146 0.780 157 173 1110 402 371
W14 x 109 320 143 0525 146 0.860 173 192 1240 447 3.73
W14 x 120 353 145 0590 14.7 0.940 190 212 1380 495 3.74
W14 x 132 388 147 0645 147 1.03 209 234 1530 548 3.76
W14 x 145 427 148 0680 155 1.09 232 260 1710 677 398
W14 X 159 46.7 15.0 0.745 156 1.19 2b4 287 1900 748 4.00
W14 X 176 51.8 152 0830 15.7 1.31 281 320 2140 838 4.02
W14 x 193 56.8 1565 0.890 15.7 1.44 310 365 2400 931 4.05
W14 x 211 620 157 0980 158 1.56 338 390 2660 1030 4.07
W14 x 233 685 16.0 1.07 159 1.72 375 436 3010 1150 4.10
W14 x 257 756 164 1.18 16.0 1.89 415 487 3400 1290 4.13
W14 x 283 833 167 1.29 16.1 2.07 459 542 3840 1440 4.17

(Continued)
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Tahle A-4.3 (Continued)

Designation A d t, by t; S Z, I I, I
(in» (in) (n) (n) @n)  (@n®  (@(nd (@(nH  (n)  (in)

W14 x 311 914 17.1 141 162 226 506 603 4330 1610 4.20
W14 x 342 101 175 154 164 247 558 672 4900 1810 4.24
W14 x 370 109 179 le6 165 266 607 736 5440 1990 4.27
W14 x 398 117 183 177 166 285 65 801 6000 2170 4.31
W14 X 426 125 187 1.88 167 3.04 706 869 6600 2360 4.34
W14 X 455 134 19.0 202 168 321 756 936 7190 2560  4.38
W14 x 500 147 196 219 170 350 838 1050 8210 2880  4.43
W14 x 550 162 20.2 238 172 382 931 1180 9430 3250 4.49
W14 x 605 178 209 260 174 416 1040 1320 10800 3680  4.55
W14 X 665 196 216 283 177 452 1150 1480 12400 4170 4.62
W14 x 730 215 224 307 179 491 1280 1660 14300 4720  4.69

W16 x 263 768 157 0250 550 0345 384 442 301 9.59 1.12
W16 x 31 9.13 159 0275 553 0440 472 540 375 124 1.17

W16 X 36 106 159 0295 699 0430 565 64.0 448 245 1.52
W16 x 40 11.8 160 0305 7.00 0505 64.7 73.0 518 289 1.57
W16 x 45 133 161 0345 7.04 0565 727 823 586 32.8 1.57
W16 X 50 147 163 0380 7.07 0630 81.0 920 659 372 1.59
W16 x 57 168 164 0430 7.12 0715 922 105 758 431 1.60

W16 X 67 19.7 163 0395 102 0.665 117 130 954 119 2.46
W16 x 77 226 165 0455 103 0.760 134 150 1110 138 2.47
W16 x 89 262 168 0525 104 0.875 155 175 1300 163 2.49
W16 x 100 295 170 0585 104 0.985 175 198 1490 186 251

W18 x 35 103 177 0300 6.00 0425 576 66.5 510 153 1.22
W18 x 40 118 179 0315 6.02 0525 684 784 612 191 1.27
W18 x 46 135 181 0360 6.06 0605 788 90.7 712 225 1.29

W18 x 50 147 180 0355 750 0570 889 101 800 40.1 1.65
W18 X 55 162 181 039 753 0.630 983 112 890 449 1.67
W18 x 60 176 182 0415 7.56 0.695 108 123 984 50.1 1.68
W18 X 65 191 184 0450 7.59 0.750 117 133 1070 54.8 1.69
W18 x 71 20.8 185 049 7.64 0810 127 146 1170 60.3 1.70

W18 X 76 223 182 0425 11.0 0.680 146 163 1330 152 2.61
W18 X 86 253 184 0480 11.1 0.770 166 186 1530 175 2.63
W18 x 97 285 186 0535 11.1 0.870 188 211 1750 201 2.65
W18 x 106 31.1 187 0590 11.2 0940 204 230 1910 220 2.66
W18 x 119 351 190 0655 113 106 231 262 2190 253 2.69
W18 x 130 382 193 0.670 11.2 1.20 256 290 2460 278 2.70
W18 x 143 421 195 0730 11.2 132 282 322 2750 311 2.72
W18 x 158 463 197 0810 113 144 310 356 3060 347 2.74
W18 x 175 513 20.0 0.8%0 114 159 344 398 3450 391 2.76
W18 x 192 564 204 0960 115 1.75 380 442 3870 440 2.79
W18 x 211 62.1 20.7 106 116 1091 419 490 4330 493 2.82

(Continued)
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Table A-4.3 (Continued)

Designation A d t, by t Sy Z, I I, I
(in®) (in) (@n) (Gn) (@n) Gn®)  (@n®) (%) (@n)  (in)

W18 x 234 68.8 21.1 1.16 11.7 2.11 466 549 4900 558 2.85
W18 x 258 759 215 1.28 118 2.30 514 611 5510 628 2.88
W18 x 283 83.3 219 140 119 2.50 b6b 676 6170 704 291
W18 x 311 916 223 152 120 2.74 624 754 6970 795 2.95
W21 X 44 13.0 20.7 0350 650 0450 8l6 954 843  20.7 1.26
W21 X 50 147 208 0380 653 0535 945 110 984 249 1.30
W21 x 57 16.7 21.1 0405 6.56 0.650 111 129 1170 30.6 1.35
W21 x 482 141 206 0350 814 0430 93.0 107 959 38.7 166
W21 X b5 162 208 0375 822 0522 110 126 1140 484 1.73
W21 X 62 183 21.0 0400 824 0.615 127 144 1330 575 1.77
W21 X 68 20.0 21.1 0430 827 0.685 140 160 1480 64.7 1.80
W21 x 73 215 212 0455 830 0.740 151 172 1600 70.6 1.81
W21 X 83 243 214 0515 836 0.835 171 196 1830 814 1.83
W21 X 93 273 216 058 842 0.930 192 221 2070 929 1.84
W21 x 101 298 214 0500 123 0.800 227 253 2420 248 2.89
W21 x 111 327 215 0550 123 0.875 249 279 2670 274 2.90
W21 x 122 359 21.7 0600 124 0.960 273 307 2960 305 2.92
W21 x 132 388 21.8 0650 124 1.04 295 333 3220 333 293
W21 x 147 432 221 0720 125 1.15 329 373 3630 376 2.95
W21 X 166 488 225 0.750 124 1.36 380 432 4280 435 2.99
W21 x 182 3.6 227 0830 125 1.48 417 476 4730 483 3.00
W21 x 201 592 230 0910 126 1.63 461 530 5310 542 3.02
W24 x 553 162 236 0395 7.01 0.505 114 134 1350 29.1 1.34
W24 X 62 182 237 0430 7.04 0.590 131 153 1550 345 1.38
W24 x 68 20.1 23.7 0415 897 0.585 154 177 1830 704 1.87
W24 X 76 224 239 0440 899 0680 176 200 2100 825 192
W24 X 84 247 241 0470 9.02 0.770 196 224 2370 944 1.95
W24 X 94 27.7 243 0515 9.07 0.875 222 254 2700 109 1.98
W24 x 103 30,3 245 0550 9.00 0.980 245 280 3000 119 1.99
W24 x 104 306 241 0500 128 0750 258 289 3100 259 291
w24 x 117 344 243 0550 12.8 0.850 291 327 3540 297 2.94
W24 x 131 385 245 0605 129 0.960 329 370 4020 340 2.97
W24 X 146 43.0 2477 0650 129 1.09 371 418 4580 391 3.01
W24 x 162 47.7 250 0.705 13.0 1.22 414 468 5170 443 3.05
W24 x 176 bl.7 252 0.750 129 1.34 450 511 5680 479 3.04
W24 x 192 563 255 0810 130 146 491 559 6260 530 3.07
W24 x 207 60.7 257 0870 130 157 531 606 6820 578 3.08
W24 x 229 672 26.0 0960 13.1 1.73 b88 675 7650 651 3.11
W24 x 250 735 263 1.04 132 1.89 644 744 8490 724 3.14
W24 x 279 820 26.7 1.16 133 2.09 718 835 9600 823 3.17
W24 x 306 89.8 27.1 1.26 134 2.28 789 922 10700 919 3.20

(Continued)
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Tahle A-4.3 (Continued)

Designation A d t, by t; SY Z, I I, I
(in» (n) (@n) (n) (n)  @nd)  @nd) (@(n%H  (n)  (in)

W24 x 335 984 275 1.38 135 2.48 864 1020 11900 1030 3.23

W24 x 370 109 28.0 1.52 13.7 2.72 957 1130 13400 1160 3.27

W27 X 84 248 267 0460 100 0.640 213 244 2850 106 2.07
W27 X 94 277 269 0490 100 0.745 243 278 3270 124 2.12
W27 x 102 300 271 0515 100 0830 267 305 3620 139 2.15
W27 x 114 335 273 0570 10.1 0930 299 343 4080 159 2.18
W27 x 129 378 276 0610 100 1.10 345 395 4760 184 221

W27 X 146 431 274 0.605 140 0975 414 464 5630 443 3.20
W27 x 161 476 276 0660 140 1.08 458 515 6310 497 3.23
W27 x 178 525 278 0725 141 119 505 570 7020 555 3.25
W27 x 194 572 281 0750 140 134 559 631 7860 619 3.29
W27 x 217 640 284 0830 14.1 1.50 627 711 8910 704  3.32
W27 x 235 69.4 287 0910 142 1.61 677 772 9700 769 3.33
W27 x 258 76.0 29.0 0980 143 1.77 745 852 10800 859 3.36
W27 x 281 829 293 106 144 193 814 936 11900 953 3.39
W27 x 307 904 296 116 144 209 887 1030 13100 1050 341
W27 X 336 989 30.0 126 146 228 972 1130 14600 1180 3.45
W27 X 368 108 304 1.38 147 248 1060 1240 16200 1310 3.48
W27 X 539 159 325 197 153 354 1570 1890 25600 2110  3.65

W30 x 908 264 295 0470 104 0610 245 283 3610 115 2.09
W30 x 99 29.1 297 0520 105 0670 269 312 3990 128 210
W30 x 108 31.7 298 0545 105 0760 299 346 4470 146  2.15
W30 X 116 342 300 0565 105 0850 329 378 4930 164  2.19
W30 x 124 365 302 058 105 0930 355 408 5360 181 2.23
W30 x 132 389 303 0615 105 1.00 380 437 5770 19 225
W30 X 148 435 307 0650 105 1.18 436 500 6680 @ 227 2.28

W30 x 173 51.0 304 0655 150 1.07 541 607 8230 598  3.42
W30 x 191 563 30.7 0710 150 1.19 600 675 9200 673 3.46
W30 x 211 622 309 0.775 151 132 665 751 10300 757 3.49
W30 x 235 69.2 313 0830 151 150 748 847 11700 855 3.51
W30 x 261 769 316 0930 152 165 829 943 13100 959 3.53
W30 x 292 859 320 1.02 153 1.85 930 1060 14900 1100  3.58
W30 x 326 958 324 1.14 154 2.05 1040 1190 16800 1240  3.60
W30 x 357 105 328 124 155 224 1140 1320 18700 1390 3.64
W30 x 391 115 332 136 156 244 1250 1450 20700 1550 3.67

W33 x 118% 347 329 0550 115 0.740 359 415 5900 187 232
W33 x 130 383 331 0580 115 0855 406 467 6710 218 239
W33 x 141 416 333 0.605 115 0960 448 514 7450 246 2.43
W33 x 152 448 335 0635 116 106 487 559 8160 273 2.47
W33 x 169 495 338 0.670 115 122 549 629 9290 310 2.50

(Continued)




Tables for Chapter 4 (sectional properties)

Table A-4.3 (Continued)

Designation A d t, by t Sy Z, I I I
(i) (in) (@n) (Gn) (@n) Gn®)  (@(n®) (0% (@n)  (in)

W33 x 201 592 337 0.715 157 1.15 686 773 11600 749 3.56
W33 x 221 65.2 339 0775 158 1.28 759 857 12900 840 3.59
W33 X 241 71.0 342 0830 159 1.40 831 940 14200 933 3.62
W33 X 263 775 345 0870 158 1.57 919 1040 15900 1040 3.66
W33 x 291 857 348 090 159 173 1020 1160 17700 1160  3.68
W33 x 318 936 352 1.04 16.0 1.89 1110 1270 19500 1290 371
W33 X 354 104 356 1.16 16.1 2.09 1240 1420 22000 1460 3.74
W33 X 387 114 36.0 126 16.2 2.28 1350 1560 24300 1620 3.77
W36 x 135° 39.7 356 0.600 12.0 0.790 439 509 7800 225 @ 2.38
W36 x 150 442 359 0625 120 0.940 504 581 9040 270 2.47
W36 x 160 470 36.0 0650 120 1.02 b4 624 9760 295 2.50
W36 x 170 50.1 36.2 0680 12.0 1.10 581 668 10500 320 2.53
W36 X 182 3.6 363 07256 121 1.18 623 718 11300 347 2.55
W36 X 194 570 365 0.765 12.1 1.26 664 767 12100 375 2.56
W36 X 210 61.8 36.7 0830 122 1.36 719 833 13200 411 2.58
W36 X 232 68.1 37.1 0870 121 1.57 809 936 15000 468 2.62
W36 X 256 754 374 0960 122 1.73 895 1040 16800 528 2.65
W36 X 231 681 365 0.760 165 1.26 854 963 15600 940 3.71
W36 x 247 725 367 0800 165 135 913 1030 16700 1010 3.74
W36 x262 770 369 0840 166 144 972 1100 17900 1090  3.76
W36 x 282 829 37.1 0885 16.6 1.57 1050 1190 19600 1200 3.80
W36 x 302 88.8 373 0945 16.7 1.68 1130 1280 21100 1300 3.82
W36 x 330 97.0 37.7 1.02 16.6 1.85 1240 1410 23300 1420 3.83
W36 X 361 106 38.0 1.12  16.7 2.01 1350 1550 25700 1570 3.85
W36 X 395 116 384 122 168 220 1490 1710 28500 1750  3.88
W36 X 441 130 389 136 170 244 1650 1910 32100 1990 3.92
W36 X 487 143 393 1.50 17.1 2.68 1830 2130 36000 2250 3.96
W36 X 529 156 398 161 172 291 1990 2330 39600 2490 4.00
W36 X 652 192  41.1 197 176 3.54 2460 2910 50600 3230 4.10
W36 X 800 236 426 2.38 18.0 429 3040 3650 64700 4200 4.22
W40 X 149° 438 382 0630 118 0.830 513 598 9800 229  2.29
W40 x 167 49.2 386 0650 11.8 1.03 600 693 11600 283 2.40
W40 x 183 3.3 390 0650 118 1.20 675 774 13200 331 2.49
W40 x 211 620 394 0.750 118 1.42 786 906 15500 390 2.51
W40 x 235 69.0 39.7 0830 119 1.58 875 1010 17400 444 2.54
W40 X 264 776 400 0960 11.9 1.73 971 1130 19400 493 2.52
W40 X 278 82.0 40.2 1.03 120 1.81 1020 1190 20500 521 2.52
W40 X 294 86.3 404 1.06 120 1.93 1080 1270 21900 562 2.55
W40 x 327 96.0 40.8 1.18 12.1 2.13 1200 1410 24500 640 2.58
W40 X 331 975 40.8 122 122 2.13 1210 1430 24700 644 2.57
W40 x 392 115 416 142 124 2.52 1440 1710 29900 803 2.64

(Continued)
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Table A-4.3 (Continued)

Designation A d t, by t; Sy Z, 1 I, I
(in?) (in) (in) (n) (in)  (n®) (%) (%) (in)  (in)

W40 x 199 585 387 0.650 158 1.07 770 869 14900 695 3.45
W40 x 215 63.4 390 0650 158 1.22 859 964 16700 796 3.54
W40 x 249 733 394 0.750 158 1.42 993 1120 19600 926 3.55
W40 x 277 814 39.7 0830 158 1.58 1100 1250 21900 1040 3.58
W40 X 297 874 398 0930 158 1.65 1170 1330 23200 1090 3.54
W40 x 324 953 40.2 1.00 159 1.81 1280 1460 25600 1220 3.58
W40 X 362 107 40.6 1.12 16.0 2.01 1420 1640 28900 1380 3.60
W40 x 372 109 40.6 1.16 16.1 205 1460 1680 29600 1420 3.60
W40 x 397 117 41.0 122 161 220 1560 1800 32000 1540 3.64
W40 X 431 127 413 1.34 16.2 236 1690 1960 34800 1690 3.65
W40 x 503 148 42.1 154 164 2.76 1980 2310 41600 2040 3.72
W40 x 593 174 43.0 1.79 16.7 3.23 2340 2760 50400 2520 3.80
W44 x 2308 67.7 429 0.710 158 1.22 971 1100 20800 796 343
W44 x 262 769 433 0.785 158 1.42 1110 1270 24100 923 3.47
W44 x 290 854 436 0865 158 1.58 1240 1410 27000 1040 3.49
W44 x 335 985 440 1.03 159 1.77 1410 1620 31100 1200 3.49

Notes:

1. Section not compact for steel with F, = 36ksi or F, = 50ksi.
2. Section compact for steel with F, = 36 ksi, but not compact for steel with F, = 50ksi.

3. Section webs do not meet slenderness criteria for shear for which the allowable stress can be taken as

F, = 0.4F instead, use a reduced allowable shear stress, F, = 0.36f,.
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Table A-4.4 Dimensions and properties of steel C and MC channels

Flange width, b,

ey
--'-'-'-—-J_.‘
Web thickness, £,/

1 L=

£

X [=%

a
— |

y

Designation A(in?)  d(in)
C3x35 1.09 3.00
C3x4.1 1.20 3.00
C3 x5 1.47 3.00
C3 x 6 1.76 3.00
C4x45 1.38 4.00
C4xb54 1.58 4.00
C4x7.2 2.13 4.00
Ch x 6.7 1.97 5.00
Cohx9 2.64 5.00
C6 x 8.2 2.39 6.00
C6 x 10.5 3.08 6.00
C6 X 13 3.81 6.00
C7 x9.8 2.87 7.00
C7 x12.2 3.60 7.00
C7 x14.7 433 7.00
C8 x 11.5 3.37 8.00
C8 x 13.7 4.04 8.00
C8 X 185 551 8.00
Co x 134 3.94 9.00
C9 x 15 441 9.00
C9 x 20 5.87 9.00
Cl10 x 15.3 4.48 10.0
C10 x 20 5.87 10.0
Cl0o x 25 7.34 10.0
C10 x 30 8.81 10.0
Cl2 x 20.7 6.08 12.0
Clz2 x 25 7.34 12.0
Cl2 x 30 8.81 12.0
Cl5x 339 10.0 15.0
C15 x 40 11.8 15.0
C15 x 50 14.7 15.0

t, (in.)

0.132
0.170
0.258
0.356
0.125
0.184
0.321
0.190
0.325
0.200
0.314
0.437
0.210
0.314
0.419
0.220
0.303
0.487
0.233
0.285
0.448
0.240
0.379
0.526
0.673
0.282
0.387
0.510
0.400
0.520
0.716

Cross-sectional area = A

Dimension to y-axis = e

Moment of inertia = /

Section modulus, S, = 2/,/d

Radius of gyration, r, = /(/,/A)

Radius of gyration, r

= JU,/A)

by (in.)

1.37
141
1.50
1.60
1.58
1.58
1.72
1.75
1.89
1.92
2.03
2.16
2.09
2.19
2.30
2.26
2.34
2.53
2.43
2.49
2.65
2.60
2.74
2.89
3.03
2.94
3.05
3.17
3.40
3.52
3.72

e (in.)

0.443
0.437
0.439
0.455
0.493
0.457
0.459
0.484
0.478
0.512
0.500
0.514
0.541
0.525
0.532
0.572
0.554
0.565
0.601
0.586
0.583
0.634
0.606
0.617
0.649
0.698
0.674
0.674
0.788
0.778
0.799

I, (in%)
1.57
1.65
1.85
2.07
3.65
3.85
4.58
7.48
8.89
13.1
15.1
17.3
21.2
24.2
27.2
325
36.1
43.9
47.8
51.0
60.9
67.3
78.9
91.1

103
129
144
162
315
348
404

I, (in%)
0.169
0.191
0.241
0.300
0.289
0.312
0.425
0.470
0.624
0.687
0.860
1.05
0.957
1.16
1.37
131
1.52
1.97
1.75
191
241
2.27
2.80
3.34
3.93
3.86
4.45
5.12
8.07
9.17
11.0

(Continued)
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Table A-4.4 (Continued)

Designation A(in?) d(n)  t,(n)  b(Gn) e(n)  L@n*) 1, (Y
MC3 x 7.1 2.11 3.00 0.312 1.94 0.653 2.72 0.666
MC4 x 13.8 4.03 4.00 0.500 2.50 0.849 8.85 2.13
MC6 X 6.5 1.95 6.00 0.155 1.85 0.513 11.0 0.565
MC6 X 7 2.09 6.00 0.179 1.88 0.501 114 0.603
MC6 X 12 3.53 6.00 0.310 2.50 0.704 18.7 1.85
MC6 x 15.1 4.44 6.00 0.316 2.94 0.940 249 3.46
MC6 X 16.3 4.79 6.00 0.375 3.00 0.927 26.0 3.77
MC6 x 15.3 4.49 6.00 0.340 3.50 1.05 25.3 491
MC6 X 18 5.29 6.00 0.379 3.50 1.12 29.7 5.88
MC7 x 19.1 5.61 7.00 0.352 3.45 1.08 43.1 6.06
MC7 x 22.7 6.67 7.00 0.503 3.60 1.04 47.4 7.24
MC8 x 8.5 2.50 8.00 0.179 1.87 0.428 233 0.624
MC8 x 18.7 5.50 8.00 0.353 2.98 0.849 52.4 4.15
MC8 x 20 5.88 8.00 0.400 3.03 0.840 54.4 4.42
MC8 x 21.4 6.28 8.00 0.375 3.45 1.02 61.5 6.58
MC8 x 22.8 6.70 8.00 0.427 3.50 1.01 63.8 7.01
MC9 x 23.9 7.02 9.00 0.400 3.45 0.981 84.9 7.14
MC9O x 25.4 7.47 9.00 0.450 3.50 0.970 87.9 7.57
MC10 X 6.5 1.95 10.0 0.152 1.17 0.194 229 0.133
MC10 X 8.4 2.46 10.0 0.170 1.50 0.284 31.9 0.326
MC10 x 22 6.45 10.0 0.290 3.32 0.990 102 6.40
MC10 x 25 7.35 10.0 0.380 341 0.953 110 7.25
MC10 x 28.5 8.37 10.0 0.425 3.95 1.12 126 11.3
MC10 X 33.6 9.87 10.0 0.575 4.10 1.09 139 13.1
MC10 x 41.1 12.1 10.0 0.796 432 1.09 157 15.7
MC12 X 10.6 3.10 12.0 0.190 1.50 0.269 55.3 0.378
MC12 x 31 9.12 12.0 0.370 3.67 1.08 202 11.3
MC12 x 35 10.3 12.0 0.465 3.77 1.05 216 12.6
MC12 x 40 11.8 12.0 0.590 3.89 1.04 234 14.2
MC12 X 45 13.2 12.0 0.710 401 1.04 251 15.8
MC12 x 50 14.7 12.0 0.835 4.14 1.05 269 17.4
MC13 x 31.8 9.35 13.0 0.375 4.00 1.00 239 11.4
MC13 x 35 10.3 13.0 0.447 4.07 0.980 252 12.3
MC13 X 40 11.8 13.0 0.560 4.19 0.963 273 13.7
MC13 x 50 147 13.0 0.787 4.41 0.974 314 16.4
MC18 x 42.7 12.6 18.0 0.450 3.95 0.877 554 14.3
MC18 x 45.8 13.5 18.0 0.500 4.00 0.866 578 14.9
MC18 x 51.9 15.3 18.0 0.600 4.10 0.858 627 16.3
MC18 x 58 17.1 18.0 0.700 4.20 0.862 675 17.6
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Table A-4.5 Dimensions and properties of selected steel L angles
A. Angles with equal legs

Cross-sectional area = A

Dimension to x- or y-axis = e

Moment of inertia = /

x Radius of gyration, r, = r, = 1A
L 4 :r} ‘F Radius of gyration, r, = \/m

Designation A(in?) d (in.) t, (in.) e (in.) leor I, (in*) 1, (in%)
[2x2x %12 0.484 2.00 0.1250 0.534 0.189 0.0751
2x2x Y% 0.938 2.00 0.2500 0.586 0.346 0.141
12%2X He 1.15 2.00 0.3125 0.609 0.414 0.173
2x2x % 1.36 2.00 0.3750 0.632 0.476 0.203
13X 3 X ¥gl2 1.09 3.00 0.1875 0.812 0.948 0.374
3x3x Y% 1.44 3.00 0.2500 0.836 1.23 0.491
13x3x % 2.11 3.00 0.3750 0.884 1.75 0.712
13x3x % 2.75 3.00 0.5000 0.929 2.20 0.924
L4 x4 x Y12 1.94 4.00 0.2500 1.08 3.00 1.18
L4 x 4% % 2.86 4.00 0.3750 1.13 4.32 1.73
L4 X 4x % 3.75 4.00 0.5000 1.18 5.52 2.25
l4x4x Y, 5.44 4.00 0.7500 1.27 7.62 3.25
15X 5 X ¥gl2 3.03 5.00 0.3125 1.35 7.44 3.01
15X 5 X Xs 4.18 5.00 0.4375 1.40 10.0 4.08
5% 5x % 5.86 5.00 0.6250 1.47 13.6 5.61
5% 5% % 7.98 5.00 0.8750 1.56 17.8 7.56
L6 X 6 X ¥gl2 3.67 6.00 0.3125 1.60 13.0 5.20
16X 6x % 5.77 6.00 0.5000 1.67 199 8.04
L6x6Xx % 8.46 6.00 0.7500 1.77 28.1 116
L6 X6 X1 11.0 6.00 1.0000 1.86 354 15.0
18 x 8 x Y12 7.75 8.00 0.5000 2.17 48.8 19.7
18 x8x % 9.61 8.00 0.6250 2.21 59.6 24.2
18X 8X % 13.2 8.00 0.8750 231 79.7 32.7
18x8x 1% 16.7 8.00 1.1250 2.40 98.1 40.9

(Continued)
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Table A-4.5 (Continued)
B. Angles with unequal legs

y
T n!
Dt\.('*‘-* Cross-sectional area = A
Dimension to y-axis = e
'"g \ Moment of inertia = /
= Radius of gyration, r, = //,/A
J‘Q_J:L Radius of gyration, r, = //y/A
Radius of gyration, r, = /I,/A
Designation A d b t, e I, Iy I, [
(in?) (in.) (in)  (in.) (in) (% (@(n*) (in% ()
13x2X 1.19 3.00 200 0.2500 0.487 1.09 0390 0.223 236
13X 2X %6 146 3.00 200 0.3125 0511 132 0467 0271 234
13X 2X % 1.73 3,00 2,00 03750 0535 154 0539 0318 231
L3x2x Y4 225 300 200 05000 0580 192 0667 0409 224
L3 X 2% X %1 1.31 3.00 250 0.2500 0.653 1.16 0.734 0356 343
L3 X 2% X %6 167 300 250 03125 0677 141 0888 0437 342
L3 X 2% X 3% 192 3.00 250 03750 0.701 165 1.03 0514 340
L3 X 2% X % 250 3.00 250 05000 0.746 2.07 1.29 0666 33.7
L3% X 2% X %1 2 144 350 250 0.2500 0.607 181 0.775 0425 26.7
3% X 2% X %6 1.78 350 250 03125 0632 220 0937 0518 26.6
L3% x 2% x % 211 350 250 03750 0.655 256 1.09 0608 263
L3% X 2% X % 275 350 250 05000 0.701 3.24 1.36 0.782 259
4 X 3 X %1 12 169 400 3.00 0.2500 0.725 2.75 1.33 0691 29.2
4 X 3 X % 248 400 3.00 03750 0.775 394 1.89 1.01 289
L4x3x % 325 400 300 05000 0822 502 240 130 285
4 X 3 X % 3.89 4,00 3.00 0.6250 0.867 6.01 2.85 159 281
L4 X 3% X % 12 1.81 400 350 0.2500 0.897 2.89 2.07 0950 37.2
L4 X 3% X %6 225 400 350 03125 0923 353 2.52 1.17  37.1
L4 X 3% X % 267 400 350 03750 0947 415 2.96 1.38 37.1
L4 X 3% X % 350 4.00 350 05000 0994 530 376 1.808 36.9
L5 X 3 X %1 12 194 500 3.00 0.2500 0.648 5.09 141 0825 204
L5 X 3 X %6 12 240 500 3.00 03125 0.673 6.24 1.72 1.01 20.2
5x3x %2 286 500 300 03750 0698 735 201 120 200
L5 X 3 X % 3.75 5.00 3.00 0.5000 0.746 9.43 2.55 155 196

(Continued)
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Tables for Chapter 4 (sectional properties)

Designation A d b t, e 1 I, I, a
(in?) (in.) (in.) (in)  (Gn) (inY)  (@(n*) (inH) ()

L5 x 3% x Y12 206 500 350 0.2500 0.804 536 220 119 261
L5 X 3% X % 2 305 500 350 03750 0.8%4 775 315 174 259
L5x3%x % 400 500 350 05000 0901 996 402 225 256
L5 x 3% x % 581 500 350 0.7500 0993 139 5b2 322 249
L6 X 3% X Hp 12 287 600 350 03125 0.7%6 109 284 170 194
L6 X 3% X % 1.2 342 600 350 03750 0.781 129 333 200 192
L6 x 3% x % 450 6.00 350 05000 0829 166 424 258 189
L6 X 4 x %12 361 600 400 03750 0933 134 48 273 240
L6 X 4 X % 475 6.00 400 05000 0981 173 622 355 237
L6 X 4 X % 586 6.00 4.00 0.6250 103 210 748 432 235
L6 X 4 X /% 798 6.00 4.00 0.8750 1.12 277 970 582 228
L7 x4 x 3% 12 398 7.00 4.00 03750 0.861 205 506 3.05 187
L7x4x )52 525 7.00 4.00 05000 0910 266 648 395 185
L7 x4 X % 648 7.00 4.00 06250 0958 324 779 480 182
L7 x4 x % 769 7.00 4.00 07500 1.00 378 9.00 564 180
L8 X 4 X )5 12 575 800 4.00 0.5000 0.854 386 675 432 149
8 X 4 X % 7.11 800 4.00 06250 0.902 470 811 524 147
L8 X 4 X % 844 800 4.00 0.7500 0.949 550 937 613 144
[8x4x1 11.0 8.00 4.00 1.0000 1.04 69.7 116 787 139
L8 X6 X %12 6.75 800 6.00 0.5000 146 444 217 115 29.1
8 X 6 X % 836 800 6.00 0.6250 151 542 264 141 290
L8 X6 X /% 115 800 6.00 0.8750 160 724 349 189 286
L8 X6 X1 130 800 6.00 1.0000 165 809 388 213 285

Notes:

1. Section not compact for steel with F, = 36 ksi.

2. Section slender for steel with F,, = 36ksi.
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Table A-4.6 Dimensions and properties of selected steel rectangular and square hollow
structural sections (HSS)

B Cross-sectional area = A
y T Cross-sectional dimensions appear in designation as follows:
il (P HSS H X B X t, where:
_ It Larger dimension (in.) = H
H_J | llx Smaller dimension (in.) = B
Nominal wall thickness (in.)! = ¢
Moment of inertia = /
L Section modulus, S, = 2/,/H
Section modulus, S, = 2/,/B
Radius of gyration, r, = /(/,/A)
Radius of gyration, r, = (/y/A)
Designation A Design Sy Z, I, I, I,
(in?) wall (in®) (in%) (in%) (in%) (in.)
thickness,
t(in.)!
HSS2 X 2 X Y6 1.19 0.174 0.641 0.797 0.641 0.641 0.733
HSS2 X 2 X % 1.51 0.233 0.747 0964 0.747 0747 0.704
HSS2% X 2% X Hs 1.54 0.174 1.08 1.32 1.35 1.35 0937
HSS2 X 2% X As 2.35 0.291 1.46 1.88 1.82 1.82 0.880
HSS3 X 3 X He 1.89 0.174 1.64 1.97 2.46 2.46 1.14
HSS3 X 3 X % 3.39 0.349 2.62 3.25 3.78 3.78 1.06
HSS3% x 3% X 6 2.24 0.174 2.31 2.76 4.05 4.05 1.35
HSS3% X 3% X % 4.09 0.349 3.71 4.69 6.49 6.49 1.26
HSS4 x 3 X He 2.24 0.174 2.47 3.00 493 3.16 1.19
HSS4 X 3 X % 4.09 0.349 3.97 5.12 7.93 5.01 1.11
HSS4 X 4 X Y 3.37 0.233 3.90 4.69 7.80 7.80 1.52
HSS4 x4 x % 6.02 0.465 5.97 7.70 11.9 11.9 1.41
HSS6 X 4 X ¥, 4.30 0.233 6.96 8.53 20.9 11.1 1.61
HSS6 X 4 X ¥ 7.88 0.465 11.3 14.6 34.0 17.8 1.50
HSS6 x 6 X 1, 5.24 0.233 9.54 11.2 28.6 28.6 2.34
HSS6 X 6 X % 11.7 0.581 18.4 23.2 55.2 55.2 2.17
HSS8 X 4 X V4 5.24 0.233 10.6 13.3 42.5 14.4 1.66
HSS8 X 4 x % 11.7 0.581 20.5 27.4 82.0 26.6 1.51

(Continued)




Tables for Chapter 4 (sectional properties)

Table A-4.6 (Continued)

Designation A Design Sy Z, I, I, r,

(in?) wall (in%) (in%) (in%) (in%) (in.)

thickness,
t (in.)!

HSS8 X 8 X % 2 7.10 0.233 17.7 20.5 70.7 70.7 3.15
HSS8 X 8 X % 16.4 0.581 36.5 44.7 146 146 2.99
HSS12 X 4 X %1 7.10 0.233 199 25.6 119 21.0 1.72
HSS12 X 4 X % 16.4 0.581 40.8 555 245 40.4 1.57
HSS12 X 8 X % 2 8.96 0.233 30.6 36.6 184 98.8 3.32
HSS12 X 8 X % 21.0 0.581 66.1 82.1 397 210 3.16
HSS12 X 12 X %12 10.8 0.233 414 47.6 248 248 4.79
HSS12 X 12 X % 25.7 0.581 91.4 109 548 548 4.62
HSS16 X 4 X %6 11.1 0.291 38.5 51.1 308 33.2 1.73
HSS16 X 4 X % 21.0 0.581 67.3 929 539 54.1 1.60
HSS16 X 8 X %6 134 0.291 56.4 69.4 451 155 3.40
HSS16 X 8 X % 25.7 0.581 102 129 815 274 3.27
HSS16 X 12 X %62 15.7 0.291 74.4 87.7 595 384 494
HSS16 X 12 X % 30.3 0.581 136 165 1090 700 4.80
HSS16 X 16 X % 21.5 0.349 109 126 873 873 6.37
HSS16 X 16 X % 35.0 0.581 171 200 1370 1370 6.25
HSS20 X 4 X % 16.0 0.349 65.7 89.3 657 47.6 1.73
HSS20 X 4 X % 209 0.465 83.8 115 838 58.7 1.68
HSS20 X 8 X % 18.7 0.349 92.6 117 926 222 3.44
HSS20 X 8 X % 30.3 0.581 144 185 1440 338 3.34
HSS20 X 12 X %2 21.5 0.349 120 144 1200 547 5.04
HSS20 x 12 X % 35.0 0.581 188 230 1880 851 4.93
Notes:

1. The nominal wall thickness, t, in the designation for an HSS shape (e.g., ¥ in. or % in.) is different from the
“design wall thickness,” t, which is tabulated for each section and which is permitted to be smaller than the
nominal value.

2. Section is not compact, based on flange slenderness; use reduced nominal bending

strength, M, as follows:
F
3.579\/Z -4.0
tVE

M, = M, = (M, — F,S) <M,
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Tahle A-4.7 Dimensions and properties of selected steel round hollow structural sections (HSS)

y Cross-sectional area = A
Cross-sectional dimension appear in designation as follows:
HSS H X t, where:
x Diameter (in.) = H

Nominal wall thickness (in.)! = ¢

Moment of inertia = /

Section modulus, S = 2I/H

Radius of gyration, r = /J/A
Designation A (in?) Design wall 1(in%) r(in.)

thickness, £ (in.)!

HSS1.660 X 0.140 0.625 0.130 0.184 0.543
HSS1.990 x 0.120 0.624 0.111 0.251 0.634
HSS1.990 x 0.188 0.943 0.174 0.355 0.613
HSS2.375 X 0.125 0.823 0.116 0.527 0.800
HSS2.375 X 0.250 1.57 0.233 0.910 0.762
HSS2.500 x 0.125 0.869 0.116 0.619 0.844
HSS2.500 X 0.250 1.66 0.233 1.08 0.806
HSS3.000 x 0.125 1.05 0.116 1.09 1.02
HSS3.000 X 0.250 2.03 0.233 1.95 0.982
HSS3.500 x 0.125 1.23 0.116 1.77 1.20
HSS3.500 x 0.313 2.93 0.291 3.81 1.14
HSS4.000 x 0.125 1.42 0.116 2.67 1.37
HSS4.000 X 0.313 3.39 0.291 5.87 1.32
HSS6.000 X 0.250 4.22 0.233 17.6 2.04
HSS6.000 X 0.500 8.09 0.465 31.2 1.96
HSS8.625 X 0.250 6.14 0.233 54.1 2.97
HSS8.625 X 0.625 14.7 0.581 119 2.85
HSS10.000 X 0.250 7.15 0.233 85.3 3.45
HSS10.000 X 0.625 17.2 0.581 191 3.34
HSS12.750 x 0.375 13.6 0.349 262 4.39
HSS12.750 X 0.500 17.9 0.465 339 4.35
HSS14.000 X 0.375 15.0 0.349 349 4.83
HSS14.000 x 0.625 24.5 0.581 552 4.75
HSS16.000 x 0.375 17.2 0.349 526 5.53
HSS16.000 X 0.625 28.1 0.581 838 5.46
HSS18.000 x 0.500 25.6 0.465 985 6.20
HSS20.000 x 0.500 28.5 0.465 1360 6.91
Note:

1. The nominal wall thickness, t, in the designation for an HSS shape (e.g., ¥2in. or %in.) is different from the
“design wall thickness,” t, which is tabulated for each section and which is permitted to be smaller than the
nominal value.
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Table A-4.8 Dimensions and properties of selected steel pipe

y

-

Y

Cross-sectional area = A
Diameter (in.) = H
Moment of inertia = /
Section modulus, S = 2I/H

Radius of gyration, r = M

Designation A (in?) Design wall Diameter 1(in%) r(in.)
thickness, £ (in.) (in.)
Standard weight steel pipe
Pipe 2 Std. 1.00 0.143 2.38 0.627 0.791
Pipe 2% Std. 1.59 0.189 2.88 1.45 0.952
Pipe 3Std. 2.08 0.201 3.50 2.85 1.17
Pipe 3% Std. 2.51 0.211 4.00 452 1.34
Pipe 4 Std. 297 0.221 4.50 6.82 1.51
Pipe 5Std. 4.03 0.241 5.56 14.3 1.88
Pipe 6Std. 5.22 0.261 6.63 26.5 2.25
Pipe 8Std. 7.85 0.300 8.63 68.1 2.95
Pipe 10Std. 11.1 0.340 10.8 151 3.68
Pipe 12 Std. 13.6 0.349 12.8 262 4.39
Extra strong steel pipe
Pipe 2 x-Strong 1.39 0.204 2.38 0.827 0.771
Pipe 2% x-Strong 2.11 0.257 2.88 1.83 0.930
Pipe 3 x-Strong 2.83 0.280 3.50 3.70 1.14
Pipe 3% x-Strong 3.44 0.296 4.00 5.94 1.31
Pipe 4 x-Strong 4.14 0.315 4.50 9.12 1.48
Pipe 5 x-Strong b.72 0.349 5.56 19.5 1.85
Pipe 6 x-Strong 7.88 0.403 6.63 38.3 2.20
Pipe 8 x-Strong 11.9 0.465 8.63 100 2.89
Pipe 10 x-Strong 15.0 0.465 10.8 199 3.64
Pipe 12 x-Strong 17.9 0.465 12.8 339 4.35
Double-extra strong steel pipe
Pipe 2 xx-Strong 2.51 0.406 2.38 1.27 0.711
Pipe 2% xx-Strong 3.81 0.514 2.88 2.78 0.854
Pipe 3 xx-Strong 5.16 0.559 3.50 5.79 1.06
Pipe 4 xx-Strong 7.64 0.628 4.50 14.7 1.39
Pipe 5 xx-Strong 10.7 0.699 5.56 32.2 1.74
Pipe 6 xx-Strong 14.7 0.805 6.63 63.5 2.08
Pipe 8 xx-Strong 20.0 0.816 8.63 154 2.78
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Table A-4.9 Dimensions of reinforced concrete beams, columns, and slabs
A. Cover requirements (from outside face of concrete to face of closest rebar)

Interior 1% in. (or % in. for slabs)
Exterior or exposed to ground 2in. (or 1% in. for No. 5 bars or smaller)
Formed directly to ground 3in.

B. Typical gross dimensions

Beams and columns Round to the nearest inch, or 2-in. increment, for all outside (gross)
dimensions
Slabs Round to ¥-in. increment (or 1-in. increment if more than 6in. thick)

Table A-4.10 Steel reinforcement—rebar—areas (in?) for groups of bars

Designation and Number of bars
diameter

Bar Bar Dia. 1 2 3 4 5 6 7 8 9 10
No.! No.2 (in.)

(Sl

units)

3 10 0375 0.11

4 13 0500 020 040 060 080 100 120 140 160 1.80 2.00
5 16 0625 031 062 093 124 155 18 217 248 279 3.10
6 19 0750 044 088 132 176 220 264 3.08 352 39 440
7 22 0875 060 1.20 1.80 240 3.00 360 420 480 540 6.00
8 25 1.000 0.79 158 237 316 39 474 553 632 7.11 790
9 29 1128 1.00 200 3.00 400 500 600 700 800 900 10.00
10 32 1270 127 254 381 508 635 7.62 889 10.16 1143 12.70
11 36 1410 156 3.12 468 624 7.80 936 1092 1248 14.04 15.60
14 43 1693 225 450 6.75 9.00 11.25 1350 15.75 18.00 20.25 22.50
18 57 2257 4.00 800 12.00 16.00 20.00 24.00 28.00 32.00 36.00 40.00

Notes:

1. Rebars in the United States were traditionally designated by the nominal diameter (in.) multiplied by 8.
Rebars are no longer marked using this designation (see Note 2).

2. Rebars are currently marked by the approximate number of millimeters in their diameter, although
designation by nominal diameter (in.) multiplied by 8 is still widely used in the United States.



Table A-4.11 Reinforced concrete minimum width or diameter (in.) based on bar spacing
A. Minimum width (in.) for beams?

O ———
& Cover
Y & No. of bars
in one line
Width
Designation Number of bars in one line
Bar No.!  Bar No.? 2 3 4 5 6
(SI units)
4 13 6.33 8.17 10.00 11.83 13.67
5 16 6.58 8.54 10.50 12.46 14.42
6 19 6.83 8.92 11.00 13.08 15.17
7 22 7.08 9.29 11.50 13.71 15.92
8 25 7.33 9.67 12.00 14.33 16.67
9 29 7.58 10.04 12.50 14.96 17.42
10 32 7.83 10.42 13.00 15.58 18.17
11 36 8.13 10.88 13.63 16.38 19.13
B. Minimum width (in.) for tied columns3
‘/Cover
No. of bars
in one line
Width
Designation Number of bars in one line
Bar No.!  Bar No.2 2 3 4 5 6
(SI units)
4 13 6.50 8.50 10.50 12.50 14.50
5 16 6.75 8.88 11.00 13.13 15.25
6 19 7.00 9.25 11.50 13.75 16.00
7 22 7.25 9.63 12.00 14.38 16.75
8 25 7.50 10.00 12.50 15.00 17.50
9 29 7.94 10.75 13.56 16.38 19.19
10 32 8.38 11.50 14.63 17.75 20.88
11 36 8.81 12.25 15.69 19.13 22.56
14 43 10.13 14.50 18.88 23.25 27.63
18 57 11.88 17.50 23.13 28.75 34.38

(Continued)
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Table A-4.11 (Continued)
C. Minimum diameter (in.) for spiral columns?

Cover
Diameter
Ll A
Designation Number of bars in column
Bar No.! Bar No.? 6 8 10 12 14
(SI units)
4 13 8.50 9.73 10.97 12.23 13.49
5 16 8.88 10.18 11.50 12.84 14.17
6 19 9.25 10.63 12.03 13.44 14.86
7 22 9.63 11.08 12.56 14.05 15.55
8 25 10.00 11.53 13.09 14.66 16.23
9 29 10.75 12.47 14.23 15.99 17.76
10 32 11.50 13.42 15.36 17.32 19.29
11 36 12.25 14.36 16.50 18.66 20.82
14 43 14.50 17.18 19.91 22.65 25.41
18 57 17.50 20.95 24.45 27.98 31.53

Notes:

1. Rebars in the United States were traditionally designated by the nominal diameter (in.) divided by 8. Rebars
are no longer marked using this designation.

2. Rebars are currently designated (and marked) by the approximate number of millimeters in their diameter.
3. These minimum dimensions assume 1-in. maximum aggregate; 1%-in. cover (measured from outside face
of rebar or spiral to face of concrete); and ¥-in.-diameter stirrups, ties, or spiral. Minimum widths or diameters
are typically rounded up to nearest inch, or to the nearest even inch. The amount of column steel is also
limited by required reinforcement ratio, pg, between 0.01 and 0.08.



APPENDIX

Tables for Chapter b

(design approaches)

Table A-5.1 Combined load factors!
A. Strength design

Load Combinations

Dead load

Dead, live, and roof or snow

Dead, roof or snow, and live? or wind
Dead, wind, live,2 and roof or snow
Dead, earthquake, live,2 and snow
Dead and wind

Dead and seismic

Combined Loads and Factors

1.4D

1.2D + 1.6L + 0.5(Lg or S)

1.2D + 1.6(Lgor S) + (Lor 0.8W)
1.2D+ 1.6W+ L+ 0.5(Lg or S)
12D+ 1.0E+ L+ 0.2S

09D+ 1.6W

09D + 1.0E

B. Allowable stress design

Load Combinations

Dead load

Dead and live

Dead and roof or snow

Dead, live, and roof or snow
Dead and wind or earthquake

Dead, wind or earthquake, live, and roof or snow

Dead and wind
Dead and earthquake

Combhined Loads and Factors

D

D+ L

D+ (LR orS)

D+ 0.75L + 0.75(Lp or S)
D+ (Wor0.76)

D+ 0.75(Wor 0.7E) + 0.75L + 0.75(Lg or S)

06D+ W
0.6D+ 0.7E

Where only D, L, S, and Lg are present, the allowable stress load combinations are commonly

reduced to the following:
Load Combinations

Dead and live
Dead and roof or snow
Dead, live, and roof or snow

Combined Loads and Factors
D+ L

D+ (Lgor S)
D+ 0.75L + 0.75(Lg or S)

Notes:

1. Only the following loads are considered in this table:

D = dead load; L = live load; Ly = roof live load (construction, maintenance); W = wind load; S = snow load;
E = earthquake load (omitted are fluid, flood, lateral earth pressure, rain, and self-straining forces).

2. The load factor for L in these three cases only can be taken as 0.5 when L = 100 psf (except for garages or
places of public assembly).

© 2010 Elsevier Inc. All rights reserved.
Doi: 10.1016/B978-1-85617-771-9.00018-0 309
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Table A-5.2 Reinforced concrete strength reduction factors, ¢ and «

Type of Behavior b al
Bending 209 n/a
Axial tension 0.9 n/a
Axial compression: spiral columns 30.75 0.85
Axial compression: tied columns 30.65 0.80
Shear 0.75 n/a
Notes:

1. «w accounts for unintended eccentricity or bending moment.
2. ¢ decreases linearly from value listed at e; = 0.005 to 0.817 ate; = 0.004.
3. ¢ increases linearly from value listed ate; = 0.002 to 0.9 ate; = 0.005.




APPENDIX

Tables for Chapter 6
(tension elements)

Table A-6.1 Shear lag coefficient, U, for bolted and welded steel connections in tension

Condition

All parts of the
element (e.g., web,
flanges, legs) are
connected by bolts
or welds.

Shear Lag
Coefficient, U

u=1.0

Diagram

Transverse welds
connecting some,
but not all, of the
cross-sectional
“parts.”

U = 1.0, but the net
area, A, is taken as
only that portion of
the element cross
section (consisting of
flanges, webs, legs,
and so on) that is
directly connected
by the transverse
welds.

© 2010 Elsevier Inc. All rights reserved.
Doi: 10.1016/B978-1-85617-771-9.00019-2

(Continued)
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312 APPENDIX 6 Tables for Chapter 6 (tension elements)

Condition Shear Lag Diagram
Coefficient, U
Longitudinal welds U= 1.0where N
connecting steel 1> 2w.
plates. U = 0.87 where
2w> > 1.5w.
U = 0.75 where
15w>1>w
Bolts connecting U = 0.90 where Flange width, b;

wide-flange (W)
shapes; M, S, HP
shapes; or Tees
made from any of
those sections.

bs> 0.67d and
flange is connected
with at least 3 bolts
per line.

U = 0.85 where
br< 0.67d and
flange is connected
with at least 3 bolts
per line.

U = 0.70 where
only the web is
connected with at
least 4 bolts per line.

v |
]
A\
I
o
x—- -——x £
(=%
@
i o
/I

Bolts connecting
single angles (L).

U = 0.80 where one
leg of the angle is
connected with at
least 4 bolts per line.
U = 0.75 where one
leg of the angle is
connected with 2 or
3 bolts per line.




Tables for Chapter 6 (tension elements)

Table A-6.2 Allowable force (Ib) based on row and group tear-out!?

Row Tear-out Group Tear-out
Zf"\’T = rnnl(Fv’)Scrit(t) ZéT = nl(F;)Scr/l(t) + Ft/A[
Notes:

1. The terms in the equations for Zzr and Zg; are defined as follows:
Zpr = the maximum force that can be safely resisted by all fasteners subjected to row tear-out (Ib)
Zgr = the maximum force that can be safely resisted by all fasteners subjected to group tear-out (Ib)
r, = the number of rows of fasteners
n; = the number of fasteners in a typical row
F, = the adjusted allowable shear stress for the wood element (psi)
the adjusted allowable tension stress for the wood element (psi)
A = the area subjected to tension stress between the top and bottom rows of fasteners (in°)
Seit = the minimum spacing between fasteners, or the distance of the first fastener to the end of
the member, if smaller (in.)
t = the member thickness (in.)
2. Row and group tear-out apply to wood tension members when the following conditions are met: (a) the
direction of the tension force is parallel to the grain of the tension element, (b) the fasteners consist of bolts or
lag screws, and (c) the connection consists of multiple fasteners in a row for row tear-out and multiple rows of
fasteners for group tear-out.

~n
I
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Tables for Chapter 7/
(columns)

Table A-7.1 Effective length coefficient, K, for wood and steel columns

, E'_S L_r;l:l \ :'
/ / | \ i
! \ \
! ! ".‘ \ |
I ! \ \ |
I \
| 1 \ \ \
'.‘ \ \ 1 \
) \
\\ \\ \I \
‘ X
Description  Pinned at Fixed at Fixed Fixed at Fixed at Pinned
both ends one end; at one both ends one end; at one
pinned at end; only free at the end; only
the other horizontal other end horizontal
translation (cantilever) translation
allowed at allowed at
the other the other
end end
“Ideal” K 1.0 0.7 1.0 0.5 2.0 2.0
“Code” K 1.0 0.8 1.2 0.65 2.1 2.0-2.4!

Note:
1. Use 2.0 for steel columns; 2.4 for wood columns.

© 2010 Elsevier Inc. All rights reserved.
Doi: 10.1016/B978-1-85617-771-9.00020-9 3 1 5
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Table A-7.2 Allowable axial loads (kips), A992 steel wide-flange columns (F, = 50ksi)
Effective (unbraced) length, KL (ft)
6 7 8 9 i0 11 12 13 14 15 16 17 18

W4 x 13 784 684 584 488 399 330 277 236 203 17.7 156 n/al n/al
W5 X 16 111 101 922 824 726 632 542 461 398 346 304 270 240
W5 X 19 132 121 110 989 875 764 659 562 485 422 371 329 293
W6 x85 467 393 322 257 208 172 144 123 106 n/a' n/al n/al n/al
W6 X 9 50.5 427 352 282 229 189 159 135 116 101 n/al n/al n/al
W6 X 12 67.7 57.6 47.7 385 312 258 216 184 159 138 n/al n/al n/al
W6 x 16 946 81.7 69.0 570 462 382 321 273 23.6 205 180 n/al n/al
W6 x 20 148 139 130 120 110 99.7 85 796 702 612 538 47.7 425
W6 x 25 186 175 164 151 139 126 114 101 899 786 69.1 612 546
W8 x 31 248 240 231 221 210 199 188 176 164 152 141 129 118
W8 x 35 281 272 261 250 238 226 213 200 18 173 160 147 134
W8 x 40 319 309 297 285 271 257 243 228 213 198 183 168 154
W8 X 48 38 374 361 346 330 314 297 279 262 244 226 208 191
W8 x 58 469 455 439 421 403 383 363 341 320 299 277 256 236
W8 X 67 542 525 507 487 466 444 420 39 372 348 323 299 276
W10 X 33 262 253 243 231 219 207 194 181 168 154 142 129 117
W10 Xx 39 312 301 289 276 263 248 233 218 203 18 173 158 144
W10 x45 362 350 337 322 306 290 273 256 238 221 204 187 171
W10 x 49 406 398 388 377 366 353 340 327 313 298 283 269 254
W10 x 54 446 437 426 415 402 389 375 360 345 329 313 297 281
W10 x 60 497 487 475 463 449 434 418 402 38 368 350 332 314
W10 x 68 565 554 541 527 511 495 477 459 440 420 400 380 360
W10 X 77 639 626 612 596 579 560 540 520 498 476 454 431 408
WI0O X 83 734 719 703 685 665 645 622 599 575 550 525 499 473
W10 x 100 833 817 799 779 757 734 709 683 656 628 599 570 541
W10 x 112 934 916 896 874 850 824 797 768 739 708 676 644 612
W12 x40 316 305 292 279 264 249 234 218 202 18 171 15 141
W12 x 45 365 342 328 313 297 280 263 245 227 210 193 176 159
W12 x50 39 382 366 350 332 313 294 275 255 235 216 197 179

(Continued)



Tables for Chapter 7 (columns) 317
Table A-7.2 (Continued)
Effective (unbraced) length, KL (ft)
6 7 8 9 10 11 12 13 14 15 16 17 18

W12 X 53 439 429 418 406 393 379 365 349 333 317 301 284 268
W12 X 58 479 468 457 444 430 415 400 383 366 349 331 314 296
W12 X 65 548 540 531 520 509 497 484 470 456 441 425 409 393
W12 x 72 606 597 587 576 563 550 536 5H21 505 488 471 454 436
W12 X 79 666 657 646 633 620 605 590 573 5b6 538 519 500 481
W12 x 87 736 725 713 700 685 669 652 634 615 59 575 554 533
W12 X 96 811 799 786 772 7% 738 720 700 680 658 636 613 590
W12 x 106 898 885 871 8b5 837 818 798 777 754 731 706 681 656
W12 x 120 1016 1002 986 968 949 928 905 881 856 829 802 774 746
W12 X 136 1150 1134 1116 1096 1075 1051 1026 999 971 942 912 880 848
W12 x 152 1289 1272 1252 1230 1206 1180 1153 1123 1092 1060 1026 992 957
W12 X 170 1443 1424 1402 1378 1352 1323 1293 1260 1226 1191 1154 1116 1077
W12 X 190 1611 1591 1567 1541 1512 1480 1447 1411 1374 1335 1294 1252 1209
W12 x 210 1786 1763 1737 1709 1677 1643 1607 1568 1527 1484 1440 1394 1347
W12 x 230 1958 1933 1906 1875 1841 1804 1764 1723 1678 1632 1584 1535 1484
W12 x 252 2141 2115 2085 2052 2016 1976 1934 1888 1841 1791 1740 1686 1631
W12 X 279 2372 2343 2311 2275 2236 2193 2147 2098 2046 1992 1936 1878 1819
W12 X 305 2597 2566 2532 2493 2451 2405 2356 2304 2248 2190 2130 2068 2003
W12 X 336 2866 2834 2797 2755 2710 2661 2608 2551 2492 2429 2364 2297 2228
W14 x 43 339 326 312 297 280 264 246 229 211 194 177 160 144
W14 X 48 380 366 350 334 316 297 278 259 239 220 201 183 165
W14 X 53 421 406 389 370 351 330 309 288 266 245 224 204 185
W14 x 61 503 491 479 464 449 433 416 398 380 361 342 322 303
W14 X 68 562 549 535 520 503 485 466 446 425 404 383 362 340
W14 X 74 613 600 584 568 550 530 510 488 466 444 421 397 374
W14 x 82 675 660 643 625 605 584 561 538 513 488 463 438 412
W14 X 90 771 764 755 745 734 722 710 696 682 667 651 635 618
W14 x 99 847 839 829 818 807 794 780 765 749 733 716 698 680
W14 x 109 932 923 912 901 888 874 859 843 826 808 789 769 749

(Continued)
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Tahle A-7.2 (Continued)

Effective (unbraced) length, KL (ft)

6 7 8 9 10 11 12 13 14 15 16 17 18
W14 x 120 1028 1018 1007 994 980 964 948 930 911 892 871 850 828
W14 x 132 1130 1120 1107 1093 1078 1061 1043 1024 1003 982 960 936 912
W14 x 145 1248 1237 1225 1211 1196 1179 1161 1142 1122 1100 1078 1055 1030
W14 x 159 1365 1353 1340 1325 1309 1291 1271 1251 1229 1205 1181 1156 1129
W14 x 176 1514 1502 1487 1471 1453 1433 1412 1389 1364 1339 1312 1284 1255
W14 x 193 1661 1647 1632 1614 1594 1573 1550 1525 1499 1471 1442 1412 1381
W14 x 211 1814 1799 1782 1763 1741 1718 1693 1667 1638 1608 1577 1544 1510
W14 x 233 2005 1988 1970 1949 1926 1901 1874 1844 1813 1781 1747 1711 1674
W14 x 257 2213 2196 2175 2153 2127 2100 2070 2039 2005 1969 1932 1893 1853
W14 X 283 2440 2421 2399 2374 2347 2317 2285 2251 2214 2176 2135 2093 2049
W14 X 311 2678 2657 2633 2607 2577 2545 2511 2473 2434 2392 2348 2302 2255
W14 X 342 2960 2938 2912 2883 2851 2817 2779 2738 2696 2650 2602 2553 2501
W14 x 370 3196 3172 3145 3114 3080 3043 3003 2960 2914 2865 2814 2761 2706
W14 X 398 3432 3407 3378 3345 3309 3270 3228 3183 3134 3083 3029 2973 2915
W14 x 426 3667 3641 3610 3576 3539 3497 3453 3405 3354 3300 3243 3184 3122
W14 x 455 3933 3905 3873 3837 3797 3754 3707 3656 3602 3545 3486 3423 3358
W14 X 500 4317 4287 4252 4214 4171 4124 4073 4019 3961 3900 3836 3769 3698
W14 X 550 4759 4727 4690 4649 4603 4553 4498 4440 4378 4312 4243 4170 4095
W14 x 605 5232 5198 5158 5114 5065 5011 4952 4890 4823 4753 4678 4600 4519
W14 x 665 5764 5728 5685 5638 5585 5528 5465 5398 5327 5251 5172 5088 5001
W14 X 730 6327 6287 6242 6192 6136 6074 6008 5936 5860 5779 5694 5605 5512

Note:
1. Slenderness ratio, KL/r > 200, for this effective length.



Table A-7.3 Allowable stresses for A992 steel columns (f, = 50ksi)

Tables for Chapter 7 (columns)

KUr F. (ksi) KUr F; (ksi) KUr F; (ksi)
1 299 34 27.5 67 21.6
2 299 35 27.4 68 21.4
3 29.9 36 27.2 69 21.1
4 29.9 37 27.1 70 20.9
5 299 38 26.9 71 20.7
6 29.9 39 26.8 72 20.5
7 29.8 40 26.6 73 20.3
8 29.8 41 26.5 74 20.1
9 29.8 42 26.3 75 19.8

10 29.7 43 26.2 76 19.6
11 29.7 44 26.0 77 19.4
12 29.6 45 25.8 78 19.2
13 29.6 46 25.6 79 19.0
14 29.5 47 25.5 80 18.8
15 29.5 48 25.3 81 18.5
16 29.4 49 25.1 82 18.3
17 29.3 50 24.9 83 18.1
18 29.2 51 24.8 84 17.9
19 29.2 52 24.6 85 17.7

20 29.1 53 24.4 86 17.4

21 29.0 54 24.2 87 17.2

22 28.9 55 24.0 88 17.0

23 28.8 56 23.8 89 16.8

24 28.7 57 23.6 90 16.6

25 28.6 58 23.4 91 16.3

26 28.5 59 23.2 92 16.1

27 28.4 60 23.0 93 159

28 28.3 61 22.8 94 15.7

29 28.2 62 22.6 95 15.5

30 28.0 63 224 96 153

31 27.9 64 22.2 97 15.0

32 27.8 65 22.0 98 14.8

33 27.6 66 21.8 99 14.6

(Continued)
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Table A-7.3 (Continued)

KUr F; (ksi) KUr F (ksi) KUr F; (ksi)
100 14.4 134 8.37 168 5.33
101 14.2 135 8.25 169 5.26
102 14.0 136 8.13 170 5.20
103 13.8 137 8.01 171 5.14
104 13.6 138 7.89 172 5.08
105 134 139 7.78 173 5.02
106 13.2 140 7.67 174 4.96
107 13.0 141 7.56 175 491
108 12.8 142 7.45 176 4.85
109 12.6 143 7.35 177 4.80
110 12.4 144 7.25 178 4.74
111 12.2 145 7.15 179 4.69
112 12.0 146 7.05 180 4.64
113 11.8 147 6.96 181 4.59
114 116 148 6.86 182 4.54
115 11.4 149 6.77 183 4.49
116 11.2 150 6.68 184 4.44
117 11.0 151 6.59 185 4.39
118 10.8 152 6.51 186 4.34
119 10.6 153 6.42 187 4.30
120 10.4 154 6.34 188 4.25
121 10.3 155 6.26 189 421
122 10.1 156 6.18 190 4.16
123 9.94 157 6.10 191 4.12
124 9.78 158 6.02 192 4.08
125 9.62 159 5.95 193 4.04
126 9.47 160 5.87 194 3.99
127 9.32 161 5.80 195 3.95
128 9.17 162 5.73 196 391
129 9.03 163 5.66 197 3.87
130 8.89 164 5.59 198 3.83
131 8.76 165 5.52 199 3.80
132 8.63 166 5.45 200 3.76
133 8.50 167 5.39




Tables for Chapter 7 (columns)

Tahle A-7.4 Allowable stresses for A500 Grade B HSS rectangular columns (F, = 46ksi)

KUr F, (ksi) KUr F. (ksi) KUr F, (ksi)
1 27.5 34 25.5 67 20.4
2 275 35 25.4 68 20.2
3 275 36 25.2 69 20.0
4 27.5 37 25.1 70 19.8
5 27.5 38 25.0 71 19.6
6 275 39 249 72 194
7 275 40 24.7 73 19.2
8 27.4 41 24.6 74 19.1
9 27.4 42 24.5 75 18.9

10 27.4 43 24.3 76 18.7

11 27.3 44 24.2 77 18.5

12 27.3 45 24.0 78 18.3

13 27.2 46 23.9 79 18.1

14 27.2 47 23.7 80 17.9

15 27.1 48 23.6 81 17.7

16 27.1 49 23.4 82 175
17 27.0 50 23.3 83 17.3
18 27.0 51 23.1 84 17.1
19 26.9 52 23.0 85 16.9

20 26.8 53 22.8 86 16.7

21 26.7 54 22.6 87 16.6

22 26.7 55 22.5 88 16.4

23 26.6 56 22.3 89 16.2

24 26.5 57 22.1 0 16.0

25 26.4 58 22.0 91 15.8

26 26.3 59 21.8 92 15.6

27 26.2 60 21.6 93 154

28 26.1 61 21.4 94 15.2

29 26.0 62 21.3 95 15.0

30 25.9 63 21.1 96 14.8

31 25.8 64 209 97 14.6

32 25.7 65 20.7 98 14.4

33 25.6 66 20.5 99 14.2

(Continued)
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Table A-7.4 (Continued)

KUr F; (ksi) KUr F; (ksi) KUr F; (ksi)
100 14.1 134 8.37 168 5.33
101 13.9 135 8.25 169 5.26
102 13.7 136 8.13 170 5.20
103 135 137 8.01 171 5.14
104 13.3 138 7.89 172 5.08
105 13.1 139 7.78 173 5.02
106 12.9 140 7.67 174 4.96
107 12.8 141 7.56 175 491
108 12.6 142 7.45 176 4.85
109 124 143 7.35 177 4.80
110 12.2 144 7.25 178 4.74
111 12.0 145 7.15 179 4.69
112 11.8 146 7.05 180 4.64
113 11.7 147 6.96 181 4.59
114 11.5 148 6.86 182 4.54
115 11.3 149 6.77 183 4.49
116 11.1 150 6.68 184 4.44
117 11.0 151 6.59 185 4.39
118 10.8 152 6.51 186 4.34
119 10.6 153 6.42 187 4.30
120 10.4 154 6.34 188 4.25
121 10.3 155 6.26 189 421
122 10.1 156 6.18 190 4.16
123 9.94 157 6.10 191 4.12
124 9.78 158 6.02 192 4.08
125 9.62 159 5.95 193 4.04
126 9.47 160 5.87 194 3.99
127 9.32 161 5.80 195 3.95
128 9.17 162 5.73 196 391
129 9.03 163 5.66 197 3.87
130 8.89 164 5.59 198 3.83
131 8.76 165 5.52 199 3.80
132 8.63 166 5.45 200 3.76
133 8.50 167 5.39




Tahle A-7.5 Allowable stresses for A500 Grade B HSS round columns (F, = 42ksi)

Tables for Chapter 7 (columns)

KUr F, (ksi) KUr F, (ksi) KUr F. (ksi)
1 25.1 34 234 67 19.1
2 25.1 35 233 68 189
3 25.1 36 23.2 69 18.8
4 25.1 37 23.1 70 18.6
5 25.1 38 23.0 71 18.5
6 25.1 39 229 72 18.3
7 25.1 40 22.8 73 18.1
8 25.1 41 22.7 74 18.0
9 25.0 42 22.6 75 17.8

10 25.0 43 224 76 17.6

11 25.0 44 223 77 175

12 249 45 22.2 78 17.3

13 24.9 46 22.1 79 17.1

14 24.8 47 22.0 80 17.0

15 24.8 48 21.8 81 16.8

16 24.8 49 21.7 82 16.6

17 24.7 50 21.6 83 16.5

18 24.7 51 21.4 84 16.3

19 24.6 52 21.3 85 16.1

20 24.5 53 21.2 86 16.0

21 24.5 54 21.0 87 15.8

22 24.4 55 20.9 88 15.6

23 24.3 56 20.7 89 155

24 24.3 57 20.6 0 153

25 24.2 58 20.5 91 15.1

26 24.1 59 20.3 92 15.0

27 24.0 60 20.2 93 14.8

28 24.0 61 20.0 94 14.6

29 239 62 199 95 14.4

30 23.8 63 19.7 96 14.3

31 23.7 64 19.6 97 14.1

32 23.6 65 194 98 139

33 235 66 19.2 99 13.8

(Continued)
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Table A-7.5 (Continued)

KUr F; (ksi) KUr F. (ksi) KUr F, (ksi)
100 13.6 134 8.37 168 5.33
101 134 135 8.25 169 5.26
102 133 136 8.13 170 5.20
103 13.1 137 8.01 171 5.14
104 12.9 138 7.89 172 5.08
105 12.8 139 7.78 173 5.02
106 126 140 7.67 174 4.96
107 12.4 141 7.56 175 491
108 12.3 142 7.45 176 4.85
109 12.1 143 7.35 177 4.80
110 12.0 144 7.25 178 4.74
111 11.8 145 7.15 179 4.69
112 11.6 146 7.05 180 4.64
113 115 147 6.96 181 4.59
114 11.3 148 6.86 182 4.54
115 11.2 149 6.77 183 4.49
116 11.0 150 6.68 184 4.44
117 10.8 151 6.59 185 4.39
118 10.7 152 6.51 186 4.34
119 10.5 153 6.42 187 4.30
120 104 154 6.34 188 4.25
121 10.2 155 6.26 189 421
122 10.1 156 6.18 190 4.16
123 9.93 157 6.10 191 4.12
124 9.78 158 6.02 192 4.08
125 9.62 159 5.95 193 4.04
126 9.47 160 5.87 194 3.99
127 9.32 161 5.80 195 3.95
128 9.17 162 5.73 196 3.91
129 9.03 163 5.66 197 3.87
130 8.89 164 5.59 198 3.83
131 8.76 165 552 199 3.80
132 8.63 166 5.45 200 3.76
133 8.50 167 5.39




Table A-7.6 Allowable stresses for A36! steel columns (F, = 36ksi)

Tables for Chapter 7 (columns)

KUr F, (ksi) KUr F, (ksi) KUr F, (ksi)
1 21.6 34 20.3 67 17.0
2 21.6 35 20.2 68 16.9
3 215 36 20.1 69 16.8
4 21.5 37 20.1 70 16.7
5 21.5 38 20.0 71 16.5
6 215 39 199 72 16.4
7 215 40 19.8 73 16.3
8 21.5 41 19.7 74 16.2
9 21.5 42 19.6 75 16.0

10 214 43 19.6 76 159
11 214 44 195 77 15.8
12 214 45 194 78 15.6
13 21.4 46 19.3 79 15.5
14 21.3 47 19.2 80 154
15 213 48 19.1 81 153
16 213 49 19.0 82 15.1
17 21.2 50 18.9 83 15.0
18 21.2 51 18.8 84 14.9
19 21.2 52 18.7 85 14.7
20 21.1 53 18.6 86 146
21 21.1 b4 185 87 145

22 21.0 55 184 88 14.3

23 21.0 56 183 89 14.2

24 209 57 18.2 90 14.1

25 20.9 58 18.1 91 139
26 20.8 59 179 92 13.8
27 20.7 60 17.8 93 13.7
28 20.7 61 17.7 94 135
29 20.6 62 17.6 95 134

30 20.6 63 17.5 96 13.3

31 20.5 64 17.4 97 13.1

32 20.4 65 17.3 98 13.0

33 20.4 66 17.1 99 129

(Continued)
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Tahle A-7.6 (Continued)

KUr F, (ksi) KUr F, (ksi) KUr F, (ksi)
100 12.7 134 8.38 168 5.33
101 12.6 135 8.25 169 5.26
102 125 136 8.13 170 5.20
103 12.3 137 8.01 171 5.14
104 12.2 138 7.89 172 5.08
105 12.1 139 7.78 173 5.02
106 119 140 7.67 174 4.96
107 11.8 141 7.56 175 491
108 11.7 142 7.45 176 4.85
109 115 143 7.35 177 4.80
110 114 144 7.25 178 4.74
111 11.3 145 7.15 179 4.69
112 11.1 146 7.05 180 4.64
113 11.0 147 6.96 181 4.59
114 10.9 148 6.86 182 4.54
115 10.7 149 6.77 183 4.49
116 10.6 150 6.68 184 4.44
117 10.5 151 6.59 185 4.39
118 104 152 6.51 186 4.34
119 10.2 153 6.42 187 4.3
120 10.1 154 6.34 188 4.25
121 9.97 155 6.26 189 4.21
122 9.85 156 6.18 190 4.16
123 9.72 157 6.10 191 4.12
124 9.59 158 6.02 192 4.08
125 9.47 159 5.95 193 4.04
126 9.35 160 5.87 194 3.99
127 9.22 161 5.80 195 3.95
128 9.10 162 5.73 196 3.91
129 8.98 163 5.66 197 3.87
130 8.86 164 5.59 198 3.83
131 8.73 165 552 199 3.80
132 8.61 166 5.45 200 3.76
133 8.49 167 5.39

Note:

1. Steel pipe fabricated with A53 Grade B steel and F, = 35ksi may be analyzed using this table for

F, = 36ksi.




Tables for Chapter 7 (columns)

Table A-7.7 Specifications for steel ties and spirals in reinforced concrete columns

Ties

Use minimum No. 3 bars to confine longitudinal steel up to No. 10; use minimum No. 4 bars for
No. 11, 14, and 18 longitudinal steel.

Spacing of ties is the smaller of:

® 16 X longitudinal bar diameter

® 48 X tie bar diameter

e Smallest column dimension

Ties must be arranged so that corner bars are bounded by a tie bent at a 90° angle, and alternate
longitudinal bars (between the corners) are restrained by a tie bent to at least 135°. No unsupported
longitudinal bar shall be farther than 6in. clear on either side of a laterally supported bar.

Spirals

Use a continuous bar or wire of at least %-in. diameter, with the clear space measured between
turns of the spiral no more than 3in. and no less than 1in. A minimum ratio, ps, of the volume of
spiral steel to the volume of concrete inside the spiral (the “core”) is also specified:

ps = 0.45(A /A, — 1(fL/1,) with f, < 60ksi; Ay = the gross concrete area, and A = the area of

the “core” within the spiral.
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APPENDIX

Tables for Chapter 8
(beams)

Table A-8.1 Allowable deflection for span, L!
A. Live, snow, or wind load only

Floor Beams Roof Beams

Basic: L/360 No ceiling: /180
Nonplaster ceiling: L/240
Plaster ceiling: L/360

B. Combined live and dead load

Floor Beams Roof Beams

Basic: /240 No ceiling: L/120
Nonplaster ceiling: L/180
Plaster ceiling: L/240

Note:
1. Use span, L, in inch units for allowable deflection in inch units; for cantilevers, use twice the actual
cantilevered span for L.

© 2010 Elsevier Inc. All rights reserved.
Doi: 10.1016/B978-1-85617-771-9.00021-0 329



330 APPENDIX 8 Tables for Chapter 8 (beams)

Table A-8.2 Deflection calculations!
A. Deflection coefficient, C, for maximum deflection,® A (in.), where A = CPL3/(El)

3 N Ry
Pau avn:| AR N N
L P=wlL 22.46 9.33 4.49 216

| P 35.94 16.07 8.99 n/a
| P | P 61.34 26.27 1331 n/a

|:E | P | P 85.54 36.12 17.97 n/a

| P n/a n/a n/a 576

B. Recommended minimum thickness (in.) of reinforced concrete beams and slabs for
deflection control®*

A 2 Y N N
Beams 121/16 121/18.5 121/21 121/8
Slabs 121/20 121/24 121/28 121/10
Notes:
1. Beam diagram symbols in top row of tables represent the following conditions (from left to right): simply

supported, one end pinned and one end continuous, both ends continuous, and cantilever.

2.

3.

Units for maximum deflection equation are as follows:
A = maximum deflection (in.)
C = deflection coefficient (already accounts for unit conversion)
L = span (ft)
E = modulus of elasticity (psi when load is in Ib; or ksi when load is in kips)
| = moment of inertia (in*)
P = concentrated load or resultant of uniformly distributed load (Ib or kips)
w = uniformly distributed load (Ib/ft or kips/ft)
Concrete recommendations are for normal-weight concrete where adjacent construction is not likely to be

damaged by excessive deflections.

4.

Units for span, L, are feet, for minimum thickness in inches.




Table A-8.3 “Adjusted” section modulus (CgS,) values for wood sections in bending (lightest

shown in bold face)

Tables for Chapter 8 (beams)

Shape C¢S, (ind) Shape C¢S, (ind) Shape CeS, (ind)
2x4 4.594 6 X 10 82.73 8 x 22 541.6
Double 2 x 41 9.188 Triple 2 x 121 94.92 12 X 18 562.9
2x6 9.831 4 x 14 102.4 10 X 20 570.4
Triple 2 x 4! 13.78 Triple 2 x 141 1185 8% 24 640.6
2x8 15.77 6 X 12 121.2 14 X 18 660.8
Double 2 x 6! 19.66 4 x 16 135.7 10 x 22 686.0
4 X6 22.94 6 x 14 164.9 12 X 20 690.5
2x10 23.53 8% 12 165.3 14 X 20 810.6
Triple 2 x 6! 29.49 6 x 16 214.1 10 x 24 8115
Double 2 x 8! 31.54 8% 14 224.9 12 x 22 830.4
2x12 31.64 6 x 18 269.2 16 X 20 930.7
2x14 39.50 10 x 14 284.8 14 X 22 974.8
4 x8 39.86 8 X 16 291.9 12 x 24 982.3
Double 2 x 10! 47.06 6 x 20 330.3 16 X 22 1119
Triple 2 x 8! 47.31 8% 18 367.1 14 x 24 1153
4 x 10 59.89 10 X 16 369.7 18 X 22 1264
Double 2 x 12! 63.28 6 x 22 397.1 16 x 24 1324
Triple 2 x 101 70.59 12 X 16 447.6 18 x 24 1495
Double 2 x 14! 79.00 8 x 20 450.4 20 x 24 1666
4 x 12 81.21 10 X 18 465.0

Note:

1. “Double” or “triple” indicates that two or three sections, respectively, are nailed together to create a single

bending element.
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Tahle A-8.4 Plastic section modulus (Z,) values: lightest laterally braced steel compact
shapes for bending, F, = 50ksi

Shape Z, 2L, (ft) Shape Z, °L, (ft) Shape Z,
(in3) (in®) (in®)
W6 x 85! 559 3.14 W21 x 50 110 4.59 W36 x 182 718 9.01
W6 x 9! 6.23 3.20 W18 x 55 112 5.90 W40 X 183 774 8.80
w8 x 10! 8.77 3.14 W21 X 55 126 6.11 W40 x 199 869 12.2
W10 x 121 125 2.87 W24 x 55 134 4.73 W40 x 211 906 8.87
Wiz x 14 174 2.66 W21 x 62 1441 6.25 W40 X 215 964 12.5
Wiz x 16  20.1 2.73 W24 x 62 153 4.87 W44 x 230 1100 12.1
W10 x 19 21.6 3.09 W21 x 68 160 6.36 W40 x 249 1120 12.5
W12 x 19 247 2.90 W24 x 68 177 6.61 W44 x 262 1270 12.3
W10 x 22 26.0 4.70 W24 x 76 200 6.78 W44 x 290 1410 12.3
Wiz x 22 293 3.00 W24 x 84 224 6.89 W40 x 324 1460 12.6
W14 x 22 332 3.67 W27 X 84 244 7.31 W44 x 335 1620 12.3
Wl2 x 26 37.2 5.33 W30 X 90 283 7.38 W40 x 362 1640 12.7
W14 x 26 40.2 3.81 W30 x99 312 7.42 W40 x 372 1680 12.7
W16 X 26 44.2 3.96 W30 x 108 346 7.59 W40 x 392 1710 9.33
W14 X 30 47.3 5.26 W30 x 116 378 7.74 W40 x 397 1800 12.9
W16 x 31 54.0 4.13 W33 X 118 415 8.19 W40 X 431 1960 12.9
W14 X 34 546 5.40 W33 X 130 467 8.44 W36 X 487 2130 14.0
W18 X 35 66.5 431 W36 X 135 509 8.41 W40 x 503 2310 13.1
W16 x40 73.0 5.55 W33 x 141 514 8.58 W36 X 529 2330 14.1
W18 X 40 784 4.49 W40 X 149 598 8.09 W40 X 593 2760 13.4
W21 X 44 954 4.45 W36 X 160 624 8.83 W36 X 652 2910 145
W21 x 48 107 6.09 W40 X 167 693 8.48 W36 X 800 3650 14.9

2L, (ft)

Notes:

1. Section is just out of range to qualify as compact for F, = 50Kksi steel. Because the nominal flexural strength
of the section must be reduced a small percentage to account for slenderness of the noncompact flanges, the
value for plastic section modulus has been reduced by the same percentage so that it may be used, as is, in
the bending strength equation: Zeq = QM /F,.

2. L, the largest unbraced length for which the section can be considered compact, is computed for

F, = 50ksi steel. The comparable unbraced length for A36 steel is larger and is equal to 4.16r, (ft), where r,, is
the section’s radius of gyration about the y-axis (in.)—see Table A-4.3.



Table A-8.5 Available moment for A992 wide-flange (W) shapes!?

Tables for Chapter 8 (beams)

A. Available moments from O to 100ft-kips

Available moment, M/ Q (ft-kips)
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(Continued)
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Tahle A-8.5 (Continued)
B. Available moments from 100 to 200 ft-kips

Available moment, M,/ Q (ft-kips)
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Tahle A-8.5 (Continued)
C. Available moments from 200 to 400 ft-kips

Tables for Chapter 8 (beams)

Available moment, M,/ Q (ft-kips)
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Tahle A-8.5 (Continued)
D. Available moments from 400 to 600 ft-kips
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Table A-8.5 (Continued)

E. Available moments from 600 to 1000 ft-kips

Tables for Chapter 8 (beams)
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Tahle A-8.5 (Continued)
F. Available moments from 1000 to 2000 ft-kips
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Tahle A-8.5 (Continued)

Tables for Chapter 8 (beams)

G. Available moments from 2000 to 5000 ft-kips

Available moment, M/ Q (ft-kips)
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Table A-8.5 (Continued)
H. Available moments from 5000 to 10,000 ft-kips

10,000
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Notes:

1. Values are based on the conservative assumption that the “lateral-torsional buckling modifier,” C,, = 1.0.

This conservative value of C, = 1.0 is quite close to the actual value for simply supported beams with equally

spaced point loads of equal weight, where the beam is braced at those points only, except for the special

case of a single point load at midspan, in which case C,, = 1.364. Actual values for Cy, can be found for each

unbraced beam segment by calculating the bending moments at the quarter-points along each segment (M,,

Mg, and M, with Mg being the moment at the midpoint of the segment), as well as the maximum moment,

M. Within each segment, and then inserting these values into Equation 8.13, reproduced as follows:
12.5M,

Co

max < 30
+3M, + 4Mg + 3M,

T 25M

max

In any case, the available moment cannot exceed M/, the value for braced, compact sections given in Table A-8.4.
2. Solid circles represent the maximum unbraced length, L,, for which a plastic moment can be achieved
before the onset of lateral-torsional buckling; open circles represent the maximum unbraced length, L,, for
which an elastic moment can be achieved before the onset of lateral-torsional buckling (see Figure 8.24).




Tables for Chapter 8 (beams)

Table A-8.6 “Shear” equations for reinforced concrete beams?

A. Capacity of steel stirrups? (Ib) 2Af,d
V, = S
B. Required stirrup spacing? (in.) < 2Af,d
s
=7
C. Capacity of concrete3 (Ib) V. = 2bdf.
D. Strength design equation? Vv, <o, +V,)
E. Required steel capacity (Ib) from strength design V
S, V>4 -V,
equation 1)
F. Maximum stirrup spacing? (in.) For Vi < 2V,, the smaller of:
e Jd>2
e 24in.

* 2Af/(50b)

For Vi > 2V, the smaller of:
o d/4

* 12in.

* 2Af,/(50b)

G. Design shear where no stirrups are needed? (Ib)

V, = 056V,

Notes:
1. Units are as follows:
b = cross section width (in.)
d = cross section effective depth (in.)
s = stirrup spacing (in.)
A, = stirrup bar area, one “prong” only (in.?)
f, = yield stress of steel stirrup (psi)
f! = cylinder strength of concrete (psi)
V., = design (factored) shear force (Ib)
V. = capacity of concrete to resist shear (Ib)
Vs = capacity of steel stirrups to resist shear (Ib)
¢ = 0.75 for shear (see Table A-5.2)

2. Units specified for Ib and psi units according to Note 1 may be changed to kips and ksi in these equations

only.

3. The concrete cylinder strength . must be in psi units in Table 8.6, part C (with the resulting value of V. in Ib
units), and the steel yield stress f, must be psi units in part F (with in. units resulting).
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Table A-8.7 Moment values for continuous reinforced concrete beams and slabs?

152 N
b ~</ - W /.\)- )

all . |

s*f@'y e "\!

Integral with spandel
Integral with column

- . ) wy 1,2
Numbers on beams refer to moment value coefficient, x, in the equation: M, =—5"

X
End Restraints for Two Spans Positive Moment Negative Moment
End Span End Span

At Interior At Exterior
Support®  Support®

Discontinuous end unrestrained w211 n/a n/a
Discontinuous end restrained by spandrel girder  w,/,%/14 w129 w2124
Discontinuous end restrained by column w2114 w29 w,l,2/16
End Restraints for Three or More Positive Moment Negative Moment
STETE Interior End Typical End Span
Span Span IsnI:eriorz At Interior At Exterior
pport Support’  Support®
Discontinuous end unrestrained w2116 w211 n/a n/a n/a
Discontinuous end restrained by w216 w214 w211 w210 w,l,2/24
spandrel girder
Discontinuous end restrained by w216 w214 w211 w210 w1216
column
Notes:

1. These moment values are valid only for continuous reinforced concrete beams or slabs with uniformly
distributed design loads, w,, and clear span, I,, when the following conditions are met:

a. Lengths of adjacent spans do not differ by more than 20%.

b. The unfactored live load is less than or equal to three times the unfactored dead load.
2. The negative moment (at the face of support) can be taken as w,l,%/12 for slabs with clear spans no greater
than 10ft and for beams framing into relatively stiff columns (specifically, the sum of column stiffness divided
by the sum of beam stiffness at each end of the beam must be greater than 8). Stiffness is the product of
modulus of elasticity and moment of inertia, neither of which are straightforward quantities for structural
elements consisting of two materials bonded together. For normal-weight concrete, the modulus of elasticity,
E. (psi), may be taken as 57,000( f! °%), where the cylinder strength of concrete, f!, Isin psi units. The
calculation of moment of inertia is left to the designer, with the American Concrete Institute (ACI) permitting
“any set of reasonable assumptions.” One suggestion is to use gross E.l values for both beams and columns:
where E. is the same for all members, a typical joint with columns and beams at all four orthogonal points,
and constant width for column and beam sections, would qualify for the w,l,?/12 negative beam moment only
when the column thickness at that joint becomes more than twice the beam thickness.



Table A-8.8 Limits on steel ratio for “tension-controlled” reinforced concrete beams?

f2 (psi) Limits on Steel Ratio, pyin — Pmax
3000 0.00333 — 0.01350
4000 0.00333 — 0.01810
5000 0.00354 — 0.02130

Note:

1. Values are for f, = 60ksi, ¢ = 0.9, and steel strain, e; = 0.005 for ppay.

Table A-8.9 Values of R and p for reinforced concrete beams, T-beams, and one-way slabs

(using 60-ksi steel)!

R (ksi) r bih,
f; = 3ksi f; = 4ksi f, = 5ksi
0.0197 0.0197 0.0198 0.00033 10
0.0221 0.0221 0.0221 50.00037 9
0.0251 0.0251 0.0251 50.00042 8
0.0286 0.0287 0.0287 50.00048 7
0.0334 0.0334 0.0335 50.00056 6
0.0493 0.0494 0.0495 0.00083 4
0.0657 0.0659 0.0661 0.00111 3
0.0982 0.0987 0.099 50.00167 2
0.106 0.106 0.107 40.00180 1.83
0.192 0.194 0.195 40.00333 1
0.229 0.232 0.233 €0.00400 0.83
0.282 0.287 0.289 €0.00500 0.67
0.335 0.341 0.345 ¢0.00600 0.56
0.369 0.377 0.381 ¢0.00667 0.50
0.385 0.394 0.399 0.00700 —
0.435 0.446 0.453 0.00800 —
0.483 0.497 0.506 0.00900 —
0.529 0.547 0.558 0.01000 —
0.575 0.596 0.609 0.01100 —
0.618 0.644 0.659 0.01200 —
0.661 0.691 0.708 0.01300 —
0.681 0.714 0.733 €0.01350 —
— 0.736 0.757 0.01400 —
— 0.781 0.805 0.01500 —
— 0.824 0.852 0.01600 —
— 0.867 0.898 0.01700 —
— 0.908 0.943 0.01800 —
— 0.913 0.947 €0.01810 —
— — 0.987 0.01900 —
— — 1.031 0.02000 —
— — 1.073 0.02100 —
— — 1.086 ©0.02130 —

(Continued)



Table A-8.9 (Continued)

Keyed Notes for Minimum and Maximum Steel Ratio, pyi, and ppax

a. Minimum steel ratio for rectangular heams and negative-moment, indeterminate T-beams:
b/b,, = 1.0 and ppi, = 0.00333 (or 0.00354 for f; = 5ksi)

i |
-] ——e———¢
d
d
- e

|b=bw| ]b=bw|

Positive mo- Negative mo- Negative moment
ment rectan- ment rectan- indeterminate
gular beam gular beam T-beam

b. Minimum steel ratio for positive- moment T-beams:

a h
pmin < 0.00333 and is shown for b/b,, between 1 and 10 -@:

The effective width, b, of a positive- moment T-beam is
considered to be the smaller of the following:

b = V4 beam span

b = centerline distance between beams T ————— -

I b |
b = web width + 16 times slab thickness =

¢. Minimum steel ratio for negative- moment determinate T-beams (e.g., precast sections and
cantilevers)

Pmin > 0.00333 and is shown for b/b,, between 1.0 and 0.5 (with p,,;, = 0.00667 for values of
b/b,, < 0.5)

—

d. Minimum steel ratio for one-way slabs

pmin = 0.00180 for slabs; the same steel ratio applies to shrinkage and temperature control steel
perpendicular to slab longitudinal bar

e. Maximum steel ratio
pmax = 0.01350 for ;. = 3ksi
Pmax = 0.01800 for i = 4ksi

Pmax = 0.02130 for ff = 5ksi

Note:

1. M, = ¢bd?R, where = 0.9, R = pf, (1 — 0.59pf,/1!), and p = As/bd. When using this table, R, f,, and

f! are in ksi units; b is the compressive zone cross-sectional width (or effective width); b, is the tension zone
width; and d is the effective depth, all in inch units. For positive-moment T-beams, results are valid only when
compressive stress block depth, a = pf,d/(0.851)) < slab thickness, h. Steel strain at failure, e, = 0.005 for
pmax (i.€., only tension-controlled sections are considered).



APPENDIX

Tables for Chapter 9
(connections)

Table A-9.1 Selected lag screw (lag bolt) dimensions

~
=
-

-

OO0 oo, WWwwWwwW

D (in.)

0.250
0.375
0.500
0.625
0.250
0.375
0.500
0.625
0.250
0.375
0.500
0.625
0.250
0.375
0.500
0.625

S

JFuII body diameter

b

r\ReJuced dey diameltr

D, (in.)

0.173
0.265
0.371
0.471
0.173
0.265
0.371
0.471
0.173
0.265
0.371
0.471
0.173
0.265
0.371
0.471

7

T (in.)

2.0
2.0
2.0
2.0
25
25
25
25
3.0
3.0
3.0
3.0
35
35
35
35

T-E (in.)

1.8125
1.7500
1.6875
1.6250
2.3125
2.2500
2.1875
2.1250
2.8125
2.7500
2.6875
3.6250
3.3125
3.2500
3.1875
3.1250

E (in.)

0.1875
0.2500
0.3125
0.3750
0.1875
0.2500
0.3125
0.3750
0.1875
0.2500
0.3125
0.3750
0.1875
0.2500
0.3125
0.3750

© 2010 Elsevier Inc. All rights reserved.
Doi: 10.1016/B978-1-85617-771-9.00022-2
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346 APPENDIX 9 Tables for Chapter 9 (connections)

Table A-9.2 Selected common wire nail dimensions

Designation!

6d

8d
10d
12d
16d
20d
30d
40d
50d

L

L (in.)

2.00
2.50
3.00
3.25
3.50
4.00
4.50
5.00
5.50

D (in.)

0.113
0.131
0.148
0.148
0.162
0.192
0.207
0.225
0.244

E (in.)?

0.226
0.262
0.296
0.296
0.324
0.384
0.414
0.450
0.488

Notes:

1. The designation for nails once had some relation to the cost of 100 nails; it now refers only to the nail’s

size. The letter “d” in the designation refers to the pennyweight of the nails and is said to be derived from the
biblical use of denarius (hence “d”) as the historical equivalent of the modern penny (hence “pennyweight”).
We continue to use the abbreviation “d” to stand for “penny” and we say “10-penny nail” when reading “10d

nail.”

2. E = approximate length of tapered tip, assumed to be equal to 2D.
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Table A-9.3 Penetration and dowel bearing length!

Type of Fastener Required Penetration
Distance, p
Absolute  Minimum for
Minimum  Full Value of Z
Lag screw? LT 1 4D 8D
Jol
= .e
= |E
7
Nail3 6D 10D
D
-
p
V7 E
Bolt* n/a n/a
Notes:

1. The dowel bearing length in the main member, used in yield limit calculations, may be different from

the penetration as defined earlier: for lag screws, the dowel bearing length in the main member equals the
penetration (which excludes the tapered tip); however, for nailed connections, the dowel bearing length in the
main member includes the tapered tip where p > 10D, but otherwise excludes the tapered tip (the length of
which can be approximated as 2D).

2. For lag screws where the penetration, p, falls between the two values shown in the table, the lateral design
value, Z, is multiplied by p/(8D). Therefore, where the penetration equals the absolute minimum value of 4D,
the lateral design value is taken as one half the tabular (or computed) value of Z.

3. For nails where the penetration, p, falls between the two values shown in the table, the lateral design value,
Z, is multiplied by p/(10D). Therefore, where the penetration equals the absolute minimum value of 6D, the
lateral design value is taken as 0.6 times the tabular (or computed) value of Z.

4. For bolts, “penetration” is always, by definition, 100% through both the main member and side member(s),
so there is no need to calculate its effect on the lateral design value, Z.
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Table A-9.4 Duration of load adjustment factor, Cp, for wood connectors!

Load Type Duration Cp
Dead load Permanent 0.90
Live load 10 years 1.00
Snow 2 months 1.15
Construction 1 week 1.25
Wind/seismic 10 minutes 1.60
Note:

1. Applies to both dowel-type connectors and connectors subject to withdrawal loads.

Table A-9.5 Wet service adjustment factor, Cy,, for wood connectors!?

Fastener Type with Lateral Load
“Dowel-type,” wet when made, dry in-service:
1 fastener only
2 fasteners in row parallel to grain
Multiple rows of fasteners parallel to grain, separate splice plate each row
Fastener with diameter < %2in.
“Dowel-type,” wet when used (in-service)
Fastener Type with Withdrawal Load
Nails, wet when made, dry in-service
Nails, dry when made, wet in-service
Nails, wet when made, wet in-service

Lag screws and wood screws, wet in-service

Cm
Varies as follows:
1.00
1.00
1.00
0.70
0.70
Cm
0.25
0.25
0.25
0.70

Notes:

1. Applies to both dowel-type connectors and connectors subject to withdrawal loads.

2. Cy = 1.0 for fasteners that are dry when fabricated and when used (in-service).
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Table A-9.6 Group action adjustment factor, C,, for wood connectors!234

A. Cgfor bolt (or lag screw) connections for wood members with same properties: £ = 1,400,000 psi;
bolt or lag screw diameter, D = 34 in.; spacing between fasteners in a row, s = 3in.

A, = Area Number A, = Area of Side Member(s), in?

of Main  of 5 8 11 14 17 30 40 56 64
Member, Fasteners

in? in Row

5 1.000 0991 0987 0985 0.983 0.980 0.979 0.978 0.978

0.984 0962 0.952 0947 0.943 0936 0.933 0.931 0.931
0.954 0918 0.902 0.893 0.887 0.875 0.871 0.868 0.867
0.914 0866 0.844 0.831 0.823 0.807 0.802 0.798 0.796
0.867 0.809 0.783 0.768 0.758 0.739 0.733 0.728 0.726
0.817 0.752 0.723 0.707 0.696 0.675 0.688 0.662 0.660
0.766 0.698 0.667 0.650 0.638 0.616 0.608 0.602 0.600
0.716 0.647 0.616 0.598 0.587 0.563 0.556 0.549 0.547
0.669 0.601 0.570 0.552 0.540 0.517 0.510 0.503 0.501

0.991 1.000 0.996 0.993 0.992 0.989 0.988 0.987 0.987
0.962 0990 0.979 0.973 0.970 0.962 0.959 0.957 0.956
0.918 0971 0.953 0942 0.936 0922 0918 0914 0913
0.866 0.943 0.918 0903 0.894 0.875 0.869 0.863 0.862
0.809 0910 0.877 0.859 0.847 0.823 0.815 0.809 0.806
0.752 0873 0.834 0.812 0.798 0.770 0.761 0.753 0.751
0.698 0.833 0.790 0.766 0.750 0.719 0.708 0.700 0.697
0.647 0.792 0.746 0.720 0.703 0.670 0.659 0.650 0.647
0.601 0.751 0.704 0.677 0.659 0.624 0.613 0.603 0.600

0.987 099 1.000 0.998 0.996 0.993 0.992 0.991 0.991
0.952 0979 0993 0.986 0983 0975 0.972 097 0.969
0.902 0953 0.978 0.967 0.961 0.947 0.942 0.938 0.937
0.844 0918 0.958 0.942 0.932 0911 0.905 0.899 0.897
0.783 0.877 0.932 0911 0.898 0.871 0.862 0.855 0.853
0.723 0.834 0903 0.877 0.861 0.828 0.818 0.809 0.806
0.667 0.790 0.870 0.841 0.822 0.785 0.772 0.762 0.759
0.616 0.746 0.836 0.804 0.783 0.741 0.728 0.717 0.713
0.570 0.704 0.801 0.766 0.744 0.700 0.685 0.673 0.669

0.985 0.993 0.998 1.000 0.998 0.995 0.994 0.993 0.993
0.947 0973 0986 0.994 0.990 0.982 0.979 0.977 0.976
0.893 0942 0967 0.983 0976 0961 0.956 0.952 0.951
0.831 0903 0942 0.966 0956 0.934 0.927 0921 0919
0.768 0.859 0.911 0.945 0.931 0.902 0.893 0.885 0.883
0.707 0.812 0.877 0.921 0.903 0.867 0.856 0.846 0.843
0.650 0.766 0.841 0.894 0.873 0.831 0.817 0.805 0.802
0.598 0.720 0.804 0.864 0.841 0.793 0.778 0.765 0.761
0.552 0677 0.766 0.834 0.808 0.756 0.739 0.725 0.721

—_

—_

11

—

14
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(Continued)
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Tahle A-9.6 (Continued)

A, = Area Number A, = Area of Side Member(s), in?

of Main of 5 8 11 14 17 30 40 56 64
Member, Fasteners

in2 in Row

17 0.983 0.992 099 0998 1.000 0.997 0.996 0.995 0.995

0.943 0.970 0983 0.990 0.995 0.987 0.984 0.982 0.981
0.887 0936 0961 0976 0.986 0971 0.966 0.962 0.961
0.823 0.894 0.932 0956 0.972 0950 0.943 0.936 0.934
0.758 0.847 0.898 0.931 0.954 0.924 0.914 0.906 0.904
0.696 0.798 0.861 0.903 0.934 0.895 0.883 0.873 0.869
0.638 0.750 0.822 0.873 0.910 0.864 0.850 0.837 0.833
0.587 0.703 0.783 0.841 0.885 0.832 0.815 0.801 0.797
0.540 0.659 0.744 0.808 0.858 0.799 0.781 0.765 0.760

—_

30 0.980 0.989 0.993 0.995 0.997 1.000 0.999 0.998 0.998
0.936 0962 0975 0.982 0.987 0997 0.995 0.992 0.991
0.875 0.922 0947 0961 0.971 0992 0.987 0.983 0.981
0.807 0.875 0911 0934 0.950 0.984 0.976 0.969 0.967
0.739 0.823 0.871 0902 0.924 0973 0.963 0.953 0.950
0.675 0.770 0.828 0.867 0.895 0.961 0.947 0.935 0.931
0.616 0.719 0.785 0.831 0.864 0946 0.929 0.914 0.909
0.563 0.670 0.741 0.793 0.832 0.930 0.909 0.891 0.886

0.517 0.624 0.700 0.756 0.799 0912 0.888 0.867 0.861

—_

40 0.979 0988 0.992 0994 0.99 0999 1.000 0.999 0.999
0.933 0959 0972 0.979 0.984 0.995 0.998 0.996 0.995
0.871 0918 0942 0.956 0.966 0.987 0.994 0.989 0.988
0.802 0.869 0905 0.927 0.943 0976 0.988 0.981 0.979
0.733 0.815 0.862 0.893 0.914 0963 0.980 0.970 0.967
0.668 0.761 0.818 0.856 0.883 0.947 0.970 0.957 0.954
0.608 0.708 0.772 0.817 0.850 0.929 0.959 0.943 0.938
0.556 0.659 0.728 0.778 0.815 0909 0.946 0.927 0.921

0.510 0.613 0685 0.739 0.781 0.888 0.932 0.909 0.902

—_

56 0.978 0987 0.991 0993 0.995 0.998 0.999 1.000 1.000
0.931 0957 0.970 0977 0.982 0992 0.996 0.999 0.998
0.868 0914 0938 0.952 0.962 0.983 0.989 0.996 0.994
0.798 0.863 0.899 0.921 0.936 0969 0.981 0.991 0.989
0.728 0.809 0.855 0.885 0.906 0.953 0.970 0.985 0.982
0.662 0.753 0.809 0.846 0.873 0.935 0.957 0.978 0.974
0.602 0.700 0.762 0.805 0.837 0914 0.943 0.970 0.965
0.549 0.650 0.717 0.765 0.801 0.891 0.927 0.961 0.954
0.503 0.603 0.673 0.725 0.765 0.867 0.909 0.950 0.942
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Table A-9.6 (Continued)

Tables for Chapter 9 (connections)

A, = Area Number A, = Area of Side Member(s), in?

of Main of 8 11 14 17 30 40 56 64

Member, Fasteners

in2 in Row

64 2 0.978 0987 0991 0.993 0995 0.998 0.999 1.000 1.000
3 0.931 0956 0969 0976 0981 0991 0.995 0.998 0.999
4 0.867 0.913 0.937 0951 0961 0981 0.988 0.994 0.996
5 0.796 0.862 0.897 0919 0934 0.967 0.979 0.989 0.992
6 0.726 0.806 0.853 0.883 0904 0.950 0.967 0.982 0.987
7 0.660 0.751 0.806 0.843 0.869 0.931 0.954 0.974 0.981
8 0.600 0.697 0.759 0.802 0.833 0.909 0.938 0.965 0.974
9 0.547 0.647 0.713 0.761 0.797 0.886 0.921 0.954 0.965
10 0.501 0.600 0.669 0.721 0.760 0.861 0.902 0.942 0.956

B. C, for bolt (or lag screw) connections for wood main member with £ = 1,400,000 psi; steel

side member(s) with £ = 29,000,000 psi; bolt or lag screw diameter, D = 34in.; spacing between

fasteners in a row, s = 3in.

A, = Area Number A, = Area of Steel Side Member(s), in?
R 2 3 4 5 71 10 12 15
Member, Fasteners
in? in Row
5 2 0.973 0.969 0.968 0.967 0.967 0.966 0.966 0.966 0.966
3 0.915 0.905 0.902 0.900 0.899 0.898 0.897 0.897 0.896
4 0.838 0.824 0.819 0.8l16 0.815 0.813 0.812 0.811 0.811
5 0.758 0.739 0.733 0.73 0.728 0.726 0.724 0.724 0.723
6 0.682 0.660 0.653 0.650 0.648 0.645 0.643 0.643 0.642
7 0.613 0.591 0.583 0.579 0.577 0575 0.573 0.572 0.571
8 0.554 0.531 0.523 0.519 0517 0514 0512 0.512 0.511
9 0.502 0.480 0.472 0.468 0.466 0.463 0.461 0.461 0.460
10 0.458 0.436 0.429 0425 0423 0420 0.419 0418 0.417
8 2 0.986 0.982 0.980 0.980 0.979 0.979 0.978 0.978 0.978
3 0.951 0.941 0937 0935 0934 0933 0.932 0.932 0.932
4 0.901 0.884 0.878 0.875 0.874 0.872 0.870 0.870 0.869
5 0.843 0.819 0.812 0.808 0.806 0.803 0.801 0.800 0.799
6 0.782 0.754 0.744 0.740 0.737 0.734 0.731 0.730 0.729
7 0.722 0.691 0.680 0.675 0.672 0.668 0.666 0.664 0.663
8 0.666 0.633 0.621 0.616 0.612 0.609 0.606 0.605 0.604
9 0.615 0.580 0.569 0.563 0.560 0.556 0.553 0.552 0.550
10 0.569 0.534 0.522 0.517 0.513 0.509 0.506 0.505 0.504

(Continued)
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Table A-9.6 (Continued)

A, = Area Number A; = Area of Steel Side Member(s), in?
. 5 8 11 14 17 30 40 56 64
Member, Fasteners
in? in Row
11 2 0.992 0.988 0.986 0986 0.985 0.985 0.984 0.984 0.984
3 0.970 0.959 0.955 0.953 0.952 0.951 0.950 0.950 0.949
4 0.935 0916 0910 0.907 0.905 0.903 0.902 0.901 0.900
5 0.892 0.866 0.857 0.853 0.850 0.847 0.845 0.844 0.843
6 0.844 0.811 0.800 0.795 0.792 0.788 0.785 0.784 0.783
7 0.794 0.756 0.743 0.737 0.733 0.729 0.726 0.725 0.723
8 0.745 0.703 0.689 0.682 0.678 0.673 0.670 0.668 0.667
9 0.698 0.653 0.639 0.631 0.627 0.622 0.618 0.616 0.615
10 0.654 0.608 0.592 0.585 0.580 0.575 0.571 0.569 0.568
14 2 0.996 0.991 0.990 0.989 0.989 0.988 0.988 0.988 0.988
3 0.981 0.969 0966 0964 0963 0961 0.960 0.960 0.960
4 0.956 0.936 0.930 0927 0925 0.923 0.921 0.920 0.920
5 0924 0.89%6 0.88 0.882 0.879 0.876 0.873 0.873 0.872
6 0.886 0.850 0.838 0.832 0.829 0.825 0.822 0.820 0.819
7 0.846 0.802 0.788 0.781 0.777 0.772 0.768 0.767 0.766
8 0.804 0.755 0.739 0.731 0.726 0.721 0.716 0.715 0.713
9 0.762 0.709 0.691 0.683 0.677 0.671 0.667 0.665 0.664
10 0.721 0.665 0.647 0.638 0.632 0.626 0.621 0.619 0.617
17 2 0.998 0.994 0.992 0.991 0.991 0.990 0.990 0.990 0.990
3 0.988 0.976 0.973 0971 0970 0.968 0.967 0.967 0.967
4 0.970 0.950 0.943 0940 0938 0936 0.934 0.934 0.933
5 0.946 0.917 0.907 0902 0.899 0.896 0.893 0.892 0.892
6 0917 0.878 0.865 0.859 0.855 0.851 0.848 0.847 0.845
7 0.884 0.837 0.822 0.814 0.809 0.804 0.800 0.799 0.797
8 0.849 0.795 0.777 0.768 0.763 0.757 0.752 0.750 0.749
9 0.813 0.7563 0.733 0.723 0.717 0.711 0.706 0.704 0.702
10 0.777 0.712 0.691 0.680 0.674 0.667 0.661 0.659 0.657
30 2 0.997 0.998 0.997 0.996 0.996 0.995 0.995 0.995 0.994
3 0.987 0.991 0.988 0.986 0.984 0.983 0.982 0.982 0.981
4 0.970 0.980 0.973 0.969 0.967 0.965 0.963 0.962 0.962
5 0.947 0.964 0.953 0948 0945 0941 0.938 0.937 0.936
6 0.919 9.944 0929 0922 0918 0913 0.909 0.908 0.906
7 0.888 0.921 0.902 0.893 0.888 0.881 0.877 0.875 0.873
8 0.855 0.896 0.873 0.862 0.856 0.848 0.842 0.840 0.838
9 0.821 0.869 0.843 0.830 0.822 0.813 0.807 0.804 0.802
10 0.786 0.841 0.812 0.797 0.788 0.779 0.771 0.768 0.765
40 2 0.996 1.000 0.998 0.998 0.997 0.997 0.996 0.996 0.996
3 0.983 0.996 0.993 0.991 0.989 0.988 0.987 0.987 0.986
4 0.963 0.990 0.983 0.979 0.977 0975 0.973 0.972 0.971
5 0.936 0.981 0.970 0.964 0.961 0.957 0.954 0.953 0.952
6 0.905 0.968 0.953 0.945 0.941 0.936 0.932 0.930 0.929
7 0.871 0.954 0934 0924 0918 0911 0.906 0.904 0.902
8 0.835 0.937 0913 0900 0.893 0.885 0.879 0.876 0.874
9 0.798 0919 0.890 0.875 0.867 0.857 0.849 0.847 0.844
10 0.761 0.899 0.865 0.849 0.839 0.828 0.819 0.816 0.813

(Continued)



Tables for Chapter 9 (connections)

Table A-9.6 (Continued)

A, = Area Number A, = Area of Steel Side Membei(s), in?

of Main  of 5 8 11 14 17 30 40 56 64
Member, Fasteners

in2 in Row

56 0.994 0999 1.000 0.999 0.998 0.998 0.998 0.997 0.997
0.980 0.994 0.997 0.995 0994 0.992 0.991 0.991 0.991
0.957 0985 0.992 0.988 0986 0.983 0.982 0.981 0.980
0.927 0974 0.984 0.979 0.975 0971 0.969 0.967 0.966
0.893 0959 0.975 0.967 0.962 0.957 0.953 0.951 0.949
0.856 0.942 0963 0.953 0.947 0.939 0.934 0.932 0.930
0.817 0922 0950 0.937 0.929 0920 0.914 0.911 0.908
0.778 0901 0.935 0.919 0910 0.899 0.891 0.888 0.885

0.740 0.879 0919 0.901 0.890 0.877 0.868 0.864 0.860

64 0.994 0998 1.000 0.999 0.999 0.998 0.998 0.998 0.998
0.979 0993 0.998 0.996 0.995 0.994 0.993 0.992 0.992
0.955 0983 0.994 0.991 0989 0.986 0.984 0.984 0.983
0.925 0971 0987 0.983 0980 0976 0.973 0972 0971
0.890 0.955 0.980 0.974 0.969 0.963 0.959 0.958 0.956
0.852 0936 0.970 0.962 0.956 0.949 0.943 0.941 0.939
0.812 0916 0959 0.949 0.941 0932 0.925 0.922 0.920
0.772 0.893 0.946 0.935 0925 0914 0.905 0.902 0.899

0.733 0.869 0.932 0.919 0907 0.894 0.884 0.881 0.877

— —
QOWONOOOP»WN | OWOWOWONOO O WN

Notes:
1. Values in this table are conservative when using smaller fastener diameter, smaller fastener spacing, and
greater modulus of elasticity.
2. For both the table and the exact method shown here, cross-sectional areas are used for A, and As when
the member is loaded parallel to grain; when loaded perpendicular to grain, an equivalent area is used for
A or As, based on the member thickness (measured in a direction parallel to the fastener) multiplied by an
equivalent member width. This equivalent width is taken as the distance between the outer rows of fasteners
or, where there is only one row of fasteners, as the minimum spacing between rows that would be computed if
there were multiple rows of fasteners.
3. Cg = 1.0 for dowel-type fasteners with diameter, D < 0.25in. Other values for C5 can be determined exactly
(for fastener diameters > 0.25in. and < 1.0in.) based on the following method:
a. Find the bolt or lag screw diameter, D.
b. Find the so-called load/slip modulus, ~, as follows:
~ = 180,000(D"®) for dowel-type fasteners in wood-wood connections.
~ = 270,000(D**°) for dowel-type fasteners in wood-metal connection.
c. Find s, the spacing (center-to-center) between fasteners in a row.
d. Find E,, and E,, the moduli of elasticity (psi) for the main and secondary members, respectively.
e. Find A, and A,, the cross-sectional areas (in°) for the main member and for the side member (or the sum
of the areas of the side members, if there are more than one), respectively.

fRndu=1+y3-Lt 4+ 1
2EA, | EA

8. Find Rea = (EAMNELAR) or (EpARMEAS), whichever is smaller.

h. Find n = the number of fasteners in a row.
m(l — m®")

n|L+ Reym" L+ m) =1+ |

and m=u—u? —1.

1+ Rey

i. Find ¢. =
g 1-m

4. Applies to dowel-type connectors only.
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354 APPENDIX 9 Tables for Chapter 9 (connections)

Table A-9.7 Geometry adjustment factor, Cx, for wood connectors (bolts and lag screws)
A. Spacing (in.) between fasteners in a row?0°¢

Loading Direction Absolute Minimum Minimum for Full Value

Parallel to grain 3D 4D

Perpendicular to grain 3D Whatever is required for
attached members?

Notes for Part A:

a. Required spacing (in.) is a multiple of the fastener diameter, D (in.).

b. A distance below the absolute minimum is, of course, not permitted—in that case, the geometry factor

is Cn = O. For any distance equal to or greater than the “minimum for full value,” the geometry factor is

Cx = 1.0. For spacing between the two values shown in the table, the geometry factor, Cx, is taken as the
actual spacing divided by the minimum spacing for full value. For example, if the actual spacing between
fasteners in a row, where the load was parallel to grain, is 3.5D, the geometry factor, Cx = 3.5D/(4D) = 0.875.
If the spacing in this case equaled the absolute minimum of 3D, the geometry factor, Cx = 3D/(4D) = 0.75.
c. See general notes below.

d. For fasteners in a row, where the loading is perpendicular to grain, the minimum spacing necessary to
obtain the full value of the geometry factor, that is, Cx = 1.0, is based on meeting the requirements for the
member to which it is attached (i.e., the member whose load is parallel to grain), as long as this distance is no
less than the absolute minimum value of 3D (assuming that both members in the connection are not oriented
so that the load is perpendicular to grain).

B. Spacing (in.) between rows of fasteners®?°

Loading Direction Condition Minimum Spacing
Parallel to grain All conditions 1.5D
Perpendicular to grain® ID<?2 25D
2<ID<6 (5/+ 10D)/8
ID>6 5D
Notes for Part B:

a. Required spacing (in.) is a multiple of the fastener diameter, D (in.).

b. Where the minimum spacing between rows of fasteners is met, the geometry factor is Ca = 1.0. Otherwise,
where the spacing is below the minimum allowed, the connection is not permitted—that is, Cx = O.
Interestingly, the maximum spacing between rows of fasteners is also limited in the following way:

a 5-in.-maximum limit is placed on the spacing between the outer rows of fasteners, in cases where the rows
are parallel to the grain of the wood. This reduces the possibility of splitting as the wood member shrinks or
expands (due to changes in its moisture content) perpendicular to the grain, while the bolts are fixed in place
by a connecting member.

c. See general notes below.

d. The fastener length, I (in.), is defined as the length of the fastener that is actually embedded within either
the main member (the dowel bearing length—see Table A-9.3) or the total length within one or more secondary
members, whichever is smaller. D is the fastener diameter (in.).

(Continued)



Tables for Chapter 9 (connections)

Table A-9.7 (Continued)
C. End distance (in.)>b¢

Loading Direction Absolute Minimum Minimum for Full Value
Parallel to grain

Compression 2D 4D

Tension-softwood 3.5D 7D

Tension-hardwood 2.5D 5D
Perpendicular to grain 2D 4D

Notes for Part C:

a, Required end distance (in.) is a multiple of the fastener diameter, D (in.).

b. A distance below the absolute minimum is, of course, not permitted—in that case, the geometry factor

is Ca = O; for any distance equal to or greater than the “minimum for full value,” the geometry factor is

Ca = 1.0. For end distances between the two values shown in the table, the geometry factor, C, is taken as
the actual end distance divided by the minimum distance for full value. For example, if the end distance of a
fastener loaded parallel to grain in compression is 3D, the geometry factor is Ca = 3D/(4D) = 0.75. If the end
distance in this case equaled the absolute minimum of 2D, the geometry factor is Cx = 2D/(4D) = 0.50.

c. See general notes below.

D. Edge distance (in.)2b<d

Loading Direction Condition! Minimum Edge Distance
Parallel to grain 1/D<6 1.5D
1/D>6 the greater of 1.5D or ¥ spacing
between rows
Perpendicular to grain® Loaded edge 4D
Unloaded edge 1.5D
Notes for Part D:

a. Required edge distance (in.) is a multiple of the fastener diameter, D (in.).

b. Where the loading direction is parallel to grain, let | be the fastener length that is actually embedded within
either the main member (the dowel bearing length—see Table A-9.3), or the total length within one or more
secondary members, whichever is smaller. D is the bolt or lag screw diameter.

c. Loads should not be suspended in such a way that fasteners are stressing the wood members perpendicular
to grain where such fasteners are inserted below the neutral axis (i.e., in the tension region) of a single beam.
d. See general notes below.

e. Where the minimum edge distance is met, the geometry factor is Cx = 1.0. Otherwise, the connection is not
permitted—that is, Cn = O.

(Continued)
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Table A-9.7 (Continued)
E. Spacing and end-edge distances for loading parallel and perpendicular to grain

End distance (tension) End distance is measured parallel

/sPaCipg between fasteners inarow o grain at the end of the member.
/E“d distance foompression) Where the load is also parallel to grain,

I I J<—}Edge distance a distinction is made between lthe.
. % J.[WO mgmbgr ends—one of which |§
o 0_:\ in tension (i.e., where the fastener is

= bearing towards the member end) and
() \Spacing between rows of fasteners  0ne of which is in compression (where

Edge distance the fastener is bearing away from the

member end)
L

~Loaded edge distance ) Edge distance is measured perpendicular
__t-Spacing between fasteners in a row . .
to grain, for load parallel to grain

[=]
=]
(=]
-]

L
+

o U N +-Unloaded edge distance

Loaded edge distance is measured
-—Qﬁspacmg between rows of fasteners  Perpendicular to grain, for load

(b) End distance perpendicular to grain; it refers to the
edge that is “pushing” on the fasteners,
that is, the edge where the fasteners are
pushing against the member edge

Unloaded edge distance is measured
perpendicular to grain, for load
perpendicular to grain; it refers to the
opposite edge that isn’t loaded, that is,
the edge where the fasteners are not
pushing against the member edge

Both spacing between fasteners in a row
and spacing between rows of fasteners
are self-evident, requiring only that a
“row of fasteners” is clearly understood
as being parallel to the direction of load,
and having no necessary relationship

to the direction of grain in the wood
members

General notes for Table A-9.7:

1. The geometry factor for any connection is taken as the smallest single value computed for any fastener in
the connection, based on any of the criteria listed in Table A-9.7, parts A, B, C, or D, that is, for both spacing
requirements as well as for end and edge distance. All such required spacing and distances are computed as
multiples of the fastener diameter, D, for all wood fasteners comprising the connection; but only the smallest
geometry factor found within the entire connection is applied to the connection design.

2. Cy = 1.0 for “end distance” and “spacing between fasteners in a row” when minimum conditions for

the full value are met. There are also smaller allowable lengths for these parameters (although subject to an
absolute minimum) that, while permitted, reduce the geometry factor to a value less than 1.0.

3. A fastener row refers to a minimum of two fasteners in a line parallel to the direction of the load, whether or not

it is parallel or perpendicular to the direction of the grain of wood. On the other hand, end and edge distance is
measured parallel and perpendicular, respectively, to the direction of grain, not load, as shown in Table A-9.7, part E.
4. Applies to dowel-type connectors only, and only when the fastener diameter, D > %in. Otherwise, Co = 1.0.




Tables for Chapter 9 (connections)

Table A-9.8 Toe-nail adjustment factor, Cy,, for nails!

30°
T+
V4
«@
‘__5 Q
N I =
/S ~ 8
—4 O
\QQZ 5 i
Diagram Direction of Applied Force Cu
30° For lateral design values, Z: 0.83
/ Bearing lengths are as follows:
: In main member: /,, = /, cos 30° — /,/3
Z & In side member: /s = /,/3
where [, = length of nail
/—>
30° For withdrawal design values, W: 0.67
ok i Depth of penetration, p,, is actual length of nail in
T main member.
Q.

Note:

1. Toe-nailing values are based on two assumptions:
That the nail is driven at an angle of approximately 30° to the face of the side member.
That the nail insertion point is one-third of the nail length (1,/3) above the end of the side member.

Table A-9.9 Temperature factor, C,, for wood fasteners

Temperature, T (°F) C; (used dry) C; (used wet)
T < 100°F 1.0 1.0
100°F < T < 125°F 0.8 0.7

125°F < T < 150°F

0.7 0.5
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358 APPENDIX 9 Tables for Chapter 9 (connections)

Table A-9.10 Lateral design value, Z (Ib) for bolts: single-shear connections, with 1%-in. side
member thickness, both members same species (or same specific gravity)?
A. Designation for single-shear lateral design values according to direction of grain®

faJ zll (zpar)

(b) Zs) (Zs.per)

T

(€) Zmy (Zim-per)

v

B. 1%-in. main member thickness

Species or Species
Combination

Yo-in.-diameter Bolts 34-in.-diameter Bolts 1-in.-diameter Bolts

Zoar  Zsper Zmper  Zpar  Zsper Zmper  Zpar  Zsper Zmoper
Douglas Fir-Larch 480 300 300 720 420 420 970 530 530
Douglas Fir-Larch (North) 470 290 290 710 400 400 950 510 510
Douglas Fir-South 440 270 270 670 380 380 890 480 480
Hem-Fir 410 250 250 620 350 350 830 440 440
Hem-Fir (North) 440 270 270 670 380 380 890 480 480
Spruce-Pine-Fir 410 240 240 610 340 340 810 430 430
Spruce-Pine-Fir (South) 350 200 200 520 280 280 700 360 360
Southern Pine 530 330 330 800 460 460 1060 580 580

C. 3%-in. main member thickness

Species or Species
Combination

Yo-in

.-diameter Bolts

3%-in.-diameter Bolts

1-in.-diameter Bolts

Zoar Zsper  Zmper  Zpar  Zsper Zmper  Zpar  Zoper  Zmper
Douglas Fir-Larch 610 370 430 1200 590 610 1830 680 740
Douglas Fir-Larch (North) 610 360 420 1190 560 490 1790 650 710
Douglas Fir-South 580 340 400 1140 520 550 1680 600 @ 660
Hem-Fir 550 320 380 1100 460 500 1570 540 600
Hem-Fir (North) 580 340 400 1140 520 550 1680 600 660
Spruce-Pine-Fir 540 320 370 1080 450 480 1530 530 590
Spruce-Pine-Fir (South) 490 280 300 990 360 400 1320 420 480
Southern Pine 660 400 470 1270 660 690 2010 770 830

(Continued)




Table A-9.10 (Continued)

D. 5%-in. main member thickness

Tables for Chapter 9 (connections)

Species or Species

%-in.-diameter Bolts

3-in.-diameter Bolts

1-in.-diameter Bolts

Combination Zur Zoer Zwper Zor Zoper Znger Zowr  Zoper Zmper
Douglas Fir-Larch 610 370 430 1200 590 790 2050 680 1060
Douglas Fir-Larch (North) 610 360 420 1190 560 780 2030 650 1010
Douglas Fir-South 580 340 400 1140 520 740 1930 600 940
Hem-Fir 550 320 380 1100 460 700 1800 540 860
Hem-Fir (North) 580 340 400 1140 520 740 1930 600 940
Spruce-Pine-Fir 540 320 370 1080 450 690 1760 530 830
Spruce-Pine-Fir (South) 490 280 330 990 360 570 1520 420 680
Southern Pine 660 400 470 1270 660 850 2150 770 1190

Notes:

1. Member thickness is measured parallel to the axis of the fastener.

2. Designations for lateral design values are as illustrated: (a) Zp,, for both members with direction of grain

parallel to load, (b) Zs.pe, for side member with grain perpendicular to load and main member with grain

parallel to load, and (c) Zy, e, for main member with grain perpendicular to load and side member with grain
parallel to load. A fourth possibility, with both members having grain perpendicular to the direction of load,

is rarely encountered and not included here. The official designations also shown beneath the illustrations
contain “parallel” and “perpendicular” symbols instead of the abbreviations, “par” and “per,” used in these

tables and text.
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Table A-9.11 Lateral design value, Z (Ib) for bolts: double-shear connections, with 1%2-in. side
member thickness, both members same species (or same specific gravity)!
A. Designation for double-shear lateral design values according to direction of grain?

{a) ZII {zpar) (b) ZS.I. {Zs-per} (G} Zm.l. (zm—per)

B. 1%-in. main member thickness

Species or Species Y-in.-diameter Bolts 3-in.-diameter Bolts 1-in.-diameter Bolts
Combination 2o el
Douglas Fir-Larch 1060 730 470 1580 1170 590 2100 1350 680
Douglas Fir-Larch (North) 1030 720 460 1550 1130 560 2060 1290 650
Douglas Fir-South 970 680 420 1450 1040 520 1930 1200 600
Hem-Fir 900 650 380 1350 920 460 1800 1080 540
Hem-Fir (North) 970 680 420 1450 1040 520 1930 1200 600
Spruce-Pine-Fir 8380 640 370 1320 900 450 1760 1050 530
Spruce-Pine-Fir (South) 760 560 290 1140 720 360 1520 840 420
Southern Pine 1150 800 550 1730 1330 660 2310 1530 770

C. 3%-in. main member thickness

Species or Species Y-in.-diameter Bolts 3-in.-diameter Bolts 1-in.-diameter Bolts
Combination e E e
Douglas Fir-Larch 1230 730 860 2400 1170 1370 4090 1350 1580
Douglas Fir-Larch (North) 1210 720 850 2380 1130 1310 4050 1290 1510
Douglas Fir-South 1160 680 810 2280 1040 1210 3860 1200 1400
Hem-Fir 1100 650 760 2190 920 1080 3600 1080 1260
Hem-Fir (North) 1160 680 810 2280 1040 1210 3860 1200 1400
Spruce-Pine-Fir 1080 640 740 2160 900 1050 3530 1050 1230
Spruce-Pine-Fir (South) 980 560 660 1990 720 840 3040 840 980
Southern Pine 1320 800 940 2550 1330 1550 4310 1530 1790

(Continued)



Table A-9.11 (Continued)
D. 5%-in. main member thickness

Tables for Chapter 9 (connections)

Species or Species

%-in.-diameter Bolts

3-in.-diameter Bolts

1-in.-diameter Bolts

Combination e || | e | i | e Vv
Douglas Fir-Larch 1760 1040 1190 2400 1170 1580 4090 1350 2480
Douglas Fir-Larch (North) 1740 1030 1170 2380 1130 1550 4050 1290 2370
Douglas Fir-South 1660 940 1110 2280 1040 1480 3860 1200 2200
Hem-Fir 1590 840 1050 2190 920 1400 3600 1080 1980
Hem-Fir (North) 1660 940 1110 2280 1040 1480 3860 1200 2200
Spruce-Pine-Fir 1570 830 1040 2160 900 1380 3530 1050 1930
Spruce-Pine-Fir (South) 1430 660 920 1990 720 1230 3040 840 1540
Southern Pine 1870 1130 1290 2550 1330 1690 4310 1530 2700
Notes:

1. Member thickness is measured parallel to the axis of the fastener.

2. Designations for lateral design values are as illustrated: (a) Zy,, for all members with direction of grain parallel
to load, (b) Zs.pe, for side members with grain perpendicular to load and main member with grain parallel to load,
and (c) Zy,.per for main member with grain perpendicular to load and side members with grain parallel to load.

A fourth possibility, with all members having grain perpendicular to the direction of load, is rarely encountered
and not included here. The official designations also shown beneath the illustrations contain “parallel” and
“perpendicular” symbols instead of the abbreviations, “par” and “per,” used in these tables and text.
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Table A-9.12 Lateral design value, Z (Ib) for bolts: double-shear connections, with two Ya-in.

A36 steel side plates!

A. Designation for double-shear lateral design values according to direction of grain?

<

<

(a) ZII {zpar)

1

il

(bJ ZT (Zper)

B. 1%-in. main member thickness

Species or Species
Comhination

Y2-in.-diameter Bolts

Y-in.-diameter Bolts

1-in.-diameter Bolts

Zpar Zoer Zpar Zper Zpar Zoer
Douglas Fir-Larch 1050 470 1580 590 2100 680
Douglas Fir-Larch (North) 1030 460 1550 560 2060 650
Douglas Fir-South 970 420 1450 520 1930 600
Hem-Fir 900 380 1350 460 1800 540
Hem-Fir (North) 970 420 1450 520 1930 600
Spruce-Pine-Fir 880 370 1320 450 1760 530
Spruce-Pine-Fir (South) 760 290 1140 360 1520 420
Southern Pine 1150 550 1730 660 2310 770

C. 3%-in. main member thickness

Species or Species
Combhination

Y-in.-diameter Bolts 34-in.-diameter Bolts

1-in.-diameter Bolts

Zpar Zper Zpar Zper Zpar Zper
Douglas Fir-Larch 1650 1030 3340 1370 4090 1580
Douglas Fir-Larch (North) 1640 1010 3320 1310 4810 1510
Douglas Fir-South 1590 970 3220 1210 4510 1400
Hem-Fir 1540 890 3120 1080 4200 1260
Hem-Fir (North) 1590 970 3220 1210 4510 1400
Spruce-Pine-Fir 1530 860 3080 1050 4110 1230
Spruce-Pine-Fir (South) 1430 680 2660 840 3540 980
Southern Pine 1720 1100 3480 1550 5380 1790

(Continued)



Table A-9.12 (Continued)

D. 5%-in. main member thickness

Tables for Chapter 9 (connections)

Species or Species

Y%-in.-diameter Bolts  3-in.-diameter Bolts

1-in.-diameter Bolts

Combination Z,r Z,r 2, Z,er 2, Z,or
Douglas Fir-Larch 2410 1420 3340 1890 5720 2480
Douglas Fir-Larch (North) 2390 1400 3320 1850 5670 2370
Douglas Fir-South 2330 1340 3220 1780 5510 2200
Hem-Fir 2260 1280 3120 1690 5330 1980
Hem-Fir (North) 2330 1340 3220 1780 5510 2200
Spruce-Pine-Fir 2230 1270 3090 1650 5280 1930
Spruce-Pine-Fir (South) 2090 1140 2890 1320 4930 1540
Southern Pine 2510 1510 3480 2000 5960 2810

Notes:

1. Member thickness is measured parallel to the axis of the fastener.

2. Designations for lateral design values are as illustrated: (a) Z,, for main member with direction of grain
parallel to load and (b) Z, for main member with grain perpendicular to load. The official designations also
shown beneath the illustrations contain “parallel” and “perpendicular” symbols instead of the abbreviations,

“par” and “per,” used in these tables and text.
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Tahle A-9.13 Lateral design value, Z (Ib) for lag screws: single-shear connections, both
members same species (or same specific gravity)1234

A. Designation for single-shear lateral design values according to direction of grain?

=

(a) Z, (Zpar} (b) Zg, {Zs-per} (c)Zpmy (Zm-per)

B. 1%-in. side member thickness

Species or Species Yo-in.-diameter Lag  3%-in.-diameter Lag  1-in.-diameter Lag
Combination Screws Screws Screws
U | o |G | G | | o | e | | o

Douglas Fir-Larch 390 220 270 770 440 510 1290 530 810
Douglas Fir-Larch (North) 390 220 260 760 430 510 1280 500 790
Douglas Fir-South 370 210 250 730 400 480 1230 470 760
Hem-Fir 350 190 240 700 360 450 1180 420 720
Hem-Fir (North) 370 210 250 730 400 480 1230 470 760
Spruce-Pine-Fir 350 190 240 690 350 440 1160 410 710
Spruce-Pine-Fir (South) 310 160 210 620 280 390 1070 330 630
Southern Pine 410 250 290 830 470 560 1360 600 870

(Continued)



Table A-9.13 (Continued)

C. 3%-in. side member thickness

Tables for Chapter 9 (connections)

Species or Species

Ve-in.-diameter Lag

Y%-in.-diameter Lag

1-in.-diameter Lag

Combination Screws Screws Screws

U | Core | Yo | G | B | 2 | S | oo | 2
Douglas Fir-Larch 390 270 270 960 600 610 1740 850 1060
Douglas Fir-Larch (North) 390 260 260 950 580 600 1730 830 1040
Douglas Fir-South 380 250 250 920 550 580 1670 790 1000
Hem-Fir 360 240 240 890 500 550 1610 740 950
Hem-Fir (North) 380 250 250 920 550 580 1670 790 1000
Spruce-Pine-Fir 360 240 240 880 490 540 1600 720 940
Spruce-Pine-Fir (South) 340 220 220 820 420 490 1450 630 850
Southern Pine 410 290 290 1010 650 650 1830 930 1120

Notes:

1. Member thickness is measured parallel to the axis of the fastener.
2. Designations for lateral design values are as illustrated: (a) Z,,, for all members with direction of grain parallel
to load, (b) Zs.pe, for side members with grain perpendicular to load and main member with grain parallel to load,
and (c) Zy, per for main member with grain perpendicular to load and side members with grain parallel to load.
A fourth possibility, with all members having grain perpendicular to the direction of load, is rarely encountered

and not included here. The official designations also shown beneath the illustrations contain “parallel” and

“perpendicular” symbols instead of the abbreviations, “par” and “per,” used in these tables and text.
3. Tabular values are based on full value minimum penetration, p, into main member. For penetration into
main member between 4D and 8D, multiply tabular values by p/(8D).
4. The reduced body diameter, D,, is used in yield limit calculations for these lag screw lateral design values,

except in the calculation of the dowel bearing strength for loading perpendicular to grain, Fe.perp, in which case

the nominal diameter, D, is used.
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Table A-9.14 Lateral design value, Z (Ib) for common nails: single-shear connections,
both members same species (or same specific gravity)!?
A. %-in. side member thickness

Species or Species Nail Size (pennyweight)

Combination 6d 8d 10d 12d 16d 20d 30d 40d 50d
Douglas Fir-Larch 72 90 105 105 121 138 147 158 162
Douglas Fir-Larch (North) 71 87 102 102 117 134 143 154 158
Douglas Fir-South 65 80 94 94 108 125 133 144 147
Hem-Fir 58 73 8 8 99 114 122 132 136
Hem-Fir (North) 65 80 94 94 108 125 133 144 147
Spruce-Pine-Fir 57 70 83 83 96 111 119 129 132
Spruce-Pine-Fir (South) 46 58 69 69 8 93 101 110 113
Southern Pine 79 104 121 121 138 157 166 178 182

B. 1%-in. side member thickness

Species or Species Nail Size (pennyweight)

Combination 6d 8 10d 12d 16d 20d 30d 40d 50d
Douglas Fir-Larch — 369 118 118 141 170 186 205 211
Douglas Fir-Larch (North) — 366 115 115 138 166 182 201 206
Douglas Fir-South — 361 109 109 131 157 172 190 196
Hem-Fir — 355 102 102 122 147 161 178 181
Hem-Fir (North) — 61 109 109 131 157 172 190 196
Spruce-Pine-Fir — 353 100 100 120 144 158 172 175
Spruce-Pine-Fir (South) — 344 87 87 104 126 131 138 141
Southern Pine — 379 128 128 154 185 203 224 230
Notes:

1. Member thickness is measured parallel to the axis of the fastener.

2. Where values are not indicated, nail penetration into main member does not satisfy minimum
requirements. Otherwise, except as indicated in Note 3, it is assumed that the minimum penetration of
the nail into the main member is equal to 10D (see Table A-9.3 for notes on penetration).

3. These values include a reduction for penetration into main member because the penetration falls below
the minimum for full value. The dowel bearing length in the main member, |,,, used in the calculation of
these lateral design values does not include the length of the tapered tip, for the same reason (see Table
A-9.2 for nail dimensions).
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Table A-9.15 Method for determining lateral design value, Z, based on yield limit equations

For wood-wood or wood-metal connections that do not correspond to the parameters listed in the

various Appendix tables, lateral design values may be determined using yield limit equations.

1. Using Table A-3.11 (specific gravity for wood members), find the specific gravity (G) for wood
main and side member(s).

2. Find fastener diameter: use diameter, D, for bolts and nails (unthreaded shanks in contact with
members) and reduced body diameter, D,, for lag screws (in either case, designated as “D” in
what follows);

3. Find dowel bearing strength, F,, for main (F,,) and side (F) member(s), in psi units, using
the appropriate specific gravity value for each wood member:

a. For D > 0.25in. and wood members loaded parallel to grain, f, = 11,200G.
6100G'4®

JD

b. For D> 0.25in. and wood members loaded perpendicular to grain, f, =

c. For D < 0.25in. and wood members, F, = 16,600G1%,
. For A36 steel, F, = 87,000.
e. For A653 GR33 steel (used in certain die-formed galvanized connector plates),
F. = 61,850.

4. Find the dowel bending yield strength, F,, in psi units:

a. For bolts, use Fy,;, = 45,000.

b. For lag screws with D = %in., use f,, = 70,000; with D = %sin., use F,, = 60,000; for

D = %in., use Fy, = 45,000.
c. For nails with 0.099in. < D < 0.142in., use f,, = 100,000; with 0.142in. < D < 0.177in,,
use F, = 90,000; with 0.177in. < D < 0.236in., use F,, = 80,000; with
0.236in. < D <0.273in., use F,, = 70,000.
5. Find the main member and side member dowel bearing lengths, /,, and /s, in inches (see
Table A-9.3 for guidance). Even where there are two side members, the side member bearing
length only includes the bearing length in a single side member.
Compute the terms R, = Fop/Fesand Ry = I,/
Compute the “reduction term,” Ry, which varies according to yield mode and fastener
diameter, as follows:
a. For D<0.17in. (i.e., for nails 16d or smaller), Ry = 2.2.
b. For0.17in. < D < 0.25in. (i.e., for most nails larger than 16d), R, = 10D + 0.5.
c. For 0.25in. < D < 1in. (i.e., for most bolts and lag screws), Ry = 4K, (for Yield Modes I,
and ly); Ry = 3.6K; (for Yield Mode I1); and Ry = 3.2Kj (for Yield Modes IlI,. lllg, V).

In these equations, Ky, = 1 + 0.25(6/90), where § = the maximum angle (degrees) between
the load and the direction of grain for either member: for example, where the load is parallel
to the direction of grain in all members, § = 0°, and Ky = 1.0; where one or more member’s
grain is perpendicular to the load, 8 = 90°, and K, = 1.25. For angles other than O or 90°, 6 is
always measured in such a way that it falls between O and 90 (i.e., instead of using 8 = 120°, or
0 = —45° use 0 = 60° or § = 45°, respectively).
8. Compute the coefficients k;, k», and k3, as follows:

P JR. +2R2(+ R, + R?) + RPR, — R, +R,)
=

[oX

NOo

a.
1+R,)
2F,, (1 + 2R.)D?
b. ok, = -1+ 2(1+Re)+7”’( ;)
3F,

_ g4 [2AtR) 2F,(2 + R,)D?
R, 3F,, 2

(Continued)
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Table A-9.15 (Continued)

9. Compute the lateral design value, Z, for all applicable yield modes (i.e., for all six modes in
single shear, and for all modes except Il and Ill,, in double shear), and select the smallest
value:

a. For Yield Mode |y, Z = DijyFem/ Ry
b. For Yield Mode |5, Z = DIF.s/R4for single shear and Z = 2DIsF /R, for double shear.
c. For Yield Mode Il (single shear only), Z = k;DIsFos/ Ry

d. For Yield Mode IIl,, (single shear only), Z = —2Plmfen
1+ 2R)R,
e. ForYield Mode lll;, Z = _HDlsFer for single shearand Z = 2haDlsF e for double shear.
(2 + RIRy 2+ R,R,
2 [ 2F F 2 [oF F
f. For Yield Mode IV, Z = D [ el g single shear and Z = 2D | emlyp g
Ry N3 +Re) R, \31 +R,)

double shear.

Table A-9.16 Withdrawal design value, W, per inch of penetration (Ib) for lag screws!?

Species or Species Combination Unthreaded Shank Diameter, D (in.)
Yo %e B Ve Vo % Y4 7 1

Douglas Fir-Larch 225 266 305 342 378 447 513 576 636
Douglas Fir-Larch (North) 218 258 296 332 367 434 498 559 617
Douglas Fir-South 199 235 269 302 334 395 453 508 562
Hem-Fir 179 212 243 273 302 357 409 459 508
Hem-Fir (North) 199 235 269 302 334 395 453 508 562
Spruce-Pine-Fir 173 205 235 264 291 344 395 443 490
Spruce-Pine-Fir (South) 137 163 186 209 231 273 313 352 389
Southern Pine 260 307 352 395 437 b5l6 592 664 734

Notes:

1. Penetration length for lag screws excludes tapered tip; see Table A-9.1 for dimensions and Table A-9.3 for

notes on penetration.

2. Withdrawal design values assume penetration into side grain of wood member and must be reduced by

75% when inserted into end grain.
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Tahle A-9.17 Withdrawal design value, W, per inch of penetration (Ib) for nails!?

Species or Species Combination Nail Size (pennyweight)

6d 8d 10d 12d 16d 20d 30d 40d 50d
Douglas Fir-Larch 28 32 36 36 40 47 50 55 60
Douglas Fir-Larch (North) 26 30 34 34 38 45 48 52 57
Douglas Fir-South 2 26 29 29 32 38 41 45 48
Hem-Fir 19 22 25 25 27 32 3 38 41
Hem-Fir (North) 2 26 29 29 32 38 41 45 48
Spruce-Pine-Fir 18 21 23 23 26 30 33 35 38
Spruce-Pine-Fir (South) 12 14 16 16 17 21 22 24 26
Southern Pine 35 41 46 46 B0 B9 64 70 76
Notes:

1. Penetration length for nails includes tapered tip; see Table A-9.2 for dimensions and Table A-9.3 for notes

on penetration.

2. Withdrawal design values assume penetration into side grain of wood member. Nails subject to withdrawal

are not permitted to be inserted into end grain of wood member.

Table A-9.18 Shear capacity, or available strength, for a high-strength bolt subjected to single

shear with threads excluded from shear plane (kips)
A. Bearing-type connections!

Bolt Type Nominal Bolt Diameter (in.)
% Ya 7 1 1% 1% 1% 1Y%
A325 9.20 13.3 18.0 23.6 29.8 36.8 44.5 53.0
A490 115 16.6 22.5 29.5 37.3 46.0 55.7 66.3
B. Slip-critical connections (based on strength rather than serviceability)?
Bolt Type Nominal Bolt Diameter (in.)
Y Ya Y 1 1% 1% 1% 1Y%
A325 4.29 6.33 8.81 11.5 12.7 16.0 19.2 233
A490 5.42 791 11.1 14.5 18.1 23.1 27.3 334
Notes:

1. Capacities are tabulated for single-shear connections, with bolt threads excluded from all shear planes
(condition X). For double shear, multiply values by 2; for threads included within shear planes (condition N),

multiply values by 0.8. For double shear and threads included, multiply by 2 X 0.8 = 1.6.

2. Slip-critical capacities are based on standard holes and single-shear. For double shear, multiply values by 2.

Slip-critical bolts must also satisfy bearing capacity values in Table A-9.19.
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Table A-9.19 Bearing capacity, or available strength, for a high-strength bolt bearing on
material 1in. thick, with clear spacing between bolts (or edge) > 2in. (kips)!

Material Being Nominal Bolt Diameter (in.)

Connected % % % 1 % 1% 1% 1%k
A36, F, = B8ksi 54.4 65.3 76.1 87.0 979 109 120 131
A992, F, = 65ksi 60.9 73.1 85.3 97.5 110 122 134 146
Note:

1. Capacity (available strength) is tabulated assuming that the bolt hole clear spacing (or clear spacing
between bolt hole and material edge) in direction of force is no less than 2in. For clear spacing less than 2in.,
multiply capacity by L./2, where L. is the actual clear spacing (in.). For cases where the small deformations
associated with bolt bearing, at ordinary service loads, are considered to be a design issue, multiply capacity
by 0.8. Where the thickness, t, of the material is other than 1in., multiply the capacity by the thickness, t
(in.). These multiplications are cumulative so that, for example, the capacity of a material with t = % in., clear
spacing between bolts of 1.75in., and consideration of bearing deformations, would be equal to the tabular
value multiplied by (%6)(7%)(0.8) = (tabular value X 0.4375).

Table A-9.20 Minimum and maximum spacing and edge distance measured from bolt
centerline for standard holes
A. Minimum bolt spacing (in.)

Nominal Bolt Diameter (in.)

% Ya /] 1 1% 1Y 1% 12
Suggested 1% 2% 2% 3 3% 3% 4% 4%
Required 1% 2 2% 2% 3 3% 3% 4

B. Minimum edge distance (in.)!

Type of Edge Nominal Bolt Diameter (in.)

% Y% /) 1 1% 1% 1% 1%2
Sheared edge 1% 1% 21% GEA 2 2% 21%, 2%
Rolled or thermally Ve 1 1% 1% 1% 1% 1%%4 17
cut edge

C. Maximum bolt spacing and edge distance (in.)

Member Thickness (in.)

Va Ys Y2 Ye Ya Y 1 1%
Centerline spacing? 6 9 12 12 12 12 12 12
Edge distance 3 4% 6 6 6 6 6 6

Notes:

1. Minimum edge distances, measured in the direction of force, may be reduced below these values, as long
as bearing capacity is appropriately reduced (see Note 1 in Table A-9.19).

2. A value of 1%in. may be used for bolts at the ends of beam connection angles and shear end plates.

3. Maximum centerline spacing is measured in the direction of the applied load (longitudinally) and is valid
for members not subject to corrosion, whether painted or not. For unpainted weathering steel, the maximum
spacing is 7in. or, where the thinner member is less than %2in., 14 times that member’s thickness.
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Table A-9.21 Size limitations (leg size, w) for fillet welds (in.)

Thickness, T, of Material Being Joined (in.)!

T w }{ T<Vin. T=%in. V<T<Win %<T<%in %<T
T,

w
Minimum weld size, w Y8 Vs Y16 Ya Y16
Maximum weld size, w T e T — Yein. T — Yiein. T — Ysin.
Note:

1. For minimum weld size, the thickness, T, is the thinner of the two plate thicknesses being joined (either
T; or T,); for maximum weld size, the thickness, T, is the smallest thickness (edge) that the weld leg actually
comes into contact with (T3).

Table A-9.22 Development length in inches, /4 for deformed bars in tension, uncoated,
normal-weight concrete, with adequate spacing and/or stirrups!2345

f: (psi) Bar Number [“in-1b.” designation, with nominal diameter (in.) = bar number/8]

3 4 5 6 7 8 9 10 11 14 18
3000 17 22 28 33 48 55 62 70 78 93 124
4000 15 19 24 29 42 48 54 61 67 81 108
5000 13 17 22 26 38 43 48 54 60 72 9%
Notes:

1. Bars must have a clear space between them at least equal to twice the bar diameter—that is, at least equal
to 2d,—and a clear cover at least equal to the bar diameter, dy. Alternatively, if adequate stirrups or ties are
used throughout the development length region to confine the bars and prevent splitting of the concrete, the
minimum clear spacing requirement may be reduced to dy,. For bars not meeting these conditions, multiply
values by 1.5.

2. Values assume “bottom” bars in tension (i.e., bars placed for positive moment in beams); for “top” bars in
tension with at least 12in. of freshly placed concrete below them, multiply values by 1.3.

3. Values may be multiplied by the ratio of required steel bar area to provided steel bar area, except in cases
where the anchorage is required to reach the yield stress, f,, or in certain high-risk seismic zones.

4. All of the modifications mentioned in Notes 1, 2, and 3 are cumulative; that is, a value may be multiplied by
one or more of the applicable modification factors.

5. In any case, the development length, I, cannot be less than 12in.
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Table A-9.23 Development length for standard hooks in inches, /4, for uncoated bars,
normal-weight concrete!23456

f; (psi) Bar Number [“in-Ib.” designation, with nominal diameter = bar number/8]

3 4 5 6 7 8 9 10 11 14 18
3000 9 11 14 17 20 22 25 28 31 38 50
4000 8 10 12 15 17 19 22 25 27 33 43
5000 7 9 11 13 15 17 20 22 24 29 39
Notes:

1. Values may be multiplied by 0.7 for all bar hooks (except those fabricated with No. 14 and No. 18 bars)
with side cover of at least 2.5in. and, for 90° hooks only, cover beyond the hook of at least 2in.

2. Values may be multiplied by 0.8 for all bar hooks (except those fabricated with No. 14 and No. 18 bars)
where perpendicular ties or stirrups, spaced no more than 3d, along the development length, enclose them;
or, for 90° hooks only, where parallel ties or stirrups enclose the “vertical” and “bent” parts of the hook, also
spaced no more than 3d,.

3. Values may be multiplied by the ratio of required steel bar area to provided steel bar area, except in cases
where the anchorage is required to reach the yield stress, fy, or in certain high-risk seismic zones.

4. All of the modifications mentioned in Notes 1, 2, and 3 are cumulative; that is, a value may be multiplied by
one or more of the applicable modification factors.

5. A 90° hook must be extended a distance of 12d,, below the bent portion of the bar, which in turn is defined
by an inner radius that cannot be less than 3d,, for bars smaller than No. 9; 4d,, for No. 9, No. 10, and No. 11
bars; and 5d,, for No. 14 and No. 18 bars.

6. In any case, the development length for hooks, I, cannot be less than 8d,, or 6in.

Table A-9.24 Development length in inches, /., for deformed bars in compression!234

f. (psi) Bar Number [“in-1h.” designation, with nominal diameter = bar number/8]
4 5 6 7 8 9 10 1 14 18
3000 11 14 17 20 22 25 28 31 38 50

3

9
4000 8 10 12 15 17 19 22 25 27 33 43
5000 8 9 12 14 16 18 21 23 26 31 41

Notes:

1. Values may be multiplied by 0.75 where adequately confined by a spiral or ties (specifically, with a
minimum Y-in. spiral at no more than a 4-in. pitch or with No. 4 ties spaced at no more than 4in. on center).
2. Values may be multiplied by the ratio of required steel bar area to provided steel bar area, except in cases
where the anchorage is required to reach the yield stress, f,, or in certain high-risk seismic zones.

3. All of the modifications mentioned in Notes 1 and 2 are cumulative; that is, a value may be multiplied by
one or more of the applicable modification factors.

4. In any case, the development length for compression, I, cannot be less than 8in.
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Unit abbreviations
and conversion

Table A-10.1 Unit abbreviations

S| (international system) Units Inch-pound Units

m = meter in. = inch

mm = millimeter ft = foot

MPa = megapascal kip is unabbreviated

N = newton Ib = pound

kN = kilonewton psi = pounds per square inch

kg = kilogram ksi = kips per square inch

km/h = kilometers per hour psf = pounds per square foot
pcf = pounds per cubic foot
mph = miles per hour

Tahle A-10.2 Conversions from Sl (international system) to inch-pound units

Length, Area, Volume, Weight, Moment, and Speed Pressure, Load per Unit
Section Modulus, and Length, and Density
Moment of Inertia

1m = 3.2808ft 1N = 0.22481b 1MPa = 145.0377 psi
1mm = 0.0394in. 1kN = 0.2248kips 1 MPa = 0.1450ksi
1mm?2 = 0.00155in? 1N-m = 0.738ft-Ib 1kN/m = 0.0685 kips/ft
1m? = 10.76391t? 1kN-m = 0.738ft-kips 1kN/m? = 20.8854 psf
1m3 = 35.314713 1N-m = 8.850in-Ib 1kg/m3 = 0.0624 pcf

1mm3 = 6.1024 x 107%in3 1kN-m = 8.850in-kips
Imm?* = 2.4025 x 1078in* 1km/h = 0.6214 mph

© 2010 Elsevier Inc. All rights reserved.
Doi: 10.1016/B978-1-85617-771-9.00023-4 373
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Tahle A-10.3 Conversions from inch-pound to Sl (international system) units

Length, Area, Volume, Section Weight, Moment, and Speed
Modulus, and Moment of

Inertia

1ft = 0.3048m

lin = 25.40mm
1in? = 645.16 mm?
1t2 = 0.0929 m?
13 = 0.0283m?3
1ind = 16,387 mm3
lin* = 416,231 mm*

llb = 4.4482N

1kip = 4.4482kN
1ft-Ib = 1.3558 N-m
1ft-kip = 1.3558 KN-m
lin-lb = 0.11298 N-m

lin-kip = 0.11298kN-m

1mph = 1.609km/h

Pressure, Load per Unit
Length, and Density

1 psi = 0.006895 MPa
1ksi = 6.895MPa

1 kip/ft = 14.59kN/m

1psf = 0.0479kN/m?

1pcf = 16.03kg/m?3
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Glossary

about [as in: compute moment about the neutral axis] prep. The term “about” is equivalent to saying,
“by measuring moment arms perpendicularly from each force to.”

axial force 7. A force parallel to the longitudinal axis of a structural element.

beams and stringers 7. A subcategory of “timbers”; refers to lumber whose smaller nominal cross-
sectional dimension exceeds 4 in. and whose larger nominal cross-sectional dimension is at least
4 in. bigger than the smaller dimension, thereby forming a rectangular shape appropriate for use
as a beam, but not limited to that use.

bearing ger. The force exerted,in compression, by the surface of a structural element in contact with
(i.e., pressing against) the surface of another element.

bending moment 7. An effect on a structural element caused by the action of at least two parallel
force components that are not co-linear, and resulting in a distribution of stress within the ele-
ment’s cross section characterized by maximum stress at the “extreme fibers” (opposite edges)
and zero stress at the neutral axis.

bolt n. A type of fastener used in both wood and steel construction consisting of a head and threaded
shank, onto which is placed a nut; bolts are first inserted into a bolt hole before being tightened.

brittle adj. Lacking ductility, that is, lacking the ability to absorb energy, therefore being susceptible
to catastrophic and sudden failure, especially under dynamic loading.

cantilevered beam 7. A beam that extends beyond one or both of its supports.

compact section 7. Steel shapes proportioned so that, when used in bending, the strength and
reserve capacity of the element will not be compromised by local flange or web buckling within
those portions of the cross section subjected to compressive stress; this is primarily a function
of the relative thickness of flanges and webs; for noncompact shapes, the available strength is
reduced.

continuous beam 7. Any beam that extends over more than two supports and is, therefore, stati-
cally indeterminate.

couple [of equal and opposite forces on a cross section in bending] #. Two equal and opposite
forces, F,separated by a moment arm, 7 (i.e., two such forces that are not co-linear), and therefore
causing a moment, M = F X T.

curing [of concrete] ger The chemical process by which concrete hardens; the reaction of portland
cement and water within the concrete mix.

cylinder strength [of concrete] #. The compressive stress at which a 6 in. X 12 in. cylinder of con-
crete, which has cured for 28 days, fractures.

deflection #n. The movement measured perpendicular to the longitudinal axis of a structural ele-
ment under load, typically a beam; the term usually refers to the maximum deflection, often at
midspan.

determinate adj. Pertaining to a class of structures whose reactions can be determined using only
equations of equilibrium; includes simply supported beams, cables, three-hinged arches, and
pinned trusses formed from simple triangles.

development length 7. For reinforcement in reinforced concrete structures, the minimum bar
length such that any tendency for the bar to slip relative to the concrete is counteracted.
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dimension lumber 7. Lumber whose smaller nominal cross-sectional dimension is 4 in. or less; used
extensively in light wood framing.

ductile adj. Having the capacity to absorb energy without fracturing;a quality of steel, but not of cast
iron; of wood (in compression), but not of unreinforced concrete or masonry; see brittle.

elastic [behavior of material] adj. A material property characterized by a return to the initial shape
after a load is first applied and then removed; associated with linear stress-strain behavior.

elastic moment 7. The largest bending moment that can be sustained by a structural element such
that all stresses within a given cross section are within the elastic range; in steel, the distribution
of stresses coinciding with an elastic moment is linear, with a maximum value equal to the yield
stress, F),.

equilibrium 7. A state of “rest,” or balance, characterized by the sum of all forces in any direction
being zero and the sum of all moments about any axis being zero; in a “plane” (two-dimensional)
structure, conditions of static equilibrium are met when all forces in the x- and y-directions (i.e.,
those axes that define the plane in which the structural element exists) equal zero, and all mo-
ments about the z-axis equal zero.

free-body diagram [FBD] 7. A diagram of a structural element (or portion thereof) abstracted from
its context, together with all forces and moments acting on the element, both externally (ordi-

nary loads and reactions) and internally (at cross sections where the element has been “cut,
representing internal shears, axial forces, and bending moments).

force n. A vector with magnitude and direction represented by an arrow, ordinarily described as a
load or weight,and measured in units of pounds or Kips.

graded [lumber] adj. Having a mark that describes the quality of a given piece of lumber; typical
grades include select structural, No. 1, No. 2, No. 3, stud, construction, standard, and utility.

grain [of lumber] n. The directional pattern observed on the surface of lumber (or manufactured
products such as plywood) corresponding to the groups of cellulose fibers originally running
longitudinally up the trunk of the tree.

indeterminate adj. Pertaining to a class of structures whose reactions cannot be determined using
only equations of equilibrium; analysis of such structures requires, in addition to equilibrium,
consideration of compatibility of displacements, and therefore of the relative stiffness of struc-
tural elements; such structures are also described as redundant,in that they contain elements, or
constraints, beyond what is required for equilibrium.

influence area z. The area in plan within which a load will have an effect upon (i.e., influence)
a structural element, formerly used in the calculation of live load reduction; not to be con-
fused with tributary area, but rather equal to the tributary area times the live load element
factor, K;;.

internal hinge ». A connecting device within a structural form that prevents translation (vertical or
horizontal moment) of one side relative to the other, but allows rotation; present in three-hinged
arches and multi-span determinate beams.

joist [steel or wood] n. One of a series of closely spaced and parallel beams supporting a floor;
in wood-frame construction, joists are commonly made from dimension lumber and spaced at
16 in. or 24 in. on center.

knot [in lumber] 7. A defect in a piece of lumber characterized by the interruption of the board’s
parallel grain by circular rings corresponding to the former position of a branch.

lag screw n. A type of fastener used in wood construction consisting of a head, shank, and tapered
tip; part of the shank and tapered tip are threaded; sometimes called lag bolt.
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leeward adj. Referring to the side of a building on the far side relative to the direction of the wind,;
see windward.

lignin 7. The “glue” binding cellulose fibers together within a wood cross section.

linear [e.g.,stretching and shortening on a cross section subjected to bending] adj. In a straight line;
referring to the straight-line stress-strain (or load-deformation) curves of certain materials, within
their elastic ranges.

live load reduction z. The permitted reduction of live loads assumed to be present on relatively
large areas, justified by the probabilistic argument that the worst-case live load values found in
building codes (determined for relatively small areas) are increasingly less likely to be valid as
the areas being considered get larger; calculations for live load reduction were formerly based on
the so-called influence area,but now are based on the tributary area multiplied by a live load
element factor, K ;.

live load element factor [see influence areal

main member 7. Where two structural elements are connected using nails or lag screws, the mem-
ber into which the fastener end terminates; with bolts, the thicker of the two members, if any; or
the middle member in three-member (usually bolted) connections.

moisture content zn. A measure of the water within a piece of wood, defined as the weight of wa-
ter divided by the dry weight of the wood and expressed as a percentage; the moisture content
(m.c.) separating dry (“seasoned”) and wet (“green”) lumber is about 19%.

modulus of elasticity ». A material property defined as the change in stress divided by the change
in strain; therefore, the slope of a stress-strain curve, implicated in the “stiffness,” but not the
strength, of a material.

moment of inertia ». For structural elements subjected to bending, a cross-sectional property in-
dicating the section’s contribution to stiffness; calculated by finding the sum of the products of
areas and the square of their distances to the centroidal axis of the section.

nail n. A type of fastener used to connect two pieces of wood consisting of a head, shank, and
tapered tip; typically driven into the wood by means of a hammer or pneumatic device.

penetration #z. For nails and lag screws, the length of the fastener within the main member.

plane structure 7. A structure or structural element that can be modeled as existing, and moving
under the application of loads, on a two-dimensional (plane) surface.

plastic [behavior of material] adj. A material property characterized by a failure to return to the
initial shape after a load is first applied and then removed; steel, for example, has a distinct plastic
range beyond its elastic range.

plastic moment 7. In steel, the bending moment at a cross section within a structural element cor-
responding to a stress distribution in which all stresses are assumed to be equal to the yield stress,
Fy, half in tension and half in compression.

point of infection 7. A point along a structural element subject to bending marking the transition
from positive to negative moment; a point of zero moment between regions of bending with
opposite curvature.

ponding ger A phenomenon associated with flat or low-slope roofs in which rain water, collecting
in the deflected areas at the midspan of roof beams, causes increased deflection as it accumulates,
leading to progressively larger deflections and, potentially, structural failure; can be prevented by
providing adequate slope, proper drainage, and camber for large spans.

posts and timbers 7. A subcategory of “timbers”; refers to lumber whose smaller nominal cross-
sectional dimension exceeds 4 in. and whose other nominal cross-sectional dimension is the
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same or no more than 2 in. bigger than the smaller dimension, thereby forming a relatively square
shape appropriate for use as a column (post), but not limited to that use.

reaction 7. For any structural element, the forces and moments at its supports necessary to resist the
action of applied loads, thereby maintaining a condition of equilibrium.

redundant [see indeterminate)

reinforcement (steel) ratio[in reinforced concrete] 7. The ratio of the area of reinforcing steel to
the gross area, for columns; for beams, the ratio of the area of reinforcing steel to the area defined
by the beam width times the beam depth measured from the face of concrete in the compression
zone to the centerline of tensile steel reinforcement.

relative stiffness . The stiffness of one element (stiffness defined for elements subjected to bend-
ing as the modulus of elasticity times the moment of inertia; for elements subjected to axial
force, as the modulus of elasticity times the cross-sectional area) compared to that of another;
where two or more elements combine to resist the same loads, those loads are resisted by each
element in proportion to its relative stiffness.

residual stress 7. Stress “locked in”to a structural element, usually as an unintended but unavoidable
result of heating and cooling during the manufacturing process (e.g., hot-rolled steel sections),
but sometimes as a deliberate technique for improving material qualities (e.g., tempered glass).

sag [of a cable] n. The vertical distance measured from the low-point of a cable to the level of the
supports.

sag point 7. The position along the length of a cable corresponding to the lowest point; see sag.

section modulus 7. A cross-sectional property indicating that section’s relative strength in bend-
ing; equals the moment of inertia divided by half the height of the section (for symmetrical
sections).

shear force 7. An internal force within a cross section perpendicular to the longitudinal axis of the
structural element.

side member n.Where two structural elements are connected using nails or lag screws, the member
into which the fastener is first inserted; with bolts, the thinner of the two members, if any; or the
two outside members in three-member (usually bolted) connections.

sign [of a bending moment or shear force] n. An arbitrary assignment of “positive” or “negative”
corresponding to rotational direction (for a bending moment) or vertical direction (for shear in
a beam); for beams, positive bending corresponds to tension on the bottom and compression on
the top of the cross section, with a counterclockwise moment acting on the right side of a free-
body diagram; positive shear corresponds to an downward-acting force on the same free-body
diagram.

simply supported beam #. A beam supported by a hinge and a roller, the hinge preventing all
translation but allowing rotation, and the roller preventing translation perpendicular to the lon-
gitudinal axis of the beam while allowing “horizontal” translation and rotation; such a model is
commonly applied to ordinary steel and wood beams and joists, which both approximates their
actual behavior and allows them to be analyzed as statically determinate structures.

shear lag 7. A phenomenon encountered when a connection is made to only a portion of a steel
element in tension so that the cross section in the vicinity of that connection is only partially,and
incompletely, stressed.
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slenderness ratio 7. A dimensionless property of a structural element subjected to axial compres-
sion, indicating its susceptibility to buckling, and defined as the effective length divided by the
radius of gyration; the more “slender” the element, the greater the tendency to buckle.

spandrel [beam or girder] adj. At the outside face of a building.

specific gravity n. A material property equal to the relative density of the material compared to
that of water.

spiral [in a reinforced concrete column] 7. A continuous steel wire in the shape of a spiral used to
confine both longitudinal reinforcing steel and concrete within a round cross section.

stagnation pressure [see velocity pressure)
statically determinate [see determinate]
statically indeterminate [see indeterminate]

stud [steel or wood] 7. One of a series of closely spaced and parallel posts comprising a wall;
in wood-frame construction, studs are commonly made from dimension lumber and spaced at
16 in. or 24 in. on center.

tension-controlled member 7. A reinforced concrete element in which failure is initiated by yield-
ing of reinforcing steel in tension, rather than by crushing of concrete in compression.

thickness [of wood cross section] 7. The smaller dimension of a wood cross section.

tie [in a reinforced concrete column] 7. One of a series of steel reinforcing bars placed around the
perimeter of reinforced concrete columns and used to confine both longitudinal reinforcing steel
and concrete within rectangular cross sections.

timbers 7. Lumber whose smaller nominal cross-sectional dimension is greater than 4 in.

torsion #n. An effect on a structural element caused by the action of a moment about the element’s
longitudinal axis; also referred to as torque or twisting.

tributary area . The floor or roof area assigned to each structural element, measured from the cen-
terlines between those elements; used to determine the distribution of loads; results in accurate
load values only in special cases without cantilevers or continuous (indeterminate) elements,
and with symmetrical placement of loads; otherwise, still useful as an approximate means for
assigning loads.

unbraced length [between lateral supports on a beam] 7. The distance between lateral supports on
a beam, used to determine the beam’s susceptibility to lateral-torsional buckling and, therefore,
the reduction in allowable bending stress.

under-reinforced [concrete beams] adj. Having the desirable property that failure is initiated by
yielding of reinforcing steel in tension rather than by crushing of concrete in compression; such
behavior is implemented by requiring a minimum steel strain at failure of 0.004 (or 0.005 to take
advantage of the highest “strength reduction” factor for bending).

uniformly distributed [load] adj. Spread out evenly over a floor or roof (in which case it is mea-
sured in units of pounds per square foot), or over a linear element such as a beam (in which case
it is measured in units of pounds or kips per linear foot).

unserviceable adj. Not useful or adequate for its intended purpose, due to such things as excessive
vibration or deflection under normal loads.

velocity (or stagnation) pressure 7. The pressure (uniformly distributed load) assumed to act on
the surface of a building, caused by the force of a constant wind; proportional to the square of
the wind’s speed.
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weld 7. A type of fastening used in steel construction in which molten steel deposited by an
electrode cools and joins two structural steel elements together. v.To engage in the activity of
depositing such electrode-steel in order to connect two steel structural elements together.

width [of wood cross section] z. The larger dimension of a wood cross section.
windward adj. Referring to the side of a building directly in the path of the wind; see leeward.

withdrawal ». A mode of failure for nails or lag screws caused by the action of a tensile force that
pulls (withdraws) the fastener out from its intended position.

workability [of concrete] 7. Being of a consistency that permits proper mixing and placement; not
too stiff.

vielding [of steel] ger A characteristic property of steel in the plastic range in which the material
is able to strain without any increase in stress—that is, deformations can increase at a constant
load; the stress at which yielding occurs, marking the end of the elastic range, is called the yield
stress.
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A

Adjustment factor
beam stability, 139, 275
column stability, 109, 110, 270
duration of load, 349
flat use, 274
geometry, 200, 202, 203, 2006, 208, 214, 356
group action, 350-5
repetitive member, 275
size, 139
temperature, 267, 271,277,279, 282,359
toe-nail, 200, 359
volume, 274-5
wet service, 199, 279, 281,350
Allowable strength design, 80, 150
Allowable stress design, 79-80, 133-4, 153,311
Arch, three-hinged, 12-14, 29-30
Arch, two-hinged, 14
Area, effective net, 97,99
Area, gross, 90,96-9
Area, influence, 41, 42
Area, net, 90
Area, tributary, 2-7, 183

B

Beam, 2,10, 18,129,193

Beam, continuous, 130,131,171

Beam, simply supported, 8,10-12,19-22,130, 131,
171

Beams and stringers, 73

Bending, 8,18,131,151-7,173-5

Bending moment, see Moment

Bernoulli, Daniel, 49

Bolt, 88,92,98, 193, 194, 195, 196, 201, 204, 206, 209,
217,226-7,229,284

Bolt hole, 87,90, 97, 226, 227, 228-9

Bond, 165, 238, 240, 242, 245

Boundary layer, 50, 52

Brittleness, 70-1

Buckling, 37,107,108,109, 115-17,153-7

c

Cable, 14, 28,30,70

Cantilever, 23, 130

Column, 1,5-7,42,77,107-27, 193, 245, 246,
247,317

Compact section, 153, 154, 156

Compression, 62,87, 107, 244, 245, 247

Concrete, 61,62,70,71,75,104, 120, 121, 122,123,
124,125,126, 164, 169,171,174, 175,179, 181,
187,238

Concrete, reinforced, 70-1,75-7,81, 104-5,120-7,
164-91,238-47,312,328, 342,343

Confinement, 121,239, 245

Connection, 58, 193-247,347-73

Constraint, 11, 13, 15,31, 71, 75,193,194

Corrosion, 68,122,165

Couple, 134,198

Cover, 10, 76,105, 135,165, 169, 176, 239, 240

Curing, 70,71, 104

Cylinder strength, see Strength cylinder

D

Deflection, 4, 129, 160, 178-9

Deformation, 31,33, 61,97

Determinate, 7,9, 10, 28,33,171,175

Development length, 238-44, 372,373

Diagram, free-body, 9-10, 14, 18, 20, 21, 24, 26, 29,
30,31,88

Diagram, load, 3,4, 5,11, 13, 15, 20, 23, 32,41, 45,48,
82,83

Dimension lumber, see Lumber dimension

Ductility, 61, 68, 70

E

Earthquake, 1, 4, 6, 40, 46, 54,55, 81, 194

Elastic, 36,61,68,115-16,117,132,151, 152,
153,155

Elongation, 89, 129,132,133

Equilibrium, 7-10

Euler, Leonard, 107-8,109,110, 115

Exposure, 46,47,51

F

Fastener, see Connection

Fatigue, 65

Fireproofing, 105

Flexure, see Bending

Force, 1,17, 18, 22, 28,29, 30,87,92
Force, axial, 18,19, 22,28, 29, 30

Force couple, see Couple

Force, internal, 17-31,87, 136

Force, shear, 18,22,91,136, 137,241
Fundamental period of vibration, 55,262
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G

Gage, 88

Girder, 2,3,4,5,157,162,193,242

Glued-laminated lumber, 64, 65, 139, 265, 266, 267,
268,271,272-3,274,277,278,279

Grain, 63,65, 198, 222, 224, 225

Gust factor, 52

H

Hinge, 9, 10, 12,29, 193, 194, 226

Hinge, internal, 13-14

Hollow structural section (HSS), 69, 75, 163,302, 304
Hook, 241,242, 243,372

Ijoist, 67

Importance factor, 46, 50, 254, 257,263
Indeterminate, 7,29,31-3,171
Inelastic, 69,115-17, 155

Inflection, point of, 244

K

Knot, 63, 64,65

L

Lag screw, 90,92, 194,195,198, 201, 212, 222,
347,348

Laminated veneer lumber (LVL), 65-6

Lap splice, see Splice

Leeward, 48,52, 54, 255,256

Length, effective, 98,122,139, 233,317

Length, unbraced, 108,110, 117, 122,153, 154,
156,157

Lignin, 63

Line of action, 8,11

Linear, 1,57,61,62,132,133

Live load, see load, live

Live load element factor, 42

Live load reduction, 6,42, 43

Load, 1, 2,39-60, 65, 82,83

Load, concentrated, 4, 5, 139

Load, dead, 39-41

Load, distributed, 2, 3, 23

Load, earthquake, 46

Load, environmental, 46-60, 253

Load, live, 41-5, 46,252

Load, seismic, 54-60

Load, snow, 46-9, 254

Load, wind, 49-54

Load factor, 80-1,199,311

Load path, 6-7,57

Load resistance factor design, 81
LRFD, see load resistance factor design
Lumber, dimension, 73-4, 139, 140, 147,265

M

Main member, 90, 196, 213,217,360-4
Method of sections, see Section method
Modulus of elasticity, 61, 62, 68, 132, 279, 280
Moisture content, 64, 199

Moment, 17-31,107, 108, 134-5, 140, 142, 161
Moment, elastic, 132,151, 152,153, 154
Moment, internal, 10

Moment, plastic, 133,135, 151, 152, 153, 154, 156
Moment arm, 11

Moment of inertia, 34-5

N

Nail, 90, 193, 194, 196, 198, 200, 201, 215, 222, 223
Neutral axis, 63, 132,133, 137-8

Newton, Isaac, 1,7

Nonlinear, 57,61, 132,133,166

o

Open-web steel joist (OWS]), 69-70
Oriented strand board (OSB), 67

P

Parallel strand lumber (PSL), 66

Period, see Fundamental period of vibration
Plastic, 36,61, 151,153,154

Plate, 194, 195, 209, 237

Plate, gusset, 97, 100

Plate, pin-connected, 99, 103-4
Plywood, 66,67

Ponding, 129

Posts and timbers, 73, 266, 268, 272, 288
Pressure, velocity, 49, 50, 51-2

R

R-value, 47

Radius of gyration, 37,98, 108, 122

Reaction, 1,9,10-17

Rebar, see Reinforcing bar

Redundant, see Indeterminate

Reinforcement ratio, 121, 126

Reinforcing bar, 70,75, 164, 165,175,176,177,193,
238,239,244

Response modification factor, 56

Roof, 1,46-7,194

Rupture, 68,87,97,98-9



S

Sag, 14,16

Section method, 28-9

Section modulus, 36, 134-5, 151, 153

Seismic, see Earthquake

Seismic design category, 259, 263

Seismic load, see Load earthquake

Seismic response coefficient, 263

Seismic weight, see Weight seismic

Shear, 18, 19, 22,23, 91, 145, 157-9, 185-91, 196-221,
228,229

Shear, double, 196, 198, 199, 206, 209, 217,361, 363

Shear, single, 196, 197, 198, 201, 204, 212, 215,
360, 365

Shear lag, 97,313

Shrinkage (of concrete), 71,178

Side member, 196, 198, 199, 365, 366, 367

Sign convention, 10,11, 13

Slenderness ratio, 98,108,110,115-16

Space frame, 70

Spandrel, 2, 4,5

Spiral, 76,77, 121, 245,328

Splice, 97, 244, 245, 246, 247

Stagnation pressure, see Pressure velocity

Statics, 1-37, 249-50

Steel, 61,68-70, 74-5,96-104, 115-20, 121, 150-64,
226-38

Steel ratio, see Reinforcement ratio

Stiffness, 33, 35,55

Stiffness, relative, 7

Stirrup, 76, 185, 186, 187, 189

Story, soft, 57

Story, weak, 57

Strain, 61-2, 68,123,132, 133,165, 166

Strength, 33-7,70,109, 122,151, 165,234

Strength, cylinder, 70, 104, 167

Strength design, 80-5, 150, 153, 168,187,311

Strength reduction factor, 80-1,312

Stress, 61,68,79,151,153

Stress, axial, 87,107

Stress, bending, 130-8

Stress, buckling, 108, 109,115,116

Stress, compressive, 69, 70, 107, 109, 224

Stress, residual, 68-9, 115

Stress, shear, 92,136,137, 138,139,157, 185

Stress, tension, 90, 133, 157-8, 164-5

Stress block, 44,168,171,173

Index

Stringers, see Beams and stringers
Structure, axial-force, 18, 28-9, 30
Structure, plane, 7,8

Structure, rigid-body, 9

Stud, 69, 73

Symmetry, 7, 10, 36, 232

T

Tear-out, group, 91,92,94, 315

Tear-out, row, 91,92, 94, 315

Tension, 22, 64, 87-105, 229, 238-44, 244-5, 265,
284,313

Tension-controlled, 173,343

Ties, 121,328

Timbers, 73, 141

Truss, 28-9, 67,100

Under-reinforced beam, 165, 166,173,175
Units, 1,375-6
Unserviceable, 129

v

Velocity pressure, see pressure, velocity

w

Weight, seismic, 55, 58-9, 60

Weld, 98,193, 226, 230-8

Weld, fillet, 230, 231, 232, 233-4,371

‘Weld, groove, 230

Weld, plug, 230

Weld, slot, 230

Whitmore section, 97,98

Whitney, C.S., 167

Wind, 1,4, 6,46,51,52,194

Wind speed, 46, 49, 50

Windward, 51

Wood, 61, 62,63-7,73-4,89-96, 109-15, 139-50,
185,194-226

‘Workability, 71

Y

Yield limit equations, 199

Yielding, 68, 69, 96,97,98,115,122,158,165,173,
186,198
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