
Complete
Guide to Test
Automation

Techniques, Practices, and Patterns for
Building and Maintaining Effective
Software Projects
—
Arnon Axelrod

Complete Guide to
Test Automation

Techniques, Practices, and Patterns
for Building and Maintaining
Effective Software Projects

Arnon Axelrod

Complete Guide to Test Automation: Techniques, Practices, and Patterns for Building
and Maintaining Effective Software Projects

ISBN-13 (pbk): 978-1-4842-3831-8				 ISBN-13 (electronic): 978-1-4842-3832-5
https://doi.org/10.1007/978-1-4842-3832-5

Library of Congress Control Number: 2018955901

Copyright © 2018 by Arnon Axelrod

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Shiva Ramachandran
Development Editor: Laura Berendson
Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484238318. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Arnon Axelrod
Matan, Israel

https://doi.org/10.1007/978-1-4842-3832-5

In memory of my late grandparents Nathan and Lea Axelrod,
pioneers of the Israeli cinema. Your memory is my inspiration.

v

About the Author��xvii

About the Technical Reviewer���xix

Acknowledgments���xxi

Introduction���xxiii

Table of Contents

Part I: �The “Why” and the “What”��� 1

Chapter 1: �The Value of Test Automation��� 3

Why Do We Need Test Automation?��� 3

From Waterfall to Agile Software Development��� 4

The Cost of Software Complexity��� 6

Maintaining a Constant Cost��� 7

Refactoring�� 9

Continuous Improvement��� 10

Chapter 2: �From Manual to Automated Testing��� 13

First Attempt: Record and Playback��� 13

Getting the Most Out of Test Automation��� 16

Differences Between Manual and Automated Tests��� 18

Exploratory Testing��� 19

Considerations for Automated Testing�� 21

Chapter 3: �People and Tools�� 31

Choosing the Right Tools�� 31

Who Should Write the Tests?��� 32

Promoting Manual Testers or Inexperienced Programmers to Automation Developers��������� 32

Splitting the Work Between Manual Testers and Automation Programmers�������������������������� 35

Using a Dedicated Automation Team�� 37

vi

Having Dedicated Automation Developer(s) Inside Each Team��� 38

Give the Developers the Ownership for the Automation��� 39

The Variety of Tools�� 40

Classification of Tools��� 40

IDEs and Programming Language�� 41

(Unit) Testing Frameworks�� 45

BDD-Style Frameworks�� 46

SUT Interaction Technologies��� 48

Test Management Suites�� 60

Build Tools and CI/CD Pipelines�� 60

Other Considerations for Choosing Tools�� 61

Chapter 4: �Reaching Full Coverage�� 63

How Do You Measure Coverage?��� 64

Percentage of Manual Test Cases Covered by Automation��� 65

Percentage of Covered Features�� 65

Percentage of Code Coverage�� 66

Gaining Value Before Reaching Full Coverage��� 71

What Do We Do When We Have Full Coverage?��� 71

How Do We Get to 100% Coverage?�� 72

Reversing the Wheel�� 74

My Road Map to Successful Automation Project��� 77

When to Start Working on Progression��� 78

Prioritizing the Work to Fill the Regression Gap��� 79

Chapter 5: �Business Processes��� 83

Running the Tests on a Regular Basis�� 83

The Simplest Approach��� 84

Nightly Runs��� 85

Handling Bugs That Are Found by the Automation��� 86

Keep the Failing Tests��� 86

Exclude the Failing Tests�� 88

Table of Contents

vii

Creating Work-Arounds in the Test��� 89

Treating All Automation Failures as Critical Bugs��� 91

Continuous Integration��� 92

Acceptance Test Driven Development (ATDD)�� 93

Continuous Delivery and Continuous Deployment��� 94

Canary Releases��� 95

Summary��� 97

Chapter 6: �Test Automation and Architecture��� 99

Test Architecture Considerations��� 99

Understanding the SUT Architecture�� 100

Back to Basics: What’s a Computer System?��� 100

What’s an Automated Test?�� 101

Real-World Computer Systems�� 102

Alternatives and Considerations in a Layered Architecture��� 106

The Relationships Between the Scope and the Test��� 107

Overview of the Layers��� 109

The Alternative Test Scopes��� 111

Real-World Architecture��� 130

Intended Architecture vs. the Actual One��� 130

Common Variations��� 130

Combining Tests��� 132

Summary of the Considerations��� 135

Beyond the Layered Architecture��� 139

Summary: Making Your Own Choice�� 143

Chapter 7: �Isolation and Test Environments�� 145

State��� 145

Isolation Problems and Solutions��� 147

Problem 1 – Manual Tests and Automated Test Running in Different Times������������������������ 147

Problem 2 – Manual Tests and Automated Tests Running Simultaneously�������������������������� 148

Problem 3 – Order Matters��� 149

Problem 4 – Automated Tests Running Simultaneously��� 150

Table of Contents

viii

Isolation Techniques��� 150

Use Separate Accounts��� 150

Separate Between Manual Testing and Test Automation Databases������������������������������������ 151

Having Separate Environments for Each Team Member�� 151

Resetting the Environment Before Each Test Cycle�� 153

Create Unique Data for Each Test��� 157

Each Test Cleans Everything It Creates�� 162

Read-Only Shared Data�� 164

Summary��� 165

Chapter 8: �The Big Picture��� 167

The Relationships Between Software Architecture and Business Structure������������������������������ 167

Conway’s Law��� 167

Horizontal Teams vs. Vertical Teams��� 168

The Relationships Between Software Architecture and Organizational Structure with Test
Automation��� 170

Dedicated Automation Team��� 170

Automation Developers Inside Horizontal Teams��� 170

Automation Developers Inside Vertical Teams�� 171

Flexible Organizational Structure��� 172

Having an Automation Expert��� 173

Summary��� 173

Part II: The “How”�� 175

Chapter 9: �Preparing for the Tutorial��� 177

Prerequisites and Presumptions�� 177

Applicability of the Process for Existing Test Automation Systems��� 178

Overview of the Process�� 179

Bottom Up vs. Top Down��� 179

The Process�� 180

Getting to Know the SUT�� 181

Overview on MVCForum��� 182

Table of Contents

ix

Preparing the Environment for the Tutorial�� 185

Install Visual Studio Community Edition��� 186

Download and Install Chrome��� 186

Download and Install SQL Server Express�� 186

Download and Build the Application��� 187

Install Resharper (Optional)�� 192

Using Git Through Visual Studio��� 193

Switching Between Branches��� 194

Summary��� 198

Chapter 10: �Designing the First Test Case��� 199

Choosing the First Test to Automate�� 199

Choosing the First Test Case for MVCForum��� 204

The Scientific Method for Designing a Test Case��� 205

Designing the Steps of the Test�� 205

Thinking in Terms of Objects and Entities�� 208

Summary��� 217

Chapter 11: �Start Coding the First Test��� 219

Creating the Project��� 219

Renaming the Class, Filename, and Test Method��� 222

Write the Pseudo-code�� 224

Remarks About the Pseudo-code��� 225

Getting the Code to Compile�� 228

Declaring the LoggedInUser Class�� 230

Declaring the MVCForum Property��� 230

Declaring the RegisterNewUserAndLogin Method�� 232

Declaring the Rest of the Classes and Methods��� 233

Model Code Review��� 237

Summary��� 238

Table of Contents

x

Chapter 12: �Completing the First Test��� 239

Running the Test to Find What to Implement First��� 239

Adding Selenium to the Project��� 241

Running IISExpress��� 243

Implementing the MVCForumClient Constructor�� 244

Implementing RegisterNewUserAndLogin��� 246

Asking the Developer to Add a Unique Automation Identifier��� 251

Implementing the Property Setters�� 254

Removing Duplication from the Property Setters��� 257

Hitting the Isolation Problem�� 260

Implementing CreateDiscussion and Analyzing the Failure��� 264

Completing the Test��� 269

Summary��� 270

Chapter 13: �Investigating Failures�� 271

Integrating with Latest Version of MVCForum�� 271

Improving the Error Reporting��� 273

Avoid Debugging�� 277

Investigating the Root Cause�� 278

Resolving the Problem�� 279

More Issues…�� 280

Logging and Other Evidence Collection��� 287

Screen Capture��� 287

Logging��� 288

Nested Logging�� 288

Visual Logging�� 290

Additional Logging and Diagnostics Options�� 290

Adding Nested Visual Logger to MVCForum Tests�� 293

Investigating Challenging Failures��� 295

Failures That Happen Only On One Machine�� 296

Investigating Influencing Tests��� 300

Investigating Flickering Tests��� 301

Summary��� 308

Table of Contents

xi

Chapter 14: �Adding More Tests�� 309

Writing the Next Tests�� 309

Planning the Next Tests�� 311

Adding the Test: Discussions Can Be Filtered by Category��� 312

Summary for Adding the Second Test�� 327

Making Additional Improvements�� 328

Creating More Comprehensible Identifiers��� 328

Arrange the Code in Folders��� 328

Extract a Base Class for Tests�� 329

Supporting Multiple Users and Browsers�� 330

Tips for Using Test Configuration Files��� 330

Supporting Multiple Browsers�� 332

Additional Improvement Opportunities�� 334

Automatically Re-create the Database��� 335

Cleanup�� 336

Improve Performance��� 338

Adding More Tests�� 338

Data-Driven Tests (DDT)�� 338

Summary��� 341

Chapter 15: �Continuous Integration��� 343

Is It Really Necessary?��� 344

Creating the Test Build Process��� 344

Scheduling the Test Build Process��� 346

Creating the Automatic Deployment Process��� 347

Adding the Tests to the Build�� 350

Changing the Development Processes and Culture��� 352

Aiming for the “Holy Grail”��� 352

What It Takes to Change the Culture�� 353

Identifying the Starting Point�� 355

Table of Contents

xii

Decreasing the Test Run Duration�� 363

Improve Isolation�� 364

Perform Prerequisites Through API�� 364

Parallelization and Virtualization�� 364

Run Only Sanity Tests in CI��� 365

Breaking the CI Pipeline to Stages��� 365

Write Mostly Integration and Unit Tests�� 366

Run Tests Only for Relevant Components��� 367

Optimizing Test Performance��� 368

Covering a Broader Matrix��� 368

Summary��� 369

Chapter 16: �Acceptance Test Driven Development�� 371

Overview on ATDD�� 371

Being More Agile�� 372

Technical Debt�� 372

What Makes a Team Agile?��� 372

Avoiding Technical Debt��� 373

The Process��� 375

Create and Elaborate the User Story�� 375

Writing the Automated Tests��� 378

Deliver the Application and Get Feedback�� 386

Using the Acceptance Tests as Documentation��� 387

Binding Steps Rather Than Tests�� 388

The Trade-Offs Between Reusability, Granularity, and Readability��������������������������������������� 390

Introducing ATDD in an Existing Project��� 391

Start Without Automated Tests��� 391

Implementing the Automation Retrospectively��� 392

Start from Bug Fixes��� 393

Enriching Regression Coverage�� 393

Summary��� 394

Table of Contents

xiii

Chapter 17: �Unit Tests and TDD��� 395

Learning Unit Tests and TDD�� 395

The Mechanics of Writing a Unit Test��� 396

Unit Test Framework Mechanics�� 397

The Mechanics of Writing a Unit Test��� 400

Unit Tests and I/O�� 403

The Mechanics of TDD��� 408

Red-Green-Refactor��� 409

Why Should We Write the Tests First?�� 412

The Real Challenges in Unit Testing and TDD��� 413

Main Challenges with Unit Testing��� 413

Main Challenges with TDD�� 414

More Specific Challenges��� 414

Mastering Clean Code and the SOLID Principles�� 418

Mastering Refactoring�� 421

The Biggest Challenge: What to Test?�� 421

TDD the Way It Was Meant to Be�� 422

Outside-In vs. Inside-Out Approach�� 423

Summary��� 424

Chapter 18: �Other Types of Automated Tests��� 425

Performance Tests��� 425

Measuring Performance in Production�� 425

What Not to Do��� 427

Defining the Expected Result��� 428

Reusing Code Between Functional and Performance Tests��� 429

Investigating Performance Bottlenecks�� 429

Perceived Performance vs. Actual Performance�� 429

Load Tests�� 430

How Load Tests Work��� 430

Defining the Expected Result��� 431

Combining Performance with Load Tests��� 433

Table of Contents

xiv

Running Tests in Production�� 434

Testing Deployment�� 434

Testing the Health of the Production Environment��� 435

Which Tests to Run��� 435

Cleaning Up Test Data��� 436

Visual Testing��� 436

The Visual Testing Workflow��� 437

Visual Testing and Cross-Browser/Cross-Platform Testing�� 437

Installation Tests�� 438

Approaches for Installation Tests��� 438

Testing the Installation Through UI or Through Silent Install�� 440

Testing Uninstall��� 440

Upgrade Tests�� 441

Approaches for Upgrade Tests�� 441

Testing AI, Statistical, and Non-deterministic Algorithms�� 442

Approaches for Testing Statistical Algorithms�� 443

Testing Applications That Use Random Numbers��� 446

Testing Business Intelligence (BI) Applications�� 447

Summary��� 448

Chapter 19: �Where to Go from Here��� 449

Make Mistakes��� 449

Listen, Consult, and Take Advice�� 449

Understand and Align to Your Business’s Goals��� 450

Get to Know Your Tools��� 450

Improve Your Programming Skills�� 451

Improve Your QA Skills��� 452

Broaden Your Horizons��� 452

Share Your Knowledge��� 453

Share the Tools You Build��� 453

Don’t Forget to Enjoy!�� 453

Table of Contents

xv

�Appendix A: Real-World Examples�� 455

�Example 1 – Water Meters Monitoring System�� 455

�Simulating the Communication Server�� 458

�Dealing with Google Maps��� 459

�Example 2 – Forex Trading System�� 461

�The Solution��� 463

�Instability Caused by CRM��� 463

�Isolating the Environments�� 464

�Testing the Mobile Application with Abstract Test Scope��� 465

�Example 3 – Retail Store Management�� 466

�Description of the Architecture�� 468

�Minimal Deployment�� 469

�Organizational Structure�� 471

�Test Automation Solutions��� 471

�Date/Time Simulator�� 472

�3-Tiers Tests��� 473

�End-to-End Tests�� 474

�Appendix B: Cleanup Mechanism�� 475

�Understanding Callbacks and Delegates��� 475

�Building the Cleanup Mechanism�� 477

�The Problem��� 477

�The Basic Solution��� 478

�Reusing the Cleanup Mechanism�� 481

�Handling Dependencies Between Cleanup Actions�� 482

�Handling Exceptions in Cleanup Actions�� 484

�Summary��� 486

�Appendix C: Test Automation Essentials��� 487

�Background�� 487

�Project Structure�� 488

�Note About the Unit Tests and XML Comments�� 489

Table of Contents

xvi

�NuGet Packages��� 490

�Features and Utilities��� 490

�TestAutomationEssentials.Common��� 490

�TestAutomationEssentials.MSTest��� 493

�TestAutomationEssentials.CodedUI�� 494

�TestAutomationEssentials.Selenium�� 495

�Contributing to the Project and Porting to Other Languages��� 498

�Appendix D: Tips and Practices for Programmer’s Productivity��������������������������� 499

�Prefer Using the Keyboard��� 499

�Poka-Yoke�� 502

�Avoid Nulls��� 503

�Avoid Catching Exceptions��� 504

�Choosing the Most Appropriate Locator��� 508

�Hard-Coded Strings in Test Automation: Yea or Nay?��� 511

�Index�� 515

Table of Contents

xvii

About the Author

Arnon Axelrod is a test automation expert, working as a

senior consultant, architect, trainer, and lead of the test

automation team at Sela Group. Arnon started programming

his ZX-Spectrum when he was 10 and hasn’t lost his passion

for programming ever since.

After Arnon graduated with his B.Sc. in Math and

Computer Sciences from Ben-Gurion University of the

Negev in 1999, Arnon started to work for Microsoft as

a Software Engineer in Test (SDET), where he was first

exposed to the domain of Test Automation. Since then

he has worked in several high-tech companies, mostly as a software engineer, until

he rediscovered test automation from a new perspective. After working by Agile

methodologies for several years, in 2010, while working at Retalix Ltd (later to be

acquired by NCR Corporation), Arnon realized that effective test automation, and more

specifically the Acceptance Test Driven Development (ATDD) technique, is crucial for

delivering high-quality software rapidly and sustainably over time. While at NCR, Arnon

established a test automation infrastructure that was used by over 100 developers and

was running over 4,000 acceptance tests in less than 20 minutes.

In 2015, Arnon joined Sela Group, where he works now, with a mission to spread

his knowledge to as many companies and individuals as possible, in order to help them

develop quality software more effectively through proper use of test automation.

In his spare time, Arnon likes sailing, playing the piano, and singing in a chorus.

Arnon lives in Matan, Israel, together with his lovely wife, Osnat, and their three boys:

Ori, Elad, and Aviv.

You can follow Arnon Axelrod on LinkedIn, read his blog at http://blogs.

microsoft.co.il/arnona/, or contact him directly at arnonaxelrod@hotmail.com.

http://blogs.microsoft.co.il/arnona/
http://blogs.microsoft.co.il/arnona/
http://arnonaxelrod@hotmail.com

xix

About the Technical Reviewer

Bas Dijkstra is a testing and automation consultant and

trainer. He specializes in creating and implementing

automation strategies that support testing, starting with

helping to answer the “why?” of automation all the way to

writing effective automation solutions.

Bas delivers training on various subjects related to

automation. He also regularly publishes blog posts and

articles on various topics related to test automation, both on

his website (https://www.ontestautomation.com/), as well

as on other websites and in industry magazines.

https://www.ontestautomation.com/

xxi

Acknowledgments

First and foremost, to my wife Osnat – this book would not have been possible without

the great support I got from you, and I know it wasn’t easy! As much as I tried to not let

this work affect our personal lives, I did leave you lonely for many long evenings and left

you more of the house chores than I normally do. I don’t think that it will make up for

that, but I want to tell you one thing: I love you!

Next, I owe a big thank you to my direct manager and head of DevOps and

Automation division at Sela, Shmulik Segal, who also supported me in this work and

allowed me some precious time for working on this book, despite the fact that it had no

economic justification. Shmulik, besides supporting me on this book, I appreciate you

as a manager and as a person. You empower me to reach peaks in my career that I never

even thought I could. And you do all of that very pleasantly.

I also want to thank Sasha Goldshtein, ex-CTO of Sela (author of Pro .Net

Performance by Apress, 2012; and coauthor of Introducing Windows 7 for Developers by

Microsoft Press, 2011), who tried to dissuade me from writing this book, but apparently

failed. You were right at least about one thing: it took me much longer than I planned.

But nonetheless you helped and advised me a lot, including recommending me to

submit a book proposal to Apress.

Also, at Sela, I want to thank Zohar Lavy, who coordinates my schedule and helps

me with many administrative tasks – it’s a real pleasure working with you! To all the

administrative staff at Sela for all the important and hard work you do behind the

scenes; and to my skip managers and owners of Sela, David Basa, CEO; and Caro Segal,

president of the Sela College; as well as Ishai Ram, VP Global, for leading Sela and

making it such a great place to work at. And finally, for all of my talented coworkers – I

learn a lot from each and every one of you.

To Carl Franklin and Richard Campbell, hosts of the “.Net Rocks” podcast, for

expanding my horizons, making me laugh, and making my commute much more

enjoyable. Carl, thanks also for creating the “Music to code by” collection that helped me

stay focused while working on this book.

xxii

I must also thank all of the people that actually made this book take shape: first of all

to Bas Dijkstra, my excellent and highly professional technical reviewer for reading every

sentence thoroughly and providing his invaluable insights, feedback, and suggestions for

making this book better. Without you, this book would probably be a piece of crap…

And lastly for all of my editorial staff at Apress: Rita Fernando Kim, my

coordinating editor for managing the progress of this work, and for providing valuable

tips and advice for anything I asked or should have asked. To Laura C. Berendson,

development editor, for helping me shape and present my ideas in the best way

possible; Shivangi (Shiva) Ramachandran, editor, for managing this project; and for

Susan McDermott, senior editor, for accepting my book proposal and believing in me

in the first place. Thank you all!

Acknowledgments

xxiii

Introduction

There are many great books about test automation, and particularly about best practices

of Test Automation. However, there’s no one size fits all. As I once heard someone saying:

“‘Best Practices’ is always contextual: even something as common as breathing may be

catastrophic if the context is free diving…”

Most of the books that I have read so far about test automation are aimed mainly

for developers, focusing mainly at unit tests or at developer-written end-to-end tests.

Some other books that I either read or know about deal with a specific test automation

technology, methodology, or are simply just too outdated. While I tend to agree that the idea

of developers writing the tests may be very effective in many situations, in reality it doesn’t

fit all organizations at all stages. Moreover, test automation is a tool that serves and affects

nearly all stakeholders of a software development organization, including testers, product

managers, software architects, DevOps people, and the managers of the projects, and not

only developers. As every software organization and project is different, trying to adopt

techniques, practices, and tools that don’t fit the team’s needs or skills can cause the failure of

the automation project and in some cases even the failure of the entire software project.

The goal of this book is to give a broad view on the subject of test automation in

order to allow the reader to make smart decisions upon his particular case, giving his

constraints and the benefits he wants to gain from having the test automation, but also

to provide detailed and hands-on guidance for building it effectively, at least for the

majority of cases.

�Who Should Read This Book?
As test automation affects nearly all stakeholders of software development organizations,

and as this book attempts to cover nearly all aspects of test automation, this book is for

everyone who’s involved in the process of software development and is interested in

knowing how to get more value out of test automation. This includes: QA managers, dev

managers, developers, testers, architects, product managers (AKA business analysts,

system analysts, or various other titles), DevOps people, and more. Ah, and of course test

automation developers whose main job is to develop automated tests…

xxiv

While most of the book is not too technical and is aimed at the broader audience,

Chapters 11–14 are very technical and aimed for people who write code and are

proficient with object-oriented programming (OOP). In particular – professional test

automation developers. The code in this section is written in C#, but the ideas and

concepts are transferrable to any object-oriented language. As C# and Java are very

similar, there shouldn’t be any problem for Java programmers to understand the code,

but I’m also sure that programmers of other languages can understand the code or at

least the main ideas behind it pretty easily.

In particular, I hope that many Dev and QA managers will read this book, as they

typically have the biggest effect on shaping the methodology and working processes

in their organization, which test automation should integrate with, and can help to

improve. Having said that, this book also contains useful tips and techniques for non-

managers for improving the methodology and working processes of their organization

even without any formal authority.

�How This Book Is Organized?
When I first sat down to start writing this book, I tried to think about the high-level

structure of the book, but I found this task very baffling because it seems that almost

any topic is related to many other topics. At that time, I couldn’t find a clear and logical

way to divide the content to high-level sections, so I ended up writing a “laundry list” of

topics I wanted to cover and just started writing by letting the knowledge spill from my

head down to the paper (or keyboard to be more precise…). Naturally I started from the

most basic and general stuff and slowly built upon that with more and more chapters

that are more advanced or specific. Because the topics are so interrelated, I often wrote

a forward reference to a topic I was yet to write, and of course references from more

advanced chapters to earlier ones. Eventually, like in a good Agile project (talking about

cross-references… see Chapter 1 for more about Agile), the high-level structure of the

book gradually started to emerge. At some point I realized that the book took a pretty

logical structure consisting of two parts: The first part answers more of the general

“Why” and the “What” questions, and the second one answers the more specific and

technical “How” questions.

Generally, I encourage most readers to read the entire book from cover to cover.

However, as this book aims at a broad audience, with different concerns, different

starting points, interests, needs, etc., you might prefer to focus on specific chapters

Introduction

xxv

and skim, or even skip, others, optionally jumping back and forth to other chapters

referred to from the chapter you’re reading if you feel you need to fill in the gaps. Finally,

keep this book within reach for later reference as the use of test automation in your

organization matures and faces new challenges.

Here’s an overview on each part and chapter in this book:

�Part I: The “Why” and the “What”
This part covers the subject of test automation from many different aspects, but more in

a “high-level” manner. This part is essential for those who don’t have much experience

with test automation and want to understand how it fits the big picture of software

development, and where to start. This part will also help you understand what you

can expect, as well as what you shouldn’t expect from test automation. It is especially

relevant for Dev or QA managers, as it discusses aspects like business structure, working

processes, architecture, and more. It will guide you through many decisions that you’ll

have to make (which many people don’t even consider!) and tell you what effect each

decision might have. Even if you’re not a manager and don’t think that you have any

influence over these things, I encourage you to read it in order to understand the

constraints and advantages in your current situation, and to be able to communicate it

better with your managers.

If you already have experience with test automation, this part can, and probably will,

expand your horizons about the subject and show you alternatives and consequences of

decisions you previously made less consciously.

�Part II: The “How”
After you’ve gained the high-level understanding about the domain of test automation,

it’s time to roll up our sleeves and start writing some tests and the required

infrastructure. After we write some tests, we’ll discuss how to take it forward and to use

the test automation most effectively in the development life cycle.

Conceptually, this part could be divided into two subparts (though this division

is not mentioned explicitly anywhere except for here): Chapters 9–14 are written as

a hands-on tutorial, in which we design and build a test automation system with few

tests (using Selenium) for an existing open source project, and Chapters 15–19 provide

guidance for using test automation in the most effective way, and how to get the most

out of it.

Introduction

xxvi

Most of the chapters in the first subpart of Part II are very technical, while in the

second subpart they are not. Therefore, the first subpart is more suited and relevant for

developers, particularly test automation developers, with OOP skills, while the second

subpart is relevant for everyone. For skilled programmers, I encourage you to follow

along the tutorial step by step and do each step yourself, in order to experience it better.

For non-programmers, I encourage you to skim over these more technical chapters

in order to get the main idea behind them, even if not for knowing exactly how to

implement it in your own project.

Here’s a complete description of the chapters:

Part I:

•	 Chapter 1: The Value of Test Automation – this chapter discusses

why test automation is needed and what its short-term and long-term

benefits are.

•	 Chapter 2: From Manual to Automated Testing – this chapter

discusses the differences between manual and automated testing and

starts to set realistic expectations for test automation, as it’s pretty

different from just faster manual tests.

•	 Chapter 3: People and Tools – this chapter discusses who should

write the tests and the automation infrastructure, and what the

consequences of the alternatives are. In addition, it discusses how to

choose the right tool according to these alternatives.

•	 Chapter 4: Reaching Full Coverage – this chapter sets realistic

expectations for the long-term road map of the automation project,

and shows how to start gaining precious value out of it long before

the automation replaces most of the manual regression tests.

•	 Chapter 5: Business Processes – this chapter discusses how test

automation is related to the business processes for developing

software, and provides overviews for topics that will be discussed in

greater depth toward the end of the book.

•	 Chapter 6: Test Automation and Architecture – this chapter

discusses how test automation is related to the architecture of the

tested system, and why it’s important to adopt them to one another.

Introduction

xxvii

•	 Chapter 7: Isolation and Test Environments – this chapter discusses

how to plan the automation and its execution environments

to ensure that the tests are reliable and are not affected by any

undesired effects.

•	 Chapter 8: The Big Picture – this chapter discusses the

interdependencies between all of the subjects discussed in the

previous chapters, mainly architecture, business structure, business

processes, and of course test automation. It also discusses how all of

these relate to business culture.

Part II:

•	 Chapter 9: Preparing for the Tutorial – this chapter describes

the process that I’m going through in the tutorial, which is also

applicable to most test automation projects. It also guides you how to

set up your machine for following along with the tutorial.

•	 Chapter 10: Designing the First Test Case – this chapter teaches

a specific technique for designing the test cases in a way that best

suites automated tests.

•	 Chapter 11: Start Coding the First Test – this chapter shows you how

to start writing the code for the first test. We start by writing a mere

skeleton of the test in a way that will lead us to design and create a

modular and reusable infrastructure. By the end of this chapter, our

test compiles but does not work yet.

•	 Chapter 12: Completing the First Test – in this chapter we complete

the work that we’ve started in the previous chapter. By the end of this

chapter, we have a working test and a well-designed infrastructure to

support it.

•	 Chapter 13: Investigating Failures – in this chapter we’ll practice

how to investigate and deal with a real test failure that occurred while

we’ve got a new build of the tested system, and how to create a report

that will help us investigate additional failures in the future.

Introduction

xxviii

•	 Chapter 14: Adding More Tests – in this chapter we’ll add one more

test, but also discuss how to go about adding more and more tests,

while expanding and improving the infrastructure to support them,

including support for cross-browser testing, support for multiple

environments, and more.

•	 Chapter 15: Continuous Integration – this chapter (which starts the

second subpart of Part II) discusses how to integrate the tests into a

Continuous Integration (CI) build. More than the technical aspects,

this chapter covers how to make it succeed as an organizational

tool and provides advice for non-managers for how to gradually

change the culture and processes of the organization for the best, by

leveraging the CI.

•	 Chapter 16: Acceptance Test Driven Development – this chapter

explains the benefits and how to implement the Acceptance Test

Driven Development (ATDD) methodology, which expands on CI to

encompass the entire development life cycle and help the team to

become really effective with Agile.

•	 Chapter 17: Unit Tests and TDD – this chapter discusses the

techniques that are traditionally attributed only to the application

developers: unit tests and Test Driven Development (TDD) but are, in

fact, an inseparable part of test automation.

•	 Chapter 18: Other Types of Automated Tests – this chapter

discusses additional types of test automation, including performance

and load testing, testing in production, Visual Testing, Installation

tests, Artificial Intelligence, and more.

•	 Chapter 19: Where to Go from Here – this chapter provides some

tips for how to continue to learn and improve in the domain of test

automation.

In addition to these chapters, there are four appendices:

•	 Appendix A: Real-world examples – this appendix is supplementary

to Chapter 6 (“Test Automation and Architecture”) and provides

four real-world examples of application architectures and their

corresponding automation solutions.

Introduction

xxix

•	 Appendix B: Cleanup mechanism – this appendix describes how

to build a cleanup mechanism, which is described in Chapter 7

(“Isolation and Test Environments”).

•	 Appendix C: The Test Automation Essentials project – this

appendix describes the Test Automation Essentials open source

project that I created, which contains many useful code utilities (in

C#) for test automation projects.

•	 Appendix D: Tips and practices for programmer’s productivity –

this appendix supplements Chapters 9–14 with tips for increasing

your productivity as a programmer. While these tips are relevant

for any developer, I find it especially useful for test automation

developers.

Happy reading!

Introduction

PART I

The “Why” and the
“What”

As this book is titled Complete Guide to Test Automation, it covers both theory and

practice, both beginner and advanced topics, both methodological aspects and technical

details, and more. After all, I attempted to address as many possible questions about test

automation as feasible in one book.

The first part of the book tries to answer mainly the “Why” and the “What” questions,

leaving most of the “How” questions to the second part. We’ll start by answering why

do we need test automation and what test automation is all about (and also what it

isn’t). Then we’ll address many questions, dilemmas, and considerations (i.e., what

option should I choose, and why) about test automation, which are important to anyone

planning to start using test automation or improving an existing one. Finally, we’ll look

at the bigger picture and see how everything is related to the other.

Happy reading!

3
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5_1

CHAPTER 1

The Value of Test
Automation
As this book is about test automation, it makes sense to start by defining what test

automation is. However, without proper context, the definition may not be clear enough

and may lead to more confusion than understanding. In fact, this topic is so broad and

diverse that it’s hard to come up with a definition that is accurate, covers all the various

types of test automation, and is also clear. My best shot for now would be something

like “Using software to help in testing of another software,” but then again – I’m not sure

how helpful it is. So instead of focusing on formal definitions, the first part of the book is

dedicated to examining this broad topic from multiple angles, and eventually it will be

crystal clear what test automation really is. And equally important – what it isn’t!

�Why Do We Need Test Automation?
When I ask my customers what they expect to get from test automation, the most

common answer is to reduce the time it takes to test the software before release. On the

one hand, while this is an important goal, it’s only the tip of the iceberg in terms of the

benefits that you can gain from test automation. In fact, reaching the goal of reducing

the manual test cycles usually takes a pretty long time to achieve. On the other hand,

you may start to see the other benefits sooner. But let’s first see why this basic goal of

reducing the time for a test cycle became so important in recent years.

4

�From Waterfall to Agile Software Development
Even though some companies used test automation decades ago, it wasn’t prevalent

until recent years. There are many reasons for this, but without a doubt, the transition

from the traditional Waterfall approach to the Agile approach contributed a lot to the

need for test automation. In the traditional waterfall approach, software projects were

perceived as a one-time thing, like building a bridge. First you plan and design, then

you build, and eventually you test and validate the quality of the end product, fixing any

minor issues that may arise. The assumption was that if the planning and engineering

were done correctly, then besides some minor programming mistakes that could be

easily fixed, everything should eventually work as planned. This approach requires us

to verify that the end result behaves according to the specification only once. It is only

when a test fails and a fix is made that the test should be performed again to verify the

fix. If each test is done only once or twice, then in most cases it’s much cheaper and

easier to do it manually than to automate it.

Over the years, it became clearer that in most cases the waterfall approach does

not fulfill its promise. Most software projects became so complex that it wasn’t feasible

to plan and close all the technical details in advance. Even in cases that it was feasible,

by the time it took to complete a software project (which has typically lasted a few

years), both the technology and the business needs have changed, making the software

less adequate than it was supposed to be. For those reasons, responding quickly to

customers’ feedback become much more valuable than sticking to the original plan.

Gradually, the majority of the software industry moved from one-time software projects,

going through releasing new versions of the same software once every few years, to rapid

delivery cycles. Today, some of the biggest companies on the Web deliver new features

and bug fixes many times a day and even a few times a minute!

Chapter 1 The Value of Test Automation

5

THE MANIFESTO FOR AGILE SOFTWARE DEVELOPMENT

In 2001, 17 thought leaders from the software industry formulated the Manifesto for Agile
Software Development,1 which states the following:

We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items onthe right, we value the items on the left more.

Kent Beck

Mike Beedle

Arie van Bennekum

Alistair Cockburn

Ward Cunningham

Martin Fowler

James Grenning

Jim Highsmith

Andrew Hunt

Ron Jeffries

Jon Kern

Brian Marick

Robert C. Martin

Steve Mellor

Ken Schwaber

Jeff Sutherland

Dave Thomas

© 2001, the above authors

this declaration may be freely copied in any form, but only in its entirety through this notice.

Clearly, not all companies and teams adopt these ideas, but almost everyone who’s

involved in software developed today prefers to deliver new versions of the software

more rapidly (and continue to deliver new versions over a long period of time), rather

than delivering only a few versions in long intervals. This also implies that the changes

between each release will be smaller than if you deliver a new version every few years.

Naturally, software companies in sectors that are more missions critical are less prone to

taking risks, and they will tend to keep releasing in pretty long cycles, but even many of

them start to see the value in delivering more often, at least internally to QA.

1�http://agilemanifesto.org/

Chapter 1 The Value of Test Automation

http://agilemanifesto.org

6

Testing each version manually can take a lot of time, and that’s an obvious reason

why test automation became so important. But there’s another important reason, too.

�The Cost of Software Complexity
With every new version of a software, new features are added. As new features are added,

the software becomes more complex, and when the software becomes more complex,

it becomes harder and harder to add new features to it without breaking anything. This

is especially true when there’s pressure to deliver the new versions rapidly and not

investing enough time to plan and to improve the quality of the code (as often happens

in a badly implemented Scrum2 methodology). Eventually, this causes the pace of

delivering new features to decline, which is what we wanted to avoid in the first place!

Some of this added complexity is unavoidable. It would have existed even if we

carefully planned and designed the entire software ahead. This is called inherent

complexity. But most of the time, most of the complexity in a software exists because

features were added quickly without proper design; lack of communication inside the

team; or due to a lack of knowledge, either about the underlying technology or about

the business needs. Theoretically, this complexity could be reduced if the software

was carefully planned in advance as a whole, but in reality, it is a natural part of every

software project. This type of complexity is often called accidental complexity.

Any complexity, be it inherent or accidental, comes with a cost. This cost is of course

part of the overall cost of developing a software, which is mainly affected by the number

of developers and testers, multiplied by the time it takes for them to deliver the software

(multiplied by their salaries, too, of course). Accordingly, when the complexity of a

piece of software grows, its cost increases because it takes more time to test everything,

and also it takes more time to fix (and retest) the found bugs. Accidental complexity in

particular also makes the software more fragile and harder to maintain, and therefore

requires even more time to test and more time to fix bugs.

2�Scrum is the most common methodology that is based on the Agile values.

Chapter 1 The Value of Test Automation

7

�Maintaining a Constant Cost
Figure 1-1 illustrates what we want to aim for: a constant cost while adding new features

over time. However, adding new features generally means making the software more

complex, which as we just saw, naturally increases the cost. However, two factors can

help us keep a constant cost:

	 1.	 Make the cost of running the ever-growing regression test suite

negligible.

	 2.	 Keeping the code very easy to maintain.

The first factor can be achieved if most of the tests are automated. However, the

second factor is mainly affected by the accidental complexity, and it is much more

challenging to control.

Having code that is easy to maintain means that the complexity that is added due

to new features has very little or no effect on the complexity of existing features. This

means that if we keep the complexity rise in a linear pace, we can still keep a steady cost,

as shown in Figure 1-2. Clearly, we would like to preserve that ability to add complexity

only for the inherent complexity (i.e., new features) and avoid wasting it on accidental

complexity. However, in most cases in the real world, due to the accidental complexity,

the complexity rises more steeply than linearly as we add more and more features, as

shown in Figure 1-3. And as explained, this in turn also increases the cost of adding new

features over time, as shown in Figure 1-4.

Features (time)

Cost

Figure 1-1.  Desired cost of adding new features over time

Chapter 1 The Value of Test Automation

8

Features (time)

Complexity

Figure 1-2.  The desired rise in complexity when we add more features is linear

Features (time)

Complexity

Figure 1-3.  The common case: complexity rises steeply due to the added
accidental complexity

Chapter 1 The Value of Test Automation

9

In most cases, stopping everything and planning everything from scratch, in order

to reduce the accidental complexity is not practical. Even if it was, by the time the new

version (which is developed from scratch) would reach feature parity with the old

version, it will have its own accidental complexity…

�Refactoring
So it seems that it’s not feasible to keep developing new features with a steady cost over

time, because accidental complexity is unavoidable. So are we doomed? Well… not

really. The solution for keeping accidental complexity under control is called refactoring.

Refactoring is the process of improving the design (or “internal structure”) of a piece of

software, without affecting its external behavior. In other words, it allows us to get rid of

accidental complexity. Refactoring can be done in small steps, improving the design bit

by bit without having to redesign the entire system. Martin Fowler’s book Refactoring:

Improving the Design of Existing Code3 provides specific techniques to make refactoring

Features (time)

Cost

Figure 1-4.  The development cost in the common case: adding new features
becomes more costly over time

3�Martin Fowler, Refactoring: Improving the Design of Existing Code (Addison-Wesley Professional,
1999).

Chapter 1 The Value of Test Automation

10

in a safe manner. Today, most popular Integrated Development Environments (IDEs4)

feature some automatic refactoring tools or have plug-ins that provide them.

But even with automatic refactoring tools, the developer can make a mistake, and

introduce new bugs in the process, breaking existing functionality. Therefore, refactoring

requires comprehensive regression testing, too. So in order to be able to keep a steady,

fast pace of delivering stable new versions containing new features over time, we must

be refactoring regularly. And in order to be able to refactor regularly, we need to test

very often. That’s the second important reason for having test automation. Figure 1-5

illustrates how refactoring helps keep the accidental complexity under control.

Features (time)

Complexity

Refactorings

Figure 1-5.  Refactoring helps keep complexity under control

�Continuous Improvement
The thing that fascinates me the most about test automation is its relationships with

all other aspects in the development cycle. Besides quality and productivity, which are

obvious, test automation is also related to the architecture of the product, the business

processes, the organizational structure, and even the culture (see Figure 1-6). For me,

test automation is like a mirror into all of these things. All of these aspects have an effect

on the test automation. But you can also leverage the reflection of these effects in the test

automation to change and improve any of these aspects back.

4�IDE stands for Integrated Development Environment and refers to a software that consists mainly
of a code editor, a compiler, and an integrated debugger. Microsoft Visual Studio, Eclipse, and
IntelliJ are some of the most popular IDEs for C# and Java.

Chapter 1 The Value of Test Automation

11

In many cases, customers that already use test automation call me to help them

with some problems they experience. These problems often manifest themselves at the

technical level. However, when I come to them and help them analyze the root cause of

the problems, they often realize that their problems are actually related to one or more

of these other aspects. It’s not always easy to fix these problems, but at least it brings the

significance of these problems to their awareness, which is the first step to change.

Test
Automa�on

Architecture

Working
Prac�ces

Quality and
Produc�vity

Business
Structure

Business
Culture

Documenta�on

Figure 1-6.  Test automation is related to many other aspects of software
development

I hope that by reading this book, you’ll be more perceptive to the effects that such

problems have on the test automation you’re building and be able to bring them to

the awareness of the relevant people in order to make the necessary improvements.

Of course, if your team has a culture of continuous improvement (e.g., perform

retrospective meetings and really act upon them), then it will be easier to do. But even if

not, remember that awareness is the key for making a change, and the test automation

will help you achieve this even if you’re a junior automation developer in a large and

bureaucratic company (see Chapter 17 for more information about how to gradually

change the culture of your organization to take more advantage of test automation).

Chapter 1 The Value of Test Automation

13
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5_2

CHAPTER 2

From Manual
to Automated Testing
Let’s face it: we’re in the 21st century. There’s no reason why any repetitive task won’t

be fully automated, especially in a high-tech environment! But still, a large portion of

the manual tester’s job is performing regression tests,1 which is very repetitive. And

obviously, doing it manually is much slower and error prone compared to what the

computer can potentially do.

�First Attempt: Record and Playback
So the first thought of anyone who wants to improve that process is to automate the

manual tester’s job. There are several ways to achieve that as we’ll discuss throughout

this book, but the most trivial one is simply to record the actions of the manual tester and

then play them over and over again. The most common way to do it is by recording the

user’s interactions with the UI, but it could also be recording network traffic like HTTP

requests or some other kind of data that is an indirect reflection of the user’s actions.

If it was that simple, then we wouldn’t need this book (and I probably had to find

another job…). But in practice, things are not so trivial. Even though a big part of

executing regression tests is highly repetitive, there is at least one very important part

that is not repetitive whatsoever, and this part constitutes the entire essence of executing

the tests. This non-repetitive part is the part of detecting the errors! While it’s simple

1�Regression tests are tests that verify that a functionality, which previously worked as expected, is
still working as expected.

14

to record the actions that the manual tester does and replay them, it’s much trickier to

detect bugs in an automated manner.

One naïve approach to automatically detect bugs is to compare the image on the

screen to the expected image that was recorded. However, this approach has several

drawbacks. Some of these drawbacks are merely technical. For example, there could be

differences in screen resolution, differences in date and time that appear on the screen,

differences in any data that appear on the screen but is not relevant to the test, etc. Some

tools allow you to overcome these technical drawbacks by excluding the regions of the

screenshots that may have legitimate differences from the comparison. A similar problem

exists in the case of recording the HTTP network traffic, as some of the data may have

legitimate differences. But then again, there are tools that help you specify which parts

of the response to compare and which to exclude. But even if those technical drawbacks

can be addressed by tools, there’s still one big drawback that is inherent to the concept

of record and replay: every legitimate change in the application will be considered as a

failure, making it hard to distinguish between false positives and actual failures.

At this point you may think: “What’s the big deal? We execute regression tests to

ensure that everything keeps working as it did before!” So let me tell you this: if no one

touched the code2 of the system under test (or SUT in short), no regression would ever

occur, and there’s no point in spending time running either manual or automated tests.

On the other hand, no programmer is likely to change any code unless he intended to

make a change to the behavior of the application! Thus, there is a real value in executing

tests only when things change, and therefore whenever we execute tests, we should

expect that things have changed.

When we execute tests manually, we rarely think about these changes as an issue.

Often the changes are minor enough that if we use our judgment and common sense,

we can still relate the words that describe the test steps to the new behavior of the

application, even if they don’t exactly match anymore. We use this judgment and

common sense that is based on our domain knowledge, communication with other

team members, experience, etc., in order to assess whether a change is a bug or an

improvement. However, a machine lacks any of these skills, and therefore it treats

legitimate changes and bugs equally.

2�For that matter, “Code” refers to any artifact that is part of the system and can affect its behavior.
For example, if the list of countries in a database is not something that a user can and should be
able to alter, then you can consider it as part of the code of the application.

Chapter 2 From Manual to Automated Testing

15

If the expected results of your tests are too general (as in “exactly the way it was”),

instead of reflecting only the specific information that is important to test, then your

tests will fail much too often due to legitimate changes, rather than on real bugs. In other

words, the ratio between false positives and real failures will be too high, which makes

them less reliable! Without clear and concise expected results, you’d probably run into

the following problems:

	 1.	 For every legitimate change in the application, you will keep

getting the same failures for subsequent runs of your test until

you’ll re-record or fix the test.

	 2.	 When re-recording a test over and over again, there’s a good

chance that you’ll have errors in the scenario you’re recording.

Obviously, there’s a chance that an error will exist in the first

recording and be fixed in the next one, but other techniques

(that will be discussed later on) are more suited for gradually

improving and solidifying the tests. Without the ability to solidify

and stabilize the tests, people will start to lose trust in the test

automation project as a whole.

	 3.	 Often a small change in the application affects many test

scenarios. Even if the effect of this change is very minor to a

human being, it causes many automatic tests to fail. For example,

fixing a typo in a button’s text, or even a removal of a redundant

space, can cause many tests to fail if they all look for that button’s

text and click it as part of their scenario.

	 4.	 Investigating the result only according to the difference between

the actual result and the expected result (whether it’s a screenshot

or other form of data that can be compared to the actual result)

may not provide enough information that is needed to understand

whether it’s a bug or a legitimate change. In case it’s a bug, it also

doesn’t provide enough information that can help understand

what led to it. See Chapter 13 for more information about

investigating failing tests.

The bottom line is that the effort you’ll need to make in order to investigate the

failures and to maintain the tests (re-record or fix them) will very likely go beyond the

cost of manually executing the tests.

Chapter 2 From Manual to Automated Testing

16

�Getting the Most Out of Test Automation
Let’s look at the other opposite: instead of looking at the goals of test automation from

the perspective of what we have today (manual tests) and how we can automate it, let’s

take a look at the desired, ideal outcome of what’s the best we can achieve using it.

Before we do so, let me clarify that while the picture I give here may be feasible to

a few teams, for most teams it’s not really practical as is. Nevertheless, it is feasible for

most teams to get close to this, and get most of the advantages, given the right guidance

and leadership (that can come from anyone, including yourself, even if you’re not a

manager!). Anyway, I want to give you an idea on what to aim for. In the rest of this book

we’ll talk about trade-offs and considerations that you’ll have to make in order to get

closer to the goal I’m about to suggest, but also be pragmatic and practical in what you’d

probably achieve. Keep in mind though, that if you’ll take it seriously, over a long enough

period of time you can gain more traction to these ideas, which will get you closer to this

goal. See Chapter 15 for more details and ideas of how to gradually change the culture of

your organization to better utilize test automation.

So now, calm down, close your eyes and start imagining… Oh wait, keep your eyes

open so you can continue to read…

Imagine that you have full coverage of automated regression tests that run altogether

in few minutes. Imagine also that your team fixed all of the known bugs and all the tests

are passing… Imagine also that every developer can run all of these tests on his own dev

machine whenever he desired!

If that would be the case, how would it change the way you use your test automation

when developing the next version, feature, or user story (see sidebar)? Would you still

run it only nightly and investigate the failures the next morning? When you’ll find a bug,

will you just report it in your bug tracking system and wait until the end of the quarterly

release cycle for the developers to fix it? I hope that your answer is “No”!

If the tests run so fast, then you can have them run automatically before every

check-in3 of every developer (which can be very frequent as well) and prevent the check-in

operation in case one or more tests failed. This ensures that everything that resides inside

the source-control repository always passes all the tests! This is the idea behind the

3�Check-in, also known as Commit, Push or Submit is the operation of applying the changes made
by a developer on his local machine into a centralized source code repository that is shared by
the entire development team. These repositories are managed by source-control systems such as
Git, Microsoft Team Foundation Server, SVN, Mercurial, and more.

Chapter 2 From Manual to Automated Testing

17

concept of Continuous Integration (CI). See Chapter 15 for more on that topic. In effect,

having full regression coverage that runs in CI prevents virtually all regression bugs from

creeping in! So if you had no bugs in the first place, this process will prevent regressions

from occurring too, allowing you to keep this state of zero known bugs virtually forever!

In the rare case of finding a new regression bug (manually, after the developer checked-

in the code), the bug can be first reproduced using a new automated test, and fixed

immediately, to keep having zero known bugs.

Moreover, it encourages the developers to improve the inner quality of the code

and the structure of the application, as they can freely refactor their code and still be

easily assured that they don’t break anything (see Chapter 1 about the importance of

refactoring). This inner quality is often translated into external quality as well, as simpler

code tends to have less bugs and is easier to maintain without introducing new bugs.

In addition, code that is easier to maintain also means higher productivity, as it allows

the developers to implement more and more features quickly, easily, and first and

foremost – safely.

And what about new features? I won’t get too much into details here (read more in

Chapter 16 about Acceptance Test Driven Development – ATDD), but the main idea is

that whenever a new feature is developed, its relevant tests are developed along with it

and only when all the tests pass and no bugs are found in it, this feature (or User Story) is

considered “Done.”

I can hear your skeptical voice now saying: “That’s really great… but it will never work

on my team…” So let me convince you that it can: if you’re applying these ideas from day

one, this approach is fairly feasible and even easy. But you probably don’t and indeed

when applying them (much) later, it’s more difficult to get there. However, in Chapter 4

I’ll show you how you can gradually come close and gain most of the benefits mentioned

above sooner. Also, in Chapter 15, I’ll explain how even your team can make it. In that

chapter I’ll give you specific guidelines on how to show fast ROI to every stakeholder

who might oppose and drive this change even if you’re not a manager.

USER STORIES

A User Story is a term used in Agile software development, which describes a narrowly scoped

requested feature. Instead of defining a comprehensive and detailed requirement document

at the beginning of a project and then implement it over a long period of time, as is customary

in Waterfall development, in Agile the approach is to add small features to the software

Chapter 2 From Manual to Automated Testing

18

incrementally. Each such added small feature or change is a user story. In some cases, a user

story can also be a request to change or even remove an existing feature according to user

feedback, and not necessarily adding a feature.

User Stories should be narrowly scoped, so that they’ll be developed quickly and be able to

get to the customer’s hands (or at least the product owner’s hands) early to get her feedback.

However, even though a User Story should be narrowly scoped, it should still give some value
to the end user. It often takes some practice and creativity to break down a big feature into

such user stories,4 but I very rarely found a feature that cannot be broken into user stories in

such a manner.

Even though there’s nothing preventing one from describing a User Story in great detail, the

focus should be more on the general idea and its value to the end user, allowing the team to

come up with their creative solutions for the problem.

It is common to define User Stories using the following template or something similar:

As a <role>

In order to <goal>

I want <a high level description of the feature>

For example:

As a site administrator

In order to prevent a "Denial of Service" attack

I want to be able to control the maximum number of requests per seconds from

each client's IP

�Differences Between Manual and Automated Tests
Now that we understand that blindly mimicking the manual tester’s work is not enough,

and we also see that a successful implementation of test automation has some great

benefits that you can’t get from manual regression testing, we can conclude that manual

testing and automated testing are essentially different. So let’s dive deeper into the

differences between the two. These differences are especially important to keep in mind

when coming to implement existing manual test plans as automated tests.

4�See http://agileforall.com/new-story-splitting-resource/ for some guidelines for
breaking down big user stories.

Chapter 2 From Manual to Automated Testing

http://agileforall.com/new-story-splitting-resource/

19

In general, executing manual tests can be divided into two types:

•	 Exploratory testing

•	 Planned testing

Different companies and teams have different policies (whether these policies are

strict and enforced, or only exist in practice) regarding who, when, and if planned tests

are created and executed. Some teams focus primarily on exploratory tests plus maybe

a few sanity scenarios that reside only in the head of the tester. This is more common in

small, start-up teams or in small software development teams that are part of a bigger

organization that is not software centric. On the other end of the spectrum, highly

bureaucratic teams rely mainly on highly documented, precise planned testing.

�Exploratory Testing
In exploratory testing, the tester is free to explore the system in order to look for bugs that

were not thought of before. This type of testing has a big advantage when your goal is to

find as many bugs as possible. In many cases, even when a tester follows a planned test,

he’s free and even encouraged to look around and do a little exploratory testing along the

way of the planned tests.

Often people think that because automated tests can run fast and cover a lot in a

short time, then they can find more bugs quickly by either randomly or systematically

trying to cover many usages. If that’s what you thought, I’m sorry to disappoint you that

this is not the sweet spot of automated testing. In order to find bugs, the test should

have a notion of what’s expected and what’s not. While a manual tester has this notion

intuitively, a machine doesn’t. If you think that you can formalize these rules in a simple

way that can be automated, I encourage you to think again. In most cases these rules are

as complex as the SUT itself… Remember that the sweet spot of automated testing is not
to find as many bugs as possible, but rather to provide fast feedback about whether the

system behaves in the way we expect, as defined in the tests.

Chapter 2 From Manual to Automated Testing

20

On the other hand, there are cases where you can formalize some important (though

very generic) rules about the boundaries of the possible outcomes of the system and

create an automated test that goes over many possible inputs, either randomly or

sequentially, verifying that the outputs are indeed in the expected range. If you try to

write or modify such tests to verify some nontrivial rules, then you’ll quickly end up

complicating the test so much until the point that is difficult to analyze and to maintain.

So you may want to use this technique only to verify rules that are simple to define and

yet mission critical. In all other cases I would recommend simple tests that only verify

one or few specific examples. This technique is called property-based testing, and the

most prominent tool that supports it is QuickCheck, which was originally created in

the Haskel programming language but was later ported to a long list of other popular

languages, including Java, F# (which can be consumed by C# and other .Net languages),

Python, Ruby, JavaScript, C/C++, and more. Because this topic is only relevant at rare

cases, it is outside the scope of this book.

Another, probably more useful option, is to create semi-automated tests, or tools

for the manual testers, which will help them cover many cases quickly, but leave the

analysis of whether the results are as expected or not to the manual testers. I’ll leave

it to you to find when and where you can develop and use such a tool, as this is also

beyond the scope of this book. Therefore, from now on, if not specifically mentioned

otherwise, we’ll talk only about planned manual testing and automation of these

testing.

MONKEY TESTING – AUTOMATED EXPLORATORY TESTING

The term Monkey Testing refers to a practice of randomly hitting keys (or otherwise performing

operations without understanding their context), like monkeys, or more realistically, toddlers,

can do, and see if the program crashes or not. While this technique can be easily automated,

it’s usually not very effective for a few reasons:

	1.	 You can only catch crashes (or errors that you explicitly look for), not any

other bug, because you can’t define the expected result for each action.

Even if the program freezes (but does not crash), you probably won’t be able

to detect it, let alone determine if the application behaves in any sensible

manner or not.

Chapter 2 From Manual to Automated Testing

21

	2.	 Because the automation presses the keyboard and mouse blindly, the chances

that it will do something interesting is pretty low. For example, it can get stuck

for hours with a message box open until it will randomly press “Enter,” “Esc,”

or click exactly on the “OK” button. Obviously, we can develop a bit smarter

“monkey” that instead of sending random keystrokes only clicks those available

buttons or menus. It will indeed resolve the message box problem specifically,

but any other form or dialog that has some input validation will likely cause the

same problem.

�Considerations for Automated Testing
Now that we understand that automated tests are not very adequate for exploratory

testing, let’s see how planned manual testing is different from automated testing. In the

following paragraphs, we’ll analyze the main differences between the two and how these

differences should affect our considerations when we come to plan an automated test as

opposed to planning a manual test.

�Preciseness

Manual (planned) tests are written by humans, in order to be consumed (read and

executed) by humans. Not only that, but the consumers are usually other team members

that know the application and the business domain and share pretty much the same

pre-assumptions regarding the system and how it is used. I say here “other” team

members, which is the better case, even though in the vast majority of cases I have

encountered, mostly the tests cases are executed by the same person who wrote them.

In those case, these basic assumptions are never challenged and the test cases5 contain

only the details that the writer thought he would need to remind himself about what he

intended when writing the test case.

5�The term Test case may be somewhat overloaded. For me, a test case is one test scenario that is
composed of specific steps (actions) and verifications. Usually test cases are organized in Test
Suites. A Test Plan usually contain multiple test suites, in addition to other details regarding
planning, resources, etc.

Chapter 2 From Manual to Automated Testing

22

All of these assumptions that the test case writer makes cause the manual test

case to contain some vagueness. Humans usually don’t have a problem dealing with

some vagueness, but computers just can’t. When writing automated tests, vagueness

is simply not possible. Eventually the automated test (like any other computer code)

must be precise and detailed in order for the computer to be able to execute it. It is

very common that when converting manual tests to automated ones, many questions

arise even about nuances that seem minor. However, every question must be answered

in order to be able to automate the test, and that answer is baked into the code of the

test automation and will be used every time the test will run! In fact, these questions

often reveal more important and interesting bugs than the bugs that are found when

the automated tests run.

�Maintainability

As mentioned in Chapter 1, it’s useless to execute tests on code that hasn’t changed,

and therefore you should expect the application to change almost every test cycle. This

means that test cases must be changed often to reflect the changes in the application.

However, in reality very rarely have I seen this happening with manual test cases. In most

cases, the changes in the application are minor and the person that executes the test

can pretty easily understand what has changed and how he should adopt what’s written

in the test case to the actual state. But as mentioned above, with test automation, every

small detail matters; therefore the automated tests must be updated to reflect every

change that may affect them. For example, suppose that our application has a “Save”

command in the “File” menu, and one of the steps in a test case specifies that we should

“click the ‘File’➤’Save’ menu.” If at some point the “Save” command is moved outside

the “File” menu onto a more visible toolbar button, then any sensible tester would

understand that the step should now refer to the toolbar button rather than the menu

item, even if the description of the step hasn’t changed. However, an automated test

would fail if it can’t find the “Save” menu item as written.

Now that we understand that tests need constant maintenance, the most important

question is how we can write the automated tests so that it’s easy and fast to make those

changes. Most of the chapters in Part II of this book deal exactly with this question.

Chapter 2 From Manual to Automated Testing

23

�Sensitivity to Change – Preciseness and Maintainability Put
Together

From what I said above about preciseness, you probably think that automated test

scripts6 should, and even must, be full of very fine-grained details of every operation it

should perform. On the other hand, the more you rely on such specific details, the more

difficult it is to keep your test scripts up to date. So it seems that these constraints are in

odds, and there’s no way to achieve both of them.

Fortunately, preciseness does not necessarily mean bloating each script with all of

the fine-grained details. All the details must be defined somewhere, but not all of the

details must reside inside the scripts themselves. A test automation system is usually

more than just a plain collection of test scripts, but it can, and should be built in a

modular fashion, where some pieces contain the fine details, and the scripts are only a

composition of these pieces.

You can think of it like the plans (drawings) of a car. When designing a car, there’s

no single drawing that contains all the details of the car. The car is a complex object

that is composed of many smaller objects (chassis, body, engine, gear, steering system,

wheels, interior parts, etc.), and each of them is composed of even smaller parts. There’s

probably one drawing that shows the “full picture” of the car, but with less details, and

many smaller drawings that describe the details of each part. If all the details were in a

single detailed drawing, and an engineer that designs the seats want to make a change

(that doesn’t affect its external dimensions), the entire drawing should have been

updated!

Similarly, when composing automated tests, even though all the details must be

flushed out before the test can run, not all the details should reside in one place, but

rather be spread across several components (methods, classes, modules, etc.), which can

be changed or swapped out without affecting the others.

�Handling Failures

The first time a manual planned test case is executed, we may encounter many

unexpected conditions that we haven’t thought of when we wrote the test case. If we’re

well organized, then we’ll probably fix the test case after that first time. When developing

6�I use the term “script” here to describe a single automated test case, whether it is written in code,
a scripting language, a record-and-playback tool, or any other form.

Chapter 2 From Manual to Automated Testing

24

an automated test, a similar process happens during the development of the automated

test, until the test passes at least once.

But after that stage, whether we’re talking about manual tests or automated tests,

unexpected conditions may still occur due to one of the following reasons:

	 1.	 A new bug in the product (regression).

	 2.	 A legitimate change (improvement) to the product that we weren’t

aware of.

	 3.	 Environmental problem. For example, a network failure, out of

memory, out of memory, etc.

	 4.	 An event in the product that the test was not designed to handle.

For example, suppose that the application shows a pop-up message

every day at 16:00, reminding the user to back up his work. An

automated test can pass consistently when it runs every other time,

but if it starts a little before 16:00, then the pop-up message can cause

it to fail. This is of course a simple example, but real applications have

sophisticated logic that sometimes makes it difficult to think of all the

conditions that can occur, and to address all of them appropriately in

the test case. We can say that these gaps in the design of the test case

are, in fact, errors in the test case itself. In case of automated tests, we

can in fact call these… bugs in the tests!

	 5.	 Someone did something with the system before or during the test,

which unintentionally affected the flow or result of the test. This

“someone” can be another manual tester that ran some tests; a user

or administrator that changes some settings; or another automated

test that performed such actions. For example, if one test changes

the password of a user that another test tries to log in with, then the

second test may fail. Another example is when two tests run against

the same server simultaneously and each of them tries to change

some data that the other uses. This class of problems are called

isolation problems and are somewhat similar to the previous kind

of problems, but at least in case of automated tests, they usually

indicate not only a bug in a particular test, but rather a problem in

the overall architecture of the test infrastructure. Chapters 6 and 7

deal with these issues in more details.

Chapter 2 From Manual to Automated Testing

25

While all of these conditions might happen both when executing a manual test and

when running an automated test, the way they are handled is a key difference between

manual and automated tests. Humans (manual testers) often distinguish between these

types naturally and easily and know how to handle each of them accordingly. Even

in case of a product bug, after the tester files the bug, in most cases he can continue

executing the rest of the test case, maybe after performing some work-around or re-

do the last few steps. On the other hand, in the context of automation, by definition,

“unexpected” means that the computer doesn’t know how to handle it!

Important note T est automation may be able to handle the third type of failure
reasons to some degree, but this is a very delicate topic. If you can identify
possible events that may occur during the test execution, you may be able to
handle them in the code in a way that will work around them and handle them
similarly to what a user (or a manual tester) would have done. However, this should
be handled with care, as on one hand, the goal of these work-arounds are to make
the tests more reliable; but on the other hand, it’s much harder to verify that the
test itself handles all of these situations correctly, and therefore you may end up
with the opposite effect: the tests would be less deterministic and eventually less
reliable! Even though in some cases these work-arounds are worthwhile, you
should thoroughly consider the alternatives discussed in Chapters 6 and 7.

SHOULD WE RETRY FAILING TESTS?

I sometimes find that people built a retry mechanism into their testing framework, so that it

retries all of the failed test once or twice and only mark a test as failed if it has failed after

all of the retries. To me, by doing so they’re missing an important point. Failing tests tell you

something: either there's a problem with your test code or with your application under test.

Even if it’s time consuming at first, those problems should be thoroughly investigated to find

their root cause and handled accordingly to prevent them from reoccuring. Ignoring these

failures by blindly retrying the entire test will probably leave your automation unreliable and

potentially leave significant undeterministic bugs in the product, too! Let alone the extra time it

takes to rerun those failed tests…

Chapter 2 From Manual to Automated Testing

26

�Length of a Test Case

The difference between the way that manual testers handle unexpected conditions

and the way automated tests do, has a vast impact on the way that automation should

be written: individual manual test cases are often somewhat lengthy and tend to cover

a complete feature with all of its nuances in one test case. It makes a lot of sense for

manual test cases to verify many smaller things “along the way” in order to save time

when executing the test case. If there’s a minor bug or something changed that affected

these sideway verifications, the manual tester can often skip it and continue with the rest

of the test case. However, if you automate such a lengthy test case as is, and it fails in one

of the first verifications, it doesn’t have the wisdom to decide whether it makes sense to

continue or not.

Some automation frameworks allow you to report the failure and continue

nevertheless. However, when a human tester encounters a failure, he usually decides

whether it makes sense to continue, go back a few steps (and exactly how many) or

completely abort the test execution, based on some understanding of the nature of the

problem. I find that deciding at runtime solely upon the importance of the verification

itself whether it makes sense to continue or not (without means to repeat or work around

some last few steps) is not very reliable and consequently has the potential of hurting the

reliability of the test automation as a whole! In particular, it’s almost impossible to assure

that the test behaves correctly in all of the possible failure conditions.

Other frameworks (including the vast majority of the unit-testing frameworks) take

the approach that any unexpected condition that the test encounters causes the entire

test case to fail and continue only to the next test case (rather than the next step). In my

opinion, this is the safest and most reliable way to go. However, this implies that tests
must be short and should verify only one thing, otherwise, a minor failure can block

the more important parts of the test from executing. If you try to outsmart and make your

tests “smart” about possible failures, you’d only make the things worse, because now

you’ll have a full-blown logic in your test code that you have no reasonable way to verify!

This also means that almost every verification should have its own test case! It

may sound wasteful and cumbersome, but in the long run, you’ll realize that this is the

only way to keep your tests reliable and maintainable.

Chapter 2 From Manual to Automated Testing

27

�Dependencies Between Tests

Sometimes manual test cases are described with dependencies between them: execute

test X only after executing test Y. In automated tests, because a failure in one test

normally aborts that test and continues to the next one, we won’t want the failure to

affect the next tests. This means that we need to guarantee that every test starts from

an initial well-known state. In other words, dependencies between automated tests are

strongly discouraged. The exact details on the various options to enforce a clean start in

every test is covered in Chapter 7

�Logging and Evidence Collection

How the automation recovers from unexpected conditions so it can continue to the next

test is one thing, but another important thing is what to do about these unexpected

conditions. In case of manual tests, if at the time of execution, the tester encounters an

unexpected condition and he believes that the problem lies in the application, then he

usually reports a bug immediately before proceeding to execute the rest of the test case

or skip to the next one. In the bug report, he usually describes what he has done that led

to the failure and maybe some other facts he finds relevant. When writing the report, he

should also try to investigate the nature of the bug by “playing around” to discover its

boundaries.

However, when an automated test encounters an unexpected condition, the story is

very different:

•	 As already discussed, automated tests treat any unexpected condition

as a failure without proper ability to articulate the nature of the

problem.

•	 Automated tests usually run unattended, and the investigation of the

failures is done after the fact. This means that the investigation of the

failure can only be done after some of the evidence was already lost

or corrupted!

If the test reproduces the same failure each time and in every environment, one

can run the test again on a different environment (e.g., his local machine if the failure

occurred in a CI or nightly build), or execute its steps manually and investigate the

failure this way. Even in this case, it would probably take some precious extra time.

Nonetheless, in case the failure does not happen all the time, then it’s highly important

Chapter 2 From Manual to Automated Testing

28

to have logs, both of the test and of the application, as well as any other evidence that

may help investigate the problem. Such evidence can be screenshots or even a screen’s

video recording, DB snapshots, a web page HTML source, etc. Chapter 13 covers the

topic of investigating failing tests more deeply.

SHOULD THE TEST AUTOMATION SYSTEM REPORT BUGS AUTOMATICALLY?

Even though I saw many attempts to connect test automation systems directly to the bug

reporting system, and open a bug automatically when a test fails, it doesn’t turn out to be a

very good idea. First of all, as mentioned, all unexpected conditions may cause automated

tests to fail, but not all of those failures are in fact bugs. But even if the bugs are assigned to a

tester to analyze them first, there are many cases that a single error causes many tests to fail,

causing extra overhead managing and tracking these piles of autogenerated bugs. For more

details about the recommended way that bugs discovered by automation should be treated,

see Chapters 5 and 15.

�Trust

Mistrust between developers and manual testers is (unfortunately) pretty common:

testers blame developers from writing crappy code, developers blame testers for opening

bugs with too little or inaccurate information, etc. (and everybody blames product

managers for writing unclear requirements, but that’s another story… we’ll see how

ATDD helps with that, too, in Chapters 5 and 16). But eventually, everyone agrees that

the other role is necessary and important.

When it comes to test automation, both developers and testers, as well as their

managers, need to trust the machine. At first it may sound like a no-brainer: machines

always produce consistent results, better than humans do! So why would it be hard to

trust them? But as we discussed above, automated tests can fail due to a number of

reasons and not only bugs. In fact, in order for us to trust the automated tests, we have to

believe that:

•	 Tests fail only on real bugs.

•	 Tests don’t miss bugs.

Chapter 2 From Manual to Automated Testing

29

As much as we’d want and try to make these claims true, we cannot guarantee them.

But with a good test automation suite, we can guarantee a softer version of these claims:

•	 Tests fail mostly on real bugs (and it’s easy to investigate and

determine the real cause).

•	 Tests don’t miss bugs that they were designed to catch.

If you design your automated tests so that they are short and simple, as you should,

then it’s pretty easy to prove the second claim. But the first one is more difficult to

achieve. This situation where the first claim is not met is manifested either when there

are many tests that fail for a long period of time even though the basic functionality that

is verified by these tests is working, or when tests frequently fail with an unexplained

reason. When that happens, stakeholders (especially managers) cease to trust the results

of the automated tests. When the results of the automated tests are ignored, and no

resources are given to solve these problems, then pretty quickly the tests will become

irrelevant and stale, collapsing all the investment that was put in building the test

automation system!

Unfortunately, there’s a large percentage of test automation projects that start with a

lot of excitement but after some time fail to fulfill their promise, and then these projects

die miserably. Hopefully, this book will help you avoid this destiny and lead you into
the destiny of success!

Before diving deeper into the aspects of ensuring the success of the test automation

project, let me add to some of the practices already mentioned, and highlight some more

key practices that will help the automation project avoid the destiny of doom and rather

reach its successful destiny:

	 1.	 Every failure, first and foremost automation bugs, must be treated

and fixed ASAP! (more on that in Chapters 5 and 15).

	 2.	 Every failure should be investigated thoroughly to find its root

cause. “Covering” for errors may solve short-term problems but

may cause future problems that are harder to identify and fix

(more on that in Chapter 13).

	 3.	 Tests should be built in a way that ensures consistent results. If

the results depend on external conditions, when they fail the

tendency would be to blame these external conditions and to avoid

investigating the real cause (more on that in Chapters 6 and 7).

Chapter 2 From Manual to Automated Testing

31
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5_3

CHAPTER 3

People and Tools
As a consultant, most customers that call me to help them start working with test

automation start with the questions: “Which tools are there?” and “which tools should

I use”? If you’re in that situation yourself, then you’re probably asking this question too.

The short answer to the first question is that there are a bazillion tools out there for test

automation. Oh, and there’s Selenium, too, of course, so there are bazillion and one.

And the short answer to the second question is the classical consultant’s answer: “It

depends.”

�Choosing the Right Tools
Now in a more serious tone, even though there are indeed many tools, and almost every

day I hear about a new tool for test automation (each of them promises to be “the next

thing”), there are only few categories of tools serving different purposes. Some tools

cover more than one purpose, and in most cases, you’ll probably need a combination of

tools. In order to know which tools are right for you, there are bunch of questions that

you should answer first. While the question “which tool should I use” is a “how” type

of question, the questions you should start from are the “whys” and the “whats.” Once

you answer these questions, the choice of tools will be pretty trivial in most cases. I’ll

describe the categories of these tools and the questions that you should answer further

down this chapter. However, I encourage you to read at least the chapters in Part I of this

book before you actually make a decision, as these chapters will help you answer those

questions better.

While the rest of the chapters in Part I will help you answer most of the “why” and

the “what”questions, I want to dedicate this chapter to one important question that is

too often overseen, which is neither “why,” “what,” nor even “how,” but rather a “who”

question…

32

�Who Should Write the Tests?
Most of the time my customers already have an answer to this question, even though

they didn’t consider all the alternatives and their implications, simply because they’re

not aware of them! So let me describe the options and their implications. Note that

there’s no one right answer to this question, and every option has its pro’s and con’s, so

you have to make your own choice, as best fits your organization.

Note that even if you already have an automation team in place, I encourage you
to still read this chapter, as you’ll gain a better understanding of the pro’s and con’s of

the situation you’re in, which will probably help you deal with them better. You may even

want to consider changing or trying to influence your managers to change the decision

in the long run.

�Promoting Manual Testers or Inexperienced Programmers
to Automation Developers
Sometimes manual testers with no or with very little programming skills hear about one

of the record-and-playback automation tools out there and get very excited. They come to

their boss and tell him that they can start building automated tests quickly and save a lot

of time and money! This enthusiasm is great, and as a manager you may want to harness

it, but please keep in mind what we already discussed in the beginning of Chapter 1:

record-and-playback tools are easy to begin with but does not hold water for long.

Many manual testers have some background in programming. Some of them

studied computer science or something similar in college or high school but ended up

in QA for several years. Others simply played here and there with programming and are

enthusiastic to write code. These people are often seen as great candidates for starting

your test automation endeavors. Taking someone that you already know and trust, which

has some basic programming skills, and already knows your system and the company

is very compelling. There’s no need to invest too much in training, and this opportunity

usually really motivates this person! At first, the QA manager would probably decide that

this person will dedicate only 20%–50% of the time to the test automation project and

continue to do manual testing at the rest.

Of course, every person is different and I’m generalizing here, so take my words here

with a grain of salt, and judge your own case for yourself. But in my generalized opinion,

while some of these people may be appropriate as test automation team members once it’s

Chapter 3 People and Tools

33

properly established, they’re usually not the right persons to start building and establishing

the test automation system. If you’d let them, they’ll probably succeed at first, which will

contribute to the perception that it was the right choice. But over time, maintainability and

stability issues will start to occur and the project might begin to deteriorate.

At the early stages, the technical challenge of building automated tests that “do

the job” is usually not so high. Some tools make it easy even for people without any

programming background, but even writing automatic tests in code (e.g.. using

Selenium) does not require high programming skills just to make it work. These tests

would usually pass and may even find some interesting bugs.

However, after some time, some things might start to go not so well: the development

of the application doesn’t stand still. The application evolves, new features are added,

some existing features and UI screens change, and some parts are re-written. From

time to time, that inexperienced automation developer will find that some things in the

application changed and he’ll need to fix the automation accordingly. As long as these

are very specific and small changes, he’ll deal with it fine. But without proper planning

and design, and without appropriate debugging skills, when the number of tests

increase, some unintentional dependencies or assumptions can hide in the code of the

test automation, which make the tests more fragile and less reliable. In addition, at some

point the application developers will change something that may affect a big portion of

the tests. In order to fix that the automation developer will need to rewrite large chunks

of the tests. It will take a long time to fix, and regardless of whether the application works

correctly or not, the automation is completely broken for a long period of time, in which

time it doesn’t provide any value.

As a lesson learned, he might ask the developers (and also involve his manager for

that) to let him know in advance about every change that they’re about to do that might

affect the automation, so that he can prepare in advance. Unfortunately, this isn’t going

to work… Even with their best intentions, the developers are not aware enough or simply

don’t even know which changes that they make might affect the automation and which

won’t. On one hand they’re making so many changes all the time, and on the other hand,

they’re not familiar with what and how the automation does, that it’s really not practical

from their side to know what can affect the automation and what doesn’t.

Another problem that may probably happen if there’s no one around with proper

experience in test automation is that occasionally one or more tests will fail without a

clear reason. The automation developer may first blame the tool, the network, or just the

bad luck and try to run the test again. Alternatively, he may suspect that it’s a timing issue

and attempt to fix it by adding or increasing the delay between operations. Anyway, he

Chapter 3 People and Tools

34

runs the test again and it passes, hurray! But soon, besides the fact that the tests would

be painfully slow due to the added delays, their overall stability will deteriorate and it’ll

become hard to tell the root cause of the failures. In this case, the entire value you are

supposed to gain from the test automation is diminishing, as neither the automation

developer nor the application developers can tell whether a failure is a bug in the product

or in the automation. Eventually, this also leads to losing trust in the test automation.

If the automation developer is supposed to work on the automation only partially

(e.g., 20%–50%) and keep doing manual tests the rest of the time, there are a few

additional problems that would probably occur.

First of all, devoting a specific percentage of your job to one activity and another

percentage to another activity is almost never practical. It’s very hard to devote specific

days of the week or long hour periods for one activity when you’re in the same office with

people that need your help in the other activity as well. And without dedicating specific

days or hours, it’s really hard to measure, both for you and for your manager, how much

you really dedicate to test automation vs. how much you dedicate to the manual tests,

which is always more urgent! In addition, specifically with test automation, writing the

tests is only part of the job. At the minimum, you should also investigate the results

and fix broken tests, and this takes time too. If you want to run the tests every night, the

results must be investigated every morning! If you don’t run the tests every night, then

too many changes can take place between one run and the other, and it’s harder to tell

why something broke. If you fix or change something in the automation, you’ll be able

to tell whether your changes are correct only a few days later – will you remember what

were you trying to fix, why and how? Probably not... It’s also harder to make use and

promote something that is not consistent. People (managers, developers, etc.) don’t

know whether to expect to get results from the automation or not, so they don’t look for

it, and therefore they don’t pay too much attention to it anyway. Once again, the result is

that people can’t rely on the test automation and eventually lose trust in it.

Conclusion P eople with some programming knowledge but no programming
and automation experience may become effective test automation team members,
but they need guidance! Test automation is a craft (discipline) of its own, requiring
specific skills. It takes time, effort, and dedication to become good at it and
therefore isn’t something that can be done “on the side,” even if you're the best
developer ever

Chapter 3 People and Tools

35

�Splitting the Work Between Manual Testers
and Automation Programmers
Another common approach is that few experienced developers develop the

infrastructure and “building-blocks,” and a bigger group of non-programmers or junior

programmers use this infrastructure to create the automatic test scripts in a simpler

manner. This approach has a tight relationship with the chosen tool, which can either

be an off-the-shelf tool or a homegrown tool. Also, the kind of tool usually implies how

much of the work can be done without writing code vs. how much requires coding.

I know quite a few teams that took this approach and are very happy with it. It allows

you to involve all the original testers in the team in the automation project without

having to teach them programming. In addition, the reality is that testers that don’t write

code are usually cheaper than programmers, and this also makes financial sense.

Later in this chapter I’ll describe the categories of tools in more detail. And I will give

a few examples for tools that support this approach. Most of these tools trade the need for

writing code with the limitation to a specific way for interacting with the SUT. Examples

of such tools are Ranorex® and SmartBear SoapUI®. While Ranorex works excellent

with many UI technologies, it’s not designed for any other kind of test. Soap UI, on the

other hand, is dedicated only for testing systems by means of HTTP (and a few other)

network communications protocols. Most of these tools allow both recording (whether

of single steps or of an entire scenario) and/or manually composing and editing scripts,

through an intuitive GUI or a simplified scripting language, which does not require real

programming skills. They also typically provide some mechanisms that allow reuse of a

set of actions, even though these are generally less flexible than true object-oriented code

in that regard. These tools only require coding whenever you want to do something that

the tool was not designed to do specifically. These tools typically come as a complete

solution for managing the tests, executing them, creating reports, etc.

The ability to reuse composite actions and/or coded actions has another advantage

besides the fact that it reduces the amount of work and maintenance: for every reusable

component, you can give a descriptive name that describes what it does. This allows you

to build the tests in a way that reveals your intent much more clearly, making the tests

easier to maintain. In addition, you can use this technique to apply an approach called

Keyword Driven Testing (or KDT in short). In this approach, the test scripts are composed

only (or mostly) out of these reusable building blocks (or actions), each describing a

business action rather than a fine-grained technical action. For example, an online-

shopping scenario can be composed out of building blocks like “login,” “add to cart,” and

Chapter 3 People and Tools

36

“checkout.” These building blocks can usually take arguments from the test script so that

they can be used with different values or slightly different ways in different places. Because

of the ability to use descriptive names, it makes the automated test scripts more readable

and also easier to write and maintain. So even if a nontechnical business person looks at

the test script, he can clearly see what it’s supposed to do, without having to go into all the

technical details of how these actions are performed. The names of the building blocks are

sometimes referred to as “keywords” and therefore the name of this technique.

For some reason, I encountered quite a few companies that developed complete,

sophisticated tools by themselves for this approach. Maybe the tools that were available

when they started weren’t appropriate.

Yet another variation on this is to write everything in code, but still spit the work

between coders and non-coders, such that the coders create the “building blocks” as

methods and the non-coders are only taught the bare minimum they need to know in

order to call these methods from the tests.

Even though the KDT approach inherently takes advantage of reusability, its main

drawback is the overhead and interdependency in the process of writing and maintaining

the test automation suite as a whole. While composing test scripts out of predefined

building blocks sounds very compelling, in reality the need to add or modify an existing

building block is pretty frequent, which means that you can rarely write a test script

without having to need a programmer to make a change or add a new building block first.

But before the programmer can create or update the building block, he needs to know how

you intend to use it, which you often know only when you start writing the test. In addition,

the non-coder can only investigate failures up to a certain point, but if the problem lies

inside the operation of a building block, then the programmer needs to continue the

investigation too. Because the programmers that write building blocks are usually fewer

than the number of testers that write the test scripts, these programmers become a

bottleneck and potentially delay the process of writing and maintaining the tests.

Another issue that often happens in these cases is that in order to avoid the need to

make changes to a building block, it’s designed to be too generic. This can take a form

of having too many parameters, or of having fewer parameters but that their values

encapsulate a lot of information (e.g., using a comma-separated list) that can affect the

behavior of the action in many ways. The use of such parameters may indeed minimize

the required number of different building blocks, but is also very error-prone, and the

person who writes the script should know the exact format of the data that the building

block expects. At the end of the day, these “solutions” to the bottleneck problem end up

making the test scripts more complex and confusing to write and maintain.

Chapter 3 People and Tools

37

There’s another category of tools that also makes a separation between the test

scripts and their underlying implementation. Cucumber and SpecFlow are the common

examples of tools that belong to that category (we’ll talk more about in a later section).

The main differences between this category and the previous one, is that these tools

focus primarily on the readability of the tests, in order to use them primarily for

documentation. Usually these tools are not technology specific, that is, they can be

combined with other tools to provide abilities of UI automation, HTTP API (see sidebar

later in this chapter), communication, or any other means for interacting with the SUT,

though they require more coding than the tools in the first category. Because tools in this

category also provide separation between the test scripts that don’t require code writing

and the implementation part that is purely code (and probably also because most of the

tools are open source), many teams use them in order to apply a KDT approach, that is,

allow non-coders to write the test scenarios and programmers to write building blocks.

Unfortunately, while doing so they’re missing the point of these tools, which is much

more about making the scenarios readable as documentation, and less so to provide

reusability. Advocates of the BDD approach (see later in this chapter) even say that the

main purpose of these tools is to communicate the requirements in a verifiable way,

and don’t see testing as its main purpose. While there’s a sweet spot where reusability

and readability go together, if you’d try to stretch it too far to one direction, you’ll

compromise the other. In other words, the more you’d try to make the building blocks

more reusable, eventually you’ll compromise their readability and vice versa.

�Using a Dedicated Automation Team
Probably the most common approach is to have a dedicated team (or one or two people

if it’s a small project) that is responsible for the test automation as a whole. The team

members normally all write code and they’re responsible for implementing the test

scripts, the infrastructure and reusable code, as well as maintaining it, investigating the

results, and improving the test automation system over time.

The big advantage of such a team is that they share knowledge and practices and

reuse code without any boundaries. This is especially important at the beginning, as

the infrastructure and practices are still being formed. Also, if the development teams

are divided along the architectural and technology boundaries, like “client team,”

“server team,” “DB team,” etc., then it makes more sense to have a separate dedicated

Chapter 3 People and Tools

38

automation team that implemented end-to-end tests for the entire system. See Chapters

6 and 8 for more information about the relationships between test automation, business

structure, and architecture.

On the other side, because this team is cohesive, they usually don’t work very closely

with the other developers. One of the consequences of this situation is that this team

usually write tests after the features that they verify are done and pretty stable (after

manual testers tested it at least once). Typically, they receive existing test scenarios that

manual testers created beforehand and automate them, possibly after adapting them in

one way or another for automation. However, this phase gap between the application

developers and the automation developers yields some challenges:

	 1.	 If the code under test wasn’t written in a testable way, it could

be very difficult to automate it. In order to change this, the

application developer should be interrupted from his current

work and change the design of a feature he already implemented

and that was even tested manually, which would very rarely

happen…

	 2.	 Similar problems may occur if you find a bug at the time of

implementing the automated test. If the manual tester already

tested the feature, chances are that the bug you found is

not critical, but it may impede you from implementing the

automation properly. Again, the work of the application developer

must be interrupted in order to fix this, and until this happens, the

automation developer cannot continue working on that test.

Another drawback of this approach is that because the responsibility for investigating

the failures is primarily of the automation team rather than the development teams, it

may be very difficult to stabilize the tests. Every change that the application developers

makes can potentially cause one or more tests to fail, and they usually won’t care unless

you prove that it’s a bug. See Chapter 5 on the consequences of such business processes.

�Having Dedicated Automation Developer(s) Inside Each
Team
In development organizations where teams are organized around features rather

than around technological or architectural boundaries, it often makes more sense to

have one or two automation developers as part of each feature team. This is especially

Chapter 3 People and Tools

39

true if there’s an organizational intent to cover every new feature (or User Story) with

automated tests before declaring it done.

In this case, it’s recommended that all the automation developers will have some

formal means to share knowledge and code and ideas, and preferably there should be

some senior automation developer who does not belong to any particular team, but his

job is to provide guidance and supervise the work of the other automation developers

from a professional standpoint.

Obviously, this approach does not fit well when automating existing, older manual

test cases, as in this case there’s no real collaboration between the automation developer

and the application developer. If full coverage is still not in place, it can be useful to have

a few automation developers work on the old tests, while other automation developers

work inside the feature teams on new tests. See Chapter 4 on how to converge into full

coverage while ensuring that new features are always covered.

In small organizations or teams, there can be one or two automation developers that

work in conjunction with the application developers on the new features, while filling

any gaps in regression tests in the remaining time.

The biggest advantage of this approach is that it’s easy to keep the automation

“green” as it’s the responsibility of the entire team to deliver the new features with all

tests working. In addition, writing the tests along with the development of a feature aids

in ensuring that the application is testable.

�Give the Developers the Ownership for the Automation
Some teams take the previous approach one step further and instead of having dedicated

automation developers inside each feature team, they decide that the application

developers will write and maintain the test automation. Traditionally developers do

this with unit-tests (see Chapter 17), but there’s no good reason why they can’t do

this with broader scoped tests too. In fact, the original advocates of the test-driven

development (TDD) approach (namely Kent Beck and Martin Fowler) claim that they

use the term “unit-tests” not only for a single class or method level tests but rather to test

of any scope.1

1�See the description of “sociable” tests at https://martinfowler.com/bliki/UnitTest.html.
Other relevant references: https://martinfowler.com/articles/is-tdd-dead/ and http://
www.se-radio.net/2010/09/episode-167-the-history-of-junit-and-the-future-of-
testing-with-kent-beck/ (around minutes 22–26).

Chapter 3 People and Tools

https://martinfowler.com/bliki/UnitTest.html
https://martinfowler.com/articles/is-tdd-dead/
http://www.se-radio.net/2010/09/episode-167-the-history-of-junit-and-the-future-of-testing-with-kent-beck/
http://www.se-radio.net/2010/09/episode-167-the-history-of-junit-and-the-future-of-testing-with-kent-beck/
http://www.se-radio.net/2010/09/episode-167-the-history-of-junit-and-the-future-of-testing-with-kent-beck/

40

In my opinion this approach is excellent as long as all the developers (or at least a

few from each team) have the necessary skills for writing good tests. The same way that

some developers only specialize in “client” development and some only in “server”

development, there are also “full stack” developers, and developers can have or not have

the skills to write good tests.

In small organizations that have the adequate people, this can work out very well.

However, I wouldn’t easily recommend for a dev manager of a large organization to

adopt this approach across the board, as not all teams may have people with the proper

skills for that. My advice to that manager would be to find an expert (either external or

internal to the organization) that can train and accompany one team at a time into this

way of thinking and working. This is important because usually each team has different

challenges and constraints, and a “one size fits all” approach can be very dangerous,

leading to poor quality tests that are unreliable and harder to maintain. In addition, it is

important to promote knowledge sharing and transfer among the teams, both in order to

create consistent practices and to optimize the working processes, mainly through code

reviews and pair programming.

�The Variety of Tools
As already mentioned, I encourage you to choose the tool you need only after going

through all the chapters in Part I of this book. However, now that we clarified that one of

the most important considerations that affects the selection of the tools is how people

are going to use them, we can start overviewing the variety of tools out there. Note that in

most cases you’ll end up using a combination of tools, as different tools answer different

concerns, and together they provide the full solution. In many cases you’ll also find that

you need to build your own little tools (mainly for gluing other tools together),or forced

to use some legacy homemade tools that were previously developed in your company.

In the following sections, I’ll classify the tools into categories, give a few examples, and

discuss the considerations for choosing among them.

�Classification of Tools
Before we go any further, I have to disclaim a few things. First, this classification is not

conclusive or unquestionable, as many tools don’t fall exactly into one category. Other

people can classify the tools in a different manner. Even though some tools are similar,

Chapter 3 People and Tools

41

each has its unique features and characteristics, and many tools cover more than one

concern and therefore can belong to more than one category. In general, most tools

that don’t require programming skills are more feature rich, while tools that require

programming skills are often more targeted at a specific and narrow goal but are allowed

to be combined with other tools easily.

Note that even though I’ll give some concrete examples of popular tools in some of

these categories, in no way does this aim to be a comprehensive list of all the tools in

each category. The examples are mainly based on my own experience and knowledge,

and I have no interest in promoting one tool over another. Finally and clearly, tools

and technologies come and go. I guess that the concrete examples and specific feature

descriptions will be outdated pretty soon after this book is published, but I also believe

that in general, the classification itself and the main concepts will remain pretty much

the same for a pretty long period.

�IDEs2 and Programming Language
Whether you choose to develop the automation by writing code or use a tool that is

better suited for non-programmers, the automation developer will do most of his work

inside an application that provides the main work environment. Using this tool, the

automation developer will create and maintain the tests and mostly any other artifact

that is part of the test automation system.

In case you’ve chosen to use tools that are better suited for non-programmers, these

tools typically consist of their own specialized environment that is easier to learn and

work with for non-programmers. So, in this case, there’s usually no choice regarding the

IDE, as it is simply the same application that provides the underlying technology that

enables the test automation creation, editing, and running. However, note that even

these tools usually either generate code in a general-purpose programming language

that the automation developer can modify, and/or allow programmers to extend the

automation by writing custom code modules. For that purpose, some of these tools

provide their own IDE, but most simply allow the developer to use an external, common

IDE (that are more programmer oriented) for editing these files.

2�IDE is an acronym for Integrated Development Environment. These are applications that allow
developers to write, edit, compile, and debug their code; and carry many other actions that are
related to the development of the code.

Chapter 3 People and Tools

42

If you plan to write the automation mainly in code, then you must decide also on

the programming language. While most IDEs can work with multiple programming

languages, and also most programming languages can be written using different IDEs,

most programming languages have their own “natural” IDE. So, once you’ve chosen a

programming language, choosing an IDE is usually pretty straightforward.

When it comes to choosing a programming language, there are a few considerations

to take into account. First, while in most programming languages you can do pretty

much everything you want, some other tools (e.g., for UI automation) work only with a

specific programming language. For example, Microsoft’s Coded UI only works with

C# or VB.Net. You cannot write Coded UI tests in Java or Python. However, some tools,

like Selenium, for example, are either supported by many different languages or have

alternatives in other languages.

In case you’re not restricted by the technology and you can choose among many

programming languages, here are some considerations to take into account:

•	 First, it is highly recommended to use the same programming

language that the other developers in the team use. For unit testing,

this decision is obvious, both because it’s the most straightforward

way, and also because usually unit tests are written by the same

developers that write the code of the system. However, this is

recommended also for other types of automation tests. The main

reasons for this is knowledge transfer, collaboration, and reuse of

tools and utilities between the automation developer(s) and the

product developers. I encountered a few companies where the sole

automation developer chose to use a different language than the rest

of the team (probably because he was more familiar with it), and later

the company was “stuck” with that decision, having to go through

various hoops in order to integrate it with the build system or other

tools, sometimes after the original automation developer has already

left the company. Changing a programming language down the
road is almost impossible!

•	 Popularity – in most cases it is better to choose a popular, well-

established language, than a niche one. Avoid choosing the “latest,

newest, and coolest” language that very few have real experience

with. (Also avoid choosing an anachronistic language for mostly the

same reasons.) There are several reasons for that:

Chapter 3 People and Tools

43

•	 Choosing a popular language will make it easier for you to recruit

additional automation developers when necessary.

•	 It is easier to find help and tutorials on the internet, as well as

frontal training.

•	 It has many more and better tools and libraries to choose from.

As of writing this book, the most popular programming languages

are Java, C#, Python, and JavaScript. There’s also an extension

language to JavaScript called TypeScript, which is 100%

compatible with JavaScript but adds a lot of important language

features to it.

•	 Language features – while generally you can write any program

in any programming language, and most languages have similar

basic constructs (like “if” statements, variables, methods, etc.),

each language has its own unique features as well as its limitations.

These features and limitations can have a significant impact on the

readability, reusability, and maintainability of your code! Some

language features may come at the expense of other benefits that

other languages might have. In particular, most languages have

features that allow the programmers to limit themselves from

making mistakes! While these features sometimes confuse junior

programmers, it helps make the code much more reliable and robust

by helping you to prevent mistakes. See the sidebar below for few

examples of such language features.

LANGUAGE FEATURES COMPARISON

While this is not a comprehensive comparison between programming language features, it can

give you an idea of what features exist in different programming languages and their benefits.

Note that “languages features” are not the same as features of the core libraries of the language.

While each language typically has its own set of core libraries that provide some basic services,

like mathematical operations, lists, and common data structures, printing, file operations, date/

time, etc., language features are more generic syntactic constructs that the compiler recognizes

and that you can use to structure your code, regardless of what it actually does.

Chapter 3 People and Tools

44

•	 Strong typing vs. dynamic typing. Strong typing means that the type of a variable

or parameter must be explicitly declared, so the compiler can validate its correct

usage right at compile time. In some languages, you can mix strong typing and

dynamic typing. Java has only strong typing, C#, in mainly a strongly typed

language but it also supports dynamic typing (via the dynamic keyword); Python

and JavaScript only support dynamic typing. TypeScript also supports strong typing.

•	 Encapsulation – The ability to control the scope in which a variable or a method

is accessible, usually by declaring members of a class as public or private. All

object-oriented languages including Java and C# have this feature. So does

TypeScript. JavaScript achieves this in its own unique way of declaring nested

functions and declaring local variables in inner functions. Python doesn’t have

this feature.

•	 Polymorphism or callback functions – While polymorphism is considered one of

the object-oriented tenants and callback functions are not, they enable more or

less the same benefits. Simply put, it allows variables to reference data as well
as functionality, and also to pass them to and from methods. This allows you to

easily extend the behavior of the code without having to modify its core logic.

All of the popular languages have at least one of these features. However, some

scripting languages, especially languages that were created for a very specific

purpose or tool, lack this ability.

•	 Lambdas and closures – This is the ability to define a method within another

method, and to reference the local variables of the outer method from the inner

method. Lambdas typically allow you to do the same thing using a shortened

and more elegant syntax. C#, JavaScript, and TypeScript fully support closures.

C#, TypeScript, and JavaScript ES6 also support the lambda syntax. Java and

Python support the lambda syntax also, but their implementations of the closure

concept are somewhat limited.

•	 Multithreading – The ability to execute code in parallel. While writing robust and

reliable multithreading code is dead hard, and I encourage even experienced

developers to avoid it if they have a choice, you can still take advantage of

third-party libraries that use it. Java, C#, and Python all support it, but JavaScript

doesn’t. While JavaScript has some mechanisms that allow concurrency (using

Chapter 3 People and Tools

45

a concept called “promises”), it’s not truly multithreaded. For that reason, if

you use Selenium from JavaScript (WebDriverJS), your code becomes much

more complicated and cumbersome, as well as more difficult to debug, relative

to other languages. The async and await keywords, which are available in

TypeScript and in JavaScript ES2017, make the problem somewhat less painful,

but it still doesn’t make Selenium code in JavaScript or TypeScript as easy to

read and debug as in all other languages.

While Python has become pretty popular lately for test automation, probably due to its

simplistic syntax and easy learning curve that helps non-developers get up to speed

quickly, I typically don’t recommend it due to the limitations mentioned above, though other

considerations described above may tip the scales toward it. My own favorite programming

language is C#, and that’s the main reason I used it for the examples in part II, but I admit that

it’s mainly a matter of habit after all…

�(Unit) Testing Frameworks
If you’re writing the tests in code, you need a tool that will allow you to run the tests.

While you can write all the tests as one simple command-line program that performs

them in sequence and displays their results, a testing framework gives you an easy way

to write and run individual tests. Then, either from a command line or a GUI tool, they

allow you to see the list of tests, run them, and see which ones passed and which failed.

Typically, you can select which tests to run: all, specific ones, or filter by various traits.

In addition, these tools also give you means by which you can ensure that tests don’t

interfere with one another, by writing special methods that get executed before and

after each test, before and after a group of tests, and also before and after all the tests

altogether. Some frameworks allow you to specify dependencies between tests, even

though the benefit of such a feature is questionable, as it makes the tests serve two distinct

purposes: initialization and testing, which don’t go very well together and complicate

their maintainability. In addition, it prevents running the dependent tests in parallel.

Testing frameworks are typically designed primarily for unit tests, but they suit

just as well for integration or system tests. Therefore, don’t panic by the term “unit

test framework,” which is normally used to describe these tools. Examples of such

Chapter 3 People and Tools

46

frameworks are: JUnit and TestNG for Java; MSTest, NUnit, xUnit for .Net; for Python

you have the built-in unittest framework and py.test; and for JavaScript the most

popular ones are Jasmine and Mocha.

All unit testing frameworks that I’m aware of are either part of an IDE or some a

language development toolkit or are free open source projects. So, you don’t have to

worry about their price…

Note  Testing Framework is sometimes also called Test Harness.

�Assertion Libraries

In most frameworks, a test is considered “passed” as long as it doesn’t throw an

exception (i.e., as long as no errors have occurred when they run). However, a best

practice is to perform some kind of verification at the end of the test, usually by

comparing the actual result of the tested operation to a specific expected result. For that

reason, most testing frameworks provide means to perform such verifications, using a

simple mechanism called assertions. A typical Assert allows you to compare the actual

result to an expected result, and to throw an exception in case the comparison failed,

which consequently fails the tests. While most testing frameworks come with their own

assertion methods, there are some dedicated assertion libraries that provide their own

benefits. Some provide more specific assertion methods, for example, for validating

HTTP response messages. Others are more extensible and allow you to define your own

assertions, usually in a very readable and “fluent” manner.

Note  Many testing frameworks also provide mocking mechanisms as well, and
there are many third-party mocking libraries too. However, as these mechanisms
are useful only for pure unit-tests, I see no point discussing these here. See
Chapter 17 for more details about these mechanisms.

�BDD-Style Frameworks
Behavior Driven Development (BDD) is a methodology that is derived from Test Driven

Development (TDD, see Chapter 17), but adds to it an emphasis on bridging the gap

between the natural language description of the behavior of a feature (which stands in

Chapter 3 People and Tools

47

place of formal specifications), and the tests that verify that the feature indeed behaves

according to that description. For that reason, some call it Executable Specifications, or

Living Documentation. Another aspect of this methodology is that the tests are used

as the acceptance criteria of user stories, and therefore it is also called Acceptance Test

Driven Development (ATDD). This methodology is covered in depth in Chapter 16.

The way this is normally achieved is using tools that allow us to write tests using

sentences in natural language and map each sentence to a method that performs the

operation described by that sentence. These sentences, along with their corresponding

implementation methods, can be made reusable, which makes the documentation and

the tests more consistent.

Simply put, BDD supporting tools provide a means to translate human readable

specifications into executable code. The most popular BDD tool is Cucumber, which

was initially developed in Ruby, and later was ported to many other languages, including

Java and C# (where it is called SpecFlow). Cucumber uses a special language called

Gherkin that consists of very few keywords followed by natural language sentences.

Here’s an example of a scenario in Gherkin:

Scenario: Cash withdrawal charges commission

 Given the commission for cash withdrawal is $1

 And I have a bank account with balance of $50

 When I withdraw $30

 Then the ATM should push out $30

 And the new balance should be $19

 And the charged commission should be $1

In the above example, the emphasized words (“Scenario,” “Given,” “And,” “When,” and

“Then”) are the Gherkin language keywords, and all the rest is a natural language. The

methods are associated with these sentences using regular expressions, thus allowing you

to specify parameters, like the amount values that appear in italic at the example.

Most BDD frameworks generate code for a skeleton of a unit test behind the

scenes, using one of the existing unit-test frameworks, and using one of the popular

programming languages. The generated unit test skeleton calls into other methods

that you should implement, and each of them is associated with typically one natural

language sentence in the Gherkin scenario, in order to do the actual work.

Another popular tool in this category is the Robot Framework. While the Robot

Framework also supports Gherkin, it doesn’t require you to do so. The Robot Framework

comes with some built-in libraries for common actions, operations, and validations, and

Chapter 3 People and Tools

48

has a greater set of external libraries for various ways of interacting with the SUT (see the

next section). And, of course, you can also write your own libraries in Python or Java.

Some other tools take a slightly different approach and try to provide means that

allow you to incorporate the documentation inside the code of the test itself. Examples of

such tools are RSpec for Ruby, Specturm for Java, MSpec for .Net, and also Jasmine and

Mocha for JavaScript, which are also testing frameworks.

�SUT Interaction Technologies
Whether you write the tests in code or another tool, the test must interact with the SUT

somehow in order to test it. The most obvious way to do that is by simulating the user’s

interaction with the UI. But this is not always the best option (see Chapter 6 for more

details about the pros and cons of testing through the UI). Sometimes you may prefer

to interact with the SUT using HTTP, TCP/IP, or some other communication protocol;

through the database; by creating, changing, or reading from files that the SUT uses;

invoking command-line commands, etc. You can do most of these from code using

standard APIs and libraries.

However, most UI technologies don’t provide an easy-to-use API for simulating

user actions, simply as the UI is intended to be used by the user, and not by another

application… They sometimes provide such an API, but these are usually very low level,

and not so easy to use directly from an automated test. In order to simulate user actions

from the UI, you usually need a dedicated tool that is appropriate for automating the

UI of that specific technology. The most well-known example of such tool is Selenium,

which automates web-based UIs.

If you plan to interact with the SUT over HTTP and willing to write the automation

in code, you can simply write your own code that sends requests and process responses

just like any other client. This will give you the maximal flexibility and also the “feel”

for what it takes to write a client application. However, because HTTP is a very popular

way to interact with the SUT, there is a bunch of tools and libraries that aim to make it

somewhat easier. Some of these tools are meant to be used from code (for example, Rest-
Assured for Java), and some are stand-alone tools (for example, SoapUI by SmartBear).

There are some tools whose main goal is to help sending and/or monitoring requests

and see their responses through a UI, but also provide some means for creating macros

or automated tests. However, because test automation is not their main goal, they’re

usually not the best suite for a full-blown test automation system. Fiddler and Postman

are examples of such tools.

Chapter 3 People and Tools

49

APPLICATION PROGRAMMING INTERFACE (API)

While most applications are designed to be controlled by users, through a user interface, some

applications and software components are designed to be controlled by other applications

(or software components). Also, many applications can be controlled both by users and by

other applications. In order for an application to be controllable by other applications, it should

expose an Application Programming Interface (API), which the other applications, which are the

clients or consumers of the API, can use to control it. From a technology standpoint, APIs can

come in many different shapes or forms, but conceptually, all APIs define the set of operations

that the clients can invoke, along with their corresponding parameters, data structures, results

etc. APIs should usually be well documented in order to make it easy for developers of client

applications to use the API correctly, and to know what to expect from each operation.

The technologies that facilitate applications to expose APIs can be categorized to these three

main types:

	1.	D irect method calls – the application (or more typically a software component)

provides a set of methods (and classes, in most modern technologies) that the

client application can call directly, within the same process, similar to the way

that the client calls its own methods.

	2.	N etwork communication protocol – the application defines a set of messages

that it can exchange with the client, and their exact format. The application

exposing the API typically runs as a separate process and often on a separate

machine and can often serve multiple clients simultaneously. These days

HTTP (or HTTPS to be more precise) is the most widely used base protocol

upon which many applications expose APIs. These APIs typically define the

format of the messages that it uses for requests and responses, according to

an architectural style called REST (which stands for Representational State

Transfer). They also typically use JSON (JavaScript Object Notation) as the

underlying syntax for the data structures and message formats. A somewhat

older style for HTTP APIs, which is still in pretty common use, is SOAP (Simple

Object Access Protocol), which is based on the XML (Extensible Markup

Language).

	3.	R emote Procedure Call (RPC) – this type of technologies is like a combination

of the first two. With RPC, the application defines the operations it exposes

through the API as a set of methods (procedures) and classes, similar to the

Chapter 3 People and Tools

50

way it’s done in the Direct Method Call. However, as opposed to direct method

calls, RPC is used to call these methods from remote clients, in other processes

and machines. The underlying RPC technology generates stub methods that

the client can consume locally, which have the exact same signatures (method

names and parameters) like the methods on the server that exposes the

API. These stub methods serialize the name (or other identifier) of the method

along with the values of its arguments into a message and sends it to the

server over a network communication protocol (e.g., HTTP). Then at the server

side, it parses the message and invokes the corresponding method along with

its arguments. Windows Communication Foundations (WCF) can be used in an

RPC fashion, Google provides the gRPC technology, and many services that

expose REST API also provide a Language Binding for popular languages, which

is the like the client-side only portion of RPC.

These three categories are only the main ones. An application can expose an API in other, less

standard, ways too: for example, by reading and writing from a shared file, database, or any

other mean that other applications can communicate with it.

APIs can be used for various purposes:

	1.	O perating Systems expose a rich set of APIs for its hosted applications. These

APIs can be used to work with files, processes, hardware, UI, etc.

	2.	R eusable software components, or libraries, expose APIs that applications can

use. Typically, this API is the only way to use these libraries. Such a library can

be used, for example, for complex math operations, or to control some specific

hardware device.

	3.	P lug-ins – some applications can be extended by third-party software vendors

to provide more features for the application or integrate with other applications

using plug-ins. For example, a text editor can expose an API that plug-ins can

use for various purposes, like spell checking, integration with Source-Control

systems, integration with email applications, and more. Sometimes the same

API can be by the users to create macros, like Microsoft Office applications do.

	4.	 Web services exposes APIs (typically REST APIs) to allow other applications to

take advantage of it. For example, a weather forecasting website can expose an

API that application vendors can use to integrate with it.

Chapter 3 People and Tools

51

�Record, Edit, Playback Tools vs. Code Libraries

Generally speaking, UI automation tools can be categorized either as “record & playback”

tools or as mere code libraries that you can call from code. But in reality, it’s more of

a continuum rather than just these two categories. On one side of the continuum, we

can find very “stupid” tools that record the mouse movements and clicks, and also the

keyboard keystrokes, save them, and then let you play them back. Elders like me might

remember the Macro Recorder tool that was included in Windows 3.1 back in the days…

Fortunately, this tool is no longer part of Windows and similar tools are no longer popular.

Needless to say, such naïve tools are very error prone, as they blindly replay the mouse

and keyboard actions, without any notion whether something has moved, changed, etc.

At the other end of the spectrum, the operating system provides low-level APIs that

let you interrogate the existing elements (or even pixels) that are displayed on the UI,

and send messages to those elements, as if they were sent from the mouse or keyboard.

But there are many tools in between: first of all, most tools that record mouse clicks,

don’t just record the X and Y of the clicks or movements, but they rather try to identify

the UI elements using one or more of their properties, preferably some kind of a unique

identifier. In addition, they either generate code in a popular programming language

that you can later edit, adopt, and maintain for your needs; or they generate a more high-

level script, which is more oriented toward non-programmer, and that you can edit using

a dedicated editor of the tool itself.

Note that almost all UI automation tools are either bundled with a tool that lets you

inspect the elements in the UI of your application, and their properties, or is designed

to be used in conjunction with an existing tool, usually supplied with an SDK of the

relevant OS, which does the same thing. Here’s a short description of some popular UI

automation tools.

�Selenium

This is probably the most popular test automation tool and is mostly suited for UI

automation on web applications. Like all UI automation tools, Selenium allows us

to mimic mouse and keyboard actions on behalf of the user and retrieve data that is

displayed. Selenium has a few important advantages that make it so popular:

•	 It’s open source (and therefore free);

•	 It supports a very wide range of browsers;

•	 It’s available in many programming languages.

Chapter 3 People and Tools

52

Selenium’s main drawback is that it’s designed primarily for browsers and has only a

limited support for other UI technologies through external extensions. In addition, it is

mainly designed to be used from code.

In order to allow the versatility of browser and also of programming languages, it is

composed of two parts, each of which is interchangeable. These parts are:

	 1.	 Language binding

	 2.	 Browser driver

The language binding is the code library that provide the classes and methods that

you can use from the code of your tests. Theses libraries are either compiled as in Java

and C#, or pure source code libraries as in Python or JavaScript. A different language

binding exists for every supported programming language.3 This part communicates

with the Browser driver using a dedicated JSON wire protocol.

The browser driver receives the requests from the language binding and invokes the

relevant operations on the browser. Each type of browser has its own browser driver.

However, because all drivers “understand” the same JSON wire protocol, the same test

can be used with a different driver and corresponding browser.

Note E ven though the language binding communicates with the driver over HTTP,
this communication has nothing to do with the communication that goes between
the browser and the server of the web application.

Selenium’s language binding is not a testing framework but rather a mere code
library. Therefore, you can use it from any type of application, even though it is most
commonly used from one of the unit testing frameworks.

3�Some languages are compiled into byte-code that is run by a dedicated runtime engine. The Java
Virtual Machine (JVM) and .Net Common Langauge Runtime (CLR) are the most known ones.
Libraries that are compiled for these engines can be consumed by applications that are written
in any language that can also be compiled for the same engine. So, for example, the WebDriver
library for Java can be consumed by tests written in Scala and Groovy, and the C# (.Net) binding
can be consumed by tests written in VB.Net and F#.

Chapter 3 People and Tools

53

The flexible architecture of Selenium allows other special tools to be integrated
with it, including Selenium Grid, which allows on-site cross-browser testing, and
also various vendors of cloud-based testing, like BrowserStack and SauceLabs. In
addition, Appium also takes advantage of this flexible architecture to allow mobile
testing using the familiar Selenium API.

Figure 3-1 demonstrates the typical architecture of a test that uses Selenium.

WHAT’S SELENIUM WEBDRIVER?

Without diving into too much detail, Selenium 1.0, also called Selenium RC (or Selenium
Remote Control ), was the original technology for automating web UI. In version 2.0 it

was merged with another technology called WebDriver, and together formed “Selenium
WebDriver,” which is the popular technology that is widely used in recent years. Note that

today the terms “Selenium” and “WebDriver” are often used interchangeably.

As mentioned above, UI automation tools usually come with an inspection tool for

identifying UI elements and their properties. Selenium does not come with such a tool,

as all modern browsers have such a tool built in. All modern browsers have built-in

Testing
Framework

Test code

Language
Binding

Specific Browser
driver (e.g.

ChromeDriver)

JSON
wire
protocol

Browser

Server

HTTP

Figure 3-1.  Typical architecture of Selenium-based test automation

Chapter 3 People and Tools

54

developer tools (usually opened by pressing F12). The developer tools include the DOM4

explorer, which allows you to identify the elements and their properties. Figure 3-2

shows the DOM explorer in Chrome.

Selenium IDE

Selenium also provides a dedicated plug-in for FireFox, called Selenium-IDE. This plug-

in allows recording test cases, and basic management and editing of these test cases

without writing code. It also allows exporting the tests to code in Ruby, Java, or C#, using

a variety of popular testing frameworks. While these features are nice, this tool is rarely

considered as a viable professional test automation tool. As of August 2017, Selenium

4�DOM is an acronym for Document Object Model. The DOM describes the tree of HTML elements
and their properties at any given moment. Using JavaScript, the page itself can manipulate its
DOM at runtime, making the page dynamic. Note that while the DOM can change, the HTML is
the static description of the page as the server sent to the browser.

Figure 3-2.  Chrome’s DOM Explorer

Chapter 3 People and Tools

55

team has announced in their blog5 that Firefox 55 will no longer support the Selenium

IDE, and at least for now, it will no longer be developed or maintained. Figure 3-3 shows

the UI of Selenium IDE.

�Appium

Appium is an extension to Selenium WebDriver, which allows UI automation for

mobile applications on Android, iOS, and also Windows 10 applications. For the latter,

it supports both Universal Windows Platform (UWP) and classic Win32 applications.

Like Selenium, Appium is designed to be used directly from code. Appium supports

both native mobile apps as well as mobile web apps and hybrid apps. As long as the

5�https://seleniumhq.wordpress.com/2017/08/09/firefox-55-and-selenium-ide/

Figure 3-3.  Selenium IDE

Chapter 3 People and Tools

https://seleniumhq.wordpress.com/2017/08/09/firefox-55-and-selenium-ide

56

application is similar on different platforms, the code of Appium tests can be reused

for these platforms. Appium can be used through the existing WebDriver APIs, but also

extends it with some mobile-specific capabilities, like touch gestures, orientation, and

rotation, etc. Appium can work both with real devices and with emulators.

Appium itself can run on Windows, Linux or Mac, and comes with its built-in

inspector tool for iOS and Android applications. Note that in order to use Appium to test

iOS applications it must run on a Mac where the iOS device (or emulator) is connected

to. However, you can have the test run on a different machine and connect to the

Appium service that runs on the Mac remotely. This consideration is also relevant when

you plan to run the tests on iOS as part of a nightly or CI build.

�Ranorex

Ranorex is a complete UI automation tool, featuring an IDE, testing framework, runner,

reporting, and more. Ranorex allows recording of complete test cases, as well as more

atomic test steps, and editing them through an intuitive UI (without the need to write

or edit code). However, it does create C# code behind the scenes, and allows us to write

custom functions in C# as well, for operations that are not supported by the tool, like

operations on databases or other technologies that are not UI. Ranorex supports a wide

range of UI technologies, ranging from old, legacy technologies like PowerBuilder and

Microsoft Visual FoxPro, to the most modern ones, including Android and iOS native

and hybrid, and UWP.

One of the biggest advantages of Ranorex is that it allows a smooth transition from

simple recording of an entire test case to the most complex hand-coded test automation.

It does that by supplying means to easily modify and refactor recorded scripts, split

them into reusable modules, using variables to enable even greater reuse, and finally

also converting small pieces to code as needed. You can even use Ranorex as an API that

you can consume from any .Net language (e.g., C#) and combine it with another testing

framework of your choice.

Ranorex provides a built-in inspection tool, which also provide a nice abstraction

over different UI technologies. This tool works closely with the Object Repository

feature that allows you to manage all the UI elements in a hierarchical order. The Object

Repository uses a special variant of the XPath6 syntax, called RXPath and allows us to

edit it in a smart and interactive way.

6�https://www.w3schools.com/xml/xpath_intro.asp

Chapter 3 People and Tools

https://www.w3schools.com/xml/xpath_intro.asp

57

While Ranorex has supported UI automation for browsers from the very beginning,

starting at version 7.0, Ranorex also supports Selenium WebDriver as a separate UI

technology, allowing to take advantage of the rich ecosystem of Selenium, including

Selenium Grid, and the various cloud testing vendors like SauceLabs and BrowserStack.

�Microsoft Coded UI

Microsoft Coded UI is a set of technologies that provide UI automation, mainly for

Windows application and the variety of Microsoft’s UI technologies, including Win32,

Windows Presentation Foundations (WPF), Silverlight, Microsoft Store Apps, Universal

Windows Platform (UWP), etc. It also supports Web applications, but I find no significant

benefit using Coded UI over Selenium for this case. Probably the biggest advantage of

Coded UI is its integration with Visual Studio and Microsoft Team Foundation Server (TFS).

In fact, Microsoft Coded UI is part of Visual Studio Enterprise, and not a product on itself.

Similar to Ranorex, Coded UI allows you to work in a variety of styles, ranging

from pure recordings to pure code. Unfortunately, unlike Ranorex, it doesn’t provide a

smooth path between the different styles. The main reason for that is that the means it

provides for editing recordings without going into code are pretty limited. However, if

you need to automate Windows application in C# or VB.Net, and you’re willing to write

the automation in code, then this is a very viable alternative. Even though the API that

Coded UI provides is not very intuitive and friendly, it does provide pretty good control.

For that reason, I created a wrapper to Coded UI with a more convenient API, called

TestAutomationEssentials.CodedUI (see Appendix C), which is available on GitHub and

as a NuGet package.

Coded UI’s test framework is based on MSTest. When you create a new Coded UI

project from Visual Studio, it creates a skeleton of a test class, and a UIMap.uitest file.

The UIMap.uitest file stores the recordings and elements that you identify using the

built-in Coded UI Test Builder tool. The UIMap.uitest designer is shown in Figure 3-4.

Using the designer, you can edit and make some basic modifications to the recordings

and to the way elements are identified. In fact, behind the scenes this file is stored as an

XML file, and every edit made to it using the designer also generates a UIMap.Designer.
cs (C#) file. Because the C# file is regenerated with every change to the designer, it’s

not safe to edit the C# file yourself. However, the designer lets you move complete

recordings to a separate file (UIMap.cs) so that it won’t be overridden by the designer.

Unfortunately, this operation is only one-way: from this moment on, you don’t see the

recording in the designer and can only edit it through C# code editor.

Chapter 3 People and Tools

58

Note  You can create multiple UIMap files in a single Coded UI Test project, to
make the maintenance of large Coded UI projects easier.

If you’re writing the test in code, then instead of the Coded UI Test Builder, you can

use the Inspect.exe tools that ships with the Windows SDK. This tool is a bit more fine-

grained and sometimes provides more detailed and accurate information about the

properties of UI elements.

Microsoft Visual Studio Test Professional and Coded UI

Another interesting use case that Microsoft provides is to record actions as part of a

manual test, using the Microsoft Visual Studio Test Professional (Also known as Microsoft

Test Manager, or MTM). Microsoft Visual Studio Test Professional allows you to record

steps of a manual test case, and replay then the next time you execute the test. Then,

if you create a Coded UI test project, it allows you to import these recordings into the

UIMap file, and continue to edit them from Visual Studio. However, this operation is

Figure 3-4.  The UIMap.uitest designer

Chapter 3 People and Tools

59

also unidirectional: while you can overwrite the recording with a new one and use it

to regenerate the recording in the UIMap, if you edit the recording thought the UIMap

designer, it won’t update the recording that Microsoft Visual Studio Test Professional is

using. Obviously, because you don’t have much control over the recording that Microsoft

Visual Studio Test Professional generates, in most cases it doesn’t make for a reliable and

viable tool for test automation, other than maybe saving some time to manual testers,

given that the recordings stays stable without any intervention. This however is a pretty

rare situation in most modern and dynamic applications.

�Unified Functional Testing (UFT)

UFT, formerly known as QuickTest Professional (QTP), is probably the most veteran UI

automation tool in the market. QTP was first released by Mercury Interactive in May

1998, and was acquired by HP in 2006. HP changed its name to UFT in 2012. As it was

the first and dominant player in the market until recent years, it was a pretty expensive

product, and was mainly used by big companies that could afford it.

UFT allows to record and edit UI operations on many applications and UI

technologies including WPF, Java, SAP, Mainframe terminal emulators and many more.

It provides a “keyword view” where one can edit the recorded script in a grid-like view,

without having to write code. Behind the scenes UFT generates VBScript code, which

you can also edit directly in an “Expert view” and the changes are synchronized back to

the Keyword view.

In 2015 HP released a new, more modern product called LeanFT, which is more

oriented toward developers and professional automation developers, in which it allows

the tests to be written also in Java or C# using all of the common testing frameworks.

LeanFT also provide better integration with source-control systems, common build

systems, and a much more compelling price.

�SoapUI

Unlike all the above mentioned tools, SoapUI by SmartBear is not a UI automation

tool, but rather a HTTP API automation tools. It supports record, edit and playback of

HTTP communications (REST or SOAP). There are two versions of SoapUI: the open-

source (free) version and the Pro version, which is also part of the ReadyAPI suite. The

Pro version adds many productivity enhancements, refactoring, additional protocols,

libraries and more.

Chapter 3 People and Tools

60

SoapUI uses the Groovy programming language which is a dynamic language

compatible with Java. In addition to sending and receiving HTTP messages, SoapUI can

create mocks for web services (AKA Simulators, see Chapter 6 for more details), and is

suited also for Load testing (see chapter 18 for more information on Load testing).

�Test Management Suites
This category of tools is usually not specific to automated tests, but rather to testing

activities and testing processes in general. However, these tools often have some features

related to test automation and automated tests can be integrated and managed by them.

These tools typically allow managing suites of tests, scheduling of tests, test results

and provide reports, graphs and trends for management. Automated tests can usually

be attached or be related to a test case, and their results can be automatically reported

to these tools. These tools usually manage or closely integrate with another tools

that manages bugs and other Application Lifecycle Management (ALM) artifacts like

requirements, versions, milestones, etc. The most popular tools in this category are

Microsoft Visual Studio Test Professional (part of Microsoft TFS), and HP’s Quality

Center.

�Build Tools and CI/CD Pipelines
This last category of tools is an entire domain in and on itself, and most of it is beyond

the scope of this book. However, these tools play a very important role with regard to

test automation. These tools are used to run the tests in a centralized way, usually after

compiling and deploying the product. Running the tests in a centralized way (as opposed

to running them on any developer machine) ensures that the tests passes on a clean

environment without any dependencies or presumptions that might be true only on

that specific developer’s machine. Typically automated tests run either on a scheduled

nightly build, or on a continuous integration (CI) build, which is trigged by every check-

in of every developer, possibly preventing broken code from entering the source-control

repository

Today, most of these tools allow to define a pipeline of a broader scope, which

sometimes include manual steps, in which a build advances in a pipeline through

various tests and possibly manual approval processes, until it is published to production.

This approach is known as Continuous Delivery (CD). The same approach, but without

Chapter 3 People and Tools

61

manual approval steps is called Continuous Deployment. For more details about CI/CD

see Chapters 5 and 15.

The most popular tools today in this category are Jenkins, Microsoft Team

Foundation Server (and its online version Team Foundation Services), JetBrain’s

TeamCity and Atlassian’s Bamboo.

�Other Considerations for Choosing Tools
Obviously the first consideration for choosing an automation tool, is to ensure that it

can interact with our SUT. In addition, we already talked in the beginning of the chapter

about the importance of matching the tool to the skillset that you expect the automation

developer to have and how you’re going to use it in your organization. And finally, you

probably want that all of the tools that you choose play well together. Finally, there’s one

more important aspect that you should consider: pricing and licensing.

Allegedly, there’s not much to say about pricing, as we all prefer to pay less than

more… And I’m not going to tell you that cheap is eventually expensive or other similar

clichés, as this is not the point here. In fact, the most significant price you’re going to pay

for the test automation project derives from the quality of the work that the automation

developers will do, and much less from all the other factors. However, there’s one

important aspect for pricing and licensing that you might not consider at the beginning of

a test automation project, but later it can have a significant impact on the way you use it:

When you have only one, or a few people that develop the automation, the price of

the tools that they use doesn’t play a significant role. But as mentioned in Chapter 1,

the automation is best used if you give the developers the ability to run the tests before

checking-in their changes. If you want to get to that at some point, you’d want that all

of the developers will use the automation tool! For that reason, you should seriously

consider using cheap tools or at least tools whose licenses structure won’t restrict you

when time comes to use it widely.

Chapter 3 People and Tools

63
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5_4

CHAPTER 4

Reaching Full Coverage
Before getting into the more concrete and interesting stuff of good practices for building

a reliable and maintainable test automation, let me set the stage by discussing the goal

that many people aim for: reaching full coverage.

Often, people that don’t have any background about test automation think that

within a few weeks to a few months, it will be possible to automate all of their manual test

cases, covering the entire functionality of their relatively complex product. Obviously, the

complexity of each product is different, and in some cases it’s possible to reach this goal,

but usually, after starting to implement a few test cases, they realize that it takes much

longer to build a single automated test case than what they originally thought, and the

goal of reaching full coverage looks way farther than they originally thought. There are

many reasons that can cause the first tests to take a lot of time, including lack of skills,

investing more time in the foundations, but also because like any software, there are

many nitty-gritty details that must be flushed out in order to make it work. Clearly, it may

be faster if they use recording techniques, but as we’ve already discussed previously,

the price of this saved time will most probably be paid in the form of reliability and

maintainability of the tests. However, if the automation is built wisely, then the pace of

adding the first tests will probably be pretty slow, and even though after a while it will

usually accelerate significantly, the goal of reaching full coverage still looks pretty far

away than the original plan. In many projects, reaching full coverage can take years!

This gap in expectations can cause a lot of frustration for management, and they can

eventually cancel the entire automation project if they run out of budget or can’t justify it.

But the gap in expectations is not the only problem. During the long period it takes

to reach full coverage, the development team doesn’t stand still. They keep adding more

and more features, and more and more test cases that needs to be automated to cover

these new features too! So now the questions become: Does adding new automatic tests

take more time than adding new features to the product, or less? Obviously, this can vary

from feature to feature, but we need to look at the overall picture. In many cases, test

64

automation projects start with very few automation developers compared to the number

of product developers, so it looks reasonable that the automation pace will be slower.

Also, in many cases when a test automation project starts, the automation developers

belong to a different team than the product developers (often the automation developers

belong to the QA team, as opposed to the development team). But why does it matter at

all to compare their progress pace?

Here’s why: if the pace of adding new automatic tests is slower than the pace in

which the product developers add new features, it means that the gap just gets bigger

and bigger over time. So, if for example, you currently have 10% coverage (regardless

of how you measure it), then a year from now, even though the number of tests will

increase, their percentage will be lower than 10%, and every subsequent year it will go

further down. This means that the relative value of the test automation will decrease over

time instead of increase. Therefore, if we don’t consider closing this gap by putting more

people to beef up the automation efforts, then we should reconsider the efforts we put

into the test automation in the first place!

This seems like a huge investment that will only show its real fruits in a few years,

when that automation will be able to replace all of the manual regressions tests. The

good news is that later in this chapter I’ll show you how you can gain value from the

automation pretty much from the beginning of the project, while gradually and slowly

closing the gap. If you focus on providing this value in the beginning, it will be easier and

even obvious to justify the investment over time.

�How Do You Measure Coverage?
Anyway, if we want to reach 100% coverage, we must ask ourselves first, how do we

measure it? 100% of what? The three most common metrics that attempt to answer this

question are:

	 1.	 Percentage of manual test cases covered by automation

	 2.	 Percentage of covered features

	 3.	 Percentage of code coverage

Let’s analyze the true meaning of each of these metrics:

Chapter 4 Reaching Full Coverage

65

�Percentage of Manual Test Cases Covered by Automation
If you convert the manual tests to automated tests as is, then you may be able to say that

you reached 100% when done. However, in this metric, 50% doesn’t mean that 50% of the

work was done, as some tests may be much simpler and shorter than others. In addition,

as discussed in detail in Chapter 2, manual tests rarely fit automation as is and they need

to be broken into a few tests, changed, and occasionally merged in order to be converted

into properly maintainable and reliable automated tests. And, of course, some tests, like

tests that verify that the user experience is appropriate, are not adequate for automation

whatsoever, and should remain manual.

But besides all of that, there’s a big assumption here. In order to use this metric in the

first place, we have to assume that the manual test scenarios actually cover 100% of what

there is to cover. Especially in legacy applications, this is not always true. This brings us

to the second metric.

�Percentage of Covered Features
Whether we’re talking about manual or automatic tests, how can we measure how much

of the functionality of the system, or features, they cover? Well, it depends on how you

count “features” and how do you measure a coverage of one feature. Suppose that you

have a list of features that were developed (e.g., in TFS, Jira, Excel, or any other way)

and a description of these features, and you also have a list of test cases that are related

to these features (probably managed using the same tool). In this case it’s easy to say

that any feature that doesn’t have any associated test, is not covered. However, does it

mean that those who have at least one associated test are covered? Probably not… The

case may be that one simple feature may have 10 comprehensive tests, but another very

complex feature may have only one minimalistic test…

In addition, these lists of features (however they are managed) rarely reflect the

true functionality accurately. They’re either written before the functionality was

implemented and document the intent of the customer or product manager, or they

were written a while after the fact in order to document what has been done. In the first

situation, it’s possible that during the implementation of the feature, decisions were

taken to change some things in the original plan due to conflicts or obstacles that were

encountered. Unless you’re in the medical business or other business with very strict

regulations, chances are that these decisions were made verbally and the document

wasn’t updated accordingly (maybe even the developer took the freedom to take

Chapter 4 Reaching Full Coverage

66

these decisions on his own). The second situation where the documentation is written

after the fact usually happens when the development has started without properly

managing any documentation, and one day someone decides that it’s needed. At that

point the documentation is written to explain how the system works. In this case the

documentation will probably reflect the real state of the system, but there’s no practical

way to ensure that it really covers everything that was developed! It’s possible that there

are some “hidden” features that the person who writes the documentation is not aware

of or simply forgot about, while real users may still use it.

So let’s look at a much more objective measurement: code coverage.

�Percentage of Code Coverage
Almost any programming language or runtime technology today (.Net, JVM, etc.) has

tools that allow us to intercept some pieces of executable code (DLLs, JAR, EXE, etc.) to

detect at runtime whether each line or segment of code was executed or not. After you

instrument the executable code, you can run the tests and get a report about which, and

how many lines of code were executed and which weren’t. This technique is known as

code coverage and is a very objective and accurate measurement. Most people think that

code coverage is good only for unit tests, as they call the instrumented modules directly.

But most code coverage tools can be used for any type of test, even manual! Usually the

instrumented module does not care from where it is called and which process hosts it.

Measuring code coverage as a metric is great, but what’s more important is the

analysis of the uncovered areas. Generally speaking, when you discover a line or an area

in the code that is not covered, you should either add new tests to cover it, or delete that

code if you come to the conclusion that it’s not being used (AKA “dead code”). Getting

even close to 100% code coverage builds great confidence that the tested code is pretty

close to being bug free! Having a high-code coverage provides a comfortable ground for

refactoring and improving the inner code quality.

However, code coverage also has its drawbacks:

	 1.	 While this measurement is pretty accurate, and it’s easy to

see the coverage percentage, it’s more difficult to get the true

meaning about the uncovered areas. In order to understand what

functionality is covered and which isn’t, you must dive deeply into

the code. This is not something that managers can usually reason

about.

Chapter 4 Reaching Full Coverage

67

	 2.	 There are few techniques that code coverage tools use in order

to measure code coverage, and each measures slightly different

things: some simply detect whether a line of code was executed

or not. But sometimes a single line can contain several code

segments that each may be executed independently from the

others. Here’s a simple example for this:

if (x > 10) DoOneThing() else DoAnotherThing();

So another measurement technique counts control-flow branches

rather than lines. There are a few other techniques and nuances

that some tools use, but the bottom line is that there can be

slightly different meanings to the exact “Percentage of code

coverage” depending on the technique that the tool uses.

	 3.	 Suppose that we’ve managed to get to 100% code coverage, and all

tests pass. It’s still doesn’t mean that we have no bugs. Don’t get

me wrong: it’s a wonderful place to be in! The chances to find bugs

in this situation is wonderfully low, but still it’s not zero. The fact

that all lines were executed doesn’t mean that they were executed

in all possible sequences and paths. Listing 4-1 is a simplified

example of such case. As you can grasp from this example, Test1

and Test2 cover all lines (and branches) of ClassUnderTest

as they exercise both the “then” part of the “if” statement in

ClassUnderTest.Foo, and also the “return 1” statement that gets

executed if the “if” condition is not met. Also, both of these tests

should pass. However, if we’d add a test that calls Foo(1), then

a DivideByZeroException will be thrown. If this is not what the

user expects, then we have a bug although we have 100% code

coverage. Another, even simpler example, is that the tests exercise

100% of the code, but some of them don’t verify the right thing,

or don’t verify anything at all! (i.e., they assert the wrong thing, or

have no Assert statement at all).

Chapter 4 Reaching Full Coverage

68

Listing 4-1.  Code with 100% code coverage that still has a bug in it

[TestClass]

public class Class1

{

 [TestMethod]

 public void Test1()

 {

 var result = ClassUnderTest.Foo(3);

 Assert.AreEqual(50, result);

 }

 [TestMethod]

 public void Test2()

 {

 var result = ClassUnderTest.Foo(-1);

 Assert.AreEqual(1, result);

 }

}

public class ClassUnderTest

{

 public static int Foo(int x)

 {

 if (x > 0)

 return 100 / (x - 1);

 return 1;

 }

}

	 4.	 Sometimes a programmer writes some lines of code that may be

executed only in extremely rare cases, usually external errors that

may be very hard to simulate in a lab environment. In addition,

there are cases (which are rare but do exist) that the code coverage

tool will consider a line of code as uncovered even though it’s not

reachable, yet cannot be deleted. For example, in Listing 4-2, some

Chapter 4 Reaching Full Coverage

69

tools will report the closing line in ClassUnderTest.Foo as well as

the closing brace of the try block in CheckIfFooThrewException

as uncovered. For these reasons it’s usually impractical to get to

100% code coverage.

Listing 4-2.  Uncovered lines that cannot be deleted

[TestClass]

public class CodeCoverageTests

{

 [TestMethod]

 public void FooWithTrueDoesNotThrow()

 {

 bool exceptionThrown = CheckIfFooThrewException();

 Assert.IsTrue(exceptionThrown);

 }

 private bool CheckIfFooThrewException()

 {

 bool exceptionThrown = false;

 try

 {

 ClassUnderTest.Foo();

 } // this line is not covered

 catch

 {

 exceptionThrown = true;

 }

 return exceptionThrown;

 }

}

public class ClassUnderTest

{

 public static void Foo()

 {

 ThrowException();

 } // this line is not covered

Chapter 4 Reaching Full Coverage

70

 private static void ThrowException()

 {

 throw new Exception("Boom!");

 }

}

CORRECTNESS PROVING

As the famous computer scientist Edsger Dijkstra wrote back in 1970: “Program testing can

be used to show the presence of bugs, but never to show their absence!”1 The reason for that

boils down to the notion that testing can only prove that specific examples work correctly, and

not that the program works correctly in all cases.

I recall from my Computer Sciences studies that we’ve been taught to prove the correctness

of algorithms or pieces of code. For example, we learned to prove that the Merge Sort

algorithm correctly sorts any array of any length, with any numbers as its elements (given

some assumptions). Unlike testing, this proof holds true for any valid input! Theoretically you

can prove the correctness of the entire code in your system, thus not having to use tests at all!

But clearly, for any real-world application, this is way impractical. Moreover, a proof is bound

to a specific implementation. Suppose that we’ve proven the correctness of one version of the

application, then any change we make to the code we must prove its correctness again (at

least for the module that has been changed), which is again, impractical.

To conclude: there’s no one right way to measure the coverage of the tests, and each

metric has its drawbacks. But if you add some common sense to any of these metrics,

you’ll be able to get a rough estimation about your progress in the journey to cover the

application with automated tests.

1�Dijkstra (1970). “Notes On Structured Programming” (EWD249), Section 3 (“On the Reliability of
Mechanisms”).

Chapter 4 Reaching Full Coverage

71

�Gaining Value Before Reaching Full Coverage
So by now we can agree that:

	 1.	 It will take long to close the gap and reach full coverage.

	 2.	 Even though it may take very long, it’s still important that we’ll be

minimizing the gap between new features and covered features

over time, and not increasing it.

In order to minimize this gap, you’d probably need more people writing tests, and

that costs money that probably your boss won’t be willing to pay. At least not yet. But

don’t worry: we can get high value from the automation long before closing the gap, and

if this value will be visible to your boss, convincing him to put more money on it will be

a no brainer. In order to understand what the value that we can gain while having only

a partial coverage, let’s first understand the full value that we will gain once we actually

reach the full coverage goal.

�What Do We Do When We Have Full Coverage?
Let’s suppose for a moment that we’ve got 100% coverage and all tests pass! What do

we do the morning after opening the champagne to celebrate the event (and after the

hangover wore off)?

If at this point we’ll declare the automation project “done” and lay off all of the

automation developers, then when new features will be added, the coverage percentage

will drop again below 100%, not because we have less automation, but because we now

have more features! So we’re not really done after all. Also, if one or more tests break due

to a change in the application, we want to ensure that the tests are immediately fixed.

What we really want to make sure the morning after we’ve reached 100% coverage of

passing tests is that we just keep this state. In fact, this is the ideal state that is described

in Chapter 2, in the section titled “Getting the Most Out of Test Automation.”

Keeping 100% coverage means that:

	 1.	 New tests must be developed for each new feature

	 2.	 Every change that breaks existing tests must be fixed ASAP

Chapter 4 Reaching Full Coverage

72

Also, in order to keep all the tests passing, when a test fails due to a real bug, then

this bug must also be fixed ASAP. And in this state, it’s pretty straightforward to do: after

all, this bug was caused by the most recent check-ins. At this stage, the developers have

the code fresh in their heads. Also, it will be ridiculous to declare that a user story is done

when it just broke something that previously worked. Therefore, it only makes sense to

simply fix it immediately.

Anyway, in terms of throughput, after we’ve reached 100% coverage, we must be able

to add tests faster than we’re adding new features in order to keep having 100% coverage.

If we should be able to add tests faster than adding features after we’ve reached 100%

coverage, let alone we must be able to do that long before!

�How Do We Get to 100% Coverage?
Let’s take one step backwards in time. Suppose that we started the automation project

a year ago, and at that time we had 100 test cases to cover (however we measure it).

Now, a year later, we’ve covered all of these 100 tests and all of them pass. Does it mean

that we now have 100% coverage? Only if 90% of the developers went on a year-long

vacation… (Sounds fun!), and the rest 10% stayed just to fix bugs (not fair!). What’s

more likely happened is that new features were added to the product throughout this

year, so now we have X more test cases to cover. If X is greater than 100 (let’s say 150),

then it will take us an additional 1.5 years to cover them too, but by the time we’ll do

it, we’ll have additional 225 uncovered tests… This is when the gap just gets bigger

and bigger. Figure 4-1 demonstrates this situation. If X is exactly 100 (i.e., exactly the

number of test cases that we’ve managed to automate last year), then next year we’ll

finish covering those new 100, having a total of 200 automated test cases, but then we’ll

probably have an additional 100, meaning that the gap remains constant. In this case we

can keep forever, like a pipeline, but we’ll never really get to 100% coverage. Figure 4-2

demonstrates this situation. So once again, if we want to get to 100% coverage, we must

develop and stabilize automated tests faster than new features are added, as shown in

Figure 4-3.

Chapter 4 Reaching Full Coverage

73

Project progression
(time)

Features in the
product

Covered features

Full coverage of initial
features

Figure 4-1.  Growing gap between features and coverage

Project progression
(time)

Features in the
product

Covered features

Full coverage of initial
features

Figure 4-2.  Constant gap between features and coverage

Chapter 4 Reaching Full Coverage

74

�Reversing the Wheel
One important thing to note is that the further the development of the automated tests

from the time that the functionality was developed, the harder and less efficient it is. The

person who developed the functionality may have left the company, moved to another

job, or just forgot most of the details. At best, he’s simply too busy on the next task to help

you with some “negligible” details that you need in order to implement your automated

test. If, for example, you need him to make some changes that should take a few hours,

in order to make the functionality more testable by the automation, then it will probably

take some time for him until he finds the time to help you. Sometimes you may even find

bugs that will prevent you from completing the automated test, but those probably won’t

be critical bugs in the eyes of a user, so it may take few weeks or even months before

someone fixes it. We’ll discuss this problem and its common solutions in greater detail in

the next chapter.

By contrast, when an automated test is developed hand in hand with the

development of the functionality that it tests, then the collaboration between the

application developer and the automated developer will be much better, yielding a

better automation in much less time! But this also have other, even more important

benefits:

Project progression
(time)

Features in the
product

Covered features

Full coverage of initial
features

Full coverage
reached!

Figure 4-3.  Closing the gap between features and coverage

Chapter 4 Reaching Full Coverage

75

	 1.	 Because it’s much easier to test smaller and simpler components,

than monolithic, “spaghetti” code, designing for testability implies

design for modularity, extensibility, and reuse. Developing the

tests and the functionality together forces these design traits,

which eventually benefits the overall design of the system

	 2.	 Having to design and implement an automated test requires

that all of the relevant details will be well-defined and clear. This

often raises questions and issues about the expected behavior

of the feature and may find bugs even before the feature was

implemented!

	 3.	 Most bugs in the implementation of the new feature will be caught

and fixed by the application developer before he even checked-in

his code! While it is highly recommended that the manual tester

will still verify that the functionality behaves correctly at least once

(providing one more safety net to verify that the automated test

is correct!), the chances that he’ll find trivial bugs are very low,

which saves precious time and headache of the common ritual

of finding the bugs, reporting, investigating, triaging, fixing and

reverifying them. In fact, the manual tester can focus more on

exploratory testing that will probably find the less obvious bugs

Note O bviously, developing the automated test together with the tested
functionality may be even easier if the same developer implements the
functionality and its automated test together. This makes the process even more
efficient! Of course, in this case there’s less control and feedback about the work
of the developer, but this concern can be addressed by other techniques like pair-
programming, code reviews, having the manual tester review the test case before
the implementation of the automated test, etc. In general, the effectiveness of
doing so depends mainly on the specific person/s involved and the organizational
culture. See the previous chapter for a more detailed discussion about the pros and
cons of the different organizational patterns.

Chapter 4 Reaching Full Coverage

76

So if it’s so much more efficient and valuable to develop the automated tests together

with the tested functionality, or at least close to it, why wait for full coverage to start

doing it?! Let’s get back for a moment to the case where the pace of developing a new

feature is exactly the same as the pace of adding new automated test cases (the case

depicted in Figure 4-2). Because we’ll always have a gap of 100 test cases, we can decide

at any point to skip the remaining 100 test cases and jump directly to the ones that are

now being developed. At this point on we’ll act exactly as we would act if we’ve reached

full coverage, except that we’ll always have 100 unautomated test cases that we’ll need

to test manually. But if the gap was constantly 100 test cases, then this would be the case

anyway! It’s just that instead of manually testing the last 100 test cases, now we’re always

testing the same 100 test cases manually and keep automating the new ones. But this is

better, because as explained above, developing the automated tests in conjunction with

the feature is much more efficient.

Note  Developing and running tests prior, or in conjunction with the tested
functionality is called progression testing, as opposed to regression testing,
which is what we normally do when we develop and run the tests after the tested
functionality is completed. Sometimes also referred to as acceptance tests, after
these tests pass against the latest build, they join the suite of regression tests in
the next builds and versions of the product.

If developing new automated test cases is faster than functionality anyway (like

depicted in Figure 4-3), then we can decide at any moment to start developing

progression tests, and complete the remaining regression tests later, in between the

development of the progression tests. Because we know we develop tests faster than we

develop product functionality, we can be assured that we’ll have enough time to close

the gap of the regression tests in between the development of the progression ones.

Theoretically, we should get to the point of full coverage in exactly the same time as if we

developed all the tests in a regression fashion, because we’re just changing the order that

we develop the tests! Moreover, because developing progression tests is more efficient

than regression, then we’ll probably even reach this point sooner! Figures 4-4 and 4-5

together demonstrate that the order of which the tests are being developed does not

change the actual time it takes to reach full coverage

Chapter 4 Reaching Full Coverage

77

�My Road Map to Successful Automation Project
So if you’re following me up to this point, then we can conclude that it makes more

sense to start working on progression test automation before reaching full coverage on

regression. But now two questions arise:

	 1.	 What’s the right time to start working on progression tests?

	 2.	 How to prioritize the work on regression tests?

Project progression
(time)

Features in the
product

Covered features

100% coverage
reached

Start of
development

Start of test
automation

development

Figure 4-4.  Developing regression tests first

Project progression
(time)

Features in the
product

Covered features

100% coverage
reached

Start of
development

Start of test
automation

development

Regression tests Progression tests

Figure 4-5.  Developing progression tests first

Chapter 4 Reaching Full Coverage

78

�When to Start Working on Progression
From what I told you so far, you’d probably think that I encourage you to start working

on progression from day one, before even starting developing regression tests. Well,

it may be possible, but in practice that’s not what I usually do, or recommend. At the

beginning of a new test automation project, the investment is higher than the return. You

need to build a lot of infrastructure in order to make the first tests work, which would

probably take more time than it would take to implement the functionality of the user

story. This is true especially if the user story is only a small improvement over an existing

feature. In this case you would still need to build most of the infrastructure needed to

test the entire scenario, even though the user story is only about that small improvement.

Therefore, my recommendation is to start with a sanity suite of tests, which verifies the

basic functionality of the system and its main features. Building this suite will help you

build and stabilize the infrastructure of the main features in the application. During that

period, you’ll also gain some experience and insights about test automation in general

and about test automation in the context of your specific application. In addition, you

should use this time to integrate the automated tests into the CI tools and development

processes. See Chapter 15 for more details on how to integrate the tests into the CI

process.

While developing the sanity suite, constantly make sure that all the tests pass, (as

long as there’s no bug in the application that influence your tests). If needed, make

changes to your tests and/or infrastructure to adopt to any changes to the product. In

case a test fails due to a bug in the application, strive to get it fixed as quickly as possible

and don’t settle just on opening a bug. If you don’t get a buy-in for that at this point, just

send daily reports about the failing tests and their corresponding bugs, but emphasize

the time it takes you to routinely investigate the same failure day after day. In addition,

make sure that the tests work on any machine, as you’d soon want to give the developers

the option to run the tests on their machines. You should ensure that it’s easy to diagnose

failures and of course strive to keep your tests easy to maintain. See Part II on writing

maintainable tests and infrastructure, Chapter 13 on diagnosing failures, and Chapter 15

for some tips on stabilizing the tests.

The moment the sanity suite is ready, is part of the CI, and is stable, you’re ready to

start working on progression. If there are still tests that fail due to known product bugs,

then these bugs should be fixed first. Obviously, you need the buy-in for that move from

relevant stakeholders in the organization (especially dev leads and dev manager), and

it has to be done in appropriate timing and not arbitrarily. Especially if the release cycle

Chapter 4 Reaching Full Coverage

79

is still only every few months, it’s important to find the right timing, to avoid stressful

periods in which managers are less tolerant to experiments and failures. If you’re the

development manager then it’s simply your call. If not, you’d probably need to do some

groundwork before getting the consent of the development team leaders. One simpler

sell can be to start by developing test for every bug that is being fixed, and only later

proceed to actual progression tests. See Chapter 15 on how to gradually change the

culture to support developing tests in conjunction with development.

Once you start developing tests for new user stories, the development of the tests

should be done very closely with the developers who implement the user story, and

the user story should only be considered as “done” only when all the tests (including

the new ones) pass. See Chapter 16 on the ATDD methodology which emphasizes

implementing the tests even before the tested functionality.

�Prioritizing the Work to Fill the Regression Gap
From that point on, it’s pretty easy to keep the tests stable. The sanity suite ensures

that if a developer broke something critical, then it is fixed ASAP, before manual testers

takes the version for a spin. The progression tests (which gradually become regression)

ensures that the newly developed features continue to work.

Now you need to continue thinking about the rest of the regression tests. And there’s

a lot… So how do we decide which ones to automated first? My general advice here is

to prioritize according to their value and the risk from not testing them often. Here are

some guidelines:

	 1.	 First and foremost, you should focus on the features that bring

the most value to the business and to the customers. Finding and

preventing bugs in these features directly affects the revenue of

the product! However, this guideline alone is not enough. You

should weigh it against the next guidelines in order to decide on

the priority of covering this feature.

	 2.	 If a component or a feature is planned to be replaced soon, having

its entire behavior changed, then it’s not worth to create tests for

it at this point. Just wait until the new behavior will be developed,

and then develop the new tests along with it.

Chapter 4 Reaching Full Coverage

80

	 3.	 If a feature is very stable and there are no plans to touch it soon,

then it’s also not very cost effective to cover it with automation.

There’s a very small risk that something will somehow affect it.

This is especially true for legacy components, which even though

may be very critical in the system, no one dares to touch their

code. Looking for something with a higher risk will yield a higher

value sooner.

	 4.	 If a feature is completed and works correctly, but there’s a plan to

replace its underlying technology, or to do a massive refactoring

to its internal structure, then this is a great candidate for covering

with test automation. The tests should not be changed when the

underlying technology or internal structure change, and should

continue to pass afterward, ensuring that the exiting behavior was

preserved.

	 5.	 Similar to the above, improving the performance of a feature

usually involves a change to the internal structure while

preserving the external functionality. Similarly, in this case, the

tests should continue to pass after the changes just like they were

passing before.

	 6.	 Consider to prefer covering a feature that breaks a lot. However,

note that a feature that breaks a lot is a sign for a problematic

design. For this reason, this feature has a high potential to be a

candidate either for refactoring (in which case the automation

will be very valuable), or for a complete rewrite (in which the

automation will probably need to be rewritten too…).

In addition to covering existing features, for every bug found not by the automation,

before this bug is being fixed, an automated test should be written to reproduce it. Only

when an automatic test successfully reproduces the bug, the bug should be fixed. This

way we ensure that no bug will ever hit us twice.

If you follow these guidelines, you manage the risk and your progress in an efficient

way. You can easily keep your automation results green and catch most of the trivial

bugs very early. On top of that, you gradually cover more and more areas of regression

tests. As discussed in Chapter 2, test automation won’t replace the manual testers

completely, but the first condition to stop performing the tedious manual regression

Chapter 4 Reaching Full Coverage

81

tests on a feature is that the test automation of that feature can be trusted! As long as

the automation is not reliable, it cannot replace the manual tests whatsoever. If you try

to get to 100% regression before putting it in CI, you’d probably have a very hard time

stabilizing the tests and gain trust in them. The described road map makes it easy to

keep the tests stable from the start, and therefore make them much more trustworthy.

Because of this, you can gradually reduce the manual regression testing efforts of

covered features, freeing the manual testers to perform more valuable exploratory

testing.

Chapter 4 Reaching Full Coverage

83
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5_5

CHAPTER 5

Business Processes
As you probably realized from the previous chapters, a test automation project can’t

stand on its own. Its life cycle is tightly related to the life cycle of the application that

it tests. Like any software project, its existence is only relevant if someone uses it;

otherwise it’s worthless. In the case of test automation, the “user” is actually the entire

development team. It may seem like the main user is the QA manager or Dev manager,

but in fact, they’re not using it themselves for their own good. They may require the

fancy reports and tell you what they want you to do (and sometimes even how…), but

as we discussed in Chapter 1, one of the principle advantages of test automation is

that it helps the team detect and fix the bugs more quickly. But for this to happen, the

team needs to learn how to use it effectively, which usually requires some sort of work

processes. The processes can be less strict if the team is small and everyone simply

understands the value behind such processes. But whether these processes are strictly

enforced by management or the team understands their value, these processes need to

be followed in order to allow proper collaboration and to get the maximal value from the

automation.

�Running the Tests on a Regular Basis
As mentioned before, if you only run the tests rarely on a code base that developers

work on, many tests will likely fail due to simple changes in the product. In this case, it

will take a long time to investigate the failures to determine which faults are bugs in the

application, and which are caused by valid changes. Moreover, when many tests fail due

to valid changes, it creates the impression that the results, and the test automation as a

whole, are unreliable.

Therefore, the first thing that you should care about is that the tests will run regularly,

and failures that occur as a result of legitimate changes are handled ASAP.

84

�The Simplest Approach
Even before setting up a formal build process that runs the tests automatically and

reports the results, as soon as you have a few tests that are ready, you should run all of

the completed tests at least once a day to ensure that they’re stable. If you get a new

build from developers more rarely than once a day, then you should expect less failures

between those builds. However, tests can still fail due to the following:

•	 A bug in the test;

•	 An environmental issue, like issues related to network, hardware, the

operating system, and other infrastructure.

•	 A bug in the product that does not reproduce consistently.

Whatever the fault is, you should investigate and handle it quickly and thoroughly

to ensure that the automation is stable and reliable (See Chapter 13 for more details

on investigating failure tests). If fixing the issues is beyond your reach (i.e., a bug in the

product or an environmental issue) and you cannot push to fix these issues quickly

and/or thoroughly, then at least report this issue and emphasize its importance to the

automation stability. See later in this chapter more specific guidelines and practices to

handle these cases from a process perspective.

However, if you get a build more often than once a day (or in case you still don’t have

an automatic build process, you can get the developers’ changes by syncing and building

it locally on your machine), then in addition to the above-mentioned reasons for failures,

failures can also occur due to:

•	 A regression bug in the product: that is, a developer checked-in

code that has a bug in a flow that worked before and should not have

changed.

•	 A legit change in the product that changed the behavior that one or

more tests expect: i.e., the tests became outdated due to this change.

Once again, these failures should be investigated and handled ASAP. In case of a legit

change, you must update your tests to reflect the change.

Chapter 5 Business Processes

85

�Nightly Runs
Running the tests yourself on your local machine once a day is nice, but it is more error

prone:

•	 You need to remember to run the tests every day.

•	 You may be in the middle of some changes or developing a new test,

and your code may not compile or work correctly.

•	 You may have specific conditions in your local machine that may not

be the same on others.

Therefore, we should automate the process of running the tests daily too. A very

common approach is to run the tests every night automatically using an automated build

process. The main reason to run it at night is to maximize the time for investigating the

failures before the next run, especially if the total length of the run is a few hours. Similar

to the previous approach, someone has to investigate the failures the next morning and

handle them appropriately. Fixing any issues that are caused by the automation and

any issues caused by valid changes to the product should be done by the automation

developer ASAP. For product bugs, at the minimum you have to open a bug report in

your bug tracking system (e.g., TFS, Jira).

QA or Dev managers often request getting an automatic report of the nightly tests

results. While this is pretty common, these managers rarely have something meaningful

and useful to do with them, because failure information tends to be too technical, and

only after some investigation one can get an idea of the fault, its severity, and the means

to fix it. By contrast, a manual report, created after investigating the results and reaching

some more meaningful conclusions is much more valuable for them. See Chapter 15 for

more information about this topic.

Instead of running the tests only once every night, given that the entire test run

doesn’t take too long, you can make the automated tests run on every check-in, which

makes the CI build much more valuable. Even though it seems like a very small change

from a nightly run (and technically speaking, that’s true), in order for it to be effective,

it also requires some important changes to the work processes. I’ll explain the required

changes to the work processes later in this chapter, after building the ground for it with

some more common concerns and approaches.

Chapter 5 Business Processes

86

�Handling Bugs That Are Found by the Automation
Traditionally, when a tester encounters a bug, he reports it in the team’s bug tracking

system (e.g., TFS or Jira) and leaves it there until someone decides that its priority is high

enough in order to fix it. After it’s fixed, he only has to verify that it’s fixed. Due to the

differences between manual tests and test automation (which were discussed in Chapter

2), this is fine for tests that are found in manual tests, but not as much for automated

ones. I’ll explain why.

One of the major problems of test automation that is mostly overlooked is that of the

medium severity bugs. It is so overlooked that most people don’t see it as a problem

at all. But in my opinion, it impairs building trust in the automation, wastes precious

time, and overall hurts the value of the automation. Why am I clinging just to medium

severity bugs? Aren’t high severity bugs more severe? The thing is that high severity bugs

are usually fixed very quickly. By the following nightly run, they’ll probably be fixed.

However, when medium severity bugs cause automated tests to fail, it may take weeks,

months, and sometimes forever until they’ll be fixed. During this time there are three

common approaches to deal with in regard to the automated tests. Each one of them has

its drawbacks though…

�Keep the Failing Tests
The first option, which is the most common one, is to keep the tests that fail due to the

known bugs failing until they’re fixed. The upside of doing so is that the test results seem

to reflect the true picture about the quality of the software. However, there are a few

downsides to it as well:

•	 It forces that someone (usually the automation developer) will

reinvestigate the same failure again and again every morning. The

fact that a particular test failed both yesterday and today doesn’t

necessarily mean that it fails for the same cause. If a test has five steps

in it, and yesterday it failed on step 3, it could be that today there’s

another bug (or even a legitimate change) that causes step 1 or 2 to

fail. If you don’t investigate each failure over and over again each

morning, then you might miss a bug! When such bugs add up, the

time it takes to investigate all the failures each morning can become

a trouble and can erode from the time supposed to be dedicated for

writing more tests.

Chapter 5 Business Processes

87

Note I f the time it takes to investigate all the failures exceeds one working day,
then there’s no point running the next nightly run, as you become the bottleneck of
the process! However, if this situation happens frequently, it can hint to many other
significant problems, like bad reports, unstable environments, inadequate design,
bad time management, and more…

•	 Unless all of those bugs are fixed, which is pretty unlikely, the overall

result of each test run will always be “failed.” In most cases, there’s

more than one bug that cause tests to fail, and for quite some people

I talked to, having around 10%–20% failing tests was considered a

normal state. In this case, it’s very difficult to notice a new bug from

the old ones. The difference between 11 failing tests and 10 failing

tests is much less noticeable than the difference between 1 failing test

and 0 failing tests!

•	 Often, the bug causes the test to fail not on its final verification

(assertion), which is the main purpose of that test, but rather in one

of the prior steps. This means that the test doesn’t even test what it’s

supposed to, but nevertheless you can’t use this test until the bug

is fixed. If a manual tester would perform the test, he’d probably be

able to bypass the bug and continue to check the main thing, but the

automated tests simply can’t do that automatically. This means that

the automation can miss additional bugs this way, which you won’t

be able to find until the first one was fixed.

•	 When the original bug is finally fixed, the test may still fail on

legitimate changes that took place while the bug was active. Because

it may have been a long period of time, it may be difficult to analyze

the failure and find how to fix it, rather than it would have been if

those changes were identified as soon as they were done. For this

reason, often it’s said that a code that doesn’t get executed for a long

time “rots.”

•	 On top of the previous problems, often the same bug causes more

than one tests to fail. On one hand, if it causes too many tests to fail,

then you’d probably manage to get its priority high enough to be fixed

Chapter 5 Business Processes

88

quickly. On the other hand, if it causes only a few tests to fail, then

it might still be ignored for a long period. This means that all of the

above drawbacks should be multiplied not only for every bug, but for

every test that this bug affects, which may be a few times more.

�Exclude the Failing Tests
The second approach is to exclude tests that fail due to known bugs from the regular test

runs until these bugs are fixed. This will allow you to notice new bugs more easily and

relieve the need to reinvestigate all the results each day. Anyway, the bugs are managed

in the bug tracking system so you don’t have to worry about it every day. However, this

approach still suffers from some of the drawbacks of the previous approach, plus a few of

its own:

•	 Similar to the first approach, if the bug causes the test to fail at one of

the middle steps, as opposed to the final verification of the test, you

may be missing bugs.

•	 Also similar to the first approach, if the bug hits more than one test,

then you’re actually giving up on all of these tests.

•	 While in the first approach it was hard to notice if the reason of the

failure changed between yesterday and today (e.g., yesterday it failed

on step 3 and today on step 2), in this approach you can’t even see

it because the test doesn’t run at all, which means that you can miss

even more bugs!

•	 While in the first approach the steps that follow the failing step could

rot, in this approach the entire test can rot.

•	 On the practical side, it’s difficult to track which tests are excluded

and due to which bug, and to remember to include them back

after the bug is fixed. Automating this process may be possible, but

because the test can “rot,” returning it automatically to the test run

without first ensuring that the test passes is not recommended. In

addition, I don’t know of any commercial bug tracking tool that does

this out of the box.

Chapter 5 Business Processes

89

�Creating Work-Arounds in the Test
The third approach is relevant mainly when a bug affects an intermediate step in the test,

and not the entire essence of the test. It is usually used only if a single low-priority bug

affects many tests. In this approach a work-around is performed in the test in order to

allow it to continue its execution and verify the main essence of the test.

This approach resolves many of the previous issues:

•	 The overall result is passed so it’s easy to notice and investigate new

failures.

•	 It maintains the main essence of each test and lowers the chances to

miss bugs.

•	 If the problem affects many tests, and the automation is designed

properly, then the work-around should be in one place.

•	 It prevents any of the code from rotting.

But obviously, it has its own downsides as well:

•	 It hides the fact that there’s a problem! There’s probably at least one

test (or there should be) whose essence is to verify the problematic

step. If the work-around is applied globally, then this test will pass

only due to the work-around without actually testing what it’s

supposed to.

•	 Work-arounds typically make the code of the automation more

complicated and more difficult to maintain.

•	 If managing excluded tests and remembering to return them to the

cycle is difficult, then tracking the work-arounds and remembering to

remove them when the bug is fixed is nearly impossible!

•	 Tests that fail due to bugs in the functionality that they directly

verify, are normally considered valuable. But usually tests that fail

due to medium- or low-severity bugs in a step that only sets up the

preconditions for the test, is perceived as a false positive. In this case

the most natural solution would be to create a work-around instead

of “wasting” the time involved in opening and managing bugs that do

not affect the sheer essence of the tests. This causes many bugs to be

completely ignored.

Chapter 5 Business Processes

90

AN OPTIMAL APPROACH?

I once tried to come up with an optimal approach that addresses most of the downsides of the

three approaches described above, which are supposed to work like this:

•	 When opening a bug that affects automated tests, it should be associated

with the failing tests, together with a substring of the failure message or

stack-trace, which serves as a “differential diagnosis” for this particular

failure. In subsequent runs, this substring will be used to automatically identify

whether the test failed on the same problem and on a different one. For

example, if the failure manifests itself with a message such as: “Error: the file

Temp\152243423\Data.Info cannot be found”, (where 152243423 is a number

that can change at each run), then the substring “Data.Info cannot be found”

would probably be a valid differential diagnosis for the failure, while “Error”,

“152243423” or the complete message won’t serve that purpose well because

they are either too generic or too specific to the particular occurrence.

•	 At the end of each run a report is automatically generated. The report generator

queries the bugs tracking system and also the substrings that are associated

with those bugs. If it identifies the corresponding substring in the error message,

then it marks this test in yellow instead of in red to indicate that it’s a known

bug. This way it’s easy to different regressions (red) from known bugs (yellow).

•	 In addition, if a test that is associated with a bug, passes, then it is marked in a

different color (blue) to indicate that the bug should probably be closed.

Note: this technique can even be improved by using regular expressions instead of substrings,

though it also makes it more difficult to use.

Anyway, I’m not aware of any commercial product that help you do that. I once managed to

implement something similar (tailor made for the customer), but unfortunately most people

didn’t understand how to use it properly. Maybe it was only a matter of training…

Anyway, I still believe that treating any automation bug as a critical bug would be a better

approach, as I’ll describe shortly.

Chapter 5 Business Processes

91

�Treating All Automation Failures as Critical Bugs
While each of the above approaches has its benefits and for each of them there are cases

where it’s most appropriate, due to the mentioned drawbacks, I generally recommend

on a fourth approach. This fourth approach is to treat each bug that cause automated

tests to fail as a critical bug, even if the effect on the final user is only medium or low.

This means that each such bug must be fixed until the next test cycle (e.g., next nightly

run). This is the only way to keep the automation suite clearly and promptly alert us
when new regression bugs are introduced (without compromising the coverage). At

first, it may look like a very extreme and expensive approach, but if we’ll look at it from a

different angle, you’ll see that it’s very realistic:

•	 Given that all tests passed on the few previous runs, a new failure

can only be related to a recent change. Because there should only be

a limited set of changes between each run, it should be very easy to

identify which change caused it.

•	 It’s much easier and quicker to fix changes that were made recently

than it is to fix bugs related to old changes. If they’re going to be fixed

at some point anyway, it’s much cheaper to fix them soon.

•	 The time wasted by investigating the same failures again and again,

or to filter the known failures from the new ones, is also costly.

•	 In the worst case, reverting only the latest changes will surely fix

the problem. Most users would probably be more annoyed if an

existing feature that they know and love suddenly stops working as

they expect, than if the delivery of a new feature would be slightly

delayed. But frankly, this should very rarely happen – in most cases

the developers will be able to fix the bug quickly.

Running the tests every night and engaging the developers and management to keep

all the tests green by fixing every issue at the same day is great. This really allows us to

improve the quality of the product, increase the coverage, and encourage refactoring to

allow the system to be maintainable over a long period of time.

But running it only every 24 hours is also not the best option. 24 hours can mean

many check-ins, especially if it’s a large team. In addition, 24 hours after a developer

checked in a change, he’s usually already immersed on a completely different task.

Doing the context switch back to the previous change can be time consuming and

Chapter 5 Business Processes

92

confusing, especially over weekends, where “24 hours” are actually 72 hours… And this is

before we mention what happens when the developer who is responsible for the broken

test is just went on a week-long vacation…

�Continuous Integration
Most developers are familiar with the term “Continuous Integration” (or CI in short). As

already mentioned in Chapter 2, this term means that before every check-in the code is

automatically being built and that the automatic tests verify it. Only if everything passes,

then the changes are being checked in. The process that builds the code and runs the

tests typically runs on one or more dedicated build servers, and not on the developer’s

machine. This allows a centralized control over this process, and also frees up the

developer’s machine to do other stuff while the process runs.

SMALL VARIATIONS ON CI

While nowadays the above description of a CI is the most typical one, there are other

variations to this. These variations were more common in the past, though they are still pretty

common these days too. As they are also simpler, sometimes they are used in smaller teams.

	1.	I nstead of having the build and tests run before the changes enter the main

source control repository, they are being run after. Because this way it’s not

possible to prevent the check-in, the build process (which includes the build

and the tests together) only reports whether the process passed or failed.

Often these results are also being sent automatically to the relevant people via

email, especially the developer who performed the check-in. The recommended

practice is that whenever a build fails, that developer should fix the failure as

fast as possible before anyone else is allowed to check in other changes.

	2.	T he second variation is usually used when the team is very small, or when no

one has the skills to install and configure a build server. While this variation

is generally less preferred as it relies more on self-discipline rather than on

tools, it still holds the essence and the idea behind CI. In this variation, every

developer is responsible for getting the latest sources, builds and runs the tests

locally, and only if everything passes he proceeds to check in.

Chapter 5 Business Processes

93

Moving from a nightly run to CI may be somewhat challenging. But eventually the

benefits outcomes those challenges. See Chapter 15 for more information about how to

make this transition properly.

�Acceptance Test Driven Development (ATDD)
While CI answers the questions about who, when and how should run the tests, it

doesn’t answer the questions about who, when, and how should write the tests. In

Chapter 3 we already covered the question “who should implement the tests.” Also,

in Chapters 2 and 4 we discussed why it’s better to write the tests alongside the

development and not later. Finally, in Chapter 16 we’ll discuss this topic in much greater

depth. But as this topic is related to business processes, I must at least give you an

overview about it here.

Acceptance Test Driven Development (ATDD), which has a few small variations

known as Behavior Driven Development (BDD) and Specification by Example (SbE) is a

methodology that is based on the following concepts:

	 1.	 For each User Story, the team defines together with the product

owner one or few scenarios that will demonstrate its intended use

after it will be implemented. These scenarios become both the

acceptance criteria of the user story, as well as the flows of the tests

that will verify the implementation.

	 2.	 The tests are implemented before the product code. Implementing

the tests may surface additional questions and gaps in the

definition of the user story. It also forces the team to start planning

the product code in a testable manner. Obviously, the tests cannot

pass at this stage (if they do, it indicates a problem in the test!).

	 3.	 The developers implement the code in order to make the tests

pass. They shouldn’t develop any functionality that is beyond the

scope of the tests. They must run all of the existing tests also to

make sure that they didn’t break anything.

	 4.	 Only when the tests pass, the user story is considered “done,” and

it can be demonstrated to the product owner, customer, or even

pushed to production.

Chapter 5 Business Processes

94

Among the benefits of this technique is that it ensures that testers and automation

developers are involved at the earliest stage possible, allowing them to really influence

the quality of the product. In addition, if this process is followed since the beginning

of the project, then it means that the tests cover all the defined functionality (that is

relevant to be tested by automation), and all of them pass! As mentioned before, it allows

the developers to refactor the product code as often and as much as they feel like, as

they can easily ensure that they didn’t break anything. As a result, it increases the inner

quality of the code and allows adding new features faster and safely.

When introducing this approach in the middle of a project, many of its benefits are

less obvious, but it’s still valuable at least in the long run. See Chapter 16 for guidelines

that will help you introduce it in the middle of a project.

�Continuous Delivery and Continuous Deployment
The subject of Continuous Integration that was discussed earlier is not complete without

expanding the subject to continuous delivery and continuous deployment.

Until about 10 years ago, delivering a new version of most commercial software was

a huge effort. It involved manufacturing of physical CD ROM discs, with an elegant case

and printed graphics, and often a printed user manual. Adding a new feature in the last

moment before shipment could mean that all of the printed material and CDs themselves

had to be reprinted. Not to mention the supply chain management overhead…

Today, most commercial software can be downloaded from the Internet, with

the user manual being a bunch of HTML pages or another downloadable PDF file.

This, together with automated tests, removes most of the obstacles of shipping new

changes very rapidly. Naturally, web applications are even easier to update. Most

internal software projects are also web applications or are updatable via a centralized

deployment and distribution system.

However, in order to really make the deployment process seamless, it needs to be

automated as well. Having manual steps in the deployment process both increases the

risk for mistakes and takes longer to complete. If you plan your test automation to be run

in isolated environments, as you should probably do also for CI, then it also forces you to

automate the deployment process, which can then be used to more easily automate the

process of deploying new versions to production. See Chapter 7 for more information

about isolation, and Chapter 15 for integrating the tests into the CI. Automating the

entire deployment process is called Continuous Deployment.

Chapter 5 Business Processes

95

While technically it’s possible to automate the entire process, many companies

prefer to keep the final decision about what goes into production and when, as a manual

business decision. In this case they usually want the new version to first be deployed

to a production-like environment in order to perform additional manual tests and

validations. So, in this case, the entire process is automated, but the final step requires a

manual intervention. This is called Continuous Delivery.

Continuous Deployment is more suitable for companies that provide SaaS1 and

other Web applications that are not mission critical (like Facebook, for example). These

companies can accommodate having small glitches here and there for a small portion of

their users, as long as these can be fixed very fast. But mission-critical applications, like

medical applications, which cannot bare even the smallest glitch, or domains in which

applying a fix can take a long time, like in avionic embedded systems, are most likely to

choose a Continues Delivery approach.

Another approach that has started in the largest web companies, but gradually make

its way to the mainstream, is that individual features are validated in production. Each

feature is first deployed only in a small scale, and gradually as it proves to be valuable

and reliable, it is delivered to all the customers. This approach is called Canary Release

or Gradual Rollout.

�Canary Releases
Highly scalable and highly available web applications (e.g., Facebook, Twitter, Google,

etc., but even smaller companies) are distributed by nature and cannot be deployed all

at once in the first place. Because there are many servers (often referred to as Nodes)

running the same application behind a load balancer, each of them must be updatable

independently of the others. If the application is not mission critical, it can be deployed

first only to one node, and route only a small portion of the traffic to it, even before it’s

thoroughly tested. This newly updated node should be highly monitored to see if there

are any problems or anomalies that can indicate that there’s some problem. If something

does go wrong, then this node can be taken down until the bug is fixed. If everything

goes well, then it’s possible to continue to gradually deploy the new version to more and

more nodes. In fact, as this approach is normally applied when the nodes are virtual

machines (VM) or containers (which are, in essence, super lightweight and modular

1�SaaS stands for Software as a Service. These are applications (typically Web or mobile
applications) that their operators charge for their usage.

Chapter 5 Business Processes

96

VMs), then instead of updating existing VMs, new VMs are gradually created and

connected to the load balancer, and old ones are gradually destroyed.

In addition, instead of using just the load balancer to randomly choose the clients

that will get the new version, it’s possible to provide one URL to regular public clients,

another URL to beta customers, and yet another URL for internal users. Each URL is

directed to a different load balancer. When a new version is first deployed to a new VM,

this new VM is first added to the load balancer of the internal users. When confidence

is built around these changes (may be after running some manual tests as well), it is

removed from the first load balancer and added to the second one that serves the beta

customers. If after some beta period no special problems are revealed, then it can be

moved further on to the load balancer that serves the public customers.

In order to be able to deploy individual features separately, the architecture of the

application should be made of many, very small components that interact with one

another, usually asynchronously. This kind of architecture is called Micro-Services

architecture.2 See the next chapter about the relationships between test automation and

the architecture of the SUT.

�A/B Testing

Another related concept that is often used in large-scale web application providers

is called A/B Testing. “A/B Testing” is a term borrowed from marketing and business

intelligence, where you give a group of potential customers one variant of a product

(variant “A”), and another group a variant of the same product that only differs in one

property (variant “B”). Then the marketing data is analyzed to determine whether this

property increases the sales of the product or not.

A similar idea can be applied to web applications: In order to validate whether one

variant of a feature is better than another, the two variants are being developed, and

deployed to different sets of nodes. These two variants are monitored and compared

in order to analyze which one of them the users use more often, and whether it have

a positive impact on some business KPIs. In case of ecommerce or SaaS sites, this is

usually translated directly to increased revenue!

2�For an in-depth description of micro-services architecture, I recommend to read Martin Fowler’s
article at: https://martinfowler.com/articles/microservices.html

Chapter 5 Business Processes

https://martinfowler.com/articles/microservices.html

97

�Summary
As you can see, test automation does not stand on its own. Its value comes from the

way it is being used. If it only supports testing in the traditional way, then its value is

pretty limited. But if is used as part of the entire development and the overall business

processes, then it can even directly impact revenue. Remember that A/B testing

cannot be achieved without Continuous Delivery or at least Continuous Deployment,

Continuous Delivery cannot be achieved without Continuous Integration, and

Continuous Integration cannot be achieved without Test Automation.

Chapter 5 Business Processes

99
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5_6

CHAPTER 6

Test Automation
and Architecture
Because the vast majority of manual tests is done through the UI, and on a complete

system that attempts to mimic the production environment as much as possible, it

is often assumed that this is also the right approach for automated tests. However, as

we already discussed in Chapter 2, there are different considerations for manual tests

and for automated ones. In this chapter we’ll discuss some strategic considerations

about the architecture of the test automation. As we’ll see, the considerations about the

architecture of the test automation are tightly related to the architecture of the SUT.

�Test Architecture Considerations
Like any other software project, test automation should also have some kind of

architecture. The architecture of a software system typically conveys the high-level

decisions that affect the entire system and are more difficult to change down the road.

For a test automation system, these decisions usually affect how tests are written, how

they are being run, what they can and cannot do, etc. However, the architecture of

the test automation should also take into account the architecture of the SUT. These

architectural decisions also affect the isolation of the tests as will be described in the next

chapter, which in turn have a very high impact on their reliability. Here are some high-

level considerations that you may want to take into account when architecting the test

automation solution:

	 1.	 Who should write the test and what skills do they have?

	 2.	 Who should run the tests and when?

100

	 3.	 Which parts of the SUT we want to test? (Or – which parts of the

tests are more important for us to test?)

	 4.	 Which parts of the SUT can we test reliably?

	 5.	 How long the tests would run?

	 6.	 How easy it will be to write new tests?

	 7.	 How easy it will be to maintain existing tests?

	 8.	 How easy it will to investigate failing tests?

We already discussed the first two considerations in previous chapters. In this

chapter we’ll focus mainly on considerations 3–5, and the rest will be covered by later

chapters.

�Understanding the SUT Architecture
Most people facing the question “which components of the SUT you want to be tested,”

simply answer “everything.” But, in most cases, testing the entire system end to end may

cause the tests to be unreliable, hard to maintain, and sometimes not even feasible.

Therefore, we must first understand the architecture of the SUT in order to make the

appropriate decision.

�Back to Basics: What’s a Computer System?
In order to understand the architecture of the SUT and its impact on test automation,

let’s first get back to the first lesson in computer sciences, and answer the question:

“What’s a computer system?” The answer is typically described as a system that gets

some kind of inputs, processes them, and spits out output, as shown in Figure 6-1.

Chapter 6 Test Automation and Architecture

101

One important attribute that this description implies and is true for every given

computer system, is that the outputs yielded from the system depend only on the

sequence of inputs provided to it. Even when the computer yields random numbers,

these numbers are only pseudo-random and the computer uses the system’s clock, which

is an input device, to compute them.

Note S ome people think that machine learning (ML) and other “Artificial
Intelligence” (AI) technologies, which have become more popular lately, does not
adhere to the above claim as they mimic the human way of thinking that is
non-deterministic. Well, the truth is there’s no magic behind any of these
technologies. The main thing that differentiates them is that they depend on high
volumes of inputs, and a complex processing of those inputs, but the principle is
the same. As mentioned, algorithms that use random numbers actually use pseudo-
random sequences that depend on the system’s clock, which is also an input.

�What’s an Automated Test?
While in Chapter 1 we gave a generic definition of an automated test, considering the

above definition of a computer system, we can define an automated (functional) test as

a computer program that sends inputs to another computer system (the SUT); compares

the output sequence, or part of it, to some predefined expected result; and outputs the

result of that comparison. Figure 6-2 shows that description of an automated test.

Processing
Inputs Outputs

Figure 6-1.  A generic explanation of a computer system

Chapter 6 Test Automation and Architecture

102

�Real-World Computer Systems
While the above description of a computer system is theoretically true, most computer

systems are themselves composed of smaller systems (often called Services),

communicate with external systems, get inputs from many sources, and yield many

kinds and high volume of outputs. Diagrams of real software looks more like Figure 6-3.

Processing
(SUT)

OutputsInputs

TestExpected?

Passed / Failed

Test

Figure 6-2.  Description of an automated test

Chapter 6 Test Automation and Architecture

103

Moreover, very few systems today are really “stand-alone,” or “black box,” having

no dependency on any other system. Rather most systems depend on some external

services or component that we don’t have full control over their development and/or

behavior. This imposes a real challenge: on one hand, our customers shouldn’t care that

we depend on third-party services; but on the other hand, problems in these services

are not under the control of our development team. Therefore, it’s difficult to draw a

clear line between where our system ends and other’s start, and to our concern: What

components or services we care to test?

For manual testers this is a lesser concern. Manual testers interact with the system

through the UI, like the end users, and validate that what they see makes sense. If the

manual testers encounter a clear warning that some external service is not available

and that he should try again later, he can verify that this service is indeed unavailable

right now and he won’t report a bug for it. Furthermore, even if the service is up, often

Figure 6-3.  Typical software arcitecture diagram

Chapter 6 Test Automation and Architecture

104

the outputs of our system depend on inputs that it receives from that external service,

and the tester can determine whether they’re correct or not, although he can’t predict

in advance what these outputs should be. But as we already know, for test automation,

make sense is not an option, as we must be able to define a deterministic expected result.

In order to do so, we must control all the inputs of the system that may affect the
outputs that we want to verify, including inputs from those external systems that we

depend upon! This brings us back to the basic definitions given above of a computer

system and of the automated test, but now we need to apply it to the real-world, complex

system.

While in the basic definition we talked about a single sequence of inputs, in real

systems this sequence is composed of many different independent input sources that

we usually think of as different sequences, or streams. The same goes for the output:

a typical system generates many kinds and sequences of outputs for different targets.

Moreover, the inputs and outputs are often so tightly related that it’s hard to think about

them as distinguishable from each other. For example, when you move the mouse, you

generate inputs, but as a result, in a complete synchronization with your moves, the

computer moves the cursor on the screen – which is the output it generates (in fact,

it only changes the color values of individual pixels, which gives the illusion that the

cursor “moves”). A similar thing happens when you type text in a textbox: your key

presses generate inputs, and as an immediate result, the system outputs the glyph of

the appropriate letter to the correct location on the screen! But keyboard, mouse, and

screen are not the only sources of inputs and outputs (I/O) that a computer system

has. Most system uses disk storage (in the form of files or database records), network

communication, etc. Some systems interact with a specific hardware and perform

additional, unique I/Os for that. Another important input that many systems depend

upon is the system’s clock.

While looking at the I/O in that low-level form helped us understand how the

theoretical view of a computer system applies to a real-world system, it’s still not very

helpful in order to reason about the architecture of the SUT and to plan our automation

accordingly. But if we’ll look at a block diagram like the one in Figure 6-3 and draw a line

between the components that compose our system, and systems, services, and sources

that we consider as external to our SUT, we can reason about which inputs to the SUT

can affect which of its outputs. Figure 6-4 shows an example of how we can draw such a

line. Lacking a standard term for that, I like to call the selection of components that we

consider part of the SUT, the “Test Scope.”

Chapter 6 Test Automation and Architecture

105

If we would have control over all of these input sources, then we can define tests with

deterministic expected results. Controlling inputs received from external systems may

not look feasible to you right now, but later in this chapter I’ll explain how we can at least

mimic those inputs. Of course, that input source may also include files, external devices,

and user interactions. The bottom line is that the test must control whatever we consider

as inputs to the SUT and that may affect the output that we want to verify.

Note that storage means, like files and databases, are usually something that systems

use internally for their own use, but some systems use them as means to communicate

with other systems. For example, if your application writes data to a database that can be

later used by another system to create reports, then you can consider this database as an

output target. Vice versa, if your system is the reporting service, it should create reports

according to data that an external system writes to the database, then you should treat

Figure 6-4.  Drawing a line between the SUT and external sources defines our
“Test Scope”

Chapter 6 Test Automation and Architecture

106

the database as an input source that the test should control. In general, if your system

uses a database or files only internally, then you should not bother with that at all, and

you should consider it part of the Test Scope. However, because it’s usually not feasible

to start with a clean database in every test (or at all!) and the existing data may still affect

the outputs, then you should consider the isolation techniques described in Chapter 7.

�Alternatives and Considerations in a Layered
Architecture
Every system is different and has a different architecture. As mentioned before, most

modern systems are composed of services that communicate between them (micro-

services architecture), but even so, it may be helpful to talk about a more traditional

and simpler layered client/server architecture first, and the considerations for

choosing the appropriate components to include in the Test Scope. After all, most of

these considerations also apply to the more modern systems, and hey, there are many

traditional systems still out there. In this example we’re talking about a stand-alone

business application, without any relevant dependencies on external systems. Still, there

are many alternatives and considerations that we’ll discuss shortly, and the pros and

cons of each. Many of these alternatives and considerations are still relevant in a micro-

service architecture or to most other system architectures out there. Figure 6-5 shows the

typical layered architecture that we’re about to discuss.

Chapter 6 Test Automation and Architecture

107

�The Relationships Between the Scope and the Test
Before I’ll describe the purpose of each layer and the alternatives of choosing the test

scope, I want to clarify the relationships between the test scope and the tested scenarios.

In fact, in most cases, the test scope, which defines the tested components included in

the SUT, can be independent of the scenario, which defines the purpose and the steps

of a particular test. In other words, you can implement almost any scenario (test) with

any test scope. This is true as long as the component that implements the core logic

that is verified by the test is included in the test scope, which is usually the Business

Logic layer. In addition, in order to be able to use any test scope with any scenario, the

scenario should be planned and described in high-level business terms, instead of using

full and precise technical details, like exactly which buttons to click to complete some

UI

View Model

Client Logic

Server Proxy

Service Layer

Business Logic

DAL

ORM

DB

Figure 6-5.  A typical layered architecture

Chapter 6 Test Automation and Architecture

108

business activity. Note that even though describing test scenarios for automation with

as much details as possible may sound like a good idea, it actually leads to tests that are

harder to maintain (this will be discussed in more detail in Part II). So, test scenarios

that are described in the level of detail that lends themselves best for test automation

makes them both easier to maintain and be scope independent. Here’s an example of

a scenario for an e-commence bookstore website, which is described using high-level

business terms:

	 1.	 As the administrator, add the following books to the catalog and

assign them to the “Test Automation” category:

•	 Growing Object-Oriented Software Guided by Tests, by Steve

Freeman and Nat Pryce: $54.99

•	 xUnit Test Patterns, by Gerard Meszaros: $74.99

•	 The Complete Guide to Test Automation, by Arnon Axelrod: $39.99

•	 Specification by Example, by Gojko Adzic: $49.99

	 2.	 As the administrator, define a promotion that states if the

customer buys 3 books from the “Test Automation” category, he

gets a $10 discount

	 3.	 As the end user, add the following books to the cart:

•	 Growing Object-Oriented Software Guided by Tests

•	 xUnit Test Patterns

•	 The Complete Guide to Test Automation

	 4.	 Verify that a $10 discount is given and that the total amount to pay

is $154.97 (74.99 + 49.99 + 39.99 -10)

Note that this description does not specify all of the clicks and keyboard entries

needed to add the book to the catalog, create the promotion, or add the books to the

shopping cart. Therefore, now I can implement this test using an end-to-end test scope,

for example, using Selenium, to exercise the relevant actions on the browser (which is

connected to the entire back end and database) and verify the expected result also on

the browser, or I can choose a smaller test scope like sending requests directly to the

server to complete these business activities, and even up to a unit test that tests a single

class that contains the promotion’s logic. There are more options in between, of course,

Chapter 6 Test Automation and Architecture

109

each with its pros and cons as we’ll discuss shortly. In addition, we’ll discuss how you

can mix and match different test scopes to take advantage of more than one option, and

also the price of doing that too.

While in the above typical example, the scenario can be implemented using different

scopes, sometimes you want a test to verify details that are specific to one layer. For

example, if you want to verify that a certain button is disabled after the user completed a

transaction, you must include the UI layer in the test. Similarly, if you want to verify that

data that the user enters is persisted after the system is restarted, then you must include

both the UI and the database in the test scope. But some tests really require only one

layer, like when you want to verify that a Save button is disabled if the user didn’t fill in

some mandatory field, which requires only the View Model layer.

�Overview of the Layers
Our stereotypical application is a classic three-tier architecture: the top tier is a rich

client application (i.e., Windows application), which communicates with the server via

some proprietary HTTP-based protocol. The middle tier is the “heart” of the system

where the main business logic resides. The bottom tier is a relational (SQL) database

that mainly stores and retrieve the data, but also contains some stored procedures

that perform complex queries in order to improve performance. Each tier is a separate

process and can potentially be deployed on a different machine. However, each tier by

itself is composed from its own internal components (e.g., DLLs, JARs, etc,. according to

the technology used) as the following.

�The Client Tier

The client tier is composed of the following layers:

	 1.	 UI Layer – this layer is responsible for the graphical layout

and appearance of the UI. It’s mainly produced either with a

WYSIWYG1 editor or kind of a declarative markup, like HTML,

XML, or XAML. If it contains code, it should be very simple and

only handle the UI layout and appearance.

1�WYSIWYG stands for What you see is what you get. This means that when you edit something you
see the result immediately. MS-Word is a great example: as you type you see how the document
will look like when printed.

Chapter 6 Test Automation and Architecture

110

	 2.	 View Model – this layer is responsible for providing the data that

should be displayed in the UI layer and dispatch user events (e.g.,

clicking a button) to the relevant objects in the Client Logic layer.

	 3.	 Client logic – this layer is responsible for the logic and the flow

of the client application. Unlike the “Business Logic” layer in the

server, this layer doesn’t handle the business logic per se, but

rather the logic of transitioning between screens, and ties together

the communication with the server with the UI behavior. For

example, when a button is clicked in the UI and the View Model

passes it to the Client Logic layer, the Client Logic layer can switch

to a view that lets the user specify more details. On that view,

when the user clicks “OK,” the Client Logic asks the Server Proxy

to send the information to the server. According to the response

from the server, this layer can decide which view to show.

	 4.	 Server Proxy – this layer is a technical layer that provide a

convenient API that the Client Logic can consume (in the form

of objects and methods) and simply packs the parameters of

these methods as a request message to the server. The data in the

response is then translated back to objects that those methods

return. Some technologies provide this layer as an “out-of-the-

box” component, with only some configuration or very little code.

�The Server (Middle) Tier

The server, middle tier is composed of:

	 1.	 Service layer – this is the counterpart of the Server Proxy layer in

the client. It transforms the messages that the client sends into

events that call methods in code.

	 2.	 Business Logic layer – this is the “brain” of the system. All of the

hard-core logic and calculations are done in this layer. When this

layer needs to retrieve or store some data in the database, it uses

the Data Access Layer (DAL) to do it.

Chapter 6 Test Automation and Architecture

111

	 3.	 Data Access Layer (DAL) – this layer provides the business logic

layer with a convenient API to access the database. While the

Object Relational Mapping (ORM) layer underneath it handles

all of the heavy lifting automatically, sometimes there’s a need

to provide an API that is more natural, simple, and abstract (i.e.,

technology agnostic) for the BL tier to consume.

	 4.	 Object Relational Mapping layer – this is usually a third-party

technology that translates from objects and properties to SQL

statements that read and write data to/from relational tables.

Usually it’s based mostly on configuration and doesn’t involve

custom code.

�The Database Tier

The database tier in our example does not contain a lot of logic, except of a few stored

procedures to increase performance. But even besides the stored procedures, and even

though the database engine itself is a commercial product, it still contains some artifacts

that the development team produces: the schema (structure) of the tables, indexes,

views, constraints, etc.

�The Alternative Test Scopes
OK. Now that we understand the architecture, let’s see what options we have for the test

scope for the automation and what are the consequences of each of these options.

�End-to-End Test Scope

The first and most obvious option for a test scope in a system that doesn’t have external

dependencies, is end to end. Figure 6-6 shows this option. The biggest advantage of

this option is that it’s most similar to what the users do, and it does not compromise the

testing of any component or integration between components. However, these tests are

naturally slower, harder to stabilize, and maintain due to frequent changes in the SUT

and make failure investigation harder.

Chapter 6 Test Automation and Architecture

112

In this approach the tests interact only with the UI, but the tests usually perform

actions that exercise all of the tiers and layers.

UI

View Model

Client Logic

Server Proxy

Service Layer

Business Logic

DAL

ORM

DB

Figure 6-6.  End-to-end test scope

Chapter 6 Test Automation and Architecture

113

CLARIFYING THE “END-TO-END” AMBIGUITY

When some people say “end-to-end” tests, they mean very long-winding scenarios, usually

mimicking a complex real-world user scenario. For example, such a test for an e-commerce

site could start from user registration, searching for different items in the catalog, adding

many items to the shopping cart, removing some of them, changing the quantity of some

products in the cart, going to the checkout process, splitting the payment to two different

payment methods, using a coupon, finishing the transaction, etc. While these scenarios have

some value of validating that such scenarios are working correctly, they lend themselves

poorly for test automation because their maintenance usually becomes arduous. If the

program is evolving (and as discussed in Chapter 2 – if it doesn’t, then there’s probably not a

lot of value in test automation anyway), then these scenarios would need to change constantly

and they will often fail on legitimate changes. The investigation of these failures will take

pretty long because the scenario is complex. There may be some value in having a few of

these that run only after all the other tests have passed, but relying mostly on this kind of tests

is not recommended.

By contrast, when other people, including me, say “end-to-end” tests, or “end-to-end test

scope” to be more precise, we mean that the tests interact with the complete system as a

whole “black box” and not with only part of it. In other words, the test scope includes all of the

layers and components of the system. However, it doesn’t mean that the scenarios should be

long and winding. For example, the scenario can be as simple as a user adding only one item

to the shopping cart, but it’s still done on a complete system.

�One-Way End to End (UI to DB or DB to UI)

In this approach, shown in Figure 6-7, the test scope is also the entire system and

technically it’s the same as the previous option. But unlike the previous option, here the

test interacts both with the UI and the database, and not only the UI. It has more or less

the same advantages and disadvantages of the end-to-end option, but there are a few

important differences. First, when you manipulate or check data through the database,

you’re not testing the system as the use would use it. This has two caveats: first you can

miss bugs that the user may encounter; and second, your tests may fail due to problems

Chapter 6 Test Automation and Architecture

114

that are not real bugs. However, it is often faster and simpler to use the database rather

than to mimic all of the user actions that are required to create or verify the data.

Note that the chances for failing due to problems that are not real bugs are not

necessarily higher than if you do everything from the UI, but there’s still a significant

difference between these cases: if the UI changes it’s probably directly related to

a change in requirements. But the database is an implementation detail that the

developers can change on their own will. Entering or retrieving the data directly to or

from the database often bypasses validations and business rules that the server should

enforce, which may bring the system to states that it was not designed for and that would

never happen in production.

Another risk that you want to consider when relying on the database is that you take

a dependency on one more technology that may change as a whole. When your tests

interact with the SUT through the UI, if the UI technology is replaced at some point

(e.g., from Windows Forms to WPF), you’ll have a tremendous amount of work refitting

the tests to the new UI technology. When your tests interact with the SUT both through

the UI and through the database, you double the risk, as both the UI technology as well

as the database’s technology may be replaced one day. Even though these occasions

are rare, if you plan the test automation to be long lived, then it can definitely happen

in a range of few years. For example, these days many teams replace their database

engines from a relational (SQL) database like MS-SQL Server or Oracle, to some “noSQL”

alternatives, like MongoDB, or other, more scalable solutions.

However, there are some cases in which this approach is clearly advantageous over

end to end:

•	 Some systems are designed such that customers can interact with

the DB directly and/or write applications that interact with the DB

directly. In this case it’s important to validate that what the customers

can do works the way it should.

•	 Other systems use an existing database that another application

manages. This other application can be considered “third party” even

if it’s developed by another team within the same company, as long

as their development efforts of the two teams are independent from

Chapter 6 Test Automation and Architecture

115

one another and their release schedules are not synchronized. In this

case it may make sense to interact with the database directly instead

of with the third-party application

•	 Speed: it may be much faster to create data directly in the database

rather than through the UI. If the purpose of most tests is to work with

existing data that already exist in the database, rather than to test the

ability to create it, but you still prefer not to rely on shared data (see

the next chapter about isolation), then it will probably be much faster

to create it in the database directly. Note that you also have a choice

to create the data by calling into the server (through the Server Proxy

layer or by sending a HTTP request, or using any other layer) instead

of using the database directly.

•	 Reliability and maintainability: despite what I wrote above about the

database schema being an implementation detail, in cases where

the schema is not likely to change anytime soon, but the UI does,

then using the database may be more reliable and easy to maintain,

especially if the schema of the database, or at least the parts that we

need to interact with, is simple enough.

Chapter 6 Test Automation and Architecture

116

UI

View Model

Client Logic

Server Proxy

Service Layer

Business Logic

DAL

ORM

DB

Figure 6-7.  One-way end-to-end test scope

Chapter 6 Test Automation and Architecture

117

�Server Only (Round-Trip)

This approach, shown in Figure 6-8, is also very common and has some great advantages

over an end-to-end test scope. Among its advantages are improved speed and reliability.

It is especially appropriate in the following situations:

•	 The client is only a thin layer over the server.

•	 The client is changing much more often than the API or protocol in

which the client and server communicates.

•	 The server exposes a public API that customers can use directly (see

sidebar titled “API, Backward Compatibility, and Test Automation

Maintenance”).

•	 The system has many types of client applications (e.g., for different

operating systems, web, mobile, etc.), and there’s no point in

choosing one over the other. In this case server tests can be combined

with separate client only tests (see below) for each client and also few

simple end-to-end tests for each client.

In this approach, instead of manipulating and verifying results on the client, the

test communicates directly with the server using the same protocol that the client

applications use to communicate with the server (most commonly http/https). The

fact that the test does not manipulate the UI does not mean that each test should verify

just one request/response pair, and in fact mostly all scenarios can describe actual user

scenarios, as already mentioned above.

Chapter 6 Test Automation and Architecture

118

API, BACKWARD COMPATIBILITY, AND TEST AUTOMATION MAINTENANCE

When the application under test exposes a public API, which is exposed to customers or

third-party vendors, it makes the lives of the automation developers much easier than usual,

as they need to care less about maintainability. If customers or third-party vendors are

using the public API of your application, they probably expect your company to maintain and

provide backward compatibility of that API between versions. That ensures that every test that

passed in one version of the software continues to work exactly the same in newer versions;

UI

View Model

Client Logic

Server Proxy

Service Layer

Business Logic

DAL

ORM

DB

Figure 6-8.  Server-only test scope

Chapter 6 Test Automation and Architecture

119

otherwise it’s a compatibility breaking bug. In other words, the test code of a previously

working test should rarely need to change.

For example, suppose that your team develops a blogs engine website. In addition to allowing

users to publish new blog posts through the website’s UI, it allows developers to write

applications that communicate with the website and publish new posts using a REST API. So,

for example, a customer may develop his own tool that reads the weather from several other

websites, calculates its own average forecast, and uses the API of your blogs engine to publish

that forecast automatically. Another customer may use the API to be notified of new posts and

to send them automatically by email to relevant recipients according to categories and tags

associated with each post.

Maintaining backward compatibility means that those applications that the customer wrote

and that use the API of the first version must continue to work seamlessly and exactly the

same in newer versions of the blog’s engine website, without having to change anything

in these applications. New features and functionality could be added to the blog’s engine

website, but nothing should be removed, and there should be no breaking changes. Note

that just keeping the structure of the messages (or public interfaces of classes and methods)

intact, is not enough for keeping compatibility. It also requires that the external behavior
remains the same.

For example, suppose that at some point the product manager requires that each new

blogpost has a short abstract that describes what the post is about in order to show in the

list of blogposts, and in order to attract the readers to look into the posts that interest them.

He also wants to enforce that the abstracts are at least 100 characters long in order to make

the writers fill in something relevant. As long as it applies only to blogposts that are created

manually through the website, there’s no problem with that requirement. However, if we

enforce this new constraint also in the API, then our customers that use these APIs will be very

annoyed, because now the software that they wrote (e.g., the weather forecast publisher) will

no longer work! Clearly, changing their software is not a simple thing, it takes time and money,

and if the developer that wrote it left the company then the problem may be even worse… A

possible solution for this example is either not to enforce this rule for API-generated blogposts,

or to automatically create a placeholder for the abstract that states that this is an automatic

blogpost.

Continuing our example, another requirement that the product manager requested is that

automatic posts that are generated by API will have the prefix “AUTO:” appended to their

title. On the surface, it seems that the API should not be affected by this new feature and

Chapter 6 Test Automation and Architecture

120

there’s no problem of backward compatibility. The client will still be able to use the same API

message for creating a new blogpost. It can also use the same API message for retrieving all

the blogposts filtered by date as it did before. However, if a client application creates a new

blogpost, and then searches for the blogposts it created by exact matching of their titles,

then now the client’s application may fail to find these blogposts because their titles are now

prefixed with “AUTO” and no longer match exactly what the application has created. That’s

why it’s important (and much trickier!) to ensure that we keep backward compatibility for

the behavior and not only the structure of the API messages. But if we have to do it for our

customers, then the automation developers can enjoy it too.

Breaking Changes

While in theory 100% of the tests that passed in one version should continue to work in newer

versions, reality is always more complicated. If you’re working for one of the big companies

that has millions of customers that use the API, then breaking backward compatibility is

a big deal, and sometimes even bugs are intentionally kept in newer versions just for the

chance that fixing it will break existing client’s software (this is especially true for vendors

of compilers and related technologies that are used as the foundation technology for many

applications). But if your team’s product has only a handful of customers that use the API, then

it may be acceptable to break compatibility here and there in order to fix bugs or make some

improvements that the clients may appreciate.

One area that bugs are usually treated in higher priority than backward compatibility is

security. This means that if your application had a security breach, and the only feasible fix

requires to break the backward compatibility of the API, then it’s normally worth paying that

price. But then again, creative solutions appropriate for the specific problem at hand may be

found to solve the bug without breaking compatibility or at least minimizes the risk for old

clients and solving it completely for clients that are willing to update their code.

�Server-Only Test Scope (One Way)

This is simply an intersection between the one-way end-to-end approach and the

round-trip server-only approach. Like the server-only approach, the test interacts with

the server through its API, but like the one-way end-to-end approach, it also interacts

directly with the database to enter data as input to the SUT, or check the data written by

the SUT. The considerations for this approach are basically the same as of the one-way

Chapter 6 Test Automation and Architecture

121

approach and the server-only approach combined. For example, this approach can be

useful to test that the server writes the relevant data to the database on an “update”

request, or to inject prerequisite data for a scenario that is implemented though the

public server’s API. Figure 6-9 shows the architecture of this approach.

UI

View Model

Client Logic

Server Proxy

Service Layer

Business Logic

DAL

ORM

DB

Figure 6-9.  Server-only one way

Chapter 6 Test Automation and Architecture

122

WHAT EXACTLY ARE INTEGRATION TESTS?

Even though the term “Integration Tests” is used very broadly, there’s no one concise definition

for this term. The closest thing I can think of is something like: every test scope which is
bigger than a unit test (or component test) on one hand, and smaller than an end-to-end
test on the other hand. In many cases when people say “integration tests,” they refer to the

“server-only” approach, but not always. Some even use this term to describe tests that cover

the integration between multiple complete systems (like a few end-to-end scopes of different

systems combined!) Generally speaking, integration tests are any kind of test that test the

integration between two or more components.

�Client-Only Test Scope

In some situations, the more important part to test is the client, rather than the server.

For example:

•	 In an application where most of the logic resides in the client, and the

server is only used sparingly.

•	 When the server is a legacy or third-party system that is not going to

change, while a new, sophisticated client is under development.

•	 When the server contains complex algorithms that their results

are difficult to predict and control: especially algorithms that use

random numbers, or servers whose behavior depends on events and

conditions that are difficult to control. In this case you may want

to test the server separately from the client, and isolate the server’s

complexity from the client’s test scope (i.e., treat the server like an

external system).

•	 When the client is just one of many other clients, and the server is

tested separately (see “Server only” above). In this case each client

will be tested separately as well as the server, and only few simple

end-to-end tests for each client should be written to validate the

integration.

Chapter 6 Test Automation and Architecture

123

In these cases, it may be beneficial to isolate the server completely from the tests, in

order to make the tests faster, more reliable, and easier to deploy. However, in order to do

that, we must create a simulator for the server. The simulator should mimic the protocol

that the server uses, but the test infrastructure should control the exact content that is

emits to the client. In addition, the test can verify what the client sends to it. Simulators

are explained and covered later in this chapter. Figure 6-10 shows this option.

UI

View Model

Client Logic

Server Proxy

Service Layer

Business Logic

DAL

ORM

DB

Simulator

Figure 6-10.  Client-only test scope

Chapter 6 Test Automation and Architecture

124

�Under-the-Skin Test Scope

Sometimes testing through the UI is not feasible, because the UI’s technology doesn’t

provide a good automation interface or is simply not reliable enough for automation. If

you still want to have a test scope that is closest to end to end as possible, you can test

the application “under the skin,” as shown in Figure 6-11. This approach is very similar

to the end-to-end approach, but instead of really mimicking the mouse movements and

keyboard strokes, the automation detours the actual UI layer and talks directly to code

underneath it, namely the View Model layer.

UI

View Model

Client Logic

Server Proxy

Service Layer

Business Logic

DAL

ORM

DB

Figure 6-11.  “Under-the-skin” test scope

Chapter 6 Test Automation and Architecture

125

While this approach may seem very logical, it poses some series challenges. If these

challenges can be addressed, then it can be a valid approach, but you’d better try to

tackle these challenges at the very beginning to assess the feasibility and the associated

costs of potential solutions, as these challenges may become showstoppers for using this

test scope. Note that in most cases these challenges involve some refactoring of the client

application. These challenges are:

	 1.	 First and foremost, the view layer should be easily separable from

the other layers. If one of the MV* patterns2 is applied properly,

then this should be pretty easy. But often the actual architecture

drifts a bit (or more…) from the planned architecture. In this case

you should first assess whether it’s feasible to refactor the code

back to the planned MV* architecture.

	 2.	 Initialization – Each program that starts executes a method called

“main.” This method typically loads all the resources that the

application needs, and eventually opens the main window. At

this point, the process stays idle waiting for input (mainly mouse

and keyboard events), and as these occur, the application invokes

the relevant code to handle the relevant event. After the event

is handled, the application returns to its idle state, waiting for

further events. Only when the user closes the application window,

or chooses to exit in some other way, then the application returns

to the end of the “main” method and exits. However, tests behave

somewhat differently. The testing framework (e.g., JUnit, NUnit,

MSTest, etc.) implements the “main” method for you and lets you

define different tests, each of which is like its own little program.

In addition, these frameworks allow you to run code before all the

tests and after all of the tests. If we’d simply call the SUT’s “main”

method from the framework’s initialization code or from one of

the tests, then it will show the UI and wait for user input. Until

a real user won’t close the window, the call to the main method

won’t return, and the test won’t be able to continue! (Most

frameworks will raise a timeout error after some period of time,

2�MV* refer to any of the following design patterns: MVC (Model-View-Controller),
MVP (Model-View-Presenter) or MVVM (Model-View-View Model).

Chapter 6 Test Automation and Architecture

126

failing the test.) Therefore, we must create our own initialization

code that from one hand initializes all the relevant resources (e.g.,

opens a connection to the server), but on the other hand doesn’t

actually show the UI, or at least doesn’t enter the loop that waits

for user input. Writing that initialization method and separating

the initialization of the view from the initialization of the other

component may require a massive refactoring, depending on the

actual design and complexity of the system. Here too, if the actual

architecture follows a well-structured MV* pattern, then this

should be easier.

	 3.	 Dialogs and popup messages – Yet again, if the separation of

concerns of the MV* architecture is strictly kept, then this should

be much easier. But dialogs and popup messages often make

it more complicated to implement the pattern correctly, and

therefore provide a significant challenge for the automation. If

at some situation the application needs to display a message

to the user or needs to ask the user for additional input, then it

might open a message box or a modal dialog box. If this code is

called from the test, then the dialog will actually appear while the

test runs (!) and will never continue past the line that opens the

dialog unless a real user will close it. If the pattern is implemented

correctly, then the event handler should not open the dialog

directly. Instead it should use an abstract factory object to do that.

If the test can replace this factory with a different factory that will

return fake dialog objects, then this problem is solved. These fake

dialog objects will not be real dialogs with UI, but rather just pure

Chapter 6 Test Automation and Architecture

127

objects that implement the same interface as the dialog, and will

return immediately with the “input” that the test provides to the

application in place of the user.

Note that this approach means that most of the client code is loaded into the

memory space of the test process.

�Pure Logic Test Scope

While this is not a very popular approach, I think that it’s interesting to mention, at least

in order to encourage you to think “out of the box.” If the business logic is spread over

both the client and the server (or other components) and you want to test them together,

but you also want the tests to be fast and be able to run without any special deployment

and configuration, then this approach may be relevant to you.

In this approach, we take only the components that contain the business logic, and

glue them together, bypassing and mocking all of the more technical layers, as shown

in Figure 6-12. Mocking3 is conceptually very similar to simulating, but instead of

communicating with the SUT over a communication channel, it communicates with it

using direct method calls, usually by implementing an interface. Mocking is used mainly

in unit testing, but it is useful in this approach too.

3�Some purists would say (according to Gerard Meszaros book “xUnit Test Patterns”, and
mentioned in Martin Fowler’s blog at https://martinfowler.com/bliki/TestDouble.html)
that this is not the correct definition of Mocking, but rather the definition of a Test Double or
more specifically of Fake. Test Double is a generic term, which includes Dummies, Fakes, Stubs,
Spies and Mocks. However, even though according to this terminology, “mock” is a very specific
use of Test Double, it is the most widely used term, even in its more generic meaning.

Chapter 6 Test Automation and Architecture

https://martinfowler.com/bliki/TestDouble.html

128

In this option, the test communicates directly with the View Model layer, similarly

to the “under-the-skin” approach. However, instead of having the client and the server

communicate over a real communication channel, through the Server Proxy in the

client and the Service Layer in the server, we connect the two together using a mock

that behaves like a simple bridge: it directs any call from the client directly to a method

call in the server and returns the results accordingly, on the same process and thread.

Finally, we mock the Data Access Layer (DAL) to simulate any communication with the

database. Usually we’ll mimic the database behavior by storing and retrieving the data in

and from memory instead of the real database.

UI

View Model

Client Logic

Server Proxy

Service Layer

Business Logic

DAL

ORM

DB

Communica�on
mock (bridge)

DAL Mock

Figure 6-12.  Pure Logic test scope

Chapter 6 Test Automation and Architecture

129

�Component Tests

Component tests are tests that test a single component (e.g., the Business Logic

component, or the DAL component) separated from the rest of the system. A component

is usually a single DLL or jar file. It may have external dependencies, like files, database,

etc. But in most cases if the component under test depends on another component that

is part of the developed application, then the test will provide mock objects that simulate

the dependent component.

Note that if you create separate tests for each component in a layered architecture,

then except for the Business Logic layer, most tests won’t reflect scenarios from a user

perspective, but rather a more technical usage of its API. While this may not be the most

interesting thing to verify from the end-user perspective, it may be very interesting from

an architectural and design perspective. Besides verifying the correctness of the code, a

Component test also ensures that the tested functionality is indeed implemented in the

intended component, and it helps ensure that the intended design is kept. If component

tests are implemented in an early stage of the development, the act of designing the

tests also helps shape the design of the components and the APIs to be easier to use and

maintain.

This is especially beneficial for components that should be reusable in different

applications. This is true for reusable components that are used in multiple applications

developed by the same company, for internal optimization purposes, but it is even

more important and beneficial for components that the company develops and should

be reused by its customers. For example, an application that is used to control some

electronic device that the company manufactures may contain a component that

communicates with that device. This component, besides being used by the application

itself, can be exposed to customers that want to interact with the device from their

own applications. As writing the tests against the component is similar to using it from

another client, writing these tests in an early stage of development helps shape the API of

the component to be easy to use.

�Unit Tests

While Component tests test a single component, unit tests test an even smaller piece,

which is usually a single class or even a method. Unit tests are considered to test

the smallest testable functionality. Because these tests are so tightly coupled to the

implementation, typically the developers who write the product code also write the unit

Chapter 6 Test Automation and Architecture

130

test that verifies the code that they’ve written. In Chapter 17 we’ll talk in more detail

about unit tests as well as about the test-driven development (TDD) methodology that

helps writing these tests effectively.

�Real-World Architecture
While the above-mentioned layered architecture is still pretty common in many

traditional business applications, every application is different and today most systems

are more complicated than this. After we’ll discuss few patterns I’ll present a few real-

world examples of application architectures and the chosen automation architecture.

�Intended Architecture vs. the Actual One
Most projects start with a pretty looking architecture diagram (e.g., like the above-

mentioned layered architecture), but very often after some mileage, the actual

architecture becomes less clear and pretty as the diagrams, and some components

begin to “grab” responsibilities that should have been of another component, making

the actual architecture messier. In these situations, some of the above alternatives may

not be very relevant or may be more difficult to implement. It is very common that

when starting to develop automated tests late in the process of a software project, to

hit obstacles that are caused by such differences. Trying to overcome these obstacles

usually makes the test code more complicated, difficult to maintain, and less reliable.

However, compromises often have to be made between these drawbacks and the price

of refactoring the code to eliminate them. Because you usually hit these obstacles

when you implement the tests, then it means that you still probably don’t have enough

coverage to refactor the code safely…

�Common Variations
Before we’ll talk about more complex architectures, let’s talk about some common

variations to the described layered architecture:

	 1.	 Today most business applications are web based, possibly with

a mobile (smartphone) client rather than a classical Windows

application. The technologies for the web-based clients also

vary, mainly on how much of the logic is done on the client (the

Chapter 6 Test Automation and Architecture

131

browser) and how much on the server. With mobile applications,

there are a few common variations in the technologies and

concepts of the UI: whether the app uses the UI of the OS directly

(“native”); a web UI (adopted to the mobile user); or hybrid, which

is a mainly a web browser embedded inside a native app.

	 2.	 Many applications support more than one type of client. They may

have a desktop application, a website, and a mobile app, which

mostly do the same things, but each one of them is more suited

to the technology and form factor of the machine that they run

on. This brings an interesting challenge to test automation: Do we

want to implement each scenario using each technology? Later in

this chapter we’ll discuss this situation.

	 3.	 Because browsers can handle the rendering of the UI, and also

the communication with the web server for us, it’s pretty common

for traditional web applications that the web server serves mostly

static HTML pages to the browser and handles most of the “client

logic” and the “business logic” at the same tier, and maybe even

in the same component (as one monolithic layer). For example,

if the user clicks a column header in a grid to sort by that column,

the browser sends a request to the server, which serves a new

page with the new sort order. Many traditional but more complex

systems split the web server and put the “UI logic” in a Web Server

tier that communicates with a different tier (server or “service”)

that contains the business logic and/or the access to the database.

In most modern web applications, however, the client side

contains complex JavaScript code that contains the client’s logic.

Usually this JavaScript code itself is componentized and uses

one of the many JavaScript frameworks or libraries, with Angular

and React being the most notable ones these days. From the test

automation perspective, this can be useful for client-side unit or

component tests, but it can also be used by invoking JavaScript

functions from Selenium in broader test scopes.

Chapter 6 Test Automation and Architecture

132

	 4.	 Sometimes the application has two or more different types

of clients for different personas. For example, a main client

application for the end user and another website client

application for the administrator and/or executives.

	 5.	 Many modern applications take a service-oriented architecture

(SOA) or even a micro-service approach, in which almost every

component is a separate service that resides in a separate process

and can be deployed to different machines to allow for better

scalability.

	 6.	 On the other side of the spectrum, many older systems contain

most of the business logic as stored procedures inside the

database layer instead of with a separate tier.

	 7.	 Some (mostly modern) applications have two separate databases:

one for fast handling of transactions, and another one that is

more optimized for querying. After the data is written to the

transactional DB, it’s also transferred via some asynchronous

queue mechanism to a service that transforms the data to the

structure, which is more suitable for querying, and saves it

there. This architectural pattern is called “Command and Query

Responsibility Segregation” or CQRS for short. Some applications

may have even more databases for different purposes, and even

use different database technologies to best match the needs of

each of them (e.g., relational “SQL” database, document database,

graph database, etc.).

�Combining Tests
Even though you can choose only one test scope and use if for all of your tests, there are

at least two ways in which you can combine more than one approach.

�Mix and Match

Because each option for a test scope has its own pros and cons, often the most efficient

strategy is to create a mixture. It can be decided which portion of the tests should be

implemented using which scope, or what are the criteria for choosing one scope over

Chapter 6 Test Automation and Architecture

133

another for each test. For example, it can be decided that one representative scenario from

each feature will be implemented as end to end, while all other tests will be server only. In

addition, we can decide that developers should write unit tests to cover the business logic

for every new functionality that they write. Mike Cohn’s Test Pyramid4 is a classic example

of such a mixture, though there are many other valid approaches, and I suggest that you

consider for yourself what makes sense and working best for you. In fact, while I believe

that under some optimal conditions the end result should be similar to the Test Pyramid,

I discourage aiming for it by deciding on percentages for each test scope. Just choose the

most appropriate scope for each test according to the pros and cons of each scope, and let

the percentages be whatever they be, even if it doesn’t form a “pyramid.”

A better approach, in my opinion, is to let the team choose the right scope for each test.

While it’s certainly not confined to it, I find it especially appropriate when using the ATDD

methodology (see Chapter 16), as it also encourages the team to collaborate on the tests and

define them according to their business value. While I strongly recommend this approach,

it has its drawback backs too: using too many kinds of test scopes can become difficult to

manage and maintain. In addition, there’s no one clear rule to decide which test scope is

best suited for each test, so there can be disputes. See the summary of considerations below

for some guidelines that will help you decide on the right scope for each test.

�Abstract Test Scopes

Because test scopes are independent of the scenarios, sometimes it’s desirable to reuse

the test scenarios and be able to run those using different scopes. For example, a smaller

scope for fast feedback, and a larger scope to verify the integration with all layers. The

main idea is that relevant business actions that the test performs are implemented in

a layer that can be injected to the test class or overridden by derived classes. In this

case, this business layer serves as an adapter between the test and the SUT. This way

the test itself remains the same, but we can provide different implementations of the

relevant actions to support the desired test scopes. Figure 6-13 shows how the test can

use different adapters to interact with the application using different test scopes. Listing

6-1 shows a pseudo-code for such a test. In this listing, the InitializeSut method

instantiates the chosen adapter, which is then used throughout the test (using the _sut

member) to perform different actions through that adapter.

4�Mike Cohn, Succeeding with Agile: Software Development Using Scrum (Boston, Massachusetts,
United States: Addison-Wesley Professional, 2009)

Chapter 6 Test Automation and Architecture

134

Listing 6-1.  Abstract Test Scope

[TestClass]

public class PromotionTests

{

 private IApplication _sut;

 [TestInitialize]

 public void TestInitialize()

 {

 /* The following line reads a value from the configuration file

 determines whether it should return an object that uses Selenium to

 implement an end-to-end test scope, or another object that uses

 HTTP do talk directly to the server. */

 _sut = InitializeSUT("Configuration.xml");

 }

 [TestMethod]

 public void DiscountIsGivenForCategoryPromotion()

 {

 var category = _sut.Admin.CreateCategory("Test Automation");

 var book1 = category.Add(

 "Growing Object-Oriented Software Guided by Tests", 54.99);

 var book2 = category.Add("xUnit Test Patterns", 74.99);

 var book3 = category.Add(

 "The Complete Guide to Test Automation", 99.99);

 var book4 = category.Add("Specification by Example", 49.99);

 _sut.Admin.CreateCategoryPromotion(category, 10);

 var shoppingCart = _sut.User.ShoppingCart;

 shoppingCart.Add(book1);

 shoppingCart.Add(book2);

 shoppingCart.Add(book3);

 Assert.AreEqual(10, shoppingCart.Discount);

Chapter 6 Test Automation and Architecture

135

 Assert.AreEqual(book1.Price + book2.Price + book3.Price - 10,

 shoppingCart.Total);

 }

}

�Summary of the Considerations
Now we covered many alternatives and how we can combine them, but when you’d need

to really choose the right one for you, you may still be perplexed. In order to help you

choose, here’s a summary of the considerations.

UI

View Model

Client Logic

Server Proxy

Service Layer

Business Logic

DAL

ORM

DB

UI

View Model

Client Logic

Server Proxy

Service Layer

Business Logic

DAL

ORM

DB

UI

View Model

Client Logic

Server Proxy

Service Layer

Business Logic

DAL

ORM

DB

UI Adapter View-Model
Adapter

Server Adapter

Test

Figure 6-13.  Abstract test scope

Chapter 6 Test Automation and Architecture

136

�Goal

Before we start designing our test automation we must have a clear picture of our goal:

What are the most important scenarios that we plan to cover, and why? According to this

goal, we must ensure to include all of the important components that participate in these

scenarios. For example, if you choose that your test scope will be “client only,” maybe

due to some technical challenges, but your goal is to test the business logic, then you’ll

surely miss your goal.

�Feasibility

If your application uses a UI technology that doesn’t have a corresponding reliable

and affordable UI automation technology, then it will probably rule out the option for

automating through the UI. But this is true not only for UI – it can be true also if your

application receives inputs from other sources that you cannot control directly. This can

be some physical device, an external service, etc.

�Importance vs. Risk

Even if you can include a component in your test scope, it doesn’t mean that you

should. While most other considerations are about the “price” or the risk of including

a component in the test scope, this consideration is about the other side of the

equation. This consideration is about the question: “How important is it to include this

component?” or “What’s the risk of not including this component?” For example, if the

UI layer is very thin, does not contain any logic, and is being edited using a WYSIWYG

editor, then the chances that there will be a bug in the UI that the test automation

will detect is much lower than the chances that the UI will be changed intentionally,

in which case you’ll just have to update your test anytime it happens. Obviously, this

consideration is also not specific to UI. The same goes for every component that doesn’t

have much logic in it or is already tested and is not being changed anymore.

�Speed

If the tests are planned to run only at night, then this may not be a significant factor,

unless the entire run starts to slip from the night hours to the morning. However, if you

plan to run the test in CI or expect the developers to run the tests before they check in

their changes, then you can’t expect them to wait a few hours for the tests to complete.

Chapter 6 Test Automation and Architecture

137

In addition to the feedback cycle that the automation provides to application

developers, the tests speeds directly impact the feedback cycle of the automation

developers, which translates to their productivity and the quality of their work. While you

develop, debug, fix, or refactor a particular test, the time it takes to run that particular

test can make a huge difference because it can easily become the most significant

portion of the time that you spend doing these things. While developing, debugging, and

fixing are usually necessary, and you’ll do them one way or another, if running a single

test takes too long, it may be so frustrating that you’d avoid refactoring the test code –

which will eventually make it unmaintainable.

There are many techniques that can make your tests runs faster, and they are

detailed in Chapter 15. As a general rule – UI automation, communications between

machines, and accessing large amounts of data can have a big impact on the speed of

your tests. Pure unit tests are almost always many folds faster than end-to-end tests

(though they have their drawbacks and limitations too, of course).

While the test speed is important, don’t overrate its importance. Other

considerations may be more significant than this. In addition, don’t assume anything

about the speed of the tests before measuring! Sometime a properly designed end-to-

end or integration tests can be pretty fast if you don’t rely on large amounts of data, and

maybe the server also resides on the same machine.

�What’s Likely to Change?

Any change in the interface between the test and the SUT means that you need to

update the tests – whether this interface is the UI, API, DB schema, etc. Some of these

interfaces change more often than other, creating more maintenance costs for the tests.

In fact, there are two types of such changes: gradual, constant changes; or one-time

replacement. If the interface changes gradually and constantly, then you need to update

your tests constantly as well. However, if the entire interface is being replaced, then in

this case you’ll need to re-create large portions of the test automation from scratch, or

maybe even rewrite everything! For example, in many cases the UI may change often.

This is a gradual, constant change. However, if it some point the entire UI technology

is replaced completely, then you need to rewrite all the code of the automation that

interact directly with the UI. The same can happen to the API, though it’s much less

likely if this is a public API in which the company is obligated to maintain for backward

compatibility.

Chapter 6 Test Automation and Architecture

138

While this is a very important consideration, the unfortunate thing is that often you

cannot predict the future. Maybe today an internal API changes more often than the

UI, but at one point the entire UI technology will be completely replaced. Likewise, the

opposite can happen just as well, and you usually can’t predict what the future holds.

However, even though you can’t predict the future, sticking the test scenarios to

business functionality, and creating a modular infrastructure that abstracts all of the

technology-specific details inside replaceable modules, is the best bet (See the first few

chapters in Part II for more details). Finally, you can often make pretty good bets about

what’s likely to be replaced and what’s not, and also what changes gradually more often.

�Limited Resources

If you design your test automation to use some expensive or limited resource, then

this may limit your ability to expand the usage of your tests. Such a resource may be

hardware equipment, software licenses, or some paid service. If for example, in order

to run the tests, you need expensive software to be installed on that machine, then

probably you’ll have a hard time justifying to management that all developers should

run the tests before check-in. If the license is required only in order to develop the test,

then you’ll be able to ask the developers to run the tests before check-in, but they won’t

be able to fix or create new tests – which of course relates to the discussion in Chapter 3

about people and tools.

�Extensibility and Customizability

If your application is customizable, it means that regular users can change its default

behavior without having to know how to write code. These changes are usually pretty

limited related to what the user can achieve using extensibility, but still adds a level of

complexity to your test matrix. In most cases the application comes preset to a default

configuration that the user can change (customize). Note that these customizations,

including the default configuration are in fact inputs of the system. Therefore, you

probably don’t want to use the default configuration in your tests, but rather have the

tests take advantage of the customizability to make things easier to test. For example, if

the user can customize a form by adding fields to it, or remove some of the default fields,

then you may want the test to customize the application to include only a small subset of

the fields in most tests, but create fields of different kinds in other tests that are dedicated

to testing the customizability feature itself.

Chapter 6 Test Automation and Architecture

139

If your application is designed to be extensible, this means that customers can

develop their own extensions that will either replace or add to the default behavior of

the application. In this case too, the application is likely provided with some default

extensions, but you should not rely on their existence for your tests. You should separate

testing the code functionality from the extensions, as these default extensions may

or may not be used by the customer. In addition, it can be useful to create a special

extension for the needs of the test for various purposes, but mainly to test that the

extensibility entry points are called when they should.

�Beyond the Layered Architecture
The discussion about the different alternatives of testing a layered architecture should

have helped you get the idea of the possibilities to architect the tests for that classic

architecture. However, as mentioned in the beginning of the chapter (and depicted by

Figure 6-3), many systems are more complicated than this, or simply, different. While

the number of possible architectures is infinite, the basic ingredients of the layered

architecture exists in virtually all architectures: big systems are made out of smaller

subsystems that communicate with one another. These subsystems often store and

retrieve data and are typically built from smaller components. Lastly, most systems

have some form of a user interface. Because we’ve already encountered all of those

ingredients in the layered architecture, you should be able to apply most of the ideas

and considerations to the architecture of any system that you need to plan your test

automation for.

You may want to take a look at Appendix A to get some ideas for how to apply these

ideas in real-world applications, but before you do that, there’s one more concept that

we only mentioned above briefly and we still need to cover in more detail – simulators.

As the layered architecture described above was of a stand-alone application that don’t

have dependencies on any other systems, we didn’t need simulators, but in most real-

world systems, as you can see in the appendix, simulators are an essential pattern that

you likely need to use too.

Chapter 6 Test Automation and Architecture

140

�Simulators

In the context of test automation, a simulator is a component that is developed

specifically for the purposes of the tests to simulate another component that the

SUT depends upon and interacts with it, but we don’t want to test that component.

Simulators have several benefits:

•	 Because the test controls it, it can simulate situations that may be

very difficult to produce in other ways.

•	 It helps us make our tests more reliable, because we avoid many

unexpected situations that we can’t anticipate. Usually, we would

prefer to simulate third-party services that we can’t control.

•	 It can be used also to verify that the SUT sends the correct messages

to the simulated component.

•	 In case that the service we want to simulate is a limited resource, the

simulator helps us test earlier and more often (which shortens the

feedback cycle). Examples for such limited resources can be a legacy

Mainframe system, a paid service or some kind of physical device.

For example, suppose our system communicates with a third party or a legacy service

that predicts the weather by communicating with some sensors, and our system makes

some decisions upon the predicted weather. If we’d try to test the system end to end, it

will be very difficult to verify that our system makes the appropriate decisions if we can’t

control the predicted weather. We can try to control the predicted weather by physically

controlling the heat, moisture, and wind in the sensors’ area, but that would be very

difficult and expensive to do, especially if we need many test environments. In addition,

it will be difficult to assess how the physical parameters that we control should affect the

predicted weather. But if we simulate the weather prediction service altogether, we can

have the test tell it directly to predict a stormy weather or calm weather so that’s what our

system will see, and then we can easily test our system to see if it made the appropriate

decision according to the kind of weather that we told the simulated service to report.

This means that a simulator generally has two interfaces: The first one

communicates with the SUT just as if it was the real service. The second one is the

interface that allows the test to control what the simulator reports to the SUT and/

or to retrieve information about the messages that the SUT sends to the service. Note

that when you develop such a simulator, while you can design the interface with the

Chapter 6 Test Automation and Architecture

141

test any way you like, you must keep the interface with the SUT exactly like of the real

service. However, you can and should sterilize what the simulator sends to the SUT to

the necessary minimum in order to make it easier to control and maintain. Also, you

should consider whether you want the simulator to reside inside the process of the tests

or in a separate process. If you decide to implement it as part of the test process, then the

test can interact with the simulator by directly accessing shared data in memory (e.g., a

static list of objects) If you decide to go for a separate process, you need to have another

communication channel between the tests and the simulator to allow the tests to control

the simulator. Continuing the previous example, the test should use this channel to tell

the simulator to “predict” stormy weather. Whether you implement the simulator in the

same process as the test or a separate one, you may have to take care to synchronize

access to data (whether it’s in the test process’s memory or in that of the separate

simulator process) to avoid race conditions5 if the SUT interacts with the simulator

asynchronously from the test.

There are two common misconceptions about simulators. The first one is that

they should replay real-world data. For some people it sounds easier to record the

communication traffic and let the simulator replay it. However, replaying messages “as

is” usually isn’t going to work, as some parts of the message either depend on date and

time, on order, on data received in the request (which the simulated service responds

to), on uniqueness, etc. Attempting to make the simulator manipulate the messages

accordingly will just complicate it, make it less reliable and more difficult to maintain.

It also makes it much more difficult to specify the expected result deterministically and

also prevents you from testing rare edge cases that the recording didn’t capture simply

because they’re rare and may be missing from the recording.

The second misconception is that the simulator should be stand-alone. A stand-

alone simulator is one which always replies with the same response, or has some

internal logic to always reply with an “appropriate” response, but cannot be controlled

by the test. While there are some uses for this, the main caveat of a stand-alone simulator

is that you don’t really have control over the inputs that the simulator provides to the

SUT and cannot simulate all the cases you need. In addition, over time it leads the code

of the simulator to be complicated and possibly buggy because its internal logic will just

get more and more complicated, while actually trying to duplicate the behavior of the

5�A Race-condition is a case where the state of a system is dependent on the sequence or timing of
asynchronous events. It becomes a bug if it brings the system to a state that the programmer did
not anticipate or handle correctly.

Chapter 6 Test Automation and Architecture

142

original service in order to reply with the “correct” response to all possible permutations

of the request.

The preferred approach I usually recommend is to make the simulator as thin as

possible and allow the test to control it directly. In addition, if you also want to verify the

messages that the SUT sends to the simulator, then you should also add a feature to the

simulator to retrieve the data that was sent to it, so you can investigate it in the test.

OVERCOMING THE PSYCHOLOGICAL BARIER

For some reason, in most of the cases that I suggested to a customer to implement a

simulator, the initial response was that even though it’s a cool idea, it’s not realistic, at least not

in the near future. This answer usually came from test managers, but sometimes also from dev

managers. I guess that this reaction comes because it’s a big mind-shift from manual testing,

and it seems much more complicated and risky because of that. However, in most cases when

I persistently asked what it would take to build the simulator, explained its benefits and the

risks of instability in case we won’t have it, it turned out to be much simpler than everyone

would have initially thought. In most of these cases there was one relevant developer who had

either written the service or the component that talks to it, which once I found and talked to

him, he gave me all the technical details that I needed in order to build the simulator.

In some cases, though, I had to reverse engineer the protocol, which was more time

consuming, but still certainly doable. Note that when you follow the procedure of writing one

test at a time, as will be described in Part 2, then you don’t need to reverse engineer and

implement the entire protocol at once, but rather only the minimum that is necessary for

the particular test. Once you write one test with the simulator and everyone can see that it’s

working, no one will stop you!

Simulating Date and Time

Many systems execute batch jobs or raise some events on particular date or time

intervals or at particular dates and times. In these cases, many scenarios are often

not feasible to test effectively without some kinds of work-arounds. Tampering with

the system’s clock is not recommended because it affect all processes on the machine

(especially if you run Outlook). Sometimes it’s possible to tamper with the data in the

database to cause the event we want sooner, but that’s not always an option and may

cause data integrity issues.

Chapter 6 Test Automation and Architecture

143

As the date and time are inputs to the system like any other inputs, if we want to

control it in the test we need to simulate it. However, the date and time are usually not

provided from a “service” but rather directly from the operating system. While it’s not

feasible to mock the operating system itself, the trick is to create an abstraction layer

between the operating system’s clock and the application. If the system employs a

dependency injection (DI) mechanism, then it may already have such an abstraction

layer. If not, then the code of the application should be refactored to introduce this layer.

If there are many places in the code that access the system’s clock, then it can be a risky

refactoring, but if not, then it’s not that hard. Then you can implement two classes that

implement this abstraction: one uses the real system’s clock – this is the class that is

used in production; and another one is the simulator (or mock) that the test can control.

You should either create a special build target (in addition to the standard “debug” and

“release”) that uses the date/time simulator or have some kind of mechanism to inject

that class at runtime.

Note that no system is designed to handle a case where the time moves backward,

so the simulator should only allow the test to jump the simulated time forward. It’s also

important to mention that if a few subsystems or services rely on the system’s clock, then

it’s important that all of them will use same simulator in order to be synchronized with

one another. See the third example in Appendix A for a real-world application of this

solution.

�Summary: Making Your Own Choice
Now that you’re familiar with the main techniques and approaches for architecting how

the test automation can interact with the SUT, and the considerations for each of them,

you may want to take a look at Appendix A to see some real-world examples. With or

without reading Appendix A, you should have all the tools you need in order to plan the

architecture for the test automation of your system. Note, however, that when you’ll try to

apply this knowledge for the first time, you may still be confused. This is because there’s

usually more than just one right way. Few alternatives may be valid, even though each

has different pros and cons. Eventually, after considering all the options, you should

choose what you believe to be the best for you and for your organization and go with it!

Over time, you’ll learn and adjust, or maybe even decide to change direction, but at least

you’ve gained valuable experience.

Chapter 6 Test Automation and Architecture

145
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5_7

CHAPTER 7

Isolation and Test
Environments
In the previous chapter about architecture, we mentioned that for every computer

system, the outputs yielded from the system depend only on the sequence of inputs

provided to it. According to this claim, we said that we must control all the inputs in

order to determine what the output should be in a particular test. However, this claim

also implies that we need to re-initialize the system before each test!

In order to understand what it means, let’s start from a very simple example: if we

test the Calculator application on Windows and press “1”, “+”, “1”, and “=” we expect to

see an output of “2” in the result window, right? However, this is true only if the initial

state is just after starting the application or after pressing the “C” button, which clears

the current calculation. If we already pressed some keys before we started our tests, for

example, already pressed “1”, then the result will be “12” (the first “1” we press in the test

will join the initial “1” that was there before the test to form an “11”, and then the “+”, “1”,

and “=” will change it to “12”).

�State
While Calculator is a simple application and we can pretty quickly restart it before

each test, this is not always practical for other applications. But fortunately, the above-

mentioned claim is too strict, and the following softened version of it is still true: “the

outputs yielded from the system depend on the sequence of inputs provided to it, and its
initial state.” Another, more common way to phrase it is that “The output of a computer

system is completely determined by its inputs and its current state.” This means that in

order for the tests to be reliable, we must have full control, not only on the inputs, but

also on the state of the application. Even though the internal state of an application is

146

mostly controlled directly by the application itself and not by the test, the test can bring it

to most desired states by starting from an earlier state and applying the necessary inputs.

In our calculator example, instead of having to restart the calculator before each test, it

suffices that we press the “C” button in order for the test to be correct in all cases.

Note that state is anything that the system remembers, in any kind of memory. This

includes (though not limited to):

	 1.	 The CPU registers. Among others, this includes the Instruction

Pointer register that tells the CPU the address of the next

command to execute.

	 2.	 The RAM. Normally the variables and data that a program stores at

runtime, which are not saved to disk is stored in this memory.

	 3.	 Local hard drives. The data stored in hard drives is typically either

in the form of files and folder (the file system), or in the form of a

database (which typically uses the file system underneath). The

Windows Registry is another form of data that is stored on the

hard drive.

	 4.	 In case of a virtual machine (VM), both the host and the guest

machines have their own CPU registers, RAM, and local hard

drives. Obviously, the guest machine only uses the resources

provided by its host, but to most purposes these look and behave

like two distinct machines.

	 5.	 Remote hard drives. Similar to the local hard drives, but these

drives are connected to another computer on the network. These

drives are typically accessed either through a network file system

or through a database service over the network.

	 6.	 The state of remote machines and services, including cloud

services. These days most computer systems consume cloud

services or services from remote machines. If we treat these

services as part of our system, then the state of these systems

should also be considered as part of the state of our application.

For example, if our application uses a cloud-based indexing

service, then the state of this service can affect the outputs of our

system.

Chapter 7 Isolation and Test Environments

147

	 7.	 The browser’s cache and cookies. While these are in fact stored in

RAM and/or local hard drives, in web applications these have a

special significance, as the web application accesses them, and is

affected by them, in a different fashion than regular RAM and hard

drives.

Hypothetically, any external change to any piece of information stored in these

locations can affect the state of the application and interfere with the results of the tests.

Luckily, most of these storage forms are controlled and managed by pieces of software

that limit the access that a program has to these storage, to only the portions assigned to

it or specifically permitted. In addition, the more the application is modular, the more we

can consider the state of each module separately and guarantee that a certain output can

only be affected by the state of certain subsystems. We can even take advantage of these

limits and guarantees to make our test automation system more reliable and predictable

by having better control over the state of the system. Harnessing these guarantees to our

needs is called isolation.

In contrast, when these guarantees are not harnessed appropriately, then this can

often cause serious problems to the test automation and hurt its reliability. I like to say

that these problems are caused by lack of isolation.

�Isolation Problems and Solutions
Let’s first consider some common problems that are caused by lack of isolation and then

we’ll talk about relevant isolation techniques that can solve these problems. After that, we’ll

discuss some other advantageous “side effects” that we can gain from using proper isolation.

�Problem 1 – Manual Tests and Automated Test Running
in Different Times
Consider an e-commerce application that sells audio equipment. Kathy is one of the

most veteran automation developers in the team. One of the first tests that she has

written was a sanity test that tries to add the product “earphones,” which is known to

cost $100, to the shopping cart; and the “Microphone” product, which is known to cost

$50, and verifies that the total price of the cart is $150. This test was very stable and was

running as part of the nightly sanity suite in the QA environment for a long time, and

only failed when there was a major problem or bug.

Chapter 7 Isolation and Test Environments

148

One morning, the QA manager asked John, a manual tester, to verify that when the

administrator changes the price of products, existing invoices keep showing the original

price. John performed the test and happily reported to his boss that the application

worked correctly (or maybe he wasn’t so happy, because he feels more satisfied when he

finds bugs?).

Anyway, the next morning when Kathy examined the results of the automated

nightly sanity suite, she was surprised to see that this old and reliable test failed. Further

investigation showed that the actual total of the cart was $170 instead of the expected

$150. A deeper investigation revealed that someone changed the price of “Earphones” to

$120. You probably realize by now who is this someone…

Such stories are pretty common. Usually when the automation project is young

and there are not so many tests, the frequency of such events is pretty low and can

be fixed very specifically when they occur. However, when the automation grows and

there are many tests that rely on a large variety of existing data from a shared database,

the frequency of such events goes up and can adversely affect the reliability of the

automation results.

�Problem 2 – Manual Tests and Automated Tests Running
Simultaneously
One other test that Kathy wrote verifies that when a customer completes an order with

three earphones, the inventory is updated accordingly. More specifically, when the

test starts, it first reads the number of earphones in the inventory; then it performs the

transaction of buying three earphones, and eventually it reads the inventory level once

again and verifies that it was reduced by three relatively to the original read.

This test worked perfectly fine at nightly runs, but occasionally when this test ran

during the day, and especially in pressured times before releases, this test failed. The

reason is that John (and other manual testers) performed additional transactions during

the day and occasionally bought earphones exactly between the time the test started and

the time it ended. The automatic test fails because it expects the updated inventory to be

exactly three below what it was at the beginning, but because of the other transactions

that the manual testers did in parallel, it drops even more.

Chapter 7 Isolation and Test Environments

149

�Problem 3 – Order Matters
As the result of the previous experiences, Kathy implemented some isolation

mechanism: instead of using existing products from the database (like “earphones” and

“microphone”), the test automation infrastructure has created special products (“test1,”

“test2,” etc.) before any test was run, and delete it after the last test completes. The tests

now only use these products instead of the real ones.

One day a new automation developer named Bob has joined Kathy’s automation

team. The first task that the QA manager assigned to him was to automate the test that

John used to perform, which verifies that when the administrator changes the price

of products, existing invoices keep showing the original price (the same test that was

mentioned in problem #1).

Bob successfully implemented this test and ran it few times to make sure that it’s

stable. In addition, the QA manager warned him that there could be a conflict with the

sanity test as was mentioned in problem #1, so he ran this test a few times, too, and made

sure that it also continued to work properly.

For some nights both of these tests were running without any problem. One day,

Kathy noticed that the name of the test that Bob wrote was not very descriptive so

she changed it. To everyone’s surprise, the next night the sanity test failed. Like in the

previous case, the test failed because the actual result was $170 instead of $120. When

Kathy ran the test again separately, it still passed. All manual tests looked fine too. Kathy

was baffled, and finally decided that it was probably a one-time thing (maybe a bug that

was already fixed this morning?) and that the failure couldn’t be reproduced.

To her even bigger surprise, the next night the test failed again! Feeling more baffled,

she decided to investigate more thoroughly. Eventually she found out that changing the

name of the test caused the order of the tests to change and make Bob’s test run before

the sanity test, while before the name was changed it ran after the sanity test, and that

Bob’s test was modifying the price of “test1,” which the sanity test also used, similarly to

what happened when John ran this test manually.

However, Bob still didn’t understand why it didn’t fail when he ran the two tests just

after he wrote them. So, he turned to Kathy to help him understand what he did wrong

then. After he explained to her how he ran the tests, she told him that the isolation

mechanism that she implemented re-creates the test data whenever a suite of test starts

to run. Bob indeed ran his test before the sanity test, but he ran them separately (as

opposed to running them together as one suite), which caused the infrastructure to

re-create the data between them and therefore “hide” the problem.

Chapter 7 Isolation and Test Environments

150

�Problem 4 – Automated Tests Running Simultaneously
After the automated test suite grew, and the time it took to run all them was too long,

Kathy decided to split the tests into four groups and run each group on a different

machine in parallel. The runtime indeed decreased significantly, but occasionally tests

that used to be very stable before were failing with an unclear reason. Running the test

again separately didn’t reproduce the failure. Especially the inventory test that was

mentioned previously was failing from time to time, even though the tests were running

at night when no one interacted with the system manually.

Obviously, the reason for the failures is very similar to the reason of problem #2, but

instead of manual testers interfering with the automation, this time different automated

tests that ran in parallel interfere with each other.

�Isolation Techniques
Theoretically speaking, the best isolation will be achieved if for each test case we’ll

start from a “virgin” environment, on which the application was never installed. The

initialization of the test will install all the relevant components of the application, start

them, and only then execute the test. In real life, however, this is very rarely feasible.

So, let’s examine some techniques that are more feasible. Some of these techniques are

complementary to each other and can be used together.

�Use Separate Accounts
If the application provides a service to individual users or customers and has a notion

of “accounts” that should not see one another’s data, then this is a “low hanging fruit”

when it comes to isolation. First, you can create one account that is dedicated to the

test automation system so manual testers won’t intervene. Then you can (and should)

even assign a different account for each automation developer and test execution

environment (e.g., the where the nightly tests are run) to eliminate collisions between

tests running by different developers simultaneously.

Chapter 7 Isolation and Test Environments

151

�Separate Between Manual Testing and Test Automation
Databases
Many teams have a limited number of environments that serve different phases of the

development cycle. Typically, these are called Dev, Test (or QA), Pre-prod (AKA Staging

or Acceptance), and Prod (for production), though different teams have some slight

variations in the number, names, and purposes of the environment. Each of these

environments typically includes its own copy of the database.

If your team uses such environments, the next recommended isolation technique

after using separate accounts is to create just one new environment with its own copy

of the database, just for the automation. This technique becomes most valuable when

creating an automated build that runs the tests. The build should first create or update

the automation environment, and then run all the tests on it. This also requires us to

automate the deployment of the environment (if we still haven’t). The good news is that

once you cracked all the intricacies of creating this automatic deployment script, then

you can use it to create or update any other environment (e.g., Test, Prod) on demand,

much more easily and safely than when the deployment was manual! See Chapter 15 for

more information about it.

If this environment is only used for running centralized test cycles and its usage

is managed and synchronized by the build system (or even manually if the number of

people using it is very small), then this isolation technique ensures that the automation

has full control over the environment. and it eliminates almost all excuses for

unexplained failures.

�Having Separate Environments for Each Team Member
The assumption of the previous technique that only one user can use the environment at

a time may be appropriate if the number of people having to use it simultaneously (e.g.,

automation team members) is small and the time it takes to run a cycle is also short. But

that assumption may very quickly become incorrect, and that environment that we’ve

created becomes a bottleneck. While automation developers add new tests or change

existing ones, they need to run them in order to verify and sometimes debug them in

order to test the tests themselves. If there’s only a single test automation environment,

then they’ll probably test and debug them in another, non-sterile environment. But first,

the environments may differ, which means that what they test won’t necessarily reflect

Chapter 7 Isolation and Test Environments

152

what will happen in the “formal,” centralized cycle; and second, they may dismiss any

nonobvious failure as caused by the non-sterile nature of the environment.

For these reasons, the next logical step is to create multiple automation

environments, and even have a separate environment for each automation developer.

But what about application developers? If we want to encourage (or enforce) them to run

some tests before check-in, then they also need a separated environment.

Usually the largest obstacle for doing that is that the system is too big to put on

every developer’s machine (and clearly, it’s too expensive to have another dedicated

machine for each developer). But in most cases, even if in production the system uses

several dedicated servers, it’s not that big of a deal to put them all on one machine. The

only thing that is usually really big is the database. But as a matter of fact, in most cases

the automation does not need all the data in there. You can keep only a bare minimum

portion of the data that the automated tests actually use (see the next technique that

complements this approach).

Some people are concerned that such minimized environments don’t reflect the

load and the scale of the real system. Well, that’s true, but that’s not the sweet spot of

functional automated tests anyway. Load tests, which are covered in Chapter 18, require

their own dedicated environment that may have a lot of data, and should be more similar

to actual topology of the production environment. However, the load environment, as

well as the load tests themselves, should be completely separate and different from the

regular functional tests and their environments.

Another concern that is often raised is that each environment we add adds more

maintenance and management costs. This is indeed the case when some of the

deployment steps are done manually. Updating the database schema is often performed

as a manual step, which is very risky. If you skipped the previous technique, then now

you’ll be required to fully automate the deployment process too! Once the process

is completely automated, it takes very minimal effort to spin up a new environment,

especially if you’re using VMs or containers (see below).

�Running Tests in Parallel

It you overcame the challenges of creating many separated environments, you can

leverage this to create few environments for the main test cycles (e.g., CI or nightly

builds) and split the tests among these environments. Each portion of the tests will run

on a different environment in parallel with the others, and therefore the total time of the

test run will be reduced significantly. Just make sure that the total time of each portion is

Chapter 7 Isolation and Test Environments

153

close enough to the total time of all the rest, and the total time of the entire test cycle will

be divided by the number of environments.

�Resetting the Environment Before Each Test Cycle
While usually the theoretic approach mentioned above of starting from a clean

environment for every test case is not feasible, it is often feasible to do it once before

each test cycle (e.g., before the nightly or CI runs). The true meaning of “clean the

environment” may vary, but in general it means somehow reverting the state of the

environment to some well-known initial state.

This can be achieved in several ways, depending on the architecture and the

technologies used by the application. Here are a few examples:

•	 Restoring the database from a known “baseline” backup;

•	 Deleting any files that the application creates during its run, or

replacing them with their original versions;

•	 Given that the application has an install/uninstall program, use this

program to uninstall and reinstall the application.

One question that often arises when thinking about these solutions is whether

resetting the state should be done before the tests or after? In most cases the preferred

answer is before. This ensures that the environment will start fresh even if the previous

cycle was aborted in some way before reaching the cleanup phase. In addition, if tests

fail and you need to investigate, keeping the environment intact may help you get more

information (e.g., log files, DB entries, etc.) about the cause of the failure.

Another common and very powerful technique for resetting the environment before

each test cycle is to use Virtual Machines or Containers, possibly using a cloud service.

�Database Backup and Restore

Given that the application is using a single database, and that you already have a

separate environment for the automation, or even multiple separate environments, you

might want to consider starting each test cycle, or even each test suite from a clean slate,

by restoring the database from a backup that was prepared in advance. Each time that a

test cycle runs, it first restores the database from this backup.

Chapter 7 Isolation and Test Environments

154

In case you need to update the schema or the data in the backup file due to changes

to the product and/or to the tests, you must re-create that backup. In order to do so,

restore the previous backup, apply the needed changes, and then re-create the backup.

It would be valuable to keep these backups in the source-control system so that they’d

be synchronized with the changes of the SUT. However, one disadvantage of storing

backup files in source control is that backup files are typically binary and source-control

tools typically can’t store deltas for binary files, so they need to keep the full file for

each and every change. It also means that you can’t compare different versions of the

file. Therefore, a better approach you should consider is to store scripts that re-create

the database instead of a database backup per se. Accordingly, instead of restoring the

database from the backup file, the tests infrastructure will run that script in order to

create the clean environment.

�Transaction Rollback

Another isolation technique that involves a database and falls into the category of

resetting the environment is to start each test by starting a new database transaction and

ending it (whether successfully or not) with rolling back the transaction. This ensures

that every change that was made by the test to the database is undone.

This approach is more suitable for component tests than for end-to-end tests,

because it requires that the SUT will use the same transaction that the test started. In

addition, it is typically more adequate as a technique to isolate between individual tests

rather than between test cycles, as the rollback time is pretty short.

If you’re using it for a component test, the component under test should be able to

take an existing database connection through which it communicates with the database,

typically through its constructor, so the test should open the connection, begin a new

transaction, and give the connection to the component. When the test completes, it

rolls back the transaction or simply closes the connection without committing the

transaction, which abandons it and practically rolls it back.

With an end-to-end test this is generally only possible if the application provides

some kind of a hook or “back door” to start a new transaction and to roll back it, only

to solve this particular problem, which might introduce a significant security hole.

Other disadvantages of this approach in end-to-end tests is that it implies a high degree

of coupling and presumptions between the test and implementation details of the

SUT. For example, the type, name, etc., of the database are implementation details and

not some specified requirements. Even though the type or instance of the database

Chapter 7 Isolation and Test Environments

155

is not something that changes often, sometimes a re-architecture of a feature still

involves such a change (e.g., taking a few tables out from a relational database into a

“NoSQL” database), in which case the changes to the tests would be huge. Moreover,

the intervention of the test in the database transactions might cause the SUT to behave

differently under test than it would be in production, which makes it less reliable. This

can happen if the SUT assumes that a transaction was committed, which is true in

production, but the test rolled it back.

�Use Virtual Machines (VMs), Containers, and the Cloud

In case you’re not familiar with VMs, here’s a quick recap: A VM is like a computer

hosted within another computer. To be more precise, it’s an operating system (OS) that

is hosted inside another OS. The host OS allocates some of its resources, like CPU time,

memory, disk space, network bandwidth, etc., to the VM, while the VM is not “aware”

that’s it’s being hosted and it behaves like a complete, normal OS. As a user, you can

interact with the VM either through a special application in the host or via remote

desktop. But in many cases VMs are used to run services that only other applications

interact with, or that can be accessed through a browser. One host can host multiple

VMs, and there are often dedicated, powerful machines whose sole purpose is to host

multiple VMs.

Containers are like a very lightweight VM. A typical VM takes quite a lot of resources,

and the time to turn it on is similar to the time it takes to any normal OS to load (which

is typically a few minutes on most Windows versions). With containers however, the

host typically shares parts of itself and its resources with the container (as opposed to

allocate the resources) and therefore uses less of them. This imposes some restrictions

and limitations on the container, which cannot be any arbitrary OS as in the case of VMs.

Therefore, a container is much more limited and does not have a GUI, but it loads almost

instantly and uses much less resources like memory, disk space, etc.; provides greater

flexibility and manageability; and still provides similar isolation to those of VMs.

There are two main features that make VMs and containers interesting for our

isolation needs:

•	 Snapshots: because the “hard disk” of the VM is not a real hard disk

and merely a file on the host, it’s possible to save special backups

(which are called snapshots) of the VM and restore them later. In fact,

a snapshot can even contain the state of the memory of the VM and

not only its hard disk so it can be taken while the VM is “powered

Chapter 7 Isolation and Test Environments

156

on” and be restored exactly to the same state. Also, the virtualization

technology usually allows us to save only the differences from the

base image of the VM so it doesn’t take so much space and takes less

time to create and restore. The test automation can use this feature

to restore the system to a snapshot that was taken in advance and

contains the predefined initial state for our tests.

•	 Templates: similarly, an image of a VM can be cloned to create

multiple instances of the same VM. It’s a bit more complicated

than just copying the image, because in order to prevent network

collisions and ambiguities, each VM must have a different name,

IP address, MAC address, etc. But luckily the host can take care of

managing these differences and therefore it’s still possible. The ability

to create multiple instances of VMs from the same image makes it

easy to scale out applications (see the next sidebar). Similarly, for

test automation purposes, it can be used to create multiple similar

environments that can test in parallel with proper isolation.

Some of the major Internet players, like Google, Microsoft, and Amazon maintain

some huge datacenters around the world and rent compute resources from them, mainly

in the form of VMs and containers, to anyone who wants them. This type of service

is known as the cloud. Its main benefit over using your own VMs is the flexibility to

increase or decrease the resources you consume, while you just pay for what you use.

They also free you from the responsibility for maintaining the expensive hardware. There

are many other benefits and options for using the cloud, but that’s beyond the scope of

our discussion.

The bottom line is that snapshots and templates of VMs and containers are a great

way to achieve isolation, parallelism, and help you create and manage large numbers of

environments.

SCALING UP VS. SCALING OUT

Traditionally, the hardware that was used to run a heavy-loaded server application was a

single “heavy-duty” computer. Mission critical servers often used a pair of adjacent machines

called a cluster, one denoted to be the primary and the other secondary, so that if the primary

had a failure, the secondary would take over instantly to continue serving requests seamlessly,

while the primary could be fixed. If the load on the server increased over time, usually adding

Chapter 7 Isolation and Test Environments

157

more memory or a faster CPU would be the solution applied to the problem. This is known as

scaling up the hardware. The problem was that the hardware for these high-end heavy-duty

machines were very expensive and therefore it was a big deal to upgrade such a machine.

In addition, even though the failover provided some redundancy, it’s still very limited, as the

two machines were physically close to each other and any physical disaster would probably

hit both of them. There were solutions to this problem but they were also very expensive and

complicated.

In the “dot com boom” era, companies started to leverage a large number of normal PCs

to provide redundancy and scalability. The application should be architected properly to

support it, but if it does it allows these companies to add more compute resources by simply

deploying the application on yet another machine. This is known as scaling out. This allows us

to add more computers much quicker than it takes to order and install expensive specialized

hardware. In recent years, with the advances in the area of VMs and the cloud, it has become

even more popular and today it is mostly considered bad practice to design a “monolithic”

system that does not support scaling out.

�Create Unique Data for Each Test
Most of the isolation techniques we’ve mentioned so far deal with isolation between

environments and between test cycles. But what about isolation between tests in the

same cycle and environment? Recall problem #3 discussed earlier in this chapter.

As it’s usually not feasible to create a complete isolation between individual tests

in the same cycle and in the same environment (except for unit tests), it’s possible to

reduce the chances of collisions by applying some relevant design techniques. The

common to all of these techniques is that they avoid or prevent sharing mutable data

between tests.

One such technique to avoid sharing data between tests is simply to create a unique

set of data for each test. If each test creates and uses the data it needs to change or

access, one test cannot affect other test’s data. Note that when I say that the test creates

data, I don’t mean that it accesses and inserts data directly into the database, but rather

that the test invokes operations on the SUT that creates the data. For example, if the

test has to change a price of a product, then it should first create the product through

the application and not directly through the database. This ensures that the data is

consistent and valid.

Chapter 7 Isolation and Test Environments

158

For optimization reasons it’s not always appropriate to create everything through

the UI though. If the application exposes an API to create this data, then you should

probably use that anyway. If not, then consider reusing the DAL components of the SUT

to create the data. Only inject the data directly to the database as a last resort, both to

avoid possible inconsistencies, and also to reduce the coupling between the tests and the

database schema, which is usually an implementation detail of the SUT.

The catch in the concept of creating the data you need in the test is to determine

which data can be shared and which shouldn’t. It’s pretty obvious that transient data that

only the test changes should be created. But consider the following case (continuing the

problematic scenarios of Kathy, John, and Bob): A new feature was developed that allows

the manager to define promotions that gives a discount for any product out of a group

of products that participate in the promotion. For example: buying either a speaker,

earphone, or microphone gives a 10% discount. Bob writes a test that creates such a

promotion, and associates it with the existing “earphone,” “speakers,” and “microphone”

products in the test DB. The data related to the product themselves is not changed, only

referred to by the new promotion that he created. When Bob runs his new test it passes,

but at the nightly build Kathy’s famous sanity test fails because the expected total was

now 10% lower than expected. Note that superficially, Bob followed the guideline and

created a new promotion, which is the only entity he actually changed. But even though

the product entities themselves didn’t change, they were affected by the new promotion

entity.

So, it’s not enough for each test to create only the data it changes. It should also create

any data that it uses. However, beware not to take this rule too far either: most applications

use a set of data that very rarely change, often called reference data. For example: the list of

countries and currencies. In the mentioned example, the prices of the products use some

default currency that is defined somewhere in the database. Creating a separate currency

for each individual test is probably an overkill. There’s some gray area between such

reference data and data that rarely change. The list of products also changes pretty rarely,

but as we saw, we better create a new product for each test nonetheless.

There are a couple of rules of thumb that can help you decide whether a piece of

information should be created by each test or can be seen as reference data:

•	 Do many of the tests use this type of data directly? In our example,

on the one hand, the notion of which products the customer buys

is key to many tests; therefore it should probably be created for

each test. On the other hand, if the entity is mostly used indirectly,

like the currency in the above example, then it can probably be

Chapter 7 Isolation and Test Environments

159

shared among most tests. However, tests that use or verify certain

characteristics that are closely related to the notion of a currency

should probably add their own currency entity for their particular

use.

•	 Can most of the tests work correctly if there was only one default

instance of the type of entity in the database? Even though the

real database would probably define 196 countries or so, the vast

majority of our tests can work with a single, default country. So, we

can keep that single record in the reference database and use it for

any purpose that does not specifically need a special property of a

country. Here again, if the test needs to interact more closely with the

country entity, then it should probably create a new one. However,

it’s probably not adequate to refer to one specific product in the tests

DB as a “default product” because each product is unique and many

tests need more than one.

The outcome of these rules is that you should probably have a very thin database,

containing only one entity of the reference data tables, and no data at all in all other

tables. This also has the advantage that creating a new environment is much faster and

leaner (i.e., requires less storage space, and therefore faster to copy or re-create).

I also prefer to use dummy reference data, which is intentionally different from

the real data (e.g., “Dummy country1”, “Dummy country2”, instead of the real list of

countries). This way I discover whether there are other assumptions in the system about

the actual values. If everything works correctly with the dummy data, I leave it as is. But if

I encounter a dependency on real values, I question whether it is really necessary or not.

If it is, I replace the dummy data with the real one, but if not, I’ll open a bug and push to

remove the unnecessary dependency. While the value of removing such dependencies is

not immediately apparent, it makes the code of the SUT more reusable and maintainable

in the long run.

Defining this minimal set of data can be a big challenge, as often the database

schema and the necessary data that the application requires in order to function

properly are poorly documented, and often no one really knows all the details. The

solution may take some time but is not very complicated. If you’ll do it, then in the

process you’ll gain back the invaluable knowledge about the real prerequisites and

structure of your application – a knowledge that was lost along the way of developing

the application and will probably be valuable again in the future. This knowledge will be

Chapter 7 Isolation and Test Environments

160

very valuable once some relevant parts of the system need to be refactored or rewritten.

In addition, using a minimal set of data rather than a full-blown database often has a

nice side effect that makes the system, and correspondingly the tests, run faster.

Essentially the solution is to reverse engineer and debug the system. Simply start

with one sanity test that does not rely on existing data (that you aware of), and try to

run it against an environment with an empty database. The test would probably fail. At

first, chances are that the failure would be that the system won’t even start! Whatever the

failure is, you should find the missing data that caused the failure, fix it, and then try to

run the test again. To find the missing data, try invoking or even debugging the operation

that failed both against a full database and against the new thin one, and compare the

results. Continue this process until all of the failures in the test have been fixed, and the

test passes. After you’ve done it for the first test, the next one would probably go much

faster.

The details, however, may be somewhat different according to the type of

application:

•	 If the application is a shelve product, and assuming that you create

the data either through the UI or through a public API, then in any

failure the application should provide a clear error message to the

user. If it does, add the missing data as part of the code of the test. If

it doesn’t, you should debug the system until you find the root cause.

Then, either fix the error message yourself, or if you’re not allowed

to change the source code, ask a developer to do so or open a bug. If

you can fix the code yourself, it’s best, because you can verify that the

error message is clear before you add the missing data.

•	 If the application is a Software as a Service (SaaS) and you’re using a

separate account for the tests as suggested in the first technique, then

every account should be considered the same as a shelve product.

However, there’s probably some reference data that is common to

all accounts (e.g., countries, currency, etc.) that only administrators,

marketing people, or any internal personnel can modify. In case that

such data is missing, giving a nice error message is only nice to have,

but not critical, as the end user should never encounter this error.

However, it’s still recommended to provide a clear error message

in the log at least. Anyway, because the missing reference data is

Chapter 7 Isolation and Test Environments

161

common to most of the tests, then instead of creating it as part of

each test, either create it at the beginning of the test suite, or add it

directly to a snapshot database (as described above in the technique

“Resetting the Environment for Each Test Cycle”).

•	 If the application is a website (either public or internal application),

but does not use accounts and does not require registration, then

all of the data and configuration are probably common to all users.

This is probably the hardest case. In this case you have to decide

what data is true reference data that should never change, and which

data should be considered as input. In some cases, it’s not that

difficult because anything that is editable by any user (including an

admin) is something that the test should create, and data that can

only be changed by someone in the development team should be

included in the snapshot of the database that the automation uses

as a starting point. However, in other cases the distinction is not that

clear. In today’s DevOps approach (and also in some less mature

organizations), there’s no clear distinction between the development

team, administrators, and businesspeople. Accordingly, internal tools

are developed to aid the relevant people to add or update different

parts of the data. For some parts of the data, a corresponding tool is

created at the beginning of the project as a one-time thing to enter

the data into the database. As internal tools, they’re often quite

“hacky” and it’s unclear whether this data should really be editable.

In addition, some parts of the data may not come from a user, but

rather from external systems. Similarly, the data could have been

imported from the external system once at the beginning of the

project, and it’s not expected to change any time in the future. In

these vague cases, just choose what data to treat as a reference data

and which to not, according to your own judgment, but try to write

the tests in a way that will be easy to maintain if one day you decide

to change that decision.

•	 In complex, monolithic, and poorly documented systems, the

approach of starting from an empty database and find what’s missing

may not pay off. If this is the case, try to do it on a test-by-test basis or

at least feature by feature. Instead of starting with an empty database,

Chapter 7 Isolation and Test Environments

162

start with the existing (full) one, but identify what relevant data your

tests rely on. Make sure that your test creates that data that it needs

instead of relying on existing ones. Over time, review which data is

probably not needed and delete it (after creating a backup). If the

tests keep working correctly, it means that this data was indeed

no longer relevant. However, if tests fail due to this missing data,

either fix the failing tests to stop relying on that data, restore the old

database from the backup, or add the missing data that the tests

or the system need. Gradually, you can delete irrelevant data from

specific tables and make your test database smaller and leaner.

�Each Test Cleans Everything It Creates
Having each test create the data it needs resolves most of the conflicts. However, there

are cases where a test needs to change some global state, or that an entity that one test

creates might affect other tests even though they don’t use it directly. For example, one

test can create a promotion that gives a 10% discount for every sale above $100, or a

different promotion that gives a discount for every sale that occurs on Fridays between

5:00 and 6:00 p.m. (Happy Hour), while another test can create a sale with total of

more than $100 or that coincidentally occur on Friday 5:24 p.m. without being aware

of the existence of the promotions that the first test has created. Therefore, it’s also

recommended that each test will delete or roll back the changes it made.

Most common unit testing frameworks (e.g., JUnit, NUnit, MSTest, etc.) provide

a way to define special methods that run before each test in a test class, and methods

that run after each test method. For example, JUnit uses the @Before and @After

annotations to identify these methods. (See Chapter 3 for a description of unit testing

frameworks). In different frameworks these have different names, like SetUp/TearDown,

TestInitialize/TestCleanup etc. For the matter of clarity, I’ll refer to them as Initialize

and Cleanup methods. The main purpose of these cleanup methods is to provide a

common way to perform the cleanup of the tests. However, it turns out that the way they

work does not lends itself very well for many cases and writing really robust cleanup

code is very difficult.

Chapter 7 Isolation and Test Environments

163

There are several reasons for that:

	 1.	 A test class can contain more than one test. Even though the tests

in the same class should be related, it’s not always true that they

all require the exact same cleanup.

	 2.	 Generally, these Cleanup methods run only if the corresponding

Initialize method succeeded (didn’t throw an exception), but

regardless of whether the test passed or not. In most cases it

makes sense because if you failed to initialize something, there’s

no need to clean it up. On the other hand, if the test failed, then

you still need to clean up. However, often the Initialize method

creates more than one entity that needs to be cleaned up, and

it’s probable that the creation of the first entity succeeds and the

second one would fail. In this case, the cleanup method won’t

be called and the first entity will remain and won’t be cleaned up

properly.

	 3.	 Often the test itself creates an entity. Seemingly there’s no

problem with that as the cleanup code can still delete it. However,

the test may fail before or while creating the entity, which can

cause the Cleanup method to fail too when it tries to delete the

entity that wasn’t created.

	 4.	 A test (or the Initialize method) may create two entities that

one depends on the other. For example, a test can create a new

customer and create an order from that customer. If in the

Cleanup method we’ll try to delete the Customer before cancelling

and deleting the Order we’ll get an exception.

	 5.	 Combining 3 and 4 together (i.e., the test creates multiple entities

with relationships between them), makes writing a cleanup

code that works correctly in all failure situations very difficult. In

addition, it’s very difficult to simulate such failures, which makes

testing the Cleanup code almost impossible!

The solution is to keep a list of commands to be executed on cleanup. Whenever

the tests perform an action that requires some cleanup, it also adds the appropriate

cleanup command to the list. Adding the command to the list does not invoke it at this

Chapter 7 Isolation and Test Environments

164

point. Only when the test completes, either passing or failing, all of these commands

are executed in reverse order (to address issue #4). Naturally, when a test fails, it jumps

directly to the cleanup code, skipping the rest of the test. This ensures that only the

actions that were actually performed are cleaned up (issue #3). Appendix B contains

detailed implementation and explanation on how to implement such mechanism. In

addition, Test Automation Essentials (See Appendix C) have a full implementation of this

mechanism too.

�Read-Only Shared Data
Lastly, it’s worth mentioning that if the application is using a database but uses it only

to read data that was produced by another system, then this data is not to be treated as

state, but rather as input. Therefore, you don’t really need to isolate instances that use

the same data!

In many cases, though, it implies that the SUT is not really the entire system, and

that you should probably test the integration between the system that produces the data

together and the system that consumes it. However, you may choose to have few system

tests that exercise the subsystem that produces the data as well the one that consumes it,

but keep most tests separated for each subsystem, which is totally fine. See Chapter 6 for

the options and considerations of fitting the tests to the architecture of the SUT.

In many of these cases, people tend to use a copy of an existing production database

and use it for the tests. But before you’re going down that route, you should consider the

following questions:

•	 Is the data you’re using diverse enough and represent all the cases

that you want to test? If for example, the data is taken from a single

customer while different customers may use the system a bit

differently, then you may not be able to cover all the cases you need

for the other customers.

•	 Is it possible that the schema or the meaning of some data will

change in future versions? If that’s possible, then when it happens,

you’ll need to take a different copy of the database, which would

most probably have different data in it. This will make all of the

expected results, and many other assumptions of your tests no longer

valid! In some cases, that may be a disaster for the test automation, as

you’ll need to write almost everything from scratch…

Chapter 7 Isolation and Test Environments

165

•	 Is it easy to understand the relationship between what a test does and

its expected results? In other words, if you’re writing a new test, can

you tell the expected results without looking at the actual output of

the system? If not, how can you tell that what the system does today

is correct? You’d probably say that what’s there today has been so for

many years and no one complained so far, and therefore it can be

considered as correct. I totally agree with that, but if any of the logic

that relies on this data will intentionally change in the future, it will

be very difficult to say whether the new logic is correct or not either

(and if this logic is not to be touched, then there’s a low value testing

it anyway).

The alternative to using a copy of production data would be to create a synthetic

instance of the database, which contains data you specifically put in it for the tests.

In fact, the process of creating this synthetic data is identical to the process of reverse

engineering and debugging described earlier under the topic “Create Unique Data for

Each Test” for creating the minimal set of reference data.

�Summary
In order to ensure reliability and consistency, the architecture of the test automation

should control not only the inputs of the chosen test scope, but also its state. In this

chapter we discussed various isolation techniques for controlling the state of the SUT and

to avoid inconsistent results in the tests. Besides making the tests more reliable, some of

these techniques have the nice side effect of allowing us to run the tests in parallel, gain a

better understanding of the true behavior of the system, and make the tests run faster.

Chapter 7 Isolation and Test Environments

167
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5_8

CHAPTER 8

The Big Picture
In Chapter 5 we’ve talked about the relationships between test automation and business

processes. In Chapter 6 we’ve talked about the relationships between test automation

and the software architecture. In this chapter we’ll look at the bigger picture and discuss

the strong correlation between business structure and architecture, and between

business processes and culture. And of course, we’ll also discuss how test automation is

connected to all of these as well and how everything is related.

�The Relationships Between Software Architecture
and Business Structure
Back in 1967 the computer scientist Melvin Conway published a paper titled “How Do

Committees Invent?”1 In the third-to-last paragraph of this paper he stated an adage that

later became famously known as Conway’s law.

�Conway’s Law
Conway’s law states that “organizations which design systems [...] are constrained to

produce designs which are copies of the communication structures of these organizations.”

While this law isn’t restricted to software, it is the most obvious and well known in this

field.

This observation implies that the business structure, culture, and also informal

communication patters are reflected in the architecture of the system and vice versa.

People in the same team usually communicate more frequently, and the pieces of

their work (e.g., lines of code) are more intertwined with one another, producing a

well-defined module. When the module they produce should interface with a module

1�http://www.melconway.com/research/committees.html

http://www.melconway.com/research/committees.html

168

that another team produces, people from the two teams must communicate with each

other in order to define this interface. But this is not restricted to formal structure: if two

people in the same team or in different teams don’t communicate well with each other,

the integration between their pieces of code will very likely be clunky; solitary developers

may create code that only they understand; close friends in different teams may create

“hacky” interfaces that only they understand, etc.

Conway’s law works both ways: on one hand, if an architect comes up with the

desired architecture, but a manager decides to organize the teams in a way that does

not correspond to that architecture, the software that will be built eventually will more

likely have an actual architecture that corresponds to the actual business structure rather

than the architecture that the architect first envisioned. On the other hand, if a major

restructuring of the software is planned, a smart manager can harness Conway’s law to

that goal and reorganize the teams accordingly.

�Horizontal Teams vs. Vertical Teams
Traditionally, most business systems were designed in a layered architecture. Typically,

the highest layer is the UI, below that the business logic, below that is a data-access

layer (DAL) that communicates with the database, and below all is the database itself.

Accordingly, each of these layers was usually developed by a separate team. The benefit

of that approach is that any of these layers typically requires a different set of skills and

tools and so it made sense to put all developers with similar skills alongside one another

in the same team to promote sharing of knowledge and practices.

The downside of this approach is that almost every feature depends on all of

these layers. As long as everything is well designed upfront, it’s not a big issue. But

if the customer requests to make the smallest change, add the simplest feature, or

if a bug is found, it almost always requires that all of the teams will participate in

the implementation of the change. In addition, because the chain of dependencies,

usually higher-layer teams would not be able to start working until the lower layer team

completes their work. This makes such rigid architecture and business structure very

resistant to change requests, bug fixes, and new features…

This notion brought many large projects to adopt an architecture and business

structure that correspond to “vertical” features rather than on technical layers. In this

approach, each team consists of people with different skills and expertise (i.e., UI,

database, business logic, etc.), but all are dedicated to the same feature or business

domain. Furthermore, some teams consist mainly of people with versatile skills,

Chapter 8 The Big Picture

169

commonly known as “full stack developers.” In addition to different developer expertise,

in most cases this organizational structure also includes dedicated testers and product

managers as part of each team. Probably the most influential book that advocates this

approach is Eric Evan’s Domain Driven Design – Tackling Complexity in the Heart of

Software.2The downside of this approach is exactly the upside of the layered approach

(knowledge sharing between people with the same expertise) but in most cases its

upside, which makes the software more maintainable and accommodating for changes,

clearly outweighs its downside. Figure 8-1 shows the vertical vs. horizontal division.

In practice, many complex projects have their own unique architecture and team

structure, but you can pretty clearly identify the correlation between the organizational

structure and the system’s architecture and identify where the lines that divide the

responsibilities between teams are vertical and where they are horizontal. For example,

in one of the largest projects I’ve worked on, the organization was divided unto one

client team (it was supposed to be a “thin client,” hence only one team) and many server

teams, dedicated to different business domains. The testing team was a horizontal one,

covering the cross-feature scenarios.

2�Evans, Eric (2004). Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley. ISBN 978-032-112521-7. Retrieved August 12, 2012.

Feature Feature Feature

Database

Server

Client

Figure 8-1.  Vertical vs. Horizontal division

Chapter 8 The Big Picture

170

�The Relationships Between Software Architecture
and Organizational Structure with Test Automation
Naturally, team members communicate more often and freely with their teammates

than with members of other teams. But composing, implementing, and maintaining

automated tests also require a great deal of communication with developers on various

teams. This also has some implications on the relationships between the organizational

structure and the structure of the test automation.

�Dedicated Automation Team
If there is one dedicated automation team, it will most likely be somewhat disconnected

from the development team. On one hand this is good, because it means that they’ll have

complete responsibility over the automation, and that like in a layered architecture and

organizational structure, it enhances the knowledge sharing and practices among the

automation developers. In addition, because the automation team is responsible for the

automation of the entire application, they’ll more likely create an automation suite that

covers the entire application as a whole, like the End-to-End scope described in Chapter 6.

On the other hand, the automation team will less likely get a prompt collaboration

from the development team, which is critical in order to keep a stable and robust

automation (See the section in Chapter 5 titled “Handling Bugs That Are Found by

the Automation”). In this structure, it will probably be pretty difficult to integrate the

automated tests into the continuous integration process (see Chapter 15), as it will be

difficult to convince both the application developers and the automation developers that

the application developers should fix failures that happen in the automation.

�Automation Developers Inside Horizontal Teams
Typically, if automation developers are members of horizontal teams, or the members

of the horizontal teams develop the automation, they will lean toward implementing

automated tests that cover only their own layer. They don’t want to be bothered by

failures that are not their fault. Clearly, this will only ingrain the effects of Conway’s law,

and will likely cause more integration problems between the teams. These problems can

manifest themselves as bugs, as delays in the project schedule, as personal or inter-team

conflicts, etc.

Chapter 8 The Big Picture

171

�Blame vs. Collaboration Culture

This phenomenon is not limited to horizontal teams, as it might apply to any teams

that depend on one another and which the communication between them is lacking,

but because horizontal teams are inherently dependent on the teams that develop the

lower layers, this is very common in this situation. The essence of this phenomenon is

that when something goes wrong, the teams start to blame each other for the failure.

I was once asked by one such team (let’s call them team “A”) to develop tests for the

components developed by another team (team “B”) so that when something doesn’t

work, team A will be able to prove that the faults are of team B… I politely refused,

explaining that it’s not effective to write tests for another team, because automated tests

require constant maintenance. Instead I suggested that they’d write integration tests that

cover both the code of team A and of team B together. That way they’ll get much higher

value out of it. Instead of being “right,” they’ll be able to ensure that the software that

they give their customers is working correctly. In case it doesn’t, they should be able to

investigate and analyze the root-cause quickly enough (see Chapter 13 for techniques

to investigate and analyze failing tests) and if the blame is indeed in team B, then they

should be able to prove it using the evidence that they collect in their tests anyway. In

addition, this will encourage team A to cooperate with team B in order to make the tests

work, and will foster trust between the teams, as they’ll be able to communicate about

facts and proofs rather than on assumptions and subjective terms.

In general, any technique, tool, and practice that provide transparency and

encourage collaboration can have an impact, usually positive, on the culture of the

organization. Source-control systems, CI builds, automated testing, and production

monitoring are all tools and techniques that provide this kind of transparency and

have some impact on the culture. I say that the impact is “usually positive,” because

unfortunately every such tool can also be abused or used in an incorrect fashion that

achieves the opposite results. Chapter 15 contains some tips for leveraging the test

automation to gradually change the culture to the more collaborative direction.

�Automation Developers Inside Vertical Teams
Generally speaking, given the trade-offs mentioned above, the most effective

organizational structure in most cases with regard to test automation is probably

when the automation developers are members of vertical development teams, or the

developers in vertical teams write the tests themselves. Pay attention though: even

Chapter 8 The Big Picture

172

when the teams and architecture are divided vertically, there are still dependencies and

interactions between the vertical modules/teams, and many scenarios should involve

more than one module.

Another potential problems in this structure is that there tends to be more

duplication between infrastructure pieces of each module, as they’re being developed

separately by each team. This is true both for the application code as well as for the

automation’s code.

But despite these problems, tests that such teams produce typically cover complete

scenarios, and because each team is responsible for its tests, it also makes them more

reliable. In addition, because the automation developers and the application developers

work together, their collaboration is better, and the application developers are much

more likely get the most value out of the automation.

�Flexible Organizational Structure
Some large teams adopt a flexible approach in which smaller teams are formed

dynamically to adopt to the needs of the user stories at hand. Dan North gave a

fascinating talk3 in the “Scaling Agile for the Enterprise 2016” congress in Brussels,

Belgium, about a method he calls Delivery mapping, which helps form these teams

efficiently. Using this or other similar techniques, the structure of the teams constantly

changes to reflect and adjust to the user stories and goals that the bigger team works

toward. Each feature or user story is assigned to an ad hoc team, sometimes called a

feature crew or a squad.

This approach is very challenging in and on itself but helps focus each such feature

crew on the task in hand, and if automation is developed by each such feature crew for

the functionality it develops, it encourages each automated test to be written in a way

that involves the relevant modules that need to be changed for that feature. This is again,

pretty challenging, but if done successfully, the automated tests that will be developed

for each feature are most likely use the most appropriate test scope for that particular

feature. The ATDD methodology described in Chapter 16 lends itself very well to this

approach.

3�https://www.youtube.com/watch?v=EzWmqlBENMM

Chapter 8 The Big Picture

https://www.youtube.com/watch?v=EzWmqlBENMM

173

�Having an Automation Expert
Regardless of the structure of the teams and modules, people tend to make choices

(often unconsciously) regarding the structure of the automated tests that they design and

implement, based on what’s easy and what incurs the least friction in the process. Many

times, these choices are suboptimal with regard to the ROI of the test (how much value

it will give vs. how maintainable and reliable it will be). But if you have someone whose

automated tests are his passion, and he has a broad perspective and experience about this

subject, then he’d be likely to make better decisions for the test automation. If this person is

really enthusiastic about this subject, he naturally becomes the “go-to” person that people

come to in order to get advice. In large teams, it worth it that this person has his own role of

“test automation expert” and not be part of any particular team. This way this person can

keep the overall view of the test automation and lead it to be successful. Day to day, this

person can improve the infrastructure of the tests, review others’ tests, perform trainings,

and advise each team how to build the automation that best suits their needs.

�Summary
Different organizations have different structures, different cultures, different constraints,

and different strengths. These attributes are reflected in the architecture of the system

and also are highly correlated to the business processes.

Test automation is tightly related to all of these in both directions: it is affected by

these attributes, but it also affects them back! If you look at the big picture through

the lens of test automation, you’ll probably succeed not only in creating the best test

automation for your current organization, but also to leverage it to improve your

organization as well!

Creating a stable, reliable, and valuable test automation requires collaboration

of people from different teams and disciplines, and in return, provides clarity and

transparency about defects and breaking changes. The improved collaboration is a

hidden “side effect” of test automation but is also one of its biggest advantages!

A person who facilitates communications is a leader. Naturally, managers are more

equipped for that, but an automation expert or any enthusiast automation developer

that envisions how to leverage test automation for that purpose can leave a significant

mark on his organization and become a leader. See Chapter 15 for more information on

how to gradually change the culture of your organization even without authority and

how to become that leader.

Chapter 8 The Big Picture

PART II

The “How”

In Part I we discussed a lot of theory and gave a broad overview of the world of test

automation, explaining what it is and what it isn’t. We covered its important aspects from

a pretty high-level point of view, giving you the tools to make strategic decisions about

the test automation for your project.

In this part, we’ll talk more technically about how to design and implement the test

automation infrastructure as well as individual tests, and how to leverage it as part of the

overall software development life cycle. In the next few chapters, I’ll walk you through a

hands-on tutorial in which we’ll build a test automation project for a real application.

177
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5_9

CHAPTER 9

Preparing for the Tutorial
You probably noticed that that the concern of maintainability was raised over and over

again in Part I, but I still haven’t really explained how to achieve it. We also haven’t

discussed how to start planning and building a new test automation solution from

scratch. The following few chapters act as a tutorial in which we’ll start building a test

automation solution for a real application. This chapter serves a few purposes:

	 1.	 Provides an overview of the process and approach we’re about

to take in the next chapters. This process is good not only for this

tutorial but for any test automation project.

	 2.	 Provides a short overview of the application that we’re about to

write tests for.

	 3.	 Provides a step-by-step guide for installing the prerequisites

needed for the rest of this tutorial

�Prerequisites and Presumptions
In Chapter 3 we discussed the relationships between the skills of the automation

developer and the tools that match those skills. We concluded that writing the

automation using a general-purpose, object-oriented programming language will give us

the most flexibility and if we’ll use it wisely, we’re less likely to hit maintenance problems

over the long run.

For these reasons, in this tutorial we’ll create the automation in code. More

specifically, we’ll use C# as the programming language. Note that if you’re more

familiar with Java, or even Python, I believe that you’ll be able to follow along even

if you won’t understand every nuance of the language, as most of the principles are

the same no matter what object-oriented language you use. If you don’t have any

178

object-oriented programming background and you plan to build your automation

using one of the tools that don’t require programming at all, then I still encourage you

to read and try to get as much as you can from the tutorial, as many of the concepts I

describe can be applied also to many tools that don’t require you to code. Note that in

the tutorial I’ll do my best to provide step-by-step instructions, starting from how to

set up the development environment, so you can follow along even without any prior

knowledge. In case a step is not clear enough, you’ll most likely be able to find the

missing information on the web, or ask a question in the book’s forum at http://www.

TheCompleteGuideToTestAutomation.com.

In addition to choosing C# as the programming language, we’ll use Selenium

WebDriver as the underlying UI automation technology, since the SUT is a web

application, and Selenium is the most popular and straightforward choice for

implementing web-based, UI automation in code. As the system does not have any tests,

and was not written with testability in mind, we’ll start from few system tests that will

comprise the sanity suite. In fact, in this tutorial we won’t go beyond these few sanity

system tests, but the main ideas remain very much the same for other test scopes. Once

again, don’t worry if you’re not familiar with Selenium or if your project is not a web

application. As mentioned, most of the ideas and concepts remain the same even for

tests that don’t interact with the UI whatsoever.

�Applicability of the Process for Existing Test
Automation Systems
The process I’ll use in this tutorial, and which I’ll describe shortly, guides how to write

maintainable automated tests and their infrastructure. While it works best and assumes

you start from a clean test automation project, you can apply most of its ideas in an

existing project as well. Applying these ideas to an existing test automation system

may lead you to make some compromises and trade-offs, and you may not get all the

benefits of that approach at first, but if you’ll choose to, you’ll be able to gradually shift

your existing automation to follow the ideas and techniques described in the tutorial in

order to enjoy the benefits of improved maintainability and reliability that the process

provides. Obviously, if at some point you’ll have to write a new automation system, then

you’ll be able to apply all the ideas from the very beginning.

Chapter 9 Preparing for the Tutorial

http://www.thecompleteguidetotestautomation.com
http://www.thecompleteguidetotestautomation.com

179

�Overview of the Process
The tutorial is based on a practical process that I’ve been following myself for many years

and have also trained many people to do the same. In the next few chapters I’ll walk you

through this process hand in hand so you’ll get a clear picture of how to do it. However,

before I’ll lead you through this journey, I want to “show you the map” of this journey

by giving you an overview of the process. But even before that, I need to give some little

background about two general approaches in software development, to set the stage for

the overview.

�Bottom Up vs. Top Down
Maintainable test automation projects contain, besides the test methods themselves, a

lot of infrastructure code. This infrastructure code contains common code that you don’t

want to repeat. Some people refer to it as “helper” classes and methods or “plumbing”

code, but in fact, this part of the code often becomes much larger than the test methods

themselves.

A common practice in a traditional, more “waterfall-ish” approach is to design and

implement the entire infrastructure of a software system, that is, the lower layers, before

starting to implement the upper layers. This approach is called bottom up. Just like any

other software project, this approach can be applied to test automation too: design

and implement the infrastructure and only then start implementing test cases. This is

especially common when different people implement the infrastructure and others

implement the test cases. However, as described in Chapter 3, this approach has its

drawbacks when it comes to maintainability. For those reasons I mostly prefer that the

entire automation code will be developed and maintained by the same people.

When the same people write the tests and the infrastructure code, I prefer to take the

opposite, top-down approach. It may be counterintuitive at first, but I prefer to design

and implement one test case before implementing the infrastructure that it needs. Not

only do I implement the infrastructure after I implement the test, but I also implement

only the infrastructure that the first test needs, and nothing more! After I do that with the

first test, I continue doing the same with all other test cases: I design and implement the

Chapter 9 Preparing for the Tutorial

180

next test case first and then add the missing infrastructure that the new test needs. This

process ensures a few things:

•	 Because the code of the test is written first, it allows me to write it in a

way that is most readable and easy to understand.

•	 Because it is developed according to true needs and not according to

speculations, the infrastructure is useful and easy to use.

•	 Anytime that the entire test suite runs, the entire infrastructure is

exercised and tested too. If there’s a bug in the infrastructure code, it’s

revealed very early, and it’s easy to fix.

�The Process
Now that I explained why I prefer to take a top-down approach, here’s a more detailed

description of the process that we’re going to go through in this tutorial, and which I

recommend to follow also regardless of the tutorial itself. In the next few chapters I’ll go

even deeper to explain and detail additional guidelines for each of these steps.

	 1.	 Design the first test case.

	 2.	 Write a skeleton of the first test case in “pseudo-code.” That is,

write the code in your actual programming language, but assume

that you have all the infrastructure code that you need, even

though you don’t. Obviously, the code won’t even compile…

	 3.	 Create the minimal necessary infrastructure code to make the first

test compile, and then also implement it until it runs correctly and

the test passes (assuming it should pass).

	 4.	 Design another test case.

	 5.	 Write the skeleton of the new test case in pseudo-code. This time,

if you need an infrastructure code that already exists and you can

use as is, simply use it. There can be two possible situations here:

Chapter 9 Preparing for the Tutorial

181

a.	 If all the infrastructure that you need to support this test

already exists, then this test should compile and run correctly.

If this is the case, then you’re done with that test case and you

can continue to the next one. This, however, should happen

pretty rarely, especially in the first tests.

b.	 If you need additional infrastructure code that doesn’t exist

yet (or it doesn’t fit as is), assume it exists. The code won’t

compile.

	 6.	 Add the necessary infrastructure to the make the new test and

all the existing tests, compile. and run correctly. Either while

doing so, or after all the tests run correctly, refactor the code to

remove any duplication and to improve the structure of your code.

Remember: your test automation code has nearly 100% code
coverage, so if you run all the tests, you can be sure that the
refactoring didn’t break anything!

	 7.	 Go back to step 4.

In addition, when you encounter any technical obstacles or frictions that hinder the

flow of your work, change the infrastructure code to remove these obstacles and friction

points. Here are a few examples:

•	 While you investigate failing tests, make sure that you have all the

necessary information to aid you investigating it faster.

•	 When you encounter unexpected results due to isolation issues,

improve the isolation.

•	 If you want to give other people your tests to run, make it as easy as

possible for them to get started.

�Getting to Know the SUT
The tutorial will use the MVCForum open source project. MVCForum is a fully

featured responsive and themable discussion board/forum with features similar to

StackOverflow, written in C# using the ASP.NET MVC 5 framework. The home page

of the project can be found at http://www.mvcforum.com and its latest source code at

Chapter 9 Preparing for the Tutorial

http://www.mvcforum.com

182

https://github.com/YodasMyDad/mvcforum. However, because the project may evolve

from the time of writing this book, I cloned the GitHub repository so that the tutorial

should always be usable.

�Overview on MVCForum
The application is pretty feature rich. Here are just some of the most important ones:

•	 Theme Engine

•	 Community Badge System

•	 Multi Lingual

•	 Private Messaging

•	 Likes, Mark as Solution, Favorites

On the main GitHub page1 of the project you can find the full list.

Anyway, the easiest way to get an idea about this application is to go to the support

forum at https://support.mvcforum.com/ that is managed using the application

itself (note that this site is not under my control, and the version it uses might be more

advanced, or the site might even be down). Assuming that the site hasn’t changed much,

you should see a website similar to the one shown in Figure 9-1.

1�The version that we use in the tutorial is at https://github.com/arnonax/mvcforum. The most
up-to-date version is at https://github.com/YodasMyDad/mvcforum, but pay attention as I
cannot guarantee that it will stay compatible with the book.

Chapter 9 Preparing for the Tutorial

https://github.com/YodasMyDad/mvcforum
https://support.mvcforum.com/
https://github.com/arnonax/mvcforum
https://github.com/YodasMyDad/mvcforum

183

As you can see, the site displays a list of the recent discussions. You can read all

discussions without registration or sign-in. By registering (which if free), people can post

new discussions and comment on each other’s discussions. Discussions are assigned to

one category and can also have tags to facilitate filtering and finding the discussions that

you’re interested in.

Apart from this basic functionality, the forum lets registered users to like or dislike

others’ discussions and comments, and also allows the initiator of a discussion to mark

one comment as an answer. Users can earn points and badges according to various rules

and configurations that the site’s administrator can configure. The users with the highest

points of the week and of all times are displayed in the Leaderboard page (Figure 9-2).

Figure 9-1.  Main page of MVC Forum’s support site

Chapter 9 Preparing for the Tutorial

184

Most of the features of the site are highly customizable by the administrator, which is

a special user with additional rights. When the administrator logs in, a special menu item

leads him to the Admin page, where he can see and change all of the customizations and

configurations of the site, as shown in Figure 9-3.

Figure 9-2.  The Leaderboard page

Chapter 9 Preparing for the Tutorial

185

�Preparing the Environment for the Tutorial
Before we can start the tutorial, we have a few administrative tasks to care about, namely

to install and prepare our working environment. The installation procedure was tested

on Windows 10 Professional but should probably work the same for any version of

Windows from 7 and on. If you’re using a fresh installation of Windows 10, you’ll need

at least 25GB of free disk space for all of the installations. This includes installing Visual

Studio and SQL Server Express edition and more. Note that the mentioned versions of

some of the applications may become obsolete and unavailable in the future. In this

case, try to use the newer versions. If things don’t go well, search the web for a solution

or visit https://www.TheCompleteGuideToTestAutomation.com where a solution may

already be posted. If not, post a question on the website and I’ll do my best to help you.

Figure 9-3.  Admin configuration page

Chapter 9 Preparing for the Tutorial

https://www.thecompleteguidetotestautomation.com

186

�Install Visual Studio Community Edition
We’ll use Visual Studio as our IDE for writing the test code in C# and for running test

tests from. In case you don’t have Visual Studio installed, you need to install it if you

want to really follow along this tutorial. As of the time of writing this, the latest version

of Visual Studio is 2017. Visual Studio 2017 has a fully featured edition that individuals

can use free of charge.2 As of the time of writing, you can download it from https://

www.visualstudio.com/vs/community/, and follow the installation instructions. When

you’re prompted to select workloads, select the following:

•	 .Net Desktop Development

•	 ASP.Net and Web Development

And click Install. Note that if you install Visual Studio without these workloads, or

already have Visual Studio installed and you’re not sure whether these workloads are

installed or not, then the first time you open the solution of MVCForum in Visual Studio

(as will be described soon), you’ll be prompted to install the missing workloads.

�Download and Install Chrome
We’ll use Chrome through Selenium as the browser through which we interact with the

SUT. We’ll also use Chrome’s Developer Tools to identify the elements we need when we

implement the test cases. If Chrome is not already installed, download and install it from

https://www.google.com/chrome/. Follow the instructions on the screen to complete

the installation.

�Download and Install SQL Server Express
SQL Server is required by the application to store its information. If you don’t have any

edition of SQL Server installed, download and install SQL Server Express. As of writing

these lines, SQL Server Express 2017 is available from https://www.microsoft.com/en-

us/sql-server/sql-server-editions-express.

2�For definitive legal information, please consult Microsoft’s Visual Studio website.

Chapter 9 Preparing for the Tutorial

https://www.visualstudio.com/vs/community/
https://www.visualstudio.com/vs/community/
https://www.google.com/chrome/
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express

187

Important T he installation wizard may fail if it is not being run with administrator
privileges. Therefore, after downloading, don’t run the installation directly! Instead,
open the file location, right-click the file, and select “Run as Administrator.”

	 1.	 When the installation wizard starts, select Basic as the installation

type.

	 2.	 Follow the further instructions in the wizard to complete the

installation.

	 3.	 Click “Install SSMS” to install SQL Server Management Studio.

This will redirect you to download another installation wizard

from Microsoft’s website. Download and run the file, then follow

its own installation wizard.

	 4.	 Click Close to close the main installation wizard, and approve that

you want to exit.

�Download and Build the Application
While the GitHub page of the application mentions several options to install the

application, we’re going to download the Git repository and compile the code though

Visual Studio. In order to do that:

	 1.	 Go to https://github.com/arnonax/mvcforum, click on the

“Clone or Download” button, and select “Open Visual Studio,” as

shown in Figure 9-4.

Chapter 9 Preparing for the Tutorial

https://github.com/arnonax/mvcforum

188

	 2.	 Visual Studio should be opened (if it wasn’t already), showing the

Team Explorer pane as shown in Figure 9-5. (If for some reason

it doesn’t, you can open the Team Explorer pane from the menu

View ➤ Team Explorer.) The URL for the GitHub repository

should be filled in automatically. You can also leave the default

path for your local repository, or choose a different location, for

example: C:\TheCompleteGuideToTestAutomation\MVCForum as

shown in the figure. Click Clone to complete the operation.

Figure 9-4.  Downloading the repository

Chapter 9 Preparing for the Tutorial

189

	 3.	 From the Solution Explorer pane (View ➤ Solution Explorer if it

does not appear), double-click on the MVCForum.sln file to open

the solution and its contained projects.

	 4.	 If you haven’t installed the necessary workloads yet, you’ll be

prompted with a dialog titled “Install Missing Features.”. If this is

the case, click Install.

a.	 When the Workloads window appears, select the .Net
Desktop Development and ASP.Net and Web Development

workloads, and click Modify in order to install them. Note that

you’ll be prompted to close Visual Studio to continue.

b.	 When the update is done, open MVCForum.sln again.

Figure 9-5.  Cloning the GitHub repository to your local machine

Chapter 9 Preparing for the Tutorial

190

	 5.	 If you’re prompted with the dialog titled Project Target
Framework Not Installed, keep the first option (starting with

“Change the target to…”) selected and click OK.

	 6.	 From the main menu bar of Visual Studio, select Build ➤ Build
Solution. Make sure that in the output pane you see:

========= Build: 19 succeeded, 0 failed, 0 up-to-date, 0 skipped =========

Note I f the Output pane is not displayed, from the main menu bar select View
➤ Output. Also make sure that in the top of the Output pane, the item “Build” is
selected in the “Show output from:” combo-box.

	 7.	 In order to open the application using Chrome, select “Google
Chrome” from the toolbar as shown in Figure 9-6. Then Press F5

to run the application.

	 8.	 If a warning titled “Just My Code Warning” appears, select the last

option “Continue Debugging (Don’t Ask Again).”

	 9.	 The first time you run the application it may take a moment, and

then you’ll see the application open up in Chrome as shown in

Figure 9-7.

Figure 9-6.  Run using Google Chrome

Chapter 9 Preparing for the Tutorial

191

Congratulations! You now have a complete working environment to start the tutorial.

Figure 9-7.  MVCForum as seen when run locally for the first time

Chapter 9 Preparing for the Tutorial

192

Note I n case you got any trouble completing one of the above steps, please
consult the documentation of the relevant product, and search the web or the
book’s website for help.

�Install Resharper (Optional)
Resharper is a third-party commercial productivity add-on to Visual Studio, delivered

by JetBrains. Personally. I use this add-on every day and I can’t live without it… In the

tutorial I’ll show you how I use it, but also tell you how you can achieve the same things

without it. Note that this product has a very flexible evaluation program: it is a 30-day

trial, but you can easily freeze the countdown in days that you don’t use it!

You can download Resharper from https://www.jetbrains.com/resharper/

download/. After downloading, run the installation application:

	 1.	 In the first page you’ll be able to choose additional JetBrains’

products to install. In addition, if you have more than one version

of Visual Studio installed, you can choose the versions you want to

install Resharper on.

	 2.	 Accept the License Agreement and then click Install. After the

installation completes, click Exit to close the installation wizard.

	 3.	 The next time you’ll open Visual Studio, you’ll be prompted to

accept JetBrain’s Privacy Policy. Scroll all the way down to

enable the “I Accept” button, and click it.

	 4.	 Click OK on the next page (Data Sharing Options).

	 5.	 In the License Summary page, click the Start Evaluation button

if you want to start the 30-day evaluation period immediately.

Then click OK to close the Wizard.

Chapter 9 Preparing for the Tutorial

https://www.jetbrains.com/resharper/download/
https://www.jetbrains.com/resharper/download/

193

Note I f you don’t start the evaluation period when prompted after the installation,
you can start it by choosing Resharper ➤ Why Resharper is Disabled from the
main menu bar of Visual Studio, click the Start Evaluation button, and OK to close
the dialog.

You can also pause the evaluation period by going to Resharper ➤ Help ➤
License Information, click the Pause Evaluation button and OK to close the
dialog. Note that Resharper counts partial days as whole days. Also, if you keep
another instance of Visual Studio open, then the evaluation period continues.

	 1.	 After starting the evaluation you’ll be prompted to Select
Resharper Ultimate Shortcuts Scheme. I suggest that you select

the first option (Visual Studio), unless you’re more used to using

IntelliJ IDEA.

Tip I n my opinion the most efficient way to use Resharper is using keyboard
shortcuts rather than the mouse. For this reason, I recommend downloading and
printing the Default Keymap poster and keeping it beside your keyboard, or hang
it on the wall in front of you. I highly recommend that you practice working with
the keyboard rather than with the mouse as much as possible. See Appendix D for
more tips for working effectively with the keyboard.

�Using Git Through Visual Studio
While the tutorial guides you step by step and shows you most of the code that you need

to write, in some cases it won’t be practical to show everything. In addition, you may

want to look at my code and compare to yours in case something went wrong. For these

reasons I tried to keep a clean and ordered revision history of all the steps of the tutorial

inside the Git repository. I also put tags on any code listing and important milestones so

you can find them more easily. Because Git is a distributed source-control system, once

you cloned the repo (Git repository) to your machine (as explained previously in this

chapter), you have your own copy of the entire history right on your local machine.

Chapter 9 Preparing for the Tutorial

194

If you’re familiar with Git you can work with it using your preferred tool (e.g., Git

bash, Git Extensions, SourceTree, etc.). But if you don’t, here’s a brief explanation of how

to use Git directly from within Visual Studio.

Most Git operations in Visual Studio are done through the Team Explorer pane,

which as mentioned before, can be opened from View ➤ Team Explorer. The Team
Explorer has several views in it. Figure 9-8 shows the Home view in the Team
Explorer pane.

From the Home view you can easily navigate to the other views (Changes, Branches,

Sync, Tags, and Settings). While these buttons appear only on the Home view, you can

also switch between the views from any other view using the combo-box right beneath

the toolbar of the pane (where it reads “Home | MvcForum” in the figure).

�Switching Between Branches
The GitHub repository contains several branches, and most of them are inherited from

the original repository. However, the Tutorial branch is the one I created myself, which

contains all of the revisions shown in the tutorial. You can refer to the revisions in this

branch if you want to see more details and better understand the changes described in

the tutorial.

Figure 9-8.  The Home view in the Team Explorer pane

Chapter 9 Preparing for the Tutorial

195

By default, the local repository contains only the master branch, which reflects the

starting point of the tutorial. To switch to the Tutorial branch for the first time, do the

following:

	 1.	 In the Team Explorer pane, switch to the Branches view.

	 2.	 Expand the remotes/origin folder to see the list of branches in the

remote repository. The view should look like Figure 9-9.

	 3.	 Right-click on the Tutorial (remote) branch, and select Checkout.

The Tutorial branch should be added to the main list of (local)

branches, near the master branch.

To switch between the local branches, double-click the branch that you want to

switch to (e.g., master or Tutorial). Note that switching to the Tutorial branch will bring

you to the final state of the tutorial. In addition, if you’ve made changes to one of the files

in the solution, then you won’t be able to switch to another branch unless you either

commit or undo your changes. Obviously if you want to retain your changes you should

Figure 9-9.  List the remote repositories

Chapter 9 Preparing for the Tutorial

196

commit them, and if not, then you should undo. Also note that when you switch to

another branch, it always checks out the latest revision in that branch. I advise that you

create your own branch and commit your changes to it (by selecting New Branch from

the Branches view), though you can feel free to commit your changes to the master

branch. Remember that this is your local copy of the repository (and you can’t push your

changes back to GitHub because you don’t have the proper permissions) so don’t be

afraid to commit your changes.

In order to view your changes and either commit or undo them, switch to the

Changes view. Figure 9-10 shows the Changes view.

Figure 9-10.  Team Explorer, Changes view

Before you decide whether you want to commit or revert your changes, you can

compare each changed file with its original state. To do that, right-click on the relevant

file and select Compare with Unmodified… or just double-click it. To commit your

changes, you must enter a commit message in the yellow textbox, and click the Commit
All button. If instead you want to revert one or more files, you can select them or their

common containing folder, right-click. and select Undo Changes…
To view the revision history of a branch, from the Branches view. right-click on the

desired branch and select View History… The history view is usually opened in the main

documents area and looks like in Figure 9-11.

Chapter 9 Preparing for the Tutorial

197

In this image you can see the tags (at the right side of some of the revisions) that can

help you find the relevant revision more easily. Hovering with the mouse over a tag also

shows the description associated with it. Double-click a revision to display its changed

files in Team Explorer. From there you can compare each file with its previous revision

or open it, to see how it looked in that revision. Unfortunately, you cannot check out the

entire revision directly from Visual Studio in order to debug or investigate the entire code

structure, but you can do it from the command line as follows:

	 1.	 From the Team Explorer pane, either from the Changes or the

Branches view, select Actions ➤ Open Command Prompt.

	 2.	 In the command prompt that opens, type: git checkout ID,

where ID is the value displayed in the ID column of the history

window. For example, type: git checkout ca2a6f05 to check out

the revision titled “Added TestEnvironment configuration file”.

Alternatively, in order to check out a tagged revision, type git

checkout tags/tag-name, where tag-name is the name of the tag,

for example, type git checkout tag/Listing 14-16 to check out

the revision titled “Support Firefox and Edge”.

Figure 9-11.  The History window

Chapter 9 Preparing for the Tutorial

198

	 3.	 Switch back to Visual Studio and you’ll see a dialog titled “File
Modification Detected.” Click on the Reload Solution button.

Now you should be able to see and debug the code on the revision

you checked out.

�Summary
In this chapter I explained the course of action that we’re about to take in the next

chapters for writing the first tests and building the infrastructure code to support them,

and guided you on how to prepare the environment so you can follow along the tutorial.

I strongly encourage you to really follow and actually do everything in the tutorial on

your machine, and not just read through it. Actually doing it, tackling the real problems,

and experiencing the workflow is the best way to really understand the power of this

process. So, let’s get started!

Chapter 9 Preparing for the Tutorial

199
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5_10

CHAPTER 10

Designing the First Test
Case
In this chapter I’ll explain how to approach designing the first test case, which is the first

step in our process. Most of the technique is also relevant for any subsequent test case,

but first we should consider how to choose the first test case.

�Choosing the First Test to Automate
The question “which test to start from” may be stunning. You probably have tens, if

not hundreds or even thousands of test cases that you would like to automate. They’re

probably divided into features, screens, subsystems, or whatever your company used to

categorize all of them. If the system is complex and compound from several distinct and

mostly independent subsystems, then this question is even more challenging.

However, sometimes when I come to a customer who asks me to help them start to

build test automation, they already have ideas as to what the first tests should be, or even

chose the first test cases to automate beforehand. The obvious choice, which is correct

in most cases, is to start from the sanity tests. Most customers have a well-known and

established set of tests that are considered “sanity,” which they execute (manually) pretty

often. But the criteria of how these tests were chosen to comprise the sanity suite are not

always so clear, and the definition of what a sanity suite should contain can vary from

one company or team to another. Unfortunately, from my experience, in many cases, a

substantial part of these sanity tests is not suited for automation at all.

200

Therefore, in most cases, after I look at the description of the manual test cases in the

customer’s sanity suite, I put those aside, and ask a few questions that help me choose

the most important tests to start with. The questions I ask are along these lines:

•	 Who are the main customers and users of the system?

•	 What’s the main value that the system provides to these

customers/users?

•	 What are the outputs that provide this value?

•	 What are the necessary inputs that are needed to produce these

outputs?

Sometimes it helps to refine those questions by asking the following leading

questions too:

•	 What harm will be done if the system stops working?

•	 How does this system help the organization earn more money or save

money?

•	 Among the outputs of the system, if one of them stops working for a

while in production without anyone from the dev or support noticing

it (hypothetically), which one will cause the most harm? Which user

will likely to notice it first, when and how?

•	 What was the first and most important feature that was the incentive

for starting developing the system at the first place? What did the

users do before this system existed?

The purpose of all of these questions is to answer the one important question,

which is:

“What’s the most important thing that the application is doing?”

Or in words that are more relevant to our discussion:

“What’s the most important thing that we should test?”

Note that the answer to these questions always encompasses an output, which is a

result of some important and unique functionality and that can be verified.

Chapter 10 Designing the First Test Case

201

Unfortunately, many tests that people consider as “sanity” do not answer these

questions. Here are some examples of tests that are not very appropriate as first tests, or

even as automated tests whatsoever:

•	 Tests that does not specify a concrete and specific expected result.

For example: “Pressing the ‘Submit order’ button should succeed.”

Even if this button does the most important thing in the application,

if we can’t specify what the expected outcome should be, there’ no

point in testing it.

•	 Relying on a “success” message as a proof that an operation

succeeded. For example: “Perform a purchase and verify that a

‘success’ message appears.” Even though the expected result is

specified very clearly, it does not really prove that the system did the

important thing it should have. In other words, it doesn’t prove that

the system provides the value that it should. Displaying a success

message is important for the user’s experience, but it’s much less

important than some other outcome, which is the essence of the

functionality. Ask yourself: If the system will display the message

even though it won’t do anything else, does it have any value? In the

above example, verifying that a purchase succeeded may involve

navigating into “my purchases” page and verifying that the purchase,

along with all of its details, are there. Of even better, verify that the

seller sees the order!

•	 Tests that verify that a user can log in. Login is never the real purpose

of a system. It’s just something that the user has to do in order to be

identified when doing other important stuff using the system. No

one would build a system just for the sake of allowing users to log in,

just as no user will ever want to use a system whose most important

feature is that it allows him to log in. The fact that this is the first step

in many tests doesn’t make it appropriate as the first test! Later in

the automation project, you may want to test some security or user

management features. Only in this context it will be appropriate to

write tests that cover the login process as the tested feature itself, and

not just as a step to reach another goal.

Chapter 10 Designing the First Test Case

202

•	 Tests that verify the layout of windows or pages. Problems in the

layout of pages, like cropped text, unaligned controls, bad colors,

etc., are pretty easy to detect by a human tester. However, besides

the fact that this is rarely the most important feature of a system,

machines cannot easily detect such problems. Even using tools that

help detecting these, every small change to the layout will require

maintenance.

•	 Test that verify that when a page appears, certain buttons and fields

are disabled, and others are enabled. This is a little better than just

testing layout, but it’s still not the purpose that systems are built for.

Also, each button or field that can be disabled must also be enabled

in some other case, which means that the more important thing to

verify is that the field becomes enabled or disabled according to the

relevant conditions. Testing all buttons and fields on a page for their

enabled/disabled state doesn’t tell us much and may easily break if

any of the relevant condition changes.

•	 Tests that verify that the user can fill in all the details in a form. Like

in the other cases, there’s no value in a system that allows the user to

enter data if this data is not being used anywhere. The data should

either affect other features, be transferred to another system that

uses it, or at the very minimum be stored and retrieved again by the

user at a later time. Most probably, the highest value from this data is

obtained when it’s used by the system to affect some other automatic

operation. Storing and retrieving data is nothing special to a specific

application (unless you’re part of a team that develops a database

engine, which you probably aren’t). Therefore, it’s often worth having

a separate test for each value in a form, only to verify that it affects the

appropriate functionality in the way that it should.

Chapter 10 Designing the First Test Case

203

DOES IT ALWAYS PAY OFF TESTING THE MOST IMPORTANT FEATURE?

It could be that the most important functionality of a system is so stable that the priority of

testing it is not so high anymore. If that’s the case, there could be two options:

	1.	 We haven’t chosen the right system to test. If the components of the system

that implement the critical scenario are not going to be touched anytime soon,

then we probably don’t test the relevant components, and we need to think

again about what system (or subsystem) we want to test.

	2.	T he main scenario is pretty stable, but the components that it uses are being

touched in order to add or change other features. In this case, even though

that the chances for regressions may be pretty low, I still think that it’s worth

starting from that scenario for two reasons:

a.	E ven though the chances may be low, it’s still possible that this highly

important scenario would break. It’s better to catch this case sooner (by the

automation) than later (by manual testers or in production).

b.	P robably most other features and scenarios are a variation, or somehow

related to that critical scenario. Starting from this test will help us build the

infrastructure that will be reusable by most other tests.

Once we’ve identified what’s the most important output that we want to test, we

need to plan how we’re going to test it. For that, we need to answer a very simple

question (though the answer is not always that trivial…), which is:

“What are the necessary inputs that affect the output that we want to test?”

Note the word “necessary.” Many inputs can probably affect the output in one way

or another, but we want to start from the simplest scenario that shows the value of the

system. Other tests that we’ll write later may verify the affect that other inputs have on

the same output, or also other outputs. The default way to answer this question should

be to ask the product owner. However, because the product owner usually thinks about

how the product is actually being used in production, often the answer she’ll give you is

that everything is necessary and that it’s impossible to isolate only few inputs in order to

get the result you need. Therefore, often I find that the best way to answer this question is

simply by experimenting or by looking at the code of the SUT. The developers can often

guide you where to look and shorten the process.

Chapter 10 Designing the First Test Case

204

From those two important questions we can start building a scenario, which may

raise other questions about how to perform certain operations, or how to implement

them as part of the automation. In general, the scenario should involve controlling the

inputs of the SUT in a way that will affect the important output and verify that the output

that we want to verify was indeed affected in the way that we expect. You may want to

refer back to Chapter 6 at this point to consider the most appropriate architecture for the

test, and how the test should interact with the SUT. Note that if you don’t have control

over the relevant inputs because they’re being received from an external system, or if

the important outputs are only visible through an external system, then you may want to

consider creating a simulator for these external systems.

�Choosing the First Test Case for MVCForum
Back to our hands-on tutorial, as our SUT is a forum application, its main value comes

from its ability to publish questions to a wide audience and allow other people to

respond. Note that the scoring and badging rules are an important differentiating feature

(as it motivates the users to use the site to the benefit of all) and therefore should also be

considered as one of the first tests, but they still only support the main purpose, which is

to allow public discussions, and they have no value of their own sake without it.

So, what’s the most important output of the system then? In order to provide the

value that we identified above, the most important output of the system is the messages

that other people post. Note that if each user can only see his own messages, then the

system doesn’t provide the basic value we expect it to. Therefore, we should verify that

any user (even an unregistered, anonymous one) can see messages that other users

post. We should also verify that one user can answer or comment on another user’s

discussion; otherwise this would just be a bulletin board, and not a discussion forum.

However, in order to keep the tests small and easy to maintain, we should create a

separate test for each of these verifications.

And what about the inputs? In our example the answer is trivial. These are also the

messages and comments that users write. However, when we’ll design the test case in

more detail, you’ll see that we’ll need to provide more inputs in order to complete the

scenario.

Chapter 10 Designing the First Test Case

205

�The Scientific Method for Designing a Test Case
Scientific facts do not become “scientific facts” only because scientists decided so. In

fact, never is any scientific claim really proven! On the contrary: the scientific method

motivates scientists to refute other’s theories. In order to do that, they need to perform

an empirical test that shows an example that is not consistent with the claims of that

theory. It is sufficient to find one such counterexample in order to refute one’s theory!

However, as more scientists perform such empirical tests but still no one finds a

counterexample, this theory becomes more established and accepted as being “true.”

Likewise, when you come to design a test case, you should think about this test

case as a scientific claim. The claim is a sentence that can be either true or false. This

claim is what we’ll try to refute in the test, so the first thing that you have to do when

designing a test case is to phrase that claim. At this point, I open my favorite text editor

and write down this phrase. I usually add a line of “=”s below it to mark it as the title of

the test. Note that this method is useful for all test cases, not only automated, but it’s

especially important for automated tests because the expected must not be subject to

interpretation.

For our MVCForum application, we can phrase the claim for our first scenario as

shown in Listing 10-1.

Listing 10-1.  The claim of the first test

When a registered user starts a discussion, other, anonymous users can see

it

===

Now, after we defined what is it that we want to test, we have to define how we’re

going to test it, such that if the test fails, it will refute the claim.

�Designing the Steps of the Test
Continuing our scientific method analogy, we design the steps of the test as the steps

of a scientific experiment. For a scientific experiment, we want to isolate any irrelevant

parameters and “noise” that may affect the outcome, which is not relevant to the claim

that we want to try and refute.

Chapter 10 Designing the First Test Case

206

We also want to make the experiment as simple and as short as possible, so it is clear

to everyone reading it how they can reproduce it.

There’s one small difference between a scientific experiment and an automated test

though. A scientific experiment doesn’t need any maintenance as the laws of physics

won’t change anytime soon… However, we write automated tests for systems that

continuously evolve, and therefore we must ensure that our tests are maintainable.

This difference is reflected in the level of detail in which we describe the scenario.

While eventually when we’ll write the code, we’ll have to fill in all of the details to make

the scenario work, when we’re designing the test as an experiment, we leave only the

minimal necessary details that aid in understanding the flow of the test. We’ll leave all

other fine-grained details to be implementation details that are of less importance to

the essence of the experiment. In the code, we’ll put these details in lower-level reusable

components that we’ll create or use default values for things that we may need to change

in other tests or in the future.

Continuing our MVCForum example, the complete test case can be written as an

experiment as shown in Listing 10-2.

Listing 10-2.  Adding the steps to the first test

When a registered user starts a discussion, other, anonymous users can see

it

===

Login as a registered user

Start a discussion titled "Hi!" and body "dummy body"

Enter the site as an anonymous user (from another browser)

Verify that a discussion titled "Hi!" appears

Open that discussion

Verify that the body of the discussion is "dummy body"

Notes:

•	 You may have noticed that in the first line we have a presumption

here, which is that we have a well-known registered user. While in

reality, or in a standard testing environment this is always almost the

case, we can’t just use any arbitrary user, due to isolation concerns.

So now we need start thinking about the isolation technique

regarding the registered users (see Chapter 7 for more information).

Chapter 10 Designing the First Test Case

207

If in the vast majority of tests we would need only one registered

user, I’d say that we should create one such user as a prerequisite in

the automation environment. However, because the application is

a discussion board, I assume that there will be many tests that need

more than one registered user. So maybe we should create two then?

But what if we’ll need more? Also, any activity of a registered user

may be seen by other users, so our environment may become dirty

and some tests may have unpredictable results… There’s no one

right way here, but at least for now, my choice is to encapsulate the

registration of a user inside the “Login as a registered user” activity

itself. This means, that each time the test will run, a new user will

be registered. Moreover, if we’ll reuse this step in other tests, each

time this step will be performed a new user will be registered. While

the description of the operation may be a bit misleading as it hides

the fact that it also registers a new user, it makes this operation

completely atomic and autonomic, and therefore reusable, and it still

fulfills its promise: it logs in using some registered user. You may also

worry about the amount of users that we’ll create during a test run,

but I don’t suppose that it’s a real issue because the system should

support it. We’ll probably start from a new empty database every run

to improve isolation anyway, so it’s really not that big of a deal.

•	 I used hard-coded texts “Hi!” and “Dummy body.” However, when

implement it, I’ll probably replace “Hi!” with some random string

because we’ll need to identify the message by its title, and even if

we’ll run the test multiple times (or different tests that all use the

same string), we’ll always be able to identify the one we created.

Regarding the body though, we can keep “Dummy body” because we

don’t have to search by this value.

•	 You may think that it’s better to use longer and more sophisticated

message bodies, for example, ones that contain bold and underlined

text, and to see that they appear correctly. However, this is not the

purpose of this test and should be verified in different tests, as we

don’t want this basic test to fail on that kind of issue.

Chapter 10 Designing the First Test Case

208

•	 If you’d try to perform this scenario manually right after installing

the application, you’ll see that the newly registered user can’t

create a new discussion. This is because by default there’s only one

category called “Example Category,” which only the administrator

has permissions to create new discussions in. In addition, when

creating a new discussion, the user must assign the discussion to a

category. Therefore, we can either add the required permissions for

the “Example Category” or add another category that will be used as

the default category for all tests that don’t need a specific category,

and give all registered users the necessary permissions to create new

discussions in this category. While the second option is cleaner, the

first option is simpler, so let’s start with it. We’ll write the code in such

a way that it will be easy to change this decision later on. Anyway, this

should be a prerequisite of the test and not part of the test itself. Later

we’ll have to decide how we’re going to implement it: by performing

these changes through the UI (using the administrator user) before

the first test runs, by making changes to the database, using a backup

file, etc.

�Thinking in Terms of Objects and Entities
In principle, the next step in our workflow should be to translate these steps into code.

But in order to translate it to code that is easy to maintain, and enhance reusability,

we want that code to adhere to proper object-oriented design principles. And in order

to make it easier for you to translate these steps to object-oriented code, I recommend

doing one extra thing before jumping into the code: near each line, write a noun that

constitutes the “object” or an “entity” that makes the context for the operation described

by that line. This context is better described in business, or real-world terms rather than

technical ones, because these terms make sense to more people and will also be more

likely to remain correct for a longer period of time, after the system may undergo serious

architectural or technical changes. Note that there’s no deterministic formula for coming

up with these contexts (or objects), and even when I demonstrate writing the same test

twice to different people, I often end up with different ways to describe the steps and

their corresponding objects. It takes some experience in order to sense what are the right

abstractions that make more sense and will lead to a better designed code.

Chapter 10 Designing the First Test Case

209

In many cases, including in our example, the context for the first operation will be

simply the application itself (the SUT). The context for other operations are often the

result of a previous one. Later when we’ll translate this to code, it will mean that one

method returns an object, and the next line invokes another method on that object.

Also, sometimes the best way to describe the context of a line is using a few nouns (two

or three, not more!) the first is the broader context, and next are more specific ones. This

translates into entities containing other entities, or objects referring to other objects in

the code.

For our example, we can write these contexts as shown in Listing 10-3.

Listing 10-3.  Adding the context of each step

When a registered user starts a discussion, other, anonymous users can see

it

===

Login as a registered user

 // MVCForum (the application)

Start a discussion titled "Hi!" and body "dummy body"

 // Logged-in user

Enter the site as an anonymous user (from another browser)

 // MVCForum (new instance)

Verify that a discussion titled "Hi!" appears

 // MVCForum.LatestDisucssions.Top (*)

Open that discussion

 // Discussion header

Verify that the body of the discussion is "dummy body"

 // Discussion

Notes (*)  When we first designed the test, we didn’t say where exactly we should
look for the discussion to appear. Technically we can look either at the list of latest
discussions (that appear on the main page), or go to the category of the discussion
and list all discussions in it. Theoretically, both of these are unique features that
may change independently of the main functionality that we verify in the test. In
order to resolve this, instead of specifying MVCForum.LatestDiscussions,

Chapter 10 Designing the First Test Case

210

we could specify MVCForum.AllDisucussions. We can implement this list
using lazy loading (i.e., only fetch an item when we try to access it, going through
all the pages if there’s more than one page), in order to avoid fetching all of the
data into memory at once. However, being pragmatic, it’s reasonable to assume
that there will always be a way to get the list of all discussions ordered from
the latest to the oldest, so in case this feature will change, we’ll just replace the
implementation.

In addition, we can only be certain that the discussion will be the latest (top) one if
there’s no one else but us to use the same environment. We’ll take care of it later
as part of our isolation solution. (See Chapter 7 about isolation techniques.)

Notice how the “Logged-in user” context of the second operation is the result of

the first “Login as a registered user,” the “Discussion header” is of the discussion we

identified in the previous step, and the “Discussion” itself is the result of opening the

discussion from the “Discussion header.”

�Modeling the Application

We often say that these objects and the relationships between them model the

application and the real-world world entities that are represented by it. We also say that

these objects and relationships constitute a model (as a noun, rather than a verb) that

represent that application and the real-world entities. For example, we can model the

sentence “a customer adds a product to an order,” using Customer, Product, and Order

classes. These classes will likely have the methods shown in Listing 10-4.

Listing 10-4.  Modeling example

class Customer

{

 public IList<Order> Orders { get { /*...*/ } }

 public Order CreateOrder()

 {

 //...

 }

Chapter 10 Designing the First Test Case

211

 //...

}

class Order

{

 public IList<Product> Products { get { /*...*/ } }

 public void AddProduct(Product product)

 {

 //...

 }

 public void Submit()

 {

 //...

 }

 //...

}

class Product

{

 public string Description { get { /*...*/ } }

 public decimal Price { get { /*...*/ } }

 //...

}

�The Page Object Pattern

One common and much-known pattern for modeling the SUT in an object-oriented way

is the Page Object Pattern. This pattern applies only to user interface test automation

and describes either complete or parts of a web page or window, exposing methods that

reflect the operations that the user can perform on that UI area.

I find the Page Object pattern very compelling for people because it’s very easy to

understand, easy to implement, and frees the automation developer from thinking too

creatively about modeling his business domain. I use this pattern too, but I don’t stick

to it very religiously, as I see it as only one of many options to model an application.

Here are some drawbacks that you should be aware of when you model the application

primarily using page objects:

Chapter 10 Designing the First Test Case

212

•	 Because it’s only relevant to UI, it can’t model features that are not UI

centric.

•	 If the UI changes drastically, even if the business logic remains pretty

much unchanged, then very large portions of the automation should

be rewritten.

•	 If you’ll want to change some operations later to be performed

through a lower layer (e.g., through API), then not only your

implementation will have to change but also your model. In other

words, if you’ll use abstractions that represent business operations

and entities rather than UI pages, it’s more likely that such changes

will be local to the internal details of a specific class or method, while

if you only use page objects, then you’ll probably need to replace a

whole bunch of them together.

If you still decide to use the Page Object pattern as your primary abstraction, here are

some tips and recommended practices to make your code easier to maintain:

•	 Hide Selenium details inside the page object class. For example, if

you have a Submit button on the page, instead of having a public

property (or a getter method) that returns IWebElement for that

button, put a void Submit() method on the object that finds the

button and clicks it internally.

•	 Moreover, avoid exposing all fields as public properties (i.e., getters

and setters for the value of the field), and a method for each button.

Instead I prefer to expose methods that perform higher-level, more

conceptual business operations. For example, for a LoginPage class,

instead of exposing getters and setters for UserName and Password,

and method to click the Submit button, I prefer to have one method

Login, which takes the username and password as arguments, fills

those in, and click the Submit button altogether. Using higher-level

methods will make your test more readable and easier to maintain.

Even if the elements on the page change, only the code inside the

method will have to change, and not any code that calls it.

•	 When an operation leads the user to a different page, or displays a

new view, the method that performs the operation should return

the page object that represents that new view. This makes the code

Chapter 10 Designing the First Test Case

213

more streamlined and easier to reuse. This is especially beneficial

due to auto-completion that most IDEs feature. For example, if after

the Login the user is directed to the main page, the Login method

from the previous example should return the MainPage object. So

eventually the method’s signature should look like this:

MainPage Login(string username, string password)

•	 Despite its name, “Page Object” should not correspond only to

whole pages. Instead, it’s recommended to decompose a page into

subpages or views, according to the logical layout of the page. For

example, a typical email application can have a MainPage object

containing properties for the toolbar, the folders tree, the list of

headers, and the preview pane. Each of these views should have its

own Page Object. This idea can even be repeated in a nested manner,

so that these views hold yet their own inner views. For example, the

preview pane can hold the header of the message (which is fixed),

and the body (which is scrollable). Figure 10-1 and code Listing 10-5

shows how this looks in the UI and in the code.

Figure 10-1.  Nested PageObjects

Chapter 10 Designing the First Test Case

214

Listing 10-5.  Page Objects for a typical main application

class MainPage

{

 // ...

 public ToolbarView ToolBar { get { /*...*/ } }

 public FoldersTreeView FoldersTree { get { /*...*/ } }

 public HeadersListView HeadersList { get { /*...*/ } }

 public PreviewPane PreviewPane { get { /*...*/ } }

}

class ToolbarView

{

 //...

}

class FoldersTreeView

{

 //...

}

class HeadersListView

{

 //...

}

class PreviewPane

{

 public MessageHeaderView MessageHeader { get { /*...*/ } }

 public MessageBodyView MessageBody { get { /*...*/ } }

}

class MessageHeaderView

{

 //...

}

Chapter 10 Designing the First Test Case

215

class MessageBodyView

{

 //...

}

•	 For views that appear in multiple places in the application, you

should use different instances of the same Page Object class. For

example, MVCForum features a rich text editor in various places in

the application: when creating a new discussion, when replying on

a discussion, and also in the admin console to enter a description

for a category. Another typical case is when you have tables, which

support sorting, grouping, and filtering, but appear in different places

with different columns and rows. In some cases, the rows themselves

can be much richer than just a line of values and can be seen like

having their own subview, in which case these rows can have their

own page object, and the table should expose a property that returns

a collection of these page objects that represent these row subviews.

The list of discussions in the MVCForum application is an example

of this, as each discussion header is a view that contains an icon,

the title, category, author, etc. In all of these cases you should use

different instances of the same Page Object class. This means that
you should avoid using static members on these classes. Also, I

don’t recommend using singletons as even if you don’t think that

you’ll ever need more than one instance, you’ll be surprised how

often these assumptions turn to be wrong. And when you reach the

moment when this assumption is wrong, you’ll have a very hard time

changing it. Even for the main page, you may create two instances to

simulate two concurrent users!

•	 Sometimes there are views that appear in different places in the

application, but with slight differences. Or there are similar views

that part of them is fixed and other parts changes according to their

type. In these cases, consider using abstract classes containing the

fixed parts of regular properties, and the different parts as abstract

properties. Then create derived classes for each type. For example, in

the mail application, regular messages and meeting invitations have

Chapter 10 Designing the First Test Case

216

a lot in common but are also different in some aspects, and therefore

their preview pane may look somewhat different. In the above

example, MessageBodyView may be an abstract base class, having

MailMessageBodyView and MeetingMessageBodyView as derived

classes.

�Beyond the Page Object Pattern

As I already mentioned, I don’t stick to the Page Object pattern very religiously. Instead,

I use whatever abstraction I can find that best represents the business concepts

and operations that I want. I’m trying to think about reusability, clarity, and lack of

duplication when I model the application. As you’ll see in the next chapters, the act

of removing duplication, which I emphasize a lot, plays a big role in continuously

improving and sharpening the model over time, as I add more and more tests. Designing

and sharpening the model often raise important questions and misalignments between

the actual functionality and the desired one (in other words, bugs), and lead you to

better understand the product.

When you use more conceptual business entities rather than UI pages, in case you’d

want to change the scope of your tests from UI to API or some other scope someday

in the future, it will be much easier, as you won’t have to change the model – only the

implementation. The same is true even for enlarging the scope. That is, if right now

you’re using API testing and may want to allow UI testing in the future, then you’ll also

only need to change the implementation but not the model.

If the application is very well architected, then probably all of the important

functionality that we want to test in our first test or tests is encapsulated in the Business

Logic layer, which already models the business entities and their relevant operations. In

this case, my advice is to write these tests directly on the Business Logic layer as unit or

integration tests. However, in reality often the separation is not as strict as we’d like it to

be, and therefore we may prefer to write the tests as system tests. (See Chapter 6 for more

information about choosing the appropriate test scope.)

Often when I model the application using higher-level business entities, I still use the

Page Object model under the hood. That is, the tests use objects that represent business

entities, but these objects use Page Objects internally to interact with the application

through the UI and usually not used directly by the test methods.

Chapter 10 Designing the First Test Case

217

As you can see, and will see even more clearly soon, the process of defining the

context for each operation leads us from the textual description of the test to an object-

oriented design that we can implement in the code. In the following chapter we’ll

continue the tutorial and finally start writing code!

�Summary
In this chapter we went from choosing the first sanity test to automate, through the

“scientific method” of defining the test case, to modeling the SUT in an object-oriented

approach, which will soon serve us as a design guideline for our test code. While we

haven’t written a single line of code yet, and although we only planned one single test,

we did some very important design work. Skipping this design or doing it carelessly will

later cause costly maintainability issues. Note though that doing it properly also requires

some practice and experience, so be patient, and try to learn from your experience.

Chapter 10 Designing the First Test Case

219
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5_11

CHAPTER 11

Start Coding the First Test
Finally! After 10 chapters, we’re ready to write some code…

In this chapter we’ll build the skeleton for the first test that we designed in the

previous chapter, writing the code of the test itself and empty classes and methods that it

should use. We’ll end this chapter when the code compiles but does nothing. In the next

chapter we’ll continue to implement all the methods and won’t rest until the test passes.

Many parts of the code that we’ll write will also serve as an infrastructure that we’ll be

able to use in the next tests. As also mentioned in Chapter 9, we’ll use Visual Studio and

C#, and Selenium of course. So, let’s start!

�Creating the Project
In order to write a test, we first need to create a new test project. In Visual Studio, a

project is always part of a solution. So technically we can create a new solution for the test

automation or add our project to the solution of the SUT. This question is relevant also to

the real world, and both ways are fine. If possible, I prefer to add the tests to the solution of

the SUT, so that developers can run the tests more easily. It also allows us to reuse certain

parts of the SUT in the tests. I know that it may sound awkward or even a bad idea to use

parts of the SUT for testing the SUT, but I rarely use the logic of the app, but reusing things

like constants and sometimes interfaces may be very handy and ensure that the test uses

the same values as the application itself. Testing that the values themselves are correct is

not very meaningful for automation, because anytime someone has to change a constant,

he would anyway need to change the same constant in the tests too…

So, let’s start by adding a new test project to the MVCForum solution:

	 1.	 Start Visual Studio, and open the MVCForum solution (MVCForum.

sln) from the location of the Git repository you downloaded in

Chapter 9. If you followed Chapter 9 step by step, then you’d

probably see MVCForum at the recently opened solutions.

220

	 2.	 Open Solution Explorer (View ➤ Solution Explorer), right-click

on the root element (Solution ‘MVCForum’), and select Add ➤
New Project…

	 3.	 Inside the Add New Project dialog, shown in Figure 11-1,

on the left pane, select Visual C# ➤Test (1), then select Unit
Test Project (.Net Framework) in the middle pane (2). Type

“MVCForumAutomation” in the Name field at the bottom (3), and

click OK (4).

Note  The “Unit Test Project (.Net Framework)” project type creates a test project
that uses the MSTest unit-testing framework.

	 4.	 If you scroll down the Solution Explorer pane, you should see

the new project MVCForumAutomation added to the solution,

containing a UnitTest1.cs file. Double-click on this file to open in

the code editor. Figure 11-2 shows the new file as how it looks in

the text editor.

1

3
4

2

Figure 11-1.  Adding a new Test Project

Chapter 11 Start Coding the First Test

221

Note I f you’re using Visual Studio Community Edition, you may not see the
small gray text that appears above the class and method declarations (“0
references…”), as it’s a feature available only in Visual Studio Professional edition
and up. Also, if you’re not using Resharper, you won’t see those green circles near
lines 7 and 10.

This is an example file that Visual Studio adds to the project. We’ll change it very

soon, but let’s first look and try to understand the content of this file.

In an MSTest project, tests are methods decorated with the [TestMethod] attribute.

However, in order for MSTest to look for these attributes inside a class, the class must

also be decorated with a [TestClass] attribute. An MSTest project can contain many test

classes, and each test class can contain many test methods. Every test method can be run

independently from the others, but you can also choose to run all the tests in a class or

all the tests in the project. There are other filtering abilities, but that’s beyond our scope

of this book. There’s more to MSTest than that, but that’s all we need to know for now.

Figure 11-2.  UnitTest1.cs

Chapter 11 Start Coding the First Test

222

In order to see how the test can run (even though it’s still empty), you should first

build the project. To do that, right-click on the MVCForumAutomation project and

select Build. Then you have to open the Test Explorer pane (if it’s not already open), by

selecting Test ➤ Windows ➤ Test Explorer. This pane displays a list of the tests available

in the solution, lets you run them, and see their results. After you’ve built the project,

you should see TestMethod1 appear in the Test Explorer pane. If you right-click on that

TestMethod1, and select Run Selected Tests, you should see that after few seconds its

icon near the test name has changed to a green V mark, marking that the test passed.

Note I f you wonder why the test passed even though it’s empty, then the rule
is very simple: a test always passes unless an exception is thrown from the test
method. MSTest provides a class called Assert that exposes a few methods that
perform verifications. Each of these methods throws an exception in case the
appropriate verification fails.

Tip I n Visual Studio you have many ways to perform every action, like running a
test method. I show you just one way, but you’re welcome to explore and find other
ways.

�Renaming the Class, Filename, and Test Method
It’s not a good idea to keep the name UnitTest1, as this name tells us nothing. We need to

change both the name of the class and the name of the file. We’ll call the new test class

SanityTests, as we plan to put the sanity tests in it. When you rename the class, Visual

Studio allows you to change the filename to match the name of the class:

	 1.	 In the code editor, double-click on the class name (UnitTest1) to

select it.

	 2.	 Type SanityTests to replace the name of the class.

	 3.	 Press Ctrl+. (Ctrl and the period key together) to open Visual

Studio quick-actions menu and select Rename file to match type
name.

Chapter 11 Start Coding the First Test

223

Tip  There are many naming conventions for test classes and test methods, but
there’s no one standard. For the name of the test method itself, my rule is that it
should be similar to the claim we defined in the previous chapter (even though it
may be a pretty long name). Regarding the class names, I tend to have one file for
all tests of a feature and name the class after the feature. However, because the
first tests are usually very generic, and not specific to one feature, I simply call
the first class SanityTests. It’s usually pretty easy to change these names later
anyway.

Renaming the test method is straightforward. Simply edit it to be the name of

the test you want. The naming convention that I promote is to use the claim that

we defined when we planned the test, remove the spaces, and start new words in

capital (AKA PascalCase1). In our example, the name of the test method would be:

WhenARegisteredUserStartsADiscussionOtherAnonymousUsersCanSeeIt

So now, our test class, whose file name is now SanityTests.cs is as shown in Listing 11-1.

Listing 11-1.  SanityTest.cs

using System;

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace MVCForumAutomation

{

 [TestClass]

 public class SanityTests

 {

 [TestMethod]

 �public void

WhenARegisteredUserStartsADiscussionOtherAnonymousUsersCanSeeIt()

 {

 }

 }

}

1�https://blogs.msdn.microsoft.com/brada/2004/02/03/
history-around-pascal-casing-and-camel-casing/

Chapter 11 Start Coding the First Test

https://blogs.msdn.microsoft.com/brada/2004/02/03/history-around-pascal-casing-and-camel-casing
https://blogs.msdn.microsoft.com/brada/2004/02/03/history-around-pascal-casing-and-camel-casing

224

Note  The line break before the name of the test method is only due to the limited
space in the book. In the code editor, it should be on the same line as the public
void keywords preceding it.

�Write the Pseudo-code
In this step, we’re going to translate the text that we wrote in the previous chapter to a

valid C# syntax inside the code editor. Without going too deep into compilers theory

here, a valid syntax does not mean that the code compiles. In loose words, it only means

that the code “looks like” a valid C# syntax, even though some required definitions

and identifiers are missing. For this reason, I call it “Pseudo-code” at this stage, even

though I try not to change this code later on, but only add the missing declarations and

implementations. So eventually the pseudo-code will become the real code.

To make it easier to write the pseudo-code, instead of switching back and forth

between the text editor (where we wrote the textual description of the test) and Visual

Studio, I like to copy that text as a comment, write the code. and then delete the

comment. Note that the code should be self-describing, looking very similar to the

original text, so there’s no use in keeping this comment. Figure 11-3 shows what the code

looks like after writing the code but before removing the comment.

Chapter 11 Start Coding the First Test

225

Note I recommend you to look at Figure 11-3 in the e-book version of this book
in order to see the syntax highlighting and the red color that Resharper uses to
indicate the missing definitions

�Remarks About the Pseudo-code
As you can see, the pseudo-code that we created is a valid C# syntax, even though it still

cannot compile because many definitions are missing. You can also see that the pseudo-

code reflects pretty well the text in the comment, employing the contexts that we defined

in the text as the objects in the code.

Figure 11-3.  Writing the pseudo-code

Chapter 11 Start Coding the First Test

226

While writing the code, I had to make some additional design decisions. Some of

them are apparent from the code you see in Figure 11-3, but some are more implied.

Here are some of them:

•	 While in the textual steps I wrote “Login as a registered user,” in the

code I called it RegisterNewUserAndLogin to better reflect what it

does. If you try to register a new user in the application, you’ll notice

that when the registration succeeds, the user becomes logged in

automatically. Therefore, the RegisterNewUserAndLogin method is

actually one operation despite the ‘and’ in its name. Note that if this

behavior will change at some point, we will be able to change only

the internal implementation of this method and perform the same

thing as two distinct operations internally (register and log in), but

without having to change any test that calls it.

•	 When creating a discussion in the application, there are various

parameters that the user can specify. The most trivial way to

model this is by making each one of them a parameter of the

CreateDiscussion method. However, there are currently four

parameters excluding the body of the message, and most of them are

optional. In addition, as systems evolve, more and more parameters

are added to entities that the user can create. Having overloads with

so many parameters makes the method cumbersome and hard to

maintain. Therefore, I prefer to use the Test Data Builder2 pattern.

The With static property of the Discussion class will instantiate

and return a DiscussionBuilder object, with a method for each

parameter. The CreateDiscussion method should use this builder in

order to fill in the values in the form.

•	 The sentence “Enter the site as an anonymous user” is actually not

an operation that the user performs after navigating to the site, but

rather this is the state right after navigating to the site. Therefore, we

only need to create a new instance of a browser and navigate it to the

site. I decided to name this class MVCForumClient, as this is what it

actually represents. Note that the MVCForum identifier is not a name

2�Steve Freeman and Nat Pryce, Growing Object-Oriented Software Guided by Tests (Menlo Park,
CA: Addison-Wesley Professional, 2009), p. 258.

Chapter 11 Start Coding the First Test

227

of a class but rather a property name in the test class. The MVCForum

property is actually also of type MVCForumClient, even though you

cannot see it yet from the pseudo-code.

•	 I considered using the Factory Method pattern3 to create the new

MVCForumClient instance for the anonymous user. I may still revise

this decision in the future, but for now I didn’t see any benefit from

doing it, without making the code more cumbersome.

•	 I declared two variables of type Discussion: createdDiscussion and

viewedDiscussion. The first one represents the discussion as the

registered user created it, and the second one represents what the

anonymous user sees. Even though they should actually be the same,

we cannot assume this in the test as this is what we want to verify, by

comparing their title and body.

•	 The Assert.AreEqual method is the most common method to

perform the verifications in tests. A similar class exists in virtually all

unit tests frameworks, but there can be slight differences between

them. In MSTest, the first argument is the expected result, the second

is the actual result, and the third is an optional message to display

when the assertion fails. Note that replacing between the first and the

second arguments won’t change the outcome of the verification, but

regardless of the third parameter, the error message always mentions

the expected and actual results using these arguments, so if you

replace them this message can be confusing.

THE VAR KEYWORD IN C#

In C#, the compiler can infer the type of a local variable according to the expression that you

use to initialize that variable (assuming you initialize it in the same line), which saves you

from specifying the type explicitly. In order to use it, you can replace the type to the left of the

variable name with the keyword var. For example, the following two lines are equivalent and

generate exactly the same runtime bytecode:

3�Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software (Menlo Park, CA: Addison-Wesley Professional, 1994), p. 107.

Chapter 11 Start Coding the First Test

228

int i = 3; // explicit type declaration

var i = 3; // compiler inferred type declaration

Note that this does not make the variable dynamic, as the compiler determines the type at

compile time and it cannot change it later at runtime. This means that the variable is still

strongly-typed (AKA statically typed), and if you’ll try to call methods or access properties that

do not exist on this type, you’ll get compile-time errors and not only runtime errors as you

would if it was a dynamic type.

The use of this keyword is controversial, but it’s mostly a matter of taste. When this keyword

was first introduced in C# 3.0, I didn’t like it at first, but over time I got more and more used to

it, and today when I look at code that doesn’t use it, it looks very cumbersome to me.

When I write the pseudo-code of a test myself, I usually use the var keyword. But for the

sake of clarifying my intentions, in the above example I specified the types explicitly. But don’t

worry; I’ll change it back to var when we’ll be done.

�Getting the Code to Compile
Ok, so we wrote the pseudo-code, but now what? It doesn’t even compile! And where’s

Selenium?! Ok, we need a bit more patience until we use Selenium, but let’s get the code

to compile first.

The important thing to keep in mind at this step is not to go and try to implement

everything. We should only focus on making the code compile and about creating the

model, which is the structure of the classes and method signatures, but without writing
any code inside methods. Completing the model before starting to implement the

methods helps us validate that our model is complete (as far as our first test needs), and

that we didn’t forget anything important along the way. Also, as long as our code doesn’t

compile, we won’t be able to run our test and check if it actually works as we expect,

and we’re likely to write more code than we’ll need or be able to test quickly. We want

to take baby steps here to validate that every few lines of our test automation code does

exactly what we expect it to. Remember: if the quality of the test automation code will
be poor, its reliability will be poor too! S,o let’s stick to the current step: only make the

code compile.

Chapter 11 Start Coding the First Test

229

Tip I find that using the keyboard rather than the mouse wherever possible
significantly improves the productivity when writing, editing, or even just reading
code, though it can take some time to get used to. Appendix D contains useful tips
for working effectively with the keyboard. Accordingly, the following instructions
use keyboard shortcuts wherever possible.

The methods and properties that we’ll create in order to make the code to compile

will all have a single statement: throw new NotImplementedException();. As you’ll see

later in the tutorial, these exceptions will guide us through the process and will ensure

that we don’t forget to implement anything.

If you’re using Resharper, you can use Alt+PgUp/Alt+PgDn to navigate between

the compilation errors and warning. You can also use Alt+Shift+PgUp/Alt+Shift+Pg
Dn to navigate only between the errors. If you’re not using Resharper, simply traverse the

red squiggly lines, or open the Errors pane (View ➤ Error List) and use F8/Shift+F8 to

navigate between the errors.

Once the cursor is on an unrecognized class or method name, press Alt+Enter

(Reshaper) or Ctrl+. (without Resharper) to open the quick-actions menu, and select

(using the arrow keys and Enter) the option to create that class or method. Note that

Resharper gives you much more control when creating classes and methods. Especially

important is that when you create a method using Resharper, it brings your cursor to

edit the types and names of the method parameters and return values, while Visual

Studio without Resharper gives some default names and the types it can infer, and leave

it like that, which is not what you always want. In this case, you have to explicitly go to

the declaration of the method (using F12) and edit those manually. Both Resharper

and plain Visual Studio adds the throw new NotImplementedException(); statement

to methods that you create this way, but unfortunately they don’t do it by default for

properties, leaving them to return null, so we’ll have to do that manually.

Tip R esharper allows you to change its default behavior to create a body with
throw new NotImplementedException(); statements also for properties,
through its Options dialog. To do that, go to Resharper ➤ Options, choose Code
Editing ➤ Members Generation from the left side navigation bar, and under the
Generate property body style section select Accessor with default body.

Chapter 11 Start Coding the First Test

230

Whether you use Resharper or Visual Studio’s native quick-actions menu, when you

create a class you have an option to create it in its own file, or inside the current file. Even

though eventually every class should be in its own file, I find it more convenient to create

all the classes in the same file, at least until it compiles, or until the first test passes, and

only later move each class to its own file. Resharper allows you to do it for all classes in

the file in one shot, while using Visual Studio itself you have to do it one by one.

�Declaring the LoggedInUser Class
The first compilation error we see is that the type LoggedInUser is not defined. Put

the cursor on this identifier and press Alt+Enter (or Ctrl+.), and select Create type
‘LoggedInUser’ (or Create class ‘LoggedInUser’ without Resharper), as shown in

Figure 11-4.

�Declaring the MVCForum Property
The next undeclared identifier is MVCForum. While the LoggedInUser identifier could

only mean a type (class) name due to its location in the syntax, there are few options

that can satisfy the compiler regarding the MVCForum identifier. The most obvious one

is also a class name, but then the method RegisterNewUserAndLogin must be static,

and that wasn’t my intent. My intent was that MVCForum will be a read-only property

or type MVCForumClient. If you’re using Resharper, select Create read-only property
‘MVCForum’ from the quick-actions menu; otherwise select Create property

Figure 11-4.  Creating the LoggedInUser type using the context menu

Chapter 11 Start Coding the First Test

231

'SanityTests.MVCForum'. Either way, because neither Visual Studio nor Reshaper

knows which type the property should be, they’ll use object. But Resharper also puts

the cursor on the object keyword and lets you change it right away, which without

it you’ll need to manually select it. So now change the property type from object to

MVCForumClient, which of course is still not declared either. We also want to change its

getter to throw NotImplementedException and delete the redundant private setter (you

don’t have to do that if you followed the tip above). Then we can go ahead and create the

MVCForumClient class, just like we did for the User class. The code up until now should

look like Listing 11-2.

Listing 11-2.  After adding MVCForum property and MVCForumClient class

using System;

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace MVCForumAutomation

{

 [TestClass]

 public class SanityTests

 {

 [TestMethod]

 �public void

WhenARegisteredUserStartsADiscussionOtherAnonymousUsersCanSeeIt()

 {

 const string body = "dummy body";

 LoggedInUser userA = MVCForum.RegisterNewUserAndLogin();

 �Discussion createdDiscussion = userA.

CreateDiscussion(Discussion.With.Body(body));

 MVCForumClient anonymousUser = new MVCForumClient();

 �DiscussionHeader latestHeader = anonymousUser.

LatestDiscussions.Top;

 Assert.AreEqual(createdDiscussion.Title, latestHeader.Title,

 �"The title of the latest discussion should match the one we

created");

 Discussion viewedDiscussion = latestHeader.OpenDiscussion();

 Assert.AreEqual(body, viewedDiscussion.Body,

Chapter 11 Start Coding the First Test

232

 �"The body of the latest discussion should match the one we

created");

 }

 public MVCForumClient MVCForum

 {

 get { throw new NotImplementedException(); }

 }

 }

 public class MVCForumClient

 {

 }

 public class LoggedInUser

 {

 }

}

Note  While there’s no apparent reason to restrict the MVCForum property to be
read-only, it’s this kind of things that makes your code more reliable and less error-
prone, especially in the long run. The Poka-Yoke topic in Appendix D explains this
idea of preventing potential mistakes in more detail

�Declaring the RegisterNewUserAndLogin Method
While the caret (the keyboard cursor) is on the RegisterNewUserAndLogin method

reference, select Create Method ‘MVCForumClient.RegisterNewUserAndLogin’
from the quick-actions menu. Note that because we already declared the LoggedInUser

class, Visual Studio knows to use LoggedInUser as the return type of the method. If we

were using the var keyword instead, and were not using Resharper, Visual Studio would

use object as the return type. We would then have to explicitly go to the declaration of

the method and change it. If we were using Resharper, then when we created the new

method the caret would move to the new declaration allowing us to specify the return

type we want. If we would then write a name of a nonexistent class (e.g. LoggedInUser),

it would then let us select Create type ‘LoggedInUser’ to create that class.

Chapter 11 Start Coding the First Test

233

In addition, pay attention that the body of the new method contains the statement

“throw new NotImplementedException();”. We’ll leave it like that for now because all

we want is the code to compile. Later you’ll see how we go about replacing it with the

actual implementation. Note that IDEs for other languages sometimes just leave an

empty body (or a return null; statement), which is unfortunate, because it will make it

harder for us later to find all the places that we need to implement. If you’re using one of

these IDEs, I suggest that you make yourself a habit to add a statement similar to throw

new NotImplementedException(); whenever you add a new method.

�Declaring the Rest of the Classes and Methods
Continue going over the undeclared identifiers one by one, and create the classes and

methods as we did before. Here are some notes:

•	 The CreateDiscussion method has a complex expression as its

argument, which is still not defined either. For that reason, if we’ll

try to create the CreateDiscussion method first, the suggested

argument type will be object. However, if we define the identifiers in

the argument expression first, then CreateDiscussion will already

be created using the proper argument type. In general, it’s better to

define expressions inside parentheses before declaring the outer

expressions. In our case, we should do it in the following order:

	 a.	 Create the Discussion class

	 b.	 Create With as a read-only property and make it of type

DiscussionBuilder (as explained in the remarks about the

pseudo-code above), which is still not defined

	 c.	 Create the DiscussionBuilder class as a nested class inside

Discussion

	 d.	 Create the DiscussionBuilder.Body method (you should

do it from the original line). Change its return type to

DiscussionBuilder and the parameter’s name to body. Note

that in the Test Data Builder pattern, all methods return the

same instance (this) in order to make it easier to chain a few

calls together. This is why we return DiscussionBuilder from

a method declared inside the DiscussionBuilder class

Chapter 11 Start Coding the First Test

234

	 e.	 Finally, create the CreateDiscussion method. The suggested

argument type should already be DiscussionBuilder and the

returned type Discussion. You should only change the name

of the argument from the suggested name body to builder.

•	 LatestDiscussions property should be of a new class, which will

also be called LatestDiscussions.

•	 The properties Discussion.Title and DiscussionHeader.Title

should both be of type string.

When your code looks like Listing 11-3 the code should finally compile, and the

model of the application as far as our first test needs is complete! In order to compile

the code, select Build ➤ Build Solution. If the code actually compiles, you should see

a small message “Build Succeeded” at the status bar at the bottom of the screen. If the

compilation fails, then the Error List pane should appear (if not, select View ➤ Error
List) showing you the compilation errors. Fix these and try again.

Note I n the listing, some lines are broken due to lack of space. If you copy the
code as is and put a line break inside a string value as it appears in the listing,
you’ll get a compilation error Newline in constant, followed by some other syntax
errors. Rejoin the string to a single line to fix this.

Listing 11-3.  SanityTests.cs when it compiles

using System;

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace MVCForumAutomation

{

 [TestClass]

 public class SanityTests

 {

 [TestMethod]

 �public void

WhenARegisteredUserStartsADiscussionOtherAnonymousUsersCanSeeIt()

 {

Chapter 11 Start Coding the First Test

235

 const string body = "dummy body";

 LoggedInUser userA = MVCForum.RegisterNewUserAndLogin();

 �Discussion createdDiscussion = userA.

CreateDiscussion(Discussion.With.Body(body));

 MVCForumClient anonymousUser = new MVCForumClient();

 �DiscussionHeader latestHeader = anonymousUser.

LatestDiscussions.Top;

 Assert.AreEqual(createdDiscussion.Title, latestHeader.Title,

 �"The title of the latest discussion should match the one we

created");

 Discussion viewedDiscussion = latestHeader.OpenDiscussion();

 Assert.AreEqual(body, viewedDiscussion.Body,

 �"The body of the latest discussion should match the one we

created");

 }

 public MVCForumClient MVCForum

 {

 get { throw new NotImplementedException(); }

 }

 }

 public class DiscussionHeader

 {

 public string Title

 {

 get { throw new NotImplementedException(); }

 }

 public Discussion OpenDiscussion()

 {

 throw new NotImplementedException();

 }

 }

 public class Discussion

 {

Chapter 11 Start Coding the First Test

236

 public static DiscussionBuilder With

 {

 get { throw new NotImplementedException(); }

 }

 public string Title

 {

 get { throw new NotImplementedException(); }

 }

 public string Body

 {

 get { throw new NotImplementedException(); }

 }

 public class DiscussionBuilder

 {

 public DiscussionBuilder Body(string body)

 {

 throw new NotImplementedException();

 }

 }

 }

 public class MVCForumClient

 {

 public LoggedInUser RegisterNewUserAndLogin()

 {

 throw new NotImplementedException();

 }

 public LatestDiscussions LatestDiscussions

 {

 get { throw new NotImplementedException(); }

 }

 }

Chapter 11 Start Coding the First Test

237

 public class LatestDiscussions

 {

 public DiscussionHeader Top

 {

 get { throw new NotImplementedException(); }

 }

 }

 public class LoggedInUser

 {

 �public Discussion CreateDiscussion(Discussion.DiscussionBuilder

builder)

 {

 throw new NotImplementedException();

 }

 }

}

Now it’s also a great time to split the file into separate files: one for each class,

using the quick-actions menu. If you’re using Resharper, you can right-click on the file

SanityTests.cs in the Solution Explorer pane, select Refactor ➤ Move Types Into
Matching Files… and click Next in the dialog that pops up. Now you should have one

class per file. Make sure that the code still compiles after that change.

I’ll also use this opportunity to replace all explicit type names with the var keyword.

�Model Code Review
When more than one automation developer work on the project, after one has created all

the classes and methods that make a test compile, this is a great time for a code review.

Even though nothing was really implemented, the reviewer can examine:

	 1.	 Is the code of the test clear and readable?

	 2.	 Does the code of the test reflect the steps that prove or refute the

claim which is the name of the test?

	 3.	 Does the model (the classes and methods) represent reality and

the application correctly?

Chapter 11 Start Coding the First Test

238

	 4.	 If this is not the first test, are similar methods or classes already

exist, and should they be reused?

If the reviewer has important comments, it’s much easier to fix those at this stage

rather than after the entire test was implemented!

�Summary
In this chapter we wrote the code of the test method according to the way we’ve planned

it verbally in the previous chapter. While we’ve written a lot of code that actually

does nothing, we essentially created the skeleton (or the design) for the test and its

infrastructure code, in a way that is modular and reusable. In addition, because we tried

to stick to the way we’ve described the test verbally, the code of the test method came

up very readable. In the next chapter we’ll finally implement the methods so the test will

actually do what it’s supposed to do.

Chapter 11 Start Coding the First Test

239
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5_12

CHAPTER 12

Completing the First Test
OK, so now that our code compiles, what do you think will be the next thing we should

do?

(Buzzer sound goes here) WRONG answer! I bet that you said, “start implementing

the methods” (at least this is what 99% of the people I ask this question say). What we’re

about to do now will probably sound very silly to you at first: We’re going to run the test!

But wait, we can’t! It can’t possibly work! The computer will blow up! Well, you’re

right, it won’t work. But it won’t blow up the computer either (I know you didn’t really

mean it…). So, what will happen? The test will fail of course, because every exception

causes the test to fail and we have many throw new NotImplementedException();

statements. The point is that when we run the test and it will fail, we’ll know exactly

what’s the first method that it tries to run, and this is the first method that we need to

implement.

If we’ll stick to this process of implementing one method at a time and running the

test to see where it fails next, we’ll be able to test every new method that we write and

verify that it works correctly and reliably. If it doesn’t, the test will fail on something

that we have already implemented and we should go back and fix it. This way we are

constantly improving and fortifying the reliability of our code. In addition, it’s also a

great way to make sure that out tests are repeatable without having to reset test data,

environments, etc. This is of great importance when we’ll later want to make them part

of a CI/CD process (see Chapter 15).

�Running the Test to Find What to Implement First
So. as we said, we’ll first run the test in order to see what the first failure is. Continuing

where we left off in the previous chapter, in order to run the test, open the Test Explorer

pane (if not already open), by selecting Test ➤ Windows ➤ Test Explorer. Then right-

click on the test’s name and select Run Selected Tests. You should see that the test failed

240

by the red X near the test name. At the bottom of the Test Explorer pane. you should

see the details of the failure, including the error message and the stack-trace that shows

the chain of method calls in which the exception was thrown. By default. this lower part

is pretty small, but you can enlarge it by dragging the splitter. After the failure the Test

Explorer should look like Figure 12-1.

The error message says: “Message: Test method MVCForumAutomation.
SanityTests.WhenARegisteredUserStartsADiscussionOtherAnonymousUsersCanSeeIt
threw exception:

System.NotImplementedException:  The method or operation is not implemented.”

Figure 12-1.  Test Explorer showing the first failure

Chapter 12 Completing the First Test

241

Note A ccording to your operating system’s locale, parts of the message may be
phrased in your system’s language.

While the error message may look a bit daunting, it’s actually not that complicated.

Because the name of the test, which is long by itself, is also shown in its full form that

includes the namespace and the class name, this takes up most of the error message… So

in order to understand the message we can simplify it as: “Message: Test method <test

method name> threw exception: System.NotImplementedException: The method
or operation is not implemented.” Oh, this makes much more sense now! The good

thing about NotImplementedException is that the top line on the stack-trace tells you

exactly where the unimplemented method is. If you hover over the link in the stack-trace,

you should see a tooltip stating the exact file path and line number. If you click the link,

you’ll be taken to that exact place, which is the body of the MVCForum property getter.

Implementing the property getter is very straight-forward. Simply initialize the property

to a new instance of MVCForumClient as follows:

public MVCForumClient MVCForum { get; } = new MVCForumClient();

And now what do we do? This time I hope you had it correct: run the test

again! Note that when we run the test again, Visual Studio automatically saves our

changes and re-compiles our code, so when the test runs it includes our recent

changes. Now the NotImplementedException is thrown from the MVCForumClient.

RegisterNewUserAndLogin method. However, we have to go back a little bit first, because

the website should be opened in the constructor of MVCForumClient and only then we

should implement RegisterNewUserAndLogin.

�Adding Selenium to the Project
In order to implement the constructor of MVCForumClient to open the MVCForum

website, we should start using Selenium WebDriver. We’ll then use it for all of the

following methods that should interact with the website, of course.

Chapter 12 Completing the First Test

242

Note  While Selenium is a very popular test automation tool, teaching Selenium
is not the focus of this book. I’ll explain only the bare minimum so that you
understand the tutorial. There are tons of other resources about Selenium
WebDriver on the web, or you can read Selenium WebDriver Recipes in C#
(second edition) by Zhimin Zhan.1

Adding Selenium to a project in Visual Studio is very easy:

	 1.	 In Test Explorer, right-click on the MVCForumAutomation

project and select Manage NuGet Packages… The NuGet Package

Manager window will be opened.

	 2.	 Click on Browse (at the top of the window).

	 3.	 Type “Selenium” inside the Search box, and press Enter. Note

that for some reason Visual Studio won’t show any results until

you’ve typed in the entire word. You should see results similar to

those shown in Figure 12-2.

1�Zhimin Zhan, Selenium WebDriver Recipes in C#: Second Edition (New York: Apress, 2015).

Chapter 12 Completing the First Test

243

For now, we’ll choose each one of the first three (Selenium.WebDriver, Selenium.
Support, and Selenium.Chrome.WebDriver) and click the Install button on the right.

That’s it! We’ve added Selenium to our test project.

�Running IISExpress
In fact, before we can open the MVCForum website through the browser (and

accordingly through Selenium), we need to make sure that the website itself is running.

While in a true CI environment we’ll probably want to deploy the application to

some web server, container, the cloud, or what have you and run the tests against this

deployment, we’ll use IISExpress.exe to run the website locally. For now, we’ll do it

manually, but it will be a good idea to have an option, based on a configuration file for

example, to run it automatically whenever the test suite starts.

To run the website using IISExpress, open a command prompt window and type the

following on one line.

Figure 12-2.  NuGet Package Manager showing Selenium results

Chapter 12 Completing the First Test

244

"%ProgramFiles(x86)%\IIS Express\iisexpress.exe" /path:C:\

TheCompleteGuideToTestAutomation\MVCForum\MVCForum.Website\

If you’ve downloaded the Git repository to a different location, replace

TheCompleteGuideToTestAutomation with the path to the location you’re using.

Given that IISExpress started successfully, you can now open a browser and navigate

to http://localhost:8080 and see that the MVCForum is up. If you want to stop

IISExpress you can press ‘Q’ at the command window running IISExpress. This will stop

the website and you won’t be able to access the site from the browser.

�Implementing the MVCForumClient Constructor
Inside the MVCForumClient class, add a constructor as shown in Listing 12-1. Press

Ctrl+. and select Import type ‘OpenQA.Selenium.Chrome.ChromeDriver’ (or

Alt+Enter if you’re using Resharper) to add the appropriate using statement at the

beginning of the file.

Listing 12-1.  The MVCForumClient constructor

public MVCForumClient()

{

 var webDriver = new ChromeDriver();

}

The line inside the constructor only tells Selenium to open a Chrome browser. Let’s

run the test again and see if it’s working.

Obviously, the test still fails on the same NotImplementedException in

MVCForumClient.RegisterNewUserAndLogin because we haven’t implemented it yet.

But what has changed, is that now a new, empty Chrome browser window gets opened

when we run the test. However, this window isn’t closed when the test ends, which is

pretty annoying, especially when you run the test multiple times. So, let’s now fix this

before we continue further.

In order to close the browser when the test ends, we can use the object’s finalizer

method, which the .Net Garbage Collector calls whenever the object is not needed

anymore.

Chapter 12 Completing the First Test

245

Note T he Garbage Collector calls the finalizer method asynchronously, which
means that the browser may be left open for a few extra seconds more than what
we need. One way to tackle it is to use the AddCleanupAction method from the
Test Automation Essentials library. See Appendix B for more information about
this library. But for now, I won’t use it so that I keep things simple for the tutorial.

In order to close the browser, we need to call the Quit method on the ChromeDriver

object we’ve created. But because we want to call it from the finalizer, we must first

convert the local webDriver variable into a member. Because I’d like to adhere to the

default naming convention that Resharper suggests, I’ll add an underscore to the name

of the field, making it _webDriver.

Note that if you’re using Resharper, you can change the local variable to a field

automatically. Put the caret on the name of the local variable, press Ctrl+Shift+R to

open the Refactor This context menu, and select Introduce Field… In the dialog that

comes up, change the name to _webDriver, check Make field readonly and click Next.
Eventually, after adding the field and the finalizer, the constructor we’ve created in

Listing 12-1 should be replaced with the code in Listing 12-2.

Listing 12-2.  MVCForumClient constructor and finalizer

private readonly ChromeDriver _webDriver;

public MVCForumClient()

{

 _webDriver = new ChromeDriver();

}

~MVCForumClient()

{

 _webDriver.Quit();

}

If you’ll rerun the test, you’ll notice that now the browser opens and then closes

automatically.

Chapter 12 Completing the First Test

246

There’s one more thing that we need to do in the constructor though: navigate to the

website of the MVCForum application. Because we’re currently running it locally using

IISExpress, we need to navigate to http://localhost:8080. We do this by setting the Url

property as shown in Listing 12-3.

Listing 12-3.  Navigating to the local MVCForum website

public MVCForumClient()

{

 _webDriver = new ChromeDriver();

 _webDriver.Url = "http://localhost:8080";

}

Note that this constructor currently encapsulates two important hard-coded details:

the type of the browser that we use (Chrome) and the URL of the website. We’ll probably

want to allow running the tests on different browsers and against different environments

(URLs) so we should extract these details to an external configuration file. However,

because of the way I write the code, which ensures that I don’t duplicate such details,

I prefer to defer implementing the mechanism that reads from a configuration file to a

later time when I’ll really need it. When I’ll really need it, it will be pretty easy to change

(because it’s only in one place), and then I’ll also be able and motivated to test that it

actually works in all the relevant environments. For the meantime, I’ll change the type

of _webDriver to the IWebDriver interface, which is common to all browsers, so I won’t

accidentally rely on Chrome specific features (see the Poka-Yoke topic in Appendix

D). Don’t forget to add the appropriate using statement to use the OpenQA.Selenium

namespace. I’ll also add a comment to remind me and others that I intend to change this

in the future, and we’ll actually change this in Chapter 14.

If you run the test now, it will still fail on the same thing, but you’ll be able to see that

the browser now navigates to our website before it gets closed.

�Implementing RegisterNewUserAndLogin
So now we’re ready to focus on and implement the RegisterNewUserAndLogin method.

Typically registering a new user is a pretty long process. While here there’s one page

with very few details that the user must fill in, it’s still not exactly an atomic operation.

Therefore, we won’t implement the entire process of registering a user in a single

method. Instead, we’ll use the same top-down technique that we used to write the test,

Chapter 12 Completing the First Test

247

but now for implementing the RegisterNewUserAndLogin method. So first we’ll replace

the throw new NotImplementedException(); statement with the code in Listing 12-4,

which make our code non-compilable again.

Listing 12-4.  Implementing MVCForumClient.RegisterNewUserAndLogin

public LoggedInUser RegisterNewUserAndLogin()

{

 var username = Guid.NewGuid().ToString();

 const string password = "123456";

 const string email = "abc@def.com";

 var registrationPage = GoToRegistrationPage();

 registrationPage.UserName = username;

 registrationPage.Password = password;

 registrationPage.ConfirmPassword = password;

 registrationPage.Email = email;

 registrationPage.Register();

 return new LoggedInUser();

}

Remarks:

•	 Because we want the username to be unique, we initialize the

username variable to a new GUID. Note that sometimes it worth

creating a special class for generating random strings and values

according to various constraints, like length, allowed characters, etc.,

but right now we can do without it.

•	 The password and email addresses don’t have to be unique, and they

don’t even have to be realistic. As long as it satisfies the requirements

for the registration we’re good to go.

•	 The GotoRegistrationPage method that we yet to define will click

the Register link and return an actual Page Object representing

the registration page. We’ll name this Page Object class

RegistrationPage (See Chapter 10 for more details about the Page

Object pattern).

Chapter 12 Completing the First Test

248

•	 All of the property setters of RegistrationPage will enter text into

the corresponding fields. The Register method will click the Register

button.

•	 Currently we return a new LoggedInUser object, without providing

anything in its constructor. We’ll probably have to initialize it with

the username in the pretty near future, but we’ll do it only after the

process we’re following will force us to do so.

As you probably guessed, now we have to make our code compile again by creating

the missing methods, properties, and classes, similar to how we created the classes and

methods in the previous chapter, though now we should choose to create new classes

already in new files. Specifically, we need to create the GoToRegistrationPage method

whose return type is RegistrationPage, and the RegistrationPage class itself with all

the members that we call. Listing 12-5 shows the RegistrationPage class definition

(we’ll add it in a new file). Note that we still don’t implement the body of any of the new

methods, and keep the throw new NotImplementedException(); statement.

Listing 12-5.  The RegistrationPage class definition

namespace MVCForumAutomation

{

 internal class RegistrationPage

 {

 public string Username

 {

 get { throw new System.NotImplementedException(); }

 set { throw new System.NotImplementedException(); }

 }

 public string Password

 {

 get { throw new System.NotImplementedException(); }

 set { throw new System.NotImplementedException(); }

 }

Chapter 12 Completing the First Test

249

 public string ConfirmPassword

 {

 get { throw new System.NotImplementedException(); }

 set { throw new System.NotImplementedException(); }

 }

 public string Email

 {

 get { throw new System.NotImplementedException(); }

 set { throw new System.NotImplementedException(); }

 }

 public void Register()

 {

 throw new System.NotImplementedException();

 }

 }

}

Now let’s run the test again. Unsurprisingly the test now fails on the

NotImplementedException inside MVCForumClient.GoToRegistrationPage. So, let’s

implement it.

In order to get to the registration page, we need to click on the Register link at the

top right part of the page (near the Log On link). Figure 12-3 shows the main page

containing the Register link.

Chapter 12 Completing the First Test

250

In order to click it, we first need to tell Selenium how to find it. Selenium can identify

elements using different characteristics of the element, called locators in Selenium’s

jargon. There are various types of locators (see following note box), but the most

important rule is that the locator should match only the element (or elements) we’re

looking for, and not others. The sidebar contains more tips for choosing the best locator.

All of the locators are matched against the DOM2 of the page.

In order to see the DOM of the page and find the best locator for the Register, first

open Chrome and navigate to the website (http://localhost:8080), then right-click on

the Register link and select Inspect from the context menu. This will open the Developer
Tools pane (which you can also open and close by pressing F12), which shows you the

2�DOM stands for Document Object Model and is the tree data-structure that represents the HTML
elements on the web page. Unlike the source HTML of a page, the DOM can be manipulated and
changed at runtime using JavaScript.

Figure 12-3.  The MainPage containing the Register link

Chapter 12 Completing the First Test

251

tree of elements in the DOM and highlights the element of the Register link. This is

shown in Figure 12-4.

Tip A ppendix D contains an explanation on the various Selenium locators and
tips for how to choose the most appropriate one.

�Asking the Developer to Add a Unique Automation
Identifier
While we can identify the Register link using its link text (“Register”) it’s not

recommended, especially because the site is multi-lingual, and the same element may

appear with a text in another language. Even if it wasn’t a multi-lingual site, we prefer not

Figure 12-4.  Inspecting the Register element using the Developer Tool

Chapter 12 Completing the First Test

252

to rely on a specific spelling and wording, because if it will change, then our test will fail

until we change our code too. However, there’s no other locator that uniquely identifies

that element and is also a better fit.

In such cases, the recommended approach is to add the id attribute. If you have

access to the source code of the SUT, then you can change it yourself. If not, you should

ask a developer to add it for you. It’s really a one-minute task that should have no side

effect, so there shouldn’t be any objection. If you encounter an objection, explain the

importance of it to the reliability of the tests, or involve your manager if needed. If it

takes time, you can use the LinkText locator in the meantime, and later replace it to Id.

Another variation on this approach is instead of adding an id attribute, you can

add a unique class name, just for the sake of the test automation. You can prefix this

class name with “auto-” for, example, to clearly emphasize that it’s being used by the

automation. As elements can have multiple classes, this approach is safer as it ensures

that this class name will be used only for the automation and won’t be changed for any

other reason.

In the tutorial, we have access to the full source code of the SUT, so we’ll add the

class “auto-register” ourselves:

	 1.	 In the Solution Explorer pane, type _Layout.cshtml in the search

box.

	 2.	 Double-click the _Layout.cshtml file in Solution Explorer to open

it in the editor.

	 3.	 Go to line 86, and add the class name declaration in the <a> tag,

as follows:

@Html.LanguageString("Layout.Nav.Register")

	 4.	 Save the file and build the solution.

	 5.	 Go to the Chrome browser, and press F5 to refresh the page. You

should now see the new class name in the Developer Tools.

Chapter 12 Completing the First Test

253

Note  Don’t forget to clear the Search box in the Solution Explorer pane in order
to see the entire solution.

Now we’re ready to implement MVCForumClient.GoToRegistrationPage as shown in

Listing 12-6.

Listing 12-6.  GoToRegistrationPage implemented

private RegistrationPage GoToRegistrationPage()

{

 �var registerLink = _webDriver.FindElement(By.ClassName("auto-

register"));

 registerLink.Click();

 return new RegistrationPage(_webDriver);

}

Also create the RegisterPage constructor that accepts the webDriver argument. You

can use Resharper or Visual Studio quick-fix menu to create the constructor for you, but

make sure to declare the _webDriver field as readonly, as shows in Listing 12-7.

Listing 12-7.  RegistrationPage constructor and the _webDriver field

internal class RegistrationPage

{

 private readonly IWebDriver _webDriver;

 public RegistrationPage(IWebDriver webDriver)

 {

 _webDriver = webDriver;

 }

 ...

}

Chapter 12 Completing the First Test

254

Note S trictly following our process, I had to write the simplest thing that
passes our current exception, and therefore I had no reason to pass webDriver
to the constructor of RegistrationPage at this stage. However, because the
RegistrationPage class is a Page Object, which will surely need the webDriver
object in order to access the elements on that page, then I allowed myself to take
this little shortcut here and create the webDriver parameter right now.

�Implementing the Property Setters
After implementing the GoToRegistrationPage method, we fail on the setter of

RegistrationPage.Username. If we’ll identify this element using the Developer Tools,

we’ll see that it has an id attribute with the value UserName. So, we can implement this

setter as shown in Listing 12-8.

Listing 12-8.  RegistrationPage.Username

public string Username

{

 get { throw new System.NotImplementedException(); }

 set

 {

 var usernameInput = _webDriver.FindElement(By.Id("UserName"));

 usernameInput.SendKeys(value);

 }

}

Continuing the process, we’ll fail on the Password, ConfirmPassword, and Email

property setters and implement them accordingly, similar to the way we implemented

the Username property, one at a time. At this point RegistrationPage.cs should look like

Listing 12-9.

Chapter 12 Completing the First Test

255

Listing 12-9.  RegistrationPage.cs after implementing all properties

using OpenQA.Selenium;

namespace MVCForumAutomation

{

 internal class RegistrationPage

 {

 private readonly IWebDriver _webDriver;

 public RegistrationPage(IWebDriver webDriver)

 {

 _webDriver = webDriver;

 }

 public string Username

 {

 get { throw new System.NotImplementedException(); }

 set

 {

 �var usernameInput = _webDriver.FindElement(By.

Id("UserName"));

 usernameInput.SendKeys(value);

 }

 }

 public string Password

 {

 get { throw new System.NotImplementedException(); }

 set

 {

 �var passwordInput = _webDriver.FindElement(By.

Id("Password"));

 passwordInput.SendKeys(value);

 }

 }

Chapter 12 Completing the First Test

256

 public string ConfirmPassword

 {

 get { throw new System.NotImplementedException(); }

 set

 {

 �var confirmPasswordInput = _webDriver.FindElement(By.

Id("ConfirmPassword"));

 confirmPasswordInput.SendKeys(value);

 }

 }

 public string Email

 {

 get { throw new System.NotImplementedException(); }

 set

 {

 var emailInput = _webDriver.FindElement(By.Id("Email"));

 emailInput.SendKeys(value);

 }

 }

 public void Register()

 {

 throw new System.NotImplementedException();

 }

 }

}

Note I f you wonder whether it’s a good practice or not to put the string literals
of the locators directly in the body of the properties, please refer to the topic about
hard-coded strings in Appendix D for a comprehensive discussion about it.

Chapter 12 Completing the First Test

257

�Removing Duplication from the Property Setters
Now our test fails on the unimplemented Register method. But before we’ll implement

it, notice how similar all the property setters we’ve just implemented! This is a clear

example of duplicated code. It’s true that these are pretty small methods, there are only

four of them and they’re all in the same class, but still – it’s a duplication that can be

eliminated by refactoring. As we go along and remove such duplications, we make our

code more generic, extensible, and overall – easier to maintain. While it’s reasonable

that this duplication will repeat itself in other page objects too, I’m cautious from over-

generalizing, and therefore I’ll only remove the duplication in this class for now. If later

we’ll see that other classes need this behavior too, then we’ll remove that duplication

and make our code even more generic. But now, let’s stay focused on removing the

duplication between the setters inside the RegistrationPage class. We’ll do it by

introducing a new private method FillInputElement that will contain the common

code and receive the id of the element and the value to enter. We’ll use this method in all

of the property setters instead of their current bodies.

Tip  Using Resharper, you can take the Username setter, for example, and
apply the following refactorings: Extract Method, Introduce Parameter on
the "Username" string literal, Change signature to replace the order of the
parameters, and Rename to change the name of the usernameInput variable
to just input (because now our method is not specific to the username input
element). Then you can replace the implementations of all other setters with calls
to the newly created method. Resharper can also help you reorder the properties
and methods inside the class easily and safely. Note that doing this sequence of
small manipulations to the code reduces the chance that we’ll do something wrong
dramatically.

After this refactoring, RegistrationPage.cs should look like Listing 12-10.

Chapter 12 Completing the First Test

258

Listing 12-10.  RegistrationPage.cs after removing the duplication

using OpenQA.Selenium;

namespace MVCForumAutomation

{

 internal class RegistrationPage

 {

 private readonly IWebDriver _webDriver;

 public RegistrationPage(IWebDriver webDriver)

 {

 _webDriver = webDriver;

 }

 public string Username

 {

 get { throw new System.NotImplementedException(); }

 set { FillInputElement("UserName", value); }

 }

 public string Password

 {

 get { throw new System.NotImplementedException(); }

 set

 {

 FillInputElement("Password", value);

 }

 }

 public string ConfirmPassword

 {

 get { throw new System.NotImplementedException(); }

 set

 {

 FillInputElement("ConfirmPassword", value);

 }

 }

Chapter 12 Completing the First Test

259

 public string Email

 {

 get { throw new System.NotImplementedException(); }

 set

 {

 FillInputElement("Email", value);

 }

 }

 public void Register()

 {

 throw new System.NotImplementedException();

 }

 private void FillInputElement(string id, string value)

 {

 var input = _webDriver.FindElement(By.Id(id));

 input.SendKeys(value);

 }

 }

}

Let’s run the test once more to verify that our refactoring didn’t break anything.

The test still fails on the Register method, so apparently, we’re OK. So now we can

implement the Register method as shown in Listing 12-11.

Listing 12-11.  RegistrationPage.Register

public void Register()

{

 var form = _webDriver.FindElement(By.ClassName(

"form-register"));

 form.Submit();

}

Chapter 12 Completing the First Test

260

Note  Clicking a button element that has a style="submit" attribute, inside
a form element, has exactly the same effect as calling Submit on the form
element. In this case it was a bit easier to locate the form element than the
button, therefore I chose this way.

After we run the test again, it will fail on the line in the test following the call to

RegisterNewUserAndLogin, which means that we’ve completed this method for now. We

may need to get back to it to pass something into the constructor of the LoggedInUser

object that it returns, but for now we’ll continue to follow the failure messages.

�Hitting the Isolation Problem
When we continue the process, we’ll need to implement the getter of Discussion.

With and Discussion.DiscussionBuilder.Body. After that we’ll fail on LoggedInUser.

CreateDiscussion. However, if you haven’t changes anything through the admin page,

then when you’ll open the application and manually register a new user, you’ll notice

that the user doesn’t see a Create Discussion button at all. In fact, we already noticed

it in Chapter 10 when we planned the test scenario, and decided that our first attempt

would be to add permission to everyone to create new discussions (topics) in the

“Example Category.” Figure 12-5 shows the admin page for editing the permissions, with

the Create Topics permission checked for the “Example Category.”

Chapter 12 Completing the First Test

261

Performing the actions to change this permission is not part of the test itself, so we’ll

do in the test initialization method. Once again, we’ll write the initialization method

top down: starting from pseudo-code, creating the methods and classes, and then

implementing the methods one at a time when we see where we fail next. Listing 12-12

shows the TestInitialize method in the SanityTests test class.

Listing 12-12.  SanityTests.TestInitialize

[TestInitialize]

public void TestInitialize()

{

 var adminUser = MVCForum.LoginAsAdmin();

 var adminPage = adminUser.GoToAdminPage();

 �var permissions = adminPage.GetPermissionsFor(TestDefaults.

StandardMembersRole);

Figure 12-5.  Admin page for changing permissions

Chapter 12 Completing the First Test

262

 �permissions.AddToCategory(TestDefaults.ExampleCategory,

PermissionTypes.CreateTopics);

 adminUser.Logout();

}

Note I n MSTest, a method decorated with the [TestInitialize] attribute
runs before each test in that class. There are also [ClassInitialize] and
[AssemblyInitialize] attributes that you can use to decorate methods that
will run before all of the tests in the class or in the entire assembly, respectively.
Similarly, methods that are decorated with [TestCleanup], [ClassCleanup]
and [AssemblyCleanup] run after each test, class, and assembly respectively.
The names of the methods themselves don’t have to match the name of the
attribute, but it’s convenient to do so. Most other unit testing frameworks also
provide similar means to run methods at these “before” and “after” occasions.

Notes:

•	 MVCForumClient.LoginAsAdmin should return an object of type

LoggedInAdmin. Because the admin user can do everything a logged-

in user can do, we’ll make LoggedInAdmin derive from LoggedInUser.

Note that the Logout method should be at the base class, as every

logged-in user can log out from the system.

•	 While the “Standard Members” role exists by default, the admin user

can add or remove such roles. Therefore, I want to leave the flexibility

of specifying different roles in the GetPermissionsFor method.

•	 I could simply pass "Standard Members" as the parameter to

GetPermissionsFor to identify the role, but that would be a bad

model. A “role” in MVCForum is not just a string – it’s a complete

entity. The rule of thumb is: if the user can type whatever he wants,
use a string; if he can only choose between strings, then it should
be a strongly typed object. If we use a string where the user can only

choose an existing item, then make our code more error prone (read

the Poka-Yoke topic in Appendix D). If someone will need to use this

Chapter 12 Completing the First Test

263

method later on and he’ll be able to pass any arbitrary string, there’s

a bigger chance that the method will fail at runtime than if he has to

pass a strongly typed object.

•	 Because we still want to rely on some default entities that exist in the

system, but we don’t want to create a tight coupling to them, I defined

a TestDefaults property of a class with the same name to hold those

default entities. If at some point the defaults in the application will

change, or I’ll want to use different defaults for the tests, this class

should be the only place I should change. If I won’t use such a class,

then when such a change occurs, I will have to change in many places

in the code-base of the tests.

•	 Everything I said about the “Standard Members” role is also true for

the “Example Category” category.

•	 The list of permission types is a fixed (i.e., it’s predefined in the

system and the admin user can’t change this list). Therefore, I chose

to model PermissionTypes as an enum, in order to restrict ourselves

only to members of that list and avoid potential mistakes.

Continuing our process, we first create the classes and methods that make our code

compile, then, as usual, run the test to see where it fails and implement that method.

Skipping most of the details (as I hope you get the idea by now), when I implement

MVCForumClient.LoginAsAdmin, I noticed a duplication between the RegistrationPage

and the LoginPage classes where both need the FillInputElement method that we’ve

implemented in the RegistrationPage class. In order to remove this duplication, I

extracted a base class called FormPage that contains this method, and changed the

LoginPage class to also derive from it. Note that both RegistrationPage and LoginPage

classes has Username and Password properties, which correspond to Username and

Password input fields. However, in my opinion even though these properties and their

implementations are completely identical, this is not a true duplication! That’s because

there’s no direct relationships between these fields. On each of these forms they serve

a different purpose: on the Registration form, their purpose is to let the user choose his

username and password, while in the LogIn form, their purpose is to let the user specify

what he has previously chosen.

Chapter 12 Completing the First Test

264

Another important change that is worth mentioning, is that I added the default

admin username and password to TestDefaults, and had to pass it to MVCForumClient

in the constructor, so it can use it on the LoginAsAdmin method. Consequently,

I had to pass it also to the instance that we create inside the test (change the line

“var anonymousUser = new MVCForumClient();” to “var anonymousUser = new

MVCForumClient(TestDefaults);”). But because this litters the test code with

implementation details, I extracted the instantiation to a separate method called

OpenNewMVCForumClient, so eventually the line became: “var anonymousUser =

OpenNewMVCForumClient();”, which conveys the essence of this line more clearly.

Note  When you run the application for the first time, you’ll see a single
discussion titled “Read me”. If you open it, you can see that the default admin
user name and password appear there and that they are “admin” and “password”
respectively. The administrator is encouraged to change the username and
password before going live. Because we only use this site locally and don’t have
real and important information in the application’s database, then we can keep
these credentials for now.

You can see the complete source code where TestInitialize is complete

by checking out the Git revision tagged TestInitializeCompleted, or online at

https://github.com/arnonax/mvcforum/tree/TestInitializeCompleted/

MVCForumAutomation.

�Implementing CreateDiscussion and Analyzing
the Failure
Now that TestInitialize is working as expected, let’s implement LoggedInUser.

CreateDiscussion. The implementation is shown in Listing 12-13.

Chapter 12 Completing the First Test

https://github.com/arnonax/mvcforum/tree/TestInitializeCompleted/MVCForumAutomation
https://github.com/arnonax/mvcforum/tree/TestInitializeCompleted/MVCForumAutomation

265

Listing 12-13.  LoggedInUser.CreateDiscussion

public Discussion CreateDiscussion(Discussion.DiscussionBuilder builder)

{

 �var newDiscussionButton = WebDriver.FindElement(By.ClassName("createtop

icbutton"));

 newDiscussionButton.Click();

 var createDisucssionPage = new CreateDiscussionPage(WebDriver);

 builder.Fill(createDisucssionPage);

 createDisucssionPage.CreateDiscussion();

 return new Discussion(WebDriver);

}

Notice how we use the Test Data Builder pattern here: we simply call the Fill method

of the builder, which should do all the work of filling in all the relevant values. The

CreateDiscussion method itself should not change to support additional parameters.

When we run the test though, we get a failure: Message:
Test method MVCForumAutomation.SanityTests.
WhenARegisteredUserStartsADiscussionOtherAnonymousUsersCanSeeIt threw
exception: OpenQA.Selenium.NoSuchElementException: no such element: Unable
to locate element: {“method”:“class name”,“selector”:“createtopicbutton”} , and the

stack-trace is pointing as expected at the FindElement call in the method we’ve just

implemented. Reverifying the class name of the button assures that it’s the correct one.

In order to analyze what’s going on, we have two options:

	 1.	 Put a breakpoint on the relevant line and debug the test.

	 2.	 Add relevant diagnostic information to the test result.

While the tendency of most people is for the first option, I generally prefer to try the

second option first, and only if it doesn’t help fall back to debugging. The reason I prefer

the second option is that diagnostic information that I add to the test can serve me to

investigate future failures as well. In particular, when a test fails during a CI or nightly

build and cannot be reproduced on the environment of the automation developer, then

debugging won’t help, while diagnostic information would. See the next chapter for

more information about investigating failures.

So, the most basic diagnostic information that can help us identify this problem

is a screenshot of the page at the moment of the failure. On the one hand, if we see

Chapter 12 Completing the First Test

266

the button in the screenshot, then it means that there’s a problem in the way we try

to find it. If, on the other hand, we won’t see the button, then we’ll have to continue

investigating further, but the screenshot will probably provide us with more hints

regarding the problem. Listings 12-14 and 12-15 show the code we add to SantiyTests.cs

and MVCForumClient.cs respectively in order to take the screenshot. Note that most of

the code we add to SanityTests.cs is specific to MSTest, but you can do similar things in

other unit testing frameworks too.

Listing 12-14.  SanityTests.cs – adding screenshot on failure

public TestContext TestContext { get; set; }

[TestCleanup]

public void TestCleanup()

{

 if (TestContext.CurrentTestOutcome != UnitTestOutcome.Passed)

 {

 var screenshotFilename = $"Screenshot.{TestContext.TestName}.jpg";

 MVCForum.TakeScreenshot(screenshotFilename);

 TestContext.AddResultFile(screenshotFilename);

 }

}

Listing 12-15.  MVCForumClient.cs – adding screenshot on failure

public void TakeScreenshot(string screenshotFilename)

{

 _webDriver.TakeScreenshot().SaveAsFile(screenshotFilename);

}

Now let’s run the test again and see what happens. Obviously, the test till fails with

the same error message, but now Test Explorer shows us another link named Output as

shown in Figure 12-6.

Chapter 12 Completing the First Test

267

Clicking on the Output link opens a special document window in Visual Studio,

containing pretty much the same information as the lower pane of Test Explorer, but

with an additional section titled Attachments, containing the link to our screenshot.

Clicking on the link open the screenshot shown in Figure 12-7, which tells the whole

story…

Figure 12-6.  Test Explorer shows the Output link

Chapter 12 Completing the First Test

268

Apparently, the problem was that we were stuck in the Registration page after

clicking Register and didn’t even get to the main page where the New Discussion

button should appear. As the screenshot tells us, the reason we failed to complete the

registration is because not only the username should be unique, but also the email

address.

In order to fix this, we’ll create a random email address on each run too, replacing

the line in MVCForumClient.RegisterNewUserAndLogin:const string email = "abc@

def.com";

with:

var email = $"abc@{Guid.NewGuid()}.com";

Figure 12-7.  The failure screenshot

Chapter 12 Completing the First Test

269

�Completing the Test
Now this issue is behind us, and we also have a simple mechanism that will take a

screenshot on every failure. So now we can continue our cycle of running – fixing –

refactoring until the test passes. After about nine additional cycles like this, the test

suddenly passes! Figure 12-8 shows what success looks like.

Figure 12-8.  The first test passes

To see the final code of the test check-out the Git revision tagged

FirstTestCompleted or online at https://github.com/arnonax/mvcforum/tree/

FirstTestCompleted. You can also see the individual steps that lead us here by

looking at the revisions history at https://github.com/arnonax/mvcforum/commits/

FirstTestCompleted or through Visual Studio (see Chapter 9 for details).

Chapter 12 Completing the First Test

https://github.com/arnonax/mvcforum/tree/FirstTestCompleted
https://github.com/arnonax/mvcforum/tree/FirstTestCompleted
https://github.com/arnonax/mvcforum/commits/FirstTestCompleted
https://github.com/arnonax/mvcforum/commits/FirstTestCompleted

270

�Summary
During the process we’ve created many classes and many more methods. It may seem

a lot for just one test, but all of these classes and methods were written in a way that is

reusable, so we’re likely be able to use them in other tests too. Also, all of the code that

we wrote was executed and tested and proven to work repeatedly and reliably. There

is still some work that we need to do in order to support running the tests on different

machines or environments, support multiple browsers, and add more logging to help us

investigate failures, but most of what we’ve done so far can stay with us for long, and be

very easy to maintain. In the next chapter we’ll improve the code to help us investigate

failures more easily, and in Chapter 14, we’ll add more tests and improve some of the

things that we’ve postponed.

Chapter 12 Completing the First Test

271
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5_13

CHAPTER 13

Investigating Failures
Here’s a true story: In the previous chapter we completed our first test, and it passed

consistently. My original intent was to continue showing you more tests, then write a

chapter about investigating failures. However, reality struck and changed my plans.

After I completed writing the previous chapter, I wanted to send the author of

MVCForum, Lee Messenger, a pull-request1 with the tests I created, as the project didn’t

have any tests before. But before I could send the pull-request, I had to first pull his latest

changes and merge them into my repository. However, after I did that, the test stopped

working.

Note that this situation happens all the time in the real world. Whenever a developer

makes changes to the application, there’s a chance that some tests will stop working.

For that reason, integrating and running the tests often ensures that those changes

between every run are small and it’s easy to find out what has changed. Naturally, good

maintainability, both of the application, but more so of the tests, ensures that fixing these

issues is as easy as possible.

This experience inspired me to focus this chapter on this concrete example rather

than on explaining about failure investigation only theoretically.

�Integrating with Latest Version of MVCForum
When I ran our single test after integrating with the latest version of MVCForum, I saw

the failure shown in Figure 13-1.

1�A pull-request is an operation in GitHub that is used to send source code contributions to an
open source project owned by another user. It is called “pull-request” because the contribution
isn’t automatically pushed to the owner’s repository, but rather a message is sent to him asking
him to pull the changes from the contributor’s repository. This way the owner has control over
the contributions and can accept or reject them.

272

As mentioned briefly in Chapter 10, in order to ensure isolation and consistency, I

intend to clean the database before each test run. As this should be done only per run

and not per test, I prefer to do it using a batch file or some other kind of script, external

to the test code. In the meantime, in order to ensure that everything indeed works

consistently, I occasionally re-created the database manually before running the test.

The mentioned failure that happened after integrating the latest changes only happened

after re-creating the database. To re-create the database, stop IISExpress, delete the

MVCForum database from Microsoft SQL Server Management Studio, create a new

database named MVCForum, and restart IISExpress. The next time you browse to the

website, all of the tables and default data will be created automatically.

Figure 13-1.  The first failure after integrating the latest version of MVCForum

Chapter 13 Investigating Failures

273

As we can understand from this failure message and stack-trace, we failed to find the

“My Tools” menu in order to navigate to the Admin page. Let’s click the Output link and

look at the screenshot to see whether this menu appears or not. The screenshot is shown

in Figure 13-2.

From the screenshot we can understand that we actually failed to log in.

�Improving the Error Reporting
Seeing the problem from the screenshot is cool, but the first indication that we got was

that the My Tools menu is not found which wasn’t very indicative of the real problem. So

before we’ll fix and even investigate the root cause any further, let’s fix the error message

to be more indicative if a similar problem will happen again in the future.

Figure 13-2.  The screenshot of the failure

Chapter 13 Investigating Failures

274

In order to do that, after clicking the Log On button, we’ll check that there’s no red

error message, and if there is, we’ll fail the test immediately and provide all the relevant

information at the failure message.

In order to identify the error message bar, we can either try to reproduce the problem

manually or run the test through the debugger and break after clicking the Log On

button. There’s another option that I’ll use later in this chapter, which is to save the page

to a file and open it offline. However, I want to keep things simple for now so we’ll leave it

for later.

The method that actually performs the login, and is most appropriate for that check

is the private method MVCForumClient.LoginAs<TLoggedInUser>. Listings 13-1 and 13-2

show the changes we made to this method and to the LoginPage class respectively in

order to improve the error message. Of course, we implement one method at a time as

we did before.

Listing 13-1.  MVCForumClient.LoginAs improved validation

private TLoggedInUser LoginAs<TLoggedInUser>(string username, string

password, Func<TLoggedInUser> createLoggedInUser)

 where TLoggedInUser : LoggedInUser

{

 var loginPage = GoToLoginPage();

 loginPage.Username = username;

 loginPage.Password = password;

 loginPage.LogOn();

 var loginErrorMessage = loginPage.GetErrorMessageIfExists();

 �Assert.IsNull(loginErrorMessage, $"Login failed for user:{username} and

password:{password}. Error message: {loginErrorMessage}");

 return createLoggedInUser();

}

Chapter 13 Investigating Failures

275

Listing 13-2.  LoginPage.GetErrorMessageIfExists

/// <returns>

/// �The error message displayed on the Login Page, or null if no error is

displayed

/// </returns>

public string GetErrorMessageIfExists()

{

 var errorMessageElement = WebDriver.TryFindElement(

 By.ClassName("validation-summary-errors"));

 return errorMessageElement?.Text;

}

Notes:

	 1.	 Because I generally tend to avoid null as valid values (see

Appendix D for more details), I added the XML comment that

clearly states that it can return null if no error appears. Visual

Studio displays these XML comments as tooltips whenever you

hover over the name of the method.

	 2.	 The TryFindElement method is not yet declared. I’ll declare it as

an extension method2 to make the code more readable, and the

idea is that it will return an element if found, or null if not.

Listing 13-3 shows the implementation of TryFindElement.

2�Extension methods are a C# language feature, which allow us to associate methods to existing
classes or interfaces, as if they were instance members of these classes or of all classes
implementing those interfaces. These methods are in fact simple static methods, but they
make the code more elegant. The idea is that the object on which the extension method acts
upon (in our case, WebDriver), is passed to the first parameter, which is specifically annotated
with the keyword this in the method declaration (as you can see in Listing 13-3). You can read
more about C# extension methods at https://docs.microsoft.com/en-us/dotnet/csharp/
programming-guide/classes-and-structs/extension-methods or simply search the web for
“C# extension methods.”

Chapter 13 Investigating Failures

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods

276

Listing 13-3.  SeleniumExtensions.cs containing the TryFindElement extension

method

using System.Linq;

using OpenQA.Selenium;

namespace MVCForumAutomation

{

 public static class SeleniumExtensions

 {

 /// <summary>

 /// Tries to find the element using the specified locator

 /// </summary>

 /// �<param name="context">The context in which to find the

element. This is typically an object implementing <see

cref="IWebDriver"/> or <see cref="IWebElement"/></param>

 /// �<param name="locator">The locator (<see cref="By"/>) to use for

finding the element</param>

 /// �<returns>An <see cref="IWebElement"/> representing the element

if found, or null if the element could not be found</returns>

 public static IWebElement TryFindElement(

 this ISearchContext context, By locator)

 {

 var matchineElements = context.FindElements(locator);

 return matchineElements.FirstOrDefault();

 }

 }

}

Note T he first parameter of the method, context, which is annotated with the
this keyword, is the object to which this extension method is applied. I declared
its type as ISearchContext, which both IWebDriver and IWebElement derive
from, so that it will be applicable for all objects that implement any of them.

Chapter 13 Investigating Failures

277

Now when we run the test, we see the error message: Assert.IsNull failed. LogOn
fail for user:admin and password:password. Error message: The user or password
provided is incorrect.

As you can see, this error message is much more accurate than the one we got

originally, and we can also see the username and password that we attempted to use. So

we know that we failed to log in using the default admin username and password… but

why?

�Avoid Debugging
The instinct of many developers (be it product developers or automation developers)

when they encounter a bug is to start debugging. Indeed, today’s IDEs provide very rich

debugging experience, and it can give you very deep insights about what’s going on.

However, there are a couple of drawbacks to debugging:

	 1.	 You can only debug a failure that reproduces consistently in

your environment. Debugging other environments is possible

but usually much more cumbersome, and debugging through

a scenario that fails inconsistently is a total waste of time. In the

context of test automation, it means that failures that happen

only on the build environment will be difficult to debug, and

flickering tests (tests that fail inconsistently) will be much harder

to diagnose.

	 2.	 After you end a debugging session, most of the information and

knowledge that you gained during the session is lost. If you or

someone else will have to debug a similar problem in the future,

he’ll need to go over the entire debug session all over again, trying

to understand what you’ve just learned.

For these reasons, I prefer to avoid debugging in most cases. Instead, I constantly

improve my error reporting, logging, and other diagnostic data collection, so gradually

it becomes easier and easier to investigate failures. At first, the investment may be a bit

higher than debugging, but in the long run it pays off big time.

Chapter 13 Investigating Failures

278

�Investigating the Root Cause
As you recall from the previous chapter, we found that the default administrator’s

username and password are “admin” and “password,” from the Read Me topic (that is

created automatically on the first run). So let’s look at the Read Me topic again and see if

something has changed. Figure 13-3 shows the new Read Me topic.

As you can see, the password is now (r=)76tn and not password as it was.

Apparently this is not just a new default password as before, but rather a generated

one (if you’ll try it yourself you should see a different password). Digging in the code of

MVCForum and talking to the developer, it turns out that in order to improve the security

when people deploy the real application in production, the default password has

changed to some randomly generated one rather than “password.” The new password is

generated when the database is created.

Figure 13-3.  The updated Read Me topic

Chapter 13 Investigating Failures

279

�Resolving the Problem
Of course that we don’t want to use (r=)76tn as it will change the next time we’ll

re-create the database. So, in order to make our test future proof, we must somehow

know the generated default administrator password. Obviously, the password is

not stored in the database as plain text, so the only way to get it is exactly as a real

administrator user would get it: by reading it from the Read Me topic!

Now the question is how to find and open the Read Me topic in a consistent manner.

There are a few alternatives, each with its own potential problems, but we’ll stick to

the simplest one now. We may change it later, if we’ll have a good reason. We already

know how to get the top topic from the Latest Discussions list. But because tests will

add more topics on top of it, we need to get the bottommost one instead. Taking the

bottommost one can be tricky if there’s more than one page, but we’ll ignore it for now.

Later we’ll decide whether to enhance its implementation to go to the last page or move

this initialization to [AssemblyInitialize] so it always run on a clean environment and

avoid this complexity altogether. We may even decide to start the tests by restoring the

database from a backup in which these permissions are already given.

In addition, we’ll need to find the password itself within the entire message body,

but that’s pretty easy as we can use Selenium to find the second bold element within the

body of the message. Listing 13-4 shows the updated TestInitialize method and the

new GetAdminPassword method that it calls.

Listing 13-4.  Take admin password from the Read Me discussion

[TestInitialize]

public void TestInitialize()

{

 var adminPassword = GetAdminPassword();

 var adminUser = MVCForum.LoginAsAdmin(adminPassword);

 var adminPage = adminUser.GoToAdminPage();

 �var permissions = adminPage.GetPermissionsFor(TestDefaults.

StandardMembers);

 �permissions.AddToCategory(TestDefaults.ExampleCategory,

PermissionTypes.CreateTopics);

 adminUser.Logout();

}

Chapter 13 Investigating Failures

280

private string GetAdminPassword()

{

 var readMeHeader = MVCForum.LatestDiscussions.Bottom;

 var readmeTopic = readMeHeader.OpenDiscussion();

 var body = readmeTopic.BodyElement;

 var password = body.FindElement(By.XPath(".//strong[2]"));

 return password.Text;

}

Note  In Chapter 10, the first tip I gave for using the Page Object pattern
correctly was not to expose the elements of the page as public properties. The
Discussion.BodyElement property seemingly breaks this rule. But this
case is special because the body can contain almost any arbitrary HTML, which
IWebElement represents most naturally. Therefore this can be considered as an
exception to that rule.

�More Issues…
After implementing the missing methods and properties and removing duplication with

existing ones, we still fail but with a different message:

Message: Initialization method MVCForumAutomation.SanityTests.TestInitialize
threw exception. OpenQA.Selenium.NoSuchElementException: no such element:
Unable to locate element: {“method”:“class name”, “selector”:“postcontent”}

From the screenshot, stack-trace, and the code, we can conclude that the Read
Me discussion didn’t open. This should have happened in DiscussionHeader.

OpenDiscussion, but unfortunately the root cause wasn’t very apparent. So let’s fix that too.

We should change DiscussionHeader.OpenDiscussion to fail if it couldn’t complete

its task successfully. In fact, we should even fail the constructor of Discussion (which

is called by DiscussionHeader.OpenDiscussion) if a discussion is not displayed.

Moreover, as the Discussion class is practically a page object, if we can identify an

element that is the container of the discussion view (i.e., it contains everything related

to the discussion, but not the menus and all surrounding elements), we should use it

as the root element for the page object. This root should be used as the context for all

Chapter 13 Investigating Failures

281

FindElement calls instead of IWebDriver. We can then fail the construction if we can’t

find that container. Listing 13-5 shows part of the Discussion class after the changes.

Listing 13-5.  Fail the constructor of Discussion if a discussion is not open

public class Discussion

{

 private readonly IWebElement _container;

 public Discussion(IWebDriver webDriver)

 {

 _container = webDriver.TryFindElement(By.ClassName("topicshow"));

 Assert.IsNotNull(_container, "Failed to open discussion");

 }

 public string Title

 {

 get

 {

 var titleElement = _container.FindElement(By.CssSelector(

 ".topicheading h1"));

 return titleElement.Text;

 }

 }

 ...

}

Note that before the change we had IWebDriver _webDriver member and we now

replaced it with IWebElement _container.

Note  I don’t consider the use of Assert in this class as an assertion of the test,
but rather simply as a convenient way to throw an exception. Some frameworks
however, for example, JUnit, report failures due to asserts differently than failures
due to exceptions, in which case it is not recommended to mix between the two.

Chapter 13 Investigating Failures

282

�Acting Like Detectives

Now the failure message is indeed better: Assert.IsNotNull failed. Failed to open
discussion, but why?

From the screenshot we can see that indeed the discussion wasn’t opened, so the

message does not lie. So we need to investigate further. If we’ll examine the stack-

trace, we shall see that DiscussionHeader.OpenDiscussion is the method that called

the constructor of Discussion, which threw the exception. This method is shown in

Listing 13-6.

Listing 13-6.  DiscussionHeader.OpenDiscussion

public Discussion OpenDiscussion()

{

 var link = _topicRow.FindElement(By.TagName("h3"));

 link.Click();

 var driver = ((IWrapsDriver) _topicRow).WrappedDriver;

 return new Discussion(driver);

}

Because the call to the Discussion constructor happens after link.Click(); we

can assure that the click was executed before the failure, and returned successfully

(otherwise we wouldn’t have got to the last line of the method where the failure

occurred). While looking at the stack-trace and at the code isn’t the most trivial or fast

way to diagnose a problem, it’s a very accurate and reliable one. To really investigate

failures reliably, we should act like detectives: collect evidence, make speculations about

the suspects, try to prove or disprove each of them, narrowing the possibilities, until the

root cause is crystal clear. Elementary, my dear Watson!

So let’s conclude what we know so far:

	 1.	 The line link.Click(); was called and returned without throwing

an exception.

	 2.	 The discussion wasn’t open when the constructor of Discussion

was called, which is right after the click was performed.

Chapter 13 Investigating Failures

283

Because Selenium is pretty reliable, we can safely assume that Selenium performed

the click action on the element referenced by the link variable. So who are the suspects,

then?

	 1.	 There’s a real bug in the SUT, and when clicking the link the

discussion isn’t opened.

	 2.	 It’s a timing issue. That is, the discussion page didn’t open fast

enough, and if we had waited a little longer, it would succeed.

	 3.	 We clicked on the wrong element.

Manually performing the operation pretty much denies the first option. The second

option is the usual suspect of many test automation developers. While in many cases it is

indeed guilty, it’s also too often an innocent suspect as I’ll explained later in the chapter,

but we can easily deny it by adding a delay of, let’s say 10 seconds (by adding a Thread.

Sleep(10000); statement), after the link.Click(); line. After we denied that suspicion,

it’s important that we delete the delay!

So our only remaining suspect is that we clicked the wrong element. From the code

we see that we identify the link using its tag name h3 inside the element referred to by

_topicRow. If we inspect the code (by using Find All References from the context menu,

or Inspect ➤ Value Origin if you have Resharper) we can also see that the _topicRow

member is identified using the class-name topicrow. Using the Developer Tool in the

browser, we can search for the element using the selector “.topicrow h3” (which is a

CSS selector expression meaning an h3 tag inside an element with class topicrow. See

Appendix D for a deeper discussion about the different locators, including CSS Selector),

as shown in Figure 13-4.

Chapter 13 Investigating Failures

284

Note  You have to press Ctrl+F in order to open the search box inside the
Developer Tools in Chrome.

As we can see, this element is found and is unique (as you can see from the “1 of

1” indication at the right of the search box), but we can see that it also contains an “a”

element, which is the link itself and that takes only a small part of its parent. Closing the

Developer Tools and trying to click on the area highlighted in Figure 13-4 (which is no

longer highlighted when you close the Developer Tools), but not on the Read Me title

itself, does not open the discussion.

One thing still looks strange though. This method hasn’t changed since we used it in

the first test and before we integrated the latest changes of MVCForum. So why it didn’t

fail before? If you’ll take the time to revert to the previous version and investigate, you’ll

find out that the titles of the topics that we clicked in the tests were GUIDs, which are

Figure 13-4.  Finding the link to the discussion

Chapter 13 Investigating Failures

285

longer than the Read Me title. These long links crossed the center of the h3 element area,

and therefore clicking the h3 element did actually click the link. But because the Read
Me title is short, clicking on the middle of the h3 element doesn’t click the link.

Now that we convicted the criminal (which is me, as the author of this code…), we

can fix it very easily. Simply replace the locator of link from By.TagName("h3") to By.

CssSelector("h3 a").

�Taking More Screenshots

After fixing the locator, the story doesn’t end… Now the test fails on OpenQA.
Selenium.NoSuchElementException: no such element: Unable to locate element:
{“method”:“class name”, “selector”:“createtopicbutton”}. Looking at the screenshot

(Figure 13-5) and the stack-trace, we can conclude that the registration processes

completed successfully this time. So we made some progress after all.

But also apparent from the error message and the screenshot is that the Create
Discussion button is not there. As you recall, we had a similar problem in the previous

chapter, which was solved by adding the Create Topic permission to the Standard
Members group. So maybe we have a problem with that permission again.

Figure 13-5.  Registration completed successfully

Chapter 13 Investigating Failures

286

In order to investigate whether we’ve added the permissions successfully or not, it

would be great if we had a screenshot for every click, with the clicked element clearly

marked. Developing such a mechanism can take some time, so let’s write this idea to

ourselves on a sticky note and get back to it after we’ll fix the test. For now, we can take

two more screenshots: one before adding the permission and one after. We can use the

TakeScreenshot method that we already added to MVCForumClient, and call it before

and after the call to RolePermissionsPage.AddToCategory from the TestInitialize

method. As always, we refactor to remove duplication of adding the screenshot to the

test results. We do that by adding on event MVCForumClient.OnSceenshotTaken and

handling it in SanityTests to add the file to the test results. You can find the code at tag

AddingScreenshot in the history of the Git repository.

When we run the test, the two screenshots are added to the output of the test. Both of

the screenshots are identical and look like Figure 13-6.

We see that the third permission is checked, but hey! The third permission is no

longer the Create Topics permission, but rather a new Create Tags permission that

didn’t exist before… Apparently this is a new permission that the developer added before

we pulled the latest changes, and the code at AddToCategory relied on the index of the

permission (casted to int from the PermissionTypes enum) because there was no other

way to identify the correct checkbox. Adding an Id attribute or auto-* class, like we did

Figure 13-6.  Screenshot before and after adding Create Topic permission

Chapter 13 Investigating Failures

287

in the previous chapter, was also not practical because the list of permissions is created

dynamically at runtime.

We can fix it by adding the new CreateTags permission to the PermissionTypes

enum in the right position. This is not an ideal solution, but consulting with the

developer we concluded that this is the best we can do for now. For a better solution. the

developer will need to make significant changes that are not expected to be completed in

the near future.

Finally the test passes again!

�Logging and Other Evidence Collection
While we could investigate most things using screenshots, error messages, and the code,

other problems require more information in order to be identified quickly.

�Screen Capture
Capturing and recording the screen video is very helpful at times. You can see exactly

what happened during the test. You can see all the flow of the test; go back and forth;

and most importantly, you can spot things like error messages, even from other

applications or from the OS, that you didn’t expect.

Like everything in test automation and in life in general, screen capturing has its

drawbacks too. First, it takes quite a lot of disk space, which also depends on the quality

of the video that you need. For most cases you don’t need a very high video quality,

unless your application is rich in animations and graphics. You can also delete the

recording if the test passed to preserve disk space. However, it still takes much more

space than text and screenshots.

In addition, because the test typically go pretty fast, it can be hard to track what

exactly the automation tries to do at any given moment in the video. This is especially

true with Selenium and UI automation technologies that don’t actually move the mouse

cursor. If you don’t see the mouse move, you can hardly know which button was clicked.

So it can be pretty difficult to understand from the video alone what’s happening.

In order to capture video, typically we need to use an external application that does

that. The test’s infrastructure should start it whenever a test starts and stops it when it

ends, possibly deleting the file if the test passed. Obviously, other than that, neither the

Chapter 13 Investigating Failures

288

tests themselves nor any other code in the test project should be changed in order to take

advantage of screen capturing.

In Visual Studio Enterprise you can easily turn on video recording for test runs
through a *.runsettings or *.testsettings file. You can find more details at
https://docs.microsoft.com/en-us/visualstudio/test/configure-
unit-tests-by-using-a-dot-runsettings-file.

�Logging
Another technique to track what happens during a test is logging. Logging can be

as simple as writing text to the standard console output, but it can be much more

sophisticated than that as we’ll discuss shortly. Unlike screen capturing, logging requires

adding dedicated lines of code wherever you want something to be written to the log.

There are many logging libraries out there for pretty much all relevant programming

languages, and most of them are open source. These libraries typically allow you

to configure one or more destinations to which the log entries will be written. Such

destinations can be console output, files, database, etc. They also let you specify the

desired format for each entry, which can automatically include the date/time, thread

Id, method name, and more with each log entry. Also, typically, these libraries support

several severity levels (like Debug, Info, Warning, Error, etc.), which you have to specify

when writing each log entry. By changing the configuration, these levels can be used to

filter the types of log entries you’re interested in.

�Nested Logging
One of the challenges with logs is how to decide what to write to the log, and using

which severity. On one hand, if you’ll write too few entries, you may miss important

information when you come to diagnose a problem. On the other hand, if you write

too much, it becomes very difficult to see the forest for the trees, and find what you’re

looking for. There are several remedies to that, but one that I found to works for me the

best, and which I used for a very long time now, is to create the log in a nested manner.

That is, the logger uses indentation to write lower-level details nested inside higher-level

ones. Listing 13-7 shows an example of a nested log.

Chapter 13 Investigating Failures

https://docs.microsoft.com/en-us/visualstudio/test/configure-unit-tests-by-using-a-dot-runsettings-file
https://docs.microsoft.com/en-us/visualstudio/test/configure-unit-tests-by-using-a-dot-runsettings-file

289

Listing 13-7.  Example of a nested log.

Adding a Category

 Opening Admin page

 Clicking on 'My Tools'

 Clicking on 'Admin'

 [Done: Opening Admin Page]

 Opening Categories page

 Clicking on 'Categories'

 [Done: Opening Categories page]

 Creating new category

 Clicking 'Create New'

 Typing 'Test category' in 'Category Name'

 Clicking 'Create'

 [Done: Creating new category]

 Click 'Main Site'

[Done: Adding a Category]

The logger keeps track of the indentation level based on special StartSection and

EndSection methods that you can call. In C# the using statement and IDisposable

pattern can be used to automatically end a section when exiting a block of code, so

you don’t have to call EndSection explicitly. Any log entry that is written between a

StartSection and an EndSection is written with higher indentation than entries outside

of this section. This way, when you read the log you always have all the details, but

you can easily distinguish the high level entries from the lower-level ones, while easily

correlate those low-level entries with the higher level one that initiated them.

Note T he using statement in C# is a compiler feature (AKA “syntactic sugar”),
which is equivalent to the try/finally construct, though instead of defining
the content of the finally clause directly, it takes an expression of type
IDisposable at the beginning and calls its IDisposable.Dispose method in
the implicit finally clause. Java 8 have a similar feature called try-with-resource,
which uses the AutoClosable interface. You can read more on the using
statement at https://docs.microsoft.com/en-us/dotnet/csharp/
language-reference/keywords/using-statement

Chapter 13 Investigating Failures

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement

290

TestAutomationEssentials.Common (see Appendix B for more details) provides

such a mechanism. By default, Test Automation Essentials writes the logs to the console

output, but you can easily redirect it to any other destination.

�Visual Logging
While regular loggers only support text, some loggers also support images, usually by

writing the entries to an HTML file. When doing UI automation, a log that also contains

screenshots is much easier to analyze than one that only contains text. ExtentsReport is

a popular tool that allows you write test logs that include images. It has an open source,

“community” edition, and a more feature-rich “professional” payed version.

Some UI automation tools, like Coded UI for example, automatically takes

screenshots on every click and keyboard entry, and also highlights the relevant

element. This makes it even better for analysis and easier to use from the coding

side. As ExtentReport is a separate technology from Selenium, it does not have

this capability built in. However, it’s possible to combine them together, using the

EventFiringWebDriver class (in the Selenium.Support library), and a few other little

tricks, and make it work for Selenium tests too! Obviously, combining the nested logging

concept with the visual logging one, makes the best of all worlds. Later on, we’ll build

this logger and add it to the project.

�Additional Logging and Diagnostics Options
Aside from the logging options mentioned above, there are other possible things that

you can use to ease the analysis of failures. Some of these are specific to Selenium,

some are more appropriate for API testing, and some are generic. Use whatever fits your

application and what helps you investigate failures. You can incorporate many of these

things into the more generic logging options too.

Here are some Selenium specific things that you can use:

•	 IWebDriver.PageSource – this property returns the HTML of the

current page as a string. For drivers of some browsers, this property

returns the original HTML as it was when the page was first loaded,

but others, including Chrome, return the HTML that represents

the current state of the DOM (which could be different that the

original HTML due to manipulations that were done to it using

Chapter 13 Investigating Failures

291

JavaScript). If you save this string to a file with an .html extension,

then you can open this file in the browser after the test has finished

and see more or less how the page looked like when you saved

the file. Unfortunately, because it saves only the HTML without

external CSS and JavaScript files, usually the page doesn’t look

right. However you can usually still get the important information

out of the page, and also examine it with the Developer Tools in

the browser, which can help a lot in case an element was not found

(NoSuchElementException is thrown). Even if opening it in the

browser doesn’t work well, you can always open it in a text editor

(preferably one that can color-code HTML elements, jump to the

closing tags, etc. like Notepad++ for example).

•	 IWebDriver.Manage().Logs – this property can be used to get the

logs from various sources related to Selenium. The most relevant

one in my experience is the Browser log type, where you can see a

message that the application’s JavaScript code writes to the browser’s

console (by calling console.log(…)), and other errors that the

browser itself writes when exceptions or communication problems

happen.

•	 Using the EventFiringWebDriver class you can intercept all of the

important method calls to IWebDriver and IWebElement, including

Click, SendKeys, GoToUrl, and more. This class fires events whenever

each of these methods is being called, and you can subscribe to these

events to automatically log all of these operations automatically. This

saves you from remembering to add a log entry on every click, makes

your code cleaner, and the log more consistent.

Here are a few other ideas that are not specific to Selenium:

•	 Log HTTP traffic – while this can be used also for Selenium tests, it’s

especially relevant to API testing. You can either use an external tool

like Fiddler or even log all the requests just before they’re being sent

to the server, and the responses just as they arrive. You can often

also get similar logs from the side of the web server that hosts the

application like Microsoft Internet Information Services (IIS).

Chapter 13 Investigating Failures

292

•	 Application Log – the logs of the application itself can also be very

valuable for investigating test failures. You can either intercept the

logs by redirecting them to the test, or simply copy the log files when

the test run completes to the test results directory. When you use the

logs to investigate failures, make sure to correlate the exact time of

every entry in the test’s log with the time of the corresponding entries

from the application’s log. This way you can reason about the root

cause of the failure much more accurately than just skimming the log

for errors and anomalies. Note that there can be a slight gap between

clocks of different computers, but this gap should be pretty constant

over the course of a test run, so if you find related entries in both logs,

you can have a pretty accurate notion of this gap, and then correlate

all other entries very accurately.

•	 System and middleware log – the Windows Event Viewer and similar

mechanisms in other operating systems as well as middleware

infrastructure can also be used to explain some global failures. These

failures usually don’t indicate a bug in the SUT but rather some kind

of an “environmental” problem. While in most cases these logs don’t

provide much information that is related to the failures in your tests,

the few cases where they do can save you a lot of time looking for the

problem in the wrong place. My advice is to include these logs only

if you suspect an environmental problem that you cannot identify in

other means. Examples of such issues can be low disk space, network

disconnections, security issues, etc. When you do find and identify

such a problem, I encourage you to either implement some specific

work-around in the infrastructure code of the tests, or add some code

to automatically identify the situation and report it clearly in the test

failure. It is advisable to write this code before you actually solve the

problem (e.g., free up some disk space), so you can test this specific

code. Only after you see that the failure message is clear or that

the work-around works, solve the real problem and verify that the

message doesn’t appear anymore.

Chapter 13 Investigating Failures

293

�Adding Nested Visual Logger to MVCForum Tests
As our test already passes, we can get back to implement the visual logger we wrote on

the sticky note sooner, and let’s make it nested too. You can find the complete solution at

the VisualLogger tag in the Git repository, but here are some highlights and remarks:

•	 We use the ExtentReports NuGet library as the basis of our visual

logger.

•	 We use the TestAutomationEssentials.Common NuGet library

for the nesting feature, but we also override its default behavior,

which is to write to the standard output, with our own behavior that

writes to the ExtentsReport log. We encapsulate this behavior in

the new VisualLogger class. We then use only the Logger class of

Test Automation Essentials for writing log entries from everywhere

we need, and its StartSection method to start a new nesting level.

As mentioned above, StartSection implements IDisposable so

it can be used in conjunction with the using statement, which

automatically calls Dispose when it completes, consequently

ends the last nesting level. Listing 13-8 shows the use of Logger.

StartSection and Logger.WriteLine in the SanityTests.

GetAdminPassword method.

Listing 13-8.  Use of Logger in SanityTests.GetAdminPassword

private string GetAdminPassword()

{

 using (Logger.StartSection(

 "Getting Admin password from 'Read Me' topic"))

 {

 var readMeHeader = MVCForum.LatestDiscussions.Bottom;

 var readmeTopic = readMeHeader.OpenDiscussion();

 var body = readmeTopic.BodyElement;

 var password = body.FindElement(By.XPath(".//strong[2]"));

 var adminPassword = password.Text;

Chapter 13 Investigating Failures

294

 Logger.WriteLine($"Admin password='{adminPassword}'");

 return adminPassword;

 }

}

•	 We overrode ExtentReport’s default rendering of messages in order

for the indented nested log entries to appear correctly.

•	 We use the EventFiringWebDriver class (from the Selenium.
Support library) for intercepting all calls to IWebDriver.Click,

IWebDriver.SendKeys, and setting the IWebDriver.URL property, in

order to automatically write these events to the log and also to take a

screenshot at each of these events

•	 On the screenshots we take for the click events, we add a red

rectangle that highlights the element we’re about to click (using the

IWebElement.Location and IWebElement.Size properties). When

you look at the look, it makes it obvious what element was clicked.

Pretty cool, isn’t it?

Figure 13-7 shows part of the output of the nested visual logger. You can see that the

Opening Admin Page entry and its [Done:…] counterpart are less indented than the

entries between them. You can also see the automatic logging of every click event. On

the screen you will see a red rectangle around the My Tools menu in the first screenshot

and another red rectangle around the Admin menu item in the second. Note that in the

real report, you can click the minified screenshot to open them in their full size.

Chapter 13 Investigating Failures

295

I encourage you to look at the VisualLogger class in order to see how it’s

implemented. You may also find it useful to look at individual commits in the revision

history (preceding the VisualLogger tag) in order to understand each feature separately.

�Investigating Challenging Failures
The failures we encountered so far were failures that happened consistently on our

machine. Such failures are usually fairly easy to investigate. However, there are cases

where failures are inconsistent and therefore harder to investigate. In all of these cases

Figure 13-7.  Output of the nested visual logger

Chapter 13 Investigating Failures

296

the first things you should look into are the failure message, log, screenshots and all of

the evidence available to you. Often these pieces of evidence are enough to conclude the

cause of the failure. If not, then you can, and should, add more pieces of evidence (e.g.,

log entries) to help you find the root cause the next time your run the test. However, you

can’t always know what evidence will lead you to the root cause, and taking a trial-and-

error approach can take a lot of time and become pretty frustrating. Following are some

typical examples of such cases and tips for handling them effectively.

�Failures That Happen Only On One Machine
Sometimes a test passes on one machine but consistently fails on one or few other

machines or environments. Typically, the automation developer that developed the test

made sure that the test passes (or works correctly) on his machine before checking in his

code, so it passes on his machine. Problems may arise either when another developer

tries to run the test, or when the test runs on the build machine. These are some

differences between these two scenarios but for the most part they’re the same. At least

in the beginning of the investigation, you must have access to the machine where the

test fails. Usually after getting to some preliminary conclusions, you can reproduce the

problem on another machine, or even on your machine to continue the investigation.

The first thing that you should verify is that the versions, both of the tests and of

the SUT, on both machines are the same. If they’re not, then there’s no point in the

comparison. Try to copy the test executables from the machine in which the test

passes to the one in which it fails and see if it still fails. If it doesn’t you may still want to

investigate what’s the difference between the versions, but that’s a different story. If it still

fails, the difference might be the versions of the SUT.

If the SUT is a locally installed application, then either copy the application from the

machine where the test passes to the one where it fails, or reinstall the same version that

is installed where the test passes. If the test accesses the SUT remotely (e.g., through the

browser or over HTTP), then it suffices to redirect the failing machine to the SUT that the

passing machine uses.

If both versions match, our strategy for continuing to investigate the failure should be

based on the “lion in the desert” search algorithm (a generalization of the binary search

algorithm). Hey, don’t panic, I’m not asking you to implement the algorithm, just to act

according to its course of action. The idea is to break every problem into two smaller

Chapter 13 Investigating Failures

297

ones, find which one is relevant, and continue to break it down into smaller and smaller

problems until you find the root cause. To be more specific: identify one difference

between the environments that you suspect to affect the difference in the results, then

try to eliminate this difference, by changing one side to match the other. If the results are

still different (and the failure message is still the same), look for another key difference

and repeat. If the side that you changed now yields the same result as the other one, then

it means that the difference that we eliminated is significant to the problem. However,

even if we could solve the immediate issue this way, we shouldn’t stop here! We must

understand the root cause and take actions to prevent this situation from reoccurring, or

at least alerting and providing guidelines to overcome the problem.

For example, we might suspect a difference between the databases of the two

environments. So first we can try to change the connection string of our environment

(where the test passed) to the database of the failed environment. If the test still passes

on our machine, using the other database, it means that the problem is not related to the

database, and we need to look for another difference. If it fails, it means that the problem

is in the database indeed, but we still don’t know exactly what. It could be a difference in

the data, in the schema, or even in the version of the database engine. Let’s say that you

noticed that the schema version of the failed environment is newer than the one in our

environment. So we can update the schema of our environment (after backing up the

database and after restoring the connection string to its original one) and examine the

result. If it fails, then we can conclude that the new schema version causes the test to fail,

though we still need to find exactly why. If it passes, then it’s not a schema problem, and

we can continue to compare and match the other differences. We continue this process

until we nail down the root cause. Figure 13-8 outlines the decision tree of this example.

Chapter 13 Investigating Failures

298

One important thing to note when going through this process is that the error

message and the relevant symptoms are the same. If at some point you get a different

error, you should first try to understand if the new error happens before or after the point

of the original failure. If the new failure happens after the point at which it has originally

failed, it means that the original failure didn’t happen this time! You may still have to

narrow the problem further down as explained above, but in the meantime you should

treat the new failure as if the test passed. After you’ve completed narrowing down the

original problem and resolve it, start over the entire investigation, this time with the new

failure.

However, if the new failure happens before the point at which it has originally failed,

or at the same point, but with a different error message, then it probably means that

there’s more than one difference in the environments that affects the outcome. In this

case, try focusing on the new failure first, and then get back to the original one. When

Figure 13-8.  Decision tree for diagnosing a failure that occurs only on one
machine

Chapter 13 Investigating Failures

299

things start to get too complex, I found that writing down a manual log file (using a

text editor or word processor), of the things that you try and their results, gives me an

a better feeling of orientation around the problem than just performing random trial

and error. This log especially helps you if you continue to work on the problem the day

after. It also helps if you need to explain to other people what the problem that you’re

trying to solve is, and what are your intermediate conclusions. As with the nested logger,

I tend to write this manual log also in a nested manner. For example, if I want to try out

some experiment in order to diagnose the original problem, and while I try I encounter

another problem that is related only to the experiment itself, then I try to solve the inner

problem first, and then continue with the original experiment I had in mind. In this case

I log the stuff related to the problems in the experiment itself nested within the other

stuff that is related to the original problem and other stuff that I tried.

�Running from the IDE vs. Running from Command Line

One common difference between running the tests on your development machine

and running them on the build server is that in your development machine you might

be running the tests from within the IDE while on the build server it runs from the

command line.

Sometimes there are slight differences between the runner that is used by the IDE

and the command-line runner. In order to investigate it, look at the logs of the build and

try to find the exact command line that was invoked during the build. If you’ll try to run

the exact command on your local machine you may encounter differences in paths or

other environmental differences that won’t allow you to run the tests. So you have to find

and eliminate those differences first. If you succeed running the test on your machine

and it fails with the same error as in the build, then the problem is probably related

to the difference between the command-line runner and the IDE runner. You should

continue to investigate and nail down the cause for the different behavior between the

IDE and the command-line runners, but at least you can now do this investigation all on

your local machine.

If you can’t reproduce it through the command line on your machine, then the

problem is probably not related to this difference. You can try to run an IDE on the build

machine if possible just to verify that this is indeed the case. Then try to find another

suspicious difference.

Chapter 13 Investigating Failures

300

�Narrow Down the Code

When you try to narrow down the problem, it’s often useful to narrow down the code

that’s related to the problem. You can comment-out lines of code that does not seem to

be related to the problem or perform temporary shortcuts to bypass long or complex

operations. This will make each experiment run faster, and also narrow down the scope

of the problem. Obviously, you should not check-in these changes, but rather just copy

the test executables (DLL, JAR …) to the other machine. Sometimes it’s even worth

creating a completely new test project and copying to it only the minimal code that

reproduces the problem. This way you eliminate a lot of “noise” and help you focus on

investigating the root cause. At the end of the process you’d most probably find the exact

line of code that behaves differently on the two environments, and it would be pretty

easy to understand what’s going on.

�Investigating Influencing Tests
Sometimes tests pass consistently when run on their own, or as part of a small group of

tests, but also consistently fail when run as part of a complete test suite. In most cases

it means that there’s an inadvertent influence of one test on another. It also implies

a problem in the isolation strategy. Look back at Chapter 7 for concrete isolation

techniques that can help you solve the problem.

But before you run and apply any of those techniques, you should first have a clear

picture of the root cause. As always, first try to look at the log and the evidences and try

to understand from them what could be the problem. If you suspect something, try to

create a simpler reproduction of the problem and check if you get the same result. If you

do, it should usually be easy to come up with a solution.

However, if you don’t have an idea what could be the problem, then you can play the

“Lion in the Desert” game again, but in a slightly different fashion this time: Suppose that

when we run the entire suite, test #28 always fails, even though it passes if run alone. In

this case, you should create a new test suite that contains only tests 1–14 and also test

#28. If test #28 now passes it means that the influencing test is between 15 and 27. After

you verify that it’s true, split the remaining test cases to two again, and now take only tests

15–21 (half of 15–27) and test #28. Continue this process until you remain with exactly one

test that when run together with test #28 reproduces the error. Let’s say that we remained

with tests #16 and #28. Now we can continue to narrow down the root cause by removing

unrelated stuff from tests #16 until we find the exact operation in it that affect test #28.

Chapter 13 Investigating Failures

301

While it may sound a very long course to take, it’s not as much as you’d think.

Because we cut the number of tests in half at each cycle, then if we sum up the number

of tests that we run during this search, we’ll get exactly the number of tests preceding the

one that failed (28 tests in our example). In reality you would usually also have an idea of

which tests might be related to the problem and which aren’t, so you can minimize the

scope even further.

�Investigating Flickering Tests
Flickering tests are tests that sometimes fail and sometimes pass, even if run on the

same build and on the same environment, with no immediately apparent reason.

Whether the failures happen pretty often or pretty rarely, this phenomenon is one of the

most disturbing situations for anyone who cares about the results of the test automation,

as it destabilizes their reliability. Sometimes the flickering is not bound to one or few

specific tests, but each time a different test may fail. Investigating these cases is usually

also very frustrating because it’s almost impossible to know if you really fixed the

problem or you were just lucky this time. Thankfully, there are a few useful techniques

to handle these cases. Before we’ll get to these techniques, let’s first examine a few

common anti-patterns3 and understand their drawbacks.

�Anti-patterns for Handling Flickering Tests

The following techniques are applied quite often in attempt to handle flickering tests.

However, even though they’re pretty common, I consider them as anti-patterns, and

they have significant drawbacks. I’m listing those here in order for you to be aware and

beware of their consequences.

Retry All of the Failed Tests

One common anti-pattern when flickering tests becomes a big issue is to run all of the

failed tests gain, usually two or three times, and only if a test fails all of the times, then it

is reported as failed, and even if it passed only once, consider it as passed.

3�An Anti-Pattern is a common solution to a problem, that albeit being common, its effectiveness is
questionable and often counterproductive.

Chapter 13 Investigating Failures

302

There are a few drawbacks to this approach:

•	 It assumes that the failures are mainly the fault of the automation and

not real bugs. While this is sometimes true, many times it’s not. If it

is the fault of the automation, then you’re just hiding and deferring

the problem rather than trying to investigate and resolve it. If the fault

is in the SUT, it means that there’s a bug that you don’t report. Note

that “environmental” problems are usually isolation problems that

are the fault of the automation. Like any other faults, they should be

identified and fixed rather than being swept under the rug.

•	 When an automation developer develops a new test or maintains an

existing one, he should normally run the test a few times in order to

debug, diagnose, and eventually to ensure that it works correctly. If a

test that passes only once out of three retries is considered OK, then

when the test fails at any of these activities (debug, diagnose, etc.,) it

confuses the automation developer as he can’t distinguish between

failures that are the fault of his recent changes and faults that were

considered OK before. If he needs to run and debug everything three

times, then it lengthens his work considerably.

•	 Because issues are deferred and swept under the rug, then in the long

run, more and more issues cause more and more tests to become

flickering and in a higher frequency. This makes the three retries

insufficient, and the natural reaction is to increase the number of

retries, which only makes things worse…

Using Fixed Delays (Thread.Sleep)

A typical cause of flickering tests is timing. As in most cases, the SUT is running in a

different process than the test, it also means that it is running on a different thread. This

implies that whenever you perform an option on the SUT (e.g., click a button, sending a

HTTP request, etc.), the operation completes on a thread in the SUT while the thread of

the test continues in parallel.

This doesn’t mean that operations cannot be synchronized, however, by waiting for

some kind of an acknowledgment from the SUT that the operation completed. In fact,

Selenium always waits for the browser to complete its operation before the method

returns, and so are many HTTP/REST libraries, which wait for the HTTP response to

Chapter 13 Investigating Failures

303

be received before continuing. But still, the notion of what’s considered a “complete

operation” is debatable. For example, if the browser sends an asynchronous HTTP call

to the server (known as AJAX or XHR), and displays a wait spinner, then Selenium will

return as if the operation has completed, even though in most cases the user considers

the operation as complete only when the asynchronous call returns and the result is

displayed on the UI. A similar situation occurs when a REST API returns a “200 OK”

response after it pushed a message to a queue, which another service should process

asynchronously. In these situations you should explicitly tell the test to wait until the

operation completes, which usually depends on the specific scenario.

Knowing what to wait and how is often challenging, and therefore some automation

developers choose the easy way of waiting for a fixed period of time, using a the Thread.

Sleep method. While this solution often resolves the problem in the short term, it has

serious drawbacks:

•	 Suppose that 50% of the times the operation completes in 3 seconds

or less. Then it’s not suffice to wait for 3 seconds, as in the other 50%

of the times the operation won’t complete yet. Theoretically, you can

never reach 100%, but it’s OK to put some threshold above which

the time is considered unacceptable and the test should indeed

fail, reporting that the operation didn’t complete in an acceptable

period. However, the closer you want to get to 100%, the time you

have to wait increases more rapidly. This means that if you want the

operation to succeed 99% of the times, you might need to wait 10

seconds. Figure 13-9 shows a Gamma Distribution graph of the time

an operation may take. This means that in 50% of the cases you’re

waiting 7 seconds more than you really need!

Chapter 13 Investigating Failures

304

•	 When you’re just waiting for a fixed period of time, when that time

elapses, you typically don’t know whether the operation really

completed or not. If you don’t check that, then your test may fail

only later on. When investigating the failure, this distracts you from

the root cause. As you should already understand, the time and ease

of investigating failures are crucial to the reliability and the overall

value of the test automation. If you do check whether the operation

completed successfully after the delay, then it should be very easy to

convert the fixed delay to wait for the operation to complete.

TIMING ISSUES AND SELENIUM

Unlike what many automation developers believe, each method call in Selenium returns only

when the operation has completed on the browser in a completely deterministic fashion.

In many cases it means there’s no need for any delays or waits. However, the question is

how you define “the operation has completes.” In order to answer this question, we need to

understand how the browser works.

0

0.2

0.4

0.6

0.8

1

1.2
0

0.
8

1.
6

2.
4

3.
2 4

4.
8

5.
6

6.
4

7.
2 8

8.
8

9.
6

10
.4

11
.2 12

12
.8

13
.6

14
.4

15
.2 16

16
.8

17
.6

18
.4

19
.2

Pr
ob

ab
ili

ty

Seconds (X)

Probability of the time it takes for an operation to
complete

Probability for operation to complete in exactly X seconds

Probability of operation to complete in X seconds or less

Figure 13-9.  Gamma Distribution for completing an example operation

Chapter 13 Investigating Failures

305

In the browser, every page (browser’s tab or window) is capable of running JavaScript

code, and also perform some other internal operations only on a single thread. However,

asynchronous operations can still take place while the page is idle, waiting for input from

the user or from the server. For example, AJAX calls (also known as XHR or XmlHttpRequest)

are performed asynchronously, but when they return, the callback function that handles their

results is executed again on the same thread, only if it’s idle. If it’s not, then the callback will

remain in a queue until the thread is idle and then the callback will be executed. Asynchronous

operations can also be performed in JavaScript using the setTimeout function.

Because Selenium communicates with the web page, then its calls are also synchronized

with this thread. This means that if the JavaScript code that is executed on a click event

is synchronous (does not initiate AJAX calls or use setTimeout), it is guaranteed that the

Click method that you call through Selenium will not return until the JavaScript event handler

has completed its execution. Only if the handler initiates an asynchronous operation explicitly

(using AJAX or setTimeout), then the method may return before the operation is completed.

Some JavaScript frameworks, like AngularJS and KnockoutJS, as well as some homegrown

architectures, make more use of asynchronous operations, and therefore are more susceptible

to timing issues than websites that don’t use them.

Selenium provides two main mechanism for waiting for asynchronous operations to complete,

often referred to as implicit wait and explicit wait. Implicit wait is a timeout value that you

can set via the IWebDriver.Manage().Timeouts().ImplicitWait property, and

affects how long Selenium will wait to find an element if it hasn’t existed yet before throwing

a NoSuchElementException. It is important to note that implicit wait only applies when

calling FindElement, and it does not affect any other operations like Click, for example.

FindElements (the plural form) is also affected by this value, but it waits only wait until

at least one if found. It could be that this is what you expect, but there are cases in which

a list is filled asynchronously and then this method may return before all the elements are

populated. Explicit wait is a more generic mechanism that lets you wait for various predefined

conditions or define your own. You apply Explicit Wait by instantiating a WebDriverWait

class (from the Selenium.Support library), specifying the timeout value, and calling the

Until method, specifying the expected condition. The predefined conditions are defined

in the ExpectedConditions class and contain conditions like ElementIsVisible,

Chapter 13 Investigating Failures

306

ElementToBeClickable, TextToBePresentInElement and many more, as well as to

define your own. Here are two examples:

var wait = new WebDriverWait(webDriver, TimeSpan.FromSeconds(30));

// Using predefined condition:

var button = webDriver.FindElement(By.Id("approveButton"));

wait.Until(ExpectedConditions.ElementToBeClickable(button));

button.Click();

// Use a custom condition to wait for a file to be created:

wait.Until(drv => File.Exists(path));

var text = File.ReadAllText(path);

Note  WebDriverJS, the JavaScript version of Selenium WebDriver, does return
before the operation completes and lets you to use callbacks, known as promises
to be notified when the operation has completed. This is because JavaScript itself
is single threaded and must free the main thread in order to allow it to process the
response when the operation completes.

�Properly Waiting for an Operation to Complete

The alternative to fixed delays is to wait for an event or a condition to be met, which

indicates that the operation is completed either successfully or not. Try to think how

the user knows that an operation has completed. For example, while a loader spinner

appears, it indicates the user that the data is not ready yet, but when it disappears it

should indicate that it is. If you’re not using UI automation but any type of API, then you

should think how client systems should be indicated that the operation is completed.

When you’re waiting for an event or condition, you should always set a timeout, such

that if the condition is not met in that period, the operation should fail. This is to prevent

a situation in which the test hangs indefinitely. You can set this timeout pretty high,

as in most cases the test won’t wait for that long, only when the condition is not met

(which can either be a bug in the SUT or in the test). The timeout should be high enough

to avoid failing the test unnecessarily, but not above a time that the most patient user

would reasonably wait for the result.

Even though implementing a mechanism that polls for a condition until it becomes

true, or a timeout occurs, is not rocket science, you should rarely develop it yourself.

There are many existing libraries that already do that for you. If you’re using Selenium

Chapter 13 Investigating Failures

307

you have the WebDriverWait class, TestAutomationEssentials.Common also has a Wait

class, and I’m sure that there are plenty of similar implementations out there for any

language you use.

Note S ome testing frameworks, including MSTest, have a default timeout
for a test to complete, which is usually very high, like 30 minutes or so. Other
frameworks don’t have a built-in default, but let you specify your own default
timeout that applies to all tests. In addition, most frameworks let you specify a
timeout value for specific tests that overrides that default, but you should very
rarely use that. This means that implementing your own loop that waits for a
condition, without taking care to fail the test on a proper timeout, even if it won’t
hang the test forever, due to the default timeout, it will still take a very long time
(e.g., 30 minutes) until it fails. If there is more than one test that will fail for the
same reason, then each of these will take 30 minutes…

�Properly Handling and Investigating Flickering Tests

Sometimes there’s a tendency to blame the test automation for flickering tests. However,

it’s important to realize and communicate that such failures can be the fault of real

bugs just as well. In fact, in my experience it’s even more likely, because most systems

are asynchronous in nature, which is more prone to random timing issues and race

conditions, while test automation is typically single threaded, and therefore more

immune from these problems. Having said that, it can also be a matter of an improper

isolation, or some other reason. Therefore unless you investigate the root cause, you

cannot know where the fault is.

Shortly I’ll describe a method for investigating flickering tests. However, if this

investigation still takes too long, then you should somehow separate or mark these tests

distinctly from other tests, so that other people can know that it’s under investigation

and understand that the failure is probably not a regression. This is important in order to

preserve the perceived reliability of the test automation. Not communicating these cases

clearly leaves the impression that the entire test suite is unreliable.

However, you don’t want to stop these tests from running regularly, as you want to

collect as much data about their failures, in order to be able to investigate it properly. On

the contrary, you want to run these tests even more often!

Chapter 13 Investigating Failures

308

If a test fails on a flickering issue 10% of the time, it is very difficult to investigate.

Somewhat counterintuitively, we should prefer that tests will fail more often, as this

way it is easier to reproduce and investigate. In order to increase the probability for

encountering the failure, we can run the test in a loop, let’s say 50 times. This increases

the chances that the test will fail to above 99%! (=100%–90%50), which practically

means that we can reproduce the failure any time. Then we can start adding diagnostic

information, and play the lion in the desert game until we pinpoint the problem.

One particular useful technique to narrow down the scope of the problem, and also

to make the investigation process more efficient, is to create a separate test that performs

the suspicious operation in a loop and gradually trying to remove code or operations

that seem to not be related to the problem, or narrowing the loop only to the suspicious

part, performing all the preconditions only once. This shortens the time it takes to run

the looping test. If at some point the problem cease to occur, then you know that the last

operation that you removed from the loop is related to the issue. If this operation is not

atomic (can be broken into smaller operations), then you should add it back, and narrow

down the loop to perform only some of the suspicious suboperations. If the operation

cannot be broken down any further, then you can come to the relevant developer with

the narrowed-down loop that reproduces the problem with high probability, and let him

continue the investigation from there.

�Summary
In order to keep the test automation reliable and trustworthy, it’s highly important to

investigate each problem thoroughly and find the root cause. We also want to ensure

that the investigation is fast and precise, so we can react quickly. For that, we should

add any information to the test result that can help us investigate and understand what

happened. This can come in the form of clear error messages, logs, screenshots, and

more.

Some cases are more challenging to investigate, but a systematic approach of

eliminating possible factors, as opposed to randomly guessing and trying things without

aiming for clear conclusions, can help investigate the root cause of these cases too. Even

flickering tests, which most people feel puzzled by, can be systematically investigated by

narrowing down the problem domain and looping through it to significantly increase the

probability of reproducing it.

Chapter 13 Investigating Failures

309
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5_14

CHAPTER 14

Adding More Tests
In Chapters 10 to 12 we created the first test and its supporting infrastructure. Now it’s

time to add more tests while enhancing the infrastructure that supports these tests to

make it more maintainable. In addition, we’ll support running the tests by multiple

developers simultaneously and support cross-browser testing.

�Writing the Next Tests
We’ll add more tests very similarly to the way we wrote the first test:

•	 Plan the test as a claim and an experiment that proves or refutes it.

•	 Translate the experiment steps into classes and methods, and

make the code compile, even though the methods are not really

implemented yet (they just throw NotImplementedException).

•	 Run the test, and implement the first method that throws

NotImplementedException.

•	 Repeat the last step until the test passes.

There’s one difference between the first test and the next ones though: While in the

first test none of the classes and methods existed, in the next ones, some of them may

already exist. In fact, there can be three cases for each step of the test:

	 1.	 The class and method already exist and can be used as is.

	 2.	 The class or method does not exist. We need to create it exactly as

we did in the first test.

	 3.	 A similar class and method exists, but it’s not exactly what we

need in the new test. Most commonly, we need to provide

additional or different arguments to the method.

310

The last case is where things become more interesting. We have few alternatives to

handle this case:

	 1.	 Create a new method (usually an overload, that is, a method with

the same name but with different parameters) and duplicate its

code.

	 2.	 Modify the original method to accept more parameters. In

languages that do not support optional arguments, it means

adding more arguments to the calls in existing tests.

	 3.	 Create an overload with the new parameters, but remove the

duplication either by calling the overload with the additional

parameters from the overload with the fewer ones, providing

defaults for the additional parameters, or by extracting the

common code to a private method or base class, which both of the

public overloads call.

	 4.	 Refactor the method to accept a builder object, in which you can

specify values for any parameter.

Clearly, the first option is not ideal for maintainability. You can do it only if you

commit to removing the duplication after you completed the test.

The second option is also not advisable for two reasons:

	 1.	 If in the first test we didn’t think we should specify a value, then

it’s probably not really relevant for proving the claim of the test.

Adding this argument makes the test more cluttered with “noise”

and less readable and distracts the reader of the code from the

essence of the test. In the book Clean Code,1 Robert C. Martin

(AKA Uncle Bob) claims that almost no method should have

more than one or two parameters. While he doesn’t talk about

tests in this context, but about any calling method in general, his

reasoning for that is pretty much the same.

1�Robert C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship (New Jersey, United
States: Prentice Hall, 2008), p. 40.

Chapter 14 Adding More Tests

311

	 2.	 You can claim that the first reason is void if you’re using optional

arguments, as you can pass only the ones that you’re interested

in. However, from the side of the method itself, having many

parameters implies that the method is probably long and

complicated, and it has many if statements and in general is

difficult to maintain. Depending on the language, usually optional

arguments also have other limitations. In addition, often some

parameters make no sense in combination with others, or to the

contrary, must be specified with others. Having all of them as a

flat list of optional parameters contradicts the Poka-Yoke (prevent

mistakes) principle, described in Appendix D.

Therefore, I suggest using the second option with an optional parameter, only if you

don’t see a need for more than two arguments ever. To avoid the limitations of optional

arguments, or to support different data types for the arguments, the third3 option

(overloads) is better, but still, only if you don’t need more than two arguments, or rarely

three. Otherwise, I prefer the fourth option of using the builder pattern. This is especially

relevant for methods that create business entities. Most entities that you can create in a

business application have many parameters, but typically only one or two are important

for each particular test. All the rest should either be left empty if they’re not mandatory,

or use some default or random value if they are mandatory. Random values should

generally be used only if the value should be unique. The data builder pattern described

in Chapter 12 makes it possible to create an object to which you can assign all of the

arguments, and it builds the entity through a composition of methods rather than one big

method that has to take all the parameters into account. This makes it easier to maintain.

�Planning the Next Tests
For the first test my advice was to find the scenario that demonstrates the value of the

system. This also helped us model and build the major blocks of the infrastructure.

In general, as described in Chapter 4, choosing the next suite of tests to automate

depends on their value and on risk analysis at any given point in time. But just after

implementing the first test, when we need to choose the next few tests among all of the

tests that have similar business value, I prefer to cover tests that will guide me to enrich

the infrastructure and make developing additional tests more easily. However, there’s

a trade-off: on one hand, if we add tests for a feature with a very small overlap with

Chapter 14 Adding More Tests

312

the previous ones, it will force us to expand the model and build more infrastructure

to support this test. On the other hand, if we add tests that exercise more or less the

same path as the first one, but with slight changes, we’ll probably have to make small

adjustments to the model that we already created. When changing the model to support

the new tests and refactoring to remove duplication, we should end up with better

abstractions and more robust model and infrastructure.

There’s no right answer to this trade-off, and usually it’s better to implement few

tests of each kind. Note that if you’re going all the way with the first approach and add

tests for a completely different feature (or even a completely different system), you may

need to build a completely different infrastructure. There’s nothing wrong with that, but

it’s usually preferable to stay more focused on building the infrastructure for one project

before proceeding to another one.

For our tutorial, the next test I choose to add is a test that verifies the ability to filter

the discussions by categories. Additional tests that I also considered as appropriate

for the first few include testing the badges, which is a differentiator feature for this

application, and the votes feature. However, implementing these tests is beyond the

scope of this tutorial. Note that all of these tests introduce new concepts from one hand

but also make use of existing functionality that we already created in the first test.

After covering the main flows of each feature, you can start to cover specific features

more deeply. In this case, most of the tests will be more similar to one another with only

small changes between them.

�Adding the Test: Discussions Can Be Filtered by Category
In order to test this functionality, we need to have more than one category. We also don’t

want to use the default “Example Category” because it will be difficult to define what

we expect to see in it, as it will be used by all tests that are not concerned with a specific

category. Therefore, we’ll create two new unique categories, just for this test. Then we’ll

create a discussion, assign it to one of these categories, and verify that we only see the

discussion in that category and not in the other one, which should be empty. Listing 14-1

contains the textual plan for the test.

Listing 14-1.  Discussions can be filtered by category

Discussions can be filtered by category

=======================================

Create 2 new categories: A and B

Chapter 14 Adding More Tests

313

Create a new discussion “discussion1” and assign it to category A

List discussions in category A

Verify that “discussion1” appears in the list

List discussions in category B

Verify that the list is empty

As we did for the first test, now we have to define the contexts for each step in order

to help us create an object-oriented model of the application in code. Listing 14-2 shows

the contexts that we’ll use to perform each step.

Listing 14-2.  Discussions can be filtered by category – with contexts

Discussions can be filtered by category

=======================================

Create 2 new categories: A and B // MVCForum.AdminConsole

Create a new discussion “discussion1” and assign it to category A

// a logged-in user

List discussions in category A // MVCForum.Categories

Verify that “discussion1” appears in the list // CategoryView.Discussions

List discussions in category B // MVCForum.Categories

Verify that the list is empty // CategoryView.Discussions

Notes:

•	 In the first line we create two categories. However, in the code it

makes more sense to map it to two lines.

•	 When we create the categories we’ll automatically add Create

Topic permissions to them in order to make them usable. This is

an implementation detail that is mandatory in order for the test to

succeed, but still it’s not relevant for the essence of the test.

•	 The AdminConsole property will automatically log us in as “admin”

and navigate to the Admin console. Note that we already have this

functionality in the TestInitialize method, broken into smaller

steps, so we should refactor the existing code to remove this

duplication and reuse the functionality. In addition, we’ll rename

the AdminPage class we created previously to AdminConsole, to better

describe its essence, as it’s not a mere single page.

Chapter 14 Adding More Tests

314

•	 As in the first test, we won’t actually use hard-coded strings

like “discussion1,” but rather create unique strings. We use

“discussion1” in the text just to make it clear that we refer to the

same discussion at all the relevant places. In the code we have

variable names for that instead.

•	 In the second line, we wrote “a logged-in user” without

preceding it with a Login step. This is because in this test, the

question which user we’re using is not very interesting, as long

as it’s a registered member. In the code we’ll probably still call

RegisterNewUserAndLoging() to create that user. Note that because

this application is based on collaborations between users, I don’t see

fit to define a “default user” for the tests, which is something that I

do in many other applications that are less collaboration-centric. We

may still want to define such “default user” in the future if we’ll have

many tests that are agnostic to the user, but we first have to see a clear

need for that.

•	 There’s one important entity that hides “between the lines,” but we’ll

definitely need it in the code. This is the Category entity of course.

We’ll instantiate this object when we create the category in the first

step and pass it as an argument both when we create the discussion

and to a Select method on the MVCForum.Categories property. The

object itself will hold only the name of the category, but it’s still worth

creating a class for, for the sake of strong-typing and Poka-Yoke.

Listing 14-3 shows the skeleton of the new test method that we’ve added to

SanityTests.cs. This is of course not compilable yet.

Listing 14-3.  DiscussionsCanBeFilteredByCategory test method skeleton

 [TestMethod]

 public void DiscussionsCanBeFilteredByCategory()

 {

 var adminConsole = MVCForum.AdminConsole;

 var categoryA = adminConsole.CreateCategory();

 var categoryB = adminConsole.CreateCategory();

 var user = MVCForum.RegisterNewUserAndLogin();

Chapter 14 Adding More Tests

315

 �var discussion = user.CreateDiscussion(DiscussionWith.

Category(categoryA));

 var categoryView = MVCForum.Categories.Select(categoryA);

 Assert.AreEqual(1, categoryView.Discussions.Count,

 $"1 discussion is expected in categoryA ({categoryA.Name})");

 �Assert.AreEqual(discussion, categoryView.Discussions.

Single(), $"The single discussion in categoryA ({categoryA.

Name}) is expected to be the same category that we've created

('{discussion.Title}");

 categoryView = MVCForum.Categories.Select(categoryB);

 Assert.AreEqual(0, categoryView.Discussions.Count,

 $"No discussions expected in categoryB ({categoryB.Name}");

 }

As you can see, some of the classes and methods we already have, some are

completely new, and some others exist but will require some modifications, most

notably CreateDiscussion should be changed to support the Category parameter that is

added through the builder.

Note  CategoryView.Discussions would be a collection of
DiscussionHeader objects, just like we have in the LatestDiscussions
list. However, this means that in the second Assert statement, we compare a
Discussion object to a DiscussionHeader object. In order to make it work, I
intend to extract a common base class from these two classes that will hold only
the title of the discussion (which is its unique identifier) and implement Equals
such that it compares the title’s own title with the other object’s title, regardless
of the concrete type. Comparing a unique identifier of an entity is sufficient for the
general use, and it makes the code cleaner.

From here you know the drill: create new classes and methods until the code

compiles. Then run the test and fix any NotImplementedException, until the test passes.

Chapter 14 Adding More Tests

316

Here’s the list of classes, methods, and properties that we have to add in order to

make the code compile:

•	 public AdminConsole MVCForum.AdminConsole { get; }

Note  We renamed AdminPage to AdminConsole, so this is in fact an existing
class

•	 public Category AdminConsole.CreateCategory()

•	 public DiscussionBuilder Discussion.Category(Category

category)

•	 public CategoriesList MVCForum.Categories { get; }

•	 public class CategoriesList

•	 public CategoryView Select(Category category)

•	 public class CategoryView

•	 public IReadOnlyCollection<DiscussionHeader>

Discussions

Note  We still didn’t extract the common base class out of Discussion and
DiscussionHeader. We’ll do it when we’ll need to make the Assert succeed.

�Remove Duplication Between MVCForum.AdminConsole
and AddCreateTopicPermissionToStandardMembers

When we run the test after we’ve made it compile, the first NotImplementedException

that we encounter is MVCForum.AdminConsole. As mentioned before, we already

have the logic of logging in as admin and navigating to the Admin console

in AddCreateTopicPermissionToStandardMembers method, which is called

from TestInitialize. Listing 14-4 shows the current implementation of

AddCreateTopicPermissionToStandardMembers. The bold lines are those that we want

to extract to the MVCForum.AdminConsole property.

Chapter 14 Adding More Tests

317

Note  While I added the visual logger to the project in the previous
chapter, I also extracted the code that existed in TestInitialize to the
AddCreateTopicPermissionToStandardMembers method in order to
separate it from the initialization of the logger itself.

Listing 14-4.  AddCreateTopicPermissionToStandardMembers

private void AddCreateTopicPermissionToStandardMembers()

{

 using (Logger.StartSection(

 "Adding 'Create Topic' permission to Standard members"))

 {

 var adminPassword = GetAdminPassword();

 var adminUser = MVCForum.LoginAsAdmin(adminPassword);

 var adminConsole = adminUser.GoToAdminConsole();

 var permissions = adminConsole.GetPermissionsFor(

 TestDefaults.StandardMembers);

 �permissions.AddToCategory(TestDefaults.ExampleCategory,

PermissionTypes.CreateTopics);

 adminUser.Logout();

 }

}

Trying to extract the accented lines into their own method reveals that we need

this method to return two values: the adminConsole, which is obvious; but also the

adminUser, which we use at the end of the method to call Logout() on. Returning two

values from a method is not a good practice. But the harder question that it raises, is

when do we log out the administrator in the new test?

Looking at our test code again, obviously we must log out the administrator before

RegisterNewUserAndLogin! In order to avoid adding too much noise to the test code,

with all of these login and logout operations, we can change the AdminConsole property

to an OpenAdminConsole method, make the AdminConsole class implement IDisposable,

and use a using clause around the creation of the categories, so that the administrator

will automatically log out when the scope of the using clause ends. It’s still a bit noisier

than it was, but it’s a lesser evil. Listing 14-5 shows the changes to the test method.

Chapter 14 Adding More Tests

318

Listing 14-5.  DiscussionsCanBeFilteredByCategory with automatic admin logout

[TestMethod]

public void DiscussionsCanBeFilteredByCategory()

{

 Category categoryA, categoryB;

 using (var adminConsole = MVCForum.OpenAdminConsole())

 {

 categoryA = adminConsole.CreateCategory();

 categoryB = adminConsole.CreateCategory();

 }

 var user = MVCForum.RegisterNewUserAndLogin();

 ...

}

After these changes, let’s run the test again. We’ll see that it fails on

OpenAdminConsole as expected. So now we need to implement it, but we

already saw that we can’t just perform an Extract Method refactoring on

these lines. So, let’s start by duplicating these lines from SanityTests.

AddCreateTopicPermissionToStandardMembers to MVCForumClient.OpenAdminConsole,

and later we’ll refactor to remove the duplication.

However, if we copy these lines as is, it doesn’t work either. GetAdminPassword

and MVCForum are members of SanityTests and not of MVCForumClient. Regarding

MVCForum, that’s a piece of cake to solve, as we just need to use the current instance

(this) instead. Regarding GetAdminPassword, we have to move this method ourselves.

If you’re using Resharper, when your cursor is on the GetAdminPassword method name,

press Ctrl+Shift+R to open the Refactor this context menu, and select Move Instance
Method. In the dialog select the MVCForum property, click Next twice (the second time

you approve to change the access modifier of the method from private to public,

so it remains accessible to AddCreateTopicPermissionToStandardMembers. After we

remove the duplication, we’ll set it back to private inside MVCForumClient), and voila!

The method has moved to MVCForumClient. If you don’t use Resharper, then you can

manually cut and paste the code and make the necessary changes; there are not that

much. Listing 14-6 shows OpenAdminConsole as it is now.

Chapter 14 Adding More Tests

319

Listing 14-6.  First implementation of MVCForumClient.OpenAdminConsole

public AdminConsole OpenAdminConsole()

{

 var adminPassword = GetAdminPassword();

 var adminUser = LoginAsAdmin(adminPassword);

 var adminConsole = adminUser.GoToAdminConsole();

 return adminConsole;

}

The next time we run the test we fail on AdminConsole.Dispose. This is where we

need to log out the administrator. However, AdminConsole doesn’t have a reference to

the logged-in administrator, so we need to add it in the constructor. Fortunately, the

constructor of AdminConsole is only called from the LoggedInAdmin class, so we can just

pass “this” as an argument. Listing 14-7 shows AdminConsole’s constructor and the

Dispose method.

Listing 14-7.  AdminConsole’s constructor and Dispose

public AdminConsole(

IWebDriver webDriver, LoggedInAdmin loggedInAdmin)

{

 _webDriver = webDriver;

 _loggedInAdmin = loggedInAdmin;

}

public void Dispose()

{

 _loggedInAdmin.Logout();

}

If we run again we’ll fail on the AdminConsole.CreateCategory method, which

means that OpenAdminConsole and its Dispose counterpart work. But now we have

duplicate code that we must eliminate! Fortunately, now it’s pretty easy and it also

simplifies AddCreateTopicPermissionToStandardMembers. Listing 14-8 shows

AddCreateTopicPermissionToStandardMembers after removing the duplication.

Chapter 14 Adding More Tests

320

Listing 14-8.  AddCreateTopicPermissionToStandardMembers after removing

the duplication

private void AddCreateTopicPermissionToStandardMembers()

{

 using (Logger.StartSection(

 "Adding 'Create Topic' permission to Standard members"))

 {

 using (var adminConsole = MVCForum.OpenAdminConsole())

 {

 var permissions = adminConsole.GetPermissionsFor(

 TestDefaults.StandardMembers);

 �permissions.AddToCategory(TestDefaults.ExampleCategory,

PermissionTypes.CreateTopics);

 }

 }

}

Now we can also change GetAdminPassword back to private, as we use it only from

within OpenAdminConsole, which is on the same class (MVCForumClient).

There’s one more thing that bothers me regarding OpenAdminConsole: it looks

very redundant that we look for the Read Me topic in order to get the administrator’s

password, each time we want to open the Admin console. If we did it once, we can

store the password for the next times. We can achieve this by promoting the local

adminPassword variable to a field and changing it from string to Lazy<string>,2

specifying GetAdminPassword as the value factory. Listing 14-9 shows the relevant

changes in MVCForumClient.

Listing 14-9.  Perform GetAdminPassword only once

private readonly Lazy<string> _adminPassword;

public MVCForumClient(TestDefaults testDefaults)

{

2�The Lazy<T> class in .Net is a generic class that can wrap any object that we want to initialize only
on its first use. In its constructor it gets a delegate for a factory method, which creates the object
on the first time it’s being used.

Chapter 14 Adding More Tests

321

 _adminPassword = new Lazy<string>(GetAdminPassword);

 ...

}

public AdminConsole OpenAdminConsole()

{

 var adminUser = LoginAsAdmin(_adminPassword.Value);

 var adminConsole = adminUser.GoToAdminConsole();

 return adminConsole;

}

�Reusing Existing Code

Now we can proceed to implement AdminConsole.CreateCategory using our usual top-

down process. Similar to when we implement the second test, also when we implement

a new method we have the three possible cases for the methods that it calls: we may

need to call a method that already exists; we may need to call a method that don’t yet

exist whatsoever, and we need to create it; or we have a similar method but not exactly

what we need, in which case we need to modify existing code to meet our new needs and

remove duplication. Listing 14-10 shows how AdminConsole.CreateCategory uses the

GetPermissionsFor and AddToCategory methods that we already implemented for the

previous test.

Listing 14-10.  AdminConsole.CreateCategory uses existing methods

public Category CreateCategory()

{

 var categoryName = Guid.NewGuid().ToString();

 var categoriesPage = OpenCategoriesPage();

 var category = categoriesPage.Create(categoryName);

 GetPermissionsFor(_testDefaults.StandardMembers)

 .AddToCategory(category, PermissionTypes.CreateTopics);

 return category;

}

Chapter 14 Adding More Tests

322

�Trading Off Duplications

When we reach the failure on CategoryView.Discussions and try to implement it, we

realize that it’s very similar to the LatestDiscussions class that we already have. It’s

true that in LatestDiscussions we only needed the top and bottom elements, while in

CategoryView we need to return the list of elements, but in essence they’re very similar.

Both of them represent lists of discussion headers, and in fact, the structure of their

contained DOM elements is nearly identical. So, let’s try to remove this duplication.

Listing 14-11 shows the LatestDiscussions class as it is now.

Listing 14-11.  Original LastestDiscussions class

public class LatestDiscussions

{

 private readonly IWebDriver _webDriver;

 public LatestDiscussions(IWebDriver webDriver)

 {

 _webDriver = webDriver;

 }

 public DiscussionHeader Top

 {

 get

 {

 var topicRows = GetAllTopicRows();

 return new DiscussionHeader(topicRows.First(), _webDriver);

 }

 }

 public DiscussionHeader Bottom

 {

 get

 {

 var topicRows = GetAllTopicRows();

 return new DiscussionHeader(topicRows.Last(), _webDriver);

 }

 }

Chapter 14 Adding More Tests

323

 private ReadOnlyCollection<IWebElement> GetAllTopicRows()

 {

 Activate();

 var topicRows = _webDriver.FindElements(By.ClassName("topicrow"));

 return topicRows;

 }

 private void Activate()

 {

 var latestMenuItem = _webDriver.FindElement(By.CssSelector(

 ".sub-nav-container .auto-latest"));

 latestMenuItem.Click();

 }

}

It looks like GetAllTopicRows is something that we can reuse for CategoryView.

Basically, we could move it to a common base class and make it protected to enable

this reuse. However, while this method is pretty close to what we need, it’s not exactly so.

There are two issues with the way it’s currently implemented:

	 1.	 It returns a list of IWebElement, and we need to wrap it with a

DiscussionHeader object. In fact, there’s already a duplication

between Top and Bottom in that regard, as they both instantiate

DiscussionHeader objects to wrap elements returned from

GetAllTopicRows

	 2.	 It calls Activate whenever it’s being called, to ensure that we’re

still in the Latest tab.

While we can resolve the first issue quite easily, the second one seems to block us

from sharing this method between the classes. The Activate method was created to

ensure that whenever we try to access any of the elements in LatestDiscussions, we

first ensure that this is the active view. However, this is not something that we need in

CategoryView, as opening a category is always a proactive action that must be explicitly

performed before accessing its discussions.

Chapter 14 Adding More Tests

324

One way to tackle this difference is to make Activate virtual and implement it

only in LatestDiscussions, while leaving it empty in CategoryView. However, this

doesn’t look right because it’s not that we never have to activate the category view,

but it just doesn’t seem to be the responsibility of the CategoryView class itself to do it

automatically every time.

So, what we can do is to take the call to Activate out of GetAllTopics and put in the

beginning of the Top and Bottom properties. This looks more logical, even though now

we duplicated the call GetAllTopics in both of these methods. However, now we can

extract GetAllTopics to a base class and reuse it between the LatestDiscussions and

the CategoryView classes, removing the duplication between these classes. So, we add a

bit of duplication in one place to remove a bigger duplication in another.

Looking at it a bit deeper and examining the usages of Top and Bottom, we can

conclude that it’s safe to ensure that we’re in the right tab only in the constructor of

LatestDiscussions instead of at each and every relevant member, so we can remove

this duplication eventually too.

Eventually, let’s rename GetAllTopicRows to GetAllDiscussionHeaders as it no

longer returns just the row elements, but rather full DiscussionHeader objects. Listing

14-12 shows the LatestDiscussions class after making the above changes, and before

extracting GetAllDiscussionHeaders to a common base class.

Listing 14-12.  LatestDiscussions.GetAllDiscussionHeaders ready to be extracted

to a common base class

public class LatestDiscussions

{

 private readonly IWebDriver _webDriver;

 public LatestDiscussions(IWebDriver webDriver)

 {

 _webDriver = webDriver;

 Activate();

 }

 public DiscussionHeader Top

 {

 get { return GetAllDiscussionHeaders().First(); }

 }

Chapter 14 Adding More Tests

325

 public DiscussionHeader Bottom

 {

 get { return GetAllDiscussionHeaders().Last(); }

 }

 private IReadOnlyCollection<DiscussionHeader> GetAllDiscussionHeaders()

 {

 var topicRows = _webDriver.FindElements(By.ClassName("topicrow"));

 return topicRows.Select(row =>

 new DiscussionHeader(row, _webDriver)).ToList();

 }

 private void Activate()

 {

 var latestMenuItem = _webDriver.FindElement(By.CssSelector(

 ".sub-nav-container .auto-latest"));

 latestMenuItem.Click();

 }

}

After this refactoring it’s important to run also the first test in order to make sure that

we didn’t break it with our changes.

Now we need to extract the GetAllDiscussionHeaders method to a common base

class. If you’re using Resharper you can do it automatically by standing on the method

name, pressing Ctrl+Shift+R, and choosinh Extract Superclass. If you don’t, you’ll

have to create the base class and move the method manually. We also need to move

the _webDriver member to the base class and make it protected so it can be accessed

both from the base class and from the derived classes. We’ll call the new base class

DiscussionsList and make CategoriesView derive from it. Listing 14-13 shows the

implementation of CategoriesView deriving from the new DiscussionsList class.

Listing 14-13.  CategoriesView implemented by deriving from DiscussionsList

public class CategoryView : DiscussionsList

{

 public CategoryView(IWebDriver webDriver)

Chapter 14 Adding More Tests

326

 : base(webDriver)

 {

 }

 public IReadOnlyCollection<DiscussionHeader> Discussions

 {

 get { return GetAllDiscussionHeaders(); }

 }

}

�Implementing Equals

The next failure we see looks a bit daunting at first: Test method
MVCForumAutomation.SanityTests.DiscussionsCanBeFilteredByCategory
threw exception: OpenQA.Selenium.StaleElementReferenceException:
stale element reference: element is not attached to the page document.

StaleElementReferenceException means that an element that we already found is no

longer available in the DOM. However, if we look at the test code and the stack-trace,

it becomes clear: we try to read the discussion title from a Discussion object, which

represents an open discussion page, while we’re currently viewing the list of discussions

in the categories. While we can see the title of the discussions from the list, the way to

extract this value from the DOM is different. Anyway, going back to the note from the

beginning of the chapter regarding CategoryView.Discussions, we intended to move

the Title property to a common base class and implement Equals on it. This should

solve our problem as the Title property should also be initialized in the constructor and

stored in memory instead of being read from the screen each time, which will prevent

the StaleElementReferenceException that we get.

Extracting the base class with the Title property and implementing the

Equals method also makes the test pass! Listing 14-14 shows the new base class

DiscussionIdentifier with its Equals implementation.

Listing 14-14.  DiscussionIdentifier.Equals

public class DiscussionIdentifier

{

 public DiscussionIdentifier(string title)

 {

Chapter 14 Adding More Tests

327

 Title = title;

 }

 public string Title { get; }

 public override bool Equals(object obj)

 {

 if (obj == null)

 return false;

 var other = obj as DiscussionIdentifier;

 return other != null && Equals(other);

 }

 protected bool Equals(DiscussionIdentifier other)

 {

 return string.Equals(Title, other.Title);

 }

 public override int GetHashCode()

 {

 return Title.GetHashCode();

 }

}

Now that this test passes, we should verify that the first test still passes too.

Fortunately, it does.

�Summary for Adding the Second Test
During the implementation of the second test, we’ve created more classes and methods

but also used some existing ones. The most challenging situations were when we

had a similar implementation in a different place and had to refactor to remove the

duplication. In a few of the cases, we ended up creating class hierarchies to achieve this.

As you can see, writing well-maintainable automation is not a simple programming task

that every beginner can easily do. On the contrary, it requires advanced programming

and design skills.

Chapter 14 Adding More Tests

328

�Making Additional Improvements
After we’ve completed the test, it’s a good time to improve things that were not directly

related to making the test pass.

�Creating More Comprehensible Identifiers
For example, one thing that annoyed me when I developed the last test, but wasn’t

important enough to stop and change, is that it was difficult to distinguish between

identifiers of different types of entities, because we use GUIDs for all of them. This

especially annoys me when reading the log or error messages. If we’ll just add a prefix

with the entity type to each GUID, it will make our life much easier.

As always, instead of duplicating this logic, let’s create a special class and method to

do that. Let’s name them UniqueIdetifier and For respectively, so when we use it, it

will read:

var discussionId = UniqueIdentifier.For("Discussion");

Now we only need to find all references of Guid.NewGuid and replace them with this

method call. Listing 14-15 shows the UniqueIdentifier class.

Listing 14-15.  UniqueIdentifier

public static class UniqueIdentifier

{

 public static string For(string entityType)

 {

 return $"{entityType}-{Guid.NewGuid()}";

 }

}

�Arrange the Code in Folders
If you look at the Solution Explorer, you’ll see that all of the classes that we’ve created

were created as one long list of 28 code files, and this is after implementing only 2 tests…

This makes finding and understanding the code base for newcomers a daunting task.

If you know the name of a class or even part of it, it’s not a big problem to find it (you

Chapter 14 Adding More Tests

329

can use the Search box in the Solution Explorer pane, or press Ctrl+T in Resharper to

quickly find any symbol). However, if you don’t know exactly what class to look for, or

just want to understand the high-level structure of the code, it’s very difficult to do that

when all the files are in a one long, flat list.

If we were trying to do this in advance, we wouldn’t know yet which kind of classes

we’ll need. But now we can look at the classes and try to search for common categories

of classes. We can then create a folder for each of these categories and move the relevant

classes to that folder. The two most trivial categories are Tests and PageObjects. Sure,

currently we have only one test class, but soon we’ll have many. I can also identify a

category for Entities, such as Category, Role and PermissionTypes, and a fourth one for

all of the generic infrastructure code, like the VisualLogger, SeleniumExtensions and

UniqueIdentifier. We’ll call this folder Infrastructure. Note that some classes don’t

fall nicely into one of these category folders, and that’s OK. Either put them in one of

them, or even leave them outside at the root. For example, FormPage is a base class for

any form-based Page Object, so it can either be under the PageObjects folder or under

the Infrastructure folder. TestDefaults is also related to Infrastructure, but it’s also very

specific to MVCForum, so it may be better suited in Entities. I’ll just leave that one out of

any of these folders and keep it directly on the root folder of the project.

�Extract a Base Class for Tests
One more improvement along those lines is to extract a common base class for all the

tests. In fact, right now it may not seem necessary, as we only have two test methods that

reside in a single test class. However, even at this stage we can identify that SanityTests

has two distinct responsibilities: first, it is a container for test methods; and second,

it contains a lot of infrastructure code that is related to MSTest, and mainly deal with

the initialization and cleanup of the tests. So that’s a good enough reason to extract

all of the infrastructure stuff in this class into its own MVCForumTestBase class, which

SanityTests will derive from. Obviously, when we’ll have more test classes, they should

all derive from MVCForumTestBase in order to avoid duplication. In order to maintain

a consistent folder structure, we’ll put the new class inside the Infrastructure folder.

In addition, we must decorate the base class with [TestClass] too in order for the

[AssemblyInitialize] and [TestInitialize] attributes to take effect. The Git tag

ExtractBaseClass contains this change.

Chapter 14 Adding More Tests

330

�Supporting Multiple Users and Browsers
Currently the tests run great on our machine, but in order to gain more value out of

them, we must allow other developers to run them too, before they check in their

changes. Allowing others to run the test may also reveal some hidden assumptions that

are true only for our machine. We need to fix those. Soon, we’ll also want to run the tests

in a CI or nightly build, which also runs the tests on another machine (see Chapter 15

for more details about CI). If we solve the problem for other users, adding the tests to the

build will be much easier.

In fact, we didn’t use any hard-coded paths, so it shouldn’t be too hard to support

other environment. However, when we try to run it on another’s developer’s machine

we see that his web server doesn’t use port 8080 as ours do, but rather 8090. Other

developers may use https instead of http, with a certificate issued to a specific domain

name, which prevents users from using localhost or an IP address as the hostname. We

can support all of these scenarios if we extract the entire URL to a configuration file.

�Tips for Using Test Configuration Files
As you see, configuration files are often necessary in order to allow different users of the

automation (developers) to run the tests, or in order to support different environments.

However, it’s important to keep these configuration files short and simple; otherwise

using them becomes its own mess. Here are some tips for using these configuration files:

•	 Because we want the tests to be consistent and repeatable as

possible, we want to include as little detail as we can that may be

different between environments. Therefore, avoid adding any values

in there except of those that you expect that people will really need

to change. Typically, a URL, path to an executable, etc., are the only

really important things. Sometimes a username and password for

the default user are also convenient if the system doesn’t start from

barebones on every run. However, having Ids of many entities that

different tests use is not a best use of a configuration file. Isolation

techniques that create the data are usually better and save the need

to configure many entities in an external file.

Chapter 14 Adding More Tests

331

•	 Keep in mind that these files are meant to be used by people, and

not only by the software. This means that it should be easy to use and

configure as possible, so whenever someone wants to run the tests on

a new machine or environment, he should be able to do it as easily

as possible. In addition to having as few as needed entries, creating

an XSD (XML Schema Definition) file that describe the structure

of the configuration file helps a lot in composing and editing these

files. Most modern IDEs (including Visual Studio and Eclipse)

provide auto-completion of elements in an XML file that has an XSD

associated with it. An XSD file can also be used to add annotations

and restrict the user from providing wrong values.

•	 Another thing that makes configuration easier is to have default

values for most keys. Having default values saves the effort of

thinking and deciding what to configure for anything that is not

obvious. However, as the developer who chooses the default values,

you’re responsible for coming up with default values that are actually

the correct ones for most of the users. Default values are especially

important if you want to introduce a new configuration key after

people already have existing configuration files. In this case, the

default value should usually cause the system to behave in the same

manner that it did before introducing the new key. Adding a key

without a default value in this situation forces everyone to go and add

the configuration key with the correct value.

•	 If you can’t find a proper default value and you believe that every user

should explicitly set this value, then in the code that reads this value,

you should first check if it exists or not, and if it doesn’t, provide a

clear message specifying exactly which key to add and how to choose

its value. This way, on the first time that users run the tests after

you’ve added the mandatory key you inform them exactly what they

need to do in order to proceed successfully. The same rule applies for

the first time you introduce the existence of the configuration file as

a whole: first, check if the file exists; and if it doesn’t, provide a clear

message describing how to create it. A good practice is to provide a

template or an example file and instruct the user how to modify it for

his needs.

Chapter 14 Adding More Tests

332

•	 Finally, as the content of the configuration files should be different

for every developer, it shouldn’t be put in source control. As

suggested above, you can put a template or an example file and clear

instructions on how to create it, so the first time a user runs the test

he’s instructed how to create the file. Note that for build environments,

you should make sure to copy the file with the correct value from a

predefined location as part of the build process, or somehow create it

in another manner, before running the tests. If you’re using Git, you

should add this file to the .gitignore file (most other source control

systems have similar ways to ignore changes in a file).

To simplify reading and parsing the XML from the configuration file, I used the

TestAutomationEssentails.Common library. For more information about the Test

Automation Essentials libraries, see Appendix B.

�Supporting Multiple Browsers
Occasionally websites behave somewhat different on different browsers, so it’s important

to run the tests on multiple browsers. Selenium allows us to run the same tests on

multiple browsers, with a very small change to our code base.

In the central build, usually we’ll want to run the tests on all of the browsers in

parallel. However, even before we have a build, we’ll benefit if we could manually

choose to run the tests on a particular browser, by specifying the browser type in the

configuration file. When we create the build, we’ll simply use the same capability and

invoke the tests several times, using different configuration files, once for each browser.

In order to tell the tests which browser to use, we’ll use the same configuration file

that we’ve created in the previous step. We’ll add a new key BrowserType, to this file

(and the corresponding XSD file) that tells which browser to use. Currently we’ll support

Chrome, which is also the default, Firefox and Edge. Listing 14-16 shows the change to

the constructor of MVCForumClient and the new CreateDriver method that instantiates

the correct implementation of IWebDriver according to the configuration file.

Chapter 14 Adding More Tests

333

Listing 14-16.  Instantiating the correct IWebDriver object according to

configuration

public MVCForumClient(TestDefaults testDefaults, TestEnvironment

environment)

{

 _adminPassword = new Lazy<string>(GetAdminPassword);

 _testDefaults = testDefaults;

 var parentDriver = CreateDriver(environment);

 var eventFiringDriver = new EventFiringWebDriver(parentDriver);

 VisualLogger.RegisterWebDriverEvents(eventFiringDriver);

 _webDriver = eventFiringDriver;

 _webDriver.Url = environment.URL;

}

private static IWebDriver CreateDriver(TestEnvironment environment)

{

 switch (environment.BrowserType)

 {

 case TestEnvironment.BrowserTypes.Edge:

 return new EdgeDriver();

 case TestEnvironment.BrowserTypes.Firefox:

 return new FirefoxDriver();

 case TestEnvironment.BrowserTypes.Chrome:

 return new ChromeDriver();

 default:

 �throw new NotSupportedException($"Browser {environment.

BrowserType} is not supported");

 }

}

Chapter 14 Adding More Tests

334

The first time you run a test after these changes, you’ll see an error message:

Assert.Fail failed. Configuration file TestEnvironment.xml not found. In order to
create one, copy the file TestEnvironment.Template.xml from the project folder
to TestEnvironment.xml (in the same folder), edit it according to the contained
instructions and rebuild the project. If you follow these instructions, the test should

pass. If you open TestEnvironment.xml in Visual Studio, you should have auto-

completion support that guides you for the valid keys and values that you can specify.

Don’t forget to rebuild the project or solution in order for these changes to take effect.

You can see all of the changes made to support the configuration file in the Git commit

tagged Listing 14-16 and its preceding one.

Note A n alternative solution for cross-browser testing is to use Selenium Grid
or one of the test cloud providers like BrowserStack and SouceLabs, which host
Selenium Grid on their servers and give you access to a wide range of browsers
and operating systems. From the point of view of the code, there’s not much
difference between the solution I showed above and Selenium Grid, but Selenium
Grid also gives you some means to manage the different environments, and the
cloud providers also give you a broader range of browsers and operating systems.
However, the details for using Selenium Grid are beyond the scope of this book.

�Additional Improvement Opportunities
After we have few working tests, we can experiment with additional improvements.

Constantly running the tests tells us whether the improvements that we just did didn’t

break anything. You don’t have to implement or even experiment with all of these

improvements all at once. You can create a backlog of improvement ideas and interleave

them with the development of additional tests. When prioritizing these tasks, especially

if you need to report to your manager about your progress, think how much time it will

save you in writing, debugging, maintaining, and diagnosing the tests, and how it can

affect the reliability of the tests. Don’t wait for your manager to tell you to make these

improvements – either convince why they’re important and how much time it will save,

or just do them along the way if they’re small enough.

Chapter 14 Adding More Tests

335

�Automatically Re-create the Database
Currently we assume that we’re running on a virgin database. As I mentioned before,

occasionally I delete and re-create the database in order to ensure this assumption.

While doing it only occasionally and manually doesn’t take too much time, if other

people use the tests and they’re not minded to this need, they might work against a

dirty database, which at some point may cause their tests to fail without a clear reason,

eventually hurting the reliability of the automation. In addition, when we integrate the

tests in a build process, we’ll have to do that anyway. There are few alternatives to tackle

this problem, as usual, each with its pro’s and con’s. I leave it to you to experiment and

consider the best approach. Here are a few alternatives that I can think of:

•	 Write code in [AssemblyInitialize] that automatically re-

creates the database. While this only take a couple of seconds,

when you’re working on a new test or debugging an existing one,

rapidly running the test again and again, this initialization time can

become disturbing. In addition, in order to re-create the database,

you must specify additional parameters, like the name of the

database, username, and password for the database, etc., in the

TestEnvironment.xml file. While these details exist in the web.config

file of the application itself, the test doesn’t have access to it directly,

so at the minimum, we need to specify the path to the web.config file

and parse the connection string from there.

•	 In order to save the time of re-creating the database on each run

while debugging, we can add a new Boolean key RecreateDatabase,

in the TestEnvironment.xml file that determines whether to re-create

the database in AssemblyInitialize or not.

•	 Because we normally want to re-create the database only once in

a while, adding this Boolean flag to TestEnvironment.xml is not

very convenient either, because after we’ll set it to true, we’d most

likely want to change it back to false before the next run, but we

need to remember to do that each time… Instead, we can extract

the functionality of re-creating the database to an external program,

batch file or script (e.g., PowerShell on Windows or Bash on Linux),

and run it whenever we want. In the central build we’ll run this script

before each run, of course. This script also has to take parameters

Chapter 14 Adding More Tests

336

or a configuration file containing the name and credentials for the

database, but you rarely have a reason to change it, and it can be kept

separated from the TestEnvironment.xml data.

�Cleanup
If we re-create the database at every run or every few runs, we probably don’t have a

reason to clean up every entity that we create, like category or discussion. However, in

other situations where re-creating the database isn’t feasible for whatever reason, you

might want to clean up these entities in order to avoid “littering” the database with a lot

or “junk” data created by the test automation. These cases also usually imply that part

of the data in the database was not created by the test automation. For example, legacy

systems often rely not only on the schema of the database but also on specific data, but

these dependencies are not documented well enough and no one really knows which

feature relies on which data. Therefore, re-creating only the schema is not enough but

it’s also infeasible to create an empty database and only add the minimum necessary

data, because we simply don’t know what it is. Therefore, in these cases we must use a

copy of a real database (typically the existing “test” environment), and it’s not feasible to

re-create it from scratch.

There are generally two approaches to clean the data that the automation creates,

and you can also combine the two if needed, as described in the following topics.

�Cleaning All Entities Created by Test Automation in a Batch
Process

You can create a batch file or program that cleans up all of the entities that the

automation creates and run it on a scheduled basis, or before the test run starts. In order

to do that, you must somehow distinguish between entities that the test automation

created to other data that it shouldn’t touch. If certain types of entities are created only

by the test automation, then this is not an issue, but if the database contains entities from

the same kind where some of them are created by the automation and some not, then we

must distinguish between them somehow to prevent this program from deleting entities

that it should not. This can usually be done by adding a known prefix or postfix to the Id

or name (e.g., title) of the entity.

Chapter 14 Adding More Tests

337

If the environment may be used by different automation users simultaneously

(including the build process), one important challenge that you should address if you

choose this approach, is not to delete entities of tests that are currently running. If you

don’t address this issue, tests may fail unexpectedly, and it will be very hard to diagnose

why. If the entities have a built-in field that contain the time of their creation, you can

use it to filter the entities that were created recently and may already be in use, e.g. in the

last 24 hours. If there’s no such creation time field, then you may add it to the Id or name,

though it may be difficult and inefficient to filter it out directly from SQL.

Yet another option, though a bit more complicated, is to create a separate table that

the test will write to whenever it creates an entity. This table will contain the Id of the

entity and its creation timestamp. Whenever the test creates an entity, it writes the Id and

type of the entity along with the timestamp to this table. The batch process can join this

table with the actual entity table and easily filter the records that may still be in use.

�Cleanup When the Test Finishes

The second option is to create a cleanup mechanism like the one mentioned in

Chapter 7 and described in Appendix B, which cleans every entity that the test creates

when the test finishes. In this case you don’t have to use any special Id or name to

distinguish between entities created by the automation and other entities, because each

cleanup action deletes only the one specific entity that was created, and of course that

you don’t have an issue with deleting entities that are in use, because you delete the

entities exactly when they’re no longer in use.

One drawback of this approach though is that when the test run stops abruptly, the

cleanup mechanism won’t kick in, and the entities that were created during the last test

won’t be cleaned. This is particularly relevant when you debug the tests in the IDE and

stop the debugger, because stopping the debugger is like killing the test process abruptly,

without running any cleanup code. For this reason, it may be worthwhile to combine the

two approaches.

Note  You might want to apply this mechanism as an isolation technique between
individual tests while applying a more robust isolation technique before each run,
like re-creating the entire database. This can be useful especially if you have many
tests and limited resources.

Chapter 14 Adding More Tests

338

�Improve Performance
Currently each of the tests that we wrote takes between 30–60 seconds each on my

machine. That’s not a whole lot for an end-to-end test, but still it’s not very fast.

Considering that we’re going to have hundreds of tests, this starts to become a significant

burden. From the test log we can see that a significant portion of the time is taken in

the TestInitialize method and in creating entities like users and categories. Doing

these operations from the UI does not add a lot of value if any to the tests. We can try to

perform these operations directly through the database, or through the DAL. Obviously,

doing so introduces another dependency for the test automation as we should

consider whether it is worth it or not, but it’s a viable option. Another thing to take into

consideration is whether the Admin UI changes more often than the DAL or database

schema. These considerations are described in greater detail in Chapter 6.

�Adding More Tests
Going forward, the more tests you add, more of the infrastructure should be in place. If

you pay attention to removing duplication, your code should be easy to maintain, and it

should be easy to adopt them almost to any feature or implementation change. Typically,

after completing the sanity suite (which is usually in the order of few dozen tests),

additional tests should be pretty similar to existing ones, with only minor variations. In

most cases you’ll still need to add a little bit of infrastructure code to support the new

cases, but it should be pretty trivial. However, from time to time you’ll need to cover an

entirely new feature that was not covered by the sanity suite before, and you may need to

create new test infrastructure code to support it.

�Data-Driven Tests (DDT)
While most new tests still require us to add a bit of infrastructure code, there are cases

where the tests differ only in values that are passed to some of the methods, or used as

the expected result in the Assert statement. In these cases, the entire test method logic is

a duplication, and the way to remove this duplication is to use a feature that most testing

frameworks support, which is called Data-Driven Tests (DDT). Different frameworks

implement this feature differently, but the idea is the same: you define the test method

once, and you provide the data for the test from an external table. This external table can

Chapter 14 Adding More Tests

339

be in the form of attributes (annotations in Java) above the test method, or an external

data source, like a CSV file, Excel file, a database table, etc.). When the test runs, the

framework treats it as a series of tests and runs the test method once for each row in the

table. This makes each row in the table a separate test case.

For example, suppose that when a new user registers to our SUT’s website, he needs

to choose his password. When he types the password, the system indicates whether the

password is valid or not, and if it is, it indicates its strength. So, in total, for any given

password the system indicates whether it is Invalid, Poor, Medium, or Good. In order to

test these rules and conditions, we can give a table that contains two columns: the given

password and the expected indication. Each row is a test case that verifies the indication

for a given password. The test method navigates to the registration form, types in the

password, and verifies that the indication is as expected. Listing 14-17 shows an example

for this test method using MSTest.

Listing 14-17.  Data-driven test example

[TestMethod]

[DataRow("", PasswordStrength.Invalid)]

[DataRow("abc", PasswordStrength.Invalid)]

[DataRow("abcdefg1", PasswordStrength.Poor)]

[DataRow("abc123@$#", PasswordStrength.Medium)]

[DataRow("$g62D*&a244dfle*)]", PasswordStrength.Good)]

public void PasswordValidation(string password,

PasswordStrength expectedInidication)

{

 var homePage = WebSite.NavigateToHomepage();

 var registrationPage = homePage.EnterRegistrationPage();

 registrationPage.Username = GenerateRandomUserName();

 registrationPage.Password = password;

 �Assert.AreEqual(expectedInidication, registrationPage.

PasswordStrength);

}

Chapter 14 Adding More Tests

340

�Anti-patterns in DDT

While DDT is very useful for removing duplication between similar tests, there are a few

common anti-patterns that people use DDT for:

•	 Some people abuse DDT in the excuse of allowing testers to add

more scenarios without writing code. They do that by adding many

parameters (columns) to the data and complicate the logic of the test

method to support all the possible combinations. The unfortunate

outcome of that attempt is poor maintainability of both the test

method (the code) and of the data, which inevitably contains a lot of

duplicate values in each column and multiple rows.

•	 Sometimes people use DDT, especially with an external data source

by using a large set of real-world data, in order to verify that there are

no regressions. While this sounds like a good idea, whenever the logic

is changed by design, you would probably need to update the entire

dataset. The most convenient and feasible way to update the entire

dataset is simply to take the new results and use them to be the new

expected results. But the moment you do that, you lose the safety net

that you were expecting from this test, as you don’t have a way to tell

whether the new results are correct or not. Speaking more generally,

the reasons this is an anti-pattern are that much of this “test cases”

(rows) actually verify the same thing, and that you can’t tell what the

“claim” is for each row.

•	 DDT often aims to exercise a single unit (e.g., class, method,

component, etc.) with different parameters. Doing that as a system

test or at any scope beyond the unit where this logic is implemented

makes the test slower, less reliable, harder to run, harder to maintain,

etc. In fact, the above example does exactly that and should better be

written as a unit test that directly calls the method that evaluates the

strength of the password.

Chapter 14 Adding More Tests

341

�Summary
After completing one test, we can add more and more tests in the same manner, though

we can now reuse relevant pieces of code that already exist. Some pieces we can use as

is, but others we have to refactor in order to reuse without adding more noisy details to

the existing tests.

In addition, after we have one or more tests, we can make additional improvement

to the infrastructure. We use the tests that we wrote in order to verify that our changes

work correctly. We simply run them in any of the conditions that we want to verify

and see if they pass correctly. One critical improvement is to support running the tests

simultaneously from different machines. This is necessary in order to allow developers

to run the tests after every change they make, which provides the most significant value

of the test automation.

Finally, don’t wait for anyone to tell you to improve the infrastructure of the test

automation. Take ownership and do whatever it takes to do the right thing, while

communicating the value that it provides.

Chapter 14 Adding More Tests

343
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5_15

CHAPTER 15

Continuous Integration
Now that we have at least one test, and we made it possible to run the tests from more

than one machine, it’s time to integrate the tests into an automatic build process,

preferably a continuous integration (CI) build. This build process can be extended to

also deploy the built version to the Test or Stage environments (continues delivery). The

process may even be configured to deploy directly to production to create a complete

continuous deployment pipeline. In this chapter, we’ll focus mainly on the continuous

integration part as this is where the automated tests usually run.

Note  Sometimes CI is considered to run only unit tests, while a continuous
delivery process deploys the new version on the Test environment, and then runs
the integration and system tests against it. However, continuously deploying every
build to the Test environment while testers may be performing manual tests is not
always desired. In addition, as discussed in Chapter 7, due to isolation concerns,
I advocate using different environments for the manual tests and the automatic
ones. If you do that, the distinction between CI and CD becomes somewhat
blurred. Therefore, I prefer to refer to any build process that runs automated tests
and provides fast feedback to developers as CI and use the term CD (continuous
delivery) to refer to the process whose purpose is to ensure that the same version
that was tested throughout the CI pipeline (and beyond) is deployed correctly
and safely to each environment, and eventually to production. In that sense, the
automated tests are mainly part of the CI rather the CD pipeline.

344

�Is It Really Necessary?
Having a source-control system combined with a build server ensures that everyone is

working on consistent versions of the source and prevents the infamous saying, “but it

works on my machine!” If developers only synchronize (check out) with versions whose

builds passed, then everything should work on everyone’s machines.

Most development organizations today don’t get started developing real production

code before having a build server in place. Setting up a build server these days is pretty

simple and cheap, so there’s no good reason not to do it early on. Only a few years ago

it wasn’t that easy, and also today there are cases where teams don’t yet have a build

server, or don’t have the knowledge and capacity to establish a proper build process in

the near future, possibly due to technical challenges that are specific to their project. In

these cases, if the team is small, it is possible to start using and getting value from the

test automation even before having a build process in place. It takes a bit of discipline

and cooperation, but if you make sure that the tests can run on different machines, then

every team member can still run the tests on his own machine before checking in the

code. This by itself allows you to harvest most of the value of the test automation, even

without having a build server and an automated build process.

However, people make mistakes, and when they’re under pressure, they tend to

cut corners and can avoid running the tests, even if they’re usually disciplined and

cooperative. This become more noticeable as the team grows beyond two or three

people and also as the length of running the entire test suite rises.

�Creating the Test Build Process
The exact technical details of how to create a test build process depend on the

technology of the build management system, be it Jenkins, TFS, TeamCity, etc., and

on the specific structure of the SUT and the tests and is beyond the scope of this book.

However, the idea, which will be explained soon is more or less the same. Thankfully,

these days most tools are pretty easy to use, and there are many resources online if you

need to learn how to use them in general or how to do something more specific.

All of these technologies allow us to define a process that is composed of concrete

actions. These actions typically run in sequence, but some of them can be parallelized as

necessary according to the process definition. The build process can also be distributed

among several dedicated machines (agents), also according to the process definition.

Chapter 15 Continuous Integration

345

A typical build process that is designed to run automated tests includes the following

steps:

	 1.	 Retrieve the most recent sources of the application and of the tests

from the source-control system.

	 2.	 Compile the application and the test executables.

	 3.	 If unit tests exist (that don’t need any special prerequisites), they

are typically run right after compiling the project.

	 4.	 Deploy the compiled application on one or more existing

environments. These environments can either be existing ones,

like a typical “Test” environment, or be a new environment that

is created automatically by the build process. Using containers

technology makes this option much more applicable.

	 5.	 Prepare the test environment for the test automation. This step

depends on the isolation strategy but can include things like

deleting old test data and/or creating new data, configuring the

application according to the test’s needs, setting up simulators,

etc.

	 6.	 (Optional) deploy the compiled test executables to one or more

test execution environments (agents) where they’ll run. In simple

cases, the tests can run directly from the build agent so there’s no

need to deploy them to another machine.

	 7.	 Run the tests against the deployed environments.

	 8.	 Gather the results and generate a report. Depending on the

integration between the testing framework technology and the

build management system, the report may be integrated and

displayed as part of the build outcome, or simply be added as a

file to the build outputs. In addition, if one or more tests failed, the

build is usually marked as failed. This report can also be sent by

email or other means to relevant people.

Chapter 15 Continuous Integration

346

�Scheduling the Test Build Process
If the entire process is in the realm of 15–30 minutes or less (depending on your team’s

willingness to wait for feedback), and given that the tests are stable, then it’s worthwhile

keeping it as one consolidated process and running it in a CI mode, which means that

the build is triggered automatically upon every check-in. However, if it takes longer or

tests are not stable, this can significantly hinder the productivity of the development

team. In these cases, it’s common to split the build process into two: the first one

performs only the first three steps as a CI build process; and another separate build

process runs all the rest, which includes the automated tests (excluding unit tests).

Below are descriptions of typical options for scheduling the second part. Later in this

chapter we’ll discuss techniques for stabilizing the test suite and shorten its duration, so

it will be more feasible to run everything in the CI process.

�Running the Tests on Demand

One approach for scheduling the second part of the process, which is more common

when the tests are less reliable and also when the test automation is considered to be

owned solely by the QA team, is to run the tests on demand. This “demand” is usually

before or in parallel with a manual testing cycle, typically before a release or milestone,

but may also be when a quick fix or a risky change needs to be tested more thoroughly.

The upside of this approach is that it takes less time for the automation developer to

investigate the failing tests, as he needs to do this only once in a while. However, its

downside is that due to the exact same reason, stabilizing the tests gets harder and

harder. As there can be many changes to the SUT between every two runs, many tests

can fail on legit application changes, which can make the investigation of a single run

longer and also be less effective.

�Nightly Builds

The next approach, which is probably the most common for system tests, is to run the

tests every night. In this case the build is scheduled to run automatically at a specific

hour every night. Compared to the previous approach, this approach requires that

someone, typically an automation developer, will investigate the results every morning,

fixing the tests as needed and reporting the relevant bugs to the developers.

Similar to the previous approach, in this approach too, the developers rarely look

at the test results themselves, but only at bugs that they report. Please refer back to

Chapter 15 Continuous Integration

347

the topic “Handling Bugs That Are Found by the Automation” in Chapter 5 for a more

complete discussion on the approaches for treating these bugs, and their corresponding

consequences. Note that with nightly builds, the developers get feedback about their

changes about one whole day after they checked in, which is enough to require a

significant context switch from new work that they already started. This is in contrast to

CI where the feedback comes after a few minutes.

�Right After the CI Build

The third approach is to run the tests, still as a separate build, but right after the CI build

(which does not run the system tests) has finished successfully. As mentioned before, the

idea is that failing tests won’t fail the “main” CI build.

In fact, this approach is pretty useless, because on one hand, an automation

developer probably won’t keep pace with investigating the results; and on the other

hand, developers would probably not bother to do that either, because as far as they’re

concerned, the CI build itself passed. It may only be useful as a transition state before

adding the tests into the main CI build. This can help people gain more confidence and

visibility while the automation developers and DevOps people, which maintain the build

processes, make sure that the process works fluently. Once this build is proven to be

stable, there’s no reason to keep it separate from the CI build.

�Running the Tests as Part of the CI

If we really want to take full advantage of the test automation and the fast feedback loop

it can provide, we need to run the tests as part of the CI build itself. From a technical

point of view, running the build on every check-in instead of nightly, is only a matter

of flipping a switch. However, from a process point of view, we can only do that if the

tests are highly reliable and fast enough, otherwise it will either block developers from

checking in valid changes or be completely ignored and useless. For this reason, the

process of adding the tests to the CI build is something that should be done thoughtfully.

�Creating the Automatic Deployment Process
Creating the first part of the CI build, which only compiles and runs unit tests, is

usually pretty easy, and most development teams do it without any problem. However,

especially if there are no unit tests, it makes a very small difference: it only ensures that

developers don’t check in code that doesn’t compile, but nothing more than that.

Chapter 15 Continuous Integration

348

If only that first part of the CI build is implemented, deploying the application is

probably a manual and error-prone process. Often teams in this situation create nightly

builds that only run the tests on an existing, manually deployed environment. The problem

in these cases is that it’s hard to tell the exact version of the source code that was compiled

and used in the deployment. This lack of traceability brings significant challenges when

investigating failing tests, most notably the challenge of reliability and trust.

Therefore, it’s critical to deploy the application automatically as part of the build

process and run the tests on the deployed version. For web applications or services,

deploying the application generally means at least copying the executables to an existing

environment. For desktop or installed server applications, it usually means running an

installation wizard on a VM after reverting it to a clean snapshot, or creating a new one.

For web applications and services, containers can be leveraged and used to deploy the

application on a new environment each time, instead of updating an existing one. This

also ensures better isolation for the tests.

�Updating the Database Schema

While ideally we should deploy a completely new and clean environment every time,

it’s not always feasible, as creating a new instance of the database each time may be

complicated and expensive, typically due to tight coupling between the application logic

and some data in the database. This is true especially for centralized applications like

web applications or internal business critical apps. However, even without creating a

new instance of the database, from time to time the schema of the database and even

static data has to be changed along with corresponding changes to the application code

in order for the application to work correctly.

While deploying a new version of the executables to a Test or Staging environments

and to the Production environment is basically the same, deploying database changes to

production is much more sensitive, as we can’t afford to lose any existing data, and we

also want the application to be able to use the existing data without any problems after

deploying the new version. But in order to ensure that we can do it safely to production,

we should first ensure that we can do it safely in the Test and Staging environments. This

means that we should build it to be an integral part of the normal deployment process

that we use for the Test environment too. As Martin Fowler says in his blog:1 if it hurts, do

it more often!

1�https://martinfowler.com/bliki/FrequencyReducesDifficulty.html

Chapter 15 Continuous Integration

https://martinfowler.com/bliki/FrequencyReducesDifficulty.html

349

Relational databases are especially challenging to update, as their structure is

much stricter. Because this challenge can sometimes be a pretty hard one, often it

is left as a manual operation. While not ideal, if the database schema changes much

more rarely than the code and you’re facing this challenge, don’t let it hold you from

building the rest of the process. Create the process as if the database schema never

changes, and update it manually at the rare occasions when it does. Later on, consider

automating this process too.

The exact solutions to this challenge are beyond the scope of this book. Refactoring

Databases: Evolutionary Database Design2 by Scott Ambler and Pramod Sadalage

is an excellent book that covers this topic and provides great techniques for making

changes to the database in small steps and a safe manner. But here are a couple high-

level approaches to keep the source code, database schema, and deployed application

synchronized:

	 1.	 Use SQL change scripts: for every change to the schema and/

or the data, create an SQL script that will make that change. Run

these scripts by order as part of the deployment process (first to

the test environment and later to production).

	 2.	 Use tools that compare databases and create change scripts

automatically: Some tools can compare the desired schema with

the existing one and create those change scripts automatically.

While it is easier, you have to be careful and review the scripts it

creates, as it doesn’t always know what you intend to do with the

data. If needed, you can make the appropriate changes manually.

�Make a New Build Process First

If you already have a CI build that is in regular use, but doesn’t run tests or run only

unit tests, don’t touch it just yet. Make all of your experiments with deployment and

running the tests in a new, separate build process. Only at the end, when tests are

running stably on the new build, either disable the original build and enable the new

one to replace it, or if it’s simpler, copy the necessary parts from the new build to the

existing one.

2�Scott J Ambler, Pramod J. Sadalage, Refactoring Databases: Evolutionary Database Design (Menlo
Park, CA: Addison-Wesley, 2006).

Chapter 15 Continuous Integration

350

When you believe that your process sets everything up to create the environment for

the tests, try to access the environment manually (e.g., using a browser, remote desktop,

or whatever means that is appropriate for the SUT). If you can’t access it as planned, go

back and fix whatever that needs to be fixed in the build process, and run it again until

you can. Most often, the problems are related to configuration files, file system paths,

permissions, environment variables, etc.

�Adding the Tests to the Build
After you managed to prepare the environment automatically through the build process

and you can use it manually, you have to add two build steps:

	 1.	 First you need a step to compile the test executables. This step

should come at the beginning of the build process, because if

the compilation step fails, there’s no point in proceeding. If you

already have a compilation step for the SUT, it may only be a

matter of adding a parameter to compile the tests. Sometimes you

don’t even need that if your test code is in the same folder in the

source-control repository.

	 2.	 Then you need a step to execute the tests against the deployed

environment.

Note  In case the source files of the test automation reside in a different source-
control repository or different location than those of the SUT, and therefore weren’t
retrieved already, then you should retrieve the sources of the test automation too
before compiling them.

Most popular build systems have dedicated plug-ins to run tests written in the most

popular testing frameworks. If you’re not sure whether your build system supports

your testing framework, or just don’t know how to integrate them – the web is your

friend. Simply search for the name of your build system and the name of your testing

framework, and you’ll most likely find all the details that you need. If you’re using a rare

combination of build system and testing framework that don’t have a special plug-in,

you should be able to run the tests from the command line. Any build system supports

executing an external command-line process. Incorporating the test results may be

Chapter 15 Continuous Integration

351

more challenging if there’s no dedicated support, but in most cases the results are

either written to the console and/or to a file that you can add to the output of the build.

Usually testing frameworks also provide exit code that indicates whether all the tests

passed successfully or there was a failure or other problem. While this is not enough

for understanding what exactly went wrong, it can be used by the build process to

determine how (or if) to proceed.

�Running the Tests on the Build Server Itself or Remotely

Depending on the type of application, and also on resource utilization, you may run the

tests either on the build server itself, or on another dedicated machine. For example, UI

automation tests for a desktop application must run on a machine on which the build

process installs the desktop application, which is typically not the same machine that

runs the build process itself. This means that the machine on which the application

is installed should also be configured to run the tests. Consult the build process

documentation (or the web…) on how to configure a remote machine to run tests as

part of the build process. The same idea applies for applications that require special

hardware or software. One common example for such case is that you need a Mac with

a connected iOS device to run tests on a physical iOS device. Selenium tests can either

run on the same build server, as it only opens a browser that connects to the application,

which is deployed somewhere else, or on another build machine.

�Experiment with One Test First

If you have many tests and running all of them takes a significant time so far (compared

to the overall build process time), first configure the build to run only one test, until

you see that it works as expected and stably. While you’re testing and stabilizing that

build, you’ll probably have to run it many times, and the longer the build itself takes,

the longer it will take you to stabilize. This test must be one that you already verified to

be stable on different machines and environments. As with deploying the application,

when integrating the tests, you may also need to deal with issues such as configuration

files, file system paths, permissions, environment variables, etc. While you try to make

this work, instead of running the entire build process, which includes redeploying

the application anew, you can try to run the tests from the command line of the build

machine (e.g., using Remote Desktop or Windows, or ssh on Linux). In most cases

you’ll be able to see the exact command that invokes the tests in the logs of the build

process. Copy this command to the command line of the build agent, and you may see

Chapter 15 Continuous Integration

352

more clearly what the problem is. You can try to run the same command on your local

computer and see the differences. Note though that there may differences in paths and/

or environment variables, both between the actual build execution and when running

it from the command line of the build server, and also between running it on the build

server and locally on your machine. While bridging these differences can be dull work,

usually it involves no special technical challenge. Printing some log messages can help

you with that.

�Completing the Build Process

Congratulations! You have one test that passes the complete build process cycle! This is

really a significant milestone as it proves that the entire process works end to end. Now

you have to add the rest of the tests.

If you know that the entire test suite is stable (or there’s simply not that many more

tests), you may add all of them all at once. Otherwise, especially if you intend to use the build

process as a CI build, add only the ones that you know to be stable, and leave the rest to a

nightly build or handle their issues locally first before adding them to the build. If the build

is not intended to be used as a CI build, you may add all of the tests at once whatsoever, but

make sure to start a stabilization process right away, to prevent the failing tests to “rot.”

�Changing the Development Processes and Culture
Creating a CI process (or even a CI/CD pipeline) as described so far is a technical task. But

on its own it doesn’t give much value. Its real value comes from incorporating it into the

development process and culture. As mentioned in the beginning of the chapter, the process

and culture can be changed to take advantage of automated tests even before the automated

CI process is ready. While having it makes the change a lot easier, changing business

processes and all the more so, changing business culture, is still the real challenge.

�Aiming for the “Holy Grail”
If you refer back to the topic “Getting the Most Out of Test Automation” in Chapter 2,

you’ll recall that the Holy Grail we aim for, is to have a fully automated pipeline, and

business processes that prevent bugs from creeping in. In my opinion, this is what we

should be aiming for, though it can be a very long journey. It could be that your goal

is not there yet and is much more modest, but anyway, every goal that gets reached is

Chapter 15 Continuous Integration

353

only the baseline for the next goal, so it doesn’t really matter if your goal is different. The

important thing is that you’d have an idea of what are the benefits you can gain from test

automation and then aim for that.

�What It Takes to Change the Culture
Introducing new business processes is always a big challenge, as naturally most people

are reluctant to changes. A cultural change is even much more challenging, as it requires

to change people’s presumptions, values, and beliefs. However, attempting to change

business processes without causing people to believe that it will help them, will likely

cause more friction and resistance than good and is doomed to fail.

Changing the culture can sound like a huge thing that’s beyond the ability of most

mere mortals. But in fact, a culture is like the center of gravity of all the personalities

of the people in the group. The smaller the group is, the bigger the influence each

individual has on the overall culture. Also, a culture, like people personalities, has

countless aspects, and each individual has stronger affect and influence on some aspects

and weaker ones on other aspects. People that have a significant effect even on one

particular aspect, are often considered “leaders” in that area. Most people that have a

weaker effect on a subject usually just follow a leader. But different people can be leaders

in different aspects or areas and followers in other aspects.

For test automation to be used successfully, it usually takes only one leader. And

there’s no excuse that this leader won’t be you! You don’t have to be a manager or a very

charismatic person. If you took the time to read this book, it already a sign that you care

a lot about getting the most out of test automation, most probably way beyond anybody

else in your team, including your manager. You must surely care to learn and broaden

your knowledge on this topic much more than them. Continue this way and it won’t take

long until you become the expert at least among your teammates. Once you’re the “go

to” person in the subject of test automation, your influence will increase and more and

more people will listen to you. It probably won’t happen overnight, and it might take a

pretty long time until you’re able to reach the Holy Grail that you’re aiming for.

Even more realistically, you’ll probably never really reach that Holy Grail. That

may sound very disappointing, but the point is to keep striving for it, and gradually

influencing other people to get closer and closer to it. Most probably the Holy Grail itself

will change and evolve over time, so even if at some point you’ll reach your original Holy

Grail, by the time you’ll reach it you’ll be aiming for something new. So be prepared for a

long ride but a very satisfactory one!

Chapter 15 Continuous Integration

354

Convincing and influencing people can be done in many ways, which mostly

depend on your strengths and choices. Some people are better convincing while

talking to people informally. Others do it better by writing documents or gathering

a formal meeting and giving a presentation. But probably the most effective way

to convince people is by showing and giving them a concrete value or solving a

problem they have. Just like in the Agile methodology (and philosophy), giving value

in small chunks is the way to go. This way you see what’s working and what’s not. You

can and should listen to people and understand what bothers them the most and try

to solve the next problem accordingly. The key to success here is to communicate

the value of each change with your manager and colleagues and also the course of

action that you plan to take. In most cases, you should coordinate anything that you

plan to do with your manager beforehand. If you show him the potential value and

how small the cost is, he probably won’t object to the change. However, there are

cases where your manager may not see the immediate value, though others will.

For example, a QA manager may not see the immediate value that developers can

gain from using the test automation. In these cases, you may slowly and quietly try

to show the value to few key people who can see it (e.g., developers) and have them

come to their manager to ask for your help. In turn, their manager will come to your

manager and ask him to allow you to help them. If necessary, their manager can

even involve their common higher manager to convince your manager to cooperate.

Once your manager will get positive feedback about you and your work from his

peers and managers, he’ll see the value too.

Lastly, another very important mean for changing a culture is information.

Information has a very strong influence on most people’s beliefs, as it shows them an

objective truth (or at least one aspect of it). Lack of information leads to speculations,

biased assumptions, and even personal conflicts, while more information leads to

transparency and cooperation. Information can be in the form of data, but also of

knowledge. In the sense of data, this is where the CI process and tools, as well as the

source-control system and other development life-cycle tools help make a difference.

They provide transparency and data regarding the state of a version, bug density,

help rationalize the root cause of problems, etc. However, beware that every metric

can have severe side effects if it is used too widely or aggressively to measure people’s

performance. People will naturally strive to maximize the metric they’re being measured

upon but may neglect many other important aspects of their work along the way, which

can sometimes be completely disastrous.

Chapter 15 Continuous Integration

355

In the sense of knowledge, code reviews, courses, books, blogs, and even informal

conversations are what helps make the difference. Gaining and transferring the

knowledge regarding test automation in your team is your main tool to make a

difference!

�Identifying the Starting Point
Back to the ground, making a change to the processes and culture depends on the

current situation and the most bothersome problem that you try to solve. Following are a

few common situations that you may found yourself in, and the possible course you can

take to change it. As pointed out earlier, don’t try to fix everything at once. Tackle each

issue one at a time, in a way that provides the most value in the smallest effort.

�Not Having an Automated Build

As mentioned in the beginning of the chapter, a team can take good advantage of the test

automation without an automatic build. However, in the situation described there, the

assumption was that the team is small, collaborative, and understands how to get the

most value from test automation. But if you’re a single automation developer that works

as part of a QA team far away from the developers, then chances are that the potential

value the team gets from test automation is far from being realized.

If you don’t get buy-in for creating an automated build that runs the tests (even

though with today tools there’s really no good excuse for that), you can simply create

a scheduled task on your machine (e.g., using Windows Task Scheduler) to run all of

the tests each night. With a few lines of script, you can make the results be sent to the

relevant people automatically by mail. But even without that, sending the results yourself

every morning is a good starting point. As I’ll describe in the next topic, you should also

elaborate on the results in your own words.

�Expectations Gap

Very often, test automation developers either report to a nontechnical manager,

or a manager who’s just too busy to get into all of the details and intricacies of the

test automation project. These managers often have a hard time seeing the bigger

picture and the status of the project, which causes frustration and gaps between their

expectations and the actual state of the project.

Chapter 15 Continuous Integration

356

One of the main reasons to this is that the results of the test automation and

consequently the value that they provide are pretty opaque. The reports tell how

many and which tests passed or failed, but the failure message is too technical for

these managers to understand. Even if you have a visual log and everything that helps

you investigate the results quickly, it’s still not something that your manager would

probably look into for each failure. Assuming you’re given the time to investigate and

fix the tests as needed, often your manager doesn’t get into the technical details and

has a hard time understanding what exactly you’re spending your time on. (If you’re

not given the time to investigate and fix, refer to the topic “Having Many Unstable

Tests” later on.) Because there can be other reasons for failures that are not bugs,

managers sometimes only see a high cost of developing and maintaining the tests, but

very little value in the sense of bugs that are found by the automation. They simply

don’t have the means to estimate whether it’s reasonable or not, and where the root

causes lie in order to try and improve it.

Assuming that you’re already investigating the results every morning, continue to do

that, but also write a report in your own words, and send it to your manager, and possibly

also to relevant peers. The report can either be in the form of a table, or a more flexible,

textual format – whatever you feel suits and best conveys the information.

For each failed test, investigate and try to come to a conclusion whether the

failure is due to (a) a bug in the application, (b) a change in the product, (c) an

environmental issue, or (d) an unexpected condition in the test (i.e., a bug in the

test). For each of these cases, describe the problem in one or few sentences, which

are not too technical but are also clear enough and not vague. In addition, describe

what you have done and/or think that should be done in order to solve or mitigate

that problem. For known bugs, clearly distinguish between them and new bugs. If

you can’t completely identify the root cause of a failure and determine whether it’s

a bug or a different problem, describe what you have investigated so far and your

interim conclusions. In addition, describe what diagnostics you have added or think

should be added (if you need more time or help from other people for that), in order

to help you investigate the problem next time. Again, write only the relevant details

in a concise but understandable way.

When you investigate failures, one of the common first steps is to try and reproduce

the problem on your local machine both by running the same automated tests, and by

trying to reproduce it manually. The results of these investigations are often interesting

to mention directly, as it tells a lot about the nature of the problem.

Chapter 15 Continuous Integration

357

Finally, group identical issues together in the report, so that the focus is on the

problems and their solutions, and not on the tests themselves. This is also your
opportunity to highlight issues that needs to be fixed, including more general and
long-term ones that impede your work, and push toward additional process and
cultural improvements. This report will be much more valuable to your manager than

any automatic report he may have asked for, and I’m sure he’ll appreciate it.

�Having Many Unstable Tests

Let’s make it clear: unstable tests are useless! With unstable tests you can’t determine

whether the tested scenario works correctly or not, and whether a failure is caused by

a bug or some other reason. This only adds noise to the process and wastes time rather

than helping anyone in any way. That’s why tests must be stable at all times. For the sake

of our discussion, unstable tests are not necessarily flickering tests. Even tests that pass

on one machine and fail on another, or simply tests that fail consistently, but no one

had the time to investigate the root cause and fix it, should be considered unstable, even

though they’re not flickering.

While this is not desired, too often I saw situations where the automated test

suites became unstable, having many unexplained failing tests. These situations

usually come about from ignorance, mainly of managers who don’t understand the

maintenance demands of test automation and are more concerned about covering

more scenarios rather than stabilizing existing ones (probably because they committed

to a certain deadline to their own manager). If you report to such a manager, try to

communicate the uselessness and cost associated with these unstable tests to your

manager, and if needed also to his manager too. Assert that stabilizing tests must be a

constant and high priority effort.

As always, information, both in the form of data and knowledge are your best

tools. In the sense of knowledge, communicating the cost and value of unstable tests,

as well as the differences between manual and automated tests in that regard, is the

important thing. In the sense of data, the test run results from the build is the basic

source of information. However, if there are many failures, chances are that you’re not

given enough time to thoroughly investigate and fix the issues, and as time goes by, the

problem only gets worse. Because it gets worse, you’ll need even more time to investigate

and stabilize the tests and chances are your manager will want to postpone it until after

some arbitrary milestone (that will probably be postponed too).

Chapter 15 Continuous Integration

358

While you should coordinate with your manager the solution I’m about to suggest,

it is so cost-effective, that it’s pretty unlikely that your manager will object it. Instead of

trying to stabilize all the tests at once, start from the tests that are already pretty stable.

Even if most of the tests are unstable, almost always there are a few tests that pass

almost regularly. If there are not, then start with the test you’re writing now, and as soon

as it works, consider it as stable. Make a list of these relatively stable tests, even if the

list is very short. Each morning, instead of investigating the failures in all of the tests,

only focus on the tests in that list. Because the list contains the tests that are relatively

stable, they should usually pass, so the time you invest in investigation and fixing is

very minimal. However, when some of them fail nonetheless, investigate these failures

thoroughly and fix them to make them stable again. Report to your manager every day

about the status of the tests in that list, just like I described in the previous topic. Slowly,

when all of the tests in the list pass, add to the list one or a few more tests that you notice

to be pretty stable lately too, or select one test that fails regularly with the same message,

and try to investigate and fix it. It is likely that some of your fixes, either of tests in the

list of stable tests, or fixes to tests that used to fail regularly, would have fixed other tests

too. Apply the ideas mentioned in Chapter 13 for investigating and stabilizing the tests.

Gradually expand the list of stable tests until all of the tests are stable.

Even if eventually there are a few “stubborn” tests that are difficult to stabilize, they

remain the exception rather than the norm, and they are also clearly distinguished

from the rest, so it’s easy to notice regressions. For these few problematic tests, you may

postpone treating them to a less stressed period, or even completely delete them if you

realize that their intended value is not so clear and questionable in the first place.

Notice how the gradual approach helps you avoid having to invest too much time

investigating many failures, while still making constant progress toward a stable test

suite. This gradual approach is a much easier sell to your manager, as the time needed

for investigation and fixing becomes much less intimidating, and the value he’ll see from

it is much more immediate. Communicating the progress of the stabilization progress to

your manager ensures that he’s aware of this progress and sees your contribution to the

success of the test automation journey.

�Inheriting a Legacy Test Suite

In companies, over time, people come and go, and test automation developers are no

exception. When the test automation changes hands, especially if it was developed,

maintained, or even led by a single person, it’s common that the new automation

Chapter 15 Continuous Integration

359

developer that inherits the test automation has a hard time maintaining it. Because the

new automation developer is less familiar with the code of the test automation, he may

not be aware of decisions and reasons that led to the way the automation is written,

and simply because no two developers have a common coding style and skills, he’ll feel

uncomfortable maintaining the tests and will probably even consider the automation

that he inherited like a piece of crap that must be replaced (BTW, this is true almost

for all developers inheriting someone else’s code, not only automation developers).

Moreover, while many of these reasons are subjective, it’s often true that during the time

the automation was developed and maintained, the SUT has changed, technologies

have changed, and the knowledge of the automation developer has changed. Even with

best intents, there are probably traces of the old technologies and implicit knowledge

spread all over the code, making it harder to maintain. It could also be that the tests are

objectively unstable or difficult to maintain due to bad coding skills or lack of isolation.

Before throwing everything away and starting from scratch, answer the following

questions:

	 1.	 Is it possible to understand the intent of each test, or at least

of some of them? If at least some of the test names, steps or

descriptions are understandable (maybe even by domain experts

or relevant developers), or the relationships between the test

methods and manually written test case are maintained, then

chances are that you can still stabilize and get value out of them.

	 2.	 Can you point at some isolation or architectural problem that

hinders the reliability of the tests? If so, is it possible to change

the infrastructure code to fix it, or will most of the tests should be

changed in order to fix it?

If the tests are unreliable due to an isolation or architectural issues that you can

clearly point to, but are hard to fix, then chances are that there’s probably no reason to

keep maintaining these tests. However, even if the tests are unreliable, but it’s possible

to understand the intent of the tests, then you can apply the technique of gradually

stabilizing the tests, which I described in the previous section.

If you can’t point at an inherit problem with the isolation or architecture, but the

intent of the tests is not understandable, you can continue to run the tests, but when a

test fails, only invest a reasonable time in the investigation. If you can easily fix it, then

go for it, and if you can also change the name or description of the test method to better

explain its intent, the better. If you think that the test is too long and verifies too many

Chapter 15 Continuous Integration

360

things, then you can also break it down to shorter tests that together cover the same

functionality of the original one. However, failing tests that are both hard to maintain and

also their intention is unclear, are really worthless. If the developers of the feature and

the product owner (PO) also think like you, then you can probably delete these tests.

Now the question is what to do about new tests. The first impulse of most

developers is to write a new infrastructure that will be easier to maintain. The

thing is you have to balance between the cost of using and maintaining code which

you feel less comfortable with, and the cost of developing all of the infrastructure

anew. In many cases, you can reuse only the parts of the infrastructure that make

more sense to you and write other parts anew. Especially if you take the approach

described in Chapters 10 to 12, and the previous automation wasn’t written using

this approach, chances are that you’ll want to write some of the infrastructure

yourself. But still, if there is usable code in the old infrastructure that you can reuse,

then go ahead and use it.

Eventually, if you do decide to write a new automation system from scratch, consider

running the new tests side by side with the old ones, at least until a proper coverage and

trust was gained in the new system.

�Chasing After the Application Developers

The last problem and improvement technique I want to mention has many different

symptoms:

	 1.	 Automation developers feel that their work isn’t getting enough

management attention,

	 2.	 Bugs whose priority are not high enough to be fixed immediately,

but that affect the test automation are postponed, making the

automation less reliable.

	 3.	 Necessary changes to the SUT to make it more testable are not

given enough priority.

	 4.	 The automation often fails on legit changes of the SUT, because

the automation developer hasn’t been prepared in advance for

the changes. The automation developer feels that he has to chase

after the application developers in order to understand what has

changed and why.

Chapter 15 Continuous Integration

361

All of these symptoms are typically an outcome of the belief that the automation

is part of the QA team’s responsibility, and that application developers shouldn’t be

concerned too much about it. This belief is usually bound also to another belief that

the main communication channel between the QA and development teams is the bug

tracking system. Almost always in these situations the tests are being run only on nightly

builds and not in a CI.

This is where changing the culture takes the most significant place. In order to

solve these problems, the responsibility for running and maintaining the tests should

eventually be moved to the hands of the developers, or at least they should be closely

involved with the test automation efforts. In fact, it should be a team responsibility, but

the developers should definitely be actively involved. The challenge of course is how to

make this transition…

The interesting thing I found over and over again, is that while most developers don’t

like to test their changes and new features thoroughly, or write tests for their code, they

are willing to be able to run the automated tests themselves. If you give them automated

tests that have already been written, and which they can run in a click of button,

they’ll feel much more confident that their changes didn’t cause any significant harm.

Eventually, developers don’t like it when bugs are found in their code, as it creates more

work for them (and also beats their ego…).

The trick to make it work is to talk to developers, preferably unofficially at first, and

tell them what your automation does and how it works. Then, suggest to show them

how they can run one, few or all tests (depending on the overall time it takes). Chances

are that at least a few of them will get excited by the possibility. In my experience, these

are usually the more senior developers, technical leads, and even team leads, though it

greatly depends on the people themselves. When you find a developer who’s willing to

run the tests, on his own will at first, offer your help in any problem he might encounter,

and be very willing to actually provide this help. Try to do this “trick” with as many

developers you can, focusing on these senior, tech leads and hand-on team leads. Most

probably every now and then a developer will encounter a failure and call you to help

him. When it happens, show him how you investigate the failure and find the root cause

together. If the cause is a bug that the developer just introduced, that would be a great

win in many respects. Let him fix the bug, and then make sure that the test passes. If

the cause is a legit change in the SUT, show him how you fix the test (assuming the fix is

quick, which in most cases it should if you kept the rule of avoiding duplication). Run the

test again to make sure that the fix was successful. This way you gradually transfer the

Chapter 15 Continuous Integration

362

knowledge and responsibility to the developer, while the developer sees the value that

the fast feedback that he gets from the automation gives him.

After some period of doing the above practice and a number of cooperating

developers, when a test fails in the nightly build, try to identify the developer who

checked in the code that failed the test, by looking at the build details and the source-

control history of the last day. Note that the fact that the test failed in the nightly build

indicates that this developer hasn’t run that test before he checked in his changes.

Assuming that this developer already knows how to run the tests, and that this test is one

of the tests that you’d expect him to run, come to that developer directly, and show him

that if he’d run the tests before checking in his changes, then he would have caught that

bug before he checked in the code. You can take note each time this happens, and after

some time, communicate with the team (as well as with your manager) the time that

would have been saved if the tests were run by the developers before check-in. Needless

to say, you should do it politely and practically, and suggest it as a process improvement

and not blame the developers for not doing it. The point is to use the data to provide

transparency, and to show the value in changing the process.

Eventually, someone will already suggest to add the tests (or a subset of them) to the

CI build, in order to prevent such regressions from reoccurring. Obviously, you shouldn’t

only wait for that someone to suggest it but be preaching for it all along. By preaching,

you prepare the ground for that moment of consensus in which you can make it work

without major objections.

Note A ccording to my experience and observations, most developers don’t like to
develop tests for their code, mostly due to lack of experience and knowledge of
how to do it right. After they gain some experience and get better at it, it becomes
obvious to them that they should do it as an inseparable part of their work.
Naturally, some people get it more quickly while others struggle more. However,
at the beginning, many developers perceive writing automated tests as having
a very low technical challenge, which makes them feel that it’s not the best use
of their busy time. As a result, they think that this should be done by someone
else, namely a tester. The common excuse that they’re too busy writing code
and don’t have time for also writing tests, is perceived as true by most people.
But the truth is that the same amount of work is divided by the same amount of

Chapter 15 Continuous Integration

363

people, be it application developers or automation developers, whether everyone
does both types of tasks, or each only does his own thing. Needless to say that
the bigger the communication overhead is, the more time consuming it is, and the
time spent on finding, investigating and fixing bugs is a huge cost that is saved
when each change of code is immediately covered by relevant automated tests. In
the next chapter we’ll cover increasing the collaboration between the application
developers and automation developers even further.

�Decreasing the Test Run Duration
Before you expect developers to run the tests and/or adding the test to the CI build,

you should ensure that the entire test run don’t take too long; otherwise you’ll never

get their cooperation to use it regularly. Some people say that the entire test run

should take no more than few minutes or even seconds, but most developers accept

waiting up to 30 minutes to get a valuable feedback on their changes. There are two

main reasons for that:

	 1.	 Even though the developer can continue to work on other things

while the build runs as a result of his check-in, only when it

finishes is when he truly has the peace of mind to work on the

new stuff. This is because if the build fails, then he needs to do a

context switch back to fix it.

	 2.	 Depending on the size of the team and rate of check-ins, the

longer the build takes, the more check-ins are likely to be

merged into a single build, and the more likely it is to fail due to

integration conflicts.

This is the main reason why unit tests are more commonly used in CI builds than

full system tests. However, in many cases the option to run tests that are more than

pure unit tests is often rejected prematurely. There are a few techniques that can

help keep the CI speed under control even while enjoying the safety of the broader

automated tests.

Chapter 15 Continuous Integration

364

�Improve Isolation
While the main purpose of isolation (which is described in greater detail in Chapter

7) is to improve the reliability of the tests, it can also affect their performance. A

shared database with a lot of data makes the application run slower. The amount of

simultaneous connected users can lead to locking, which slows that system down, and

the amount of data can affect the performance of queries that the application performs

as part of the tests. However, if each test environment has its own small database, then

you remove the bottleneck and also make the tests more reliable. In addition, if you put

the database and the application server together on the same machine, then you also

eliminate the overhead of communicating over the network, which is likely to affect the

performance of the tests significantly too.

Besides isolating the database, you should isolate the test environment from any

external dependencies (e.g., external web services, external hardware, etc.). These

external dependencies should either be simulated (as described in Chapter 6) or be

cloned and used separately for each environment. By doing that you remove the latency

and the load on these services, which consequently also improve the performance.

�Perform Prerequisites Through API
Creating the prerequisite data of tests through the UI usually takes long; may make the tests

less reliable, harder to maintain, and don’t serve the purpose of the tests. Consider doing it

directly through API or even directly to the database. APIs are designed to be used by code,

while UI isn’t. See Chapter 6 for the trade-offs between the different test scopes.

�Parallelization and Virtualization
If you already optimized for isolation, then running multiple tests in parallel is

straightforward. The level of isolation and the exact architecture dictates whether you

need different threads, different process, different machines, or completely different

environments to run the tests safely in parallel. Containers, whether used locally or on the

cloud, especially with an orchestration tool like Kubernetes, greatly help creating multiple

environments that can be used to run tests in parallel well isolated from each other.

While containers and VMs are excellent for this purpose, if your application doesn’t lend

itself well to this technology, or even if you don’t have the knowledge and time to learn

how to use it, don’t let it hold you back from finding other ways. I used to create isolated

environments for running tests in parallel long before I first heard about containers…

Chapter 15 Continuous Integration

365

Once you solve the parallelization problems, you can scale out more and more by

adding more hardware. While it may be somewhat more costly in terms of hardware or

cloud resources, in terms of reducing the overall test time, parallelization gives an order

or magnitude of improvement!

�Run Only Sanity Tests in CI
While improving isolation and parallelizing brings the most value out of the

performance improvements, it’s not always the easiest thing to do. If you already have

many tests that run on a nightly build and take hours, and the isolation requirements

are too complex, it may seem that using these tests in a CI build is impractical. Well, it’s

true that it’s impractical to run the entire test suite, but a small subset that don’t take

more than 30 minutes can still make a big difference. The obvious (and mostly correct)

choice for this subset is the sanity suite. The sanity suite should cover most features,

but just a bit of each of them, and not all permutations and edge cases. While it doesn’t

provide the most value out of the entire test suite, at least it catches major breaks early.

These major breaks are bugs that prevent the application from starting or to perform

one of the important use cases of the system. Such failures can waste a lot of time for

testers and other developers that are trying to get the latest changes. Moreover, adding

the sanity suite to the CI helps start the cultural shift toward a greater involvement of the

developers in the quality and test automation aspects.

Actually, the highest direct benefit of this approach is for you: the developers will

have to help you keep the tests stable and adopt the tests to their changes before they

even break the build. Having a stable “always green” sanity suite running in the CI build

greatly helps stabilizing and make the full nightly build green too. If a bug is caught at the

nightly build, the developers will be much more cooperative in fixing this too, because

they already familiar with the test automation in general.

�Breaking the CI Pipeline to Stages
Instead of waiting for the nightly build to run all the non-sanity tests, it’s also possible

to create a chain of builds, each triggering the next one on successful completion. Some

stages can trigger multiple other builds to run in parallel also. For example, the first build

only compiles and run unit tests (which are very fast and don’t require deployment). If

it completes successfully, it triggers the next build that deploys the application and runs

the sanity suite. If that one completes successfully, then it triggers yet another build that

Chapter 15 Continuous Integration

366

execute the rest of the tests which may take, let’s say, three hours. In addition, it can

also trigger two more builds in parallel on separate environments: one that executes

long-running load tests and one which tests installations and upgrades. If one of the

first builds fail, it doesn’t trigger the next ones. Finally, there should be an indication

for the overall status of the version and a notification if the whole process completed

successfully or not. Obviously, this entire process can be easily extended to create a

Continuous Deployment pipeline.

In fact, because the overall duration of the entire process is much longer than the

average gap between check-ins, if the pipeline is based on the idea that each build

triggers the next one, the result will be a queue overflow. Instead, in order to avoid this,

the common practice is that each of these builds run continuously in a loop, taking

the results of the latest successful build that precedes it. If there’s no new preceding

successful build, then the current build just waits until there is.

The idea of creating a chain of builds has the advantage of providing the fastest

feedback possible about every suite of tests. The drawback, however, is that it makes the

work process somewhat more complicated, as developers should look at the results of

all of these builds in order to determine whether they can check in their changes or not.

Let alone that failures in one of the longer builds may also take longer to fix, which can

block all developers if the process is that strict. Common sense and practices that fits the

specific organization should be applied in these cases to determine who can check- n

what whenever one of these builds fail.

�Write Mostly Integration and Unit Tests
As described in Chapter 6, the decision about the scope of the tests (e.g., end-to-end,

integration, or unit tests), has many considerations, performance being one of them. The

general rule is that the smaller the test scope is, the faster the tests are. Therefore, after

taking all considerations into account, it may be a good idea to run only a few end-to-

end tests (e.g., the sanity suite), and leave all the rest as integration tests. Obviously, the

smaller that the test scope gets, they do a lesser job of testing the integration between

the components, so you have to find the right balance between that risk, the speed of the

tests, their reliability, and their maintainability. But all in all, putting most of the weight

on integration tests is often a good balance, which makes it possible to run thousands of

tests in a few minutes. Again, Chapter 6 has much more details about the considerations

and options in that regard.

Chapter 15 Continuous Integration

367

�Run Tests Only for Relevant Components
A good architecture is one in which different components (or micro-services for

that matter) have different and distinct responsibilities. If these responsibilities also

correlate to different business features, then it makes sense to write most of the tests

as component (or service) tests, and only use end-to-end tests to test a few cross-

feature related functionalities. Unlike typical integration tests, where the scope is

narrowed by skipping layers, these component tests may exercise all of the layers

(though not necessarily), but test and rely only on a single component that contains

all of the functionality of the feature at hand. These tests can use simulators or

mocks to mimic the interaction with other components, but these should be pretty

rare, as the integration between the components should typically be tested in a

higher scope.

If the architecture is indeed that modular and the modularity is aligned with

the business features, then it makes sense that most tests only need to exercise one

component, and only the fewer tests that need to verify cross-feature scenarios need

the bigger scopes. In this case it also makes sense to have different builds for each

component, each running only the tests that are relevant to that component. Because

the components are naturally mostly independent from each other, then the risk that

a change in one component will cause a problem in another is pretty low. This way if a

developer makes changes to one component, then he doesn’t have to care about all of

the tests, but rather only the tests of that component. Accordingly, the builds of each

component are also faster. The few tests for the cross-feature scenarios can then be run

at a separate build in the CI pipeline.

Today, with the growing trend toward a micro-service and modular architecture, this

becomes more and more prevalent. However, the fact that a system is composed from

multiple services does not guarantee that the services are indeed independent from

the perspective of business features. If most user stories (which should give real value

to a customer or end user) involve changing more than one service, then it’s probably

an indication that the services are not independent enough for that purpose. While this

sounds pretty logical and straightforward, in reality it’s hard to say that the architecture

of most systems actually allows most user stories to give value by changing only one

component or service.

Chapter 15 Continuous Integration

368

�Optimizing Test Performance
Even though optimizing the speed of the tests themselves (and their underlying

infrastructure) may sound like the first thing to consider, I wouldn’t recommend you

to put too much focus on that before considering the above approaches. In fact, in

the context of most software development nowadays, it’s considered a bad practice to

optimize every bit of performance while writing the code, because it often complicates

the development and testing, and eventually comes to the expense of maintainability.

Back in 1974, Donald Knuth, one of the founding fathers of computer sciences, referred

to this phenomenon as “premature optimization” and even stated that “premature

optimization is the root of all evil.”3 The recommended approach is to write the code in

the most readable and maintainable way first, and only after measuring and profiling

the performance, identify the bottlenecks and optimize them. Without profiling and

measurements, you’ll very likely be wasting a lot of time optimizing negligible things.

The same rule applies to test automation as well.

If after profiling the application you found a “guilty” piece of code that needs to be

optimized, you may need to compromise the structure and maintainability of the code in

order to fix it. However, in other cases, a reasoned decision can be made to compromise

isolation in order to improve the performance of all the tests. For example, if every test

opens the application anew and logs in, you may find that if you keep the application open

and the user logged in, and only returning to the main screen at the beginning of every

test, saves a lot of time. While you increase the risk for instability, you can consider some

remedies to overcome this risk. For example, in case of a test failure, or tests that perform

log out, reopen or log in to the application nevertheless. Reiterating the first point, consider

these options only as a last resort and after measuring the time it will save.

�Covering a Broader Matrix
One of the biggest benefits of test automation is that it can be run on different

environments. For example, making sure that the application works correctly on various

operating systems and versions, various browsers, different types of databases, different

hardware, etc. These days, mobile applications often need to be tested on multiple

devices, where services like PerfectoMobile, Xamarin Test Cloud, SauceLabs, and others

play an important role.

3�http://pplab.snu.ac.kr/courses/adv_pl05/papers/p261-knuth.pdf

Chapter 15 Continuous Integration

http://pplab.snu.ac.kr/courses/adv_pl05/papers/p261-knuth.pdf

369

A pure CI pipeline (without CD) typically runs the tests only on one configuration

that acts as a reference. As most of the code in the application shouldn’t be affected

by the type of OS, browser, etc., this is sufficient to give fast but valuable feedback to

developers whether they checked in something that broke an existing behavior. Having

one reference configuration makes it a lot easier to reproduce, debug, and analyze most

regressions caught by the CI process.

The rest of the matrix can be run after the CI has completed, as it will probably take

longer and/or be more expensive in terms of resources. It can even be running nightly or

even weekly only, if the rate of defects it detects is pretty low and the release cycle allows

it (e.g., in life-saving applications). Because most of the regressions and problems are

detected in the CI process, and the tests are stabilized using it, then problems occurring

at the broad matrix run are most probably limited to problems that are actually related

to the specific configuration where the test failed. This makes the investigation much

easier, and the overall process much easier to stabilize.

A mistake that many teams do is to run the entire matrix nightly without having a

reference configuration on which the tests are stabilized and defects are handled more

rigorously and more often. This makes it very hard to distinguish between unstable tests

and configuration-specific problems.

�Summary
In order for a test automation suite to be effective, we need to run it regularly and

as often as possible. Technically, creating the build process is pretty straightforward

using the most popular build tools, but the real challenge is how to use it properly. The

main reason that this is more challenging is that it requires many people to adopt new

processes and even a new mindset.

The common belief that such changes can happen only if it comes from

management is false. While it can be easier for a manager to lead these changes, it

doesn’t have to. Everyone with the right passion and just enough knowledge can lead

this change. The trick is to improve one thing at a time, demonstrating immediate value,

and to be persistent striving toward your goals.

In order to get the cooperation of developers, the main value that they need to get

from this is fast feedback for their changes. In order to be able to provide them with that

value, the tests should not take too long to run. A bunch of techniques and ideas were

provided in the chapter to help you optimize the length of the test run to fit well in the CI

process.

Chapter 15 Continuous Integration

371
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5_16

CHAPTER 16

Acceptance Test Driven
Development
Having a good CI/CD pipeline helps a lot in providing fast feedback to the development

team about regressions. This is an important part of being agile but is far from enough.

For a team to be agile, it needs to be able to respond to customer feedback quickly and

do so constantly for the entire life span of the product. In this chapter we’ll discuss the

Acceptance Test Driven Development (ATDD) methodology (which was introduced

briefly in Chapter 5) and see how it helps the team to be much more agile.

Note  Kanban (one of the Agile methodologies) advocates the use of a metric
called Lead Time. This metric measures the time it takes for a user story to
advance from inception to realization (use in production). Minimizing this time is
arguably the most desired outcome of agility, as it shortens the feedback cycle with
the customers, but it should also be kept low over time. While this metric is mainly
used in Kanban, shortening the feedback loop is an important goal of any Agile
methodology. ATDD helps achieve that.

�Overview on ATDD
As described in Chapter 5, ATDD, which is also known (arguably with some nuances) as

Behavior Driven Development (BDD) and Specification by Example (SbE) is a methodology

that complements Agile. In this methodology, for each user story, the team defines

together with the product owner the acceptance criteria in a form of few representing

scenarios. These scenarios are used both as documentation and as the basis of automated

tests. These tests can be implemented even before implementing the application code

to support that user story. When the application passes the newly developed acceptance

372

tests, as well as all existing tests, the user story can be considered done. Later in the chapter

we’ll describe the process much more deeply, but for now, that’s the gist of it.

�Being More Agile
Before discussing what makes a team agile, let’s clarify the term “Technical Debt” as it’s a

key concept to understand for this discussion.

�Technical Debt
The term Technical Debt, coined by Ward Cunningham in a short report he wrote in

1992,1 is a metaphor that describes the idea that taking shortcuts today, incur more work,

in the context of programming and software development, in the future. The further we

postpone fixing these shortcuts, the more work it becomes, similar to the interest that a

monetary debt gains.

Technical debt has no strict and universally accepted definition. In the paper

that Ward Cunningham wrote, he talks about the technical debt in the context of the

maintainability of the code. However, you can think of it more broadly like anything that

we postpone and takes more time and effort later. In that sense, writing code that is not

testable is also a technical debt, as it will take us more time to test, or even cost us more if

not tested properly and bugs are found in production.

But probably the most prevalent form of technical debt is bugs. The further we

postpone finding and fixing them, the more it costs to fix them.

�What Makes a Team Agile?
As mentioned above, for a team to be agile and minimize lead time, it needs to be able to

respond to customers’ and other stakeholders’ feedback quickly and do so continuously for

the entire life span of the product. For this to happen, a couple of conditions have to be met:

	 1.	 The team must avoid technical debt as much as possible. A team

that works on a new project may feel as they’re really agile because

they release features and respond to feedback quickly, but this

feeling is false if at the same time they incur a lot of technical debt.

1�http://c2.com/doc/oopsla92.html

Chapter 16 Acceptance Test Driven Development

http://c2.com/doc/oopsla92.html

373

As time goes by, this technical debt slows them down and they can

no longer continue to be really agile anymore (even if they’re keep

following all of the “Agile” methodology ceremonies).

	 2.	 The entire team, and I mean here the entire team in the sense that

encompasses everyone that brings value to the company through

the developed product, starting from the salespeople, through the

product managers, developers, testers, operations and up to the

customer support, needs to be aligned and work collaboratively

toward the same business goals, which may change frequently.

Of course, that there’s much more to agility than ATDD, and in some cases a team

can be very agile and meet the above conditions without implementing ATDD, but as

you’ll see throughout this chapter, implementing ATDD correctly usually makes a big

difference in that sense.

“DOING” AGILE VS. BEING AGILE

The term “Agile” (with the capital ‘A’), is the family of methodologies that was influenced by

the Agile Manifesto and its 12 principles, with Scrum being the most popular one, followed

by Kanban and eXtreme Programming (XP). Any methodology (not just Agile) provides a

set of guidelines for what and how things should be done. In recent years, the adoption of

the Agile methodologies was very rapid, and today most companies adopt at least some of

the guidelines of these methodologies. Unfortunately, often companies in our industry that

implement these methodologies, even those who try to implement one completely “by the

book,”, focus too much on the guidelines and practices and often miss the ideas and values

behind them. It’s often said that these companies are doing Agile but are not themselves agile.

�Avoiding Technical Debt
In order for a team to stay agile for a very long time, they should avoid having technical

debt. This means that every new feature and every change should be deployed to

production and be treated equally to a major version, including all of the important

aspects of the release life cycle, leaving no open ends like testing, security, monitoring,

etc. for later.

Chapter 16 Acceptance Test Driven Development

374

Of course, it’s impossible to develop every new complex feature in its entirety in a very

short cycle. The thing is that almost all complex features can be decomposed into many

smaller features, and the trick is to spit the complex features into these smaller ones in a way

that each of them still gives some value to the end user. For example, a report generator can

be a feature of a business application. However, instead of implementing the entire report

generator as one piece, it can be split to multiple user stories, each supporting only one type

of report or a more advanced way of customizing an existing one. As explained in Chapter

2, this is the concept of a user story. There are many techniques to split big features into

small user stories and is also something that requires a different mindset (and sometimes

creativity) than the common practice of writing a complete specification for an entire feature

as a whole. (You can think of it as dividing the development and the design “vertically” rather

than “horizontally.”) If you want to learn more about these techniques, I recommend the

book Fifty Quick Ideas to Improve Your User Stories2 by Gojko Adzic and David Evans (2014).

While decomposing features may look also like just another form of technical debt

(because we may release before we’ve completed the entire feature), as long as the

smaller user stories each have a value on their own, it’s not a technical debt because

whatever was developed remains completely useful at least to some users, even if the

plans have changed and the originally planned “big” feature will never be completed.

For our purposes, the main implications of avoiding technical debt are:

	 1.	 The code and the design must be kept clean continuously. We

can’t plan on having the time to clean it later.

	 2.	 There’s very little room for misunderstandings and

miscommunications about the requirement. Such

misunderstandings mean that work should be redone. Note that a

feature developed according to requirements may still turn out to

have a bad impact on the user, which may still require rework (in

the form of another user story), but at least we gained invaluable

knowledge and understanding about our actual customer needs.

	 3.	 New features should be delivered when they’re already tested and

as bug-free as possible.

These implications pose nontrivial challenges, but we’ll soon see how ATDD helps

us deal with them better.

2�Gojko Adzic and David Evans, Fifty Quick Ideas to Improve Your User Stories (Neuri Consulting
LLP, 2014).

Chapter 16 Acceptance Test Driven Development

375

�The Process
Here’s the high-level description of the process, followed by a detailed explanation of

each step:

	 1.	 The team, including the product owner, create and elaborate the

user story collaboratively, defining one or few scenarios as the

acceptance criteria for the user story.

	 2.	 Write a failing test for each scenario defined in the acceptance criteria.

	 3.	 Write the application code to make the new tests pass, and make

sure that all of the existing tests still pass too.

	 4.	 Deliver the application and get feedback.

�Create and Elaborate the User Story
Many teams treat User Stories as mini features, which the product owner should specify in

a detailed manner, so the developers know exactly what to develop. However, I subscribe

to another school of thought, which claims that user stories should only convey a need,

while the solutions themselves and their elaborated specifications should be done

collaboratively by the (inclusive) development team. In the first chapter of Fifty Quick

Ideas to Improve Your User Stories, authors Gojko Adzic and David Evans put it this way:

“To make things crystal clear, if a team passively receives documents in a
hand-over, […], that’s not really working with user stories. Organizations
with such a process won’t get the full benefits of iterative delivery,”

and in the second chapter they state that

“[…] user stories are discussion reminders that have served their purpose
after a conversation.”3

It’s a team responsibility, including and primarily of the product owner, to identify

the customer needs that once met, will bring the highest value to those customers (and

therefore will be willing to pay for respectively). This is also how the user stories should

be prioritized. These needs are typically formalized as user stories in the format:

As a [role]
In order to [solve a problem, fulfill a need or provide more value]
I want [the proposed solution]

3�Adzic and Evans, Fifty Quick Ideas to Improve Your User Stories.

Chapter 16 Acceptance Test Driven Development

376

Or some variation of it. Gojko and David even go further to suggest that whoever

formalizes the user story (which is usually the product owner), should only specify the

“who” and the “why” (the first two sentences), because the proposed solution should

be the result of a team discussion. At most, the product owner should come up with a

suggested solution, but the final decision should be the team’s.

�Coming Up with a Solution

When the need is understood and prioritized, the team should have a meeting

in which they suggest solutions collaboratively. It’s important to note that at this

context, the problem is how to satisfy the customer’s need, and not how to implement

an already specified behavior. Accordingly, the solution should only specify
the behavior that affects the user, and not the technical and implementation
details. The team should seek the most effective solution to the problem, which

can be delivered quickly, but at the same time provides the highest possible value

to the customer (by solving the main problem or need). Further improvements to

the solution can be split to other user stories that solve smaller problems that the

chosen solution didn’t address. However, these user stories should be weighted and

prioritized against all other user stories.

It is recommended that the participants in this conversation include all the

relevant people who are going to work on this user story, but if not feasible, at least

the product owner, one developer who’s going to actually implement the solution,

and either a tester or an automation developer. Each of these roles typically brings a

different angle to the table:

•	 The product owner, as the representative of the business or customer,

has the best understanding about the need of the customer and can

ultimately decide which solution brings the most value.

•	 The developer usually knows best what solution is the most feasible

and how costly a solution may be. He can think of the possible

designs for each proposed solution and estimate (even if very

roughly) how complicated they are, and how will they affect the

maintainability of the code going forward. Note that while this is not

a design meeting, different solutions can have implications on the

design that can have different effects on the delivery times as well as

on the long-term maintainability.

Chapter 16 Acceptance Test Driven Development

377

•	 The tester or test automation developer should think how the

suggested solutions can be tested and how long it will take to test them.

In addition, testers tend to have a broader view of the product and can

often foresee potential problems and conflicts with other features that

both the developers and the product owner may be blind to.

�Defining the Acceptance Criteria

Once the team reaches consensus about the chosen solution, they continue to

collaboratively define its acceptance criteria. This acceptance criteria can serve a few

purposes:

	 1.	 As the guidance to the developers about what they should

develop. In other words, it serves as a lightweight specification for

the user story.

	 2.	 As acceptance tests for the developed feature or changes (this is

where the name “Acceptance Test Driven Development” comes

from). Most of these acceptance tests can then be automated

(more on that later).

	 3.	 As a scenario for a demo that can be shown to customers and

stakeholders, and of course to the product owner.

	 4.	 As a documentation for the intended behavior of the developed

feature.

Defining the acceptance criteria collaboratively as examples of usage scenarios and

their expected outcomes have the following advantages:

	 1.	 It helps envision the solution from the eyes of the user, and how it

solves the problem at hand. Contrast this with how people often

talk about traditional specifications, where they tend to be caught

up on details and miss the big picture.

	 2.	 It ensures that everyone has a shared understanding of the solution.

When people talk, they happen to use generic and ambiguous

terms, making all sorts of assumptions that they believe to be

common to all participants, but are often not. However, when

talking about concrete examples and concrete expected outcomes,

these assumptions and ambiguities are often exposed.

Chapter 16 Acceptance Test Driven Development

378

	 3.	 It helps to flush out issues with the suggested solution. Because

free text specifications, and even more so freestyle conversations,

are prone to ambiguities and presumptions, then even if everyone

understands the same thing, it could be that they all miss an

important detail or issue with the suggested solution. Here again,

writing down concrete examples helps flushing out these issues.

	 4.	 It bounds the scope of the solution. Every idea can be interpreted

and implemented in many ways, from the most minimal and even

“quick and dirty” ones, to the most comprehensive and even overly

complicated. Flushing the ambiguities and issues help draw the

bounds of the minimal viable solution. For example, if a user story

talks about the need for a text editor, one may imagine something

as simple as like Notepad, while another may envision a full-blown

word processor, like Word. The usage scenario implies what’s the

minimal solution that addresses the immediate need. Further

improvements should be extracted to additional user stories.

Some user stories are not about adding new functionality, but rather about changing

or removing existing ones. In such cases, we have to identify the existing scenarios (tests)

that need to be changed, and modify them accordingly, and also remove the unneeded

ones. These modified scenarios become the acceptance criteria of the user story, and we

should treat them as new tests for the rest of the process.

�Writing the Automated Tests
At this point, the acceptance tests can be implemented as automatic tests. While writing

the acceptance criteria as usage examples helped flush most of the ambiguities and

vagueness, it can still have some of those, because they’re still written in a natural

language after all. Implementing the tests in code leaves much less room for ambiguity,

as all technical details affecting the test, and accordingly the user, should be defined in

order for the test to run. The process of implementing the code of the test can reveal any

last hidden issues and ambiguities.

If the team uses different types of automated tests (e.g., system, integration, and unit

tests), then they should first decide what’s the most appropriate type for each test. Once

it’s been decided, the appropriate test or tests should be developed. If different people

write the automated tests and the application code, then in fact the automated tests can

Chapter 16 Acceptance Test Driven Development

379

be written in parallel to the application code and don’t need to come before. However,

they have to work closely together to flush out the details that will allow the test to

interact correctly with the SUT. Both developers should aim to agree about these details

as soon as possible to avoid unnecessary rework down the line.

If the same developer writes both the application code and the tests, or a pair (or

more) of developers writes both the tests and the code together (in a pair-programming

or mob-programming fashion; see sidebar), then it’s highly recommended that the

tests will be written first. This ensures that the SUT will be written in a way that ensures

testability and reveal any last-minute ambiguities.

If there’s more than one test, then the team can decide whether all of the tests

should be developed prior to start working on the application code, or if for each test

the necessary application code should be written before proceeding to write the next

test. Each of these approaches has their pros and cons, but in general the answer to

this question is highly contextual. Writing all of the tests first help flush all potential

issues, though writing the code can also reveal some limitations that will force to make

adjustments to the tests. In most cases the recommended way is to implement the code

for the simplest test and gradually proceed to the more complex ones. This gives us faster

feedback that we’re on track, and helps the developers evolve their design as needed. It

also prevents developers from developing unnecessary code and keep it simple.

It’s also possible to develop the skeleton for all of the tests first (as we did in Chapter

11), then develop the code to make the first one pass, then proceed to the next one until

all of the tests pass.

PAIR-PROGRAMMING AND MOB-PROGRAMMING

One of the more controversial concepts of the eXtreme-Programming methodology, is that all

(or most) code, both of the application and of the tests, is written in pairs. One programmer is

“driving” the keyboard and mouse, and the other one looks over his shoulder and reviews his

work at real time, tracing errors, and suggests better ways to write the code. These two roles

should be switched from time to time. Also, it’s recommended that the partners of different

pairs will switch from time to time to foster better team collaboration and knowledge transfer.

The benefits of this approach are faster feedback and better and faster knowledge transfer

and alignment across the team. In fact, if a team attempts to have a mandatory code review

process, then they should seriously consider encouraging pair-programming. Most teams that I

met which attempt to enforce a code review process (without encouraging pair-programming)

either end up not really enforcing it, do it perfunctory, or really spending more time than it

Chapter 16 Acceptance Test Driven Development

380

would take for the reviewer and reviewee to sit together and implement the whole thing

together. Let alone that the knowledge transfer between them is much more valuable this way.

In addition, many people report that when they exercise pair-programming they’re much more

focused than working alone.

The main objection to this approach, of course, is that every feature costs almost double

to develop. In fact, most experts agree that pair-programming should be exercised when

appropriate and not as a mandatory practice. It’s most valuable when the skills of the two

partners complement each other, but when a task is too trivial or when the partners don’t get

along, then it’s probably not a good idea. Also, some people feel more comfortable doing pair-

programming, while some don’t.

An even more controversial idea takes this concept one step further and suggests that an

entire team should work collaboratively on all programming (and other) tasks. The idea is

pretty much the same as in pair-programming, with the advantage that all participants are

synchronized and participate in all decisions. As in pair-programming, there’s always one

“driver” (which switches routinely), and the others review and make suggestions at real

time. Unlike in pair-programming though, the reviewers can also use their laptops to look for

alternative solutions or to search for existing pieces of code that can be reused, making the

collaboration more effective. Samuel Fare wrote a very nice blog post about it.4

�Implementing Tests for a Nonexisting Feature

When some people first hear about the idea of writing the tests before the application

code, they’re often left puzzled, not understanding how it’s even possible to test

something that doesn’t exist. Well, obviously the test should fail if it’s supposed to verify

functionality that wasn’t implemented yet. In the case of writing unit tests first (which is

the classic TDD), the code wouldn’t even compile. In the case of UI automation or API

testing, there shouldn’t be any problem to write the test code to compile, but it will fail

at runtime. But I think that what really puzzles those people is the question: How can

I write the test if I don’t have all of the technical details that I need for it? The answer

is that, instead of deciding about these details when you (or someone else) writes the

application code and adapts the test to match these details, you do the opposite: you

decide (together with the application developer) about these details when you write the

test code, and then he writes the application code to match these details.

4�https://medium.com/comparethemarket/i-did-mob-programming-every-day-for-5-months-
heres-what-i-learnt-b586fb8b67c

Chapter 16 Acceptance Test Driven Development

https://medium.com/comparethemarket/i-did-mob-programming-every-day-for-5-months-heres-what-i-learnt-b586fb8b67c
https://medium.com/comparethemarket/i-did-mob-programming-every-day-for-5-months-heres-what-i-learnt-b586fb8b67c

381

As a simple example, suppose we’re about to develop a user story for adding a button

to calculate the square root of a number, in an online calculator application. One may

think that we can’t write the test before the code because need to know the id of the new

button, as well as the result of the calculation. Regarding the id, the answer is that you

can decide what the id should be when you write the test, and coordinate it with the

application developer, so he’d use the same id when he creates the button. Regarding the

expected result, first, it should be defined as part of the acceptance criteria. For example,

you should know in advance that the square root of 16 should be 4. But the question gets a

little more complicated when we want to test the result of the square root of 2, because now

we need to discuss precision and maybe rounding issues. If these questions are important

from a business perspective and were not addressed in the acceptance criteria, then we

must involve the product owner and possibly the rest of the team to decide what should

be the exact expected result and write both the test and the application code to follow the

decision. In case it doesn’t have an important business impact, we’re likely use whatever

the standard library of the programming frameworks provides (e.g., the .Net framework’s

Math.Sqrt function). In this case it’s indeed hard to know the exact result in advance (in

this simple example it is, but if the calculation is a bit more complex, then we may not).

So, either we write the test to allow for a marginal precision error, or we write the test with

an arbitrary precision, which will fail even after the application code is implemented

correctly, and then we’ll fix the test to match the exact number after you verified that it’s

indeed correct. This approach shouldn’t be the default, but as long as it’s done sensibly

(only the exact value is fixed in this case), then it’s still OK. Note that in this example, the

approach of tolerating a marginal error is preferred, because the test would be more robust

and less prone to failures due to minor implementation details.

Another challenge we might have is when the scenario has more than one step that

can’t work until the application code is complete. The problem is that we can’t verify the

correctness of the test until the application is ready, because the test will always fail on

the first incomplete step, and we won’t be able to exercise the rest of the steps that we’ve

implemented in the test code. There are a few ways to overcome this challenge:

	 1.	 Work closely with the application developer and plan the work

such that the first step should work first, and only then continue to

the next one, and so forth, until the whole test passes.

	 2.	 Work closely with the application developer, but instead of planning

to implement the first step completely, only implement a stub that

will allow the test to continue and fail on the final assertion.

Chapter 16 Acceptance Test Driven Development

382

	 3.	 Use the debugger to jump over methods that are not working yet,

or comment out these lines temporarily, in order to get to the later

steps of the test.

Sometimes the first approach flows very naturally, but on others it’s not feasible

or can complicate the development of the feature too much. The third approach is

something that the automation developer can do for the sake of feeling confident about

his changes, but it’s not a good systematic approach for the problem. It’s also risky in

the sense that you may forget to uncomment the lines and keep the test passing without

really doing whatever it should do. Therefore, in general, if the first approach doesn’t fit,

then the second approach is the most recommended one. There are two common use

cases for the second approach that is worth mentioning specifically:

	 1.	 For UI applications and UI automation (including web UI and

Selenium), a preliminary, nonfunctioning UI can be created

first. Even though it shouldn’t be functioning at this stage, the

ids (or other identifying attributes) at least for the elements

that the test should use, should still be defined. This allows the

automation developer to write and run the test code, while the

developer can start implementing the functionality that makes

the test pass. Creating a preliminary UI first also makes the idea

of the final solution more tangible. The final style of the UI can be

polished later on, as long as the Ids and the functionality remain

unchanged.

	 2.	 For REST or SOAP services, or any other message exchange format

for that matter, the exact structure of the messages should be

defined first. This allows both the automation and the application

developers to start working on their code. Moreover, creating the

service to accept any message and respond with a predefined

message that satisfies the test needs, except of the final assert, lets

the automation developer proceed with the implementation of

the test without having to wait for the full implementation from

the application side. The application developer can then proceed

developing the functionality of the service, including validating

the request and building the response according to the actual

functionality. When the developer completed his work, the test

should pass.

Chapter 16 Acceptance Test Driven Development

383

�Implementing the Code to Make the Test Pass

Note  As this topic is oriented more toward application developers, I use second
person (you) to refer to the application developer.

Once the acceptance criteria are implemented as one or more automated tests,

your job as a programmer is very straightforward and clear. No more vague and

ambiguous requirements. The scope of the task is crystal clear: make the new tests

pass, and don’t fail existing tests. If the project is developed with ATDD from its start,

or you reached a high-enough coverage of functional tests, then it really should be

that easy. If the test coverage is not that high, then in addition to “make the new tests

pass, and don’t fail existing tests,” you must try not to break anything that works, even

though you don’t have tests for them.

Obviously, because tests are always only specific examples, and not the rule itself,

one may take my advice too far and make all the tests pass by returning the specific

values expected in the tests. Clearly you shouldn’t do that. Actually, even if you do, you’d

“get caught for bluffing” in the next step in the process. However, you should really be

focused on the scenarios defined in the acceptance criteria, and don’t try to address

all sorts of nontrivial edge cases. If you identify such edge cases that are not trivial to

handle, communicate them with the product owner and relevant team members, but as

long as it doesn’t invalidate the original solution, the simplest solution should be used

for now, and the solution that addresses these rare cases should be added to the product

backlog to be handled as an additional user story.

For other edge cases that are fairly trivial, even if they were not covered specifically in

acceptance tests, handle them appropriately. However, these cases can usually be covered

by unit tests, so it’s recommended that you write unit tests for them, so that this behavior

will also be covered and documented (in the form of unit tests). This will help you ensure

that you really didn’t break anything if you do a major refactoring or rewrite of the code.

Refactoring the Code as Needed

If you have coverage of acceptance tests for each user story from the beginning of the

project, then you are really free to modify the structure of the code however you like.

The tests give you a very robust safety net on which you can rely on, making all sorts of

experiments and changes. The adage “if it ain’t broke, don’t fix it” is no longer relevant!

Chapter 16 Acceptance Test Driven Development

384

You can and should improve anything that you don’t like in the way the code is written,

as long as you make sure that all the tests pass. Moreover, because Agile allows and

even encourages clients to change the requirements every so often, yesterday’s design

assumptions may no longer be valid today, so the design has to change to accommodate

for these changes in requirements.

If you’re starting with ATDD on a brownfield project, then refactoring may not

come as easy, because you don’t have that safety net of full acceptance test coverage

(and nearly full code coverage). Later in this chapter I’ll explain how to mitigate this

challenge.

You should always strive to make the refactoring in small steps, where after each

such step you can run the tests and make sure that everything that worked before

continues to work (i.e., all the tests except of the acceptance test of the new user story,

in case you haven’t finished it yet). It takes some practice, planning, and mind shifting

to do a major refactoring this way instead of rewriting big portions of code at once. But

doing so reduces the risk of getting into a “rabbit hole” of changes that can take you a

few days or even weeks to get out of, and get the code to work correctly again. I usually

start by adding a // TODO: comment with the intention of my refactoring, and then

plan how to do it in small steps. While the refactoring is not complete, I may create

temporary duplications and detours in the code in order to keep the code working (and

passing the tests), but I also add comments near these duplications and detours, so if

I have to jump to another task and in the future either me or someone else looks at it,

he can understand why this duplications and detours exists and how to continue the

refactoring. When I complete the refactoring, hopefully before I check in the changes,

I should be able to safely remove all of these duplications and detours along with their

corresponding comments. At this point, the code should look like what I intended,

which should be shorter and cleaner. Obviously, I should make sure that all of the tests

continue to pass.

It’s important to note that you should avoid starting a refactoring journey while

your code is not compiling or some tests are temporarily broken. First bring your code

to compile and these tests to pass, and only then start the refactoring. Often the best

timing to start refactoring is either before or after (or simply – in between) working on

implementing a user story. Though sometimes you notice the need for the refactoring

while in the works, and implementing the user story without the refactoring will take

longer.

Chapter 16 Acceptance Test Driven Development

385

Identifying Conflicting Requirements

Given that the tests are fast enough, whenever your code compiles and you expect the

existing tests to pass, run them (if they’re too slow, consider running only a relevant

subset as often as you can). If you expect them to pass and they don’t, it could be due to

one of the following reasons:

	 1.	 You introduced a bug. Given that you expected the test to pass,

it means that your implementation (or design) is incorrect. In

this case, you should fix the bug (fixing the design if necessary),

and you’d better do that right on, even before completing

implementing the new user story. Anyway, as long as you

can think of a way to fix the bug, then you should do it before

considering the user story “done.” This is in fact where the value of

test automation really shines – you prevent the bugs from creeping

in, even before you checked in any code. If you can’t think of a way

to implement the new user story without introducing a regression

in another functionality that was previously working, then it

probably means that the new requested functionality conflicts the

existing one, and it’s not a mere implementation bug, but rather a

problem with the solution that was chosen for the user story.

	 2.	 You changed some technical details that the automated tests rely

on. For example, you removed a class name that your Selenium

tests relies on, from an HTML element. In this case you should

fix the test code to make it pass. Note that if the code of the

tests is well structured, then the changes should not be in the

test methods per se, but only in the infrastructure code. If a test

method should be changed, it might mean that the scenario itself,

as accepted between the product owner and the team when it was

written, is changed, and this means that it’s no longer a technical

detail. If you think that these changes are indeed technical

details, but they still require you to change test methods, then

it’s probably an indication that the test methods are lacking an

abstraction and should be refactored. Just make sure that you

don’t change the meaning of the tested scenarios (consider asking

someone for a review on that to make sure).

Chapter 16 Acceptance Test Driven Development

386

	 3.	 The current user story conflicts with some previous requested

behavior. In large and complex projects, sometimes different

requirements may conflict each other, without anyone noticing

it, until some user who expects and relies on the old functionality

complains. In even worse cases, like in a consumer facing

websites, the affected users may simply move to a competitor’s

website without even complaining… One of the big strengths of

ATDD and BDD is that they allow you to detect these conflicts

very soon. When you detect such a conflict, you should involve

the product owner and the team immediately in order to find a

solution that can satisfy both the old requirement and the new

one. If business metrics (or even estimations) shows that the

old functionality is not worth maintaining, then the broken test,

as well as the code of the obsolete feature can be removed, and

you can continue to develop the new user story as planned. But

otherwise, either the acceptance criteria for the new user story

has to change, the existing test and its tested functionality have to

change, or in some extreme cases the new user story even has to

be completely cancelled.

�Deliver the Application and Get Feedback
Once the new acceptance tests, as well as all existing tests, pass, the user story can be

considered “done.” But this doesn’t mean yet that everything is perfect and there are no

additional hidden bugs. Even if no bugs can be found, we still don’t know if the solution

we’ve implemented is usable and actually solves the actual problem that the user story

was supposed to solve. In order to find that out, we need to put the software in the hands

of people that can provide feedback.

In projects that implement continuous deployment, having the changes checked

in and passing all the tests implies that the functionality is automatically delivered at

least to some portion of the users. It’s usually preferred that these users are first internal

people or beta testers that are expected to provide more constructive feedback in case

of problems. But even without that, actual usage and logging information should be

measured and monitored to find out if the users actually use the new functionality and

whether they experience problems with it.

Chapter 16 Acceptance Test Driven Development

387

In more conservative projects (mainly in conservative and critical industries like

medical and avionics), with longer release cycles, the new functionality should first be

exposed to people internal to the project, like manual testers, but also to the product

owner and other domain experts. These people should try to use the new functionality

and provide feedback to the development team. Small bugs can be reported directly to

the developers, which can fix them immediately. More complex usability or business

issues, including edge cases that were not covered by the original user story, should go

through the product owner first for prioritization. Issues that require more time and

planning, and do not pose a threat on the value of the user story, should be added to the

product backlog as new user stories.

As the main scenarios were already tested automatically as part of the acceptance

criteria of the user story, the chance for finding critical bugs by manual exploratory testing

is much lower, and even if one is found, chances are it should be easy to fix. In addition,

for UI-related changes, because automatic tests cannot actually measure usability, it’s

advisable that a manual tester, or even the product owner have a look and see that the look

and feel is acceptable and there are no usability bugs (like, for example, unreadable font

size or color, truncated texts, etc.). If there are regression tests that don’t lend themselves

to automation, then they should be run by the tester if these tests are relevant for the user

story. Other than that, the manual tester should mainly perform exploratory tests, to try

and find out potential issues that didn’t emerge in the elaboration phase of the user story.

Again, small bugs can be fixed immediately, and more complex ones should usually be

treated as separate user stories as long as they don’t threaten the value of the user story.

If a demo meeting is customary at the end of each sprint, the same acceptance

scenarios can be used for the demo. The demo meeting is also a great place to get

feedback from stakeholders, and it’s ok to try out new scenarios together with the

stakeholders in order to explore the edges of the solution, and identify additional needs

and ideas for improvements that should be added to the product backlog in the form of

new user stories.

�Using the Acceptance Tests as Documentation
If the textual description of the acceptance tests is kept and somehow linked to the

automated tests, then these descriptions can be used as documentation for the

functionality (or behavior) of the system. What’s special about this documentation

is that it’s always up to date! For this reason, it’s often called “living documentation.”

Chapter 16 Acceptance Test Driven Development

388

Whenever an existing functionality is changed, either it is done consciously as part of

the elaboration of a new user story, in which case the description of the test should

have been changed to reflect this change of functionality; or it should be revealed

unintentionally when the developer runs the test, as described above (under the

“Identifying Conflicting Requirements” topic). As mentioned, the team then decides

together with the product owner about the expected change, and the description of the

test should be updated accordingly.

While small inaccuracies may still creep in the descriptions of the tests, all

in all it’s much easier to keep these descriptions up to date than it is for a formal

documentation document. While scenarios are very valuable as examples in the context

of documentation, it’s not always enough, so obviously it’s recommended to combine,

and bind them with more traditional documentation, mainly if this documentation is

also valuable for customers.

�Binding Steps Rather Than Tests
Binding the textual descriptions of the acceptance scenarios to the automated tests is

very valuable by itself, but there’s still a little room for vagueness and inconsistencies

between the descriptions and the tests. In order to minimize these vagueness and

inconsistencies even further, some tools make it possible to bind sentences to test steps.

The most popular tools in this category are those that use the Gherkin syntax, like

Cucumber and SpecFlow. There are other tools like the Robot Framework that use a freer

style language, but the idea is pretty much the same. When you write tests using these

tools, instead of writing test methods in which the entire test is implemented, the tests

themselves are written as sentences in a special text file, with minimal syntactic rules,

and each sentence is bound to a method that implements this particular step. A step

can be reused by multiple tests, helping to minimize the code and reduce duplication.

In addition, a step method can be bound to multiple sentences to allow for different

formulations of the sentence in different contexts. The step methods are typically

bound to the sentences using Attributes (in C#) or Annotations (in Java), containing

the sentence string or a regular expression that the sentence should match. A regular

expression is especially useful for methods that accept parameters. Each parameter

should be matched by a group in the regular expression, which makes these methods

more generic and allows better reuse.

Chapter 16 Acceptance Test Driven Development

389

�The Gherkin Syntax

In Cucumber, and its port to other languages (including SpecFlow, which is its .Net

version), you compose the tests and the sentences that describe their steps, in files with

.feature extension. While these files contain text in natural language, they still have a

well-defined structure and few keywords. This structure is described by the Gherkin

syntax.5

Each feature file in Gherkin language starts with the Feature: keyword, followed

by a free text description of the feature, which can span multiple lines (all lines except

the first one should be indented). In addition, each feature file can contain multiple

scenarios. Each scenario is denoted by the Scenario: keyword, followed by the title of

the scenario on the same line. The following lines (which should be indented) should

all start with one of these keywords: Given, When, Then, And. and But, each followed by a

plain text sentence that describes the step. As far as Cucumber is concerned, all of these

five keywords are pretty much the same, but the idea is to use them to structure the test

in three main parts:

•	 Given – describes the preconditions for the scenario, or what should

be done in order to bring the system to the desired state before

invoking the operation we want to test.

•	 When – describes the operation that we want to test.

•	 Then – describes the expected result.

The And and the But keywords are used as conjunctions and semantically continue

the meaning of the previous sentence. Technically though, all of the five keywords can

come in any order; however, the order of the sentences in the scenarios determines the

order of the steps in the execution of the test. The Gherkin language has some more to it,

but that’s the main idea. Listing 16-1 shows an example of a feature file.

Listing 16-1.  Example of a Gherkin feature file

Feature: ATM

 As a bank manager,

 In order to increase my income from commissions

 I want to allow my customers to withdraw cash from ATMs

5�For a full documentation of the Gherkin syntax, go to https://docs.cucumber.io/gherkin/

Chapter 16 Acceptance Test Driven Development

https://docs.cucumber.io/gherkin

390

Scenario: Cash withdrawal charges commission

 Given the commission is $1

 When I withdraw $50

 Then the charged commission should be $1

In order to bind the first sentence to a method, the method should have a signature

and an attribute as shown in Listing 16-2.

Listing 16-2.  Method template for the first sentence

[Given(@"the commission is \$(.*)")]

public void GivenTheCommissionIs(decimal commission)

{

 �/* implement here the code that sets the commission to the given value */

}

Similar methods should be created for the other sentences in order for the test to run

successfully.

�The Trade-Offs Between Reusability, Granularity,
and Readability
Binding steps instead of tests to their textual descriptions helps to ensure that the test

indeed performs the described steps. However, there can still be a gap between the

description of an individual step and its implementation (i.e., the textual representation

of a step can say one thing, but the implementation of its bound method does another

thing). In fact, even when the test is written completely in code, we can have similar

problems, where the name of a method doesn’t necessarily match what it actually does

(in good, clean code this shouldn’t happen, but in reality it might). So, if we want to take

it to the extreme, that is, write the test method in a way that leaves as little ambiguity as

possible, then we must describe every little detail specifically in the test method itself.

But this of course limits its reusability and even its readability.

By contrast, if we want our tests to be as readable as possible, then we might want

to formulate similar sentences a bit differently according to its context in the overall

sentence (looking at the entire scenario as one long sentence here). As mentioned above,

it is possible to bind more than one sentence to a step method, so technically this can be

Chapter 16 Acceptance Test Driven Development

391

done without hurting reusability. However, without looking at the code, one cannot be

sure that the two formulations are actually bound to the same operation, which makes

more room for ambiguity.

On yet another hand, if you want to emphasize reusability (in the sense of the

sentences themselves, not only the code), and to avoid ambiguity, then the sentences

may sound awkward at times and therefore less readable.

Bottom line: there’s no one right answer, but usually if you don’t try to maximize any

of these traits too extremely, and simply use the Gherkin language naturally, you’d be

fine most of the time. Just be aware that occasionally you’ll have to make these trade-

offs. Having said that, in my opinion, while associating complete scenario descriptions

to test methods rather than binding sentences to step methods leave some more room

for ambiguity, it also has a slight advantage in terms of maintainability. To do this, the

test descriptions can reside in a test management system, like TFS, MicroFocus Quality

Center, and alike, and their IDs can be specified at the test method level using an

attribute or an annotation. I usually tend toward the later approach, but it’s definitely not

clear-cut.

�Introducing ATDD in an Existing Project
Because ATDD is not a trivial mind shift, as well as a cultural shift, and because its value

in existing projects is somewhat lower than in greenfield projects (due to the lower code

coverage), it’s often not a very easy sell. Here are a few tips that can help you introduce

this idea to your team (in addition to the more general tips from Chapter 15 about

changing the culture and incorporating better usage of test automation in the team,

which are mostly relevant here too).

�Start Without Automated Tests
Even if you don’t have any automated tests in place yet whatsoever, you can start making

use of the practice of defining the acceptance criteria as a team. At first (and maybe for a

long period of time), you won’t have automatic tests out of it, but the manual regression

tests will be more valuable as they’ll be testing the value that the use stories should provide

to the customers or to the business. Doing only that practice have other benefits too:

•	 It ensures that the testers are involved at an early stage and can have

a real impact about the solution and its quality.

Chapter 16 Acceptance Test Driven Development

392

•	 It improves the communication between developers, testers, and

the product owner and promotes a shared understanding of the

requirements and the scope of the user stories. It even fosters an

attitude of shared ownership and responsibility.

•	 It leads the team to think about testability before implementing. This

makes it possible to test more scenarios easier, even if only manually

at first. The need to describe the acceptance criteria unambiguously

also drives building simulators for manual testing, which later may be

used also by the test automation.

�Implementing the Automation Retrospectively
Continuing the previous course, if you do have test automation in the project, but it’s not

yet mature and stable enough to be used in CI, then you may still need to implement the

automatic tests in retrospect and allow user stories to be marked as “done” before having

automated tests for them. However, implementing the automation no later than the next

sprint (iteration) can be a significant step forward. This is especially relevant when the

test automation is developed by a separate and independent team.

The benefits mentioned above for manual tests apply also to the automated tests

written in retrospect. When the automation developers will come to implement the

tests for a functionality that was defined with clear acceptance criteria, they’ll be able

to use the same acceptance criteria as the scenarios for their tests. Because the team

should have already thought about testability when they defined the acceptance criteria,

it should make these scenarios better suited for automation than scenarios that were

designed without testability in mind.

One step further down that path could be to involve one member of the test automation

team (preferably a senior) in the elaboration meetings. Not only it will allow the automation

team to prepare for the changes in advance, but it will also give a chance for that member to

provide further inputs about the testability and the clarity of the expected results.

From this state to fully implementing the ATDD process, it should be mainly a matter

of following the advice I gave in the previous chapter about stabilizing the tests and

transitioning the responsibility for them more toward the developers. Once the tests are

stable and fast, and an automation developer participates in the elaboration meetings,

nothing should stop the automation developer from implementing the tests for the new

user stories immediately and not wait for the next sprint.

Chapter 16 Acceptance Test Driven Development

393

�Start from Bug Fixes
A different approach, which developers often engage with more easily, is to start by

writing tests for bugs before fixing them. While it’s a different direction than the previous

approach, it doesn’t contradict it, and you can definitely apply them both concurrently.

However, this approach works best if there’s already an infrastructure for test automation

in place, and at least few stable tests that run CI or nightly.

Defining tests for scenarios that weren’t implemented yet is a big mind shift. But with

bugs, the expected behavior should already be specified in the bug description or at least

be commonly known. For that reason, I find that many developers are able to adopt it

somewhat more easily.

The idea is to enforce developers to write automated tests that reproduce each bug

before fixing it. (Unlike most of my advice, in this case, mainly in large organizations,

it may have to be enforced by managers at the beginning, because the benefits for the

developers may not be immediately obvious.) The test should first fail because of the

bug and the developer should be able to see that the failure matches the actual result

in the bug report. After he investigates and fixes the bug, he can use the test to ensure

that it now passes, which means that he fixed the bug correctly. In addition, while the

developer debugs and investigates the bug, he can use the automated test to do it more

quickly. When the bug is fixed and the test passes, the developer should check in the

test code together with the bug fix, and the new test should be added to the CI or nightly

build.

Over time, the developers should feel more comfortable writing and relying on

the test automation, which puts the team in a better position to adopt the ATDD

methodology completely.

�Enriching Regression Coverage
Because the benefits of ATDD are smaller on a brownfield project with little or no

coverage to support safe refactoring, we should consider how to enrich the coverage of

regression scenarios to reduce this deficiency.

On large, monolithic projects, reaching high coverage may not be feasible in a timely

manner. The strategy to overcome it is to create “islands” of high coverage. In these

islands, refactoring could be done more safely than outside of them. It’s recommended

to plan and prioritize to cover these islands according to the needs for refactoring. These

islands can be aligned to a structural component (class, DLL, etc.) or to a business

Chapter 16 Acceptance Test Driven Development

394

feature, which may span multiple components. Ideally, the structural components

and the business features themselves should be aligned, but unfortunately with legacy

monolithic projects it’s rarely the case, and you’ll have to assess how these islands

should look like so they’ll reduce most of the risk involved in refactoring.

Another way to enrich the coverage in a somewhat less planned manner, but which

generally provides good value, is to plan where to enrich the coverage as part of each

user story. In other words, in addition to defining the scenarios for the acceptance

criteria for a user story, the team decides how to enrich the coverage of existing

functionality around the area of the change as to reduce the risk of breaking anything.

�Summary
To me, the highest value of test automation is reached when the automated tests are

used to cover the scenarios that bring business value and improve collaboration and

agility by reducing the lead time and keeping it low over time. One of the important

enablers for agility is refactoring, which requires high test coverage in order to be done

safely. ATDD (which as mentioned above, is basically the same as BDD, Specification by

Example, and other related names), provides the methodological framework to provide

these values.

The main challenge with this methodology is that it requires a significant mind shift

and a cultural change. Hopefully this and the previous chapters gave you some tools to

meet this challenge.

Chapter 16 Acceptance Test Driven Development

395
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5_17

CHAPTER 17

Unit Tests and TDD
While both acceptance-test-driven development (ATDD) and test-driven development

(TDD) are methodologies that advocate writing the tests before the code, ATDD (or BDD)

is usually considered to lend itself better to bigger test scopes and to scenarios that describe

how the users use the system, while TDD is considered to lend itself more specifically to unit

tests, which uses the smallest test scope (of a single class or even a method), and therefore

tests more technical details. For that reason, unit tests and TDD are considered practices that

are done directly by the same developer that implements the code under test (CUT1). While

toward the end of this chapter we’ll question the distinction between TDD and ATDD, we

first need to understand more about unit tests and TDD in general.

�Learning Unit Tests and TDD
While almost everyone agrees that developers should write unit tests for the code they

write, during my career I saw many more developers avoiding or struggling with it than

those who do it properly, let alone doing it the TDD way. Even among those who write

unit tests or even do TDD, there are often strong debates around the most effective

way to do it. An excellent example for such a debate is the series of video recorded

conversations titled “Is TDD Dead?”2 on Martin Fowler’s blog. So, let’s face it: the reason

that people struggle with it means that it’s not an easy thing to master. There are many

excellent books on unit testing and TDD, but even these are not enough. A lot of real-

world practice and experience but also continuous learning (controlled practice like

katas, reading blogs, watching screencasts, attending workshops, and conferences,

etc.) are required in order to master it, and probably the journey never ends. Speaking

1�CUT can either mean “code under test” or “class under test.” I use this acronym interchangeably
whenever the difference is not important or the meaning is clear from the context. Otherwise I’ll
use the explicit term.

2�https://martinfowler.com/articles/is-tdd-dead/

https://martinfowler.com/articles/is-tdd-dead/

396

for myself, it took me several years from the first time I heard about TDD and tried to

apply it, until I really felt that I got it. Even since then I keep learning and improving this

skill. In fact, my perspective about unit tests and TDD and how it relates to other test

automation as well as to some coding practices have changed many times along the way,

and probably will continue to change.

KATAS

Kata is a Japanese word, borrowed from the martial arts domain, which means choreographed

patterns of movements that one does as a practice in order to improve their skills in the

martial art. In the context of software, these are exercises that programmers can practice

in order to improve their programming skills. The goal of a kata is not just to implement

something that works, but also to emphasize different aspects and practices of how you write

the code. For example, a kata can be something like developing the calculation engine for the

score of a bowling game but emphasize aspects like TDD, functional programming, avoiding

‘if’ statements, and even things like avoiding using the mouse. Some people do the same kata

over and over again to improve their skills. You can find many Katas on the web.

Note that learning the technical details required to write unit tests is very easy and

straightforward. Even learning the concept of TDD is very easy. But the hard thing is to

apply these techniques in the real world. I like to compare learning TDD with learning to

play the piano. You can learn pretty quickly how to read notes and play each of them on

the piano including flats and sharps. You may also master all of the special symbols and

can play staccato, legato, forte, piano, and even use the sustain pedal. But knowing all of

these details doesn’t even bring you close to be able to play Chopin’s music, let alone call

yourself a pianist. For this you need to practice, practice, and practice some more. The

same goes for TDD. Therefore, in this chapter I’ll only teach you how to “read the notes”

but also talk about the “challenges of playing the piano for real” and the role of the piano

(i.e., unit tests) in the symphony called “Software development.”

�The Mechanics of Writing a Unit Test
Let’s start by describing the mechanics of the unit test framework, and then we’ll learn

how to use it to write unit test, but in a technical fashion at first.

Chapter 17 Unit Tests and TDD

397

�Unit Test Framework Mechanics
We already used a unit test framework (MSTest) when we created the test project in

Chapter 11. The unit test framework is actually a very simple technology but is still very

useful.3 There are many unit testing frameworks for many languages and runtimes,

like NUnit and xUnit.Net for the .Net Framework, JUnit and TestNg for Java, PyTest for

Python, etc., but the basics of all of them are pretty much the same.

While in a regular console application, you have only one method as an entry

point, which is the “Main” method that is called when the program starts, a unit testing

project lets you create as many entry point methods as you like and invoke any of them

separately, all of them sequentially, or any subset of them at your will. The idea is that

each unit test has its own entry point. As we saw in Chapter 11, in MSTest you create

such a method by decorating it with the [TestMethod] attribute. Other frameworks have

different ways to denote a test method, but the idea is similar. This allows the framework

to discover the test methods in the project in order to list them, so you can choose which

ones to run, and then to run them. MSTest also requires that we decorate each class that

contains test methods with a [TestClass] attribute, to let it know whether to look for test

methods in it or not. Note that some other frameworks don’t have a similar requirement.

When Visual Studio runs the tests, it also shows a pass/failed status for each of them

at the Test Explorer pane. The way it determines whether the test passed or failed is very

simple: if the test completed without throwing an exception it passes; otherwise (if it did

throw an exception), then it fails. This means that an empty test method always passes.

�Asserts

Because tests should verify some outputs of the SUT (or CUT) against some expected

result, it means that every test method should contain at least one statement similar to

this: if (expected != actual) throw new Exception("...");

In order to make this repetitive code a bit more elegant and signify the special intent

of these lines in the test, MSTest, as well as most common unit testing frameworks,

provide the Assert class, which we already used in Chapter 11 as well.

The Assert class in MSTest, as well as most of its cousins at the other frameworks,

also provides methods for directly failing the test (Assert.Fail), for failing the test if a

condition is expected to be false but it isn’t (Assert.IsFalse) or expected to be null,

3�As Martin Fowler said about the JUnit framework: “Never in the field of software development
was so much owed by so many to so few lines of code.”

Chapter 17 Unit Tests and TDD

398

(Assert.IsNull) and a few other similar methods. MSTest also provides more specialized

assert classes for strings (StringAssert) and collections (CollectionAssert). There

are also third-party assertion libraries for different frameworks that provide additional

assertion methods often using a fluent and extensible API.

�Test Execution Life Cycle

Having multiple entry points (test methods) in the same project or even in the same

class allows us to share code easily between these methods. However, because often

multiple tests need to perform the same initialization sequence, it would be helpful if

we would also have a way to eliminate the code duplication of invoking this sequence

from each test method (even if you put all of the initialization sequence in one shared

method, you’d still need to call it from each test). In addition, there could be cases where

we’d want to initialize something only once, regardless of whether you run only a single

test, multiple tests, or all of the tests in the project. The same goes for cleanup (AKA tear-

down) code – both per test and per execution.

Fortunately, all of the standard testing frameworks let us do these things, and in

pretty similar manners. In an MSTest project we can decorate a method in a test class

with the [TestInitialize] attribute to tell the framework to run it before each test

method in that class, and with [TestCleanup] to tell it to run after each test method. In

addition, we can use the [ClassInitialize] and [ClassCleanup] attributes to tell the

framework to run these methods once before and after all test methods in that class, and

[AssemblyInitialize] and [AssemblyCleanup] to run once before and after all of the

methods in the entire project (.Net Assembly).

Note  The various cleanup methods are invoked regardless of whether the tests
passed or failed. In most cases this is desirable, but it also entails some nontrivial
cases. Appendix B describes a mechanism that you can build to overcome most of
these cases, and Appendix C describes the Test Automation Essentials utilities library
that I developed for .Net that already includes an implementation for this mechanism.

To summarize the execution order of these methods, let’s suppose we have three test

classes: ClassA, ClassB, and ClassC with test methods A1, A2, and A3 in ClassA; B1, B2,

and B3 in ClassB; and C1 and C2 in ClassC; and we choose to run only tests A1, A2, A3,

and B1. The execution order will be as follows:

Chapter 17 Unit Tests and TDD

399

AssemblyInitialize

 ClassA.ClassInitialize

 ClassA.TestInitialize

 ClassA.A1

 ClassA.TestCleanup

 ClassA.TestInitialize

 ClassA.A2

 ClassA.TestCleanup

 ClassA.TestInitialize

 ClassA.A3

 ClassA.TestCleanup

 ClassA.ClassCleanup*

 ClassB.ClassInitialize

 ClassB.TestInitialize

 ClassB.B1

 ClassB.TestCleanup

 ClassB.ClassCleanup*

AssemblyCleanup

Notes:

	 1.	 In MSTest, the ClassCleanup methods are not guaranteed to run

exactly in this order, but rather it’s only guaranteed that they run

not before all test methods and TestCleanup methods in that class

have completed, but also before AssemblyCleanup is called. In

fact, the framework actually calls all of the TestCleanup methods

just before it calls AssemblyCleanup.

	 2.	 As you can see, ClassC.ClassInitialize and ClassC.ClassCleanup

haven’t been called whatsoever because we didn’t include any test

method from that class in the execution. If we had chosen to run all of

the tests, then these methods would have been called.

	 3.	 All of the *Initialize and *Cleanup methods are optional and

you don’t have to implement them if you don’t need to.

MSTest has many more features to offer, and so do all other frameworks (though

those features may be totally different). However, these features are more specific and

are less important to most cases and therefore are beyond the scope of this book.

Chapter 17 Unit Tests and TDD

400

�The Mechanics of Writing a Unit Test
The unit testing framework does not limit or even provide much guidance for how to

write a unit test. It will simply execute any piece of code that you’ll write inside the test

methods (and inside the initialization and cleanup methods in the appropriate order),

will mark the test methods as “passed” if they don’t throw an exception and as “failed” if

they do. From the unit test framework standpoint, whatever you do inside these methods

is your own business.

But in order to really write a unit test, we need to call one or few methods on a class

inside the SUT and verify its result. In order to do that, our test project must reference the

project (or a compiled class library), which is the component of the SUT that contains

the class or classes that we want to test. If the method(s) that we want to test is non-

static, then we must instantiate an object from that class first, and then call the methods.

Calling the methods of the SUT directly from the test is one of the important properties

that distinguish unit tests from integration and systems tests, which use a network

protocol or UI automation technology to interact with the SUT. Because it’s common

that multiple tests in the same test class need to instantiate an object from the same

class at the beginning of the test, the instantiation is usually done in the TestInitialize

method (though if different tests need to instantiate the object with different constructor

arguments, then there’s no point in doing that). Note that you can only instantiate

public classes and call public methods this way. These are techniques to call internal

or even private methods of the SUT from unit tests, but that’s usually discouraged as

these are considered to be technical details that are more likely to change (though this is

sometimes also a topic of debate).

Finally, a test should also verify some expected result, typically using one of the

Assert methods. The simplest result that a unit test can verify is the return value of the

tested method. But some methods have no return value (they’re declared as returning

void), or we simply want to verify something else. In these cases, we should understand

what this method affects and how we can observe that. For example, a method can

change the value of a property or to change the internal state of the object in a way that

affects the result of some other method. In this last case we must call the other method

and verify its result in order to test that the first one changes the internal state of the

object as expected. We’ll soon look at a more concrete example.

Chapter 17 Unit Tests and TDD

401

�Structuring the Test: Arrange – Act – Assert (AAA)

A typical structure of a unit test consists of three parts: Arrange, Act, and Assert. In

fact, these parts are very similar to the Given, When, and Then terms described in the

previous chapter. As their names imply: Arrange is where we prepare the prerequisites

for the test, including creating the instance of the tested class; Act is where we call the

method or the sequence of methods that we want to test; and Assert is where we call

the Assert methods to verify the result. If the Arrange is common to few tests, it can be

moved to the TestInitialize method to avoid the duplication. Sometimes also the Act

part is sharable and can also be moved to the TestInitialize method, leaving only

Asserts in the test methods, for verifying different and independent outcomes of the

same operation, but this is much less common.

�Example – Simple Calculator

Suppose that we’re developing a simple, standard calculator. In the project we’ve

implemented a class named CalculatorEngine, which manages the state of the

calculator after every button click and provides the value to be displayed (this class

doesn’t handle the UI itself, it is only being used by the UI layer as described). Listing 17-1

shows the public members of this class.

Listing 17-1.  CalculatorEngine class

public class CalculatorEngine

{

 public enum Digit { Zero, One, Two, Three, Four, Five,

 Six, Seven, Eight, Nine };

 public enum Operator { Plus, Minus, Multiply, Divide}

 public void ProcessDigit(Digit digit);

 public void ProcessOperator(Operator op);

 public void ProcessDecimalPoint();

 public void ProcessEquals();

 publi void Clear();

 public double DisplayedValue { get; }

}

Chapter 17 Unit Tests and TDD

402

Listing 17-2 shows a test class with a few test methods that test this class:

Listing 17-2.  Unit tests for the CalculatorEngine class

 [TestClass]

 public class CalculatorEngineTests

 {

 private CalculatorEngine _calculator;

 [TestInitialize]

 public void TestInitialize()

 {

 // Arrange

 _calculator = new CalculatorEngine();

 }

 [TestMethod]

 public void CalculatorCanAcceptMultipleDigitNumbers()

 {

 // Act

 _calculator.ProcessDigit(Digit.Eight);

 _calculator.ProcessDigit(Digit.Five);

 _calculator.ProcessDigit(Digit.Two);

 // Assert

 Assert.AreEqual(852, _calculator.DisplayedValue);

 }

 [TestMethod]

 public void CalculatorCanAcceptDecimalFraction()

 {

 // Act

 _calculator.ProcessDigit(Digit.Four);

 _calculator.ProcessDecimalPoint();

 _calculator.ProcessDigit(Digit.Seven);

 // Assert

 Assert.AreEqual(4.7, _calculator.DisplayedValue);

 }

Chapter 17 Unit Tests and TDD

403

 [TestMethod]

 public void CalculatorCanMultiplyNumbers()

 {

 // Act

 _calculator.ProcessDigit(Digit.One);

 _calculator.ProcessDigit(Digit.Four);

 _calculator.ProcessOperator(Operator.Multiply);

 _calculator.ProcessDigit(Digit.Three);

 // Assert

 Assert.AreEqual(42, _calculator.DisplayedValue);

 }

 }

�Unit Tests and I/O
Up to here, things look pretty simple. But the above example is a very simplistic one. The

class that we’ve tested is completely self-contained, with no dependencies on any other

class and more importantly, it does not perform any I/O by itself. If we had to create a

UI for it, the UI layer would simply call the methods in the CalculatorEngine class and

update the display according to the value of the DisplayedValue property, but the class

itself wouldn’t have to know anything about the UI. However, most classes in the real

world are not self-contained. They depend on many other classes, and usually do some

kind of I/O, whether it’s UI, database, file system, networking, etc., either directly or

indirectly through other classes it depends upon.

The thing is, testing I/O in unit tests is usually discouraged for a few good reasons:

	 1.	 Unit tests are meant to be very fast. Almost all I/O operations are

an order of magnitude slower than pure CPU and memory access

operations.

	 2.	 Unit tests should be able to run anywhere, anytime. Performing

I/O usually requires prerequisites that are not necessarily

available on every machine.

	 3.	 Even if the prerequisites are available, the test code should take

care about synchronization and isolation, which makes it much

more complicated and slow, and may also be somewhat less

reliable.

Chapter 17 Unit Tests and TDD

404

	 4.	 Often I/O uses some limited resource, which prevents the tests

from running in parallel. Pure unit tests (which don’t perform I/O)

can be safely run in parallel and is only limited by the CPU and

memory of the machine. Some frameworks and IDEs (including

Visual Studio 2017 and above) make it possible to run the tests

in the background, while you’re coding. Doing it with tests that

perform I/O is not likely to work correctly in that fashion.

�Mocks

Suppose that our CalculatorEngine class also needs to write the performed calculations

to a log file that the user can then open in a standard text editor, how would we test that?

One way would be to read the file at the end of the test and verify its content. But that

wouldn’t be such a good idea for the reasons mentioned above. If writing to the file is

done directly from the CalculatorEngine class itself, then we don’t have any other way,

unless we’ll refactor the code (which we’ll cover later). For now, let’s suppose that our

CalculatorEngine class only calls another class, LogWriter, that actually writes the

content to the log. In other words, CalculatorEngine tells it what to write (the arithmetic

expression performed, e.g., “12+3=15”), and the LogWriter class only appends that line

as is to the log. In addition, let’s suppose that the CalculatorEngine does not reference

the LogWriter class directly but only through an interface ILogWritter that LogWriter

implements, and that the CalculatorEngine accepts this reference in its constructor. All

of these assumptions may sound very cumbersome, and you may wonder why we need

to complicate things so much just in order to write a line to a file, but you’ll soon see

why. Listing 17-3 shows the relevant declarations and pieces of code that clarify these

details and the relationships between the CalculatorEngine and the LogWriter classes.

Listing 17-3.  The interaction between CalculatorEngine and LogWriter

 public interface ILogWriter

 {

 void WriteToLog(string line);

 }

Chapter 17 Unit Tests and TDD

405

 public class CalculatorEngine

 {

 private readonly ILogWriter _logWriter;

 public CalculatorEngine(ILogWriter logWriter)

 {

 _logWriter = logWriter;

 }

 // ...

 public void ProcessEquals()

 {

 // ...

 expression = ...

 _logWriter.WriteToLog(expression);

 }

 }

 class LogWriter : ILogWriter

 {

 private string _filePath;

 // ...

 public void WriteToLog(string line)

 {

 // Perform the actual I/O (append the line to the file)

 File.AppendAllLines(_filePath, new[] { line });

 }

 }

Given this design, we can now create another implementation of the ILogWriter

interface that we’ll use only in the test (it will be part of the test project) and will allow us

to test that our calculator writes the right messages to the log, without actually writing

anything to any file. Listing 17-4 shows this class. As the name of this class implies, this is

what’s typically called a Mock object.

Chapter 17 Unit Tests and TDD

406

Listing 17-4.  MockLogWriter

 class MockLogWriter : ILogWriter

 {

 public string LineWritten { get; private set; }

 public void WriteToLog(string line)

 {

 LineWritten = line;

 }

 }

Now we can write a test, that although won’t actually verify that the expressions

are written to the file, it will test something very close to it: it will verify that

CalculatorEngine sends the correct expression to the LogWriter class (which should

in turn write it to the file). Listing 17-5 shows what this test looks like. Note that because

we’ve added a constructor argument to CalculatorEngine, we also had to change our

TestInitialize method to pass this parameter. We’ll use the new MockLogWriter class

as the value for this argument.

Listing 17-5.  Testing that CalculatorEngine sends the correct expression to

the log

 [TestClass]

 public class CalculatorEngineTests

 {

 private CalculatorEngine _calculator;

 private MockLogWriter _mockWriter;

 [TestInitialize]

 public void TestInitialize()

 {

 // Arrange

 _mockWriter = new MockLogWriter();

 _calculator = new CalculatorEngine(_mockWriter);

 }

Chapter 17 Unit Tests and TDD

407

 // ...

 [TestMethod]

 public void CalculatorWritesTheExpressionToTheLog()

 {

 // Act

 _calculator.ProcessDigit(Digit.Two);

 _calculator.ProcessOperator(Operator.Plus);

 _calculator.ProcessDigit(Digit.Three);

 _calculator.ProcessEquals();

 // Assert

 Assert.AreEqual("2+3=5", _mockWriter.LineWritten) ;

 }

 }

Mocking Frameworks

In a real-world application code, often the interactions between classes are way more

complex than in this example (though if it’s way too complex, it may probably indicate a

design problem). In these cases, implementing the mock objects as we did can become

complicated and error prone. To tackle this problem there are plenty frameworks

out there that let you create mock objects more easily, without having to declare and

implement a special class for them. Listing 17-6 shows the previous test but using the

Moq4 mocking framework, instead of the handwritten MockLogWriter class.

Listing 17-6.  Using the Moq framework instead of the MockLogWriter class

 [TestClass]

 public class CalculatorEngineTests

 {

 private CalculatorEngine _calculator;

 private Mock<ILogWriter> _mockWriter;

 [TestInitialize]

 public void TestInitialize()

4�https://github.com/moq/moq4

Chapter 17 Unit Tests and TDD

https://github.com/moq/moq4

408

 {

 // Arrange

 _mockWriter = new Mock<ILogWriter>();

 _calculator = new CalculatorEngine(_mockWriter.Object);

 }

 [TestMethod]

 public void CalculatorWritesTheExpressionToTheLog()

 {

 // Act

 _calculator.ProcessDigit(Digit.Two);

 _calculator.ProcessOperator(Operator.Plus);

 _calculator.ProcessDigit(Digit.Three);

 _calculator.ProcessEquals();

 // Assert

 _mockWriter.Verify(

 writer => writer.WriteToLog("2+3=5"), Times.Once);

 }

�Mocking External Dependencies

In addition to mocking dependencies that perform I/O, we usually want to isolate

also third-paryt libraries, classes from other layers, and even collaborating classes

from the same component, in order to test the specific behavior of a single class. The

collaborating classes may affect the outcomes of the CUT in ways that we cannot easily

control from the test, or without creating a maintainability overhead. In these cases, we

can also create mocks for these dependencies of the CUT, even if they don’t perform

I/O, to be able to have better control over the expected result and the maintainability

of the test.

�The Mechanics of TDD
By now, you know all of the “mechanics” of how unit tests work and the technical aspects

of writing unit tests. Before we’ll get into the discussion about the challenges of applying

these techniques in the real world, let’s understand also the mechanics of the TDD

method.

Chapter 17 Unit Tests and TDD

409

�Red-Green-Refactor
The way TDD is typically described is as a cycle of the following three steps:

	 1.	 Red - write the simplest test that fails or don’t even compile.

	 2.	 Green - write the simplest code that make this test and all other

tests pass.

	 3.	 Refactor – refactor (change the implementation details of)

the code and “clean” any “litter” that you left in the code in the

previous step. Make sure that all tests still pass.

You already saw in Chapter 11 how it looks like to write a code for something that

doesn’t exist yet. The only difference is that in Chapter 11 we used the test code to drive

the creation of the infrastructure code for the system tests of the MVCClient application,

which itself was already fully implemented, while in TDD we use this technique to create

and implement the actual code of the application.

This technique may also look similar to the ATDD process we discussed in the

previous chapter. There are significant commonalities indeed, but while in ATDD we

write acceptance tests for user stories in a cycle that normally takes a few days, TDD

guides us in the more granular journey of implementing the code, in cycles of mere

minutes.

�What “Refactor” Really Means?

I believe that one of the reasons that people often struggle with TDD is the fuzziness

around the “refactor” step. In the book Test-Driven Development by Example5by Kent

Beck, he clarifies that this step means “refactor to remove duplication. According to Beck

and the examples in that book, a duplication can be anything from a “magic number”

that appears twice in the code, to entire code components that repeat themselves with

small variations. In fact, duplication can even mean pieces of code that looks completely

different but have the same purpose. For example, if we’ve implemented and used

two different sorting algorithms in our code for no particular reason, then this is a

duplication and we should remove one of them. By contrast, code that may look the

same but is used for different purposes (and may evolve in different directions over time)

is not a duplication.

5�Kent Beck, Test-Driven Development: By Example (Menlo Park, CA: Addison-Wesley, 2002).

Chapter 17 Unit Tests and TDD

410

Also, in the examples he gives, Beck clarifies a very important aspect of this step

that many people miss: duplication should be removed not only from the CUT, but

also from the test code, and even duplication between the test code and the CUT.

When I read that book, realizing the last sentence was a moment of revelation for me!

Duplication between the test code and the CUT indicates that there is coupling, or

hidden knowledge, between the CUT and its clients, which violates the basic principle of

object-oriented programming: encapsulation. It can also indicate that the class violates

the Single Responsibility Principle (SRP) or simply that the test is not well defined, if the

test has to calculate the expected result in a similar manner to the calculation that the

CUT itself should do. Either way, that duplication should be removed.

Beck also emphasizes that the code, both of the test and of the CUT should “reveal

its intent.” On the face of it, this is another way to say that the code should be readable.

But the word “intent” implies that the code should reveal what the code should do

rather than how. This is especially relevant to method names, but it also implies that

most method implementations should include as little technical details as possible.

This leads to very short and concise methods, which call few other methods with

intent-revealing names, or only hide one specific technical detail. These aspects of

design: no duplication, clear names, and short methods all have a vast impact on the

maintainability of the code.

Lastly, a very important notion to understand about refactoring, especially in

the context of TDD, is that it should be done in tiny little transformations, which

each of them keep the code working and all the tests pass. Automatic refactoring

transformations like those that exist in most modern IDEs and their plug-ins (e.g.,

Resharper), like “Extract method,” “Introduce variable,” “Extract base class, etc., help

a lot with that, but even without it, you can do most refactoring transformations pretty

safely in small and safe steps. It may require some change of a mindset, practice, and

creativity, but it’s almost always possible. The general rule of thumb is that instead of

simply changing everything to how you want it to be, you first create the new stuff, then

route the old stuff to use the new one, and only then remove the old one. It may mean

that you have to create duplication in the interim, but you remove it afterwards. For

example, suppose that you have a class CustomerDataWriter with a method WriteData

that writes some data about customers to a file, accepting the filename as a parameter,

and you notice that whenever this method is called multiple times on the same object

instance, the same filename should always be used. Therefore, you decide to move the

Chapter 17 Unit Tests and TDD

411

filename parameter to the constructor of the class, store it in a field, and remove it from

the method. Here’s a way to go about this refactoring, without ever breaking existing

code:

	 1.	 Create a new constructor overload that accepts the filename

parameter and saves it to a new _filename field. Also call the

original constructor from the new one (in case it existed and

wasn’t empty). Because no code calls this constructor yet, all tests

should still pass.

	 2.	 Find all references to the old constructor and change them to call

the new constructor overload providing the appropriate filename

argument. (You should know the value of this argument from the

calls to WriteData invoked on that object.) All tests should still

pass, because the new field is still not in use. You can even change

these references one by one and everything would work. Notice

that you now created a bit of duplication, because now the same

parameter is passed both to the constructor and to the method,

but this is only temporary.

	 3.	 After you changed all of the references from the old constructor

to the new one, you can copy the content of the old constructor

into the new one instead of calling it, and delete the old one (this

transformation is called inlining). All test should still pass because

the old constructor is not called anymore, and the new one does

exactly what the old one did.

	 4.	 Create an overload of the WriteData method, without the filename

parameter, and call the old overload with the value of the new

_filename field as the argument. All tests should pass because the

new overload is not called yet.

	 5.	 Find all the references of the old overload of WriteData, and one

by one remove their argument, to actually call the new overload.

Because we already changed the calls to the constructor to pass

the filename and store it in the _filename field, and the new

overload of WriteData calls the old one using this field’s value,

then the behavior should not change and all tests should still pass.

Chapter 17 Unit Tests and TDD

412

	 6.	 Once all references to the old overload of WriteData, which has

the filename parameter, have been migrated to the new one

(which doesn’t have the parameter), you can inline the body of the

old overload into the new one, and remove the old one. Because

no one uses the old overload anymore, all tests should still pass.

We now reached the destination of our refactoring maneuver: we

pass the filename only on the constructor and we don’t have to

pass it in every call to the WriteData method anymore. Obviously,

the behavior remains the same.

Note that steps 2 and 5 result in changing some test code, if this test code calls the

class that we’re refactoring. But that’s not a problem, as we already mentioned that we

should remove duplication from the test code as well as from the production code.

�Jumping Back and Forth Between the Steps

While in theory these three steps (red-green-refactor) should be done in a nice clean

loop, I often find it practical to do some refactoring between any of the steps, and even

in the midst of the each of them. However, when I do so, I first make sure that the code

compiles and that all the tests, except the new one, pass. I never leave the tests broken or

implement new functionality before writing a test for it first though.

�Why Should We Write the Tests First?
Starting to implement a feature by writing the test first is counterintuitive for most

people, so why should we do it anyway?

•	 The code is written with testability in mind. Because the unit tests

should test the smallest possible unit and avoid calling methods that

perform I/O, most unit tests need to use mocks, and for that the CUT

needs to reference its dependencies through interfaces. The way

most of us write our code normally does not do that and therefore is

not unit testable.

•	 Thinking about the tests first drives us to think and design the API of

the CUT in way that is easy to use. Often when people write the code

first, the resulting API is bound to the implementation rather than

being a nice and clean interface that hides all of the technical details.

Chapter 17 Unit Tests and TDD

413

•	 Making sure that the test we write fails at first, and passes after we

implement the CUT, ensures that we’ve written the test properly

(which is the answer I like to give to the common question: “should

we write tests for our tests?”). If for example, we forgot to write the

Assert statement, or asserted on the wrong thing, then the test may

pass before we implemented the CUT, which tells us that we did

something wrong.

•	 Developers are usually pressed to complete and deliver their work as

soon as possible. When we write the test after the fact, we’d probably

be pressed to complete it quickly and may cut some corners.

Especially if we didn’t write our code in a unit-testable manner but

already tested the functionality manually, we’d probably feel that it

won’t be effective to refactor the code and write the “right” unit tests

for it at this point. When we write the tests first, we’ll be less pressed

to cut these corners, because they drive development rather than

come as an afterthought, and also the tests prevent us from cutting

corners when implementing the CUT.

�The Real Challenges in Unit Testing and TDD
By now, in addition to knowing all of the mechanics that you need in order to write unit

tests, you also know the mechanics of doing TDD. I also explained to you the motivation

for writing the tests first. But as mentioned earlier, this only allows you to “read notes”

but not to “play Chopin” or master the practice of TDD for that matter. While you won’t

be able to master TDD by reading this book alone, I’ll first explain the reason why this is

so challenging, but then also give you some tips on how to get there somewhat faster.

�Main Challenges with Unit Testing
Most software systems, at least those that are important enough for writing tests for, are

built from large amounts of classes and methods with many interdependencies. Many of

these classes also perform I/O, depend on third-party libraries, and often make various

assumptions regarding one another (which are probably correct in most cases, otherwise

they would be bugs...). The way that most programmers write software, including

experienced and talented ones, typically does not adhere to the testability requirements of

Chapter 17 Unit Tests and TDD

414

unit tests. Almost any class and method that was not written with unit tests in mind needs

some decent refactoring effort before you can write unit tests for it. But refactoring without

the coverage of (unit) tests is also dangerous of course. Thankfully, Michael Feathers’s

excellent book Working Effectively with Legacy Code6 provides a wealth of hands-on

techniques and practices for doing small refactoring transformations safely for the sake of

making “legacy” code (i.e., code without testing) testable. However, besides reading that

book, it also takes practice to know what technique you should apply when. Below are

the most common challenges in my opinion when working with legacy code, and how to

refactor them. Naturally, Feathers’s book cover these techniques much more in depth.

�Main Challenges with TDD
While TDD promises to solve many of these challenges, it also imposes some challenges

of its own:

•	 It’s a very big mind shift to think about tests for each class and

method before implementing it.

•	 It’s very rare to start working on a truly greenfield project. That means

that virtually all code is “legacy” and was not designed with unit tests

in mind, which brings us back to the drawbacks of writing tests after

the fact. In fact, most greenfield projects start as a quick and dirty

POC (Proof of Concept) that gradually evolves into a real software

project. So. you really have very tiny chances to start a greenfield

project using TDD.

A common idea to resolve the second challenge, is to do it only for new features

added to an existing system. Generally. this is a good idea, and I strongly advocate it, but

it’s also not that simple, because the new code should usually integrate into the existing

code too, and this usually still requires us to refactor the existing code.

�More Specific Challenges
Behind the above-mentioned challenges lie many, more specific, technical challenges. Here

are just some them, which I found to be the most prevalent ones, and some hints regarding

the way to resolve them. If you’re not a programmer, you may want to skip this topic.

6�Michael Feathers, Working Effectively with Legacy Code (Englewood Cliffs, NJ: Prentice Hall, 2004).

Chapter 17 Unit Tests and TDD

415

�Big Classes and Methods

Often the important classes and methods, which are good candidates for unit testing,

are pretty big. When the project was young, these classes were probably pretty small,

but over time, more and more behavior was added to them and made them bigger. Such

a big class or method often do a lot of things, which makes testing just one aspect of it

very hard (this is often referred to as the “God Object” anti-pattern, and a violation of

the Single Responsibility Principle). In order to resolve this, you need to break the big

method or class into smaller methods and classes. The “Extract method” automatic

refactoring, which exists in most modern IDEs, helps a lot in that. But you need to think

about how to split the big method to smaller ones, and you’re likely need to perform

more refactoring than just “Extract method” in order to safely get to the result you want.

�I/O

As we saw in the previous example, in order to isolate the I/O operations in our code, we

need to refactor it and abstract it behind an interface, so we can mock it in our unit tests.

In order to isolate these operations, we should first extract them into their own methods,

and then take all related methods that perform I/O and extract them into their own class.

We then need to extract an interface from that class and pass it through the constructor

of the CUT that stores its reference to a field. The result should be similar to what we saw

in Listing 17-3.

While the test always passes the mock to the constructor, we should also fix the

production code that uses this class to work with the actual I/O class. You can do that by

leaving the default constructor (or the existing constructor that does not accept the new

interface as a parameter), and change it to call the new one that does take the interface

parameter. The constructor with the old signature (without the parameter) should

instantiate the new concrete class that actually performs the I/O, and should pass it as an

argument to the new constructor overload.

Alternatively (or later on), especially if the CUT is instantiated in the production

code only at one place, you can remove the old constructor, instantiate the new I/O

class before you call the constructor of the CUT, and pass the new instance of the I/O

class to it.

Chapter 17 Unit Tests and TDD

416

�Singletons

Singleton is a pattern described in the classic book Design Patterns: Elements of Reusable

Object-Oriented Software7 (AKA known as the “Gang of Four” or “GOF” book) back in

1994, as a way to restrict the instantiation of a class to just one object instance. However,

these days it’s usually considered to be an anti-pattern.8 Nevertheless, it’s still pretty

prevalent in many application’s code bases. In Chapter 9 I briefly mentioned that

Singletons prevent reuse, but I didn’t mention there that they also prevent testability,

especially of unit tests.

Whenever you write a unit test for a class or method that use a singleton, the internal

state of this singleton is preserved between different unit tests, which breaks isolation.

This means that you need to use the initialization and cleanup methods of the test to

somehow make sure that they reset to a well-known state before each test. But the more

severe problem is that often a code base that contains Singletons contains many of them,

and many of those are interdependent. These interdependencies are a fertile ground for

hidden assumptions that “all developers in the team know” (except those who don’t…).

Besides the high potential for bugs in such code bases, the code tends to be a tightly

coupled spaghetti of dependencies and hidden assumptions, which makes the code very

resistant to unit testing.

But if we only have one or two singletons that we want to isolate using mocks, we

can usually resolve that pretty easily. First, extract an interface out of the methods of the

singleton that the CUT uses. Then, in the CUT (which uses the singleton), create a field

from the type of this interface, and initialize it in the constructor, like we did in the case

of an I/O dependency. Now, wherever the CUT calls a member of the Singleton, replace

it with a call to interface using the new field. If you don’t have any hidden assumptions

about interdependencies with other singleton objects, then you’re good to go.

Note that if you have classes that use mutable static fields, and don’t implement the

singleton pattern, then your situation is even worse. But you can first refactor the class

that use these fields to use a singleton internally, (assuming they’re private or are used

only inside that class), then refactor the CUT to use the singleton instead of the static

methods, and then apply the previously described refactoring. In case these fields are

7�Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software (Menlo Park, CA: Addison-Wesley Professional, 1994), p. 124.

8�In the Software-Engineering Radio podcast, episode 215, around minute 56 onward, the authors
of the GOF book themselves discuss the problems with the Singleton pattern (http://www.
se-radio.net/2014/11/episode-215-gang-of-four-20-years-later/).

Chapter 17 Unit Tests and TDD

http://www.se-radio.net/2014/11/episode-215-gang-of-four-20-years-later/
http://www.se-radio.net/2014/11/episode-215-gang-of-four-20-years-later/

417

also public and are manipulated from other classes, then it’s a much more complicated

problem, because the code that manipulate them can be spread all over the code base.

In this case you should first find all the usage of these static fields and then move and

group the logic that manipulates them into the class where the field is declared. Only

then you can make it private and continue as described above.

�Instantiating a Dependent Object from the CUT

Every object needs to be instantiated by using the new operator and the object’s

constructor before it can be used. This is basic, and we do that all the time. But the

thing is, if we instantiate a concrete class (i.e., not an interface) inside the CUT, we can’t

isolate it in the test using a mock object. Because the CUT explicitly specifies which class

to instantiate, the test doesn’t have a chance to inject the mock object. For example,

suppose that some business logic class instantiates an object from the DAL (Data Access

Layer) that retrieves some data from the database, which it needs to process, and we

want to isolate this class in order to test the business logic class alone. Suppose that

this DAL object opens a connection to the database inside its constructor and closes

it on Dispose. In order to keep the connection to the database short, the DAL object is

instantiated only when needed, inside the relevant Business Logic (BL) method, and

then disposed right after retrieving the relevant data from the database. Currently we

don’t have a way to pass the mock object to the method, and refactoring the class and

passing the DAL object in the constructor is also not an option because we don’t want

the connection opened before we actually need to retrieve the data.

In order to resolve it, we should use the Factory design pattern. The Factory pattern

consists of an object that has a method that instantiates and returns another object. This

method is declared to return an interface that the created object should implement,

instead of the concrete class of that object. In order to mock the dependent object, we

need to extract an interface both from the DAL object and from the factory object that

creates it. Then we should inject the factory to the CUT as an interface through the

constructor and use this factory interface inside the BL method to instantiate the class.

Listing 17-7 shows a pseudo-code that can give you an idea for what this would look like.

Note that in the test we need to create a mock factory object that returns our DAL mock

object, and pass this factory to the constructor of the BL class.

Chapter 17 Unit Tests and TDD

418

Listing 17-7.  Pseudo-code for using a factory

 public interface IDataProviderFactory

 {

 IDataProvider CreateInstance();

 }

 public interface IDataProvider

 {

 Data RetrieveData();

 void CloseConnection();

 }

 public class BusinessLogicClass

 {

 private readonly IDataProviderFactory _dataProviderFactory;

 public BusinessLogicClass(IDataProviderFactory dataProviderFactory)

 {

 _dataProviderFactory = dataProviderFactory;

 }

 public void DoSomethingImportant()

 {

 // ...

 var dataProvider = _dataProviderFactory.CreateInstance();

 var data = dataProvider.RetrieveData();

 dataProvider.CloseConnection();

 // ... use data

 }

 }

�Mastering Clean Code and the SOLID Principles
As you can see, unit tests (whether written using TDD or not), require that almost no

class should have a direct dependency on another concrete class. This makes these

classes small and independent, and therefore modular and reusable, also often referred

Chapter 17 Unit Tests and TDD

419

to as loosely coupled. One of the biggest benefits of TDD is exactly that: it leads you to

write good, modular object-oriented code that tends to be easy to maintain. Because

of this, it is often said that TDD actually stands for Test Driven Design rather than Test

Driven Development.

However, because in most cases legacy code is a fact that we need to live with, it’s

not enough to let the tests guide us toward this design. We need to know how to write

loosely coupled code regardless of TDD. In addition, some people “succeed” to write

badly designed code using TDD too, ending not only with code that is hard to maintain,

but also with many unit tests that bind the CUT to that bad design and make it even

harder to change. While the “remove duplication” rule can prevent most of these cases,

identifying duplication is also a practice that one needs to master. Some duplications are

easy to spot, but others are more elusive.

Uncle Bob (Robert Martin) defined five principles that provide guidance for loosely

coupled design, known by their acronym SOLID (see sidebar). These principles make

it somewhat simpler to understand how to write loosely coupled code, but then again,

mastering these principles is not trivial either.

THE SOLID PRINCIPLES

Robert C. Martin, widely known as Uncle Bob, introduced in the early 2000s (in various

documents9), the following five principles that deal with managing dependencies between

classes in an object-oriented design, practically making these classes loosely coupled from

each other. These five principles are:

•	 Single Responsibility Principle (SRP) – A class should have one, and

only one, reason to change. In my words: classes should be small and

focus on just one thing. Any auxiliary behaviors should be extracted

to other collaborating classes.

•	 Open/Close Principle (OCP) – You should be able to extend a

classes behavior, without modifying it. Extending a behavior of a class

without modifying it can be done by overriding virtual methods, or

by depending only on interfaces that the client can supply, usually

9�In his website, http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod, there are links
to the major documents where these principles originally appeared.

Chapter 17 Unit Tests and TDD

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

420

through the constructor. The behavior can then be extended by

providing other classes that implement the required interface and

that extend the original behavior. Another way to implement this

principle is using events: the class fires events, and the collaborators

can register to these events to extend the original behavior.

•	 Liskov Substitution Principle (LSP) – Derived classes must be

substitutable for their base classes. In my words: neither the base class

nor its clients should be aware of any specific detail of derived classes

or even their existence. This means that adding or changing derived

classes should work without changing the base class or its clients. In

addition, when you access an object through an interface, you should

not rely on specific implementation details that you may know about

the classes that implement it.

•	 Interface Segregation Principle (ISP) – Make fine grained interfaces

that are client specific. In my words: if a class is designed to be used

by two (or more) different clients for different purposes, the class

should expose separate interfaces, one for each of these clients. For

example, a buffered memory stream object may expose separate

interfaces for a reader and for a writer, as the reader doesn’t need the

functionality of the writer and vice versa.

•	 Dependency Inversion Principle (DIP) – Depend on abstraction, not on

concretions. This means that the class in question should not reference

other concrete classes, but rather only interfaces that those classes

should expose. For example, for a BL class, instead of referencing a DAL

class directly, it should only reference and use an interface that the DAL

class exposes. This makes both of these classes depend on the interface,

but none of them depends on the other, and therefore can be changed,

extended, or replaced independently from the other.

Uncle Bob’s website (mentioned in the footnote) has links to full documents describing each of

these principles in detail. Also, in 2011 I wrote a series of blog posts10 about the relationships

between these principles and TDD.

10�http://blogs.microsoft.co.il/arnona/2011/08/26/tdd-and-the-solid-principles-
part-1-introduction/

Chapter 17 Unit Tests and TDD

http://blogs.microsoft.co.il/arnona/2011/08/26/tdd-and-the-solid-principles-part-1-introduction/
http://blogs.microsoft.co.il/arnona/2011/08/26/tdd-and-the-solid-principles-part-1-introduction/

421

�Mastering Refactoring
Even if you master the SOLID principles and can spot the most elusive duplications,

it’s still not enough. In order to master TDD and unit testing, you also need to master

refactoring. As mentioned above, refactoring is best done as a series of small and

safe steps that leave the code working. Martin Fowler has written a whole book about

this topic, called Refactoring: Improve the Design of Existing Code,11 but in order to be

effective, you should also master the available refactoring tools that your IDE provides. In

addition, once you master these techniques, you may come up with your own refactoring

techniques and may even be able to extend your IDE to perform these transformations

automatically, like the built-in ones.

�The Biggest Challenge: What to Test?
The challenges we’ve discussed up until now are pretty technical. But probably the

biggest challenge for doing TDD is to decide what we should test. If we really test each

and every class separately, abstracting it from all of its collaborating classes through

interfaces (and using mocks in the tests), then we might end up with loads of tests, but

many of them will be very technical and not directly related to a user scenario. While

TDD and unit tests promise to drive a design in which the classes are loosely coupled

and easy to maintain, these technical tests (e.g., tests that verify that specific arguments

were supplied to a specific method on a specific interface, or tests for a class that

handles a low-level data structure) end up being tightly coupled to the details of the

many interfaces that are created to satisfy the testability of these classes. When you want

to refactor the interactions between a few classes, you’ll need to change the interfaces

between them (and probably some of their implementations). Consequently, you’ll also

have to change most of the tests of classes that implement them or mock them. You may

then find out that these fine-grained unit tests not only are not helping you but even

hinder your maintainability!

This means that it’s not always effective to write unit tests with a test scope of a

single class, and sometimes it’s better to test a few classes together. The question then

becomes: How can I decide? The short answer is that it’s mainly a matter of practice and

experience. But below you’ll find some guidelines that will hopefully help you through.

11�Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts, Refactoring: Improving
the Design of Existing Code (Menlo Park, CA: Addison-Wesley Professional, 1999).

Chapter 17 Unit Tests and TDD

422

While all of these challenges may look daunting, mastering all of the above-

mentioned challenges, makes you a better programmer, even without TDD. But TDD

also becomes arguably the most powerful tool in your tool belt, as it leads you to write

cleaner, more maintainable code, which you can also easily verify to do what you expect.

�TDD the Way It Was Meant to Be
In fact, no formal definition of unit tests that I’m aware of, especially by the Extreme

Programming (XP) thought leaders like Kent Beck and Martin Fowler, says that a

unit tests (or any test done in a TDD fashion) must be of a single method or class, but

somehow this has become the common notion. As Martin Fowler tells in his blogpost

titled UnitTest12 and also in the “Is TDD Dead?” series mentioned earlier, ever since

they first came up with this idea of unit testing and TDD, they were not concerned so

much about isolating every class, and mostly tested the collaboration among a bunch of

classes. They only used test doubles (mocks) from time to time when it was awkward to

test it with the real collaborators.

Note  Martin Fowler refers to tests of a single class that use mocks for all other
classes as Solitary Tests and the advocates of this style of tests as “mockist style
xunit testers,” while to tests that include few classes together as Sociable Tests,
and to their advocates as “classic style xunit testers.”

In fact, when you remove the restriction that a unit test can only test one class, you

find that TDD with “sociable” unit tests is very similar to ATDD, except maybe for the

following nuances:

	 1.	 In TDD, usually the person that writes the tests is the same

developer that implements the code. However, TDD advocates

usually also advocate pair programming, so in fact you can say

that the two persons that write the tests are the same persons that

implement the code together.

12�https://martinfowler.com/bliki/UnitTest.html

Chapter 17 Unit Tests and TDD

https://martinfowler.com/bliki/UnitTest.html

423

	 2.	 The tendency is to choose somewhat smaller scopes than you’d

likely to choose in ATDD, and the emphasis on faster tests and

tighter feedback loop is stronger.

�Outside-In vs. Inside-Out Approach
The second nuance is also related to another kind of style that different practitioners

have: the “outside-in” approach claims that you should start from broader-scoped tests

that cover the scenario closer to the user’s perspective, and fill in more details using

more fine-grained (smaller-scoped) unit tests. The broader-scoped test may keep failing

until all of the smaller-scoped tests pass.

The “Inside-out” approach claims that you should start from a narrow-scoped unit

test, which covers the essence (business logic) of the scenario, and then write more tests

that stretche the scope more widely until the entire user scenario is implemented. In

fact, you can refactor the narrow-scoped test code, extract all calls to the SUT to virtual

methods in the test class, and then derive a new test class for the broader-scoped test

and override these virtual methods to invoke the same behavior from a broader scope

(e.g., through REST API, and even through Selenium). This is actually an implementation

of the Abstract Test Scope pattern described in Chapter 6.

In my experience, most features should start from a user story whose behavior

is relatively simple and straightforward, and mostly only moves some data from

one place to another, possibly performing some pretty simple manipulations on

that data, while later user stories mostly thicken the internal business logic of that

feature, which gradually makes it more complex. In these cases, there’s not much

justification to start with a narrow-scoped unit test, as the CUT will be pretty simple

(especially if there’s not much manipulation of data). The larger-scoped test is

justified as it can show that the data flows correctly throughout the system. As later

user stories dealing with the same feature make the internal business logic more

complex, and as we already have tests that verify the data flow, then we can focus our

efforts on covering that business logic using smaller-scoped unit tests. If we do it this

way, we’d typically end up with many unit tests and fewer integration and system

tests, which adheres to the test pyramid paradigm. But that does not mean that it’s

always like that, and you shouldn’t aim to form a pyramid but rather choose the

appropriate scope mainly on a case-by-case basis.

Chapter 17 Unit Tests and TDD

424

�Summary
If we don’t write our code with Unit Testing in mind, then chances are that it won’t be

unit testable as is. In order to make it unit testable, we need to refactor it and extract the

external dependencies and I/O operations outside from the CUT to external classes and

reference them through interfaces. Doing it properly requires some skills that we need to

master. Doing TDD helps direct us in the right way but does not solve all of the problems,

and practice and experience are needed in order to master it. But once you master these

techniques and TDD itself, it will improve the maintainability of your code greatly and

make you a better programmer. When you do it properly, you’ll probably realize that

TDD and ATDD are pretty much the same thing after all.

Chapter 17 Unit Tests and TDD

425
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5_18

CHAPTER 18

Other Types of
Automated Tests
All of the chapters so far have dealt only with functional tests. But there are a few other

types of automated tests, and this chapter covers the most common ones.

�Performance Tests
The purpose of performance tests is to measure the time it takes for the system to

complete various operations. Usually the reason to test it is that the performance of

the system greatly affects the user experience, and sometimes it even maps directly to

revenue, as in the case of e-commerce websites that have numerous competitors, which

users can easily switch to if they have a bad experience.

Note  Some people confuse Performance Testing with Load Testing, which tests
how the system handles many concurrent users. While these types of tests are
somewhat related, they serve different purposes and use different techniques.
Load testing is discussed later in this chapter.

�Measuring Performance in Production
Most web applications, especially those hosted in the cloud, can use the canary releases

paradigm (mentioned in Chapter 5), where each release is first distributed only to a

small portion of the users (can be a distinct group of users like opted-in Beta testers, or

it can be just arbitrary users selected randomly by a load balancer) , and gradually takes

426

over the older release. In this case, you can avoid having extensive performance tests, as

you can measure the actual performance of the users directly. In business applications,

sometimes you can first distribute the application only as a pilot for one team, on which

you can measure the performance and gradually improve it, before you extend the

distribution to the entire organization.

Note that in web and client/server applications, the time an operation takes is

combined from the time the client processes the user action and prepares the message

to send to the server, the time it takes the message to be sent from the client to the server,

the time it takes the server to process and handle the request and prepare the response,

the time it takes the response to be sent back to the client, and the time it takes the client

to process the response and render the result on the screen. This description is even

pretty simplistic, as there can be multiple messages sent between the parties and some

intervals may be overlap or be completely parallel. In addition, these intervals can be

broken down to more granular ones. Figure 18-1 shows the timing intervals of a simple

client/server operation.

If you want to collect performance statistics of actual user operations in production,

and the client-side processing time may be significant enough to measure, then you have

to instrument the client to measure and collect this data and send it back to the server.

There are many sophisticated monitoring tools these days that allow you to analyze,

query, and drill down the performance both of the client side as well as of the server

side. You can find not only which operations take long time, but also the exact scenarios

in which it happens, and how frequently.

Figure 18-1.  Timing intervals of a client/server operation

Chapter 18 Other Types of Automated Tests

427

But not all applications lend themselves well to canary releases, as some applications

must be performant on their first release or may not have so many users to gather

statistics on. For example, medical applications that should pass the FDA certification

before going to production don’t have the privilege to make these rounds of measuring

the performance in production and fixes the bottlenecks before going live. Another

example where measuring performance using tests can still be very important is in

applications that should be used mainly in rare emergency situations. In most cases

where canary releases are not feasible, regular dedicated performance tests are needed

before going to production.

�What Not to Do
A common misconception about measuring performance is that you can leverage the

existing functional tests to measure the performance of the operations it performs.

Indeed, technically this is possible, and sometimes even very easy, especially for HTTP

API-based tests, where the time between each request to its response can be measured

automatically and seamlessly and saved to a database. While indeed this way you gather

a lot of performance data, it doesn’t help you much in making reasoned decisions about

the performance of the system. In addition, when the measurement is not as transparent

to the tests as with HTTP API-based tests, mixing between testing functionality and

testing performance often makes the test code more complex and less maintainable.

The main reason that measuring performance as part of functional tests is not so

valuable is that functional tests often run in isolated, sterile environments that don’t

reflect the real production environment. But in order to not just gather data, but really

test, you need to define an expected result – just like in functional tests. The difference

though is in the way you define the expected result.

Note that often people think that they can still leverage the performance data

measured by the functional tests and define the expected result (regarding the

performance) as the threshold on the percentage of degradation in performance

related to a previous build or version. In other words, the tests will warn them when the

performance of each operation was significantly worse than in the previous build. There

are a couple of main caveats for this idea:

	 1.	 There can be many factors that affect the measured time of

an operation. Without considering all of these factors in the

tests, there can be many false positives, which makes this data

unreliable.

Chapter 18 Other Types of Automated Tests

428

	 2.	 The tests themselves can be changed to do things differently, in

order to improve the reliability or the maintainability of their

functional aspects, without taking into consideration the effect

on the performance measurements. Taking these effects into the

considerations can conflict with the maintainability and reliability

of the functional tests so that’s not the solution.

�Defining the Expected Result
In order to define the expected result, you should first decide what’s the operation that

you care to measure the most and in which scenario. Note that the same operation, like

check-out from an e-commerce site, can go faster or slower according to the number and

the type of items in the shopping cart and other similar factors.

After defining the operation that you want to measure and the scenario in which it’s

being used, you should define the environmental conditions under which the test should

run: on which hardware profile (number of CPU cores, memory, type of hard drive, etc.),

networking profile, size of the database, etc. While using the exact environments as in

production is best in terms of the accuracy of the measurement, it’s not always feasible.

This can be because the hardware used in the production environment is too expensive

to be duplicated just for testing performance, or because the application is intended to

be installed on customers’ hardware (be it a server, a desktop, or a mobile application)

that can have a wide variety of hardware profiles and capabilities that you don’t have

control over. In these cases, you may even want to have multiple environments to

measure performance on some of these different hardware profiles.

Note that Virtual Machines (VMs) usually share physical resources with other VMs

on the same host. This often adds significant “noise” to the measurement, as another VM

can suddenly make use of a lot of resources, leaving to the tested application only a small

portion and thus affect its performance. Therefore, it’s preferable to configure the VM

with minimal allocated resources that can’t be shared with other VMs.

Lastly, the thresholds of the expected performance should be defined. Unlike

functional tests where you run each test once and determine whether it passed or failed,

with performance tests you typically have to run the same test a few times, or make a loop

inside your test that invokes the tested operation, and gather a few results. If you visualize

the performance results on a graph (e.g., using Excel), you should see something similar to

a bell curve (actually a gamma distribution as described in Chapter 13, but you don’t have

to care too much about the mathematics of that). The expected results should be defined in

Chapter 18 Other Types of Automated Tests

429

terms of the thresholds in which some high enough percentage of the results don’t exceed a

specified duration. For example, you can define that if at least 90% of the results were under

five seconds, then the test should pass. You can also calculate the mean or the median, but

these are usually less important. By the way, this is how typically service-level agreements

(SLAs) are defined. If your company obligates to a specific SLA regarding the performance of

the application, then you should simply use these numbers. If not, you can define together

with your product owner (and your team) these thresholds and make them your internal

“SLAs,” upon which you decide whether it’s appropriate to release or not. In case you have a

continuous delivery (CD) pipeline, you can make this test a part of its gates.

�Reusing Code Between Functional and Performance Tests
While I advised against using the same tests both for functional and performance tests,

I do advise you to reuse their common code. In fact, as performance tests typically

perform operations that are used also in functional tests, then it makes a lot of sense to

reuse the relevant common parts.

�Investigating Performance Bottlenecks
There are a whole lot of books on this topic alone, but as an introduction to this topic,

it’s worth mentioning that there are profiling tools that allow you to analyze and drill

down how much time each method call has taken, how long the database transaction

took (and why), what was the network latency, etc. Sometimes analyzing these results

can be straightforward, but other times it can be pretty complex. But anyway, beware

of premature optimization! Recall Donald Knuth’s quote from Chapter 15: “premature

optimization is the root of all evil.” Don’t assume you know where the bottleneck is until

you measured and performed a root cause analysis.

�Perceived Performance vs. Actual Performance
It’s important to note in the context of performance, experts often distinguish between

actual performance and perceived performance. While the actual performance is

easier to measure, the perceived performance is what’s important in the context of user

experience. For example, if the application takes five seconds to retrieve a bunch of

data, and then it shows it to the user all at once, it can seem longer than if it takes seven

seconds, but the most important data is presented after two seconds, and only the rest of

the details appear after additional five seconds.

Chapter 18 Other Types of Automated Tests

430

�Load Tests
While load tests are related to performance tests (and many people get confused

between them for that reason), it measures a completely different thing. Load

tests measure how much hardware resources the server uses for a given amount of

concurrent users. The test can simulate the maximal amount of expected users if it’s

not too high, or only a percentage of it, which can then be used to extrapolate in order to

assess whether the production environment has sufficient resources to handle the full

load, or how many resources (e.g., number of servers) are needed to handle full load.

Note that testing only a percentage of the maximal load and extrapolating the results

is less accurate, but sometimes is the only feasible way. Load tests should also ensure

that there’s no single bottleneck that adding more hardware resources cannot solve, for

example, due to bad architecture. Note that load tests are only relevant for servers, as

clients don’t need to handle multiple concurrent users.

Like in performance tests, this type of test becomes less relevant in the cloud era,

as resources can be dynamically spun up or down according to real-time production

monitoring measurements of the utilization of the resources. However, there are still

scenarios where these tests are important, mainly:

•	 When going live cannot be done incrementally, as the site must go up

for a particular event.

•	 When not using the cloud or even a private cloud, or when using

special hardware resources. This is especially relevant for older,

“monolithic” applications.

•	 In fact, in the first case, the load tests can be done as a one-time

effort, without having to add the load tests to the CI/CD pipeline. But

the ideas are pretty much the same.

�How Load Tests Work
There are various tools for load testing, with different features and advantages (most

known are JMeter, SmartBear’s LoadUI Pro and LoadComplete, Visual Studio Load

and Performance, LoadRunner and Gatling), but the basic idea is the same. You either

record or write tests that send requests to the server, and the load-testing tool simulates

many concurrent users running in parallel, by running the tests from different threads or

processes on the same machine.

Chapter 18 Other Types of Automated Tests

431

Note that the test machine itself should be pretty powerful itself in order to run so

many threads or processes, and beyond a certain number of concurrent simulated users

(according to the power of the test machine), you may have to use more than one test

machine (agent) in order to simulate the desired load. These days it’s also common

to run these test agents from the cloud, to simulate load from different geographical

regions. Note that the tested application itself doesn’t have to run on the cloud in order

to use the cloud for running the load test agents. Another thing to note is that there’s

no point in running the client application, as it will only take resources from the test

machine without generating more load. Therefore, it is better that the test sends the

requests and receive responses directly and not through the client (e.g., with Selenium).

However, sometimes the costs of writing and maintaining separate tests for the server

side just for the sake of load testing are not justifiable, and reusing client-side functional

tests, or at least their infrastructure, is nonetheless the preferred choice.

�Defining the Expected Result
As always, before implementing any kind of automated tests, we first need to define our

expected results. The expected result of load tests is typically defined to be that the server

can handle the maximal expected number of concurrent users successfully. But there’s a

lot more to it:

•	 What’s the most common operation that these users perform?

•	 What other operations users are expected to perform and what’s

their distribution in a given moment? For example, we can say that

in an e-commerce website we expect that in a given moment, 60% of

the users are searching and browsing for products, 25% perform the

checkout process, 10% are new users that are currently registering to

the site, and another 5% are sending “contact us” requests.

•	 How long a typical user waits between one operation and the other?

•	 What is the expected response time for each request?

•	 What percentage of error responses or timeouts is acceptable? The

desirable answer to this question is always 0 obviously, but this

is very rarely achievable. Therefore, it’s important to define this

threshold realistically

•	 Etc.

Chapter 18 Other Types of Automated Tests

432

Note that all of these parameters are about the users or the interaction of the

server with the client, but similarly to performance tests, we should also define the

characteristics of the server (or servers) that should handle the load. Generally speaking,

the success criteria for a load test is that the server continues to operate and serve users

in the expected response time and percentage of errors.

�Defining the Thresholds

Because it’s not always feasible (or simply too expensive) to have a load test environment

that allows for the actual maximal load that is expected in production, typically the

load is tested on a smaller, less powerful environment with a proportionally lower load.

Moreover, we want to run the test for a period of time (usually a few hours) to make sure

that the system’s resource utilization is stabilizing and not increasing, under a constant

load. Memory leaks, which is a term that describes the situation that memory usage

increases over time with for no justifiable reason, is the most common type of bug that

cause an increase in resource utilization. But it can happen with other resources too

(disk, network, CPU, and more). For these reasons, we usually don’t settle only for the

criteria mentioned above, but also want to measure the resource utilization, like CPU,

memory, and other health metrics, over time, and make sure that they remain under a

certain threshold. Some of the load testing tools have these metrics built in, but normally

the production, and production-like environments where the tested application runs,

should employ health and diagnostics monitoring tools anyway.

Because the load test agents themselves are stressed when running the tests, it’s

important to monitor their health metrics too. If we see that they are nearing their limits,

we should consider adding more agents or more hardware resources to the existing ones,

to prevent the agents themselves from crashing.

�Creating the Tests and Their Environments

In order to know what these thresholds should be, we need to first measure those at

least once as a reference. As mentioned above, sometimes we only want to run load tests

once in order to measure these things. But even then, if you’ll try to run the test for the

first time with all of the criteria mentioned above and with the maximum load, you’re

likely to fail pretty fast. There can be many factors that limit the scale that the test tries to

reach, and you need to identify and remove those limits first. For example, if the test was

created by recording the network traffic, or it uses Selenium, the test may cause requests

Chapter 18 Other Types of Automated Tests

433

to be sent to third-party services. These requests are needed by the real application (for

example, the website needs to retrieve fonts from Google Fonts), but because they are

sent from the same machine (the load test agent) many times in a very short period,

these third-party services may identify these requests as a denial-of-service (Dos) attack

and block further requests that will cause the tests to fail. Similar issues can be caused

by firewalls and other security mechanisms in the organization, by bugs in the tests, by

limitations of the test or production environment, etc. Therefore, we would usually try to

run the tests first for a small number of users, and for a short period of time, and as we

identify and fix these issues, we can add more and more users and lengthen the time of

the test. Sometimes during this process, a bottleneck in the SUT’s is identified, which is

in fact a bug that prevents scalability, and needs to be fixed.

If it’s desired to add the load tests to the CI/CD pipeline, then after the first time

the test has passed and the environment is prepared, it’s possible to rerun the same

test cycle against new builds. However, if you first run the test against the production

or a preproduction environment that you may want to use for other purposes, then you

need to construct a dedicated environment for the load tests first. This environment can

be less powerful than the production environment, but in that case the thresholds and

expected load should be adjusted proportionally. Note that like functional tests, these

tests will need maintenance as the application evolves.

�Combining Performance with Load Tests
When you first reach the desired load, it’s useful to open a browser and try to use the

website manually, to experience the impact of that load on the perceived performance.

But if you want to add the load tests to the CI/CD pipeline, then it can be useful to

run the performance tests alongside the load tests, in order to make sure that the

performance characteristics are still within the expected threshold even when the

system is loaded.

The performance of an operation in a client/server (including web) application is

combined from the processing time on the client + communication time + processing

time on the server. It’s important to understand that the client-side processing is not

affected whatsoever from the server load, and the communication time also shouldn’t

be affected as long as the server’s bandwidth is not saturated, in which case the load test

should fail. Therefore, if you can reliably infer from the architecture of your application

that it’s performance is affected mostly from the client-side processing, then there’s

Chapter 18 Other Types of Automated Tests

434

no point in running the performance tests under load, but if you know or suspect that

the time an operation takes is mostly affected by to the server-side processing, then

there’s a lot of value doing so. If the client-side processing is negligible or is constant

and not expected to change over time due to future developments, then it suffices to run

performance tests as server-side only tests.

�Running Tests in Production
Until a few years ago when someone suggested to me to run tests in production, I would

ask: What’s the point? If the tests pass in CI, why would they fail on production? But over

time I realized that there are some good reasons to do that.

�Testing Deployment
In theory, your CI/CD pipeline should be fully automated and reliable and should

prevent you from deploying a build that destined to fail. But reality is always more

complex. Even if the CI/CD pipeline is fully automated, new features may require new

dependencies, the pipeline’s scripts themselves may have changed, and database

schema updates is always a tricky part that can be error prone. In addition, in systems

that compound from several services that are deployed independently, or systems

that need to interact with other systems, it could be that the version of one of the other

services or systems that were used in the test environment is not the same as the one

currently in production. This could happen for several reasons:

•	 The test environment has a newer version of a related service that

was not yet deployed to production.

•	 The test environment used the same version of a related service that

was in production when the tests ran, but then a newer version (that

was tested on another environment) was deployed to production

before our system was.

•	 An external service was updated. Even though such external services

should normally maintain backward compatibility, we may run into

an edge case in which compatibility was broken.

Chapter 18 Other Types of Automated Tests

435

Therefore. running a few tests just after deploying a new build can give us confidence

that the system is functioning properly and that nothing was broken during the

deployment

�Testing the Health of the Production Environment
The second reason for running tests in production is to monitor the health of the

application and of the production environment. There are many monitoring and

diagnostic tools these days that give the DevOps (or just Ops) guys a pretty clear picture

about the health of the system in production. While these tools are invaluable, they are

not aware of the expected functional behavior of your system. You can usually customize

them to measure some parameters that indicate it, but it may not be as reliable and as

easy as running a test that performs a selected and known business scenario routinely

and reports in case it failed.

�Which Tests to Run
If you’re about to start planning a new automation test suite and considering to use

them in production, I advise not to mix these concerns. For CI you should first consider

the isolation aspects that may not fit so well in production, like the use of simulators

or controlling the configuration of the system. However, for production tests, you must

ensure that the tests don’t do any harm to real data or invoke business processes that you

don’t want them to invoke because they may have unwanted consequences in real life,

like ordering more goods from suppliers.

Having said that, sometimes existing functional tests’ isolation requirements make

them suitable for production too as is. But you would probably want to select only few of

them specifically and make sure that they’re safe for production. If you’re not sure, want

to be on the safe side, or you know that the isolation requirements of your functional

tests don’t fit the production environment, then you should write a dedicated suite of

tests for that purpose. Clearly you can reuse some of the infrastructure of the tests.

Like in performance tests, we’d probably don’t want to send an alert to the DevOps

guy whenever a test failed once. Unlike in CI, where we should run the tests in a sterile

environment, here we probably want to give the test another try or two in case of a failure

and only then send the alert.

Chapter 18 Other Types of Automated Tests

436

�Cleaning Up Test Data
Most tests create some data when they run. It may not be much in terms of storage, but

because these tests run periodically, this data can affect statistics and reports about

users. One way to do clean up this data is using the cleanup mechanism described in

Appendix B. Otherwise, it’s better to create a batch job that deletes this data once a day

or few days. But in order to delete that data easily, we must distinguish it from other

real-user’s data. We can decide on a known pattern, like prefix everything with “AUTO,”

but we also need to know from which tables to delete the data. In other words, it may be

feasible but you need to give some proper thinking to make it right.

One more thing to pay attention to is to ensure that when the job that deletes the

data runs, it doesn’t delete the data of a test that is currently running; otherwise this test

will probably fail. This can be achieved either by synchronizing this job with the job that

runs the tests: after the test has completed, pause the test’s job, run the job that deletes

the data, and then resume the tests job. Alternatively, you can make the job to delete

only data whose date is yesterday or older to ensure that you don’t affect any test that is

currently running.

�Visual Testing
Visual testing grabs a lot of attention lately. In general, visual testing is a way to test the

actual image presented on the screen, much like the user sees it, against a previously

saved template. While Selenium and other UI automation tools test the application from

the UI layer, they don’t verify that the UI appears correctly. The colors, sizes, shapes, etc.,

of the elements are not tested, even though they have a significant effect on the usability

and user experience. Obviously, the reason that these UI automation tools don’t rely on

the exact location, size, colors, etc., is that these things can change more frequently and

thus fail the test. But sometimes verifying the appearance of the UI can be very valuable,

in addition to regular functional tests.

Currently the dominant product in this area is Applitools Eyes. The Sikuli open

source project uses visual object recognition, but it uses it more as a way to identify

elements rather than strictly for visual testing. Another new tool in this area is

Chromatic, though it also takes a different approach that is based on comparing the look

of individual components and is specifically tailored for the React framework.

Chapter 18 Other Types of Automated Tests

437

Note  Because strict pixel-by-pixel image comparison is very error prone due
to issues like aliasing and resolution, these tools use smarter image comparison
techniques that can compensate for these limitations.

�The Visual Testing Workflow
Visual testing provides an API that you can integrate with your functional tests to take

screenshots in relevant moments in the test, either of the entire page or of a specific

element. The first time your run the tests, these images are saved as a reference.

The following times you run the tests, it compares the screenshots with their

corresponding reference images and reports the differences. It also marks the exact

locations of the differences on the image. For each of these differences, you can then

choose to exclude their region from the next comparison, to update the reference image,

or, if the difference is a bug, then you can choose to keep the original reference image as

is (and fix the bug in your application).

Note that the amount of attention and maintenance that this workflow requires

varies (examining the differences and updating the baseline), mainly according to the

frequency of UI changes, and the number of screenshots that the tests take. Though

as we already know from Chapter 2, if it doesn’t change then there’s probably not

much value in testing it. I believe that in the future these tools will be smart enough

to recognize the same type of change in many places, so when you choose what to

do regarding one difference, the tool will suggest to you to do the same for all similar

differences, reducing the maintenance costs significantly. Though I believe that even

then, occasionally an all-encompassing change to the appearance of the page (which

can be done by a pretty small change in CSS) may affect all of the reference images, and

they all should be taken anew.

�Visual Testing and Cross-Browser/Cross-Platform Testing
One area where visual testing really shines is cross-browser and cross-platform testing.

Today the sheer number of browsers, operating systems, and moreover, mobile

devices, is tremendous. Performing manual visual testing on the entire matrix of tests

and platforms in short release cycles is far from feasible. While applications that are

Chapter 18 Other Types of Automated Tests

438

designed to be cross-browser and cross-platform should look the same everywhere, they

don’t always do. These different browsers and operating systems have each a different

rendering engine that can have an effect on the outcome. Sometimes small variations are

expected, but other times these small variations in the rendering engines are multiplied

and amplified to cause a real bug. Thankfully, Applitools Eyes and similar tools allows

you to control the level of accepted variations, which can overcome the legitimate

differences between browsers from one hand, but still catch more severe rendering

problems on the other hand.

�Installation Tests
Some applications that are designed to be installed on the customer’s machine have a

complex dedicated installation program. While the need for such installation programs

is gradually going down (as most applications today can be installed simply by copying

a folder or extracting a Zip file), there are still applications that require them. These are

typically client or server applications that interact with special hardware or software and

need to install device drivers, or they require complex configuration processes in order

to operate.

�Approaches for Installation Tests
You can look at these installation programs as separate programs that you need to test

on their own. The problem is that the output and the purpose of the installation program

do not stand on its own (i.e., no one uses the installation program for any other purpose

other than to use the installed application). There are a few approaches to testing

installation programs.

�Testing the Direct Outcome

The direct outcome of an installation program is that the relevant files are copied

or extracted to their correct locations, and that certain configurations are saved in a

configuration file, the Registry, or alike. Accordingly, you can write a test that invokes

the installation program and then verifies that the correct files and settings are written to

their correct locations.

Chapter 18 Other Types of Automated Tests

439

There’s an important drawback to this approach though: maintaining the list of

required files and settings can be cumbersome and error prone and make the test very

fragile. The fact that the test passed does not mean that the application is installed

correctly. It could be that all of the expected files were copied and settings were written,

but the application cannot start because it requires another new file or setting that the

test was not aware of. Similarly, the test may fail because a file is missing, but that file is

not really needed anymore.

�Installing the Application Before Running All Tests

The second approach is to install the application once on the test environment before

running the tests. The preferred way to do that is to use a VM with a clean snapshot.

Before the test run starts, it reverts the VM to that clean snapshot, runs the installation

program, and then starts to run the tests. If the installation was not successful, probably

all of the tests, or at least most of them, would fail. The failure would typically be pretty

fast because the application won’t even start, but you can also condition the run of

most of the tests on the success of the first few sanity tests. If all or most of the tests have

passed, it probably means that the installation was successful.

The drawback of this approach is that it only verifies one positive scenario of the

installation program. It does not verify all of parameters and their combinations, error

conditions (e.g., out of disk space), different platforms, and the existence or inexistence

of prerequisites, etc.

�Testing That the Application Can Run Correctly After Every
Installation

The last approach treats testing the installation application like testing any other

application, but in order to verify that the installation was successful, it runs one sanity

functional test. Some more specific tests of the installation program may need to also run

a more specific functional test as a verification. For example, if the installation program

lets you configure a mail server that it uses to send reports, you may want the installation

test to run a functional test that verifies that the report is sent (and received) by email.

Naturally, negative tests should not run any functional test but need to verify that the

correct error message is displayed, and possibly that the installation folder does not exist

after the installation has failed.

Chapter 18 Other Types of Automated Tests

440

This approach allows to test the installation program with different parameters and

preconditions. Like in the previous approach, you should also use a VMs with a clean

snapshot for these tests, but in addition, you can use different VMs to test the installation

on different operating systems and use snapshots for testing different preconditions. You

may even need several groups of VMs to test different network topologies, like having the

database and server on different machines.

While this approach is theoretically preferred, it’s the most complex and expensive

to write, and takes the most time and compute resources to run. Of course, you can

also mix and match the different approaches in order to optimize the balance between

reducing the risk and reducing the costs.

�Testing the Installation Through UI or Through Silent
Install
Most installation programs allow us to run them interactively, with the typical

installation wizard, but also to run them with no UI, where the parameter values

are specified as command-line arguments or through a dedicated file. Running the

installation silently requires no UI automation technology, which is typically faster and

easier to maintain. But sometimes you may want to test the installation UI too, in which

case you must use UI automation.

�Testing Uninstall
Usually the same program that is used to install an application is also used for uninstall.

Testing the uninstall feature is pretty similar to testing the installation, though you

should obviously first install the application before you can uninstall it. The expected

result of uninstall should usually be that all files were deleted, but it can get somewhat

more complicated than that. Sometimes files that the user created or even changed (e.g.,

configuration files) need to remain. And sometimes files are locked and will only be

removed after restarting the system. In order to test the last scenario properly (though

other scenarios may also require it), the test should be run from a machine other than

the installation machine, in order to be able to restart it, and check that all the files were

deleted after restart.

Chapter 18 Other Types of Automated Tests

441

�Upgrade Tests
If installation tests sound complicated, then upgrade tests are much more. There are two

additional dimensions to the test matrix over for upgrade tests over installation tests:

	 1.	 The source version – upgrades are not always performed from

the latest version. Users can skip one, two. or more versions when

they upgrade. In addition, each major version can have few minor

versions and even a few Beta versions.

	 2.	 User data – while the user was working with the old version, he

probably created some data (in the form of files, database records,

etc.). He may also change some configuration data to customize

the system to his preferences. When he upgrades, he would

probably expect to be able to use his data with the new version

and preserve the configuration values, given that they’re still

relevant in the new version.

�Approaches for Upgrade Tests
Similar to the installation tests, upgrade tests can be tested using the following

approaches.

�Testing the Direct Outcome

Similar to the corresponding approach for installation, after installing the old version

and optionally creating or changing some data, the test should run the upgrade program,

and verify that the new files were copied. Similarly, if new configuration entries should

have been added, then this should be verified as well. It’s possible also to test that the

data that was created or changed after installing the old version is still intact (or has

transformed to a newer format as necessary).

�Upgrade the Application Before Running All the Tests

Similar to the corresponding approach for installation, we perform the upgrade only

once before running all the tests. We can either explicitly install an older version, run

some functional tests in order to create some data, then upgrade, and then run the

functional tests again; or we can preserve the environment from the previous build

Chapter 18 Other Types of Automated Tests

442

or version, and directly upgrade and run the tests. Note that if we upgrade from the

previous build, and some tests (or the installation itself) failed, then the environment is

no longer clean, and we may not know if failures that we experience after the upgrade

are trailing errors or new ones. In addition to the downsides of the corresponding

installation approach, testing upgrade this way pretty much misses the point of testing

the upgrade of the data. Because functional tests typically create the data they need (for

isolation purposes), then they never verify that data that was created in the previous

version is still usable.

�Explicit Upgrade Tests

This is also similar to the “Testing that the application can run correctly after every

installation” approach, but here it’s not enough to run a sanity test in order to verify that

the new version is installed correctly. Most tests need to create or change some data

before the upgrade and run a more specific test after the upgrade to verify that the data is

still usable. In addition, while in the installation tests we could reuse existing functional

tests, here we probably can’t, because we need that the test that runs after the upgrade

will verify the data that was created by another test that was run before the upgrade.

To sum up the upgrade tests topic: the test matrix and the complexity of

implementing these tests properly is huge. Therefore, trade-offs must be made according

to risk and cost analysis in order to decide what to test.

�Testing AI, Statistical, and Non-deterministic
Algorithms
These days the term AI (Artificial Intelligence) starts to become very popular, if not to say

the next buzzword. The term “AI” itself is very loaded with many philosophical meanings

and implications, which makes it too broad for any effective discussion. A somewhat

more specific term is “machine learning,” which means that the machine can “learn

by itself” without being specifically programmed to solve a specific task, by looking at

previous examples or by looking for patterns in the data. One particular technique for

machine learning that started to gain a lot of traction lately is “deep learning.” Deep

Learning is based on a technique called Artificial Neural Networks (ANN) that was well

known for several decades and was pretty widely used in areas like handwriting and

speech recognition. But Deep Learning also takes advantage of tremendous compute

Chapter 18 Other Types of Automated Tests

443

power and access to vast amounts of data available on the Internet, which makes it

capable of solving new problems that were not considered to be solvable by computers

before. A canonical example for this technology are the computer vision offerings of the

big cloud vendors (Mainly Microsoft Azure, Google Cloud Platform, and AWS) that can

recognize the content of any arbitrary image and tell you what’s seen in it. The common

thing about all of the “AI” and deep learning techniques is that they heavily rely on

statistics.

There are seemingly two main challenges with testing algorithms that are based on

statistics:

	 1.	 You need a lot of data in order to get a meaningful result.

	 2.	 The exact results may vary with small changes (and

improvements) to the algorithm.

In addition, some of these algorithms make use of random numbers, which makes

them nondeterministic.

�Approaches for Testing Statistical Algorithms
Following are few approaches to consider when testing an application that makes use of

statistical algorithms. As always, you can mix between them as appropriate.

�Mocking the Algorithm Altogether

Most systems that make use of statistical algorithms contain the algorithm in one

specific component. While this component typically contains the core value of the

product, it is usually wrapped with a lot of other components that contain normal

application code and business logic. When we want to test that business logic we’d often

hit a challenge trying to define the expected result, if that result relies on the outcome of

the algorithm.

For that reason, it’s often wise to mock the component that contains the algorithm

altogether when we want to test the result of the business logic of the application. Note

that the mock doesn’t have to simulate the logical behavior of the algorithm, and it can

even return absurd results. For example, suppose that our application allows the user to

upload a few images and to specify a name of an object to look for in those images, and

the application tells the user how many of the images contain the specified object. For

example, the user might upload four images, three of them containing a cat

Chapter 18 Other Types of Automated Tests

444

(with possible other objects in the image), and one of a car, and specifies the term “cat”

as the object to look for in the images. The user should then get the result “3” because

only three images contain a cat. Let’s assume that the algorithm we’re using accepts only

one image at a time and returns a list of objects that it recognizes in the image. The mock

should not care what’s actually in the image and therefore you can feed it with the same

1x1 black pixel image all the time, and only tell it to return different results each time it’s

called. In the test, we can specify the results that the mock should return to be [cat, table]

the first time it’s called, [cat] the second time, [bottle, cat] the third time, and [car] the

fourth time. This way we can test the business logic of our application without having to

use the real algorithm whatsoever and be affected by its fuzzy results.

Obviously, in this approach we don’t test the algorithm itself, only the code that

surrounds it, but in many cases, this is what we actually need.

�Using Absurdly Trivial Results

If you do want to test the application end to end, including the algorithm, but don’t

want the fuzziness of its results to affect the reliability of your tests, you can use absurdly

trivial cases. Following the previous example, instead of using a mock, and instead of

using a “cat” as the search term, you can use a “black rectangle” search term and provide

it with simple images drawn in MS-Paint that contain a black rectangle and optionally

other geometrical shapes in different colors over a white background. Recognizing these

shapes should be a lot “easier” for the algorithm and there shouldn’t be any surprises

as to the results of the algorithm. (If you’ll use real cat images, small changes in the

algorithm or its training data may result in identifying one of the cats according to its

breed and return “Ragdoll” instead of “cat,” for example.)

�Using Thresholds

Most “deep learning” algorithms, as well as other statistical algorithms classify their

inputs to a set of possible outputs, returning one concrete result. But other algorithms

return one or more values, like percentages, estimations of quantities, date and time,

etc. Small changes in these algorithms or the use of random values may produce slightly

different results at each test run. Whether you want to test the algorithm itself or the end-

to-end application, you should consider defining the expected result as a range. In some

cases, this range can be the same for all cases, but in others it should be different for each

case. For example, suppose that the previous computer vision algorithm also produces

the certainty level of its results, and we also want to test that. Then for a black rectangle

Chapter 18 Other Types of Automated Tests

445

over a white background we can assume that the certainty level should be very high (e.g.

99%), and we can use a narrow range (e.g. 98%–100%) for our tests. But for a specific

image of a cat which is not very clear, where the confidence level that we get is 65%, we’d

probably also want to use a wider range as the expected confidence level, of let’s say,

50%–90% to allow for future changes in the algorithm.

The thresholds can be used for other results that are not percentages. For example,

we may use an algorithm that attempts to predict the number of participants in a

particular event. Suppose that under certain circumstances it currently predicts that

120 people will attend the event. If we’ll determine the expected result to be exactly 120,

then small changes in the algorithm will likely fail our test. So, we can use a range of

110–150 to be safe. You should consult with the product owner about the range, because

sometimes either the upper bound or the lower bound should not be too far from the

current result, while the other bound can vary more.

�Using Test Sets or Regression Data

When you want to test the algorithm itself, you normally need a volume of data, along

with their expected results. Machine learning algorithms are typically categorized into

supervised learning and unsupervised learning (and sometimes also semi-supervised,

but that’s beyond our scope). With supervised learning, the algorithm is fed with a set

of training data, which contains both the input data and the expected outcome of the

algorithm (often referred to as “labeled data”). For example, for handwriting recognition,

the labeled data can contain a big set of images of handwritten letters along with the

actual letter (character). The common practice is to split the available labeled data into

three parts:

•	 Training set – this set of data is used by the algorithm to “learn” the

patterns.

•	 Validation set – this set of data is used by the algorithm engineer

(AKA data scientist) to validate the accuracy of the algorithm and

fine-tune its parameters to improve its results.

•	 Test Set – this set of data is used to verify the final effectiveness of

the algorithm. The reason that this step is important is to avoid a

phenomenon called overfitting, where the algorithm can identify the

data in the training and validation sets very accurately, but identifies

any other input data much poorly

Chapter 18 Other Types of Automated Tests

446

The last part can be implemented as a data-driven test (DDT), or as a single test that

loops over the data and invokes the algorithm. This test can constitute the regression test

for the algorithm. Note, however, that in many cases it is not expected that 100% of the

rows in the test set will actually pass. A threshold should be put on the number, or the

percentage, of failures to determine the success criteria of the algorithm.

For unsupervised learning, and for algorithms that are not classification algorithms,

you’d probably won’t have a predefined test data. In these cases, you can probably take

some historical data, feed the algorithm with it, and save its results as a reference (i.e.,

expected results) for future test runs. As mentioned above, you should also take some

reasonable thresholds either for each result, or a fixed threshold for all results, and use

that data for a data-driven test. Given that your current algorithm does its job pretty

well and that your thresholds are appropriate, then this data can make a good use of

regression testing for the algorithm.

�Testing Applications That Use Random Numbers
Regardless of AI, applications use random numbers for various purposes. Obviously,

games are the most common example, but some business applications use them too.

There are few approaches to tackle the challenge of testing these applications.

�Mock the Random Generator

In most cases, using a mock for the random generator is the best approach, as it gives

the test full control over the “randomly” generated values. If you want to use this

mock outside of a unit or component tests, then you need to have a way to inject that

mock into the process of the SUT. This can be done by means of dependency injection

mechanisms, a dedicated configuration flag, and so on. In fact, this is similar to how we

go about simulating the system’s data/time as described in Chapter 6.

�Use a Known Seed

Random generators use a special algorithm to generate a sequence of numbers that

has a more-or-less uniform distribution. In order for the sequence to be different each

time, they normally use the number of milliseconds or system ticks since the computer

has started or of the current date/time as the initial value for this sequence. This initial

value is called the seed, and you can typically provide it directly to the random generator,

instead of using the system’s clock. Providing the same seed in different invocations of

the application causes the exact same sequence to be generated.

Chapter 18 Other Types of Automated Tests

447

Therefore, you can add a “hidden” option in your application to provide this seed

value from a configuration file or any other external source and use it in the tests in order

to ensure consistent and deterministic results.

Even though this approach also requires a change in the SUT, this change is usually

much simpler. However, it doesn’t actually give you control over the generated values,

which you may need to simulate some edge cases, as it only ensures that the sequence is

consistent. Moreover, small changes in the application code, including refactoring which

should not affect the behavior of the application, may nonetheless cause the application

to produce different results with the same seed. For example, if a game needs to initialize

the player to a random location on the screen, it should draw two random values: one for

the X coordinate and the other for the Y coordinate of the player. If the application draws

the X value first and then the Y value, or the other way around, it does not matter from

the user standpoint (because both of them are random), but if this order is changed, it

will fail the test if it relies on the seed to produce the same location each time.

�Testing Business Intelligence (BI) Applications
The term Business Intelligence (BI) is used to describe technologies and applications

that help the organization analyze data stored in its systems, in order to provide business

information and insights about it for the sake of helping decision makers make better

business decisions. While this is a wide topic, which sometimes also involves machine

learning, in many cases it’s comprised mainly from a bunch of ETL processes and

corresponding reports. ETL, which stands for Extract, Transform and Load basically

mean to take data from one place (Extract), transform it to better suit the format we

need, and/or extract the relevant information, and the load it to another database, from

which it can be queried more easily. While normally these ETL processes and reports

work on large volumes of data, mostly they don’t use complex statistical algorithms

to produce their results. Therefore, in order to test these ETL processes, or the BI

application altogether, you can usually treat is as testing any other application and use

small amounts of data, dedicated precisely for the needs of each test. The database can

be reverted to a clean backup before each test and filled only with the relevant data by

each test according to its needs.

For example, if a report should show the percentage of employees that work in the

company, classified by their seniority, in ranges of 0–1, 1–3, 3–5, 5–10, 10–20 and 20+

years, you can generate between 1 and 3 employee records for each of these categories

(which total as about 10 records altogether), and verify the results accordingly.

Chapter 18 Other Types of Automated Tests

448

While most BI applications are pretty complex, performing many transformations

and allowing the user to slice the data in the reports in various manners, you can usually

test each of these features separately as you would normally do with regular applications.

�Summary
In this chapter we saw different uses of test automation other than the normal functional

tests. For each of these uses, we discussed the challenges that they pose. For each of

these challenges, we saw one or few ways to tackle them. But this is only a sample.

There are many other unique uses for test automation and reality imposes many

more challenges on any unique use. Eventually you’ll be left on your own to find the

appropriate solution for your unique problems. I hope though that you gained some

ideas and insights that will help you face any such challenge to come.

Chapter 18 Other Types of Automated Tests

449
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5_19

CHAPTER 19

Where to Go from Here
First, I want to thank you for reading this book to its end! But your journey for learning

about test automation doesn’t end here, rather it has only started. Actually, it will also

probably never end. Here are some general tips for the journey.

�Make Mistakes
As with all important things in life, so it is with test automation: there’s no one right way,

and even if there is, you may not know what it is. But if you’re afraid to make mistakes,

you’ll go nowhere. Mistakes and failures are invaluable learning resources. Over time,

you’ll learn from your mistakes and be able to improve. You’ll probably make new

mistakes but hopefully won’t repeat the same ones that you made before.

One important tip in that regard, is that if you can do a quick experiment that will

tell you whether you’re in the right direction or not, then do it! It’s much better to fail fast

than to stick to a mistake for a long time.

�Listen, Consult, and Take Advice
Because there’s no one right way for most things, you can learn a lot from the mistakes,

experiences, or even the ideas of others. Consult the people whose opinions you value

the most, but also listen carefully for those who you usually don’t. Even if you don’t

accept their opinion, at least you’ll understand their different point of view better, which

can be very valuable too.

Also, don’t afraid to ask for help, ask for review, or to ask questions. Remember: the

only stupid question is the one you don’t ask. Reviews (code reviews, design reviews, or

even reviewing ideas) are an invaluable way to learn, which cannot be overrated. And

finally try to get help whenever you need it. You may find help on the web, including

450

on this book’s website (www.TheCompleteGuideToTestAutomation.com), but sometimes,

if you feel that you lack enough knowledge in a specific domain, you should probably

look to hire someone to help you, whether it’s a part-time consultant or a full-time

employee. Obviously, you’re always welcome to hire me as a consultant as well (you can

contact me through LinkedIn at https://www.linkedin.com/in/arnonaxelrod/).

Having said that, I’d recommend that at least for specific technical questions, you

should first try to find the answers yourself before asking someone, either by reading the

docs, searching the web, or even better – by experimenting. When you find the answer

for yourself, you’re more likely to remember the answer and get a better understanding

of the issue.

�Understand and Align to Your Business’s Goals
At the end of the day, test automation is just a means to an end. If used properly, this tool

usually helps the organization to release stable versions much more rapidly and do that

for a long time. But each organization has different goals and ways to reach those goals;

and at different phases, the organization may have different goals or strategies to achieve

them. Understanding your organization’s needs and goals should guide you when you

plan, develop, or use test automation, to best serve your current organization’s goals.

�Get to Know Your Tools
No matter how you’ve built your automation solution, you’re using a set of tools. For

example, Selenium, MSTest, Visual Studio, and C# may be your primary tools. For the

tools you’re using the most, try to get to know them in depth and expand your knowledge

about them. Often people use a tool for a long period of time, but they only know and

use a small portion of its capabilities and features. Knowing the tool that you’re using

on a regular basis deeply usually can make you much more efficient! The primary way

to learn a tool in depth is to read its docs. Another useful way to learn more about tools

is simply by exploring their features. You can explore features of a code library (like

Selenium and MSTest) by using code-completion and inline tooltips, explore IDEs by

traversing its menus, etc. Whenever you encounter something that you didn’t know

about, take some time to experiment with it or at least to read more about it. For open

source projects, you can even clone their repositories and look inside their code.

Chapter 19 Where to Go from Here

http://www.TheCompleteGuideToTestAutomation.com
https://www.linkedin.com/in/arnonaxelrod

451

In addition, you can subscribe to relevant topics on StackOverflow1 to get a feed of

questions specific for the tools you’re using the most. Reading other people’s questions, with

or without their answers, exposes you to different features and problems that you were not

aware of. Trying to answer some of these questions presses you to check your answer and to

formulate it in a clear way, which strengthens your understanding of it (as the old saying goes:

teaching is the best way to learn). If you also take the time to research some of these questions

that you don’t know the answer to, you’ll probably learn something completely new.

Gaining knowledge about your tool not only makes you more productive but will

eventually make you the go-to person about this tool, which will make you even better

at it. Moreover, when you know one tool in depth, you have a better understanding

on how it works. When you come to learn another tool that works in a similar manner

(e.g., another test automation framework, another UI automation technology, another

programming language, etc.), you’ll quickly identify the similarities and differences

compared to the tool you already know and you’ll learn the new tool very fast. The more

tools you’ll know, the quicker you’ll learn new ones.

�Improve Your Programming Skills
As stressed enough throughout this book, test automation is primarily programing.

Therefore, treat yourself as a software developer. Get to know your programming language

and IDE in depth; ask for code reviews; take some programming tasks; learn new

programming languages and paradigms (e.g., functional programming, actor model, etc.); go

to developer’s conferences, etc. See Appendix D for some tips and practices to improve your

productivity as a programmer, like working effectively with the keyboard, understanding

some language features, writing error-proof code, handling exceptions properly, etc.

Throughout this book I reference few other books and paradigms about

programming that I believe that every programmer should master, such as Clean Code,

the SOLID principles, Design Patterns, Refactoring, and TDD.

I even believe that in order to be a good test automation developer, you should

spend a couple of years as an application developer. Not only will you improve your

programming skills, but you’ll also have a better understanding of the developer’s

work and the challenges they’re facing, both from the technical standpoint, but also

from aspects like organizational processes and workflows. When you return to develop

automated tests, you’ll have a whole new perspective on it.

1�www.stackoverflow.com

Chapter 19 Where to Go from Here

https://www.stackoverflow.com

452

�Improve Your QA Skills
While I mostly stress that automation is programming, it is definitely also about QA.

Analytical and critical thinking are key to test planning and failure investigation.

But first and foremost, you should be primarily focused on quality, and not on the

test automation per se. Remember that test automation is just a tool, that testing

goes way beyond automation, and that QA goes way beyond testing. Try to acquire

a broader view on the tested application, its users, and the development life cycle,

in order to be able to assess where the real risks are and the ways to mitigate these

risks most effectively. Try to define what quality really means for your organization

and for the users, and try to find ways to measure these things effectively, in order to

make a real change.

Similar to improving your programming skills, you should also improve your

QA skills by reading about different and new QA paradigms, talk to people, listen to

podcasts, and go to conferences. Clearly, spending a couple of years as a tester will help

you know their challenges, standpoints, and the way they think better. But instead of

spending a couple of years in each role, probably the best way is to spend a couple of

years in a team where everyone does everything (dev, testing, DevOps, etc.) or at least a

multidisciplinary team that works in a tight collaboration.

�Broaden Your Horizons
In our day-to-day work we’re only being exposed to a specific problem domain,

specific organizational structure, processes, architecture, etc. If you really want to be

a professional, you should know more about what happens in other places, domains,

technologies, and so on. A great way to gain this knowledge is by going to conferences

and local meetups (AKA User Groups), but also to read and participate in forums and

groups on social media, reading blogs, listening to podcasts and similar things. Reading

books is also an excellent way to expand your knowledge and also to deepen it in the

areas you’re already familiar with.

Once every few years, looking for and taking new opportunities inside your

organization, or outside – if you don’t find what you’re looking for inside – can also

broaden your horizons a great deal.

Chapter 19 Where to Go from Here

453

�Share Your Knowledge
Finally, whenever you gain some knowledge about something, even if you think that it’s

not much and that probably most others already know it, share it nonetheless. You’ll be

surprised how much value this knowledge can be to others. Today it’s very easy to share

your knowledge though LinkedIn, or to open a blog. Writing down something to explain

it makes you understand it even better. Getting comments from the community will

give you ideas for improvement and can pretty quickly make you a domain expert in a

particular area.

Beyond writing a blog, you can share your knowledge by speaking at conferences

and meetups. Local meetups are typically more suitable for less experienced speakers,

which makes it a great way to start. But it can also give you invaluable experience and

confidence for later speaking at conferences.

Sharing your knowledge with the community (whether it is blogs, meetups,

conferences, or any other way) makes you a known personality among your colleagues

and potential future employers or customers, and it can give your career a significant

boost. Even if your blog remains pretty anonymous, pointing potentials employers to it

can give you a big advantage even before the interview process, over similar candidates

that don’t write blogs.

�Share the Tools You Build
One way to share your knowledge in a very helpful way is by sharing reusable code and tools

that you developed, as an open source project (or as a tool that you can download or use

online). If this code or tool is indeed useful for other people, they’ll probably appreciate it

much more than if you only shared your plain knowledge. Also, managing a successful open

source project has all the benefits for your career as sharing knowledge does.

This is what I did with the Test Automation Essentials project (described in Appendix

C). I simply took everything I built that can be reusable by other projects and shared it on

GitHub.

�Don’t Forget to Enjoy!
Take whatever advice you feel like from this chapter and from this book in general, but

most importantly – don’t forget to enjoy whatever you do! Oh, and wear sunscreen!

Chapter 19 Where to Go from Here

455
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5

�APPENDIX A

Real-World Examples
In Chapter 6, we’ve discussed how to design the test automation to fit the architecture

of the specific application. This appendix describes three examples based on real-world

applications that I was involved in designing test automation solutions for.

Note that these examples are only based on real-world cases. Some details have

been changed for clarity purposes, to protect Intellectual Property, and for anonymity

purposes. A couple of ideas that are presented here did not come to full fruition in the

real projects, mainly due to priority changes, internal politics, etc., but the technical

feasibility of all of them were at least proven.

�Example 1 – Water Meters Monitoring System
One of my clients develops electronic water meters and a system for controlling and

monitoring the meters in towns and districts. The meters themselves, including the

electronics and the embedded software, are developed and tested separately from the

control and monitoring system for the towns and districts.

They called me to help them build a test automation infrastructure for the control

and monitoring system. This system is a website that can display information about the

meters and their statuses over a Google Maps widget, in addition to more standard ways

like tables, forms. and charts. The system has the architecture depicted in Figure A-1.

https://doi.org/10.1007/978-1-4842-3832-5

456

Here’s a description of the components and the interactions between them:

•	 The Web Client is the HTML pages along with JavaScript and CSS

files that the browser uses in order to show the UI and interact with

the user. Like any other website, these HTML pages and related files,

as well as the data to display are retrieved from the Web Server on the

server side. The main page also displays a Google Map widget and

uses the Google Maps JavaScript API to add markers in the locations

of the meters on the map.

•	 The server side contains the following components:

•	 The Web Server is the server side of the website, which provides

the HTML, JavaScript, and CSS files to the clients’ browsers, as

well as Web API that provides the data that needs to be displayed.

The Web Server mainly retrieves the data and receives events on

important updates from the Data Layer. In addition, it can send

commands to the meters, also through the Data Layer.

Web Client

Server

Web Server Data
Aggregator

Data Layer

DB

Communication Server
(3rd party)

Cellular
network

Figure A-1.  Architecture diagram for water meters monitoring system

Appendix A Real-World Examples

457

•	 The Data Layer manages the access to the data and provides

relevant notifications to the layers above it about updates of data.

The Web Server uses the Data Layer to retrieve data from the

database, get notifications and send commands, while the Data

Aggregator uses it to store and update data in the database and

receive commands to send to the meters.

•	 The Data Aggregator component receives a stream of near real-

time data from all of the meters throughout the district, through

the Communication Server. It aggregates it and transforms it to

the structure that the Data Layer requires. In addition, it sends

commands to the meters according to requests from the Data

Layer. Before sending a command, the Data Aggregator first

translates it from the internal data structures of the application to

the protocol that the meters can understand.

•	 The Communication Server, which was developed for my client

by a subcontractor, behaves like a specialized router between the

application and the meters. The Communication Server itself doesn’t

read or change the content of the messages but only dispatches them

to and from the right meter, through a cellular network.

•	 Finally, the meters themselves are the physical electro-mechanic

devices that measure the water flow, alert on problems, and accept

commands like open or close the tap. These devices are equipped

with a cellular antenna to communicate with the Communication

Server. Even though these devices also have software in them, this

software is developed in a completely separate group in the company

and in different cadence. Therefore, for the purpose of testing the

Control and Monitoring system, the software on these devices can

also be considered as 3rd party, and not an integral part of the system.

When I was called to help the QA team establish a framework for their automated

tests, I asked them what was important for them to test. The initial response was: “end

to end.” However, when we dove deeper, it turned out that what they really care about

are the UI and server pieces, which are all the software that they build themselves in that

group, while the Communication Server and the Meters themselves are of less interest as

they were considered stable and reliable.

Appendix A Real-World Examples

458

�Simulating the Communication Server
Then I asked them how they performed their manual tests today, and it turned out that

they’re using a database that is a copy of one of their clients and performs all of the

tests through the Web Client’s UI. Only at our meeting they realized that they’re not

testing the Data Aggregator component at all, even though a big part of the logic is there.

When we discussed how we should approach it from a test automation perspective,

we came to the conclusion that we need to create a simulator for the meters and the

Communication Server. This is the only way we can also test the Data Aggregator

component and also is necessary in order to create reliable tests that cannot affect one

another.

At first it seemed like an unrealistic mission, because the QA team and their manager

were stressing that on one hand, because only the developers have the knowledge of

the protocol, then they’re the ones that should develop the simulator; but, on the other

hand, the developers are too busy and will have no time for that in the foreseeable future.

But then I suggested that the developers will only provide the documents of the protocol

and a little bit of knowledge transfer, and that the automation developers will actually

develop the simulator. So, the QA manager called the relevant developer and asked him

if he can help us with that, and he promptly agreed! It turned out that they have a very

detailed document of the protocol, and for any unclear or outdated details he was happy

to assist us. Figure A-2 shows the final architecture of the test automation.

Appendix A Real-World Examples

459

Web Client

Server

Web Server Data
Aggregator

Data Layer

DB

Water Meters
simulator

Test

Selenium

Figure A-2.  Final test architecture for water meters monitoring system

�Dealing with Google Maps
The other architectural challenge was with the Google Maps component. Like any web

page that contains a Google Map component, the architecture is as shown in Figure A-3.

Appendix A Real-World Examples

460

As Selenium was the obvious choice for our UI automation technology, when it

comes to a graphical component like Google Maps, it isn’t trivial to work with. Google

Maps is based on an HTML 5 SVG (Structured Vector Graphics) element, which contains

all the raw data that represents lines and shapes required to display the map. While

Selenium has access to this data, it’s unfeasible to reason about it and to identify the

meaning of what the user sees. However, Google Maps also uses a JavaScript API behind

the scenes that provides more meaningful information and operations. Selenium on its

part can send any JavaScript code that we’ll give it to be executed directly in the browser

and get the result back, so we can use Selenium to query and manipulate the JavaScript

API of Google Maps, and thus we can get a meaningful notion of what the user sees.

Figure A-4 shows the architecture of the solution with regard to the Google Maps

component.

Web Client

Google Maps
JavaScript API

Google Maps REST
services

Internet

Web Server

Internet

Figure A-3.  Web Client architecture with Google Maps

Appendix A Real-World Examples

461

�Example 2 – Forex Trading System
To the customer of my second, example I came after they have started implementing

automated testing, but they reached out to me because they had some issues, mainly

with the stability of their tests. After investigating and fixing some apparent issues, we

started discussing the business processes that they use around the automated testing.

Pretty late in the conversation, I realized that they don’t run the tests on Sundays.

It may look obvious to you, but if you consider that in Israel the work week is

Sunday to Thursday (i.e., Sunday is just another regular working day), you’d probably

understand why I was surprised. The people I talked to took it for granted that tests

cannot be run on Sundays, because the stock exchanges don’t operate on Sundays.

Obviously, I understood why the real system doesn’t work on Sunday, but I still didn’t

understand why tests cannot run on Sundays, and this was true both for manual tests

Interac�on with
regular elements

Interac�on with Google
Maps through JavaScript API

Web Client

Google Maps
JavaScript API

Google Maps REST
services

Internet

Web Server

Test

Selenium

Internet

Figure A-4.  Test architecture for Web Client with Google Maps component

Appendix A Real-World Examples

462

as well as the automated tests. Eventually I realized that they depend on a third-party

service that provides the real-time data from various stock exchanges throughout the

world, and most of the features of the application are unavailable when there’s no trade.

This is all fine as far as the production system is concerned, but it turned out that the

same service is used in the testing environment too, and that’s what prevented them from

testing on Sundays.

While this service by itself was pretty stable, the dependency on that service also

implied that the tests had some awkward dependencies on specific, real stock symbols,

and from time to time the stocks that the tests used had to be replaced due to changes of

some properties of these stocks in the real market. The tests didn’t only depend on the

existence of particular stock, but also on their properties. Even though the existence of

the stock almost never changed, their properties did change from time to time, requiring

them to change the tests accordingly or to choose another stock for the test. In addition,

there were certain situations where specific stocks were temporarily unavailable due

to real trading constraints. Obviously, the test didn’t have any control over that, and

altogether, this was a significant part of what made the tests unstable.

Furthermore, it turned out that the most basic functionality of the system cannot be

validated, because the test had no control over the most important input of the system,

which is the data that is received from this trading service. For example, they couldn’t

predetermine the loss or profit of a trading transaction, because they couldn’t tell how

the stock would behave.

After that conversation I realized I must have a better understanding of the

architecture of their system and so I asked them to show me an architecture diagram.

The architecture diagram that they showed me was similar to the one in Figure A-5.

Appendix A Real-World Examples

463

�The Solution
Due to the conclusions from that discussion, we decided to implement a simulator for

the Trading Server (and its proxy). This allowed us to have better control of what’s going

on in the tests and to simulate scenarios (including the very basic ones!) that we couldn’t

test before. Obviously, it made the tests more reliable and allowed the tests to run at any

time, including Sundays.

�Instability Caused by CRM
Another component that affected the stability of the tests was the CRM application.

The main system was connected to a Microsoft Dynamic CRM system that stored

the information about their users. The Microsoft Dynamic CRM application was also

extended and tailored to their needs (the “CRM Components” in the diagram). The team

that worked on this part of the system was separated from the team that worked on the

main Web Server, but the testing environment of the main Web Server was configured to

work with the same testing environment of the CRM team. Due to technical constraints,

the CRM Components developers used their testing environment not only for testing per

UI (web)

Web
server

DB

Trading proxy
(3rd. party)

Trading
server

Stock
Exchange

Stock
Exchange

Stock
Exchange

CRM DB

Microso� Dynamic
CRM

CRM
Components

Figure A-5.  Forex trading system architecture

Appendix A Real-World Examples

464

se, but also for debugging during development. This meant that the CRM application

was mostly unstable. As a result, whenever the main Web Server had to use the CRM

component, it was communicating with the unstable CRM application that, in turn,

made the tests of the Web Server unreliable too.

�Isolating the Environments
Because the CRM components are tightly coupled (by design) to Microsoft Dynamic

CRM, and because the goal was to test the system end to end, including the CRM

Components, we’ve decided not to simulate the CRM as done for the Trading service.

Instead, in order to stabilize the tests, we’ve decided to detach the test environment of

the Web Server from the test/dev environment of the CRM Components, and instead

to create another CRM installation inside the normal test environment. An automated

build (that runs nightly but can also be triggered on demand) was created to build the

code in the source control, and upon success, deploy both the Web Server and the

CRM Components to the test environment. This allowed the developers of the CRM

Components to debug their code on their original environment, and only after they

verified their changes, check in the code to the source control system, thus leaving the

test environment clean and stable enough to run the automated tests. Figure A-6 shows

the final architecture of the test environment.

Appendix A Real-World Examples

465

�Testing the Mobile Application with Abstract
Test Scope
In addition to the normal web application, they started to develop a new mobile

application. The mobile application has basically provided the same functionality, but

the UI was organized differently to fit to the smaller form factor of a smartphone. The

UI technology that was used for the mobile application was of a hybrid application,

meaning that it’s like a web browser embedded inside a shell of a native application. That

means that technically we could use Selenium also to test the mobile application, but

because the UI was organized differently, then we couldn’t reuse the existing tests as is.

Test Environment

UI (web)

Web
server

DB

Trading
Server

Simulator

CRM DB

Microso�
Dynamic CRM

CRM
Components

Automated tests

Selenium

CRM Component’s Dev
environment

CRM DB

Microsoft
Dynamic CRM

CRM
Components

Figure A-6.  Final architecture of test environment

Appendix A Real-World Examples

466

Therefore, in order to support testing both the regular web application and the

mobile one, we decided to refactor the test code to use the Abstract Test Scope pattern

that was described in Chapter 6: The test methods themselves shouldn’t need to

change, but we extracted a set of interfaces for every class and method that represented

a business functionality (that uses the regular web application), and created a new set

of classes that implemented these interfaces, but using the mobile application. We’ve

also added a setting to a configuration file that determined whether we should use

the normal web application or the mobile one, and according to that setting, the test

automation instantiated the appropriate classes.

�Example 3 – Retail Store Management
Our third example is of a client/server application for managing retail stores. Unlike the

first two examples, which are central web sites with a single deployment, the application

in this example is an off-the-shelf product that retailers can buy, install, and run on

their own hardware. Because this software was an off-the-shelf product, and because

it was a major and important software that the retailers used to run their businesses,

it was important that it would be highly customizable and extensible. In addition, we

supported several different deployment options to fit retailers of different sizes and

needs. Figure A-7 shows the architecture for a full deployment of the system.

Appendix A Real-World Examples

467

Mgmt
web server

Headquarters BL
web server

DSS

HQ DB

Mgmt
web server

Store BL
server

DSS

Store DB

Client

Local BL
server

Local DB

DSS

Store

physical site

Cash register
machine

Figure A-7.  Architecture of the application in full depoloyment

Appendix A Real-World Examples

468

�Description of the Architecture
While this architecture may look daunting at first, many of its components are simply

different instances of other identical components. Let me first explain the high-level

architecture described in the diagram, and then I’ll explain each component.

In a full deployment configuration, which is suitable for a large chain retail store,

the application is deployed on all cash register machines, a store server for each store

(branch) in the chain, and a central server in the headquarters. As shown in the diagram,

different components of the store server and the headquarters server may be deployed

on separate machines. In addition, for redundancy purposes there can be more than one

instance of the central headquarters server, but that’s beyond the scope of the diagram.

In particular, each deployment instance consists of at least:

•	 A Business Logic (BL) server – this is a REST/HTTP server that

contain all of the business logic. In the full deployment option,

each cash register contains its own local server and database for

the sake of scalability and availability in case of a network failure.

All of the BL servers, including the central servers of the stores and

the headquarters. are essentially identical. The REST API was also

intended to be used by advanced customers so that they can develop

adopters to other systems or even create their own UIs.

•	 A database – the database contains all of the data that the server

needs. Among other things, each instance contains the data of all

products that are available in the store and their prices, and all the

data of the sales transactions that are related to that machine: cash

registers normally store the transactions that were handled at that

same register during the same day, the store DB stores a copy of the

transactions that were handled by all the cash registers in that store

(branch), and the headquarter DB stores a copy of the transactions of

the entire chain. In the Headquarters and Store servers, the database

can be deployed on separate machines.

Appendix A Real-World Examples

469

•	 Data Synchronization Service (DSS) – this component is responsible

to synchronize the data between the different servers. Generally,

most data changes (e.g., updates to products and prices) are

transferred from the higher tiers (Headquarters, Store) to the lower

tiers (cash registers), while sales transaction logs are transferred

upwards. The DSS has dedicated business logic that allows it to

decide which data it should transfer to which other server and

which it shouldn’t. For example, some products and prices can be

applicable only to some stores and not the others.

Because that in the full deployment configuration the BL server is deployed both on

the cash registers, at the store levels and at the headquarters, it was also called a “3-tiers”

deployment.

In addition to the components that exist in every instance, the cash register

machines have a dedicated UI client application that the cashiers use. This component is

mostly a thin UI layer that talks to the local server that is installed on the same machine.

Lastly, the Management web server can also be deployed and connect to Store

and Headquarters servers. This server provides a web interface for managing all data,

including products and prices and also viewing and querying sales transaction logs and

some analytical dashboards.

�Minimal Deployment
As mentioned above, the application supports different deployment configurations

according to the size and the needs of the particular customer (store). So above I

explained the most complex configuration, and now I want to describe the simplest one.

The most minimal deployment consists of only one BL server, a database, and one

client, all on one single machine, which is the cash register. Typically, one Management

server will also be present, but even that’s not obligatory as instead the data can be

transferred from a third-party management system using the REST API. Figure A-8 shows

the minimal deployment configuration.

Appendix A Real-World Examples

470

The internal structure of the Server and Cash Register applications were very similar

to the typical client/server architecture mentioned at the beginning of Chapter 6.

However, it’s important to note a few things:

	 1.	 The Service Layer was used as the public REST API. Customers

used this API mainly for integrating this system with other systems

and automating business processes.

	 2.	 The Business Logic layer was also exposed as a .Net API, mainly

to allow customers to extend, customize, and override the

default behavior of the system. This layer was made out of many

components, some of which had interdependencies.

	 3.	 Each data entity (e.g., Product, Price, Sales, Customers, Cashiers,

and many more) that had to be transferred to other servers

using the DSS, had implemented an interface for serializing and

de-serializing itself as XML. We’ll talk about its consequences a

little later.

Client

BL
server

DB

Cash register
machine

Figure A-8.  Minimal deployment configuration of the application

Appendix A Real-World Examples

471

�Organizational Structure
In order to understand the considerations for the different test automation solutions,

it’s also important to understand the organizational structure (in Chapter 8 we’ve

discussed the relationships between the organizational structure, architecture, and test

automation). The application was developed by a group of about 200 people: about half

of them are developers, others being mainly testers and product managers. There was a

dedicated team for the Management web application, another team for the Cash Register

client, and yet another one for the DSS. The BL server was developed by a few other

teams, more or less corresponding to the different components in the Business Logic

layer, but each of them was also responsible for the corresponding parts in the Service

and Data Access layers. The project was managed using a Scrum methodology.

�Test Automation Solutions
Because the Business Logic layer was exposed as a public API it was important (and

natural) to write most of the tests as component tests. For each component, its tests

would mock the other components. In addition, these tests were mocking the DAL, while

other tests would test the DAL of each component separately. Naturally, as these tests

were very light and fast, they were being run as part of the CI build (see Chapter 15). This

build compiled and ran all of the tests of all the components together.

However, because of the interdependencies between the components, and

because the Service Layer also exposed a public REST API, it became important to test

the integration of the entire server as a whole on a regular basis. For this reason, an

infrastructure for integration tests was also created. The general guideline was that for

each User Story the teams should write at least one integration test in addition to the few

component tests that they were doing anyway. These integration tests were testing the

entire server and database as one unit, by communicating with it only through the REST

API. The infrastructure of these tests created a dedicated empty DB before all the tests

started to run for isolation purposes (see Chapter 7 about isolation) and used this DB

throughout the tests. This allowed developers to run these tests on their local machines

before check-in. These tests were also added to the CI build by installing the new version

of the server on a dedicated test machine and running all the tests there.

Appendix A Real-World Examples

472

While these tests were slower than the component tests, they were still pretty fast.

While tens of component tests were executed in a second, most integration tests took

between 0.5 seconds to 1 second. At the beginning it wasn’t an issue, but when the

number of tests raised to thousands, it took 30–40 minutes to run all the tests, and that

started to become an obstacle. Even though it doesn’t sound much, when developers

were under pressure to release a new feature, they often skipped running all the

tests before check-in, and then, mostly due to a conflict with a change of some other

developer, the build failed. At that moment no one (of 100 developers!) was allowed to

check- n their changes until the build was fixed. This was a huge bottleneck and time

waster. Add to that the build itself took even longer due to the overhead of compilation

and running the component tests (which was summed up to about 50 minutes) and

you’ll see how frustrating it could be.

The solution was to allow the tests to run in parallel. On developers’ machines

the tests were split between 4 threads (which was the number of cores on each dev

machine). In the build, we split the tests to 10 different machines, each running 4

threads! That allowed us to reduce the local run time to about 10 minutes and the overall

build time, including the compilation and component tests, to about 15 minutes! Of

course, that each thread had to work with a separate instance of the application and

with a separate instance of the database. Because the tests always started with an empty

database – it wasn’t a big issue.

�Date/Time Simulator
There was a bunch of features that were dependent on dates and times. Fortunately,

mainly due to the extensibility requirements, the system incorporated a dependency

injection (DI) mechanism. In addition, partly thanks to the component tests, but also

thanks to a proper architectural decision that was made early on, all uses of the System.

DateTime class in .Net were abstracted behind an interface that a singleton object has

implemented. This allowed us to develop a date/time simulator component that was

injected into the system using the DI mechanism and control it from the tests through

a specifically created REST end point. Figure A-9 shows the architecture of integration

tests including the Date/Time simulator.

Appendix A Real-World Examples

473

�3-Tiers Tests
The Management web application, Cash Register client and DSS teams were writing

unit tests but no higher scope tests. However, manual testers often found bugs that were

happening only in a full (3-tiers) deployment. This was mainly because of the special

serialization and de-serialization code that should have been implemented separately

for each entity and was not being used in the single-tier integration tests nor in the

component tests.

Service Layer

Date/Time
Provider

BL

DAL

DB

Real System

Service Layer

Mock
Date/Time
Provider

BL

DAL

DB

Test Environment

Test

Rest

Rest

Figure A-9.  Architecture of the integration tests including Date/Time simluator

Appendix A Real-World Examples

474

Luckily, the infrastructure of the integration tests distinguished between REST

requests that normally come from the Cash Register and requests that normally come

from the Management application. This allowed us to make a pretty small change in

the infrastructure of the tests to allow them to run in a 3-tiers configuration. Instead of

directing all of the requests to the same URL, the requests that normally come from the

Management application were directed to the HQ server, and the requests that normally

come from the Cash Register were directed to the server of the cash register. Because the

3-tiers were configured and connected through the DSS, this allowed the existing tests

to run in this configuration and thus test the DSS and all of the serialization and de-

serialization code seamlessly, without having to change the tests! This can be considered

as a form of an abstract test scope, as described previously, but even without having to

implement two separate sets of classes for each configuration.

In fact, the change was a little more complicated than just directing the requests to

different URLs, because it was necessary to wait for the data to propagate to the other

tiers. For that, we used special monitoring API of the DSS that allowed us to know when

the data has completed to propagate, so we could wait just the necessary amount of time

and not more. However, because these tests were much slower (about 1 minute per test,

as opposed to 1 second…), it didn’t make sense to run them in the CI, so we created a

different build process that ran nightly.

�End-to-End Tests
Regarding the Management application and the Cash Register client application,

even though they were covered by unit tests, it wasn’t enough to make sure that

they’re working correctly along with the server. Occasionally there were discrepancies

between the content of the requests that the clients were sending to what the server has

expected, or similarly between the responses that the server sent and what the client was

expecting. Therefore, at some point we decided that we cannot avoid automatic end-to-

end tests. These tests were using Microsoft Coded UI for the Cash Register client, and

Selenium to interact with the Management web application and were also running in

a dedicated nightly build process. In most cases, a dedicated team (reporting to the QA

manager) were writing these tests. Because the integration tests were already testing the

3-tiers deployment, it was enough for the end-to-end tests to test a single server but with

the combination of the Management server and the Cash Register client. So, a single

server gave us the missing coverage that we needed.

Appendix A Real-World Examples

475
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5

�APPENDIX B

Cleanup Mechanism
As explained in Chapter 7, writing robust test cleanup code is not trivial and can be

error prone, though it’s possible to create a mechanism that solves the majority of these

problems. This appendix explains how to create such a mechanism step by step and

the recommended way to use it. Note that this mechanism already exists built in the

Test Automation Essentials project (see Appendix C), so at least for MSTest you can use

it almost out of the box, while for other frameworks for .Net (e.g., NUnit or xUnit), you

should adopt the mechanism to the framework yourself. For any other language outside

the .Net framework (like Java, Python, JavaScript, etc.), you should be able to implement

a similar mechanism according to the explanations in this appendix.

�Understanding Callbacks and Delegates
The cleanup mechanism is based on a programming concept called Callback. Different

programming languages implement callbacks in a different ways and syntaxes, but

all general-purpose languages have some way to implement it. A callback is a way to

reference a function or method and keep it for a later use. In C# this is achieved through

delegates, in Java through an interface with a single method (typically Consumer or

Function), in JavaScript and Python you can simply assign a function to a variable

without calling it (i.e., without the parenthesis after the function name). After you store

a reference to a function in a variable, you can call the function through the variable.

This allows you to assign different functions to the variable according to different

circumstances and then call the chosen function simply by calling what the variable

references. Some languages have a short syntax for declaring short inline anonymous

functions, often called Lambdas, so you don’t have to create and declare a whole new

method if you just want to store a reference to that simple method in the callback

variable.

https://doi.org/10.1007/978-1-4842-3832-5

476

In c#, the predefined delegate type System.Action is defined as follows:

public delegate void Action();

This definition means that a variable of type Action can reference any method that

takes no argument and doesn’t return a value (i.e., return void) as a callback.

Listing B-1 shows an example of delegates and lambda expressions in C# that use the

Action delegate type.

Listing B-1.  Example of the concept of Callbacks using Delegates and Lambdas in C#

private static void Foo()

{

 Console.WriteLine("Foo");

}

public static void Main()

{

 // The following line doesn't call Foo, just stores the callback for

 // later use.

 Action x = Foo;

 // do other stuff...

 // The following line actually calls Foo

 x();

 // Assign a lambda expression (anonymous inline method) to x for later

 // use. The empty parenthesis mean that it takes no arguments, and the

 // code between the { } is the body of the method.

 x = () => { Console.WriteLine("This is a lambda expression"); };

 // do more stuff...

 // Now the following line calls the body of the lambda expression.

 x();

}

Appendix B Cleanup Mechanism

477

�Building the Cleanup Mechanism
Let’s get back to our cleanup problem. I’ll describe the full solution step by step, in

order to explain the need of each nuance of the final solution. But before discussing the

solution, let’s recall what’s the problem is that we’re trying to solve.

�The Problem
If, for example, the test performs five operations that should be undone (e.g., creates

entities that should be deleted), and the fourth operation fails, then we want only the

first three to be undone, because the fourth and fifth operations didn’t actually happen.

Let’s take a more concrete example: suppose we’re building an e-commerce website,

and we want to test that when buying three items and adding a coupon, the system will

give the user the appropriate price reduction. In order to test this scenario, we should

first add three products to the catalog and also define the coupon details. Listing B-2

shows the original test method. The first four statements perform the operations that

we’ll want to clean up when the test ends.

Listing B-2.  The original test method, without the cleanup code

[TestMethod]

public void CouponGivesPriceReduction()

{

 var usbCable = AddProductToCatalog("USB Cable", price: 3);

 var adapter = AddProductToCatalog("Car AC to USB adapter", price: 7);

 var phoneHolder =

 AddProductToCatalog("SmartPhone car holder", price: 20);

 var coupon = DefineCouponDetails("12345", percentsReduction: 20);

 var shoppingCart = CreateShoppingCart();

 shoppingCart.AddItem(usbCable);

 shoppingCart.AddItem(adapter);

 shoppingCart.AddItem(coupon);

 var totalBeforeCoupon = shoppingCart.GetTotal();

 Assert.AreEqual(30, totalBeforeCoupon,

 "Total before coupon added should be 30 (3+7+20)");

Appendix B Cleanup Mechanism

478

 shoppingCart.AddCoupon(coupon);

 // Expect 20% reduction

 decimal expectedTotalAfterCoupon = totalBeforeCoupon * (1 - 20 / 100);

 var totalAfterCoupon = shoppingCart.GetTotal();

 Assert.AreEqual(expectedTotalAfterCoupon, totalAfterCoupon,

 "Total after coupon");

}

�The Basic Solution
In order to leave the environment clean, we need to delete the products we added to

the catalog and the coupon definition. But as we said, if one of the operations failed,

we don’t want to perform its cleanup code or the cleanup code of the operations

that didn’t happen yet. Therefore, the basic solution is to manage a list of callbacks

(Action delegates) that each does an atomic cleanup operation. Immediately after

successfully performing an atomic operation that creates an entity or changes the state

of the environment, we should add to that list a delegate of a method (or lambda) that

undoes that operation. In the cleanup method of the testing framework, we’ll loop over

the list of delegates and invoke them one by one. As we’re using MSTest, we’ll do it in

the method that is decorated with the [TestCleanup] attribute (virtually all other unit

testing frameworks for any language have a similar method). Let’s first define the generic

cleanup mechanism inside our test class, as shown in Listing B-3.

Listing B-3.  Basic cleanup mechanism

private readonly List<Action> _cleanupActions = new List<Action>();

private void AddCleanupAction(Action cleanupAction)

{

 _cleanupActions.Add(cleanupAction);

}

[TestCleanup]

public void Cleanup()

{

 foreach (var action in _cleanupActions)

 {

Appendix B Cleanup Mechanism

479

 action();

 }

}

Now we can use it inside of our test method as shown in listing B-4.

Listing B-4.  Using the cleanup mechanism inside the test method

[TestMethod]

public void CouponGivesPriceReduction()

{

 var usbCable = AddProductToCatalog("USB Cable", price: 3);

 AddCleanupAction(() => RemoveProductFromCatalog(usbCable));

 var adapter = AddProductToCatalog("Car AC to USB adapter", price: 7);

 AddCleanupAction(() => RemoveProductFromCatalog(adapter));

 var phoneHolder =

 AddProductToCatalog("SmartPhone car holder", price: 20);

 AddCleanupAction(() => RemoveProductFromCatalog(phoneHolder));

 var coupon = DefineCouponDetails("12345", percentsReduction: 20);

 AddCleanupAction(() => RemoveCouponDefinition(coupon));

 var shoppingCart = CreateShoppingCart();

 shoppingCart.AddItem(usbCable);

 shoppingCart.AddItem(adapter);

 shoppingCart.AddItem(coupon);

 var totalBeforeCoupon = shoppingCart.GetTotal();

 Assert.AreEqual(30, totalBeforeCoupon,

 "Total before coupon added should be 30 (3+7+20)");

 shoppingCart.AddCoupon(coupon);

 // Expect 20% reduction

 decimal expectedTotalAfterCoupon = totalBeforeCoupon * (1 - 20 / 100);

 var totalAfterCoupon = shoppingCart.GetTotal();

 Assert.AreEqual(expectedTotalAfterCoupon, totalAfterCoupon,

 "Total after coupon");

}

Appendix B Cleanup Mechanism

480

If, for example, adding the “phone holder” product (the third3 statement) fails, then

the only cleanup action that we’ve added so far is for removing the “USB cable”(in the

second statement), and therefore this is the only cleanup action that will be called by

the Cleanup method. Note that the AddCleanupAction method-calls in the test code

don’t call the RemoveProductFromCatalog and the RemoveCouponDefinition methods.

AddCleanupAction only adds a reference to these methods to the _cleanupActions list,

which is used to invoke them only in the Cleanup method.

However, there are two problems with this cleanup approach:

	 1.	 The test method is now cluttered with a lot of technical code,

which makes it much less readable.

	 2.	 Whenever we want to call AddProductToCatalog or

DefineCouponDetails, we need to remember to add the

appropriate cleanup action. This is very error prone and

introduces duplication because each call to AddProductToCatalog

or DefineCouponDetails should be followed by a call to

AddCleanupAction with the corresponding cleanup callback

method.

Gladly, the solution to both of these problems is very simple: Just move each call

to AddCleanupAction to inside the appropriate method that creates the entity that we

need to clean. In our case, we should move these calls to AddProductToCatalog and

DefineCouponDetails. Listing B-5 shows how to add the call to AddCleanupAction to

AddProductToCatalog:

Listing B-5.  Adding the call to AddCleanupAction to AddProductToCatalog

private Product AddProductToCatalog(string name, decimal price)

{

 �Product product = ... /* original code of AddProductToCatalog comes

here (e.g. send HTTP request or add the data directly to the database,

as appropriate, and returning a new instance of an object that

represents the new product) */

 AddCleanupAction(() => RemoveProductFromCatalog(product));

 return product;

}

Appendix B Cleanup Mechanism

481

Now we can revert the test method back to exactly how it was in Listing B-2, but still

have the cleanup code execute appropriately when the test completes.

�Reusing the Cleanup Mechanism
Because we probably need this mechanism in most or even all of our test classes, it

makes sense to extract this behavior to a common base class. Listing B-6 shows the

cleanup mechanism in the base class.

Listing B-6.  Moving the cleanup mechanism to a common base class

[TestClass]

public abstract class TestBase

{

 private List<Action> _cleanupActions = new List<Action>();

 public void AddCleanupAction(Action cleanupAction)

 {

 _cleanupActions.Add(cleanupAction);

 }

 [TestCleanup]

 public void Cleanup()

 {

 foreach (var action in _cleanupActions)

 {

 action();

 }

 }

}

And make all test classes derive from TestBase.

Appendix B Cleanup Mechanism

482

�Handling Dependencies Between Cleanup Actions
That’s all nice and fine, as long as the changes we’re doing to the environment are

independent from one another. Let’s modify our example a little: suppose we want to

support a different type of coupon, one that is associated with a specific product, and

grants a discount only if that particular product is purchased n times. In this scenario,

we have to define a coupon that refers to a particular product, and therefore the product

must be created first, and when we define the coupon we specify the previously created

product to be associated with it. If the application enforces referential integrity between

the coupon definition and the product, then it should throw an error if you would try

to delete the product while there’s still a coupon definition associated with it. The test

code in Listing B-7 shows this scenario. Notice how the usbCable object is passed as

an argument to DefineCouponDetailsForProduct, which associates it with the new

coupon. Assuming that DefineCouponDetailsForProduct adds a cleanup action for

deleting this coupon, this code would throw an error in the Cleanup method, saying

that “Product ‘USB Cable’ can’t be deleted because there are active coupon definitions

associated with it.” Note that the exact line that throws the exception is not shown in the

listing, but we can conclude that it should be thrown from RemoveProductFromCatalog

(shown earlier in Listing B-5), which is called implicitly from the Cleanup method

(shown in Listing B-6) using the delegate, because it would be called before the delegate

that deletes the coupon is called.

Listing B-7.  A test method that should fail due to the order of cleanup actions

[TestMethod]

public void CouponGivesPriceReduction()

{

 var usbCable = AddProductToCatalog("USB Cable", price: 3);

 var coupon = DefineCouponDetailsForProduct("12345", usbCable,

 minimumCount: 4, percentsReduction: 20);

 var shoppingCart = CreateShoppingCart();

 shoppingCart.AddItem(usbCable, count: 4);

 var totalBeforeCoupon = shoppingCart.GetTotal();

 Assert.AreEqual(3 * 4, totalBeforeCoupon,

 "Total before coupon added should be 12 ($3 * 4)");

Appendix B Cleanup Mechanism

483

 shoppingCart.AddCoupon(coupon);

 // Expect 20% reduction

 decimal expectedTotalAfterCoupon = totalBeforeCoupon * (1 - 20 / 100);

 var totalAfterCoupon = shoppingCart.GetTotal();

 Assert.AreEqual(expectedTotalAfterCoupon, totalAfterCoupon,

 "Total after coupon");

}

Fortunately, the solution to this problem is also pretty simple: we just need to call
the cleanup methods in the reverse order to which they were added. It may look like

this solution is accidental and specific to our case, but if you think about it, whenever

we create a dependency between entities, we either first create the independent

entity (i.e., the entity upon which the other entity depends), and only then create the

dependent entity, or we create both entities independently (in any order), and only then

create the dependency between them, as a separate operation. In the first case, which

is like we saw in the example, deleting the entities in reverse order first removes the

dependent entity (which also eliminates the dependency itself) and then deletes the first

(independent) entity, which we don’t have any dependency on already. In the second

case, when we create the dependency between the entities, we should add the cleanup

action that removes this dependency (without deleting any of the entities). When

the cleanup actions will be called in reverse order, then the dependency itself will be

removed first, and only then the entities will be deleted. Listing B-8 shows a very simple

implementation of this solution.

Listing B-8.  Reversing the order of cleanup actions to resolve dependencies

[TestCleanup]

public void Cleanup()

{

 _cleanupActions.Reverse();

 foreach (var action in _cleanupActions)

 {

 action();

 }

}

Now the cleanup will be done in the right order, and no exception will occur.

Appendix B Cleanup Mechanism

484

Note  You can obviously implement the cleanup mechanism using a Stack instead
of a List, and avoid calling Reverse. This will probably be slightly more efficient,
but it’s pretty much negligible.

�Handling Exceptions in Cleanup Actions
The basic idea of the cleanup mechanism is to perform exactly the relevant cleanup

actions, no matter if the test failed or not, and if it failed, no matter in which line.

However, what happens if one of the cleanup actions themselves fails? Unfortunately,

nothing can be 100% safe, and the cleanup actions may throw exceptions too. In some

cases, for example, if the test changes a global setting that affects all tests, and the

cleanup action that should have reverted this setting to its original state, have failed, then

it may cause the rest of the tests to fail because of it. But in most cases, it’s not, and it’s

safe to continue to run the other tests. In addition, sometimes a failure in one cleanup

action may cause other cleanup actions to fail as well. But nonetheless, because we can’t

be sure, then it’s still worthwhile trying to call the other cleanup actions anyway.

In any case of failure, we must report all of the details of the exception in order to

be able to investigate and fix the root cause (as described in Chapter 13). In case an

exception is thrown out from the Cleanup method, the unit testing framework will report

it automatically as part of the test results. But because we want to continue running the

other cleanup actions, then we need to catch each exception. Therefore, we need to

collect all of the exceptions that were thrown from cleanup actions and throw them only

at the end of the Cleanup method, wrapped together using an AggregateException if

there’s more than one. If there was only one exception, then we can throw that particular

exception as is. Listing B-9 shows the Cleanup method with the proper exception

handling.

Appendix B Cleanup Mechanism

485

Listing B-9.  Cleanup method with proper exception handling

[TestCleanup]

public void Cleanup()

{

 _cleanupActions.Reverse();

 var exceptions = new List<Exception>();

 foreach (var action in _cleanupActions)

 {

 try

 {

 action();

 }

 catch (Exception ex)

 {

 exceptions.Add(ex);

 }

 }

 if (exceptions.Count == 1)

 throw exceptions.Single();

 if (exceptions.Count > 1)

 throw new AggregateException(

 "Multiple exceptions occurred in Cleanup.", exceptions);

}

Note  in .Net, it’s recommended to use a list of ExceptionDispathInfo class
instead of list of Exception, in order to preserve their original stack-traces.
I didn’t use it here in order to keep the example simpler. You can look at the
implementation of this mechanism in the Test Automation Essentials, project on
GitHub to see how ExceptionDispathInfo is used. See Appendix C for more
details about the Test Automation Essentials project.

Appendix B Cleanup Mechanism

486

�Summary
As described in Chapter 7, one technique to help achieve isolation is to clean everything

that the test created when it’s finished. But we also discussed the reasons why it’s

difficult to write cleanup code that would work correctly in all situations. The cleanup

mechanism described here ensures that the exact relevant cleanup actions are called

whether the test passed or failed, regardless of the exact line in which the test failed.

It also ensures that cleaning up entities that depend on one another are cleaned in the

right order to avoid data integrity problems and exceptions. Finally, we made sure that

any exception that might occur inside a cleanup action does not prevent other cleanup

actions to run, and that all of the exception details are reported so that we can investigate

and fix the root cause.

Appendix B Cleanup Mechanism

487
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5

�APPENDIX C

Test Automation
Essentials
This appendix describes the Test Automation Essentials open source project that I

created, which contains various useful utilities for developing test automation in C#.

�Background
When I started to work as a consultant and had to establish the infrastructure for test

automation for multiple clients, I noticed that many things that I had implemented

for one client was useful to other clients as well. As you probably realized by now,

I hate writing duplicate code, so I looked for a way to share this code between my

clients. Because naturally my clients don’t share the same source control repository, I

determined to make it an open source project, hosted on GitHub, for the benefit of all.

Over time, whenever I wrote something that I though could be beneficial for other clients

or other people in general, I added it to the project. The source code of the project can be

found at https://github.com/arnonax/TestEssentials.

Most of the public classes and methods in these libraries have pretty extensive

XML comments (similar to JavaDoc comments in Java), which Visual Studio displays as

tooltips when you hover over them, in order to make it easy to use. Gradually I’m trying

to cover with XML comments the rest of the classes and methods that I still haven’t.

https://doi.org/10.1007/978-1-4842-3832-5
https://github.com/arnonax/TestEssentials

488

�Project Structure
Because my clients and the projects I was involved in use different test automation

technologies, I divided the project into small and modular libraries, so that anyone can

use only the libraries that fits his needs and the technologies he’s using.

Accordingly, the solution consists of several C# projects:

•	 TestAutomationEssentials.Common – this project contains very

generic and reusable utilities. It has no dependency on any specific

technology (except for the .Net Framework itself) or library, and

therefore can be used in any project. In fact, many of the utilities in

this project are not even specific to test automation and can serve any

.Net project. Most other projects in the solution have a dependency

on this project.

•	 TestAutomationEssentials.MSTest – this project provides utilities

that are useful for projects written using MSTest version 1, which has

been in use up until Visual Studio 2015.

•	 TestAutomationEssentials.MSTestV2 – this project provides

functionality identical to TestAutomationEssentials.MSTest,

but for MSTest V2 (MSTest version 2), which is used since Visual

Studio 2017, or as a NuGet package for projects created using

Visual Studio 2015. In fact. this project does not contain any

C# source files of its own, but rather links all the source files of

TestAutomationEssentials.MSTest. Therefore. these projects are

essentially always identical, except for the version of MSTest they

reference.

•	 TestAutomationEssentials.CodedUI – this project provides utilities

for Coded UI (Microsoft’s UI Automation framework) based projects.

•	 TestAutomationEssentials.Selenium – this project provides utilities

that are useful for projects that use Selenium.

Appendix C Test Automation Essentials

489

In addition to these five projects that provide utilities that are useful for any project,

the solution contains also the following projects that are used only internally:

•	 TestAutomationEssentials.UnitTests – contains unit tests (and some

integration tests) for the TestAutomationEssentials.Common and

TestAutomationEssentials.MSTest projects.

•	 TestAutomationEssentials.MSTestV2UnitTests – contains unit and

integration tests for the TestAutomationEssentials.MSTestV2 project.

•	 TestAutomationEssentials.TrxParser – an internal project that is is

used by the unit test projects.

Tip L ooking at the unit tests can sometimes help you understand some
of the utilities better. In addition, you may find it interesting to look at and
debug the tests in TestBaseTest (and its base class) and try to understand
how they work. As these tests test the integration of the TestBase class in
TestAutomationEssentials.MSTest with the MSTest framework itself, they
generate test code on the fly, compile it, and run the compiled code using MSTest –
all within the test itself. Pretty complicated and tricky, but cool…

�Note About the Unit Tests and XML Comments
Most of the code in this project was first written as part of real projects, and only then

was extracted from these projects into Test Automation Essentials. As the original

projects were all test projects, the code was covered (indirectly) by the tests of my client’s

application. When I moved the relevant code to Test Automation Essentials, I tried to

retrofit unit tests for most of it to ensure that I don’t break compatibility whenever I

change something. However, that takes some time and in some cases it’s not trivial.

For that reason, by now I mainly covered with tests only the Common and MSTest (and

MSTestV2) projects, but I’m working on covering the Selenium project as well.

I do a similar thing with the XML Comments, though it’s typically easier and faster to

do than writing unit tests.

Appendix C Test Automation Essentials

490

�NuGet Packages
In order to use these utilities, you don’t need to get the source code from GitHub (even

though you can do that as well), but rather use these libraries as NuGet packages (similar

to the way we’ve added the Selenium WebDriver library to the project in Chapter 12).

There are five libraries available, one for each project, which you can easily add to your

project and start using what you need.

�Features and Utilities
Following is the description of the main features and utilities contained in each of these

libraries.

�TestAutomationEssentials.Common
This library contains various small but very useful utility methods (mainly extension

methods that were mentioned in Chapter 13), plus a few bigger features:

	 1.	 Support for configuration files. This was explained and was used

in Chapter 14.

	 2.	 A Logger class that implements the concept of nested logging,

described in Chapter 13.

	 3.	 A generic implementation of the Cleanup mechanism described

in Appendix B.

	 4.	 A Wait class (pretty similar to WebDriverWait in Selenium) that

provides a few methods for waiting until a given condition occurs.

Here’s a more detailed explanation of the more interesting classes and methods in

this library.

�ExtensionMethods Class

This class contains many general-purpose extension methods, which can make your

code a bit simpler and easier to read. Listing C-1 demonstrates a few usage examples.

Appendix C Test Automation Essentials

491

Listing C-1.  ExtensionMethods examples

 // SubArray example:

 string[] cartoons = {"Mickey", "Minnie", "Goofy", "Pluto", "Donald" };

 string[] dogs = cartoons.SubArray(2, 2);

 // Dictionary.AddRange example:

 var numbers = new Dictionary<int, string>

 {

 {1, "One" },

 {2, "Two" },

 {3, "Three" }

 };

 var moreNumbers = new Dictionary<int, string>()

 {

 {4, "Four"},

 {5, "Five"},

 {6, "Six"}

 };

 numbers.AddRange(moreNumbers);

 // IEnumerable<T>.IsEmpty() example:

 IEnumerable<int> values = GetValues();

 if (values.IsEmpty())

 {

 // Do something...

 }

�DateTimeExtensions

This class also contains useful extension methods but mainly around date and time

manipulation. I especially like the extension methods that makes the code read

more fluently, like for example, instead of writing: var duration = TimeSpan.

FromSeconds(3); you can simply write: var duration = 3.Seconds(); The difference

is pretty small (and a few people even find it confusing at first), but when you get used to

it and read the code, it makes it much more fluent.

Appendix C Test Automation Essentials

492

�TestExecutionScopeManager

This class implements the cleanup mechanism that is described in Appendix B but

it’s not bound to a specific unit testing framework; and it allows you to nest execution

scopes, to support multiple levels of cleanup, like [TestCleanup], [ClassCleanup], and

[AssemblyCleanup]. If you’re using MSTest there’s no need to use this class directly, as

TestAutomationEssentials.MSTest (and MSTestV2) already use this class internally and

provide a single AddCleanupAction method. However, you can use this class if you need

it for other unit testing frameworks or for any other purpose.

This class also uses the Logger class to write whenever an execution scope begins

and ends.

�Wait

This class exposes a few static methods for waiting for a given condition to be met. These

methods throw a TimeoutException in case the condition didn’t get met after a specified

timeout. The condition is provided as a delegate, or a lambda expression (explained in

Appendix B) that returns a Boolean, which indicates whether the condition has been

met or not.

This class has a few overloads of methods named Wait.Until and Wait.While,

which as their names imply, the first one waits until the condition is met, and the second

one waits while the condition is met (i.e., until it is no longer met). Some of the overloads

of these methods accept an error message to use in the TimeoutException, though

if you’re using a lambda expression, then you can use another overload that doesn’t

take an error message and automatically parses the expression in order to use it in the

description. Listing C-2 shows two usage examples of the Wait class.

Listing C-2.  Examples of using the Wait class

 // Wait.Until example

 Wait.Until(() => batchJob.IsCompleted, 2.Minutes());

 // Wait.While example, with error message

 �Wait.While(() => batchJob.InProgress, 2.Minutes(), "Batch job

is still in progress after 2 minutes");

Appendix C Test Automation Essentials

493

In addition to the Until and While methods, there are also If and IfNot methods.

These methods correspond to the While and Until methods respectively but do not

throw a TimeoutException when the specified period elapses. Instead they simply

continue normally. This can be useful in cases that you want to wait for something

to occur but may as well miss it. For example, let’s consider the case where clicking a

button starts an operation that may take fa ew seconds, during which a “please wait”

message should appear, and we want to wait until the operation completes. But the

same operation may also be very fast at times, in which case the message appears only

for a blink of an eye, and the test may miss it altogether. So, in order to prevent the test

from failing if the operation was very fast, you can use the Wait.IfNot to first wait for the

message to appear, providing a short timeout (e.g., 1 second), followed by a Wait.Until

to wait for the message to disappear, with a longer timeout (e.g., 1 minute). If the test

missed the message because it was too fast, then the Wait.IfNot will wait in vain for the

message to appear, but only for 1 second and without failing, and then the Wait.Until

will return immediately because the message no longer appears.

�TestAutomationEssentials.MSTest
The most significant class that this library provides is the TestBase class. This class is

designed to be used as the base class for all of your tests. In case you already have a class

hierarchy of tests, simply derive the lowest ones (your own test base classes) from this

class.

This class adapts the MSTest specific initialization and cleanup methods to the

TestExecutionScopeManager class from TestAutomationEssentials.Common. In addition,

it exposes a virtual method that you can override and which is called only when the test

fails (OnTestFailure), something that MSTest does not provide out of the box. This is very

useful for adding any information that can help you investigate and diagnose the failures.

In fact, if you import the namespace TestAutomationEssentials.MSTest.UI,

then you’ll get a slightly different implementation of TestBase whose default

implementation of OnTestFailure takes a screenshot upon a failure (the screenshot is of

the entire desktop, not of a browser page as it in Selenium).

Appendix C Test Automation Essentials

494

�LoggerAssert

In addition to the TestBase class, this library also contains few other utility classes.

One of them is the LoggerAssert class, which writes a message to the log whenever the

assertion is evaluated, whether it passes or fails. While generally there should only be no

more than a couple of asserts at the end of each test, there are cases where few asserts

in the middle of the test may still be useful (e.g., inside a loop, which is also generally

discouraged in a test, but there are exceptions…). In these cases, it’s useful to see in the

log the assertions that passed, and not only the one that failed. Note that in order to use

it properly, you should phrase the messages as expectations, (e.g., “x should be 3”) and

not as error messages (“x was not 3”), because these messages would appear in the log

also in case of success.

�TestAutomationEssentials.CodedUI
The primary goal of this library is to make working with Coded UI, through code and

without UIMaps (see Chapter 3) much easier. TestAutomationEssentials.CodedUI

exposes an API that resembles the one of Selenium WebDriver. Listing C-3 shows a usage

example.

Listing C-3.  Example of using TestAutomationEssentials.CodedUI

var customerDetailsPanel =

 mainWindow.Find<WinPane>(By.AutomationId("CustomerDetails"));

var customerNameTextBox =

 customerDetailsPanel.Find<WinText>(By.Name("CustomerName"));

var text = customerNameTextBox.DisplayText;

In addition, it provides few useful extension methods lik: myControl.RightClick(),

myControl.DragTo(otherControl), and the very useful method myControl.

IsVisible(), which for some reason Coded UI does not provide out of the box.

Appendix C Test Automation Essentials

495

�TestAutomationEssentials.Selenium
This library wraps Selenium WebDriver to make the use of Selenium somewhat easier in

most cases and much easier in more specific ones.

Note  Currently this library is a bit too “opinionated,” which makes it hard to add
it retroactively to existing projects. I’m considering changing or at least softening
some of these constraints, but I have no specific details about it yet. Stay tuned…

�WaitForElement

To use most of the features of this library, you need to create an instance of the Browser

class, which wraps your IWebDriver object. Using this object (and though other classes

that derive from ElementsContainer, more or that later), you can find elements using

the WaitForElement method. This method is similar to the familiar FindElement method

of Selenium, but with two main differences:

	 1.	 It always waits for the element to appear (and not just to exist).

You can specify the timeout or use the default of 30 seconds.

	 2.	 It takes a description argument, which is used for automatically

logging click operations, typing, etc. Providing a descriptive name

in this argument helps make the log very readable.

Browser.WaitForElement returns a BrowserElement object, which on one hand

implements Selenium’s IWebElement interface, but on the other hand, it also derives from

ElementsContainer, which means that you can use WaitForElement to look for child

elements inside of it, with the same benefits over the standard FindElement method.

�Handling Frames and Windows

In my opinion, the case in which this library is most compelling is for web applications

that use multiple windows or iframes (which is a web page displayed within another

web page). Normally with Selenium you need to use driver.SwitchTo().Window() and

driver.SwitchTo().Frame() to use other windows or frames, but the annoying thing

is that if you want to use an element you already found in one context (i.e., a window

or a frame, including the main page), you can’t use that element after you switched to

Appendix C Test Automation Essentials

496

another context, unless you switch back to the original one. If you don’t do that, you’ll get

a StaleElementReferenceException (see Chapter 14), but managing the active context

can be cumbersome and complicate your code. Listing C-4 demonstrates this problem.

Listing C-4.  The problem with SwitchTo

// Navigate to a website that contains an iframe

webDriver.Url = "http://www.some-site.com/outer.html";

// find an element on the outer page

var outerButton = webDriver.FindElement(By.Id("outerButton"));

// switch to the inner frame

webDriver.SwitchTo().Frame("frame1");

// find an element on the inner frame

var innerButton = webDriver.FindElement(By.Id("innerButton"));

// clicking the inner button works normally

innerButton.Click();

// (See next comment)

//webDriver.SwitchTo().DefaultContent();

// Clicking the button on the outer page now would throw a

// StaleElementReferenceException because the outer page is not the current

// context. You must uncomment the above statement, which switches back to

// the outer page, in order to avoid the exception

outerButton.Click();

Note that in this example the problem doesn’t look so severe, but in more complex

situations, managing the current context can make the code very cumbersome and error

prone.

The Solution of Test Automation Essentials to the SwitchTo Problem

The classes that derive from ElementsContainer (including Browser and

BrowserElement) contain a method GetFrame that finds a frame and returns a

corresponding Frame object (which is part of the TestAutomationEssentials.Selenium

library). The Frame class also derives from ElementsContainer, so you can look for

nested frames within the frame that this object represents (i.e., to find an iframe

Appendix C Test Automation Essentials

497

within another iframe). In addition, Browser has an OpenWindow method that invokes

an operation that you provide to it (e.g. ,clicking a button), which should result in

a new window being opened and returns a BrowserWindow object that represents

the new window. As you might have guessed, BrowserWindow also derives from

ElementsContainer. The cool thing is that Test Automation Essentials manages the

current context for you, so you don’t have to worry about it. Whenever you want to use

an element that you found on any window or frame, you should be able to do that, even

if it’s not on the active context (though given that this element still exists of course). Test

Automation Essentials will take care of switching for that context for you. Listing C-5

shows how the previous example would look with Test Automation Essentials.

Listing C-5.  Working with Frames using Test Automation Essentials

// create an instance of Browser that wraps our webDriver object

var browser = new Browser(webDriver, "Site with iframe");

// Navigate to a website that contains an iframe

browser.Url = @"http://www.some-site.com/outer.html";

// find an element on the outer page

var outerButton = browser.WaitForElement(By.Id("outerButton"), "Outer

button");

// Find the inner frame

var frame = browser.GetFrame("frame1", "inner frame");

// find an element on the inner frame

var innerButton = frame.WaitForElement(By.Id("innerButton"), "Inner

button");

// clicking the inner button works normally

innerButton.Click();

// Clicking the outer button now works seamlessly!

outerButton.Click();

Appendix C Test Automation Essentials

498

�Contributing to the Project and Porting
to Other Languages
The nice thing about open source projects is that anyone can help improve it and

influence its direction. Because of the nature of this project, I mostly added to it things

that I needed, and therefore there could be many things that should have been right

there but are not. Likewise, while this project is very modular, it doesn’t have a very clear

boundary for what should be included in it and what shouldn’t. So, any good idea that

can benefit others can be included in it. Obviously, like any other software, this project

can also have bugs that need to be fixed. Therefore, you can contribute to this project by

many different means.

It is always advisable that before you go on and send a pull-request (see Chapter 13),

you discuss it first by posting an issue though GitHub, or by contacting me directly.

Note that posting an issue is not necessarily a bug report, as it can also be an idea for

improvement or a request for a new feature. If you do send a pull-request, please make

sure that it has clear XML comments for its public API; and at least for the Common and

MSTest libraries, I expect nearly everything to be covered by unit or integration tests.

I also consider porting some of the stuff to other programming languages, mainly

Java, but maybe also Python or any other language that I see a need for. I’ll probably do

it when I’ll have a real and significant test automation project that needs it, but you’re

welcome to add it too. Note that some things, especially in the Common library are

relevant specifically to C#, though other utilities may be useful for other languages.

Appendix C Test Automation Essentials

499
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5

�APPENDIX D

Tips and Practices
for Programmer’s
Productivity
As a consultant who has worked with many test automation developers, I found that

many of them are thirsty for tips and practices for working more effectively and for

improving their programming skills. In this appendix, I gathered some of these tips and

practices that I believe will be valuable to most people.

Some of these tips are relevant to all programmers, not just test automation

developers, and some are more specific to test automation and even to Selenium.

�Prefer Using the Keyboard
If you want to work more efficiently when working with code, I suggest that you get

used to using the keyboard, much more than the mouse. It takes some time to get used

to it, but once you do, you’ll be much more productive when writing and reading code!

Here are some tips that can help you get used to it. Most of these tips assume that you’re

using Microsoft Windows. If you’re using Mac, Linux, or any other operating system,

there are probably equivalent shortcuts, but they may be different. Searching the web for

equivalent shortcuts in these operating systems will likely yield the desired results.

	 1.	 As it’s difficult to change habits, you must put some constraints on

yourself at first in order to get used to use the keyboard instead of

the mouse. Therefore, I suggest that you deliberately put the mouse

farther away from you. Only grab it when you don’t find how to

achieve your task with the keyboard, and then put it back away.

https://doi.org/10.1007/978-1-4842-3832-5

500

	 2.	 Pressing the Alt key, highlights shortcuts for menus and buttons,

by adding an underline under the letter of shortcut. To activate the

shortcut, press Alt + the highlighted letter. For example, to open

the File menu in virtually all applications, press Alt+F.

	 3.	 After the menu is open, you’ll see the shortcuts of the menu items.

When the menu is open, you can simply press the highlighted

letter, even without pressing Alt. For example, after pressing Alt+F

to open the File menu, press O to activate the Open… menu item.

	 4.	 Once the menu is open, you can navigate the submenus using

the arrows. Press Enter to select the menu item. The arrow keys

are useful also for navigating most tree controls. For example, to

expand a folder in File Explorer, you can press the right arrow.

	 5.	 Many menu items also have additional shortcut keys displayed

next to them, usually with the Ctrl key + some other key. These

shortcuts can be invoked directly, without first opening the menu.

For example, to open a new file, directly press Ctrl+O.

	 6.	 Most UI controls (elements) in most applications are capable of

being “focused,” which means that they’re the first control to receive

the keyboard input. There’s only one focused control at any given

moment. The concept of “focus” is most noticeable with textboxes,

but other controls, like buttons, checkboxes, drop-down lists, etc.,

can also have the focus, allowing you to interact with them using the

keyboard. Use the Tab key to move the focus between elements on

a window. Use Shift+Tab to move in the opposite order. Press Enter

or the Space Bar to press the focused button. Use the Space Bar

also to toggle checkboxes, or select items in a multiselect list-boxes.

Press Esc to click the “Cancel” button on dialogs.

	 7.	 Most keyboards have a Context Menu key (typically located

between the right Alt and Ctrl keys), which is similar to a

right-click with the mouse. Note though that when you use the

mouse, right-clicking opens the context menu that corresponds to

the location where the mouse cursor is, while pressing the Context

Menu key on the keyboard opens the context menu where the

keyboard focus currently is.

Appendix D Tips and Practices for Programmer’s Productivity

501

	 8.	 Use Alt+Tab and Alt+Shift+Tab to switch between open windows

back and forth. In many applications, including Visual Studio, you

can use Ctrl+Tab and Ctrl+Shift+Tab to switch between open

documents. Keep the Alt (or Ctrl) key pressed to see the list of the

open applications or documents.

	 9.	 In a text editor or textbox, use Ctrl+→ and Ctrl+← to move the

caret (the text entry cursor) whole words at once. Use the Home

and End keys to move to the beginning and end of a line. Use

Ctrl+Home and Ctrl+End to move to the beginning and end of

the document.

	 10.	 Use Shift+→, Shift+←, or Shift + any of the navigation

combinations described above to select the text between its

current location and the location where the navigation keys will

take you to. For example, Shift+Ctrl+→ will select the next word.

	 11.	 Press Shift+Del and Shift+Backspace to delete the next or

previous word (or from the middle of a word to its end or its

beginning).

	 12.	 Search the web for a list of shortcuts for your favorite IDE or other

applications that you work with often. Print these and put it in

from of you. Also search the web for specific keyboard shortcuts

for actions that you can’t find the shortcut to. If you’re using

Resharper, I highly recommend you to search for “Resharper

Default Keymap PDF” on the web, print it, and put it near your

keyboard. From time to time examine this document to find useful

shortcuts and try to use them often until you start using them

naturally. You’ll also likely learn addition features of Resharper

(or of your IDE) when you examine this list.

	 13.	 The keyboard mappings for many applications, especially

programming IDEs are customizable. So, you can assign direct

keyboard shortcuts to actions that you use often and that don’t

have ones by default.

Appendix D Tips and Practices for Programmer’s Productivity

502

�Poka-Yoke
In Chapter 11 I declared MVCForum as a read-only property and not as a regular property

(with public setter). Declaring a property as read-only is more restrictive than declaring

it as read/write, and therefore may seem like an inferior option. Well the thing is that I

don’t want that anyone to ever change this property from outside of the class. (Note that

changing the value of a reference-type, means replacing the reference with a reference

to another object, and not making changes to the existing object.) Similarly, there are

many other design decisions that a programmer can make to restrict or allow the usage

of some code construct, and some programmers mistakenly think that the more you

allow – the better. So why should I prefer to restrict? To answer that question, I’ll tell you

what “poka-yoke” is and why it’s so important.

Poka-yoke is a Japanese term that means “mistake-proofing” or “inadvertent error

prevention.” The term is part of the Lean manufacturing philosophy developed by

Toyota in the middle of the 20th century. A poka-yoke is any mechanism that helps an

equipment operator to avoid (yokeru) mistakes (poka), as it turns out that preventing

mistakes is often much easier and cheaper than inspecting and fixing defects later on.

While originally the term and the idea were used in industrial manufacturing, it holds

very true for software design as well.

There are countless examples of language features and techniques in software

design that enable poka-yoke. In fact, the first principle of object-oriented design –

encapsulation – is one. Encapsulation is what allows you to specify whether a member of

a class will be private, so only other methods of the same class would be able to access,

or public if the member is planned to be used by methods in other classes too. Using

strong typing (i.e., having to specify the exact type explicitly) is a very strong Poka-yoke

mechanism in the languages that support it (e.g., C# and Java). In addition to this, using

strongly typed collections that take advantage of the Generics language feature are more

error preventing than collections of objects. Another technique to avoid mistakes is to

avoid using null as a valid value, as I’ll explain shortly.

While using poka-yoke sometimes limits flexibility, I strongly prefer to allow

flexibility only in places and manners that I explicitly choose, and not by default. This is

the reason I preferred to make the MVCForum property read-only.

Appendix D Tips and Practices for Programmer’s Productivity

503

�Avoid Nulls
Most object-oriented languages allow object variables (be it local, field, static, etc.) to

have a special value of null, indicating that it references no actual object. This is usually

also the default value of an uninitialized object variable. However, probably the most

common unexpected exceptions (which actually represent a problem in the code, or

better put: bugs) is NullReferenceException in .Net (and NullPointerException in

Java), which is caused by the use of null values. Especially if you treat nulls as valid

values, these bugs can be difficult to investigate, because their cause is often in a

different place from where the exception itself is thrown. Not only that, but the cause is

that the assignment of a real object didn’t happen! Investigating why something didn’t

happen is much harder than investigating why something did happen… Note that if you

avoid using nulls as a general rule, but you get a NullReferenceException nevertheless,

then it’s usually very easy to find the variable that you forgot to initialize.

For these reasons, many modern languages (especially functional languages, like F#

and Scala) intentionally prevent the use of nulls by default. In some of these languages,

you can still use nulls, but only if you explicitly declare the variable to allow it.

Because most of us are still using “regular” object-oriented languages (C#, Java,

Python, Ruby, etc.), the compiler doesn’t hold us from using nulls. However, with a

little self-discipline, we can avoid it ourselves. Simply initialize every variable right

when it’s declared (or in the constructor), and avoid assigning null or returning a null

from a method. If you get a value from “outside” that may be null, (somewhere that

you don’t have control over, like arguments in a public API, or a return value from a

third-party method), then you should check it for null as soon as possible and handle

it appropriately. This can be done by throwing an exception if you can’t handle it, or

“translating” it to a different object that represents an empty object (AKA the “null object

pattern.” A simple example is an empty list rather than null).

Adhering to these rules will help you avoid many potential bugs!

Appendix D Tips and Practices for Programmer’s Productivity

504

�Avoid Catching Exceptions
Most beginner and intermediate developers use try/catch blocks much too extensively,

because they think that this makes their code more robust and reliable. Well, it’s true

that when you catch an exception, you prevent it from propagating to your caller (and if

your code is the “main” method or a test method, then you prevent the exception from

crashing your application or failing the test), but that only gives the illusion that the code

is more robust. The reason is that if something went wrong and without knowing exactly

what and why, and you just ignore it, you’d very likely be hit by a ricochet of that problem

later on. If you ignore all exceptions, the program will never crash, but it also may won’t

do whatever it’s expected to do! Catching an exception just in order to ignore it (i.e.,

using an empty catch clause) is often called “swallowing exceptions,” and in 99% of the

cases, it’s a very bad idea…

Moreover, if you swallow an exception, it will make your life much harder when

you come to debug or diagnose a problem. This is even worse if it happens only

occasionally in production! Therefore, the most naïve approach to this problem is

simply to write the exception to a log file. This is significantly better than swallowing

the exception completely, and in some cases it’s a good idea, but in general, as far as

the user (either the end user or the caller of a method) is concerned, this has the same

effect of swallowing the exception, because you normally won’t look at the log until a

user experiences and reports a problem. If you decide to write an exception to the log,

make sure to log all of the information about the exception, including the stack-trace and

original exception if it’s different from the one that got caught (InnerException in .Net or

getCause() in Java). In .Net, it’s best to use the ToString() method because the string it

returns already contains all of the relevant information.

So how should you handle exceptions? In most cases, the correct answer is “you

shouldn’t”! For exceptions that you expect to happen at times (e.g., “file not found” when

the application tries to read from a file that the user might have deleted or renamed),

you better avoid the condition by checking for it in advance and handle it appropriately

(e.g., check if the file exists, and if not, advise the user what to do). For general exceptions

that you can’t predict and you can’t specify why they may happen, or in case you have

nothing to do about it (like “out of memory”), let them propagate down the stack. If

you let the program crash immediately (or let the test fail due to the exception), you

automatically get most of the information that you need in order to investigate the root

cause. If you do it properly, then you’d most likely find the fault and fix it quickly.

Appendix D Tips and Practices for Programmer’s Productivity

505

Clearly, if it was always such a bad idea, the try/catch construct wouldn’t make it

into all modern languages. So, when does it make sense to catch exceptions? There are a

few cases:

•	 You’re able to specify exactly what could go wrong, and handle

it gracefully, but you can only do it after the fact. In many cases,

runtime conditions may change during the operation (e.g., the file is

deleted while you try to write to it). At other cases you do have a way

to check for the condition before starting the operation, but it simply

doesn’t pay off, for example, due to performance (i.e., checking if

you can do something that takes a long time may require that the

check itself take the same time by itself). Other cases may be due to

technical limitations (e.g., you don’t have an API that can tell you in

advance if the operation is about to succeed or fail).

•	 In these cases, you should catch the most specific type of exception,

and narrow the scope of the try block to only the specific operation

that you expect to throw that exception. This way you avoid catching

exceptions that you don’t expect and only catch those you do. The

catch block should perform the specific handling that is expected to

resolve the issue or advise the user or the caller of the method how to

resolve it.

•	 Adding a global error handling that presents all unexpected

failures to the user in a special way and/or attaches additional

information to the exception. For example, some teams prefer to use

a proprietary reporting mechanism for test results and want all the

failure information to be written to it, along with the exact date and

time. In addition, you may want to add some system information or

specific information about the SUT.

•	 In this case you should have only one try/catch block, but in

contrast to the previous case, in this case the try block should

encompass the entire program (or test case) and you should catch all

exceptions. In this case, make sure to report all the information you

have about the exception to allow efficient investigation.

Appendix D Tips and Practices for Programmer’s Productivity

506

•	 You should also think about a fallback exception handling, in a case

where an exception occurred inside your normal exception handling

code. For example, if you fail to write to a custom report, you should

still fall back to writing the failure to the console, or to the normal

exception handling that the testing framework provides. Usually the

handling should simply be throwing a new exception containing the

information of both the original exception and the information about

the secondary exception that happened inside the exception handler.

This way you’ll be able to investigate both the reason for the original

failure, and also the problem in the exception handler. Obviously, the

secondary exception handler should be much simpler than the first

one, so the chances that it fails should be very small.

•	 You have valuable information to add to the exception that may be

useful for the investigation. For example, you have a complex method

that performs multiple operations on the database, calls external

REST services, etc. In such a method a lot of things can go wrong,

but the native exceptions that may be thrown may be too low level

to be useful and won’t tell you how to reproduce the error. In this

case you can catch all exceptions (or a more specific but still general

exception) and re-throw a new exception that wraps the original

exception but adds information about the parameters that the

method received, or some internal state of the current object.

•	 You should very rarely write such handlers in advance. In most cases,

you should first let the exceptions handled normally, and only if

you see that you’re missing some important information that you

need in order to find the fault, then you need to add the additional

information to the exception for the sake of the next time. Needless to

say, you should keep all the information about the original exception,

especially its stack-trace.

•	 You perform an operation on a large number of rows (or other form

of data that contain independent entities), and you don’t want a

failure in one row to stop the process and prevent it from doing the

operation on other rows. In such case you should wrap the operation

for a single row in a try block, and inside the catch block, add the

Appendix D Tips and Practices for Programmer’s Productivity

507

exception to a list. When the loop completes, you should throw an

exception that contains all of the caught exceptions (.Net has an

AggregateException class just for that), or report the failures to the

user by other means.

One common use of exception handling is for retrying the failed operation. This

is a valid reason to use try/catch, and it falls into the first category above. However, it’s

important to note that you understand exactly why and on what you retry. For example,

if you try to read from a file and the file does not exist, retrying won’t help without a

human intervention! If you catch too broad exceptions and retry the entire operation,

you create two new problems:

	 1.	 You’re wasting a lot of time retrying something that has no chance

to succeed.

	 2.	 You’re very likely to miss other problems (including bugs in

the SUT!) and lose valuable knowledge and information about

the nature of these problems. As mentioned above, you’ll have

a harder time investigating the problem, and it may cause

secondary problems that will just confuse you.

Occasionally I hear about test automation projects that introduced a mechanism that

automatically retires a failing test. In my opinion this is a smell for a bad architecture,

lack of isolation, or simply a poor test design. Implementing an automatic retry of tests
implies that you trust the tests less than you trust the SUT, and you assume that most

failures will be caused by the test (or its environment) and not by the SUT. An automatic

test should be predictable and repeatable. If it fails, you should be able to investigate and

fix the problem as fast as possible.

Until now we only discussed when to catch exceptions but haven’t mentioned when

to throw your own exception. This one is simpler – always throw an exception from

methods if you detect a condition that prevents the method from doing whatever it was

intended to do. When you do that, make sure to provide all the relevant information that

can help whoever needs to understand what happened. Note that in object-oriented

languages (that support exceptions), you should never return an error code or a Boolean

to indicate success or failure. This is what exceptions are for!

Appendix D Tips and Practices for Programmer’s Productivity

508

In addition, avoid throwing an exception for the purpose of normal program

flow. Exceptions should only be used to indicate some kind of problem! If in order to

understand the normal program flow, one should follow the throw and try/catch

constructs, then you’re probably doing it wrong. The most obvious case that you should

avoid is throwing an exception that you catch inside the same method.

�Choosing the Most Appropriate Locator
The following tips are specific to Selenium. However, the main ideas and tips are relevant

to all UI automation and may also be applicable for other cases in which the test needs to

identify a piece of data from the application, like retrieving values from JSON, XML, or a

database.

Selenium finds elements by matching a string value to a specified locator type.

Selenium supports the following locators:

	 1.	 Id – identifies elements whose id attribute matches the specified

value. According to the HTML standard, if this attribute exists,

its value must be unique across all elements in the page. So,

theoretically, if an element has an id attribute, it should ensure

that we can uniquely identify it using this locator. However, this

requirement is not being enforced by browsers and sometimes

pages contain more than one element with the same id

	 2.	 Name – identifies elements using their name attribute. The name

attribute should uniquely identify an element within an HTML

form

	 3.	 LinkText – identifies elements by matching their inner text to the

specified value

	 4.	 PartialLinkText – same as LinkText, but also matches elements

in which their text contains the specified value, even if the value is

only a substring of the link text

	 5.	 TagName – identifies elements whose tag name matches the

specified value. Tag names are rarely unique, but in case they are,

this locator can be used

Appendix D Tips and Practices for Programmer’s Productivity

509

	 6.	 ClassName – identifies the element using any of its class names.

The class attribute of an HTML element can contain zero or more

names of CSS classes, separated by a whitespace. This locator can

take only one class name and only find element(s) that have this

class

	 7.	 XPath – identifies elements according to the XPath specification.1

The XPath specification provides a special query syntax to locate

elements within an XML or HTML documents

	 8.	 CSS Selector – identifies elements according to the CSS selector

pattern.2 CSS Selectors were originally used to identify elements in

a CSS document in order to apply a given style to them. However,

the jQuery JavaScript library also makes use of this syntax to

identify elements.

If you want to find a single element, you must use a locator and value that matches

only that one particular element. If a locator matches more than one element, Selenium

returns the first one, but this is not necessarily the one you want. Anyway, while the

locator you use must identify the element uniquely, this is not enough: in order to keep

the tests reliable and easy to maintain, we must also ensure that the locator that we
choose will always identify the relevant element, or at least which is least likely to be
changed.

Id and Name are considered the best locators if they exist, because they uniquely

identify the elements (or at least should). This is indeed true in the majority of cases.

However, some frameworks, or even proprietary JavaScript code, sometimes generate

these ids at runtime, randomly or sequentially. While they ensure uniqueness, these

values are most likely to change between runs if they’re generated randomly. If they’re

generated sequentially, then they’ll probably change only if elements are added or

removed, either at runtime or due to a change in the code. So, my advice is to use an

id or name locator only if its value is a meaningful name that is related to the business

functionality of the element that you’re looking for. In other words, use it only if its value

was apparently chosen by a human. For example, if the id of an element is submitButton,

then this makes a perfect locator. However, if the id of an element is button342, then this

would probably mean that this is a bad locator!

1�https://www.w3schools.com/xml/xpath_syntax.asp
2�https://www.w3schools.com/cssref/css_selectors.asp

Appendix D Tips and Practices for Programmer’s Productivity

https://www.w3schools.com/xml/xpath_syntax.asp
https://www.w3schools.com/cssref/css_selectors.asp

510

The same rule also applies to class names: if the class name is meaningful and is

related to the element that you want to find, then it’s great to use it. But if the class name

has nothing to do with the meaning of the element, then avoid it if you have a better way.

While the XPath and CSS Selector locators have the most complex syntax, they

provide the most flexibility. These locators allow you to specify a combination of

characteristics of the element itself as well of its ancestors and even siblings, all as one

string. Chrome can generate these strings for your and copy them to the clipboard,

directly from the context menu of the element in the Develop Tools. You can then use

these strings with your Selenium code to identify the element you want with it. While

this sounds very compelling, and indeed many Selenium automation developers use

it, it’s often not a good idea whatsoever. Chrome attempts to find the best locator using

a heuristic that searches for the simplest combination of characteristics that is also

unique. However, this heuristic cannot predict what’s likely to change in the future or

even in the next time the page will be loaded and may even suggest a locator that is

currently unique, but in another run won’t be. Locators that are less likely to change are

locators that contain strings that represent the real meaning of the element. For example,

if a button has a button-login class name on it, even though class names need not be

unique, its name suggests that it identifies a Login button. Therefore, you should learn

the CSS Selector and XPath syntax and use your own judgment when combining the

most appropriate pattern to use.

The last (but not least) tip is to limit the scope of the search to only a specific

container. In other words, you should first identify a unique element that contains the

element you’re looking for, and then identify the element you’re looking for inside of

it. The famous FindElement method in Selenium works both on the IWebDriver object

as well as on any IWebElement object, so you can use it to identify an element within

another element. You can have as many levels of such nesting, and the typical approach

is to use a Page Object for each such container that the end user can identify. The

advantage of identifying elements only within their containers is that you only have to

worry about the uniqueness of the elements within the container and not among all

elements on the page, and in addition it removes the duplication from the locators of all

the elements that reside in the same container. While this duplication is usually only of a

substring (e.g., the start of an XPath expression), if it will need to change it will need to be

changed for all of the elements inside this container.

Appendix D Tips and Practices for Programmer’s Productivity

511

�Hard-Coded Strings in Test Automation: Yea or Nay?
Many developers treat hard-coded strings as a bad practice. There are some good

reasons for it but also some misconceptions around it. In fact, in most cases you cannot

avoid completely the use of string literals (AKA string constants, or hard-coded strings)

in the code. For example, even if you want to keep these strings in an external file, you’d

probably need to have the name of the file somewhere in your code. But then again, one

can keep this limited set of constants in one source file, in order to keep it separated from

the actual logic of the application. However, it is important to understand why and when

it is a bad practice to use string literals mangling inside the source code, and when it is

acceptable or even a good thing.

There are several reasons why hard-coded strings are considered bad practice:

	 1.	 Separation of concerns – strings are mostly used for some kind of

human interaction, while the algorithm itself is not. The wording

or spelling of a string that should be displayed to the user may

need to change separately from the algorithm.

	 2.	 Localization (Internationalization) – applications that are

localizable (i.e., applications that are designed to support multiple

languages and cultures), or even may need to be localizable in the

future should extract any string that the user may be exposed to,

to some external resource that can be easily switched (either at

runtime or at compile time).

	 3.	 Configuration – in many cases, global string values that are not

intended for user interaction (at least not directly), tend to have

different values for different environments or configurations.

A database connection string is a good example. Hard-coding

these strings make the code inflexible and won’t be able to run on

different environments.

	 4.	 Duplication – if you need to use the same string in multiple places

in the code and you don’t put it in a common place, then you

introduce a duplication. If at any point you need to change this

string, you would now need to change it in all places.

	 5.	 Length – sometimes strings can get quite long. and if they’re

mingled with the algorithm, they hinder the readability of the code.

Appendix D Tips and Practices for Programmer’s Productivity

512

Those reasons take some developers to the conclusion that all strings literals should

be extracted from the code into a separate file. The most common claim I hear for that,

is that it allows them to change these values without re-compiling them. However, re-

compiling is an issue only for an end user who doesn’t have access to the source code

and development environment or is not proficient in the programming language and is

afraid to change something that he doesn’t understand.

Let’s consider three common usages for string literals in test automation, and let’s

analyze where it makes the most sense to put them:

	 1.	 Environment information – Depending on your isolation

strategy (see Chapter 7), some of this information may be

different for every environment that you want to support

running the automation on, though some values may be fixed

for all environments (or there’s only one environment you’re

supporting). Even though re-compiling is not a big deal in test

automation, you’d probably want to keep the information that

varies from one environment to another in a configuration file, or

at least in a separate source file. This will help you manage their

changes separately from the source files in your source-control

system. As a rule of thumb, these configuration files should be

kept small with very few, easy-to-understand values; otherwise it

will soon become a nightmare to maintain by itself.

The “fixed” values however are anything that is common to all

environments and should not change for a predictable reason in

the foreseeable future. It doesn’t mean that it can’t change in the

future, but for now there’s no reason to assume that it will happen

soon – for example, a URL of a third-party service provider. In my

opinion, it’s fine that such data will be kept directly in the code,

as long as it appears only at a single place and close to its usage,

for example, as a named constant. If this URL will change at some

point in the future, it shouldn’t be difficult to find the place in the

code where it’s defined and change it. By contrast, if you put that

value in a configuration file and you need to change it after couple

of years, you probably won’t remember that it’s there anyway,

and you’ll have to debug or analyze the code in order to find

where the value comes from in order to know where to change.

Appendix D Tips and Practices for Programmer’s Productivity

513

Therefore, if the value will be read from a configuration file, it will

be less obvious to find it than if it is directly in the code. If you

have multiple instances of this configuration file (e.g., for different

environments) hanging around, probably not under source

control, then even when you know what to change, you still need

do it for every instance of this configuration file. After all, because

you can never know what would change and when, you’d probably

have lots and lots of such configuration values that will just be

more difficult to manage and maintain. Bottom line: keep

things simple!

	 2.	 Locator values (Ids, XPath, CSS Selectors, etc.) – Whether you’re

doing UI automation (e.g., using Selenium) or REST API tests (or

maybe some other kinds of tests), you need to refer to elements

on the screen or in the response message. In order to do this,

you need to specify the id, name, XPath, etc., of these elements.

Some people think that putting these strings in an external

configuration file makes their code more maintainable. Frankly,

I may be able to see how it makes the “code” more maintainable,

but the maintenance of these files often becomes a headache in

and on itself. If more than one automation developer works on

the project, such a big file that contains all of these elements soon

becomes a merge hell. In fact, such files don’t solve anything,

but rather move the maintainability problem from one place to

another, which is less appropriate for it. Keeping the locators with

their string literals close to their usages is much easier to maintain

than having all of the locators defined in one place while their

usages are spread across the entire code base. Encapsulating the

details inside the class or the method that use it is the solution to

make your code more maintainable, and the Page Object pattern

is the most common way to encapsulate the locators inside a class.

Appendix D Tips and Practices for Programmer’s Productivity

514

	 3.	 Input values – Tests typically have to type in or otherwise pass

strings as inputs to the SUT (like entering the discussion heading

in Chapter 11). Some people like to keep these values in a separate

file to give them flexibility over the values of these strings. If you’re

creating a data-driven test, then that’s fine. But if you don’t intend

to run the same test with different values, which you specifically

define to verify different cases, then there’s probably not a good

reason to extract it from the code. The need to extract such values

to an external file is often a symptom for a design that depends on

specific data that exists in the database. So, if at some point the

data will change, then you won’t have to change the code, only the

external file. But again, this is just moving the maintenance problem

from one place to another. This file becomes a contention point and

will be harder to maintain than if the test used its own data.

	 4.	 Expected results – Similar to input values, the expected results are

values that we expect as outputs from the SUT. The exact same

considerations that apply to the input values apply also to the

expected results.

	 5.	 SQL statements or JavaScript snippets – Sometimes you

need to invoke an SQL statements, a JavaScript command, or

something along these lines from the test code. If these scripts

are long, putting them in separate files will indeed improve

the maintainability of the code. However, for sparse one-liner

statements, embedding them directly in the code, close to their

usage, and not duplicated, improves encapsulation and makes the

code easier to understand and to follow.

All in all, in the majority of cases, strings used in test automation code better be in

the code, as long as they’re not duplicated and appear close to their usage in the code,

rather than in an external file. Use external configuration files only for values that have to

be different for different environments.

Appendix D Tips and Practices for Programmer’s Productivity

515
© Arnon Axelrod 2018
A. Axelrod, Complete Guide to Test Automation, https://doi.org/10.1007/978-1-4842-3832-5

Index

A
A/B testing, 96
Abstract class, 215
Abstractions, 56, 143, 208, 212, 216, 312,

385, 420
Abstract test scope, 133–135, 423,

465–466, 474
Acceptance criteria, 47, 93, 371, 375,

377–378, 381, 383, 386, 387, 391,
392, 394

Acceptance Test Driven Development
(ATDD), 28, 47, 79, 93–94, 133, 172,
371–395, 409, 422, 423

Acceptance tests, 47, 76, 377, 378, 383,
384, 386–388, 409

Actor model, 451
Adzic, G., 108, 374, 375
AggregateException, 484, 507
Agile, 4–6, 17, 172, 354, 371–373, 384
AJAX, 303, 305

See also XmlHttpRequest (XHR)
Algorithms, 70, 101, 122, 296, 409,

442–447, 511
Amazon Web Services (AWS), 443
Android, 55, 56
AngularJS, 131, 305
Annotations, 162, 331, 339, 388, 391
Anti-patterns, 301, 340, 415, 416
Appium, 53, 55–56

Application Lifecycle Management

(ALM), 60

Application Programming Interface (API),

37, 48–51, 53, 56, 57, 59, 110, 111,

117–121, 129, 137, 138, 158, 160, 212,

216, 290, 291, 303, 306, 364, 380, 398,

412, 423, 427, 437, 456, 460, 468–471,

474, 494, 498, 503, 505, 513

Applitools Eyes, 436, 438

Architecture, 10, 24, 38, 53, 96, 99–143,

153, 155, 164, 167–173, 204, 305,

359, 364, 367, 430, 433, 452, 455,

456, 458–473, 507

Arrange-Act-Assert (AAA), 401

Artificial Intelligence (AI), 101, 442–443

Artificial Neural Networks (ANN), 442

AssemblyCleanup attribute, 262, 398,

399, 492

AssemblyInitialize attribute, 262, 279, 329,

335, 395

Assertion, 46, 47, 87, 222, 227, 281, 315,

316, 338, 357, 381, 382, 397–398,

400, 401, 413, 494

Async and await, 45

Attributes, 101, 221, 252, 254, 260, 262,

286, 329, 339, 382, 388, 390, 391,

397, 398, 478, 508, 509

Auto-completion, 213, 331, 334

Availability, see High availability

https://doi.org/10.1007/978-1-4842-3832-5

516

B
Backward compatibility, 117–120, 137, 434
Bamboo, 61
Base class, 216, 262, 263, 310, 315, 316,

323–326, 329, 410, 420, 481, 489, 493
Bash, 194, 335
Batch jobs, 142, 436
Beck, K., 5, 39, 409, 410, 421, 422
Behavior Driven Development (BDD),

see Acceptance Test Driven
Development (ATDD)

Beta testing, 386, 425
Beta version, 441
Black box, 103, 113
Blogs, 55, 119, 348, 355, 380, 395, 420,

452, 453
Bottom up, 179–180
Branches, Git, 195
Breaking changes, 119, 120
Brownfield project, 384, 393
Browser, 51–54, 57, 108, 131, 147, 155, 186,

226, 243–246, 252, 283, 290, 291,
296, 302–305, 309, 330–334, 350,
351, 368, 369, 433, 437–438, 456,
460, 465, 493, 496, 497, 508

BrowserStack, 53, 57, 334
Bug tracking system, 16, 85, 86, 88, 361
Build, 60–61, 187–192, 344–352, 355, 453,

477–485
Build environment, 277, 332
Building blocks, 35–37
Build process, 84, 85, 92, 332, 335, 337,

343–352, 474
Build server, 92, 299, 344, 351, 352
Business Logic (BL) layer, 107, 109–111,

127, 129, 131–133, 136, 168, 212,
216, 417, 423, 443, 444, 468–471

Business processes, 10, 38, 83–97, 167,
352, 353, 435, 461, 470

Business structure, see Organizational
structure

C
C#, 10, 20, 42–45, 47, 52, 54, 56, 57, 59, 177,

178, 181, 186, 219, 224, 225,
227–228, 242, 275, 289, 388, 450,
475, 476, 487, 488, 498, 502, 503

Callback, 44, 305, 306, 475–476, 478, 480
Canary releases, 95–96, 425, 427
Career, 395, 453
Check-in, 16, 60, 72, 85, 91, 92, 136, 138,

152, 300, 330, 346, 347, 362, 363,
366, 384, 393, 464, 471, 472

Check-out, 197, 269, 344, 428
Chromatic, 436
Chrome, 54, 186, 190, 244–246, 250, 252,

284, 290, 332, 510
Claim, 29, 101, 145, 205, 223, 237, 309–311,

340, 375, 423, 512
ClassCleanup attribute, 262, 398, 399, 492
ClassInitialize attribute, 262, 398, 399
Clean code, 310, 390, 418–420, 451
Cleanup method, 153, 162–164, 329, 336,

337, 398–400, 416, 436, 475–485,
490, 492, 493

Client logic, 110, 131
Client-only test scope, 122–123
Client/server, 426, 433, 466, 470
Client-side, 50, 131, 426, 431, 433, 434
Client tier, 109–110
Closures, 44
Cloud, 53, 57, 146, 153, 155–157, 243, 334,

364, 365, 368, 425, 430, 431, 433
Code completion, 450

Index

517

Code coverage, 64, 66–70, 181, 384, 391
Coded UI, see Microsoft Coded UI
Code quality, 66
Code reuse, 321, 429
Code review, 40, 75, 237–238, 355, 379,

449, 451
Code rots, 87, 88, 352
CollectionAssert class, 398
Command and Query Responsibility

Segregation (CQRS), 132
Command line, 45, 48, 197, 299,

350–352, 440
Compilers, 10, 43, 44, 120, 224, 227, 228,

230, 289, 503
Complexity, 4, 6–11, 19, 23, 36, 50, 56, 63,

65, 101, 104, 109, 113, 122, 126, 130,
131, 138, 161, 169, 199, 233, 279,
299, 300, 365, 374, 379, 381, 386,
387, 407, 423, 427, 429, 434, 438,
440, 442, 447, 448, 469, 496, 506, 510

accidental complexity, 6–10
inherent complexity, 6, 7

Component tests, 122, 129, 131, 154, 367,
446, 471–473

Computer vision, 443, 444
Concurrency, 44
Conferences, 395, 451–453
Configuration, 110, 111, 127, 138, 161,

183–185, 197, 243, 246, 288,
330–334, 336, 350, 351, 369, 435,
438, 440, 441, 446, 447, 466,
468–470, 474, 490, 511–514

Connection string, 297, 335, 511
Constructor, 154, 241, 244–246, 248, 253,

254, 260, 264, 280–282, 319, 320,
324, 326, 332, 400, 404, 406, 411,
412, 415–417, 420, 503

Containers, 95, 152, 153, 155–157,
243, 280, 281, 329, 345, 348,
364, 510

Continuous delivery (CD), 60–61, 94–95,
239, 343, 352, 369, 371, 429, 430,
433, 434

Continuous deployment, 61, 94–95, 343,
366, 386

Continuous improvement, 10–11
Continuous integration (CI), 17, 27, 56,

60–61, 78, 81, 85, 92–94, 136, 152,
153, 171, 239, 243, 265, 330, 343,
346–349, 352, 354, 361–363,
365–367, 369, 371, 392, 393, 430,
433–435, 471, 474

Conway’s law, 167–168, 170
Cookies, 147
Correctness proving, 70
Coupling, 129, 154, 158, 263, 277, 335, 348,

349, 372, 410, 416, 419, 421, 427,
451, 452, 455, 464, 494, 512

Coverage, 16, 17, 39, 63–81, 91, 130, 181,
360, 383, 384, 391, 393–394,
414, 474

CPU, 146, 155, 157, 403, 404, 428, 432
Cross-browser testing, 53, 309, 334,

437–438
Cross-platform, 437–438
CSS, 291, 437, 456, 509
CSS Selector, 283, 509, 510, 513
Cucumber, 37, 47, 388, 389
Culture, 10, 11, 16, 75, 79, 167, 171,

352–355, 357, 361, 365,
391, 511

Cunningham, W., 5, 372
Customization, 138, 184, 374, 435, 441,

466, 470, 501

Index

518

D
Data Access Layer (DAL), 110, 111, 128,

129, 158, 168, 338, 417, 420, 471
Database, 48, 50, 56, 104–106, 108–111,

113–115, 120, 121, 128, 129, 131,
132, 142, 146, 148, 149, 151–155,
157–162, 164, 165, 168, 169, 202,
207, 208, 264, 272, 278, 279, 288,
297, 335–339, 348–349, 364, 368,
403, 417, 427–429, 434, 440, 441,
447, 457, 458, 468, 469, 471, 472,
506, 508, 511, 514

backup and restore, 153–154
refactoring, 349
schema, 115, 152, 158, 159, 338,

348–349, 434
Data-driven test (DDT), 338–340, 446, 514
Data Layer, 456, 457
Date and time, 14, 101, 104, 141–143, 444,

446, 491, 505
Date/time simulator, 142–143, 472–473
Dead code, 66
Debugging, 10, 33, 41, 45, 137, 143, 151,

160, 165, 197, 198, 265, 274, 277,
288, 302, 334, 335, 337, 369, 382,
393, 464, 489, 504, 512

Deep learning, 442–444
Delegate, 320, 475–476, 478, 482, 492
Delivery mapping, 172
Denial of Service (DoS) attack, 433
Dependency injection (DI), 143, 472
Dependency Inversion Principle (DIP), 420
Deployment process, 60, 94–96, 109, 123,

127, 132, 151, 152, 157, 243, 278, 343,
345, 347–351, 365, 366, 373, 386,
434–435, 465, 466, 468–470, 473, 474

Design, 75, 179, 199–217, 376, 419

Design Patterns, 125, 227, 416, 451
Desktop application, 131, 351
Developer Tool (Browser), 54, 186, 250,

252, 254, 284, 291, 510
Development life-cycle, 354
DevOps, 161, 347, 435, 452
Diagnosing failures, 78
Dialog window, 126–127, 193, 237, 245,

318, 500
Differential diagnosis, 90
Dijkstra, E., 70
DLL, 66, 109, 129, 300, 393
Document Object Model (DOM), 54, 250,

251, 290, 322, 326
Documentation, 17, 19, 37, 47–49, 54, 65,

66, 109, 132, 159, 161, 192, 196, 250,
267, 336, 351, 354, 371, 375, 377, 383,
387–389, 419–420, 458, 501, 509

Domain Driven Design, 169
Dummy data, 159
Duplication, 172, 181, 216, 257–260, 263,

280, 286, 310, 312, 313, 316–327, 329,
338, 340, 361, 384, 388, 398, 401,
409–412, 419, 421, 480, 510, 511

Dynamic typing, 44, 228

E
Eclipse, 10, 331
Edge cases, 141, 365, 383, 387, 434, 447
Encapsulation, 44, 410, 502, 514
End-to-end test scope, 38, 100, 108,

111–117, 120, 122, 124, 133, 137,
140, 154, 170, 338, 352, 366, 367,
444, 457, 464, 474

Entry point, 139, 397, 398
Environments, 145–165, 178, 185–193,

432–433, 435–436, 464–465

Index

519

Environment variables, 350–352
Error handling, 505
Error messages, 90, 160, 227, 240, 241, 266,

273, 274, 277, 285, 287, 298, 328,
334, 439, 492, 494

Error reporting, 273–277
ETL, see Extract, Transform and Load (ETL)
Evan, E., 169
Evans, D., 374, 375
EventFiringWebDriver class, Selenium,

290, 291, 294
Evidences, 27–28, 171, 282, 287–292,

296, 300
Excel, 65, 339, 428
Exception, 46, 163, 222, 229, 239–241,

280–282, 291, 326, 358, 397, 400,
451, 482–485, 494, 503–508

Executable Specifications, 47
Exit code, 351
Experiment, 79, 203, 205, 206, 299, 300,

309, 334, 335, 349, 351–352, 383,
449, 450

Explicit wait, 305
Exploratory testing, 19–21, 75, 81, 387
Extensibility, 46, 49, 75, 138–139, 257, 398,

466, 472
Extensible Markup Language (XML), 49,

57, 109, 275, 331, 332, 470, 487,
489, 498, 508, 509

Extension methods, 275, 276, 490,
 491, 494

ExtentsReport tool, 290, 293
Extract base class, 410
Extract method, 257, 318, 410, 415
Extract Superclass, 325
Extract, Transform and Load (ETL), 447
eXtreme Programming (XP), 373, 379, 422

F
Facebook, 95
Factory design pattern, 417
Factory method pattern, 227
Failure investigation, 111, 271, 452
Fake, 126, 127
Fast feedback, see Feedback cycle
Feathers, M., 414
Feature crew, 172
Feature files, 389–390
Feedback cycle, 137, 140, 347, 371, 423
Fiddler, 48, 291
File system, 146, 350, 351, 403
Firewall, 433
Fixed delays, 33–34, 283, 302, 304
Flaky tests, see Flickering tests
Flickering tests, 277, 301–308, 357
Folders, 146, 195, 196, 213, 328–329, 334,

350, 438, 439, 500
Form factor, 131, 465
Fowler, M., 9, 39, 348, 395, 421, 422
Full stack developers, 40, 169
Functional programming, 396, 451

G
Gamma distribution, 303, 304, 428
Generics, 20, 36, 43, 90, 101, 127, 223, 257,

290, 305, 320, 329, 377, 388, 478,
488, 490, 502

Gherkin syntax, 47, 388–391
Git, 16, 187, 193–198, 219, 244, 264, 269,

286, 293, 329, 332, 334
GitHub, 57, 182, 187–189, 194, 196, 271,

453, 485, 487, 490, 498
.gitignore file, 332
Git tags, 329

Index

520

Given, When, Then keywords, 389
God Object, 415
Google Cloud Platform, 443
Google Maps, 455, 456, 459–461
Granularity, 390–391
Greenfield projects, 391, 414
Groovy, 52, 60
gRPC, 50

H
Hand-writing recognition, 442
Hard-coded strings, 256, 314, 511–514
Hard-coded values, 207, 314
Hard drive, hard disk, 146, 147, 428
Hardware, 50, 84, 104, 138, 156, 157,

351, 364, 365, 368, 430, 432,
438, 466

Hardware profile, 428
High availability, 95
Horizontal teams, 168–171
HP (Hewlett Packard), 59, 60
HTML, 28, 54, 94, 109, 131, 250, 290, 291,

385, 456, 460, 508, 509
HTTP, 13, 14, 35, 37, 46, 48–50, 52, 59,

60, 109, 115, 291, 296, 302, 303,
427, 468

HTTP API, 37, 49, 59, 427, 456
See also REST API

HTTP request, 13, 18, 48–49, 108, 110,
115, 117, 121, 131, 141, 142, 156,
291, 302, 305, 382, 426, 427,
430–433, 474

HTTP response, 14, 46, 48, 49, 110, 117,
141, 142, 291, 302, 303, 306, 382,
426, 427, 431–432, 474, 513

HTTPS, 49
Hybrid mobile applications, 56

I
iframe, 495–497
IISExpress, 243–244, 246, 272
Image comparison, 437
Implicit wait, 305
Influencing tests, 300–301
Infrastructure, 24, 35, 37, 78, 84, 123, 138,

149, 154, 172, 173, 203, 219, 287,
292, 309, 311, 312, 329, 338, 360,
368, 393, 431, 435, 455, 471, 474, 487

Infrastructure code, 179–181, 292, 329,
338, 359, 385, 409

Initialization, 45, 125–126, 150, 162, 163,
227, 241, 247, 248, 261, 279, 280,
317, 320, 326, 329, 335, 398, 400,
416, 447, 493, 503

Inlining, 411, 412, 450, 475
Inputs, 21, 70, 100–102, 104–106, 120,

125–127, 136, 138, 141, 143, 145,
146, 161, 164, 200, 203, 204, 257,
263, 305, 392, 444, 445, 462, 500, 514

Inputs and outputs (I/O), 104, 403–404,
408, 412, 413, 415, 416

Inside-out approach, 423
Inspect.exe, 58
Inspection tool, 53, 56
Installation program, 438–440
Installation tests, 438–442
Integrated Development Environments

(IDEs), 10, 41, 42, 46, 54–56, 186,
299, 337, 421, 451, 501

Integration tests, 122, 137, 171, 216, 366,
367, 471–474, 489, 498

Interface Segregation Principle (ISP), 420
Internationalization, see Localization

(Internationalization)
Introduce variable, 410

Index

521

Investigating failures, 84, 265, 271–308
iOS, 55, 56, 351
Isolation, 24, 94, 99, 106, 115, 122, 123,

145–165, 181, 203, 205–207, 210,
260–264, 272, 300, 302, 307, 330,
337, 343, 345, 348, 359, 364, 365,
368, 403, 408, 415–417, 422, 427,
435, 442, 464–465, 471, 507, 512

Is TDD Dead?, 395, 422

J
JAR file, 66, 129, 300
Jasmine, 46, 48
Java, 10, 20, 42–44, 46–48, 52, 54, 59, 60,

177, 289, 339, 388, 397, 475, 487,
498, 502–504

JavaDoc, 487
JavaScript, 20, 43–46, 48, 49, 52, 54, 131, 250,

291, 305, 306, 456, 460, 475, 509, 514
JavaScript Object Notation (JSON),

49, 52, 508
Java Virtual Machine (JVM), 52, 66
Jenkins, 61, 344
JetBrains, 192
Jira, 65, 85, 86
JMeter, 430
JSON wire protocol, 52
JUnit, 46, 125, 162, 281, 397

K
Kanban, 371, 373
Katas, 395, 396
Keyboard, 21, 51, 104, 108, 124, 125, 193,

229, 232, 290, 379, 451, 499–501
Keyboard shortcuts, 193, 229, 501
Keyword Driven Testing (KDT), 35–37

KnockoutJS, 305
Knuth, D., 368, 429
Kubernetes, 364

L
Labeled data, 445
Lambda, 44, 475, 476, 478, 492
Lambda expression, 476, 492
Layer, 107, 109–113, 115, 124, 125,

127–129, 131–133, 136, 143, 168,
170, 179, 212, 216, 367, 401, 408,
413, 417, 436, 456, 457, 469–471

Layered architecture, 106–107, 129, 130,
139, 168, 170

Lazy<T> class (C#), 320
Lead time, 371, 372
Lean, 170, 502
LeanFT, 59
Legacy, 40, 56, 65, 80, 122, 140, 336,

358–360, 394
Legacy code, 414, 419
Limited resources, 138, 140, 337, 404
Linux, 56, 335, 351, 499
Lion in the desert, 296, 300, 308
Liskov Substitution Principle (LSP), 420
Living documentation, 47, 387–388
Load balancer, 95, 96, 425
LoadRunner, 430
Load testing, 60, 425, 430–432
Localization (Internationalization), 511
Log file, 153, 292, 299, 404, 504
LoggerAssert, 494
Logging, 24, 27–28, 153, 160, 184, 201, 207,

226, 262, 273, 277, 287–294, 296,
299, 300, 308, 313, 316, 317, 319,
328, 338, 351, 352, 356, 368, 386,
404–407, 469, 490, 494, 495, 504

Index

522

Look and feel, 387
Loose coupling, 419, 421

M
Mac, 56, 351, 499
Machine learning, 101, 442, 445, 447
Macro Recorder, 51
Mainframe, 59, 140
“Main” method, 125, 397, 504
Maintainability, 6, 7, 15, 17, 20, 22, 23, 26,

33, 35, 36, 39–41, 43, 45, 51, 63, 65,
78, 89, 91, 100, 108, 111, 115, 118,
129, 130, 133, 137, 141, 156, 159,
161, 169, 173, 177–179, 204, 206,
208, 212, 226, 257, 271, 309–311,
327, 329, 338, 340, 347, 359, 360,
364, 366, 368, 372, 376, 391, 408,
410, 419, 421, 422, 427, 428, 434,
440, 509, 512–514

Manifesto, Agile, 5–6, 373
Martin, R.C., 310, 419
Medical applications, 95, 427
Meetups, 452, 453
Melvin Conway, see Conway’s law
Message box, see Dialog window
Method overloads, 310, 492
Method parameters, see Parameters
Metric, 64–66, 70, 354, 371, 386, 432
Metric, coverage, 64–70
MicroFocus Quality Center, 391
Micro-Services architecture, 96, 106, 367
Microsoft Azure, 443
Microsoft Coded UI, 42, 57–59, 290, 474,

488, 494
Microsoft Dynamic CRM, 463–465
Microsoft Store Apps, 57

Microsoft Team Foundation Server (TFS),
57, 60, 61, 65, 85, 86, 344, 391

Microsoft Test Manager (MTM), see
Microsoft Visual Studio Test
Professional

Microsoft Visual FoxPro, 56
Microsoft Visual Studio Test Professional, 60
Middle tier, see Server tier
Mission-critical, 95
Mix and match, 109, 132–133, 440
Mobile, 53, 55, 56, 117, 130, 131, 368, 428,

437, 465–466
Mob-programming, 379–380
Mocha, 46, 48
Mocking frameworks, 407–408
Mock objects, 128, 129, 143, 405, 407, 415,

417, 421, 443, 444, 446, 471, 473
Model, 109, 110, 118, 124, 128, 135,

210–212, 216, 226, 228, 234,
237–238, 262, 263, 311–313, 451

Model View Controller (MVC), 181, 183
Model View Presenter (MVP), 125
Model-View View-Model (MVVM), 125
Modularity, 75, 367
MongoDB, 114
Monitoring, 48, 171, 373, 426, 430, 432,

435, 455–457, 459, 474
Monkey testing, 20–21
Monolithic, 75, 131, 157, 161, 393, 394, 430
Moq, 407–408
MSpec, 48
MS-SQL Server, 114
MSTest, 46, 57, 125, 162, 221, 227, 266, 329,

339, 397–399, 450, 475, 478, 488,
489, 492–494, 498

Multithreading, 44
MV*, 125, 126

Index

523

N
Naming conventions, 223, 245
Nested logging, 288–290, 294, 299, 490
.Net, 20, 46, 48, 52, 56, 66, 186, 189, 220,

244, 320, 381, 389, 397, 398, 470,
472, 475, 485, 488, 503, 504, 507

Networking, 13, 14, 24, 33, 35, 49, 50, 84,
104, 146, 155, 156, 292, 364, 400,
403, 428, 429, 432, 440, 442,
457, 468

Nightly build, 27, 60, 152, 158, 265, 330,
346–348, 352, 361, 362, 365,
393, 474

Nightly run, 85–87, 91, 93, 148
Non-deterministic algorithms, 442–443
North, D., 172
noSQL, 114, 155
NotImplementedException, 229, 231,

233, 239, 241, 244, 247–249, 309,
315, 316

NuGet, 57, 242, 243, 293, 488, 490
Null object pattern, 503
NullPointerException, see

NullReferenceException
NullReferenceException, 503
NUnit, 46, 125, 162, 397, 475

O
Object-Oriented design, see Object-

oriented programming
Object-oriented programming,

177–178, 410
Object Relational Mapping (ORM), 111
One-way end to end test scope,

113–116, 120
Open/Close Principle (OCP), 419–420

Open source, 37, 46, 51, 59, 181, 271, 288,
290, 436, 450, 453, 487, 498

Operating system (OS), 50, 51, 84, 117,
143, 155, 241, 292, 334, 368, 437,
438, 440, 499

Optimization, 129, 158, 368, 429
See also Test speed

Optional arguments, 310, 311
Oracle, 114
Organizational structure, 10, 38, 167–173
Output, 20, 100–102, 104–106, 145–147,

190, 200, 203, 204, 266, 267, 273,
286, 288, 290, 293–295, 345, 351,
397, 438, 444, 514

Output pane, Visual Studio, 190
Outside-in, 423
Overfitting, 445
Overload, 21, 226, 310, 311, 411, 412,

415, 492

P
Page Object pattern, 211–217, 247,

280, 513
Pair-programming, 40, 75, 379–380, 422
Parallel test execution, 150, 364, 472
Parameters, 36, 44, 47, 49, 50, 110, 140, 205,

226, 227, 229, 233, 254, 257, 262, 265,
275, 276, 310, 311, 315, 335–336, 340,
350, 388, 406, 410–412, 415, 432, 435,
439, 440, 445, 506

Patterns, 75, 108, 125, 126, 130, 132, 139,
211–216, 226, 227, 233, 247, 265,
280, 289, 301–306, 311, 340, 396,
415–417, 423, 436, 442, 445, 451,
466, 503, 509, 510, 513

Perceived performance, 429, 433
PerfectoMobile services, 368

Index

524

Performance, 80, 109, 111, 338, 354,
364–366, 368, 505

Performance tests, 425–430, 432–435
Planned testing, 19, 21, 23
Plug-ins, 10, 50, 54, 350, 410
Podcasts, 416, 452
Poka-Yoke, 232, 246, 262, 311, 314, 502
Polling, 306
Polymorphism, 44
Popup messages, see Dialog window
Postman, 48
PowerBuilder, 56
PowerShell, 335
Preconditions, 89, 308, 389, 440
Premature optimization, 368, 429
Private and public class members, see

Encapsulation
Process, 49–50, 66, 109, 125, 127–128, 132,

141, 142, 302, 337, 350, 351, 364,
430–431, 446

See also Business processes;
Top-down

Product backlog, 383, 387
Productivity, 10, 17, 59, 137, 192, 229, 346,

451, 499–514
Product owner (PO), 18, 93, 203, 360, 371,

375–377, 381, 383, 385–388, 392,
429, 445

Profiling, 368, 429
Programming language, 20, 41–45, 47, 51,

52, 60, 66, 177, 178, 180, 288, 451,
475, 498, 512

Progression testing, 76, 77, 79
Property-based testing, 20
Protocol, 35, 48–50, 52, 59, 109, 117, 123,

142, 400, 457, 458
Pseudo-code, 133, 180, 224–228, 233, 261,

417, 418

Pull-request, 271, 498
Pure Logic test

scope, 127–128
PyTest framework, 46, 397
Python, 20, 42–46, 48, 52, 177, 397, 475,

498, 503

Q
Quality Center, 60, 391
Queue, 132, 303, 305, 366
QuickCheck, 20
QuickTest Professional (QTP), see Unified

Functional Testing (UFT)

R
Race conditions, 141, 307
RAM, 146, 147
Random values, 101, 122, 207, 247, 268,

278, 311, 443–447
See also Non-deterministic algorithms

Ranorex, 35, 56–57
React framework, 131, 436
Readability, 36, 37, 43, 46, 47, 180, 212,

237, 275, 310, 368, 390–391, 410,
480, 495, 511

ReadyAPI, 59
Record and

playback, 13–16, 32
Re-create the database, 154, 272, 279,

335–336
Red-green-refactor, 409, 412
Refactoring, 9–10, 17, 56, 59, 66, 80, 91,

94, 125, 126, 130, 137, 143, 160,
181, 237, 245, 257, 259, 269, 286,
310, 312, 313, 318, 325, 327, 349,
383–385, 393, 394, 404, 409–417,
421, 423, 447, 451, 466

Index

525

Reference data, 44, 158–161, 165, 348
Registry, see Windows Registry
Regression (bugs), 14, 17, 24, 84, 90, 91,

203, 340, 358, 362, 369, 371, 385
Regression tests, 7, 10, 13, 14, 16–18, 39,

64, 76–81, 387, 391, 393, 445–446
Regular expression, 47, 90, 388
Reliability, 26, 63, 99, 115, 117, 147, 148,

178, 228, 239, 252, 301, 304, 307, 334,
335, 348, 359, 364, 366, 428, 444

Remote desktop, 155, 350, 351
Remote Procedure Call (RPC), 49–50
Remove duplication, 216, 257–260, 280,

286, 310, 312, 316–321, 327, 338,
340, 409, 412, 419

See also Duplication
Rendering engine, 438
Repeatability, 239, 330, 507
Report, 16, 26–28, 35, 60, 66, 69, 78, 83–87,

90, 92, 103, 105, 140, 281, 292, 294,
302, 334, 345, 346, 355–358, 372,
380, 393, 435–437, 439, 447–448,
484, 498, 504–507

Reproducing failures, 308, 356
Request, see HTTP request
Requirements, 17, 28, 37, 60, 114, 119, 154,

247, 365, 374, 383, 385–386, 388,
392, 397, 413, 435, 472, 508

Resharper, 192–193, 221, 225, 229–232,
237, 244, 245, 253, 257, 283, 318,
325, 329, 410, 501

Response, see HTTP response
REST API, 49, 50, 59, 119, 302, 303, 382, 423,

460, 461, 468–472, 474, 506, 513
See also HTTP API

Rest-Assured, 48
Retrospective, 11, 392

Retry, 25, 301–302, 507
Reusability, 35–37, 42, 43, 47, 50, 56, 75,

129, 133, 159, 203, 206–208, 213,
216, 219, 238, 313, 323, 324, 360,
380, 388, 390–391, 416, 418, 429,
435, 442, 453, 465, 488

Revision history, 193, 196, 269, 295
Rich client, 109
Robot Framework, 47, 388
Root cause, 11, 25, 29, 34, 160, 171, 273,

278, 280, 282, 292, 296, 297, 300,
304, 307, 354, 356, 357, 361, 429,
484, 504

Round-trip, 117, 120
RSpec, 48
Ruby, 20, 47, 48, 54, 503

S
Sanity tests, 19, 78, 79, 147–149, 158, 160,

178, 199–201, 222, 223, 231, 234,
237, 240, 261, 265, 266, 280, 286,
293, 314, 318, 326, 329, 338, 365,
366, 439, 442

SAP, 59
SauceLabs, 53, 57, 368
Scalability, 132, 156–157, 365, 433, 468
Scenario, 15, 19, 35, 37, 38, 47, 65, 78, 93,

107–109, 113, 117, 121, 129, 131,
133, 136, 138, 142, 158, 169, 172,
203–206, 208, 260, 277, 296, 303,
311, 330, 340, 357, 367, 371, 375,
377, 378, 381, 383, 385, 387–395,
421, 423, 426, 428, 430, 435, 439,
440, 463, 477, 482

Scientific method, 205–217
Screen capture, 287–288

Index

526

Screenshots, 14, 15, 28, 265–269, 273, 280,
282, 285–287, 290, 294, 296, 437, 493

Scrum, 6, 373, 471
Selenium, 31, 33, 42, 45, 48, 51–58, 108,

131, 178, 186, 212, 219, 228, 241–244,
246, 250, 251, 265, 276–277, 279,
280, 283, 285, 287, 290, 291, 294,
302–306, 326, 329, 332, 334, 351,
382, 385, 423, 431, 432, 436, 450,
459–461, 465, 474, 488–490,
493–497, 499, 508–510, 513

FindElement method, 265, 276, 281,
305, 495, 510

IWebDriver interface, 246, 276, 281,
291, 332, 333, 495, 510

IWebDriver.PageSource property,
290–291

IWebElement interface, 212, 276, 280,
291, 323, 495, 510

locators, 250, 251, 508–509
NoSuchElementException, 265, 280,

285, 291, 305
StaleElementReferenceException,

326, 496
WebDriverWait class, 305, 307, 490

Selenium Grid, 53, 57, 334
Selenium IDE, 54–55
Server-only test scope, 118, 120–122
Server Proxy, 107, 110, 112, 115, 116, 118,

121, 123, 124, 128, 135
Service Layer, 107, 110, 112, 116, 118, 121,

123, 124, 128, 135, 470, 471, 473
Service-level agreements (SLAs), 429
Service-oriented architecture (SOA), 132
Services, 43, 50, 56, 60, 61, 96, 102–107, 110,

112, 116, 118, 121, 123, 124, 128,
131, 132, 135, 136, 138, 140–143,

146, 150, 153, 155, 156, 160, 291,
303, 348, 364, 367, 368, 382, 429,
433, 434, 460–462, 464, 469–471,
473, 506, 512

setTimeout JavaScript function, 305
Sikuli, 436
Silent install, 440
Silverlight, 57
Simple Object Access Protocol (SOAP), 49,

59, 382
Simulators, 60, 123, 139–143, 204, 345,

367, 392, 435, 458, 459, 463, 465,
472–473

Single Responsibility Principle (SRP), 410,
415, 419

Singleton, 215, 416–417, 472
Skeleton, 47, 57, 180, 219, 314, 379
Skills, 14, 32–35, 40, 41, 61, 63, 92, 99, 168,

177, 327, 359, 380, 396, 451, 452, 499
SmartBear, 35, 48, 59, 430
Snapshot, 28, 155–156, 161, 348, 439, 440
SoapUI, 35, 48, 59–60
Social media, 452
Software as a Service (SaaS), 95, 96, 160
SOLID principles, 418–421, 451
Solution Explorer pane, Visual Studio,

189, 220, 237, 252, 253, 328, 329
SouceLabs, 334
Source-control, 16, 50, 59, 60, 92, 154, 171,

193, 332, 344, 345, 350, 354, 362,
464, 487, 512, 513

SpecFlow, 37, 47, 388, 389
Specification by Example

(SbE), 93, 108, 371
See also Acceptance Test Driven

Development (ATDD)
Speech recognition, 442

Index

527

Speed, see Test speed
Sprint (iteration), 387, 392
Spy, 127
SQL, 109, 111, 114, 132, 185–187, 272, 337,

349, 514
SQL change scripts, 349
SQL Server Express, 185–187
Squad, 172

See also Feature crew
ssh, 351
Stability, see Reliability
StackOverflow, 181, 451
Stack-trace, 90, 240, 241, 265, 273, 280,

282, 285, 326, 485, 504, 506
State, 27, 114, 125, 141, 145–147, 153,

155–156, 162, 164–165, 226, 290,
389, 400, 401, 416, 478, 484, 506

Static data, see Reference data
Static members, 141, 215, 226, 230, 275,

400, 416–417, 492, 503
Static typing, see Strong typing
Statistical algorithms, 443–447
Stored procedures, 109, 111, 132
StringAssert class, 298
Strong typing, 44, 314, 502
Structured Vector Graphics (SVG), 460
Stub, 50, 381
Supervised learning, 445, 446
Swallowing exceptions, 504
Syntax highlighting, 225
System under test (SUT), 14, 19, 35, 37,

48–61, 96, 99–107, 111, 114, 120,
125, 127, 133, 137, 140–143, 154,
155, 157–159, 164, 178, 181–186,
203, 204, 209, 211, 219, 252, 283,
292, 296, 302, 306, 339, 344, 346,
350, 359–361, 379, 397, 400, 423,
433, 446, 447, 505, 507, 514

System’s clock, see Date and time
System tests, 400

See also End-to-end test scope

T
TeamCity, 61, 344
Team Explorer pane, Visual Studio,

188, 194–197
Team Foundation Server (TFS), 57, 60, 61,

65, 85, 86, 344, 391
Technical Debt, 372–374
Testability, 75, 178, 379, 392, 412, 413,

416, 421
Test Automation Essentials, 57, 164, 245,

290, 293, 307, 332, 398, 453, 475,
485, 487–498

Test cases, 21–27, 39, 54, 56, 58, 60, 63–65,
72, 75–76, 150, 153, 179–181, 186,
199–217, 300, 339, 340, 359, 505

Test class, 57, 133, 162, 163, 221–223, 227,
261, 262, 329, 398, 400, 402, 423,
478, 481

TestClass attribute, 221, 329, 397
TestCleanup attribute, 162, 262, 266,

398–399, 478, 492
Test cloud providers, 334
Test Data Builder pattern, 233, 265
Test double, 422
Test Driven Development (TDD), 39, 46,

130, 380, 395–424
Test Explorer pane, Visual Studio, 222,

239, 240, 242, 266, 267, 397
Test harness, see Testing frameworks
Testing frameworks, 25, 26, 45–46, 48,

52–54, 56, 59, 125, 162, 220, 262,
266, 307, 338, 345, 350, 351, 397,
398, 400, 478, 484, 492, 506

Index

528

TestInitialize attribute, 134, 162, 261–264,
279, 286, 313, 316, 317, 329, 338,
398–402, 406

Test management system, 391
Test matrix, 138, 441, 442
Test method, 162, 179, 216, 221–224, 240,

241, 265, 314–315, 317, 326, 329,
338–340, 359, 385, 388, 390, 391,
397–403, 466, 477–483, 504

TestMethod attribute, 221, 397
TestNG, 46, 397
Test Pyramid, 133, 423
Test run duration, see Test speed
Test scope, 104–109, 111–136, 172, 178,

216, 364, 366, 395, 421, 423,
465–466, 474

Test set, 445–446
Test speed, 115, 117, 136–137, 363,

366, 368
Third-party, 44, 46, 50, 103, 111, 114, 115,

118, 122, 147, 192, 398, 413, 433,
457, 462, 469, 503, 512

Thread, 128, 288, 302, 305–307, 364,
430–431, 472

See also Multithreading
Thread.Sleep method, see Fixed delays
Threshold, 303, 427–429, 431–433,

444–446
Tier, 109–112, 131, 132, 469, 473–474
Tight coupling, 129, 416, 421, 464
Timeout, 125, 305–307, 431, 492, 493, 495
TODO comments, 384
Top-down, 179–180, 246, 261, 321
Training set, 445
Transaction rollback, 154–155
Transparency, 171, 173, 354, 362
Trust, 15, 28–29, 32, 34, 81, 86, 171, 348,

360, 507

Try/catch, 504, 505, 507, 508
TypeScript, 43–45

U
UI automation, 37, 42, 51, 53, 55–57, 59,

136, 137, 178, 287, 290, 306, 351,
380, 382, 400, 436, 440, 451, 460,
488, 508, 513

UI layer, 109, 110, 124, 136, 401, 403,
436, 469

UIMap, 57–59, 494
Uncle Bob (Robert Martin), see

Martin, R.C.
Under-the-skin test scope, 124–127
Unified Functional Testing (UFT), 59
Unit testing framework, 26, 42, 45–47, 52,

127, 162, 220, 262, 266, 395–400,
413–422, 478, 484, 492

Universal Windows Platform (UWP),
55–57

Unsupervised learning, 445, 446
Upgrade tests, 441–442
URL, 96, 188, 246, 330, 474, 512
Usability, 36, 37, 43, 208, 216, 387,

390–391, 436
User experience, 65, 425, 429, 436, 504
User Groups, see Meetups
User Interface (UI), 13, 33, 35, 48–59, 99,

103, 109–119, 124–126, 131,
136–139, 158, 160, 168, 178, 208,
211–213, 216, 303, 338, 364, 382,
387, 400, 401, 403, 436–437, 440,
456–458, 465, 469, 500, 508

User Story, 16–18, 39, 47, 72, 78, 79, 93,
172, 367, 371, 372, 374–378, 381,
383–388, 392, 394, 409, 423, 471

Using statement, C#, 289

Index

529

V
Validation set, 445
var keyword, 227–228, 232, 237
VB.Net, 42, 57
VBScript, 59
Versions, 4–6, 9, 10, 16, 70, 76, 79, 94–96,

118–120, 153, 182, 271–273, 284,
296, 297, 343, 344, 348, 354, 366,
368, 373, 427, 434, 441, 442, 450, 471

Vertical teams, 168–169
Video, see Screen capture
View Model layer, 107, 109, 110, 112, 116,

118, 121, 123, 124, 128, 135
Virtualization, 156, 364–365
Virtual Machines (VMs), 95, 96, 146, 153,

155–157, 348, 428, 439
Virtual Machine snapshot, see Snapshot
Virtual Machine template, 156
Visual logging, 290, 293–295, 317, 356
Visual Studio, 10, 57–60, 185–190, 192–198,

219, 221, 222, 224, 229–232, 241,
242, 253, 267, 269, 275, 288, 331,
334, 397, 404, 430, 450, 487,
488, 501

Visual Studio Load and Performance, 430
Visual Studio quick-actions menu, 222
Visual Studio solution, 219
Visual testing, 436–438

W
Waits, 16, 76, 79, 125, 126, 136, 239, 283,

302–307, 334, 346, 362, 363, 365,
366, 382, 392, 431, 474, 490,
492–493, 495

Waterfall, 4–6, 17–18
Web, 4, 28, 48, 50–53, 55, 57, 60, 94–96,

117, 130, 131, 147, 178, 185, 186,

192, 211, 242, 243, 250, 275, 291,
305, 330, 335, 348, 350, 364, 382,
396, 425, 426, 433, 449–450,
456–461, 463–466, 469, 471, 473,
474, 495, 499, 501

Web API, see HTTP API
Web Client, 456, 458, 460, 461
Web.config, 335
WebDriver, see Selenium
WebDriverJS, 45, 306
Web server, 131, 243, 291, 330, 456, 457,

463, 464, 469
What you see if what you get (WYSIWYG),

109, 136
Win32, 55, 57
Windows, 50, 51, 55–58, 109, 130, 145, 146,

155, 185, 202, 292, 335, 351, 355,
495–496, 499, 501

Windows Communication Foundations
(WCF), 50

Windows Event Viewer, 292
Windows Presentation Foundations

(WPF), 57, 59, 114
Windows Registry, 146, 438
Work-arounds, 25, 89–90, 142

X, Y, Z
Xamarin Test Cloud, 368
XAML, 109
XML, see Extensible Markup Language

(XML)
XML comments, 275, 487, 489, 498
XmlHttpRequest (XHR), 303, 305

See also AJAX
XML Schema Definition (XSD), 331, 332
XPath, 56, 509, 510, 513
xUnit.Net, 46, 397, 475

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: The “Why” and the “What”
	Chapter 1: The Value of Test Automation
	Why Do We Need Test Automation?
	From Waterfall to Agile Software Development
	The Cost of Software Complexity
	Maintaining a Constant Cost

	Refactoring
	Continuous Improvement

	Chapter 2: From Manual to Automated Testing
	First Attempt: Record and Playback
	Getting the Most Out of Test Automation
	Differences Between Manual and Automated Tests
	Exploratory Testing
	Considerations for Automated Testing
	Preciseness
	Maintainability
	Sensitivity to Change – Preciseness and Maintainability Put Together
	Handling Failures
	Length of a Test Case
	Dependencies Between Tests
	Logging and Evidence Collection
	Trust

	Chapter 3: People and Tools
	Choosing the Right Tools
	Who Should Write the Tests?
	Promoting Manual Testers or Inexperienced Programmers to Automation Developers
	Splitting the Work Between Manual Testers and Automation Programmers
	Using a Dedicated Automation Team
	Having Dedicated Automation Developer(s) Inside Each Team
	Give the Developers the Ownership for the Automation

	The Variety of Tools
	Classification of Tools
	IDEs� and Programming Language
	(Unit) Testing Frameworks
	Assertion Libraries

	BDD-Style Frameworks
	SUT Interaction Technologies
	Record, Edit, Playback Tools vs. Code Libraries
	Selenium
	Selenium IDE

	Appium
	Ranorex
	Microsoft Coded UI
	Microsoft Visual Studio Test Professional and Coded UI

	Unified Functional Testing (UFT)
	SoapUI

	Test Management Suites
	Build Tools and CI/CD Pipelines
	Other Considerations for Choosing Tools

	Chapter 4: Reaching Full Coverage
	How Do You Measure Coverage?
	Percentage of Manual Test Cases Covered by Automation
	Percentage of Covered Features
	Percentage of Code Coverage

	Gaining Value Before Reaching Full Coverage
	What Do We Do When We Have Full Coverage?
	How Do We Get to 100% Coverage?
	Reversing the Wheel
	My Road Map to Successful Automation Project
	When to Start Working on Progression
	Prioritizing the Work to Fill the Regression Gap

	Chapter 5: Business Processes
	Running the Tests on a Regular Basis
	The Simplest Approach
	Nightly Runs

	Handling Bugs That Are Found by the Automation
	Keep the Failing Tests
	Exclude the Failing Tests
	Creating Work-Arounds in the Test
	Treating All Automation Failures as Critical Bugs

	Continuous Integration
	Acceptance Test Driven Development (ATDD)
	Continuous Delivery and Continuous Deployment
	Canary Releases
	A/B Testing

	Summary

	Chapter 6: Test Automation and Architecture
	Test Architecture Considerations
	Understanding the SUT Architecture
	Back to Basics: What’s a Computer System?
	What’s an Automated Test?
	Real-World Computer Systems

	Alternatives and Considerations in a Layered Architecture
	The Relationships Between the Scope and the Test
	Overview of the Layers
	The Client Tier
	The Server (Middle) Tier
	The Database Tier

	The Alternative Test Scopes
	End-to-End Test Scope
	One-Way End to End (UI to DB or DB to UI)
	Server Only (Round-Trip)
	Server-Only Test Scope (One Way)
	Client-Only Test Scope
	Under-the-Skin Test Scope
	Pure Logic Test Scope
	Component Tests
	Unit Tests

	Real-World Architecture
	Intended Architecture vs. the Actual One
	Common Variations
	Combining Tests
	Mix and Match
	Abstract Test Scopes

	Summary of the Considerations
	Goal
	Feasibility
	Importance vs. Risk
	Speed
	What’s Likely to Change?
	Limited Resources
	Extensibility and Customizability

	Beyond the Layered Architecture
	Simulators
	Simulating Date and Time

	Summary: Making Your Own Choice

	Chapter 7: Isolation and Test Environments
	State
	Isolation Problems and Solutions
	Problem 1 – Manual Tests and Automated Test Running in Different Times
	Problem 2 – Manual Tests and Automated Tests Running Simultaneously
	Problem 3 – Order Matters
	Problem 4 – Automated Tests Running Simultaneously

	Isolation Techniques
	Use Separate Accounts
	Separate Between Manual Testing and Test Automation Databases
	Having Separate Environments for Each Team Member
	Running Tests in Parallel

	Resetting the Environment Before Each Test Cycle
	Database Backup and Restore
	Transaction Rollback
	Use Virtual Machines (VMs), Containers, and the Cloud

	Create Unique Data for Each Test
	Each Test Cleans Everything It Creates
	Read-Only Shared Data

	Summary

	Chapter 8: The Big Picture
	The Relationships Between Software Architecture and Business Structure
	Conway’s Law
	Horizontal Teams vs. Vertical Teams

	The Relationships Between Software Architecture and Organizational Structure with Test Automation
	Dedicated Automation Team
	Automation Developers Inside Horizontal Teams
	Blame vs. Collaboration Culture

	Automation Developers Inside Vertical Teams
	Flexible Organizational Structure
	Having an Automation Expert

	Summary

	Part II: The “How”
	Chapter 9: Preparing for the Tutorial
	Prerequisites and Presumptions
	Applicability of the Process for Existing Test Automation Systems
	Overview of the Process
	Bottom Up vs. Top Down
	The Process

	Getting to Know the SUT
	Overview on MVCForum

	Preparing the Environment for the Tutorial
	Install Visual Studio Community Edition
	Download and Install Chrome
	Download and Install SQL Server Express
	Download and Build the Application
	Install Resharper (Optional)

	Using Git Through Visual Studio
	Switching Between Branches

	Summary

	Chapter 10: Designing the First Test Case
	Choosing the First Test to Automate
	Choosing the First Test Case for MVCForum

	The Scientific Method for Designing a Test Case
	Designing the Steps of the Test
	Thinking in Terms of Objects and Entities
	Modeling the Application
	The Page Object Pattern
	Beyond the Page Object Pattern

	Summary

	Chapter 11: Start Coding the First Test
	Creating the Project
	Renaming the Class, Filename, and Test Method

	Write the Pseudo-code
	Remarks About the Pseudo-code

	Getting the Code to Compile
	Declaring the LoggedInUser Class
	Declaring the MVCForum Property
	Declaring the RegisterNewUserAndLogin Method
	Declaring the Rest of the Classes and Methods

	Model Code Review
	Summary

	Chapter 12: Completing the First Test
	Running the Test to Find What to Implement First
	Adding Selenium to the Project
	Running IISExpress

	Implementing the MVCForumClient Constructor
	Implementing RegisterNewUserAndLogin
	Asking the Developer to Add a Unique Automation Identifier
	Implementing the Property Setters
	Removing Duplication from the Property Setters

	Hitting the Isolation Problem
	Implementing CreateDiscussion and Analyzing the Failure
	Completing the Test
	Summary

	Chapter 13: Investigating Failures
	Integrating with Latest Version of MVCForum
	Improving the Error Reporting
	Avoid Debugging
	Investigating the Root Cause
	Resolving the Problem
	More Issues…
	Acting Like Detectives
	Taking More Screenshots

	Logging and Other Evidence Collection
	Screen Capture
	Logging
	Nested Logging
	Visual Logging
	Additional Logging and Diagnostics Options

	Adding Nested Visual Logger to MVCForum Tests
	Investigating Challenging Failures
	Failures That Happen Only On One Machine
	Running from the IDE vs. Running from Command Line
	Narrow Down the Code

	Investigating Influencing Tests
	Investigating Flickering Tests
	Anti-patterns for Handling Flickering Tests
	Retry All of the Failed Tests
	Using Fixed Delays (Thread.Sleep)

	Properly Waiting for an Operation to Complete
	Properly Handling and Investigating Flickering Tests

	Summary

	Chapter 14: Adding More Tests
	Writing the Next Tests
	Planning the Next Tests
	Adding the Test: Discussions Can Be Filtered by Category
	Remove Duplication Between MVCForum.AdminConsole and AddCreateTopicPermissionToStandardMembers
	Reusing Existing Code
	Trading Off Duplications
	Implementing Equals

	Summary for Adding the Second Test

	Making Additional Improvements
	Creating More Comprehensible Identifiers
	Arrange the Code in Folders
	Extract a Base Class for Tests

	Supporting Multiple Users and Browsers
	Tips for Using Test Configuration Files
	Supporting Multiple Browsers

	Additional Improvement Opportunities
	Automatically Re-create the Database
	Cleanup
	Cleaning All Entities Created by Test Automation in a Batch Process
	Cleanup When the Test Finishes

	Improve Performance

	Adding More Tests
	Data-Driven Tests (DDT)
	Anti-patterns in DDT

	Summary

	Chapter 15: Continuous Integration
	Is It Really Necessary?
	Creating the Test Build Process
	Scheduling the Test Build Process
	Running the Tests on Demand
	Nightly Builds
	Right After the CI Build
	Running the Tests as Part of the CI

	Creating the Automatic Deployment Process
	Updating the Database Schema
	Make a New Build Process First

	Adding the Tests to the Build
	Running the Tests on the Build Server Itself or Remotely
	Experiment with One Test First
	Completing the Build Process

	Changing the Development Processes and Culture
	Aiming for the “Holy Grail”
	What It Takes to Change the Culture
	Identifying the Starting Point
	Not Having an Automated Build
	Expectations Gap
	Having Many Unstable Tests
	Inheriting a Legacy Test Suite
	Chasing After the Application Developers

	Decreasing the Test Run Duration
	Improve Isolation
	Perform Prerequisites Through API
	Parallelization and Virtualization
	Run Only Sanity Tests in CI
	Breaking the CI Pipeline to Stages
	Write Mostly Integration and Unit Tests
	Run Tests Only for Relevant Components
	Optimizing Test Performance

	Covering a Broader Matrix
	Summary

	Chapter 16: Acceptance Test Driven Development
	Overview on ATDD
	Being More Agile
	Technical Debt
	What Makes a Team Agile?
	Avoiding Technical Debt

	The Process
	Create and Elaborate the User Story
	Coming Up with a Solution
	Defining the Acceptance Criteria

	Writing the Automated Tests
	Implementing Tests for a Nonexisting Feature
	Implementing the Code to Make the Test Pass
	Refactoring the Code as Needed
	Identifying Conflicting Requirements

	Deliver the Application and Get Feedback

	Using the Acceptance Tests as Documentation
	Binding Steps Rather Than Tests
	The Gherkin Syntax

	The Trade-Offs Between Reusability, Granularity, and Readability

	Introducing ATDD in an Existing Project
	Start Without Automated Tests
	Implementing the Automation Retrospectively
	Start from Bug Fixes
	Enriching Regression Coverage

	Summary

	Chapter 17: Unit Tests and TDD
	Learning Unit Tests and TDD
	The Mechanics of Writing a Unit Test
	Unit Test Framework Mechanics
	Asserts
	Test Execution Life Cycle

	The Mechanics of Writing a Unit Test
	Structuring the Test: Arrange – Act – Assert (AAA)
	Example – Simple Calculator

	Unit Tests and I/O
	Mocks
	Mocking Frameworks

	Mocking External Dependencies

	The Mechanics of TDD
	Red-Green-Refactor
	What “Refactor” Really Means?
	Jumping Back and Forth Between the Steps

	Why Should We Write the Tests First?

	The Real Challenges in Unit Testing and TDD
	Main Challenges with Unit Testing
	Main Challenges with TDD
	More Specific Challenges
	Big Classes and Methods
	I/O
	Singletons
	Instantiating a Dependent Object from the CUT

	Mastering Clean Code and the SOLID Principles
	Mastering Refactoring
	The Biggest Challenge: What to Test?

	TDD the Way It Was Meant to Be
	Outside-In vs. Inside-Out Approach

	Summary

	Chapter 18: Other Types of Automated Tests
	Performance Tests
	Measuring Performance in Production
	What Not to Do
	Defining the Expected Result
	Reusing Code Between Functional and Performance Tests
	Investigating Performance Bottlenecks
	Perceived Performance vs. Actual Performance

	Load Tests
	How Load Tests Work
	Defining the Expected Result
	Defining the Thresholds
	Creating the Tests and Their Environments

	Combining Performance with Load Tests

	Running Tests in Production
	Testing Deployment
	Testing the Health of the Production Environment
	Which Tests to Run
	Cleaning Up Test Data

	Visual Testing
	The Visual Testing Workflow
	Visual Testing and Cross-Browser/Cross-Platform Testing

	Installation Tests
	Approaches for Installation Tests
	Testing the Direct Outcome
	Installing the Application Before Running All Tests
	Testing That the Application Can Run Correctly After Every Installation

	Testing the Installation Through UI or Through Silent Install
	Testing Uninstall

	Upgrade Tests
	Approaches for Upgrade Tests
	Testing the Direct Outcome
	Upgrade the Application Before Running All the Tests
	Explicit Upgrade Tests

	Testing AI, Statistical, and Non-deterministic Algorithms
	Approaches for Testing Statistical Algorithms
	Mocking the Algorithm Altogether
	Using Absurdly Trivial Results
	Using Thresholds
	Using Test Sets or Regression Data

	Testing Applications That Use Random Numbers
	Mock the Random Generator
	Use a Known Seed

	Testing Business Intelligence (BI) Applications

	Summary

	Chapter 19: Where to Go from Here
	Make Mistakes
	Listen, Consult, and Take Advice
	Understand and Align to Your Business’s Goals
	Get to Know Your Tools
	Improve Your Programming Skills
	Improve Your QA Skills
	Broaden Your Horizons
	Share Your Knowledge
	Share the Tools You Build

	Don’t Forget to Enjoy!

	Appendix A
Real-World Examples
	Example 1 – Water Meters Monitoring System
	Simulating the Communication Server
	Dealing with Google Maps

	Example 2 – Forex Trading System
	The Solution
	Instability Caused by CRM
	Isolating the Environments
	Testing the Mobile Application with Abstract Test Scope
	Example 3 – Retail Store Management
	Description of the Architecture
	Minimal Deployment
	Organizational Structure
	Test Automation Solutions
	Date/Time Simulator
	3-Tiers Tests
	End-to-End Tests

	Appendix B: Cleanup Mechanism
	Understanding Callbacks and Delegates
	Building the Cleanup Mechanism
	The Problem
	The Basic Solution
	Reusing the Cleanup Mechanism
	Handling Dependencies Between Cleanup Actions
	Handling Exceptions in Cleanup Actions

	Summary

	Appendix C: Test Automation Essentials
	Background
	Project Structure
	Note About the Unit Tests and XML Comments
	NuGet Packages

	Features and Utilities
	TestAutomationEssentials.Common
	ExtensionMethods Class
	DateTimeExtensions
	TestExecutionScopeManager
	Wait

	TestAutomationEssentials.MSTest
	LoggerAssert

	TestAutomationEssentials.CodedUI
	TestAutomationEssentials.Selenium
	WaitForElement
	Handling Frames and Windows
	The Solution of Test Automation Essentials to the SwitchTo Problem

	Contributing to the Project and Porting to Other Languages

	Appendix D: Tips and Practices for Programmer’s Productivity
	Prefer Using the Keyboard
	Poka-Yoke
	Avoid Nulls
	Avoid Catching Exceptions
	Choosing the Most Appropriate Locator
	Hard-Coded Strings in Test Automation: Yea or Nay?

	Index

