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Preface to Original Edition

Approach

This book focuses on the mechanics aspects of fiber-reinforced composite

materials. By mechanics is meant the study of equilibrium, stress, strain, de-

formation, elastic properties, failure theories, and the linkages between these

topics. A significant portion of the book emphasizes the use of mechanics

to study the stresses due to applied deformations, loads, and temperature

changes. Since interest in fiber-reinforced composite materials stems mainly

from their ability to withstand high stress and deformation levels, such an

emphasis centers on important issues.

No prior knowledge of composite materials is assumed. Only the basic

concepts introduced in an undergraduate strength-of-materials course are

necessary. The book is intended for use at the senior undergraduate or first-

year graduate levels in any engineering curriculum designed to explore the

behavior and performance of these advanced materials. Mechanical engineers

interested in considering composite materials for automobiles or trucks and

flywheels for energy storage, civil engineers investigating the application of

composite materials to infrastructure, aerospace engineers studying advanced

airframe design, and biomedical engineers developing lightweight composite

materials for bone replacement and repair will find the book valuable.

A strong feature of the book is the use of a set of examples that is

introduced early and then built upon as additional concepts are developed.

This set of examples provides continuity to the discussion and allows the

reader to evaluate the impact of more complicated issues on the stresses

and deformations of fiber-reinforced composite materials as the book pro-

gresses. A second strong feature is the reminders of the implications of the

various simplifying assumptions used to study the mechanical behavior of

fiber-reinforced materials. These reminders are designed so the reader does

not misinterpret the theories and results, and is able to evaluate outcomes

based on the concepts presented. Many authors do not take the time or

space to do this. A further helpful feature is the substantial coverage of

thermal effects in composites, specifically the far-reaching effects of thermally

xvii
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induced deformations and stresses due to residual effects. With composite

materials being envisioned for construction of high speed civilian airplanes,

the coverage of thermal effects is timely. Also, a number of characteristics

of fiber-reinforced materials are difficult to include in design and analysis

procedures and are often difficult to fully comprehend. Specifically, the elastic

couplings inherent in fiber-reinforced materials are often designed around, at

some cost in design efficiency, or are assumed to be zero to simplify analysis

procedures. This book counters this tendency by addressing the topic and

by viewing elastic couplings as characteristics that can be used to aspire to

designs not possible with metallic materials.

Because so many subtleties are involved with understanding and effectively

using fiber reinforced composite materials, an in-depth view of a limited

number of topics, rather than an overview of many topics, is offered. After

working through this text, the reader will be well-versed in the details of

important calculations and their impact on results. This book provides enough

information so that students and engineers will know what questions to ask

and find it easy to proceed to other resources on the subject.

Learning Aids

Many of the chapters include a list of suggested readings. Taken from well-

known and readily available archival journals and books, the readings are

selected to reinforce the principles presented in this book, expand on the

concepts, and provide information on topics not discussed.

The notation used in this book is widely used. Important equations are

enclosed in boxes for handy reference. One set of material properties, repre-

senting an off-the-shelf intermediate modulus polymer matrix graphite-fiber

material, is used throughout. This feature, coupled with the continuing use

of a set of examples, provides additional continuity from chapter to chapter.

There are assigned exercise sets at the ends of many of the sections, which

emphasize the fundamentals presented in that section. The exercises, though

simple in the early chapters, become more involved as the book progresses.

The exercises should be completed in conjunction with the sections where

they are assigned, as opposed to reading ahead and then returning to previous

sections to finish the exercises.

Computer exercises are also included. A number of steps for studying the

response of composite materials are the same from one problem to the next.

Programming these steps is recommended, and this activity forms the basis

for these computer exercises. In this way it is possible to concentrate on

the physics of the results, rather than on the algebra. In fact, the computer

programming assignments are such that by the middle of the book the reader

will have a computer program that can be used to predict some of the more

important responses of composite materials, for example, stresses, strains,

and thermal expansion coefficients. More importantly, because the programs
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are created by the reader, making changes, adapting them to special cases,

changing the output, and so on, can easily be done, given the reader’s

knowledge of the unique situations to which the programs apply. In addition,

the programs can be used to help complete some of the more complicated

assigned exercises.

Contents

Chapter 1 provides a brief overview of the concept of fiber-reinforced materi-

als—why fiber reinforcing can be used to achieve high-performance materials,

and how the fiber and the material surrounding it, the matrix, interact. The

chapter relies to a large degree on a materials science viewpoint to describe

fibers, matrix materials, and fiber sizings. It is important for the mechanics

minded specialist to be aware of the terminology and these basic ideas,

particularly if working in an interdisciplinary environment.

Chapter 2 introduces the three-dimensional stress-strain behavior of a com-

posite material that is used as the basis for discussion throughout the text. It

is assumed that the fibers and matrix are smeared into a single homogeneous

orthotropic material, and the chapter focuses on the response of a small,

isolated element of this homogeneous material. The compliance and stiffness

matrices are defined, and typical material properties for graphite reinforced

and glass-reinforced materials are given. The chapter uses simple examples to

emphasize the importance of a three-dimensional stress state. Also discussed

is the response of an isolated element of material to temperature change.

Chapter 3 presents a brief overview of micromechanics. Unit cell models

are studied with the aid of finite-element analyses. No finite-element theory is

discussed; rather, emphasis is on the stresses within the unit cell as a function

of fiber volume fraction. As a contrast to the numerically based finite-element

models, the well-known concentric cylinders model, which is based on the

theory of elasticity, is briefly introduced. Finally, several rule-of-mixture

models are presented. One of the valuable results of Chapter 3 is that simple

working expressions are developed to provide estimates of composite elastic

and thermal expansion properties from the properties of the fiber and matrix.

As it is one of the most frequently used key assumptions in the analysis of

the mechanical behavior of materials, the plane-stress assumption is the sole

topic of Chapter 4. The three-dimensional stress-strain behavior of Chapter 2

is simplified to account for the plane-stress assumption, including thermal

and moisture expansion effects. The consequences of these simplifications

are emphasized with numerical examples.

Chapter 4 is coupled with, and leads directly into, Chapter 5, which

discusses the plane stress stress-strain relations in a coordinate system not

aligned with the principal material directions—a so-called global, or off-axis,

coordinate system. Through simple examples, the response of an element

of fiber-reinforced material with its fibers aligned at an angle relative to the
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coordinate system is described and quantified in detail. Counterpart examples

using aluminum to dramatize the unusual response of composite materials are

included. The engineering properties of an off-axis element of fiber-reinforced

material are defined, and the coefficients of mutual influence are introduced.

Chapters 6, 7, and 8 constitute the central theme of the book, namely, the

analysis of the response of composite laminates under the assumptions of

classical lamination theory. Chapter 6 addresses another key assumption of

the analysis of mechanical behavior of materials, the Kirchhoff hypothesis.

Its implications are illustrated through a series of examples that are built

upon in subsequent chapters. Because the Kirchhoff hypothesis is a kinematic

assumption, its impact on the variation of the strains through the thickness

of a laminate is first considered. Then, following the previously discussed

plane-stress stress-strain relations, the stress variation through the thickness

of the laminate is related to the strain variation through the thickness. The

strains and stresses in the example problems are considered in detail. From the

way the stresses are observed to vary through the thickness of the laminate,

the definition of force and moment results seems natural. These quantities

are informally defined, and the force and moment resultants for the example

problems are computed strictly on physical grounds.

In Chapter 7, the force and moment resultants are formally defined, and as

a result, the classical A, B , and D matrices are introduced. The calculation of

the elements in each of these three matrices is detailed, and simplifications of

the matrices for special but important laminates are presented. Considerable

discussion is provided to interpret the physical meaning of the various off-

diagonal terms in the A and D matrices, and the meaning of the B matrix.

Chapter 8 presents other examples of laminate response based on the

assumptions of classical lamination theory. Force-based counterpart exam-

ples to the kinematics-based examples of Chapter 6 are presented, and the

results contrasted. The emphasis on basic principles, such as differentiating

between specifying kinematics and specifying forces or moments, is one of

the powerful features of this book.

Chapters 9 and 10 introduce the topic of failure of fiber-reinforced compos-

ite materials. Chapter 9 introduces the maximum stress failure criterion. The

various failure modes associated with fiber-reinforced composite materials are

introduced. In addition, to illustrate the criterion, and as realistic examples

of results, several cases involving both simple and combined loading of

laminates are presented. Failure loads and failure modes are predicted.

Chapter 10 introduces the Tsai-Wu failure criterion. This criterion was

chosen because it considers interaction of the stress components as a possible

cause of failure, in contrast to the maximum stress criterion, which assumes

failure is due to only one stress component. The Tsai-Wu criterion is used

to predict the failure loads and modes for the same cases considered using

the maximum stress criterion in the previous chapter. The results of the two

criteria are contrasted.
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Chapter 11 discusses the effect of a temperature change on the response

of laminates. This is a major chapter in that it revisits classical lamination

theory and the failure theories, but with the inclusion of thermal effects.

Several of the example failure problems solved earlier without thermal effects

are re-solved with thermal effects included. The thermal effect considered is

the cooling from the consolidation temperature of the laminate, which is a

residual thermal effect due to curing of the composite material.

Chapter 12 considers a topic that is often forgotten in books dealing

with classical lamination theory—through-thickness strain effects. Through-

thickness Poisson’s ratios and coefficients of thermal expansion in the thick-

ness direction are defined and illustrated in this brief and important chapter.

In Chapter 13 the mechanics of composite plates are introduced. The plate

is assumed to obey all the assumptions of classical lamination theory, and

the differential equations governing the plate are derived from equilibrium

considerations. The boundary conditions that must be enforced along the

edges are presented. For demonstrating some of the important effects found

with composite plates, several semi-infinite plate problems that can be solved

in closed form are considered. The influence of various boundary conditions

and the coupling of boundary conditions with the B matrix for unsymmetric

laminates are discussed. Finally, a finite, square, uniformly loaded, laminated

plate is studied by using a series solution. With both the semi-infinite and

square plates, stresses are also discussed. The point of the chapter is not

a comprehensive view of composite plates; rather, the chapter serves as a

bridge between the study of the response of the small, isolated elements of

composite materials in the preceding chapters and the study of structural

elements—the plate is one of the simplest.

Chapter 14, the Appendix, provides an overview of the manufacturing

of composites. The fabrication and processing phases are considered, and a

pictorial essay of the hand lay-up technique is provided so the important steps

can be emphasized. The roles of release agents, peel plies, breather plies, and

other specialty materials are described. The processing phase, with emphasis

on autoclave processing, is briefly considered. Other forms of manufacturing,

such as filament winding and pultrusion, are identified.

Supplements

An answer book for all the exercises is available for the instructor. Separate

FORTRAN programs are available to compute the following: the engineering

properties E1, �12, E2, and G12 from fiber and matrix properties; the com-

ponents of the 6 x 6 compliance and stiffness matrices and the components

of the 3 x 3 transformed reduced compliance and stiffness matrices, for

the various stress-strain relations, from the engineering properties; laminate

stiffness and thermal expansion properties from layer engineering properties
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and fiber orientations; and the stresses and strains through the thickness of a

laminate due to given deformations, given force and moment resultants, or a

given temperature change.
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This updated edition of Stress Analysis of Fiber Reinforced Composite Mate-

rials contains the same material as the original, with important exceptions.

Typographical errors, identified by readers and reviewers, have been cor-

rected. Changes were made to a number of figures to increase their clarity.

Equations were modified to increase consistency throughout the text, and

wording in many of the Exercises was edited to clarify what is being asked.

The book is intended as an introductory text for upper level undergradu-

ate engineering students or first year graduate students. However, the book

has proven to be useful for practicing engineers who find it necessary to

understand the behavior of composite materials. The book emphasizes the

mechanics of a stress and deformation analysis of fiber-reinforced materials as

opposed to, for example, a materials science viewpoint. Exercises, including

computer oriented exercises, are included within most chapters.

One key feature of the book, and one that sets it apart from other books

on the subject, remains the series of example problems that are discussed

throughout the text, starting with rather simple problems in Ch.4 that are

then expanded upon in subsequent chapters. This series of problems uses the

same material properties throughout so the impact of the elastic and thermal

expansion properties for a single layer of fiber-reinforced material, in this case

graphite-epoxy, on the stress, strains, elastic properties, thermal expansion,

and failure stresses of cross-ply and angle-ply symmetric and unsymmetric

laminates can be evaluated. Furthermore, calculations for various steps of the

stress and deformation analysis of a laminate discussed in later chapters

require combining simpler calculations from previous chapters, so using

the same material properties throughout allows the example problems to

conveniently build upon each other as the chapters progress and illustrate

how concepts are linked. To provide examples of the unique and sometimes

complicated deformation properties of fiber-reinforced materials, examples

are sometimes reworked using the properties of aluminum, and the stresses

and deformations of aluminum compared with those of graphite-epoxy. Users

of the text have commented on how much they like the number and style of

the example problems.

xiii
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A second key feature is the consideration of thermally-induced effects due

to curing, both in the context of laminate deformation, but also in the context

of material failure. While the stresses and strains due to applied loads are

calculated in many example problems, the reader is reminded that composite

materials are cured at an elevated temperature and then cooled to a service

temperature. The thermally-induced stresses and strains can add to or subtract

from those due to applied loads.

Another feature, and one unique to this book, is the emphasis on the dif-

ference between specifying the applied loads, i.e., force and moment results,

which is often the case in practice, versus specifying strains and curvatures

and determining the subsequent stresses and force and moment resultants.

This is a fundamental issue through all of solid mechanics and example

problems included specifically to illustrate the difference are included.

As the example problems throughout the text represent the types of cal-

culations that are required by researchers and designers working with fiber-

reinforced composite materials, computer programming assignments are also

included as recommended exercises in each chapter. As the calculations

require coordinate transformations, frequent referencing of the fiber angle

in each layer, computing strains in each layer, stresses in each layer, and

the thermal effects in each layer, and are susceptible to algebraic errors,

particularly as the number of layers in the laminate increases, it is rec-

ommended to the reader that key steps be programmed. Thus the simpler

calculations of the early chapters can be programmed and checked relative to

the example problems in those chapters, then those programming steps can

be combined with other programming steps in later chapters and checked

relative to the later more complicated example problems. The net result is

a fairly comprehensive analysis tool authored by the reader and which can

be changed as the need arises. This consideration of programming exercises,

and checking them relative the example problems, has educational as well as

practical advantages. For the interested reader, several programs written in

FORTRAN are available which perform some of the calculations discussed

in the book.

The chapter topics of this updated edition are the same as those outlined

in the Preface to the Original Edition. Activities in the final chapter on

manufacturing, e.g., hand lay-up, are designed to be carried out by students.

A note before closing. The Boeing 787 commercial transport and the very

large wind turbines, such as those manufactured by Vestas Wind Systems,

are but two examples of achieving designs virtually impossible without the

use of fiber-reinforced composite materials. These examples have provided

considerable motivation for updating this book, which was first published

in 1998. Designs such as these are only possible by understanding the me-

chanical behavior of composite materials at the fundamental level, a primary

purpose of this book and one which remains timely.
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CHAPTER 1

Fiber-Reinforced Composite Materials

1.1 Background and Brief Overview

Studies of strong, stiff, lightweight materials for application to diverse

structures—from aircraft, spacecraft, submarines, and surface ships to robot

components, prosthetic devices, civil structures, automobiles, trucks, and rail

vehicles—focus on using fiber-reinforced materials. But why are fibers getting

so much attention? To answer this question, one must know something

about material science and, in particular, about the molecular bonds that

hold matter together. Even though this book is devoted to the mechanics

of composite materials, because the fiber form is such a central concern,

we will begin this chapter with a presentation of the basic concepts in

material science associated with fiber reinforcement. Figure 1.1 illustrates

a basic unit of material. At the corners of the unit are atoms or molecules

held in place by interatomic bonds. The figure shows that this basic unit of

material has directionally dependent properties. To varying degrees, many

common materials, including iron, copper, nickel, carbon, and boron, have

directionally dependent properties, with the directional dependence being due

to the strengths of the interatomic and intermolecular bonds. The bonds

are stronger in some directions than in others, and the material unit is

very stiff and exhibits considerable strength in the direction of the stronger

bond. Unfortunately, the favorable properties found in one direction usually

come at the expense of the properties in the other directions. In directions

perpendicular to the stiff and strong direction, the material is much softer and

weaker. Other properties like electrical conductivity and heat conduction can

also be directionally dependent.

When material is processed and fabricated in bulk form (e.g., in manufac-

turing steel billets, you start with molten steel and pour it into a billet form),

the units of material are more or less randomly oriented within the volume

of material (see Figure 1.2). As a result of random orientation, the bulk

1
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Weak and soft
in this direction

Weak and soft
in this direction

Strong and stiff
in this direction

FIGURE 1.1. Basic unit of material.

material has the same properties in all directions. Generally, the properties of

the bulk material reflect the poorer properties of the unit in Figure 1.1; the

properties of the bulk material are determined more or less by the properties

of the weakest link of the unit. Having the same properties in all directions

is referred to as having isotropic behavior (the prefix iso means equal). Thus,

the tensile strength of a specimen cut from a larger piece of steel or aluminum

is independent of the direction the tensile specimen is machined from. (In a

strict sense, this is not true; for instance, rolling metal into a sheet alters the

Strong, stiff
direction

FIGURE 1.2. Several basic units of material oriented randomly in bulk volume of

material.
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microstructure of the material and causes it to have different properties in the

roll direction than in directions perpendicular to the roll.)

If you can process the material in a manner that permits you to align the

strong and stiff directions of all the basic material units, you can preserve

some of the high strength and stiffness properties of a single unit, thereby

countering isotropic behavior. Processing so that the strong and stiff directions

of all the units align results in a long, thin element of material referred to as

a whisker (see Figure 1.3). In reality, whiskers are quite small and, compared

to bulk material, have very high strength and stiffness in the lengthwise

direction. A typical whisker may be 1 � 10 � 10
�6 m in diameter and 10–100

times as long. With care in processing, the properties of microscopic whiskers

can be very close to the ideal properties of a single unit. Unfortunately,

attempting to lengthen a whisker by adding more basic units can cause

imperfections and impurities. For crystal-like whiskers such as graphite,

the imperfection may be a dislocation or the absence of a carbon atom.

For polymeric fibers such as Kevlar®, foreign matter is a possibility. These

deviations from ideal form significantly influence the strength and stiffness

of the whisker and become the weak link in the material. Imperfections also

cause an increase in both thermal and electrical resistance, leading to degraded

conductive properties. Because there is no way to align them, whiskers used

for reinforcement generally have a random orientation within the material,

and so the reinforced material still has isotropic properties.

As more basic material units are added to the length of a whisker, it

becomes what is called a fiber. Fibers have significant length, so they can

be easily aligned in one direction to provide selective reinforcement within

another material. A fiber contains many units in its length, and thus it has a

greater chance of having an imperfection. As a result, a fiber is weaker than

a whisker. The strength properties of fibers are a random variable. Testing

10,000 fibers would result in 10,000 different strength values. Obviously,

you can use such raw strength data to form a probability distribution of

the strength. The average strength and the scatter (variance) of the strength

become important quantities in describing the properties of a fiber. Because of

the random nature of fiber strengths, many researchers employ probabilistic

methods to study the strengths of composite materials.

Some fibers, especially most forms of graphite fibers, have such small

diameters that they are more conveniently handled in groups. A group of

Strong, stiff
direction

FIGURE 1.3. Several basic units of material processed so their strong and stiff

directions coincide.
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fibers is called a fiber tow, or simply a tow, and consists of from hundreds to

hundreds of thousands of fibers. A tow is like a rope made of fibers, though

generally without the complicated interlocking twist and braid patterns.

1.2 Utilizing the Strength of Fibers

Once you can produce strong, stiff material in the form of fibers, there

immediately comes the challenge of how to make use of the material: The

fibers need to be aligned with the load, the load needs to be transferred into

the fibers, and the fibers need to remain aligned under the load. Equally

important, the fibers need to be in a format that makes them readily available

and easy to use. Figure 1.4 illustrates the basic mechanism used to transfer

a tensile load, F , into a fiber tow. Essentially, the fiber tow is embedded

in, surrounded by, and bonded to another material; see Figure 1.4(a). The

material, which is usually softer and weaker, not only surrounds the tow, but

Section

Stress

Characteristic
distance

Fiber

Matrix material

F

F

σ

σ

τ

τ

FF

(a) Fiber surrounded by matrix

(b) Section view

(c) Character of fiber stress distribution

Distance from end of fiber

FIGURE 1.4. Load transfer to fiber: Tension.
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it also penetrates the tow and surrounds every fiber in the tow. The embedding

material is referred to as the matrix material, or matrix. The matrix transmits

the load to the fiber through a shear stress, � . This can be seen in the

section view, Figure 1.4(b), along the length of the fiber. Due to F , a shear

stress acts on the outer surface of the fiber. This stress, in turn, causes

a tensile stress, � , within the fiber. Near the ends of the fiber the shear

stress on the surface of the fiber is high and the tensile stress within the

fiber is low. As indicated in Figure 1.4(c), as the distance from the end of

the fiber increases, the shear stress decreases in magnitude and the tensile

stress increases. After some length, sometimes referred to as the characteristic

distance, the shear stress becomes very small and the tensile stress reaches

a maximum value. This tensile condition continues along the length of the

fiber. Generally, this characteristic distance is many times smaller than the

length of the fiber.

For loading the fiber in compression (see Figure 1.5), the issue of fiber

buckling must be addressed. If the shear stress on the end of the fiber in

Figure 1.4(c) is reversed, then the stress within the fiber becomes compressive

and attains a maximum value at some distance from the end. This is exactly

like the tension case except that the fiber responds quite differently to a

compressive load; specifically, the fiber tends to buckle. The compressive

resistance of some types of fibers is so poor that they will kink and fold,

much like a string loaded in compression. Other fibers are quite stiff and act

F F

Fiber Matrix material

Lateral restraining
effect of matrix

(a) Section view

(b) Supporting effect of matrix

σσ

FIGURE 1.5. Load transfer to fiber: Compression and the lateral restraint provided

by the matrix.
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like very thin columns; they fail by what might be considered classic column

buckling. To prevent the fiber from kinking, folding, or buckling due to a

compressive load, it must be restrained laterally, and the matrix provides this

restraint. To use a rough analogy, the fiber and matrix in compression are

like a beam-column on an elastic foundation. As you might expect, in the

presence of a compressive loading, any slight crookedness or waviness in the

fiber can be quite detrimental.

Up to this point, we have focused on the idea of a single fiber or fiber tow,

how loads are transmitted into it, and how it is prevented from buckling. The

matrix serves both these roles. In addition, the matrix keeps the fibers aligned

and in a parallel array. A cross section of a graphite-fiber-reinforced epoxy

matrix composite is illustrated in Figure 1.6. The lighter circles are graphite

fiber. Evident in Figure 1.6, in the upper left, is a region with no fibers, a

so-called resin-rich region. Such regions can occur, and care should be taken

to ensure they do not occur frequently. The embedding of strong, stiff fibers

in a parallel array in a softer material results in a fiber-reinforced composite

material with superior properties in the fiber direction. Clearly, the material

properties perpendicular to the fiber direction are not as good. Recall that

in an assemblage of basic units making up the fiber, as in Figure 1.3, the

poorer properties of the basic unit are transverse to the lengthwise direction

of the fiber. Therefore, to load a composite material perpendicularly to the

fiber direction is to load the fiber in the soft and weak diametral direction

of the fiber. In addition, if a composite material is loaded perpendicularly

to the fiber direction, commonly referred to as the transverse direction, not

all of the load is transmitted through the fiber. A portion of the load goes

around the fiber and is entirely in the matrix material. This can be seen if it

is imagined that the cross section of Figure 1.6 was subjected to horizontal

tensile forces on the left and right edges of the figure. The fact that the

fibers do not touch means some of the load must be transferred through

the matrix. The poorer transverse properties of the fiber, coupled with the

softer and weaker properties of the matrix, lead to poor properties of the

composite in the direction perpendicular to the fibers. In addition, and more

importantly, the transverse properties of the composite depend to a large

degree on the integrity of the interface bond between the fibers and matrix.

If this bond is weak, the transverse properties of the composite material

are poor, and a poor interface leads to poor transverse strength. Progressive

failure of the interfaces leads to what can be interpreted as low stiffness

in the transverse direction. A poor interface results in high resistance to

thermal and electrical conduction. Considerable research is directed toward

improving the bond at the interface between the fiber and matrix by treating

the surface of the fiber before it is combined with the matrix material to

form a composite. Thus, as Figure 1.7 summarizes, though the use of fibers

leads to large gains in the properties in one direction, the properties in the

two perpendicular directions are greatly reduced. In addition, the strength
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FIGURE 1.6. Cross section of graphite-reinforced material.

and stiffness properties of fiber-reinforced materials are poor in another

important aspect. In Figure 1.8, the three basic components of shear stress are

being applied to a small volume of fiber-reinforced material, but in neither

case is the inherent strength of the fiber being utilized. In all three cases

the strength of the composite depends critically upon the strength of the

fiber-matrix interface, either in shear, as in Figure 1.8(a) and (c), or in

tension, as in Figure 1.8(b). In addition, the strength of the matrix material
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Superior
properties

Poor
properties

Poor
properties

(a) Fiber direction (b) Transverse
      direction

(c) Transverse
      direction

FIGURE 1.7. Poor transverse properties.

is being utilized to a large degree. This lack of good shear properties is

as serious as the lack of good transverse properties. Because of their poor

transverse and shear properties, and because of the way fiber-reinforced

material is supplied, components made of fiber-reinforced composite are

usually laminated by using a number of layers of fiber-reinforced material.

The number of layers can vary from just a few to several hundred. In a

single layer, sometimes referred to as a lamina, all the fibers are oriented in

a specific direction. While the majority of the layers in a laminate have their

fibers in the direction of the load, some layers have their fibers oriented

specifically to counter the poor transverse and shear properties of fiber-

reinforced materials. Despite these poor transverse properties, however, the

specific strength, namely, strength normalized by density, and the specific

stiffness, stiffness normalized by density, of composite materials are much

greater than that of a single homogeneous material. Consequently, the weight

of a structure utilizing fiber reinforcement to meet strength and stiffness

requirements is reduced.

(a) (b) (c)

Stress state
on fiber

FIGURE 1.8. Poor shear properties.
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1.3 Laminae and Laminates

Figure 1.9 shows a through-thickness cross section of an 11-layer flat lami-

nate, with the layers not all having the same fiber orientation. This laminate,

which is fabricated from carbon-based fibers in an epoxy matrix and is just

over 3 mm thick, consists of five layers with their fibers oriented left and right

on the page (the lighter strips), and six layers with their fibers oriented in and

out of the page (the darker strips). For the layers with fibers perpendicular

to the page, the tows have been sliced perpendicular to their length, while

for the layers with fibers in the plane of the page, the tows have been sliced

along their length. A closer view of the layers with their fibers oriented out

of the page would look like Figure 1.6. This laminate is intended for use in

a situation where there is slightly more load out of the page than there is

across the page, and it would not be useful for shear loadings in the plane of

the laminate. However, instead of having layers with fibers oriented at 90
ı

to one another, if the fiber angles in some of the layers were oriented at 30
ı,

45
ı, or 60

ı, some inplane shear could be tolerated. A laminate subjected to

both shear and tension may need fibers oriented at 45
ı to react the shear

load, and at 0
ı and/or 90

ı to react the tensile load. The percentage of fibers

to use in each orientation depends on the relative magnitudes of the tensile

and shear loads.

The issues of fiber orientation, layers, and tension requirements versus

shear requirements lead us to questions related to composite materials in

a more general sense. How do we determine the fiber orientations for the

best performance in a particular application? How many layers are required?

How stiff should the fibers be? How strong? How detrimental are the poor

transverse and shear strengths? To answer these questions we must develop

the tools to help us understand the response of fiber-reinforced composite

materials to applied loads. These tools will allow us to answer questions

regarding the stress and strain states within a fiber-reinforced material. More

importantly, they will allow us to identify the specific advantages of utilizing

fiber-reinforced materials. However, these matters must be addressed in the

FIGURE 1.9. Cross section of an 11-layer graphite-reinforced flat laminate.
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context of a particular application. For instance, one must consider the cost of

using composite materials, including the cost of determining the final design.

The cost to use composite materials may include education in the subject of

composite materials, equipment to process and machine composite materials,

and software to analyze composite materials. These are not trivial issues.

In the next chapter, we will begin laying the foundations that will allow us

to answer many of these questions. Before proceeding, however, so that the

foundations to be presented may be viewed in context, the next sections will

present some of the important issues related to the production of fibers and the

synthesis of matrix materials. Since most advanced composite materials are

based on polymer matrices, we will emphasize these materials. Despite their

high cost compared to polymer matrix materials, metals, such as aluminum

or titanium, are sometimes used as a matrix, and many of the polymer matrix

mechanics issues discussed in later chapters are equally valid for metal matrix

composites.

1.4 Fibers

Boron fibers were used in early composite structures. Currently, three types

of fiber reinforcements are in common use in polymer matrix composites,

namely, carbon-based or graphite fibers, glass-based fibers, and synthetic

polymeric fibers such as Kevlar. The basic building blocks for these three

fibers are carbon, silicon, oxygen, and nitrogen, which are characterized by

strong covalent interatomic bonds, low density, thermal stability, and relative

abundance in nature.

1.4.1 Carbon-Based Fibers

To make carbon-based fibers, you begin with a precursor fiber. Early precursor

fibers were made from commonly available rayon. Thornel 40®, from Union

Carbide, and HMG-50® from Hitco are examples of early rayon-derived

fibers. The yield of fiber from rayon precursor is relatively low. Currently,

polyacrylonitril (PAN) precursor fibers are most commonly used. T300® from

Toray and Type A® from the former Hercules are typical PAN-derived fibers.

Precursor fibers made from pitch are also in use. Other precursors, such as

phenolics, polyimides, and polyvinylalcohols, have been used but to a lesser

degree. Ultimate fiber mechanical properties are not significantly affected by

the type of precursor. However, the processing techniques are much different

among the various precursors. In general, high-modulus carbon-based fibers

are produced by carbonizing organic precursor fibers, and then graphitizing

them at very high temperatures. Preferential orientation is achieved in the

fibers by stretching them at various stages of processing. This stretching
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results in better alignment of the graphite layer planes, referred to as the basal

planes, in the axial direction of the fiber, increasing strength and stiffness in

that direction. This was discussed in a cursory fashion in connection with

Figure 1.3.

PAN-derived fibers

There are a number of types of PAN precursor fibers. They are all acrylic-

based fibers and they contain at least 85 percent of acrylonitrile, but the

balance may include secondary polymers or residual spin bath chemicals

left over from initial PAN precursor fiber processing. Most of the secondary

polymers are trade secrets, and their addition yields small improvements in

strength or other specific properties.

PAN precursor, if heated to a high temperature to promote carbonization,

will not yield fibers of high strength and stiffness unless a preoxidation, or

stabilization, step is used during processing. A thermally stable structure is

obtained during this step, so upon further heating the original fiber architec-

ture is retained. Stabilization generally calls for a heat treatment in the range

200ıC to 300ıC in an oxygen-containing atmosphere, with the result that the

polymer backbone of the precursor undergoes a series of chemical reactions

that ultimately result in the formation of polynaphthyridine, a substance with

the preferred structural form for the formation of graphite. Cross-linking also

occurs, induced either by oxidizing agents or by other catalysts. Upon further

heating, this precursor structure gives rise to graphitic nuclei whose basal

planes of the carbon atoms are oriented parallel to the direction of the polymer

chains. Significant shrinkage (e.g., up to 40 percent) occurs during stabiliza-

tion; this can be reduced by stretching the fibers during the heat treatment

or by infiltrating PAN fibers with fine silica aggregates. The silica particles

lodge in the interstices between and around the fibers and essentially lock the

fiber in place. Using such methods can reduce shrinkage to about 20 percent.

Several chemical treatments can be used to speed up the oxidation process.

For instance, treating PAN fibers with a diethanolamine or triethanolamine

solution prior to heat treatment has been found to substantially reduce the

time required for oxidation.

The carbonization step involves heating the stabilized precursor fiber to

temperatures up to 1000ıC in an inert or mildly oxidative atmosphere. Car-

bonization can take anywhere from a few minutes to several hours. In one type

of process, fibers possessing high modulus and high strength are obtained by

first heating PAN fibers in an oxidizing atmosphere until they are permeated

with oxygen. The fibers are then heated further, to initiate carbonization, while

being held under tension in a nonoxidizing atmosphere. Finally, to increase

the ultimate tensile strength, the fibers are heat-treated in an inert atmosphere

between 1300ıC and 1800ıC. Research has shown that if carbonization is

done in an oxidizing atmosphere, then the optimal atmosphere should contain
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between 50 and 170 ppm oxygen. In this study, argon was used as the carrier

gas, with the oxygen content varying between 2.8 and 1500 ppm. The fibers

were then tested for ultimate tensile strength and modulus. The results of the

study are shown in Table 1.1.

Graphitization occurs by heating the carbonized fiber to high temperature

(up to 3000ıC) in an inert atmosphere. The process can last anywhere from 1

to 20 minutes. Tensioning the fibers during graphitization improves ultimate

mechanical properties and reduces any residual shrinkage. Figure 1.10 details

an entire process for manufacturing high-modulus graphite fibers. The tension

and temperature histories are overlaid on the figure. Precursor fiber begins

the process, and tension is applied to the precursor while heating it to an

elevated temperature. The tension is reduced before the preoxidation phase

and is increased during preoxidation. The fiber is then continuously heated

and graphitized under high tension. The graphitized fiber is wound onto a

take-up reel and dried. Processing speeds can reach as high as 45 m/hour,

but are typically between 6 and 12 m/hour.

Figure 1.10 shows other important steps that can take place after the fibers

are dried. First, after graphitization, special coating materials, called sizings,

are applied to the fiber surface. Sizings, or fiber surface treatments, are used

to provide lubrication and to protect the fibers during subsequent processing

and handling. Other chemicals are also applied during the sizing operation to

assist in bonding the fibers to the matrix. More will be said about sizing in

a subsequent section. Second, the fibers must eventually be combined with

the matrix material. If the matrix can be made into a liquid or semiliquid

form, then after the fibers are dried and surface treatment has been applied,

the fibers can be combined with the matrix. In one type of process (see

Figure 1.10) the fibers are unwound from the take-up reel, the sizings are

TABLE 1.1. Optimal purge gas for PAN carbonization

Atmosphere oxygen

content (ppm)

Tensile strength

(GPa)

Tensile modulus

(GPa)

2.8

18

35

50

110

170

330

430

650

800

1500

1.45

2.00

2.07

2.14

2.19

2.17

1.46

1.24

0.82

0.75

0.79

152

152

162

172

214

186

152

165

155

155

155 



















Source:  Adapted from P.G. Rose; U.S. Patent 3, 660, 018: May 2, 1972; Rolls

Royce Ltd., England.
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applied, the liquid matrix material is applied to a fiber, and the wetted fibers

are rewound onto a large drum. The drum is usually covered with a sheet

of paper coated to prevent the fibers from sticking to the drum, and to act

as a backing paper for holding the fiber-matrix system together. Generally,

the winding of the fibers as they are impregnated with the matrix in liquid

form and the concurrent winding of the backing paper are a continuous

process; the result is layer after layer of impregnated fibers are wound on

the drum and separated by sheets of backing paper. This matrix-impregnated

material is popularly known as unidirectional “prepreg,” and it is generally

the form in which material is received from the supplier. Thus, prepreg is

short for preimpregnated, meaning impregnated before the user receives the

material. The preimpregnated material on the drum is generally cut to some

standard width, ranging from, say, 3 mm wide to 300 mm or more wide. The

narrower forms are often referred to as tapes and are used in machines that

automatically fabricate composite structural components.

Pitch-derived fibers

Two particular factors have led to the use of pitch as a precursor: (1) higher

yields and (2) faster production rates. However, pitch-derived fibers are more

brittle than those derived from PAN, and they have a higher density, leading

to lower specific properties. In addition, the steps leading to pitch fibers are

slightly different from the steps leading to PAN-derived fibers.

The process of producing specific types of pitch from petroleum products

is critically important to the successful production of high-modulus and high-

strength carbon-based fibers. The basic process is a distillation of residual oils

left over from the thermal or catalytic cracking of crude oil. The residuals

from asphalt production, natural asphalt, shale oil, or coal tar can also be

used. These heavy oil-based products are introduced into a reactor or series

of reactors, where they are heated to temperatures between 350ıC and 500ıC.

Thermal cracking, polymerization, and condensation occur, and the gases and

light oils that are released are taken out of the reactor through a condenser.

The resulting material is even heavier, has a higher carbon content, and is

the basis for pitch fiber precursor.

The preferred raw material for pitch fiber production is liquid crystal, or

mesophase, pitch. The mesophase is a highly anisotropic substance in the

form of crystals, called spherulites, mixed in an isotropic pitch medium. The

spherulites consist of a collection of relatively long molecules with their

long axes normal relative to the boundary of the sphere. Under the influence

of heat, the spherulites continue to grow and expand at the expense of the

isotropic pitch surrounding them. An interesting feature of mesophase pitch is

that it softens above 350ıC and it can be mechanically deformed in this state.

When the mesophase content reaches about 75 percent, the carbon substance

can be subjected to fiber-forming techniques such as melt spinning. The melt
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spinning of pitch fibers from the raw material can occur after the carbon

content reaches the range 91 percent to 96.5 percent and the mean molecular

weight is at least 400. The heat treatments of the petroleum products in

the reactor vessels must occur for sufficiently long times to ensure that

these conditions are satisfied. Additives are sometimes used to increase the

molecular weight or to promote better fiber-spinning characteristics. Sulfur,

organic compounds containing sulfur, or an organic/inorganic peroxide is

added to increase the molecular weight. To improve yields and handling

characteristics polymers are sometimes added, for instance, polyethylene,

polypropylene, polystyrene, polymethacrylate, and rubber. There are various

types of spinning techniques, such as extrusion, centrifugal-type, pressure-

extrusion, spraying, or jet-type. When the melt viscosity is high and when

long continuous fibers are desired, the extrusion process is used.

After pitch fibers are spun, they are subjected to an oxidizing gas at a

temperature below the spinning temperature, or they are subjected to another

chemical treatment that renders them infusible. In one method, for example,

pitch fibers are treated for seven hours at a temperature of 100ıC with

air containing ozone; thereafter, the temperature is raised at 1ıC/min up to

300ıC. This stage of processing is critically important to guarantee that pitch

fibers will retain their shape under heat treatment during carbonization and

graphitization. However, if they are exposed to oxidization for too long, the

fibers become brittle.

The carbonization of pitch fibers occurs at somewhat higher temperatures.

The heating rate between 100ıC and 500ıC is critical to prevent fiber rupture

from released volatiles. A typical heating schedule would call for heating

from 100ıC to 500ıC at 5ıC/hr and from 500ıC to 1100ıC at 10ıC/hr.

The cooldown from 1100ıC is usually controlled to be less than 30ıC/hr.

If desired, the carbonized pitch fibers can be further heated in an inert

atmosphere to produce a graphitic microstructure. Graphitization temperatures

are typically between 2500ıC and 3300ıC. Total graphitization times are

generally very short, on the order of a few minutes.

Microstructure of graphite fibers

It is important from a mechanics perspective to understand the basic mi-

crostructure of graphite fibers after processing. Some of the failure modes of

fibers and their composites are dictated by the type of the fiber’s microstruc-

ture. Although most of the topics presented will apply equally to fibers made

from any of the precursors, there are some exceptions. For example, the

cross section of a PAN-derived fiber is somewhat circular, while the cross

section of a pitch-derived fiber is almost perfectly circular. The effect of these

cross sections on the ultimate mechanical properties of fibers is not clearly

understood.
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Graphite in its pristine form has a crystal structure with planes of carbon

atoms arranged in a hexagonal unit cell (see Figure 1.11). The hexagonal

unit cells are covalently bonded together at the adjoining carbon atoms, and

these planes are the so-called basal planes. The basal planes are stacked

upon each other to form a layered microstructure. There is a considerable

lack of isotropy to this arrangement. For instance, the extensional modulus

of graphite in directions within the basal planes approaches 1000 GPa, while

the modulus normal to the planes is only about 30 GPa. In ideal graphite

fibers the axial direction corresponds to the planar direction, that is, the long

direction indicated in Figure 1.3. However, no graphite fiber exhibits perfect

crystallographic alignment along the fiber axis. Various types of defects—

like point defects, vacancies, dislocations, and boundaries—all combine to

reduce the degree of crystallographic orientation. By stretching the fibers

during graphitization and also by increasing the heat-treatment temperature,

the degree of orientation along the fiber axis is increased. This leads to

increased stiffness in the axial direction.

Figure 1.12 shows the four distinct phases during processing as the planes

arrange themselves into an ordered and layered structure. For temperatures

below 800ıC (see region 1 in Figure 1.12), the basic structural units, which

consist of short lengths (10 A) of two or three parallel carbon layers, start to

pile up and form a disordered columnar structure as impurities and volatiles

are released. Between 800ıC and 1500ıC (see region 2 in Figure 1.12), the

columnar structure increases in length with a higher degree of orientation

of the basic structural unit. Between 1500ıC and 1900ıC (see region 3),

the columnar structure disappears as wavy ribbons or wrinkled layers are

Carbon
atoms

0.142 nm

FIGURE 1.11. Graphite crystal structure.
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FIGURE 1.12. Microstructural phases during graphitization. (Source: Adapted from

A. Oberlin, Carbon, Copyright 1984, p. 521, with kind permission from Elsevier

Science Ltd., The Boulevard, Langford Lane, Kidlington OX5 1GB, UK.)

formed by the joining of adjacent columns. By about 2100ıC most of the

waviness has disappeared, and inplane defects have been greatly reduced.

Above 2100ıC (see region 4) stiff, flat carbon layers are observed and three-

dimensional crystal growth commences. Thus, graphitization corresponds to

the removal of structural defects—first between the layers, which are then

flattened—followed by removal of transverse disorientation, that is, increasing

the orientation parallel to the fiber axis. Figure 1.13 shows a rendering of a

typical microstructure for a high-modulus PAN-derived fiber showing the

ribbonlike structure. Notice the folded nature of the carbon planes along the

axis of the fiber.

Four basic structural models for graphite fibers have proven to be quite

helpful in understanding structure-property relations. The most common is the

skin-core structure, Figure 1.14(a), which is typical for PAN-derived graphite

fibers. The fibers exhibit a skin that is somewhat more graphitic than the core

region. The skin is typically about 1 � 10
�6 m thick and is formed by basal

planes wrapping around the circumference. The basal planes in the core region

are radially aligned or, in some cases, randomly aligned. The relative freedom

of the layers near the surface of the fiber to rearrange themselves, unimpeded
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C.  A "hairpin" defect
D.  A wedge disclination

FIGURE 1.13. Rendering of the microstructure of a high-modulus graphite fiber.

(Source: Adapted from S. C. Bennett, D. L. Johnson, and W. Johnson, Journal of

Materials Science 18 (1983), p. 3337, with kind permission from Chapman and Hall.)

by the constraints of neighboring layers, leads to the skin-core geometry.

The formation of large misoriented crystallites in the skin region is believed

to be responsible for fiber failure under applied stress. The circumferential

alignment, or onion-skin arrangement, shown in Figure 1.14(b), is observed

in benzene-derived carbon-based fibers manufactured at low heat treatment

temperatures. Other architectures are the radial alignment, Figure 1.14(c),

and the arrangement where the basal planes are randomly oriented within

the cross section. This leads to a transversely isotropic fiber, as shown in

Figure 1.14(d). The fiber architecture for a pitch-derived fiber has many

possibilities, depending upon the type of extrusion conditions used. The

stirring of the pitch above the capillary tube during extrusion, the viscosity and
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(a) Skin-core (b) Onion skin

(c) Radial (d) Transversely isotropic

FIGURE 1.14. The four types of graphite fiber microstructures.

temperature of the pitch, and the overall stirring conditions are all important in

determining the type of microstructure that develops. Various microstructures

can be achieved with the same pitch precursor material, for example, radial

(no stirring), random (certain types of nozzle geometries), and circumferential

(low viscosity and high temperature).

The mechanical and physical properties of commercial carbon-based fibers

are listed in Table 1.2. The quoted mechanical properties in the table are for

TABLE 1.2. Properties of carbon-based fibers

PAN
Pitch

RayonIM1 HM2 UHM3 Type-P4Property

Diameter (   m)

Density (kg/m3)

Tensile modulus (GPa)

Tensile strength (MPa)

Elongation (%)

Coeff. of thermal expan-

    sion (×10–6/°C)



7–10 10–117–108 –9 6.5


1860 20201670–19001780–1820 1530 –1660



517 345331–400228–276 41–393



1720 17202070–29002410–2930 620–2200

0.3–0.4 0.4–0.90.51.0 1.5–2.5



140 —70–10520 38



— —925950 —

–1.0



—

–0.9 to –1.6



7.8

–0.5 to –1.2



7–12

–0.1 to –0.5



7–12

—



—

1IM = intermediate modulus.
2HM = high modulus.
3UHM = ultra high modulus.
4Mesophase pitch precursor. 

Fiber direction

Perpendicular to fiber 

    direction





Thermal conductivity 

    (W/m/°C)

Specific heat (J/kg/°K)

µ 
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fibers that have been processed according to accepted and repeatable process-

ing conditions. Obviously, some variation in conditions occurs from batch to

batch, which results in a related variation in mechanical properties from fiber

to fiber. It is the material supplier’s responsibility to minimize this variation

so that material properties can be used with confidence in engineering design.

Nearly every graphite fiber manufacturer is investigating new and improved

methods of processing fibers to yield higher levels of strength and stiffness

and lower densities. Strengths in excess of 4 GPa and extensional moduli

greater than 1000 GPa have been reported for experimental graphite fibers.

1.4.2 Glass-Based Fibers

Glass-based fibers are considered to be somewhat lower performing than

graphite fibers, mainly because glass-based fibers have been in existence for a

number of years and, in one form or another, appear in playground equipment,

recreational items, piping for corrosive chemicals, and many other common

applications. Also, the cost of glass-based fibers is considerably lower than

the cost of carbon-based fibers.

Silica, SiO2, forms the basis of nearly all commercial glasses. It exists

in the form of a polymer (SiO2/n. It does not melt, but gradually softens

until reaching a temperature of 2000ıC, after which it begins to decompose.

When silica is heated until fluidlike and then cooled, it forms a random glassy

structure. Only prolonged heating above 1200ıC will induce crystallization

(i.e., a quartz-type structure). Using silica as a glass is perfectly suitable for

many industrial applications. However, its drawback is the high processing

temperatures needed to form the glass and work it into useful shapes. Other

types of glasses were developed to decrease the complexity of processing and

increase the commercialization of glass in fiber form. Table 1.3 presents the

four predominant glass compositions used to form continuous glass fibers.

Type A, a soda-lime glass, was the first used, and it is still retained for a

few minor applications. Type E, a borosilicate glass, was developed for better

resistance to attack by water and mild chemical concentrations. Relative to

Type E, Type C glass has a much improved durability when exposed to acids

and alkalis. The increased strength and stiffness of Type S glass makes it a

natural choice for use in high-performance applications, where higher specific

strength and specific stiffness are important.

Once the correct glass composition has been achieved, fibers can be pro-

duced using a number of techniques. Each method is a variation of the gener-

alized fiber-drawing process, sometimes called attenuation (see Figure 1.15).

It consists of five main components:

1. A fiber-drawing furnace consisting of a heat source, tank, and platinum

alloy bushing. Raw material is fed into the furnace tank through an inlet,
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TABLE 1.3. Glass compositions

Type C:

Chemical

glass, used 

for corrosion

resistance (%)

Type E:

Electrical 

glass, used in 

most general 

purpose composite

applications (%)

Type S:

Structural 

glass, has high 

strength, high 

modulus, used for

  high-performance

structures (%)

Type A: 

Common 

soda-lime 

glass (%)Constituent

SiO2
Al

2
O

3
B

2
O

3
MgO

CaO

Na
2
O

K
2
O

Fe
2
O

3
F

2












72.0

2.5

0.5

0.9

9.0

12.5

1.5

0.5
—

65.0

4.0

5.0

3.0

14.0

8.5
—

0.5
—

65.0

25.0
—

10.0
—

—

—

—
—

55.2

14.8

7.3

3.3

18.7

0.3

0.2

0.3

0.3

Source:  Adapted from K.L. Lowenstein, The Manufacturing Technology of Continuous Glass Fibres, 3rd Ed., 1993,

Table 4.2, p. 32, with kind permission from Elsevier Science, P.O. Box 211, 1000 AE Amsterdam, The Netherlands.

and fibers are drawn out through tiny nozzles in the bushing. By conven-

tion, the number of nozzles is usually 200 or a multiple thereof. Special

cooling fins are located immediately under the bushing to stabilize the

fiber-drawing process. This drawing process can produce material with

aligned properties, as discussed in connection with Figure 1.3. However,

glass fibers, even though drawn, or stretched, in one direction, do not

have properties in the lengthwise direction that are too different from

properties across their diameter; in other words, glass fibers tend to be

isotropic.

2. A light water spray below the bushing to cool the fibers.

3. A sizing applicator.

4. A gathering shoe to collect the individual fibers and combine them into

tows.

5. A collet or winding mandrel to collect the tows. The winding of the

collet produces tensioning of the tows, which draws the fibers through the

bushing nozzles.

The wound fiber tows at this point are referred to as glass fiber cakes.

The sizings applied to the fibers are almost all aqueous based, and thus the

cake has a typical water content of about 10 percent. Before the fiber is

shipped for end use, this water content has to be substantially reduced. This

is accomplished by oven drying. There are two main objectives during oven

drying: (1) Water content must be reduced to less than 0.1 percent, and (2) the

dry fiber must be subjected to heat treatment to allow conglomerates of sizing

particles to flow within the tow to impart certain handling characteristics.
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FIGURE 1.15. Glass fiber production.

2
2



Fibers 23

TABLE 1.4. Properties of glass-based fibers

Glass type

E C SProperty

Diameter (   m)

Density (kg/m3)

Tensile modulus (GPa)

Tensile strength (MPa)

Elongation (%)

Coeff. of thermal expansion (×10–6/°C)

Thermal conductivity (W/m/°C)

Specific heat (J/kg/°K)



10—8 –14


249024902540



85.568.972.4



459031603450



5.7

5.6

—

940

4.8

7.2

—

780

1.8 –3.2

5.0

1.3

840



µ

A nominal drying schedule calls for a temperature between 115ıC and 125
ıC

for 4–10 hours. If the fibers are to be preimpregnated, the dried fibers are

unwound, the matrix material is applied, and the wetted fibers are rewound

on a drum.

Table 1.4 presents the physical and mechanical characteristics of typical

glass fibers. Of these, E-glass and S-glass are most often used in structural

composites; S-glass is preferred for performance-critical applications.

1.4.3 Polymeric Fibers

A relatively new class of fibers is finding increased use in fiber-reinforced

composite materials. Polymeric fibers, using a suitable processing method,

can exhibit high strength and stiffnesses. This happens as a result of the

alignment of the polymer chains along the axis of the fiber. Several com-

mercial polymeric fibers are now available and many others are being devel-

oped.

Kevlar is perhaps the most common polymer fiber. It was developed by the

DuPont Co. in 1968 and is an aromatic polyamide called poly(paraphenylene

terephthalamide). The aromatic rings make the fiber fairly rigid. Spectra®

is an oriented polyethylene fiber developed by AlliedSignal and is produced

by solution or gel spinning followed by drawing (20–100 percent) to orient

the polymer chains. Its advantages as a reinforcement include good chemical

resistance and low density, but the maximum use temperature is relatively low

(100ıC). Many other polymers can be produced as fibers, but their commer-

cial applications have been very limited. These include aromatic copolyesters,

aromatic heterocyclic polymers like poly(benzobisoxazole) (PBO), and a

new class, polyimides. Polyimide fibers such as Avimid®, produced by the

DuPont Company, will find wide application due to their high maximum use

temperatures (> 300ıC).
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Production of polymeric fibers

The production of synthetic polymeric fibers differs from the production

of inorganic fibers because of the one-dimensional nature of the polymer

chains. To produce fibers that are strong and stiff, the polymer chains must

be extended and oriented along the fiber axis. After orientation, external

forces acting upon the fiber are absorbed by the strong interatomic covalent

bonds along the polymer backbone, resulting in a strong and stiff fiber.

The commercial processes for producing strong and stiff polymer-based

fibers fall into two basic categories: (1) melt or dry jet spinning from a liquid

crystalline phase and (2) melt or gel spinning and extension of conventional

random-coil polymers. Polymers which exhibit a liquid crystalline phase can

be spun in such a way that the already rodlike molecules are uniaxially

oriented after exiting the spinneret. For conventional polymers in which the

polymer chains are highly coiled and interwoven, orientation is achieved by

subjecting the fibers to extremely high elongations after spinning.

Kevlar fibers are manufactured by the extrusion and spinning processes. A

solution of the polymer and a solvent is held at a low temperature, between

�50ıC and �80ıC, before being extruded into a hot-walled cylinder at 200ıC.

The solvent then evaporates and the fibers are wound onto a drum. The fibers

at this stage have low strength and stiffness. The fibers are subsequently

subjected to hot stretching to align the polymer chains along the axis of the

fiber. Afterwards, the aligned fibers show significant increases in strength and

stiffness.

Microstructure of polymeric fibers

The microstructure of Kevlar has been extensively studied using diffraction

techniques and electron microscopy. Figure 1.16 shows a schematic of its

structure. The polymer molecules form rigid planar sheets, and the sheets

are stacked on top of each other with only weak hydrogen bonding between

them. These sheets are folded in the axial direction and are oriented radially,

with the fold generally occurring along the hydrogen-bonding line. This

type of structure is very similar to the radial orientation in graphite fibers;

see Figure 1.14(c). The microstructure of Kevlar influences the mechanical

properties in a number of ways. Kevlar fibers have a low longitudinal shear

modulus, poor transverse properties, and, in particular, a very low axial

compressive strength as a result of the weak bonding between the oriented

sheets. This is typical for nearly all polymer fibers, as the polymer chains are

extended along the fiber axis, leaving relatively weak bonding transverse to

this axis.

Polymeric fibers in general are characterized by their low density, good

chemical resistance, and high tensile strength. Table 1.5 shows some typical

mechanical and physical properties for commercial polymeric fibers.
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Transition
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(tie bands)
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Hydrogen
bonding
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chains

Pleating
of sheets
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(a) Lamella sheet

(b) Fiber

FIGURE 1.16. The structure of Kevlar. (Source: Adapted from M. G. Dobb, D. L.

Johnson, and B. P. Saville, Phil. Trans. of Roy. Soc. of London, Copyright 1980, vol.

294A, p. 483–5, with kind permission of The Royal Society, 6 Carlton House Terrace,

London SW1 Y5AG UK.)

1.5 Matrices

Polymers used as matrix materials are commonly referred to as resins. The

matrix resin generally accounts for 30 to 40 percent, by volume, of a compos-

ite material. In addition to maintaining the shape of the composite structure,
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TABLE 1.5. Properties of polymeric fibers

Fiber type



Kevlar-29



Kevlar-49

Spectra 900

(polyethylene)Property

Diameter (   m)

Density (kg/m3)

Tensile modulus (GPa)

Tensile strength (MPa)

Elongation (%)

Coeff. of thermal expansion (×10–6/°C)

381212


97014791440



11713162



25802800–37922760



4–52.2–2.83–4

—0.04–0.5—

 —1420—

—

—

 –2

59

–2

59

Fiber direction

Perpendicular to fiber direction

Thermal conductivity (W/m/°C)

Specific heat (J/kg/°K)

µ

aligning the reinforcements, and acting as a stress transfer medium, the

matrix protects the fibers from abrasion and corrosion. More importantly, the

limitation of a composite may well be a function of matrix properties. For

example, the thermal stability and maximum use temperature of a composite

are largely determined by the matrix properties. Additionally, an agressive

chemical environment, a moist environment, or exposure to other adverse con-

ditions may well degrade the performance of the matrix before the fibers are

degraded. In general, any condition that lowers the so-called glass transition

temperature, Tg, of the matrix material is detrimental to the composite. The

glass transition temperature defines the transition between the soft rubbery

state of a polymer and its more stiff, or glassy, state. The latter state occurs

below the glass transition temperature and is the better state for the matrix

to transfer load to the fibers, provide support against fiber buckling, and

maintain alignment of the fibers. When operating above the glass transition

temperature the matrix becomes soft and does not perform these functions

well. Moisture, for example, lowers the glass transition temperature. Thus,

with a glass transition temperature of 200ıC and the composite operating at a

temperature of 175ıC in a dry environment, the matrix in the composite would

be below its glass transition temperature. Adding moisture to the matrix could

lower its glass transition temperature to 150ıC. In this situation, the operating

environment of 175ıC would be above the glass transition temperature of the

matrix and the performance of the composite would be degraded due to

softening of the matrix.

The processability and processing history of the resin also influence the

ultimate performance of the composite. For example, the interfacial bond-

ing between the matrix and the reinforcement is severely degraded if the

resin does not penetrate the fiber tows and wet all the fibers. Additionally,
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flaws such as voids or unreacted resin will contribute to a loss in composite

strength.

The two basic classes of resins are thermosets and thermoplastics. The

difference between the two arises from the their unique behavior when heated.

Thermosets undergo an irreversible chemical change when they are heated,

called curing. They chemically cross-link and develop a network structure

that sets them in shape. If they are heated after they have been cured, they do

not melt. They will retain their shape until they begin to thermally decompose

at high temperatures. On the other hand, thermoplastics reversibly melt when

heated and solidify when cooled. Once they have been initially melted to

form the composite, they can be reshaped by heating above a lower forming

temperature. Thus, thermoplastic composites have the unique ability to be

repaired once they have been placed into service.

1.5.1 Thermosets

Thermosetting resins are the most common type of matrix system for com-

posite materials. They have become popular for a number of reasons, includ-

ing low melt viscosity, good fiber impregnation, and fairly low processing

temperatures. They are also lower in cost compared to thermoplastic resins.

Epoxy resins are the predominant choice for the advanced composite mate-

rials market. They are popular because of their excellent mechanical proper-

ties, their retention of mechanical properties when operating in hot and moist

environments, and their good chemical resistance. They also possess good

dimensional stability, are easily processed, are low in cost, and exhibit good

adhesion to a variety of fibers. The most common epoxy resin is based on the

reaction of epichlorohydrin and bisphenol A. The character of the epoxide

chain affects the processability and the cross-link density. The curing of the

epoxide network is accomplished by adding a curing agent that reacts with

the epoxide and is ultimately incorporated into the network structure. Thus,

the mechanical properties of the epoxy are dependent on the type of curing

agent used. Acid anhydrides and multifunctional amines are most commonly

used. Aliphatic amines yield fast cure times, whereas aromatic amines are

less reactive but result in higher glass transition temperatures. For 121ıC

curing epoxies, dicyandiamide (dicy) is used as the curing agent. Most 177ıC

curing epoxies use a curing agent based on the tetraglycidyl derivative of

4; 4
0-methylene dianiline and 4; 4

0-diaminodiphenyl sulfone. Once the curing

agent and epoxide are mixed, the liquid resin is converted to a solid by

applying heat. Epoxies cure very slowly and several hours may be required

for complete curing. Once fully cured, they are brittle. Much research over the

past several years has been devoted to improving fracture toughness, moisture

resistance, and thermal stability. These improvements have been the result of
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the addition of functional thermoplastics or multifunctional epoxides into the

epoxide/curing agent mixture before curing.

Another class of thermosetting polymers, addition-polyimide resins, is

primarily used in high-temperature applications. Their development has given

polymer composites new opportunities for applications requiring moder-

ately high service temperatures (250ıC). Bisamaleimide resins are addition-

polyimides in which the imide monomer is terminated by reactive maleimides.

Free radical cross-linking occurs across the terminal double bonds and is

thermally initiated. These reactive sites can react with themselves or with

other coreactants such as vinyl, allyl, or amine functionalities. Bismaleimides

possess better processing characteristics than linear high-molecular-weight

polyimides. The main disadvantage is their inherent brittleness. They can be

toughened by introducing polysulfone, polyetherimide, or other thermoplastic

phases into the resin. Decreasing the cross-link density also has been shown

to toughen the resin. Two other types of addition polyimides, ethynyl

and norbornene (nadic)-terminated imide oligomers, have been used as

matrices for polymer composites. The norbornene-type oligomers led to

the development of PMR-15 polyimides, which are formed by the in situ

polymerization of reactive monomers to form an oligomer with an average

molecular weight of about 1500 g/mol. Thermally activated cross-linking

yields a network structure with a glass transition temperature of about

300ıC.

Cyanates are another class of thermosetting polymers suitable for high-

temperature applications. Cyanate resins are esters of bisphenols that have

a cyanate functional end group. Once heat is applied in the presence of

a catalyst, cyclotrimerization occurs. Curing occurs by heating, followed

by addition polymerization. The unique trimerization feature of cyanates

contributes to their high glass transition temperature (250ıC–290ıC) and high

toughness. The cyanate resins offer performance in hot and wet environments

that ranges between bismaleimides and epoxies.

The most widely used class of thermosets in the automotive and con-

struction market is unsaturated polyesters. Their normal preparation consists

of reacting saturated dialcohols with a mixture of unsaturated and saturated

dibasic acids (or anhydrides). The most common reactants are propylene

glycol, maleic anhydride, and phthalic anhydride. Usually a diluent such

as styrene, divinyl benzene, or methyl methacrylate is added to reduce the

viscosity during impregnation and to increase the degree of cross-linking

after cure. The entire mixture is then heated (sometimes a catalyst and

an accelerator are added to reduce processing times) to form the polymer

network structure. Glass fibers are the most common reinforcement used with

polyester matrices such as vinyl esters. Vinyl esters are often used because

of their cost, the ease and speed of processing, and their good resistance to

wet environments. Table 1.6 lists the representative mechanical and physical

properties of thermo-setting resins.
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TABLE 1.6. Typical room temperature properties of thermosetting polymers

Thermosetting polymer

Polyester Vinyl ester EpoxyProperty

Density (kg/m3)

Tensile modulus (GPa)

Shear modulus (GPa)

Tensile strength (MPa)

Compressive

    strength (MPa)

Elongation (%)

Coeff. of thermal

    expansion (×10–6/°C)

Thermal conductivity

    (W/m/°C)

Specific heat (J/kg/°K)

Glass transition

    temperature (°C)

Water absorption (%)

    [24h @ 20°C]

Shrinkage on curing (%)



Bismaleimide Polyimide

1100–1500


1.2–4.5



0.7–2

  

40–90



90–250

   2–5



60–200



   0.2

   —



50–110







0.1–0.3

   4–12

1100–1400
2–6

1.1–2.2

35–130

  100–200

      1–8.5



    45–70



   0.1–0.2    

1250–1800



    50–250





0.1–0.4

   1–5

1430–1890
3.1–4.9

—

70–120

        —

   1.5–3



       90



        —

        —

  

  280–320

  



       0.3

       —

1150
3–4

   —

65–90

   127

   1–5



   53



    —

    —





    

    —

    1– 6



100–150

1320
3.6

1.8

48–78

   200

   1–6.6



   49



    —

    —





     —

       —



250–300



1.5.2 Thermoplastics

Thermoplastic resins are not cross-linked. They derive their strength and

stiffness from the inherent properties of the monomer units and the degree

of entanglement of the polymer chains. There are two types of thermoplastic

resins: (1) amorphous and (2) crystalline. Amorphous thermoplastics exhibit

a high degree of entanglement of the polymer chains, which act like cross-

links. Upon heating, the chains disentangle and the resin becomes a viscous

fluid. The resin can then be formed and subsequently cooled to solidify the

part. Crystalline thermoplastics show a high degree of molecular order and

alignment. When heated, the crystalline phase melts, and the resin reverts

to an amorphous, viscous liquid. In practice, thermoplastics that exhibit

crystalline behavior are actually semicrystalline with both amorphous and

crystalline phases present.

Because they can be processed much more quickly, thermoplastics offer

the potential for reduced manufacturing costs. As no cross-linking reaction

occurs, there is no need to maintain elevated temperatures for an extended

period of time. Some thermoplastics have much higher glass transition and

maximum-use temperatures compared to epoxies and bismaleimides. Ta-

ble 1.7 gives a comparison of the glass transition temperatures for a wide

variety of thermosetting and thermoplastic resins. Because they yield and

undergo large deformations before final fracture, thermoplastics have a much

higher toughness compared to thermosets. To their detriment, however, they
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TABLE 1.7. Glass transition and processing temperatures of several polymers

Poly(ether ether ketone)

Poly(ether ketone ketone)

Polyarylene ketone

Polyphenylene sulfide

Polyarylene sulfide sulfone

Polyarylamide

Polyamide imide

Polyamide imide

Polyether imide

Polyimide

Polyimide

Polyimide

Polyimide

Polysulfone

Polyarylsulfone

Polyester

Polyester

Epoxy

Epoxy

Epoxy

Bismaleimide





Victrex PEEK

PEKK

PXM 8505

PPS, Ryton

PAS-2

J-2

Torlon C

Torlon  AIX638/696

Ultem

NR 150 B2

Avimid K-III

LARC-TPI

K-1

Udel P-1700

Radel A400

Xydar SRT-300

Vectra

3501-6

MY720

8551-7

HG9107



143

156

265

  85

215

156

275

243

217

360

251

264

210

190

220

350

175

206

240

182

258







370

370

—

343

329

300

350–400

350

343

400

350

350

300–350

300

330

400

350

177

180

177

180–227

Polymer Trade name


(°C)

Process

temperature

(°C)



Tg



Source:  T.L. Vigo and B.J. Kinzig, eds., Composite Applications: The Role of Matrix, Fiber, and 

Interface, 1992, p.18, Table 1.6, reprinted by permission of John Wiley and Sons, Inc.

also exhibit time-dependent deformation, or creep, under the influence of

sustained loading.

Aromatic polyimides are considered to be one of the first high-temperature

polymers. High-molecular-weight polyimides are difficult to process unless

they are modified. Processable polyimides are obtained by incorporating

flexible linking units, bulky side groups, and asymmetry into the polyimide

backbone, or by copolymerizing with a more flexible component. Examples of

these methods include the incorporation of ether (General Electric’s Ultem®),

amide (Amoco’s Torlon®), and hexafluoroisopropylidene (DuPont’s Avimid),

or the use of the bulky indane group (Ciba Geigy’s 5218®).

The condensation reaction of a variety of bis(n-diamine)s with aromatic

dicarboxylic acids yields a class of polymers known as polybenzimidazoles

(PBI). The processing cycle is fairly long and complicated due to the

liberation of significant amounts of byproducts during condensation. The

most attractive PBI for commercial use is poly[2; 2
0-(m-phenylene)-5; 5

0-

bibenzimidazole]. Its glass transition temperature (420ıC) is the highest

of any commercially available polymer. PBIs are well suited for use at
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temperatures up to 250ıC, and they offer good stability after aging. At

higher temperatures oxidative degradation occurs and their strength gradually

diminishes with time.

Polyphenylene sulfide (PPS) is a semicrystalline aromatic thermoplastic. It

has a melting temperature of 285ıC and a glass transition of 85ıC and can be

prepared from relatively inexpensive monomers. It exhibits excellent chem-

ical and thermal stability. Interestingly, cross-linking and/or chain extension

occurs at high temperature in the presence of oxygen. As a result of these

changes, toughness, molecular weight, and melt viscosity are all increased.

A number of different poly(arylene sulfide)s can be obtained by the addition

or substitution of different monomer groups during polymerization. These

copolymers generally exhibit an amorphous or less crystalline morphology

and a higher glass transition temperature.

Polyarylene ethers represent a family of polymers obtained from nucle-

ophilic or electrophilic reaction. Poly(ether ether ketone) (PEEK) is perhaps

the most well known of this class. It is synthesized by the aromatic nu-

cleophilic step or condensation reaction of 4; 4
0-difluoro-benzophenone and

hydroquinone in a solvent of diphenylsulfone. Other poly(ether ketone)s have

been formulated having different ratios of ketone to ether groups. Polyarylene

ester resins are excellent engineering thermoplastics, but they have found

limited use in high-performance composite applications due to inadequate

chemical resistance and adhesion. PEEK thermoplastic is manufactured by

Fiberite. It is known as Victrex® in the resin-only form, and it is referred to

as neat resin and as APC-2® (an acronym for aromatic polymer composite)

when preimpregnated into the fiber. Table 1.8 tabeightgives the representative

properties of several thermoplastic resins.

1.6 Fiber Surface Treatments

Though a composite may be made from a strong fiber and a well-suited

matrix, the result may not necessarily be a strong material. The reason is that

the strength of the fiber-matrix interface is equally important in determining

the mechanical performance of a composite. The surface area of the fiber-

matrix interfaces for a single layer of a typical graphite-epoxy composite

is about 50 times the total surface area of that layer. Ultimately, the suc-

cessful development of composite materials is determined by the quality

of the fiber-matrix interface. To enhance the qualities of the interface, the

surface of the fiber is treated by a number of agents or processes, referred

to collectively as interfacial treatments and sizings, that produce chemical

change of the surface. Many different interfacial treatments are used in the

composites industry. Lubricants and protectants are used immediately after

fiber formation to protect the fibers from damage as they pass over guide

rollers and winders. Coupling agents are used to increase adhesion between



TABLE 1.8. Typical room temperature properties of thermoplastic polymers



Property

Density (kg/m3)

Tensile modulus (GPa)

Tensile strength (MPa)

Compressive strength (MPa)

Elongation (%)

Coeff. of thermal expansion 

     (×10–6/°C)









Thermal conductivity (W/m/°C)

Glass transition temperature (°C)

Water absorption (%) 

    [24h @ 20°C]

Polyether imide

(Ultem)

Polyamide 

imide

(Torlon)

1270

3

105

140

60



62

—

217 



0.25

1400

5

95–185

276

12–18



36

—

243–274



0.3

Aromatic polyimides

PPS:

Polyphenylene

sulfide

PEEK:

Poly(ether ether

ketone)




1340

3.3

70–75

110

3



54–100

—

85



0.2

PS:

Polysulfone


1240

2.5

70–75

—

 50–100



 56–100

—

190



0.2

PP:

Polypropylene

900

   1–1.4

25–38

—

 300



 110

0.2

–20 to –5



0.03

Nylon:

Nylon 6, 6

1140

1.4–2.8

60–75

34

 40–80



 90

0.2

50–60



1.3

PC:

Polycarbonate

1060–1200

2.2–2.4

45–70

86

 50–100



 70

0.2

133



0.1

1320

—

92–100

—

150



—

—

143



0.1

3
2
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the fiber and matrix. Special coatings are sometimes used to protect the fibers

from environmental attack, such as corrosion from salt water. Most fiber sizes

are formulated so that several different objectives are met with the same

compound. For instance, the same compound that protects the fibers during

drawing and winding may later be used as an adhesion promoter between the

fiber and matrix. Other interfacial treatments are also used, including plasma

treatment, acid etching, irradiation, and oxidation. For a number of reasons the

technology of fiber sizing is very complicated. Usually, fiber sizes are aqueous

dispersions or solutions. The adhesives used in sizes are particulates in dilute

suspensions. Most of the technologies of colloid stabilization and surfactant

chemistry are closely guarded trade secrets developed through empirical

observation. In fact, many of the sizes used in industry were developed

for water-based paints and adhesives. With the multiplicity of objectives for

sizing compounds, it is not uncommon to find that improper performance can

be traced to problems with sizing, either in its application or its chemistry.

For polymer composites perhaps the most important issue is the promotion

of adhesion between the fiber and the matrix.

Currently, there are efforts to have some of the sizing migrate a short

distance from the surface of the fiber and combine with the matrix. This

provides a gradual transition from matrix to fiber and sizing properties in

the vicinity of the fiber. This region of transition is sometimes referred to

as the interphase region, and its presence is thought to enhance fiber-matrix

interaction.

1.6.1 Graphite Fiber Treatment

Graphite fibers are generally fragile and subject to abrasion during handling.

To protect the fibers from abrasion, epoxy sizings are applied to the fiber

surface. In some cases, a vinyl addition polymer may be incorporated into

the epoxy sizing to improve handling characteristics. The sizing compounds

are generally in the form of a solution and may contain lubricants and film-

formers.

Pyrolytic coatings have been shown to improve the tensile strength and

increase the oxidation resistance of graphite fibers. These coatings are applied

by decomposing the source gas (hydrocarbons, elemental halides) onto the

heated surface of the fibers. Coating uniformity is difficult to control, but

can be improved if the pyrolysis is carried out in a vacuum. Improvements

in tensile strength are also found when a bromine treatment is given to an

untreated fiber. In this technique carbon fibers are immersed in liquid bromine

or bromine dissolved in a solvent. The bromine is subsequently removed, but

some remains within the fiber.

Boron nitride coatings have also been found to improve the oxidative

resistance of graphite fibers. Coatings are applied by mixing boric acid with
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urea, passing the fibers through the solution, drying the fibers to drive off the

water, and firing in a nitrogen atmosphere for about one minute at 1000ıC.

During firing the urea-boric acid complex is reduced to boron nitride. The

coating concentration is about 4 percent after firing and the boron nitride

is molecularly bonded to the carbon surface. This type of bonding assures

a permanent joining of the boron nitride and the fiber. Boron nitride-coated

fibers are extremely stable at high temperatures in oxidizing atmospheres.

Metal carbides have also been used instead of boron nitride to protect fibers

from oxidation. The carbide impregnates the fiber surface and lodges in the

crevices of surface irregularities. When the carbide surface is exposed to an

oxidizing atmosphere above 400ıC, the carbide is converted to a refractory

oxide. This oxide protects the fiber from further oxidation. The refractory

oxide acts not only as a chemical barrier but also as a thermal shield, and it

improves the overall durability of the fiber.

First attempts at improving fiber-matrix bonding concentrated on chemical

modifications to the resin system. The resin’s wetting ability has been used

as a criterion to judge the suitability of using a particular resin system

with graphite fiber reinforcement. However, some resins having poor wet-

ting ability, such as aromatic polyphenylene resins, possess other desirable

characteristics that dictate their use in composite structures. Thus, there has

been a need to develop techniques to alter the fiber surface to overcome the

poor wetting ability and promote increased fiber-matrix adhesion. As a result,

several surface treatment methods exist. The most well-developed are acid

treatments, oxidation treatments, plasma treatments, carbon coatings, resin

coatings, ammonia treatments, and electrolytic treatments.

Acids are used to promote a strong interfacial bond between graphite fibers

and resins with poor wetting ability. For instance, fibers are wetted with a

sulfonic acid solution, dried to drive off the solvent, heated to allow the acid

to react with the surface or with itself, washed to remove any unreacted acid,

and then dried to remove the washing solvent. Hypochlorus acid has also been

used successfully, and the resulting composites show significantly increased

shear strengths.

Heat treating graphite fibers in an ammonia atmosphere at 1000ıC prior to

impregnation with matrix resin increases the shear strength of the composite

material. Heating is usually accomplished by passing a current through the

fibers as they pass through a controlled atmosphere containing 10 to 100

percent ammonia. The balance can be any nonoxidizing gas like nitrogen,

argon, hydrogen, or helium. The exposure time is usually very short, from

1 to 60 seconds. As the concentration of ammonia is increased, the shear

strength of the composite material increases; however, there may also be a

decrease in fiber tensile strength and tensile strength of the composite. For

optimal properties the competing influences of the ammonia content of the

atmosphere, exposure time, and fiber temperature must be balanced. Resins

that bond well with fibers treated with ammonia are those that bond to amine
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functions during cure. This class of resins includes epoxies, polyimides,

polyethylene, and polypropylene.

Composite materials made from low-modulus carbon fibers, typically, have

a high shear strength. Compared to high modulus fibers, these types of fibers

show superior bonding ability with resins. It is believed that this behavior is

a direct result of the presence of an isotropic surface layer of carbon on the

low-modulus carbon fibers. The fundamental structural units of these fibers

are small and have a layered structure, but are randomly oriented. Therefore, a

large portion of the fiber surface will consist of exposed layer edges uniformly

distributed over the surface. The exposed edges are believed to be highly

reactive and may even bond chemically with epoxy resins. In contrast, high-

modulus carbon fibers are more ordered due to graphitization and orientation

of the crystallites during manufacture. The surface is anisotropic, consist-

ing of relatively large areas of exposed crystallite basal planes and little

exposure of edges, such as the skin-core microstructure in Figure 1.14(a).

Crystallite basal planes have low reactivity, and they show poor bonding

ability with most resins. One technique for improving interfacial bonding

for high-modulus graphite fibers is to deposit a coating of isotropic carbon

on the surface. Two methods exist to accomplish this. In the first method,

graphite fibers are electrically heated to about 1200ıC and then exposed to an

atmosphere containing methane and nitrogen. The methane decomposes on

the fiber surface, creating a uniform carbon coating. Composites made using

these fibers show a twofold increase in shear strength compared to untreated

fibers. There is a small loss in tensile strength for these composites. In the

second method, the fibers are impregnated with a thermally carbonizable

organic precursor such as phenylated polyquinoxaline. The precursor is then

pyrolyzed at a high temperature and it carbonizes on the surface of the fibers.

Carbon and graphite fibers can be electrolytically treated to improve their

surface characteristics for improved bonding to matrices. Electrolysis is used

either (1) to change the reactivity of the fiber surface or (2) to deposit

chemical groups on the surface of the fiber that will bond to the matrix.

Electrolysis is accomplished, as in Figure 1.17, by pulling the fibers through

a series of rollers that are electrically charged in positive/negative pairs. The

negatively charged rollers are immersed in the electrolytic solution. After

passing through the electrolysis, the fibers are dried before being wound onto

a take-up reel. Electrolytic solutions are usually an aqueous-based caustic

mixture. If the fibers are used as the cathode and vinyl monomer is added

to the electrolysis solution, then the fibers will be covered with the vinyl

polymerization product, greatly improving the bond strength between the

fiber and some matrix resins.

Oxidation of carbon and graphite fibers begins at the fiber surface in regions

that are irregularly shaped. By heating the fiber to 1000ıC in an oxidizing

atmosphere, a pitted fiber surface is obtained. The increased surface area

leads to greater bond strength compared to untreated fibers. The exposure
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FIGURE 1.17. Electrolytic surface treatment of graphite fibers. (Source: U.S. Patent 3,832,297 Alliant Techsystems, Inc.)
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time must be controlled so that weight loss is less than 1 percent. In another

type of treatment, fibers are treated by exposure to formates, acetates, and

nitrate salts of copper, lead, cobalt, cadmium, and vandium pentoxide. The

fibers are subsequently oxidized by exposing them to air or oxygen in the

temperature range 200ıC–600ıC. This method uniformly roughens the fiber

surface.

Significant improvements in interfacial bonding can be realized by plasma

treating the fiber surface. Fibers are drawn through a plasma chamber in

which is generated a thermal plasma of argon or oxygen, or mixtures of

hydrogen and nitrogen or carbon fluoride and oxygen. Argon plasma generally

introduces active sites that are able to react subsequently with atmospheric

oxygen. Oxygen plasma introduces oxygen both by direct reaction and by

active sites. Carbon fluoride/oxygen plasma essentially results in an etching

and oxidation of the fiber surface. Nitrogen/oxygen plasma introduces amine-

like groups on the fiber surface that are able to participate in the cross-linking

reaction for epoxies. The temperature within the plasma can reach 8000ıC.

Carbon fiber is continuously drawn through the plasma, and the residence

time within the plasma must be carefully controlled so that the fiber surface

temperature does not get too high.

A polymer coating on the surface is sometimes incorporated to enhance

interfacial bonding. Thermoplastic polymers like polysulfone or polycarbon-

ate are coated onto the surface of fibers before they are impregnated with

a thermosetting matrix. The result is an interphase region between fiber

and matrix. The resulting composite material shows a significant increase

in shear strength. Elastomers like urethane polymers are also used to provide

a compatible interphase region between the fiber surface and the matrix.

The elastomer can be applied to the fiber in the form of a sizing, or it can

be blended with matrix material. The development of an interphase region

provides for a more efficient distribution of stresses and reduces the tendency

for cracks to develop at the interface. In addition, compatible elastomer and

matrix material combinations, a result of using a common curing agent in both

the elastomer and the matrix, will result in a gradual transition of properties

within the interphase. These composites have enhanced toughness and high

impact strength. Tailoring of interphase properties may provide for significant

improvements in composite mechanical properties.

Many other techniques have been used to some degree of success to im-

prove fiber-matrix bond strengths. For instance, whiskerization is a technique

in which silicon carbide single crystals are grown on the surface of carbon

fibers to roughen the surface and to change the surface chemistry. Typical

silicon carbide crystals are 0:01 to 1 � 10�6 m in diameter. They provide a

mechanical interlock with the matrix material surrounding the fiber. There is

also some evidence that irradiation by neutrons during cure improves fiber-

resin bonding. Oxides, organometallics, isocyanates, and metal halides have

all been used with some success by suitably coating the carbon fiber surface
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and then impregnating the fibers to form the composite. With the multiplicity

of surface treatment techniques available, much of the development work in

characterizing new composite materials revolves around empirical analysis of

optimal combinations of surface treatments to produce composites with high

tensile and shear strengths, good toughness, and reasonable costs.

The illustrations in Figure 1.18 present a microscopic view of various

effects of applying—or not applying—surface treatments to graphite fibers.

Figure 1.18(a) shows a failed graphite fiber–reinforced composite that was

not treated. Here we see inadequate fiber-matrix bonding; the fiber have very

little matrix material attached to them, which is evidence of poor interfa-

cial bonding. Figure 1.18(b) also shows a failed, untreated composite, but

this example exhibits much better interfacial bonding. Here the failure has

occurred in the matrix itself, some of which remains attached to the fiber.

Figure 1.18(c) and (d) provide an alternative point of view and dramatically

illustrate the influence of graphite fiber surface treatment on the tendency

of a matrix to bond to the fibers. Figure 1.18(c) illustrates the effects of a

poor surface treatment; the thermoplastic matrix, because it is forming small

spheres as a consequence of the treatment, is making minimal contact with

(a) (b)

(c) (d)

FIGURE 1.18. Effect of surface treatment on matrix bonding (a) Poor bonding (b)

Good bonding (c) Poor fiber-matrix attraction (d) Good fiber-matrix attraction.
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the fiber. By contrast, in Figure 1.18(d), the contact area between the fiber and

the matrix material has been maximized as a result of an improved surface

treatment.

1.6.2 Glass Fiber Treatment

A fiber sizing for glass fibers to be used in polymer matrix composites must

accomplish several objectives simultaneously. The fiber sizing should: (1)

promote good adhesion between the glass fiber and the polymer matrix; (2)

promote good cohesion between the fibers that make up the tow; (3) impart

certain handling characteristics, like hardness or choppability (for shorter fiber

composites); (4) provide adequate protection to the fiber during processing;

and (5) impart antistatic properties so that static charges do not build up on

the fiber surface.

For glass fibers to act efficiently as a reinforcement, some method of

coupling the hydrophilic fibers to the hydrophobic polymer matrix must be

used. (A material is said to be hydrophobic if it does not absorb water; it is

said to be hydrophilic if it can absorb water.) Coupling agents are a class

of chemicals that are organo-metallic and, in most cases, organo-silicon,

possessing dual functionality. Each metal or silicon atom has attached to

it one or more groups that can react with the glass surface, and one or

more groups that can coreact with the resin during its polymerization. With

a coupling agent, a chemical bridge is formed between the glass surface

and the polymer. In actual practice, the function of coupling agents is a

little more complex. There is significant evidence to suggest that several

layers (about eight monomolecular layers) react with the glass surface. This

gives rise to an interphase layer within the glass that possess mechanical

properties different from those of the glass fibers and the polymer matrix.

There is also evidence to suggest that the flexibility of the interphase is

sufficient to permit the breaking and reforming of bonds to the glass surface

when the composite is under stress. Table 1.9 shows the effects of coupling

agents on the strength of glass fiber-reinforced composite and gives results

for a glass-polyester system that was tested for flexural strength under dry

and wet conditions. The dry strength is increased by 42 percent using the

A 174 silane coupling agent (g-methacryloxypropyltrimethoxy-silane). The

strength enhancement by silane coupling is even more dramatic considering

the test results for specimens immersed in boiling water for two hours. For

this case the flexural strength is increased by 128 percent over the untreated

specimens. In addition, the wet strength retention (ratio of the dry strength

to wet strength) is improved. To a large degree, the pathways to strength

enhancement through the use of coupling agents are empirically driven, as

the surface chemistry of adhesion is not fully developed for many composite

systems.
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TABLE 1.9. Effect of various coupling agents on the flexural strength of

otherwise identical glass cloth-polyester laminates



Trade name of

silane coupling agent

None

Volan A (DuPont)

A 172 (Union Carbide)

A 174 (Union Carbide)

 



42.3

50.8

50.8

60.0

Flexural strength

at 25°C

(MPa) Wet strength

retention

(%)Dry After 2-hour boil

24.7

43.7

48.0

56.4
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86

94

94

Source:  Adapted from K.L. Lowenstein, The Manufacturing Technology of Continuous Glass 

Fibres, 3rd Ed., 1993, Table 6.2, p. 258, with kind permission from Elsevier Science, P.O. Box

211, 1000 AE Amsterdam, The Netherlands.

Another sizing component, film-formers, are materials used to bind the

individual fibers together as a tow. The vast bulk of fiber sizes employ

polyvinyl acetate (PVA) as a film-former. PVA is in the form of a suspension

of particles in an aqueous medium. Photomicrographs of a tow show that PVA

is deposited in globules on and between fibers and that the tow is held together

by these globules’ forming bridges from one fiber to the next. One drawback

to the use of PVA as a film-former is that it is an unwelcome addition to

the composite material. PVA remains after the fiber tows are impregnated

with resin, leading to a possible reduction in mechanical properties of the

composite material. Other film-formers more compatible with the intended

matrix system are being developed. Certain polyesters have been shown to

be suitable for epoxy or polyester matrices, and acrylic polymers have been

introduced in fiber sizes as a film-former for thermoplastic composites.

Plasticizers are added to PVA emulsions (8–20 percent) to increase flexi-

bility and reduce the softening temperature of the fiber tow. By increasing the

amount of plasticizer added to fiber sizing, the flexibility of the fiber tow can

be increased. The most common plasticizers used are phthalates, phosphates,

and polyesters. The use of polyesters as plasticizing agents is of particular

interest to the glass fiber-reinforced composites industry since they are much

more compatible with epoxy and polyester matrices.

Lubricants are added to fiber sizes in concentrations from 0.2 to 2 percent.

Most lubricants are cationic surface-active agents, as they will be attrached

to the negative charges normally present on the surface of a glass fiber. The

cationic group is usually an amine to which a fatty acid or other lubricating

group is attached.

Static electricity on fibers is created by friction as they are drawn over

rollers or as they slide relative to each other. Static charging increases until

the losses from conduction are balanced by the rate at which charges are

generated. Conduction along the surface of the fiber is possible if it is moist
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TABLE 1.10. Typical formulation for

glass fiber sizing

Coupling agent

Film-former

    (including plasticizer)

Lubricants

Surfactants

Antistatic agents

Distilled water

  0.3–0.6

 3.5–15.0



 0.1–0.3

     0–0.5

     0–0.3

83.3–96.1



Component (%)

enough. Thus, one technique used to control static electricity is to carry

out the processing of fibers in a humid environment. A relative humidity

level of about 70 percent is usually sufficient. If this is not practical, then

antistatic agents must be used to conduct electricity along the fiber surface.

The problem that glass fiber manufacturers face is that the amount of antistatic

material that must be supplied to ensure an adequate conduction path may

be so large that other properties of the tow are sacrificed. For example, the

impregnation of resin into the tows may be slowed if the concentration of

antistatic agents is too large. Chemicals suitable as antistatic agents must be

able to ionize to conduct electricity. For these agents to ionize they must be

hydrophilic. Both lithium chloride and magnesium chloride have been used

successfully as antistatic agents.

The exact formulation for a particular sizing is dictated by a number of

factors, such as intended matrix material, cost of components, compatibility

among different components, handling characteristics of the fiber tow, and

stability of the size in the diluted form. Most of the common fiber sizings

are formulated with the concentration ranges listed in Table 1.10.

1.6.3 Polymer Fiber Treatment

Relatively little data have been assembled concerning the surface treatment

of polymer fibers. The data that exist can be grouped into two classes: (1)

protective coatings and (2) adhesion promoters.

Kevlar fibers are susceptible to surface damage during processing oper-

ations such as weaving. To minimize this damage, they are coated with a

polyvinyl alcohol sizing, which serves as a protective layer covering the fiber

surface. Conventional coupling agents used in glass and carbon fiber sizings

to improve adhesion do not work well with Kevlar fibers. However, the fiber

surface of Kevlar shows a good affinity for some epoxy resins. Thus, a light

pretreatment with an epoxy resin has been shown to give improved adhesion

with other polymer matrices. Spectra fibers can be plasma treated to increase
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the strength of the interfacial bond with epoxy matrices. Flexural strength

has been shown to increase by a factor of three over untreated Spectra-epoxy

composites.

1.7 Summary

Our discussion has focused on the basic ingredients of a fiber-reinforced

composite, namely, the fiber and the matrix and, to some extent, the interface.

Though this chapter relied largely on a materials science and chemistry

perspective, it is nevertheless important for mechanicians to be aware of

this terminology and these basic ideas, particularly if the mechanician is

to work in an interdisciplinary environment. We now turn to some of the

basic concepts and principles for predicting the mechanical response of fiber-

reinforced composite materials.
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CHAPTER 2

Linear Elastic Stress-Strain
Characteristics of
Fiber-Reinforced Material

As the previous chapter shows, the study of the mechanics of fiber-reinforced

composites could begin at several points. Because the fiber plays a key

role in the performance of the material, one logical starting point would

be to study the interaction of the fiber with the matrix. The photograph of

Figure 1.6 provides ample motivation for studying the fiber and the matrix

as separate constituents and focusing on their interaction. We might address

a host of problems: stresses in the fiber, stresses in the matrix around the

fiber, adhesive stresses at the interface, breaking of the fiber, cracking of

the matrix, the interaction of two or more fibers, the effects on stresses

in the matrix of moving two fibers farther apart or closer together, the

effect on neighboring fibers of a broken fiber, or local yielding of either

the matrix or fiber. This localized look at the interaction of the fibers and

the matrix is called micromechanics. It is indeed a logical starting point for

a study of the mechanics of fiber-reinforced composites. On the other end

of the spectrum, interest centers on the behavior of structures made using

fiber-reinforced material. Deflections, maximum allowable loads, vibration

frequencies, vibration damping, energy absorption, buckling loads, the effects

of geometric discontinuities such as holes and notches, and many other more

global responses are all of interest. In between these two extremes, the

response of an individual layer or the response of a group of layers can be of

interest. How does an individual layer respond when subject to stresses? How

much does it deform? How much load can it sustain? Similarly, how does a

laminate respond when subject to stresses? How much does it deform? How

much load can it sustain? What is the influence of neighboring or adjacent

layers on any particular layer? What is the effect on the laminate of changing

the fiber orientation of any particular layer? What is the effect of changing

43



44 STRESS-STRAIN CHARACTERISTICS OF FIBER-REINFORCED MATERIAL

the material properties of any one particular layer? The list of questions is

almost endless. With the continuous introduction of new fibers having greater

strength and stiffness, old questions have to be reanswered and new ones are

asked. Moreover, new polymer matrix materials are introduced frequently,

and issues need to be reexamined in the context of these new materials.

In this study of the mechanics of composite materials and structures,

we will present methodologies that will enable engineers, scientists, and

designers to answer some of these questions. The starting point will be an

examination of the deformations of an element of material taken from a single

layer. The element, though small, is assumed to contain many fibers. Rather

than starting with the examination of fiber and matrix interaction, this starting

point is used because it allows an orderly and smooth transition to the analysis

of composite structures, the final products for any fiber-reinforced material.

Also, in the analysis of a complete structure, it is impossible to include the

response of every fiber to the surrounding matrix material. Computers are

not big enough to allow this. On the other hand, what is responsible for the

failure of composite structures is the breaking of the fibers, the breaking of

the fiber-matrix interface bond, and the breaking of the matrix. Therefore,

micromechanics cannot be overlooked. A glimpse of micromechanics will be

provided in the next chapter when the issue of estimating the elastic properties

of a composite is addressed.

2.1 Stresses and Deformations in Fiber-Reinforced Materials

In discussing the mechanics of fiber-reinforced materials, it is convenient to

use an orthogonal coordinate system that has one axis aligned with the fiber

direction. We will do so here and identify the system as the 1-2-3 coordinate

system or the principal material coordinate system. Figure 2.1 illustrates an

isolated layer and the orientation of the principal material coordinate system.

The 1 axis is aligned with the fiber direction, the 2 axis is in the plane of the

layer and perpendicular to the fibers, and the 3 axis is perpendicular to the

plane of the layer and thus also perpendicular to the fibers. The 1 direction is

the fiber direction, while the 2 and 3 directions are the matrix directions. As

we mentioned in Chapter 1, the direction perpendicular to the fibers is also

called the transverse direction. The terms matrix direction and transverse

direction are somewhat ambiguous because there are two directions that fit

either of these descriptions. We shall use matrix direction, and the specific

direction (i.e., 2 or 3) will be made clear from the context of the problem.

Stresses, strains, and strengths will ultimately be referred to the principal

material coordinate system.

The study of the stress-strain response of a single layer is equivalent

to determining the relations between the stresses applied to the bounding

surfaces of the layer and the deformations of the layer as a whole. The strain
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Small element of
fiber-reinforced material

FIGURE 2.1. Principal material coordinate system.

of an individual fiber or element of matrix is of no consequence at this

level of analysis. The effect of the fiber reinforcement is smeared over the

volume of material, and we assume that the two-material fiber-matrix system

is replaced by a single homogenous material. This is an important concept

because it makes the analysis of a fiber-reinforced composite easier. Equally

important is the fact that this single material does not have the same properties

in all directions. It is obviously stronger and stiffer in the 1 direction than in

the 2 or 3 directions. In addition, just because the 2 and 3 directions are both

perpendicular to the fiber direction, the properties in the 2 and 3 directions

are not necessarily equal to each other. A material with different properties

in three mutually perpendicular directions is called an orthotropic material.

As a result, a layer is said to be orthotropic. The 1-2, 1-3, and 2-3 are three

planes, and the material properties are symmetric with respect to each of

these planes. As mentioned in Chapter 1, a material with the same properties

in all directions is said to be isotropic.

Figure 2.2 illustrates a small element of smeared fiber-reinforced material

subject to stresses on its six bounding surfaces. As Figure 2.1 shows, this

small volume of material has been considered removed from a layer. The

normal stress acting on the element face with its outward normal in the 1

direction is denoted as �1. The shear stress acting in the 2 direction on that

face is denoted as �12, and the shear stress acting in the 3 direction on that

face is denoted as �13. The normal and shear stresses acting on the other

faces are similarly labeled. The extensional strain responses of the element

as referenced in the 1-2-3 coordinate system are denoted as "1, "2, and "3,

while the engineering shearing strain responses are denoted as 12, 23, and

13. With this notation "1 is the stretching of the element in the fiber direction,
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FIGURE 2.2. Stresses acting on a small element of fiber-reinforced material.

12 is the change of right angle in the 1-2 plane, and so on. The stress-strain

relation for the small element of material will be constructed by considering

the response of the element to each of the six stress components. As only

linear elastic response is to be considered, superposition of the responses will

be used to determine the response of the element to a complex or combined

stress state.

Figure 2.3(a) illustrates the element subjected to only a tensile normal

stress in the 1 direction, �1. Figure 2.3(b)–(d) illustrate three views of the

3

2
2

1

1

(a) Overall view

(c) As viewed in 1-3 plane

(b) As viewed in 1-2 plane

(d) As viewed in 2-3 plane
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FIGURE 2.3. Deformation of an element due to �1.
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element indicating how it would be deformed by this tensile stress. The

tensile normal stress �1 causes extension of the element in the 1 direction

and, due to Poisson effects, contraction in the 2 and 3 directions. There is

no a priori reason to believe that the contractions in the 2 and 3 directions

are the same. In addition, nothing has been said so far to indicate that the

element of material actually contracts. It could expand. In reality, this is not

the case for a single layer. However, laminates can be made that will expand

rather than contract. Laminate Poisson’s ratios will be discussed later.

The extensional strain in the 1 direction is related to the tensile normal

stress in the 1 direction by the tensile, or extensional, modulus of the equiv-

alent smeared material in the fiber direction E1. The relation between these

quantities is

"1 D

�1

E1

(2.1)

If a Poisson’s ratio relating contraction in the 2 direction to extension in the

1 direction is defined to be

�12 D �

"2

"1

(2.2)

then

"2 D ��12"1 D ��12

�1

E1

(2.3)

The subscripts, and their order, on Poisson’s ratio are important. The first

subscript refers to the direction of the applied tensile stress and the resulting

extensional strain. The second subscript refers to the direction of the con-

traction. According to this convention, the contraction in the 3 direction is

related to the extension in the 1 direction by �13, specifically,

�13 D �

"3

"1

(2.4)

We rewrite this equation as

"3 D ��13"1 D ��13

�1

E1

(2.5)

If instead of applying a tensile normal stress in the 1 direction, a tensile

normal stress is applied in the 2 direction, then the element of smeared

material will deform as in Figure 2.4. Because of the softness of the material

perpendicular to the fibers, the element will extend more easily in the 2

direction than in the 1 direction. Because the stiff fibers tend to counter

any Poisson effect, the contraction in the 1 direction will be minimal. In

contrast, the contraction in the 3 direction will be large; there is only matrix

and the soft diametral direction of the fiber resisting deformation. For the

loading of Figure 2.4, the tensile normal stress in the 2 direction, �2, and the

extensional strain in the 2 direction are related by another extensional modulus
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FIGURE 2.4. Deformation of an element due to �2.

through the relation

"2 D

�2

E2

(2.6)

As might be expected, because the stress is acting perpendicularly to the

fibers, E2 is much smaller than E1. Using the subscript convention estab-

lished for Poisson’s ratios, the contraction in the 1 direction is related to the

extension in the 2 direction by yet another Poisson’s ratio, namely,

�21 D �

"1

"2

(2.7)

As a result, due to �2,

"1 D ��21"2 D ��21

�2

E2

(2.8)

Similarly, the contraction in the 3 direction is related to the extension in the

2 direction by �23, �23 being defined as

�23 D �

"3

"2

(2.9)

Rearrangement gives

"3 D ��23"2 D ��23

�2

E2

(2.10)
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It is important to recognize that the definitions being made apply only to

the case of a single stress acting on the element of material. The deformation

is being examined with �1 alone acting on the element of material, then with

�2 alone acting. The definitions of extensional moduli and Poisson’s ratios

are valid only in the context of the element being subjected to a simple tensile

or compressive stress.

Finally, if only a tensile normal stress �3 is applied, the strains in the three

directions are given by

"3 D

�3

E3

"2 D ��32"3 D ��32

�3

E3

"1 D ��31"3 D ��31

�3

E3

(2.11)

In the above, E3 is the extensional modulus in the 3 direction, �32 relates

contraction in the 2 direction and extension in the 3 direction, and �31 relates

contraction in the 1 direction and extension in the 3 direction. This is for the

case of only stress �3 being applied. Again, due to the relative stiffness in

the fiber and matrix directions, the �3 stress will not cause much contraction

in the 1 direction. Contraction in the 2 direction will be much larger, as

Figure 2.5 shows.

If all three tensile stresses are applied simultaneously, the strain in any one

direction is a result of the combined effects, namely,
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Note that a given component of extensional strain, say, "2, is a result of

the combined effects of the three components of normal stress. The normal

stresses and the extensional strains are completely coupled; that is, the matrix

is full. Poisson’s ratio �12 is generally referred to as the major Poisson’s ratio.

The effects of the shearing stress are less complicated. For an orthotropic

material there is no coupling among the three shear deformations. Figure 2.6

illustrates the deformation of the small element of composite subjected to a

shear stress �23, with the shearing stress causing right angles in the 2-3 plane

to change. All other angles of the element remain orthogonal. It is important

to note the sense of the change in right angles in the various corners of the
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FIGURE 2.5. Deformation of an element due to �3.

element due to a positive shear stress, with some right angles decreasing,

some increasing. As the engineering shear strain  denotes the change in

right angle, the relation between the applied shear stress in the 2-3 plane and

the change in right angle in the 2-3 plane is given by

23 D

�23

G23

(2.13)

The quantity G23 is called the shear modulus in the 2-3 plane and 23 is

the engineering shear strain in the 2-3 plane. The convention established for

shearing in the 2-3 plane can be easily extended to the 1-3 and 1-2 planes. As

Figure 2.7 illustrates, a shear stress �13 causes right angles in the 1-3 plane

to change but all other angles in the cube remain orthogonal. Similarly, as

in Figure 2.8, a shear stress �12 causes only the angles in the 1-2 plane to

deform. As a result,

13 D

�13

G13

12 D

�12

G12

(2.14)
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FIGURE 2.6. Deformation of an element due to �23.
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FIGURE 2.7. Deformation of an element due to �13.
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FIGURE 2.8. Deformation of an element due to �12.

The quantities G13 and G12 are the shear moduli in the 1-3 and 1-2 planes,

respectively, and in general G12, G13, and G23 have different values. It is easy

to envision, however, that the values of G12 and G13 could be approximately

the same. The same can be said of E2 and E3, and �12 and �13. Note

that the shearing action caused by �23 does nothing to the fibers except

roll them over one another. The stiffness and strength of the fiber are not

involved in this shearing action. The same can be said of the shearing

action caused by �13 and �12. Though the fibers are not rolled over each

other, they are slid along each other, without their superior stiffness and

strength being involved. As a result, the magnitudes of G12, G13, and G23

can be expected to be about the same as the magnitudes of E2 and E3. The

various extensional moduli, Poisson’s ratios, and shear moduli are collectively

referred to as engineering constants, or engineering properties. The analysis

of fiber-reinforced composites depends on knowing the numerical values of

these engineering constants.

Before we proceed, it is important to state that implicit in the discussion

so far has been the fact that

�21 D �12 �31 D �13 �32 D �23 (2.15)

For this reason the stresses �21, �31, and �32 have not been mentioned ex-

plicitly. Because of the above equalities, the definitions of the quantities G21,
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G31, and G32 are superfluous and have not been introduced. They would have

to equal G12, G13, and G23, respectively.

Also, in the application of the theory of elasticity to the analysis of

composite materials, the definitions of the tensor shear strains, namely,

"12 D

12

2
"13 D

13

2
"23 D

23

2
(2.16)

are sometimes more convenient to use. If this is done, then the extensional and

shear deformations will all be tensor quantities. Despite this, much analysis

and nomenclature have been developed for composite materials that are based

on engineering shear strain. Here use will be made of both strain measures,

though the engineering shear strain will be normally considered because of

its direct association with the change in right angles.

Finally, it will be assumed that the elastic properties of the composite in

compression in the 1, 2, and 3 directions are the same as the elastic properties

in tension.

All the relationships between the stresses and strains take the collective

form
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(2.17)

The square six by six matrix of material properties is called the compliance

matrix, commonly denoted by S . In terms of S , the stress-strain relations are

written as
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

"1

"2

"3

23

13

12

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

D

2

6

6

6

6

6

6

6

6

6

4

S11 S12 S13 0 0 0

S21 S22 S23 0 0 0

S31 S32 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S55 0

0 0 0 0 0 S66

3

7

7

7

7

7

7

7

7

7

5

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�1

�2

�3

�23

�13

�12

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

(2.18)
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With this notation

S11 D

1

E1

S12 D

��21

E2

S13 D

��31

E3

S21 D �

�12

E1

S22 D

1

E2

S23 D �

�32

E3

S31 D �

�13

E1

S32 D �

�23

E2

S33 D

1

E3

S44 D

1

G23

S55 D

1

G13

S66 D

1

G12

(2.19)

The inverse of the compliance matrix is called the stiffness matrix, some-

times called the modulus matrix or elasticity matrix, and is commonly denoted

by C . With the inverse defined, the stress-strain relations become
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(2.20)

Clearly the Cij can be written in terms of the Sij , and ultimately in terms

of the engineering constants. For shorthand notation, the relations between

stress and strain will be abbreviated by

f"g1 D ŒS�f�g1 f�g1 D ŒC �f"g1 (2.21)

Here
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(2.22)

The subscript 1 outside the brackets means that the stresses and strains are

referred to the 1-2-3 coordinate system.

As seen by equation (2.19), the compliance matrix involves 12 engineering

properties: three extensional moduli .E1; E2; E3/, six Poisson’s ratios .�12,

�21, �13, �31, �23, �32/, and three shear moduli .G23, G13, G12/. As a result,
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the stiffness matrix also depends on 12 engineering constants. However, the

12 engineering properties are not all independent. This is a very important

point. There are actually only nine independent material properties. So-called

reciprocity relationships can be established among the extensional moduli

and the Poisson’s ratios. As a result of these reciprocity relationships, the

compliance and stiffness matrices are symmetric. To establish these relations,

it is convenient to use the Maxwell-Betti Reciprocal Theorem. In the next two

sections the theorem is briefly reviewed and used to establish the reciprocity

relations.

2.2 Maxwell-Betti Reciprocal Theorem

Consider an elastic body acted upon by two sets of loads, EP1, EP2; : : : ; EPM

and Ep1, Ep2; : : : ; EpN , where the overbar arrow denotes a vector quantity.

These two sets of loads act at different locations on the body. For this

discussion the two sets of loads are to be applied to the body in two specific

sequences. Figure 2.9(a) illustrates a body with the two sets of loads, EPm,

i D 1, M and Epn, n D 1, N . Assume, as in Figure 2.9(b), load set EPm is

first applied to the body. The body deforms. These deformations are of no

consequence here. Subsequent application of load set Epn, as in Figure 2.9(c),

causes the body to deform further. In particular, application of the load set

Epn causes displacements at points of application of load set EPm. Denoting

these displacements by Edm, the work done by load set EPm due to these

displacements is given by the dot product

WP=p D

M
X

mD1

EPm �
Edm (2.23)

The subscript on W denotes the fact that the work is due to loads EPm moving

through the displacements caused by the application of loads Epn. Obviously,

load set EPm does work as it is initially applied to the body and the body

deforms. Like the initial deformations caused by EPm, this work is not involved

in this discussion.

Conversely, as in Figure 2.9(d), assume that load set Epn is first applied

to the body. The body deforms. Neither these deformations nor the work

done by Epn are of concern. Subsequent application of load set EPm, as in

Figure 2.9(e), causes further deformation. In particular, the body deforms at

points of application of the load set Epn. These displacements are denoted by
EDn; the work done by load set Epn due to these displacements is given by

Wp=P D

N
X

nD1

Epn � EDn (2.24)
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     (broken line)
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FIGURE 2.9. Maxwell-Betti Reciprocal Theorem.

The Maxwell-Betti Reciprocal Theorem states that these two quantities of

work are equal; that is,

WP=p D Wp=P (2.25)

or, according to equations (2.23) and (2.24):

M
X

mD1

EPm �
Edm D

N
X

nD1

Epn � EDn (2.26)



Relationships among Material Properties 57

In other words: The work done by load set EPm due to the displacements

caused by the application of load set Epn equals the work done by load set

Epn due to the displacements caused by the application of load set EPm.

2.3 Relationships among Material Properties

To illustrate that there is a relationship among some of the engineering

properties introduced, the Maxwell-Betti Reciprocal Theorem will be applied

to the same small volume of fiber-reinforced material that we have been

working with. At this time, however, the dimensions of the element must

be specified. Figure 2.10(a) shows the element of material with the three

dimensions, �1, �2, and �3, indicated. Applied to the element are stresses

�1 and �2. These two stresses constitute the two load sets discussed in the

statement of the Maxwell-Betti Reciprocal Theorem. To apply the Maxwell-

Betti Reciprocal Theorem to this situation, the work generated by �2 due to

the deformations caused by the application of �1 will be computed. Then

the work generated by �1 due to the deformations caused by the application

of �2 will be computed. The Maxwell-Betti Reciprocal Theorem states that

these two quantities of work are equal. From this equality, a relation among

four engineering properties will evolve.

Consider the case with a stress �2 initially applied, Figure 2.10(b). De-

formations caused by this stress are ignored. As in Figure 2.10(c), when the

stress �1 is applied to the element, it contracts in the 2 direction due to

Poisson’s ratio �12. The application of �1 causes �2 to do work. Since �2

moves in the direction opposite to which it is acting, this work is actually

negative. [For simplicity, Figure 2.10(c) shows all the contraction occurring

at the upper component of �2.] Let us compute this work: By definition

"2 D ��12"1 (2.27)

The actual displacement of �2, denoted by ı�2, is the strain times the element

dimension in the 2 direction. That is:

ı�2 D "2�2 (2.28)

If we substitute from equation (2.27),

ı�2 D ��12"1�2 (2.29)

The strain "1 is caused by �1 and is given by equation (2.1), namely,

"1 D

�1

E1

(2.30)

Therefore, the displacement of �2 due to the application of �1 can be ex-

pressed as

ı�2 D �

�12

E1

�1�2 (2.31)
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FIGURE 2.10. Application of the Maxwell-Betti Reciprocal Theorem to an element

of fiber-reinforced material.
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The force due to �2 is

F2 D �2�1�3 (2.32)

or the stress times the area on which it acts, and thus the work done by �2

due to the deformations caused by the subsequent application of �1 is

W2=1 D F2ı�2 D .�2�1�3/

�

�

�12

E1

�1�2

�

D �

�12

E1

�1�2�1�2�3

(2.33)

Conversely, consider the case with a �1 initially applied, Figure 2.10(d).

If a stress �2 is subsequently applied, then the element contracts in the 1

direction an amount

"1 D ��21"2 (2.34)

Using equation (2.34), the displacement in the 1 direction is given by

ı�1 D �"1�1 D ��21"2�1 (2.35)

From equation (2.6), the strain "2 caused by the stress �2 is

"2 D

�2

E2

(2.36)

so the displacement in the 1 direction becomes

ı�1 D �

�21

E2

�2�1 (2.37)

This displacement in the 1 direction causes the stress �1 to do work. The

force due to �1 is

F1 D �1�2�3 (2.38)

so the work of the force is given by

W1=2 D F1ı�1 D .�1�2�3/

�

��21

E2

�2�2

�

D �

�21

E2

�1�2�1�2�3

(2.39)

By the Maxwell-Betti Reciprocal Theorem,

W2=1 D W1=2 (2.40)
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or, using the results of equations (2.33) and (2.39),

�

�12

E1

�1�2�1�2�3 D

��21

E2

�1�2�1�2�3 (2.41)

After we simplify, a relation among the material properties involved is im-

mediately obvious, namely:

�12

E1

D

�21

E2

(2.42)

From this equation it is clear that the two extensional moduli E1 and E2

and the two Poisson’s ratios �12 and �21 for the material are not completely

arbitrary. If one knows any three of the properties, the fourth one can be

determined. Similar considerations for work by pairs of stresses �1 and �3,

and �2 and �3 lead to reciprocity relations for the other extensional moduli

and Poisson’s ratios, namely:

�13

E1

D

�31

E3

�23

E2

D

�32

E3

(2.43)

Because of the three reciprocity relations, only nine independent constants are

needed to describe the linear elastic behavior of a fiber-reinforced material.

Also, because of the reciprocity relations, from equation (2.19),

S21 D �

�12

E1

D �

�21

E2

D S12

S31 D �

�13

E1

D �

�31

E3

D S13

S32 D �

�23

E2

D �

�32

E3

D S23

(2.44)

As a result the compliance matrix, and therefore the stiffness matrix, are

symmetric. The symmetry of these two matrices is an important property.

After we incorporate the reciprocity relations, the stress-strain relations in

terms of the compliances are
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(2.45)
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In the above equation

S11 D

1

E1

S12 D �

�12

E1

S13 D �

�13

E1

S22 D

1

E2

S23 D �

�23

E2

S33 D

1

E3

S44 D

1

G23

S55 D

1

G13

S66 D

1

G12

(2.46)

The inverse relations are

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�1

�2

�3

�23

�13

�12

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

D

2

6

6

6

6

6

6

6

6

6

4

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

3

7

7

7

7

7

7

7

7

7

5

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

"1

"2

"3

23

13

12

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

(2.47)

In terms of the compliances, the components of the stiffness matrix are given

by

C11 D

S22S33 � S23S23

S
C12 D

S13S23 � S12S33

S

C22 D

S33S11 � S13S13

S
C13 D

S12S23 � S13S22

S

C33 D

S11S22 � S12S12

S
C23 D

S12S13 � S23S11

S

C44 D

1

S44

C55 D

1

S55

C66 D

1

S66

(2.48)

where

S D S11S22S33 � S11S23S23 � S22S13S13 � S33S12S12 C 2S12S23S13

(2.49)

If needed, the compliances in equation (2.48) can be written in terms of the

engineering properties, and therefore the stiffnesses can be expressed directly

in terms of the engineering properties.

Despite the reciprocity relations among some of the material properties, an

element of fiber-reinforced material still has different material properties in
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each of the three principal material directions. As we mentioned previously,

such a material is called orthotropic. The zero entries in the upper right and

lower left portions of both the compliance and stiffness matrices characterize

orthotropic behavior. If a material is orthotropic and the stress-strain relations

are written in the principal coordinate material system, then the compliance

and stiffness matrices will always have these zero entries. We shall see at

a later time that if the material is orthotropic, but the stress-strain relations

are written in a coordinate system other than the principal one, then some

of the zero entries become nonzero. It is possible to find materials that have

nonzero entries in the upper right and lower left portions of their compliance

and stiffness matrices for every coordinate system. Such a material is said

to be anisotropic. We choose here to concentrate on an orthotropic material

because it is the building block of most composite materials.

For isotropic materials

E1 D E2 D E3 D E �23 D �13 D �12 D �

G23 D G13 D G12 D G D

E

2.1 C �/

(2.50)

As a result, the compliance matrix is

2

6

6

6

6

6

6

6

6

6

4

S11 S12 S12 0 0 0

S12 S11 S12 0 0 0

S12 S12 S11 0 0 0

0 0 0 S44 0 0

0 0 0 0 S44 0

0 0 0 0 0 S44

3

7

7

7

7

7

7

7

7

7

5

(2.51a)

where

S11 D

1

E
S12 D �

�

E
S44 D

1

G
D

2.1 C �/

E
(2.51b)

The lack of any directional dependence is reflected in the fact that the

off-diagonal terms are identical, and the on-diagonal terms for the three

components of shear are identical, as are the other three on-diagonal terms.

Likewise, the stiffness matrix becomes
2

6

6

6

6

6

6

6

6

6

4

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

3

7

7

7

7

7

7

7

7

7

5

(2.52a)
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with

C11 D

.1 � �/E

.1 C �/.1 � 2�/
C12 D

�E

.1 C �/.1 � 2�/

C44 D G D

E

2.1 C �/

(2.52b)

Between orthotropic material behavior and isotropic material behavior lies

a third type of material behavior, namely, transversely isotropic behavior. For

an element of fiber-reinforced material it is often assumed that the material

behavior in the 2 direction is identical to the material behavior in the 3

direction. As these directions are both perpendicular to the fiber direction,

assuming identical properties in these directions is understandable. For this

situation,

E2 D E3 �12 D �13 G12 D G13 (2.53a)

and more importantly,

G23 D

E2

2.1 C �23/
(2.53b)

If equations (2.53a) and (2.53b) are true, then the material is said to be

isotropic in the 2-3 plane, or transversely isotropic in the 2-3 plane. Any

particular property is independent of direction within that plane. With this

characteristic the compliance matrix becomes

2

6

6

6

6

6

6

6

6

6

6

6

6

4

S11 S12 S12 0 0 0

S12 S22 S23 0 0 0

S12 S23 S22 0 0 0

0 0 0 S44 0 0

0 0 0 0 S55 0

0 0 0 0 0 S55

3

7

7

7

7

7

7

7

7

7

7

7

7

5

(2.54a)

where

S11 D

1

E1

S12 D �

�12

E1

S22 D

1

E2

S23 D �

�23

E2

S44 D

1

G23

D

2.1 C �23/

E2

S55 D

1

G12

(2.54b)
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and the stiffness matrix becomes
2

6

6

6

6

6

6

6

6

6

4

C11 C12 C12 0 0 0

C12 C22 C23 0 0 0

C12 C23 C22 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C55

3

7

7

7

7

7

7

7

7

7

5

(2.55)

For a transversely isotropic material, there are five independent material

properties: E1, E2, �12, �23, and G12.

2.4 Typical Material Properties

Though they will not be developed using micromechanical models until the

next chapter, representative numerical values of the engineering properties

of two common fiber-reinforced composite materials are given in Table 2.1,

namely, an intermediate-modulus graphite-reinforced polymeric material and

an S-glass-reinforced polymeric material. For consistency the numerical val-

ues in the table will be used throughout this book. The numerical values

of aluminum are provided for comparison and future reference. Table 2.1 in-

cludes values of coefficients of thermal expansion and coefficients of moisture

TABLE 2.1. Typical engineering properties of several materials

E
1

E
2

E
3

v
23

v
13

v
12

G
23

G
13

G
12

   
1

    2

    3

    1

    2

    3









α

β
β
β





α
α

155.0 GPa

12.10 GPa

12.10 GPa

0.458

0.248

0.248

3.20 GPa

4.40 GPa

4.40 GPa

–0.01800 × 10–6/°C

24.3 × 10–6/°C

24.3 × 10–6/°C

146.0 × 10–6/%M

4770 × 10–6/%M

4770 × 10–6/%M





50.0 GPa

15.20 GPa

15.20 GPa

0.428

0.254

0.254

3.28 GPa

4.70 GPa

4.70 GPa

6.34 × 10–6/°C

23.3 × 10–6/°C

23.3 × 10–6/°C

434 × 10–6/%M

6320 × 10–6/%M

6320 × 10–6/%M





    72.4 GPa

    72.4 GPa

    72.4 GPa

       0.300

       0.300

       0.300

          —2

          —2

          —2

22.5 × 10–6/°C

22.5 × 10–6/°C

22.5 × 10–6/°C

           0

          0

          0





Graphite-polymer

composite1
Glass-polymer

composite Aluminum

1
 
In the chapters  to follow it will  be assumed that  a layer thickness is 150 × 10–6 m, or 

0.150 mm.
2
 
G = E/2(1 + v).
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expansion for the materials. These will be discussed shortly. As can be seen

from the table, for the graphite-reinforced polymer the extensional modulus

in the fiber direction is about 10 times greater than the extensional modulus

perpendicular to the fibers. For glass-reinforced materials, the difference is

not as great. For both fiber-reinforced materials, the three shear moduli are

similar.

As an example of the magnitude of the components of the compliance and

stiffness matrices, for the graphite-reinforced material in Table 2.1, according

to equation (2.46),

S11 D 6:45 .TPa/�1 S12 D �1:600

S22 D 82:6 S13 D �1:600

S33 D 82:6 S23 D �37:9

S44 D 312 S55 D 227

S66 D 227

(2.56)

In the above, TPa denotes terraPascals, or 1012 Pa. For example,

6:45 .TPa/�1
D 6:45

1

1012 Pa
D 6:45 � 10�12 1

Pa
(2.57)

Using equation (2.48), the stiffnesses for the graphite-reinforced material are

C11 D 158:0 GPa C12 D 5:64

C22 D 15:51 C13 D 5:64

C33 D 15:51 C23 D 7:21

C44 D 3:20 C55 D 4:40

C66 D 4:40

(2.58)

Here GPa denotes the more familiar gigaPascal, or 109 Pa. With this notation,

158:0 GPa D 158:0 � 109 Pa (2.59)

These numbers should be contrasted with those for aluminum, which gener-

ally is assumed to be isotropic, where

S11 D S22 D S33 D 13:81 .TPa/�1

S12 D S13 D S23 D �4:14

S44 D S55 D S66 D 36:0

(2.60)

and

C11 D C22 D C33 D 97:5 GPa

C12 D C13 D C23 D 41:8

C44 D C55 D C66 D 27:8

(2.61)
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In matrix form, for the graphite-reinforced material

ŒS� D

2

6

6

6

6

6

6

6

6

6

6

4

6:45 �1:600 �1:600 0 0 0

�1:600 82:6 �37:9 0 0 0

�1:600 �37:9 82:6 0 0 0

0 0 0 312 0 0

0 0 0 0 227 0

0 0 0 0 0 227

3

7

7

7

7

7

7

7

7

7

7

5

.TPa/�1 (2.62)

ŒC � D

2

6

6

6

6

6

6

6

6

6

6

4

158:0 5:64 5:64 0 0 0

5:64 15:51 7:21 0 0 0

5:64 7:21 15:51 0 0 0

0 0 0 3:20 0 0

0 0 0 0 4:40 0

0 0 0 0 0 4:40

3

7

7

7

7

7

7

7

7

7

7

5

GPa (2.63)

The degree of directional dependence, or degree of orthotropy, for a ma-

terial can be evaluated by examining differences among the 11, 22, and 33

terms. For extensional effects in graphite-reinforced material there is a high

degree of directional dependence, or orthotropy. Shear effects exhibit little

orthotropy, but Poisson coupling is directionally dependent, for example, S13

versus S23. As will be discussed, thermal expansion characteristics are highly

dependent on direction.

For all calculations cited throughout the text, results will be quoted to

three significant digits, unless the number starts with 1, in which case four

significant digits will be cited. This will not be the case for layer thickness,

however, where only three significant digits will be cited (i.e., 150�10�6 m/,

or in other cases where even numbers are chosen to make example problems

convenient (e.g., 125 kN). The engineering properties in Table 2.1 are taken

to be exact as shown, with only zeros being dropped from the numbers given

in the table. That is, for graphite-reinforced material, G12 could be written as

4.400000 : : : 000 GPa, or �12 could be written as 0.24800000 : : : 000.

Exercises for Section 2.4

1. Verify equation (2.48). Hint: Inasmuch as �1, �2, and �3 interact only with "1, "2,

and "3, the upper six of equation (2.48) can be verified by considering only the

upper left hand 3 � 3 submatrix of equation (2.45). Verifying the lower three of

equation (2.48) is trivial.
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2. Use the appropriate definitions to show that the stiffness components, Cij , can be

written directly in terms of the engineering properties as follows:

C11 D

.1 � �23�32/E1

1 � �

C12 D

.�21 C �31�23/E1

1 � �
D

.�12 C �32�13/E2

1 � �

C13 D

.�31 C �21�32/E1

1 � �
D

.�13 C �12�23/E3

1 � �

C22 D

.1 � �13�31/E2

1 � �

C23 D

.�32 C �12�31/E2

1 � �
D

.�23 C �21�13/E3

1 � �

C33 D

.1 � �12�21/E3

1 � �

C44 D G23 C55 D G13 C66 D G12

where

� D �12�21 C �23�32 C �31�13 C 2�21�32�13

Computer Exercise

Write a user-friendly computer program to prompt you for the engineering constants

and, through equations (2.46) and (2.48), or the results of Exercise 2 above, compute

and print the values of the compliances and stiffnesses in matrix form. Use the program

to compute the values of the compliance and stiffness matrices for the glass-polymer

composite. Comment on the degree of orthotropy compared to the graphite-polymer

composite and aluminum.

2.5 Important Interpretation of Stress-Strain Relations

The stress-strain relations just established can be interpreted in several ways.

First, the relations can be considered simple algebraic relations between 12

quantities, �1, �2; : : : ; �12 and "1, "2; : : : ; 12. Given any six quantities, the

other six can be determined by the rules of algebra. However, there is a

second, more important and more physical interpretation. The 12 stresses and

strains should be considered in pairs: �1-"1; �2-"2; �3-"3; �23-23; �13-13;

�12-12. Though it is possible to prescribe any six and solve for the other

six, physically one can only prescribe either a stress or a strain from each

pair, but not both. Though they are two of the six prescribed quantities, it

is not physically correct to prescribe both �3 and "3, for example. Only one
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or the other can be prescribed. This is obvious when the shear response is

considered. Because

�12 D G1212 (2.64)

it is impossible to specify both �12 and 12. To do so violates the shear stress–

shear strain relation. Similarly, to specify both �1 and "1, or both �2 and "2,

or both �3 and "3 also violates the stress-strain relation, but not in so obvious

a fashion. There is one situation, however, where efforts are made to know

both the stress and strain. For example, if the extensional modulus in the 1

direction is to be determined from an experiment, then both �1 and "1 have to

be known. If all the stresses are zero except �1, and the strain "1 is measured,

then the extensional modulus can be computed directly from equation (2.1).

Similarly for E2, E3, and the other engineering properties. However, even in

this case of determining material properties, �1 is specified from the level of

applied load and cross-sectional area, but "1 is not really specified also. The

strain "1 is measured and E1 is inferred.

As an example of the above comments regarding pairing of stress and strain

components, and to illustrate the use and some of the implications of the

stress-strain relations for fiber-reinforced materials, consider the following:

A 50-mm cube of graphite-reinforced material, shown in Figure 2.11(a), is

subjected to a 125-kN compressive force perpendicular to the fiber direction,

specifically in the 2 direction. In one situation, Figure 2.11(b), the cube is

free to expand or contract; in the second situation, Figure 2.11(c), the cube

∆2 = 50 mm ∆1 = 50 mm

∆3 = 50 mm

2

1

(a) A 50 mm cube of graphite-epoxy

3 3

1

(b) Cube subjected to compression
   in 2 direction—no constraints

(c) Constrained in 3 direction (d) Constrained in 1 direction

125 kN

125 kN

125 kN

125 kN

125 kN

3

2

3

1

FIGURE 2.11. Cube of material subjected to compressive stress in 2 direction.
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is constrained against expansion in the 3 direction; and in the third case,

Figure 2.11(d), the cube is constrained against expansion in the 1 direction.

Of interest are the changes in the 50-mm dimensions in each of these three

cases, and the stresses, and hence forces, required to provide the constraints

in the latter two cases.

To begin, we shall assume that the compressive force is uniformly dis-

tributed over the 2-direction faces. Further, we shall assume that stress re-

sulting from the force is distributed uniformly throughout the volume of the

cube. Then

�2 D

P

�1�3

D

�125;000 N

.0:050 m/.0:050 m/

D �50;000;000 Pa D �50:0 MPa

(2.65)

For the first case, Figure 2.11(b), the cube is free from any stress on the other

faces. Thus, throughout the volume of the cube,

�2 D �50:0 MPa �1 D �3 D �23 D �13 D �12 D 0 (2.66)

Because of the previous discussions of pairing of stresses and strains, nothing

can be said regarding "1, "2, "3, 23, 13, or 12. These are all unknown and

will be determined. It is most convenient to use the compliance form of the

stress-strain relation, equation (2.45). Specifically, if we use equation (2.66)

in equation (2.45),

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

"1

"2

"3

23

13

12

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

D

2

6

6

6

6

6

6

6

6

6

4

S11 S12 S13 0 0 0

S12 S22 S23 0 0 0

S13 S23 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S55 0

0 0 0 0 0 S66

3

7

7

7

7

7

7

7

7

7

5

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0

�2

0

0

0

0

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

(2.67)

Expanding,

"1 D S12�2 "2 D S22�2 "3 D S23�2

23 D 13 D 12 D 0
(2.68)

As the stresses are uniform throughout the cube, the strains are also uniform

throughout the cube. By definition,

"1 D

ı�1

�1

"2 D

ı�2

�2

"3 D

ı�3

�3

(2.69)

where ı�1, ı�2, ı�3 denote the change in the 50 mm length in the 1, 2, and

3 directions, respectively. Rearranging equation (2.69), and using equation
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(2.68) and values from equation (2.56),

ı�1 D �1"1 D �1S12�2 D .0:050/.�1:600 � 10�12/.�50:0 � 106/

D 4:00 � 10�6 m D 0:00400 mm

ı�2 D �2"2 D �2S22�2 D .0:050/.82:6 � 10�12/.�50:0 � 106/

D �207 � 10�6 m D �0:207 mm

ı�3 D �3"3 D �3S23�2 D .0:050/.�37:9 � 10�12/.�50:0 � 106/

D 94:6 � 10�6 m D 0:0946 mm

(2.70)

In this situation the fibers provide considerable constraint and prevent the

expansion in the 1 direction from being anywhere near as large as the

expansion in the 3 direction. Of course, there is compression in the 2 direction

and obviously

23 D 13 D 12 D 0 (2.71)

Consider the second case, Figure 2.11(c). For this situation we do not know

the normal stress in the 3 direction that is providing the constraint. Because

the displacement in the 3 direction is restrained to be zero along two sides

of the cube, ı�3 D 0, and because the strains are assumed to be uniform

throughout the cube, "3 D 0. Therefore, instead of equation (2.66) we have

�2 D �50:0 MPa �1 D "3 D �23 D �13 D �12 D 0 (2.72)

and we must solve for "1, "2, �3, 23, 13, and 12, the other half of each of

the pairs involved in equation (2.72). Again referring to the compliance form

of the stress-strain relations,

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

"1

"2

0

23

13

12

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

D

2

6

6

6

6

6

6

6

6

6

4

S11 S12 S13 0 0 0

S12 S22 S23 0 0 0

S13 S23 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S55 0

0 0 0 0 0 S66

3

7

7

7

7

7

7

7

7

7

5

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0

�2

�3

0

0

0

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

(2.73)

or

"1 D S12�2 C S13�3 "2 D S22�2 C S23�3

0 D S23�2 C S33�3

(2.74)

For this case we must use the third equation to solve for a relation between

�2 and �3, namely,

�3 D �

S23

S33

�2 (2.75)
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Solving the first and second equations and substituting for �3 results in

"1 D S12�2 C S13�3 D

�

S12 �

S13S23

S33

�

�2

"2 D S22�2 C S23�3 D

�

S22 �

S23S23

S33

�

�2

(2.76)

For this case also,

23 D 13 D 12 D 0 (2.77)

We often refer to the combination of compliances in equation (2.76) as

apparent or reduced compliances. In the second equation of equation (2.76),

the term .S23S23=S33/ subtracts from S22 and indicates the material behaves

in a less compliant manner than determined by S22 alone. Certainly it makes

physical sense that a constraint of any kind, here a constraint against ex-

pansion in the 3 direction, makes the system less compliant. Equation (2.69)

relates the change of length to the strain and so, using equation (2.76) and

values from equation (2.56),

ı�1 D �1"1 D �1

�

S12 �

S13S23

S33

�

�2

D .0:050/.�2:33 � 10�12/.�50:0 � 106/

D 5:83 � 10�6 m D 0:00583 mm

ı�2 D �2"2 D �2

�

S22 �

S23S23

S33

�

�2

D .0:050/.65:3 � 10�12/.�50:0 � 106/

D �163:3 � 10�6 m D �0:1633 mm

ı�3 D 0 (by definition)

(2.78)

The stress to constrain "3 to be zero is given by equation (2.75), namely,

�3 D �

S23

S33

�2 D �22:9 MPa (2.79)

If we compare the deformations for the case of Figure 2.11(c), given by

equation (2.78), with the deformations for the case of Figure 2.11(b), given

by equation (2.70), we can see that with the constraint in the 3 direction the

cube expands about 50 percent more in the fiber direction, and compresses

about 25 percent less in the 2 direction. The constraint in the 3 direction

makes the cube stiffer in the 2 direction and forces the inevitable volume

change to be reflected with increased expansion in the fiber direction.

Finally, consider the third case, Figure 2.11(d). For this situation the normal

stress in the 3 direction is again zero and the extensional strain in that direction
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is unknown. The extensional strain in the fiber direction is known to be zero,

but the corresponding stress, �1, is not known. With this

�2 D �50:0 MPa "1 D �3 D �23 D �13 D �12 D 0 (2.80)

and we must solve for �1, "2, "3, 23, 13, and 12. Equation (2.45) becomes
8
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D

2

6

6

6

6

6

6

6

6

6

4

S11 S12 S13 0 0 0

S12 S22 S23 0 0 0

S13 S23 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S55 0

0 0 0 0 0 S66

3

7

7
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;

(2.81)

or

0 D S11�1 C S12�2 "2 D S12�1 C S22�2

"3 D S13�1 C S23�2

(2.82)

If we use the first equation

�1 D �

S12

S11

�2 (2.83)

the second and third equations become

"2 D S12�1 C S22�2 D

�

S22 �

S12S12

S11

�

�2

"3 D S13�1 C S23�2 D

�

S23 �

S12S13

S11

�

�2

(2.84)

Of course

23 D 13 D 12 D 0 (2.85)

If we use equation (2.69) and numerical values,

ı�1 D 0 (by definition)

ı�2 D �2"2 D �2

�

S22 �

S12S12

S11

�

�2

D .0:050/.82:2 � 10�12/.�50:0 � 106/

D �206 � 10�6 m D �0:206 mm

ı�3 D �3"3 D �3

�

S23 �

S12S13

S11

�

�2

D .0:050/.�38:2 � 10�12/.�50:0 � 106/

D 95:6 � 10�6 m D 0:0956 mm

(2.86)
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The stress in the fiber direction is given by equation (2.83) as

�1 D �12:4 MPa (2.87)

It is important to note that the deformations in the 2 and 3 directions for this

case are not very different from the case of no restraint, equation (2.70).

This is because the fibers constrain deformation in the 1 direction to a

considerable degree, and adding a constraint in the 1 direction has less

influence than adding a constraint in the 3 direction. Likewise, the stress

necessary to constrain the deformation in the fiber direction is, by equation

(2.87), �12:4 MPa, whereas the stress to constrain deformation perpen-

dicular to the fibers was, by equation (2.79), �22:9 MPa, about twice as

much.

It is instructive to repeat the same exercise, but using aluminum in place of

graphite-reinforced composite. This will provide a feel for the effects of the

lack of orthotropy, and a comparison of the magnitude of the deformations

of aluminum and of a common fiber-reinforced composite material. Before

studying the case of aluminum, however, it is important to comment on

the physical aspects of the example just discussed. First, the 50.0 MPa

compressive stress in the 2 direction is about 25 percent of the compressive

failure stress of graphite-reinforced material in the 2 direction and is the

failure strength in the 2 direction in tension. Thus, the 50.0 MPa in the

example is a realistic level of stress. (Strengths of composite materials will

be the subject of a subsequent chapter.) Second, it is important to note that

the magnitudes of the deformations, ı�1, ı�2, and ı�3, are quite small—

submillimeter in size. This level of deformation cannot be detected with the

eye. Special instrumentation is needed to measure deformations this small

and in practice that is what is used. Finally, it is important to become

familiar with realistic strain levels associated with composite materials. In

the unconstrained case, Figure 2.11(b), the strains "1, "2, and "3 are given in

equation (2.68) as

"1 D S12�2

"2 D S22�2

"3 D S23�2

(2.88)

If we use numerical values,

"1 D .�1:600 � 10�12/.�50:0 � 106/ D 80:0 � 10�6 m/m

D 80:0 � 10�6 mm/mm D 80 �mm/mm

"2 D .82:6 � 10�12/.�50:0 � 106/ D �4130 � 10�6 m/m

D �4130 � 10�6 mm/mm D �4130 �mm/mm

"3 D .�37:8 � 10�12/.�50:0 � 106/ D 1893 � 10�6 m/m

D 1893 � 10�6 mm/mm D 1893 � mm/mm

(2.89)
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In the above section we noted that the computations lead to extensional

strains in m/m, but as that is a dimensionless quantity, mm/mm is just as

valid. There is no standard notation for reporting strain. Reporting "1 as

0.000080 can be done, or it can be reported as 0.008 percent. Because the

displacements that result from the strains are usually small, if units are to be

assigned, then mm/mm is more appropriate, although light-years/light-years

is valid, but ridiculous. In the above section, the notation for micro has also

been introduced; that is,

� D 10�6 (2.90)

Herein the 10�6 or the � mm/mm forms will be used. For the unconstrained

element of material, then, according to equation (2.89) the 50 MPa stress

in the 2 direction produces over 4000 � mm/mm compressive strain in the

2 direction, and through Poisson effects, about 100 � mm/mm elongation

strain in the fiber direction and about 2000 � mm/mm elongation strain in

the 3 direction. These are realistic strain levels and as more examples are

discussed, familiarity with strain levels associated with other applied stress

levels will be established.

If instead of subjecting an element of graphite-reinforced material to the

50 MPa compressive stress, an element of aluminum is compressed, the

deformations of the unconstrained element are given by the analog of equation

(2.70), namely,

ı�1 D �1"1 D �1S12�2 D .0:050/.�4:14 � 10�12/.�50:0 � 106/

D 10:36 � 10�6 m D 0:01036 mm

ı�2 D �2"2 D �2S22�2 D .0:050/.13:8 � 10�12/.�50:0 � 106/

D �34:5 � 10�6 m D �0:0345 mm

ı�3 D �3"3 D �3S23�2 D .0:050/.�4:14 � 10�12/.�50:0 � 106/

D 10:36 � 10�6 m D 0:01036 mm

(2.91)

The compliances used in the above calculation are given in equation (2.60),

and the use of a 1-2-3 coordinate system is only to provide a reference

system. With aluminum, there is no difference in material properties in the

3 coordinate directions. As a result, due to the compressive stress in the 2

direction, the increase in length in the 1 direction of the aluminum cube is

identical to the increase in length in the 3 direction. This certainly was not

the case for the fiber-reinforced material. By the results of equation (2.70),

we see that for the graphite-reinforced material, expansion in the 3 direction

is about 25 times the expansion in the 1 direction!

If the aluminum is constrained in the 3 direction, as in the second case,

the deformations are given by the analog to equation (2.78), namely,
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ı�1 D �1"1 D �1

�

S12 �

S13S23

S33

�

�2

D .0:050/.�5:39 � 10�12/.�50:0 � 106/

D 13:47 � 10�6 m D 0:01347 mm

ı�2 D �2"2 D �2

�

S22 �

S23S23

S33

�

�2

D .0:050/.12:57 � 10�12/.�50:0 � 106/

D �31:4 � 10�6 m D �0:0314 mm

ı�3 D 0 (by definition)

(2.92)

The constraining stress is given by equation (2.79) as

�3 D �

S23

S33

�2 D �15:00 MPa (2.93)

Finally, for a constraint in the 1 direction, the analog to equation (2.86) is

used. Because the material is isotropic, we can immediately write, referring

to equations (2.92) and (2.93),

ı�1 D 0 (by definition)

ı�2 D �0:0314 mm

ı�3 D 0:01347 mm

�1 D �15:00 MPa

(2.94)

If we use equations (2.83) and (2.84) as a check,

�1 D �

S12

S11

�2 D �15:00 MPa

ı�1 D 0

ı�2 D �2"2 D �2

�

S22 �

S12S12

S11

�

�2

D .0:050/.12:57 � 10�12/.�50 � 106/ D �0:0314 mm

ı�3 D �3"3 D �3

�

S23 �

S12S13

S11

�

�2

D .0:050/.�5:39 � 10�12/.�50 � 106/ D 0:01347 mm

(2.95)

These examples provide an indication of the strains and deformations that

result from applying a force to a fiber-reinforced material. More importantly,

the results indicate how important the fibers are in controlling the response

of composite materials, even though the fibers may not be loaded directly.

The exercises below will give further examples to illustrate the domination

of the fiber-direction properties.
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Exercises for Section 2.5

1. Compute the strains, in � mm/mm, for the unconstrained element of aluminum

subjected to a 50 MPa compressive stress in the 2 direction, that is, the situation

given by Figure 2.11(b). This is the aluminum analog to equation (2.89). Unlike

the composite, the isotropy of the aluminum leads to identical strains in the 1 and

3 directions.

2. Consider the cube of graphite-reinforced material of Figure 2.11. Suppose the cube

is simultaneously constrained against deformation in both the 1 and 3 directions.

(a) What is the change in the 50 mm length in the 2 direction? (b) How does the

apparent or reduced compliance in the 2 direction compare to the cases when there

was only one constraint, equations (2.78) or (2.86)? That the apparent compliance

is different indicates there is an interaction between the two constraints. This had

better be the case because the stress-strain relations indicate all extensional strains

are related to all normal stress components. The interaction can also be demon-

strated by computing the stresses required to enforce the constraints. Therefore:

(c) Compute the stress required to constrain the deformations in the 1 direction

when there are constraints in both the 1 and 3 directions. Compare this with the

stress required to constrain the deformations in the 1 direction when there is no

constraint in the 3 direction, equation (2.87).

3. In studying the deformations of a cube of material to applied loads, we have used

the compliance matrix, as in equations (2.67), (2.73), and (2.81). Exactly the same

answer must result if the formulation had started with the stiffness matrix. Rework

the problem of the cube with no constraints and subjected to the compressive load

in the 2 direction, Figure 2.11(b), but start with the stiffness formulation; that is:
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where �2 D �50:0 MPa. Show that you obtain the results of equation (2.70).

4. A 50 mm cube of graphite-reinforced material is extended in the 1 direction

by 0.50 mm and is constrained against contraction in the 3 direction. There is

no constraint in the 2 direction. (a) What is the change in dimension in the 2

direction? (b) Determine the stresses in the 1 and 3 directions required to cause

these deformations.

2.6 Free Thermal Strains

To this point the only deformations we have studied have been those that are a

result of an applied load. However, when a fiber-reinforced composite material

is heated or cooled, just as with an isotropic material, the material expands or
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contracts. This is a deformation that takes place independently of any applied

load. If a load is applied, then we must contend with the deformations due

both to applied load and to thermal expansion effects. Unlike an isotropic

material, the thermal expansion of a fiber-reinforced material is different

in each of the three principal material directions. Graphite fibers contract

along their length when heated (see Table 1.2). Polymers, aluminum, boron,

ceramics, and most other matrix materials expand when heated. Therefore,

when heated, a composite will expand, contract, or possibly exhibit no change

in length in the fiber direction, depending on the relative effects of the fiber

and matrix materials. In the other two directions, due to the dominance of the

properties of the matrix, the composite will expand. Figure 2.12(a) shows our

∆3

∆2

∆1

2

3

1

(a) Element at reference temperature (b) Deformations due to ∆T

2

1

3

1

3

2
∆3 +   ∆3δ

∆3 +   ∆3δ

∆1 +   ∆1δ

∆2 +   ∆2δ

∆1 +   ∆1δ

∆2 +   ∆2δ

FIGURE 2.12. Thermal expansion of an element of fiber-reinforced material.
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small element of material with its temperature at some reference temperature.

The element is not part of any structure; rather, it is isolated in space and free

of stresses on its six faces. The temperature is uniform within the element, and

at this reference temperature the element has dimensions �1, �2, and �3. As

the temperature of the element is changed, the element changes dimensions

slightly in the fiber direction and moderately in the other two directions. The

change in length of the element per unit original length is defined to be the

thermal strain. Because the element has no tractions acting on any of its six

faces, the strain is termed free thermal strain. The free thermal strains in the

three coordinate directions will be denoted as

"T
1 .T; Tref / "T

2 .T; Tref / "T
3 .T; Tref / (2.96)

The superscript T indicates that the strain is a free thermal strain. Tref is

the temperature at the reference state, and T is the temperature at the state

of interest, a temperature above or below the reference temperature. The

two arguments Tref and T emphasize the fact that the free thermal strain

involves both of these temperatures. The reference state is, of course, arbitrary

and depends on the specific problem being studied. For polymer-based fiber-

reinforced composite materials, the reference state is often taken to be the

stress-free processing condition. The reference temperature would then be the

temperature corresponding to that condition. The physical interpretation of

these free thermal strains is indicated in Figure 2.12(b), which shows the three

views of the dimensional changes experienced by an element of graphite-

reinforced material as the temperature is increased. Since, as mentioned

before, graphite contracts when heated, the length of the element in the fiber

direction is assumed to decrease. The dimensions in the directions perpen-

dicular to the fibers are assumed to increase. In addition, the increases in the

dimensions perpendicular to the fibers are much larger than the decrease in the

fiber direction, reflecting the overwhelming influence of polymer expansion

perpendicular to the fibers. For glass-reinforced materials, the dimensional

changes perpendicular to the fibers would be similar to those changes for

graphite-reinforced materials. Parallel to the fibers, however, an element of

glass-reinforced material would expand, as opposed to contract, but less than

the expansion perpendicular to the fibers. Aluminum, of course, expands the

same amount in all three directions.

As Figure 2.12 indicates, the free thermal expansion in the various direc-

tions is directly related to the change in length in those directions. Specifically,

"T
1 .T; Tref / D

ı�1

�1

"T
2 .T; Tref / D

ı�2

�2

"T
3 .T; Tref / D

ı�3

�3

(2.97)
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where, as in the past, ı�1, ı�2, and ı�3 are the changes in the lengths of

the sides of the element parallel to the 1, 2, and 3 coordinate directions,

respectively.

If the thermal expansion is linear with temperature change, then it is only

the difference between the reference temperature and the temperature at the

state of interest that is important, and the free thermal strains can be written

as

"T
1 .T; Tref / D ˛1�T "T

2 .T; Tref / D ˛2�T

"T
3 .T; Tref / D ˛3�T

(2.98)

where

�T D T � Tref (2.99)

The quantities ˛1, ˛2, and ˛3 are referred to as the coefficients of thermal

expansion, or CTE for short. They have units of 1/ıC, or to emphasize

they are related to strains, mm/mm/ıC. Obviously, �T is the temperature

difference between the reference temperature pertinent to the problem and

the temperature of interest. It is implicit that the thermal strains are defined

to be zero at the reference temperature. A positive �T is associated with a

temperature increase.

Several important points should be made relative to the above formulation.

First, strictly speaking, ˛1, ˛2, and ˛3 are referred to as the linear coefficients

of thermal expansion. Expansional effects are linearly proportional to the

temperature change, and as will be seen, the thermally induced stresses

in a laminate will double if the temperature change doubles. Second, if

expansional effects are not linearly proportional to the temperature change,

then the linear coefficient of thermal expansion is meaningless. To study

thermally induced deformation effects in these cases it is necessary to have

explicit forms of "T
1 , "T

2 , and "T
3 as a function of temperature. These functional

forms are usually derived from experiments by the least-squares fitting of

simple polynomial functions of temperature to the data. As implied by the

notation of equation (2.96), in these cases the reference temperature and the

temperature of interest must be part of the functional form for a complete

description of the free thermal expansion effects.

A third important point is rather obvious but it should be mentioned

explicitly. In the principal material coordinate system, the free thermal strains

do not involve any shearing deformations. The strains are strictly dilatational,

not distortional. (Dilatation effects are those identified with a change in

volume of an element, whereas distortional effects are those identified with

a change of shape of an element.)

Finally, for an element of material that is isolated in space, the strains that

accompany any temperature change do not result in stresses on any of the six

surfaces. This is counter to the stress-strain relations already presented. In the

previous formulations the extensional strains "1, "2, and "3 are accompanied
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by normal stresses �1, �2, and �3. Clearly the stress-strain relations must be

modified to account for free thermal strains that do not, in an unrestrained

and completely free element, produce stresses.

Typical values for the coefficients of thermal expansion for graphite- and

glass-reinforced composites, and aluminum, are presented in Table 2.1. For

graphite-reinforced materials, the coefficient in the fiber direction can be

slightly negative, while the coefficient perpendicular to the fibers is similar

to the expansion of aluminum. Parallel to the fibers the stiffness of the

fibers dominates, and the free thermal strains are governed by the contraction

properties of the fibers. Perpendicular to the fiber direction the free thermal

strains are governed by the large expansion properties of the matrix and the

lack of stiffness of the fibers.

With linear thermal expansion, the changes in length of the three dimen-

sions of the element of material in Figure 2.12 are given by

ı�1 D �1˛1�T ı�2 D �2˛2�T ı�3 D �3˛3�T (2.100)

where equations (2.97) and (2.98) have been employed. For a 50 mm �

50 mm � 50 mm element of graphite-reinforced composite material, if

the element is heated 50ıC, the changes in dimensions are given by, from

Table 2.1 and equation (2.100),

ı�1 D .50/.�0:018 � 10�6/.50/ D �0:0000450 mm

ı�2 D .50/.24:3 � 10�6/.50/ D 0:0608 mm

ı�3 D .50/.24:3 � 10�6/.50/ D 0:0608 mm

(2.101)

Thus the dimensions of the heated element are: in the 1 direction

�1 C ı�1 D 49:999955 mm (2.102a)

in the 2 direction

�2 C ı�2 D 50:0608 mm (2.102b)

and in the 3 direction

�3 C ı�3 D 50:0608mm (2.102c)

2.7 Stress-Strain Relations, Including the Effects

of Free Thermal Strains

Before proceeding, a comment should be made regarding the term free ther-

mal expansion. We have been considering an element of material wherein the

fibers and matrix are smeared into a single equivalent homogeneous material.

Free thermal strain refers to the fact that the smeared element is free of any

stresses if the temperature is changed. When one considers an unsmeared

material and deals with the individual fibers and the surrounding matrix, a
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temperature change can create significant stresses in the fiber and matrix.

Clearly, if graphite contracts in the fiber direction and polymers expand, and

the materials are combined, such stresses will certainly exist. However, when

the stresses are integrated (i.e., smeared) over the volume of the element, the

net result is zero.

To accommodate the fact that for a smeared element of material with

no constraints on its bounding surfaces, free thermal strains do not cause

stresses, the stress-strain relation as it has been presented to this point has

to be reinterpreted. The simplest interpretation, and the one that is consistent

with the definitions of stress, strain, and free thermal strain, is that the strains

in the stress-strain relations are the mechanical strains. In the context of free

thermal strains this is interpreted to mean that mechanical strains are the

total strains minus the free thermal strains. The total strains are a measure of

the change in dimensions of an element of material, specifically the change

in length per unit length. In the context of our element of material, these

changes in length per unit length are given by ı�1=�1, ı�2=�2, ı�3=�3.

Thus

"1 �

ı�1

�1

"2 �

ı�2

�2

"3 �

ı�3

�3

(2.103)

where it is implied the strains are the total strains. In the previous section,

referring to Figure 2.12, the total strains were equal to the thermal strains

(because there were no stresses) and hence the notation of equation (2.97).

However, in the presence of stresses on the faces of an element of material,

equation (2.97) is not valid.

The concept of mechanical strain is something of an artifact. Unlike the

dimensional changes associated with free expansion and those associated

with total strains, no specific dimensional changes can be associated with

mechanical strains. Nonetheless, the concept is useful for gaining insight into

a problem if it is realized that these so-called mechanical strains are the key

elements in the stress-strain relations. If we use the concept of mechanical

strains to accommodate the free thermal strains, the stress-strain relations can

be rewritten as
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where the total strains are
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and the mechanical strains are
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In the principal material system, the mechanical shear strains and the total

shear strains are identical. If the free thermal strain is linearly dependent on

temperature, the stress-strain equations take the form
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The inverse relations for this linear thermal expansion case are

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�1

�2

�3

�23

�13

�12

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

D

2

6

6

6

6

6

6

6

6

6

4

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

3

7

7

7

7

7

7

7

7

7

5

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

"1 � ˛1�T

"2 � ˛2�T

"3 � ˛3�T

23

13

12

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

(2.108)
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where the mechanical strains are given by
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(2.109)

These definitions of strains are the most general and include the cases of

stresses with no thermal effects, thermal effects but no stresses (i.e., free

thermal strains), and thermal effects with stresses. For stresses with no tem-

perature change, �T D 0 and equations (2.107) and (2.108) reduce directly

to equations (2.45) and (2.47). For a temperature change but no stresses, the

free thermal strain case,

�1 D �2 D �3 D �23 D �13 D �12 D 0 (2.110)

and by using either equation (2.107) or (2.108), the total strains are

"1 D ˛1�T "2 D ˛2�T "3 D ˛3�T

23 D 13 D 12 D 0
(2.111)

For this case, if we use equations (2.109) and (2.111), the mechanical strains

are given by

"mech
1 D "1 � ˛1�T D ˛1�T � ˛1�T D 0

"mech
2 D "2 � ˛2�T D ˛2�T � ˛2�T D 0

"mech
3 D "3 � ˛3�T D ˛3�T � ˛3�T D 0

mech
23 D 23 D 0

mech
13 D 13 D 0

mech
12 D 12 D 0

(2.112)

that is, the mechanical strains are all zero. On the other hand, if an element

of material is fully restrained against deformation,

ı�1 D ı�2 D ı�3 D 0 (2.113)

By equation (2.103),

"1 D "2 D "3 D 0 (2.114)

and we know

23 D 13 D 12 D 0 (2.115)
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If the temperature is changed an amount �T , the stresses caused by the

temperature change are
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In this case, if we use equations (2.109), (2.114), and (2.115), the mechanical

strains are given by

"mech
1 D �˛1�T "mech

2 D �˛2�T "mech
3 D �˛3�T

mech
23 D mech

13 D mech
12 D 0

(2.117)

The concept of mechanical strain is an important one. As an example,

consider a fully restrained element of graphite-reinforced material. Substitut-

ing numerical values for the stiffnesses from equation (2.58), and numerical

values for the coefficients of thermal expansion from Table 2.1, we find that if

the temperature is raised 50ıC from some reference temperature, the changes

in the stresses in a fully restrained material are, from equation (2.116),

�1 D �.˛1C11 C ˛2C12 C ˛3C13/�T D �13:55 MPa

�2 D �.˛1C12 C ˛2C22 C ˛3C23/�T D �27:6 MPa

�3 D �.˛1C13 C ˛2C23 C ˛3C33/�T D �27:6 MPa

�23 D �13 D �12 D 0

(2.118)

Though these normal stresses do not seem significant, a lowering of the

temperature would cause the sign of the stresses to become positive, and the

roughly 30 MPa stress perpendicular to the fiber direction (i.e., �2 or �3)

is a substantial percentage of the stress to cause failure of the material in

tension in these two directions. In addition, due to the interaction of the three

components of normal stress with the three components of extensional strain,

the stress in the fiber direction, �1, is compressive. This is the case despite

the fact that in the context of free thermal strains, the material contracts in the

fiber direction when heated. Contraction in a direction when heated would

lead one to believe the thermally induced stress would be tensile in that

direction. The compressive stress in the fiber direction is a result of Poisson

effects coupling the fiber-direction stress with the other two stresses. The

interaction of thermal and Poisson effects is subtle but quite important. The
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mechanical strains for this fully constrained case are, from equation (2.117)

"mech
1 D 0:900 � 10�6 mm/mm D 0:900 � mm/mm

"mech
2 D �1215 � 10�6 mm/mm D �1215 � mm/mm

"mech
3 D �1215 � 10�6 mm/mm D �1215 � mm/mm

mech
23 D mech

13 D mech
12 D 0

(2.119)

A significant point should be made at this time. In reality the elastic

properties of a fiber-reinforced material are dependent on temperature. It

is the absolute temperature that is important, not the temperature relative to

some reference temperature. Then, in the stress-strain relations the stiffnesses

and compliances should be considered as functions of temperature; that is,

Cij D Cij .T / i; j D 1; 6 (2.120)

and

Sij D Sij .T / i; j D 1; 6 (2.121)

The interpretation in this case is that at a particular temperature T , the stresses

and strains are related in accordance with equation (2.104), where it has

been assumed that the free thermal expansion is a function of T and of the

reference temperature, Tref . How the material was heated to the particular

temperature or what the material properties are at other temperatures are not

important. The relationship is path-independent, and the material properties

depend only on the current temperature, and for the free thermal strain, also

on the reference temperature. For moderate increases of temperature relative

to room temperature, the elastic properties can be assumed to be indepen-

dent of temperature. As the temperature increase approaches the processing

temperature, however, the elastic properties are a function of temperature.

At temperatures lower than room temperature, the elastic properties for any

particular material should also be checked for temperature dependence.

Exercise for Section 2.7

Consider a 50 mm � 50 mm � 50 mm element of graphite-reinforced material that

is heated 50ıC above some reference state and is restrained in the 2 direction. (a)

What are the changes in dimensions of the heated element in the 1 and 3 directions?

(b) What stress �2 is required to restrain the element against deformation in the 2

direction? Assume the material properties are independent of temperature. (c) How

do the changes in dimensions of the heated element for this partially restrained case

compare numerically with the changes in dimensions of the heated element for the

case of free thermal strain, equation (2.101)? Why are they different? (d) What are

the mechanical strains for this case? Numerically compare the mechanical strains with

the fully constrained case, that is, equation (2.119). Hint: To solve the problem use

either equation (2.107) or (2.108), assume "1 ¤ 0 and "3 ¤ 0, and solve for "1, "3,

and �2.
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2.8 Stress-Strain Relations, Including the Effects

of Free Moisture Strains

When exposed to a liquid, polymers absorb a certain amount of that liquid

and, in general, expand. The amount of liquid absorbed is not significant,

however. Weight gains in excess of 3 or 4% are unusual. As a result, it is not

the weight gain that is important; rather, it is the expansion, which is similar

to the expansion that accompanies a temperature increase, that is the issue.

The level of the expansion is close to being linear with the amount of liquid

absorbed. Consequently, in analogy to the coefficient of thermal expansion,

defining a coefficient of moisture expansion represents a viable model for

characterizing the free moisture expansion of a polymer. For polymer matrix

composites, the use of a linear expansion model is also applicable. As might

be expected, however, the moisture expansion in the fiber direction is small,

at least for graphite fibers; the fibers usually do not absorb moisture, and the

stiffness of the fibers overcomes any tendency for the polymer to expand in

that direction. On the other hand, expansion perpendicular to the fibers is

significant. Using the analogy to linear thermal expansion, equation (2.98),

the free moisture strains are given by

"M
1 .M; Mref / D ˇ1�M "M

2 .M; Mref / D ˇ2�M

"M
3 .M; Mref / D ˇ3�M

(2.122)

The superscript M identifies that the strain is moisture-induced and the

dependence on both M and Mref signifies that the free moisture strain

is measured relative to some reference moisture state. However, here it is

assumed that it is only the change in moisture relative to that state that

determines the strain relative to that state. The free moisture strains in the

reference state are defined to be zero. The ˇi are referred to as the coefficients

of moisture expansion. Generally, ˇ1 can be taken to be zero and ˇ2 and ˇ3

are taken to be equal. For most fiber-reinforced materials, ˇ2 ranges from

0.003 to 0.005/% moisture. With a 3 percent moisture change, say, from the

dry state, this can result in expansional strains upward of 0.015 perpendicular

to the fibers. This is a large amount of strain. Table 2.1 includes values of the

moisture expansion coefficients for graphite- and glass-reinforced composite

materials.

Using the values of ˇ1, ˇ2, and ˇ3 from Table 2.1, we can determine the

dimensional changes of a 50 mm � 50 mm � 50 mm element of graphite-

reinforced material which has absorbed 0.5% moisture by using the moisture

analogy to equation (2.97), namely,

ı�1 D �1"M
1 .M; Mref / D �1ˇ1�M D .50/.146 � 10�6/.0:5/

ı�1 D 0:00365 mm
(2.123a)
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ı�2 D �2"M
2 .M; Mref / D �2ˇ2�M D .50/.4770 � 10�6/.0:5/

ı�2 D 0:1193 mm
(2.123b)

ı�3 D �3"M
3 .M; Mref / D �3ˇ3�M D .50/.4770 � 10�6/.0:5/

ı�3 D 0:1193 mm
(2.123c)

The dimensional changes in the 2 and 3 directions are significant, and re-

straining them leads to large moisture-induced stresses.

The manner and the rate at which polymers absorb moisture is an important

topic in the study of the mechanics of fiber-reinforced material. The study

parallels the characteristics of heat transfer within a solid. For the moment,

however, it is only necessary to assume that the composite has absorbed

moisture and that the moisture has produced a strain. Incorporating these

free moisture strains into the stress-strain relations, in the same manner as

the free thermal strains were accounted for, leads to, in analogy to equations

(2.107) and (2.108),
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and
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The mechanical strains, the key strains in the stress-strain relations, are given

by

"mech
1 D "1 � ˛1�T � ˇ1�M

"mech
2 D "2 � ˛2�T � ˇ2�M

"mech
3 D "3 � ˛3�T � ˇ3�M

(2.126)

where, as has consistently been the case, the dimensional changes are reflected

in

ı�1 D "1�1

ı�2 D "2�2

ı�3 D "3�3

not (2.127)

ı�1 D ."1 � ˛1�T � ˇ1�M/�1

ı�2 D ."2 � ˛2�T � ˇ2�M/�2

ı�3 D ."3 � ˛3�T � ˇ3�M/�3

With both free thermal strains and free moisture strains present in various

combinations, some unusual effects and stress states are possible. The com-

bination of moisture and heat is, in general, detrimental to polymer matrix

composite materials, and it represents an important class of problems for

these materials.

As a numerical example, using the values of ˇ1, ˇ2, and ˇ3 from Table 2.1,

we find that a fully restrained element of graphite-reinforced composite that

has absorbed 0.5% moisture but has experienced no temperature change

requires the following stresses to prevent it from expanding:

�1 D �.C11ˇ1 C C12ˇ2 C C13ˇ3/�M D �38:4 MPa

�2 D �.C12ˇ1 C C22ˇ2 C C23ˇ3/�M D �54:6 MPa

�3 D �.C13ˇ1 C C23ˇ2 C C33ˇ3/�M D �54:6 MPa

(2.128)

The stresses generated by moisture absorption are substantial. Again, since

ˇ1 is small, the stress generated in the fiber direction is due to a coupling

of the 1, 2, and 3 directions through Poisson effects. Clearly, one needs to

be very aware of Poisson effects in materials, particularly in fiber-reinforced

materials. The mechanical strains for this fully restrained isothermal case are

"mech
1 D �ˇ1�M D �73 � 10�6

D �73 � mm/mm

"mech
2 D �ˇ2�M D �2380 � 10�6

D �2380 � mm/mm

"mech
3 D �ˇ3�M D �2380 � 10�6

D �2380 � mm/mm

mech
23 D mech

13 D mech
12 D 0

(2.129)
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Like temperature, moisture influences the elastic properties of a fiber-

reinforced material. For graphite-reinforced materials, moisture has little in-

fluence on properties in the fiber direction. However, moisture does influence

other properties, and it can influence properties in the fiber direction for

some polymeric fibers. To account for moisture-induced property changes,

the stiffnesses and the compliances can be made dependent on the absolute

moisture content. As with temperature-dependent material properties, the

interpretation in this case is that at particular moisture content M , the stresses

and strains are related in accordance with equation (2.124) or (2.125). How

the moisture content reached a particular level or what the material properties

are at other moisture levels are not important. The relationship is path-

independent, and the material properties depend only on the current moisture

content, and the free moisture strains depend only on the reference moisture

state and the current moisture state.

Exercises for Section 2.8

1. An element of graphite-reinforced composite is completely dry and is constrained

against any dimensional changes in the 1 and 2 directions, but it is free to expand in

the 3 direction. The element absorbs 1.5% of its dry weight in the form of moisture.

(a) What is the strain in the 3 direction as a result of the moisture absorption?

Why is this strain different from the value given by ˇ3�M? (b) What stresses

develop in the element? Assume that moisture absorption does not influence the

material properties.

2. The moisture expansion coefficient of a graphite-reinforced composite in the fiber

direction is much smaller than in the other two directions. Therefore it might

be expected that constraining an element of graphite-reinforced material from

expansion in the 2 and 3 directions but allowing it to expand in the 1 direction

when 0.5% moisture is absorbed would result in stresses not too different from that

of the fully restrained case. That is, even with no restraint in the fiber direction, the

stiff fibers may act as a restraint. Or is this wrong thinking? Compute the stresses

for this partially constrained case and comment on why the stresses are or are not

different from the fully restrained case.

3. An element of graphite-reinforced material is cooled �75
ıC and then it absorbs

0.5% of its weight in moisture. The element is completely restrained against any

dimensional changes during cooling and subsequent moisture absorption. Assume

that neither the temperature change nor the moisture change influence material

properties. Compute the stresses due to just the temperature decrease, then compute

the stresses due to the temperature decrease and the moisture absorption. Can we

say that the absorption of moisture relieves thermally induced stresses resulting

from a temperature decrease? Basing your answer on the material properties given

in Table 2.1, do you believe the statement is true just for this case, or do you think

it might be a general statement?
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2.9 Summary

This chapter has introduced the fundamental ideas of the three-dimensional

stress-strain relations for fiber-reinforced composite materials. These three-

dimensional relationships form the basis for two-dimensional relationships to

be developed and utilized in the remainder of the book. Three fundamental

points to keep in mind are:

1. The three-dimensional relations addressed in the chapter have obscured in-

teractions between the fiber and the matrix by smearing these constituents

into an equivalent homogeneous orthotropic material.

2. The engineering properties E1, E2, E3, �12, �13, �23, G12, G13, G23

form the basis for the compliance and stiffness matrices. These properties

exhibit a strong directional dependence.

3. Only one component in each of the pairs �1-"1, �2-"2; : : : ; �12-12 can be

specified.

4. The thermal expansion coefficients ˛1, ˛2, ˛3 are also directionally de-

pendent and can cause significant stresses to develop.

5. Expansion due to moisture absorption can be viewed in a manner similar

to thermal expansion and can also lead to significant stresses.

Since the engineering properties form the basis of the compliance and

stiffness matrices, the next chapter discusses methods for computing the

engineering properties of a composite, given that the engineering properties

of the fiber and matrix are known.

2.10 Suggested Readings

The form of the stress-strain relations in the principal material coordinate system

for an element of fiber-reinforced material, where it is assumed that the fiber and

matrix properties are smeared into a single homogeneous material, can be traced back

to the forms for various elastic symmetries for crystals of many materials. Crystal

classification (triclinic, monoclinic, etc.) and the effect of symmetry on the form of

the elastic constants is discussed in

1. Dowling, N. E. Mechanical Behavior of Materials. Englewood Cliffs, NJ: Prentice

Hall, 1993.

2. Love, A. E. H. A Treatise on the Mathematical Theory of Elasticity. 4th ed. New

York: Cambridge University Press, 1944. Reprint of a 1927 Dover Publications

edition.

Postulating the existence of a strain energy density leads to a form of the stress-strain

relations, and imposition of various symmetry constraints leads to the orthotropic

form, including thermal expansion effects. See the following:

3. Fung, Y. C. Foundations of Solid Mechanics. Englewood Cliffs, NJ: Prentice Hall,

1969.
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Methods for determining engineering properties of composites are documented by the

American Society for Testing and Materials (ASTM) in the following:

4. ASTM Standards and Literature References for Composite Materials, 2nd ed. West

Conshohocken, PA: ASTM, 1990.

Particularly interesting are the literature references, which trace the history of research

that has led to the methods discussed in the book. These test methods are also

documented in the following:

5. Annual Book of ASTM Standards. Vol. 15-03, High-Modulus Fibers and Compos-

ites. West Conshohocken, PA: ASTM, 1996.

There are numerous ASTM Special Technical Publications (STPs) that address com-

posite materials. These can be consulted for the latest test methods, as well as data

on the most recent materials. Chapter 10 in the following reference also documents

test methods:

6. Gibson, R. F. Principles of Composite Material Mechanics. New York: McGraw-

Hill, 1994.

The following paper contains an early discussion of the expansion of polymers and

its similiarity with thermal expansion:

7. Hahn, H. T., and R. Y. Kim. “Swelling of Composite Laminates.” In Advanced

Composite Materials—Environmental Effects. ASTM STP 658. Ed. J. R. Vinson.

Philadelphia: American Society for Testing and Materials, 1978.



CHAPTER 3

Prediction of Engineering Properties
Using Micromechanics

Thus far, engineering properties, stiffnesses, compliances, and the relations

between them have been discussed without concern for what is happening

at the fiber level. While many important issues regarding the response of

fiber-reinforced composite materials and structures can be addressed without

knowing what is happening at this level, it is often helpful—and sometimes

even necessary—to view composites from this vantage point. The interactions

of the elastic properties of the fiber and matrix produce the elastic properties

of the composite material. Similarly, the thermal expansion properties of

the fiber and matrix interact to produce the thermal expansion properties

of the composite. By knowing how the two constituents interact, you can

predict the material properties of a composite material. More importantly,

by knowing how the two constituents interact, you can design a composite

material to achieve particular overall properties. Furthermore, what ultimately

determines the load capacity of the composite material is the stress state at this

microstructural level, within the matrix, within the fiber, and at the interface

between the matrix and fiber. Computing the stresses at this level can be very

useful for understanding some of the underlying mechanisms of failure and

for constructing failure theories for composite materials.

In general, studying the response of a fiber-reinforced composite material

at the microstructural level is quite involved. As with viewing composites

from the structural level, you must resolve many questions before you can

address the response at the micromechanical level. How are the fibers to be

represented? How is the matrix to be represented? How many fibers have to

be included in the model to properly reflect a representative volume? How are

these fibers arranged? Can you assume that the microstructure is repeating

or periodic? What length of fiber needs to be considered? Does a fiber have

the same properties in its axial direction as across its diameter? What are

the material properties of the fiber? How are they determined? After all, it

93
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is difficult to load a fiber across its diameter to determine the properties

perpendicular to the axial direction. What are the material properties of the

matrix? If failure is to be studied, what failure criterion is to be used at that

level? From a different viewpoint, what stresses can the fiber withstand? What

stresses can the matrix withstand? What stresses can the interface between

the fiber and matrix withstand? Is the interphase region, if there is one,

important? The need to answer these questions is affected by the type of

information being sought by viewing composites from the microstructural

level. As this list of questions demonstrates, the issue of micromechanics

needs to be viewed carefully, lest the results be misinterpreted. For example,

if key information is missing or not known with a high degree of accuracy—

say, material properties of the fiber—it may not be worth the effort to

study composites at the microstructural level. Nevertheless, because it is

important to be versed in the issues, the following sections address issues in

micromechanics. After this discussion, we will again focus on the larger scale

of a layer of fiber-reinforced material, the so-called macromechanical scale.

We hope that the discussion of micromechanics will allow developments in

macromechanics to be viewed in proper prospective.

3.1 Background

One of the earliest models of composite materials considered a single in-

finitely long fiber surrounded by matrix. We saw in Figure 1.4 how the matrix

surrounding the fiber transfers the load to the fiber. The transfer occurs at

the end of the fiber, so one might conclude that an infinitely long fiber is

not a good model. However, because the length of most fibers is hundreds

of times greater than their diameter, the region of stress transfer into the

fiber from the matrix is so small that an infinite-length fiber model can be

justified. On the other hand, although the infinitely long approximation may

be accurate, the single-fiber model ignores the existence of other fibers near

the one being considered. However, the issue in these early models was the

overall elastic and thermal expansion properties of the composite, not the

details of the stresses or deformations at the microstructural level. As long as

the volume of fiber relative to the volume of matrix was represented correctly,

the single-fiber model could be justified to some extent.

In other views of the microstructure of composites, the fibers were seen as

a parallel array of stiff elastic elements joined together by a softer element,

the matrix material. A strength-of-materials approach was used to analyze this

assemblage of stiff and soft elements. Although such models quite accurately

predicted the extensional modulus of the composite in the fiber direction, they

were poor predictors of the extensional modulus perpendicular to the fibers.

Modifications were introduced to correct these problems, and these modified

models have been used with some success.
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The following sections discuss several kinds of micromechanical models.

Results from the various models are presented and comparisons among the

models are compared. The primary interest with the models is the prediction

of composite material properties. However, to provide insight into failure, we

will also discuss stresses in the fiber and matrix. The approach will be to

introduce some of the more complex models first. In considering fibers and

the surrounding matrix we will assume that the fibers are spaced periodically

in square-packed or hexagonal-packed arrays. We will assume that the fibers

are infinitely long. To obtain results from these models, numerical approaches

must be used. We will present results from the finite-element method and,

as will be seen, either the square-packed or hexagonal-packed array model

provides a basis for addressing a number of issues related to studying fiber-

reinforced composite materials. Though numerical approaches are beyond the

scope of this book, we present such results because they provide an accurate

representation of response of this level. As a contrast to the numerically

based square- and hexagonal-packed array models, we will base the second

approach to micromechanics on elasticity solutions. This approach can lead to

intractible formulations, but with simplifications results can be obtained. We

will use one such simplification, known as the concentric cylinders model,

to obtain results for particular problems. As an alternative to the first two

approaches discussed, the third series of models discussed will be the sim-

plest. This approach considers the fibers as stiff parallel fiber elements joined

by softer matrix material elements. We will analyze these models, referred

to as the rule-of-mixtures models, using a strength-of-materials approach.

The simplicity and limitations of these models will become immediately

obvious.

3.2 Finite-Element Results: Square- and Hexagonal-Packed

Array Models

From Figure 1.6 we can see that in a fiber-reinforced material, the fibers

are distributed throughout the matrix in a pattern we could describe as

somewhat repeating or periodic. There is randomness involved, but as a first

approximation the cross section could be idealized as in Figure 3.1(a) or (b).

Figure 3.1(a) illustrates the square-packed array and Figure 3.1(b) illustrates

an alternative model, the hexagonal-packed array. The names of the arrays

are derived from the shape of the polygons that describe the fiber-packing

pattern, and generally the hexagonal-packed array is the preferred model of

the two.

If we assume that either of the two models represents to a reasonable degree

of accuracy the microstructure of a fiber-reinforced composite material, how

can we determine the stresses at the interface between the fiber and the

matrix? How can predictions of the fiber-direction extensional modulus be
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(a) Square-packed array (b) Hexagonal-packed array

FIGURE 3.1. Cross section idealizations for micromechanics studies.

made? What about thermal expansion effects? The first step to obtaining

results is to realize that because of the symmetry, only one, or even only

part of one, fiber and the surrounding matrix need be considered. If the cross

sections shown in Figure 3.1 are representative, then they go on for quite some

extent in both cross-sectional directions. (We assumed that the fibers are of

infinite length, so the cross sections of Figure 3.1 also go on indefinitely into

and out of the plane of the figure.) If, for example, a load is applied in the

fiber direction, out of the plane of the figure, then as each fiber is embedded

in a vast array of fibers, each fiber will respond the same as its neighboring

fibers and attention can focus on a so-called unit cell. Figure 3.2 illustrates the

2

Unit cell

3

2

Unit cell

3

(a) Square-packed array (b) Hexagonal-packed array

FIGURE 3.2. Concept of unit cells.
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concept of a unit cell for both the square-packed and the hexagonal-packed

arrays. Because each fiber is embedded in a vast array of other fibers, there

is a periodicity to the response, and because of this periodicity, we can argue

that the straight lines outlining the unit cells in Figure 3.2(a) and (b) remain

straight when the composite is subjected to any one of a number of basic

loadings, such as a tensile loading in the fiber direction (in the 1 direction

out of the plane of the figure), a transverse tensile loading (from left to right

in the 2 direction in the figure), a temperature change, and the like. Because

these lines remain straight, attention can be directed at the response of just

one unit cell, as in Figure 3.3.

By directing attention at a unit cell, we easily see that the cross-sectional

area of fiber relative to the total cross-sectional area of the unit cell is a

measure of the volume of fiber relative to the total volume of the composite.

This fraction is an important parameter in composite materials and is called

fiber volume fraction. Fiber volume fraction will be denoted V f and it is a

number between 0 and 1, usually 0.5 or greater. We will continue to use the

1-2-3 coordinate system to study the response of a unit cell. Circumferential

locations around the fiber-matrix interface will be identified by the angle � ;

� will be measured counterclockwise from the 2 axis. Enforcement of the

condition that the boundaries of the unit cell remain straight ensures that the

isolated unit cell behaves as if it is part of a larger array of unit cells. The

disadvantage of these unit cell models is that to obtain results, it is necessary

to rely on a finite-element representation of the unit cell. A discussion of the

finite-element method of analysis is not possible here, but suffice it to say that

a descretization of the cross section such as that shown in Figure 3.4(a) and

(b) is the basis for the method. With the material and geometric symmetry

2

3

θ

θ

A B

D C

2

3

A B

CD

(a) Square-packed array (b) Hexagonal-packed array

FIGURE 3.3. Details of unit cells.
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(a) Square-packed array (b) Hexagonal-packed array

FIGURE 3.4. Finite-element representations of unit cells (quarter models).

of the 1-2-3 coordinate system, depending on the loading, it may actually

be sufficient to consider only a portion of the unit cell. Certain symmetry

conditions can be enforced along the horizontal and vertical centerlines of

the unit cell so that only one-quarter or one-eighth of a unit cell need be

modeled. (We will not discuss here the various alternatives that are possible

with the modeling.) With a finite-element representation of a unit cell—

whether it be a full, one-fourth, or one-eighth model—it is possible to obtain

quite accurate estimates of the response, both of overall response (such as

determining E1) and of stresses (such as at the interface between the fiber

and the matrix).

To follow are results obtained from both the square-packed and the hexa-

gonal-packed models using the quarter-cell finite-element representations in

Figure 3.4. We present overall elastic and thermal expansion properties of a

graphite-reinforced composite, as well as information regarding the stresses

in the fiber and matrix. Figure 3.5 illustrates the stresses to be discussed,

and though they are treated in the context of the square-packed array, these

same stresses are definable in the hexagonal-packed array. The normal and

shear stresses acting on the interface between the the fiber and matrix, �n

and �ns , have the same value on the matrix side of the interface as on the

fiber side. These stress components are responsible for interface failure in

the material. The circumferential stress component in the matrix, �m
s , does

not act directly on the interface and does not have the same value as the

circumferential stress component in the fiber, �
f
s . The circumferential stress
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FIGURE 3.5. Stresses of interest within unit cell.

component in the matrix can be responsible for failures originating in the

matrix. Finally, we will discuss the stress in the fiber, or 1, direction at

the interface. This stress component is not the same in the fiber as it is

in the matrix. In fact, �
f
1 can be responsible for fiber failure, while �m

1

can be responsible for failure of the matrix. These stresses will be studied

as a function of angular location, � , around the fiber-matrix interface. The

direction � D 0ı coincides with the 2 direction, while � D 90ı coincides

with the 3 direction. The stresses will also be studied as a function of the fiber

volume fraction of the material. The specific values are 0.2, 0.4, and 0.6; the

latter is a realistic number, while the two lower numbers are used to provide

insight into trends. We should realize that there is an upper bound to fiber

volume fraction. The fibers obviously cannot overlap and the upper bound is

achieved when all the fibers just touch each other. In addition, we will also

study the stresses at the boundaries of the unit cell (see Figure 3.5). These

stresses .�2; �3; and �23/ are needed to keep the boundaries of the unit cell

straight. Because the analysis assumes that the cross section represents the

infinite length of the fibers, neither stresses nor strains vary along the fiber

direction. Such assumptions categorize the analysis as a generalized plane

deformation analysis.
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3.2.1 Material Properties of the Fiber and Matrix

The elastic and thermal expansion properties of a graphite fiber are taken to

be

E
f
x D 233 GPa E

f
r D E

f

� D 23:1 GPa

�
f
xr D �

f

x� D 0:200 �
f

r� D 0:400

G
f
xr D G

f

x�
D 8:96 GPa G

f

r�
D 8:27 GPa

˛
f
x D �0:540 � 10�6=K ˛

f
r D ˛

f

�
D 10:10 � 10�6=K

(3.1)

where the properties are given in the cylindrical coordinate system of the

fiber and the superscript f denotes fiber. The above properties correspond to

an intermediate-modulus graphite fiber. The negative value of ˛
f
x reflects the

fact that graphite fibers shrink in the axial direction when heated. Obviously

the axial direction .x/ of the fiber coincides with the 1 direction. With the

above properties, the fiber is said to be transversely isotropic in the r -� plane

(i.e., in the cross section of the fiber). This means that the fiber responds

the same when subjected to a stress �r , for example, as when it is subjected

to stress �� . Subjecting the material in the fiber to a stress �x results in a

different response. Because of the transverse isotropy, when referred to the

1-2-3 coordinate system the fiber properties can be written as

E
f
1 D 233 GPa E

f
2 D E

f
3 D 23:1 GPa

�
f
12 D �

f
13 D 0:200 �

f
23 D 0:400

G
f

12 D G
f

13 D 8:96 GPa G
f

23 D 8:27 GPa

˛
f

1 D �0:540 � 10�6=K ˛
f

2 D ˛
f

3 D 10:10 � 10�6=K

(3.2)

For the polymer matrix material the elastic and thermal expansion properties

are taken to be

Em D 4:62 GPa �m D 0:360

˛m D 41:4 � 10�6=K
(3.3)

where the superscript m denotes matrix and the matrix is assumed to be

isotropic. All the properties are assumed to be independent of temperature.

3.2.2 Thermal Effects and Determination of Thermal Expansion

Coefficients ˛1 and ˛2

Always of interest are the stresses at the micromechanical level that result

from a temperature change. We can study residual thermally induced stresses

due to the cooldown from consolidation by examining the effects of a tem-

perature change. We can also assess the micromechanical stresses due to
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heating or cooling relative to, say, room temperature. Because the material

properties are assumed to be independent of temperature and because thermal

expansion is linear with temperature, the micromechanical responses due to

a temperature change �T basically tell the story. We will present the stresses

at the interface between the fiber and matrix and at the boundaries of the unit

cell that result from a temperature change �T . Because the residual stresses

due to cooling from the consolidation temperature are an important issue in

composite materials, we will assume the temperature change is negative. For

convenience and generality, and with no sacrifice in the physical interpretation

of the results, we will normalize the stresses with the quantity Em˛mj�T j.
This quantity has the units of stress and is the stress in an element of matrix

restrained from deforming in one direction. With this normalization the signs

of the normalized stresses are the signs that would occur due to cooling from

the consolidation temperature. We can easily compute the stresses due to any

temperature change by scaling the results by �T .

To obtain results representing the effects of a temperature change from

the finite-element representation of the unit cell of Figure 3.3, the boundary

conditions imposed on the finite-element model are: lines AB, BC, CD, and

DA are all free to move and change length but are constrained to remain

straight. In reality lines AB, BC, CD, and DA represent surfaces on the sides

of the unit cell. Because we assume there are no variations of response in the

fiber direction of the unit cell model, the dimension in the fiber direction can

be considered unity. Thus, by “free to move,” we mean that the net forces

acting on the areas represented by the lines AB, BC, CD, and DA are zero.

We determine these net forces by the integral of the stresses over the area,

with the area being given, for example, by the length of line BC multiplied

by 1. More will be said of the integrals of the stresses shortly. In addition

to the above stipulations, cross section ABCD is forced to stay planar and

perpendicular to the axis of the fiber during the temperature change, but it

may move in the fiber direction. The integral over cross section ABCD of the

normal stresses �1 out of the plane of the figure, namely, the net force in the

fiber direction, P , must be zero. Though plane ABCD must remain planar

and perpendicular to the fiber axis, it translates in the direction of the fiber

axis due to thermal expansion along the fiber direction.

The interface normal and shear stresses between the fiber and the matrix

for a graphite-reinforced material are illustrated in Figure 3.6. Results from

both the square- and hexagonal-packed arrays are shown. In these and future

figures, because of symmetry considerations, the variations of the interface

stresses with circumferential location are plotted only for the range 0ı � � �
90ı. Also, in general all three fiber volume fractions considered will be on one

figure. As Figure 3.6 shows, both packing models predict a strong influence of

the fiber volume fraction on the interface stress. At 0.2 fiber volume fraction,

generally referred to as 20 percent fiber volume fraction, the normal stress �n

is compressive, for the most part independent of circumferential location � ,
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FIGURE 3.6. Interface normal and shear stresses in graphite-reinforced material

due to a temperature decrease.

and has a normalized value of about �0:6: For 20 percent fiber volume

fraction the shear stress �ns is nil. We interpret these results as meaning the

fibers are far enough apart at 20 percent fiber volume fraction that they do not

interact (i.e., any particular fiber does not feel the influence of the other fibers

in the neighborhood). What occurs at one circumferential location occurs at

every other location. As a contrast, at 60 percent fiber volume fraction, the

normal stress depends strongly on � , and there is a shear stress, though it is

smaller in magnitude than the normal stress. The square-packed array predicts

that the normal stress changes sign with � , while the hexagonal-packed array

predicts the normal stress, while varying with � , does not change sign and

is compressive at all circumferential locations. This strong dependence on �

is to be interpreted as interaction between the fibers, namely, at this volume

fraction, the fibers are close enough together that any individual fiber feels

the influence of neighboring fibers. Some circumferential locations are closer

to neighboring fibers than others and what happens at one circumferential
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location does not happen at others. For the normal stress the interpretation of

the results is as follows: For a negative temperature change and a 20 percent

fiber volume fraction, because in the 2-3 plane the matrix material has a larger

coefficient of thermal expansion than the fiber, the matrix contracts more and

exerts a compressive normal stress on the fiber. Hence, for a negative �T the

interface normal stresses are compressive, with the value of compressive stress

being nearly independent of � . For 60 percent fiber volume fraction the fibers

are closer together, and according to the predictions of the square-packed

array, the change in temperature causes tension at the interface in the range

30ı � � � 60ı. The hexagonal-packed array model predicts variations in the

compressive stress as � varies, but not a tensile stress. For the 60 percent fiber

volume fraction the square-packed array predicts higher compressive stress

levels than the hexagonal-packed array, with the high compressive stress levels

occurring where the fibers are in closest proximity to one another, such as

at � D 0 and 90ı for the square-packed array and � D 0 and 60ı for the

hexagonal array. In both models, the shear stress is predicted to change sign

and the square array predicts a higher shear stress.

Another stress of interest for the thermally induced case is the circum-

ferential stress (see Figure 3.7). The circumferential stress in the matrix is,

in general, opposite in sign to the circumferential stress in the fiber, though

the square-packed array with 60 percent fiber volume fraction predicts a sign

change for the fiber stress. The tensile circumferential stress in the matrix

is of particular interest. Being tensile and with a severe enough temperature

decrease, the stress in the matrix may exceed failure levels and cause the

matrix to crack. As a possible scenario, the crack would be oriented radially

from the interface into the matrix (see Figure 3.8). The fiber, on the other

hand, is being compressed in the circumferential direction, with no danger

of serious fiber failure due to this stress.

Although they are almost completely independent of circumferential loca-

tion � , the stresses in the fiber direction (Figure 3.9) are important, partic-

ularly when interpreted in the context of residual thermal stresses. With the

temperature decrease due to cooldown from the consolidation temperature, the

stresses in the fiber direction are compressive, while the stresses in the matrix

in the fiber direction are tensile. This can be explained as follows: Because

the coefficient of thermal expansion of the fiber in the fiber direction, ˛
f

1 ,

is negative, as the temperature decreases, the fiber tends to become longer.

Conversely, the matrix, with its positive coefficient of thermal expansion,

tends to contract in the fiber direction when cooled. Because the fiber and

matrix are bonded together, the fiber cannot expand as much as it could if it

were free, and thus it is in compression in the fiber direction. An extension of

the argument leads to the conclusion that the matrix must be in tension. The

tensile stress in the matrix could cause matrix cracking to occur. Although

it is not shown here, we should mention that in addition to the fact that the

fiber-direction stress in the fiber and matrix does not depend strongly on � ,
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FIGURE 3.8. Possible crack in matrix due to a temperature decrease.
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to a temperature decrease.

this stress component is tensile and almost uniform within the matrix, and

compressive and quite uniform within the fiber. Thus, the fiber-direction stress

acting at a point on the cross section is one of only two different values, the

value in the matrix or that in the fiber, depending on where the point is.

With the fibers being in close proximity, particularly for the 60 percent

volume fraction case, stresses are necessary to keep the unit cell boundaries

straight. However, it was also stipulated that there could be no net force on the

boundaries of the unit cell. Figure 3.10 shows the distribution of the stresses

on the boundaries. The important stresses on the boundaries are the normal

stresses, �2 and �3. The shear stresses on the boundaries, �23, are negligible.

In this and other figures illustrating the boundary stresses, the stresses are

plotted as a function of normalized distance along the unit cell boundary. The

right boundary is represented by line BC (please refer to Figure 3.3). Due to

symmetry, only the upper half of that boundary needs to be considered. Using

a normalized distance in the 3 direction, we find that positions on the upper
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FIGURE 3.10. Stresses on boundaries of unit cell of graphite-reinforced material

due to a temperature decrease.

portion of boundary BC for the square-packed array are in the range 0 to

0.5, with 0 coinciding with the 2 axis. Similarly, distances in the 2 direction

along the right half of line CD of the square-packed array range from 0

to 0.5, with 0 coinciding with the 3 axis. For the hexagonal-packed array,

normalized positions along the upper half of boundary BC range from 0 top
3=2.D 0:867/; while normalized positions along the right half of boundary

CD range from 0 to 0.5. Note that for the square array the unit cell boundaries

are completely in matrix, and for the hexagonal array the unit cell boundaries

pass through matrix as well as fiber. The abrupt change in material properties

along the boundary lines results in abrupt changes in stress levels.

Considering the square array, we find that the normal stresses, �2, along

the right boundary, Figure 3.10(a), are compressive near normalized position
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0 because the coefficient of thermal expansion of the fiber in the 2-3 plane

is less than that of the matrix in that plane. With a temperature decrease,

the fiber does not contract as much as the matrix. For line BC to remain

straight, a compressive stress is required near 0 to compensate for the lack

of fiber contraction. Conversely, because with a temperature decrease the

matrix contracts more than the fiber, near position 0:5 tensile stresses are

necessary to overcome the greater contraction tendency of the matrix. As the

net force along line BC must be zero, the effect of the compressive stresses

near position 0 must cancel the effect of the tensile stresses near position

0:5. As an aid to understanding the sign of the stresses along the boundaries

of the unit cell, Figure 3.11 illustrates the deformations of a unit cell due to

a temperature decrease and the greater thermal expansion coefficient of the

matrix in the 2-3 plane as compared to the thermal expansion coefficient of

the fiber in that plane. Figure 3.11(a) shows the undeformed unit cell before

the temperature is decreased, while Figure 3.11(b) shows the deformed unit

cell, with the boundaries constrained to remain straight. Figure 3.11(c) shows

the deformations that would occur to the unit cell if the boundaries were not

constrained to remain straight. The stresses along the boundary BC shown in

Figure 3.10(a) are necessary for the boundary to remain straight. Due to the

(a) Undeformed unit cell (b) Deformations with boundaries
      constrained to remain straight

(c) Deformations with no
      boundary constraints

Deformed 
boundary

Deformed 
boundary

2

3

FIGURE 3.11. Cross-sectional deformations of unit cell of graphite-reinforced

material due to a temperature decrease.
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symmetry of the thermal problem, the physical interpretation of the stresses

along top boundary CD for the square array, Figure 3.10(b), is similar to the

interpretation of the stresses along boundary BC. An analogous interpretation

of the boundary stresses is possible for the case of the hexagonal array,

Figure 3.10(c) and (d).

It is not the purpose of this discussion to dwell on the micromechanical-

level stresses due to a temperature change. However, from the results just

discussed, it is very clear that these stresses can be quite important in deter-

mining the integrity of the composite. If there is too large a mismatch between

the thermally induced deformations of the fiber and matrix, the stresses can

be large enough to cause disbonding of the fiber from the matrix, or cracking

in the matrix, or both. Neither of these results can be tolerated.

A direct result of the analysis of thermally induced stresses is a determi-

nation of the coefficients of thermal expansion of the composite. The change

in dimension across the width of the unit cell due to a temperature change

provides a measure of the coefficient of thermal expansion transverse to the

fiber direction, ˛2, while the change in the fiber-direction dimension provides

a measure of the coefficient of thermal expansion along the fiber direction, ˛1.

With either the square-packed or hexagonal-packed array, the coefficient of

thermal expansion in the 3 direction, ˛3, is equal to ˛2. The variations of the

coefficients of thermal expansion of the composite with fiber volume fraction

are given in Table 3.1, along with other material properties to be discussed

shortly. It is readily apparent from the table that the two packing arrays

predict nearly identical values of the two coefficients of thermal expansion.

Moreover, with increasing volume fraction, the value of ˛1 approaches zero

and possibly becomes negative, reflecting the increasing influence of the

negative coefficient of thermal expansion of the fiber in the fiber direction.

TABLE 3.1. Engineering properties of graphite-reinforced composite

1Assuming transverse isotropy.
2Elasticity model, not square or hexagonal array.

Square array Hexagonal array

    1, ×10–6/K

    2(=  3), × (10)–6/K

 E1, GPa

    12(=  13)

 E2(=E3), GPa

     23

    21(=   31)

 G23, GPa

 G12, GPa2

    1, ×10–6/%M

     2(=   3), ×10–6/%M





      2.69

    44.9

    50.2

      0.324

      6.69

      0.507

      0.0431

      1.813

      2.23

  330

4350



Composite

property

α
 α  α

β

ν ν

ν

ν ν

β β

0.2 0.4 0.6

      0.779

    35.7

    96.1

      0.289

      9.03

      0.466

      0.0272

      2.17

      2.97

  195.0

4570

      0.0884

    26.4

  141.7

      0.259

    12.38

      0.421

      0.0224

      2.94

      4.05

  150.9

4700

      2.68

    44.9

    50.4

      0.324

      6.54

      0.518

      0.0420

      2.151

      2.23

  329

4350

0.2 0.4 0.6

      0.780

    35.7

    96.0

      0.290

      8.43

      0.501

      0.0254

      2.811

      2.97

  195.1

4580

      0.0766

    26.6

  141.9

      0.257

    11.30

      0.468

      0.0205

      3.851

      4.05

  147.6

4750
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In fact, it is seen that for just the right volume fraction of fiber, there would

be no thermal expansion of the composite material in the fiber direction, a

very useful property and one unique to graphite fiber-reinforced composites.

3.2.3 Tension in the Fiber Direction and Determination of

Extensional Modulus E1 and Poisson’s Ratios �12 and �13

Because loading in the fiber direction is the loading mode most favorable to

composite materials, it is interesting to examine the stresses at the micro-

mechanical level when the composite is subjected to such a load. With the

models being used, this loading condition can be simulated by using the

same boundary conditions on lines AB, BC, CD, and DA as were enforced

for the thermal response case, namely, that those boundaries remain straight

and free of any net force. However, instead of having a zero net force on

face ABCD, a nonzero value is specified, thus stretching the composite in

the fiber direction. The average fiber-direction stress in the composite in the

fiber direction, �1, can then be determined by dividing this specified load, P ,

by the area of cross section ABCD, expressed as A. In the figures to follow,

the stresses are normalized by this average fiber-direction stress, P=A. As

might be suspected, the interface normal and shear stresses, as well as the

circumferential stresses in the fiber and matrix at the interface, are minor

compared to the fiber-direction stress. Because the case of a fiber-direction

loading is a fiber-dominated response, and because for the thermal loading

the fiber-dominated responses (i.e., ˛1) of the square- and hexagonal-packed

arrays were in such good agreement, only the results from the square-packed

array are shown.

For 20 percent fiber volume fraction, the interface normal stress, shown

in Figure 3.12, reflects the fact that for a tensile load in the fiber direction,
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FIGURE 3.12. Interfacial normal and shear stresses in graphite-reinforced material

due to applied fiber-direction strain, square array.
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FIGURE 3.13. Interface circumferential stresses in graphite-reinforced material due

to applied fiber-direction strain, square array.

the magnitude of the Poisson effects in the matrix relative to the fiber causes

the matrix to compress the fiber in the radial direction. As the fiber volume

fraction increases, this clamping effect of the matrix onto the fiber decreases,

with the square array model actually predicting some interface tension near

� D 45ı when the fiber volume fraction is 60 percent. For all volume fractions

the interface shear stress is quite small. The circumferential stresses in the

matrix, Figure 3.13, also reflect the tendency for the matrix to compress the

fiber, with the matrix circumferential stresses causing compression in the

fiber as it resists the radial compression effect by trying to push outward

on the matrix, something like internal hydrostatic pressure within a void.

In turn, the matrix stresses are tensile in the circumferential direction. The

most significant stresses for the fiber-direction tensile loading condition are,

naturally, the stresses in the fiber direction in the fiber and in the matrix,

Figure 3.14. It is abundantly clear that while the magnitude of this component

20%

40%

60% 20%40%,

60%

Fiber

Matrix

0 20 40 60 80
0

1

2

3

4

5

, degrees

1
 /

 (
P

/A
)

θ

σ

FIGURE 3.14. Interface fiber-direction stresses in graphite-reinforced material due

to applied fiber-direction strain, square array.
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of stress depends on the fiber volume fraction, the magnitude is not a function

of circumferential location. As in the thermal case (though not shown), for

the fiber-direction loading, the fiber-direction stresses in the fiber and matrix

are independent of location within the cross section. We can interpret this as

indicating that for this mode of loading, the fibers for this infinitely long unit

cell do not interact.

Figure 3.15 illustrates the stresses along the boundaries of the square-

packed array unit cell that are required for the boundaries to remain straight.

Figure 3.16 shows the deformations of the cross section of the unit cell for the

case of the boundaries being constrained to remain straight, Figure 3.16(b),

and the boundaries being free to deform, Figure 3.16(c). The cross-sectional

deformations that occur if the unit cell boundaries are free to deform result

from differences between Poisson’s ratio of the matrix, �m D 0:360, and

Poisson’s ratio of the fiber, �
f
xr D 0:200. Because the matrix has the greater

Poisson’s ratio, it contracts more in the 2-3 plane than the fiber. It is important

to note that although the cross-sectional deformations of Figures 3.11 and

3.16 look similar, they each deform the way they do for completely different

reasons.

We can use the deformations that accompany the fiber-direction tensile

loading to compute the fiber-direction extensional modulus and two of the

several Poisson’s ratios for the composite. The strain in the 2 direction divided

by the fiber-direction strain results in one Poisson’s ratio, specifically �12,

while the strain in the 3 direction divided by the fiber-direction strain results

in another Poisson’s ratio, �13, which is identical to �12. Table 3.1 gives the

variations of these composite material properties with fiber volume fraction.

The two packing models predict nearly identical results.
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due to applied fiber-direction strain.
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(a) Undeformed unit cell
 

(b) Deformations with boundaries
      constrained to remain straight

(c) Deformations with no
      boundary constraints
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boundary
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boundary
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FIGURE 3.16. Cross-sectional deformations of unit cell of graphite-reinforced

material due to applied fiber-direction strain.

3.2.4 Transverse Tensile Loading and Determination of Extensional

Modulus E2 and Poisson’s Ratios �21 and �23

One of the most interesting and important loadings that can be applied to a

fiber-reinforced material is a tensile load or deformation perpendicular to the

fiber direction, here the 2 and 3 directions (i.e., the transverse direction). As

there is not a continuous path through strong and stiff fiber for the load

to be transmitted, the load must either pass through the fiber, across its

diameter, through the interface between the fiber and the matrix, through

the matrix, through another interface, through another fiber, and so on, or the

load must take a somewhat tortuous path, following only matrix material. In

reality, a portion of the load follows the matrix-only path and a portion is

transmitted through the fiber, with the proportions being determined by the

relative stiffness of each constituent and by the fiber volume fraction. With a

transverse loading, then, the interaction of fiber and matrix plays a key role

in transmitting the stresses through the composite.

To study the effects of a transverse load, a known overall transverse strain

is imposed on the unit cell model. This is accomplished by stipulating that

lines BC and DA in Figure 3.3 remain straight and move apart a known
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amount in the 2 direction, and lines AB and CD are free to move in the 3

direction as long as they remain straight and parallel with the 2 direction.

All boundary lines can change length. Additionally, it is specified that cross

section ABCD remains planar and perpendicular to the axis of the fiber. The

integral of the fiber-direction stresses acting on that cross section is again

forced to be zero.

Figure 3.17 indicates the interface normal and shear stresses that result

from the transverse strain. Because this is a loading transverse to the fibers,

the results from both the square- and hexagonal-packed arrays are shown for

comparison. In this and subsequent figures the stresses have been normalized

by average transverse stress N�2 acting along the left and right edges of the unit

cell. The average stress is the value required to produce the known transverse

strain, and it is determined by integrating the stress �2 over boundary BC

and dividing by the area of boundary BC. The integrals of these stresses

were zero in Figures 3.10(a) and 3.15(a), cases where the net force in the
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FIGURE 3.17. Interfacial normal and shear stresses in graphite-reinforced material

due to applied transverse tensile strain.
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2 direction was specified as zero. As expected, the interface normal stress,

Figure 3.17, is highest at � D 0ı, the direction of the imposed transverse

normal strain. At the � D 0ı location the matrix wants to pull away from

the fiber because it is transmitting the transverse load directly to the fiber

there. At � D 90ı the square-packed array predicts that the normal stress is

compressive, while the hexagonal array predicts that the normal stress there is

compressive only for the 20 percent fiber volume fraction case. In general, the

magnitude of the normalized normal stress is, for the most part, independent

of fiber volume fraction. It is important to keep in mind that the average

transverse stress N�2 depends on fiber volume fraction. In absolute terms,

then, the interface normal stress does depend on fiber volume fraction. The

interface shear stress is of significant magnitude, being highest near � D 45ı.

It is of interest to note that in terms of failure, it may be a combination of

the interface tension and the interface shear that causes a problem at the

interface. With the variations with � of the two stress components, it may

be that interface failure will not occur where the normal stress is highest,

nor where the shear stress is highest, but rather at some other circumferential

location.

With the transverse loading, the circumferential stress, as Figure 3.18

shows, is an important component. In Figure 3.17 we saw that the interface

normal stress is high at � D 0ı. At this location the transverse tensile stress

in the composite is in the direction of the interface normal and the high

normal tensile stress was interpreted as the matrix transmitting the transverse

load directly to the fiber. Examination of Figure 3.18 shows that also at

� D 90ı the matrix transmits the transverse load to the fiber. At � D 90ı, for

all volume fractions and for both the square- and hexagonal-packed arrays,

the circumferential stress in the fiber is much larger than the circumferential

stress in the matrix. At � D 90ı the circumferential direction is aligned with

the transverse direction, and it is clear that fiber is taking the majority of the

transverse load. The normal and shear stresses from, say, � D 45ı to � D 90ı

acting in an integrated sense on the fiber-matrix interface, result in the high

circumferential stress in the fiber at � D 90ı. Equilibrium considerations

require this high fiber circumferential stress. It should be noted that the

hexagonal-packed array shows similar trends in the circumferential stress

component, both in the fiber and in the matrix.

Figure 3.19 shows the fiber-direction stresses at the interface induced in

the matrix and fiber. Both the square- and hexagonal-packed arrays predict

that the stress in the fiber is, for the most part, independent of circumferential

location � , while the stress in the matrix depends on circumferential location,

with the square array showing some sign reversal of the stress in the matrix

near � D 90ı. With a transverse loading, Poisson effects cause the fiber-

reinforced material to contract in the fiber direction. As the fiber is stiff in

the 1 direction, it resists and is thus in compression. Because the matrix

material is relatively soft, the fiber keeps it from contracting as much as it
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FIGURE 3.18. Interface circumferential stresses in graphite-reinforced material due

to applied transverse tensile strain.

could and the matrix is, in general, in tension. Because there is no overall

force in the fiber direction, the net effect of compressive stresses in the fiber

and tensile stresses in the matrix must be zero. While there is little variation

of the fiber-direction compressive stress in the fiber within the fiber cross

section, there is some variation of the fiber-direction tensile stress within the

matrix cross section.

Figure 3.20 shows the transverse normal stress �2 and the shear stress �23

acting on the right boundary of the square- and hexagonal-packed unit cells.

The shear stresses are inconsequential. The transverse normal stress for the

square-packed array, Figure 3.20(a), is largest near position 0 and decreases

as position 0:5 is approached. Because the modulus of the fiber in the 2-3

plane is so much larger than the modulus of the matrix, a direct result is that

the transverse normal stress is high near position 0.

Along the top boundary of the square array, Figure 3.20(b), the normal

stress �3 dominates. The average stress along this boundary, which is con-
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FIGURE 3.19. Interface fiber-direction stresses in graphite-reinforced material due

to applied transverse tensile strain.

strained to remain straight, is zero. Near position 0 a compressive normal

stress �3 is required, while for positions 0:3 and greater a tensile normal stress

is required. The primary reason for this behavior is that in the 2 direction the

strain in the matrix is much greater than the strain in the fiber, and through

Poisson’s ratio there is more contraction strain in the 3 direction in the matrix

than in the fiber. For line CD to remain straight the stresses in the 3 direction,

Figure 3.20(b), are necessary. A similar interpretation can be given to the more

abrupt stress distributions of the hexagonal-packed array, Figure 3.20(c) and

(d). We can better understand the stresses on the various boundaries of the

square-packed unit cell if we study the deformations associated with the

transverse tensile loading, Figure 3.21.

The average transverse stress, N�2, as computed from Figure 3.20(a) or (c),

divided by the known applied transverse strain is the transverse extensional

modulus for the material, E2. The compressive fiber-direction strain, "1,



Finite-Element Results: Square- and Hexagonal-Packed Array Models 117

20%

40%

20%

40%

40%

60%

60%

60%

20%

σ
2

τ
23

σ
2

σ3

σ
3

τ
23

τ
23

τ
23 , all

, all

, all

, all

20%

40%

60%

–0.5 0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

0 1 2

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3 0.4 0.5

–0.4

–0.2

 0.0

 0.2

 0.4

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

(a) Right boundary, square array (c) Right boundary, hexagonal array

(b) Top boundary, square array (d) Top boundary, hexagonal array

Stresses Stresses

N
o
rm

a
liz

e
d
 p

o
s
it
io

n
 i
n
 3

 d
ir
e
c
ti
o
n

 Normalized position in 2 direction  Normalized position in 2 direction

S
tr

e
s
s
e
s 

/

  /  / 2σ  2σ

 2
σ

FIGURE 3.20. Stresses on boundaries of unit cell of graphite-reinforced material

due to applied transverse tensile strain.

divided by the known applied transverse strain, "2, and the compressive

strain in the other transverse direction, "3, both induced by the known applied

transverse strain, can be used to determine two Poisson’s ratios, �21 and �23,

respectively. As Table 3.1 shows, these engineering properties are dependent

on the fiber volume fraction. Though the predicted magnitudes of E2, �23, and

�21 depend somewhat on the packing array used, the predicted trends with

fiber volume fraction do not depend on packing array. It is interesting to note

from Table 3.1 that in spite of the approximations to the microstructure used

in these finite-element models, the properties E1, E2, �12, and �21 closely

satisfy the reciprocity relation, equation (2.42).
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(a) Undeformed unit cell (b) Deformations with boundaries
     constrained to remain straight

(c) Deformations with no boundary constraints

Deformed
boundary

Deformed
boundary
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 2σ  2σ

 2σ 2σ

FIGURE 3.21. Cross-sectional deformations of unit cell of graphite-reinforced

material due to applied transverse tensile strain.

3.2.5 Transverse Shear Loading and Determination of

Shear Modulus G23

Another interesting and extremely important case to examine at the microme-

chanical level is called the transverse shear response. Transverse shear is used

when the unit cell is subjected to a shear stress, or strain, in the 2-3 plane.

As with transverse loading, fiber strength and stiffness do not contribute to

resisting shear deformation. As a shear response can be decomposed into

effective tensile and compressive responses, each oriented at 45ı from the

direction of shear, the transverse shear loading is somewhat like the transverse

tensile loading in that the load must be transmitted partially through the

fibers and partially through the matrix; the proportion of load through each

constituent depends on the fiber volume fraction and the stiffness of one

constituent relative to the other.

To study the transverse shear strain response, the outer boundaries of the

unit cell are given a displacement that represents subjecting the unit cell to a

prescribed overall shear strain. As the square- and hexagonal-packed arrays do

not differ substantially in their predictions for the transverse tensile loading

case, only the square-packed array will be used to study transverse shear

case. The four corners of the unit cell are given displacements in the 2 and

3 directions, and the four boundaries are constrained to remain straight; see
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3

2

A B
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FIGURE 3.22. Transverse shear deformations of a square-packed array unit cell.

Figure 3.22. The displacements at each of the four boundaries are similar,

and the magnitudes are the same but with differing signs. Plane ABCD is

assumed to remain planar and perpendicular to the fiber direction and the

integral of the fiber-direction stresses over the area of that plane is required

to be zero. There will be stresses along the four boundaries that are necessary

to produce the prescribed overall shear strain.

Figure 3.23 illustrates the interface normal and shear stresses due to the

specified overall transverse shear strain as a function of circumferential po-

sition around the interface and fiber volume fraction. The stresses have been

normalized by the average transverse shear stress N�23. Although the stresses

have been shown only for the range 0 � � � 90ı, note that the normal stress

is symmetric about � D 45ı, while the shear stress is antisymmetric about

that location. In Figure 3.23 we see that at � D 45ı the normal stress has a

maximum tensile value, and that this direction corresponds to the direction
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FIGURE 3.23. Interfacial normal and shear stresses in graphite-reinforced material

due to applied transverse shear strain, square array.
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of maximum overall tensile strain for the unit cell, that is, from corner A to

corner C in Figure 3.22. The interface normal stress is zero at � D 0ı and

90ı but the interface shear stress is maximum at these locations. The two

stress components have similar magnitudes. Though it appears that neither

the normalized interface normal nor the normalized interface shear stress

depend strongly on fiber volume fraction, the average shear stress increases

with fiber volume fraction. Thus, the absolute level of these interface stresses

does depend on fiber volume fraction.

As with the transverse loading, the circumferential stresses in fiber and

matrix, Figure 3.24, are important. At � D 135ı (not shown) the circum-

ferential tensile stress in the fiber is a maximum because at this location

the softer matrix transfers to the fiber the tensile stress oriented in the 45ı

direction. That the maximum tensile stress in the fiber occurs at a location

90ı from the direction of the effective overall tensile strain is just as it was for

the transverse tensile loading case, Figure 3.18(a). There the applied tensile

strain oriented in the 2 direction resulted in a maximum tensile stress in the

fiber at the 90ı location. With the transverse shear case there is the added

effective compressive loading aligned with the � D 135ı direction. If the fiber

is weak across its diameter, then transverse shear failure may result from the

fiber’s failing in tension at the 135ı location. If the matrix is weak in tension,

then failure may occur in the matrix at 45ı. This assumes that failure has not

occurred at the interface due to �n, or �ns , or both. The effect of combined

tension and compression results in the normalized interface stresses being

larger for this transverse shear case than they were for the transverse tension

case, though there are analogies between the two loadings. Figure 3.25 shows

the normalized fiber-direction stresses in the fiber and matrix at the interface

region. These stresses reach extreme values at 45ı.

Figure 3.26 shows the stresses along the right and top boundaries of the unit

cell. The shear stress, �23, is not constant along edge BC and a normal stress,
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FIGURE 3.24. Interface circumferential stresses in graphite-reinforced material due

to applied transverse shear strain, square array.
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FIGURE 3.25. Interface fiber-direction stresses in graphite-reinforced material due

to applied transverse shear strain, square array.

�2, is required to enforce the deformations of Figure 3.22. The magnitudes

of the normal and shear stress are similar, but because the normal stress for

negative positions in the 3 direction is negative, the average normal stress

is zero. As expected, the character of the shear and normal stress along the

top edge is identical to the character of these stress components along the

right edge. The deformations of Figure 3.27 can be used to help interpret the

character of the stresses along the edges.

The average shear stress along the unit cell boundaries, N�23, determined

by the integration of the shear stresses of Figure 3.26, and the known shear

deformation of Figure 3.22 can be used to determine the transverse shear

modulus of the composite, G23. The variation of this material property with

fiber volume fraction is given in Table 3.1; the value of G23 increases with
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FIGURE 3.26. Stresses on boundaries of unit cell of graphite-reinforced material

due to applied transverse shear strain, square array.
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(a) Undeformed unit cell (b) Deformations with boundaries
      constrained to remain straight

(c) Deformations with no
    boundary constraints

Deformed
boundary
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23τ

23τ

FIGURE 3.27. Cross-sectional deformations of unit cell of graphite-reinforced

material due to applied transverse shear strain.

fiber volume fraction due to the increasing influence of the fiber. Note, how-

ever, that the values of G23, �23, and E2.D E3/ for the square-packed array do

not satisfy equation (2.53b). This is because the square array does not lead to

transversely isotropic properties even though the constituents are transversely

isotropic. The hexagonal-packed array results in transverse isotropy if the

constituents are transversely isotropic. The entries for G23 in Table 3.1 for

the hexagonal-packed array are computed using equation (2.53b).

3.3 Theory of Elasticity Results: Concentric Cylinders Model

When fiber-reinforced materials were first used, numerical methods were

not as readily available as they have become. Therefore, some of the early
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approaches to studying the response of composite materials at the microme-

chanics level were based on classical elasticity solutions. Solutions to elas-

ticity problems can be quite difficult to determine, and without simplify-

ing assumptions, obtaining solutions is sometimes impossible. As many of

the early elasticity solutions were derived for the purpose of determining

composite properties from the properties of the constituents, as opposed

to studying the details of the stresses at, say, the fiber-matrix interface,

some of the simplifying assumptions were not too limiting. One of the

key simplifying assumptions was that the volume of fibers and matrix in

a composite could be filled with an assemblage of cylindrical fibers and

surrounding matrix material, with the fibers being of various sizes to the

degree that the fiber-matrix combination of cylinders completely filled the

volume of the composite. This notion is shown in Figure 3.28 and is called

the composite cylinders model or composite cylinders assemblage. For each

fiber-matrix combination, the ratio of the diameter of the fiber to the diameter

of the surrounding matrix is the same; this ratio represents the volume frac-

tion of fiber in the composite. For a representative fiber-matrix combination

FIGURE 3.28. Philosophy of the concentric cylinders model.
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FIGURE 3.29. Isolated fiber-matrix combination of concentric cylinders model.

with fiber radius b and matrix outer radius c, the fiber volume fraction is

given by

V f D �b2

�c2
D b2

c2
(3.4)

The elasticity approaches are concentrated on an isolated fiber-matrix com-

bination from this assemblage. Such a combination is shown in Figure 3.29,

with the cylindrical x-�-r and the composite 1-2-3 principal material coor-

dinate systems indicated.

3.3.1 Fiber-Direction Tension

To study the response of the composite to tension in the fiber direction,

we assume that the response of the concentric cylinders is axisymmetric. In

addition, if attention is concentrated away from the ends of the fibers, the

stresses, and hence the strains, are assumed to be independent of the axial

coordinate, namely the x; or 1, direction. For such conditions, of the three

equilibrium equations in cylindrical coordinates, only one is important, and

that equation reduces to

d�r

dr
C �r � ��

r
D 0 (3.5)
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As there are no shear stresses for the axisymmetric axial loading case, the

stress-strain relations reduce to

�x D C11"x C C12"� C C13"r

�� D C12"x C C22"� C C23"r

�r D C13"x C C23"� C C33"r

(3.6)

These equations were introduced in equation (2.47) in the context of the

smeared properties of the composite. However, they are equally valid indi-

vidually for the fiber and for the matrix. Here we will assume that the fiber

is transversely isotropic in the r -� plane and the matrix is isotropic, that

is, equation (2.55). Thus, the stress-strain relations for the two constituents

simplify, for the fiber, to

�
f
x D C

f
11"x C C

f
12"� C C

f
12"r

�
f

� D C
f
12"x C C

f
22"� C C

f
23"r

�
f
r D C

f
12"x C C

f
23"� C C

f
22"r

(3.7)

and for the matrix, to

�m
x D C m

11"x C C m
12"� C C m

12"f

�m
� D C m

12"x C C m
11"� C C m

12"f

�m
r D C m

12"x C C m
12"� C C m

11"f

(3.8)

where the superscripts f and m denote, respectively, fiber and matrix. Using

the engineering properties of the fiber and the matrix, equations (3.2) and

(3.3), and the definitions of the Sij and the Cij , equations (2.46) and (2.48),

C
f
11, C

f
12, C

f
22, C

f
23, C m

11, and C m
12 can be computed.

The strains in the above equations are related to the displacements by the

strain-displacement relations simplified by the assumptions of axisymmetry

and independence of strain of the x coordinate. There is no shear strain

response, only normal strains given by

"x D @u

@x

"� D
w

r

"r D dw

dr

(3.9)

In equation (3.9) u is the axial displacement and w is the radial displacement.

Because of the assumption of axisymmetric response, the circumferential

displacement, v, is assumed to be zero. Note that the partial derivative of u

with respect to x is used and that the ordinary derivative of w with respect to

r is used because we can argue that w cannot be a function of x, or else the
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fiber would not be straight when loaded, and at this point in the development,

u can be a function of both x and r .

Substituting the strain-displacement relations into the stress-strain relations

and these, in turn, into equation (3.5), which is the third equilibrium equation,

leads to an equation for the radial displacement, namely,

d 2w

dr2
C 1

r

dw

dr
� w

r2
D 0 (3.10)

which has the solution

w.r/ D Ar C
B

r
(3.11)

The quantities A and B are constants of integration that must be solved for

by applying boundary and other conditions. The above solution is valid for

both the fiber and the matrix. For a given fiber-matrix combination, then, the

radial displacement is given by

wf .r/ D Af r C Bf

r
0 � r � b (3.12a)

wm.r/ D Amr C Bm

r
b � r � c (3.12b)

where the range of r for each portion of the solution is given. As the strains

do not vary with the axial coordinate, the solution for the axial displacement

u is given by

uf .x; r/ D "
f
1 x 0 � r � b (3.13a)

um.x; r/ D "m
1 x b � r � c (3.13b)

where "
f
1 and "m

1 are constants.

According to equation (3.12a), if Bf is not zero, the radial displacement

at the center of the fiber, r D 0, is predicted to be infinite. This is physically

impossible, so the condition

Bf D 0 (3.14)

is stipulated. As a result, the strains within the fiber are given by equation

(3.9) as

"
f
x D @uf

@x
D "

f
1

"
f

� D wf

r
D Af

"
f
r D dwf

dr
D Af

(3.15)
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while those in the matrix are given by

"m
x D @um

@x
D "m

1

"m
� D wm

r
D Am C Bm

r2

"m
r D dwm

dr
D Am � Bm

r2

(3.16)

With the strains defined, the stresses in the fiber and matrix, respectively, can

be written as

�
f
x D C

f
11"

f
1 C 2C

f
12Af

�
f

� D C
f
12"

f
1 C

�

C
f
22 C C

f
23

�

Af

�
f
r D C

f

12"
f

1 C
�

C
f

23 C C
f

22

�

Af

(3.17a)

�m
x D C m

11"m
1 C 2C m

12A
m

�m
�

D C m
12"m

1 C
�

C m
11 C C m

12

�

Am C
�

C m
11 � C m

12

� Bm

r2

�m
r D C m

12"m
1 C

�

C m
11 C C m

12

�

Am C
�

C m
12 � C m

11

� Bm

r2

(3.17b)

When subjected to any loading, in particular an axial load P , the displace-

ments at the interface between the fiber and matrix are continuous; that is,

wf .b/ D wm.b/

uf .b/ D um.b/
(3.18)

By substituting expressions for the displacements, equations (3.12) and (3.13),

this condition leads to

Af b D Amb C
Bm

b

"
f
1 x D "m

1 x

(3.19)

The second equation leads to the conclusion that the axial strain is the same

in the fiber as in the matrix, namely,

"
f

1 D "m
1 D "1 (3.20)

This strain is indeed the strain in the composite in the fiber direction, hence

the notation "1, as we have been using all along.

As discussed in conjunction with the finite-element results, the radial stress

�r must be the same on the fiber side of the interface as on the matrix side,

or

�f
r .b/ D �m

r .b/ (3.21)
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In terms of the unknown constants, substituting for the stresses from equations

(3.17a) and (3.17b), equation (3.21) becomes

C
f

12"1 C
�

C
f

23 C C
f

22

�

Af D C m
12"1 C

�

C m
11 C C m

12

�

Am

C
�

C m
12 � C m

11

� Bm

b2

(3.22)

At the outer radius of the matrix, if it is assumed that the radial stress must

vanish;

�m
r .c/ D 0 (3.23)

Using equation (3.17b),

C m
12"1 C

�

C m
11 C C m

12

�

Am C
�

C m
12 � C m

11

� Bm

c2
D 0 (3.24)

As a final condition of the problem, the applied axial load P is actually the

integral of the axial stresses over the cross-sectional area of the fiber-matrix

combination, namely,

2�

(

Z b

0

�f
x r dr C

Z c

b

�m
x r dr

)

D P (3.25)

or
n

C
f

11"1 C 2C
f

12A
f
o

�b2 C fC m
11"1 C 2C m

12A
mg �

�

c2 � b2
�

D P (3.26)

If we use equations (3.19), (3.22), and (3.24), the constants Af ; Am; and Bm

can be solved for in terms of "1. As the early elasticity-based micromechanics

analyses were focused on determining overall properties of the composite,

in the present case an estimate for E1 can be obtained by substituting the

expressions for Af and Am into equation (3.26), resulting in an equation of

the form

�1 D E1"1 (3.27)

where �1 is average stress in the axial, or 1, direction. This is the stress in

the composite in the principal material 1 direction and is given by

�1 D P=�c2 (3.28)

the axial force divided by the cross-sectional area of the fiber-matrix combi-

nation. The expression for E1 in equation (3.27) is complicated but it can be

written in the form

E1 D E
f

1 .1 C / V f C Em .1 C ı/
�

1 � V f
�

(3.29)

The quantities  and ı are functions of the extensional moduli and Poisson’s

ratios of the fiber and matrix and the fiber volume fraction. They are given
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by

 D
2v

f
21E

m
�

1 � vf � 2v
f
12v

f
21

�

V f
�

v
f
12 � vm

�

E
f

2 .1 C vm/ .1 C V F .1 � 2vm// C Em
�

1 � vf � 2v
f

12v
f

21

�

�

1 � V f
�

(3.30a)

and

ı D
2E

f
2 vmV f

�

vm � v
f
12

�

E
f
2 .1 C vm/

�

1 C V f .1 � 2vm/
�

C Em
�

1 � vf � 2v
f
12v

f
21

�

�

1 � V f
�

(3.30b)

In the above definitions, as the fiber has been assumed to be transversely

isotropic, use has been made of the fact that

E
f
3 D E

f
2

�
f
13 D �

f
12

�
f
23 D �

f
32 D �f

(3.31)

For typical properties of the fiber and matrix,  and ı are much less than

one. Hence, to a very good first approximation, E1 can be written as

E1 D E
f

1 V f C Em
�

1 � V f
�

(3.32)

When the major Poisson’s ratio of the fiber and Poisson’s ratio of the matrix

are equal, �
f
12 D �m, both ı and  are identically zero and equation (3.32) is

exact.

A comparison between the predictions of the finite-element approach and

equation (3.29) is given in Figure 3.30. In the figure, we use equation (3.29)

to plot the composite extensional modulus, normalized by the modulus of the

fiber in the axial direction, as a function of fiber volume fraction. The finite-

element results from Table 3.1 are indicated at the volume fractions studied in

that approach. As can be seen, the comparison is excellent. If equation (3.32)

had been used instead of equation (3.29), it would have been impossible to

detect the difference in Figure 3.30. Thus equation (3.32) can be considered

an accurate equation for determining E1.

Even though the presense of other fibers encourages us to say that the

axisymmetric assumption is invalid, it is interesting to compute the stresses

predicted by the fiber-matrix cylinder model and compare them with the

stresses computed by the finite-element model. The finite-element model,

of course, was not restricted by the assumption of axisymmetry and the

comparisons are shown in Figures 3.31–3.33. In these figures the various

stress components at the fiber-matrix interface are plotted as a function of

circumferential location around the interface. The finite-element calculations
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FIGURE 3.30. Variation of composite modulus E1 with fiber volume fraction for

graphite-reinforced material, concentric cylinders model.

are taken from Figures 3.12–3.14. The finite-element calculations for the

hexagonal array, though not included in Figures 3.12–3.14, are added to

Figures 3.31–3.33.

Examination of Figure 3.31 reveals that for a 20 percent fiber volume

fraction, the axisymmetric assumption of the concentric cylinders model is

a good approximation. None of the major stress components vary greatly

with � and the concentric cylinders model provides a good indication of the

average level of stress. The interfacial shear stress �ns varies but its value is

quite small compared to the interfacial normal stress �n. With a 20 percent

fiber volume fraction it would appear that the fibers are far enough apart

that they act independently of each other when subjected to an axial load.

When the fiber volume fraction is 40 percent, Figure 3.32, the assumption

of axisymmetry appears to be less valid, though for the stress components

�m
s , �

f

1 , and �m
1 the assumption appears quite valid. For the other stress

components, the comparison of the elasticity solution with the hexagonal-

packed array is still quite reasonable; the interfacial shear stress �ns exhibits

the poorest comparison, although it is not a major stress component. For a

60 percent fiber volume fraction comparison between the elasticity solution

and either the square- or hexagonal-packed array finite-element calculations

indicate that for the stress components �n, �ns , and �
f
s , the axisymmetric

assumption is not particularly good. However, for �m
s , �

f

1 , and �m
1 the
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FIGURE 3.31. Comparison of stresses between concentric cylinders model elastic-

ity solution and finite-element calculations for graphite-reinforced material, fiber-

direction loading and 20 percent fiber volume fraction.
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FIGURE 3.32. Comparison of stresses between concentric cylinders model elastic-

ity solution and finite-element calculations for graphite-reinforced material, fiber-

direction loading and 40 percent fiber volume fraction.
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FIGURE 3.33. Comparison of stresses between concentric cylinders model elastic-

ity solution and finite-element calculations for graphite-reinforced material, fiber-

direction loading and 60 percent fiber volume fraction.
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assumption of axisymmetry provides a good estimate of the stresses. Despite

the lack of perfect correlation between the stress predictions of the elasticity

solution and the finite-element calculations, the prediction of E1 is obviously

not influenced by these errors. The prediction of E1, a property that can

be considered an averaged quantity, really depends on the stresses being

accurately predicted in an average sense. The axisymmetric elasticity model

does predict the average value of the stresses very well; the variations with

� are not accurately predicted for the higher volume fractions.

3.3.2 Axial Shear

The elasticity approach can also be used to estimate values of the shear

modulus G12; this modulus is often referred to as the axial shear modulus.

The approach to this problem is based on a slightly different view of the fiber-

matrix combination, namely, that of Figure 3.34. In this figure the fiber-matrix

combination is viewed by looking along the 3 axis toward the 1-2 plane and

the boundaries of the fiber-matrix combination are deformed by shearing in

the 1-2 plane. The boundaries of the portion of the fiber-matrix combination

shown have the following displacements relative to the undeformed state:

u1 D o
12

2
x2

u2 D o
12

2
x1

u3 D 0

(3.33)

where x1; x2; and x3 are used to denote the coordinates in the 1-2-3 principal

material directions, and u1; u2; and u3 are the displacements in those direc-
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2

Deformed 
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FIGURE 3.34. Axial shear deformation applied to concentric cylinders model.
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tions. The quantity o
12 is the shear strain imposed on the boundary. Though

equation (3.33) defines a fairly specific deformation on the boundary, in the

interior of the fiber-matrix combination the displacements are assumed to be

expressible as

u1 D � .x2; x3/ � o
12

2
x2

u2 D o
12

2
x1

u3 D 0

(3.34)

The function �.x2; x3/ defines the shear strains in the interior of the fiber-

matrix combination, with the particular form of equation (3.34) leading to

relatively simple expressions for the shear strains, namely,

12 D @�

@x2

13 D
@�

@x3

(3.35)

It is important to note that there is a function � for the fiber region and a

different function � for the matrix region.

As the other strains are zero, the only stresses present in the fiber-matrix

combination due to the displacements given in equation (3.34) are

�13 D G13

�12 D G12

(3.36)

or if we use equation (3.35),

�13 D G
@�

@x3

�12 D G
@�

@x2

(3.37)

where it has been assumed that the material is either isotropic or transversely

isotropic, namely,

G12 D G13 D G (3.38)

Because all the stresses except �12 and �13 are zero, the equilibrium conditions

reduce to

@�12

@x2

C @�13

@x3

D 0 (3.39)

Using equation (3.37) in equation (3.39) results in

@2�

@x2
2

C @2�

@x2
3

D 0 (3.40)
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and at this point it is convenient to express the problem in cylindrical coor-

dinates; the principal material coordinate system (1-2-3) and the cylindrical

coordinate system (x-r -�) are shown in Figure 3.35. Relations between the

coordinates in the two systems are given by

x2 D r cos �

x3 D r sin �
.3:41a/

and the inverse

r D
�

x2
2 C x2

3

�1=2

� D tan�1

�

x3

x2

� .3:41b/

The nonzero stresses in the cylindrical coordinate system are related to �12

and �13 by

�xr D cos ��12 C sin ��13

�x� D cos ��13 � sin ��12

.3:42a/

and the inverse relations

�12 D cos ��xr � sin ��x�

�13 D cos ��x� C sin ��xr

.3:42b/

In terms of �, the two shear stresses in the cylindrical coordinate system are

�xr D G
@�

@r

�x� D G
@�

r@�

(3.43)

Fiber

r = b

1, x

2

3

r

θ

FIGURE 3.35. The x-y-z and 1-2-3 coordinate systems for the fiber-matrix combi-

nation.
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Writing equation (3.40) in the cylindrical coordinate system results in

@2�

@r2
C 1

r

@�

@r
C 1

r2

@2�

@�2
D 0 (3.44)

Equations (3.40) and (3.44) are Laplace’s equation for � in the two different

coordinate systems.

The separation of variables technique can be used to solve equation (3.44);

the solution is given by

� .r; �/ D a0 C
1
X

nD1

.Anrn C Bnr�n/ .Cn sin .n�/ C Dn cos .n�// (3.45)

For the problem here, only terms to n D 1 are necessary. Additionally,

ao D 0 and the sin.n�/ terms are not needed. Finally, for the stresses to

remain bounded at the center of the fiber, Bn for the fiber must be zero.

As with past practice, using superscripts f to denote the fiber and m to

denote the matrix, the functions � for these two materials in the fiber-matrix

combination are

�f .r; �/ D a
f

1 r cos �

�m .r; �/ D
�

am
1 r C bm

1

r

�

cos �
(3.46)

where

a1 D A1D1 and b1 D B1D1 (3.47)

As a result,

�
f
xr D Gf a

f

1 cos �

�
f

x� D �Gf a
f

1 sin �
(3.48)

and

�m
xr D Gm

�

am
1 �

bm
1

r2

�

cos �

�m
x�

D �Gm

�

am
1 C bm

1

r2

�

sin �

(3.49)

Continuity of the three components of displacement at the interface between

the fiber and matrix reduces to enforcement of

�f .b; �/ D �m .b; �/ (3.50)

or

a
f

1 b cos � D
�

am
1 b C bm

1

b

�

cos � (3.51)

where, recall, b is the radius of the fiber. Continuity of the stresses at the

fiber-matrix interface reduces to a single condition, namely,

�f
xr .b; �/ D �m

xr .b; �/ (3.52)
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which from equations (3.48) and (3.49) can be written as

Gf a
f
1 cos � D Gm

�

am
1 � bm

1

b2

�

cos � (3.53)

Using equation (3.34) to enforce the conditions of equation (3.33) at the

boundary of the fiber-matrix combination (i.e., at r D c and � D 0/, provides

a final condition that can be written as

�m D o
12c (3.54)

Substitution from equation (3.46) yields

am
1 c C

bm
1

c
D o

12c (3.55)

and solving equations (3.51), (3.53), and (3.55) leads to the solution for a
f
1 ,

am
1 , and bm

1 , namely,

a
f

1 D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

2Gm

�

Gm � Gf

b2

�

C
�

Gm � Gf

c2

�

9

>

>

>

=

>

>

>

;

o
12

b2

am
1 D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�

Gm C Gf
�

�

Gm � Gf

c2

�

C
�

Gm C Gf

b2

�

9

>

>

>

=

>

>

>

;

o
12

b2

bm
1 D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�

Gm � Gf
�

�

Gm � Gf

c2

�
C
�

Gm C Gf

b2

�

9

>

>

>

=

>

>

>

;

o
12

(3.56)

Accordingly, using equation (3.49) in the transformation relations, equation

(3.42b), leads to

�m
12 D Gm

��

am
1 � bm

1

r2

�

cos � C
�

am
1 C bm

1

r2

�

sin �

�

(3.57)

Evaluating this at r D c and � D 0 and substituting for am
1 and bm

1 from

above leads to the following relation between �12 and o
12:

�m
12 D Gm

(

�

Gm C Gf
�

� V f
�

Gm � Gf
�

�

Gm C Gf
�

C V f
�

Gm � Gf
�

)

o
12 (3.58)

This is an important expression because it provides an estimate of the com-

posite axial shear modulus G12 through the relation

�m
12 D G12

o
12 (3.59)
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FIGURE 3.36. Variation of composite axial shear modulus G12 with fiber volume

fraction for graphite-reinforced material, concentric cylinders model.

specifically

G12 D Gm

(

�

Gm C Gf
�

� V f
�

Gm � Gf
�

�

Gm C Gf
�

C V f
�

Gm � Gf
�

)

(3.60)

The dependence of G12 on fiber volume fraction for the graphite-reinforced

material is illustrated in Figure 3.36. As the fiber volume fraction increases

toward 65 percent, the shear stiffness of the fiber produces about a factor of

three increase in the shear stiffness of the composite relative to the matrix, a

trend seen with the other composite elastic properties.

Exercises for Section 3.3

1. Compute the values of  and ı in equations (3.30a) and (3.30b) using the material

properties of the fiber and matrix for a graphite-reinforced composite and show

that these quantities are small compared to unity. Show this for the range 0:15 �
V f � 0:75. The material properties are given in equations (3.2) and (3.3).

2. For graphite-reinforced material, compute �12 using the elasticity solution and com-

pare the results with the finite-element results. Draw a figure similar to Figure 3.30.
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Hint: For the axial loading,

�12 D �

�c

c
"1

D �

wm.r D c/

c
"1

where �c is the change in the radius of the fiber-matrix combination of Figure 3.29

and "1 is the axial strain of the composite caused by the fiber-direction loading.

The results should compare quite well with the finite-element calculations.

3.4 Strength-of-Materials Results

An important result that can be obtained from the concept of the unit cell and

the use of finite elements, or the use of elasticity solutions, is an estimate

of the overall elastic and thermal expansion properties of the composite.

With these models it is possible to evaluate how the overall properties are

influenced by fiber volume fraction, fiber properties, matrix properties, and

the assumptions of how the fibers are packed (i.e., square- or hexagonal-

packed arrays). While the use of finite-element representations of unit cells

provides detailed information about the stresses in the fibers, in the matrix,

and at the interface between the fiber and matrix, often it is only the elastic or

thermal expansion property estimates that are of interest. This was the case in

early micromechanics studies, whereby strength-of-materials approaches were

used to provide insight into the elastic properties. These approaches can be

considered to be at the opposite end of the spectrum from the finite-element

or elasticity approaches. The strength-of-materials approaches do not concern

themselves with the details of the stresses at the fiber-matrix interface, the

packing arrangements, or the many other characteristics that can be consid-

ered with unit cell finite-element models. However, reasonable estimates of

some of the elastic and thermal expansion properties of composite materials

can be obtained with these approaches. They shall be studied next to provide

a contrast to the unit cell finite-element methods. In addition, the strength-

of-materials approaches result in rather simple algebraic expressions for the

elastic and thermal expansion properties of the composite as a function of

fiber and matrix properties. These algebraic expressions can be conveniently

used for parametric studies or for embedding within other analyses.

3.4.1 Model for E1 and �12

The strength-of-materials models, sometimes called rule-of-mixtures models,

also rely on what could be termed a unit cell. The unit cell used in the

strength-of-materials models is quite different from the unit cells of the

previous sections, and the particular unit cell considered depends on the

composite property being studied. To study E1 and �12 for the composite,
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consider a section cut from a single layer of fiber-reinforced material. The

section consists of side-by-side alternating regions of fiber and matrix, the

fibers arranged in parallel arrays, as in Figure 3.37, the widths of each of

the regions of fiber and matrix denoted by W f and W m, respectively. The

figure shows the 1 and 2 principal material directions. The thickness of the

layer is not important at the moment, and can be taken as unity. In fact, in

these rule-of-mixtures models the cross-sectional shape of the fibers is not

important. They can be considered circular, square, elliptical, or any other

shape. For simplicity, assume they are square. As it will turn out, only the

cross-sectional areas of the fiber and matrix will be important. Figure 3.38(a)

shows details of a “unit cell” cut from a single layer, the length of the cell

denoted by L and the cross-sectional areas of the fiber and matrix denoted

as Af and Am. Assume as in Figure 3.38(b) that the unit cell is subjected

to a stress �1 such that it stretches in the 1 direction and, due to Poisson

effects, contracts in the 2 direction. Because the fiber and matrix are bonded

together, they both stretch the same amount in the 1 direction, namely, �L;

the strain in the 1 direction in both the fiber and matrix is given by

"
f

1 D "m
1 D �L

L
(3.61)

W f

Fiber
Matrix

Unit cell

W m
Section from layer

of composite

1

2

FIGURE 3.37. Section cut from a fiber-reinforced composite and a unit cell.
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(a) Geometry and nomenclature (b) Subjecting unit cell to 

FIGURE 3.38. Details of unit cell and rule-of-mixtures model for composite exten-

sional modulus E1 and major Poisson’s ratio �12.

Because the fiber and matrix have different Poisson’s ratios, they will not

contract the same amount in the widthwise, or 2, direction. The combined

contraction of the fiber and matrix results in the overall contraction of the

composite in the 2 direction. That will be addressed shortly.

Treating the two constituents as if they were each in a one-dimensional

state of stress, we find the stresses in the fiber and matrix are

�
f
1 D E

f
1 "

f
1 D E

f
1

�L

L

�m
1 D Em"m

1 D Em
�L

L

(3.62)

and accordingly the forces in the 1 direction in the fiber and matrix are given

by

F
f
1 D �

f
1 Af D E

f
1

�L

L
Af

F m
1 D �m

1 Am D Em
�L

L
Am

(3.63)

The total force in the 1 direction divided by the total cross-sectional area of

the unit cell, A, where A D Af C Am, is defined as the composite stress �1,
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namely,

�1 D F
f

1 C F m
1

A
D
�

E
f
1

Af

A
C Em Am

A

�

�L

L
(3.64)

But �L
L

is the composite strain "1, so equation (3.64) gives

�1 D E1"1 (3.65)

where

E1 D E
f

1 V f C EmV m (3.66)

with the quantities V f and V m being the area fractions of fiber and matrix,

respectively. By the geometry of the unit cell, however, V f and V m represent

volume fractions. Because

V m D 1 � V f (3.67)

equation (3.66) can be written as

E1 D E
f
1 V f C Em.1 � V f / (3.68)

Note that this equation is identical to equation (3.32), the approximation to

the prediction of E1 from the elasticity model; the exact prediction is given

by equation (3.29). Thus, the strength-of-materials and elasticity solution

predictions are closely related. Equation (3.68) is referred to as the rule-of-

mixtures equation for E1.

As a summary of all the results obtained, Figure 3.39 shows the composite

fiber direction modulus, E1, as a function of fiber volume fraction for a

graphite-reinforced material as predicted by the rule of mixtures, the two

finite-element arrays, and the exact expression from the theory of elasticity,

all of which use the material properties from equations (3.2) and (3.3). The

relation is obviously linear and clearly the simple rule-of-mixtures model is

quite accurate; the differences among the various approaches are indistin-

guishable.

The overall contraction of the unit cell in the 2 direction can be used to

compute the major Poisson’s ratio of the composite, specifically �12. For the

situation in Figure 3.38(b), because the unit cell is being subjected to a simple

uniaxial stress state, �12 is defined as minus the ratio of the contraction strain

in the 2 direction divided by the elongation strain in the 1 direction, namely,

�12 D �

�W

W
�L

L

(3.69)

From Figure 3.38

W D W f C W m (3.70)
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FIGURE 3.39. Rule-of-mixtures prediction for variation of composite modulus E1

with fiber volume fraction for graphite-reinforced material.

and

�W D �W f C �W m (3.71)

Using the definition of Poisson’s ratio for each constituent and the fact that

each constituent is assumed to be in a state of uniaxial stress, we find the

contraction of each constituent is

�W f

W f
D ��

f

12

�L

L

�W m

W m
D ��m �L

L

(3.72)

or

�W f D ��
f

12W f
�L

L

�W m D ��mW m
�L

L

(3.73)

Substituting these relations into equation (3.71) and dividing both sides by

W results in

�W

W
D �

�

�
f
12

W f

W
C �m W m

W

�

�L

L
(3.74)
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The fiber and matrix volume fractions can be identified, and as a result,

equation (3.74) becomes

�W

W
D �

�

�
f

12V
f C �mV m

� �L

L
(3.75)

From the definition of Poisson’s ratio in equation (3.69),

�12 D �
f
12V

f C �mV m (3.76)

or using equation (3.67), we find

�12 D �
f

12V
f C �m.1 � V f / (3.77)

This is the rule-of-mixtures expression for the major Poisson’s ratio �12. It is

very similar to the rule-of-mixtures expression for the modulus E1 in that it

is linear in all of the variables.

Figure 3.40 shows the variation of �12 with fiber volume fraction for a

graphite-reinforced composite, and a comparison of equation (3.77) with

the finite-element results. Again, the accuracy of the simple rule-of-mixtures

results for �12 is quite obvious and it is similar to the accuracy of the results

for E1. If interest centers only on knowing E1 and �12, then there is really no

reason for using the finite-element approach, as the rule-of-mixtures equations

are very accurate. As noted before, the derivations and results are independent

of the geometry of the fiber or matrix cross section, an interesting finding in

itself.
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FIGURE 3.40. Rule-of-mixtures prediction for variation of composite major Pois-

son’s ratio �12 with fiber volume fraction for graphite-reinforced material.



146 PREDICTION OF ENGINEERING PROPERTIES USING MICROMECHANICS

3.4.2 Models for E2

We can approach one of the most basic considerations for the determination of

E2 by studying the unit cell of Figure 3.37 when it is subjected to a transverse

stress, �2, as in Figure 3.41. Isolating the fiber and matrix elements, we can

argue by equilibrium that each element is subjected to the same transverse

stress, �2. If this is the case, then the transverse strain in the fiber and matrix

are, respectively,

"
f
2 D �W f

W f

"m
2 D �W m

W m

(3.78)

Considering again a one-dimensional stress state, we find the stress and strain

in the fiber and matrix are related by

�
f
2 D �2 D E

f
2 "

f
2 D E

f
2

�W f

W f

�m
2 D �2 D Em"m

2 D Em
�W m

W m

(3.79)

These equations can be rearranged and written as

�W f D W f

E
f
2

�2

�W m D W m

Em
�2

(3.80)
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W m

σ 2

σ2

σ2 σ 2 σ 2

W f + ∆W Wf Wm + ∆ m

(a) Geometry and nomenclature (b) Subjecting unit cell to a

FIGURE 3.41. Rule-of-mixtures model for composite extensional modulus E2.
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The overall change in the transverse dimension of the unit cell is

�W D �W f C �W m (3.81)

so the definition of overall transverse strain is

"2 D �W

W
D �W f C �W m

W
(3.82)

Using equation (3.80) in equation (3.82), we find

"2 D

 

W f

E
f
2

C
W m

Em

!

�2

W
(3.83)

Using the definitions of the fiber and matrix volume fractions and the geom-

etry of the unit cell yields

"2 D
 

V f

E
f
2

C
V m

Em

!

�2 (3.84)

Comparing the above equation with the form

"2 D �2

E2

(3.85)

where E2 is the composite transverse modulus, we see that

1

E2

D V f

E
f

2

C V m

Em
(3.86)

or

1

E2

D V f

E
f

2

C .1 � V f /

Em
(3.87)

This equation is the rule-of-mixtures relation for the transverse modulus

as a function of the transverse moduli of the fiber and matrix, and the

fiber volume fraction. Like rule-of-mixtures relations for E1 and �12, this

relation is a simple linear relation, in this case among the inverse moduli

and volume fractions of the two constituents. Figure 3.42 illustrates the

comparison between the above rule-of-mixtures expression and the results

from the finite-element unit cell model. The rule-of-mixtures expression for

E2 is not in the good agreement with the finite-element results seen with

E1 and �12. Perhaps this could be expected from the onset, as the free-body

diagrams of the fiber and matrix elements in Figure 3.41 are something of an

oversimplification of the interaction between the fiber and the matrix when

the composite is subjected to a transverse stress. For one thing, the one-

dimensional state of stress may not be accurate because, like the situation

depicted in Figure 3.38, the fiber and matrix elements are bonded together

and hence change length together in the 1 direction. Considering the one-

dimensional stress state, we find the diagram of Figure 3.41 indicates that
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FIGURE 3.42. Rule-of-mixtures prediction for variation of composite modulus E2

with fiber volume fraction for graphite-reinforced material.

due to the different Poisson’s ratios, the element of fiber is allowed to

contract in the 1 direction differently than the element of matrix. Thus,

a modification of the model would be to have the length change in the

1 direction of the fiber element and the matrix element be the same, an

approach to be taken shortly. However, another difficulty with the simplifi-

cation of Figure 3.41 is the diagram assumes that both the fiber and matrix

are subjected to transverse stress �2. The finite-element unit cell models

demonstrated that a portion of the transverse stress is transmitted through

the fiber, and a portion is transmitted around the fiber, through the matrix

material. To use a specific nomenclature, the transverse stress �2 in the

fiber and matrix is partitioned differently than is implied by Figure 3.41.

To correct the rule-of-mixtures model for E2, a so-called stress-partitioning

factor is often introduced into equation (3.87) to account for the error in

the assumption that both the fiber and the matrix are subjected to the full

value �2. The stress-partitioning factor accounts for a more proper divi-

sion of the stress in each of the two constituents. To incorporate a parti-

tioning factor, consider equation (3.83) rewritten in slightly different form,

specifically,

"2 D

 

W f

E
f
2

C W m

Em

!

�2

W f C W m
(3.88)
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Dividing the numerator and denominator by W and again using the geometry

of the unit cell as it relates to the fiber and matrix volume fractions, we find

equation (3.88) becomes

"2 D

 

V f

E
f

2

C V m

Em

!

�2

V f C V m
(3.89)

Now consider that instead of V m being the volume fraction of matrix that

is subjected to stress level �2, assume the volume fraction is less than

that, namely, �V m, where � will be referred to as a partitioning factor and

0 < � < 1. The volume fraction of fiber that is subjected to stress level �2

is still V f . As a result of this new nomenclature, the total effective volume

of fiber and matrix is now

V f C �V m (3.90)

Equation (3.89) now takes the form

"2 D

 

V f

E
f

2

C �V m

Em

!

�2

V f C �V m
(3.91)

and by analogy with equation (3.85), the composite modulus E2 is given as

1

E2

D

V f

E
f

2

C �V m

Em

V f C �V m
(3.92)

or

1

E2

D

V f

E
f
2

C �.1 � V f /

Em

V f C �.1 � V f /
(3.93)

This expression for E2 is referred to as the modified rule-of-mixtures model

for E2. The stress-partitioning factor � generally must be determined em-

pirically. If it can be determined for a specific material by measuring E2

at a particular volume fraction, and if the elastic properties of the fiber

and matrix are known, then the value of � can be determined and used

for parameter studies involving other fiber volume fractions. Note that when

� D 1 in equation (3.93), the original rule-of-mixtures relation, equation

(3.87), is recovered.

Figure 3.43 illustrates the predictions of the modified rule-of-mixtures

model for E2 as a function of fiber volume fraction, where three values

of the stress partitioning factor � are used for purposes of the example. The
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FIGURE 3.43. Modified rule-of-mixtures prediction for variation of composite mod-

ulus E2 with fiber volume fraction for graphite-reinforced material.

finite-element results for both square- and hexagonal-packed arrays are used

for comparison. A value of � D 0:4 gives a good comparison with the square-

packed array, while a value of � D 0:5 gives a good comparison with the

hexagonal-packed array.

As mentioned previously, the rule-of-mixtures model for E2 violates intu-

ition regarding the response of the fiber and matrix elements in that the fiber

element is allowed to change length independently of the change in length of

the matrix element. Figure 3.41 can be modified to account for the elements

changing length by the same amount when subjected to a transverse stress

�2. This will imply, of course, that each element is subjected to a stress in the

1 direction, �1. The free-body diagrams of the elements with the two stress

components are shown in Figure 3.44, and the deformed transverse widths

of the fiber and matrix elements are, respectively,

W f C �W f and W m C �W m (3.94)

while the deformed length of both elements is

L C �L (3.95)

Considering each element to be in a state of stress such that

�12 D �3 D �31 D �32 D 0 (3.96)
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FIGURE 3.44. Alternative rule-of-mixtures model for composite extensional modulus

E2.

we find the stress-strain relations for the fiber element are

�
f
1 D Q

f
11"

f
1 C Q

f
12"

f
2

�
f
2 D Q

f
12"

f
1 C Q

f
22"

f
2

.3:97a/

while for the matrix element,

�m
1 D Qm

11"
m
1 C Qm

12"m
2

�m
2 D Qm

12"
m
1 C Qm

22"m
2

.3:97b/

In the above

Q
f
11 D E

f

1

1 � �
f
12�

f
21

Q
f
22 D E

f

2

1 � �
f
12�

f
21

Q
f
12 D �

f
12E

f
2

1 � �
f

12�
f

21

D �
f
21E

f
1

1 � �
f

12�
f

21

.3:98a/

and

Qm
11 D Em

1 � .�m/2
D Qm

22

Qm
12 D �mEm

1 � .�m/2

.3:98b/

Using the assumptions given by equation (3.96) for both the fiber and the

matrix, equations (3.97a) and (3.97b) are derivable from either equation (2.45)

or equation (2.47). This will be done in a later chapter in the context of a

single layer of material. Due to equilibrium considerations

�
f

2 D �m
2 D �2 (3.99)
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and more importantly
Z

AmCAf

�1 dA D 0 (3.100)

This latter equation results from the fact there should be no net force in the 1

direction when the composite is subjected to a transverse stress. If we assume

that the stress in the 1 direction is constant within the fiber element, and also

within the matrix element, then the condition given in equation (3.100) can

be written as

�
f

1 Af C �m
1 Am D 0 (3.101)

Also, because of the geometry of the deformation,

"
f

1 D "m
1 D �L

L
"

f

2 D �W f

W f
"m

2 D �W m

W m
(3.102)

Using equations (3.99) and (3.102) in the stress-strain relations equations

(3.97a) and (3.97b), as well as using equation (3.101), results in equations

that can be used to find �W f and �W m, and ultimately E2. With some

rearrangement these equations are

Q
f
22

�W f

W f
C Q

f
12

�L

L
D �2

Qm
22

�W m

W m
C Qm

12

�L

L
D �2

�

Q
f
11

�L

L
C Q

f
12

�W f

W f

�

Af C
�

Qm
11

�L

L
C Qm

12

�W m

W m

�

Am D 0

(3.103)

Solving for �W f and �W m and using the basic definition of "2, namely

equation (3.82), results in a relation of the form

"2 D
 

�f V f

E
f
2

C �mV m

Em

!

�2 (3.104)

Dividing by �2 yields the expression for E2, namely,

1

E2

D �f V f

E
f

2

C �mV m

Em
(3.105)

or

1

E2

D �f V f

E
f
2

C �m.1 � V f /

Em
(3.106)
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To arrive at equation (3.106), we’ve made use of the fact that for the geometry

of Figure 3.44, Af and Am are directly related to the volume fractions V f and

V m, respectively. Also, the fiber and matrix partitioning factors are given by

�f D
(

E
f
1 V f C Œ.1 � �

f
12�

f
21/Em C �m�

f
21E

f
1 �.1 � V f /

E
f

1 V f C Em.1 � V f /

)

�m D
(

Œ.1 � �m2

/E
f
1 � .1 � �mv

f
12/E

m�V f C EmV m

E
f

1 V f C Em.1 � V f /

)

(3.107)

Equation (3.106) is an alternative version of the rule of mixtures. Figure 3.45

shows comparison of results from the alternative rule-of-mixtures model with

the results from the finite-element and rule-of-mixtures models. Relative to

the rule-of-mixtures model, there is some improvement in the comparison

with the finite-element models. Assuming the empirically derived stress-

partitioning factor � is known, we find the modified rule-of-mixtures model of

equation (3.93) appears to be most accurate for the incorporation of a simple

formula into a parameter study. However, if an empirically derived stress-

partitioning factor is not available, the alternative rule-of-mixtures model can

be used for improved accuracy relative to the rule-of-mixtures model, and

there is a physical basis for the model.
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FIGURE 3.45. Alternative rule-of-mixtures prediction for variation of composite

modulus E2 with fiber volume fraction for graphite-reinforced material.
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3.4.3 Models for G12

The rule-of-mixtures model for the axial, or fiber-direction, shear modulus

G12 is similar to the rule-of-mixtures model for E2. The fiber and matrix

elements are each considered to be subjected to shear stress �12, as in Fig-

ure 3.46. By equilibrium considerations, the shear stress on the fiber element

has to be the same as the shear stress on the matrix element, and thus the

shear strains in the elements of fiber and matrix in Figure 3.46 are given by


f

12 D �12

G
f
12

(3.108a)

m
12 D �12

Gm
(3.108b)

2

W f

∆
f ∆

m

W f W m

W f+ W m

τ12

τ 12

τ12

τ

τ

12

τ12

τ 12

∆

L

1

W m

(a) Geometry and nomenclature (b) Subjecting unit cell to  12

(c) Overall deformation of unit cell

FIGURE 3.46. Rule-of-mixtures model for composite axial shear modulus G12.
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where the shear modulus in the fiber and matrix are given by, respectively,

G
f

12 and Gm. By the geometry of the deformation and the definition of shear

strain,

�f D 
f
12W

f (3.109a)

�m D m
12W

m (3.109b)

By considering the fiber and matrix elements joined together, as in Figure

3.46(c), the total deformation of the unit cell is

� D �f C �m (3.110)

The average shear strain for the unit cell is then

12 D
�

W f C W m
(3.111)

Substituting equation (3.110) into equation (3.111), we find

12 D �f C �m

W f C W f
(3.112)

or, if we use equation (3.109),

12 D 
f

12W
f C m

12W
m

W
(3.113)

Substituting the stress-strain relations, equation (3.108), and recognizing the

definition of the volume fractions, we find equation (3.113) becomes

12 D
 

V f

G
f
12

C V m

Gm

!

�12 (3.114)

By analogy,

12 D
�12

G12

(3.115)

G12 being the axial shear modulus of the composite, and from equation

(3.114),

1

G12

D
V f

G
f
12

C
V m

Gm
(3.116)

or

1

G12

D V f

G
f

12

C 1 � V f

Gm
(3.117)

This is the rule-of-mixtures expression for G12. Figure 3.47 illustrates the

relationship between G12 and fiber volume fraction for the rule-of-mixtures

model; the concentric cylinder model elasticity solution prediction, equation

(3.60), is shown for comparison. The comparison is not good, as the rule-of-

mixtures model generally underpredicts the shear modulus.



156 PREDICTION OF ENGINEERING PROPERTIES USING MICROMECHANICS

0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

Fiber volume fraction, V f

A
x
ia

l 
s
h

e
a

r 
m

o
d

u
lu

s
, 

G
1
2
 /

 G
m

Elasticity solution
Rule of mixtures

FIGURE 3.47. Rule-of-mixtures prediction for variation of composite axial shear

modulus G12 with fiber volume fraction for graphite-reinforced material.

As with the transverse modulus, E2, we can modify the partitioning as-

sumption for the shear stress in the fiber and matrix and develop a modified

rule-of-mixtures model for G12, resulting in

1

G12

D

V f

G
f
12

C �0.1 � V f /

Gm

V f C �0.1 � V f /
(3.118)

where �0 is the partitioning factor for the shear stresses. Figure 3.48 shows

the variation of G12 as predicted by the modified rule-of-mixtures model with

�0 D 0:6, along with the elasticity solution predictions; the value of �0 D 0:6

leads to good correlation with the elasticity solution.

3.4.4 Model for ˛1 and ˛2

The rule-of-mixtures model for the coefficients of thermal expansion in the

fiber and transverse directions ˛1 and ˛2 is similar to the alternative rule-

of-mixtures model for the transverse modulus E2 in that interaction between

the fiber and matrix elements must be accounted for. Referring again to

Figure 3.44 and considering spatially uniform thermal expansion effects, we

find the stress-strain relations for the fiber element are, by analogy with
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FIGURE 3.48. Modified rule-of-mixtures prediction for variation of composite axial

shear modulus G12 with fiber volume fraction for graphite-reinforced material.

equation (3.97a),

�
f
1 D Q

f
11."

f
1 � ˛

f
1 �T / C Q

f
12."

f
2 � ˛

f
2 �T /

�
f
2 D Q

f
12."

f
1 � ˛

f
1 �T / C Q

f
22."

f
2 � ˛

f
2 �T /

.3:119a/

while the stress-strain relations for the matrix element are

�m
1 D Qm

11."
m
1 � ˛m�T / C Qm

12."m
2 � ˛m�T /

�m
2 D Qm

12."
m
1 � ˛m�T / C Qm

22."m
2 � ˛m�T /

.3:119b/

Equations (3.119a) and (3.119b) are derivable from equation (2.107) or

(2.108). The relations of equation (3.98) remain valid, and the coefficients of

thermal expansion of the fiber in the 1 and 2 directions and the coefficient of

thermal expansion in the matrix are given by ˛
f

1 , ˛
f

2 , and ˛m, respectively.

The temperature change relative to some reference level is �T . Because fiber

and matrix elements are bonded together and therefore must change length

the same amount in the 1 direction,

"
f

1 D "m
1 D

�L

L
(3.120)

As with past derivations

"
f

2 D �W f

W f
and "m

2 D �W m

W m
(3.121)
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By equilibrium,

�
f
2 D �m

2 D �2 (3.122)

and for the case of imposing a temperature change with no force applied in

the 2 direction

�2 D 0 (3.123)

resulting in

�
f

2 D �m
2 D 0 (3.124)

Likewise, for no applied force in the 1 direction, as in equation (3.100),
Z

AmCAf

�1 dA D 0 (3.125)

or, again assuming the stress �1 is constant within each constituent, we find

that

�
f
1 Af C �m

1 Am D 0 (3.126)

Thus, from equations (3.124) and (3.126) and the stress-strain relations

(3.119a) and (3.119b),

Q
f
12

�L

L
C Q

f
22
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D N�f

2 �T
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12
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2 �T (3.127)
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2 /Af C .Qm
11˛m C Qm
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(3.128)

Solving this set of equations leads to expressions for �W f =W f , �W m=W m,

and �L=L. By definition, for no applied loads, the strain in the 1 direction

per unit temperature change is the coefficient of thermal expansion in the 1

direction; that is,

˛1 D
�

�L

L

��

�T (3.129)

Substituting the solution for �L=L from equation (3.127) into equation

(3.129) leads to a relation between ˛1 and volume fraction, namely,

˛1 D ˛
f

1 E
f

1 V f C ˛mEmV m

E
f
1 V f C EmV m

(3.130)
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or

˛1 D

�

˛
f

1 E
f

1 � ˛mEm
�

V f C ˛mEm

�

E
f

1 � Em

�

V f C Em
(3.131)

The total change in width of the unit cell due to a temperature change is

�W D �W f C �W m (3.132)

Dividing by the total width of the unit cell, and using a slight rearrangement

of terms, we find

�W

W
D �W f

W f

W f

W
C �W m

W m

W m

W
(3.133)

Recognizing the definitions of volume fraction, we find this equation becomes

�W

W
D �W f

W f
V f C �W m

W m
V m (3.134)

Again by definition, the coefficient of thermal expansion in the 2 direction

is, for the case of no applied loads, the strain in the 2 direction per unit

temperature change; that is,

˛2 D
�

�W

W

��

�T (3.135)

or

˛2 D
�

�W f

W f
V f C �W m

W m
V m

��

�T (3.136)

Substituting the solutions for �W f =W f and �W m=W m from solving equa-

tion (3.127) into equation (3.136) provides a relation for ˛2 as a function of

volume fraction, specifically,

˛2 D
�
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f
2 �

�

Em
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�

�
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�
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!

�m
�
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f
1

�

V f

#

V m

(3.137)

where the rule-of-mixtures composite modulus E1 has been used to simplify

the expression for ˛2. Note that a simple rule-of-mixtures model for ˛2 would

lead to

˛2 D ˛
f

2 V f C ˛mV m (3.138)

This simple model would not enforce the fact that the change in length in the

1 direction of the fiber and matrix elements must be the same. The additional
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terms in equation (3.137) relative to equation (3.138) reflect the effect of this

geometric constraint. Equation (3.138) can be written as

˛2 D ˛m C
�

˛
f
2 � ˛m

�

V f (3.139)

while equation (3.137) can be written as
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f
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�

1 � V f
�

V f

(3.140)

Both equation (3.139) and equation (3.140) express ˛2 as a function of fiber

volume fraction. It should be noted that a simple rule-of-mixtures expression

for ˛1 does not make sense, as it is clear the matrix and fiber must expand

the same amount in the 1 direction when the temperature is changed. The

simple rule-of-mixtures model in the fiber direction, as has been seen, ignores

this fact.

The relation between the fiber volume fraction and the coefficient of

thermal expansion ˛1, equation (3.131), is shown in Figure 3.49. The results

0.0 0.2 0.4 0.6 0.8

–0.5

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

 4.5

 5.0

Fiber volume fraction, V f

C
o

e
ff

ic
ie

n
t 

o
f 

th
e

rm
a

l 
e

x
p

a
n

s
io

n
,

Square array
Hexagonal array
Alternative rule

α
1

α
1f

/ 
|

|

FIGURE 3.49. Rule-of-mixtures prediction for variation of composite coefficient of

thermal expansion ˛1 with fiber volume fraction for graphite-reinforced material.



Strength-of-Materials Results 161

0.0 0.2 0.4 0.6 0.8

0.0

0.5

1.0

1.5

Fiber volume fraction, V f

C
o

e
ff

ic
ie

n
t 

o
f 

th
e

rm
a

l 
e

x
p

a
n

s
io

n
,

Square array

Hexagonal array

Alternative rule

Rule of mixtures
α

2
α

m
/

FIGURE 3.50. Rule-of-mixtures prediction for variation of composite coefficient of

thermal expansion ˛2 with fiber volume fraction for graphite-reinforced material.

given by equation (3.131) agree well with the finite-element predictions and

hence the equation can be considered useful for determining ˛1. Note that

for fiber volume fractions greater than 0.6, ˛1 is predicted to be negative,

reflecting the dominance of the negative value of the fiber expansion in the

1 direction, ˛
f
1 .

The predictions for the coefficient of thermal expansion ˛2 given by equa-

tion (3.140) and the simpler rule-of-mixtures equation (3.139) are shown

in Figure 3.50. The more complex relation, equation (3.140), which re-

flects interaction between the fiber and matrix, more closely matches the

predictions of the square and hexagonal arrays, indicating that the con-

straint effects represented by the more complicated alternative equation are

important.

Exercises for Section 3.4

1. Starting with either equation (2.107) or equation (2.108), develop the expressions

given by equation (3.119a) and its isotropic counterpart, equation (3.119b).

2. Derive equation (3.138), the rule-of-mixtures equation for the coefficient of thermal

expansion ˛2.
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3. Derive the rule-of-mixtures expression for the composite extensional modulus E1

assuming the existence of an interphase region. The starting point for the derivation

would be the model shown below. For simplicity, assume the interphase, like the

matrix, is isotropic with modulus E i . With an interphase region there is a volume

fraction associated with the interphase (i.e., V i ). For this situation,

V f C V m C V i D 1

W f W m

W i

3.5 Summary

This completes the discussion of micromechanics, an involved, important,

and interesting view of fiber-reinforced composite materials, a view that can

require a great deal of specialization. Several approaches have been presented

for studying micromechanics, the approaches depending to a large degree on

the information being sought. Most important for the remainder of this book is

the fact that this short study of micromechanics has provided estimates of the

elastic and thermal expansion properties that are needed to study the response

of composite laminates. To that end, accounting for estimates from the finite-

element models, the rule-of-mixture models, modified rule-of-mixture mod-

els, and the alternative models, the material properties for graphite-reinforced

composites will be taken to be those given in Table 2.1. These properties can

be considered to correspond to 65 percent fiber volume fraction. Properties for

glass-reinforced polymer are taken from similar calculations for that material

system. The important point to be aware of is that the material properties

used throughout the book are consistent, starting at the micromechanics level

with fiber and matrix properties, and proceeding to the laminate properties

to be studied in coming chapters.

3.6 Suggested Readings

To learn more about finite-element technique, the following books can be consulted:
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1. Reddy, J. N. An Introduction to the Finite Element Method. 2nd ed. New York:

McGraw-Hill, 1994.

2. Cook, R. D. Concepts and Application of Finite Element Analysis. New York:

John Wiley & Sons, 1990.

3. Bathe, K. J. Finite Element Procedures in Engineering Analysis. Englewood

Cliffs, NJ: Prentice Hall, 1982.

Some of the first papers discussing the use of numerical methods to study microme-

chanics problems are:

4. Adams, D. F., and D. R. Doner. “Longitudinal Shear Loading of a Unidirectional

Composite.” Journal of Composite Materials 1 (1967), pp. 4–17.

5. Adams, D. F., and D. R. Doner. “Transverse Normal Loading of a Unidirectional

Composite.” Journal of Composite Materials 1 (1967), pp. 152–64.

A recent numerically based paper is:

6. Bigelow, C. A. “The Effects of Uneven Fiber Spacing on Thermal Residual

Stresses in a Unidirectional SCS-6/Ti-15-3 Laminate.” Journal of Composites

Technology and Research 14, no. 1 (1992), pp. 211–20.

A paper that compares finite-element and strength-of-materials models is:

7. Caruso, J. J., and C. C. Chamis. “An Assessment of Simplified Composite Mi-

cromechanics Using Three-Dimensional Finite Element Analysis.” Journal of

Composites Technology and Research 8 (1986), pp. 77–83.

For general reference to the theory of elasticity, consult:

8. Boresi, A. P., and P. P. Lynn. Elasticity in Engineering Mechanics. Englewood

Cliffs, NJ: Prentice Hall, 1974.

9. Reismann, H., and P. S. Pawlik. Elasticity: Theory and Applications. New York:

John Wiley & Sons, 1980.

10. Sokolnikoff, I. S. Mathematical Theory of Elasticity. 2nd ed. New York: McGraw-

Hill, 1956.

11. Timoshenko, S. P., and J. N. Goodier. Theory of Elasticity. 3rd ed. New York:

McGraw-Hill, 1970.

The definitive papers on the concentric cylinder elasticity model are:

12. Hashin, Z., and B. W. Rosen. “The Elastic Moduli of Fiber-Reinforced Materials.”
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CHAPTER 4

The Plane-Stress Assumption

Historically, one of the most important assumptions regarding the study

of the mechanics of fiber-reinforced materials is that the properties of the

fibers and the properties of the matrix can be smeared into an equivalent

homogeneous material with orthotropic material properties. In Chapter 2 this

assumption helped us develop the stress-strain relations and learn something

about the response of fiber-reinforced material that would allow us to move to

structural-level response in a tractable manner. Without this assumption, we

would still have to deal with the response of the individual fibers embedded

in matrix material, as was done in the study of micromechanics in the last

chapter. If this assumption had not been made in the development of the

mechanics of fiber-reinforced materials, very little progress would have been

made in understanding their response. An equally important assumption in

the development of the mechanics of fiber-reinforced materials is the plane-

stress assumption, which is based on the manner in which fiber-reinforced

composite materials are used in many structures. Specifically, fiber-reinforced

materials are utilized in beams, plates, cylinders, and other structural shapes

which have at least one characteristic geometric dimension an order of mag-

nitude less than the other two dimensions. In these applications, three of the

six components of stress are generally much smaller than the other three.

With a plate, for example, the stresses in the plane of the plate are much

larger than the stresses perpendicular to that plane. In all calculations, then,

the stress components perpendicular to the plane of the structure can be set

to zero, greatly simplifying the solution of many problems. In the context of

fiber-reinforced plates, for example (see Figure 2.2), the stress components

�3, �23, and �13 are set to zero with the assumption that the 1-2 plane of

the principal material coordinate system is in the plane of the plate. Stress

components �1; �2, and �12 are considered to be much larger in magnitude

than components �3; �23, and �13. In fact, �1 should be the largest of all the

stress components if the fibers are being utilized effectively. We use the term

165
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2σ
1σ

12τ12τ

3

2

1

FIGURE 4.1. Stresses acting on a small element of fiber-reinforced material in a

state of plane stress.

plane stress because �1, �2, and �12 lie in a plane, and stresses �3, �23, and �13

are perpendicular to this plane and are zero. The small element of Figure 2.2

appears in Figure 4.1 under the assumption of plane stress.

The plane-stress assumption can lead to inaccuracies, some serious and

some not so serious. The most serious inaccuracy occurs in the analysis

of a laminate near its edge. Laminates tend to come apart in the thickness

direction, or delaminate, at their edges, much like common plywood. An

understanding of this phenomenon, illustrated in Figure 4.2, requires that all

six components of stress be included in the analysis. It is exactly the stresses

that are set to zero in the plane-stress assumption (i.e., �3; �23, and �13) that are

responsible for delamination, so an analysis that ignores these stresses cannot

possibly be correct for a delamination study. Delaminations can also occur

away from a free edge, with the layers separating in blister fashion. These are

P

P

Delamination

FIGURE 4.2. Example of region of high out-of-plane stresses: Delamination at a

free edge.
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One laminate

Another laminate

Adhesive or cocured interface

P

P

FIGURE 4.3. Example of region of high out-of-plane stresses: Bonded joint.

generally caused by the presence of imperfections between the layers. The

out-of-plane stress components �3; �23, and �13 are also important in locations

where structures or components of structures are joined together; Figures 4.3

and 4.4 illustrate some examples. Figure 4.3 shows a bonded joint consisting

of two laminates subjected to tensile load P . For the load to be transferred

from one laminate to the other, significant out-of-plane stresses, particularly

shear, must develop in the laminates around the interface, as well as at the

interface itself. As another example, in many situations stiffeners are used to

increase the load capacity of plates, as in Figure 4.4. For the plate-stiffener

combination to be effective, the plate must transfer some of the pressure load

to the stiffener. Thickness direction stresses must develop in the plate and

stiffener flange if load is to be transferred through the interface. In general,

all three components of out-of-plane stress, �3, �23, and �13, develop in this

situation. Away from the stiffener the plate may be in a state of plane stress,

so not only is there a region of the plate characterized by a fully three-

dimensional stress state, there is also a transition region. In this transition

region the conditions go from truly plane stress to a fully three-dimensional

stress state, making the analysis of such a problem difficult and challenging.

Figure 4.5 illustrates another area where through-the-thickness stresses

are important. Often it is necessary, or desirable, to change the thickness

Stiffener web

Applied pressure

PlateStiffener flange

Adhesive or cocured interface

FIGURE 4.4. Example of region of high out-of-plane stresses: Stiffened plate.
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P
P

H2

H1

FIGURE 4.5. Example of region of high out-of-plane stresses: Region of terminated

layers.

of a laminate by gradually terminating some of the layers. Away from the

terminated layer region each portion of the laminate could well be in a state of

plane stress due to the applied inplane load P . However, the thicker region

is in a different state of plane stress than the thinner region. To make the

transition between the two stress states, three-dimensional effects occur.

The illustrations in Figures 4.2–4.5 are prime examples of situations en-

countered in real composite structures. However, the plane-stress assumption

is accurate in so many situations that one would be remiss in not taking

advantage of its simplifications. The static, dynamic, and thermally induced

deflections, and the stresses that result from these, vibration frequencies,

buckling loads, and many other responses of composite structures can be

accurately predicted using the plane-stress assumption. What is important

to remember when applying the plane-stress assumption is that it assumes

that three stresses are small relative to the other three stresses and they

have therefore been set to zero. They do not necessarily have to be exactly

zero, and in fact in many cases they are not exactly zero. With the aid

of the three-dimensional equilibrium equations of the theory of elasticity,

calculations based on the plane-stress assumption can be used to predict the

stress components that have been equated to zero. When these results are

compared with predictions of the out-of-plane components based on rigorous

analyses wherein the out-of-plane components are not assumed to be zero at

the outset, we find that in many cases the comparisons are excellent. Thus,

a plane-stress, or, using alternative terminology, a two-dimensional analysis,

is useful. Two of the major pitfalls associated with using the plane-stress

assumption are:

1. The stress components equated to zero are often forgotten and no attempt

is made to estimate their magnitude.

2. It is often erroneously assumed that because the stress component �3 is

zero and therefore ignorable, the associated strain "3 is also zero and

ignorable.

Regarding the former point, while certain stress components may indeed

be small, the material may be very weak in resisting these stresses. As was
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stated earlier, a fiber-reinforced material is poor in resisting all stresses except

stresses in the fiber direction. Thus, several stress components may be small

and so the problem conforms to the plane-stress assumption. However, the

out-of-plane stresses may be large enough to cause failure of the material and

therefore they should not be completely ignored. Often they are. Regarding

the second point, the stresses in the 1-2 plane of the principal material

coordinate system can cause a significant strain response in the 3 direction.

The assumption that "3 is zero just because �3 is negligible is wrong and, as

we shall see shortly, defies the the stress-strain relations that govern material

behavior. It is important to keep these two points in mind as we focus our

discussion in the following chapters on the plane-stress condition.

4.1 Stress-Strain Relations for Plane Stress

To see why the plane-stress assumption is important, it is only necessary to

see how it simplifies the stress-strain relations. Specifically, for the plane-

stress assumption �3, �23, and �13 are set to zero in equations (2.45) and

(2.47). Looking at equation (2.45) first, we find
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(4.1)

From this relation it is obvious that

23 D 0 13 D 0 (4.2)

so with the plane-stress assumption there can be no shear strains whatsoever

in the 2-3 and 1-3 planes. That is an important ramification of the assumption.

Also,

"3 D S13�1 C S23�2 (4.3)

This equation indicates explicitly that for a state of plane stress there is

an extensional strain in the 3 direction. To assume that strain "3 is zero is

absolutely wrong. That it is not zero is a direct result of Poisson’s ratios �13

and �23 acting through S13 and S23, respectively, coupling with the nonzero

stress components �1 and �2. The above equation for "3 forms the basis for

determining the thickness change of laminates subjected to inplane loads,

and for computing through-thickness, or out-of-plane, Poisson’s ratios of a

laminate.
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Despite the fact that "3 is not zero, the plane-stress assumption leads to

a relation involving only "1; "2; 12 and �1; �2; �12. By eliminating the third,

fourth, and fifth equations of equation 4.1, we find
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The definitions of the compliances have not changed from the time they were

first introduced, namely,

S11 D
1

E1

S12 D
��12

E1

D
��21

E2

S22 D
1

E2

S66 D
1

G12

(4.5)

The 3 � 3 matrix of compliances is called the reduced compliance matrix.

In matrix notation the lower right hand element of a 3 � 3 matrix is usually

given the subscript 33, though in the analysis of composites it has become

conventional to retain the subscript convention from the three-dimensional

formulation and maintain the subscript of the lower corner element as 66.

For an isotropic material, equation (4.5) reduces to

S11 D S22 D
1

E
S12 D �

�

E
S66 D

1

G
D

2.1 C �/

E
(4.6)

If the plane-stress assumption is used to simplify the inverse form of the

stress-strain relation, equation (2.47), the result is
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(4.7)

With the above, one also concludes that

23 D 0 13 D 0 (4.8)

In analogy to equation (4.3), the third equation of equation (4.7) yields

0 D C13"1 C C23"2 C C33"3 (4.9)

Rearranged, it becomes

"3 D �
C13

C33

"1 �
C23

C33

"2 (4.10)
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This relationship also indicates that in this state of plane stress "3 exists and

equation (4.10) indicates it can be computed by knowing "1 and "2.

The three-dimensional form equation (4.7) cannot be reduced directly

to obtain a relation involving only �1; �2; �12, and "1, "2, 12 by simply

eliminating equations, as was done with equation (4.1) to obtain equation

(4.4). However, equation (4.10) can be used as follows: From equation (4.7),

the expressions for �1 and �2 are

�1 D C11"1 C C12"2 C C13"3

�2 D C12"1 C C22"2 C C23"3

(4.11)

Substituting for "3 using equation (4.10) leads to

�1 D C11"1 C C12"2 C C13

�

�
C13

C33

"1 �
C23

C33

"2

�

�2 D C12"1 C C22"2 C C23

�

�
C13

C33

"1 �
C23

C33

"2

�

(4.12)

or

�1 D

�

C11 �
C 2

13

C33

�

"1 C

�

C12 �
C13C23

C33

�

"2

�2 D

�

C12 �
C13C23

C33

�

"1 C

�

C22 �
C 2

23

C33

�

"2

(4.13)

Including the shear stress–shear strain relation, the relation between stresses

and strains for the state of plane stress is written as
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(4.14)

The Qij are called the reduced stiffnesses and from equations (4.13) and (4.7)

Q11 D C11 �
C 2

13

C33

Q12 D C12 �
C13C23

C33

Q22 D C22 �
C 2

23

C33

Q66 D C66

(4.15)

The term reduced is used in relations given by equations (4.4) and (4.14)

because they are the result of reducing the problem from a fully three-
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dimensional to a two-dimensional, or plane-stress, problem. However, the

numerical values of the stiffnesses Q11, Q12, and Q22 are actually less

than the numerical values of their respective counterparts for a fully three-

dimensional problem, namely, C11, C12, and C33, and so the stiffnesses are

reduced in that sense also.

It is very important to note that there is not really a numerically reduced

compliance matrix. The elements in the plane-stress compliance matrix, equa-

tion (4.5), are simply a subset of the elements from the three-dimensional

compliance matrix, equation (4.1), and their numerical values are the identi-

cal. On the other hand, the elements of the reduced stiffness matrix, equation

(4.15), involve a combination of elements from the three-dimensional stiffness

matrix. It is absolutely wrong to write
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and claim this represents the reduced stiffness matrix. It simply is not so.

By inverting equation (4.4) and comparing it to equation (4.14), it is clear

that

Q11 D
S22

S11S22 � S2
12

Q12 D �
S12

S11S22 � S2
12

Q22 D
S11

S11S22 � S2
12

Q66 D
1

S66

(4.16)

This provides a relationship between elements of the reduced compliance

matrix and elements of the reduced stiffness matrix. A much more convenient

form, and one that should be used in lieu of equation (4.16), can be obtained

by simply writing the compliance components in equation (4.16) in terms of

the appropriate engineering constants, namely,

Q11 D
E1

1 � �12�21

Q12 D
�12E2

1 � �12�21

D
�21E1

1 � �12�21

Q22 D
E2

1 � �12�21

Q66 D G12

(4.17)
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This form will be used exclusively from now on. For an isotropic material

the reduced stiffnesses become

Q11 D Q22 D
E

1 � �2
Q12 D

�E

1 � �2

Q66 D G D
E

2.1 C �/

(4.18)

4.2 Important Interpretation of Stress-Strain

Relations Revisited

When discussing general stress states in Chapter 2, we strongly emphasized

that only one of the quantities in each of the six stress-strain pairs �1-"1, �2-

"2, �3-"3, �23-23, �12-13, and �12-12 could be specified. With the condition

of plane stress, this restriction also holds. For the state of plane stress we

assume that �3, �23, and �13 are zero. We can say nothing a priori regarding "3,

23, and 13. However, by using the stress-strain relations, we found, equation

(4.2), that 23 and 13 are indeed zero. This is a consequence of the plane-

stress condition, not a stipulation. The strain "3 is given by equation (4.3),

another consequence of the plane-stress condition. Of the three remaining

stress-strain pairs, �1-"1, �2-"2, and �12-12, only one quantity in each of

these pairs can be specified. The other quantity must be determined, as usual,

by using the stress-strain relations, either equation (4.4) or (4.14), and the

details of the specific problem being solved.

4.3 Numerical Results for the Plane-Stress Condition

Some of the numerical examples discussed in Section 2.5 are problems which

satisfy plane-stress conditions. Specifically, in Figure 2.11(b) the cube of

material is subjected to only one stress, as indicated by equation (2.66).

Clearly the conditions

�3 D �23 D �13 D 0 (4.19)

are satisfied, so the cube is in a state of plane stress. Using the plane-stress

stress-strain relation equation (4.4), we find the strains "1, "2, and 12 can be

determined directly as

"1 D S12�2 "2 D S22�2 12 D 0 (4.20)

The strain "3 must now be determined from the condition of equation (4.3),

now not a direct part of the stress-strain relations, but rather an auxilary

equation. From equation (4.3)

"3 D S23�2 (4.21)
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By substituting numerical values for S12, S22, and S23 from equation (2.56),

and using the definitions of equation (2.69), we find the dimensional changes

of the cube, as in equation (2.70).

We can also find the dimensional change of the cube of Figure 2.11(b)

from the plane-stress stress-strain relations using equation (4.14), though this

approach is not as direct. In particular, for the stress state of Figure 2.11(b),

equation (4.14) simplifies to

0 D Q11"1 C Q12"2

�2 D �50:0 MPa D Q12"1 C Q22"2

0 D Q6612

(4.22)

From the first and third of these,

"1 D �
Q12

Q11

"2 and 12 D 0 (4.23)

and substituting into the second yields

"2 D

�

Q11

Q11Q22 � Q2
12

�

�2 (4.24)

If equation (4.17) is used,

"2 D
1

E2

�2 D S22�2 (4.25)

which is the second equation of equation (2.68). It seems that we have gone

in circles—we have not! What we have shown is that the plane-stress stress-

strain relations yield results identical to the results obtained by using the

general stress-strain relations if the problem is one of plane stress. This is

an important point. If the problem is one of plane stress, then using the

simpler forms, equations (4.4) and (4.14), rather than the more complicated

forms, equations (2.45) and (2.47), gives the correct answer. The auxilary

conditions, either equation (4.3) or (4.10), can be used to obtain information

about the strain "3 that is not a direct part of the plane-stress stress-strain

relation. In that context, it is important to keep in mind that the out-of-

plane engineering properties are still useful. For example, consider a layer

of graphite-reinforced material 100 mm long, 50 mm wide, and 0.150 mm

thick. As shown in Figure 4.6, this layer is subjected to a 3750 N inplane

force in the fiber direction. The through-thickness strain in the layer can be

calculated from equation (4.3) and the numerical values in equation (2.56) as

"3 D S13�1 C S23�2 D
�

�1:600 � 10�12
�

�

3750

.0:050/ � .0:000150/

�

"3 D �800 � 10�6 m/m D �800 � 10�6 mm/mm D �800 � mm/mm

(4.26)
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P P = 3750 N

100 mm

0.150 mm (before load is applied)

50 mm

FIGURE 4.6. Layer subjected to inplane forces.

Exercises for Section 4.3

1. Derive equation (4.17), starting with equation (4.16) and substituting the definitions

from equation (4.5).

2. Compute the numerical values of the elements of the reduced stiffness matrix for

graphite-reinforced material.

3. Suppose in Figure 4.6 the fibers are perpendicular to the 100 mm direction. What

would be the through-thickness strain for this situation?

Computer Exercise

Write a computer program to read in and print out the engineering constants E1, E2,

�12, and G12. Then have the program compute and print the values of the elements of

the reduced stiffness matrix, equation (4.17). Use your answers to Exercise 2, above,

to check your program. This program, though trivial, is the first step in what will be

a series of steps leading to a program that computes the stresses and deformations

in a laminate. As we move through this book, more and more will be added to this

small program.

4.4 Plane-Stress Stress-Strain Relations and the Effects

of Free Thermal and Free Moisture Strains

If a problem conforms to the plane-stress assumption, namely, �3 D �23 D

�13 D 0, but free thermal moisture strains are important, then, starting with

equation (2.124) and following the same steps that led to equation (4.4), we

can conclude that

23 D 0 13 D 0 (4.27)

which is identical to the case of no thermal or moisture expansion effects, as in

equation (4.2). This is a direct consequence of the conditions �23 D �13 D 0.

The conclusion regarding "3 is not exactly the same as the case with no free

thermal or moisture strain effects, and in fact the conclusion is much more



176 THE PLANE-STRESS ASSUMPTION

far reaching. Specifically, using the condition that �3 D 0 in equation (2.124),

we conclude that

"3 D ˛3�T C ˇ3�M C S13�1 C S23�2 (4.28)

Equation (4.28) will be the basis for determining the through-thickness, or

out-of-plane, thermal or moisture expansion effects of a laminate. In this case

the through-thickness strain does not depend solely on the through-thickness

expansion coefficients ˛3 or ˇ3. The through-thickness strain involves the

compliances S13 and S23, which in turn involve the Poisson’s ratios �13 and

�23, as well as the inplane extensional moduli E1 and E2. This coupling of the

through-thickness strain with the inplane and out-of-plane elastic properties

leads to important consequences. More will be said of this later.

Continuing with the development, we observe that the plane-stress stress-

strain relations, including free thermal and moisture strain effects, become
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and
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where the mechanical strains are given by
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(4.31)

As in the three-dimensional stress-strain relations, equations (2.124) and

(2.125), "1, "2, 12 above are the total strains. The dimensional changes are

therefore given by

ı�1 D "1�1 ı�2 D "2�2 (4.32)

not

ı�1 D ."1 � ˛1�T � ˇ1�M/ �1 and ı�2 D ."2 � ˛2�T � ˇ2�M/ �2

Equally important, "3 in equation (4.28) is the total strain. This is quite

obvious when one considers that the right-hand side of that equation explicitly

includes free thermal strain effects, free moisture strain effects, and stress-

related effects.
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To continue with our examples of thermal deformations, consider a 50

mm � 50 mm � 50 mm element of material that is completely constrained

in the 1 and 2 directions. To satisfy the plane-stress condition, the element

cannot be constrained in the 3 direction. The stresses in the two constrained

directions and the deformation in the 3 direction due to a temperature increase

of 50ıC are to be determined. Moisture absorption is not an issue .�M D 0/.

For this case, because of the stated conditions,

"1 D "2 D 12 D 0 (4.33)

To determine the restraining stresses, equation (4.30) is used to give

�1 D � .Q11˛1 C Q12˛2/ �T

�2 D � .Q12˛1 C Q22˛2/ �T

�12 D Q66 � 0

(4.34)

To determine the deformation in the 3 direction, equation (4.28) is used to

yield

"3 D ˛3�T C S13�1 C S23�2

"3 D .˛3 � S13 .Q11˛1 C Q12˛2/ � S23 .Q12˛1 C Q22˛2// �T

"3 D .˛3 � .S13Q11 C S23Q12/ ˛1 � .S13Q12 C S23Q22/ ˛2/ �T

(4.35)

where the various terms in equation (4.35) are retained to show the interaction

between two- and three-dimensional elastic properties, and the three coeffi-

cients of thermal expansion. Numerically, equations (4.34) and (4.35) give

�1 D �3:52 MPa

�2 D �14:77 MPa

�12 D 0

"3 D 1780 � 10�6

(4.36)

These numbers should be contrasted with the same 50 mm cube constrained

in all three directions, equation (2.118) in Chapter 2, where comparison of

the two sets of numbers indicates the effect of relaxing the constraint in the

3 direction.

4.5 Suggested Readings

Analyses of the situations depicted in Figures 4.2–4.5 are discussed in the following.

For delamination:

1. Herakovich, C.T. “Free Edge Effects in Laminated Composites.” In Handbook

of Composites: vol. 2, Structures and Design, C. T. Herakovich and Y. M.

Tarnopol´skii. New York: Elsevier Science Publishing Co., 1989.

2. Armanios, E. A., ed. Interlaminar Fracture of Composites. Aedermannsdorf,

Switzerland: Trans Tech. Publications, 1989.
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For bonded joints, this paper is an often-cited reference:

3. Renton, W. J., and J. R. Vinson. “Analysis of Adhesively Bonded Joints between

Panels of Composite Materials.” Transactions of the ASME, Journal of Applied

Mechanics 44, no. 1 (1977), pp. 101–6.

Inclusion of other important effects is discussed in:

4. Reddy, J. N., and S. Roy. “Nonlinear Analysis of Adhesively Bonded Joints.”

International Journal of Nonlinear Mechanics 23, no. 2 (1988), pp. 97–112.

For stiffeners, see:

5. Kassapoglou, C. “Calculation of Stresses at Skin-Stiffener Interfaces of Com-

posite Stiffened Panels under Shear Loads.” International Journal of Solids and

Structures 30, no. 11 (1993), pp. 1491–1501.

6. Cohen, D., and M. W. Hyer. “Influence of Geometric Nonlinearities on Skin-

Stiffener Interface Stresses.” AIAA Journal 30, no. 4 (1992), pp. 1055–62.

7. Hyer, M. W., D. C. Loup, and J. H. Starnes, Jr. “Stiffener/Skin Interactions in

Pressure-Loaded Composite Panels.” AIAA Journal 28, no. 3 (1990), pp. 532–37.

8. Hyer, M. W., and D. Cohen. “Calculation of Stresses in Stiffened Composite

Panels.” AIAA Journal 26, no. 7 (1988), pp. 852–57.

For tapered laminates and regions of terminating plys, see:

9. Harrison, P. N., and E. R. Johnson. “A Mixed Variational Formulation for In-

terlaminar Stresses in Thickness-Tapered Composite Laminates.” International

Journal of Solids and Structures 33, no. 16 (1996), pp. 2377–99.

10. Fish, J. C., and S. W. Lee. “Delamination of Tapered Composite Structures.”

Engineering Fracture Mechanics 34, no. 1 (1989), pp. 43–54.

11. Wu, C. M. L., and J. P. H. Webber. “Analysis of Tapered (in Steps) Laminated

Plates Under Uniform Inplane Load.” Composite Structures 5 (1981), pp. 87–100.



CHAPTER 5

Plane-Stress Stress-Strain Relations
in a Global Coordinate System

One of the most important characteristics of structures made of fiber-rein-

forced materials, and one which dictates the manner in which they are

analyzed, is the use of multiple fiber orientations. Generally structural lam-

inates are made of multiple layers of fiber-reinforced material, and each

layer has its own specific fiber orientation. To this point we have studied

the response of fiber-reinforced materials in the principal material system,

whether it is fully three-dimensional stress-strain behavior, as in equations

(2.45) and (2.47), or plane-stress behavior, as in equations (4.4) and (4.14).

If we are to accommodate multiple layers of fiber-reinforced materials, each

with its own fiber orientation, then we will be confronted with using multiple

1-2-3 coordinate systems, each with its own orientation with respect to

some global or structural coordinate system. If we are dealing with an x-y-z

Cartesian coordinate system to describe the geometry of the structure, then

the orientation of each principal material system must be defined with respect

to the x-y-z system. If we are dealing with an x-�-r cylindrical coordinate

system to describe the structure, then the orientation of each principal material

system must be defined with respect to the x-�-r system, and so forth, for

a spherical coordinate system. This leads to a large number of coordinates

systems and orientations for describing the response of the fiber-reinforced

structure. As an alternative approach, we can refer the response of each layer

of material to the same global system. We accomplish this by transforming

the stress-strain relations from the 1-2-3 coordinate system into the global

coordinate system. This will be our approach here, in particular; it will be

done for a state of plane stress using the standard transformation relations

for stresses and strains learned in introductory strength-of-materials courses.

Transformation can also be done for a general state of stress. However,

transformation here will be limited to the plane-stress state because it will be

useful for the development of classical lamination theory, which begins in the

179
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next chapter. Equally important, though, is the fact that the transformation of

the description of the stress-strain response of fiber-reinforced material from

the principal material coordinate system to a global coordinate system results

in concepts so different from what one encounters with isotropic materials

that it is best to start with a simpler plane-stress state and progress to the

more complicated general stress state. When the concepts for the plane-

stress stress state response described in a coordinate system other than the

principal material coordinate system are fully understood, progression to a

three-dimensional stress state is easier.

5.1 Transformation Relations

Consider Figure 5.1(a), the familiar picture of an isolated element in the

principal material coordinate system. Figure 5.1(b) shows a similar element

but one that is isolated in an x-y-z global coordinate system. The fibers are

oriented at an angle � with respect to the Cx axis of the global system.

The fibers are parallel to the x-y plane and the 3 and z axes coincide. The

fibers assumed their orientation by a simple rotation of the principal material

system about the 3 axis. The orientation angle � will be considered positive

when the fibers rotate counterclockwise from the Cx axis toward the Cy

axis. Often the fibers not being aligned with the edges of the element are

referred to as an off-axis condition, generally meaning the fibers are not

aligned with the analysis coordinate system (i.e., off the Cx axis). Though

we will use the notation for a rectangular Cartesian coordinate system as the

global system (i.e., x-y-z), the global coordinate system can be considered to

be any orthogonal coordinate system. The use of a Cartesian system is for

convenience only and the development is actually valid for any orthogonal

coordinate system. The stress-strain relations are a description of the relations

between stress and strain at a point within the material. The functional form

of these relations does not depend on whether the point is a point in a

3
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∆2

∆3

∆1

(a) Element in 1-2-3 system

z

y

x

1

2

∆z

∆y ∆x

(b) Element in x-y-z system

θ

FIGURE 5.1. Elements of fiber-reinforced material in 1-2-3 and x-y-z coordinate

systems.
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rectangular Cartesian coordinate system, in a cylindrical coordinate system,

or in a spherical, elliptical, or parabolic coordinate system.

The stresses on the small volume of element are now identified in accor-

dance with the x-y-z notation. The six components of stress and strain are

denoted as
8
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(5.1)

and the six components of stress are illustrated in Figure 5.2. Although we

seem interested in describing the stress-strain relation in another coordinate

system now that we have developed it and fully understand it in the 1-2-3

system, we should emphasize that Figure 5.2 should be interpreted quite

literally. We should interpret the figure as asking, “What is the relation

between the stresses and deformations denoted in equation (5.1) for a small

volume of material whose fibers are oriented at some angle relative to the

boundaries of the element rather than parallel to them?” This is the real

issue! Loads will not be always applied parallel to the fibers; our intuition

indicates that unusual deformations are likely to occur. The skewed orientation

of the fibers must certainly cause unusual distortions of the originally cubic

volume element. What are these deformations? How do they depend on fiber-

orientation? Are they detrimental? Are they beneficial? Fortunately these and

other questions can be answered by transforming the stress-strain relations

from the 1-2-3 system to the x-y-z system. If we consider the special case

shown in Figure 5.1(b), where the two coordinate systems are related to each

  y

  xy

  xz

  yz

  yz

 z

z

y

x

σ
τ

τ

τ
  xyτ  xzτ

τ
σ

  xσ

FIGURE 5.2. Stress components in x-y-z coordinate system.
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other through a simple rotation � about the z axis, then the stresses in the

1-2-3 system are related to the stresses in the x-y-z system by

�1 D cos2 ��x C sin2 ��y C 2 sin � cos ��xy

�2 D sin2 ��x C cos2 ��y � 2 sin � cos ��xy

�3 D �z

�23 D cos ��yz � sin ��xz

�13 D sin ��yz C cos ��xz

�12 D � sin � cos ��x C sin � cos ��y C
�

cos2 � � sin2 �
�

�xy

(5.2)

For a state of plane stress, �3, �23, and �13 are zero, and upon rearranging,

the third, fourth, and fifth components of equation (5.2) give

�z D 0

cos ��yz � sin ��xz D 0

sin ��yz C cos ��xz D 0

(5.3)

Because

sin2 � C cos2 � D 1 (5.4)

the only solution to the last two equations of equation (5.3) is

�yz D �xz D 0 (5.5)

leading to the conclusion that for a plane-stress state in the 1-2-3 principal

material coordinate system, the out-of-plane stress components in the x-y-z

global coordinate system are also zero. This may have been intuitive but here

we have shown it directly.

The first, second, and sixth component of equation (5.2) may look more

familiar in the form

�1 D
�

�x C �y

2

�

C
��x � �y

2

�

cos 2� C �xy sin 2�

�2 D
�

�x C �y

2

�

�
��x � �y

2

�

cos 2� � �xy sin 2�

�12 D �
��x � �y

2

�

sin 2� C �xy cos 2�

(5.6)

This form is derivable from equation (5.2) by using trigonometric identities

and is the form usually found in introductory strength-of-materials courses.

The form of equation (5.2) will be most often used as it can be put in matrix
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form as
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This transformation matrix of trigonometric functions will be used frequently

in the plane-stress analysis of fiber-reinforced composite materials and it will

be denoted by ŒT �, ŒT � being written as

ŒT � D
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6
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m2 n2 2mn

n2 m2 �2mn

�mn mn m2 � n2
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5
(5.8)

where m D cos �; n D sin � . With the above notation equation (5.7) can be

written
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The inverse of equation (5.10) is
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which implies

ŒT ��1 D
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m2 n2 �2mn

n2 m2 2mn
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7

5
(5.12)
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In a similar manner, the strains transform according to the specialized rela-

tions equation (5.2) as

"1 D cos2 �"x C sin2 �"y C 2 sin � cos �"xy

"2 D sin2 �"x C cos2 �"y � 2 sin � cos �"xy

"3 D "z

"23 D cos �"yz � sin �"xz

"13 D sin �"yz C cos �"xz

"12 D � sin � cos �"x C sin � cos �"y C .cos2 � � sin2 �/"xy

(5.13)

Note very well that the tensor shear strains, ", not the engineering shear strains

are being used in the above. These two measures of strain are different by a

factor of two; that is,

"23 D
1

2
23

"13 D 1

2
13

"12 D 1

2
12

(5.14)

If engineering shear strain is used instead, then the transformation relations

become

"1 D cos2 �"x C sin2 �"y C 2 sin � cos �
1

2
xy

"2 D sin2 �"x C cos2 �"y � 2 sin � cos �
1

2
xy

"3 D "z

23 D cos �yz � sin �xz

13 D sin �yz C cos �xz

1

2
12 D � sin � cos �"x C sin � cos �"y C .cos2 � � sin2 �/

1

2
xy

(5.15)

As a result of the plane-stress assumption, specifically by equation (4.2),

23 D 0 13 D 0 (5.16)

and by analogy to equation (5.3), it is concluded from the fourth and fifth

equation of equation (5.15) that

yz D 0 xz D 0 (5.17)

Also, due to the third equation of equation (5.15) and equation (4.3),

"z D S13�1 C S23�2 (5.18)
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More importantly, if equation (5.7) is used to transform the stresses, then

"z D .S13 cos2 � C S23 sin2 �/�x C .S13 sin2 � C S23 cos2 �/�y

C 2.S13 � S23/ sin � cos ��xy

(5.19)

This equation is very important because it indicates that a shear stress in the

x-y plane, �xy , produces an extensional strain, "z , perpendicular to that plane!

For an isotropic material, S13 D S23, and this simply will not happen. Shear

stresses do not cause extensional strains in isotropic materials! This genera-

tion of extensional strains by shear stresses is an important characteristic of

fiber-reinforced composite materials.

Returning to equation (5.15) to focus on the strains involved in the plane-

stress assumption, we can write the first, second, and sixth equations as
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or
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(5.21)

It is very important to note that the transformation retains the factor of 1
2

with the engineering shear strain.

5.2 Transformed Reduced Compliances

Continuing with the transformation of the stress-strain relations for plane

stress to the x-y-z global coordinate system, the stress-strain relations in the

1-2-3 principal material coordinate system, equation (4.4), can be written in a

slightly modified form to account for the use of the tensor shear strain rather

than the engineering shear strain as
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Using the transformations given by equations (5.9) and (5.20) in equation

(5.22) leads to
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and multiplying both sides of equation (5.23) by ŒT ��1 results in
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0 0
1

2
S66

3

7

7

7

7

5

ŒT �

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

�x

�y

�xy

9

>

>

>

>

=

>

>

>

>

;

(5.24)

Substituting for ŒT � and ŒT ��1 from equations (5.8) and (5.12), we find that

multiplying these three matrices together, and multiplying the third equation

through by a factor of 2, yields

8

ˆ

ˆ

<

ˆ

ˆ

:

"x

"y

xy

9

>

>

=

>

>

;

D

2

6

6

4

NS11
NS12

NS16

NS12
NS22

NS26

NS16
NS26

NS66

3

7

7

5

8

ˆ

ˆ

<

ˆ

ˆ

:

�x

�y

�xy

9

>

>

=

>

>

;

(5.25)

The NSij are called the transformed reduced compliances. Note that the factor

of 1=2 has been removed and the engineering shear strain reintroduced. Equa-

tion (5.25) is a fundamental equation for studying the plane-stress response of

fiber-reinforced composite materials. The transformed reduced compliances

are defined by

NS11 D S11m
4 C .2S12 C S66/n

2m2 C S22n
4

NS12 D .S11 C S22 � S66/n
2m2 C S12.n

4 C m4/

NS16 D .2S11 � 2S12 � S66/nm3 � .2S22 � 2S12 � S66/n
3m

NS22 D S11n
4 C .2S12 C S66/n

2m2 C S22m
4

NS26 D .2S11 � 2S12 � S66/n
3m � .2S22 � 2S12 � S66/nm3

NS66 D 2.2S11 C 2S22 � 4S12 � S66/n
2m2 C S66.n

4 C m4/

(5.26)

Equation (5.25) and the definitions equation (5.26) relate the strains of an

element of fiber-reinforced material as measured in the x-y-z global coordinate

system to the applied stresses measured in that coordinate system. We can



Transformed Reduced Compliances 187

look upon these equations as strictly the end result of simple steps in linear

algebra, that is, transformations, inversions, and so forth. Alternatively, we can

view them as what they actually are, namely, relations that describe what we

shall see to be the complex response of an element of fiber-reinforced material

in a state of plane stress that is subjected to stresses not aligned with the fibers,

nor perpendicular to the fibers. The most profound results of equation (5.25)

are that a normal stress �x will cause a shearing deformation xy through the
NS16 term, and similarly a normal stress �y will cause a shearing deformation

through the NS26 term. Equally important, because of the existence of these

same NS16 and NS26 terms at other locations in the compliance matrix, a shear

stress �xy will cause strains "x and "y . Such responses are totally different

from those in metals. In metals, normal stresses do not cause shear strains, and

shear stresses do not cause extensional strains. This coupling found in fiber-

reinforced composites is termed shear-extension coupling. Shear-extension

coupling is an important characteristic and is responsible for interesting and

important responses of fiber-reinforced composite materials. Recall, equation

(5.19) provided another example of shear-extension coupling. Through a

series of examples we will examine the response of an element of fiber-

reinforced material to simple stress states (i.e., �x only, and then �xy only)

and compare the responses with the response of a similar element of metal.

After we work through these specific examples, the implications and meaning

of shear-extension coupling will be clear.

Figure 5.3 shows the variations with � of the various elements of the

transformed reduced compliance matrix for a graphite-reinforced material.

Note that NS12 and all on-diagonal terms are even functions of � , while the

off-diagonal terms NS16 and NS26 are odd functions of � . The importance of

this will be illustrated shortly. Also note the rapid variation of some of the

compliances as � increases or decreases from 0ı. At � D 30ı, NS11 has

increased by a factor of 8 relative to its value at � D 0ı and NS16 has changed

from 0 at � D 0ı to nearly its maximum magnitude.

Before proceeding with the examples, we should discuss two special cases

of equation (5.26). For the first case, consider the situation when the fibers

are aligned with the x axis, namely, � D 0ı. With � D 0ı, m D 1 and n D 0

and equation (5.26) reduces to

NS11.0
ı/ D S11

NS22.0
ı/ D S22

NS12.0
ı/ D S12

NS26.0
ı/ D 0

NS16.0
ı/ D 0 NS66.0

ı/ D S66

(5.27)

where the argument of 0ı is used as a reminder that the NSij ’s are functions

of � . The results of equation (5.27) simply state that at � D 0ı the trans-

formed reduced compliance degenerates to the reduced compliance, that is,

the compliance in the principal material coordinate system. In the principal

material system there is no NS16 or NS26. The quantities S11, S12, S22, and S66
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FIGURE 5.3. Variation of transformed reduced compliances with fiber angle � for

graphite-reinforced composite.

are often referred to as the on-axis compliances. The barred quantities of

equation (5.26) are frequently called the off-axis compliances.

For the second special case, consider isotropic materials. The compliances

of equation (5.26) reduce to

NS11 D 1

E

NS12 D � �

E

NS16 D 0

NS22 D 1

E

NS26 D 0

NS66 D 1

G
D 2.1 C �/

E

(5.28)
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which can be demonstrated by using the definitions of the compliances for

an isotropic material, equation (4.6), in equation (5.26). For example:

NS11 D 1

E
m4 C

�

� 2�

E
C 2.1 C �/

E

�

n2m2 C 1

E
n4 (5.29a)

NS11 D 1

E

�

m4 C 2m2n2 C n4
�

D 1

E

�

m2 C n2
�2

(5.29b)

But

m2 C n2 D 1 (5.30)

so

NS11 D 1

E
(5.31)

The proof that

NS22 D 1

E
(5.32)

is identical. From NS12, we see

NS12 D
�

1

E
C 1

E
� 2.1 C �/

E

�

n2m2 � �

E

�

n4 C m4
�

(5.33a)

NS12 D � �

E

�

2n2m2 C n4 C m4
�

D � �

E

�

n2 C m2
�2

(5.33b)

so by equation (5.30)

NS12 D �
�

E
(5.34)

From NS16, we see

NS16 D
�

2

E
� 2�

E
� 2.1 C �/

E

�

nm3 �
�

2

E
� 2�

E
� 2.1 C �/

E

�

n3m

(5.35a)

NS16 D .0/nm3 � .0/n3m D 0 (5.35b)

Similarly it can be shown

NS26 D 0 (5.36)

Finally,

NS66 D 2

�

2

E
C 2

E
C 4�

E
� 2.1 C �/

E

�

n2m2 C 2.1 C �/

E

�

n4 C m4
�

(5.37a)

NS66 D 2.1 C �/

E

�

2n2m2 C n4 C m4
�

D 2.1 C �/

E

�

n2 C m2
�2

(5.37b)
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Again, by equation (5.30),

NS66 D 2.1 C �/

E
(5.38)

Thus, independent of the direction of the coordinate system, for an isotropic

material equation (5.28) is true.

We now turn to a series of examples that illustrate the shear-extension

coupling predicted by the stress-strain relations of equation (5.25), specifically

the deformations caused by a tensile normal stress. Consider a thin element

of aluminum subjected to a tensile stress �x D 155 MPa. As in Figure 5.4(a),

the aluminum element has dimensions 50 mm � 50 mm. Thickness is not

important at the moment but consider the element to be thin. As �y and �xy

∆x = 50 mm

x

y

∆y = 50 mm

(a) (b)

50.107 mm

49.968 mm

(d)

50.050 mm

49.988 mm 

(c)

  x = 155.0 MPaσ

  x = 155.0 MPaσ

Deformed

  x = 155.0 MPa

(e) (f)

50.394 mm

49.791 mm

50.394 mm

49.791 mm

(g) (h)

30°

30°

Increase in
right angle
0.553°

Decrease in
right angle
0.553°

σ

  x = 155.0 MPaσ

FIGURE 5.4. Response of aluminum and graphite-reinforced composite to tensile

normal stress �x .
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are zero, the stress-strain relations of equation (5.25) reduce to

"x D NS11�x

"y D NS12�x

xy D NS16�x

(5.39)

or, by equation (5.28),

"x D 1

E
�x

"y D � �

E
�x

xy D 0 � �x

(5.40)

Referring to Table 2.1, we note that the strains in the aluminum are

"x D 1

72:4 � 109
155 � 106 D 2140 � mm/mm

"y D �0:3

72:4 � 109
155 � 106 D �642 � mm/mm

xy D 0 � 250 � 106 D 0

(5.41)

The dimensional changes of the square element of aluminum are

ı�x D "x�x D .2140 � 10�6/.50/ D 0:1070 mm

ı�y D "y�y D .�642 � 10�6/.50/ D �0:0321 mm
(5.42)

so the deformed dimensions of the aluminum element, in Figure 5.4(b), are

�x C ı�x D 50:107 mm

�y C ı�y D 49:968 mm
(5.43)

This behavior is well known; the material stretches in the direction of the

applied stress and contracts perpendicular to that direction (both in the y

direction and the z direction, though the latter is not shown), and all right

corner angles remaining right.

Turning to Figure 5.4(c), we now consider a similar-sized square element

of graphite-reinforced material with the fibers aligned with the x direction

and also subjected to the 155 MPa stress in the x direction. The stress-strain

relations of equation (5.25) reduce to

"x D NS11.0
ı/�x

"y D NS12.0
ı/�x

xy D NS16.0
ı/�x

(5.44)
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or, if we use the compliances of equation (5.27),

"x D S11�x

"y D S12�x

xy D 0 � �x

(5.45)

From equation (4.5) and Table 2.1, or, alternatively, directly from equation

(2.56),

S11 D 6:45 (TPa)�1 S12 D �1:600

S22 D 82:6 S66 D 227
(5.46)

resulting in

"x D .6:45 � 10�12/.155 � 106/ D 1000 � mm/mm

"y D .�1:600 � 10�12/.155 � 106/ D �248 � mm/mm

xy D 227 � 106 � 0 D 0

(5.47)

The dimensional changes of the graphite-reinforced element are

ı�x D "x�x D .1000 � 10�6/.50/ D 0:0500 mm

ı�y D "y�y D .�248 � 10�6/.50/ D �0:0124 mm
(5.48)

so the deformed dimensions are

�x C ı�x D 50:0500 mm �y C ı�y D 49:988 mm (5.49)

Figure 5.4(d) shows the deformed shape of the graphite-reinforced element,

and the deformation is similar to that of the aluminum; the element stretches

in the x direction and contracts in the y direction (and in the z direction), and

all right corner angles remain right. For the same applied stress level of 155

MPa, the elongation of the fiber-reinforced material in the fiber direction, ı�x

in equation (5.48), is about one-half the elongation of the aluminum, ı�x in

equation (5.42); the difference is due to the difference between E1 for the

graphite-reinforced material and E for aluminum. Please note that a tensile

stress level of 155 MPa in the fiber direction of graphite-reinforced material,

which results in the 1000 � mm/mm elongation strain, is considerably below

the ultimate capacity of that material.

Now consider a square element of graphite-reinforced material with the

fibers oriented at � D 30ı with respect to the x axis and also subjected to a

stress, as shown in Figure 5.4(e), �x D 155 MPa. The strains are determined

by equation (5.25) as

"x D NS11.30ı/�x

"y D NS12.30ı/�x

xy D NS16.30ı/�x

(5.50)
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With � D 30ı, m D
p

3=2 and n D 1=2, and equations (5.26) and (5.46)

give

NS11.30ı/ D 50:8 (TPa)�1 NS22.30ı/ D 88:9

NS12.30ı/ D �26:9 NS26.30ı/ D �3:77

NS16.30ı/ D �62:2 NS66.30ı/ D 123:6

(5.51)

As a result, from equation (5.50),

"x D .50:8 � 10�12/.155 � 106/ D 7880 � mm/mm

"y D .�26:9 � 10�12/.155 � 106/ D �4170 � mm/mm

xy D .�62:2 � 10�12/.155 � 106/ D �9640 � rad.�0:553ı/

(5.52)

where the notation � rad has been introduced. The shear strain represents an

angle change, in radians, and the prefix � has been added to represent the

factor 10�6, that is,

1� rad D 10�6 rad D 57:3 � 10�6 degrees (5.53)

This is the counterpart of � mm/mm for the strains "1 and "2. It is interesting

to note that at � D 30ı, the angle change of the shear-extension coupling

effect of NS16 results in larger deformations than the Poisson contraction effects

of NS12 (i.e., �9640 � rad versus �4170 � mm/mm). The relative magnitude

of these two effects at all values of � can be determined from the character of
NS12 and NS16 as a function of � , as in Figure 5.3(b). With the above numbers,

dimensional changes of the graphite- reinforced element become

ı�x D "x�x D .0:00787/.50/ D 0:394 mm

ı�y D "y�y D .�0:00417/.50/ D �0:209 mm
(5.54)

Unlike the previous two cases, however, the original right corner angles do

not remain right. The change in right angle is given by the value of xy in

equation (5.52), namely, �9640 � rad, or �0:553ı. The deformed dimensions

of the element are

�x C ı�x D 50:394 mm �y C ı�y D 49:791 mm (5.55)

and Figure 5.4(f) illustrates the deformed shape of the element. It is important

to properly interpret the sign of xy . A positive xy means that the right

angle between two line segments emanating from the origin, one line segment

starting from the origin and extending in the Cx direction, the other line

segment starting from the origin and extending in the Cy direction, decreases.

Because xy in the above example is negative, the angle in the lower left hand

corner of the element increases.

As a final example of the effects of tension normal stress in the x direction,

consider an element of graphite-reinforced composite with the fibers oriented

at � D �30ı relative to the Cx axis, as in Figure 5.4(g). This example

illustrates one of the important characteristics of the NSij as regards their
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dependence on � . In this situation the stress-strain relations of equation (5.25)

become

"x D NS11.�30ı/�x

"y D NS12.�30ı/�x

xy D NS16.�30ı/�x

(5.56)

As noted earlier, inspection of the definitions of the off-axis compliance in

equation (5.26) reveals that NS16 and NS26 are odd functions of n, and hence of

� , while the remaining NSij are even functions of � . Therefore

NS11.�30ı/ D C NS11.C30ı/ D 50:8 (TPa)�1

NS12.�30ı/ D C NS12.C30ı/ D �26:9

NS16.�30ı/ D � NS16.C30ı/ D 62:2

NS22.�30ı/ D C NS22.C30ı/ D 88:9

NS26.�30ı/ D � NS22.�30ı/ D 3:77

NS66.�30ı/ D C NS66.C30ı/ D 123:6

(5.57)

and substituting into equation (5.56) results in

"x D .50:8 � 10�12/.155 � 106/ D 7880 � mm/mm

"y D .�26:9 � 10�12/.155 � 106/ D �4170 � mm/mm

xy D .62:2 � 10�12/.155 � 106/ D 9640 � rad .0:553ı/

(5.58)

With these numbers, dimensional changes of the �30ı graphite-reinforced

element become

ı�x D "x�x D .0:00787/.50/ D 0:394 mm

ı�y D "y�y D .�0:00417/.50/ D �0:209 mm
(5.59)

Like the C30ı case, the original right corner angles do not remain right and

the change in right angle is given by the value of xy in equation (5.58),

namely, 9640 � rad, or 0:553ı. The deformed dimensions of the element are

the same as the C30ı case, namely,

�x C ı�x D 50:394 mm �y C ı�y D 49:791 mm (5.60)

Figure 5.4(h) illustrates the deformed shape of the element. It is important

to note that the change in the right corner angle for the �30ı case is

opposite the change for the C30ı case. This ability to change the sign of

the deformation by changing the fiber angle is a very important characteristic

of fiber-reinforced composite materials. Here the sign change of NS16 was

responsible for the sign of the change in right angle. Because it is also an

odd function of � , NS26 changes sign with � and in other situations it can

be responsible for controlling the change in sign of a deformation. In more
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complicated loadings, specifically with stress components �x and �y both

present, both NS16 and NS26 control the sign of the deformation. The potential

for using this characteristic is enormous.

It is important to note that simply rotating the fiber angles by 30ı increases

the strain in the direction of the applied stress by a factor of 8. Equation (5.47)

indicates that for � D 0ı, "x D 1000 � mm/mm, while equation (5.52) shows

that for � D 30ı, "x D 7880 � mm/mm. The loss of stiffness when the fibers

rotate away from the loading direction is quite significant.

As mentioned, NS16 and NS26 serve “double duty” in that they couple normal

stresses to shear deformation, and they couple the shear stress to extensional

deformations. Another series of examples will illustrate this latter coupling

and further illustrate the influence of the sign dependence of NS16 and NS26

on � . The series will again start with an element of aluminum and progress

through an element of graphite-reinforced material. This progression, though

adding nothing to what we already know about the behavior of aluminum, is

taken specifically to show the contrasts, and in some cases the similarities, in

the response of fiber-reinforced composites and isotropic materials. Consider,

as shown in Figure 5.5(a), a 50 � 50 mm square of aluminum loaded by a

4.40 MPa shear stress �xy . Of interest are the deformations caused by the

application of this shear stress. Because �x and �y are zero, the stress-strain

relations of equation (5.25) reduce to

"x D NS16�xy

"y D NS26�xy

xy D NS66�xy

(5.61)

For aluminum, NS16 and NS26 were shown to be zero, in equation (5.28), and

as a result

"x D 0 � �xy

"y D 0 � �xy

xy D S66�xy D
1

G
�xy

(5.62)

Using the value of shear modulus for aluminum from Table 2.1 yields

"x D 0 � 4:40 � 106 D 0

"y D 0 � 4:40 � 106 D 0

xy D 1

27:8 � 109
4:40 � 106 D 158:0 � rad .0:00905ı/

(5.63)

confirming our experience with aluminum that only a shear deformation

results; the angle in the lower left corner decreases by 158.0 � rad, or

0:00905ı. The lengths of the sides of the deformed element are still exactly

50 mm; Figure 5.5(b) shows the deformed shape.
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FIGURE 5.5. Response of aluminum and graphite-reinforced composite to a positive

shear stress �xy .

Applying a shear stress �xy to an element of graphite-reinforced composite

with the fibers aligned with the x axis, as in Figure 5.5(c), leads to

"x D NS16.0
ı/�xy

"y D NS26.0
ı/�xy

xy D NS66.0
ı/�xy

(5.64)
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Using the compliances of equation (5.27) and the numerical values from

equation (5.46) leads to

"x D 0 � �xy D 0 � 4:40 � 106 D 0

"y D 0 � �xy D 0 � 4:40 � 106 D 0 (5.65)

xy D S66�xy D .227 � 10�12/.4:40 � 106/ D 1000 � rad .0:0573ı/

Again, as in Figure 5.5(d), the only deformation is the shear strain; the

4.40 MPa shear stress �xy causes a much larger shear strain in the graphite-

reinforced material with the fibers aligned with the x axis than in the alu-

minum. This is because the value of G12 for a graphite-reinforced composite

is much less than the value of G for aluminum.

Attention now turns to the case of Figure 5.5(e), applying the 4.40 MPa

shear stress �xy to an element of graphite-reinforced material with its fibers

oriented at 30ı relative to the Cx axis. This situation results in an unexpected

and unusual response. As with the past cases, the stress-strain relations of

equation (5.25) result in

"x D NS16.30ı/�xy

"y D NS26.30ı/�xy

xy D NS66.30ı/�xy

(5.66)

and using the appropriate numerical values for the off-axis compliances from

equation (5.51) yields

"x D .�62:2 � 10�12/.4:40 � 106/ D �274 � mm/mm

"y D .�3:77 � 10�12/.4:40 � 106/ D �16:58 � mm/mm

xy D .123:6 � 10�12/.4:40 � 106/ D 544 � rad .0:0312ı/

(5.67)

The above numbers indicate that due to the shear stress, both the x and y

dimensions decrease! This behavior is unlike anything that happens with an

isotropic material and is totally unexpected. This coupling of shear stress

and extensional deformation again provides unlimited potential for using

fiber-reinforced composite materials to achieve results not possible or even

conceivable with metals. The dimensional changes associated with the above

strains are

ı�x D "x�x D .�0:000274/.50/ D �0:01368 mm

ı�y D "y�y D .�0:00001658/.50/ D �0:000829 mm
(5.68)

The shear strain is positive so the right corner angle in the lower-left-hand

corner of the element decreases by 544 � rad, or 0:0312ı. Figure 5.5(f)

illustrates the deformed shape of the element; the lengths of the sides
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being given by

�x C ı�x D 49:986 mm �y C ı�y D 49:999 mm (5.69)

Finally, consider the element of graphite-reinforced composite with the

fibers oriented at �30ı relative to the Cx axis, as in Figure 5.5(g). With an

applied stress of �xy D 4:4 MPa, the stress-strain relations of equation (5.25)

become

"x D NS16.�30ı/�xy

"y D NS26.�30ı/�xy

xy D NS66.�30ı/�xy

(5.70)

If we use numerical values from equation (5.57), equation (5.70) becomes

"x D .62:2 � 10�12/.4:40 � 106/ D 274 � mm/mm

"y D .3:77 � 10�12/.4:40 � 106/ D 16:58 � mm/mm

xy D .123:6 � 10�12/.4:40 � 106/ D 544 � rad .0:0312ı/

(5.71)

These numbers indicate that with the fibers at � D �30ı, the sides of the

element increase in length! This is exactly opposite the case with � D C30ı.

However, the right angle in the lower left corner decreases the same as for

the � D C30ı orientation. The simple switching of the fiber angle has a

significant influence on the response. Figure 5.5(h) illustrates the deformed

element; the dimensional changes are given by

ı�x D "x�x D .0:000274/.50/ D 0:01368 mm

ı�y D "y�y D .0:00001658/.50/ D 0:000829 mm
(5.72)

and the new dimensions being

�x C ı�x D 50:01368 mm �y C ı�y D 50:000829 mm (5.73)

The examples of Figures 5.4 and 5.5 illustrate one of the most impor-

tant characteristics of the response of fiber-reinforced materials, namely, the

coupling effects when the fibers are oriented at some angle relative to the

direction of the applied load. Here because the stress levels considered were

small, the deformations were small. For higher stress levels, larger deforma-

tions result. The important point is, couplings are present in fiber-reinforced

materials, and they can be used to advantage. With some experience, intuition

allows one to qualitatively predict these coupling effects for simple cases.

With all three components of stress applied, however, relying on intuition

can be dangerous and the stress-strain relations of equation (5.25) should be

used. Using the stress-strain relations of equation (5.25) is recommended in

all cases, even if, in your mind, it is only being used to confirm intuition.

Many times your intuition can be fooled, but use of equation (5.25) always

leads to the correct answer.
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It is important to keep in mind the discussion of Section 2.5 regarding

specification of either the stress components or the strain components. In the

context of plane stress, either �1 or "1, and either �2 or "2, and either �12

or 12 can be stipulated, but not both the stress and the strain component

from any one of the pairs. In the context of the fibers being oriented at some

angle with respect to the x axis, either �x or "x, and either �y or "y , and

either xy or �xy can be specified. In the above series of examples, the stress

component from each of the pairs was stipulated, two of the three stress

components being zero in all the cases. In all cases the strains in each of

the stress-strain pairs were being sought. By contrast, consider again the 50

mm � 50 mm square of graphite-reinforced composite, loaded in tension

and with its fibers oriented at �30ı with respect to the Cx axis. Assume

that, instead of being completely free to deform, as in the last examples, the

off-axis element is constrained from any deformation in the y direction, as

in Figure 5.6(a). Of interest here are the deformations that result from this

loading. For this situation �x is known to be 155 MPa, "x is unknown, �y

is unknown, "y is known to be zero, �xy is known to be zero, and xy is

unknown. The unknowns involve both stresses and strains, and the knowns

involve both stresses and strains. For this particular situation the stress-strain

relations of equation (5.25) become

"x D NS11�x C NS12�y C NS16 � 0

0 D NS12�x C NS22�y C NS26 � 0

xy D NS16�x C NS26�y C NS66 � 0

(5.74)

where it is understood that the NSij are evaluated at � D �30ı. From the

second equation

�y D �
NS12

NS22

�x (5.75)

(a)

30°

Decrease in
right angle
0.563°

x

y

  x = 155.0 MPa

50.331 mm

50 mm

50 mm

(b)

σ

FIGURE 5.6. Response of a partially constrained off-axis element of graphite-

reinforced material to a normal stress �x .
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and using this in the first and third equations results in

"x D
 

NS11 �
NS2
12

NS22

!

�x

xy D
 

NS16 �
NS12

NS26

NS22

!

�x

(5.76)

The terms in parenthesis are identified as before as reduced compliances.

Using numerical values for graphite-reinforced composite, from equation

(5.57), we find

"x D 6610 � mm/mm xy D 9820 � rad .0:563ı/

�y D 46:9 MPa
(5.77)

According to these calculations, the applied stress in the x direction causes

the x dimension to increase by

ı�x D "x�x D .0:00661/.50/ D 0:331 mm (5.78)

and the lower left hand right corner angle to decrease by 9820 � rad, or

0:563ı. The stress in the y direction required to maintain the state of zero

deformation in that direction is a tensile value of 46.9 MPa. The deformed

shape of the element is shown in Figure 5.6(b), and compared to the case of

Figure 5.4(g), the addition of the restraint in the y direction decreases the

change in length and increases slightly the change in right angle.

Though the deformations in the x and y directions are very important, it is

equally important to remember that accompanying these dimensional changes

are changes in the z direction. Equation (5.19), or its more fundamental form,

equation (5.18), is the expression for the through-the-thickness strain. If we

consider the situation in Figure 5.5(e) as an example, equation (5.19) becomes

"z D 2 .S13 � S23/ sin � cos ��xy (5.79)

Using numerical values of S13 and S23 from equation (2.56) yields

"z D 2.�1:600 C 37:9/ � 10�12 sin.30ı/ cos.30ı/ � 4:40 � 106

"z D 138:3 � mm/mm
(5.80)

The element of material becomes thicker due to the application of the shear

stress. The change in thickness of the element of material, �h, is given by

�h D "zh (5.81)

Exercises for Section 5.2

1. Verify equation (5.26). This can be done by going through the steps discussed

for arriving at the equation. The factors of 1=2 and 2 in the derivation of that



Transformed Reduced Stiffnesses 201

equation can be confusing and lead to errors. Be sure you understand the origins

of equation (5.26).

2. Suppose a 50 mm � 50 mm square of graphite-reinforced material with its fibers

oriented at C30ı with respect to the Cx axis is somehow restrained from any

shear deformation but is free to deform in extension in the x and y directions.

The square is compressed by a stress of 25 MPa in the y direction. (a) What is

the deformation of the element in the x and y directions? (b) What shear stress is

required to maintain this zero shear deformation condition?

3. As we mentioned earlier, it is often easy to forget that "z is not zero for the

plane-stress condition. Consider a 50 mm � 50 mm element of graphite-reinforced

material subjected to a tensile stress of 25 MPa in the x direction and assume the

element thickness h is 0.150 mm. Plot the change in thickness of this element,

�h, as a function of fiber orientation angle � and note the orientation of maximum

and minimum thickness change. Use the range ��=2 � � � C�=2 and comment

on the oddness or evenness of �h versus � .

4. Repeat Exercise 3 but consider the thickness change due to an applied shear stress

of 25 MPa.

Computer Exercise

It would be useful to write a short computer program to compute the elements of

the NS matrix as given by equation (5.26). Have the program read in and print out

the values of E1, E2, �12, and G12; also print the values of S11, S12, S22, and S66.

Then have the program compute and print the values of the NSij as a function of

� , ��=2 � � � �=2. For glass-reinforced composite, plot these six quantities as a

function of � . Do the NSij for glass-reinforced material vary as rapidly with � as they

do for graphite-reinforced materials? What is the reason for this?

5.3 Transformed Reduced Stiffnesses

The inverse of the stress-strain relations of equation (5.25) can be derived by

slightly rewriting the stress-strain relation of equation (4.14) to account for

the factor of 1/2 in the shear strain as
8
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(5.82)

substituting the transformations given by equations (5.9) and (5.20) into

equation (5.82), premultiplying both sides of the resulting equation by ŒT ��1,

and multiplying the three matrices together. This is all in analogy to equation

(5.24), and the result is
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(5.83)

The factors of 1=2 and 2 have been eliminated and the relation written in

terms of the engineering strain. The NQij are called the transformed reduced

stiffnesses, and sometimes the off-axis reduced stiffnesses, and they are de-

fined by

NQ11 D Q11m4 C 2.Q12 C 2Q66/n2m2 C Q22n
4

NQ12 D .Q11 C Q22 � 4Q66/n2m2 C Q12.n
4 C m4/

NQ16 D .Q11 � Q12 � 2Q66/nm3 C .Q12 � Q22 C 2Q66/n
3m

NQ22 D Q11n4 C 2.Q12 C 2Q66/n2m2 C Q22m
4

NQ26 D .Q11 � Q12 � 2Q66/n
3m C .Q12 � Q22 C 2Q66/nm3

NQ66 D .Q11 C Q22 � 2Q12 � 2Q66/n
2m2 C Q66.n

4 C m4/

(5.84)

Figure 5.7 illustrates the variations of the various components of the trans-

formed reduced stiffness matrix with � . Like the transformed reduced com-

pliances, the NSij , the transformed reduced stiffnesses vary significantly with

� . For example, compared to its value at � D 0ı, the value of NQ11 at

� D 30ı decreases 50 percent, while the value of NQ66 increases by about

a factor of 8. As with the NSij , NQ12 and the on-diagonal terms are all even

functions of � , while the off-diagonal terms NQ16 and NQ26 are odd functions

of � . Obviously the NSij of equation (5.26) are related to the NQij of equation

(5.84) by

Œ NQ� D Œ NS��1 (5.85)

However, the form of equation (5.84) is more convenient computationally.

In analogy to equation (5.27),

NQ11.0ı/ D Q11
NQ22.0

ı/ D Q22

NQ12.0ı/ D Q12
NQ26.0

ı/ D 0

NQ16.0ı/ D 0 NQ66.0
ı/ D Q66

(5.86)

where the Q11, Q12, Q22, and Q66 are often referred to as the on-axis reduced

stiffnesses and are given by equation (4.17). For an isotropic material, in
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FIGURE 5.7. Variation of transformed reduced stiffnesses with fiber angle � for

graphite-reinforced composite.

analogy to equation (5.28), from equation (4.18),

NQ11 D E

1 � �2

NQ12 D �E

1 � �2

NQ16 D 0

NQ22 D E

1 � �2

NQ26 D 0

NQ66 D G D E

2.1 C �/

(5.87)

The transformed reduced stiffness of equation (5.84) and the stress-strain

relations that use them, equation (5.83), are very important equations in the
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analysis of fiber-reinforced composite materials. The transformed stiffnesses

will be used more frequently than the transformed reduced compliances. Like

the transformed compliances, the transformed stiffnesses relate the strains as

defined in the x-y-z global coordinate system to the stresses defined in that

system, and the existence of the NQ16 and NQ26 terms, like the existence of the
NS16 and NS26 terms, represent shear-extension coupling effects. Whereas the

reduced compliances represent the deformations that result from a prescribed

stress, the stiffnesses represent the stresses that must be applied to produce a

prescribed deformation. Although one can use either the transformed reduced

stiffnesses or the transformed reduced compliances to solve a given problem,

the physical interpretation of the two quantities is so different that in a

given problem it is generally more convenient to use one rather than the

other. For example, consider a 50 mm � 50 mm square of material that has

been stretched in the x direction by 0.050 mm. To determine the stresses

required to achieve this deformation, it is convenient to use the stress-strain

relations of equation (5.83) directly, as opposed to the stress-strain relations

of equation (5.25).

As a parallel to the series of examples presented in the discussion of

the reduced compliance matrix, a similar series of examples will next be

discussed to illustrate the physical implications of the terms in the NQ matrix.

Shear-extension coupling and sign sensitivity of the NQ16 and NQ26 terms will

again be evident. The particular examples can be considered the comple-

ment of the examples presented previously. They are termed complementary

examples because the strain variable in each stress-strain pair is specified,

whereas before, the stress variable of the pair was specified. These examples

follow.

A 50 mm � 50 mm element of aluminum, in Figure 5.8(a), is stretched

0.050 mm in the x direction. The y dimension does not change and the right

corner angles remain right. Interest focuses on the stresses required to effect

this deformation. Assume the element is in a state of plane stress. Note the

complementary nature of this problem relative to the problem discussed in

Figure 5.4(a). In the present situation the strains of the stress-strain pairs are

known and it is the stresses that are unknown and to be solved for. In the

situation of Figure 5.4(a) the stresses of the stress-strain pairs were known

and it was the strains that were unknown and to be solved for. Specifically,

in Figure 5.4(a) �x was the only nonzero stress, whereas in Figure 5.8(a) "x

is the only nonzero strain (in the x � y plane). For the deformation described

in Figure 5.8(a)

"x D ı�x

�x

D 0:050

50
D 1000 � 10�6

"y D ı�y

�y

D 0

50
D 0

(5.88a)
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  x = 92.8 MPa

  y = 30.1 MPaσ

σ

τ

  xy = –46.7 MPa
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FIGURE 5.8. Stress required in aluminum and graphite-reinforced material to

produce extensional strain.

and because the right corner angles remain right,

xy D 0 (5.88b)

To compute the stresses required to produce this deformation, the stress-strain

relations of equation (5.83) can be used, resulting in

�x D NQ11"x

�y D NQ12"x

�xy D NQ16"x

(5.89)
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Because aluminum is isotropic, the NQij of equation (5.87) indicate equation

(5.89) becomes

�x D E

1 � �2
"x

�y D �E

1 � �2
"x

�xy D 0 � "x

(5.90)

Substituting in numerical values for aluminum from Table 2.1 yields

�x D 72:4 � 109

1 � .0:3/2
1000 � 10�6 D 79:6 MPa

�y D
.0:3/.72:4 � 109/

1 � .0:3/2
1000 � 10�6 D 23:9 MPa

�xy D 0

(5.91)

Figure 5.8(b) illustrates this stress state, and the results correlate with our past

experience in that a tensile stress in the y direction is required to overcome

the tendency of the material to contract in the y direction. Because "y D 0, a

tensile stress is required to enforce this. Also, the specimen changes thickness

in the z direction.

Consider next, as in Figure 5.8(c), an element of graphite-reinforced com-

posite in a state of plane stress with its fibers aligned with the x axis and

stretched in the x direction by 0.050 mm, with no deformation in the y

direction. Equation (5.88) just applied to aluminum defines the strain state.

For this case the stress-strain relations, equation (5.83), reduce to

�x D NQ11.0ı/"x

�y D NQ12.0ı/"x

�xy D NQ16.0ı/"x

(5.92)

and by equation (5.86) to

�x D Q11"x

�y D Q12"x

�xy D 0 � "x D 0

(5.93)

For the graphite-reinforced material, we find using equation (4.17) and the

numerical values of the engineering properties from Table 2.1, or alternatively,

equations (2.58) and (4.15), or equations (2.56) and (4.16), that

Q11 D 155:7 GPa Q22 D 12:16

Q12 D 3:02 Q66 D 4:40
(5.94)
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Using the applicable stiffness from equation (5.94), the stresses given by

equation (5.93) are

�x D .155:7 � 109/.1000 � 10�6/ D 155:7 MPa

�y D .3:02 � 109/.1000 � 10�6/ D 3:02 MPa

�xy D 0

(5.95)

Because of the relative values of E for aluminum and E1 for the graphite-

reinforced material, stretching the graphite-reinforced material by 0.050 mm

takes about twice as much stress as stretching the aluminum the same amount.

However, restraining the deformation in the y direction in the graphite-

reinforced material, 3.02 MPa, equation (5.95), takes far less than restraining

the deformation in the aluminum, 23.9 MPa, equation (5.91), both in terms

of absolute stress level, and in terms of stress level relative to �x. The smaller

value of �y required for the graphite-reinforced material is a direct result of

the small value of �21.

Consider now the situation in Figure 5.8(e), a 50 mm � 50 mm element of

graphite-reinforced material with the fibers oriented at C30ı with respect to

the Cx axis and stretched 0.050 mm in the x direction. The strains are again

given by equation (5.88), and the stresses required to produce these strains

are

�x D NQ11.30ı/"x

�y D NQ12.30ı/"x

�xy D NQ16.30ı/"x

(5.96)

With � D 30ı, m D
p

3=2 and n D 1=2, and equations (5.94) and (5.84)

give

NQ11.30ı/ D 92:8 GPa NQ22.30ı/ D 21:0

NQ12.30ı/ D 30:1 NQ26.30ı/ D 15:5

NQ16.30ı/ D 46:7 NQ66.30ı/ D 31:5

(5.97)

Using these numerical values, we find that the stresses required to produce

the prescribed deformations are

�x D .92:8 � 109/.1000 � 10�6/ D 92:8 MPa

�y D .30:1 � 109/.1000 � 10�6/ D 30:1 MPa

�xy D .46:7 � 109/.1000 � 10�6/ D 46:7 MPa

(5.98)

Remarkably, a shear stress must be applied to the element of material, in

addition to the other two stresses, in order to have the element simply elongate

in the x direction. Figure 5.8(f) illustrates the stresses for this example. If

this shear stress was not applied, then shearing deformations would result

and the deformation would not be just a simple elongation in the x direction.

Equally remarkable is the fact that the shear stress required to stop the right
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corner angles from changing is larger than the stress �y required to restrain

the material against deformation in the y direction (i.e., resistance to Poisson

effects).

As a final example of the stresses required to effect a simple elongation in

the x direction, consider an element of graphite-reinforced material with the

fibers oriented in the �30ı direction, as in Figure 5.8(g). For this situation

�x D NQ11.�30ı/"x

�y D NQ12.�30ı/"x

�xy D NQ16.�30ı/"x

(5.99)

and from equation (5.97) and the evenness and oddness properties of the NQij ,

NQ11.�30ı/ D C NQ11.C30ı/ D 92:8 GPa

NQ12.�30ı/ D C NQ12.C30ı/ D 30:1

NQ16.�30ı/ D � NQ16.C30ı/ D �46:7

NQ22.�30ı/ D C NQ22.C30ı/ D 21:0

NQ26.�30ı/ D � NQ26.C30ı/ D �15:5

NQ66.�30ı/ D C NQ66.C30ı/ D 31:5

(5.100)

Substituting these into equation (5.99) yields the stresses required, namely,

�x D .92:8 � 109/.1000 � 10�6/ D 92:8 MPa

�y D .30:1 � 109/.1000 � 10�6/ D 30:1 MPa

�xy D .�46:7 � 109/.1000 � 10�6/ D �46:7 MPa

(5.101)

Again, shear stresses must be applied to the element, in addition to the other

two stresses, to obtain the simple state of elongation in the x direction.

However, reversing the fiber orientation is responsible for the change in the

sign of the shear stress required to effect the deformation. The stress to

restrain the deformation in the y direction is insensitive to the sign of the

off-axis fiber orientation, as is the stress in the x direction. Figure 5.8(h)

illustrates the stresses of equation (5.101).

This just-completed series of examples illustrates the physical interpretation

of the reduced stiffness matrix, and it also illustrates, in a different fashion,

the existence, level, and character of shear-extension coupling, a coupling

inherent in fiber-reinforced composite materials. As expected, the NQ16 and
NQ26 serve double duty in regard to shear-extension coupling. We will illustrate

this type of coupling from another viewpoint shortly. First, however, the

thickness change in one of the previous examples will be discussed.

Because the stress component �z has been specified to be zero in a state

of plane stress, "z cannot be specified, whether we specify "x, "y , and xy ,

as in these recent examples, or whether we specify �x , �y , and �xy , as in
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the previous examples. Nevertheless, "z is not zero and it can be calculated.

Consider the example of Figure 5.8(e), where the element of fiber-reinforced

material with its fibers oriented at C30ı relative to the Cx axis is stretched

in the x direction 0.050 mm. No deformation is allowed in the y direction or

in shear. The resulting stresses were given by equation (5.98) and illustrated in

Figure 5.8(f). Equation (5.19) provides us with the strain in the z direction.

Specifically, using � D C30ı, the stresses from equation (5.98), and the

material properties for S13 and S23 from equation (2.56), we find

"z DŒ.�1:600 � 10�12/ cos2.30ı/ C .�37:9 � 10�12/ sin2.30ı/�.92:8 � 106/

C Œ.�1:600 � 10�12/ sin2.30ı/

C .�37:9 � 10�12/ cos2.30ı/�.30:1 � 106/ C 2Œ.�1:600 � 10�12/

� .�37:9 � 10�12/� sin.30ı/ cos.30ı/.46:7 � 106/

"z D � 389 � 10�6 (5.102)

Thus, the element of material becomes thinner as a result of the prescribed

deformation in the x-y plane.

Finally, to round out the discussion of the transformed reduced stiffness,

consider the situation in Figure 5.9(a), which shows a pure shearing deforma-

tion being prescribed for the 50 mm � 50 mm square element of aluminum,

with the right corner angle in the lower left hand corner decreasing by 1000 �

rad, or 0:0573ı. With a pure shearing deformation the lengths of the sides do

not change. The prescribed strain state is thus given by

"x D 0

"y D 0

xy D 1000 � 10�6

(5.103)

and it is assumed the element is in a state of plane stress; that is, �z , �xz , and

�yz are zero. With this, the stress-strain relations of equation (5.83) reduce to

�x D NQ16xy

�y D NQ26xy

�xy D NQ66xy

(5.104)

For aluminum, from equation (5.87),

�x D 0 � xy D 0

�y D 0 � xy D 0

�xy D Gxy

(5.105)

and from Table 2.1,

�x D 0

�y D 0

�xy D .27:8 � 109/.1000 � 10�6/ D 27:8 MPa

(5.106)
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FIGURE 5.9. Stress required in aluminum and graphite-reinforced material to

produce a positive shear strain.

As our experience tells us, for isotropic materials only a shear stress is

required to produce a prescribed shear strain, as in Figure 5.9(b).

Prescribing the same pure shear strain state on an element of graphite-

reinforced material with its fiber aligned with the x axis, Figure 5.9(c), results

in, from equation (5.83),

�x D NQ16.0
ı/xy

�y D NQ26.0
ı/xy

�xy D NQ66.0
ı/xy

(5.107)
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From equations (5.86) and (5.94),

�x D 0 � xy D 0

�y D 0 � xy D 0

�xy D Q66xy D .4:40 � 109/.1000 � 10�6/ D 4:40 MPa

(5.108)

Due to the difference in values between G for aluminum and G12, the level

of shear stress required to produce xy D 1000 � rad in the graphite-

reinforced material with its fibers aligned with the x axis is much less than

the shear stress required to produce that same shear strain in the aluminum,

as Figure 5.9(d) illustrates.

With the fibers oriented at C30ı relative to the Cx axis, Figure 5.9(e), the

stresses required to maintain the pure shear deformation are given by

�x D NQ16.30ı/xy

�y D NQ26.30ı/xy

�xy D NQ66.30ı/xy

(5.109)

From equation (5.97),

�x D .46:7 � 109/.1000 � 10�6/ D 46:7 MPa

�y D .15:47 � 109/.1000 � 10�6/ D 15:47 MPa

�xy D .31:5 � 109/.1000 � 10�6/ D 31:5 MPa

(5.110)

As might be expected by now, equation (5.110) leads to the conclusion that

to produce a pure shear deformation with the fibers off-axis at C30ı requires

not only a shear stress, but also tensile stresses �x and �y , as in Figure 5.9(f).

Without these extensional stresses, the state of pure shear deformation could

not exist.

As the final example in this series, consider the case with the fibers oriented

at �30ı, Figure 5.9(g). From equation (5.83)

�x D NQ16.�30ı/xy

�y D NQ26.�30ı/xy

�xy D NQ66.�30ı/xy

(5.111)

and using equation (5.100) leads to

�x D .�46:7 � 109/.1000 � 10�6/ D �46:7 MPa

�y D .�15:47 � 109/.1000 � 10�6/ D �15:47 MPa

�xy D .31:5 � 109/.1000 � 10�6/ D 31:5 MPa

(5.112)

The values of the stresses computed for this case indicate that to effect the

prescribed shear strain, when the fibers are at � D �30ı the element must

be compressed in the x and y directions. Recall, the results of equation

(5.110) indicate that when � D C30ı, tension must be applied in the x

and y directions! This is strange and unpredictable behavior, to say the
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least. However, this is the nature of fiber-reinforced composite materials.

It emphasizes the fact that it is very dangerous to second-guess the answers.

Rely on the equations, use them correctly, and you will not have to guess at

the results. Furthermore, as you study composites in greater depth, you will

learn that it is in your best interest to not guess. You will be wrong too many

times!

This completes the series of examples designed to illustrate the important

similarities and differences between the responses of an isotropic material, in

this case aluminum, and a fiber-reinforced material, in this case a graphite-

reinforced material. The series of examples provides a physical interpretation

to the elements of the transformed reduced compliance and stiffness matrices.

In summary, the elements of the compliance matrix represent the deformations

that result from a simple applied stress, and the elements of the stiffness

matrix represent the stresses that must be applied to effect a simple state of

deformation.

Exercises for Section 5.3

1. Verify equation (5.84). This can be done by going through the steps discussed for

arriving at the equations. The factors of 1=2 and 2 can be confusing and lead to

errors, so be sure you understand the origin of equation (5.84).

2. A 50 mm � 50 mm square of graphite-reinforced material with its fibers oriented

at C30ı with respect to the Cx axis is compressed 0.050 mm in both the x and y

directions. No shear deformations are allowed. What is the state of stress �x , �y ,

and �xy required to produce this bidirectional compression?

3. Consider the elements of material in Figure 5.9. (a) What is the thickness change,

in mm, of the element of material subjected to the shearing deformation in Fig-

ure 5.9(e)? (b) Is the thickness change of the case in Figure 5.9(g) the same?

Assume the element of material is originally 0.150 mm thick.

Computer Exercise

Modify and add to the computer program written in the exercises for Section 4.3

to have it compute and print the six elements of the NQ matrix given by equation

(5.84). Use the program to compute and print the values of the NQij as a function of

�; ��=2 � � � C�=2. For glass-reinforced material, plot these six quantities as a

function of � . Do the NQij vary as rapidly with � for glass-reinforced material as for

graphite-reinforced material?

5.4 Engineering Properties in a Global Coordinate System

In Chapter 2 we began our studies of the elastic response of fiber-reinforced

composites by introducing the engineering properties in the 1-2-3 principal
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material coordinate system (E1; E2, etc.). These engineering properties are,

of course, indirectly involved in the transformed reduced stiffnesses and

compliances we have just studied. Engineering properties can also be defined

in the x-y-z global coordinate system. These are often of much more use than,

say, the reduced compliances or stiffnesses. The extensional moduli, Poisson’s

ratios, and the shear modulus may mean considerably more to many designers

and engineers, because the physical interpretation of these quantities is well

established and understood. The engineering properties in the x-y-z system

are derivable directly from their definitions, just as they were in Chapter 2 for

the 1-2-3 system. In this section we shall derive the engineering properties

that are important when considering a state of plane stress. They are related

to the transformed reduced compliances and hence can ultimately be written

in terms of the engineering properties in the 1-2-3 system.

Consider, as in Figure 5.10(a), an off-axis element of fiber-reinforced

composite material in the x-y-z system with its fiber oriented at some angle �

with respect to the x axis. The element is subjected to a normal tensile stress

�x and all other stresses are zero, much like the situation in Figure 5.4(e),

though here the angle � and the magnitude of the tensile stress are arbitrary.

In response to this applied stress, the element stretches in the x direction,

contracts in the y direction, and because the fibers are not aligned with the

x-axis, the right corner angles do not remain right. The extensional strain in

the x direction is related to the stress in the x direction by the extensional

modulus in the x direction, Ex; the relation between these two quantities is,

by definition,

"x D �x

Ex

(5.113)

But according to the strain-stress relations of equation (5.25), for this situa-

tion, as we have used so often,

"x D NS11�x (5.114)

so by the similiarity of these two equations,

1

Ex

D NS11 (5.115)

we can thus define the extensional modulus in the x direction to be

Ex � 1

NS11

(5.116)

Using the definition of the NSij , equation (5.26), and the definitions of the

Sij , we can write Ex in terms of the principal material coordinate system

engineering properties as

Ex D E1

m4 C
�

E1

G12

� 2�12

�

n2m2 C E1

E2

n4

(5.117)
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FIGURE 5.10. Off-axis element with simple stress states for definition of engineering

properties.

It is clear that the extensional modulus in the x direction involves the inplane

shear modulus and Poisson’s ratio, as well as the extensional modulus, in the

1-2-3 system.

In addition to stretching in the x direction, the element contracts in the

y direction when subjected to a tensile stress in the x direction; see Fig-

ure 5.10(a). By definition, the relation between the contraction strain in the

y direction and the extensional strain in the x direction, due to simply a

tensile stress in the x direction, is a Poisson’s ratio. Retaining the con-

vention established for the subscripting of the various Poisson’s ratios, we

define

�xy D �
"y

"x

(5.118)
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where the first subscript refers to the direction of the applied stress and

second subscript refers to the direction of contraction. Referring again to the

strain-stress relations of equation (5.25), for this situation, we find that

"y D NS12�x (5.119)

Using equations (5.114) and (5.119) in the definition of �xy , we obtain

�xy D �
NS12

NS11

(5.120)

and using the definitions of the NSij and the Sij ,

�xy D
�12.n

4 C m4/ �
�

1 C E1

E2

� E1

G12

�

n2m2

m4 C
�

E1

G12

� 2�12

�

n2m2 C E1

E2

n4

(5.121)

This Poisson’s ratio, like Ex , is a function of many of the properties defined

in the 1-2-3 system.

If instead of subjecting the element of fiber-reinforced material to a stress

�x, it is subjected to a tensile stress in the y direction, the conditions il-

lustrated in Figure 5.10(b) result. The element stretches in the y direction,

contracts in the x direction, and the right angle does not remain right. We

can determine the extensional modulus in the y direction by considering that

the extensional strain in the y direction, for this simple stress state, is given

by

"y D �y

Ey

(5.122)

and using the fact that

"y D NS22�y (5.123)

we define the extensional modulus in the y direction as

Ey � 1

NS22

(5.124)

or

Ey D E2

m4 C
�

E2

G12

� 2�21

�

n2m2 C E2

E1

n4

(5.125)

Poisson’s ratio, due to the stress in the y direction, is

�yx D � "x

"y

(5.126)
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where for this situation,

"x D NS12�y (5.127)

resulting in

�yx D �
NS12

NS22

(5.128)

This Poisson’s ratio can now be written in terms of the engineering properties

in the 1-2-3 system as

�yx D
�21.n4 C m4/ �

�

1 C E2

E1

� E2

G12

�

n2m2

m4 C
�

E2

G12

� 2�21

�

n2m2 C E2

E1

n4

(5.129)

Finally, if the element is subjected to a shear stress �xy , it will deform as

in Figure 5.10(c). The change in the right corner angle in the x-y plane is

denoted by xy , and by definition it is related to the applied shear stress by

the shear modulus in the x-y plane, namely,

xy D �xy

Gxy

(5.130)

The shear strain is also given by

xy D NS66�xy (5.131)

so the shear modulus is

Gxy D 1

NS66

(5.132)

In terms of engineering properties in the 1-2-3 system,

Gxy D
G12

n4 C m4 C 2

�

2
G12

E1

.1 C 2�12/ C 2
G12

E2

� 1

�

n2m2

(5.133)

As expected, the shear modulus in the x-y plane involves engineering prop-

erties in the 1-2-3 system, in particular, the fiber-direction modulus, E1. The

large value of E1 is expected to have an effect as the fiber angle increases

from � D 0ı; the effect becomes greatest when � D 45ı or when the fibers

stiffen the diagonal direction of the element.
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In summary, the engineering properties are defined as

Ex D E1

m4 C
�

E1

G12

� 2�12

�

n2m2 C E1

E2

n4

�xy D
�12.n4 C m4/ �

�

1 C E1

E2

� E1

G12

�

n2m2

m4 C
�

E1

G12

� 2�12

�

n2m2 C E1

E2

n4

Ey D E2

m4 C
�

E2

G12

� 2�21

�

n2m2 C E2

E1

n4

�yx D
�21.n4 C m4/ �

�

1 C E2

E1

� E2

G12

�

n2m2

m4 C
�

E2

G12

� 2�21

�

n2m2 C E2

E1

n4

Gxy D G12

n4 C m4 C 2

�

2
G12

E1

.1 C 2�12/ C 2
G12

E2

� 1

�

n2m2

(5.134)

The variations with � of the off-axis engineering properties for a graphite-

reinforced material are illustrated in Figure 5.11. Note how rapidly Ex de-

creases with off-axis angle. At � D ˙10ıEx is but 50 percent of its value

at � D 0ı. This can be interpreted to mean that if the fibers are not oriented

exactly as intended, then the value of Ex , and perhaps the performance of the

composite, could be considerably less than expected. In analogous fashion,

the modulus Ey is quite small but then increases rapidly as � approaches

˙90ı. Note also the maximum value of Gxy occurs at � D ˙45ı and is

greater by roughly a factor of two than its value at � D 0 and 90ı.

As the series of examples in the previous section indicated, and as Fig-

ure 5.10(a) illustrates, when subjecting an off-axis element of fiber-reinforced

material to a simple tensile loading, a shear response results. Likewise, when

subjecting an off-axis element of fiber-reinforced material to a simple shear

loading, extensional strains result. Neither of these responses fits the classical

definitions of material properties (i.e., extensional modulus, Poisson’s ratio, or

shear modulus). For isotropic materials there is not a definition of a material

property that relates shear strain to normal stress, or extension strain to shear

stress. Yet these responses occur for composite materials. The next section

formally defines material properties associated with these coupled responses.
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FIGURE 5.11. Variation of engineering properties with fiber angle � for graphite-

reinforced composite.

5.5 Coefficients of Mutual Influence

For fiber-reinforced composites it is useful to define several other material

properties that can be used to categorize response. The properties are defined

in the same context as the engineering properties and thus it is appropriate

to introduce them at this time. These properties have as their basis the fact

that an element of fiber-reinforced material with its fiber oriented at some
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arbitrary angle exhibits a shear strain when subjected to a normal stress, and

it also exhibits extensional strain when subjected to a shear stress. Poisson’s

ratio is defined as the ratio of extensional strains, given that the element

is subjected to only a single normal stress. By analogy, the coefficient of

mutual influence of the second kind is defined as the ratio of a shear strain

to an extensional strain, given that the element is subjected to only a single

normal stress. The coefficient of mutual influence of the first kind is defined

as the ratio of an extensional strain to a shear strain, given that the element is

subjected to only a single shear stress. These coefficients of mutual influence

can be thought of as a generalization of Poisson’s ratios, as they are defined

as ratios of strains.

Formally, one coefficient of mutual influence of the second kind is defined

as

�xy;x � xy

"x

when �x ¤ 0 and all other stresses are 0

(5.135)

Another coefficient of mutual influence of the second kind is defined as

�xy;y �
xy

"y

when �y ¤ 0 and all other stresses are 0

(5.136)

These coefficients relate the shear strains caused by fiber orientation effects

and a normal stress to the extensional strain that is a direct result of this

normal stress. This normal stress is the only stress present. In terms of the

transformed reduced compliances, the coefficients of mutual influence of the

second kind are given by

�xy;x D
NS16

NS11

�xy;y D
NS26

NS22

(5.137)

Figure 5.12 shows the variations with � of the coefficients of mutual influence

of the second kind for graphite-reinforced material. The largest interaction

between shearing and extensional effects for this particular material occurs

near ˙8ı for �xy;x and near ˙82ı for �xy;y . One might expect the largest

interaction to occur when � D 45ı, but this is not the case.

The coefficients of mutual influence of the first kind are defined as

�x;xy � "x

xy

�y;xy �
"y

xy

when �xy ¤ 0 and all other stresses are 0

(5.138)

These coefficients relate the extensional strains caused by fiber orientation

effects and a shear stress to the shear strain that is a direct result of this shear

stress. The shear stress is the only stress present. In terms of transformed
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FIGURE 5.12. Variation of coefficients of mutual influence with fiber angle � for

graphite-reinforced composite.

reduced compliances,

�x;xy D
NS16

NS66

and �y;xy D
NS26

NS66

(5.139)

Figure 5.12 illustrates the variation of these two coefficients for graphite-

reinforced composite. These two coefficients having similar ranges of values.

The coefficient �y;xy has the greatest magnitude near � D ˙35ı, while �x;xy

has the greatest magnitude near � D ˙55ı.

Exercises for Section 5.5

1. Plot the variation of the engineering properties as a function of fiber angle � ,

��=2 � � � C�=2, for glass-reinforced composite. Comment on whether the

decrease of Ex as � increases or decreases from � D 0ı is as extreme for glass-

reinforced material as it is for graphite-reinforced material.

2. Plot the coefficients of mutual influence of the first and second kind for glass-

reinforced composite. For each coefficient, what value or values of � correspond

to the regions of greatest influence? Are these the same values as for graphite-

reinforced material?
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5.6 Free Thermal and Free Moisture Strains

To study thermally induced deformations in an x-y-z global coordinate sys-

tem, transformation from the 1-2-3 principal material coordinate system is

necessary. Because they are legitimate strains, the transformations of equation

(5.15) are valid for thermally induced, or moisture-induced, strains. Consid-

ering free thermal strains, the transformations become

"T
x .T; Tref / D cos2 �"T

1 .T; Tref / C sin2 �"T
2 .T; Tref /

"T
y .T; Tref / D sin2 �"T

1 .T; Tref / C cos2 �"T
2 .T; Tref /

"T
z .T; Tref / D "T

3 .T; Tref /

T
yz.T; Tref / D 0

T
xz.T; Tref / D 0

1
2
T

xy.T; Tref / D ."T
1 .T; Tref / � "T

2 .T; Tref // sin � cos �

(5.140)

Note, equation (5.140) uses the reverse of the transformation of equation

(5.15). Equation (5.140) is rather simple because in the principal material

coordinate system there are no free thermal shear strains. If the strains are

assumed to be linearly dependent on the difference between a particular

temperature, T , and the reference temperature, Tref ; then, if we use equations

(2.98) and (2.99), equation (5.140) becomes

"T
x .T; Tref / D .cos2 �˛1 C sin2 �˛2/�T

"T
y .T; Tref / D .sin2 �˛1 C cos2 �˛2/�T

"T
z .T; Tref / D ˛3�T

T
xy .T; Tref / D 2.˛1 � ˛2/ sin � cos ��T

(5.141)

If the coefficients of thermal deformation in the x-y-z system are defined to

be such that, due to a temperature change �T ,

"T
x .T; Tref / D ˛x�T

"T
y .T; Tref / D ˛y�T

T
xy.T; Tref / D ˛xy�T

"T
z .T; Tref / D ˛z�T

(5.142)

then we can define the coefficients of thermal deformation, or CTD, in the

x-y-z system to be
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˛x D ˛1 cos2 � C ˛2 sin2 �

˛y D ˛1 sin2 � C ˛2 cos2 �

˛xy D 2 .˛1 � ˛2/ cos � sin �

˛z D ˛3

(5.143)

Needless to say, though there are no free thermal shear strains in the 1-2-3

system, this is not the case for the x-y-z system. Heating or cooling a small

element of material with its fibers not aligned with the x or y axis results in a

change in the right angle of the corners in the x-y plane. Using the values of

˛1, ˛2, and ˛3 from Table 2.1, Figure 5.13 shows the variation of ˛x, ˛y , and

˛xy, and ˛z with � for a graphite-reinforced material. Of course, ˛z doesn’t

vary with � and is equal to ˛3. The coefficients of thermal deformation ˛x

and ˛y essentially interchange roles as � changes from �90ı to C90ı. They

are both even functions of � . The coefficient of thermal deformation ˛xy is

an odd function of � and attains a value as large as ˛x and ˛y (and ˛z) at

� D ˙45ı.

A simple example will serve to underscore the importance of fiber orienta-

tion effects on free thermal strains. Consider, as in Figure 5.14(a), an uncon-

strained 50 mm � 50 mm � 50 mm off-axis element of graphite-reinforced

material with its fibers oriented at 45ı relative to the x-axis. Assume the

temperature of the material is increased by 50ıC and the deformed shape of
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FIGURE 5.13. Variation of coefficients of thermal deformation with fiber angle �

for graphite-reinforced composite.
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FIGURE 5.14. Thermal deformations of an unconstrained off-axis element.

the material and the lengths of the original 50 mm sides are of interest. From

Table 2.1

˛1 D �0:018 � 10�6=ıC

˛2 D 24:3 � 10�6=ıC
(5.144)

and because the material shrinks in the fiber direction when heated, diagonal

AC contracts. On the other hand, diagonal BD expands. Intuitively, then,

the corners A, B , C , and D cannot remain orthogonal when the material is

heated. As Figure 5.14(b) shows, corners A and C must open, while corners

D and B must close. Quantitative information regarding the shape changes

can be obtained by using equation (5.143) as

˛x D .�0:018 cos2 45ı C 24:3 sin2 45ı/ � 10�6

˛y D .�0:018 sin2 45ı C 24:3 cos2 45ı/ � 10�6

˛xy D 2.�0:018 � 24:3/ sin45ı cos 45ı � 10�6

(5.145)

or

˛x D ˛y D 12:14 � 10�6=ıC

˛xy D �24:3 � 10�6=ıC
(5.146)
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(These quantities could also be read directly from Figure 5.13.) For �T D
50ıC, from equation (5.142),

"T
x D 607 � 10�6 D "T

y

T
xy D �1216 � 10�6

(5.147)

From the definition of free thermal strain,

ı�T
x D "T

x �x D .607 � 10�6/.50/ D 0:0304 mm

ı�T
y D "T

y �y D .607 � 10�6/.50/ D 0:0304 mm
(5.148)

and the change in the corner right angle in the x-y plane is

T
xy D �1216 � 10�6 rad .�0:0697ı/ (5.149)

The free thermal strain in the z direction is, by equations (5.142) and (5.143),

"z D "3 D ˛3�T D .24:3 � 10�6/ � 50

"z D 1215 � 10�6
(5.150)

resulting in

ı�z D "z�z D .1215 � 10�6/.50/ D 0:0608 mm (5.151)

This completes the problem.

By analogy to equation (5.143), the coefficients of moisture deformation,

or CMD, in the x-y-z system are defined as

ˇx D ˇ1 cos2 � C ˇ2 sin2 �

ˇy D ˇ1 sin2 � C ˇ2 cos2 �

ˇxy D 2 .ˇ1 � ˇ2/ cos � sin �

ˇz D ˇ3

(5.152)

By analogy to equation (5.142), then, the free moisture strains in the x-y-z

system are given by

"M
x D ˇx�M

"M
y D ˇy�M

M
xy D ˇxy�M

"M
z D ˇ3�M

(5.153)

Exercise for Section 5.6

Plot ˛x , ˛y , and ˛xy versus � , �90ı � � � 90ı for glass-reinforced composite.

Except for maximum and minimum values, the relations for ˛x , ˛y , and ˛xy as a

function of � should be very similar to the graphite-reinforced case. The coefficients

of thermal deformation ˛x and ˛y are even functions of � , while ˛xy is an odd

function of � .
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5.7 Effects of Free Thermal and Free Moisture Strains

We are now in a position to derive the plane-stress stress-strain relations

in an x-y-z system with the effects of free thermal and moisture strains

included. The derivation is straightforward but the results are quite far-

reaching. The implication of the relations, and the important influence of

free thermal- and moisture-induced effects, will not really be evident until

we discuss laminates and, in particular, the influence of temperature changes

and moisture absorption on stresses in laminates. However, this chapter is the

appropriate place to derive the plane-stress stress-strain relations with thermal

and moisture deformation effects included. Equations (4.29) and (4.30) are

the logical starting points. Considering equation (4.29) first, including the

factor of 2 with the shear strain,
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This can be expanded to the form
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where the 0=2 is a reminder we are dealing with tensor strains. The second

term on the left hand side can be rewritten with the aid of equation (5.143)

in the form
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Recognizing the matrix as ŒT ��1, equation (5.12), inversion leads to
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Likewise
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If we use equations (5.9), (5.20), (5.157), and (5.158), equation (5.155)

becomes
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Multiplying both sides by ŒT ��1, combining the terms on the left hand side,

and multiplying the three matrices together on the right side, accounting for

the factors of 1=2, leads to

8

ˆ

ˆ

<

ˆ

ˆ

:

"x � ˛x�T � ˇx�M

"y � ˛y�T � ˇy�M

xy � ˛xy�T � ˇxy�M

9

>

>

=

>

>

;

D

2

6

6

4

NS11
NS12

NS16

NS12
NS22

NS26

NS16
NS26

NS66

3

7

7

5

8

ˆ

ˆ

<

ˆ

ˆ

:

�x

�y

�xy

9

>

>

=

>

>

;

(5.160)

where all terms in the equation have been previously defined. The ˛’s, ˇ’s,

and NSij ’s are material properties and are known, while the strains "x, "y , and

xy are the total strains in the x-y-z system. They are related to the change

in the geometry of an element of material by the usual expressions, namely,

"x D ı�x

�x

"y D
ı�y

�y

(5.161)

and xy is the total shearing strain and is the change in the right corner angles

of the element. Equation (5.160) is the off-axis counterpart to equation (4.29),

where the mechanical strains are given by
8

ˆ

ˆ

<

ˆ

ˆ

:

"mech
x

"mech
y

mech
xy

9

>

>

=

>

>

;

D

8

ˆ

ˆ

<

ˆ

ˆ

:

"x � ˛x�T � ˇx�M

"y � ˛y�T � ˇy�M

xy � ˛xy�T � ˇxy�M

9

>

>

=

>

>

;

(5.162)

Note that with the fibers oriented off axis there is a distinction between total

shearing strain, xy , and mechanical shearing strain. Recall, in the principal
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material coordinate system these two measures of strain are the same and the

phrase “mechanical shearing strain” has no meaning.

By starting with the inverse of equation (4.29), namely, equation (4.30), and

using the various definitions, the inverse of equation (5.160) can be derived

as
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It would be a serious error not to remind ourselves of the presence of

"z. Because "z D "3 throughout our work, "z can be obtained directly from

equation (4.28), namely,

"z D "3 D ˛3�T C ˇ3�M C S13�1 C S23�2 (5.164)

However, the stresses �1 and �2 can be written in terms of �x , �y , and �xy

to obtain an expression for "z that represents the strain in the z direction ex-

pressed in terms of global system stresses. If we use the stress transformation

equation (5.7), equation (5.164) becomes

"z D ˛3�T C ˇ3�M C .S13 cos2 � C S23 sin2 �/�x

C .S13 sin2 � C S23 cos2 �/�y C 2.S13 � S23/ sin � cos ��xy

(5.165)

The mechanical extensional strain in the z direction is given by

"mech
z D "z � ˛z�T � ˇz�T D S12�1 C S23�2

D .S13 cos2 � C S23 sin2 �/�x C .S13 sin2 � C S23 cos2 �/�y

C 2.S13 � S23/ sin � cos ��xy

(5.166)

Even in the presence of free thermal and free moisture strain effects, for the

condition of plane stress there are no shear strains whatsoever in the y-z and

x-z planes; that is,

yz D T
yz D mech

yz D xz D T
xz D mech

xz D 0 (5.167)

and similarly for free moisture strain effects.

The relations developed in the previous sections are important in the

analysis of behavior of fiber-reinforced material in the presence of free

thermal and free moisture strains. We shall see in the ensuing chapters the

type of information that can be obtained from the various relations. However,

before closing this chapter, we present two more simple examples to provide

some insight into the mechanics of thermal effects and, more importantly,
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into the physical interpretation of the strains "x, "y, and xy in the presence

of free thermal or free moisture strains. As an example, assume that instead

of being completely free to deform, the off-axis element in the example of

Figure 5.14 is completely restrained in the x-y plane. There is no restraint

in the z direction and thus the problem is one of plane stress. Because of the

constraints,

ı�x D 0 D ı�y (5.168)

and because the total strains are given by

"x D ı�x

�x

and "y D ı�y

�y

(5.169)

then

"x D 0 and "y D 0 (5.170)

Also, because the right corner angles in the x-y plane cannot change, the

total shear strain is zero:

xy D 0 (5.171)

As moisture effects are not present, incorporating the restraint effects of

equations (5.170) and (5.171), equation (5.163) becomes
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(5.172)

These are the stresses required to keep the element from deforming. For

� D 45ı and for the graphite-reinforced material,

NQ11 D 47:9 GPa NQ12 D 39:1 GPa NQ16 D 35:9 GPa

NQ22 D 47:9 GPa NQ26 D 35:9 GPa NQ66 D 40:5 GPa
(5.173)

and using the numerical values of ˛x, ˛y, and ˛xy from equation (5.146),

with �T D 50ıC, we find that equation (5.172) yields

�x D �y D �9:15 MPa

�xy D 5:62 MPa
(5.174)

Because of the combined effects of ˛3�T and the stresses �x , �y , �xy

generated, equation (5.165) (with ˇ3�M D 0) gives us the value of the total

through-thickness strain "z . With no constraints whatsoever on the element,

the total through-thickness expansion in the example of Figure 5.14 was

strictly ˛3�T . Equations (5.142) and (5.150) gave the value of "z for this

situation. That value was "z D 1215 � 10�6. For the present constrained

problem, using � D 45ı, the values of the stresses from equation (5.174),
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and the values of S13 and S23 from equation (2.56), we compute "z from

equation (5.165) to be

"z D 1780 � 10�6 (5.175)

This is significantly more than ˛3�T and indicates the error in not remem-

bering that the plane-stress condition retains important three-dimensional

interactions between stresses and strains. Note that this is the same result

obtained when specifying that the element was fully constrained in the 1-2

plane, as in equation (4.36). Specifying that the element is fully constrained in

the 1-2 plane is equivalent to specifying that the element is fully constrained

in the x-y plane. In fact, if we use the stresses �x , �y , and �xy from equation

(5.174) to compute the stresses in the 1-2 system, namely, �1, �3, and �12, by

employing equation (5.10), the result is the stresses of equation (4.36). For

this problem the nonzero mechanical strains are given by
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� 10�6 (5.176)

To solve the above problem we could have also started with equation

(5.160), which would become
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(5.177)

and solved the three equations for the three unknowns �x, �y , and �xy . This

approach would have led to identical results. (Because Œ NQ� D Œ NS��1, this has

to be the case.)

As a closing example to this chapter, let us examine another variant of

the problem of Figure 5.14. As in Figure 5.15(a), let us assume that the

50 mm � 50 mm � 50 mm off-axis element of graphite-reinforced material

is not completely constrained; rather, it is partially constrained by frictionless

rollers from deformation in the y direction, but is otherwise free to deform.

The problem is one of plane stress, and because of the constraints,

"y D 0 (5.178)

Also, because of the rollers and the lack of contact on the edges perpendicular

to the x axis,

�xy D �x D 0 (5.179)
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δ

FIGURE 5.15. Thermal deformations of a partially constrained off-axis element of

fiber-reinforced material.

Using equation (5.160) with �M D 0 yields
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(5.180)

which expands to

"x � ˛x�T D NS12�y

�˛y�T D NS22�y

xy � ˛xy�T D NS26�y

(5.181)

The stress required to constrain the deformation in the y direction is given

by the second equation, namely,

�y D �˛y�T

NS22

(5.182)
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If we substitute this expression for �y into the other two equations, the two

nonzero strains are given by

"x D
 

˛x �
NS12

NS22

˛y

!

�T

xy D
 

˛xy �
NS26

NS22

˛y

!

�T

(5.183)

For � D 45ı and for graphite-reinforced composite,

NS11 D 78:3 (TPa)�1 NS12 D �35:3 (TPa)�1 NS16 D �38:1 (TPa)�1

NS22 D 78:3 (TPa)�1 NS26 D �38:1 (TPa)�1 NS66 D 92:3 (TPa)�1

(5.184)

Using the values for ˛x, ˛y, and ˛xy , equation (5.146), we find

�y D �7:75 MPa

"x D 881 � 10�6

xy D �921 � 10�6 rad .�0:0527ı/

(5.185)

Since

ı�x

�x

D "x (5.186)

the change in length in the x direction is

ı�x D "x�x D .881 � 10�6/ � 50 D 0:0441 mm (5.187)

and the right angles at corners A and C increase by 0.000 921 rad, or 0:0527ı.

Because �x and �xy are zero, the strain in the z direction for the situation in

Figure 5.15, from equation (5.165), simplifies to

"z D ˛3�T C .S13 sin2 � C S23 cos2 �/�y (5.188)

or using numerical values,

"z D 1368 � 10�6 (5.189)

This through-thickness strain is smaller than the strain in the case with

constraints in both the x and y directions, "z D 1780 � 10�6 in equation

(5.175), and closer to the value given by ˛3�T , 1215 � 10�6. The lack

of constraints allows the element of material to more closely approach the

situation of free thermal expansion. If we use the value �z D 50 mm, the

change in thickness of the element is given by

ı�z D 0:0684 mm (5.190)
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This problem could have been solved starting with equation (5.163) instead

of equation (5.160), which would have resulted in equations of the form

0 D NQ11."x � ˛x�T / C NQ12.0 � ˛y�T / C NQ16.xy � ˛xy�T /

�y D NQ12."x � ˛x�T / C NQ22.0 � ˛y�T / C NQ26.xy � ˛xy�T /

0 D NQ16."x � ˛x�T / C NQ26.0 � ˛y�T / C NQ66.xy � ˛xy�T /

(5.191)

These equations could be solved for �y , "x, and xy to yield the results of

equation (5.185). Figure 5.15(b) illustrates the deformations due to a 50ıC

temperature change. For this problem, the nonzero mechanical strains are
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� 10�6 (5.192)

Before closing, we should expand upon and summarize the stresses and

strains for the various thermal situations studied in examples. This summary

will serve to illustrate the coupling of thermal strains and constraints. Recall

that in each case we are considering a 50 mm � 50 mm � 50 mm element

of fiber-reinforced graphite material with �T D 50ıC.

1. No constraints, � D 0ı, fully three-dimensional, like the results of equation

(2.101):

Specified: �1 D �2 D �3 D �23 D �13 D �12 D 0

Solve for: "1 D ˛1�T D �0:900 � 10�6

"2 D ˛2�T D 1215 � 10�6 (5.193)

"3 D ˛3�T D 1215 � 10�6

23 D 13 D 12 D 0

2. No constraints, � D 45ı, plane stress assumed, equations (5.149) and

(5.150):

Specified: �x D �y D �xy D 0

.�z D �yz D �xz D 0; implied by plane-stress assumption)

Solved for: "x D ˛x�T D 607 � 10�6

"y D ˛y�T D 607 � 10�6 (5.194)

"z D ˛3�T D 1215 � 10�6

xy D ˛xy�T D �1216 � 10�6 rad .�0:0697ı/

yz D xz D 0
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The first and second cases are in reality the same problem. It is a question

of studying the problem in either the 1-2-3 or the x-y-z system. Specifying

no constraints in the 1-2-3 system or specifying no constraints in the x-y-z

system are the same thing.

3. Constraints in the 1-2 plane, no constraints in 3 direction, � D 0ı, plane

stress assumed, equations (4.33) and (4.36):

Specified: "1 D "2 D 12 D 0

.�3 D �23 D �13 D 0; implied by plane-stress assumption)

Solved for: �1 D �3:52 MPa

�2 D �14:77 MPa (5.195)

�12 D 0

"3 D 1780 � 10�6

23 D 13 D 0

4. Constraints in the x-y plane, no constraints in z direction, � D 45ı, plane

stress assumed, equations (5.170), (5.171), (5.174), and (5.175):

Specified: "x D "y D xy D 0

.�z D �yz D �xz D 0; implied by plane-stress assumption)

Solved for: �x D �y D �9:15 MPa

�xy D 5:62 MPa (5.196)

"z D 1780 � 10�6

yz D xz D 0

The third and fourth cases are also the same problem, though it is not

so obvious. Being completely constrained in the x-y plane and being

completely constrained in the 1-2 plane are the same condition.

5. Constraint in y direction, no constraints in x or z directions � D 45ı,

plane stress assumed, equations (5.178), (5.179), (5.185), and (5.189):

Specified: �x D �xy D "y D 0

.�z D �yz D �xz D 0; implied by plane-stress assumption)

Solved for: �y D �7:75 MPa

"x D 881 � 10�6 (5.197)

"z D 1368 � 10�6

xy D �921 � 10�6 rad .0:0527ı/

yz D xz D 0

The third case should be contrasted with the fully constrained case with

� D 0ı, the numerical example presented in Chaper 2, equation (2.118).
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For that case,

Specified: "1 D "2 D "3 D 23 D 13 D 12 D 0

Solved for: �1 D �13:55 MPa

�2 D �27:6 MPa

�3 D �27:6 MPa

�23 D �13 D �12 D 0

(5.198)

Comparison of the stress levels in equations (5.195) and (5.198) illustrates

the influence of constraints, or lack there of, in the 3 direction on stress

levels.

Exercises for Section 5.7

1. Transform the stresses of equation (5.174), the case of a 50 mm � 50 mm � 50

mm element with � D 45ı, with no constraint in the z direction but completely

constrained in the x and y directions, to the 1-2 system to show that the problem

is equivalent to the case of an element with � D 0ı and with no constraint in the

3 direction but completely constrained in the 1 and 2 directions, equation (4.36).

2. Consider a 50 mm � 50 mm � 50 mm element of graphite-reinforced material with

its fibers oriented at 45ı and constrained against deformation in the x direction. The

element is heated 50ıC. What is the stress �x required to enforce this constraint

and what are the strains "y , xy , and "z? Are there any similarities to this problem

and the problem of Figure 5.15? See equations (5.185) and (5.189).

5.8 Summary

This concludes this chapter on the response of an off-axis element of fiber-

reinforced material in a state of plane stress. The concepts are quite important,

particularly the idea of coupling of the various stress and strain components.

The addition of free thermal strain effects (and free moisture strain effects)

causes some unusual and perhaps unexpected responses in a fiber-reinforced

composite material. Though the influence on inplane stresses and deforma-

tions is important, the coupling of inplane thermal effects, through Poisson’s

ratios, and through-the-thickness thermal effects is even more important. This

coupling can easily be overlooked, leading to errors in predicted response.

Understanding these concepts is essential for understanding the response of

a laminate, the subject of the next chapter.



CHAPTER 6

Classical Lamination Theory:
The Kirchhoff Hypothesis

In the preceding chapters we developed the tools needed to understand the

elastic response of a small volume of fiber-reinforced material under the

assumption that the fibers and the matrix material were smeared into one

equivalent homogeneous material. The simplifications of the plane-stress

assumption were developed. The use of an x-y-z global coordinate system, as

opposed to a 1-2-3 principal material coordinate system, to describe the stress-

strain behavior for a plane-stress state was introduced. We examined some

of the important differences and similarities between conventional isotropic

materials and fiber-reinforced composite materials in a series of examples.

These examples illustrated the implications of shear-extension coupling, and

we considered the influence of thermal expansion. These discussions were

all related to understanding the stress-strain relations of a fiber-reinforced

material, relations that are, by definition, valid at a point in what we are

considering to be the equivalent homogeneous material.

As was stated in Chapter 1, fiber-reinforced materials are most frequently

used by employing multiple layers of material to form a laminate. Each

layer is thin (see Table 2.1 for layer thickness) and may have a different

fiber orientation, and in some cases, not all layers are of the same material.

Some layers may use graphite fibers for reinforcement, while others may use

glass fibers. Some laminates may consist of three or four layers, and some

of several hundred layers. Two laminates may involve the same number of

layers and the same set of fiber angles, but the two laminates can be different

and most certainly can exhibit entirely different behavior because of the

arrangement of the layers. For example, one four-layer laminate may have

the fibers in the two outer layers oriented at 0ı and the fibers in the two

inner layers oriented at 90ı, while another four-layer laminate may have

the fibers in the outer layers at 90ı and those in the inner layers at 0ı. As

Figure 6.1 shows, when subjected to the same level of bending moment, M ,

235
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M

(a) [0/90]S laminate

(b) [90/0]S laminate

M

MM

FIGURE 6.1. Differences in bending deformations between Œ0=90�S and Œ90=0�S
laminates.

the first laminate will deform much less than the second. (The nomenclature

Œ0=90�S and Œ90=0�S of Figure 6.1 will be explained shortly.) In the first case

the fibers that resist bending are further apart, resulting in a larger bending

stiffness. On the other hand, as in Figure 6.2, both laminates will stretch

the same amount in the x direction when an inplane load is applied in that

direction. Both laminates have two layers with their fibers parallel to the

load and two layers with their fibers perpendicular to the load. The real

issue, then, is to understand how laminates respond to loads, how the fiber

angles of the individual layers influence laminate response, how the stacking

arrangement of the layers influences the response, how changing material

properties in a group of layers changes response, and so forth. Furthermore,

the stresses within each layer, in addition to depending on the magnitude and

character of the loading, must also depend on the arrangement of the layers,

the fiber orientation in each layer, the material properties of each layer, and

the like. How are the stresses influenced by these parameters? The number

of variables that can be changed in a laminated fiber-reinforced composite
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(a) [0/90]S laminate

(b) [90/0]S laminate

NN

NN

FIGURE 6.2. Identical extensions of Œ0=90�S and Œ90=0�S laminates.

structure, as well as the number of responses that can be studied, is immense.

It is of prime concern to understand how changing these variables influences

laminate response, and ultimately structural response. As an end product, it

is important to be able to design laminates so that structures have a specific

response, so that deformations are within certain limits and stress levels are

below a given level.

This chapter will introduce simplifications in the analysis of fiber-reinforced

composite materials that will allow us to obtain answers for a large class of

problems. We can thus evaluate the influence of fiber directions, stacking

arrangements, material properties, and so forth, on laminate and structural

response. However, before we introduce the simplified theory, commonly

called classical lamination theory, we will briefly discuss the nomenclature

associated with laminates, including the manner in which fiber angles are

specified and the stacking arrangement is identified. The appendix provides

a brief overview of the all-important step of manufacturing composite lami-

nates, and it includes a step-by-step description of fabricating a flat laminate

by hand. This is particularly useful for small-scale university or laboratory

settings, where fully automated high-volume production of composite lami-

nates is not feasible.
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6.1 Laminate Nomenclature

Discussion of laminates requires, first, that we have a method of describing

a laminate, particularly the fiber orientation of each layer. In addition, for

purposes of analysis, we must establish a coordinate system for specifying

locations through the thickness of the laminate as well as along the length

and across the width. For flat plates, an x-y-z global Cartesian coordinate

system, which we used in Chapter 5 for stress-strain behavior, is useful

in describing a laminate. For cylindrical laminates, we use a global polar

coordinate system. We can also use a spherical, elliptical, parabolic, or other

global coordinate system germane to the geometry of the structure and lam-

inate. The key feature is that whatever system we use, the origin of the

through-thickness coordinate, designated z, is most conveniently located at

the laminate geometric midplane. An important feature of what we are about

to present is as follows: If you use any global orthogonal coordinate system,

be it Cartesian, cylindrical, or spherical to analyze a laminate, then the figures

we are about to present are applicable, even though they will be discussed in

the context of a rectangular Cartesian system.

Figure 6.3 illustrates a global Cartesian coordinate system and a general

laminate consisting of N layers. The upper portion of the figure is a cross-

sectional view in the x-z plane (y D 0 plane), and the lower portion is a

planform view. The laminate thickness is denoted by H and the thickness of

an individual layer by h. Not all layers necessarily have the same thickness,

so the thickness of the kth layer is denoted as hk . The geometric midplane

may be within a particular layer or at an interface between layers. What is

important is that a geometric midplane can be defined. Herein the Cz axis

will be downward and the laminate extends in the z direction from �H=2

to CH=2. We refer to the layer at the negativemost z location as layer 1,

the next layer in as layer 2, the layer at an arbitrary location as layer k,

and the layer at the positivemost z position as layer N . In the planform

view, Figure 6.3(b), layer N is closest to the reader. The locations of the

layer interfaces are denoted by a subscripted z; the first layer is bounded by

locations z0 and z1, the second layer by z1 and z2, the kth layer by zk�1 and

zk , and the N th layer by zN�1 and zN .

To identify the fiber angles of the various layers, the fiber angle relative

to the Cx axis of each layer is specified. The specification starts with layer

1, the layer at the negativemost z location. For example, we denote the

laminate in the upper portion of Figure 6.1 as a Œ0=90=90=0� laminate. We

denote the laminate in the lower portion as a Œ90=0=0=90� laminate, where

in each case we assume the x axis is oriented in the lengthwise direction

of each laminate. The leftmost entry in the laminate notation refers to the

orientation of layer 1. In cases where the stacking sequence to the one side

of the z D 0 plane, the laminate geometric midplane, is a mirror image of

the stacking sequence on the other side of the z D 0 plane, the stacking
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FIGURE 6.3. Laminate nomenclature.

notation can be abbreviated by referring to only one-half of the laminate and

subscripting the stacking notation with an S , which means symmetric. The

upper and lower laminates of Figure 6.1 can thus be denoted by Œ0=90�S
and Œ90=0�S , respectively. With this notation, the leftmost entry in stacking

specification is either layer 1 or layer N ; that is, the stacking specification

starts with the outer layer on each side of the laminate. To categorize a

laminate as symmetric, it is imperative that the material properties, fiber

orientation, and thickness of the layer at a specific location to one side of the

geometric midplane be identical to the material properties, fiber orientation,

and thickness of the layer at the mirror image location on the other side.

Otherwise the laminate is not truly symmetric. The influence of symmetry,

or its lack, will be discussed later. Suffice it to say that many aspects of the

response of a laminate depend strongly on whether or not it is symmetric.

In fact, symmetric laminates have been emphasized to such an extent that

if one encounters the notation Œ0=90=90=0� in a discussion of composites,

one usually assumes that an eight-layer laminate is being discussed, with

stacking sequence Œ0=90=90=0=0=90=90=0�. To emphasize that indeed the

complete laminate is being specified, the subscript T for total is sometimes



240 CLASSICAL LAMINATION THEORY: THE KIRCHHOFF HYPOTHESIS

  = +45°

–45°

0°

x
y

z

0°

–45°

+45°

θ

FIGURE 6.4. A Œ˙45=0�S laminate.

used. Thus, the upper and lower laminates of Figure 6.1 could be denoted as

Œ0=90=90=0�T and Œ90=0=0=90�T , respectively.

When the stacking sequence involves adjacent layers of opposite orien-

tation, as is often the case, shorthand notation is used. For example, if a

six-layer laminate has the stacking sequence ŒC45= � 45=0=0= � 45= C 45�T ,

it would be abbreviated as Œ˙45=0�S . Here the ˙ is used to contract the

notation and indicates there is a layer with its fibers oriented at C45ı with

respect to the Cx axis and adjacent to it another layer with its fibers oriented

at �45ı with relative to the Cx axis. Next to the �45ı layer is a layer

with its fibers aligned with the x axis, as in Figure 6.4. When a stacking

sequence of a subset consisting of several layers is repeated within a laminate,

further shorthand notation is often used. If a 12-layer laminate has a stacking

arrangement of ŒC45=�45=0=C45=�45=0=0=�45=C45=0=�45=C45�T ,

it can be contracted to read Œ.˙45=0/2�S . Accordingly, a laminate denoted

by Œ.˙45=0/2�T would represent a six-layer laminate with an unsymmetric

stacking arrangement of ŒC45= � 45=0= C 45= � 45=0�, as in Figure 6.5.

We will introduce other conventions and methods of describing laminates as

  = +45°

–45°

0°

x
y

z

0°

–45°

+45°

θ

FIGURE 6.5. A Œ.˙45=0/2�T laminate.
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specific problems are discussed. We shall now proceed with the development

of classical lamination theory.

6.2 Laminate Strains and Displacements:

The Kirchhoff Hypothesis

One of the most important assumptions in the analysis of structures and of

materials within structures was introduced in the mid 1800s by Kirchhoff. The

assumption has greatly simplified analysis since that time and has permitted

the analyst and designer to accurately predict the response of beams, plates,

and shells. The hypothesis has been applied to metallic structures, wooden

structures, concrete structures, and a wide variety of other materials. The

assumption has very little to do with the material itself and much more to do

with the geometry of the structure, the type of loadings it is designed to resist,

and the conditions on the boundary of the structure. The assumption has been

applied with a great deal of success to structures fabricated from composite

materials. This has been verified experimentally and by comparison with

analyses of the same problem conducted without employing the simplifying

Kirchhoff hypothesis.

To begin consideration of the Kirchhoff hypothesis, consider an initially

flat laminated plate acted upon by a variety of loads. The loads can consist of:

applied moments, M ; distributed applied loads, q; inplane loads, N ; and point

loads, P . The plate consists of multiple layers of fiber-reinforced materials,

and the fibers in each layer are parallel to the plane of the plate. We assume

that all layers are perfectly bonded together. There is no slippage between

layers. Figure 6.6 illustrates the loaded plate, showing the x-y-z coordinate

system. The Kirchhoff hypothesis focuses on the deformation of lines which

before deformation are straight and normal to the laminate’s geometric mid-

surface. In the figure one such line is drawn and it is denoted as line AA0.

Figure 6.7(a) shows the detail of an x-z cross section of the laminate, and we

y
z

x

N

M
A

q

p

A′

FIGURE 6.6. Laminated plate with undeformed normal AA0 acted upon by loads.
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FIGURE 6.7. Cross sections showing normal before deformations.

see that line AA0 passes through the laminate, and specifically through each

layer. Because before deformation the plate is flat and the layer interfaces

are parallel to each other and to the geometric midsurface of the plate, line

AA0 is normal to each interface; Figure 6.7(b) shows the details of this line

viewed in a y-z cross section. The Kirchhoff hypothesis is simple: It assumes

that despite the deformations caused by the applied loads, line AA0 remains

straight and normal to the deformed geometric midplane and does not change

length. Specifically, the normal line does not deform; it simply translates and

rotates as a consequence of the deformation, a very simple but yet very

far-reaching assumption. Figure 6.8 shows the normal of Figure 6.6 having

simply rotated and translated due to the deformations caused by the applied

loads. That the line remains straight and normal to the geometric midplane
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y
x

z

A′

A

FIGURE 6.8. Normal remaining normal and simply translating and rotating.

after deformation is an important part of the assumption. Figure 6.9 illustrates

the consequences of normal remaining straight by again showing the details

of a laminate x-z cross section. Because the interfaces remain parallel with

each other and with the geometric midplane, line AA0 remains normal to

each interface. The line is continuously straight through the thickness of

the laminate, as in Figure 6.9(b). The line is not a series of straight line

segments, as in Figure 6.9(c); rather, it is a single straight line. That the line

does not change length is another important part of the assumption. For the

length of the line to remain unchanged, the top and bottom surfaces of the

laminate must remain the same distance apart in the thickness direction of

the laminate. The distance between points t and t 0 in Figure 6.9(b), then,

is the same as the distance between t and t 0 in Figure 6.9(a). According

to the hypothesis, there is no through-thickness strain "z along line AA0.

This is counter to what we know the stress-strain relations predict, namely

stresses in the x direction causing strains in the z direction, as in equation

(5.19). Generally there will be a through-thickness strain "z but the Kirchhoff

hypothesis is inconsistent with this fact. Fortunately, the assumption that the

normal remains fixed in length does not enter directly into the use of the

hypothesis.

Because it is assumed that the line remains perfectly straight, normal to

each interface, and does not change length, it is possible to express the

displacement of material points on the line in terms of the displacement

and rotation of the point on the line located at the laminate geometric mid-

plane. In light of this, and because of the definition of stress resultants that

will naturally arise at a later point in laminate analysis, it is convenient

to think of the laminate geometric midplane as a reference surface. The
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FIGURE 6.9. Consequences of Kirchhoff hypothesis.

mechanics of a laminate will be expressed in terms of what is happening

at the reference surface. If the response of the reference surface is known,

the strains, displacements, and stresses at each point along the normal line

through the thickness of the laminate can be determined. This is an important

advantage. Rather than treating a laminate as a three-dimensional domain
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and having to analyze it as such, the analysis of laminates degenerates

to studying what is happening to the reference surface, a two-dimensional

domain. With cylinders, for example, analysis degenerates to having to know

what is happening to the surface of the cylinder located at the mean cylinder

radius. As will be seen, understanding what is happening at the reference

surface can be complicated enough. However, treating a plate or cylinder as

a three-dimensional domain can become intractable. Hereafter, the laminate

geometric midsurface will be referred to as the reference surface of the

laminate.

6.3 Implications of the Kirchhoff Hypothesis

We should stress that no mention has been made of material properties.

The issue of the line remaining straight is strictly a kinematic and geometric

issue. This is an important point; it implies that if we accept the validity of the

Kirchhoff hypothesis, then we assume it is valid for the wide range of material

properties that are available with fiber-reinforced composite materials. To

study the implications of the Kirchhoff hypothesis, and to take advantage

of it, let us examine the deformation of an x-z cross section of the plate

being discussed. Figure 6.10 details the deformation of a cross section, and

in particular the displacements of point P , a point located at an arbitrary

distance z below point P o, a point on the reference surface, points P and P o

both being on line AA0. Because line AA0 remains straight, the deformation

of the cross section as viewed in the x-z plane consists of three major

components. There are two components of translation and one of rotation. As

the laminate deforms, line AA0 translates horizontally in the Cx direction;

it translates down in the Cz direction; and in the process of translating

downward, it rotates about the y axis. The superscript o will be reserved to

denote the kinematics of point P o on the reference surface. In particular, the

horizontal translation of point P o in the x direction will be denoted as uo.

The vertical translation will be denoted as wo. The rotation of the reference

surface about the y axis at point P o is @wo=@x. An important part of the

Kirchhoff hypothesis is the assumption that line AA0 remains perpendicular

to the reference surface. Because of this, the rotation of line AA0 is the same

as the rotation of the reference surface, and thus the rotation of line AA0, as

viewed in the x-z plane, is @wo=@x.

Since line AA0 remains straight, the component of translation in the Cx

direction of point P due to P o translating horizontally an amount uo is uo.

Downward translation and rotation of P o cause additional movement at point

P . For the present, we shall restrict our discussion to the case where points

on the reference surface experience only small rotations in the x-z and y-z

planes, the latter rotation not being apparent in Figure 6.10. In the context of
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Figure 6.10 this means

@wo

@x
< 1 (6.1)

By less than unity is meant that sines and tangents of angles of rotation are

replaced by the rotations themselves, and cosines of the angles of rotation are

replaced by 1. With this approximation, then, the rotation of point P o causes

point P to translate horizontally in the minus x direction by an amount

z
@wo

@x
(6.2)

This negative horizontal translation is denoted in Figure 6.10, and the total

translation of point P in the x direction, denoted as u.x; y; z/, is thus the

sum of two effects, namely,

u.x; y; z/ D uo.x; y/ � z
@wo.x; y/

@x
(6.3)

It is important to note the notation used and the implications of the Kirchhoff

hypothesis. Point P is located at .x; y; z/, an arbitrary position within the

laminate. The displacement of that point in the x direction is a function of

x

A′

A′

∂wo

∂x

A
z

z

A

Po

Po

P

P

z

uo

∂wo

∂x

∂wo

∂x

wo

FIGURE 6.10. Kinematics of deformation as viewed in the x-z plane.
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all three coordinates, and thus the notation u.x; y; z/. The displacements and

rotations of point P o on the reference surface, however, depend only on x

and y, and hence the notation uo.x; y/ and @wo.x; y/=@x. Clearly, due to the

kinematics of the Kirchhoff hypothesis, the displacement of point .x; y; z/

depends linearly on z, the distance the point is away from the reference

surface.

Completing the picture of displacements of the x-z cross section, we see

that as a result of the small rotation assumption, the vertical translation of

point P is the same as the vertical translation of point P o; that is, the vertical

translation of point P is independent of z. As we shall see shortly, and as

discussed just a few paragraphs ago, this leads to contradictory results for

through-thickness extensional strains. With this independence of z,

w.x; y; z/ D wo.x; y/ (6.4)

where again the notation w.x; y; z/ indicates that the vertical displacement

of point P at location .x; y; z/ is, in general, a function of x, y, and z,

but the hypothesis renders the vertical displacement independent of z and

exactly equal to the reference surface displacement. Another interpretation of

the independence of z is that all points on line AA0 move vertically the same

amount.

A similar picture emerges if the deformation is viewed in the y-z plane.

As shown in Figure 6.11, the translation of point P in the Cy direction is

v.x; y; z/ D vo.x; y/ � z
@wo.x; y/

@y
(6.5)

In the above, vo is the translation of point P o on the reference surface in

the Cy direction and @wo=@y is the rotation of that point about the x axis.

In summary, then, the displacement of an arbitrary point P with coordinates

.x; y; z/ is given by

u.x; y; z/ D uo.x; y/ � z
@wo.x; y/

@x

v.x; y; z/ D vo.x; y/ � z
@wo.x; y/

@y

w.x; y; z/ D wo.x; y/

(6.6)

It is important to realize that generally the displacements and rotations of

points on the reference surface vary from location to location within the

plate. For the moment we shall not be concerned with how they vary. To

determine this, laminated plate theories, as presented in Chapter 13, must

be developed. To reemphasize: The important points to note from the Kirch-

hoff hypothesis are that the inplane displacements u.x; y; z/ and v.x; y; z/

everywhere within the laminate vary linearly with z, and the out-of-plane
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FIGURE 6.11. Kinematics of deformation as viewed in the y-z plane.

displacement w.x; y; z/ is independent of z. On the surface that may seem

somewhat restrictive but it is an accurate approximation for a large class of

problems.

6.4 Laminate Strains

With the assumptions regarding the displacement field established by way of

the Kirchhoff hypothesis, the next step is to investigate the strains that result

from the displacements. This can be done by using the strain-displacement

relations from the theory of elasticity. Using these relations and equation

(6.6), we can compute the strains at any point within the laminate, and by

using these laminate strains in the stress-strain relations, we can compute the

stresses at any point within the laminate. Thus, determining the expressions

for the strains is important.

From the strain-displacement relations and equation (6.6), the extensional

strain in the x direction, "x, is given by

"x.x; y; z/ �
@u.x; y; z/

@x
D

@uo.x; y/

@x
� z

@2wo.x; y/

@x2
(6.7)
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where the triple horizontal bars are to be interpreted as “is defined as.” We can

see that the strain "x is composed of two parts. The first term, @uo.x; y/=@x,

is the extensional strain of the reference surface in the x direction. Because

we are restricting our discussion to small rotations of the reference surface,

the second term, @2wo.x; y/=@x2, is the curvature of the reference surface in

the x direction. In general, the curvature, which is the inverse of the radius

of curvature, involves more than just the second derivative of w. However,

for the case of small rotations, the curvature and the second derivative are

identical. Accordingly, the strain "x is written as

"x.x; y; z/ D "o
x.x; y/ C z�o

x.x; y/ (6.8)

where we use the notation

"o
x.x; y/ D

@uo.x; y/

@x
�o

x.x; y/ D �
@2wo.x; y/

@x2
(6.9)

Notice the minus sign associated with the definition of curvature. The quantity

"o
x is referred to as the the extensional strain of the reference surface in the

x direction, and �o
x is referred to as curvature of the reference surface in the

x direction.

The other five strain components are given by

"y.x; y; z/ �
@v.x; y; z/

@y
D "o

y.x; y/ C z�o
y .x; y/

"z.x; y; z/ �
@w.x; y; z/

@z
D

@wo.x; y/

@z
D 0

yz.x; y; z/ �
@w.x; y; z/

@y
C

@v.x; y; z/

@z
D

@wo.x; y/

@y
�

@wo.x; y/

@y
D 0

xz.x; y; z/ �
@w.x; y; z/

@x
C

@u.x; y; z/

@z
D

@wo.x; y/

@x
�

@wo.x; y/

@x
D 0

xy.x; y; z/ �
@v.x; y; z/

@x
C

@u.x; y; z/

@y
D o

xy C z�o
xy (6.10)

where we can define

"o
y.x; y/ D

@vo.x; y/

@y
and �o

y .x; y/ D �
@2wo.x; y/

@y2

o
xy .x; y/ D

@vo.x; y/

@x
C

@uo.x; y/

@y
and �o

xy D �2
@2wo.x; y/

@x@y

(6.11)

The quantities "o
y , �o

y , o
xy , and �o

xy are referred to as the reference surface

extensional strain in the y direction, the reference surface curvature in the y
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direction, the reference surface inplane shear strain, and the reference surface

twisting curvature, respectively. The notation used emphasizes again the fact

that the reference surface strains and curvatures are functions only of x and

y, while the strains are, in general, functions of x, y, and z. The term inplane

shear strain in connection with o
xy is used to indicate that it is related to

changes in right angles between perpendicular line segments lying in the ref-

erence surface. Three of the six strain components are exactly zero. The two

shear strains through the thickness are zero because the Kirchhoff hypothesis

assumes that lines perpendicular to the reference surface before deformation

remain perpendicular after the deformation; right angles in the thickness

direction do not change when the laminate deforms (see Figures 6.10 and

6.11). By definition, then, the through-thickness shear strains must be exactly

zero. If they were not computed to be zero in equation (6.10), there would

be an inconsistency. The fact that the through-thickness extensional strain

"z is predicted to be zero is the inconsistency we referred to previously

that is due to the assumption that the length of the normal AA0 does not

change when the laminate deforms. Equations (2.45) and (2.47) indicate that

extensional strains in all three directions are an integral part of the stress-

strain relations. For a state of plane stress, equations (4.3) and (4.10) indicate

that the extensional strain "z is not zero for this situation either. Hence, the

third equation of equation (6.6) leads to an inconsistency. This is inherent

in the Kirchhoff hypothesis and cannot be resolved within the context of the

theory. The issue can be resolved by using the third term of equation (6.6)

when the vertical displacement of a point in the cross section is needed, and

using the stress-strain relations, such as equation (4.3) or equation (4.10),

when the through-thickness extensional strain component "z is needed. The

focus of Chapter 12 will be studying "z in laminates.

In summary, the displacements and the nonzero strains that result from the

Kirchhoff hypothesis are as follows:

u.x; y; z/ D uo.x; y/ � z
@wo.x; y/

@x

v.x; y; z/ D vo.x; y/ � z
@wo.x; y/

@y

w.x; y; z/ D wo.x; y/

(6.12)

"x.x; y; z/ D "o
x.x; y/ C z�o

x.x; y/

"y.x; y; z/ D "o
y.x; y/ C z�o

y .x; y/

xy.x; y; z/ D o
xy.x; y/ C z�o

xy .x; y/

(6.13)
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with

"o
x.x; y/ D

@uo.x; y/

@x
and �o

x.x; y/ D �
@2wo.x; y/

@x2

"o
y.x; y/ D

@vo.x; y/

@y
and �o

y .x; y/ D �
@2wo.x; y/

@y2

o
xy.x; y/ D

@vo.x; y/

@x
C

@uo.x; y/

@y
and �o

xy D �2
@2wo.x; y/

@x@y

(6.14)

These are very important equations and are one of the important assumptions

of classical lamination theory. The equations imply that the displacements in

the x and y directions vary linearly through the thickness of the laminate.

Also, they imply the strains vary linearly through the thickness of the lami-

nate. This appears to be a rather simple solution to what could be considered

a more complicated situation.

Equations (6.12)–(6.14) are important for another reason. They imply that

if the reference surface strains and curvatures are known at every point within

a laminate, then the strains at every point within the three-dimensional volume

are known. For example, consider the situation in Figure 6.12(a), which

illustrates a small segment of a four-layer laminate deformed such that at

a point P o on the reference surface the extensional strain in the x direction

is 1000�10�6. The radius of curvature of the reference surface, Ro, is 0.2 m,

the latter corresponding to a curvature of 5 m�1. The x-direction extensional

strain as a function of the z coordinate through the thickness of the laminate

above and below point P o on the reference surface is given by the first

relation of equation (6.13) as

"x D 0:001 C .z/.5/ (6.15)

Note the sign of �o
x relative to the deformation illustrated in Figure 6.12(a).

If the laminate is 0.600 mm thick, the extensional strain in the x direction at

the top of the laminate, where z D �0:300 mm, is

"x D 0:001 C .�300 � 10�6/.5/ D �500 � 10�6 m/m

D �500 � 10�6 mm/mm D �500 � mm/mm
(6.16)

The nondimensional character of the strain becomes apparent. At the bottom

of the laminate, where z D C0:300 mm,

"x D 0:001 C .300 � 10�6/.5/ D 2500 � 10�6 m/m

D 2500 � 10�6 mm/mm D 2500 � mm/mm
(6.17)
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FIGURE 6.12. Example of predicted strain distribution through the laminate as a

result of the Kirchhoff hypothesis.

Figure 6.12(b) shows the linear variation of strain with z through the laminate

thickness.

Knowing the response of the reference surface is very valuable and useful.

Unfortunately, determining the response of the reference surface everywhere

within a laminate is not always easy. However, it is far easier to determine the

response of the two-dimensional reference surface of the laminate and then

use equations (6.12)–(6.14) than to determine the response at every point

within the three-dimensional volume of the laminate without the benefits of

these equations.

6.5 Laminate Stresses

The second important assumption of classical lamination theory is that each

point within the volume of a laminate is in a state of plane stress. Laminates

used in the cases discussed in Figures 4.2–4.5 would clearly violate this

assumption. However, in many situations the stresses in the plane of the

laminate clearly dominate the stress state, and the out-of-plane components
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of stress can be assumed to zero with little loss of accuracy. If this is the case,

then equation (5.83) is valid for every point in the laminate. However, recall

that nothing has yet been said about material properties. If we are to discuss

stresses, fiber orientation and material properties enter the picture through

the NQij . In the last chapter we learned how to compute the NQij . We are thus

in a position to compute the stresses if we know the strains and curvatures

of the reference surface. Accordingly, using the strains that result from the

Kirchhoff hypothesis, equation (6.13), we find that the stress-strain relations

for a laminate become

8

ˆ

ˆ

<

ˆ

ˆ
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ˆ

ˆ

<

ˆ

ˆ
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"o
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o
xy C z�o

xy

9

>

>

=

>

>

;

(6.18)

As can be seen, because the strains are functions of z, the stresses are

functions of z. For a laminate, however, the stresses depend on z for another

very important reason: The material properties in one layer, represented in

equation (6.18) by the reduced stiffnesses NQij , are generally different than the

material properties of another layer, due both to varying fiber orientation from

layer to layer, and to the fact that different materials can be used in different

layers. Consequently, the transformed reduced stiffnesses are functions of

location through the thickness and thus functions of z. The stresses therefore

vary with z not only because the strains vary linearly with z but also because

the reduced stiffnesses vary with z. In fact, the reduced stiffnesses vary in

piecewise constant fashion, having one set of values through the thickness of

one layer, another set of values through another layer, a third set of values

through yet another layer, and so forth. The net result is that, in general, the

variation of the stresses through the thickness of the laminate is discontinuous

and very much unlike the variation through the thickness of an isotropic

material.

6.6 Stress Distributions through the Thickness

The most effective way to illustrate the implications on the stresses of the

layer-by-layer change in material properties, coupled with the results of the

Kirchhoff hypothesis, is with a series of simple examples. This will also

allow us to introduce other important concepts and generally illustrate the

implications of classical lamination theory (CLT). We start with a four-layer

Œ0=90�S laminate; the .0=90/ construction is called a cross-ply construction.

This laminate is an overly simplistic case, but we consider it so that the source

of the response of more complicated laminates can be isolated by comparison

with this case.
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6.6.1 CLT Example 1: [0/90]S Laminate Subjected

to Known "o
x

Consider a four-layer Œ0=90�S graphite-epoxy laminate, like the one shown

in Figure 6.1(a), subjected to loads such that at a particular point .x; y/ on

the reference surface

"o
x.x; y/ D 1000 � 10�6 �o

x.x; y/ D 0

"o
y.x; y/ D 0 �o

y .x; y/ D 0

o
xy.x; y/ D 0 �o

xy .x; y/ D 0

(6.19)

Using equation (6.13), we find that the strain distribution through the thick-

ness of the laminate is given by

"x.x; y; z/ D "o
x.x; y/ C z�o

x .x; y/ D 1000 � 10�6

"y.x; y; z/ D "o
y.x; y/ C z�o

y .x; y/ D 0

xy.x; y; z/ D o
xy.x; y/ C z�o

xy .x; y/ D 0

(6.20)

Recall in conjunction with Table 2.1 that the thickness of a layer, h, will

be assumed to be 0.150 mm. From equation (6.20), through the entire thick-

ness of the laminate, above and below the point .x; y/ on the reference

surface, the only nonzero strain is the extensional strain in the x direction,

as in Figure 6.13. This represents a laminate stretched, or extended, in the

x direction but with no associated Poisson contraction in the y direction,

and with no inplane shear strain and no curvature effects. For this Œ0=90�S
laminate, we find, referring to the nomenclature of Figure 6.3, the layer

interface locations are

zo D �0:300mm z1 D �0:150mm z2 D 0

z3 D 0:150mm z4 D 0:300mm
(6.21)

The stresses at each point through the thickness of the laminate are determined

by using the above reference surface strains and curvatures in the stress-strain

relation, equation (6.18); specifically:
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(6.22)

For the two 0ı layers
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3

7

7

5

8

ˆ

ˆ

<

ˆ

ˆ
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0

0

9

>

>

=

>

>

;

(6.23)
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FIGURE 6.13. Strain distribution through the thickness of Œ0=90�S laminate sub-

jected to "o
x D 1000 � 10�6.

while for the two 90ı layers
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From equation (5.86), the stresses in the 0ı layers are
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(6.25)

For � D 90ı, which means m D 0 and n D 1 in equation (5.84),

NQ11.90ı/ D Q22
NQ12.90ı/ D Q12

NQ16.90ı/ D Q16 D 0

NQ22.90ı/ D Q11
NQ26.90ı/ D Q26 D 0 NQ66.90ı/ D Q66

(6.26)
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From equation (6.24), then, for the two 90ı layers,
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(6.27)

Using numerical values for the reduced stiffnesses, equation (5.94), we find

that for the 0ı layers

�x D Q11 � 1000 � 10�6
D .155:7 � 109/.1000 � 10�6/ D 155:7 MPa

�y D Q12 � 1000 � 10�6
D .3:02 � 109/.1000 � 10�6/ D 3:02 MPa

�xy D 0 (6.28)

and for the 90ı layers

�x D Q22 � 1000 � 10�6
D .12:16 � 109/.1000 � 10�6/ D 12:16 MPa

�y D Q12 � 1000 � 10�6
D .3:02 � 109/.1000 � 10�6/ D 3:02 MPa

�xy D 0 (6.29)

Figure 6.14 illustrates the distribution of the stresses through the thickness of

the laminate. The character of the distribution of stress component �x illus-

trates the previously mentioned important difference between laminated fiber-

reinforced composite materials and isotropic materials, namely, the discon-

tinuous nature of the stress distribution through the thickness of the laminate.

For the problem here, the stress component �x is constant within each layer,

but varies from layer to layer. Formally, �x is said to be piecewise constant

through the thickness of the laminate. On the other hand, the stress component

�y is constant through the thickness of the laminate. The constancy of �y is

a very special condition that can occur in cross-ply laminates or other special

lamination arrangements. It can occur because NQ12.0ı/ D NQ12.90ı/ D Q12.

Note that a tensile value for �y is needed to overcome the natural tendency

of the laminate to contract in the y direction. Due to the Poisson effect,

stretching in the x direction causes contraction in the y direction. By the

statement of the problem in equation (6.19), contraction in the y direction is

here stipulated to be zero ."y � 0/, so a tensile stress is required to enforce

this. Also special is the fact that the shear stress is zero at all z locations.

It is important to recall the example described in Figure 5.8(c), namely,

an element of graphite-reinforced material with � D 0ı and stretched in the

fiber direction. In that example the strain state of the 0ı element was exactly

the same as the strain state for the 0ı layers of the Œ0=90�S laminate in the

current example, namely, equation (6.19). The stress state for the 0ı element

in Figure 5.8(c) was given by equation (5.95), whereas the stress state for

the 0ı layers in the Œ0=90�S laminate is given by equation (6.28). The stress

states are the same. Thus, if the state of strain of an element of material is

specified, its stresses are uniquely determined, independently of whether the
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FIGURE 6.14. Stress distribution through the thickness of Œ0=90�S laminate sub-

jected to "o
x D 1000 � 10�6.

element is isolated, as in Figure 5.8(c), or whether it is part of a laminate.

This is an important point.

If we consider a four-layer aluminum laminate made by perfecting bond-

ing together four layers of aluminum, the distribution of strain through the

thickness would be as in Figure 6.13. As we have emphasized, the reference

surface strains and curvatures dictate the distribution of the strains through

the thickness. Specified values of reference surface strains and curvatures

produce the same distributions of "x, "y , and xy through the thickness of

aluminum as through the thickness of a composite. The stresses for each

layer in the aluminum laminate are given by equation (6.18); the reduced

stiffnesses for aluminum are used instead of the reduced stiffnesses of the

composite. From our previous examples with aluminum, specifically equation

(5.87), and the numerical values for aluminum from Table 2.1,

�x D .79:6 � 109/.1000 � 10�6/ D 79:6 MPa

�y D .23:9 � 109/.1000 � 10�6/ D 23:9 MPa

�xy D 0

(6.30)
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Due to the assumption of perfect bonding between layers, the four layers

of aluminum act as one; Figure 6.15 shows the distribution of the stresses

through the thickness of the aluminum. The character of this figure should

be compared with that of Figure 6.14, particularly the continuity of the stress

component �x, and the magnitude of �y relative to �x .

Though the determination of the stresses through the thickness of the com-

posite laminate is straightforward, given that we know the reference surface

strains and curvatures, the really important issue is the determination of the

stresses and strains in the principal material system of the individual layers.

When we consider failure of fiber-reinforced materials, what’s important is

the stresses and strains in the fiber direction, perpendicular to the fibers, and

in shear. As far as the material is concerned, these are the basic responses.

We introduced an x-y-z global coordinate system simply for convenience,

specifically so we would not have to deal with a number of coordinate

systems. However, we should address fundamental issues in the principal

material system. To do this, we employ the transformation relations for stress

and strain of Chapter 5, specifically equations (5.10) and (5.21). As they will

0 10050 7525
0.300

0.150

0.0

–0.150

–0.300

0 1000
0.300

0.150

0.0

–0.150

–0.300

z,
 m

m
z,

 m
m

z,
 m

m

0 302010
0.300

0.150

0.0

–0.150

–0.300

σx , MPa

σy , MPa

τ xy , MPa

FIGURE 6.15. Stress distribution through the thickness of a four-layer aluminum

laminate subjected to "o
x D 1000 � 10�6.
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be used frequently in this chapter, we here reproduce those relations:
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and
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For the particular problem here, no transformation is needed for the top and

bottom layers. As their fibers are oriented at � D 0ı, "1 D "x, "2 D "y,

xy D 12. Nevertheless, to remain formal, for the 0ı layers, since m D 1

and n D 0, equation (6.32) results in
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Substituting for the values of strain in the x-y-z system for the 0ı layers, we

find
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As expected, then, in the 0ı layers,

"1 D 1000 � 10�6

"2 D 0

12 D 0

(6.35)

For the 90ı layers, m D 0 and n D 1 and equation (6.32) becomes
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which results in

"1 D 0

"2 D 1000 � 10�6

12 D 0

(6.37)

Figure 6.16 shows the distribution of these principal material system strains

"1, "2, and 12. The distribution of the principal material systems strains,

unlike the laminate system strains, is discontinuous with z. The distributions

are discontinuous because the value of a particular strain component, "1 for

example, is the strain in a direction that changes from layer to layer. In the

first and fourth layers, "1 is in the x direction, while in the second and third

layers "1 is in the y direction. This is unlike the strains in the laminate x-y-z

system where "x, for example, is the strain in the x direction, independent

of the layer.

The stresses in the principal material system are computed using equation

(6.31). As with the strains, the stresses �1, �2, and �12 for the 0ı layers are
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FIGURE 6.16. Principal material system strain distribution through the thickness of

Œ0=90�S laminate subjected to "o
x D 1000 � 10�6.
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�x, �y , and �xy , respectively; so for the 0ı layers,

�1 D 155:7 MPa

�2 D 3:02 MPa

�12 D 0

(6.38)

while for the 90ı layers,
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(6.39)

or

�1 D 3:02 MPa

�2 D 12:16 MPa

�12 D 0

(6.40)

The thickness distribution of the principal material system stresses, in Fig-

ure 6.17, like the distribution of the laminate system stresses, is discontinuous
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FIGURE 6.17. Principal material system stress distribution through the thickness of

Œ0=90�S laminate subjected to "o
x D 1000 � 10�6.



262 CLASSICAL LAMINATION THEORY: THE KIRCHHOFF HYPOTHESIS

with z. The discontinuity results not only because of the way the abrupt

changes in the material properties from layer to layer influence �x �y , and

�xy but also, like the principal material system strains, because the direction

in which these stresses act changes abruptly from layer to layer.

We should mention before moving to the second example that the stresses

in the principal material system could be computed by using the stress-strain

relations in the principal material system and the principal material strains,

that is, equation (4.14). This is opposed to transforming �x, �y , and �xy . The

results would obviously be the same.

6.6.2 CLT Example 2: [0/90]S Laminate Subjected

to Known �o
x

As a second example of determining the stress and strain response of a

laminate, consider the same four-layer Œ0=90�S laminate. However, assume it

is subjected to loads such that at a particular point .x; y/ on the reference

surface

"o
x.x; y/ D 0 �o

x.x; y/ D 3:33 m�1

"o
y.x; y/ D 0 �o

y.x; y/ D 0

o
xy.x; y/ D 0 �o

xy.x; y/ D 0

(6.41)

Unlike CLT Example 1, the strain distribution through the thickness of the

laminate is not independent of z; rather, it is linear in z and is given by

"x.x; y; z/ D "o
x.x; y/ C z�o

x.x; y/ D 3:33z

"y.x; y; z/ D "o
y.x; y/ C z�o

y .x; y/ D 0

xy.x; y; z/ D o
xy.x; y/ C z�o

xy .x; y/ D 0

(6.42)

As with CLT Example 1, through the entire thickness of the laminate, above

and below the point on the reference surface, the only nonzero strain is the

extensional strain in the x direction. This nonzero strain is linear in z, as in

Figure 6.18, and is zero on the reference surface, where z D 0; �1000�10�6

on the top surface, where z D �0:300 mm; and C1000�10�6 on the bottom

surface, where z D C0:300 mm. The physical interpretation of this curvature-

only deformation will be discussed shortly, but as we go through this present

example keep in mind the minus sign in connection with the definitions of the

curvatures, equation (6.14), and the fact that the Cz direction is downward.

By the convention being used here, if the reference surface is deformed

such that there is a negative second derivative of wo with respect to x (i.e.,

positive �o
x), then there is the tendency toward a compressive strain in the

upper surface of the laminate.

The stresses at each point through the thickness of the laminate are deter-

mined by using the strains from equation (6.42) in the stress-strain relations,
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FIGURE 6.18. Strain distribution through the thickness of Œ0=90�S laminate sub-

jected to �o
x D 3:33 m�1.

equation (6.18), namely,
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For the two 0ı layers
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while for the two 90ı layers
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For the 0ı layers

�x D Q11 � .3:33z/ D .155:7 � 109/.3:33z/ D 519 000z MPa

�y D Q12 � .3:33z/ D .3:02 � 109/.3:33z/ D 10 060z MPa

�xy D 0

(6.46)

These relations are valid for z in the range �0:300 mm � z � �0:150 mm

and C0:150 mm � z � C0:300 mm. For the 90ı layers,

�x D Q22 � .3:33z/ D .12:16 � 109/.3:33z/ D 40 500z MPa

�y D Q12 � .3:33z/ D .3:02 � 109/.3:33z/ D 10 060z MPa

�xy D 0

(6.47)

These relations are valid for z in the range �0:150 mm � z � C0:150 mm.

Figure 6.19 illustrates the stress distribution; the maximum tensile stress of

�x D 155:7 MPa occurs in the 0ı layer at the bottom of the laminate where

z D C0:300 mm, and the maximum compressive stress of �x D �155:7

MPa occurs at the top of the laminate, where z D �0:300 mm. In contrast
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FIGURE 6.19. Stress distribution through the thickness of Œ0=90�S laminate sub-

jected to �o
x D 3:33 m�1.
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to CLT Example 1, the distribution of the stresses through the thickness of

each layer varies with z, but like CLT Example 1, the stress component �x

is discontinuous from one layer to the next. At the interface between the first

and second layers, �x jumps from 78:0 MPa compression in layer 1 to 6:09

MPa compression in layer 2. There is a similar jump between layers 3 and

4. The stress component �y is continuous; �y reaches a value of 3:02 MPa

compression at the top of the laminate and varies linearly to 3:02 MPa tension

at the bottom. This continuity in �y is strictly an artifact of the cross-ply

construction, as it was in CLT Example 1, namely, NQ12.0
ı/ D NQ12.90ı/ D

Q12. As will be seen, for laminates with fiber orientations other than 0ı or

90ı, this will not necessarily be the case. In fact, a review of Chapter 5 should

lead to the conclusion that if the strain states of these two examples were

applied to a laminate with layers with fiber angles other than 0ı or 90ı, in

each case there would be a shear stress due to the existence of NQ16 and, in

general, none of the stresses would be continuous. The exception will be when

adjacent layers have identical fiber orientations, or when adjacent layers have

opposite fiber orientations (e.g., ˙30ı). In the latter case some components

of stress are continuous despite the abrupt changes in fiber orientation.

Whatever the layer arrangement, the deformations specified by equation

(6.41) require that there be a value for the stress component �y . This is

because equation (6.41) specifies that at the particular point on the reference

surface, where equation (6.41) is valid, there is no curvature in the y direction,

�o
y . If the deformations specified in equation (6.41) were assumed to be

valid at every point on the entire reference surface of a laminated plate,

not just at a particular point, then the plate would appear as shown in

Figure 6.20(a), namely, deformed into a cylindrical surface. The cylindrical

shape would be such that there would be curvature in the x direction but not

the y direction. With this deformation the upper surface of the plate would

experience compressive strains in the x direction and the lower surface would

experience tensile strains. If the curvature were not specified to be zero in

the y direction, the compressive strains on the top surface in the x direction,

through the natural tendency of the Poisson effect, would produce tensile

strains in the y direction, and the tensile strains on the lower surface in the

x direction would produce contraction strains in the y direction. As a result,

the plate would be saddle shaped, as in Figure 6.20(b). This curvature in

the y direction due to Poisson effects is referred to as anticlastic curvature.

This is the natural tendency of the plate if it is given a curvature in the

x direction and nothing is specified about the curvature in the y direction.

However, here we have specified the curvature in the y direction to be zero;

the anticlastic curvature is suppressed. To overcome the tendency to develop

anticlastic curvature in the y direction, a stress component, �y , is required.

The distribution of �y in Figure 6.19 is the distribution required to have this

particular laminate remain flat in the y direction, yet cylindrical in the x

direction.
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FIGURE 6.20. Deformations of laminated plates.

A word of warning: It appears from Figure 6.19 that there is what could

be called a neutral axis, a location of zero stress, at z D 0. This is the case

here, but it will not always be the case. There may not always be a location

of zero stress within the thickness of the laminate. Conversely, the location

z D 0 will not always be a point of zero stress.

Again, we can determine the strain distribution in the principal material

system by using transformation. The distribution of material system strains

in this second example will be somewhat more complicated than in the first

example. In the 0ı layers, using the transformation matrix ŒT � for the 0ı

layers yields
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(6.48)
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As expected, then, in the 0ı layers,

"1 D 3:33z

"2 D 0

12 D 0

(6.49)

For the 90ı layers
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(6.50)

or

"1 D 0

"2 D 3:33z

12 D 0

(6.51)

These principal material system strains, Figure 6.21, are piecewise linear;

the discontinuities result because, as mentioned before, they represent strains

in different directions at the different layer locations. We write the principal

material system stresses in the 0ı layers directly from equation (6.46) as

�1 D 519 000z MPa

�2 D 10 060z MPa

�12 D 0

(6.52)

and for the 90ı layers from equation (6.47) as
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(6.53)

which leads to

�1 D 10 060z MPa

�2 D 40 500z

�12 D 0

(6.54)

Figure 6.22 shows the piecewise linear variations of the principal material

system stresses, and the distributions are very dissimilar to any one would

see with metals. However, the distributions shown in Figure 6.22 and in the

previous figures are commonplace with composites, so one should get used

to seeing them.
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FIGURE 6.21. Principal material system strain distribution through the thickness of

Œ0=90�S laminate subjected to �o
x D 3:33 m�1.

The utility of knowing the distribution of stresses through the thickness of

the laminate in the principal material system is evident from Figure 6.22. The

location and value of the maximum tensile stress perpendicular to the fibers,

which is the stress that might be expected to cause failure, can immediately

be determined. This stress is 6.09 MPa and it occurs at the bottom of the

third layer. This exemplifies another characteristic of composite materials. Just

because a laminate is subjected to bending doesn’t mean that the stresses that

might cause failure are at the extremities of the laminate. For an isotropic

beam or plate subjected to bending, this is so; however, it is wrong to assume

a priori that this is also the case for composites.

Let us again consider, as we did in the first example, a laminate constructed

of four aluminum layers and subjected to the reference surface deformations

given by equation (6.41). Equation (6.42) remains valid and the strain distri-

bution for this case is that shown by Figure 6.18. The four layers of aluminum

act as one, and thus equation (6.18) with the reduced stiffnesses of aluminum

is valid for the entire thickness, �0:300 mm � z � C0:300 mm; as shown
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FIGURE 6.22. Principal material system stress distribution through the thickness of

Œ0=90�S laminate subjected to �o
x D 3:33 m�1.

in Figure 6.23, that equation leads to

�x D .79:6 � 109/.3:33z/ D 265 000z MPa

�y D .23:9 � 106/.3:33z/ D 79 600z

�xy D 0

(6.55)

The simple linear variation of �x for the aluminum is a contrast to the

piecewise-linear nature of the distribution of �x for the laminate, Figure 6.19,

which is caused in the latter case by the discontinuous nature of the material

properties.

These two simple examples with a rather elementary laminate illustrate the

results predicted by the Kirchhoff hypothesis coupled with the plane-stress

assumption. As is apparent from these examples, if we know the reference

surface strains and curvatures, then calculating the distribution of the strains

and stresses, both in the laminate x-y-z system and in the principal material

1-2-3 system, follows in a rather straightforward manner. Other examples will

be presented shortly, but at this point it is appropriate to introduce the idea

of force and moment resultants.
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FIGURE 6.23. Stress distribution through the thickness of a four-layer aluminum

laminate subjected to �o
x D 3:33 m�1.

6.7 Force and Moment Resultants

As the discussion related to Figure 6.20 implies, to keep the reference surface

of a laminated plate from exhibiting anticlastic curvature at the point .x; y/,

stresses �y are required, as in Figure 6.19. Equally important, though not

discussed specifically, to produce the specified curvature in the x direction,

�x stresses are required; these were also illustrated in Figure 6.19. From the

perspective of an entire laminated plate, as in Figure 6.24, bending moments

are required along the edge of the plate to produce the deformations of

Figure 6.20(a). Similarly, to keep a laminated plate deformed as specified by

the first example, equation (6.19), Figure 6.14 indicated that inplane stresses

in the x and y directions are required. These stresses are manifested as

inplane loads along the edges of the plate, as in Figure 6.25. The loads

and moments required to produce the specified midplane deformations in any

particular problem are actually integrals through the laminate thickness of the

stresses. We refer to these integrals through the thickness as stress resultants.
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FIGURE 6.24. Moments required to deform laminated plate into a cylindrical shape.

Specifically, the inplane force resultant in the x direction, Nx, is defined as

Nx �

Z H
2

�
H
2

�xdz (6.56)

where, recall, H is the thickness of the laminate. We define the bending

moment resultant due to �x as

Mx �

Z H
2

�
H
2

�xzdz (6.57)

It is important to note the units associated with the force and moment

resultants: The force resultant has the units of force per unit length, and

the moment resultant has the units of moment per unit length. The unit of

length is length in the y direction.

Ny

Nx

y

z

x

FIGURE 6.25. Forces required to stretch laminated plate in x direction.
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The force and moment resultant integrals are easy to evaluate since, in

general, the stresses vary at most only in a stepwise linear fashion with z.

For CLT Example 1, since �x is constant within a given layer, the integral for

Nx is even simpler to evaluate. Specifically, we find, referring to Figure 6.14

for CLT Example 1 and formally going through the steps,

Nx D

Z H
2

�
H
2

�xdz

D

Z z1

z0

�xdz C

Z z2

z1

�xdz C

Z z3

z2

�xdz C

Z z4

z3

�xdz

(6.58)

Substituting from equations (6.28) and (6.29) the numerical values for the

stresses that are valid over the appropriate range of z, and from equation

(6.21) substituting for the values of the interface locations zk , we find

Nx D

Z

�150�10�6

�300�10�6

155:7 � 106dz C

Z 0

�150�10�6

12:16 � 106dz

C

Z 150�10�6

0

12:16 � 106dz C

Z 300�10�6dz

150�10�6

155:7 � 106dz

(6.59)

Because the stresses in each integrand are constant, they can be taken outside

the integrals, resulting in

Nx D 155:7 � 106

Z

�150�10�6

�300�10�6

dz C 12:16 � 106

Z 0

�150�10�6

dz

C 12:16 � 106

Z 150�10�6

0

dz C 155:7 � 106

Z 300�10�6

150�10�6

dz

(6.60)

The integrals on z are just the thickness of each layer, here 0.150 mm, and

so

Nx D Œ.155:7 C 12:16 C 12:16 C 155:7/ � 106�.150 � 10�6/

D 50 400 N/m
(6.61)

We determined Nx on a step-by-step basis for this simple example to empha-

size the meaning of the integral through the thickness, namely, integration

must be carried out through each layer. For this simple example, shortcuts in

the integrations could obviously be made, but for more complicated situations,

for which the stresses are not constant within each layer, the step-by-step

approach is necessary.

Force resultants based on �y and �xy can be defined in a similar manner;

specifically:

Ny �

Z H
2

�
H
2

�ydz Nxy �

Z H
2

�
H
2

�xydz (6.62)
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where the latter is referred to as the shear force resultant. For CLT Example 1,

again from equations (6.28) and (6.29),

Ny D .4/.3:02 � 106/.150 � 10�6/ D 1809 N/m Nxy D 0 (6.63)

the latter stress resultant being zero because of the particular case. The integral

for Ny is simple because the value of �y is the same in each layer and the

four integrals can be lumped into one.

Because the definitions of the stress resultants are integrals with respect to

z, and because z is measured from the reference surface, the stress resultants

should be considered forces per unit inplane length acting at the reference

surface. Hence for CLT Example 1, the proper interpretation is that if at a

point .x; y/ on the reference surface of a Œ0=90�S graphite-epoxy laminate

the force resultants are

Nx D 50 400 N/m Ny D 1809 N/m Nxy D 0 (6.64)

then that point on the reference surface will deform in the fashion given by

equation (6.19), namely,

"o
x.x; y/ D 1000 � 10�6 �o

x.x; y/ D 0

"o
y.x; y/ D 0 �o

y .x; y/ D 0

o
xy.x; y/ D 0 �o

xy .x; y/ D 0

(6.65)

The stress and strain distributions of Figures 6.13, 6.14, 6.16, and 6.17 result

from the application of these stress resultants.

To further clarify the physical meaning of equations (6.64) and (6.65),

consider, for example, a Œ0=90�S graphite-reinforced laminate with a length

Lx in the x direction of 0.250 m and a width Ly in the y direction of 0.125 m.

To have every point on the entire 0.0312 m2 reference surface subjected to

the deformations of equation (6.65) requires a load

Nx � Ly D 50 400 N/m � 0:125 m D 6300 N .6:66a/

in the x direction, and a load

Ny � Lx D 1809 N/m � 0:250 m D 452 N .6:66b/

in the y direction. These loads, as in Figure 6.26, should be uniformly

distributed along the appropriate edges. The displacements of the reference

surface for this case can be determined by considering equations (6.14) and

(6.65), namely,

"o
x.x; y/ D

@uo.x; y/

@x
D 1000 � 10�6

"o
y.x; y/ D

@vo.x; y/

@y
D 0

(6.67)
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FIGURE 6.26. Forces required to produce state of deformation "o
x D 1000 � 10�6

in Œ0=90�S laminate.

Integrating these two equations results in

uo.x; y/ D 0:001x C g.y/

vo.x; y/ D h.x/
(6.68)

where g.y/ and h.x/ are functions of integration resulting from integrating

partial derivatives. As a result, because the shear strain o
xy.x; y/ is zero,

o
xy.x; y/ D

@vo.x; y/

@x
C

@uo.x; y/

@y
D

dh.x/

dx
C

dg.y/

dy
D 0 (6.69)

The quantity dg.y/=dy is a function of y only, and the quantity dh.x/=dx

is a function of x only, and equation (6.69) specifies that they add to yield

a constant, namely zero. The only way that a function of x can add to a

function of y to produce a constant is if the two functions are constants.

Here they must be the same constant, differing by a sign. Specifically,

dg.y/

dy
D C1

dh.x/

dx
D �C1 (6.70)

The result of integrating these two equations is

g.y/ D C1y C C2

h.x/ D �C1x C C3

(6.71)

The constants C2 and C3 represent rigid body translations of the laminate in

the x and y directions, respectively, and C1 represents rigid body rotation

about the z axis. Setting uo and vo to zero at the origin of coordinate system,

x D 0 and y D 0, thereby suppressing rigid body translations, and arbitrarily

suppressing rigid body rotation about the z axis by setting C1 to zero, results
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in expressions for the displacements of the laminate reference surface, namely,

uo.x; y/ D 0:001x

vo.x; y/ D 0

wo.x; y/ D 0

(6.72)

where the third equation results from the fact that curvatures do not develop

due to inplane loads for this laminate. Though it is not needed for the

determination of equation (6.72), we assume here that the origin of the x-y-z

global coordinate system is at the geometric center of the laminate. With the

displacements of equation (6.72), we can see that uo varies linearly with x.

The deformed length of the laminate is 250.25 mm, the width remains the

same, and the corner right angles at A, B , C , and D remain right.

Returning to the resultants, the moment resultants are somewhat more

complicated. For CLT Example 2, the bending moment resultant in the x

direction is given by

Mx �

Z H
2

�
H
2

�xzdz

D

Z z1

z0

�xzdz C

Z z2

z1

�xzdz C

Z z3

z2

�xzdz C

Z z4

z3

�xzdz

(6.73)

If we use the functional form of the stresses that are valid in the various

ranges of the interface locations z, equations (6.46) and (6.47), and if we

substitute for the values of zk , then

Mx D

(

Z

�150�10�6

�300�10�6

519 000z2dz C

Z 0

�150�10�6

40 500z2dz

C

Z 150�10�6

0

40 500z2dz C

Z 300�10�6

150�10�6

519 000z2dz

)

� 106

(6.74)

Going one step further, we find

Mx D

(

519 000 � 106

Z

�150�10�6

�300�10�6

z2dz C 40 500 � 106

Z 0

�150�10�6

z2dz

C 40 500 � 106

Z 150�10�6

0

z2dz C 519 000 � 106

Z 300�10�6

150�10�6

z2dz

)

(6.75)
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with the integrals on z leading to differences in the cubes of the zk ; that is:

Mx D
1

3

˚

519
�

.�150/3
� .�300/3

�

C 40:5
�

03
� .�150/3

�

C 40:5
�

.150/3 � 03
�

C 519
�

.300/3 � .150/3
�	

�
�

109
� �

10�6
�3

(6.76)

The final numerical result is

Mx D 8:27 N�m/m (6.77)

It is important to note the sign of the moment resultant: The sign is consistent

with the sense of the moments shown in Figure 6.24; the moments there are

shown in a positive sense. We will expand our discussion of the sign of

the stress resultants shortly. Moment resultants associated with the other two

stresses can be defined as

My �

Z H
2

�
H
2

�yzdz Mxy �

Z H
2

�
H
2

�xyzdz (6.78)

The latter is referred to as the twisting moment resultant. For this problem

My D

Z z1

z0

�yzdz C

Z z2

z1

�yzdz C

Z z3

z2

�yzdz C

Z z4

z3

�yzdz

D .10 060 � 106/

(

Z 300�10�6

�300�10�6

z2dz

) (6.79)

The latter step results because, by equations (6.46) and (6.47), the functional

dependence of �y on z is the same for each layer and the four spatial integrals

can be lumped into one, resulting in

My D 0:1809 N�m/m (6.80)

By equations (6.46) and (6.47),

Mxy D 0 (6.81)

Again, take care to note the sign of the bending moment resultant My , as

it is consistent with the sense shown in Figure 6.24. Finally, the definitions

of the moment resultants imply that the moments are taken about the point

z D 0; that is, the reference surface.

The proper interpretation of CLT Example 2 is that if at a point .x; y/ on

the reference surface of a Œ0=90�S laminate, the moment resultants are

Mx D 8:27 N �m/m My D 0:1809 N�m/m Mxy D 0 (6.82)
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then at that point the deformation of the reference surface is given by equation

(6.41), namely,

"o
x.x; y/ D 0 �o

x.x; y/ D 3:33 m�1

"o
y.x; y/ D 0 �o

y.x; y/ D 0

o
xy.x; y/ D 0 �o

xy.x; y/ D 0

(6.83)

The stress and strain distributions of Figures 6.18, 6.19, 6.21, and 6.22 result

from the application of these stress resultants. Consider again the 0.250 m

long by 0.125 m wide Œ0=90�S laminate; if it is to have the deformations

of equation (6.83) at every point on its entire 0.0312 m2 reference sur-

face, then along the 0.125 m widthwise side there must be a total bending

moment of

Mx � Ly D 8:27 � 0:1255 D 1:033 N �m .6:84a/

and along the 0.250 m lengthwise edge there must be a total bending moment

of

My � Lx D 0:1809 � 0:250 D 0:0452 N�m .6:84b/

Figure 6.27 illustrates these moments and it is assumed they are uniformly

distributed along the edges. Here the double-headed arrows are used to

indicate moments, as opposed to the curved arrows in Figure 6.24. We are

introducing the double-headed arrow notation to avoid confusion in later

figures. The sense of the moments along the 0.250 m lengthwise edges is

such as to counter anticlastic curvature effects.

y
x

z

0.0452 N⋅m

0.0452 N⋅m

1.033 N⋅m

1.033 N⋅m

0.125 m
0.250 m

FIGURE 6.27. Moments required to produce state of deformation �o
x D 3:33 m�1

in Œ0=90�S laminate.
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We can determine the out-of-plane displacement of the reference surface

by considering the definitions of the curvatures and equation (6.83), namely,

�o
x.x; y/ D �

@2wo.x; y/

@x2
D 3:33

�o
y.x; y/ D �

@2wo.x; y/

@y2
D 0

�o
xy D �2

@2wo.x; y/

@x@y
D 0

(6.85)

Integrating the first two equations results in two different expressions for

wo.x; y/:

wo.x; y/ D �
1

2
3:33x2

C q.y/x C r.y/

wo.x; y/ D s.x/y C t.x/

(6.86)

where q.y/, r.y/, s.x/, and t.x/ are arbitrary functions of integration. Com-

puting the reference surface twisting curvature, which is equal to zero, from

both expressions leads to

�o
xy D �2

@2wo.x; y/

@x@y
D �2

dq.y/

dy
D 0

�o
xy D �2

@2wo.x; y/

@x@y
D �2

ds.x/

dx
D 0

(6.87)

From these two equations we can conclude that q.y/ and s.x/ are constants;

that is:

q.y/ D K1

s.x/ D K2

(6.88)

Thus, the two expressions for wo.x; y/ become

wo.x; y/ D �
1

2
3:33x2

C K1x C r.y/

wo.x; y/ D K2y C t.x/

(6.89)

As there can be only one expression for wo.x; y/, we conclude that

r.y/ D K2y C K3

t.x/ D �
1

2
3:33x2

C K1x C K3

(6.90)

with K3 being a constant that is common to both functions. The final expres-

sion for wo.x; y/ is

wo.x; y/ D �
1

2
3:33x2

C K1x C K2y C K3 (6.91)
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The constants K1 and K2 represent rigid body rotations of the laminate about

the y and x axes, respectively, and K3 represents rigid body translation in the

z direction. If wo, @wo=@x, and @wo=@y are arbitrarily set equal to zero at

the origin of the coordinate system, x D 0 and y D 0, then to supress rigid

body motion results in requiring K1, K2, and K3 to be zero. The deformed

shape of the laminate is thus given by

uo.x; y/ D 0

vo.x; y/ D 0

wo.x; y/ D �
1

2
.3:33/x2

(6.92)

where the first two equations result from the fact that "o
x, "o

y, and o
xy are

zero for this CLT example, and we assume that the origin of the coordinate

system is at the center of the laminate.

The following couplings are very important:

1. The coupling of the deformations of the reference surface with the distri-

bution of strains through the thickness.

2. The coupling of the distribution of strains through the thickness with the

distribution of stresses through the thickness.

3. The coupling of the distribution of stresses through the thickness with the

stress resultants that act at the reference surface.

The couplings begin to tie together the analysis of laminates in a cause-and-

effect relation. Generally the loads on a laminate are specified and we want to

know the resulting stresses. The effect is the reference surface deformations

and stresses, while the cause is the stress resultants, or loads. If we know

the reference surface deformations, we can determine the stresses. At this

point we cannot determine the reference surface deformations from the stress

resultants; we can only compute the stress resultants, given that we know

the reference surface deformations. Later we will be able to compute the

reference surface deformations from the stress resultants, and thus deter-

mine the thickness distribution of the strains and stresses from the given

loads.

Though we have not shown it directly, in the first example the moment

resultants are identically zero, and in the second example the force resultants

are identically zero. An examination of the distribution of the stresses through

the thickness of the laminate in the first example indicates that both �x and

�y are even functions of z. Multiplying the stresses for that example by z

makes the integrands of the moment resultants odd functions of z, resulting

in zeros for the integrals. In the second example, the distribution of �x and

�y are linear functions of z, making the integrands of the force resultants

odd functions of z, resulting in zeros for those integrals too.
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Exercise for Section 6.7

Compute the force and moment resultants for the aluminum laminates of Figures 6.15

and 6.23, the counterparts to the Œ0=90�S graphite-reinforced laminates of CLT Exam-

ples 1 and 2. Compare these resultants with the resultants for the graphite-reinforced

laminates. Is the graphite-reinforced laminate stiffer than the aluminum laminate?

6.8 Further Examples

6.8.1 CLT Example 3: [˙30/0]S Laminate Subjected

to Known "o
x

As a third example of the response of fiber-reinforced composite laminates as

predicted by classical lamination theory, consider a six-layer Œ˙30=0�S lam-

inate with a point .x; y/ on the reference surface subjected to the extension-

only conditions of equation (6.19), namely,

"o
x.x; y/ D 1000 � 10�6 �o

x.x; y/ D 0

"o
y.x; y/ D 0 �o

y .x; y/ D 0

o
xy.x; y/ D 0 �o

xy .x; y/ D 0

(6.93)

The distribution of the strains "x, "y , and xy is similar to Figure 6.13, except

the laminate is 0.900 mm thick instead of 0.600 mm thick. For this six-layer

laminate, as in equation (6.20),

"x.x; y; z/ D "o
x.x; y/ C z�o

x .x; y/ D 1000 � 10�6

"y.x; y; z/ D "o
y.x; y/ C z�o

y .x; y/ D 0

xy.x; y; z/ D o
xy.x; y/ C z�o

xy .x; y/ D 0

(6.94)

and the interface locations are

z0 D �0:450 mm z1 D �0:300 mm z2 D �0:150 mm

z3 D 0 z4 D 0:150 mm z5 D 0:300 mm z6 D 0:450 mm

(6.95)

with the strain distribution being shown in Figure 6.28. By the stress-strain

relations the stresses in the C30ı layers are given by
8

ˆ

<

ˆ

:

�x

�y

�xy

9

>

=

>

;

D

2

6

4

NQ11.30ı/ NQ12.30ı/ NQ16.30ı/

NQ12.30ı/ NQ22.30ı/ NQ26.30ı/

NQ16.30ı/ NQ26.30ı/ NQ66.30ı/

3

7

5

8

ˆ

<

ˆ

:

1000 � 10�6

0

0

9

>

=

>

;

(6.96)

or
�x D NQ11.30ı/ � 1000 � 10�6

�y D NQ12.30ı/ � 1000 � 10�6

�xy D NQ16.30ı/ � 1000 � 10�6

(6.97)
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FIGURE 6.28. Strain distribution through the thickness of Œ˙30=0�S laminate

subjected to "o
x D 1000 � 10�6.

If we use the values of the reduced stiffness matrix for � D C30ı, equation

(5.97), the stresses are

�x D .92:8 � 109/.1000 � 10�6/ D 92:8 MPa

�y D .30:1 � 109/.1000 � 10�6/ D 30:1 MPa

�xy D .46:7 � 109/.1000 � 10�6/ D 46:7 MPa

(6.98)

while for the �30ı layers,

8

ˆ

ˆ

<

ˆ

ˆ

:

�x

�y

�xy

9

>

>

=

>

>

;

D

2

6

6

4

NQ11.�30ı/ NQ12.�30ı/ NQ16.�30ı/

NQ12.�30ı/ NQ22.�30ı/ NQ26.�30ı/

NQ16.�30ı/ NQ26.�30ı/ NQ66.�30ı/

3

7

7

5

8

ˆ

ˆ

<

ˆ

ˆ

:

1000 � 10�6

0

0

9

>

>

=

>

>

;

(6.99)
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Or, if we use the values of the reduced stiffness matrix for � D �30ı,

equation (5.100),

�x D .92:8 � 109/.1000 � 10�6/ D 92:8 MPa

�y D .30:1 � 109/.1000 � 10�6/ D 30:1 MPa

�xy D .�46:7 � 109/.1000 � 10�6/ D �46:7 MPa

(6.100)

For the 0ı layers the stresses are the same as in the first example with the

Œ0=90�S laminate, namely,
8

ˆ

ˆ

<

ˆ

ˆ

:

�x

�y

�xy

9

>

>

=

>

>

;

D

2

6

6

4

NQ11.0
ı/ NQ12.0ı/ NQ16.0

ı/

NQ12.0
ı/ NQ22.0ı/ NQ26.0

ı/

NQ16.0
ı/ NQ26.0ı/ NQ66.0

ı/

3

7

7

5

8

ˆ

ˆ

<

ˆ

ˆ

:

1000 � 10�6

0

0

9

>

>

=

>

>

;

(6.101)

8

ˆ

<

ˆ

:

�x

�y

�xy

9

>

=

>

;

D

2

6

4

Q11 Q12 0

Q12 Q22 0

0 0 Q66

3

7

5

8

ˆ

<

ˆ

:

1000 � 10�6

0

0

9

>

=

>

;

(6.102)

or

�x D 155:7 MPa

�y D 3:02 MPa

�xy D 0

(6.103)

Figure 6.29 shows the stress distribution for this third example. Unlike the

previous examples, �xy is not zero throughout the thickness. The stress

components �x and �y are continuous with z between the ˙30ı layers despite

the abrupt change in fiber angle, whereas the component �xy is not continuous.

These characteristics are a reflection of the nature of the variation of the

reduced stiffnesses, the NQij , with � . This problem again emphasizes the fact

that if the state of strain is given, the resulting stresses are independent of

whether the element of material is isolated, as in equation (5.98), or whether

it is part of a laminate, as in equation (6.98). The equivalence of these two

results for the C30ı layers for these two different problems is attributed to

the uniqueness of the strains in defining the stresses.

The force resultants are computed directly as follows:

Nx D .92:8 C 92:8 C 155:7 C 155:7 C 92:8 C 92:8/ � 106.150 � 10�6/

D 0:1024 MN/m

Ny D .30:1 C 30:1 C 3:02 C 3:02 C 30:1 C 30:1/ � 106.150 � 10�6/

D 0:018 94 MN/m

Nxy D .46:7 � 46:7 C 0 C 0 � 46:7 C 46:7/ � 106.150 � 10�6/

D 0 (6.104a)
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FIGURE 6.29. Stress distribution through the thickness of Œ˙30=0�S laminate

subjected to "o
x D 1000 � 10�6.

The zero value of the shear force resultant Nxy is important to note. Even

though there are shear stresses in the ˙30ı layers, the effect of these shear

stresses on Nxy cancel each other when integrated through the thickness.

There are no moment resultants for this problem; that is:

Mx D My D Mxy D 0 .6:104b/

The proper interpretation of this third example is: If the force resultants

given by equations (6.104a) and (6.104b) are applied at a point .x; y/ on

the reference surface of a Œ˙30=0�S laminate, then at that point the reference

surface will deform as given by equation (6.93) and the stresses given by

equations (6.98), (6.100), and (6.103) result. A 0.250 m long by 0.125 m wide

Œ˙30=0�S laminate with the entire reference surface deformed as given in

equation (6.93) would require the forces illustrated in Figure 6.30, assuming

they are uniformly distributed along the edges. These forces are determined

from the force resultants of equation (6.104) and the dimensions of the

laminate; this situation is similar to that of Figure 6.26 for the Œ0=90�S
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z

FIGURE 6.30. Forces required to produce state of deformation "o
x D 1000 � 10�6

in Œ˙30=0�S laminate.

laminate. Equation (6.72) is valid for this Œ˙30=0�S case, and again the

deformed length of the plate is 250.25 mm long; the width and right corner

angles remain unchanged. Note that considerably more force is required to

deform the Œ˙30=0�S laminate than to deform the Œ0=90�S laminate in exactly

the same manner. There are more layers in the Œ˙30=0�S laminate than in

the Œ0=90�S laminate, but more importantly, the ˙30ı layers have a greater

stiffness in the x direction than the 90ı layers. The requirement of having a

larger Ny for the Œ˙30=0�S case is a reflection of the greater tendency of the

Œ˙30=0�S laminate to contract more in the y direction. This is also due to

the influence of the ˙30ı layers.

The strains in the principal material system can be computed from the

transformation equations equation (6.32). For the C30ı layers,
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(6.105)

or
"1 D 750 � 10�6

"2 D 250 � 10�6

12 D �867 � 10�6

(6.106)
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For the �30ı layers,
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(6.107)

or

"1 D 750 � 10�6

"2 D 250 � 10�6

12 D 867 � 10�6

(6.108)

For the 0ı layers

"1 D "x D 1000 � 10�6

"2 D "y D 0

12 D xy D 0

(6.109)

The stresses in the principal material system are computed from the trans-

formation equations equation (6.31). For the C30ı layers
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(6.110)

or

�1 D 117:6 MPa

�2 D 5:30 MPa

�12 D �3:81 MPa

(6.111)
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For the �30ı layers,
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(6.112)

or
�1 D 117:6 MPa

�2 D 5:30 MPa

�12 D 3:81 MPa

(6.113)

For the 0ı layers

�1 D �x D 155:7 MPa

�2 D �y D 3:02 MPa

�12 D �xy D 0

(6.114)

Figures 6.31 and 6.32 illustrate distributions of the principal material system

strains and stresses; the discontinuities from layer to layer have now become

familiar.

6.8.2 CLT Example 4: [˙30=0�S Laminate Subjected

to Known �o
x

As a fourth example, consider the bending of the six-layer Œ˙30=0�S laminate.

This is the counterpart to the bending of the Œ0=90�S laminate, and upon

completion of this example, we will have examined the inplane stretching and

the out-of-plane bending of a Œ0=90�S and a Œ˙30=0�S laminate. This quartet

of examples provides insight into some of the important characteristics of

stresses in composite materials.

Consider a six-layer Œ˙30=0�S laminate with a point .x; y/ on the reference

surface subjected to the curvature-only condition

"o
x.x; y/ D 0 �o

x.x; y/ D 2:22 m�1

"o
y.x; y/ D 0 �o

y.x; y/ D 0

o
xy.x; y/ D 0 �o

xy.x; y/ D 0

(6.115)

Equation (6.95) gives the zk for the laminate, and Figure 6.33 shows the

distribution of the strains "x, "y , and xy through the thickness of the laminate.
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FIGURE 6.31. Principal material system strain distribution through the thickness of

Œ˙30=0�S laminate subjected to "o
x D 1000 � 10�6.

Functionally, the strain distributions are given as

"x.x; y; z/ D "o
x.x; y/ C z�o

x.x; y/ D 2:22z

"y.x; y; z/ D "o
y.x; y/ C z�o

y.x; y/ D 0

xy.x; y; z/ D o
xy.x; y/ C z�o

xy .x; y/ D 0

(6.116)

Because this six-layer Œ˙30=0�S laminate is thicker than the four-layer Œ0=90�S
laminate, we take the curvature of the Œ˙30=0�S laminate to be smaller

than the curvature of the Œ0=90�S laminate of CLT Example 2; thus, the

maximum strains at the outer extremities of the two laminates are the same.

This step is strictly based on the desire to be consistent in these examples.

The deformation represented by equation (6.115) is as it appears in Fig-

ure 6.20(a).

We compute the stresses in the various layers by the now-familiar approach

of applying the stress-strain relations on a layer-by-layer basis. Specifically,
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FIGURE 6.32. Principal material system stress distribution through the thickness of

Œ˙30=0�S laminate subjected to "o
x D 1000 � 10�6.

for the C30ı layers,
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FIGURE 6.33. Strain distribution through the thickness of Œ˙30=0�S laminate

subjected to �o
x D 2:22 m�1.

For the 0ı layers,
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Expanding these expressions for the stresses and using numerical values for

the NQij results in, for the C30ı layers,

�x D .92:8 � 109/.2:22z/ D 206 000z MPa

�y D .30:1 � 109/.2:22z/ D 66 800z MPa

�xy D .46:7 � 109/.2:22z/ D 103 800z MPa

.6:118a/
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FIGURE 6.34. Stress distribution through the thickness of a Œ˙30=0�S laminate

subjected to �o
x D 2:22 m�1.

for the �30ı layers,

�x D .92:8 � 109/.2:22z/ D 206 000z MPa

�y D .30:1 � 109/.2:22z/ D 66 800z

�xy D .�46:7 � 109/.2:22z/ D �103 800z

.6:118b/

and for the 0ı layers,

�x D .155:7 � 109/.2:22z/ D 346 000z MPa

�y D .3:02 � 109/.2:22z/ D 6700z

�xy D .0/.2:22z/ D 0

.6:118c/

Figure 6.34 illustrates the variation of �x , �y , and �xy with z. Though the

functional dependence on z of �xy is the same in the �30ı layers as in

the C30ı layers, except for the sign, the magnitude of the shear stress is
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smaller in the �30ı layers because these layers are closer to the reference

surface (smaller values of z) and experience less strain for the given value

of curvature �o
x.

Comparing CLT Examples 3 and 4 yields an important observation. Specif-

ically, �x is considerably higher in the 0ı layers of the Œ˙30=0�S laminate

of CLT Example 3 than in the 0ı layers of the Œ˙30=0�S laminate of CLT

Example 4; refer to Figures 6.29 and 6.34. In fact, in CLT Example 4 the

maximum value of �x in the 0ı layers is one-third as large. Yet, this is the

direction of bending. In CLT Example 4 the 0ı layers are contributing very

little to resisting bending in the x direction, whereas in CLT Example 3

they contribute considerably to resisting extension in the x direction. This

lack of effectiveness of the 0ı layers in the bending problem results because

they are located near the reference surface of the laminate, that is, near what

would be the “neutral axis” if this were an isotropic material problem. The

stiffness and strength of the fibers will not be utilized if they are located near

the reference surface and if the bending response is the primary response.

On the other hand, for resisting inplane deformations, the 0ı layers can be

anywhere through the thickness of the laminate and have the same effect. For

this reason, it is best to design composite structures so laminates are utilized

primarly to resist tension and compression, as opposed to resisting bending.

The force resultants for CLT Example 4 are zero because the stresses �x,

�y , and �xy are odd functions of z. The moment resultants are computed as

Mx �

Z H
2

�
H
2

�xzdz

D

Z z1

z0

�xzdz C

Z z2

z1

�xzdz C

Z z3

z2

�xzdz C

Z z4

z3

�xzdz

C

Z z5

z4

�xzdz C

Z z6

z5

�xzdz

(6.119)

Using the functional forms of �x that are valid in the various ranges of z,

and substituting for the values of zk , results in

Mx D

(

Z

�300�10�6

�450�10�6

206z2dz C

Z

�150�10�6

�300�10�6

206z2dz C

Z 0

�150�10�6

346z2dz

C

Z 150�10�6

0

346z2dz C

Z 300�10�6

150�10�6

206z2dz

C

Z 450�10�6

300�10�6

206z2dz

)

� 109 (6.120)
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or

Mx D 12:84 N � m/m (6.121)

Carrying out similar computations for My and Mxy leads to

My D 3:92 N � m/m (6.122)

Mxy D 2:80 N � m/m (6.123)

Note well that the twisting moment Mxy is not zero. This is because the �30ı

layers are closer to the reference surface than the C30ı layers. As a result,

the shear stresses �xy in the �30ı layers are smaller in magnitude than in the

C30ı layers. Also, because they are closer, the contribution from the �30ı

layers to the integral for Mxy is less, thereby not cancelling the contribution

from the C30ı layers to the integral. The overall effect is that there is a net

value of Mxy from the integral.

The proper interpretation of the moment resultants for this example, then,

is that if for a point .x; y/ on the reference surface of a Œ˙30=0�S laminate

the moment resultants are

Mx D 12:84 N � m/m My D 3:92 N � m/m

Mxy D 2:80 N � m/m
(6.124)

then the deformation at that point on the reference surface is given by

"o
x.x; y/ D 0 �o

x.x; y/ D 2:22 m�1

"o
y.x; y/ D 0 �o

y.x; y/ D 0

o
xy.x; y/ D 0 �o

xy.x; y/ D 0

(6.125)

and the distributions of the stresses and strains shown in Figures 6.33 and

6.34 result. To have only curvature in the x direction, �o
x , a twisting moment

resultant Mxy , in addition to bending moment resultants Mx and My , must

be applied at this point on the reference surface. If a Œ˙30=0�S laminate that

is 0.250 m long by 0.125 m wide is to have the deformations of equation

(6.125) at each point on its reference surface, then there must be a total

bending moment of

Mx � Ly D 12:84 � 0:125 D 1:605 N � m .6:126a/

plus a total twisting moment of

Mxy � Ly D 2:80 � 0:125 D 0:350 N � m .6:126b/

along the 0.125 m edges, and a total bending moment of

My � Lx D 3:92 � 0:250 D 0:981 N � m .6:126c/
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plus a total twisting moment of

Mxy � Lx D 2:80 � 0:250 D 0:701 N � m .6:126d/

along the 0.250 m edges. Figure 6.35 depicts these moments, and the sense

is correctly indicated. Referring to the development of equation (6.92), we

see that the deformed shape of the laminate is given by

uo.x; y/ D 0

vo.x; y/ D 0

wo.x; y/ D �
1

2
.2:22/x2

(6.127)

If the twisting moments were not present along the edges, then there would

be a twisting curvature �o
xy .x; y/. The notion of needing a twisting moment to

produce a deformation that consists only of a curvature in the x direction, and

conversely, as we shall see, the notion of having a twisting curvature generated

even if there is no twisting moment, are unique to composite materials. In

general, when one considers pairs of off-axis angles (e.g., ˙� pairs), it is

physically impossible to have these pairs be at the same distance from the

reference surface and this Mxy � �o
x effect will always be present. Of course,

if a laminate consists only of 0ı and 90ı layers, then there are no shear

stresses and the effect is not present, as in CLT Example 2. With only 0ı

or 90ı layers, NQ16 and NQ26 are zero for every layer and the extensional

strains due to bending do not cause shear stresses. Finally, the presence of

My for the Œ˙30=0�S laminate is necessary to counter anticlastic curvature

effects.
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0.350 N⋅m

0.350 N⋅m

0.125 m

y
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0.250 m

FIGURE 6.35. Moments required to produce state of deformation �o
x D 2:22 m�1

in Œ˙30=0�S laminate.
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We can compute the strains in the principal material system from the

transformation relations. For the C30ı layers,
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(6.128)

or

"1 D 1:667z

"2 D 0:556z

12 D �1:924z

(6.129)

For the �30ı layers,
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(6.130)

or

"1 D 1:667z

"2 D 0:556z

12 D 1:924z

(6.131)

For the 0ı layers, by direct observation,

"1 D "x D 2:22z

"2 D "y D 0

12 D xy D 0

(6.132)
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FIGURE 6.36. Principal material system strain distribution through the thickness of

Œ˙30=0�S laminate subjected to �o
x D 2:22 m�1.

Figure 6.36 shows these strain distributions graphically. The stresses in the

principal material system are given by transformation. For the C30ı layers,
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or

�1 D 261 000z MPa

�2 D 11 780z

�12 D �8470z

(6.134)
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For the �30ı layers,
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or
�1 D 261 000z MPa

�2 D 11 780z

�12 D 8470z

(6.136)

For the 0ı layers,

�1 D �x D 346 000z MPa

�2 D �y D 6700z

�12 D �xy D 0

(6.137)

Figure 6.37 illustrates these stress distributions.

From these examples, we can conclude that within a layer the stresses

and strains vary linearly, or are a constant, through the thickness. For the

most general deformation of the most general laminate, this will always be

the case. It is a direct result of the Kirchhoff hypothesis, that is, the linear

variation of the displacements through the thickness as described by equation

(6.12). Graphically, because of this linear character, it is really only necessary

to compute the stresses, or strains, at the top and bottom of each layer and

then connect these values with a straight line. This will give an accurate

description of the stresses and strains through the thickness.

6.8.3 CLT Example 5: [˙30=0�T Laminate Subjected

to Known "o
x

As a fifth and final example, consider a laminate that consists of one-half of

the laminate in CLT Examples 3 and 4. The laminate for this fifth example will

be a ŒC30=�30=0�T laminate, an unsymmetric laminate. We shall examine the

strains, stresses, and force and moment resultants for this laminate assuming

previously used extension-only deformations of

"o
x.x; y/ D 1000 � 10�6 �o

x.x; y/ D 0

"o
y.x; y/ D 0 �o

y .x; y/ D 0

o
xy.x; y/ D 0 �o

xy .x; y/ D 0

(6.138)



Further Examples 297

0.450

0.300

0.150

0.0

–0.150

–0.300

–0.450

z,
 m

m
z,

 m
m

z,
 m

m

Layer

0.450

0.300

0.150

0.0

–0.150

–0.300

–0.450
Layer

0.450

0.300

0.150

0.0

–0.150

–0.300

–0.450
Layer
+30°

–30°

0°

0°
–30°

+30°

+30°

–30°

0°

0°
–30°

+30°

+30°

–30°

0°

0°
–30°

+30°

–150 –100 –50 0 50 100 150

–10 –5 0 5 10

–5 –4 –3 –2 –1 0 1 2 3 4 5

σ1, MPa

σ2, MPa

τ12 , MPa

FIGURE 6.37. Principal material system stress distribution through the thickness of

Œ˙30=0�S laminate subjected to �o
x D 2:22 m�1.

Except for the fact that it only involves three layers, the strain distribution

for this example is like the strain distribution of CLT Examples 1 and 3. For

this three-layer laminate

z0 D �0:225 mm

z1 D �0:075 mm

z2 D C0:075 mm

z3 D C0:225 mm

(6.139)

and the strain distribution is shown in Figure 6.38.

As you may have anticipated by now, the stresses �x, �y , and �xy in

the C30ı, �30ı, and 0ı layers are identical to the case of the Œ˙30=0�S
laminate of Example 3. The strain distribution of equation (6.138), when

applied to C30ı layers, �30ı layers, and 0ı layers, produces the same stresses

independently of the laminate the layers are within. Thus the calculations

from equations (6.98), (6.100), and (6.103) are valid for this laminate for the
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FIGURE 6.38. Strain distribution through the thickness of Œ˙30=0�T laminate

subjected to "o
x D 1000 � 10�6.

C30ı, �30ı, and 0ı layers, respectively. For the C30ı layer

�x D 92:8 MPa

�y D 30:1 MPa

�xy D 46:7 MPa

.6:140a/

For the �30ı layer

�x D 92:8 MPa

�y D 30:1 MPa

�xy D �46:7 MPa

.6:140b/

For the 0ı layer

�x D 155:7 MPa

�y D 3:02 MPa

�xy D 0

.6:140c/



Further Examples 299

0.150
0.225

0.075

0.0

–0.075

–0.150

–0.225

z,
 m

m

0.150
0.225

0.075

0.0

–0.075

–0.150

–0.225

z,
 m

m

0.150
0.225

0.075

0.0

–0.075

–0.150

–0.225

z,
 m

m

Layer

+30°

—
–30°

—

0°

Layer

+30°

—
–30°

—

0°

Layer

+30°

—
–30°

—

0°

0

0

50 100 150 200

10 20 30 40 50

–50 –25 0 25 50

σx , MPa

σy , MPa

τ xy , MPa

FIGURE 6.39. Stress distribution through the thickness of Œ˙30=0�T laminate

subjected to "o
x D 1000 � 10�6.

Figure 6.39 illustrates the stress distribution described by the above equations,

and it is clear that for this unsymmetric laminate the distribution of stresses

is not symmetric with respect to z D 0. This lack of symmetry occurs despite

the symmetric and rather simple strain distribution through the thickness. The

effects of this lack of symmetry on the stresses will be evident in the moment

resultants.

The force resultants for this problem are computed as

Nx D .92:8 C 92:8 C 155:7/ � 106.150 � 10�6/

D 51 200 N/m

Ny D .30:1 C 30:1 C 3:02/ � 106.150 � 10�6/

D 9470 N/m

Nxy D .46:7 � 46:7 C 0/ � 106.150 � 10�6/

D 0

(6.141)
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The bending moment resultant Mx is

Mx D

Z H
2

�
H
2

�xzdz D

Z z1

z0

�xzdz C

Z z2

z1

�xzdz C

Z z3

z2

�xzdz (6.142)

Mx D

(

Z

�75�10�6

�225�10�6

92:8zdz C

Z 75�10�6

�75�10�6

92:8zdz

C

Z 225�10�6

75�10�6

155:7zdz

)

� 106

(6.143)

Mx D
1

2

˚

92:8
�

.�75/2
� .�225/2

�

C 92:8
�

.75/2
� .�75/2

�

C 155:7
�

.225/2 � .75/2
�	

� 106 � .10�6/2

(6.144)

Mx D 1:416 N � m/m (6.145a)

The bending moment resultant My is

My D �0:609 N � m/m .6:145b/

while the twisting moment resultant Mxy is

Mxy D �1:051 N � m/m .6:145c/

In summary, therefore,

Nx D 51 200 N/m

Ny D 9470 N/m

Nxy D 0

Mx D 1:416 N � m/m

My D �0:609 N � m/m

Mxy D �1:051 N � m/m

(6.146)

The proper interpretation of this fifth example is as follows: If the force and

moment resultants given by equation (6.146) are applied at a point .x; y/

on the reference surface of a ŒC30= � 30=0�T laminate, then at that point

the reference surface will deform as in equation (6.138), and the strains and

stresses of Figures 6.38 and 6.39 will result. Note that to produce only an

extensional strain "x with this unsymmetric laminate, both force and moment

resultants are necessary. With a symmetric laminate, to produce only an

extensional strain, only force resultants are required. This is an important
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difference between symmetric and unsymmetric laminates. The fact that both

force resultants and moment resultants are required to produce pure extension

of an unsymmetric laminate is called the bending-stretching coupling effect.

Symmetric laminates do not exhibit bending-stretching coupling effects. Un-

symmetric laminates always do, and more will be said of this later.

This completes our five examples designed to demonstrate the implica-

tions of the Kirchhoff hypothesis, and to demonstrate how the stresses in a

laminate are computed in the context of this hypothesis and the plane-stress

assumption. We have learned that by knowing the strains and curvatures at

the reference surface, by the Kirchhoff hypothesis the strains at any point

through the thickness can be determined. Through the stress-strain relations

for each layer, we can determine the stress distribution through the thickness.

By transformation, we can compute the strains and stresses in the principal

material direction of each layer. We have also learned that within each layer

the stresses are constant, or vary linearly, and that, in general, the stress

components exhibit discontinuities from one layer to the next. Force and

moment resultants can be quite naturally defined as integrals of the stresses

through the thickness of the laminate. These resultants can be thought of as

acting at the reference surface and, in fact, are responsible for the strains at

the reference surface. Finally, we saw in CLT Example 5 that unsymmetric

laminates require moment resultants, as well as force resultants, to deform

in simple extension in the x direction. Although it was not demonstrated, to

deform with just pure curvature and with no extension as the laminates of

CLT Examples 2 and 4 did, an unsymmetric laminate requires force resultants

as well as moment resultants. A symmetric laminate requires only moment

resultants.

You are now ready to compute stresses in laminates, and you will have the

opportunity to do so in the exercises for Section 6.8. In addition, you will be

asked to modify one of your existing computer programs. When you finish

the exercises, you will have a thorough understanding of the important steps

in the stress analysis of composite laminates.

6.8.4 A Note on the Kirchhoff Hypothesis

One of the key assumptions of the Kirchhoff hypothesis is that all points

through the thickness of a laminate with coordinates .x; y/ displace the same

amount in the z direction. The displacement is given by the displacement of

the reference surface in the z direction:

w.x; y; z/ D wo.x; y/ (6.147)

In the context of Figure 6.9, this means points t and t 0 are the same distance

apart after deformation as they are before deformation. That distance is

H , the thickness of the laminate. As mentioned, this contradicts the fact
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that because of Poisson effects, an "x causes an "z and an "y causes an

"z. Hence, w.x; y; z/ cannot be the same at each z location through the

thickness. Kirchhoff’s hypothesis was originally introduced in the 1800s for

the purpose of studying bending response; that is, uo.x; y/ and �o.x; y/ were

both equal to zero. For nonlayered single-material beams, such as aluminum

or steel, or for symmetric laminates subjected to bending, points t and t 0

do indeed remain a fixed distance apart. For the situation shown in Figure

6.9, due to Poisson effects, point t moves toward the reference surface and

point t 0 moves away from the reference surface the same amount t moves

towards the reference surface. Therefore, on a point-by-point basis through

the thickness, equation (6.147) is not valid. However, on an average basis,

the equation is valid. If the context of equation (6.147) is kept in mind,

and either equation (4.3) or equation (4.10) are used in conjunction with the

predictions of classical lamination theory for "1, "2, and �1, �2, then accurate

and legitimate information regarding "z.D "3/ can be obtained.

Exercises for Section 6.8

1. A six-layer Œ˙15=0�S graphite-reinforced composite laminate is deformed so that

at a point .x; y/ on the reference surface

"o
x D 1000 � 10�6 �o

x D 0

"o
y D 0 �o

y D 0

o
xy D 0 �o

xy D 0

This is the same deformation given the Œ˙30=0�S laminate of CLT Example 3.

Here, however, the off-axis fiber angles are more closely aligned with the direction

of the applied deformation. The value of Nx to produce these reference surface

deformations should be larger than for the Œ˙30=0�S case, reflecting the rapid

change of NQ11 with � , as in Figure 5.7. (a) Compute and plot, as a function of z,

the three components of stress and three components of strain in the x-y and 1-2

systems. (b) Compute the values of Nx , Ny , Nxy , Mx , My , and Mxy required at

that point to produce these reference surface deformations. (c) Compare the values

of Nx and Ny with those of CLT Example 3.

2. Suppose a Œ˙30=0�T unsymmetric laminate that is 0.250 m long by 0.125 m wide

has the deformations of equation (6.138) at every point on its reference surface, as

in CLT Example 5. (a) Compute the force and moment resultants required along

the edges to produce this deformation. (b) In the manner of Figures 6.26, 6.27,

6.30, and 6.35, determine the numerical values of the forces and moments and

make a sketch.

Exercises 3, 4, and 5 should be studied carefully. The laminate is the same in each

problem, but the applied deformation state is quite different. In each case, however,

the maximum strain produced has a magnitude of 1000 � 10�6. Note, you may want

to complete the Computer Exercise before proceeding with Exercises 3 through 6.
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3. A six-layer Œ˙45=0�S graphite-reinforced composite laminate is deformed so that

at a point .x; y/ the reference surface

"o
x D 1000 � 10�6 �o

x D 0

"o
y D 1000 � 10�6 �o

y D 0

o
xy D 0 �o

xy D 0

This deformation is referred to as biaxial stretching (i.e., stretching in two direc-

tions). (a) Compute and plot, as a function of z, the three components of strain

and the three components of stress in the x-y and 1-2 systems. (b) Compute the

values of Nx , Ny , Nxy , Mx , My , Mxy required at that point to produce these

reference surface deformations. This laminate is slightly orthotropic in its inplane

properties. Therefore, it takes more force in the x direction than in the y direction

to achieve the given deformation state. Also note that every layer is in the same

state of stress in the principal material system.

4. A six-layer Œ˙45=0�S graphite-reinforced composite laminate is deformed so that

at a point .x; y/ the reference surface

"o
x D 0 �o

x D 2:22 m�1

"o
y D 0 �o

y D �2:22 m�1

o
xy D 0 �o

xy D 0

(a) Compute and plot, as a function of z, the three components of strain and

the three components of stress in the x-y and 1-2 systems. (b) Compute the

values of Nx , Ny , Nxy , Mx , My , Mxy required at that point to produce these

reference surface deformations. (c) Note that the magnitude of Mx required is

slightly greater than the magnitude of My required. Why is this so? (d) Suppose

a Œ˙45=0�S laminate that is 0.250 m long by 0.125 m wide has the curvatures

given above at every point on its reference surface. Sketch the deformed shape of

the laminate, including the x-y-z coordinate system and the correct sense of the

out-of-plane displacements wo . (e) What moments are required along the edges of

the rectangular laminate to produce the curvatures?

5. A six-layer Œ˙45=0�S graphite composite laminate is deformed so that at a point

.x; y/ on the reference surface

"o
x D 0 �o

x D 0

"o
y D 0 �o

y D 0

o
xy D 0 �o

xy D 2:22 m�1

For this situation answer questions (a), (b), (d), and (e) from Exercise 4. Note that

the values of Mx and My required to produce just a twisting curvature are about

one-half the value of Mxy , a large percentage.

6. In CLT Example 5 we found that to stretch an unsymmetric laminate, equation

(6.138), requires both force resultants and moment resultants. This is unlike the
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stetching of a symmetric laminate (e.g., CLT Examples 1 and 3), where stretching

a symmetric laminate does not require moment resultants. Like stretching, bending

an unsymmetric laminate requires both force resultants and moment resultants. To

show this, consider the Œ˙30=0�T laminate of CLT Example 5 deformed such that

at a point .x; y/ on the reference surface

"o
x.x; y/ D 0 �o

x.x; y/ D 4:44 m�1

"o
y.x; y/ D 0 �o

y .x; y/ D 0

o
xy.x; y/ D 0 �o

xy .x; y/ D 0

This curvature produces "x D 1000 � 10�6 at z D ˙H=2. (a) Compute and plot

the distribution through the thickness of stresses �x , �y , and �xy . (b) Calculate the

force and moment resultants at that point to show that bending an unsymmetric

laminate requires both force and moment resultants.

7. Suppose in Exercise 6 the deformations given were assumed to hold for every

point on the reference surface of a Œ˙30=0�T laminate of dimensions 0.250 m in

the x direction and 0.125 m in the y direction. (a) What would be the forces and

moments acting on each edge? Sketch the 0.250 � 0.125 m laminate to show the

sense of these forces and moments. (b) Is the deformed shape described by the

following?

uo.x; y/ D 0

vo.x; y/ D 0

wo.x; y/ D .2:22/x2

If the above description of the deformed shape is not valid, how would the deformed

shape be described?

8. In the next chapter we shall study the extensional and bending stiffnesses of

laminates. For nonlayered single materials, the extensional stiffness of a beam

is given by the product of extensional modulus, E , and the cross-sectional area,

A, namely EA. The bending stiffness of a beam is given by the product of

extensional modulus and the cross-sectional second moment of area, I , namely EI .

These are concepts learned in elementary strength-of-materials courses. For simple

laminates such as a Œ0=90�S laminate, the extensional and bending stiffnesses of a

composite beam can be approximated by computing the effective EA and effective

EI . Consider a beam 10 mm wide and of arbitrary length with a lamination

sequence of Œ0=90�S. By considering only the contribution of the 0ı layers to

the cross-sectional stiffness, compute the effective EA and effective EI of a

Œ0=90�S beam. Hint: For bending, consider the cross section of the composite

to be like the cross section of an I-beam. With an I-beam, the contribution of

the web to the second moment of area is negligible compared to the contribution

of the flanges. For the Œ0=90�S composite, consider the 90ı layers to have negli-

gible contribution to the effective EI . These approximations are depicted in the

accompanying figure:



Further Examples 305

I-beam

[0/90]S laminate

Ignore in calculation of I

Ignore in calculation of I

Answer: Effective EA = 0.465 MN
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊEffective EI = 0.0244 N⋅m2

For E use E1

Computer Exercise

You are now ready to make an important addition to your existing computer program

involving the NQ. Modify and expand the program to compute the stresses through

the thickness of a laminate, given that we know the engineering properties, fiber

orientations, layer thickness, layer stacking sequence, and "o
x ; : : : ; �o

xy for the laminate.

For simplicity, assume that all layers are made of the same material and all are the same

thickness. The program should be user-friendly, prompting the user for information,

and printing out, either on the screen or on a printer, all the information regarding the

laminate. The program should flow roughly as follows:

1. Read in the number of layers.

2. Read in the engineering properties of a layer, and the thickness.

3. Compute the Qij .

4. Print the number of layers, the engineering properties, and the Qij .

5. Compute and print the zk .

6. Read in and print the fiber orientations in each layer.

7. Compute and print the NQij for each layer.

8. Read in and print the values of "o
x; : : : ; �o

xy .

9. Compute and print the values of "x , "y , and xy at the top and bottom of each

layer. (These are the extreme values in each layer.)

10. Compute and print the values of "1, "2, and 12 at the top and bottom of each

layer.

11. Compute and print the values of �x , �y , and �xy at the top and bottom of each

layer.
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12. Compute and print the values of �1, �2, and �12 at the top and bottom of each

layer.

13. As a check at a later stage when we add further to this program, you might want

to compute and print the values of Nx; : : : ; Mxy as calculated from the values of

�x , �y , and �xy , and the zk .

Use the stress and strain calculations of CLT Examples 1 through 5 to check your

program for errors.

6.9 Suggested Readings

For a discussion of the Kirchhoff hypothesis, particularly in the context of classical

isotropic materials, see:

1. Timoshenko, S., and S. Winowsky-Krieger. Theory of Plates and Shells. 2nd ed.

New York: McGraw-Hill, 1959.

2. Fung, Y. C. Foundations of Solid Mechanics. Englewood Cliffs, NJ: Prentice Hall,

1969.

For a discussion of the Kirchhoff hypothesis in the context of variational and energy

methods and isotropic materials, see:

3. Shames, I. H., and C. L. Dym. Energy and Finite Element Methods in Structural

Mechanics. New York: Hemisphere Publishing, 1985.

One of the earliest books on applying the concepts of isotropic plate theory to

laminates is:

4. Ashton, J. E., and J. M. Whitney. Theory of Laminated Plates. Lancaster, PA:

Technomic Publishing Co., 1970.

Other books on the topic are:

5. Ambartsumyan, S. A. Theory of Anisotropic Plates. Lancaster, PA: Technomic

Publishing Co., 1969.

6. Whitney, J. M. Structural Analysis of Laminated Anisotropic Plates. Lancaster, PA:

Technomic Publishing Co., 1987.

7. Jones, R. M. Mechanics of Composite Materials. New York: McGraw-Hill, 1975.

8. Calcote, L. R. The Analysis of Laminated Composite Structures. New York: Van

Nostrand Reinhold, 1969.

For a discussion of the relaxation of the Kirchhoff hypothesis, see:

9. Reddy, J. N. “A Simple Higher-Order Theory for Laminated Composite Plates.”

Transactions of the ASME, Journal of Applied Mechanics 51 (1984), pp. 745–52.



CHAPTER 7

Classical Lamination Theory:
Laminate Stiffness Matrix

To this point in the development of classical lamination theory it is clear that

if we are given the strains and curvatures at a point .x; y/ on the reference

surface—"o
x, "o

y , o
xy , �o

x , �o
y , and �o

xy —then we can compute the strain

distributions through the thickness of the laminate. By using the stress-strain

relations, we can compute the stress distributions. By using the transformation

relations, we can determine the stresses and strains in the principal material

system, and by using the definitions of the stress resultants, we can compute

the force and moment resultants acting at that point. If we specify that the

given strains and curvatures are the same at every point on the reference

surface of a laminate of a given length and width, then we can determine the

total forces and moments acting on the edges of the laminate. These steps

are all a result of the plane stress assumption and the Kirchhoff hypothesis.

Figure 7.1 illustrates the connection between these steps. What remains in

the development of classical lamination theory is to be able to specify the

force and moment resultants acting at a point .x; y/ on the reference surface,

and then to be able to compute the strains and curvatures of that point on the

reference surface that these resultants cause. We want to fill in the missing link

in the upper left portion of Figure 7.1, namely, compute the reference surface

strains and curvatures, knowing the stress resultants. With these computed

reference surface strains and curvatures, we can then, as in the previous

examples, compute the strain and stress distributions through the thickness of

the laminate. Relating the stress resultants to the reference surface strains and

curvatures is an important step. In the application of composite materials to

structures, we are often given the forces and moments that act on a laminate,

and we want to know the stresses and strains that are caused by these loads.

Having a relation between the force and moment resultants and the strains

and curvatures at a point .x; y/ on the reference surface will allow us to do

this. In what follows we shall develop this key relationship.
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FIGURE 7.1. Interrelations among concepts developed so far.

7.1 Formal Definition of Force and Moment Resultants

Though we have introduced and computed them in the examples, we have not

formally defined in one location the three force resultants and three moment

resultants that are a result of integrating the stresses through the thickness of

the laminate. The stress resultants in the x direction, Nx, in the y direction,

Ny, and in shear, Nxy, are defined as

Nx �

Z H

2

�
H

2

�xdz

Ny �

Z H

2

�
H

2

�ydz

Nxy �

Z H

2

�
H

2

�xydz

(7.1)
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z

x

Ny

Nxy

Nx

FIGURE 7.2. Definition of force resultants Nx , Ny , and Nxy .

The resultants Nx and Ny will be referred to as the normal force resultants,

and Nxy will be referred to as the shear force resultant.

Figure 7.2 illustrates a small element of laminate surrounding a point .x; y/

on the geometric midplane, and the figure indicates the directions of these

three stress resultants. The units of the stress resultants are force per unit

length; the unit of length is a unit of length in the x direction or in the y

direction. If the small element of laminate has dimensions dx by dy, then

the force in the x direction due to Nx , the force in the x direction due to

Nxy , the force in the y direction due to Ny , and the force in the y direction

due to Nxy are, respectively,

Nxdy Nxydx Nydx Nxydy (7.2)

The moment resultants Mx , My , and Mxy are defined as

Mx �

Z H

2

�
H

2

�xzdz

My �

Z H

2

�
H

2

�yzdz

Mxy �

Z H

2

�
H

2

�xyzdz

(7.3)

The resultants Mx and My will be referred to as bending moment resultants

and Mxy will be referred to as the twisting moment resultant. In Figure 7.3

the sense of these three moment resultants is illustrated, and the senses shown

are important. Shortly we shall be relating a positive Mx , for example, with

a positive curvature in the x direction, �o
x . If you refer to CLT Examples 2

and 4 in the previous chapter, you will see that the moment Mx required to

produce the positive curvature in those examples was indeed positive. Know-

ing the correct sense of positive quantities is critical. The sense illustrated in
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FIGURE 7.3. Definition of moment resultants Mx , My , and Mxy .

Figure 7.3 is consistent with the cross-product definition of moments learned

in elementary mechanics courses (i.e., NM D Nr � NF ). The units of the moment

resultants are moment per unit length, again the unit of length being a unit

of length in either the x direction or y direction.

If a small element of laminate has dimensions dx by dy, then the moments

about the positive y and the positive x axis due to Mx , My , and Mxy are,

respectively,

Mxdy Mxydx � Mydx � Mxydy (7.4)

We will use these formal definitions of Nx ; : : : ; Mxy in computing the

laminate stiffness matrix and they will be used in a later chapter when

we study composite plates. Specifically, we will use the force and moment

resultants when studying the equilibrium of a small element of laminated

plate. As the definitions of the moment resultants involve integrals with

respect to the coordinate z, and because z is measured relative to the reference

surface, the moment resultants have to be thought of as producing moments on

the reference surface. The force resultants can be considered to act anywhere

through the thickness of the laminate. But when force resultants are used

in conjunction with moment resultants, it is most consistent to think of

the force resultants as producing forces on the reference surface. This will

also be consistent when we begin discussing the relationship between the

resultants and reference surface response, namely, "o
x ; : : : ; �o

xy . From this point

forward, then, the force and moment resultants will be considered to act on

the reference surface.

7.2 Laminate Stiffness: The ABD Matrix

Equations (7.1) and (7.3) give the definitions of the force and moment

resultants. These definitions involve the stresses �x , �y , and �xy . From the
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stress-strain relations, the stresses can be written in terms of the strains by

the now-familiar relation

8

ˆ

ˆ

<

ˆ

ˆ

:

�x

�y

�xy

9

>

>

=

>

>

;

D

2

6

6

4

NQ11
NQ12

NQ16

NQ12
NQ22

NQ26

NQ16
NQ26

NQ66

3

7

7

5

8

ˆ

ˆ

<

ˆ

ˆ

:

"x

"y

xy

9

>

>

=

>

>

;

(7.5)

and the strains can, in turn, be written in terms of the strains and curvatures

of the reference surface to produce another familiar relation, namely,

8

ˆ

ˆ

<

ˆ

ˆ

:

�x

�y

�xy

9

>

>

=

>

>

;

D

2

6

6

4

NQ11
NQ12

NQ16

NQ12
NQ22

NQ26

NQ16
NQ26

NQ66

3

7

7

5

8

ˆ

ˆ

<

ˆ

ˆ

:

"o
x C z�o

x

"o
y C z�o

x

o
xy C z�o

xy

9

>

>

=

>

>

;

(7.6)

We have emphasized repeatedly that in a laminate the stresses are functions

of z because the transformed reduced stiffnesses NQij change from layer

to layer, and also because of the linear dependence on z. The reference

surface strains and curvatures, by definition, do not depend on z. Let us

examine the expression for the normal force resultant Nx by substituting for

�x from equation (7.6) into the integrand of the first equation of equation

(7.1), specifically:

Nx D

Z H

2

�
H

2

f NQ11."
o
x C z�o

x/ C NQ12."
o
y C z�o

y/

C NQ16.o
xy C z�o

xy /gdz

(7.7)

and expanding the integrand leads to

Nx D

Z H

2

�
H

2

f NQ11"o
x C NQ11z�o

x C NQ12"
o
y C NQ12z�o

y

C NQ16
o
xy C NQ16z�o

xygdz

(7.8)

The integration can be distributed over the six terms to give

Nx D

Z H

2

�
H

2

NQ11"o
xdz C

Z H

2

�
H

2

NQ11z�o
xdz C

Z H

2

�
H

2

NQ12"
o
ydz

C

Z H

2

�
H

2

NQ12z�o
ydz C

Z H

2

�
H

2

NQ16o
xydz C

Z H

2

�
H

2

NQ16z�o
xydz

(7.9)
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Because the reference surface deformations are not functions of z, they can

be taken outside of the integrals, resulting in

Nx D

(

Z H

2

�
H

2

NQ11dz

)

"o
x C

(

Z H

2

�
H

2

NQ11zdz

)

�o
x C

(

Z H

2

�
H

2

NQ12dz

)

"o
y

C

(

Z H

2

�
H

2

NQ12zdz

)

�o
y C

(

Z H

2

�
H

2

NQ16dz

)

o
xy C

(

Z H

2

�
H

2

NQ16zdz

)

�o
xy

(7.10)

The integrals through the thickness now involve just the material properties,

specifically, the reduced stiffnesses. We need to look at these integrals in

detail.

The first integral in equation (7.10) is
Z H

2

�
H

2

NQ11dz (7.11)

Because the reduced stiffnesses are materials properties, they are constant

within a layer. However, from layer to layer the values of the reduced

stiffnesses change. Because of this piecewise-constant property of the reduced

stiffnesses, the integral through the thickness can be expanded to give

Z H

2

�
H

2

NQ11dz D

Z z1

z0

NQ111
dz C

Z z2

z1

NQ112
dz C

Z z3

z2

NQ113
dz

C � � � C

Z zk

zk�1

NQ11k
dz C � � � C

Z zN

zN�1

NQ11N
dz

(7.12)

In the above expansion the locations of the layer interfaces have been used

and the subscript on NQ11 indicates layer number. The systematic scheme

introduced earlier to identify the layer numbers and the z location of the

layer interfaces will be used to advantage in what follows.

Because within each layer NQ11 is a constant; in the above series of integrals

it can be removed from each integral and the series of integrals written as

Z H

2

�
H

2

NQ11dz D NQ111

Z z1

z0

dz C NQ112

Z z2

z1

dz C NQ113

Z z3

z2

dz

C � � � C NQ11k

Z zk

zk�1

dz C � � � C NQ11N

Z zN

zN�1

dz

(7.13)

But the integrations with respect to z are quite simple, equation (7.13)

becoming
Z H

2

�
H

2

NQ11dz D NQ111
.z1 � z0/ C NQ112

.z2 � z1/ C NQ113
.z3 � z2/

C � � � C NQ11k
.zk � zk�1/ C � � � C NQ11N

.zN � zN�1/

(7.14)



Laminate Stiffness: The ABD Matrix 313

or
Z H

2

�
H

2

NQ11dz D

N
X

kD1

NQ11k
.zk � zk�1/ (7.15)

The difference in the z values is recognized as simply the thickness of the

kth layer, hk , so equation (7.15) becomes

Z H

2

�
H

2

NQ11dz D

N
X

kD1

NQ11k
hk (7.16)

The integral of NQ11 through the thickness is denoted by A11; that is:

Z H

2

�
H

2

NQ11dz D A11 D

N
X

kD1

NQ11k
hk (7.17)

In a similar manner, we find, referring to the third and fifth terms in equation

(7.10), that

Z H

2

�
H

2

NQ12dz D A12 D

N
X

kD1

NQ12k
hk (7.18)

and
Z H

2

�
H

2

NQ16dz D A16 D

N
X

kD1

NQ16k
hk (7.19)

Thus the first, third, and fifth terms on the right side of equation (7.10)

become

A11"
o
x C A12"

o
y C A16

o
xy (7.20)

The second, fourth, and sixth terms on the right side of equation (7.10)

involve integrals of NQ11 � z, NQ12 � z, and NQ16 � z, rather than just NQ11, NQ12,

and NQ16. Specifically, the second term is

Z H

2

�
H

2

NQ11zdz (7.21)

Again using the fact that NQ11 is constant within each layer but changes from

layer to layer, we find that

Z H

2

�
H

2

NQ11zdz D NQ111

Z z1

z0

zdz C NQ112

Z z2

z1

zdz C NQ113

Z z3

z2

zdz

C � � � C NQ11k

Z zk

zk�1

zdz C � � � C NQ11N

Z zN

zN�1

zdz

(7.22)



314 CLASSICAL LAMINATION THEORY: LAMINATE STIFFNESS MATRIX

Here the integrals on z are also quite simple. Equation (7.22) becomes

Z H

2

�
H

2

NQ11zdz D
1

2
f NQ111

.z2
1 � z2

0/ C NQ112
.z2

2 � z2
1/ C NQ113

.z2
3 � z2

2/

C � � � C NQ11k
.z2

k
� z2

k�1
/ C � � � C NQ11N

.z2
N � z2

N�1/g

(7.23)

or

Z H

2

�
H

2

NQ11zdz D
1

2

N
X

kD1

NQ11k
.z2

k � z2
k�1/ (7.24)

This integral is denoted as B11; that is:

Z H

2

�
H

2

NQ11zdz D B11 D
1

2

N
X

kD1

NQ11k
.z2

k � z2
k�1/ (7.25)

In like manner, referring to the fourth and sixth terms in equation (7.10), we

find

Z H

2

�
H

2

NQ12zdz D B12 D
1

2

N
X

kD1

NQ12k
.z2

k � z2
k�1/ (7.26)

and

Z H

2

�
H

2

NQ16zdz D B16 D
1

2

N
X

kD1

NQ16k
.z2

k � z2
k�1/ (7.27)

The expression for Nx in equation (7.10) becomes, after slight rearrangement,

Nx D A11"
o
x C A12"

o
y C A16

o
xy C B11�

o
x C B12�

o
y C B16�

o
xy (7.28)

Because they are summations of material and geometric properties, A11, A12,

A16, B11, B12, and B16 are easy to compute and are an inherent property of

the laminate. Because the Aij and Bij are integrals, they represent smeared

or integrated properties of the laminate. Equation (7.28) represents a relation

between the normal force resultant Nx and the six reference surface defor-

mations. This is part of the missing link in Figure 7.1. We will develop five

other equations that will lead to a total of six relations between the six stress

resultants and the six reference surface deformations. The missing link will

then be complete. However, before proceeding to complete the link, let us

compute A11, A12, A16, B11, B12 and B16 for the laminates discussed in CLT

Examples 1 through 5 of the previous chapter.
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For the four-layer Œ0=90�S laminate of CLT Examples 1 and 2, as each

layer is the same thickness h, by equation (7.17),

A11 D

N
X

kD1

NQ11k
hk

D f NQ111
C NQ112

C NQ113
C NQ114

g � h

(7.29)

or

A11 D f NQ11.0
ı/ C NQ11.90ı/ C NQ11.90ı/ C NQ11.0

ı/g � h (7.30)

Substituting numerical values from CLT Examples 1 and 2 for the appropriate
NQij into equation (7.30) yields

A11 D f155:7 C 12:16 C 12:16 C 155:7g � 109 � 150 � 10�6

A11 D 50:4 � 106 N/m
(7.31)

Likewise,

A12 D f NQ12.0
ı/ C NQ12.90ı/ C NQ12.90ı/ C NQ12.0ı/g � h;

A12 D f3:02 C 3:02 C 3:02 C 3:02g � 109 � 150 � 10�6

A12 D 1:809 � 106 N/m

A16 D f NQ16.0
ı/ C NQ16.90ı/ C NQ16.90ı/ C NQ16.0ı/g � h;

A16 D f0 C 0 C 0 C 0g � 150 � 10�6

A16 D 0

(7.32)

For all cross-ply laminates A16 will be zero because for each layer NQ16 D 0.

The Bij can be computed from equations (7.25)–(7.27) as

B11 D
1

2
f NQ111

.z2
1 � z2

0/ C NQ112
.z2

2 � z2
1/ C NQ113

.z2
3 � z2

2/ C NQ114
.z2

4 � z2
3/g

(7.33)

or

B11 D
1

2
f NQ11.0

ı/.z2
1 � z2

0/ C NQ11.90ı/.z2
2 � z2

1/

C NQ11.90ı/.z2
3 � z2

2/ C NQ11.0ı/.z2
4 � z2

3/g

(7.34)

We find, using the numerical values of the interface locations for the Œ0=90�S
laminate, equation (6.21),

B11 D
1

2
f155:7Œ.�150/2 � .�300/2� C 12:16Œ02 � .�150/2�

C 12:16Œ.150/2 � 02� C 155:7Œ.300/2 � .150/2�g � 109 � .10�6/2

(7.35)



316 CLASSICAL LAMINATION THEORY: LAMINATE STIFFNESS MATRIX

where carrying out the algebra leads to

B11 D 0 (7.36)

The quantity B11 is exactly zero because the contributions to B11 from the

layers at negative z locations exactly cancel the contributions to B11 from

the layers at the positive z locations. This is a characteristic of a symmetric

laminate. The values of all the Bij will be zero for all symmetric laminates

because of this cancellation effect. For symmetric laminates there is no need

to go through the algebra to compute the values of the Bij . They are all

exactly zero; thus,

B12 D 0 and B16 D 0 (7.37)

B16 is zero not only because it is a symmetric laminate, but also because the
NQ16 are zero for every layer.

For the six-layer Œ˙30=0�S laminate of CLT Examples 3 and 4,

A1j D f NQ1j1
C NQ1j2

C NQ1j3
C NQ1j4

C NQ1j5
C NQ1j6

g�h; j D 1; 2; 6 (7.38)

Using layer orientation, we find that

A1j D f NQ1j .30ı/ C NQ1j .�30ı/ C NQ1j .0ı/ C NQ1j .0ı/

C NQ1j .�30ı/ C NQ1j .30ı/g � h; j D 1; 2; 6
(7.39)

For j D 1, substituting numerical values for the appropriate NQij , we find

A11 D f92:8C92:8C155:7C155:7C92:8C92:8g�109�150�10�6 (7.40)

or

A11 D 102:4 � 106 N/m (7.41)

while for j D 2,

A12 D f30:1 C 30:1 C 3:02 C 3:02 C 30:1 C 30:1g � 109 � 150 � 10�6

A12 D 18:94 � 106 N/m (7.42)

and for j D 6,

A16 D f46:7 � 46:7 C 0 C 0 � 46:7 C 46:7g � 109 � 150 � 10�6

A16 D 0 (7.43)

The term A16 is exactly zero because the contributions from the C30ı layers

exactly cancel the contributions from the �30ı layers. This is characteristic

of the 16-component of the Aij for what we will come to call a balanced

laminate. Balanced laminates are characterized by ˙� pairs of layers. More

will be said of this later.

Because the laminate of CLT Examples 3 and 4 is symmetric, the compo-

nents B11, B12, and B16 are exactly zero.

Turning to the Œ˙30=0�T laminate of CLT Example 5, because relative to

the six-layer laminate of CLT Examples 3 and 4 there are exactly one-half the
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number of layers in any particular direction, the Aij for the Œ˙30=0�T laminate

are one-half the values of the Aij for the Œ˙30=0�S laminate. However, as the

Œ˙30=0�T is not a symmetric laminate, the Bij will not be zero. Specifically,

referring to equations (7.41), (7.42), and (7.43), we find that

A11 D 51:2 � 106 N/m

A12 D 9:47 � 106 N/m

A16 D 0 N/m

(7.44)

For the Bij ,

B1j D
1

2
f NQ1j1

.z2
1 � z2

0/ C NQ1j2
.z2

2 � z2
1/ C NQ1j3

.z2
3 � z2

2/g; j D 1; 2; 6

D
1

2
f NQ1j .30ı/.z2

1 � z2
0/ C Q1j .�30ı/.z2

2 � z2
1/ (7.45)

C Q1j .0ı/.z2
3 � z2

2/g; j D 1; 2; 6

For j D 1 and using the interface locations, equation (6.138), we find

B11 D
1

2
f92:8Œ.�75/2 � .�225/2� C 92:8Œ.75/2 � .�75/2�

C 155:7Œ.225/2 � .75/2� � 109 � .10�6/2g

(7.46)

resulting in

B11 D 1416 N (7.47)

For j D 2 and 6,

B12 D �609 and B16 D �1051 N (7.48)

To continue with the development of the laminate stiffness matrix, we can

substitute the expressions for �y and �xy into the definitions in equation (7.1)

for Ny and Nxy , respectively, to yield

Ny D

Z H

2

�
H

2

f NQ12"
o
x C NQ12z�o

x C NQ22"o
y C NQ22z�o

y C NQ26
o
xy C NQ26z�o

xygdz

(7.49)

and

Nxy D

Z H

2

�
H

2

f NQ16"
o
x C NQ16z�o

x C NQ26"o
y C NQ26z�o

y C NQ66
o
xy C NQ66z�o

xygdz

(7.50)

As in going from equation (7.8) to (7.9), equation (7.9) to (7.10), and finally

to equation (7.28), and continuing to define quantities Aij and Bij and

rearranging, we find that

Ny D A12"
o
x C A22"

o
y C A26

o
xy C B12�

o
x C B22�

o
y C B26�

o
xy (7.51)
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and

Nxy D A16"
o
x C A26"

o
y C A66

o
xy C B16�

o
x C B26�

o
y C B66�

o
xy (7.52)

If we combine these definitions with the definitions associated with Nx, we

can write the results in matrix notation as

8

ˆ

<

ˆ

:

Nx

Ny

Nxy

9

>

=

>

;

D

2

6

4

A11 A12 A16

A12 A22 A26

A16 A26 A66

3

7

5

8

ˆ

<

ˆ

:

"o
x

"o
y

o
xy

9

>

=

>

;

C

2

6

4

B11 B12 B16

B12 B22 B26

B16 B26 B66

3

7

5

8

ˆ

<

ˆ

:

�o
x

�o
y

�o
xy

9

>

=

>

;

(7.53)

The above matrix equation constitutes three of the six relations between

the six stress resultants and the six reference surface deformations. Three

equations have yet to be derived, but with the above notation, it is clear that

the Aij and Bij are components of three-by-three matrices. We can compute

the numerical values of the additional Aij and Bij for the laminates of CLT

Examples 1–5 in a manner similar to the previous calculations of A11, A12,

A16, B11, B12, and B16.

To derive the remaining three equations, we use the moment expressions,

equation (7.3), by substituting for �x from equation (7.6) into the first equation

of equation (7.3) to yield

Mx D

Z H

2

�
H

2

f NQ11"
o
x C NQ11z�o

x C NQ12"
o
y C NQ12z�o

y C NQ16o
xy C NQ16z�o

xygzdz

(7.54)

where, as before, the integration can be distributed over the six terms to give

Mx D

Z H

2

�
H

2

NQ11"
o
xzdz C

Z H

2

�
H

2

NQ11z�o
x zdz C

Z H

2

�
H

2

NQ12"
o
yzdz

C

Z H

2

�
H

2

NQ12z�o
yzdz C

Z H

2

�
H

2

NQ16
o
xyzdz C

Z H

2

�
H

2

NQ16z�o
xyzdz

(7.55)

Removing the reference surface deformations from the integrals, we find that

Mx D

(

Z H

2

�
H

2

NQ11zdz

)

"o
x C

(

Z H

2

�
H

2

NQ11z2dz

)

�o
x C

(

Z H

2

�
H

2

NQ12zdz

)

"o
y

C

(

Z H

2

�
H

2

NQ12z
2dz

)

�o
y C

(

Z H

2

�
H

2

NQ16zdz

)

o
xy C

(

Z H

2

�
H

2

NQ16z
2dz

)

�o
xy

(7.56)
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The first integral on the right hand side of equation (7.56) is

Z H

2

�
H

2

NQ11zdz (7.57)

and this is immediately recognizable, from equation (7.25), as B11. In fact,

the first, third, and fifth terms on the right side of equation (7.56) become

B11"
o
x C B12"

o
y C B16

o
xy (7.58)

The Bij appear in both the force resultant and the moment resultant expres-

sions; this is important to remember.

The second, fourth, and sixth terms on the right hand side of equation

(7.56) are new; the second term is

Z H

2

�
H

2

NQ11z2dz (7.59)

which can be expanded to

Z H

2

�
H

2

NQ11z2dz D NQ111

Z z1

z0

z2dz C NQ112

Z z2

z1

z2dz C NQ113

Z z3

z2

z2dz

C � � � C NQ11k

Z zk

zk�1

z2dz C � � � C NQ11N

Z zN

zN�1

z2dz

(7.60)

Because of the constancy of the reduced stiffnesses within layers,

Z H

2

�
H

2

NQ11z2dz D
1

3
f NQ111

.z3
1 � z3

0/ C NQ112
.z3

2 � z3
1/ C NQ113

.z3
3 � z3

2/

C � � � C NQ11k
.z3

k � z3
k�1/ C � � � C NQ11N

.z3
N � z3

N�1/g

(7.61)

or
Z H

2

�
H

2

NQ11z
2dz D

1

3

N
X

kD1

NQ11k
.z3

k � z3
k�1/ (7.62)

This integral is denoted as D11; that is:

Z H

2

�
H

2

NQ11z
2dz D D11 D

1

3

N
X

kD1

NQ11k
.z3

k � z3
k�1/ (7.63)

Referring to the fourth and sixth terms in equation (7.56), we find that

Z H

2

�
H

2

NQ12z
2dz D D12 D

1

3

N
X

kD1

NQ12k
.z3

k � z3
k�1/ (7.64)
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and
Z H

2

�
H

2

NQ16z
2dz D D16 D

1

3

N
X

kD1

NQ16k
.z3

k � z3
k�1/ (7.65)

With the definitions of the Dij , and the earlier Bij , the expression for the

bending moment resultant Mx in equation (7.56) becomes

Mx D B11"
o
x C B12"

o
y C B16

o
xy C D11�

o
x C D12�o

y C D16�o
xy (7.66)

The Dij are similar to the Bij in that they involve powers of the z locations

of the layer interfaces. Although the Aij also involved z locations of the layer

interfaces, it was really only the thickness of each layer that was involved. The

actual location of the layers through the thickness is not important. However,

with the Bij and Dij , the locations through the thickness of the laminate, as

well as the thickness of the layers, are important.

To continue with the numerical examples, the values of D11, D12, and D16

for the example laminates will be computed for illustration. For the four-layer

Œ0=90�S laminate of CLT Examples 1 and 2,

D11 D
1

3
f NQ111

.z3
1 � z3

0/ C NQ112
.z3

2 � z3
1/ C NQ113

.z3
3 � z3

2/ C NQ114
.z3

4 � z3
3/g

(7.67)

or

D11 D
1

3
f NQ11.0

ı/.z3
1 � z3

0/ C NQ11.90ı/.z3
2 � z3

1/

C NQ11.90ı/.z3
3 � z3

2/ C NQ11.0
ı/.z3

4 � z3
3/g

(7.68)

The ensuing algebra leads to

D11 D 2:48 N�m (7.69)

For D12

D12 D
1

3
f NQ121

.z3
1 � z3

0/ C NQ122
.z3

2 � z3
1/

C NQ123
.z3

3 � z3
2/ C NQ124

.z3
4 � z3

3/g

(7.70)

or

D12 D
1

3
f NQ12.0

ı/.z3
1 � z3

0/ C NQ12.90ı/.z3
2 � z3

1/

C NQ12.90ı/.z3
3 � z3

2/ C NQ12.0
ı/.z3

4 � z3
3/g

(7.71)

Numerically,

D12 D 0:0543 N�m (7.72)

Because Q16 is zero for each layer,

D16 D 0 (7.73)



Laminate Stiffness: The ABD Matrix 321

For the Œ˙30=0�S laminate

D1j D
1

3
f NQ1j1

.z3
1 � z3

0/ C NQ1j2
.z3

2 � z3
1/ C NQ1j3

.z3
3 � z3

2/ C NQ1j4
.z3

4 � z3
3/

C NQ1j5
.z3

5 � z3
4/ C NQ1j6

.z3
6 � z3

5/g; j D 1; 2; 6 (7.74)

or

D1j D
1

3
f NQ1j .30ı/.z3

1 � z3
0/ C NQ1j .�30ı/.z3

2 � z3
1/

C NQ1j .0ı/.z3
3 � z3

2/ C NQ1j .0ı/.z3
4 � z3

3/

C NQ1j .�30ı/.z3
5 � z3

4/ C NQ1j .30ı/.z3
6 � z3

5/g; j D 1; 2; 6

(7.75)

We find, referring to the interface locations for this laminate, equation (6.95),

that the algebra leads to

D11 D 5:78 N�m

D12 D 1:78 N�m

D16 D 1:26 N�m

(7.76)

Note that the value of D16 is not zero. Unlike the situation with A16, where

the contribution of the �30ı layers to the A16 cancels the contribution of the

C30ı layers, the contributions of the layers with opposite orientation do not

cancel in the calculation of D16. This is because the locations of the layers,

in addition to the layer thicknesses, are involved in the computation of the

Dij . We will see later in this chapter that the existence of a nonzero D16

term has important consequences. Also, we will see the dependence of the

A26 on the ˙� layer arrangement is identical to the dependence of A16, and

the dependence of D26 is identical to the dependence of D16.

Finally, for the three-layer Œ˙30=0�T laminate,

D1j D
1

3
f NQ1j1

.z3
1 � z3

0/ C NQ1j2
.z3

2 � z3
1/ C NQ1j3

.z3
3 � z3

2/g; j D 1; 2; 6

(7.77)

or

D1j D
1

3
f NQ1j .30ı/.z3

1 � z3
0/ C NQ1j .�30ı/.z3

2 � z3
1/

C NQ1j .0ı/.z3
3 � z3

2/g; j D 1; 2; 6

(7.78)

Using numerical values leads to

D11 D 0:935 N�m

D12 D 0:1294 N�m

D16 D 0:1576 N�m

(7.79)
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To finish the development of the laminate stiffness matrix, we can substitute

the expressions for �y and �xy into the definitions in equation (7.3) for My

and Mxy . The result is

My D

Z H

2

�
H

2

f NQ12"o
x C NQ12z�o

x C NQ22"
o
y C NQ22z�o

y

C NQ26
o
xy C NQ26z�o

xygzdz

(7.80)

and

Mxy D

Z H

2

�
H

2

f NQ16"o
x C NQ16z�o

x C NQ26"
o
y

C NQ26z�o
y C NQ66o

xy C NQ66z�o
xygzdz

(7.81)

As in going from equation (7.54) to (7.55), equation (7.55) to (7.56), and

finally to equation (7.66), and continuing to define additional Dij , we find

that

My D B12"
o
x C B22"

o
y C B26

o
xy C D12�o

x C D22�
o
y C D26�

o
xy (7.82)

and

Mxy D B16"
o
x C B26"

o
y C B66

o
xy C D16�o

x C D26�
o
y C D66�

o
xy (7.83)

We can write the results for the three moments Mx , My , and Mxy in matrix

notation as
8

ˆ

<

ˆ

:

Mx

My

Mxy

9

>

=

>

;

D

2

6

4

B11 B12 B16

B12 B22 B26

B16 B26 B66

3

7

5

8

ˆ

<

ˆ

:

"o
x

"o
y

o
xy

9

>

=

>

;

C

2

6

4

D11 D12 D16

D12 D22 D26

D16 D26 D66

3

7

5

8

ˆ

<

ˆ

:

�o
x

�o
y

�o
xy

9

>

=

>

;

(7.84)

The above analysis constitutes the remaining three relations of the six rela-

tions between the six stress resultants and the six reference surface deforma-

tions.

We can combine the six relations just derived to form one matrix relation

between the six stress resultants and the six reference surface deformations.

The combined matrix relation is

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

Nx

Ny

Nxy

Mx

My

Mxy

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

D

2

6

6

6

6

6

6

6

6

6

4

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

3

7

7

7

7

7

7

7

7

7

5

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

"o
x

"o
y

o
xy

�o
x

�o
y

�o
xy

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

(7.85)
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Of course, in the above

Aij D

N
X

kD1

NQijk
.zk � zk�1/

Bij D
1

2

N
X

kD1

NQijk
.z2

k � z2
k�1/

Dij D
1

3

N
X

kD1

NQijk
.z3

k � z3
k�1/

(7.86)

The six-by-six matrix in equation (7.85) consisting of the components Aij ,

Bij , and Dij , i D 1, 2, 6; j D 1, 2, 6, is called the laminate stiffness matrix.

For obvious reasons it is also known as the ABD matrix. The ABD matrix

defines a relationship between the stress resultants (i.e., loads) applied to a

laminate, and the reference surface strains and curvatures (i.e., deformations).

This form is a direct result of the Kirchhoff hypothesis, the plane-stress

assumption, and the definition of the stress resultants. The laminate stiffness

matrix involves everything that is used to define the laminate—layer material

properties, fiber orientation, thickness, and location.

The relation of equation (7.85) can be inverted to give

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

"o
x

"o
y

o
xy

�o
x

�o
y

�o
xy

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

D

2

6

6

6

6

6

6

6

6

6

4

a11 a12 a16 b11 b12 b16

a12 a22 a26 b21 b22 b26

a16 a26 a66 b61 b62 b66

b11 b21 b61 d11 d12 d16

b12 b22 b62 d12 d22 d26

b16 b26 b66 d16 d26 d66

3

7

7

7

7

7

7

7

7

7

5

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

Nx

Ny

Nxy

Mx

My

Mxy

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

(7.87a)

where the six-by-six matrix is referred to as the laminate compliance matrix

and is given by

2

6

6

6

6

6

6

6

6

6

4

a11 a12 a16 b11 b12 b16

a12 a22 a26 b21 b22 b26

a16 a26 a66 b61 b62 b66

b11 b21 b61 d11 d12 d16

b12 b22 b62 d12 d22 d26

b16 b26 b66 d16 d26 d66

3

7

7

7

7

7

7

7

7

7

5

D

2

6

6

6

6

6

6

6

6

6

4

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

3

7

7

7

7

7

7

7

7

7

5

�1

(7.87b)
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FIGURE 7.4. Closing the loop on concepts developed.

Equation (7.85) and its inverse equation (7.87) are very important in the

analysis of composite structures, particularly the inverse form. Knowing the

loads, we can determine the reference surface strains and curvatures uniquely

from equation (7.87). If we know the reference surface strains and curvatures,

as we have seen in the previous examples, then we can determine the strains

and stresses in each layer. Figure 7.4 illustrates the importance of the ABD

matrix, namely the fact that it closes the loop on the analysis of composite

laminates (see Figure 7.1).

It is appropriate at this point to present the numerical values of the remain-

ing components of the ABD matrix for each of the three laminates we have

been discussing. So far only limited numerical values have been illustrated.

It will be left as an exercise to verify the numerical values presented for all

the components of the ABD matrix for the three laminates. It is important to

note the units on the various components of the ABD matrix. The units are

consistent with the units of the reference surface strains and curvatures and

the units of the stress resultants.
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For the Œ0=90�S laminate:

ŒA� D

2

4

50:4 1:809 0

1:809 50:4 0

0 0 2:64

3

5 � 106 N/m (7.88a)

ŒB� D

2

4

0 0 0

0 0 0

0 0 0

3

5 N (7.88b)

ŒD� D

2

4

2:48 0:0543 0

0:0543 0:542 0

0 0 0:0792

3

5 N�m (7.88c)

For the Œ˙30=0�S laminate:

ŒA� D

2

4

102:4 18:94 0

18:94 16:25 0

0 0 20:2

3

5 � 106 N/m (7.89a)

ŒB� D

2

4

0 0 0

0 0 0

0 0 0

3

5 N (7.89b)

ŒD� D

2

4

5:78 1:766 1:261

1:766 1:256 0:418

1:261 0:418 1:850

3

5 N�m (7.89c)

For the Œ˙30=0�T laminate:

ŒA� D

2

4

51:2 9:47 0

9:47 8:12 0

0 0 10:10

3

5 � 106 N�m (7.90a)

ŒB� D

2

4

1416 �609 �1051

�609 �199:0 �348

�1051 �348 �609

3

5 N (7.90b)

ŒD� D

2

4

0:935 0:1294 0:1576

0:1294 0:1272 0:0522

0:1576 0:0522 0:1400

3

5 N�m (7.90c)

For later use it is convenient to record the numerical values of the in-

verse quantities, defined by equation (7.87b), for the three laminates. For the
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Œ0=90�S laminate:

2

4

a11 a12 a16

a12 a22 a26

a16 a26 a66

3

5 D

2

4

19:87 �0:714 0

�0:714 19:87 0

0 0 379

3

5 � 10�9 m/N (7.91a)

2

4

b11 b12 b16

b21 b22 b26

b61 b62 b66

3

5 D

2

4

0 0 0

0 0 0

0 0 0

3

5

1

N
(7.91b)

2

4

d11 d12 d16

d12 d22 d26

d16 d26 d66

3

5 D

2

4

0:404 �0:0405 0

�0:0405 1:849 0

0 0 12:63

3

5 1=N�m (7.91c)

For the Œ˙30=0�S laminate:

2

4

a11 a12 a16

a12 a22 a26

a16 a26 a66

3

5 D

2

4

12:45 �14:52 0

�14:52 78:5 0

0 0 49:5

3

5 � 10�9 m/N (7.92a)

2

4

b11 b12 b16

b21 b22 b26

b61 b62 b66

3

5 D

2

4

0 0 0

0 0 0

0 0 0

3

5

1

N
(7.92b)

2

4

d11 d12 d16

d12 d22 d26

d16 d26 d66

3

5 D

2

4

0:330 �0:420 �0:1300

�0:420 1:397 �0:0287

�0:1300 �0:0287 0:636

3

5 1=N�m

(7.92c)

For the Œ˙30=0�T laminate:

2

4

a11 a12 a16

a12 a22 a26

a16 a26 a66

3

5 D

2

4

41:5 �39:8 12:19

�39:8 185:5 22:3

12:19 22:3 150:4

3

5 � 10�9 m/N (7.93a)

2

4

b11 b12 b16

b21 b22 b26

b61 b62 b66

3

5 D

2

4

�164:6 179:4 384

207 �71:8 52:5

18:80 195:4 707

3

5 � 10�6 m/N (7.93b)

2

4

d11 d12 d16

d12 d22 d26

d16 d26 d66

3

5 D

2

4

2:10 �1:553 �2:42

�1:553 10:84 �0:276

�2:42 �0:276 16:07

3

5 1=N�m (7.93c)
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These results can also be written in the full form of equation (7.85). For
the Œ0=90�S laminate,

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

Nx

Ny

Nxy

Mx

My

Mxy

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

D

2

6

6

6

6

6

6

6

6

6

6

6

6

4

50:4 � 106 1:809 � 106 0 0 0 0

1:809 � 106 50:4 � 106 0 0 0 0

0 0 2:64 � 106 0 0 0

0 0 0 2:48 0:0543 0

0 0 0 0:0543 0:542 0

0 0 0 0 0 0:0792

3

7

7

7

7

7

7

7

7

7

7

7

7

5

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

"o
x

"o
y

 o
xy

�o
x

�o
y

�o
xy

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>
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For the Œ˙30=0�S laminate:
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For the Œ˙30=0�T laminate:
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The full form of the inverse relations, equation (7.87), for the Œ0=90�S
laminate is
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For the Œ˙30=0�S laminate:
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For the Œ˙30=0�T laminate:
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Writing the numerical values in full form is quite revealing; the coupling, or

lack thereof, between the various stress resultants and reference deformations

becomes quite obvious. The coupling is important in determining how much

interaction there will be between the specific loads and specific reference

surface strains and curvatures. Essentially, the more zeros there are in the

ABD matrix, or its inverse, the less coupling there is between the stress re-

sultants and reference surface deformations. For example, for the Œ0=90�S and

Œ˙30=0�S laminates, because all components of the B matrix are zero, the ref-

erence surface curvatures are decoupled from the force resultants, and the ref-

erence surface strains are decoupled from the moment resultants. The six-by-

six relation of equation (7.85) reduces to two three-by-three relations, namely,
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and
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Such a reduction is not possible when there are elements of the B matrix

present (i.e., when the laminate is unsymmetric). We will have more to say

regarding the couplings within the ABD matrix in the next section, where the

degree of coupling, and its effects on laminate response, are categorized in a

systematic way. Moreover, we can do the categorization a priori, before any

analysis is started, and we can use the advantages of knowing the level of

coupling to simplify the analysis procedure.

Exercises for Section 7.2

1. Verify that the numerical values of the components of the A, B , and D matrices

in equations (7.88), (7.89), and (7.90) are correct.

2. Use your computer program from the exercise below to compute the A, B , and D

matrices of a ŒC45=0= � 30�T graphite-reinforced composite laminate.

Computer Exercise

Below is a modification of the steps outlined in the Computer Exercise for Section

6.8. New steps have been added to include the calculation of A, B , and D matrices.

These additional steps are underlined. The steps to compute the inverse of the ABD

matrix are also included. Finally, steps are added to provide the user with the option

to enter either the equivalent loads, or the reference surface strains and curvatures,

and then proceed to compute the stresses as before. Of course, if the user enters the

stress resultants, then the inverse of the ABD matrix must be used to compute the

reference surface strains and curvatures.

1. Read in the number of layers.

2. Read in the engineering properties of a layer, and the thickness.

3. Compute the Qij .

4. Print the number of layers, the engineering properties, and the Qij .

5. Compute and print the zk .

6. Read in and print the fiber orientations in each layer.
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7. Compute and print the NQij for each layer.

7a. Compute and print the components of the A, B , and D matrices.

7b. Compute and print the inverse of ABD.

8a. EITHER read in and print the values of "o
x; : : : ; �o

xy .

8b. OR Read in and print the values of Nx; : : : ; Mxy , and compute and print values

of "o
x; : : : ; �o

xy .

9. Compute and print the values of "x , "y , and xy at the top and bottom of each

layer. (These are the extreme values in each layer.)

10. Compute and print the values of "1, "2, and 12 at the top and bottom of each

layer.

11. Compute and print the values of �x , �y , and �xy at the top and bottom of each

layer.

12. Compute and print the values of �1, �2, and �12 at the top and bottom of each

layer.

13. As a check at a later stage when we add further information to this program,

you might want to compute and print the values of Nx; : : : ; Mxy as calculated

from the values of �x , �y , and �xy , and the zk .

7.3 Classification of Laminates and Their Effect

on the ABD Matrix

We have seen in the numerical results presented in the previous section that

the form of the ABD matrix depends strongly on whether the laminate is

what we referred to as symmetric, whether it consists of just 0ı and 90ı

layers, or whether for every layer at orientation C� there is a layer at

�� . In this section we would like to formally classify laminates as to their

stacking arrangement, and indicate the effects of the various classifications

on the ABD matrix. In a subsequent section, physical interpretations will

be given to particular components of the ABD matrix. As a sidenote, in

connection with equations (2.45) and (2.47), it was stated that the presence

of the zeros in the compliance and stiffness matrices in the principal mate-

rial coordinate system was associated with a fiber-reinforced material being

orthotropic. Similarly, with the lack of any zero terms in equation (7.85), the

elastic behavior of a general laminate is sometimes termed nonorthotropic,

or anisotropic.
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7.3.1 Symmetric Laminates

A laminate is said to be symmetric if for every layer to one side of the lam-

inate reference surface with a specific thickness, specific material properties,

and specific fiber orientation, there is another layer the identical distance

on the opposite side of the reference surface with the identical thickness,

material properties, and fiber orientation. If a laminate is not symmetric,

then it is referred to as an unsymmetric laminate. Note that this pairing

on opposite sides of the reference surface must occur for every layer. Al-

though we have restricted our examples to laminates with layers of the

same material and same thickness, this does not have to be the case for

a laminate to be symmetric. A four-layer laminate with the two outer lay-

ers made of glass-reinforced material oriented at C45ı and the two inner

layers made of graphite-reinforced material oriented at �30ı is a symmetric

laminate.

For a symmetric laminate all the components of the B matrix are identically

zero. Consequently, the full six-by-six set of equations in equation (7.85)

decouples into two three-by-three sets of equations, namely,
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and
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With symmetric laminates, the inverse relation, equation (7.87), also degen-

erates into two three-by-three relations, specifically,
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In the above the a matrix is the inverse of the A matrix and has components

a11 D
A22A66 � A2

26

detŒA�

a12 D
A26A16 � A12A66

detŒA�

a16 D
A12A26 � A22A16

detŒA�

a22 D
A11A66 � A2

16

detŒA�

a26 D
A12A16 � A11A26

detŒA�

a66 D
A11A22 � A2

12

detŒA�

(7.103a)

and the d matrix is the inverse of the D matrix and has components

d11 D
D22D66 � D2

26

detŒD�

d12 D
D26D16 � D12D66

detŒD�

d16 D
D12D26 � D22D16

detŒD�

d22 D
D11D66 � D2

16

detŒD�

d26 D
D12D16 � D11D26

detŒD�

d66 D
D11D22 � D2

12

detŒD�

(7.103b)

where the definitions

detŒA� D A11.A22A66 � A2
26/ � A12.A12A66 � A26A16/

C A16.A12A26 � A22A16/
(7.103c)

and

detŒD� D D11.D22D66 � D2
26/ � D12.D12D66 � D26D16/

C D16.D12D26 � D22D16/
(7.103d)

have been used. Because neither the A nor D matrices have any zero terms,

a general symmetric laminate is anisotropic in both inplane and bending

behavior.
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7.3.2 Balanced Laminates

A laminate is said to be balanced if for every layer with a specified thickness,

specific material properties, and specific fiber orientation, there is another

layer with the identical thickness, material properties, but opposite fiber

orientation somewhere in the laminate. The layer with opposite fiber ori-

entation does not have to be on the opposite side of the reference surface,

nor immediately adjacent to the other layer, nor anywhere in particular. The

other layer can be anywhere within the thickness. A laminate does not have

to be symmetric to be balanced. The symmetric Œ˙30=0�S laminate and the

unsymmetric Œ˙30=0�T laminate are both balanced laminates. If a laminate is

balanced, then the stiffness matrix components A16 and A26 are always zero

because the NQ16 and NQ26 from the layer pairs with opposite orientation are

of opposite sign, and the net contribution to A16 and A26 from these layer

pairs is then zero. To classify as balanced, all off-axis layers must occur in

pairs. As a special case, all laminates consisting entirely of layers with their

fibers oriented at either 0 or 90ı, to be discussed shortly, are balanced, as NQ16

and NQ26 are zero for every layer, resulting in A16 and A26 being zero. The

ABD matrix of a balanced but otherwise general laminate is not that much

simpler than the ABD matrix of a general unsymmetric, unbalanced laminate.

The full six-by-six form, equation (7.85), applies but with the A16 and A26

components set to zero. To obtain the inverse relation, equation (7.87a), the

full six-by-six with the zero entries for A16 and A26 must be inverted.

7.3.3 Symmetric Balanced Laminates

A laminate is said to be a symmetric balanced laminate if it meets both the

criterion for being symmetric and the criterion for being balanced. If this is

the case, then equation (7.85) takes the decoupled form
(
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with

Nxy D A66
o
xy

and
8

ˆ

<

ˆ

:

Mx

My

Mxy

9

>

=

>

;

D

2

6

4

D11 D12 D16

D12 D22 D26

D16 D26 D66

3

7

5

8

ˆ

<

ˆ

:

�o
x

�o
y

�o
xy

9

>

=

>

;

(7.104b)

The inverse form involving the force resultants is
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with

o
xy D a66Nxy

The inverse form involving the moments is no different than for symmetric

but unbalanced laminates, namely,

8

ˆ

<

ˆ

:

�o
x

�o
y

�o
xy

9

>

=

>

;

D

2

6

4

d11 d12 d16

d12 d22 d26

d16 d26 d66

3

7

5

8

ˆ

<

ˆ

:

Mx

My

Mxy

9

>

=

>

;

(7.105b)

For the symmetric balanced case, the third of equation (7.85) decouples from

all other equations. The components of the a matrix in equation (7.105a) are

a11 D
A22

A11A22 � A2
12

a12 D
�A12

A11A22 � A2
12

a22 D
A11

A11A22 � A2
12

a66 D
1

A66

(7.106a)

and the components of the d matrix are the same as the symmetric but

balanced case, equation (7.103b), namely,
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D22D66 � D2
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16

detŒD�

d26 D
D12D16 � D11D26

detŒD�

d66 D
D11D22 � D2

12

detŒD�

(7.106b)

with detŒD� being given by equation (7.103d). Because A16 and A26 are zero,

a symmetric balanced laminate is orthotropic with respect to inplane behavior.
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7.3.4 Cross-Ply Laminates

A laminate is said to be a cross-ply laminate if every layer has its fibers

oriented at either 0ı or 90ı. If this is the case, because NQ16 and NQ26 are

zero for every layer, then A16, A26, B16, B26, D16, and D26 are zero. Also,

B12 and B66 are zero and there is some decoupling of the six equations. In

particular, the six equations decouple to a set of four equations and a set of

two equations, namely,
8
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(7.107a)

(

Nxy

Mxy

)

D

"

A66 0

0 D66

# (

o
xy

�o
xy

)

(7.107b)

7.3.5 Symmetric Cross-Ply Laminates

A laminate is said to be a symmetric cross-ply laminate if it meets the criterion

for being symmetric and the criterion for being cross-ply. This results in the

simplest form of the ABD matrix. All the Bij are zero, and A16, A26, D16,

and D26 are zero. The six equations of equation (7.85) decouple significantly.

Specifically,
(

Nx

Ny

)

D

"

A11 A12

A12 A22

# (

"o
x

"o
y

)

(7.108a)

with

Nxy D A66
o
xy

and
(

Mx

My

)

D

"

D11 D12

D12 D22

# (

�o
x

�o
y

)

(7.108b)

with

Mxy D D66�o
xy

The inverted form is
(

"o
x

"o
y

)

D

"

a11 a12

a12 a22

# (

Nx

Ny

)

(7.109a)

with

o
xy D a66Nxy
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and
(

�o
x

�o
y

)

D

"

d11 d12

d12 d22

# (

Mx

My

)

(7.109b)

with

�o
xy D d66Mxy

The components of the a matrix are the same as the symmetric balanced

case,

a11 D
A22

A11A22 � A2
12

a12 D
�A12

A11A22 � A2
12

a22 D
A11

A11A22 � A2
12

a66 D
1

A66

(7.110a)

and the components of the d matrix are

d11 D
D22

D11D22 � D2
12

d12 D
�D12

D11D22 � D2
12

d22 D
D11

D11D22 � D2
12

d66 D
1

D66

(7.110b)

Compared to the most general case, the symmetric cross-ply laminate is

trivial. Because A16, A26, D16, and D26 are zero, a symmetric cross-ply

laminate is orthotropic with respect to both inplane and bending behavior.

7.3.6 Single Isotropic Layer

As a comparison, it is of interest to record the ABD matrix for the case of

a single isotropic layer, the subject of studies in classical plate theory. What

we have presented in the development of classical lamination theory is a

generalization of classical plate theory. The isotropic case is a special case
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of this generalization, and for a single isotropic layer of thickness H ,

A11 D A22 D
EH

1 � �2
D A A12 D �

EH

1 � �2
D �A

A66 D
EH

2.1 C �/
D

1 � �

2
A A16 D A26 D 0

D11 D D22 D
EH 3

12.1 � �2/
D D D12 D �

EH 3

12.1 � �2/
D �D

D66 D
EH 3

24.1 C �/
D

1 � �

2
D D16 D D26 D 0

(7.111)

In the above equation, E is the extensional modulus, referred to as Young’s

modulus when dealing with isotropic materials, and � is Poisson’s ratio of

the single layer of material. Because of equation (7.111), the ABD matrix for

a single isotropic layer decouples and greatly simplifies, and equation (7.85)

becomes
(

Nx

Ny

)

D
EH

1 � �2

"

1 �

� 1

# (

"o
x

"o
y

)

(7.112a)

with

Nxy D
EH

2.1 C �/
o

xy

and
(

Mx

My

)

D
EH 3

12.1 � �2/

"

1 �

� 1

# (

�o
x

�o
y

)

(7.112b)

with

Mxy D
EH 3

24.1 C �/
�o

xy

The inverse relation is
(

"o
x

"o
y

)

D
1

EH

"

1 ��

�� 1

# (

Nx

Ny

)

(7.113a)

with

o
xy D

2.1 C �/

EH
Nxy

and
(

�o
x

�o
y

)

D
12

EH 3

"

1 ��

�� 1

# (

Mx

My

)

(7.113b)
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with

�xy D
24.1 C �/

EH 3
Mxy

Finally, as we have implied, there are no simplifications in the ABD matrix

if the laminate is unsymmetric, if it is unbalanced, and if it is not a cross-ply.

One must work with the full six-by-six matrix of equation (7.85). In equation

(7.87), one must invert the full six-by-six relation.

7.4 Reference Surface Strains and Curvatures

of Example Laminates

We shall return to the laminates of our example problems one more time

to verify an earlier claim. In Chapter 6, Section 6.7, in conjunction with

equations (6.64) and (6.65), we stated that the proper interpretation of CLT

Example 1 is that if a point .x; y/ on the reference surface of a Œ0=90�S
graphite-reinforced laminate is subjected to stress resultants

Nx D 50 400 N/m

Ny D 1809 N/m

Nxy D 0

(7.114)

and no moment resultants, then at that point the reference surface would

deform in an extension-only fashion given by

"o
x.x; y/ D 1000 � 10�6 �o

x.x; y/ D 0

"o
y.x; y/ D 0 �o

y .x; y/ D 0

o
xy.x; y/ D 0 �o

xy .x; y/ D 0

(7.115)

With the introduction of the ABD matrix and its inverse, this can be verified

directly. Specifically, because the laminate of CLT Example 1 is a symmetric

cross-ply laminate with no moment resultants involved, equation (7.109)

applies. We find that, using the numerical values of the aij for this laminate,

equation (7.91a), equation (7.109a) yields

"o
x D 1000 � 10�6

"o
y D 0

o
xy D 0

(7.116)

Because the moments are zero and the laminate is symmetric, equation

(7.109b) indicates the curvatures are identically zero. We have thus closed

the loop on this problem, ending with the conditions we started with.

Similarly, for CLT Example 2, we stated in conjunction with equations

(6.82) and (6.83) that the proper interpretation of CLT Example 2 was that
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if the moment resultants at a point .x; y/ on the reference surface of the

Œ0=90�S graphite-reinforced laminate are prescribed as

Mx D 8:27 N�m/m

My D 0:1809 N�m/m

Mxy D 0

(7.117)

then at that point the reference surface would deform in a curvature-only

fashion given by

"o
x.x; y/ D 0 �o

x.x; y/ D 3:33 m�1

"o
y.x; y/ D 0 �o

y.x; y/ D 0

o
xy.x; y/ D 0 �o

xy.x; y/ D 0

(7.118)

Equation (7.109a) indicates that because there are no force resultants in-

volved, the reference surface strains are identically zero. Using the values

of the dij for this laminate, equation (7.91c), we find that equation (7.109b)

provides the curvatures as

�o
x D 3:33 m�1

�o
y D 0

�o
xy D 0

(7.119)

Finally, consider CLT Example 4, where we stated in equations (6.124)

and (6.125) that if we prescribe the moment resultants at a point .x; y/ on

the reference surface of a Œ˙30=0�S of a graphite-reinforced laminate as

Mx D 12:84 N�m/m

My D 3:92 N�m/m

Mxy D 2:80 N�m/m

(7.120)

then at that point the reference surface would deform in a curvature-only

fashion given by

"o
x.x; y/ D 0 �o

x.x; y/ D 2:22 m�1

"o
y.x; y/ D 0 �o

y.x; y/ D 0

o
xy.x; y/ D 0 �o

xy.x; y/ D 0

(7.121)

As the Œ˙30=0�S laminate is symmetric and balanced, equation (7.105) ap-

plies, specifically equation (7.105b). Using the values of the dij , equation

(7.92c), in equation (7.105b) results in

�o
x D 2:22 m�1 �o

y D 0 D �o
xy (7.122)
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Exercises for Section 7.4

1. Use the numerical values in CLT Example 3 and the various components of

the inverse of the ABD matrix for the Œ˙30=0�S laminate to verify that the

stress resultants in equations (6.104(a) and (b)) result in the reference surface

deformations given by equation (6.93).

2. Use the numerical values in CLT Example 5 for the various components of the

inverse of the ABD matrix for the Œ˙30=0�T laminate to verify that the stress

resultants in equations (6.146) result in the reference surface deformations given

by equation (6.138).

7.5 Comments

Whether we invert the full six-by-six ABD matrix or take advantage of the

simplifications just discussed, it is clear we are now in a position to start

at any point in the loop of Figure 7.4 and calculate our way to any other

point. Despite this fact, it is the loads that are usually known, and these

are converted to force and moment resultants by dividing by the appropriate

lengths. We use the laminate material properties (materials, fiber orientations,

etc.) to compute the ABD matrix. We can then compute the reference surface

strains and curvatures and we can determine the stress and strain response, in

the x-y-z global coordinate system, or the 1-2-3 principal material coordinate

system. An important alternative to this process is determining the laminate

material properties that will produce a specific response to a known set of

loads. This process is called laminate design.

Optimal laminate design goes one step further and seeks the laminate ma-

terial properties that minimize, for example, laminate stresses in the presence

of a given set of loads. Design and optimization are important facets of

composite analysis, and in many instances they are the primary activities.

However, they both depend on having a thorough understanding of the me-

chanics of composite materials, and all of the steps that go into closing the

loop of Figure 7.4. Certain subtleties are involved in some of the steps of

Figure 7.4, and one subtlety, the coupling effects that occur in laminates,

is discussed next. These couplings are reflected in the various components

of the ABD matrix and its inverse. Because the ABD matrix is a stiffness

matrix, these couplings are properly referred to as elastic couplings. We

have discussed two of these important couplings. One was the coupling that

occurs in an unsymmetric laminate due to the presence of the B matrix.

The other occurred in CLT Example 4, where, due to the presence of the

D16 stiffness term, a twisting moment Mxy was required if the Œ˙30=0�S
laminate was to have only curvature in the x direction—an Mxy -�o

x coupling.

Other couplings that influence response are also present, and these are just as

important. These couplings do not occur with metallic materials and hence

are not fully appreciated by many who do not work with composites.
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7.6 Elastic Couplings

7.6.1 Influence of D16 and D26

We have just revisited CLT Example 4 of Chapter 6, and equation (7.120)

indicates that three components of moment are required to produce a defor-

mation in a Œ˙30=0�S laminate consisting of just a simple curvature in the

x direction. The fact that a twisting moment resultant Mxy is required is

a unique characteristic of laminated fiber-reinforced materials. To study the

twisting moment effect more closely, consider the following: The Œ˙30=0�S
laminate is symmetric and balanced and thus equation (7.104b) applies. In

particular, with the deformations of equation (7.121) and the numerical values

for the Dij from equation (7.89c), equation (7.104b) leads to the moment

resultants previously computed, namely,

Mx D D11�
o
x D 5:78 � 2:22 D 12:84 N�m/m

My D D12�
o
x D 1:766 � 2:22 D 3:92 N�m/m

Mxy D D16�
o
x D 1:261 � 2:22 D 2:80 N�m/m

(7.123)

From equaton (7.123) we see that bending stiffness component D16 is directly

responsible for the requirement that there be a twisting moment component

Mxy . For this case, the sense and magnitude of this twisting moment for

a 0.250 m � 0.125 m laminate were shown in Figure 6.35. For the cross-

ply laminate of CLT Example 2 the component D16 is zero, and thus to

deform this laminate as given by equation (7.121), no Mxy is needed, as in

Figure 6.27. Hence, D16, and likewise D26, are responsible for the coupling

of moments and deformations not normally associated with each other. An

examination of our aluminum laminate would indicate that a twisting moment

would not be required in this case either. (See the results of Exercise 1 in the

Exercises for Section 6.7.)

As another example of the effects of D16, consider the situation wherein

at every point on the reference surface of a rectangular Œ˙30=0�S laminate

Mx > 0 and all other stress resultants are zero (7.124)

where it is assumed that Mx is the same at every point. This represents a sym-

metric balanced laminate subjected to a simple bending moment, and for this

situation the reference surface deformations would be, from equation (7.105),

"o
x.x; y/ D 0 �o

x.x; y/ D d11Mx D 0:330

"o
y.x; y/ D 0 �o

y .x; y/ D d12Mx D �0:420

o
xy.x; y/ D 0 �o

xy .x; y/ D d16Mx D �0:1300 m�1

(7.125)

where we have used the numerical values from equation (7.92c) for the dij

and, as an example, we considered a unit value of Mx D 1 N�m/m. If we

assumed that every point on the reference surface has the deformations of
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A

FIGURE 7.5. Bending and twisting deformations of Œ˙30=0�S laminate due to

bending moment Mx .

equation (7.125), the deformed laminate would be as shown in Figure 7.5.

Because the curvatures are constant over the entire reference surface, equation

(6.14) can be integrated, as was done for equation (6.91), to provide the out-

of-plane deflections. Here the situation is more complicated. Specifically,

from the definitions of the curvatures,

@2wo.x; y/

@x2
D ��o

x

@2wo.x; y/

@y2
D ��o

y

@2wo.x; y/

@x@y
D �

1

2
�o

xy

(7.126)

where it is understood that the right sides are not functions of x and y.

Integrating the first two equations results in two different expressions for

wo.x; y/:

wo.x; y/ D �
1

2
�o

xx2 C q.y/x C r.y/

wo.x; y/ D �
1

2
�o

yy2 C s.x/y C t.x/

(7.127)

where, as before, q.y/, r.y/, s.x/, and t.x/ are arbitrary functions of inte-

gration. The twisting curvature is given by two expressions

@2wo.x; y/

@x@y
D

dq.y/

dy
D �

1

2
�o

xy

@2wo.x; y/

@x@y
D

ds.x/

dx
D �

1

2
�o

xy

(7.128)
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Each of these equations can be integrated to yield

q.y/ D �
1

2
�o

xyy C K1

s.x/ D �
1

2
�o

xyx C K2

(7.129)

Using these, we find that the two expressions for wo.x; y/ in equation (7.127)

become

wo.x; y/ D �
1

2
�o

xx2 �
1

2
�o

xyyx C K1x C r.y/

wo.x; y/ D �
1

2
�o

yy2 �
1

2
�o

xyxy C K2y C t.x/

(7.130)

leading to the conclusions that

r.y/ D �
1

2
�o

yy2 C K2y C K3

t.x/ D �
1

2
�o

xx2 C K1x C K3

(7.131)

As a result,

uo.x; y/ D 0

vo.x; y/ D 0

wo.x; y/ D �
1

2
.�o

xx2 C �o
yy2 C �o

xyxy/ C K1x C K2y C K3

(7.132)

where the constants of integration associated with rigid body rotations and

translations, K1, K2, and K3, can be arbitrarily set to zero to give

wo.x; y/ D �
1

2
.d11x

2 C d12y
2 C d16xy/Mx (7.133a)

D �0:165x2 C 0:210y2 C 0:0650xy (7.133b)

It must be reemphasized that equation (7.132) is valid only if �o
x , �o

y , and �o
xy

are constant over the area of the laminate. The term d11Mx is responsible

for the primary curvature in the x direction. The term d12Mx is responsible

for the anticlastic curvature in the y direction. The third term, d16Mx, is due

to the twisting curvature �o
xy . For this situation with the Œ˙30=0�S laminate,

the twisting curvature is manifest by the fact that in Figure 7.5 points A and

C have a greater displacement in the Cz direction than do points B and

D. If there was no twisting curvature, then the four points would have the

same displacement in the z direction. As we see from the definition of d16,

equation (7.106b), the presence of D16 and D26 is ultimately responsible for

the bending moment Mx causing a twisting curvature. Such an effect will

not occur for cross-ply laminates, since D16 and D26 are zero for this class

of laminates, resulting in d16 D 0.
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As another example of the coupling due to the components of the D

matrix, consider a Œ˙30=0�S laminate with the following deformations of the

reference surface at a point:

"o
x.x; y/ D 0 �o

x.x; y/ D 0

"o
y.x; y/ D 0 �o

y .x; y/ D 0

o
xy.x; y/ D 0 �o

xy .x; y/ ¤ 0 .say 2.22 m�1/

(7.134)

This means that the point on the reference surface is experiencing only a

twisting curvature; the displacement in the z direction is given by just the

third term on the right hand side of equation (7.132). (See Exercise 5 in the

Exercises for Section 6.8 for an example of this type of deformation.) From

equation (7.104b),

Mx D D16�
o
xy D 1:261 � 2:22 D 2:80 N�m/m

My D D26�
o
xy D 0:418 � 2:22 D 0:928 N�m/m

Mxy D D66�
o
xy D 1:850 � 2:22 D 4:11 N�m/m

(7.135)

The presence of D16 and D26 dictates that to have only a twisting curvature,

bending moments in both the x and y directions are required, in addition to

the twisting moment. Figure 7.6 illustrates the deformed shape and required

moment resultants if every point on the reference surface of a 0.250 m by

0.125 m laminate experiences this twisting curvature. If a laminate experi-

ences only twisting curvature, then the edges of the laminate remain straight,

simply rotating but not curving.

y
x

z

1.028 N⋅m

0.250 m
0.125 m

1.028 N⋅m

0.232 N⋅m

0.232 N⋅m

0.350 N⋅m0.514 N⋅m

0.514 N⋅m

Undeformed

Deformed

0.350 N⋅m

FIGURE 7.6. Moments required to deform Œ˙30=0�S laminate to have only twisting

curvature �o
xy D 2:22 m�1.
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What makes the influence of D16 and D26 even more interesting is the

fact that the signs of these stiffnesses are sensitive to the signs of the fiber

angles of the various layers. This sign sensitivity can be traced back to the

sign sensitivity of NQ16 and NQ26 with fiber angle � . The D matrix for the

Œ˙30=0�S laminate is repeated here from earlier as

ŒD� D

2

4

5:78 1:766 1:261

1:766 1:256 0:418

1:261 0:418 1:850

3

5 N�m (7.136)

For a .�30=0/S laminate, the D matrix is given by

ŒD� D

2

4

5:78 1:766 �1:261

1:766 1:256 �0:418

�1:261 �0:418 1:850

3

5 N�m (7.137)

Then to have a point on the reference surface of a .�30=0/S laminate

deformed in accordance with

"o
x.x; y/ D 0 �o

x.x; y/ D 2:22 m�1

"o
y.x; y/ D 0 �o

y.x; y/ D 0

o
xy.x; y/ D 0 �o

xy.x; y/ D 0

(7.138)

a now familiar deformation state, requires

Mx D D11�
o
x D 5:78 � 2:22 D 12:84 N�m/m

My D D12�
o
x D 1:766 � 2:22 D 3:92 N�m/m

Mxy D D16�
o
x D �1:261 � 2:22 D �2:80 N�m/m

(7.139)

The value of Mxy is opposite in sign to the value for the Œ˙30=0�S case.

Figure 7.7 shows the moments required on the edges of a 0.250 m � 0.125

m .�30=0/S laminate if the deformations of equation (7.138) are valid for

every point on the reference surface. This figure should be contrasted with

Figure 6.35 for the Œ˙30=0�S case, and the senses of the twisting moments

should be noted.

Consider next the situation where there is a unit Mx applied at every point

on the reference surface of a Œ�30=0�S laminate. For the Œ�30=0�S laminate,

d11 D 0:330 1/N�m d12 D �0:420 1/N�m d16 D 0:1300 1/N�m

d22 D 1:397 1/N�m d26 D 0:0287 1/N�m d66 D 0:636 1/N�m

(7.140)

with the signs of D16 and D26 causing the signs of d16 and d26 to be opposite

those for a Œ˙30=0�S laminate. The curvatures the Œ�30=0�S laminate are,
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0.701 N⋅m

0.981 N⋅m

0.701 N⋅m

0.981 N⋅m

1.605 N⋅m

1.605 N⋅m

0.350 N⋅m

0.350 N⋅m

0.125 m

y
x

z

0.250 m

FIGURE 7.7. Moments required to produce state of deformation �o
x D 2:22 m�1 in

Œ�30=0�S laminate.

for a unit moment,

�o
x.x; y/ D d11Mx D 0:330 m�1

�o
y.x; y/ D d12Mx D �0:420 m�1

�o
xy.x; y/ D d16Mx D 0:1300 m�1

(7.141)

The sign of the twisting curvature is opposite the sign of the Œ˙30=0�S case.

Figure 7.8 illustrates the deformations for this situation. The opposite sign of

the twisting curvature is manifest in the fact that now points A and C have

less displacement in the Cz direction than do points B and D. Comparison

with Figure 7.5 contrasts these situations, and both figures illustrate the fact

y
x

z

D

C

B

A

Mx

Mx

FIGURE 7.8. Bending and twisting deformations of Œ�30=0�S laminate due to

bending moment Mx .
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that due to D16 being nonzero, a simple bending moment results in a distorted

reference surface shape.

We should mention that the influence of D16 and D26, of course, depends

on their magnitude relative to the primary bending stiffnesses, D11 and D22.

When D16 and D26 are small, the distortions of Figures 7.5 and 7.8 are

not perceptible. When D16 and D26 are comparable to D12, the anticlastic

curvature term, then the distortions are noticeable and cannot be ignored. In

the above examples, the magnitude of the twisting curvature is about one-third

the magnitude of the anticlastic curvature effect, a noticable level.

7.6.2 Influence of A16 and A26

Two other important coupling terms in the laminate stiffness matrix are A16

and A26. These two components produce effects in laminates much like the

effects NQ16 and NQ26 produce in a single layer. Though the effects of NQ16

and NQ26 may be present in an individual layer in a laminate, if the laminate

is balanced, we have seen that A16 and A26 are zero. In particular, consider

the Œ˙30=0�S laminate. Although this laminate is balanced, there could be

applications where the laminate is rotated slightly, or skewed, in its plane by

an angle �. Consider the case of � D 10ı such that the laminate is actually a

ŒC40=�20=C10�S laminate. This laminate is not balanced and thus A16 and

A26 are not zero. The A matrix for a Œ˙30=0�S graphite-reinforced laminate

rotated 10ı is

ŒA� D

2

6

4

99:8 18:94 7:37

18:94 18:85 7:37

7:37 7:37 20:2

3

7

5
� 106 N/m (7.142)

If at a point on the reference surface the deformations are given by

"o
x.x; y/ D 1000 � 10�6 �o

x.x; y/ D 0

"o
y.x; y/ D 0 �o

y .x; y/ D 0

o
xy.x; y/ D 0 �o

xy .x; y/ D 0

(7.143)

then at that point the stress resultants required are, from equation (7.101a),

Nx D A11"
o
x D 99 800 N/m

Ny D A12"
o
x D 18 940 N/m

Nxy D A16"
o
x D 7370 N/m

Mx D My D Mxy D 0

(7.144)

The Ny is required to overcome the Poisson effects at this point on the

reference surface; the laminate wants to contract in the y direction if loaded

in the x direction. The Nxy is necessary to prevent shear strain, similar to
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FIGURE 7.9. Forces required to produce "o
x D 1000 � 10�6 in a Œ˙30=0�S laminate

rotated 10ı.

the situation discussed in Chapter 5 in connection with Figure 5.8(e) and

(f). In that figure an element of fiber-reinforced material was subjected to

just such an extension in the x direction. To effect this elongation, and have

neither contraction in the y direction nor shear deformation, it was necessary

to impose a tensile stress in the y direction and a shear stress on the element.

The shear stress was necessary due to the influence of NQ16. For the Œ˙30=0�S
laminate rotated 10ı, the cumulative effect of the NQ16 in the layers, which

results in the nonzero value of A16, leads to the requirement of having to have

an Nxy present to restrain shear deformation. If every point on the reference

surface of a 0.250 m by 0.125 m plate is to have the deformations given by

equation (7.143), then the forces uniformly distributed along the edges of the

plate as shown in Figure 7.9 are required. Even though the shear forces are

the smallest of the forces, they are not negligible. For this situation, because

no shearing or Poisson contraction is allowed, the plate simply gets longer,

the width remains the same, and the right corner angles remain right. The

deformed length of the plate is 250.25 mm.

As we continue to study the deformations of the rotated Œ˙30=0�S laminate,

consider a point on the reference surface to be loaded in tension with

Nx > 0 Ny D Nxy D Mx D My D Mxy D 0 (7.145)

At that point the reference surface strains are given by

"o
x D a11Nx

"o
y D a12Nx

o
xy D a16Nx

(7.146)
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where the a matrix is determined from equations (7.103a) and (7.142) as
2

4

a11 a12 a16

a12 a22 a26

a16 a26 a66

3

5 D

2

4

12:38 �12:46 0:0271

�12:46 74:4 �22:6

0:0271 �22:6 57:8

3

5 � 10�9 N/m

(7.147)

For this situation, after noting the signs of a11, a12, and a16, we find that

the point on the reference surface experiences a tensile strain in the x

direction, a contraction strain in the y direction, and a positive shear strain.

An examination of a16 in equation (7.103a) shows that it depends on A16 and

A26. The cumulative values of NQ16 and NQ26, which lead to nonzero values

of A16 and A26, are responsible for the tensile loading producing a shearing

strain, behavior that is unique to fiber-reinforced materials. We also saw this

behavior in Chapter 5 in connection with Figure 5.4(e) and (f) where an

element of fiber-reinforced material was being subjected to a single tensile

stress in the x direction. Such coupled behavior in laminates between tensile

stresses and shear strains can be viewed as a favorable characteristic for

tailoring the response of structures, tailoring that would not be possible with

metallic materials. Using the numerical values of the aij and considering,

for example, a value of Nx D 105 N/m, we find that the deformations at the

point on the reference surface are given by

"o
x D 1238 � 10�6

"o
y D �1246 � 10�6

o
xy D 2:71 � 10�6

(7.148)

If the strains are the same at every point on the reference surface, then we can

determine the displacement in a manner similar to deriving equation (6.72),

although the present case is somewhat different. From equation (6.14)

@uo.x; y/

@x
D "o

x

@vo.x; y/

@y
D "o

y

@uo.x; y/

@y
C

@vo.x; y/

@x
D o

xy

(7.149)

where it is understood the right sides are constants. Integrating the first two

equations leads to

uo.x; y/ D "o
xx C g.y/

vo.x; y/ D "o
yy C h.x/

(7.150)

which are then substituted into the third equation to give

dg.y/

dy
C

dh.x/

dx
D o

xy (7.151)
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If a function of x and a function of y sum to a constant, then the two functions

themselves must be constants, or

dg.y/

dy
D C1

dh.x/

dx
D o

xy � C1

(7.152)

which integrate to

g.y/ D C1y C C2

h.x/ D .o
xy � C1/x C C3

(7.153)

The result is

uo.x; y/ D "o
xx C C1y C C2

vo.x; y/ D "o
yy C .o

xy � C1/x C C3

wo.x; y/ D 0

(7.154)

with C1 being associated with rigid body rotation about the z axis, and C2

and C3 being associated with rigid body translations. Again, we stress that

equation (7.154) is valid only if "o
x, "o

y , and o
xy are constant over the area of

the laminate. For the situation here

uo.x; y/ D a11Nxx C C1y C C2

vo.x; y/ D a12Nxy C .a16Nx � C1/x C C3

(7.155)

The deformations of a rectangular Œ˙30=0�S laminate rotated with � D 10ı

and loaded such that equation (7.155) is valid everywhere on its reference

surface are illustrated in Figure 7.10, where the figure, which is drawn

Deformed

Undeformed

C

y

x

A

NxNx

FIGURE 7.10. Deformations due to Nx of Œ˙30=0�S laminate rotated 10ı.
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somewhat differently than past similar figures in order to better illustrate

the important features, is drawn with the conditions

C2 D C3 D 0

C1 D o
xy D a16Nx

(7.156)

This choice of the rigid body constants is completely arbitrary and is made

strictly for the purpose of having Figure 7.10 be as simple as possible. Note

the decrease in right angles at corners A and C of the laminate because o
xy

is positive.

As with the dual role of NQ16 and NQ26, A16 and A26 play a dual role. In

addition to relating shear deformations to normal force resultants, A16 and

A26 relate extensional deformations to shear force resultants. If a point on

the reference surface of a Œ˙30=0�S laminate rotated 10ı is loaded in shear

such that

Nxy > 0 Nx D Ny D Mx D My D Mxy D 0 (7.157)

then at that point the reference surface deformations are given by

"o
x D a16Nxy

"o
y D a26Nxy

o
xy D a66Nxy

(7.158)

By examining the signs of a16 and a26, we can see that through the

cumulative influences of the NQ16 and NQ26, the positive shear force resultant

causes, in addition to the expected shear strain, a slight extension strain

in the x direction and a significant contraction strain in the y direction at

the reference surface of the laminate. The ability to cause an extension or

contraction strain with a shear resultant is a characteristic that can be used to

advantage in structural applications. Considering the numerical values, and

again assuming a value for Nxy D 105 N/m, we find that the reference surface

strains at that point are given by

"o
x D 2:71 � 10�6

"o
y D �2260 � 10�6

o
xy D 5780 � 10�6

(7.159)

Figure 7.11 illustrates the deformations of a rectangular laminate experiencing

these strains over the entire reference surface. Again the constants C1-C3 in

equation (7.154) are chosen to make Figure 7.11 simple.

To study the sign sensitivity of A16 and A26, consider the Œ˙30=0�S lami-

nate rotated off axis by � D �10ı. The laminate has a stacking arrangement

of ŒC20= �40= � 10�S and the A matrix is given by

ŒA� D

2

4

99:8 18:94 �7:37

18:94 18:85 �7:37

�7:37 �7:37 20:2

3

5 � 106 N/m (7.160)
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Deformed
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y

x
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FIGURE 7.11. Deformation due to Nxy of Œ˙30=0�S laminate rotated 10ı.

The difference between the Œ˙30=0�S laminate’s being rotated off axis by

C10ı and its being rotated off axis by �10ı is in the A16 and A26 terms.

By examining equation (7.142), we can see that these components of the A

matrix are of opposite sign for the two laminate rotations. If at a point on

the reference surface the deformations are given by

"o
x.x; y/ D 1000 � 10�6 �o

x.x; y/ D 0

"o
y.x; y/ D 0 �o

y .x; y/ D 0

o
xy.x; y/ D 0 �o

xy .x; y/ D 0

(7.161)

then the stress resultants required at that point are

Nx D A11"
o
x D 99 800 N/m

Ny D A12"
o
x D 18 940 N/m

Nxy D A16"
o
x D �7370 N/m

Mx D My D Mxy D 0

(7.162)

If all points on the reference surface of a 0:250 m � 0:125 m Œ˙30=0�S
laminate rotated �10ı are to have the above deformations, then, as in Fig-

ure 7.12, the forces required are identical to the case of the laminate rotated

C10ı, Figure 7.9, except the sign of the shear force resultant is reversed.

The a matrix of the Œ˙30=0�S laminate rotated �10ı is
2

4

a11 a12 a16

a12 a22 a26

a16 a26 a66

3

5 D

2

4

12:38 �12:46 �0:0271

�12:46 74:4 22:6

�0:0271 22:6 57:8

3

5 � 10�9 N/m

(7.163)
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FIGURE 7.12. Forces required to produce "o
x D 1000�10�6 in a Œ˙30=0�S laminate

rotated �10ı.

with the difference being in the a16 and a26 terms. Thus, a laminate loaded

in tension in the x direction, again assuming a value of Nx D 105 N/m,

experiences the reference surface deformations of

"o
x D 1238 � 10�6

"o
y D �1246 � 10�6

o
xy D �2:71 � 10�6

(7.164)

A 0.250 m by 0.125 m laminate stretches in the x direction and contracts

in the y direction, the same as if rotated C10ı. However, the change in

corner right angle is not the same; the change is opposite in sign. Figure 7.13

illustrates the deformed laminate; the right angle at corners A and C increases,

in contrast to Figure 7.10 for the laminate rotated C10ı.

Finally, consider the laminate rotated �10ı and loaded with a positive

shear stress resultant Nxy > 0; the reference surface strains again are given

by equation (7.158). By examining the signs of a16 and a26 in equation

(7.163), we see clearly that the laminate now contracts in the x direction and

extends in the y direction, as well as experiencing the expected shear strain.

For a value of Nxy D 105 N/m,

"o
x D a16Nxy D �2:71 � 10�6

"o
y D a26Nxy D 2260 � 10�6

o
xy D a66Nxy D 5780 � 10�6

(7.165)

Figure 7.14 illustrates these deformations, with Figure 7.11 providing a

contrast.

When studying the rotated laminate, we should keep in mind that the

definition of the ABD matrix, in particular the A matrix, is valid at a point
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y

x

FIGURE 7.13. Deformations due to Nx of Œ˙30=0�S laminate rotated �10ı.

.x; y/. A rectangular 0.250 m by 0.125 m laminate, with the ABD matrix

and the strains and curvatures being the same at every point on the reference,

is being used simply to dramatize the physical meaning of certain effects.

The definition and numerical values of the components of the A matrix

do not depend on the rectangular shape or the dimensions. In essence, the

components of the ABD matrix are not influenced by any characteristic of

the laminate except the specific stacking arrangement and specific material

properties at point .x; y/.

Deformed

Undeformed

A

C

Nxy

Nxy

y

x

Nxy

Nxy

FIGURE 7.14. Deformations due to Nxy of Œ˙30=0�S laminate rotated �10ı.



Elastic Couplings 355

7.6.3 Influence of the Bi j

The elastic couplings due to the elements of the B matrix are very complex.

For a general unsymmetric laminate loaded with all six stress resultants, the

coupling effects are numerous. By examining equations (7.85) and (7.87), we

see that each component of deformation requires the presence of all six stress

resultants. Conversely, each stress resultant contributes to all six components

of deformations. For a general unsymmetric laminate to deform in even a

simple fashion with one component of deformation—for example, the now-

familiar case of having only an extensional strain in the x direction—all three

force resultants and all three moment resultants are required. For the case of

only an x-direction extensional strain, equation (7.85) reduces to

Nx D A11"
o
x

Ny D A12"
o
x

Nxy D A16"
o
x

Mx D B11"
o
x

My D B12"
o
x

Mxy D B16"
o
x

(7.166)

The requirement for having moment resultants, both bending and twisting,

to produce simple extension is what makes unsymmetric laminates unique.

The Œ˙30=0�T laminate of CLT Example 5 in Chapter 6 is an example of

this situation. Using the values of the required components of the A and

B matrices for this laminate from equation (7.90) and the value of "o
x D

1000�10�6, we find from the above equations that the stress resultants needed

for the Œ˙30=0�T laminate to have only extension in the x direction are

Nx D 51 200 N/m

Ny D 9470 N/m

Nxy D 0

Mx D 1:416 N�m/m

My D �0:609 N�m/m

Mxy D �1:051 N�m/m

(7.167)

These are the values computed in Chapter 6, equation (6.146), by integrating

the stresses through the thickness of the three-layer laminate. The forces

and moments required along the edges of a 0.250 m by 0.125 m Œ˙30=0�T
laminate to produce "o

x D 1000 � 10�6 everywhere on its reference surface,

all other deformations being zero, are illustrated in Figure 7.15. Because the

laminate is balanced, no Nxy is required. Nonetheless, the necessity of having

this many forces and moments to effect simple extension in the x direction

certainly categorizes unsymmetric laminates as being unique.
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FIGURE 7.15. Forces and moments required to produce "o
x D 1000 � 10�6 in a

Œ˙30=0�T laminate.

Equally interesting is the fact that subjecting a general unsymmetric lami-

nate to just a simple loading, such as having only Nx acting on the laminate,

produces all three reference surface strains and all three reference surface

curvatures. This can be seen by examining equation (7.87). For loading only

in the x direction, the reference surface deformations are given by

"o
x D a11Nx

"o
y D a12Nx

o
xy D a16Nx

�o
x D b11Nx

�o
y D b12Nx

�o
xy D b16Nx

(7.168)

For the Œ˙30=0�T laminate, we find using the numerical values for the aij

and bij , equation (7.93), and considering a unit load level, that

"o
x D 41:5 � 10�9

"o
y D �39:8 � 10�9

o
xy D 12:19 � 10�9

�o
x D �164:6 � 10�6 m�1

�o
y D 179:4 � 10�6 m�1

�o
xy D 384 � 10�6 m�1

(7.169)
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It is difficult to envision the deformed shape of a rectangular laminate having

equation (7.169) valid everywhere on its reference surface. However, the

displacements can be written in terms of past results, namely, equations

(7.132) and (7.154), specifically:

uo.x; y/ D "o
xx C C1y C C2

vo.x; y/ D "o
yy C .o

xy � C1/x C C3

wo.x; y/ D �
1

2
.�o

x x2 C �o
yy2 C �o

xyxy/

C K1x C K2y C K3

(7.170)

For this particular unsymmetric laminate and loading

uo.x; y/ D a11Nxx C C1y C C2

vo.x; y/ D a12Nxy C .a16Nx � C1/x C C3

wo.x; y/ D �
1

2
.b11x2 C b12y

2 C b16xy/Nx

C K1x C K2y C K3

(7.171)

The deformed laminate is longer in the x direction and narrower in the y

direction, the right corner angles have changed, there is bending curvature

in both the x and y directions, and there is twisting curvature. What is

interesting is that the twisting curvature is larger than either of the two

bending curvatures. This is due to the presence of the ˙30ı layers.

As we can see by examining the details of the ABD matrix, all the compo-

nents of the B matrix have dual roles. Every component Bij can be thought

of as coupling a moment resultant to an extensional strain, or coupling

a force resultant to a curvature. This is a bending-stretching duality. In

addition to the bending-stretching duality, with the components of the B

matrix there is the level of duality that is also associated with the com-

ponents of the A and D matrices. In particular, B16 couples the twisting

curvature �o
xy with the normal force resultant Nx, and also the bending

curvature �o
x with the shear force resultant Nxy . With this double level of

duality, the components of the B matrix can produce interesting and complex

effects. As a simple example of the bending-stretching duality, consider an

unsymmetric cross-ply laminate Œ02=902�T . First we will subject this laminate

to a force resultant Nx and examine the resulting deformations, and then

we will subject the laminate to a bending moment Mx and examine those

deformations. In either case, equation (7.87) is applicable. For the Œ02=902�T
laminate,
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2

6

6

6

6

4

a11 a12 b11 b12

a12 a22 b21 b22

b11 b21 d11 d12

b12 b22 d12 d22

3

7

7

7

7

5

D

2

6

6

6

6

4

44:1 � 10�9 �1:584 � 10�9 188:5 � 10�6 0

�1:584 � 10�9 44:1 � 10�9 0 �188:5 � 10�6

188:5 � 10�6 0 1:470 �0:0528

0 �188:5 � 10�6 �0:0528 1:470

3

7

7

7

7

5

(7.172a)

"

a66 b66

b66 d66

#

D

"

379 � 10�9 0

0 12:63

#

(7.172b)

a16 D a26 D b16 D b26 D b61 D b62 D d16 D d26 D 0 (7.172c)

If a point on the reference surface of the Œ02=902�T laminate is subjected to a

force resultant in the x direction, Nx, then at that point the reference surface

deformations are given by

"o
x D a11Nx

"o
y D a12Nx

o
xy D 0

�o
x D b11Nx

�o
y D 0

�o
xy D 0

(7.173)

As we can see, the presence of b11 leads to a stretching-induced curvature

in the x direction. There is no curvature in the y direction or any twisting

curvature. Recall, this is not a situation where there is necessarily anticlas-

tic curvature. If a stress resultant Nx D 103 N/m is considered, then the

deformations are given by

"o
x D 44:1 � 10�6

"o
y D �1:584 � 10�6

�o
x D 0:1885 m�1

o
xy D �o

y D �o
xy D 0

(7.174)

If every point on the reference surface has these deformations, then the out-

of-plane shape of a laminate is given simply by

w.x; y/o D �
1

2
�o

xx2 (7.175)
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FIGURE 7.16. Deformations due to Nx of a Œ02=902�T laminate.

A curvature of �o
x D 0:1885 m�1 means the reference surface of a 0.250 m

by 0.125 m laminate would deform out of plane, as in Figure 7.16, such that

the ends at x D ˙0:125 m are deflected in the z direction an amount

wo.˙0:125; y/ D �
1

2
.0:1885 m�1/.˙0:125/2 D �1:473 mm (7.176)

This is a significant out-of-plane deflection for such a small load, specifi-

cally more than two times the laminate thickness. Bending-stretching effects

are strong! This laminate represents an extreme level of asymmetry and it

demonstrates the power of bending-stretching coupling.

Conversely, if a point on the reference surface of the Œ02=902�T laminate is

subjected to just a unit bending moment in the x direction, then at that point

reference surface deformations are given by

"o
x D b11Mx D 188:5 � 10�6

"o
y D b21Mx D 0

o
xy D b61Mx D 0

�o
x D d11Mx D 1:470 m�1

�o
y D d12Mx D �0:0528 m�1

�o
xy D d16Mx D 0

(7.177)

where in this case the presence of b11 leads to bending-induced stretching

in the x direction. There is no strain in the y direction but, as shown in

Figure 7.17, because it is a bending problem there is an anticlastic curvature.

There is no twisting curvature. If at every point on the reference of a rectan-

gular laminate the curvatures are given by the above, then the out-of-plane

deflection of the reference surface is given by

wo.x; y/ D �
1

2
.1:470x2 � 0:0528y2/ m (7.178)
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FIGURE 7.17. Deformations due to Mx of a Œ02=902�T laminate.

where rigid body translations and rotations in equation (7.170) have been

suppressed, and the change in length of a 0.250 m by 0.125 m laminate is

0.0471 mm and there is no change of width.

This completes our discussion of the elastic couplings present in fiber-

reinforced composite laminates. This discussion has centered on the defor-

mations and stress resultants that occur because of these couplings. We have

not addressed the stresses caused by these couplings. However, once we know

the strains and curvatures at a point on the reference surface, we can compute

the stresses. Because the couplings lead to unexpected and perhaps unusual

strains and curvatures of the reference surface, the emphasis in this section

has been on that aspect of the problem. However, the stresses should not be

ignored. We will say more on this topic in later chapters.

Exercises for Section 7.6

1. A Œ˙45=0�S graphite-reinforced laminate is to be used in a situation where the

laminate may actually be rotated in plane by an amount �. The lamination sequence

is then Œ45C �=�45C�=��S . For � D 15ı, for example, the lamination sequence

is Œ60=�30=15�S. The laminate is to be subjected to a simple bending moment Mx

that is the same at every point on the reference surface. There is concern that the

twisting curvature, �o
xy , will be excessive for certain ranges of �. (a) Develop an

expression for the ratio of d16 to d11; d11 relates the primary x-direction bending

curvature to the applied moment Mx , and d16 relates the twisting curvature to Mx .

(b) Plot the ratio d16=d11 versus �, �30ı � � � C30ı. (c) Determine the range of

� such that the twisting curvature is less than 25 percent of the bending curvature.

(d) Is it possible to have no twisting curvature?

2. Assume that the undeformed dimensions of the laminate in Figure 7.10 are 0.250

m in the x direction and 0.125 m in the y direction. (a) What are the changes in

length and width of the laminate? (b) What is the change in the corner right angle,

in degrees? Assume Nx D 105 N/m and take note of equation (7.156).
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3. Assume that the undeformed dimensions of the laminate in Figure 7.11 are 0.250

m in the x direction and 0.125 m in the y direction. (a) What are the changes in

length and width of the laminate? (b) What is the change in the corner right angle,

in degrees? Assume Nxy D 105 N/m.

4. Consider the unsymmetric Œ02=902�T laminate discussed at the end of this section.

In particular, consider the case where a point on the reference surface of the

laminate is subjected to just a force resultant in the x direction, namely, Nx D 105

N/m, equations (7.173) and (7.174). (a) Compute and plot the stresses �x , �y , �xy

at this point as a function of z. (b) Note that although this is a problem where

the laminate is subjected to only an inplane load, the stress distribution reflects

the fact that bending-stretching coupling causes the stress distribution to appear as

though the laminate is being subjected to a bending moment also. Oddly enough,

there is a z location where �x D 0, that is, where there is no stress in the direction

the laminate is being loaded. At what value of z is �x D 0?

5. Again consider the unsymmetric Œ02=902�T laminate discussed at the end of this

section. In particular, consider the case where a point on the reference surface of

the laminate is subjected to just a moment resultant in the x direction, namely,

10 N�m/m, equation (7.177). (a) Compute and plot the stresses �x , �y , �xy at this

point as a function of z. (b) At the location z D 0 is there what might be referred to

as a neutral plane, that is, a plane of zero stress that occurs in the bending of, say,

an aluminum laminate? (c) At what value of z is �x D 0? (d) Is �y D 0 there also?

7.7 Effective Engineering Properties of a Laminate

It is often convenient to have what can be referred to as effective engineering

properties of a laminate. These consist of the effective extensional modulus

in the x direction, the effective extensional modulus in the y direction, the

effective Poisson’s ratios, and the effective shear modulus in the x-y plane.

These particular effective properties can be defined for general laminates

but they make the most sense when considering the inplane loading of

symmetric balanced laminates. Let us restrict our discussion to the inplane

loading of symmetric balanced or symmetric cross-ply laminates. In this case

the identical equations (7.105a) and (7.109a) are applicable. To introduce

effective engineering properties, define the average laminate stress in the x

direction, the average laminate stress in the y direction, and the average

laminate shear stress to be, respectively,

N�x �
1

H

Z H

2

�
H

2

�xdz

N�y �
1

H

Z H

2

�
H

2

�ydz

N�xy �
1

H

Z H

2

�
H

2

�xydz

(7.179)
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The average stresses, like all average quantities, do not really exist. They are

simply a definition. In the definitions of the average stresses, the integrals

are actually the definitions of the normal and shear force resultants, equation

(7.1); that is:

N�x D
1

H
Nx

N�y D
1

H
Ny

N�xy D
1

H
Nxy

(7.180)

or

Nx D H N�x

Ny D H N�y

Nxy D H N�xy

(7.181)

with H being the thickness of the laminate. Knowing the force resultants

and the laminate thickness, we can compute the average stresses easily.

Substituting the above form into equation (7.105a), we find

8

ˆ

<

ˆ

:

"o
x

"o
y

o
xy

9

>

=

>

;

D

2

6

4

a11H a12H 0

a12H a22H 0

0 0 a66H

3

7

5

8

ˆ

<

ˆ

:

N�x

N�y

N�xy

9

>

=

>

;

(7.182)

If we compare the form of this equation with the form of the compliance for a

single layer in a state of plane stress, equation (4.4), it is possible to define the

above three-by-three matrix as the laminate compliance matrix. Accordingly,

by analogy with equation (4.5), the laminate’s effective extensional modulus

in the x direction, effective extensional modulus in the y direction, effective

shear modulus, and two Poisson’s ratios are given by

NEx �
1

a11H

NEy �
1

a22H

NGxy �
1

a66H

N�xy � �
a12

a11

N�yx � �
a12

a22

(7.183)
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In terms of the elements of the A matrix, from equation (7.106a),

NEx �
A11A22 � A2

12

A22H

NEy �
A11A22 � A2

12

A11H

NGxy �
A66

H

N�xy �
A12

A22

N�yx �
A12

A11

(7.184)

Of course, the reciprocity relation

N�xy

NEx

D
N�yx

NEy

(7.185)

is valid and so N�yx and N�xy are not independent.

As an example, for the four-layer Œ0=90�S laminate for which H D 4 �

150 � 10�6 D 0:600 mm, substituting into equation (7.184) from equation

(7.88a), we find that the effective engineering properties are

NEx D 83:8 GPa

NEy D 83:8 GPa

NGxy D 4:40 GPa

N�xy D 0:0359

N�yx D 0:0359

(7.186)

For this particular laminate, the x and y directions have identical effective

extensional moduli, and the effective shear modulus is the same as the shear

modulus for a single layer, G12 (see Table 2.1). This is not surprising,

considering that there are two layers with their fibers in the x direction and

two with their fibers in the y direction, and that the two directions respond

the same to an applied load. Furthermore, because both the 0ı and the 90ı

layers have their fibers aligned with the global coordinate directions, the shear

modulus for the laminate is identical to the shear modulus for a single layer.

Exercises for Section 7.7

1. Consider the Œ˙30=0�S graphite-reinforced laminate. (a) Compute the effective

engineering properties NEx , NEy , NGxy , N�xy , and N�yx . (b) Comment on the relative

magnitudes of NEx and NEy . (c) Why is the effective shear modulus greater than
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the value of G12 for a single layer? (d) What is the physical interpretation of N�xy

such that its value is greater than 1?

You may want to complete the Computer Exercise before proceeding with Exercises

2, 3, and 4.

2. Consider a Œ˙�=0�S graphite-reinforced laminate. For purposes of design, it is of

interest to generate figures that show how NEx , NEy , N�xy , N�yx , and NGxy vary with

� . (a) Generate such design figures by computing these engineering properties as

a function of � , for 0ı � � � 90ı. (b) Is there a range or value of � for which
NEx D NEy? (c) What about N�xy and N�yx for this range or value of �? For what

range is N�xy � 1?

3. In Chapter 5 we defined coefficients of mutual influence for an element of fiber-

reinforced material. Under conditions of load and deformation uniformity, these

definitions can be thought of as applying to a single layer, as opposed to just a

small element of material. Theoretically, like most of the definitions discussed,

they are defined at a point. Two of those coefficients of mutual influence were

defined as �xy;x and �x;xy . Suppose those two effective coefficients of mutual

influence for a laminate are given the notation N�xy;x and N�x;xy . (a) Based on

analogy with the coefficients of mutual influence for a single layer, state clearly

the definition of these two coefficients of mutual influence for a laminate in terms

of Aij . Indicate with the definitions which stress resultants are zero and which

are not zero, and what responses are being considered. (b) Compute and plot the

two effective coefficients associated with a Œ˙30=0�S laminate as this laminate is

rotated by off-axis angle �, �10ı < � < C10ı. (c) At what off-axis angles do the

coefficients have maximum amplitude? (d) What is the physical interpretation of

the dependency of the signs of N�xy;x and N�x;xy on �?

4. Consider an eight-layer Œ˙45=0=90�S graphite-reinforced laminate. Compute and

plot the components of the A matrix of this laminate as it is rotated an angle �

in its plane. Consider the range ��=2 � � � C�=2. We refer to this laminate is

as a quasi-isotropic laminate. We use the term isotropic because there is a single

set of values for the elements of the A matrix, independent of �. As a result, the

engineering properties are independent of �. The term quasi is used because the

effective shear modulus, Gxy , is not related to the effective extensional modulus

and effective Poisson’s ratio by the relation

NGxy D
NEx

2.1 C N�xy /

as they are for a truly isotropic material. The value of NGxy is numerically close to

the right hand side of the above equation but the equality is simply not valid.

Computer Exercise

It will be useful to add a few lines to your computer program to compute and print the

engineering properties as given by equation (7.184), specifically, from the Computer

Exercise in the Exercises for Section 7.2:
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“7c. Compute and print the laminate engineering properties NEx , NEy , NGxy , N�xy , N�yx .”

Then every time you use your program to solve a problem, the engineering properties

will be printed. It would be best to print out a statement near the printed values of

the engineering properties which indicates the definitions apply only to symmetric

balanced or cross-ply laminates. It is possible to apply the definitions to general

laminates; however, you must exercise care in using the numbers resulting from the

definitions.

7.8 Summary

Recall in Exercise 8 in the Exercises for Section 6.8 that the effective EA

and effective EI of a Œ0=90�S beam 10 mm wide were computed to be

EA D 0:465 � 106 N

EI D 0:0244 N�m2
(7.187)

The beam was 10 mm wide, and thus the effective EA and EI are actually

per unit width, or per meter:

EA D 46:5 � 106 N/m

EI D 2:44 N�m2/m
(7.188)

For the Œ0=90�S laminate, the extensional and bending stiffnesses in the x

direction are given by equation (7.88) as

A11 D 50:4 � 106 N/m

D11 D 2:48 N�m
(7.189)

Hence, the rough strength-of-materials estimates of equation (7.188) for ex-

tensional and bending stiffnesses are close to the correct values. However,

this good comparison must be viewed in two ways: (1) clearly fundamental

notions such as effective EA and effective EI can be used with laminated

composite materials; (2) only in certain simple cases can the fundamental no-

tions be used with any accuracy. Cross-ply laminates are one example where

they can be used with accuracy; equation (7.31) indicates the contribution of

the 90ı layers to A11 is negligible, and the details of equations (7.68) and

(7.69) also show their contribution to D11 negligible. Thus, ignoring these

layers and making strength-of-materials calculations will work. On the other

hand, equation (7.40) for A11 of the Œ˙30=0�S shows no layer is negligible

in that calculation. Also, what if the laminate was Œ˙75=0�S? Would the

contribution of the ˙75ı layers be negligible? One has to work with laminated

composites for some time to be able to make judgments. Once one is sure

when approximations can be used, shortcuts are possible. However, with a

readily available computer program that computes laminate properties and

laminate response, resorting to approximations is not really necessary. When
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approximations can be and are indeed made, they provide insight into the

mechanics of the problem—which should be viewed as the purpose of using

approximations. However, they are not substitutions for the more rigorous

and accurate approach.

7.9 Suggested Readings

The influences of A16 and A26 are discussed in:

1. Young, R. D., J. H. Starnes, Jr., and M. W. Hyer. “The Effects of Skewed Stiff-

eners and Anisotropic Skins on the Response of Compression-Loaded Composite

Panels.” Proceedings of the Tenth DoD/NASA/FAA Conference on Fibrous Com-

posites in Structural Design, 1994, Report No. NAWCADWAR-94096-60, Naval

Air Warfare Center, Warminster, PA, pp. II-109–II-123.

The implications of nonzero values of D16 and D26 for a problem of considerable

importance are illustrated in:

2. Nemeth, M. P. “The Importance of Anisotropy on Buckling of Compression-

Loaded Symmetric Composite Plates.” AIAA Journal 24, no. 11 (1986), pp. 1831–

35.

The following papers discuss the influence of terms in the B matrix:

3. Armanios, E. A., A. Makeev, and D. A. Hooke. “Finite-Displacement Analy-

sis of Laminated Composite Strips with Extension-Twist Coupling.” Journal of

Aerospace Engineering (ASCE) 9, no. 3 (1996), pp. 80–91.

4. Dano, M.-L., and M. W. Hyer. “The Response of Unsymmetric Laminates to

Simple Applied Forces.” Mechanics of Composite Materials and Structures 3

(1996), pp. 65–80.

The following article discusses laminates that are specifically designed to show no

coupling:

5. Bartholomew, P. “Ply Stacking Sequences for Laminated Plates Having In-Plane

and Bending Orthotropy.” Fiber Science and Technology 10 (1977), pp. 237–53.



CHAPTER 8

Classical Lamination Theory:
Additional Examples

In the last two chapters we probed deeply into the assumptions and ramifi-

cations of classical lamination theory, examined implications of the theory,

and reached a fundamental understanding of the response of fiber-reinforced

composite laminates. In this chapter we use additional applications and dis-

cussions to provide deeper insight into the theory and to further our un-

derstanding of the response of fiber-reinforced composite laminates. The

examples we will present are related to those in Chapter 6, namely, CLT

Examples 1–5. However, the examples here are fundamentally different. In

CLT Examples 1–5 the reference surface strains and curvatures were specified

and the force resultants necessary to produce these deformations were com-

puted; these resultants, of course, were due to the stresses. In the examples

to follow, the force resultants will be specified, and the reference surface

strains and curvatures, and resulting stresses, will be computed. Specifying

the force resultants and computing the resulting deformations are not the same

as specifying the deformations and computing the necessary force resultants.

They are completely different problem statements.

Before proceeding with the force resultant specification examples, we

must stress one point: In our discussions of classical lamination theory we

have always specified that “if at a point on the reference surface” certain

conditions hold, then such and such a response will occur at that point.

Alternatively, we have specified that “if at every point on the reference

surface of a laminate” certain conditions hold, then such and such a response

will occur for the entire laminate. We have been emphatic about using this

terminology because classical lamination theory focuses on what is happening

at a point on the reference surface. The dependence of the laminate response

on the z coordinate above and below this point on the reference surface

has been removed from the problem. The dependence of response on the z

direction is determined by the Kirchhoff hypothesis and by definitions. In this

367
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context, there were three key steps to the formulation of classical lamination

theory that eliminated z dependence. First, by the Kirchhoff hypothesis the

displacements and strains at any point through the thickness of the laminate

were assumed to depend linearly on z; thus, it was only necessary to have an

understanding of what is happening at the reference surface. Second, by the

definition of the stress resultants, the stresses have been integrated through

the thickness, eliminating z from that portion of the problem. Because the

resultants are integrals with respect to the variable z, and since z D 0 at

the reference surface, the resultants are the effective forces and moments that

act at the reference surface. Finally, the laminate elastic properties have been

defined by the A; B; and D matrices as integrals through the thickness of

the laminate of the individual layer elastic properties. The z locations of the

individual layers are embedded in the definitions of the matrices. Because

the A; B; and D matrices relate the reference surface deformations to the

stress resultants that act at the reference surface, they are easily interpreted

as layer stiffness effects lumped at the reference surface.

Because of these assumptions and definitions, classical lamination theory

clearly defines how laminate response depends on the variation of layer elastic

properties and layer thicknesses in the z direction, and how displacements,

strains, and stresses vary in the z direction. However, classical lamination

theory does not define the manner in which laminate response varies in the x

and y directions. We must rely on the laws of equilibrium to study how the

response varies in these directions; we will do so in Chapter 13. For now we

must be content to study the response at a particular point on the reference

surface, or accept the statement that, for the purposes of the example, the

response is the same at every point on the reference surface.

8.1 CLT Example 6: [0/90]S Laminate Subjected

to Known Nx — Counterpart to CLT Example 1

To continue with our study of classical lamination theory, consider a problem

that is the counterpart to CLT Example 1 of Chapter 6. In CLT Example 1 we

studied the stresses and strains through the thickness of a [0/90]S laminate that

had the following strains and curvatures at a point on the reference surface:

"o

x
.x; y/ D 1000 � 10�6 �o

x
.x; y/ D 0

"o

y
.x; y/ D 0 �o

y
.x; y/ D 0

o

xy
.x; y/ D 0 �o

xy
.x; y/ D 0

(8.1)

To effect this deformation, the following stress resultants were required at

that point:

Nx D 50 400 N/m Ny D 1809 N/m
and (8.2)

Nxy D Mx D My D Mxy D 0



CLT Example 6: [0/90]S Laminate Subjected to Known Nx 369

These results led to the interpretation that if every point on a 0.250 m long

by 0.125 m wide [0/90]S laminate were to experience the deformations of

equation (8.1), then the system of edge forces, uniformly distributed along

the edges, shown in Figure 6.26, would be required. The new length of the

laminate would be 250.25 mm, with the width remaining the same and the

corner right angles remaining right. In CLT Example 1 the deformations

were specified and, through classical lamination theory, the force resultants

were computed. However, in practice, the converse problem of specifying the

force resultants and wanting to know the strains, curvatures, and stresses is

as important, if not more so. Generally loads are known and it is of interest

to determine deformations and stress levels. In that regard, consider, as in

Figure 8.1, a 0.250 m by 0.125 m laminate subjected to a load in the x

direction, at each end, of 6300 N. If the load is uniformly distributed along

the 0.125 m edge, then by force equilibrium arguments it can be shown that

for every point on the reference surface

Nx D 50 400 N/m
and (8.3)

Ny D Nxy D Mx D My D Mxy D 0

This loading is identical to the situation described in equations (8.1) and

(8.2) except for the lack of Ny : In the present example we are specifying

the loading in the x direction, while in CLT Example 1 we specified the

deformation in the x direction. This is an important distinction; they are

two different problems that only appear similar. Here we are purposely

studying this counterpart to CLT Example 1, and later the counterparts to

CLT Examples 3 and 4, to illustrate similarities and differences between

problems that, at least on the surface, appear the same.

Using the values of the aij for this laminate from equation (7.91a), we

find

"o

x
D a11Nx D 1001 � 10�6

"o

y
D a12Nx D �36:0 � 10�6

o

xy
D a16Nxy D 0

(8.4)

6300 N

6300 N

0.250 m
0.125 m

x

y

z

FIGURE 8.1. Œ0=90�S laminate subjected to specified force in x direction.
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Obviously the curvatures are zero. This state of deformation given by equation

(8.4) is valid at every point on the 0.250 m by 0.125 m reference surface.

Note that the elongation in the x direction is very close to the value in CLT

Example 1, but in the present example there is a contraction strain in the y

direction; the laminate is contracting 0.004 50 mm. Since no Ny is present,

the laminate can contract in the y direction, through Poisson effects, and can

elongate slightly more in the x direction. The solid lines in Figure 8.2 show

the distributions of these strains through the thickness, where the strains from

the original example, equation (8.1), are shown for comparison as dashed

lines. For "x; the dashed line is indistinguishable from the solid line due to

the similarity of "x for these two examples. Using the stress-strain relations,

for the 0ı layers the stresses are

�x D 155:8 MPa

�y D 2:58 MPa

�xy D 0

.8:5a/

while for the two 90ı layers the stresses are

�x D 12:07 MPa

�y D �2:58 MPa

�xy D 0

.8:5b/

These are similar to the stresses for Example 1, equations (6.28) and (6.29),

except that here the values of �y for the two layers are equal in magnitude

but opposite in sign. The opposite sign occurs because here the value of

Ny is specified to be zero and the integral of �y through the thickness

(i.e., the definition of Ny) must be exactly zero. Figure 8.3 illustrates these

stress distributions through the thickness for CLT Example 1 and the current

example. The distributions of �x for the two examples are, to within the

scale of the figure, indistinguishable; however, the distribution of �y for the

current problem reflects the equal and opposite character required for Ny to

be zero. Like CLT Example 1, there are no shear stresses in this problem.

By inspection, the principal material system stresses are, for the 0ı and 90ı

layers, respectively,

�1 D 155:8 MPa

�2 D 2:58 MPa

�2 D 0

.8:6a/

and

�1 D �2:58 MPa

�2 D 12:07 MPa

�2 D 0

.8:6b/
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FIGURE 8.2. Strain distribution through the thickness of Œ0=90�S laminate subjected

to Nx D 50 400 N/m.

Again by inspection, the principal material system strains are, for the 0ı and

90ı layers, respectively,

"1 D 1001 � 10�6

"2 D �36:0 � 10�6

12 D 0

.8:7a/

and

"1 D �36:0 � 10�6

"2 D 1001 � 10�6

12 D 0

.8:7b/

These distributions, illustrated in Figures 8.4 and 8.5, are very similar to

the distributions of CLT Example 1. Despite the overall minimal differences,

these two problems are distinctly different. The fact that the laminate is of
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FIGURE 8.3. Stress distribution through the thickness of Œ0=90�S laminate subjected

to Nx D 50 400 N/m.

cross-ply construction is partly responsible for the similar results. The strain

and load levels chosen also contribute to the similarity of results. From the

figures, it can be concluded that the response of a [0/90]S laminate subjected

to the condition

Nx D 50 400 N/m (8.8)

is very similar to the response of that laminate subjected to the condition

"
o

x
D 1000 � 10

�6 (8.9)

8.2 CLT Example 7: Œ˙30=0�S Laminate Subjected

to Known Nx — Counterpart to CLT Example 3

CLT Example 3 considered the situation where a point on the reference

surface of Œ˙30=0�S laminate was subjected to the deformations given by
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FIGURE 8.4. Principal material system stress distribution through the thickness of

Œ0=90�S laminate subjected to Nx D 50 400 N/m.

equation (8.1). We concluded that to effect this deformation it was necessary

to subject this point to the load conditions

Nx D 0:1024 MN/m Ny D 0:01894 MN/m

and (8.10)

Nxy D Mx D My D Mxy D 0

The alternative interpretation to that problem was that if every point on the

reference surface of a 0.250 m by 0.125 m Œ˙30=0�S laminate was to have

the deformations of equation (8.1), then the system of uniformly distributed

edge forces shown in Figure 6.30 would be necessary. As a related problem,
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FIGURE 8.5. Principal material system strain distribution through the thickness of

Œ0=90�S laminate subjected to Nx D 50 400 N/m.

consider a 0.250 m by 0.125 m laminate subjected to a loading in the x

direction of 12 800 N. If the load is uniformly distributed along the ends, then

by equilibrium arguments it can be shown that everywhere on the reference

surface of the laminate the stress resultants are

Nx D 0:1024 MN/m

and (8.11)

Ny D Nxy D Mx D My D Mxy D 0

Using the values of the aij for this Œ˙30=0�S laminate from equation (7.92a),

we find that the deformations at every point on the reference surface are given

by
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"o

x
D a11Nx D 1275 � 10�6

"o

y
D a12Nx D �1486 � 10�6

o

xy
D a16Nx D 0

(8.12)

Figure 8.6 illustrates the distribution of these strains and the strains for CLT

Example 3. Note that for this situation the laminate elongates about 30 percent

more in the x direction than in CLT Example 3 even though the values of

Nx are identical for the two problems. What is very important to note is

that the contraction in the y direction is large. In fact, it is larger than the

elongation in the x direction. This implies that the effective Poisson’s ratio for

the laminate N�xy , from equation (7.184), is greater than unity! Indeed, for this

laminate N�xy D 1:166. The seemingly subtle difference between specifying
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FIGURE 8.6. Strain distribution through the thickness of Œ˙30=0�S laminate sub-

jected to Nx D 0:1024 MN/m.
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the loading in the x direction that resulted from the specified deformation

in the x direction, and specifying the deformation in the x direction leads

to distinctly different responses, particularly in the y direction. Using the

stress-strain relations, we find that the stresses are, for the 30ı layers:

�x D 73:6 MPa

�y D 7:11

�xy D 36:6

.8:13a/

and for the �30ı layers:

�x D 73:6 MPa

�y D 7:11

�xy D �36:6

.8:13b/

while for the 0ı layers,

�x D 194:1 MPa

�y D �14:23

�xy D 0

.8:13c/

These are different from the stresses for CLT Example 3, equations (6.98),

(6.100), and (6.103), particularly the �y stresses. In the C30ı and �30ı layers

the �y stresses are considerably less for the current example, while for the

0ı layers the sign of �y is different, as well as the magnitude. Figure 8.7

illustrates the through-thickness distributions of these stresses for the two

examples. It is clear that the constraint "o

y
D 0 for CLT Example 3 leads to

larger stresses in the y direction. When unconstrained, the stresses are lower

and, of course, Ny D 0. The principal material system stresses are as follows:

For the 30ı layers:

�1 D 88:7 MPa

�2 D �7:92

�12 D �10:52

.8:14a/

For the �30ı layers:

�1 D 88:7 MPa

�2 D �7:92

�12 D 10:52

.8:14b/

For the 0ı layers:

�1 D 194:1 MPa

�2 D �14:23

�12 D 0

.8:14c/
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FIGURE 8.7. Stress distribution through the thickness of Œ˙30=0�S laminate sub-

jected to Nx D 0:1024 MN/m.

The principal material system strains are,

For the C30ı layers:

"1 D 585 � 10
�6

"2 D �796 � 10
�6

12 D �2390 � 10�6

.8:15a/

For the �30
ı layers:

"1 D 585 � 10�6

"2 D �796 � 10�6

12 D 2390 � 10�6

.8:15b/
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FIGURE 8.8. Principal material system stress distribution through the thickness of

Œ˙30=0�S laminate subjected to Nx D 0:1024 MN/m.

For the 0ı layers:

"1 D 1275 � 10�6

"2 D �1486 � 10�6

12 D 0

.8:15c/

Figures 8.8 and 8.9 illustrate the through-thickness distributions for the

principal material system stresses and strains for both examples.

We must note a difference in this example. When the loading is specified,

the stresses in the 0ı layers are higher than if the deformations are specified,

that is, 191.4 MPa versus 155.7 MPa. With the load specified, the distribution
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FIGURE 8.9. Principal material system strain distribution through the thickness of

Œ˙30=0�S laminate subjected to Nx D 0:1024 MN/m.

of the stresses in the layers is governed solely by the directions of the fibers in

the layers; the layers with fibers aligned with the load bear most of the load.

If the laminate is artificially constrained (in this case in the y direction), then

Poisson effects and other aspects of the constraints govern the distribution of

the stresses in the individual layers. In summary, we can say that the response

of a Œ˙30=0�S laminate subjected to the condition

Nx D 0:1024 MN/m (8.16)

is quite different from the response of that laminate to the condition

"
o

x
D 1000 � 10

�6 (8.17)

The conclusions for this laminate are more the rule than the conclusions for

the Œ0=90�S laminate.
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8.3 CLT Example 8: Œ˙30=0�S Laminate Subjected

to Known Mx — Counterpart to CLT Example 4

In CLT Example 4 we specified that a point on the reference surface of a

Œ˙30=0�S laminate was subjected to the deformations

"o

x
.x; y/ D 0 �o

x
.x; y/ D 2:22 m�1

"o

y
.x; y/ D 0 �o

y
.x; y/ D 0

o

xy
.x; y/ D 0 �o

xy
.x; y/ D 0

(8.18)

which led to the conclusion that the stress resultants

Mx D 12:84 N�m/m My D 3:92 N�m/m Mxy D 2:80 N�m/m

and (8.19)

Nx D Ny D Nxy D 0

were required at this point. In Chapter 7 we discussed the fact that D16

is responsible for the requirement of having a twisting moment present to

produce just a simple bending curvature. Of course, My is necessary to resist

anticlastic curvature effects. Figure 6.35 provided an interpretation of the

edge moments required for a rectangular 0.250 m by 0.125 m laminate to

have these deformations everywhere on its reference surface. In Chapter 7

we introduced the counter to this problem in Figure 7.5, namely, subjecting

the Œ˙30=0�S laminate to a specified bending moment in the x direction

rather than a specified curvature. From that discussion it was clear that the

application of a simple bending moment results in twisting curvature, as

well as bending and anticlastic curvatures. The twisting curvature was again

attributed to the D16 and D26 components of the D matrix. Let us revisit this

counter problem and study the response of a 0.250 m by 0.125 m laminate

with a bending moment of 1:605 N�m applied uniformly along the 0.125-m

edge. By equilibrium arguments it can be shown that at every point on the

reference surface of the laminate

Mx D 12:84 N�m/m

and (8.20)

My D Mxy D Nx D Ny D Nxy D 0

This moment resultant is the value of the moment resultant required to

produce �o

x
D 2:22 m�1 in CLT Example 4. Missing is the value of bending

moment required to resist the anticlastic curvature, My , and the twisting

moment, Mxy I these are all specified in equation (8.19). As before, the dij can

be used to compute the curvatures produced by the application of the simple
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loading of equation (8.20). These curvatures are, from equation (7.92c),

�o

x
D d11Mx D 4:24 m�1

�o

y
D d12Mx D �5:40 m�1

�o

xy
D d16Mx D �1:669 m�1

(8.21)

Note that the curvature in the x direction is larger than the value of equation

(8.18). More importantly, we observe that the anticlastic curvature is larger

than the bending curvature, and the twisting curvature is substantial. The

large anticlastic curvature is in keeping with the large Poisson contractions

discussed in the previous section when this laminate was subjected to a load

Nx. The bending curvature in the x direction is larger because the presence

of My in CLT Example 4, acting through Poisson effects in the form of

bending coefficient d12; reduces curvature in the x direction. The presence of

a twisting moment in CLT Example 4 also contributes to this effect through

bending coefficient d26: Of course, for the present case,

"
o

x
D "

o

y
D 

o

xy
D 0 (8.22)

Figure 7.5 shows the deformed shape of this laminate. Because the curvature

is the same at every point of the reference surface, equation (7.132) gives the

deformed shape of the reference surface,

w
o
.x; y/ D �

1

2

�

4:24x
2

� 5:40y
2

� 1:669xy
�

(8.23)

As a result of equation (8.21), and using equation (6.13), we find that the

strains through the thickness of the laminate are given by

"x D 4:24z

"y D �5:40z

xy D �1:669z

(8.24)

These are illustrated in Figure 8.10, where they are compared with the strains

from CLT Example 4. The stresses are determined by using the stress-strain

relations; specifically:

For the C30ı layers:

8

ˆ

ˆ

<

ˆ

ˆ

:

�x

�y

�xy
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>

>

=

>

>

;

D
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(8.25a)
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FIGURE 8.10. Strain distribution through the thickness of Œ˙30=0�S laminate

subjected to Mx D 12:84 N�m/m.
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For the 0ı layers:
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Expanding these and using numerical values for the NQij leads to the

following:

For the C30ı layers:

�x D 152 800z MPa

�y D �11 870z

�xy D 6180z

.8:26a/

For the �30ı layers:

�x D 309 000z MPa

�y D 39 800z

�xy D �166 800z

.8:26b/

For the 0ı layers:

�x D 643 000z MPa

�y D �52 900z

�xy D 7340z

.8:26c/

These stress distributions should be compared with the stress distribu-

tions for CLT Example 4 given by equation (6.118); Figure 8.11 shows the

comparison. While the distributions of �x are similar for the two cases, the

distributions of �y are significantly different. What is most striking is that in

CLT Example 4 the maximum values of �x; �y ; and �xy occur in the outer

C30ı layer, whereas with the current example the maximum values of these

stresses occur in the �30ı layer, one layer in from the outer layer.

The stresses in the principal material system are determined by the usual

transformations, accordingly:

For the C30ı layers:

�1 D 165 200z MPa

�2 D �24 200z

�12 D �40 400z

.8:27a/

For the �30ı layers:

�1 D 386 000z MPa

�2 D �37 500z

�12 D 33 000z

.8:27b/

For the 0ı layers:

�1 D 643 000z MPa

�2 D �52 900z

�12 D �7340z

.8:27c/
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FIGURE 8.11. Stress distribution through the thickness of Œ˙30=0�S laminate

subjected to Mx D 12:84 N�m/m.

As illustrated in Figure 8.12, the principal material system stresses in the

outer C30ı layers also tend to be lower than the stresses in the inner �30ı

layers.

Finally, the strains in the principal material system are again given by the

appropriate transformations.

For the C30ı layers:

"1 D 1:105z

"2 D �2:27z

12 D �9:18z

.8:28a/
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FIGURE 8.12. Principal material system stress distribution through the thickness

for Œ˙30=0�S laminate subjected to Mx D 12:84 N�m/m.

For the �30ı layers:

"1 D 2:55z

"2 D �3:71z

12 D 7:51z

.8:28b/

For the 0ı layers:

"1 D 4:24z

"2 D �5:40z

12 D �1:669z

.8:28c/

Figure 8.13 illustrates these principal material system strains, and the

higher strain levels in the �30ı layers, as opposed to the outer C30ı layers,

are evident.
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FIGURE 8.13. Principal material system strain distribution through the thickness

for Œ˙30=0�S laminate subjected to Mx D 12:84 N�m/m.

8.4 Summary

These last three chapters have focused on classical lamination theory, a very

broad topic with many ramifications. In these chapters we presented the basic

assumptions, the implications of these assumptions, and numerical examples.

As a result, it is possible to analyze the stress state in a laminate, given as a

starting point either the reference surface deformations or the stress resultants.

Next we need to introduce some of the basic concepts regarding failure of

fiber-reinforced composite materials. After all, we compute stresses so we

know something of the load-carrying capacity of a structure. The next two

chapters are devoted to failure theories for composite laminates.



CHAPTER 9

Failure Theories for Fiber-Reinforced
Materials: Maximum Stress Criterion

Failure of a structural component can be defined as the inability of the

component to carry load. Though excessive deformation with the material

still intact, as is the case for buckling, can certainly be considered failure in

many situations, here failure will be considered to be the loss of integrity

of the material itself. In the most basic sense, molecular bonds have been

severed. If a fail-safe philosophy has been employed in the design of the

structural component, then failure is not necessarily a catastrophic event.

Rather, failure causes a load redistribution within the structure, a permanent

deformation, or some other evidence that load levels have become excessive.

The structure is still functional to a limited degree, but steps must be taken

if continued use is to be considered.

Failure of fiber-reinforced materials is a complex and important topic, and

studies of failure are an ongoing activity. For polymer-matrix composites,

because the fiber direction is so strong relative to the other directions, it

is clear that failure must be a function of the direction of the applied stress

relative to the direction of the fibers. Causing failure of an element of material

in the fiber direction requires significantly more stress than causing failure

perpendicular to the fibers. Tensile failure in the fiber direction is controlled

by fiber strength, while tensile failure perpendicular to the fibers is controlled

by the strength of the bond between the fiber and matrix, and by the strength

of the matrix itself. But what about the case of a tensile stress oriented at 30ı

relative to the fibers? We know that for this situation the stress component in

the fiber direction, �1, the stress component perpendicular to the fibers, �2,

and the shear stress, �12, can be determined using the stress transformation

relations. Which stress component controls failure in this case? The stress

component in the fiber direction? The stress component perpendicular to the

fibers? The shear stress? Or is it a combination of all three? Because we are

now in a position to calculate the stresses in the class of composite structures

387
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that satisfy the assumptions of classical lamination theory, it is appropriate

to turn to the subject of failure and ask these questions.

There are many issues and controversies surrounding the subject of failure

of composite materials. The matrix material of polymer matrix composites

may be ductile and exhibit substantial yielding when subjected to high stress

levels, and this yielding weakens support of the fiber, or degrades the mecha-

nisms that transfer load into the fibers. On the other hand, the matrix material

may be brittle and exhibit significant amounts of cracking around and between

fibers as the stress level increases. This cracking will strongly influence the

manner and efficiency with which load is transferred into the fibers, and

strongly influence the performance of the material. In contrast, failure may

be due to the fibers breaking or the fibers debonding and separating from the

matrix. Subjected to a compressive load in the fiber direction, the fibers may

buckle and deform excessively.

Clearly, we must consider many mechanisms when studying failure. In

reality, failure is often a combination of several of these mechanisms, or

modes. Failure can simply be the final event in a complex and difficult-to-

understand process of damage initiation and accumulation within the material.

A structure consists of multiple layers of fiber-reinforced materials, and even

multiple materials, and there are multiple fiber directions and a range of load

levels and load types. Consequently it is easy to understand why failure of

fiber-reinforced composite structures is a difficult topic. Even with a single

layer of material, the issues can be quite complicated. As a result, there

have been many studies of failure. Each serious user of composite materials

tends to develop their own philosophy about failure, based on the application,

the material system, and their experience with testing and experimentation.

Each large-scale commercial user of composite materials spends much time

and capital gathering data to develop criteria and establish design stress

levels.

While it is important to understand the mechanisms of failure, for many

applications it is impossible to detail each step of the failure process. In

the interest of utility, a failure criterion should be reducible to a level that

can provide a means of judging whether or not a structure is safe from

failure by knowing that a particular stress or combinations of stresses, or

combination of strains, is less than some predetermined critical value. The

failure criterion should be accurate without being overly conservative, it

should be understandable by those using it, and it should be substantiated

by experiment. A number of criteria have been proposed; some are rather

straightforward and some are quite involved. The maximum stress criterion,

maximum strain criterion, and failure criteria that account for interaction

among the stress components are commonly used. This is because of the

physical bases that underlie these criteria, particularly the maximum stress

criterion and the maximum strain criterion. In addition, many of the criteria

are simple variations of these, and the variations are based on experimental



Failure Theories: Maximum Stress Criterion 389

observation or on slightly different physical arguments put forth by the

individuals identified with the criterion.

A legitimate question to ask at this point is, why are there a number of

criteria? Isn’t one sufficient? The answer is that no one criterion can accu-

rately predict failure for all loading conditions and all composite materials.

This is true for isotropic materials—some fail by yielding, others fail by

brittle fracture. If we view failure criteria as indicators of failure rather than

as predictors in an absolute sense, then having a number of criteria available,

none of which covers all situations, becomes an acceptable situation.

In this book we will examine the maximum stress and the Tsai-Wu criteria.

These two are chosen because they are among those commonly used for

polymer-matrix composites. They represent a divergence of philosophies as

to whether or not interaction between stress components is important in

predicting failure. Also, by examining any particular criterion, we can present

the issues that must be addressed when discussing failure of fiber-reinforced

material. By incorporating a particular criterion into a stress analysis of a

laminate, failure predictions are possible. The fact that several criteria are

commonly used introduces the possibility of determining if using different

criteria results in contradictory or similar predictions as to the stress levels

permitted and the failure modes expected. Also, a detailed discussion of one

or two basic criteria will allow you to form your own opinions regarding

failure criteria.

As with the study of the stress-strain behavior of fiber-reinforced material,

we shall approach the study of failure of a fiber-reinforced material by

examining what happens to a small volume element of material when it is

subjected to various components of stress. This is in keeping with the fact that

stress is defined at a point, so logically we must assume that failure begins

when certain conditions prevail at a point. We will continue to consider the

fibers and matrix smeared into an equivalent homogeneous material when we

are computing stresses, but to gain insight into the mechanisms that cause

failure, it is useful to keep the separate constituents in mind. To that end,

consider Figure 9.1; in the fiber direction, as a tensile load is applied, failure

is due to fiber tensile fracture. One fiber breaks and the load is transferred

through the matrix to the neighboring fibers. These fibers are overloaded,

and with the small increase in load, they fail. As the load is increased,

more fibers fail and more load is transferred to the unfailed fibers, which

take a disproportionate share of the load. The surrounding matrix material

certainly cannot sustain the load and so fibers begin to fail in succession;

the failure propagates rapidly with increasing load. As with many fracture

processes, the tensile strength of graphite fiber, for example, varies from

fiber to fiber; and along the length of a fiber. The tensile strength of a fiber

is a probabilistic quantity, and the mean value and its variance are important

statistics. It is possible to study the failure of fiber-reinforced composites

from this viewpoint, or to simply use a value of failure stress in the fiber
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Fiber-fracture

 1σ 1σ

FIGURE 9.1. Failure in tension in the 1 direction.

direction that includes a high percentage of the fiber failure strengths. That

will be the approach here. The tensile strength in the fiber direction will be

denoted as �T
1 .

With a compressive stress in the fiber direction, contemporary polymer-

matrix composites fail by fiber kinking, or microbuckling, as in Figure 9.2.

Kinking occurs among localized bands, or groups, of fibers, and the fibers in

the band fracture at both ends of the kink; the fracture inclination angle

is denoted as ˇ, which varies from 10 to 30ı in most composites. The

width of the kink band, W , varies from 10 to 15 fiber diameters. The

primary mechanism responsible for this behavior is yielding, or softening,

of the matrix as the stresses within it increase to suppress fiber buckling.

As might be suspected, any initial fiber waviness or misalignment, denoted

as N� in Figure 9.2, greatly enhances kinking and reduces fiber-direction

compressive strength, �C
1 . In well-made composites, N� is typically between

1 and 4ı (0.017–0.070 rads). The study of kinking is an ongoing topic of

research, where such issues as the magnitude of the fiber modulus relative

to the magnitude of the matrix modulus, bending effects in the fiber, the

variance of the misalignment angle, and the influence of other stresses (say, a

compressive �2), are being studied. It is generally accepted, however, that fiber

misalignment and yielding of the matrix influence composite compressive

strength in the fiber direction, �C
1 , by way of the relation

�C
1 D

G12

1 C
N�

Y
12

(9.1)

where Y
12 is the shear strain at which the composite shear stress–shear strain

relation loses validity due to softening, or yielding, effects in the matrix.

Values of N�=Y
12 range from 2 to 6, depending on the material.
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FIGURE 9.2. Failure in compression in the 1 direction.

Often polymeric fibers in a polymeric matrix fail in compression due to

fiber crushing rather than fiber kinking. The compressive stresses in the fiber

cause the fiber to fail before the matrix softens enough to allow kinking.

As illustrated in Figure 9.3, perpendicular to the fiber, say, in the 2 direc-

tion, failure could be due to a variety of mechanisms, depending on the exact

matrix material and the exact fiber. Generally a tensile failure perpendicular to

the fiber is due to a combination of three possible micromechanical failures:

tensile failure of the matrix material; tensile failure of the fiber across its

diameter, and failure of the interface between the fiber and matrix. The latter
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Fiber failure

Interface failure

Matrix failure

 2σ 2σ

FIGURE 9.3. Failure in tension in the 2 direction.

failure is more serious and indicates that the fiber and matrix are not well

bonded. However, due to the chemistry of bonding, it is not always possible

to have complete control of this bond.

Failure in compression perpendicular to the fibers, as in Figure 9.4, is

generally due to material crushing, the fibers and matrix crushing and inter-

acting. The compressive failure stress perpendicular to the fibers is higher

than the tensile failure stress in that direction. Herein the tensile failure stress

perpendicular to the fibers will be denoted as �T
2 , while the compressive

failure stress will be denoted as �C
2 . Failure in the 3 direction is similar

to failure in the 2 direction and the failure stresses will be denoted as �T
3

and �C
3 .

The shear strength in the 2-3 plane, denoted as �F
23, is limited by the same

mechanisms that govern tensile strengths perpendicular to the fibers, namely,

matrix tensile failure, failure across the diameter of the fiber, and interfacial

strength. Because a shear stress produces a tensile stress on a plane oriented

at 45ı, these tensile micromechanisms again limit the performance of the

material. Figure 9.5 illustrates these mechanisms as viewed in this shear

Material crushing

 2σ 2σ

FIGURE 9.4. Failure in compression in the 2 direction.
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Tension

Compression

23τ

FIGURE 9.5. Failure in shear in the 2-3 plane.

mode. Because of these mechanisms that control shear strength, the shear

strength in the 2-3 plane is independent of the sign of the shear stress.

The shear strength in the 1-2 plane is limited by the shear strength of

the matrix, the shear strength of the fiber, and the interfacial shear strength

between the fiber and matrix. Figure 9.6 depicts failure in shear in the 1-2

plane due to a shear separation of the fiber from the matrix along the length

of the interface. Failure in the 1-3 plane follows similar reasoning, and these

shear strengths are denoted as �F
12 and �F

13. As expected, the failure strength

in this plane is independent of the sign of the shear stress.

In summary, then, for a fiber-reinforced composite material there are nine

fundamental failure stresses to be concerned with, six normal stresses, three

Shear failure
at interface

12τ

FIGURE 9.6. Failure in shear in the 1-2 plane.
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tensile and three compression, and three shear stresses. Each failure stress

represents distinct microfailure mechanisms, and each results in a failure that

is somewhat unique to that loading situation. Measuring these failure stresses

is difficult. Many issues are involved with the testing of fiber-reinforced

composites to determine failure stresses; most of them focus on the fixturing

and specimen shape and dimensions. There is also the issue of interaction

among stress components. We have indicated that compression failure in the

fiber direction is due to kinking and microbuckling, and it stands to reason

that a compressive stress perpendicular to the fibers—that is, a �2 or �3—

might help support the fibers and prevent, or at least delay, microbuckling and

increase the compressive load capacity in the fiber direction. However, testing

to study interaction between stress components is difficult. To determine if

a compressive stress perpendicular to the fibers increases the compressive

strength in the fiber direction, a fixture to vary the level of compressive �2

and then the level of compressive �1 would have to be constructed and a

range of load levels used. The construction of such a biaxial compressive test

fixture is difficult. And what of triaxial compression? If a compressive �2

might increase the compressive capacity in the fiber direction, what about a

combination of compressive �3 and a compressive �2? And what about the

possible interaction of tension perpendicular to the fibers and shear? From

Figures 9.3 and 9.5 we saw that the same mechanisms that are responsible

for limiting the value of �23 limit the value of a tensile �2, so it is conceivable

that these two stress components interact to influence failure. The possibilities

are enormous. Unfortunately, it is quite easy to generate failure criteria that

are too complex to be verified experimentally. An important requirement

of any failure criterion is to be able to conduct failure tests on simple

specimens subjected to fundamental stress states, and then be able to predict

the load levels required to produce failure in more complicated structures

with more complex stress states. The two criteria considered here rely on the

fundamental failure strengths discussed above. The maximum stress criterion

is a noninteractive failure theory, while the Tsai-Wu criterion is an interactive

theory, and the influence of stress component interaction will be observed.

Because the majority of what we have discussed so far has been devoted

to situations where the plane-stress assumption has been used, we shall limit

our discussion of failure to those cases also. Hence we shall be interested in

the following five failure stresses:

�C
1 W compression failure stress in the 1 direction

�T
1 W tensile failure stress in the 1 direction

�C
2 W compressive failure stresses in the 2 direction

�T
2 W tensile failure stress in the 2 direction

�F
12 W shear failure stress in the 1-2 plane

(9.2)
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TABLE 9.1. Failure stresses (MPa) for graphite and

glass composites

Graphite-reinforced

−1250

1500

−200

50

100

Glass-reinforced

−600

1000

−120

30

70

σ

σ

σ

σ

τ

1
C

1
T

2
C

12
F

T
2

Table 9.1 gives typical values of these stresses for a graphite-fiber composite

and a glass-fiber composite. It stands to reason that the failure levels associ-

ated with �3 and �13 can be equated to the levels for �2 and �12, respectively,

and that the failure stress �F
23 is similar to the other shear failure stresses.

We will devote the remainder of this chapter to the maximum stress

criterion, while the next chapter addresses the Tsai-Wu criterion.

9.1 Maximum Stress Failure Criterion

The maximum stress failure criterion, as it applies to the plane-stress case,

can be stated as:

A fiber-reinforced composite material in a general state of stress will fail

when:

EITHER,

The maximum stress in the fiber direction equals the maximum stress in a

uniaxial specimen of the same material loaded in the fiber direction when

it fails;

OR,

The maximum stress perpendicular to the fiber direction equals the maximum

stress in a uniaxial specimen of the same material loaded perpendicular to

the fiber direction when it fails;

OR,

The maximum shear stress in the 1-2 plane equals the maximum shear stress

in a specimen of the same material loaded in shear in the 1-2 plane when

it fails.

Note the either-or nature of the criterion. Failure can occur for more than

one reason. In addition, the first two portions of the criterion each involve
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tension and compression. Symbolically, the maximum stress criterion states

that a fiber-reinforced material will not fail if at every point

�C
1 < �1 < �T

1

�C
2 < �2 < �T

2

j�12j < �F
12

(9.3)

While satisfaction of the inequalities of equation (9.3) guarantees, according

to the criterion, no failure, it is the equalities associated with equation (9.3)

that are important for determining failure loads. These equalities are

�1 D �C
1

�1 D �T
1

�2 D �C
2

�2 D �T
2

�12 D ��F
12

�12 D �F
12

(9.4)

Equation (9.4) defines the boundaries of the no-failure region in principal

material coordinate system stress space �1-�2-�12. In this space each of the

above equations defines a plane, and the totality of the planes defines a

rectangular volume. Because of the differences in the tensile and compression

failure loads, the geometric center of the volume does not coincide with the

origin of the stress space. Figure 9.7 illustrates this rectangular volume, and

it is important to note the proportions in the figure: the rectangular region

is much longer in the 1 direction than in the other two directions. In fact,

to scale, the rectangular box is much longer and narrower than is depicted

σ1 =

σ2

σ1

σ

σ2 = σ

σ2 = 2 σ C

σ1 = σ

τ12 = –τ

τ12 = 

τ12

τ

1
C

2 
T

12
F

1
T

12
F

FIGURE 9.7. Maximum stress criterion in principal material system stress space.
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in Figure 9.7. Even though we are dealing with a plane-stress problem, we

must resort to a three-dimensional figure to describe the problem. Obviously,

illustrating the case for a problem that involves all six components of stress

becomes a challenge.

To illustrate the application of the maximum stress criterion, and to estab-

lish a procedure for using it in such a way that all possible failures in all layers

are accounted for, three example failure problems will be studied in detail.

These examples will be based on a fiber-reinforced tube, or cylinder, loaded

in tension and in torsion. In the first example, the cylinder will be loaded

with an axial load, and the question will be to determine the level of load

required to produce failure. The second example is a combined-load problem:

A fixed amount of axial load is applied, and the question is to determine the

level of torsional load that can be applied before failure occurs. The third

example is also a combined-load problem: The question is to determine what

combined levels of torsional and axial load can be applied before failure

occurs. This third example is a realistic design case; we determine the torsion-

axial load envelope. This third example is quite involved but illustrates the

complexity of a failure analysis for a fiber-reinforced composite material.

The study of a tube is a deviation from our previous examples with the

Œ0=90�S and Œ˙30=0�S laminates discussed in Chapters 6, 7, and 8. However,

the tube provides some variety to the examples and presents a problem of

practical importance. We shall, however, return to our examples with the

flat Œ0=90�S and Œ˙30=0�S laminates and study failure in the context of

those cases.

9.2 Failure Example 1: Tube with Axial Load —

Maximum Stress Criterion

Consider a tube with a mean radius of 25 mm made of graphite-reinforced

composite with a 10-layer wall with a stacking sequence of Œ˙20=03�S . The

tube is designed to resist an axial load but has the low-angle off-axis layers

(the ˙20ı layers) to provide some circumferential and torsional stiffness,

and to hold the load-carrying layers together. If we use the maximum stress

failure criterion, what is the maximum allowable axial load? What layer or

layers control failure? What is the mode of failure? This tube is illustrated

in Figure 9.8, and the applied axial load is being denoted as P . The 25-mm

mean radius is illustrated, as is the 1.50-mm wall thickness that results from

using 10 layers, each of 0.150 mm thickness. We will assume that conditions

within the tube wall do not vary with distance along the tube. The procedure

recommended throughout our analysis of failure will be to first determine

the principal material systems stresses in each layer that are caused by a

unit applied load, in this first example a load of P D 1 N. It will then be

assumed that the unit applied load is multiplied by a scale factor. Because
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FIGURE 9.8. Tube with axial load P , Failure Example 1.

we are dealing with a linear problem, the three components of stress in each

layer will be multiplied by this same scale factor. These scaled stresses will

then be used in the first equation of equation (9.4) to determine the value of

the scale factor that causes failure in compression in the fiber direction in the

first layer in the tube. The second equation of equation (9.4) will then be used

to determine the value of the scale factor that causes tensile failure in the

fiber direction in the first layer. Then the two equations representing failure

perpendicular to the fibers will be checked, then the two shear equations.

There will be six values of the scale factor for the first layer in the tube. We

then repeat the analysis for the second layer, and six more scale factors result.

For the third and subsequent layers, we will compute more scale factors. With

the six values of the scale factors for all the layers in hand, the numerical

value of the load to cause failure in the laminate, in this case the tube wall, is

given by the value of the smallest scale factor. By keeping track of the scale

factors, it is possible to determine which layer or layers are responsible for

failure, and what limits the load capacity (fiber tension, tension perpendicular

to the fibers, etc.). This approach, though tedious, can be programmed into

a computer-based laminate analysis and the scale factors computed, sorted,

listed in ascending order, and correlated to the specific layers and specific

failure modes.

Though a tube should be analyzed in a polar coordinate system, let us

use our rectangular notation and assign x to the axial direction, y to the

circumferential direction, and z to the outward radial direction. To study

the example problem, let us not be overly concerned with the method of

transmitting the load P into the tube. We shall assume that P is distributed

uniformly around the circumference of the ends of the tube, and thus, in

keeping with the definition of Nx as being a load per unit length of laminate,

Nx is the load P divided by the circumference of the end; that is:

Nx D
P

2�R
(9.5)
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This is the only load acting on the laminate constituting the tube wall and

thus

Nx D
P

2�R

Ny D 0

Nxy D 0

Mx D 0

My D 0

Mxy D 0

(9.6)

With this approach it is being assumed that the tube acts like a rolled-up

flat laminate, and every point on the reference surface, in this case the mean

radius of the tube, is subjected to the force resultants of equation (9.6). This

approach leads to quite accurate answers as long as the ratio of the radius

to wall thickness is greater than 10, and the details of the load introduction

at the ends of the tube are not important. If we assume that P D 1 N, then,

with R D 25 mm, equation (9.5) leads to

Nx D 6:37 N/m (9.7)

Because the laminate is symmetric and balanced, with only force resultants

applied, to compute the stresses in the various layers due to this the unit value

of P we need only compute the elements of the A matrix. We can invert the A

matrix and compute the reference surface strains, and knowing the reference

surface strains, we can compute the strains throughout the wall thickness, and

then the stresses. In particular, we can compute the stresses in the principal

material system for each layer due to this load of P D 1 N. Details of those

calculations will not be presented here because the methodology follows that

of the examples in Chapters 6, 7, and 8, in particular CLT Examples 6 and 7.

In addition, if Computer Exercise 1 in the Exercises for Section 7.2 has been

satisfactorily completed, then computation of the stresses on a layer-by-layer

basis is a matter of using that program.

Table 9.2 presents the stresses in the principal material system for a

graphite-fiber reinforced Œ˙20=03�S laminate using the material properties of

TABLE 9.2. Principal material system

stresses (Pa) in axially loaded tube for

P = 1 N

σLayer 1 σ2 τ12

+20°

−20°

0°

+3830

+3830

+4770





−112.3

−112.3

−168.6

−148.7

+148.7

   0
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Table 2.1 and subjected to the stress resultant of equation (9.7). By the nature

of the problem the stresses within each layer are independent of position

within that layer.

If the axial load applied to the tube is p, then the stresses in each layer

in the principal material system are as given in Table 9.3; these stresses are

simply the stresses in Table 9.2 multiplied by p. The values of stresses in

terms of p can be used in the maximum stress criterion to determine the

value of p that will cause failure. In particular, in the C20ı layers, referring

to the first equation of equation (9.3), we see that failure will not occur in

the fiber direction if

�C
1 < �1 < �T

1 (9.8)

or, substituting numerical values, if

�1250 � 106 < 3830p < 1500 � 106 (9.9)

Using these results as in the first equation of equation (9.4), compression

failure in the fiber direction is given by the condition

�1 D �C
1 (9.10)

or

3830p D �1250 � 106 (9.11)

This results in

p D �327 000 (9.12)

For failure of the fibers in tension

�1 D �T
1 (9.13)

or

3830p D 1500 � 106 (9.14)

This leads to

p D 392 000 (9.15)

Thus the C20ı layers fail in compression in the fiber direction when the

applied load is P D �0:327 MN, and the layers fail in tension in the fiber

direction when the applied load is P D C0:392 MN.

TABLE 9.3. Principal material system stresses

(Pa) in axially loaded tube for P D p (N)

Layer

+20°

–20°

0°

+3830p

+3830p

+4770p





–112.3p

–112.3p

–168.6p



–148.7p

+148.7p

      0

σ1 σ2 τ12
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We now examine failure in the C20ı layers perpendicular to the fibers,

that is, due to �2. By the second equation of equation (9.3) the layers are

safe from failure due to �2 if

�C
2 < �2 < �T

2 (9.16)

Numerically, the above becomes

�200 � 106 < �112:3p < 50 � 106 (9.17)

Using the equalities from this equation to determine the values of p that

cause failure, we find that failure of the layers due to compression in the 2

direction is given by the condition

�2 D �C
2 (9.18)

Numerically

�112:3p D �200 � 106 (9.19)

or

p D 1 780 000 (9.20)

Failure due to a tensile failure of the material in the 2 direction is given by

�2 D �T
2 (9.21)

or

�122:3p D 50 � 106 (9.22)

which leads to

p D �445 000 (9.23)

From these results, we can conclude that a tensile load of P D C1:780 MN

on the tube causes the C20ı layers to fail in compression in the 2 direction,

while a compressive load of P D �0:445 MN on the tube causes the C20ı

layers to fail in tension in the 2 direction. It is important to keep track of the

signs so that proper interpretation of the results is possible.

A shear failure in the C20ı layers is given by the condition from equation

(9.3) of

��F
12 < �12 < �F

12 (9.24)

or, with numerical values,

�100 � 106 < �148:7p < 100 � 106 (9.25)

From this it can be concluded that

p D 673 000 (9.26)

will cause the C20ı layers to fail due to ��12 and

p D �673 000 (9.27)

will cause the C20ı layers to fail due to C�12.
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TABLE 9.4. Loads P (MN) to cause failure in C20ı layers:

Maximum stress criterion

σ σ

Failure mode

σσ − +

−0.327 +0.392 +1.780



−0.445 +0.673 −0.673

1
C

1
T

2
C

2
T τ

12
F τ

12
F

Table 9.4 summarizes the results from the analysis of the C20ı layers.

From the table we can deduce that failure in the C20ı layers can be caused

by a compressive load P of �0:327 MN due to a compressive stress in the

fiber direction, or by a tensile load P of C0:392 MN, due to a tensile stress

in the fiber direction.

Having determined the failure characteristics of the C20ı layers, we have

completed one-third of the failure analysis. Failure analysis of the �20ı and

0ı layers follows similar steps. For the �20ı layers the steps are as follows.

Compression failure in the 1 direction:

3830p D �1250 � 106

p D �327 000
(9.28)

Tension failure in the 1 direction:

3830p D 1500 � 106

p D 392 000
(9.29)

Compression failure in the 2 direction:

�112:3p D �200 � 106

p D 1 780 000
(9.30)

Tension failure in the 2 direction:

�122:3p D 50 � 106

p D �445 000
(9.31)

Shear failure due to ��12:

148:7p D �100 � 106

p D �673 000
(9.32)

Shear failure due to C�12:

148:7p D 100 � 106

p D 673 000
(9.33)

Table 9.5 summarizes the results for the �20ı layers, and by comparing

the results of this table with the results of Table 9.4, we see that the C20ı
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TABLE 9.5. Loads P (MN) to cause failure in �20ı layers:

Maximum stress criterion

Failure mode

−0.327 +0.392 +1.780



−0.445 −0.673 +0.673

σ σ σσ − +
1
C

1
T

2
C

2
T τ

12
F τ

12
F

and �20ı layers have very similar failure characteristics; the only difference

is in the sign of the load required to produce failure due to a C�12 or ��12

failure mode.

The failure analysis of the 0ı layers is as follows:

Compression failure in the 1 direction:

4770p D �1250 � 106

p D �262 000
(9.34)

Tension failure in the 1 direction:

4770p D 1500 � 106

p D 315 000
(9.35)

Compression failure in the 2 direction:

�168:6p D �200 � 106

p D 1 186 000
(9.36)

Tension failure in the 2 direction:

�168:6p D 50 � 106

p D �297 000
(9.37)

Shear failure due to ��12:

0p D �100 � 106

p D �1
(9.38)

Shear failure due to C�12:

0p D 100 � 106

p D C1
(9.39)

The proper interpretation of the infinite values of applied load required to

produce shear failure in the 0ı layers is that shear failure cannot be produced

in those layers with an applied axial load!

Table 9.6 summarizes the failure analysis for all the layers in the

Œ˙20=03�S tube, and examination of the table shows that a tensile load of

P D C0:315 MN causes the 0ı layers to fail due to tensile stresses in
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TABLE 9.6. Summary of loads P (MN) to cause failure in [˙20/03]S tube:

Maximum stress criterion

Failure mode

−0.327

−0.327

−0.262

+0.392

+0.392

+0.315

+1.780

+1.780

+1.186



−0.445

−0.445

−0.297

+0.673

−0.673

−∞

−0.673

+0.673

+∞

Layer

+20°

−20°

0°

σ σ σσ − +1
C

1
T

2
C

2
T τ

12
F τ

12
F

the 1 direction. Discounting failure of the tube due to overall buckling, a

compressive load of P D �0:262 MN causes the 0ı layers to fail due to

compressive stresses in the 1 direction, presumably due to fiber kinking and

microbuckling. These are taken as the failure loads, and the accompanying

failure modes, for the tube. As can be seen from this example, failure

analysis based on the maximum stress criterion is quite straightforward and, as

mentioned before, amenable to automation by computer programming when

stresses are being computed.

This first failure example brings to light an important point regarding failure

calculations. Considering the compressive failure to illustrate the point, and

considering the load to start from zero and be increased in magnitude, we

see from Table 9.6 that a load of P D �0:297 MN would cause the 0ı

layers to fail due to a tensile stress in the 2 direction, if the layers did not

fail due to compression in the 1 direction due to a load P D �0:262 MN.

We have mentioned the somewhat probabilistic nature of failure, so if only

some of the fibers fail in compression at P D �0:262 MN, then the tube

could sustain more compressive axial load than P D �0:262 MN. The value

of P D �0:297 MN is only 13 percent larger in magnitude than the value

P D �0:262 MN. Thus, it is possible, with only some of the fibers failing at

P D �0:262 N, that the load could be increased by 13 percent, at which point

failure in tension in the 2 direction would begin, say, due to matrix cracking

parallel to the fibers. At this load level, it is highly likely that the tube would

lose all load-carrying capacity. The value of P D �0:262 MN, then, could be

interpreted as the value of the load at which failure first occurs, so-called first-

ply failure. Using this value as the load beyond which the tube is incapable

of sustaining any more load, then, would be a conservative estimate of load

capacity.

Exercises for Section 9.2

1. Suppose the off-axis layers in the tube of Failure Example 1 were at ˙30
ı instead

of ˙20ı. (a) What would be the axial load capacity of the tube? (b) Would the

failure mode and the layers that control failure be the same as when the fibers

were at ˙20
ı? To answer this question you essentially must redo the example
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problem, starting with the stresses due to P D 1 N (i.e., beginning at Table 9.2

and proceeding).

2. A Œ˙45=02�S graphite-reinforced plate is subjected to a biaxial loading such that

the stress resultant in the y direction is opposite in sign to and one-half the

magnitude of the stress resultant in the x direction. Call the stress resultant in

the x direction N ; the loading is given by

Nx D N

Ny D �0:5N

Nxy D 0

(a) Using the maximum stress criterion, compute the value of N to cause failure.

(b) What layer or layers control failure? (c) What is the mode of failure? To

answer these questions, compute the failure loads for each of the layers by using

the procedure just discussed in connection with the axially loaded tube. Put the

results in table form, as in Table 9.6, and answer the questions.

9.3 Failure Example 2: Tube in Torsion —

Maximum Stress Criterion

This example of a failure analysis begins to address the question of a com-

bined loading by looking at the case of tension and torsion on this same

tube. Consider that the tube is designed to resist axial load but in a particular

application the axial load is 0.225 MN tension and there is an unwanted

amount of torsion, T . With the 0.225 MN tensile axial load acting on the

tube, what is the maximum amount of torsion the tube can withstand be-

fore it fails? What layer or layers control failure and what is the mode of

failure?

Figure 9.9 illustrates this case and, as with the previous example, we will

not be overly concerned with the way the loads are transmitted to the ends.

+20°

T

P

T

x

P = 225 kN

R = 25.0 mm
H = 0.150 mm

–20°

FIGURE 9.9. Tube with axial load P D 0:225 MN and torsion T , Failure Example 2.
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TABLE 9.7. Stresses (MPa) in axially

loaded Œ˙20=03�S tube for

P D 0:225 MN

+861

+861

+1072

−25.3

−25.3

−37.9

−33.5

+33.5

    0

Layer

+20°

−20°

0°

σ1 σ2 τ12

We will assume that both the axial and torsion loads are distributed uniformly

over the ends. In particular,

Nx D
P

2�R
Mx D 0

Ny D 0 My D 0

Nxy D
T

2�R2
Mxy D 0

(9.40)

We shall follow the same procedure as before in that we shall examine the

stresses in each layer due to a unit applied torsion and then use equation (9.4)

to determine the level of torsion required to produce failure in the various

modes in the various layers. The added feature in the problem is that the

0.225 MN axial tensile load is also acting on the tube.

Table 9.7 gives the stresses in each layer when 0.225 MN of axial load are

applied. These are the stresses of Table 9.2 multiplied by 225 000. Table 9.8

presents the stresses in each layer when a torsion T D 1 N�m is applied to

the tube (no axial load). These are calculated from the condition

Nxy D 255 N/m (9.41)

Note that in the 0ı layers the applied torsion does not produce any stress in

the fiber direction or perpendicular to the fiber direction. This is not the case

for the ˙20ı layers. When a torsional load of T D t is applied to the tube,

the stresses in each layer are t times the values in Table 9.8. When both a

0.225 MN tensile load and a torsional load of T D t are applied to the tube,

the stresses in each layer are those in Table 9.9. Superposition of the effects

TABLE 9.8. Stresses (MPa) in torsionally

loaded Œ˙20=03�S tube for T D 1 N�m

+0.804

−0.804

  0

−0.0481

+0.0481

  0

+0.0552

+0.0552

+0.0721

Layer

+20°

−20°

0°

σ1 σ2 τ12



Failure Example 2: Tube in Torsion— Maximum Stress 407

TABLE 9.9. Stresses (MPa) in Œ˙20=03�S tube loaded with tensile

load P D 0:225 MN and torsional load T D t (N�m)

+861 + 0.804t

+861 − 0.804t

+1072 + 0t

−25.3 − 0.0481t

−25.3 + 0.0481t

−39.7 + 0t

−33.5 + 0.0552t

+33.5 + 0.0552t

 0 + 0.0721t

Layer

+20°

–20°

0°

σ1 σ2 τ12

of the axial load alone and the torsional load alone can be used because this

problem is strictly a linear problem. The goal of this failure analysis is to

find the value or values of t that cause failure of the tube.

As in the previous example, the values of stress, in terms of t , from

Table 9.9 can be used in the maximum stress criterion to determine the value

of t that will cause failure. In the C20ı layers, referring to the first equation

of equation (9.3), we find that failure will not occur in the fiber direction if

�C
1 < �1 < �T

1 (9.42)

or, substituting from Table 9.9, if

�1250 < 861 C 0:0804t < 1500 (9.43)

Using this as in the first equation of equation (9.4), we find that compression

failure in the fiber direction is given by the condition

�1 D �C
1 (9.44)

or

861 C 0:804t D �1250 (9.45)

This results in

t D �2620 (9.46)

For failure of the fibers in tension

�1 D �T
1 (9.47)

or

861 C 0:804t D 1500 (9.48)

This leads to

t D 795 (9.49)

From these results we can say that the C20ı layers fail in compression in the

fiber direction when, in addition to the applied axial load of P D C0:225

MN, the applied torque is T D �2620 N�m, and the layers fail in tension in

the fiber direction when the additional applied torque is T D C795 N�m.
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Turning to failure in the C20ı layers due to stresses perpendicular to the

fibers, we find by the second equation of equation (9.3) that the layers are

safe from failure due to �2 if

�C
2 < �2 < �T

2 (9.50)

Numerically, the above becomes

�200 < �25:3 � 0:0481t < 50 (9.51)

Using the equalities from this equation to determine the values of t that cause

failure, we find that failure of the C20ı layers due to compression in the 2

direction is given by the condition

�2 D �C
2 (9.52)

Numerically

�25:3 � 0:0481t D �200 (9.53)

or

t D 3630 (9.54)

Failure due to a tensile failure of the material in the 2 direction is given by

�2 D �T
2 (9.55)

or

�25:3 � 0:0481t D 50 (9.56)

which leads to

t D �1563 (9.57)

From these results, we can see that a torsional load of T D C3630 N�m

causes the C20ı layers to fail in compression in the 2 direction, while a

torsional load of T D �1563 N�m causes the C20ı layers to fail in tension

in the 2 direction.

A shear failure in the C20ı layers is given by the condition from equation

(9.3) of

��F
12 < �12 < �F

12 (9.58)

or, if we use numerical values,

�100 < �33:5 C 0:0552t < 100 (9.59)

From this, we can conclude that

t D �1205 (9.60)

will cause the C20ı layers to fail due to ��12 and that

t D 2420 (9.61)
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will cause the C20ı layers to fail due to C�12. Unlike the case of a tensile

load alone, Failure Example 1, the values of torsional load that cause shear

failures due to C�12 and ��12 differ by more than a sign. The biasing effect

of the C0:225 MN axial force applied to the tube causes this result.

The results from the analysis of the C20ı layers are summarized in Ta-

ble 9.10, and we can see that in the presence of an axial force of C0:225 MN,

failure in the C20ı layers can be caused by an applied torque T of �1205 N�m.

Such a torque will cause the layers to fail due to a negative shear stress �12.

Alternatively, an applied torque T of C795 N�m causes the layers to fail due

to tensile stresses in the 1 direction.

Failure of the �20ı and 0ı layers follows similar steps. For the �20ı layers

the steps are as follows.

Compression failure in the 1 direction:

861 � 0:804t D �1250

t D 2620
(9.62)

Tension failure in the 1 direction:

861 � 0:804t D 1500

t D �795
(9.63)

Compression failure in the 2 direction:

�25:3 C 0:0481t D �200

t D �3630
(9.64)

Tension failure in the 2 direction:

�25:3 C 0:0481t D 50

t D 1563
(9.65)

Shear failure due to ��12:

33:5 C 0:0552t D �100

t D �2420
(9.66)

Shear failure due to C�12:

33:5 C 0:0552t D 100

t D 1205
(9.67)

TABLE 9.10. Torsions T (N�m) to cause failure in C20
ı layers

with P D C0:225 MN: Maximum stress criterion

Failure mode

−2620 +795 +3630



−1563 −1205 +2420

σ σ σσ − +1
C

1
T

2
C

2
T τ

12
F τ

12
F
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The failure analysis of the 0ı layers is as follows:

Compression failure in the 1 direction:

1072 C 0t D �1250

t D �1
(9.68)

Tension failure in the 1 direction:

1072 C 0t D 1500

t D C1
(9.69)

From these last two statements it is clear that failure in the fiber direction

in the 0ı layers will not occur due to an applied torque. Continuing with the

steps in the failure analysis, we find that the remaining steps for the 0ı layers

are as follows.

Compression failure in the 2 direction:

�39:7 C 0t D �200

t D �1
(9.70)

Tension failure in the 2 direction:

�39:7 C 0t D 50

t D C1
(9.71)

Like the equations for failure in the 0ı direction, these last two statements

lead to the conclusion that the 0ı layers will not fail in the 2 direction due

to the applied torque. Continuing, we find that shear failure due to ��12 is

determined with

0:0721t D �100

t D �1387
(9.72)

and shear failure due to C�12 with

0:0721t D 100

t D 1387
(9.73)

Table 9.11 summarizes the failure analysis for all the layers, and here we

see that a torque of T D C795 N�m causes the C20ı layers to fail due to

positive �1 and a torque of T D �795 N�m causes the �20ı layers to fail also

due to a positive �1. These torques are taken as the failure torques for the

tube. Apparently the effects of the applied torsion added to the C0:225 MN

axial load are enough to break the fibers in tension in the C20ı layers or the

�20ı layers, depending on the direction of the applied torsion. Essentially,

referring to Figure 9.7, we find that the initial axial load shifts the origin of

the stress space relative to the failure surface.
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TABLE 9.11. Summary of torsions T (N�m) to cause failure in Œ˙20=03�S tube

with P D 0:225 MN: Maximum stress criterion

Failure mode

−2620

+2620

  −∞

+795

−795

 +∞

+3630

−3630

  −∞

−1563

+1563

  +∞

−1205

−2420

−1387

+2420

+1205

+1387

Layer

+20°

−20°

0°

σ σ σσ − +
1
C

1
T

2
C

2
T τ

12
F τ

12
F

Exercise for Section 9.3

A Œ˙45=02�S graphite-reinforced plate is subjected to a biaxial loading such that the

stress resultant in the y direction is �0:200 MN/m and the stress resultant in the x

direction is variable, that is:

Nx D N

Ny D �0:200 MN/m

Nxy D 0

(a) Using the maximum stress criterion, compute the value of N required to cause

failure. (b) What layer or layers control failure? (c) What is the mode of failure?

9.4 Failure Example 3: Tube with Combined Load —

Maximum Stress Criterion

As a final example of the application of the maximum stress failure criterion,

consider the following problem with the tube: In a particular application

the tube is being used with an axial load P and a small torsional load T .

According to the maximum stress criterion, what are the ranges of applied

axial load and applied torsion the tube can withstand before it fails? What

layer or layers control failure and what is the mode of failure? This is truly a

combined-load problem, with unknown levels of both the axial and torsional

loads, the goal being to find the bounds of P and T within which the tube

is safe from failure. The approach here will be to revert to a P -T space and

study the failure boundaries. Here P will be on the horizontal axis and T on

the vertical axis. For multilayer laminates such as the tube, each layer will

have an envelope in this space and the totality of envelopes represents the

envelope for the laminate. Figure 9.10 illustrates the situation being studied.

We shall proceed exactly as before, using a scale factor to multiply the

loads and then enforcing the equations representing various portions of the

failure criterion to determine the scale factor. Here, however, both the scale

factor for the axial load p and the scale factor for the torsional load t are

unknown. We can, however, use the six equations of the failure criterion to
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+20°
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H = 0.150 mm

–20°

FIGURE 9.10. Tube with axial load P and torsion T , Failure Example 3.

determine relations between p and t . The stress components in each layer

due to a unit axial load, P D 1 N, were given in Table 9.2, and the stress

components in each layer due to a unit torque, T D 1 N�m, were given

in Table 9.8. Accordingly, the stress components in each layer due to the

combined effects of an axial load of p and a torsional load of t are given in

Table 9.12. These stress components will now be used in the failure equations,

equation (9.3), and the alternate form, equation (9.4).

For the C20ı layers, the first equation of equation (9.3), namely,

�C
1 < �1 < �T

1 (9.74)

becomes

�1250 < 0:00383p C 0:804t < 1500 (9.75)

This inequality defines a region in the p-t coordinate system, that is, p-t

space. The region defines the values of tension and torsion that can simul-

taneously be applied to the tube and not cause the C20ı layers to fail. Of

course, for no torsion equation (9.9) is recovered. As in previous discussions,

it is the boundaries of the region that are important, and as in the previous

examples, it is the equalities associated with the inequalities that define the

boundaries. Specifically, in the present situation, the first equation of equation

(9.4), namely, the compression side of the inequality,

�1 D �C
1 (9.76)

TABLE 9.12. Stresses (MPa) in Œ˙20=03�S tube loaded with P D p (N) and

T D t (N�m)

 +0.00383p + 0.804t

 +0.00383p − 0.804t

 +0.00477p

−0.0001123p − 0.0481t

−0.0001123p + 0.0481t

−0.0001686p

−0.0001487p + 0.0552t

 +0.0001487p + 0.0552t

 + 0.0721t

Layer

+20°

−20°

0°

σ1 σ2 τ12
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results in

0:00383p C 0:804t D �1250 (9.77)

Unlike the past examples where enforcement of the equalities led to a specific

value of p or t , here enforcement of the equality leads to an equation for

a line in p-t space. This line, illustrated in Figure 9.11, is labeled �C
1 , the

notation identifying the failure mode represented by this line. The line divides

p-t space into two regions, where any combination of p and t on this line

and below it represents a combination that will cause a compression failure

in the fiber direction of the C20ı layers. A combination of p and t above

this line represents values that will be safe from causing compression failure

in the fiber direction of the C20ı layers.

The equation from the tension side of the inequality is

�1 D �T
1 (9.78)

or

0:00383p C 0:804t D 1500 (9.79)
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FIGURE 9.11. Failure boundary for compression failure in 1 direction in C20
ı

layers.
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This represents another line in p-t space, illustrated in Figure 9.12, where the

notation �T
1 is assigned to the line represented by equation (9.79) to denote

that the line represents failure due to tension in the fiber direction. The �T
1

line again divides p-t space into two parts. In this case, the region on the line

and above it represents the region where any combination of p and t will

lead to failure of the C20ı layers because of tension in the fiber direction,

and the region below the line represents combinations of loads that will not

cause the C20ı layers to fail in tension in the fiber direction. Obviously the

region between the �C
1 line of Figure 9.11 and the �T

1 line of Figure 9.12

represents combinations of p and t in p-t space that will not cause the C20ı

layers to fail in the fiber direction. The two lines are shown in Figure 9.13;

the region free from fiber-direction failure is shaded in and denoted as safe.

From equation (9.3), the equation that represents failure in the 2 direction,

�C
2 < �2 < �T

2 (9.80)

leads to

�200 < �0:0001123p � 0:0481t < 50 (9.81)
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FIGURE 9.12. Failure boundary for tension failure in 1 direction in C20ı layers.
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FIGURE 9.13. Failure envelope for failure in 1 direction in C20
ı layers.

This results in two equations for two more boundary lines in p-t space. From

the compression portion,

�0:0001123p � 0:0481t D �200 (9.82)

and from the tension portion,

�0:0001123p � 0:0481t D 50 (9.83)

In Figure 9.14 the lines represented by these two equations are added to

the lines of Figure 9.13 and the notation �C
2 and �T

2 is used to identify

these lines. As we can see, the boundary associated with compression failure

in the 2 direction is considerably removed from the previously established

boundaries associated with failure in the fiber direction. This is interpreted

to mean that failure due to compression in the 2 direction is not possible

with any combination of p and t before failure occurs in the fiber direction

due to tension. On the other hand, the line representing tension failure in the

2 direction intersects the previously established region for failure in the 1

direction. Thus, the safe region is impinged upon by failure in another mode

and the size of the safe region is reduced.
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FIGURE 9.14. Failure envelope for failure in 1 and 2 directions in C20ı layers.

Finally, failure in the C20ı layers due to shear stress �12 is given by the

third equation of equation (9.3), namely,

��F
1 < �12 < �F

12 (9.84)

which, for the case here, becomes

�100 < �0:0001487p C 0:0552t < 100 (9.85)

This inequality defines yet a third region in p-t space, whose regional bound-

aries are given by

�0:0001487p C 0:0552t D �100 (9.86)

and

�0:0001487p C 0:0552t D C100 (9.87)

In Figure 9.15 the lines represented by these equations are added to Fig-

ure 9.14. Both of these new lines intersect the previously established safe re-

gion and further restrict its size. The irregular-shaped shaded region bounded

by segments of the various lines corresponding to the six failure equalities
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T = 0

P = 225 kN
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FIGURE 9.15. Complete failure envelope for C20
ı layers.

represents the range of values of axial load and torsional load that can

be applied to the tube without having the C20ı layers fail in any of the

various modes. The shape of the region, the intersections of the lines with

the coordinate axes, the intersections of the lines with each other, and other

characteristics of the figure are a result of the material elastic properties,

the fiber angles in the various layers, and the failure stresses of the material.

Actually the tube radius is reflected in the characteristics of the region. Hence,

Figure 9.15 summarizes a great deal of information regarding this particular

problem. Also, on Figure 9.15 the points for T D 0, which correspond to the

first example problem, are noted, as are the points for P D 225 kN, which

correspond to the second example.

With the failure boundaries established for the C20ı layers, attention turns

to the �20ı and 0ı layers. The determination of the failure boundaries for

these layers follows steps identical to those just completed for the �20ı

layers. For the �20ı layers the analysis is as follows:
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Compression failure in the 1 direction:

0:00383p � 0:804t D �1250 (9.88)

Tension failure in the 1 direction:

0:00383p � 0:804t D 1500 (9.89)

Compression failure in the 2 direction:

�0:0001123p C 0:0481t D �200 (9.90)

Tension failure in the 2 direction:

�0:0001123p C 0:0481t D 50 (9.91)

Shear failure:

0:0001487p C 0:0552t D �100 (9.92)

and

0:0001487p C 0:0552t D 100 (9.93)

Figure 9.16 illustrates the six lines associated with the failure boundaries

and the region in p-t space free from failure for the �20ı layers. Note

the differences and similarities between Figure 9.15 for the C20ı layers

and Figure 9.16. Whereas the shaded region for the C20ı layers is skewed

downward slightly on the right, the region for the �20ı layers is skewed

upward slightly on the right. The points corresponding to the two previous

failure examples are indicated.

For the 0ı layers:

Compression failure in the 1 direction:

0:00477p D �1250 (9.94)

Tension failure in the 1 direction:

0:00477p D 1500 (9.95)

Compression failure in the 2 direction:

�0:0001686p D �200 (9.96)

Tension failure in the 2 direction:

�0:0001686p D 50 (9.97)

Shear failure:

0:0721t D �100 (9.98)

and

0:0721t D C100 (9.99)
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FIGURE 9.16. Complete failure envelope for �20
ı layers.

As shown in Figure 9.17, the lines representing failure of the 0ı layers

are all parallel to the coordinate axes in p-t space. The line representing

compression failure in the 2 direction is not shown since it is far to the right.

The region free from failure is a rectangular region bounded on the top and

bottom by shear failure, and bounded on the left and right by failure in the

fiber direction.

Finally, the superposition of the boundaries that control failure of the

laminate is shown in Figure 9.18, where the boundaries are labeled as to

the failure mode and the layer orientation that controls failure. In general,

stress components �1 and �2 in the ˙20ı layers control failure. However, at

extreme values of p, failure in the fiber direction in the 0ı layers controls

failure. Figure 9.18 is important because from it one can determine the level

of torque that can be applied for a specific level of axial load.
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FIGURE 9.17. Complete failure envelope for 0
ı layers.

We mentioned earlier that the analyses being presented were applicable to

first-ply failure loads, and that there might be additional load capacity beyond

the load at which the first failure occurs. This may be true particularly when

the first failure does not involve fiber failure as when, for example, the first

failure is due to tension in the 2 direction. For this case the matrix could

develop cracks parallel to the fibers, but there would still be integrity to

the fibers. To reflect the fact that matrix cracking has occurred in specific

layers at a particular load level, E2 and G12 in those layers could be reduced

significantly or equated to zero, and the A matrix recomputed. A failure

analysis could then be conducted on the altered laminate, and a new failure

load could be predicted. This progressive recomputation of the A matrix (and

the B and D matrices, if they are involved) can continue, and ultimate failure

can be assumed to occur when stresses in the fiber direction in the layer most

highly stressed in the fiber direction exceed the failure stress level.
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FIGURE 9.18. Superposition of failure envelopes for C20
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ı, and 0
ı layers.

Exercise for Section 9.4

A Œ˙45=02�S graphite-reinforced plate is subjected to a biaxial loading; that is:

Nx D Nx

Ny D Ny

Nxy D 0

Use the maximum stress failure criterion to determine the failure envelope of the plate

in Nx-Ny space. Label the failure mode and layer or layers which control failure for

each portion of the envelope. Note that the cases of Exercise 2 in the Exercises for

Section 9.2 and the Exercise for Section 9.3 are included in this case.

We shall now return to our previous examples with the flat Œ0=90�S and Œ˙30=0�S

laminates and study failure for those cases. In particular, we shall study failure for

the situation where the stress resultants, rather than the deformations, are specified.

Because we have studied these examples in some depth, using them to study failure
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will provide us with additional insight into the response of fiber-reinforced laminated

composites. Also, because we have studied these laminates with particular loadings,

we have figures illustrating the stress distributions within the layers. With the stress

distributions available, it might be tempting to focus only on the layer or layers with

the highest stresses. Unfortunately, with the dramatically different failure strengths in

the different directions in a layer, and in tension and compression, a focusing a priori

on one layer or one failure mode in one layer can lead to the wrong conclusions. A

failure mode may be overlooked, or the closeness of the loads for different failure

modes in different layers may not be noted. Thus, we shall avoid the temptation to

focus on one layer or one failure mode despite what may appear as overwhelming

evidence that failure will occur in a particular way. Rather, we will use the same

methodical approach to study failure that we have used in the tube examples. As this

can all be automated by computer programming, there is every reason to take the safe

and thorough approach to the study of failure.

9.5 Failure Example 4: [0/90]S Laminate Subjected to Nx —

Maximum Stress Criterion

Consider the Œ0=90�S laminate subjected to a loading in the x direction, as

in CLT Example 6 in Chapter 8. Figure 8.4 illustrated the stresses in the

principal material system for that laminate with a loading of Nx D 0:0504

MN/m. From that figure it appears that when the loading is increased, if

failure is going to be due to high stresses in the fiber direction, then it

will occur in the 0ı layers. If failure is going to be due to high stresses

perpendicular to the fibers, then it will occur in the 90ı layers. Shear failure

is not an issue, and an analysis of failure in each layer and for each failure

mode will either confirm that these are indeed the controlling modes, or it

will reveal other failure modes. To begin investigating just what load Nx

causes failure, let us determine the principal material system stresses due

to Nx D nx . These stresses are given in Table 9.13, where the numbers in

this table are determined by scaling the stresses in Chapter 8 for the case

of Nx D C0:0504 MN/m, namely, dividing the stresses given in equation

(8.6) by 50 400. The key equations for determining failure, then, are the

following.

For the 0ı layers:

3090nx D �C
1

3090nx D �T
1

51:3nx D �C
2

51:3nx D �T
2

0nx D �F
12

0nx D ��F
12

.9:100a/
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TABLE 9.13. Principal material system

stresses (Pa) in Œ0=90�S laminate due to

Nx D nx (N/m)

+3090nx

–51.3nx

+51.3nx

+240nx

0

0

Layer

0°

90°

σ1 σ2 τ12

For the 90ı layers:

�51:3nx D �C
1

�51:3nx D �T
1

240nx D �C
2

240nx D �T
2

0nx D �T
12

0nx D ��F
12

.9:100b/

where the solutions to these equations are summarized in Table 9.14.

From these solutions it is evident that the following loads cause failure:

Nx D C0:209 MN/m

Nx D �0:404 MN/m
(9.101)

The physical interpretation is that a tensile load of Nx D C0:209 MN/m

will cause the 90ı layers to fail due to a tensile stress perpendicular to the

fibers, while a compressive load of Nx D �0:404 MN/m will cause the 0ı

layers to fail due to a compressive stress in the fiber direction. In the first

case, because the fibers remain intact in the 0ı layers, the laminate still has

the ability to support additional load. In the second case, the fibers fail in

compression and the ability to support a compressive load much greater than

Nx D �0:404 MN/m is unlikely. Hence, as the Œ0=90�S laminate is loaded

in tension from zero load, cracks parallel to the fibers in the two 90ı layers

appear as the first evidence of failure. To fail the laminate, a considerable

load beyond the load to cause this cracking is required, but just how much

TABLE 9.14. Summary of failure loads Nx (MN/m) for Œ0=90�S laminate:

Maximum stress criterion

Failure mode

−0.404

+24.4

+0.485

−29.3

−3.90

−0.835

+0.975

+0.209

−∞
−∞

+∞
+∞

Layer

0°

90°

σ σ σσ − +
1
C

1
T

2
C

2
T τ

12
F τ

12
F
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more load is difficult to say. These cracks in the 90ı layers produce a stress

concentration that increases the stresses in the 0ı. Thus, the ultimate load

capacity of the laminate is less than the load to cause fiber direction failure if

the 90ı layers were not part of the laminate, but more than the C0:209 MN/m.

As the laminate is loaded in compression from zero load, the fibers in the 0ı

layers fail in compression and the entire laminate thus fails.

9.6 Failure Example 5: Œ˙30=0�S Laminate Subjected to Nx —

Maximum Stress Criterion

A failure analysis of the Œ˙30=0�S laminate subjected to a loading in the x

direction is similar to the analysis of the Œ0=90�S laminate above. Figure 8.8

shows the principal material system stresses in the laminate for the case of

Nx D 0:1024 MN/m, and from that figure it can be seen that the leading

candidates for failure are: fiber direction failure in the 0ı layers, failure

perpendicular to the fibers in the 0ı layers, and shear failure in the ˙30

layers. To determine which mechanism causes failure, the six components

of the maximum stress failure criterion are studied for each layer. To do

this, the principal material system stresses in each layer for Nx D nx are

needed; these stresses are available from equation (8.14) by the simple scaling

approach used with the Œ0=90�S laminate. The stresses in equation (8.14) were

computed for the case of Nx D 0:1024 MN/m; thus, division of these stresses

by 102 400 yields the required results, which are given in Table 9.15. Using

these results in the maximum stress failure criterion leads to the following

sets of equations.

For the C30ı layers:

866nx D �C
1

866nx D �T
1

�77:3nx D �C
2

�77:3nx D �T
2

�102:8nx D �F
12

�102:8nx D ��F
12

.9:102a/

TABLE 9.15. Principal material system stresses

(Pa) in Œ˙30=0�S laminate due to Nx D nx (N/m)

+866nx

+866nx

+1894nx

−77.3nx

−77.3nx

−138.9nx

−102.8nx

+102.8nx

0

Layer

+30°

−30°

0°

σ1 σ2 τ12



Failure Example 5: [˙30/0]S Laminate Subjected to Nx — Maximum Stress 425

For the �30ı layers:

866nx D �C
1

866nx D �T
1

�77:3nx D �C
2

�77:3nx D �T
2

102:8nx D �T
12

102:8nx D ��F
12

.9:102b/

For the 0ı layers:

1894nx D �C
1

1894nx D �T
1

�138:9nx D �C
2

�138:9nx D �T
2

0nx D �T
12

0nx D ��F
12

.9:102c/

Table 9.16 summarizes the resulting values of the failure loads. From these

calculations we see that the 0ı layers control failure. With a tensile load of

C0:791 MN/m the 0ı layers fail due to a tensile stress in the fiber direction,

while with a compressive load of �0:360 MN/m they fail due to a tensile

stress perpendicular to the fibers. The loads to cause failure in other layers

and modes are not close to either of these loads. With a compressive load of

�0:360 MN/m, cracks will appear parallel to the fibers in the 0ı layers.

These cracks will not cause total failure of the laminate, and increased

compressive loads can be tolerated. When the compressive load reaches

�0:659 MN/m, compressive stresses in the fiber direction are predicted to

cause failure. However, it is doubtful the �0:659 MN/m compressive load

can be reached. The cracks that occur parallel to the fibers at �0:360 MN/m

will lead to destabilization of the fibers because they are in compression and

TABLE 9.16. Summary of failure loads Nx (MN/m) for Œ˙30=0�S laminate:

Maximum stress criterion

Failure mode

−1.444

−1.444

−0.659

+1.733

+1.733

+0.791

+2.59

+2.59

+1.439

−0.647

−0.647

−0.360

+0.973

−0.973

   −∞

−0.973

+0.973

   +∞

Layer

+30°

−30°

0°

σ σ σσ − +
1
C

1
T

2
C

2
T τ

12
F τ

12
F
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hence compressive loads much greater than �0:360 MN/m probably cannot

be attained.

In many of the failure examples studied so far, the load limit of the laminate

is determined not by fiber strength, but by the strength perpendicular to

the fiber, or by shear strength. This is a characteristic of fiber-reinforced

laminates, a characteristic that takes considerable effort to overcome. It makes

little sense to develop strong and stiff fibers and then have the strength of the

laminate be limited by the strength of the weak directions of a layer rather

than the fiber direction. Yet this often happens!

9.7 Failure Example 6: Œ˙30=0�S Laminate Subjected to Mx —

Maximum Stress Criterion

Determining the load limits of a laminate when it is subjected to a bending

stress resultant is somewhat more complicated than for inplane loading. The

complication stems from the fact that the signs of stresses change from one

side of the reference surface to the other, and the stresses vary linearly through

the thickness of a layer. Fortunately, the stresses at the outer location of each

layer are always larger in magnitude than the stresses at the inner location, and

thus only the outermost location of each layer needs to be examined. Also,

often the stresses at a negative z location within the laminate are related to

the stresses at the identical positive z location by a simple sign change. The

calculations done for positive z locations do double duty by simply changing

signs. This characteristic of laminate bending is not, however, always the case,

particularly for unsymmetric laminates. Figure 8.12 shows the distributions

of principal material system stresses in the Œ˙30=0�S laminate subjected to

a bending stress resultant Mx D 12:84 N�m/m. With this figure available,

it is possible to focus on the likely locations of failure. In particular, if the

loading is increased, if failure is going to be due to high stresses in the fiber

direction, then it will occur at the outer extremities of the �30ı layers. If

failure is going to be due to high stresses perpendicular to the fibers, it will

also probably occur at the outer extremities of the �30ı layers, though high

stresses perpendicular to the fibers also occur at the outer extremities of the

C30ı layers. Without this figure, one would be tempted to assume that fiber

direction stresses are highest at the outer extremities of the laminate. This

would be an error. If failure is going to be due to high shear stresses, it will

occur at the outer extremities of the laminate, in C30ı layers. Table 9.17

uses the results of equation (8.27) and considers the outermost location of

each layer on the positive z side of the reference surface to give the principal

material system stresses due to a bending stress resultant of Mx D mx.

Accordingly, the key equations, using MPa, for studying failure at these Cz

locations are:
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TABLE 9.17. Principal material system stresses (MPa) in

Œ˙30=0�S laminate due to Mx D mx (N�m/m)�

+5.79mx

+9.01mx

+7.52mx

−0.850mx

−0.875mx

−0.618mx

−1.415mx

+0.772mx

−0.0858mx

Layer

+30° (z =  0.450 mm)

−30° (z =  0.300 mm)

0° (z =  0.150 mm)

σ1 σ2 τ12

* Positive z locations.

For the C30ı layer at z D 0:450 mm:

5:79mx D �C
1

5:79mx D �T
1

�0:850mx D �C
2

�0:850mx D �T
2

�1:415mx D ��F
12

�1:415mx D �F
12

.9:103a/

For the �30ı layer at z D 0:300 mm:

9:01mx D �C
1

9:01mx D �T
1

�0:875mx D �C
2

�0:875mx D �T
2

0:772mx D ��T
12

0:772mx D �F
12

.9:103b/

For the 0ı layer at z D 0:150 mm

7:52mx D �C
1

7:52mx D �T
1

�0:618mx D �C
2

�0:618mx D �T
2

�0:0858mx D ��T
12

�0:0858mx D �F
12

.9:103c/

The limiting bending moments determined from these equations are sum-

marized in Table 9.18. It is important to note that another three sets of six

equations can be written for each of the negative locations z D �0:450 mm,
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TABLE 9.18. Summary of failure moments Mx (N�m/m) for Œ˙30=0�S laminate:

Maximum stress criterion�

Failure mode

−216

−138.7

−166.3

+259

+166.4

+199.6

+235

+228

+324

−58.8

−57.1

−81.0

    +70.7

  −129.5

+1166

    −70.7

  +129.5

−1166

Layer

+30°

−30°

0°

σ σ σσ − +
1
C

1
T

2
C

2
T τ

12
F τ

12
F

* Positive z locations.

�0:300 mm, and �0:150 mm. These 18 equations would be identical to the

18 equations of equation (9.103) except the terms involving mx would have

a sign change. For example, the first and last entries of equation (9.103a)

would be

�5:79mx D �C
1

1:415mx D �F
12

(9.104)

If we constructed a table summarizing the results of these 18 equations,

it would be identical to Table 9.18 except for a sign change with every

entry. Thus, Table 9.18 can be thought of as having a double sign with every

entry. From these results, then, it can be concluded that bending moment

resultants of Mx D ˙57:1 N�m/m will cause the laminate to fail due to a

tensile stress perpendicular to the fibers in the �30ı layers. At just a slightly

greater bending moment, ˙58:8 N�m/m, the C30ı layers will also fail due to

a tensile stress perpendicular to the fibers. Thus, it appears that at Mx ' 59

N�m/m there would be excessive cracking in the ˙30ı layers on one side of

the laminate, the side depending on the sign of Mx . Again we see the weak

link in a laminate is a material strength that does not have the benefit of fiber

reinforcing.

9.8 Summary

As we can see, implementing the maximum stress failure criterion requires

a number of calculations to determine the load level that causes failure. The

different modes of failure must be checked, and each layer considered. If

bending is present, positive and negative z locations must be checked, though

the computation need only be done for positive z for many laminates. These

steps can all be automated and really should be when applying the criterion

routinely. For combined loading, graphical displays of the failure envelopes

are very useful.

In the implementation of the maximum stress failure criterion, the individ-

ual failure modes were examined one at a time. When computing the load
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required to fail the fibers, for example, we found that there was no concern

for the magnitude, or direction, of the stress perpendicular to the fibers, �2.

That is, there was no concern that �2 might interact with �1, so the failure

load predicted by accounting for the presence of �2 might be different from

the failure load predicted by ignoring the presence of �2. The concept of

considering more than one stress component at a time when studying failure

is termed stress interaction. The next chapter examines a failure criterion that

addresses this issue.

9.9 Suggested Readings

A good review of the failure and yielding theories for isotropic materials, particularly

the maximum principal stress criterion, can be found in the following:

1. Dowling, N. E. Mechanical Behavior of Materials. Englewood Cliffs, NJ: Prentice

Hall, 1993.

While fiber-reinforced composite materials may be thought of as contemporary mate-

rials, many of the issues related to the failure of composites have similiar counterparts

in the development of failure theories for wood. The issues with wood date back to

the 1920s and 1930s, and earlier. The following book presents a good discussion of

the failure theories of wood, including some of the older references:

2. Bodig, J., and B. A. Jayne. Mechanics of Wood and Wood Composites. New York:

Van Nostrand Reinhold, 1982.

Reviews of failure criteria up to the mid-1980s are given in:

3. Hashin, Z. “Analysis of Composite Materials—A Survey.” Transactions of the

ASME, Journal of Applied Mechanics 50, no. 3 (1983), pp. 481–505.

4. Nahas, M. N. “Survey of Failure and Post-Failure Theories of Laminated Fiber-

Reinforced Composites.” Journal of Composites Technology and Research 8, no.

4 (1986), pp. 138–53.

Much of the work in failure criteria since the mid-1980s has been directed at the study

of compression failure. The following papers discuss the kinking mode of compression

failure, which is quite similiar to the compression failure of wood:

5. Evans, A. G., and W. F. Adler. “Kinking as a Mode of Structural Degradation in

Carbon Fiber Composites.” Acta Metallurgica 26 (1978), pp. 725–38.

6. Budianski, B., and N. A. Fleck. “Compressive Failure of Fibre Composites.”

Journal of Mechanics and Physics of Solids 41 (1993), pp. 183–211.

7. Jelf, P. M., and N. A. Fleck. “Compression Failure Mechanisms in Unidirectional

Composites.” Journal of Composite Materials 26, no. 1 (1992), pp. 2706–26.

8. Fleck, N. A.; L. Deng; and B. Budiansky. “Prediction of Kink Width in Compressed

Fiber Composites.” Transactions of the ASME, Journal of Applied Mechanics 62,

no. 2 (1995), pp. 329–37.

See the following article for a discussion of the effects of having the ratio of tube

radius to wall thickness less than 10:

9. Hyer, M. W. “Hydrostatic Response of Thick Laminated Composite Cylinders.”

Journal of Fiber Reinforced Plastics and Composites 26, no. 7 (1988), pp. 852–57.



CHAPTER 10

Failure Theories for Fiber-Reinforced
Materials: The Tsai-Wu Criterion

The von Mises criterion, introduced in strength-of-materials courses for study-

ing yielding of metals, can be written as

1

2

�

1

�Y

�2
h

.�1 � �2/2 C .�1 � �3/
2 C .�2 � �3/2

i

D 1 (10.1)

where �Y is the yield stress of the metal and �1, �2, and �3 are the principal

stresses. This equation is of the form

F.�1; �2; �3/ D 1 (10.2)

According to the von Mises criterion, if

F.�1; �2; �3/ < 1 (10.3)

then the material has not yielded. Equation (10.1) represents the well-known

von Mises ellipsoid and thus a surface in �1-�2-�3 principal stress space,

and equation (10.3) represents the volume inside this surface. Because rolled

metals have slightly different properties in the roll direction than in the other

two perpendicular directions, Hill (see Suggested Readings) assumed that the

yield criterion for these orthotropic metals was of the form

F.�1 � �2/2 C G .�1 � �3/2 C H .�2 � �3/2 C 2L�2
12 C 2M�2

13 C 2N�2
23 D 1

(10.4)

The constants F; G; H , and so forth, are related to the yield stresses in the

different directions, like �Y in equation (10.1), and either the 1, 2, or 3

direction is aligned with the roll direction.

This view of a failure criterion can be extended to composite materials,

which are, of course, orthotropic in the principal material coordinate system,

by assuming an equation of the form

F.�1; �2; �3; �23; �13; �12/ D 1 (10.5)

431
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can be used to represent the failure condition of a composite, while the

condition of no failure is given by

F.�1; �2; �3; �23; �13; �12/ < 1 (10.6)

How do we determine the specific form of F for a composite? How do

we know such a function can exist? Is the concept even valid? After all,

composites are not like metals when it comes to failure. There are distinctly

different failure mechanisms associated with failure of a composite: fiber

kinking in compression, fiber fracture in tension, and failure at the fiber-matrix

interface in shear or tension perpendicular to the fiber. Thus, why would

extending the concepts from metals be valid for composites? In the strictest

sense, it is not. However, if the generalization is viewed as a hypothesis for

fitting empirical data, and if the fit is reasonable, then the hypothesis provides

us with an indicator that can be used to study failure.

For a state of plane stress, if the power of the stress components is

maintained at 2, as in equations (10.1) and (10.4), the most general form

of F is

F.�1; �2; �12/ D F1�1 C F2�2 C F6�12 C F11�
2
1 C F22�2

2 C F66�
2
12

C 2F12�1�2 C 2F16�1�12 C 2F26�2�12

(10.7)

where in the above F1; F2; F6; F11; F22; F66; F12; F16, and F26 are constants.

All stress components are represented to the first and second powers, and all

products of the stresses are represented. The constants F12; F16, and F26 will

be referred to as the interaction constants, and the magnitude of their value

will dictate the degree of interaction among stress components. Interaction

between the normal stresses �1 and �2 and the shear stress �12 is included

by virtue of constants F16 and F26, and interaction between the normal stress

components �1 and �2 is included with the F12 term.

With the above considerations, the failure criterion that we are seeking

takes the form

F1�1 C F2�2 C F6�12 C F11�
2
1 C F22�

2
2 C F66�2

12

C 2F12�1�2 C 2F16�1�12 C 2F26�2�12 D 1
(10.8)

and the condition of no failure is given by the inequality

F1�1 C F2�2 C F6�12 C F11�
2
1 C F22�

2
2 C F66�2

12

C 2F12�1�2 C 2F16�1�12 C 2F26�2�12 < 1
(10.9)

The failure criterion represents a general second-order surface in the space

with coordinates �1; �2; �12. Recall, the maximum stress criterion in Figure

9.7 represented a piecewise planar surface with sharp edges and corners. A

second-order surface, on the other hand, is smooth, like an ellipsoid. If we

know the values of constants F1; : : : ; F66, then we can construct the surface,

if desired, and furthermore, the failure load of a laminate can be evaluated
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by using equation (10.8). Equation (10.8) is the plane-stress form of the

failure criterion postulated by Tsai and Wu (see Suggested Readings). How do

we determine the constants F1; : : : ; F66? The answer is simple! We evaluate

them with the information we have regarding failure of an element of fiber-

reinforced material, namely: we evaluate them in terms of �T
1 ; �C

1 ; �T
2 ; �C

2 ,

and �F
12.

10.1 Determination of the Constants

We determine the constants F1; : : : ; F66 by referring to the results of simple

failure tests with fiber-reinforced composite material. Consider an element of

material subjected to a stress only in the fiber direction. For this situation

�1 ¤ 0

�2 D 0

�12 D 0

(10.10)

The function F.�1; �2; �12/ of equation (10.7) reduces to the form

F.�1; �2; �12/ D F1�1 C F11�
2
1 (10.11)

If, as in Figure 10.1, the stress �1 is tension, then failure occurs when �1 D
�T

1 . The failure criterion must be unity at this value of �1; that is:

F1�T
1 C F11

�

�T
1

�2 D 1 (10.12)

If, on the other hand, the stress �1 is compression, as in Figure 10.2, then

failure occurs when �1 D �C
1 . The failure criterion must again be unity at

this value of �1, namely,

F1�C
1 C F11

�

�C
1

�2 D 1 (10.13)

σ1

σ1 ≠ 0

σ1 = σ 1

σ 1 σ 1
T

At failure

Failure criterion becomes

F1 +  F11(

σ 2 = 0 τ12 = 0

)2 = 1

σ1

T

T

FIGURE 10.1. Tensile failure in 1 di-

rection as it applies to the Tsai-Wu

criterion.

σ1

σ1 ≠ 0

σ1 = σ 1

σ 1 σ 1
T

At failure

Failure criterion becomes

F1 +  F11(

σ 2 = 0 τ12 = 0

)2 = 1

σ1

T

T

FIGURE 10.2. Tensile failure in 1 di-

rection as it applies to the Tsai-Wu

criterion.
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Equations (10.12) and (10.13) resulting from the two tests for failure in the

fiber direction provide enough information to solve for F1 and F11. These

two equations result in

F1 D 1

�T
1

C 1

�C
1

F11 D � 1

�T
1 �C

1

(10.14)

We can take a similar approach with tension and compression testing of

an element of material in the 2 direction. For this situation

�1 D 0

�2 ¤ 0

�12 D 0

(10.15)

The function F.�1; �2; �12/ of equation (10.7) reduces to the form

F.�1; �2; �12/ D F2�2 C F22�
2
2 (10.16)

If the stress �2 is tension, then failure occurs when �2 D �T
2 and the failure

criterion becomes

F2�T
2 C F22

�

�T
2

�2 D 1 (10.17)

If the stress �2 is compression, then failure occurs when �2 D �C
2 , resulting

in

F2�C
2 C F22

�

�C
2

�2 D 1 (10.18)

From equations (10.17) and (10.18),

F2 D 1

�T
2

C 1

�C
2

F22 D � 1

�T
2 �C

2

(10.19)

These two loading conditions with �2 are shown in Figures 10.3 and 10.4.

The results from testing to failure in shear an element of material can be

used to determine two more constants in the criterion. If an element is loaded

only in shear, then

�1 D 0

�2 D 0

�12 ¤ 0

(10.20)

The function F.�1; �2; �12/ of equation (10.7) becomes

F.�1; �2; �12/ D F6�12 C F66�
2
12 (10.21)

If the stress �12 is positive, as shown in Figure 10.5, then failure occurs when

�12 D �F
12 and

F6�
F
12 C F66

�

�F
12

�2 D 1 (10.22)
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σ1 = 0

σ2 =At failure

Failure criterion becomes

σ 2 ≠ 0 τ12 = 0

σ 2

σ 2

σ 2

σ 2F2
T

T

σ 1
T+  F22( )2 = 1

FIGURE 10.3. Tension failure in 2 di-

rection as it applies to the Tsai-Wu

criterion.

σ1 = 0

σ2 =At failure

Failure criterion becomes

σ 2 ≠ 0 τ12 = 0

σ 2

σ 2

σ 2

σ 2F2
T

T

σ 1
T+  F22( )2 = 1

FIGURE 10.4. Tension failure in 2 di-

rection as it applies to the Tsai-Wu

criterion.

If the stress �12 is reversed, as shown in Figure 10.6, then failure occurs when

�12 D ��F
12 and

�F6�
F
12 C F66

�

��F
12

�2 D 1 (10.23)

These two equations lead to

F6 D 0 F66 D
�

1

�F
12

�2

(10.24)

Basically, F6 is zero because in the principal material coordinate system

failure is not sensitive to the sign of the shear stress. This certainly makes

physical sense and extends to nonplanar stress situations as well. As a result,

the failure criterion only involves the shear stress squared, reflecting the

insensitivity to sign.

σ1 = 0

τ12 = τ12At failure

Failure criterion becomes

F6

σ 2 = 0 τ12 ≠ 0

τ12

F

τ12
F τ 12

F+  F66( )2 = 1

FIGURE 10.5. Failure due to positive

�12 as it applies to the Tsai-Wu criterion.

σ1 = 0

τ12 = τ12At failure

Failure criterion becomes

F6

σ 2 = 0 τ12 ≠ 0

τ12

F

τ12
F τ 12

F+  F66( )2 = 1

FIGURE 10.6. Failure due to positive

�12 as it applies to the Tsai-Wu criterion.
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To this point, the Tsai-Wu failure criterion, equation (10.8), becomes
�

1

�T
1

C 1

�C
1

�

�1 C
�

1

�T
2

C 1

�C
2

�

�2 C
�

� 1

�T
1 �C

1

�

�2
1 C

�

� 1

�T
2 �C

2

�

�2
2

C
�

1

�F
12

�2

�2
12 C 2F12�1�2 C 2F16�1�12 C 2F26�2�12 D 1

(10.25)

We need to evaluate coefficients that involve the product of two stress com-

ponents. Whereas we could evaluate F1 and F11 by looking at the results

of testing to failure an element of material with a single stress component

applied, namely, �1, to determine F12; F16, and F26 the failure of an element

of material must be studied when stressed by more than one component. This

form of testing is difficult and it can be expensive. However, two of the three

remaining coefficients can be shown to be zero on physical grounds. The

third coefficient can be estimated without resorting to actual experimental

results.

To determine F16, consider an element of fiber-reinforced material sub-

jected to a tensile stress in the fiber direction. Assume, as in Figure 10.7(a),

the tensile stress has a specific and known value, ��

1 . Now suppose a shear

stress �12 is superposed on the element. Assume the shear stress is started

from zero and increased until the element fails. Suppose, as Figure 10.7(b)

shows, the value of �12 that causes failure is ��

12. Because the element is

stressed to failure, the failure criterion, equation (10.8), can be written as

F1�
�

1 C F11

�

��

1

�2 C F66

�

��

12

�2 C 2F16�
�

1 ��

12 D 1 (10.26)

Recall that F1, F11, and F66 are known, and F6 was shown to be zero. Now

consider another element of material also loaded in the fiber direction by a

τ12

=σ1 =σ1

=

= *σ1 σ 1

*σ 1
*σ 1

=σ1
*σ 1

*τ 12

τ12 = *τ 12

τ12 = *τ 12

τ12 = *–τ 12

–

(a) applied (b) causes failure

(c) also causes failure

FIGURE 10.7. Combined stresses �1 and �12 as they apply to the Tsai-Wu criterion.
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tensile stress �1 D ��

1 . A negative shear stress �12 is applied to this element

and increased in magnitude until the element fails. Because this experiment is

being conducted in the principal material system, it is logical to assume, as in

Figure 10.7(c), that the value of shear stress that causes failure is �12 D ���

12.

If this is the case, then the failure criterion can be written as

F1��

1 C F11

�

��

1

�2 C F66

�

��

12

�2 � 2F16�
�

1 ��

12 D 1 (10.27)

If equation (10.27) is subtracted from equation (10.26), the result is

4F16

�

��

12

�2 D 0 (10.28)

from which we can conclude that

F16 D 0 (10.29)

A similar argument can be made regarding F26, that is:

F26 D 0 (10.30)

The Tsai-Wu failure criterion thus simplifies one step further to become

F1�1 C F2�2 C F11�
2
1 C F22�2

2 C F66�
2
12 C 2F12�1�2 D 1 (10.31)

We now turn to the evaluation of F12:

The coefficient F12 involves both �1 and �2, and to determine F12 ex-

perimentally requires testing with nonzero values of both �1 and �2. There

are several ways to accomplish this. One is to construct a loading device that

applies both a �1 and a �2 simultaneously. The resulting biaxial state of stress

would be that shown in Figure 10.8. Ideally the two components of stress

would be controlled independently. Theoretically, a single pair of values of

�1 and �2 is all that is needed to determine the value of F12. In practice,

a range of values of �1 and a range of values of �2, including both tensile

and compressive values, should be studied and an average value computed

for F12. A second method of determining F12 experimentally is to use a

uniaxial specimen with its fibers aligned at some known angle relative to

the load direction. Then, as in Figure 10.9, the uniaxial stress is �x , and the

components of stress in the principal material system, �1, �2, and �12, are

σ1

σ2

FIGURE 10.8. Biaxial loading for determining F12 in the Tsai-Wu criterion.
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τ12

σ

σ

x

σx

σx

σx

x

θ

y

1

σ2

FIGURE 10.9. Off-axis tensile specimen for determining F12 in the Tsai-Wu crite-

rion.

given by the transformation equations, equation (5.10). If for a given off-axis

angle � D �� failure occurs when �x D ��

x , then for this condition the

Tsai-Wu failure criterion of equation (10.31) becomes
�

F1 cos2.��/ C F2 sin2.��/
�

��

x C
�

F11 cos4.��/ C F22 sin4.��/

C F66 cos2.��/ sin2.��/ C 2F12 cos2.��/ sin2.��/
�

��

x
2 D 1

(10.32)

From this, because the values of all quantities in the equation except F12

are known, the value of F12 can be determined. Obviously all that is needed
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is one test. However, several tests should be conducted at different angles

to determine the consistency of the value of F12 determined in this manner.

Finally, F12 could be determined by using a helically wound cylinder made

from the material of interest. As Figure 10.10 shows, a cylinder can be

internally or externally pressurized, loaded axially, loaded in torsion, or

stressed in any combination of these to produce a variety of magnitudes

and signs of �1, �2, and �12 in the cylinder wall. The value of F12 can then

be studied with such a specimen.

Another method of determining the value of F12 appeals to heuristic

arguments and is as follows: For the case of plane stress, the von Mises

criterion, equation (10.1), can be written

�

1

�Y

�2

�2
1 C

�

1

�Y

�2

�2
2 �

�

1

�Y

�2

�1�2 D 1 (10.33)

If the Tsai-Wu criterion is applied to cases for which the von Mises criterion

is valid, and the subscripts 1 and 2 in the Tsai-Wu criterion are identified

with principal stress directions, then

�T
1 D �Y �C

1 D ��Y

�T
2 D �Y �C

2 D ��Y
(10.34)

As a result, by their definitions in equations (10.14) and (10.19), F1 and F2

are zero. Because �12 is zero when 1 and 2 are identified with principal stress

� �
� �

σ1

τ12

σ2

Torsion

Axial
load

Pressure

FIGURE 10.10. Cylindrical specimen for determining F12 in the Tsai-Wu criterion.
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directions, the Tsai-Wu criterion as given by equation (10.31) reduces to

�

1

�Y

�2

�2
1 C

�

1

�Y

�2

�2
2 C 2F12�1�2 D 1 (10.35)

For this reduced form of the Tsai-Wu criterion to yield the same result as the

von Mises criterion, equation (10.33), it must be that

2F12 D �
�

1

�Y

�2

(10.36)

This will be the case if in the Tsai-Wu criterion F12 is given by (see Suggested

Readings)

F12 D � 1

2

p

F11F22 (10.37)

Using this relation for composite materials, the Tsai-Wu criterion becomes

F1�1 C F2�2 C F11�
2
1 C F22�

2
2 C F66�

2
12 �

p
F11F22�1�2 D 1 (10.38)

where

F1 D
�

1

�T
1

C 1

�C
1

�

F11 D � 1

�T
1 �C

1

F2 D
�

1

�T
2

C 1

�C
2

�

F22 D � 1

�T
2 �C

2

F66 D
�

1

�F
12

�2

(10.39)

This is the form of the Tsai-Wu criterion we shall use. Table 10.1 gives the

values of the failure stresses and the values of F1; : : : ; F66 for the graphite-

reinforced material used throughout. Note the units of F1; : : : ; F66.

In the space formed by �1-�2-�12 the Tsai-Wu criterion is an ellipsoid (see

Figure 10.11). The ellipsoid is very long and slender, indicating the strong

dependence on direction of the high strength of the fibers, and the weak

TABLE 10.1. Tsai-Wu failure param-

eters for graphite-reinforced composite

= 1500 MPa

= −1250 MPa

= 50 MPa

= −200 MPa

= 100 MPa

 F1 = −0.1333 1/GPa

 F2 = 15.00 1/GPa

F11 = 0.533 (1/GPa)
2

F22 = 100 (1/GPa)
2

F66 = 100 (1/GPa)
2

σ

σ

σ

σ

1

C

1

T

τ
12

F

C

2

2

T
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σ2

σ1

τ12

FIGURE 10.11. Tsai-Wu ellipsoid in principal material system stress space.

strength of the matrix material. For the case of no shear in the principal

material system, �12 D 0 and the Tsai-Wu criterion is an ellipse in �1-�2

space; Figure 10.12 shows the ellipse for the graphite-reinforced material

considered here. The intersections of the ellipse with the coordinate axes are

indicated by the letters A; B; C , and D, where these points represent the

basic failure stresses �T
1 , �T

2 , �C
1 , and �C

2 , respectively. In the third quadrant

the criterion predicts that compressive failure stresses in the fiber direction

much more negative than �C
1 are possible in the presence of compression in

the 2 direction. This is a clear example of stress interaction; in this case the

interaction predicts a significant strengthening influence. This characteristic

of many interactive failure criteria causes concern.

Figure 10.13 shows several cross sections of the Tsai-Wu ellipsoid with

the �2 axis expanded. The �12 D 0 case is a reproduction of Figure 10.12.

The stress interaction is evident in all quadrants; the third quadrant again

indicates that compressive stresses in the fiber direction exceeding �C
1 in

magnitude are possible with compressive �2. The other three quadrants predict

that stress interaction effects can degrade strength. For example, with �12 D 0

and �2 D �150 MPa, failure in the fiber direction is predicted at just over

�1 D C700 MPa. With no �2, failure in the fiber direction is predicted to

occur, of course, at 1500 MPa. The cross sections for nonzero values of �12

indicate that the presence of shear stress �12 even further degrades the levels

of �1 and �2 that can be tolerated.

Before we turn to example problems to demonstrate the utility of the Tsai-

Wu criterion, we should note three important characteristics of the criterion.

First, in contrast to the six equations required to apply the maximum stress

criterion, equation (9.4), the Tsai-Wu criterion involves only one equation,

equation (10.38). This makes the application of the Tsai-Wu criterion simpler

than the application of the maximum stress criterion. Second, because the

Tsai-Wu criterion involves powers and products of the stresses, whenever

the criterion is used to compute a failure load, the criterion will yield two

answers, one positive and one negative. This will be apparent in the example
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FIGURE 10.12. Cross section in �1-�2 plane .�12 D 0/ of the Tsai-Wu ellipsoid for

the graphite-reinforced composite.

problems to follow. However, this characteristic can be demonstrated with a

rather simple example that, to some degree, represents a trivial application

of the criterion: Consider a single layer of material subjected to a stress � in

the fiber direction. We ask what value of � causes failure. For this case,

�1 D � �2 D 0 �12 D 0 (10.40)

and the Tsai-Wu criterion becomes

F1� C F11�
2 D 1 (10.41)

This can be rearranged to read

F11�
2 C F1� � 1 D 0 (10.42)

This is a quadratic equation for � and solution leads to

� D
�F1 ˙

q

F 2
1 C 4F11

2F11

(10.43)

Substituting for F1 and F11 leads to

� D �T
1 and � D �C

1 (10.44)
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FIGURE 10.13. Several cross sections of the Tsai-Wu ellipsoid.

In this case the stress to cause failure in tension and the stress to cause failure

in compression, in the fiber direction, are the answers. This was expected for

this problem but the results indicate the characteristic of the criterion to yield

two answers. For this reason, the Tsai-Wu criterion is in a class of criteria

called quadratic failure criteria. Finally, unlike the maximum stress criterion,

the Tsai-Wu criterion does not directly indicate the mode of failure. The

criterion predicts failure but does not indicate whether failure is due to fiber

failure, shear failure, and so on. With additional calculations, however, some

indication of the mode of failure is possible.

We will now turn to the application of the Tsai-Wu failure criterion to the

previous example problems.

Exercises for Section 10.1

1. Verify the numerical values of the failure parameters in Table 10.1 and construct

a similar table for glass-reinforced composite from the data in Table 9.1.

2. What would be the differences in Figure 10.13 if the ellipses from the Tsai-Wu

criterion are drawn for the case of �12 D �25 MPa, �50 MPa, and �75 MPa?
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10.2 Failure Example 7: Tube with Axial Load —

Tsai-Wu Criterion

As with Failure Example 1, consider again a tube with a mean radius of

25 mm made of graphite-reinforced material that has a 10-layer wall with

a stacking sequence of Œ˙20=03�S . The tube is designed to resist axial load

but has the low-angle off-axis layers (the ˙20ı layers) to provide some

circumferential and torsional stiffness, and to hold the load-carrying layers

together. If we use the Tsai-Wu failure criterion, what is the maximum

allowable axial load? What layer or layers control failure? What is the mode

of failure? How do the predictions compare with those of the maximum stress

criterion?

The tube and loading were illustrated in Figure 9.8, which was used

in connection with studying this problem in the context of the maximum

stress failure criterion. As with the procedure when using the maximum

stress criterion, the stresses in the principal material system in each layer

are computed for the case of a unit load, P D 1 N. The load is assumed to

be multiplied by p, and so the stresses in each layer are also multiplied by p.

The primary question is to determine the value or values of p that, according

to the Tsai-Wu criterion, cause the tube to fail. These can be determined

by substituting the stresses due to load p into the Tsai-Wu criterion and

determining the value of p that causes the criterion to equal unity. Of course

the stresses in each layer are different and so there is an equation, involving

p; for each layer. The equation that leads to the lowest value of p indicates

which layer controls failure, and the value of p from this equation is the

failure load.

Table 9.2 presented the stresses in each layer due to a unit axial load, and

Table 9.3 gave the stresses due to a load p. For the C20ı layers, then, the

Tsai-Wu criterion, equation (10.38), predicts failure to occur when

F1.3830p/ C F2.�112:3p/ C F11.3830p/2

C F22.�112:3p/2 C F66.�148:7p/2

�
p

F11F22.3830p/.�112:3p/ D 1

(10.45)

which leads to a quadratic equation of the form

Ap2 C Dp C F D 0 (10.46)

Using the values of the coefficients F1; : : : ; F66 from Table 10.1 results in

A D 0:1444 � 10�10

D D �22 000 � 10�10

F D �1

(10.47)



Failure Example 7: Tube with Axial Load — Tsai-Wu 445

and solving for p leads to

p D �198 000 and p D C350 000 (10.48)

Thus the Tsai-Wu criterion predicts that the 20ı layers will fail due either to a

tensile load of C350 kN or to a compressive load of �198 kN. The simplicity

of the Tsai-Wu approach can certainly be appreciated. One equation, equation

(10.46), as compared to six, is much easier to deal with.

Using the stresses in the �20ı layers due to a load p, from Table 9.3, the

Tsai-Wu criterion predicts failure to occur when

F1.3830p/ C F2.�112:3p/ C F11.3830p/2

C F22.�112:3p/2 C F66.148:7p/2

�
p

F11F22.3830p/.�112:3p/ D 1

(10.49)

where this equation is, again, of the form

Ap2 C Dp C F D 0 (10.50)

with

A D 0:1444 � 10�10

D D �22 000 � 10�10

F D �1

(10.51)

This equation is identical with the equation for the C20ı layers and the roots

are thus

p D �198 000 and p D C350 000 (10.52)

The load levels that cause the C20ı layers to fail also cause the �20ı layers to

fail. Note that we have not discussed the mode of failure. Unlike the maximum

stress criterion, the Tsai-Wu criterion does not explicitly address failure mode.

However, shortly we shall address failure mode from the point of view of the

Tsai-Wu criterion. Recall from Table 9.6 that the maximum stress criterion

predicted the C20ı layers would fail at a tensile load of P D C392 kN due to

tensile stresses in the fiber direction and at compressive load of P D �327 kN

due to compressive stresses in the fiber direction. As Table 9.6 shows, these

same tensile and compressive load levels and failure modes were predicted

for the �20ı layers by the maximum stress criterion. These levels are larger

in absolute value than the C350 kN and �198 kN predicted by the Tsai-

Wu criterion. This is due to strength-reducing interactive effects in particular

octants in �1-�2-�12 space with the Tsai-Wu criterion.

The failure load for the 0ı layers is determined in a similar manner. Using

the stresses in the 0ı layers due to load p in the Tsai-Wu criterion leads to

F1.4770p/ C F2.�168:6p/ C F11.4770p/2 C F22.�168:6p/2

C F66.0p/2 �
p

F11F22.4770p/.�168:6p/ D 1
(10.53)
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Again a quadratic of the form

Ap2 C Dp C F D 0 (10.54)

results, with

A D 0:208 � 10�10

D D �31 600 � 10�10

F D �1

(10.55)

leading to roots

p D �156 000 and p D C308 000 (10.56)

For comparison, the maximum stress failure criterion predicts the values of

p D �262 kN and p D C315 kN for the 0ı layers. Table 10.2 summarizes

the values of p for the three layer orientations, and the predictions of the

maximum stress criterion are in parenthesis. Again, the primary reason for

the difference between the two criteria is the stress interaction effects inherent

in the Tsai-Wu criterion and absent from the maximum stress criterion. On

an overall basis, the Tsai-Wu criterion predicts a tensile failure load of

C308 kN, as opposed to C315 kN for the maximum stress criterion, and

a compression failure load of �156 kN, as opposed to �262 kN. While the

tensile load predictions are somewhat close, the compressive load predictions

are significantly different. Which one is correct? Actually, neither is correct.

Neither is incorrect. If, as discussed earlier, failure criteria are viewed as

indicators rather than absolute predictors, then having two answers is not so

disturbing.

To study the stress interaction effects, and the issue of failure mode as

predicted by the Tsai-Wu criterion, consider the following: At the failure

load level, the left-hand side of equation (10.38) sums to unity. Each of the

six terms on the left-hand side contributes to, or subtracts from, the trend

toward unity, depending on the values of the Fi and Fij , and the values of

TABLE 10.2. Summary of loads P (kN)

to cause failure in Œ˙20=03�S tube: Tsai-

Wu criterion�

 −198

(−327)

 −198

(−327)

 +350

(+392)

 −156

(−262)

 +350

(+392)

 +308

(+315)

Layer

+20°

−20°

0°

p (negative) p (positive)

* Maximum stress criterion prediction in

parenthesis.
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�1, �2, and �12 at failure. The contribution to unity of each of the six terms

at the failure load level can easily be computed. For example, using the two

values of p computed from equation (10.45) for the C20ı layers, we can

construct a table to show the contribution of each term on the left-hand side

of equation (10.38). Table 10.3 shows the results of these calculations for

the two values of p. The values of �1, �2, and �12 in the table are a result

of using the appropriate value of p and the entries of Table 9.3. For the

condition of a tensile failure load, P D C350 kN, it appears that the term

F11�
2
1 contributes significantly to the value of unity. However, the interaction

term �
p

F11F22�1�2 also contributes, as does the shear term F66�
2
12. The term

F2�2 tends to subtract. From these results, therefore, failure in the C20ı layers

when the applied load is tensile appears to be dominated by tensile failure

�1, but with some shear effects due to �12 and interaction with compressive

�2. Turning to Table 9.6, we can see that, according to the maximum stress

criterion, in the C20ı layers fiber direction tension controls the level of

applied tensile load. According to the Tsai-Wu criterion, this failure mode is

of primary importance, but interaction lowers the tensile load level relative

to the maximum stress criterion level, that is, C392 kN versus C350 kN.

For a compressive applied load, P D �198 kN, the F2�2 and F11�
2
1 terms

dominate, with the F1�1 and �
p

F11F22�1�2 terms contributing. These four

terms themselves nearly add to unity, signifying that interaction between

these two components is important. The idea that interaction is an issue is

further reinforced when the �198 kN level of allowable compressive load

for the Tsai-Wu criterion is compared with the �327 kN applied load of the

maximum stress criterion. The �327 kN level prediction is based on a fiber

direction compression stress failure with no interaction assumed.

Table 10.4 summarizes the contributions of the terms in the Tsai-Wu failure

criterion for each of the three-layer orientations in the Œ˙20=03�S tube at

TABLE 10.3. Contribution of terms in Tsai-Wu criterion

for C20ı layers in Œ˙20=03�S tube subject to tension

−758

    22.2

    29.4

1340

  −39.3

  −52.1

0.101

0.334

−0.179

−0.590

σ1

σ1

σ

σ2

σ2

σ

σ

τ

σ
1

2

12

, MPa

, MPa

 , MPa

F1

F2

1
2

2
2

−   F11F22

p = −198 000 N p = +350 000 N

τ 12
2

√

0.306

0.049

0.087

0.123

0.958

0.155

0.271

0.385

F11

F22

F66
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TABLE 10.4. Summary of loads P (kN) to cause failure in Œ˙20=03�S tube:

Tsai-Wu criterion�

−758

    22.2

    29.4

1340

  −39.3

  −52.1

0.101

0.334

−0.179

−0.590

σ

τ

σ
1

2

12

, MPa

, MPa

 , MPa

P = −198 P = +350

−758

    22.2

    29.4

1340

  −39.3

  −52.1

0.101

0.334

−743

    26.3

      0

0.099

0.394

−0.179

−0.590

1467

  −51.9

      0

–0.196

–0.779

P = −198 P = −156.0P = +350 P = +308

+20° layers −20° layers 0° layers

Total 1.000 1.000 1.000

σ1

σ2

F1

F2

* The maximum stress failure criterion predicts failure with a positive axial load of P = +315 kN; failure is due

 to tensile stresses in the fiber direction in the 0° layers.  Failure with a negative axial load occurs when

P =  −262 kN and is due to compression stresses in the fiber direction in the 0° layers.

σ1

σ

σ2

σ

1
2

2
2

−   F11F22

τ 12
2

√

F11

F22

F66

0.306

0.049

0.087

0.123

1.000

0.958

0.155

0.271

0.385

1.000

0.306

0.049

0.087

0.123

0.958

0.155

0.271

0.385

0.295

0.069

0

0.143

1.000

1.149

0.269

0

0.556

the failure load levels for each layer. For the 0ı layers at a tensile load of

P D C308 kN, the largest contribution to the unity value of the Tsai-Wu

criterion is due to F11�2
1 . However, the interaction term �

p
F11F22�1�2 adds,

while the F1�1 and F2�2 terms subtract. It could be stated that failure in the

0ı layers due to an applied tensile load is due to fiber failure, with some

interaction effects with �2. For a compressive axial load, the three largest

terms are F2�2, F11�
2
1 , and the interaction term. Because compressive axial

loads cause tensile �2 in the 0ı layers, interaction between �1 and �2 might

well be expected.

In summary, the results of Table 10.4 indicate the tube is limited in tension

to P D C308 kN due to tensile failure in the fiber direction in the 0ı layers.

The tube is limited in compression to P D �156 kN due to an interaction

between �1 and �2 in the 0ı layers. Though the limiting number from the

maximum stress criterion for a tensile value of P is similar (C315 kN), the

compression value of P is quite different (�156 kN versus �262 kN). The

0ı layers are predicted to be the critical layers for both criteria.

It should be mentioned that using the contributions in the Tsai-Wu criterion

to indicate the failure mode is not as definitive as the failure mode prediction

of the maximum stress criterion. However, using the contributions of the

Tsai-Wu criterion to indicate possible failure modes is in keeping with the

spirit of using failure criteria as indicators of failure rather than as absolute

predictors.

Before continuing to the second example, it is logical to ask the signifi-

cance of the negative contributions to the Tsai-Wu value of unity—that is,



Failure Example 8: Tube in Torsion — Tsai-Wu 449

F1�1 D �0:196 for the 0ı layers with P D C308 kN. Figure 10.12 showed

enhanced compressive strength in the fiber direction due to the presence of a

compressive �2—that is, the elongation of the ellipse beyond �1 D �C
1 in the

third quadrant. When such strengthening interaction is predicted, it appears

as a subtraction from the sum toward unity of the terms on the left-hand side

of the Tsai-Wu criterion.

Exercises for Section 10.2

1. Suppose the off-axis layers in the tube of Failure Example 1 were at ˙30ı instead

of ˙20ı. (a) Based on the Tsai-Wu criterion, what would be the axial load capacity

of the tube? (b) Would the failure mode and the layers that control failure be the

same as when the fibers were at ˙20ı? (To answer this question you essentially

must redo the example problem, starting with the stresses due to P D 1 N, i.e.,

Table 9.2.) (c) Compare the results with the predictions of the maximum stress

criterion, Exercise 1 in the Exercises for Section 9.2.

2. A Œ˙45=02�S graphite-reinforced plate is subjected to a biaxial loading such that

the stress resultant in the y direction is opposite in sign to and one-half the

magnitude of the stress resultant in the x direction. Call the stresses resultant

in the x direction N ; the loading is given by

Nx D N

Ny D �0:5N

Nxy D 0

(a) Use the Tsai-Wu criterion to compute the value of N to cause failure. (b) What

layers control failure? (c) Use the contribution to unity of each term in the criterion

to estimate the failure mode. To answer these questions, construct a table similar

to Table 10.4. (d) Compare the results with the predictions of the maximum stress

criterion, Exercise 2 in the Exercises for Section 9.2.

10.3 Failure Example 8: Tube in Torsion — Tsai-Wu Criterion

Turn now to the second example solved previously with the maximum stress

criterion, and consider that the Œ˙20=03�S tube is subjected to 225 kN tension

and that there is an unwanted amount of torsion, T . According to the Tsai-

Wu failure criterion, what is the maximum amount of torsion the tube can

withstand before it fails? What layer or layers control failure and what is the

mode of failure? How do the predictions compare with those of the maximum

stress criterion?

The situation was illustrated in Figure 9.9, and as we were when consider-

ing the maximum stress failure criterion, we shall be interested in the stresses

in each layer due to the 225 kN axial load, and an unknown to be solved

for the amount of torsion, t . Table 9.9 provided us with the stresses in each
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layer for this situation. Referring to this table, then, for the C20ı layers, we

find that the Tsai-Wu criterion, equation (10.38), becomes

F1.861 C 0:804t/ � 106 C F2.�25:3 � 0:048t/ � 106

C F11.861 C 0:804t/2 � 1012

C F22.�25:3 � 0:048t/2 � 1012

�
p

F11F22.861 C 0:804t/.�25:3 � 0:048t/ � 1012

C F66.�33:5 C 0:0552t/2 � 1012 D 1 (10.57)

Substituting for the values of F1; : : : ; F66 results in a quadratic equation of

the form

Bt2 C Et C F D 0 (10.58)

Here F , rather than being �1, as in equation (10.46), involves the stresses

due to the applied axial load and the Fi and Fij . In this case

B D 1:163 � 10�6

E D 235 � 10�6

F D �0:763

(10.59)

and the solution of equation (10.58) results in

t D �917 and t D C715 (10.60)

For the �20ı layers, the Tsai-Wu criterion becomes

F1.861 � 0:804t/ � 106 C F2.�25:3 C 0:048t/ � 106

C F11.861 � 0:804t/2 � 1012

C F22.�25:3 C 0:048t/2 � 1012

�
p

F11F22.861 � 0:804t/.�25:3 C 0:0408t/

�1012 C F66.33:5 C 0:0552t/2 � 106 D 1

(10.61)

resulting in

t D �715 and t D C917 (10.62)

Finally, following the above procedure for the 0ı layers leads to

t D �1125 and t D C1125 (10.63)

The results of this analysis are summarized in Table 10.5, and the contribu-

tions to unity for each layer and the six torsional load levels are included in

the table.

In Table 10.5 we see that a torsional load of T D ˙715 N�m causes failure

in the ˙20ı layers due to fiber tension. The stress component �1 is near its
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TABLE 10.5. Summary of torsions T (N�m) to cause failure in Œ˙20=03�S tube with

P D 0:225 MN: Tsai-Wu criterion�

123.7

  18.86

−84.1

1436

    59.7

      6.06

−0.016

0.283

−0.192

−0.896

σ

τ

σ
1

2

12

, MPa

, MPa

 , MPa

T = −917 T = +715

1436

  −59.7

    −6.06

123.7

  18.86

  84.1

−0.192

−0.896

1072

  −37.9

  −81.1

−0.143

−0.569



−0.016

0.283

1072

  −37.9

    81.1

−0.143

−0.569



T = −715 T = −1125T = +917 T = +1125

+20° layers −20° layers 0° layers

Total 1.000 1.000

* The maximum stress criterion predicts failure for a positive and negative torsion of T = ±795 N.m due to tensile

failure in the fiber direction in the ±20° layers.

σ1

σ2

F1

F2

σ1

σ

σ

σ

1
2

2
2

−   F11F22

τ 12
2

√

F11

F22

F66

0.008

0.036

0.707

−0.017

1.100

0.357

0.004

0.627

1.000

1.100

0.357

0.004

0.626

1.000

0.008

0.036

0.707

−0.017

1.000

0.613

0.144

0.658

0.297

1.000

0.613

0.144

0.658

0.2972

failure level of 1500 MPa, and the F11�
2
1 term is near unity. This failure

load level is close to the prediction of ˙795 N�m from the maximum stress

criterion, Table 9.11, and the predicted failure mode is the same.

Exercise for Section 10.3

A Œ˙45=02�S graphite reinforced plate is subjected to a biaxial loading such that the

stress resultant in the y direction is �0:200 MN/m and the stress resultant in the x

direction is variable, that is:

Nx D N

Ny D �0:200MN=m

Nxy D 0

(a) Use the Tsai-Wu failure criterion to compute the value of N required to cause

failure. (b) What layer or layers control failure? (c) What is the estimated mode of

failure? (d) Compare your results with the predictions of the maximum stress criterion

in the Exercise for Section 9.3.

10.4 Failure Example 9: Tube with Combined Load —

Tsai-Wu Criterion

The third example demonstrates an advantage of the single-equation view-

point of the Tsai-Wu failure criterion. The maximum stress criterion involves

six equations per layer and, when interpreted graphically, leads to somewhat

complicated figures (e.g., Figure 9.18). Consider the third example with the
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Tsai-Wu failure criterion applied rather than the maximum stress criterion.

Specifically, in a particular application the tube is being used with an axial

load P and a small torsional load T . According to the Tsai-Wu criterion,

what are the ranges of applied axial load and applied torque the tube can

withstand before it fails? What layer or layers control failure? What is the

mode of failure? How do the results compare with those of the maximum

stress criterion?

As stated at the time we studied this problem in the context of the maximum

stress criterion, this is truly a combined-stress problem. The stresses in each

layer due to an applied axial load p and a torsion t were given in Table 9.12.

In this case, both p and t are unknown and we wish to establish a relationship

between them based on the Tsai-Wu criterion. There will be a relation for

each layer, and in p-t space this relation will describe an ellipse. Any point

on the ellipse represents combinations of p and t that will produce failure in

that layer, while any point inside the ellipse represents combinations of p and

t that will not cause failure. Since each layer produces an ellipse, in p-t space

there will be three ellipses: one ellipse represents the failure characteristics for

the C20ı layers, the second ellipse represents the failure characteristics for

the �20ı layers, and the third ellipse represents the failure characteristics

for the 0ı layers. The region interior to all three ellipses will represent

the combinations of p and t that are “safe” for the tube as a whole. The

calculations for these ellipses are as follows:

For the C20ı layers, the Tsai-Wu criterion becomes

F1.0:00383pC0:804t/CF2.�0:0001123p�0:0481t/

CF11.0:00383pC0:804t/2 C F22.�0:0001123p � 0:0481t/2

�
p

F11F22.0:00383p C 0:804t/ � .�0:0001123p � 0:0481t/

CF66.�0:0001487p C 0:0552t/2 D 1

(10.64)

where substituting for the Fi and Fij leads to an equation of the form

Ap2 C Bt2 C Cpt C Dp C Et C F D 0 (10.65)

In the above,

A D 0:1444 � 10�10

B D 11 630 � 10�10

C D 47:3 � 10�10

D D �22 000 � 10�10

E D �82:9 � 10�5

F D �1

(10.66)

and in p-t space equation (10.65) represents an ellipse. For the case of

t D 0, this equation reduces to the form of equation (10.46), and to the form

of equation (10.58) when P D C225 kN. Figure 10.14 illustrates the ellipse
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FIGURE 10.14. Tsai-Wu failure ellipse for C20ı layers.

represented by equation (10.65), and the figure is drawn on the same scale as

Figure 9.15. Figure 10.14 is the Tsai-Wu criterion counterpart to Figure 9.15.

The skewing of the shaded region toward the fourth quadrant is evident in

Figure 10.14, as it was in Figure 9.15. The values of p and t which represent

load combinations that do not cause failure in the C20ı layers are given by

all points inside the ellipse. Points on the ellipse represent values of p and t

that result in failure of the C20ı layers.

On Figure 10.14 the points for T D 0 are noted. This corresponds to

the first example problem and leads to the values of P D �198:0 kN and

P D C350 kN. (See equation [10.48] and the discussion leading up to it.)

The points for P D 225 kN, which correspond to the second example, are

also shown, resulting in T D �917 N�m and T D C715 N�m. (See equation

[10.60] and the discussion leading up to it.) Of course, for the case of torsion

only (P D 0), the intercepts of the ellipse with the vertical axis provide

failure information.
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Applying the Tsai-Wu criterion to the �20ı and 0ı layers results in,

respectively,

F1.0:00383p � 0:804t/ C F2.�0:0001123p C 0:0481t/

C F11.0:00383p � 0:804t/2

C F22.�0:0001123p C 0:0481t/2

�
p

F11F22.0:00383p � 0:804t/

� .�0:0001123p C 0:0481t/

C F66.0:0001487p C 0:0552t/2 D 1

(10.67)

F1.0:00477p/ C F2.�0:0001686p/

C F11.0:00477p/2 C F22.�0:0001686p/2

�
p

F11F22.0:00477p/.�0:0001686p/

C F66.0:0721t/2 D 1

(10.68)

These are both of the form of equation (10.65). For the �20ı layers

A D 0:1444 � 10�10

B D 11 630 � 10�10

C D �47:3 � 10�10

D D �22 000 � 10�10

E D 82:9 � 10�5

F D �1

(10.69)

while for the 0ı layers

A D 0:208 � 10�10

B D 5200 � 10�10

C D 0

D D �31 600 � 10�10

E D 0

F D �1

(10.70)

The ellipse represented by equation (10.67) (the �20ı layers) is shown in

Figure 10.15, the counterpart to Figure 9.16 for the maximum stress criterion,
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FIGURE 10.15. Tsai-Wu failure ellipse for �20ı layers.

and the ellipse represented by equation (10.68) (the 0ı layers) is shown in

Figure 10.16, the counterpart to Figure 9.17. Note the interaction predicted by

the Tsai-Wu criterion in all four quadrants for these three ellipses, interaction

being identified by the smooth, as opposed to sharp, corners of the relations.

In Figure 10.17 the ellipse for the C20ı layers, the �20ı layers, and the 0ı

layers are superimposed. This figure is the counterpart to Figure 9.18, and

the area common to all three ellipses represents values of P and T that will

not cause failure in the tube. The common area is bounded on the upper side

by the ellipse for the �20ı layers and on the lower side by the ellipse for

the C20ı layers. Except for low values of T combined with extreme values

of P , failure in the tube is governed by the ˙20ı layers; this is somewhat

similar to the conclusions reached by studying Figure 9.18. It is possible to

associate various portions of the elliptical boundaries of the shaded region

with various modes of failure, or the interaction of various modes, for the
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FIGURE 10.16. Tsai-Wu failure ellipse for 0ı layers.

various layers. Alternatively, for specific values of P and T , a table similar

to Table 10.4 or Table 10.5 can be constructed to determine the contributions

of F1�1, F11�
2
1 , and the like. In either case, figures such as Figure 10.17,

which show how the various layers contribute to the overall failure envelope,

are very useful.

Before we leave the third example, it is interesting to compare the cal-

culations from the Tsai-Wu criterion with those from the maximum stress

criterion. Such a comparison is shown in Figure 10.18 for the 20ı lay-

ers, and in Figure 10.19 for the 0ı layers. In these figures the two crite-

ria are superposed and the safe regions are indicated. For both layers the

Tsai-Wu criterion is mostly within the maximum stress criterion. As stated

earlier, the rounding off of the sharp corners, or cusps, of the maximum

stress criterion by the Tsai-Wu criterion is due to interaction of the var-

ious stress components. The extensions of the Tsai-Wu criterion beyond
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FIGURE 10.17. Superposition of the Tsai-Wu failure ellipses for C20ı, �20ı, and

0ı layers.

the maximum stress criterion are also due to interaction effects, for ex-

ample, negative �2 strengthening negative �1 in the third quadrant of Fig-

ure 10.12.

Finally, Figure 10.20 combines the important portions of the maximum

stress criterion, Figure 9.18, and the three ellipses from the Tsai-Wu cri-

terion, Figure 10.17. The figure is rather complicated but it is clear that

for this problem, the region within the three ellipses is within the region

defined by the maximum stress criterion. This, as seen from the figures of

comparisons for specific layers, such as Figure 10.18, may not always be

the case.

This completes our treatment of the three tube problems, which were

studied using two different failure criteria. We shall now turn to solving

the three familiar problems involving flat laminates, namely, the Œ0=90�S and

Œ˙30=0�S laminate subjected to force and moment resultants.
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FIGURE 10.18. Comparison between maximum stress criterion and Tsai-Wu crite-

rion for C20ı layers for the tube subjected to combined axial load P and torsion T .

Exercise for Section 10.4

A Œ˙45=02�S graphite-reinforced plate is subjected to a biaxial loading; that is:

Nx D Nx

Ny D Ny

Nxy D 0

(a) Use the Tsai-Wu failure criterion to determine the no-failure region of the plate

in Nx � Ny space. To do this, plot the ellipses for the various layers and indicate

the safe region within the ellipses. Note that the cases of Exercise 2 in the Exercises

for Section 10.2 and the Exercise for Section 10.3 are included in this case. (b)
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FIGURE 10.19. Comparison between maximum stress criterion and Tsai-Wu crite-

rion for 0ı layers for tube subjected to combined axial load P and torsion T .

Compare the results with the predictions of the maximum stress criterion in the

Exercise for Section 9.4.

10.5 Failure Example 10: Œ0=90�S Laminate Subjected to Nx —

Tsai-Wu Criterion

To continue to contrast the predictions of the maximum stress failure criterion,

let us examine the case of the flat Œ0=90�S laminate subjected to a force

resultant Nx and use the Tsai-Wu failure criterion to predict the value of

load to produce failure. To be thorough in our failure analysis, we will

examine all layers. Because the Tsai-Wu criterion involves all principal stress
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FIGURE 10.20. Comparison between maximum stress criterion and Tsai-Wu crite-

rion for all layers for tube subjected to combined axial load P and torsion T .

components, it is useful to refer to the tabulation of stresses in each layer that

result from applying the force resultant Nx D nx, as presented in Table 9.13.

These stresses for each layer are substituted into the Tsai-Wu polynomial,

resulting in a quadratic equation for nx. For both the 0ı and 90ı layers the

polynomial is of the form

An2
x C Dnx C F D 0 (10.71)

where for the 0ı layers

A D 0:0421 � 10�10

D D 3560 � 10�10

C D �1

(10.72a)
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while for the 90ı layers

A D 0:0583 � 10�10

D D 36 000 � 10�10

C D �1

(10.72b)

The two values of nx can be computed for each layer and the contributions of

the various terms in the Tsai-Wu equation evaluated. Table 10.6 presents the

results of these steps; the results indicate that the 90ı layers control failure for

positive, or tension, loading, and predict a failure load level of 0.208 MN/m.

The 0ı layers control failure for compression loading; the compressive failure

load is �0:532 MN/m. The contributions of the various terms in the criterion

indicate tension loading is limited by failure in the 90ı layers due to tensile

stresses perpendicular to the fibers, while failure in compression is limited

by failure of the 0ı layers in fiber direction compression. The failure load

values predicted by the maximum stress criterion are included in the table. By

comparing Tables 9.14 and 10.6, we see that for a tensile load the two failure

criteria predict the same failure modes and nearly identical failure loads.

The compressive failure load predicted by the Tsai-Wu criterion, however,

is higher than that predicted by the maximum stress criterion, but the mode

is the same, namely, fiber compression. A strengthening interaction between

compressive �1 and compressive �2 in the 0ı layers is responsible for the

higher load prediction of the Tsai-Wu criterion, a strengthening that was

illustrated in the third quadrant of Figure 10.12.

TABLE 10.6. Summary of failure loads Nx (MN/m) for Œ0=90�S laminate:

Tsai-Wu criterion�

−1644

    −27.2

        0

1383

    22.9

      0

  0.219

−0.409

−0.184

  0.343

σ

τ

σ
1

2

12

, MPa

, MPa

 , MPa

Nx = −0.532 Nx = +0.447

      42.3

  −197.7

        0

−10.65

  49.8

    0

−0.006

−2.97

0.001

0.747

Nx = −0.825 Nx = +0.208

0° layers 90° layers

1.000 1.000 1.000 1.000

* The maximum stress failure criterion predicts failure with a positive load of Nx = +0.209 MN/m, with

failure due to tension perpendicular to the fibers in the 90° layers, and failure with a negative load of

Nx = −0.404 MN/m, with failure due to compression failure in the fiber direction in the 0° layers.

σ1

σ2

F1

F2



Total

σ1

σ

σ

σ

1
2

2
2

−   F11F22

τ 12
2

√

F11

F22

F66

1.442

0.074

0

−0.327

1.020

0.052

0

−0.231

0.001

3.91

0

0.0611

0

0.248

0

0.0042
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10.6 Failure Example 11: Œ˙30=0�S Laminate Subjected to Nx —

Tsai-Wu Criterion

To compute the failure loads for the Œ˙30=0�S laminate subjected to a stress

resultant Nx, we again use Table 9.15, constructed in Chapter 9 for the

principal material system stresses for the condition Nx D nx. The results from

the table can be used directly to determine the Tsai-Wu criterion polynomials

for nx. The polynomials are all of the form of equation (10.71) and the values

of the coefficients are:

For the ˙30ı layers:

A D 0:0254 � 10�10

D D �12 750 � 10�10

F D �1

(10.73a)

For the 0ı layers:

A D 0:0577 � 10�10

D D �23 400 � 1010

F D �1

(10.73b)

Table 10.7 summarizes the results and illustrates the contributions of the

various terms in the criterion. Examination of the table indicates that the

laminate is limited in tension by a load of Nx D C0:665 MN/m, where it

would appear that the mode of failure is due to a tensile stress in the fiber

direction in the 0ı layers. For compressive loading, the 0ı layers limit the

TABLE 10.7. Summary of failure loads Nx (MN/m) for Œ˙30=0�S laminate:

Tsai-Wu criterion�

−367

    32.8

    43.6

802

−71.6

−95.2

0.049

0.492

−0.106

−1.074

σ

τ

σ
1

2

12

, MPa

, MPa

 , MPa

Nx = −0.425 Nx = +0.926

−367

    32.8

  −43.6

802

−71.6

  95.2

0.049

0.492

−494

    36.2

      0

0.066

0.542

−0.107

−1.074

1261

  −92.5

      0

−0.168

−1.387

Nx = −0.425 Nx = −0.260Nx = +0.926 Nx = +0.665

+30° layers –30° layers 0° layers

1.000

* The maximum stress criterion predicts a maximum tensile load of +0.791 MN/m, with failure due to fiber

direction tensile stress, and a maximum compressive load of −0.360 MN/m, with failure due to tensile stress

perpendicular to the fibers.

σ1

σ2

F1

F2



Total

σ1

σ

σ

σ

1
2

2
2

−   F11F22

τ 12
2

√

F11

F22

F66

0.072

0.108

0.190

0.088

1.000

0.343

0.513

0.906

0.419

1.000

0.072

0.108

0.190

0.088

1.000

0.343

0.513

0.906

0.419

1.000

0.130

0.131

0

0.130

1.000

0.848

0.855

0

0.8522
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load to Nx D �0:260 MN/m due to what appears to be an interaction between

tensile �2 and compressive �1.

From Table 9.16, the maximum stress criterion predicts a maximum tensile

load of C0:791 MN/m, the limitation being fiber direction tension in the 0ı

layers. The two failure criteria are in agreement regarding this mode and load.

For a compressive loading, the maximum stress criterion predicts a load of

�0:360 MN/m, greater than the �0:260 MN/m compressive load predicted

by the Tsai-Wu criterion; both criteria, however, predict this failure to be

in the 0ı layers. According to Table 10.7, it appears that for the 0ı layers,

interaction between tensile �2 and compressive �1 in the Tsai-Wu criterion

leads to the lower predicted compressive load. The maximum stress criterion

failure mode for a compressive load is due to tensile �2. The excessive tensile

value of �2 is common to both criteria and hence must be an important aspect

of failure.

10.7 Failure Example 12: Œ˙30=0�S Laminate Subjected to Mx —

Tsai-Wu Criterion

We now turn to the case of bending of the Œ˙30=0�S laminate. As with the

maximum stress failure criterion, we must be concerned with examining the

potential for failure at both positive z and negative z locations. The principal

material system stresses at the outer location of each layer on the positive

z side of the laminate for the case of Mx D mx were presented in Table

9.17. Substituting these principal material system stresses into the Tsai-Wu

criterion results in an equation for all layers of the form

Am2
x C Dmx C F D 0 (10.74)

In particular, for the C30ı layer, at z D 0:450 mm,

A D 32:6 � 10�5

D D �1352 � 10�5

F D �1

(10.75a)

while for the �30ı layer, at z D 0:300 mm,

A D 23:7 � 10�5

D D �1433 � 10�5

F D �1

(10.75b)

and for the 0ı layer, at z D 0:150 mm,

A D 10:29 � 10�5

D D �1027 � 10�5

F D �1

(10.75c)
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The values of the two roots for each of the three polynomials and the

contributions of the various terms in the Tsai-Wu criterion are summarized

in Table 10.8. Care must be exercised in interpreting the results in this table.

In particular, we must recall that the stresses on the positive z side of the

laminate were used to compute the entries in this table. If the stresses on

the negative z side of the laminate were used, the two roots to the three

polynomials would be

mx D �79:8 and mx D 38:4

mx D �101:8 and mx D 41:4

mx D �160:3 and mx D 60:6

(10.76)

Though the magnitude of the roots did not change, the signs of each pair

switched. As a result, in a table like Table 10.8 the signs of the principal

stresses would switch and the signs of some of the contributions would switch.

It can thus be concluded that failure occurs when Mx D ˙38:4 N�m/m. The

failure is at the outer location of the C30ı layers and, according to the

contributions to the criterion, is due to a combination of shear stress and

tensile stress perpendicular to the fibers. Interestingly enough, for Mx D
˙41:4 N�m/m, the outer location of the �30ı layers fail due to the same

combination of stresses. Thus, it can be concluded that near Mx ' ˙40

N�m/m, the two outer layers experience cracking parallel with the fibers.

This significantly deteriorates the laminate. However, the 0ı layers are still

intact and the laminate can continue to carry load past Mx D ˙40 N�m/m.

TABLE 10.8. Summary of moments Mx (N�m/m) for Œ˙30=0�S laminate:

Tsai-Wu criterion�

−222

    32.6

    54.3

  462

  −67.8

−113.0

0.030

0.489

−0.062

−1.017

σ

τ

σ
1

2
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, MPa

, MPa

 , MPa

Mx = −38.4 Mx = 79.8

−373

    36.2

  −32.0

918

−89.1

  78.6

0.050

0.544

−455

    37.4

      5.20

0.061

0.561

−0.122

−1.337

1205

  −99.0

  −13.75

−0.161

−1.486

Mx = −41.4 Mx = −60.6Mx = 101.8 Mx = 160.3

Outer location

of +30° layers

Outer location

of −30° layers

Outer location

of 0° layers

1.000

* Positive z locations.  The maximum stress criterion predicts failure for a positive and negative moment at a load of

Mx = ±57.1 N.m/m due to tensile stress perpendicular to the fibers in the −30° layers.
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σ2

F1

F2



Total

σ1

σ

σ

σ

1
2
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−   F11F22
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2

√

F11

F22

F66

0.026
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0.295

0.053

1.000

0.1139

0.4600

1.276
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1.000

0.074

0.131

0.102
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1.000
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0.794
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0.597

1.000

0.111

0.140

0.003

0.124

1.000

0.775

0.981

0.019

0.8722
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In summary, for these last three examples the Tsai-Wu criterion generally

results in lower failure loads than the maximum stress criterion. The exception

to this was the higher load predicted for negative Nx in the Œ0=90�S laminate.

It was mentioned that this was due to third-quadrant interaction between �1

and �2. When there is a difference between the maximum stress and Tsai-Wu

criteria, examining the signs of the stresses and the magnitude of the various

components in the Tsai-Wu criterion, and referring to information like that in

Figures 10.12 and 10.13, can usually provide an explanation of the difference.

10.8 Summary

This completes our chapters on failure. Two distinctly different failure criteria

have been discussed and it has been shown in examples that they can lead

to different results. Other failure criteria will, of course, lead to other results.

The methodologies and procedures developed with the two criteria presented

can be used with other criteria. In fact, besides presenting two criteria that

are in use, the value of these past chapters is that they do point the way

for performing a failure analysis. Stresses must be calculated, these stresses

must be used in the equations representing the failure criteria, and the results

interpreted. This approach would be followed with any stress-based criterion.

With a strain-based criterion, strains in the principal material system would

be used rather than stresses. The key issue with any one failure criterion is,

“Does it accurately predict failure for your problem?” Generally, considerable

testing is required to determine if this is the case. Unfortunately, there does

not appear to be one universal criterion which works well for all situations and

all materials. Material properties, lamination sequence, and type of loading

all seem to influence which criterion works the best. For each particular class

of problems and class of materials, a careful study of test data and predictions

must be conducted before generalizations can be made. We suggest that more

than one criterion be used and the results compared, as we have done here.

Competing views are helpful!
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CHAPTER 11

Environmentally Induced Stresses
in Laminates

We have previously discussed how an element of fiber-reinforced material re-

sponds when its temperature is changed or it absorbs moisture. We discussed

this topic in the context of having no stresses on the surface of the element,

namely, free thermal- or moisture-induced strains, and in example problems

in the context of specifying certain constraints on the element. However, the

more important issue in the topic of free strains is determining their effect

when the element of material is part of a laminate. In a Œ0=90�S laminate, the

expansion of the 90ı layers in their 2, or x, direction due to heating would

be resisted by the contraction of the adjacent 0ı layers in their 1 direction,

also the x direction. The two adjacent layers would react in opposite manners

when heated. The net result must be stresses in the layers. These stresses then

add to stresses induced by any mechanical load, such as an Nx. The thermally

induced stresses can be accounted for in the context of classical lamination

theory. We do so in the following sections. The development parallels the

development of classical lamination theory in Chapters 6 and 7; the primary

difference is in the stress-strain relations used. Specifically, the effects of free

thermal strains must be included in the stress-strain relations. We have looked

at these relations in detail in previous chapters and thus are prepared to use

them.

11.1 Laminate Response

11.1.1 Displacements and Strains

The key assumption when we include free thermal strains in the study of

laminates is that, even with these strains present, the Kirchhoff hypothesis

is valid. Because by the Kirchhoff hypothesis straight lines normal to the

467
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reference surface of the laminate remain straight and normal, it is implied

that despite what can be radical dissimilarities in free thermal strains from one

layer to the next, as in the case of a Œ0=90�S laminate, the internal stress state

in the laminate adjusts so the lines remain straight. Determining just what

this internal stress state actually is will be one outcome of the development

of classical lamination theory that accounts for free thermal strains. Thus,

we assume Figures 6.10 and 6.11 accurately represent the deformations of a

laminate due to the actions of free thermal strains. The important difference

between what we have learned so far and the case of accounting for free

thermal strains is that now the displacements uo.x; y/, vo.x; y/, and wo.x; y/

are the total displacements of a point on the reference surface. This is a

subtle but extremely important point. Total displacements in the context of

free thermal strains and laminate response do not mean displacements due to

thermal effects added to displacements due to a mechanical load, such as Nx.

Rather, by total displacements is meant the following: When an unrestrained

element of material is heated, it deforms in accordance with the coefficients

of thermal expansion of the material and the temperature change. When an

element of material is part of a heated laminate, the element deforms, not in a

free manner, but in a manner dictated by the coefficients of thermal expansion

and the elastic properties of all the layers in the laminate, as well as by its

own coefficients of thermal expansion and elastic properties. The element

is no longer free; its displacement characteristics are dictated by the larger

character of the laminate. These laminate displacements are considered the

total displacements. It is the difference between the total displacements and

the free thermal displacements in an element that cause stresses to develop in

that element. Obviously, if the total displacements of the element are equal

to the displacements due to the free thermal strains, then stresses would not

develop. Generally, however, when the element is within a heated laminate,

this is not the case. Stresses develop in the element due to differences between

what the free element would like to do, and what it has to do because it is

part of a laminate. Laminates can indeed be subjected to both a temperature

change and a mechanical load, and for these situations there will be what

could also be termed total displacements. For the moment, however, let us

restrict our meaning of the word total to the former context.

With the understanding that the displacements represent the total displace-

ments, and that the Kirchhoff hypothesis applies, equations (6.12) through

(6.14) are then valid. They are repeated here for convenience as

u.x; y; z/ D uo.x; y/ � z
@wo.x; y/

@x

v.x; y; z/ D vo.x; y/ � z
@wo.x; y/

@y

w.x; y; z/ D wo.x; y/

(11.1)
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"x.x; y; z/ D "o
x.x; y/ C z�o

x.x; y/

"y.x; y; z/ D "o
y.x; y/ C z�o

y .x; y/

xy.x; y; z/ D o
xy.x; y/ C z�o

xy .x; y/

(11.2)

with

"o
x.x; y/ D @uo.x; y/

@x
and �o

x.x; y/ D � @2wo.x; y/

@x2

"o
y.x; y/ D @vo.x; y/

@y
and �o

y .x; y/ D � @2wo.x; y/

@y2

o
xy.x; y/ D @vo.x; y/

@x
C @uo.x; y/

@y
and �o

xy D �2
@2wo.x; y/

@x@y

(11.3)

These equations define the total reference surface strains and curvatures, and

hence the total strains as a function of thickness through the laminate.

11.1.2 Stresses

The second key assumption in the development of classical lamination theory

to reflect free thermal strain effects is that the laminate is in a state of

plane stress. From Chapter 5 the plane-stress stress-strain relations with

free thermal strain effects included are understood and are available. If the

reference surface strains and curvatures and the temperature at every point

within the laminate are specified, then, using the stress-strain relations and the

specification from equations (11.1)–(11.3) of how the strains vary through the

thickness, the distribution of the stresses through the thickness of the laminate

can be determined. The important point is that the stress-strain relations used

must include free thermal strain effects. Specifically, with free thermal strain

effects, the stress-strain relation for classical lamination theory follows from

equation (5.163), with �M D 0, as
8
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(11.4)

The pertinent coefficients of thermal deformation in the off-axis system are

given by equation (5.143) as

˛x D ˛1 cos2 � C ˛2 sin2 �

˛y D ˛1 sin2 � C ˛2 cos2 �

˛xy D 2.˛1 � ˛2/ cos � sin �

(11.5)
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Assuming the validity of the Kirchhoff hypothesis, having the concept

of total displacements in place, and invoking the plane-stress assumption,

we are ready to develop classical lamination theory to reflect the influence

of free thermal strains. Recall that the original development was motivated

by studying the strain and stress distributions in several examples, which

began by stating that the reference surface strains of specific laminates were

known. The strains and stresses through the thickness of the laminate were

then computed. We will repeat these examples here, but they will include free

thermal strain effects. As happened with the earlier examples, the graphical

representation of the distribution of the stresses through the thickness of the

laminate will provide motivation for defining force and moment resultants.

This will lead to the definition of the ABD matrix for the laminate. While the

definition of the ABD matrix is identical to the case for no thermal effects, the

relationship between the ABD matrix and the force and moment resultants is

not quite the same. Because stresses are the basis of the definition of the force

and moment resultants, and because the stress-strain relations involve the

free thermal strains, it is logical that this portion of the development would

be different. That the definition of the ABD matrix is not altered with the

introduction of free thermal strains is also logical. The ABD matrix involves

nothing but laminate elastic properties and geometry, neither of which is

altered by inclusion of free thermal strains. As we will see, the stress-strain

relations and the relationship between the ABD matrix and the stress resultants

are the only portions of the development of classical lamination theory that

are altered by the inclusion of free thermal strains.

In the examples to follow, we shall discuss a temperature change that has

physical significance. Polymer matrix composites generally are processed at

an elevated temperature. Thermoset matrix materials require elevated tem-

peratures to cure, and thermoplastic matrix materials require elevated tem-

peratures for the melting required for consolidation of layers. After a period

of time at the elevated temperature state the temperature of the composite

is reduced, eventually reaching ambient temperature. Though the composite

is soft at the elevated temperature, at some point in the cooling process the

material hardens to the point that the elastic and thermal expansion properties

of the composite are identifiable. Below this temperature, thermally induced

stresses begin to develop in the laminate. The temperature at which the

properties are identifiable is defined to be the stress-free temperature of the

laminate. Using the difference in temperature between the stress-free state

and the operating state of the structure provides an estimate of the processing

stresses in the laminate at its operating state. The level of these processing

stresses can influence the load-carrying capacity of the laminate. A 150ıC

temperature difference between the stress-free and operational temperatures

of the structure would be considered representative of many composites. In

the following examples, then, we shall use a �T of �150ıC in the calculation

of stresses.
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11.2 Examples of Laminate Response

11.2.1 CLT Example 9: Œ0=90�S Laminate Subjected

to Known "o
x and Known �T

As the first example, consider the often-discussed Œ0=90�S laminate. Assume

that at a particular point .x; y/ on the reference surface

"o
x.x; y/ D 1000 � 10�6 �o

x.x; y/ D 0

"o
y.x; y/ D 0 �o

y .x; y/ D 0

o
xy.x; y/ D 0 �o

xy .x; y/ D 0

(11.6)

and the temperature change at every point within the laminate is �T D
�150ıC. The distribution of the total strains through the thickness of the

laminate at that point is given by

"x.x; y; z/ D "o
x.x; y/ C z�o

x .x; y/ D 1000 � 10�6

"y.x; y; z/ D "o
y.x; y/ C z�o

y .x; y/ D 0

xy.x; y; z/ D o
xy.x; y/ C z�o

x.x; y/ D 0

(11.7)

as shown in Figure 6.13. Because we are specifying the total strains, the

picture of the strains is independent of how they are produced. Thus, this

figure from Chapter 6, where thermal strains were not mentioned, is valid.

The stresses in the x-y system that result from these strains are given by

the stress-strain relations of equation (11.4). For the present situation, this

equation becomes, for all layers,
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(11.8)

Even though there is no total extensional strain in the y direction nor total

shear strain, there is a free thermal extensional strain in the y direction and,

in general, a free thermal shear strain. These contribute to the mechanical

strains and influence the stresses in the laminate, even though the total strain

is the same as in the Chapter 6 example without thermally induced effects.

For the Œ0=90�S laminate the coefficients of thermal deformation in x-y-z

system are given by equation (11.5), for the 0ı layers, as

˛x D ˛1 D �0:018 � 10�6=ıC

˛y D ˛2 D 24:3 � 10�6=ıC

˛xy D 0

.11:9a/
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while for the 90ı layers

˛x D ˛2 D 24:3 � 10�6=ıC

˛y D ˛1 D �0:018 � 10�6=ıC

˛xy D 0

.11:9b/

Numerically, then, for the 0ı layers, from equations (11.8) and (11.9a), with

�T D �150ıC,

�x D 166:3 MPa

�y D 47:3 MPa

�xy D 0

.11:10a/

For the 90ı layers, from equations (11.8) and (11.9b),

�x D 56:5 MPa

�y D 13:59 MPa

�xy D 0

.11:10b/

The values of the reduced stiffnesses were given in Chapter 6 in connection

with CLT Example 1. These stresses should be compared with the stresses for

no thermal effects, equations (6.28) and (6.29). Figure 11.1 gives a graphical

comparison of the Œ0=90�S laminate with and without thermal effects. The

stress states represented by these two situations are different, the stresses

being greater for the case of thermal effects, particularly in the y direction.

This is not always the case and thus the findings of this example should

not be generalized. Here the large free thermal strain in the 2 direction,

due to the combination of the �150ıC temperature change and the large

coefficient of thermal expansion in that direction, is responsible for the

differences.

Each of the stresses of equation (11.10) can be thought of as being due

to contributions from two parts. One part corresponds to the product of

the reduced stiffness matrix and the total strain, and the second part to

the product of the reduced stiffness matrix and the free thermal strains.

Accordingly, equation (11.10a), which applies to the 0ı layers, could be

written to read

�x D 155:7 C 10:57 MPa

�y D 3:02 C 44:3 MPa

�xy D 0

.11:11a/

while for the 90ı layers, equation (11.10b) could be written to read

�x D 12:16 C 44:3 MPa

�y D 3:02 C 10:57 MPa

�xy D 0

.11:11b/
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FIGURE 11.1. Stress distribution through the thickness of Œ0=90�S laminate sub-

jected to "o
x D 1000 � 10�6, �T D �150ıC.

The second term in each sum is the stress due to free thermal strain effects,

while the first term is identical to the stress for the case of no free thermal

strain effects, equations (6.28) and (6.29). The material feels the sum and

does not distinguish between the portion of the stress due to the total strains

and the portion of the stress due to free thermal strains. However, for an

illustration of physical effects, it is sometimes useful to examine the two

portions.

By using the transformation relations, we find that the total strains in the

principal material coordinate system are the same as for the case of no thermal

effects in Chapter 6, equations (6.35) and (6.37), as illustrated in Figure 6.16.

They are, for the 0ı layers,

"1 D 1000 � 10�6

"2 D 0

12 D 0

.11:12a/
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and for the 90ı layers

"1 D 0

"2 D 1000 � 10�6

12 D 0

.11:12b/

By transformation, the principal material system stresses are, for the 0ı layers,

�1 D 166:3 MPa

�2 D 47:3 MPa

�12 D 0

.11:13a/

and for the 90ı layers

�1 D 13:59 MPa

�2 D 56:5 MPa

�12 D 0

.11:13b/

It is important to note that �2 in the 90ı layers is greater than the failure stress

level of 50 MPa. Comparing this to the case of no thermal effects, equations

(6.38) and (6.40), we can see that inclusion of the effects of cooldown

from the processing temperature can be critical. Figure 11.2 compares the

principal material system stresses for these two Œ0=90�S cases, and the large

contribution to �2 from the free thermal strain is quite evident.

In equation (11.11), we studied the effect on the stresses of the free thermal

strains in the x-y coordinate system by looking at the various contributions in

the stress calculations. We can repeat this study for the 1-2 principal material

coordinate system by looking at the total strains and the free thermal strains in

that system. In fact, the separation of stresses into a portion due to total strain

and a portion due to free thermal strain makes more sense in the principal

material system. In that system it is possible to see directly how the portion

of the stress attributable to free thermal strain influences failure. The key

equation for each layer for examining the contributions, then, is equation

(4.30), repeated here for convenience as
8
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(11.14)

In the principal material coordinate system the contributions of the free

thermal strains to the stresses are the same for each layer, namely,

�T
1 D �.Q11˛1 C Q12˛2/�T

�T
2 D �.Q12˛1 C Q22˛2/�T

(11.15)

There is no influence of free thermal strains on the shear stresses in the

principal material system. The notation �T
1 and �T

2 is introduced strictly for
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FIGURE 11.2. Principal material system stress distribution through the thickness of

Œ0=90�S laminate subjected to "o
x D 1000 � 10�6, �T D �150ıC.

convenience, even though it risks the possibility of the physical interpretation

that there are thermal stresses and nonthermal stresses in a problem. As

mentioned earlier, this is not the case. There are stresses, period! The physical

interpretation that can, however, be assigned to �T
1 and �T

2 is that these are

the stresses in the principal material system that would result if a laminate,

or a single layer for that matter, was restrained such that

"o
x D "o

y D o
xy D �o

x D �o
y D �o

xy D 0 (11.16)

One useful characteristic of the quantities �T
1 and �T

2 is that they are inde-

pendent of the laminate, independent of how the laminate is being deformed,

independent of the orientation of the layer, and depend only on principal

material system properties and the temperature change. In fact, one can go

one step further and introduce the quantities

O�T
1 D Q11˛1 C Q12˛2

O�T
2 D Q12˛1 C Q22˛2

(11.17)
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These are strictly material properties. For the problem here

O�T
1 D 0:0705 MPa=ıC

O�T
2 D 0:295 MPa=ıC

(11.18)

Using �T D �150ıC, from equation (11.15),

�T
1 D 10:57 MPa

�T
2 D 44:3 MPa

(11.19)

and, hence, the stresses in the principal material system have the contributions,

for the 0ı layers,

�1 D 155:7 C 10:57 D 166:3 MPa

�2 D 3:02 C 44:3 D 47:3 MPa
.11:20a/

and for the 90ı layers

�1 D 3:02 C 10:57 D 13:59 MPa

�2 D 12:16 C 44:3 D 56:5 MPa
.11:20b/

A close examination of Figure 11.2 reveals that in the principal material

system, the difference between the stresses �1 for the thermal case and for

the nonthermal case is �T
1 for each layer. Likewise, the difference between

the stresses �2 for the thermal case and for the nonthermal case is �T
2 for each

layer. Thermal effects simply shift horizontally the principal material system

stresses in each layer; the shift is the same for each layer (see Figure 11.2).

This same simple shift in each layer is not the situation with the stresses in

the x-y global coordinate system (see Figure 11.1).

As mentioned in Chapter 2, the mechanical strains cannot be identified

with any specific dimensional changes, as the free thermal strains and the

total strains can, and thus they have no physical significance. However, it is

useful to compare mechanical strains when studying problems with thermal

effects. Recall, for the case of no thermal effects, the mechanical strains

are the total strains. For the problem here, the total strains are given in the

principal material system by equation (11.12). With thermal effects, from

equation (4.31), the mechanical strains in the principal material system are,

for the 0ı layers,

"mech
1 D 997 � 10�6

"mech
2 D 3640 � 10�6

mech
12 D 0

.11:21a/

and for the 90ı layers,

"mech
1 D �2:70 � 10�6

"mech
2 D 4640 � 10�6

mech
12 D 0

.11:21b/
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FIGURE 11.3. Principal material system mechanical strain distribution through the

thickness of Œ0=90�S laminate subjected to "o
x D 1000 � 10�6, �T D �150ıC.

Figure 11.3 presents the mechanical strains in the principal material system

for both thermal effects and no thermal effects. If mechanical strains are

viewed as the drivers for the stress-strain relations, from Figure 11.3 we can

see that the case of including free thermal strains would lead to higher �2

stresses for this problem.

11.2.2 CLT Example 10: Œ˙30=0�S Laminate Subjected

to Known �o
x and Known �T

As a second example, consider the Œ˙30=0�S laminate deformed such that at

a point on the reference surface

"o
x.x; y/ D 0 �o

x.x; y/ D 2:22 m�1

"o
y.x; y/ D 0 �o

y.x; y/ D 0

o
xy.x; y/ D 0 �o

xy.x; y/ D 0

(11.22)
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with the temperature change being �T D �150ıC at all locations. The

distribution of total strains through the laminate is

"x.x; y; z/ D "o
x.x; y/ C z�o

x.x; y/ D 2:22z

"y.x; y; z/ D "o
y.x; y/ C z�o

y.x; y/ D 0

xy.x; y; z/ D o
xy.x; y/ C z�o

xy .x; y/ D 0

(11.23)

These total strains are the same as those illustrated in Figure 6.33, and for

this particular case equation (11.4) becomes
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(11.24)

The coefficients of thermal deformation are given by equation (11.5) as

follows:

For the C30ı layers:

˛x D 6:06 � 10�6=ıC

˛y D 18:22 � 10�6=ıC

˛xy D �21:1 � 10�6=ıC

.11:25a/

For the �30ı layers:

˛x D 6:06 � 10�6=ıC

˛y D 18:22 � 10�6=ıC

˛xy D 21:1 � 10�6=ıC

.11:25b/

For the 0ı layers:

˛x D �0:018 � 10�6=ıC

˛y D 24:3 � 10�6=ıC

˛xy D 0

.11:25c/

Using these in equation (11.24) for the various layers yields, we find that

for the C30ı layers:

�x D 206 000z C 19:00 MPa

�y D 66 800z C 35:9 MPa

�xy D 103 800z � 14:61 MPa

.11:26a/

For the �30ı layers:

�x D 206 000z C 19:00 MPa

�y D 66 800z C 35:9 MPa

�xy D �103 800z C 14:61 MPa

.11:26b/
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For the 0ı layers:

�x D 346 000z C 10:57 MPa

�y D 6700z C 44:3 MPa

�xy D 0

.11:26c/

These follow directly from the numerical values of the reduced stiffnesses,

the coefficients of thermal deformation, and the temperature change. Clearly

the constant portion of each of the three stress components in the above

equations is attributable to the free thermal strains, and the portions that

vary linearly with z are identical to the calculations for this problem with

no thermal effects, equation (6.118). Figure 11.4 shows the distribution of

the three stresses through the thickness of the laminate. While the effects of

free thermal strains on �x are not as great as their effects on �y or �xy , it is

very important to note that with these particular free thermal strain effects,

the stress distributions are not odd functions of z. For the stress �y , for
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FIGURE 11.4. Stress distribution through the thickness of Œ˙30=0�S laminate

subjected to �o
x D 2:22 m�1, �T D �150ıC.
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example, the stresses are positive throughout the thickness. With no thermal

effects, both positive and negative stresses occur. The constant stress portions

in equation (11.26) prevent the stresses from being odd functions of z.

The total strains in the principal material system are as they were in

Figure 6.36, where they were determined by transforming the total strains

from the x-y system. For the record:

For the C30ı layers:

"1 D 1:667z

"2 D 0:556z

12 D �1:924z

.11:27a/

For the �30ı layers:

"1 D 1:667z

"2 D 0:556z

12 D 1:924z

.11:27b/

For the 0ı layers:

"1 D 2:22z

"2 D 12 D 0
.11:27c/

Stresses in the principal material system are determined by transforming

the stresses from the x-y system, equation (11.26), or by using the total

strains and the free thermal strains in the stress-strain relations in the principal

material system. Though we have used the former method in the past, use

of the latter method for this problem with free thermal strains affords an

opportunity to see the contributions to the stress calculations in the spirit of

equations (11.15) and (11.19). With this latter approach equation (4.30) is

used directly for each layer orientation. With either approach, the principal

material system stresses are:

For the C30ı layers:

�1 D 261 000z C 10:57 MPa

�2 D 11 780z C 44:3 MPa

�12 D �8470z MPa

.11:28a/

For the �30ı layers:

�1 D 261 000z C 10:57 MPa

�2 D 11 780z C 44:3 MPa

�12 D 8470z MPa

.11:28b/

For the 0ı layers:

�1 D 346 000z C 10:57 MPa

�2 D 6700z C 44:3 MPa

�12 D 0

.11:28c/
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Again, in the principal material system, as seen in Figure 11.5, free thermal

strain effects simply shift horizontally the stresses �1 and �2 relative to the

no-thermal-effects case by the amount �T
1 and �T

2 , respectively. As in the

Œ0=90�S laminate just studied, the stress component �2 is much larger in the

presence of free thermal strain effects, while the stress component �1 is not

influenced that much. In the principal material system, the shear stresses are

unchanged. At z D 0:450 mm the influence of free thermal strains brings the

stress �2 close to the failure value.

The mechanical strains are given by the following expressions:

For the C30ı layers:

"mech
1 D 1:667z � 2:7 � 10�6

"mech
2 D 0:556z C 3640 � 10�6

mech
12 D �1:924z

.11:29a/
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FIGURE 11.5. Principal material system stress distribution through the thickness of

Œ˙30=0�S laminate subjected to �o
x D 2:22 m�1, �T D �150ıC.
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For the �30ı layers:

"mech
1 D 1:667z � 2:7 � 10�6

"mech
2 D 0:556z C 3640 � 10�6

mech
12 D 1:924z

.11:29b/

For the 0ı layers:

"mech
1 D 2:22z � 2:7 � 10�6

"mech
2 D 3640 � 10�6

12 D 0

.11:29c/

The convenience of the principal material coordinate system is again ob-

vious, with the same free thermal strains subtracting from the total strains in

the same manner, independent of layer. In addition to convenience, stresses

and strains have much more physical significance in the principal material

system. Figure 11.6 illustrates the distributions of the mechanical strains.

11.3 Force and Moment Resultants in Examples

By examining the distributions of the stresses through the thickness of the

laminates, Figures 11.1 and 11.4, it is clear that stress resultants, in the form

of force and moment resultants, can be defined. Furthermore, if we compare

the case of thermal effects with the case of no thermal effects, it appears

that the values of the force and moment resultants will not be the same. In

this section we will integrate the stresses through the thickness and compute

numerical values of the force and moment resultants. In the next section we

shall formally define the resultants.

11.3.1 Stress Resultant Calculation for CLT Example 9:

Œ0=90�S Laminate Subjected to Known "o
x

and Known �T

From Chapter 6 for the Œ0=90�S case with no thermal effects, integration of

the stresses through the thickness, equations (6.58)–(6.63), showed that the

force resultants were

Nx D 50 400 N/m Mx D 0

Ny D 1809 N/m My D 0

Nxy D 0 Mxy D 0

(11.30)
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FIGURE 11.6. Principal material system mechanical strain distribution through the

thickness of Œ˙30=0�S laminate subjected to �o
x D 2:22 m�1, �T D �150ıC.

From equation (11.10), integration of the stresses through the thickness of

this laminate for the case of thermal effects leads to

Nx D Œ.166:3 C 56:5 C 56:5 C 166:3/ � 106�.150 � 10�6/

Ny D Œ.47:3 C 13:59 C 13:59 C 47:3/ � 106�.150 � 10�6/

Nxy D 0

(11.31)

Because in this case the stress distributions are even functions of z, there are

no moment resultants. The above algebra results in

Nx D 66 800 N/m Mx D 0

Ny D 18 270 N/m My D 0

Nxy D 0 Mxy D 0

(11.32)
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and the proper interpretation of this problem is that if a point on the ref-

erence surface of a Œ0=90�S laminate is to have the deformations given

by equation (11.6) in the presence of a temperature decrease of 150ıC

relative to the stress-free state, then the resultants given by equation (11.32)

are required at that point. If we compare the force resultants required for

the case of no free thermal strain effects with the case of including free

thermal strain effects, equation (11.30) versus equation (11.32), it becomes

evident that to enforce the same state of deformation, the inclusion of free

thermal strain effects requires that the stress resultants must be different.

In particular, Ny must increase by a factor of 10. Why is this the case?

We shall find that when heated or cooled, a laminate will deform. In par-

ticular, a Œ0=90�S laminate will contract when cooled. With the Œ0=90�S
laminate we are specifying only a specific elongation strain in the x direction.

To enforce this specified deformation requires greater force resultants to

overcome the tendency of the laminate to contract in both the x and y

directions when cooled 150ıC. More will be said of the thermal deformations

of laminates later. However, to emphasize that additional forces are indeed

required, another interpretation of the results here is that if a Œ0=90�S laminate

with length Lx D 0:250 m in the x direction and width Ly D 0:125

m in the y direction is to have the deformations of equation (11.6) valid

everywhere on its 0.0312 m2 of reference surface, then there must be a

force

Nx � Ly D 66 800 N/m � 0:125 m D 8350 N (11.33)

acting in the x direction and uniformly distributed along edge Ly , and a

force

Ny � Lx D 18 270 N/m � 0:250 m D 4570 N (11.34)

acting in the y direction and uniformly distributed along the edge Lx . For

the case of no thermal effects, the forces required are 6300 and 452 N, re-

spectively. The inclusion of free thermal strain effects requires real additional

forces to produce a given state of deformation. The edge forces are illustrated

in Figure 11.7; these results contrast the results of Figure 6.26, the case with

no thermal effects.

11.3.2 Stress Resultant Calculation for CLT Example 10:

Œ˙30=0�S Laminate Subjected to Known �o
x

and Known �T

For the Œ˙30=0�S laminate with no thermal effects, in Chapter 6 we saw that

no force resultants were required to enforce the curvature-only deformation

of equation (11.22), but moment resultants were. Specifically, from equation
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4570 N

4570 N

8350 N

8350 N

0.250 m

0.125 m

y
x

z

FIGURE 11.7. Forces required to produce state of deformation "o
x D 1000 � 10�6

in Œ0=90�S laminate with �T D �150ıC.

(6.124), the force and moment resultants were

Nx D 0 Mx D 12:84 N�m/m

Ny D 0 My D 3:92 N�m/m

Nxy D 0 Mxy D 2:80 N �m/m

(11.35)

With thermal effects, from equation (11.26), the force resultant Nx required

is

Nx D
(

Z

�300�10�6

�450�10�6

.206 000z C 19:00/dz

C
Z

�150�10�6

�300�10�6

.206 000z C 19:00/dz

C
Z 0

�150�10�6

.346 000z C 10:57/dz

C
Z 150�10�6

0

.346 000z C 10:57/dz

C
Z 300�10�6

150�10�6

.206 000z C 19:00/dz

C
Z 450�10�6

300�10�6

.206 000z C 19:00/dz

)

� 106

(11.36)

These integrands consist of odd parts, those proportional to z, and even parts.

The parts proportional to z in the first and sixth integrations sum to zero.
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There is a similar pairing and summing to zero for the odd parts of the other

four integrals. The net result is

Nx D Œ.19:00 C 19:00 C 10:57 C 10:57 C 19:00 C 19:00/ � 106�.150 � 10�6/

or (11.37)

Nx D 0:01457 MN/m

In a similar fashion, the odd parts summing to zero for the computations for

Ny and Nxy results in

Ny D 0:0348 MN/m (11.38)

and

Nxy D 0 (11.39)

Unlike the case with no thermal effects, force resultants are required if the

curvature-only deformations of equation (11.22) are to be produced in the

presence of free thermal strain effects. This is an interesting revelation!

The moment resultant Mx required is, from equation (11.26),

Mx D
(

Z

�300�10�6

�450�10�6

.206 000z C 19:00/zdz

C
Z

�150�10�6

�300�10�6

.206 000z C 19:00/zdz

C
Z 0

�150�10�6

.346 000z C 10:57/zdz

C
Z 150�10�6

0

.346 000z C 10:57/zdz

C
Z 300�10�6

150�10�6

.206 000z C 19:00/zdz

C
Z 450�10�6

300�10�6

.206 000z C 19:00/zdz

)

� 106

(11.40)

The integrands again consist of odd parts, those proportional to z, and even

parts, those proportional to z2. The odd parts contribute nothing to the overall

integration, whereas the even parts are identical to the integration with no

thermal effects present, equation (6.120). The net result is that the moment

is the same as the case with no thermal effects present, namely,

Mx D 12:84 N�m/m (11.41)
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Likewise, the other two moment resultants are unaffected by the presence of

thermal effects. So

My D 3:92 N�m/m (11.42)

and

Mxy D 2:80 N�m/m (11.43)

Thus, to produce the deformations of equation (11.22) at a point on the refer-

ence surface of a Œ˙30=0�S laminate in the presence of a 150ıC temperature

decrease relative to the stress-free state requires the following resultants at

that point:

Nx D 0:01457 MN/m Mx D 12:84 N �m/m

Ny D 0:0348 MN/m My D 3:92 N�m/m

Nxy D 0 Mxy D 2:80 N�m/m

(11.44)

If a laminate that is 0.250 m long by 0.125 m wide is to have these defor-

mations at every point on its reference surface, then uniformly distributed

bending moments of 1.605 N�m and uniformly distributed twisting moments

of 0.350 N�m are required along the 0.125 m edges, and uniformly distributed

bending moments of 0.981 N�m and uniformly distributed twisting moments

of 0.701 N�m are required along the 0.250 m edges. In addition, along the

0.125 m edges uniformly distributed forces of 1822 N in the x direction

are required, and along the 0.250 m edges uniformly distributed forces of

8700 N in the y direction are required. Figure 11.8 illustrates these forces,

and this figure should be compared to Figure 6.35, the case with no thermal

0.701 N⋅m

8700 N

0.981 N⋅m

0.701 N⋅m

8700 N

0.981 N⋅m

1.605 N⋅m

1.605 N⋅m

0.350 N⋅m

0.350 N⋅m

1822 N

1822 N

0.125 m

y
x

z

0.250 m

FIGURE 11.8. Forces and moments required to produce state of deformation �o
x D

2:22 m�1 in Œ˙30=0�S laminate with �T D �150ıC.
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effects. The force resultants are required because of the natural tendency of

this laminate to contract in both the x and y directions when cooled. These

contractions would violate the requirement of no reference surface strains,

that is, equation (11.22).

We will later make a general statement regarding symmetric laminates

in the presence of temperature changes that are not functions of z, but the

generalization is important and might as well be made at this time also.

That general statement is: Temperature changes that are independent of the z

coordinate have no effect on the moment resultants of a symmetric laminate.

They do, however, have an effect on the force resultants.

As stated earlier, it has been assumed throughout the discussion that the

temperature change �T is independent of z. This resulted in the use of �T D
�150ıC at all layer locations. It is certainly possible to solve problems where

the temperature varies with z. The basic formulation used above would still be

employed. The functional dependence of �T on z would be used in the stress-

strain relations, equation (5.163), to determine how the stresses varied with

z. If the temperature varied linearly with z in the problem with the Œ0=90�S
laminate, the stresses would not be independent of z within a layer; rather,

they would vary linearly with z. Then moment resultants would be required, in

addition to force resultants, if the reference surface deformations of equation

(11.6) were to remain valid. The exact moments required would be computed

by integration of the stress distributions through the thickness, as in equation

(11.40). Please note: The approaches being discussed are fundamental. They

can be applied to problems more complicated than our example problems.

Consequently, it is important—but sometimes not so easy—to comprehend

all the subtleties of the simpler example problems before thinking of more

advanced problems.

11.4 Definitions of Thermal Force and Moment Resultants

In the previous section we informally used the definitions of force and

moment resultants introduced in Chapter 7, equations (7.1) and (7.3), to

compute the numerical values of the resultants for the two thermal problems.

We bring these definitions forward for convenience; they are

Nx �
Z H

2

�
H

2

�xdz Mx �
Z H

2

�
H

2

�xzdz

Ny �
Z H

2

�
H

2

�ydz My �
Z H

2

�
H

2

�yzdz

Nxy �
Z H

2

�
H

2

�xydz Mxy �
Z H

2

�
H

2

�xyzdz

(11.45)
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Considering the differential elements of Figures 7.2 and 7.3, we find that

the physical interpretation of these force and moment resultants is the same,

independently of whether or not free thermal strain effects are being included.

The stresses in the integrals are what the material “senses” and are what will

cause the material to fail; they are physical. The integrals of these stresses,

namely, the resultants, are the net effect of these stresses and are thus also

physical. They can be measured with any force-measuring device.

In Chapter 7 we substituted the plane-stress stress-strain relations, in terms

of the NQij , into the integrands of the above equations and carried out the

integration. The result was a relationship between the stress resultants and

the reference surface strains and curvatures—the all-important ABD matrix

relationship. As shown in Figure 7.4, this relationship completed the loop in

the analysis of the stresses and strains of a laminate. For the case of including

free thermal strains in the stress-strain relations, the relationship between the

reference surface strains and curvatures and the stress resultants is different.

This was indeed seen in the example problems. For the same states of strains

and curvatures on the reference surface, the Œ0=90� and Œ˙30=0�S laminates

with free thermal strain effects and a temperature change of �150ıC required

different values of the force and moment resultants relative to the values

required if free thermal strain effects were not present. To see this formally,

let us examine Nx using the definition from equation (11.45) and the stress-

strain relations with free thermal effects included, equation (11.4):

Nx D
Z H

2

�
H

2

n

NQ11."
o
x C z�o

x � ˛x�T / C NQ12."o
y C z�o

y � ˛y�T /

C NQ16.
o
xy C z�o

xy � ˛xy�T /
o

dz

(11.46)

where expanding the integrand results in

Nx D
Z H

2

�
H

2

n

NQ11"
o
x C NQ11z�o

x C NQ12"
o
y C NQ12z�o

y C NQ16
o
xy

C NQ16z�o
xy � . NQ11˛x C NQ12˛y C NQ16˛xy/�T

o

dz

(11.47)

The integration can be distributed over the seven terms to give

Nx D
Z H

2

�
H

2

NQ11"o
xdz C

Z H

2

�
H

2

NQ11z�o
xdz C

Z H

2

�
H

2

NQ12"o
ydz

C
Z H

2

�
H

2

NQ12z�o
ydz C

Z H

2

�
H

2

NQ16
o
xydz C

Z H

2

�
H

2

NQ16z�o
xydz

�
Z H

2

�
H

2

. NQ11˛x C NQ12˛y C NQ16˛xy/�T dz

(11.48)



490 ENVIRONMENTALLY INDUCED STRESSES IN LAMINATES

The first six terms should be quite familiar, following the derivation in

Chapter 7, while the seventh term is new. Integration with respect to z results

in

Nx D A11"
o
x C A12"

o
y C A16

o
xy C B11�

o
x C B12�

o
y

C B16�
o
xy � N T

x

(11.49)

where the seventh term,

N T
x D

Z H

2

�
H

2

. NQ11˛x C NQ12˛y C NQ16˛xy/�T dz (11.50)

has the units of the force resultants, namely, N/m, and is referred to as a

thermal force resultant. In particular, it is the thermal force resultant in the x

direction. Note, it involves material properties, the temperature change, and

by virtue of the spatial integration with respect to z, the layer thicknesses

and locations. The definitions of the other two force resultants follow similar

steps, and the results are

Ny D A12"o
x C A22"

o
y C A26

o
xy C B12�

o
x C B22�

o
y

C B26�
o
xy � N T

y

(11.51)

and

Nxy D A16"
o
x C A26"

o
y C A66

o
xy C B16�

o
x C B26�

o
y

C B66�
o
xy � N T

xy

(11.52)

where the thermal force resultants in the y direction and in shear are given

by

N T
y D

Z H

2

�
H

2

. NQ12˛x C NQ22˛y C NQ26˛xy/�T dz (11.53)

and

N T
xy D

Z H

2

�
H

2

. NQ16˛x C NQ26˛y C NQ66˛xy/�T dz (11.54)

The moment resultants can be studied by substituting into the definition of

Mx, namely,

Mx D
Z H

2

�
H

2

n

NQ11."
o
x C z�o

x � ˛x�T / C NQ12."o
y C z�o

y � ˛y�T /

C NQ16.
o
xy C z�o

xy � ˛xy�T /
o

zdz

(11.55)
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Expanding equation (11.55), we find that

Mx D
Z H

2

�
H

2

n

NQ11"
o
x C NQ11z�o

x C NQ12"o
y C NQ12z�o

y C NQ16
o
xy

C NQ16z�o
xy � . NQ11˛x C NQ12˛y C NQ16˛xy/�T

o

zdz

(11.56)

and the integration can be distributed over the seven terms to give

Mx D
Z H

2

�
H

2

NQ11"
o
xzdz C

Z H

2

�
H

2

NQ11z�o
xzdz C

Z H

2

�
H

2

NQ12"o
yzdz

C
Z H

2

�
H

2

NQ12z�o
yzdz C

Z H

2

�
H

2

NQ16
o
xyzdz

C
Z H

2

�
H

2

NQ16z�o
xyzdz

�
Z H

2

�
H

2

. NQ11˛x C NQ12˛y C NQ16˛xy/�T zdz

(11.57)

The first six terms should again be familiar; the seventh term is new. Inte-

gration with respect to z results in

Mx D B11"
o
x C B12"

o
y C B16

o
xy C D11�

o
x C D12�

o
y

C D16�
o
xy � M T

x

(11.58)

where the seventh term,

M T
x D

Z H

2

�
H

2

. NQ11˛x C NQ12˛y C NQ16˛xy/�T zdz (11.59)

has the units of the moment resultants, namely, N�m/m, and is referred to

as a thermal moment resultant. It, like the thermal force resultants, involves

material properties, the temperature change, and, by virtue of the spatial inte-

gration with respect to z, the layer thicknesses and locations. The definitions

of the other two moment resultants follow similar steps, resulting in

My D B12"
o
x C B22"

o
y C B26

o
xy C D12�

o
x C D22�o

y

C D26�
o
xy � M T

y

(11.60)

and

Mxy D B16"
o
x C B26"

o
y C B66

o
xy C D16�

o
x C D26�o

y

C D66�o
xy � M T

xy

(11.61)
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where the thermal moment resultants in the y direction and in shear are given

by

M T
y D

Z H

2

�
H

2

. NQ12˛x C NQ22˛y C NQ26˛xy/�T zdz (11.62)

and

M T
xy D

Z H

2

�
H

2

. NQ16˛x C NQ26˛y C NQ66˛xy/�T zdz (11.63)

In summary, then, with a slight rearrangement, the relation between the stress

resultants and the reference surface strains and curvatures is
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(11.64)

This is a key equation for the thermo-mechanical analysis of laminates. In

the above, gathering definitions, we find that

N T
x D

Z H

2

�
H

2

. NQ11˛x C NQ12˛y C NQ16˛xy/�T dz

N T
y D

Z H

2

�
H

2

. NQ12˛x C NQ22˛y C NQ26˛xy/�T dz

N T
xy D

Z H

2

�
H

2

. NQ16˛x C NQ26˛y C NQ66˛xy/�T dz

M T
x D

Z H

2

�
H

2

. NQ11˛x C NQ12˛y C NQ16˛xy/�T zdz

M T
y D

Z H

2

�
H

2

. NQ12˛x C NQ22˛y C NQ26˛xy/�T zdz

M T
xy D

Z H

2

�
H

2

. NQ16˛x C NQ26˛y C NQ66˛xy/�T zdz

(11.65)
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The inverse relation is

8
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(11.66)

where the aij , bij , and dij are as defined in equation (7.87b). This is another

key equation for the thermomechanical analysis of laminates.

From the form of equation (11.66), it is obvious that the thermal forces

and moments have an important role in determining the deformations of a

laminate. For the case of only a temperature change and no force or moment

resultants, that is,

Nx D Ny D Nxy D Mx D My D Mxy D 0 (11.67)

equation (11.66) indicates there are deformations in the laminate caused

strictly by the free thermal strains of each layer.

From the form of equation (11.64), it is quite evident why in our series

of examples with the Œ0=90�S and Œ˙30=0�S laminates the enforcement of

a specific state of deformation at a point on the reference surface required

different values of Nx; : : : ; Mxy , depending on whether or not thermal effects

were present. For a given state of reference surface deformation, the right-

hand side of equation (11.64) is fixed. Thus, the values of Nx ; : : : ; Mxy

depend on the values of N T
x ; : : : ; M T

xy . With no thermal effects, one set of

values is required, while with thermal effects, a different set of values is

required.

The integral form of the definitions of the thermal force and moment

resultants in equation (11.65) makes these definitions quite general. If the

temperature change is a general but known function of z, the integration can

be carried out. The values of the material properties, namely, the transformed

reduced stiffnesses and coefficients of thermal expansion, are generally con-

sidered constant within a layer and, thus, integration with z shifts to how the

temperature change varies with z. Heat transfer in thin laminates is generally

quite rapid and, hence, thermal gradients are not often encountered. The

temperature change �T would most likely, then, be independent of z, as it

was in our examples. For thicker laminates, temperatures could vary with

thickness, for example, linearly. If high temperatures are involved in these

gradients, the dependence of elastic properties on temperature may have to

be incorporated in the calculations. If the temperature changes with z, and
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if the material properties change with temperature, then the integrations can

be complicated. They can, however, be approximated numerically and used

directly in equations (11.64) or (11.66). In light of these considerations, a

given problem will generally involve both thermal force resultants and thermal

moment resultants, and the computation of these resultants may not be trivial.

The concepts, however, are straightforward.

As mentioned at the start of this section, a parallel development can be used

to address the influence of free moisture strains in laminates. Accordingly, the

key point in such a parallel development would be the definition of moisture

stress resultants. For the most general case of having no restrictions on the

distribution of moisture with thickness, and no restrictions on the dependence

of material properties on moisture content, the definitions of the moisture

stress resultants would be

N M
x D

Z H

2

�
H

2

. NQ11ˇx C NQ12ˇy C NQ16ˇxy/�Mdz

N M
y D
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�
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. NQ16ˇx C NQ26ˇy C NQ66ˇxy/�Mdz

M M
x D

Z H

2

�
H

2
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y D

Z H

2
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H

2
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M M
xy D

Z H

2

�
H

2

. NQ16ˇx C NQ26ˇy C NQ66ˇxy/�Mzdz

(11.68)

11.5 Definitions of Unit Thermal Force and

Moment Resultants

If the temperature is independent of z, the temperature change �T can

be removed from within the integrals, and the thermal force and moment

resultants can be written as

N T
x D ON T

x �T M T
x D OM T

x �T

N T
y D ON T

y �T M T
y D OM T

y �T

N T
xy D ON T

xy�T M T
xy D OM T

xy�T

(11.69)
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where the hatted quantities are strictly material properties and are given by

ON T
x D

Z H

2

�
H

2

. NQ11˛x C NQ12˛y C NQ16˛xy/dz

ON T
y D

Z H

2

�
H

2

. NQ12˛x C NQ22˛y C NQ26˛xy/dz

ON T
xy D

Z H

2

�
H

2

. NQ16˛x C NQ26˛y C NQ66˛xy/dz

OM T
x D

Z H

2

�
H

2

. NQ11˛x C NQ12˛y C NQ16˛xy/zdz

OM T
y D

Z H

2

�
H

2

. NQ12˛x C NQ22˛y C NQ26˛xy/zdz

OM T
xy D

Z H

2

�
H

2

. NQ16˛x C NQ26˛y C NQ66˛xy/zdz

(11.70)

If the material properties can be considered constant through the thickness

of each layer—a highly likely situation if the temperature is independent of

z—then the integrals become simple sums in the manner of the integrals

defining the Aij , Bij , and Dij . From integrating equation (11.70), we find

that these sums are

ON T
x D

N
X

kD1

. NQ11k
˛xk

C NQ12k
˛yk

C NQ16k
˛xyk

/.zk � zk�1/

ON T
y D

N
X

kD1

. NQ12k
˛xk

C NQ22k
˛yk

C NQ26k
˛xyk

/.zk � zk�1/

ON T
xy D

N
X

kD1

. NQ16k
˛xk

C NQ26k
˛yk

C NQ66k
˛xyk

/.zk � zk�1/

OM T
x D 1

2

N
X

kD1

. NQ11k
˛xk

C NQ12k
˛yk

C NQ16k
˛xyk

/.z2
k � z2

k�1/

OM T
y D 1

2

N
X

kD1

. NQ12k
˛xk

C NQ22k
˛yk

C NQ26k
˛xyk

/.z2
k � z2

k�1/

OM T
xy D 1

2

N
X

kD1

. NQ16k
˛xk

C NQ26k
˛yk

C NQ66k
˛xyk

/.z2
k � z2

k�1/

(11.71)
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These quantities can be conveniently computed for a laminate in much the

same manner as the Aij , Bij , and Dij are computed. The quantities ON T
x ; : : : ,

OM T
xy have the physical interpretation of thermal stress resultants per unit

temperature change, and as a result, will be referred to as unit thermal stress

resultants. The unit thermal stress resultants are material properties, just as the

Aij , Bij , and Dij are, and they yield the thermal stress resultants by simply

multiplying them by the temperature change, �T . However, the concept of

thermal stress resultants per unit temperature change as presented is not useful

if the temperature change is a function of z. From this point forward, the

discussions will consider only situations where the temperature is independent

of z. We shall be thus able to effectively use ON T
x ; : : : ; OM T

xy . For the Œ0=90�S
laminate,

ON T
x D 109:8 N/m=ıC OM T

x D 0

ON T
y D 109:8 N/m=ıC OM T

y D 0

ON T
xy D 0 OM T

xy D 0

(11.72)

while for the Œ˙30=0�S laminate,

ON T
x D 97:2 N/m=ıC OM T

x D 0

ON T
y D 232 N/m=ıC OM T

y D 0

ON T
xy D 0 OM T

xy D 0

(11.73)

The values of ON T
xy , OM T

x , OM T
y , and OM T

xy are zero for both laminates. This

is because both are symmetric balanced laminates. Like the values of the

components of the ABD matrix, some components of the unit thermal stress

resultants will be zero for certain types of laminates. This will be discussed

in more detail shortly.

If the change in moisture, �M , is independent of z, then �M in equation

(11.68) can be removed from within the integral and unit moisture force and

moment resultants, in the spirit of equations (11.69), (11.70), and (11.71),

can be defined. A word of caution, however: Whereas the diffusion of heat

within a fiber-reinforced composite material is quite rapid, thus minimizing

the number of situations where the temperature change �T is dependent

on z, the diffusion of moisture within a fiber-reinforced material is quite

slow. Diffusion of moisture to a condition of spatial uniformity can take

months, even years, depending on the thickness of a laminate. Thus, within

the time scale of a particular problem, �M may never be independent of

z. The distribution must be known and used in the integral to evaluate the

moisture force and moment resultants. Assuming they are being used in the

proper context, and are based on the definitions of the unit thermal force and
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moment resultants, we find that the unit moisture force and moment resultants

are defined as

ON M
x D

N
X

kD1

. NQ11k
ˇxk

C NQ12k
ˇyk

C NQ16k
ˇxyk

/.zk � zk�1/

ON M
y D

N
X

kD1

. NQ12k
ˇxk

C NQ22k
ˇyk

C NQ26k
ˇxyk

/.zk � zk�1/

ON M
xy D

N
X

kD1

. NQ16k
ˇxk

C NQ26k
ˇyk

C NQ66k
ˇxyk

/.zk � zk�1/

OM M
x D 1

2

N
X

kD1

. NQ11k
ˇxk

C NQ12k
ˇyk

C NQ16k
ˇxyk

/.z2
k � z2

k�1/

OM M
y D 1

2

N
X

kD1

. NQ12k
ˇxk

C NQ22k
ˇyk

C NQ26k
ˇxyk

/.z2
k � z2

k�1/

OM M
xy D 1

2

N
X

kD1

. NQ16k
ˇxk

C NQ26k
ˇyk

C NQ66k
ˇxyk

/.z2
k � z2

k�1/

(11.74)

For the Œ0=90�S laminate

ON M
x D 28 700 N/m=% OM M

x D 0

ON M
y D 28 700 N/m=% OM M

y D 0

ON M
xy D 0 OM M

xy D 0

(11.75)

and for the Œ˙30=0�S laminate

ON M
x D 36 600 N/m=% OM M

x D 0

ON M
y D 49 400 N/m=% OM M

y D 0

ON M
xy D 0 OM M

xy D 0

(11.76)

where the coefficients of moisture expansion from Table 2.1 have been used.

11.6 The Effect of Laminate Classification on the

Unit Thermal Force and Moment Resultants

Just as some components of the ABD matrix are identically zero, depending

on whether a laminate is classified as symmetric, balanced, cross-plied, or
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some combination of these three characteristics, some of the thermal force

and moment resultants may also be zero for these laminate classifications.

For a temperature change that depends on z, no general statements can

be made. The specific dependence of temperature on z, the specific fiber

orientations, and the specific stacking sequence must be considered case by

case. However, for temperature changes that are independent of z, some of

the unit thermal force and moment resultants are identically zero for specific

classes of laminates.

11.6.1 Symmetric Laminates

For symmetric laminates, all three components of the unit thermal moment

resultants are zero. In equation (11.70), in the definitions of the unit thermal

moment resultants, the material properties in each integrand are even func-

tions of z, causing the entire integrand in each case to be an odd function of

z. Each of the three moment integrals, and hence each of the three moment

sums in equation (11.71), are zero. For symmetric laminates, then,

ON T
x ¤ 0 OM T

x D 0

ON T
y ¤ 0 OM T

y D 0

ON T
xy ¤ 0 OM T

xy D 0

(11.77)

11.6.2 Balanced Laminates

For balanced laminates, the unit thermal force resultant ON T
xy is zero. In

equation (11.70), in the definition of ON T
xy , the values of NQ16, NQ26, and ˛xy

in the layer oriented at �� are opposite in sign to, but equal in magnitude

to, respectively, the values of NQ16, NQ26, and ˛xy for the C� layer. Because

in balanced laminates there is this layer pairing for all layers, the value of

the integral for the entire laminate is zero, resulting in

ON T
x ¤ 0 OM T

x ¤ 0

ON T
y ¤ 0 OM T

y ¤ 0

ON T
xy D 0 OM T

xy ¤ 0

(11.78)

11.6.3 Symmetric Balanced Laminates

If the laminate is symmetric and balanced, then the combined effects of the

previous two classifications apply, and the unit thermal force and moment
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resultants are

ON T
x ¤ 0 OM T

x D 0

ON T
y ¤ 0 OM T

y D 0

ON T
xy D 0 OM T

xy D 0

(11.79)

There are only two nonzero unit resultants.

11.6.4 Cross-ply Laminates

If the laminate is a cross-ply, and thus consists only of layers at 0 and 90ı,
NQ16, NQ26, and ˛xy are zero for every layer, and the unit resultants are

ON T
x ¤ 0 OM T

x ¤ 0

ON T
y ¤ 0 OM T

y ¤ 0

ON T
xy D 0 OM T

xy D 0

(11.80)

11.6.5 Symmetric Cross-ply Laminates

For symmetric cross-ply laminates, the unit moments in equation (11.80) are

zero. The unit force and moment resultants are as they are for the symmetric

balanced case, equation (11.79), namely,

ON T
x ¤ 0 OM T

x D 0

ON T
y ¤ 0 OM T

y D 0

ON T
xy D 0 OM T

xy D 0

(11.81)

11.6.6 Single Isotropic Layer

For a single isotropic layer

ON T
x D EH˛

1 � �2
OM T

x D 0

ON T
y D ON T

x
OM T

y D 0

ON T
xy D 0 OM T

xy D 0

(11.82)

where ˛ is the coefficient of thermal expansion of the isotropic material.

Exercise for Section 11.6

Compute the unit thermal stress resultants for the graphite-reinforced Œ˙30=0�T of

CLT Example 5.
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Computer Exercise

Add to your program the capability to compute the unit thermal forces and moments.

This will require you to compute the values of ˛x , ˛y , and ˛xy for each layer. Print out

the value of these material properties. Also add the capability to read in a temperature

change that is independent of z. Check the values of equations (11.72) and (11.73)

with your program, and the results from the Exercise above.

11.7 Free Thermal Response of Laminates

We now have all the governing equations and accompanying formal defini-

tions to study the stresses and strains within a laminate due to the inclusion

of free thermal strain effects in the material. In Chapters 6, 7, and 8 we

carefully studied many examples of laminate response due to loads. Studying

the stresses and strains due to both loads and free thermal strain effects is

now within our reach. We shall do that shortly and, as before, we shall

compare the thermal and nonthermal cases. However, one class of problems

is very important in studying thermal effects in laminated fiber-reinforced

composite materials: the stresses and strains in laminates due only to a

temperature change. For this class of problems the stress resultants are zero;

hence, the terminology free thermal response of laminates is used. We begin

our discussion with the presentation of some general theory, which will be

followed with specific examples.

11.7.1 Equations Governing Free Thermal Response

of Laminates

If the loads are zero, then the reference surface strains and curvatures are

strictly a result of the thermal force and moment resultants. Equation (11.66),

the inverse of the classical relationship involving the ABD matrix, is the

preferred form for studying free thermal response. That equation is, for this

case of no applied loads,
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Utilizing the definition of the unit thermal resultants, this equation becomes
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What is quite interesting is that except for �T , every quantity on the right

side of the equation is a material property, or depends on laminate geometry.

If �T D 1, then the deformations of the reference surface, the left side of the

above equation, are completely determined by layer material properties, layer

orientation, layer location, and layer thickness. It can be concluded that the

response of the laminate due to a spatially uniform unit temperature change

is an inherent property of the laminate. Because for a general laminate each

term in the inverse of the ABD matrix is nonzero, and because all the unit

thermal resultants are nonzero, the reference surface deformation due to a

temperature change involves all three strains and all three curvatures. Thus,

if a general laminate is flat at its processing temperature, as the temperature

is reduced to the ambient temperature, the laminate deforms in a complex

fashion.

Whether or not the laminate is general, whether or not the temperature

change being discussed is measured relative to the processing temperature,

and whether or not the temperature change is unity, once the strains and

curvatures of the reference surface are known, from equation (11.83), the

strain distributions through the thickness of the laminate can be determined,

as we have done many times. With the strains known, the stresses can be

computed by using the stress-strain relations with the effects of free thermal

strain included, that is, equation (11.4). If every point on the reference surface

of a laminate has the same strains and curvatures, due to the fact that the

temperature is not a function of x or y, then the change in dimensions, and the

change in shape, of the laminate can be determined from the reference surface

deformations. If the laminate is unsymmetric, reference surface curvatures

develop, leading to out-of-plane displacements. In fact, if the reference surface

strains and curvatures do not vary with x or y, then equation (11.3) can be

integrated to give

uo.x; y/ D "o
xx C C1y C C2

vo.x; y/ D "o
yy C .o

xy � C1/x C C3

wo.x; y/ D � 1

2
.�o

xx2 C �o
yy2 C �o

xyxy/ C K1x C K2y C K3

(11.85)

This integration was done in connection with equations (7.132) and (7.154),

except here "o
x; : : : ; �o

xy are due to thermal effects. As in previous chapters,
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the constants C1; C2; : : : ; K3 represent rigid body displacements and rotations,

and they can be arbitrarily equated to zero. Though we will not utilize the

above equations much, they are quite valuable for determining deformations

of a laminate due to temperature changes. If the laminate is symmetric, then

equation (11.84) simplifies considerably to
8
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and

�o
x D �o

y D �o
xy D 0 (11.87)

As a result of a temperature change, the laminate expands or contracts in

the x and y directions, and the corner right angles, considering a rectangular

laminate, change. The reference surface displacements are given by

uo.x; y/ D "o
xx

vo.x; y/ D "o
yy C o

xyx

wo.x; y/ D 0

(11.88)

where the constants have been equated to zero.

If in addition to being symmetric, the laminate is balanced, then equations

(11.86) and (11.87) become
(

"o
x

"o
y

)

D
"

a11 a12

a12 a22

# ( ON T
x

ON T
y

)

�T (11.89)

and

o
xy D �o

x D �o
y D �o

xy D 0 (11.90)

Equations (11.89) and (11.90) are also applicable if the laminate is of a

symmetric cross-ply construction.

11.7.2 Laminate Coefficients of Thermal Expansion

Considering the special case of symmetric laminates with no stress resultants

applied, and considering a unit temperature change, the reference surface

strains are given by

"o
x D a11

ON T
x C a12

ON T
y C a16

ON T
xy

"o
y D a12

ON T
x C a22

ON T
y C a26

ON T
xy

o
xy D a16

ON T
x C a26

ON T
y C a66

ON T
xy

(11.91)
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Because there are no curvatures, and hence no out-of-plane displacements,

these expressions quantify the strains of the laminate in the x and y directions,

and the change in right angles, due simply to a unit temperature change. This

is precisely like the definitions of the coefficient of thermal deformation in

the first three expressions of equation (5.143), that is, the deformations due

to a unit temperature change when an element of material is free in space.

Though in a laminate there are stresses within the layers, overall, the integrals

of these stresses (i.e., the stress resultants) are zero. Thus, in the global sense

the laminate is free. Hence, we define the laminate coefficients of thermal

deformation to be

N̨x � a11
ON T

x C a12
ON T

y C a16
ON T

xy

N̨y � a12
ON T

x C a22
ON T

y C a26
ON T

xy

N̨xy � a16
ON T

x C a26
ON T

y C a66
ON T

xy

(11.92)

These coefficients of thermal deformation are strictly material properties, and

are thus an inherent property of the laminate. They, like the components of

the ABD matrix, can be computed quite readily for a given laminate. We

should emphasize that these coefficients of thermal deformation apply only

to deformations in the x and y directions. Even though a temperature change

does not cause any out-of-plane deformations of the reference surface if the

laminate is symmetric, the thickness of a laminate changes as the temperature

is increased or decreased. In the next chapter, we shall study the thickness

deformations of a laminate due to a temperature change. If in addition to

being symmetric, the laminate is balanced, or if the laminate is cross-plied,

then A16, A26, and ON T
xy are identically zero and the remaining coefficients

can be written in a somewhat more basic form as

N̨x �
A22

ON T
x � A12

ON T
y

A11A22 � A2
12

N̨y �
A11

ON T
y � A12

ON T
x

A11A22 � A2
12

(11.93)

Because there is no right-angle change associated with this case, these co-

efficients are more commonly referred to as laminate coefficients of thermal

expansion, a nomenclature more in keeping with traditional material proper-

ties. By examining the expressions for thermal expansion, we can see that one

of the advantages of laminated fiber-reinforced composite materials is that the

coefficient of thermal expansion in one direction can be made to be zero. By

the proper choice of material properties and fiber angles, it is possible to

have the numerator in one of the two expressions above be zero. It would be

very rare if both coefficients could be made zero simultaneously. However,

having even one coefficient zero leads to many applications, as having no

dimensional change in spite of a temperature change is a useful property. As
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might be expected, the zero coefficient does not come without a price. In

many cases, with the coefficient of thermal expansion in one direction being

zero, the coefficient of expansion in the other direction may be quite large. In

addition, knowing that heating individual layers causes them to expand in the

2 direction and contract in the 1 direction, we see that fabricating a laminate

that has no expansion in one direction can lead to high stresses within the

layers.

In analogy to the laminate coefficients of thermal deformation and coeffi-

cients of thermal expansion, the laminate coefficients of moisture deformation

and coefficients of moisture expansion can be defined, as in equations (11.92)

and (11.93), as follows:

Ň
x � a11

ON M
x C a12

ON M
y C a16

ON M
xy

Ň
y � a12

ON M
x C a22

ON M
y C a26

ON M
xy

Ň
xy � a16

ON M
x C a26

ON M
y C a66

ON M
xy

(11.94)

Ň
x �

A22
ON M

x � A12
ON M

y

A11A22 � A2
12

Ň
y �

A11
ON M

y � A12
ON M

x

A11A22 � A2
12

(11.95)

11.8 Examples of Laminate Free Thermal Response

To gain further insight into the effects of free thermal strains on laminate

response, let us examine the free thermal response of the familiar Œ0=90�S
and Œ˙30=0�S laminates. In addition, because it represents an unsymmetric

laminate, we shall also examine the free thermal response of the Œ˙30=0�T
laminate. A temperature change of �150ıC will be considered; this, as men-

tioned before, represents the temperature difference between the processing

temperature of the laminate, a condition where the stresses and deformations

are assumed to be zero, and the operating temperature. The stresses that result

from this cooldown from processing are called residual thermal stresses, or

processing stresses. Here we will use the former nomenclature.

11.8.1 CLT Example 11: Œ0=90�S Laminate Subjected

to a Known �T

It is useful to compute the coefficients of thermal expansion of a laminate

to develop a feeling of how the various layers, each with its own specific
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orientations, interact to produce an overall expansion. Accordingly, we gave

the values of the unit thermal stress resultants for the Œ0=90�S laminate in

equation (11.72), and using these values in the definitions of the coefficient

of thermal expansion, equation (11.93), and the values of A11, A12, and A22

from equation (7.88a), we compute the coefficients of thermal expansion for

the Œ0=90�S graphite-reinforced laminate as

N̨x D 2:10 � 10�6=ıC

N̨y D N̨x

(11.96)

The coefficients of thermal expansion are the same in the x and y directions

because for both directions there are two layers with fibers parallel to that

direction and two layers with fibers perpendicular to that direction. That

the coefficients are close to 2 � 10�6=ıC demonstrates the strong influence

of the fiber-direction stiffness. Table 2.1 indicates that this cross-ply has a

thermal expansion coefficient 10 times smaller than aluminum and about 5

times smaller than steel, whose coefficient of thermal expansion is 10:80 �
10�6=ıC.

Turning now to the computation of residual thermal stresses, because the

Œ0=90�S laminate is a cross-ply laminate, the distributions of the total strains

through the thickness of the laminate, above and below some point .x; y/

on the reference surface, are determined by direct application of equation

(11.89). The numerical values of all the quantities required in those relations

have been presented, and the total strains for the 150ıC temperature decrease

are

"o
x D "o

y D �316 � 10�6 (11.97)

Alternatively, the total strains in the x and y directions are the coefficients

of thermal expansion for the laminate multiplied by �150ıC. A Œ0=90�S
laminate 0.250 m long by 0.125 m wide before the temperature change is

249.921 mm long by 124.960 mm wide after the temperature change, the

laminate obviously having contracted when cooling. There are no thermally

induced shear deformations for this problem. The distributions of the total

strains through the thickness of the laminate are illustrated in Figure 11.9.

The residual stresses due to cooldown are calculated by using the stress-

strain relations of equation (11.4). Because there are no curvatures and o
xy D

0, the details of equation (11.4) are simplified. Using the total strains from

equation (11.97), the values of ˛x and ˛y from equation (11.9), and the values

of the reduced stiffnesses, the NQij , from Chapter 6, we find that the residual

stresses in the 0ı layers are

�x D �39:5 MPa

�y D 39:5 MPa

�xy D 0

.11:98a/
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FIGURE 11.9. Strain distribution through the thickness of Œ0=90�S laminate sub-

jected to �T D �150ıC.

while the stresses in the 90ı layers are

�x D 39:5 MPa

�y D �39:5 MPa

�xy D 0

.11:98b/

where the equal and opposite nature of the stresses should be noted. The

distributions of these stresses are illustrated in Figure 11.10, and the equal

and opposite nature of the stresses must be the case if the integrals of the

stresses, namely, the stress resultants, are to be zero (which they must be

for laminate free thermal response). The sign of the stresses is interesting;

cooling causes the fiber direction to experience compression, and the direction

perpendicular to the fibers to experience tension. The physics of the signs of

these stresses is quite logical. Upon cooling, a free layer wants to expand

in the fiber direction and contract perpendicular to the fiber direction. When

in a laminate, however, the expansion in the fiber direction in one layer

is resisted by contraction perpendicular to the fibers in the adjacent layer.
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FIGURE 11.10. Stress distribution through the thickness of Œ0=90�S laminate sub-

jected to �T D �150ıC.

Resistance to expansion is compression; hence, the fibers are in compression.

Conversely, resistance to contraction, in the direction perpendicular to the

fibers, is tension.

Figure 11.11 shows the principal material system residual stresses, and

Figure 11.12 shows the principal material system strains. For this laminate

the transformations of the stresses and strains from the x-y system to the 1-2

system are trivial; the principal material system stresses are as follows.

For the 0ı layers:

�1 D �39:5 MPa

�2 D 39:5 MPa

�12 D 0

.11:99a/

For the 90ı layers:

�1 D �39:5 MPa

�2 D 39:5 MPa

�12 D 0

.11:99b/
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FIGURE 11.11. Principal material system stress distribution through the thickness

of Œ0=90�S laminate subjected to �T D �150ıC.

The 150ıC cooldown results in tensile stresses �2 that are near the 50 MPa

failure stress. We saw earlier in CLT Example 9 that not much load or

specified strain would be required to increase these stresses to failure levels.

Figure 11.13 illustrates the thermally induced mechanical strains in the

1-2 system; these strains are computed directly from equation (4.31) for each

layer and are as follows:

For the 0ı layers:

"mech
1 D �318 � 10�6

"mech
2 D 3330 � 10�6

mech
12 D 0

.11:100a/

For the 90ı layers:

"mech
1 D �318 � 10�6

"mech
2 D 3330 � 10�6

mech
12 D 0

.11:100b/
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FIGURE 11.12. Principal material system strain distribution through the thickness

of Œ0=90�S laminate subjected to �T D �150ıC.

By the nature of the laminate construction, the mechanical strains are the

same in each layer. Though the mechanical strains still have no physical

meaning, for the free thermal response of a laminate these strains represent

the difference between the free thermal response of the laminate and the free

thermal response of the individual layers. The mechanical strains are thus

clearly a measure of the mismatch of free thermal strain effects.

11.8.2 CLT Example 12: Œ˙30=0�S Laminate Subjected

to a Known �T

The Œ˙30=0�S and the Œ0=90� laminates are similar in that their free thermal

responses are governed by equation (11.89). However, the similarity ends

there. By the nature of the laminate, the response of the Œ0=90�S in the y

direction is identical to its response in the x direction; not so for the Œ˙30=0�S
laminate. In addition, the response in the x direction for the latter laminate

is quite interesting.
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FIGURE 11.13. Principal material system mechanical strain distribution through

the thickness of Œ0=90�S laminate subjected to �T D �150ıC.

The values of the unit thermal stress resultants for the Œ˙30=0�S were given

in equation (11.73), and substituting these values, as well as the values of A11,

A12, and A22 from equation (7.89a), into the expressions for the coefficients

of thermal expansion, equation (11.93), results in

N̨x D �2:16 � 10�6=ıC

N̨y D 16:80 � 10�6=ıC
.11:101/

The coefficient in the x direction is negative! Like the fiber direction of a

single layer, in the x direction the laminate contracts when heated and expands

when cooled, while in the y direction, the laminate expands considerably

when heated and contracts when cooled. According to the results from the

Œ0=90�S laminate, it is clear that if the ˙30ı layers were replaced with

90ı layers, the coefficient of thermal expansion in the x direction would

be positive. Thus, for some � between 30ı and 90ı, a .˙�=0/S laminate will

have N̨x D 0.
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FIGURE 11.14. Strain distribution through the thickness of Œ˙30=0�S laminate

subjected to �T D �150ıC.

The total strains due to the 150ıC temperature drop can be determined

from equation (11.89) or by multiplying the above coefficients of thermal

expansion by �150ıC. The result is

"o
x D 324 � 10�6

"o
y D �2520 � 10�6

(11.102)

These strains are illustrated in Figure 11.14. Calculation of the residual

stresses is again based on equation (11.4); the values of the reduced stiffnesses

come from Chapter 6 and the values of ˛x, ˛y, and ˛xy come from equation

(11.25). These residual stresses, illustrated in Figure 11.15, are:

For the C30ı layers:

�x D �26:7 MPa

�y D �7:32 MPa

�xy D �38:5 MPa

.11:103a/
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For the �30ı layers:

�x D �26:7 MPa

�y D �7:32 MPa

�xy D 38:5 MPa

.11:103b/

For the 0ı layers:

�x D 53:4 MPa

�y D 14:64 MPa

�xy D 0

.11:103c/

Because there are only half as many 0ı layers as ˙30ı layers, because the

values of �x and �y in the ˙30ı layers are identical, and because the integrals

of the stresses through the thickness must be zero, the residual stresses �x

and �y in the 0ı layers must be exactly twice those stresses in the other two

layers, and of opposite sign. In fact, one really does not need to go through
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the calculations for finding the residual stresses in the 0ı layers. Using the

fact that Nx, Ny , and Nxy have to be zero for the free thermal response of a

laminate, the stresses in the 0ı layers could be determined once the stresses

in the other two layer directions have been determined.

The residual stresses in the principal material system, shown in Figure 11.16,

are found by using the transformations and result in:

For the C30ı layers:

�1 D �55:2 MPa

�2 D 21:1 MPa

�12 D �10:84 MPa

.11:104a/

For the �30ı layers:

�1 D �55:2 MPa

�2 D 21:1 MPa

�12 D 10:84 MPa

.11:104b/
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For the 0ı layers:

�1 D 53:4 MPa

�2 D 14:64 MPa

�12 D 0

.11:104c/

The level of �2 due to the 150ıC cooldown is generally lower than the level

in the cross-ply laminate; the residual tensile stress �2 here is less than one-

half the failure stress level. Recall that in the cross-ply case, Figure 11.11,

the residual stress level of �2 was closer to the failure level. The lower stress

level for the Œ˙30=0�S laminate should not be interpreted as the superiority

of that laminate as regards thermal stresses due to processing; rather, the

comparison should be interpreted as a disadvantage, and an important one,

of the cross-ply construction.

Figure 11.17 shows the distributions of the total strains in the principal

material system, while Figure 11.18 shows the distributions of the principal

material system mechanical strains. The total strains are as follows:

For the C30ı layers:

"1 D �387 � 10�6

"2 D �1809 � 10�6

12 D �2460 � 10�6

.11:105a/

For the �30ı layers:

"1 D �387 � 10�6

"2 D �1809 � 10�6

12 D 2460 � 10�6

.11:105b/

For the 0ı layers:

"1 D 324 � 10�6

"2 D �2520 � 10�6

12 D 0

.11:105c/

The mechanical strains are as follows:

For the C30ı layers:

"mech
1 D �390 � 106

"mech
2 D 1836 � 10�6

mech
12 D �2460 � 10�6

.11:106a/

For the �30ı layers:

"mech
1 D �390 � 10�6

"mech
2 D 1836 � 10�6

mech
12 D 2460 � 10�6

.11:106b/
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FIGURE 11.17. Principal material system strain distribution through the thickness

of Œ˙30=0�S laminate subjected to �T D �150ıC.

For the 0ı layers:

"mech
1 D 321 � 10�6

"mech
2 D 1125 � 10�6

mech
12 D 0

.11:106c/

Interpreting the mechanical strains as a measure of the mismatch of re-

sponse of the laminate relative to the free thermal responses of the various

layers, we find that the largest mismatch in the 2 direction is just under

2000 � 10�6, whereas the mismatch in the Œ0=90�S laminate is over 3000 �
10�6. Again, this attests to the disadvantage of the cross-ply construction in

terms of residual thermal effects.
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FIGURE 11.18. Principal material system mechanical strain distribution through

the thickness of Œ˙30=0�S laminate subjected to �T D �150ıC.

Using the total strains from equation (11.102), we find that the deformed

length and width of a 0.250 m by 0.125 m laminate are 250.081 mm by

124.685 mm, with the length increasing with temperature decrease.

11.8.3 CLT Example 13: Œ˙30=0�T Laminate Subjected

to a Known �T

The free thermal response of unsymmetric laminates is a very interesting

topic, due mainly to the fact that with unsymmetric laminates reference

surface curvatures, in addition to reference surface strains, develop when

the temperature is changed. A laminate generally experiences changes in the

bending curvature in both the x and y directions, as well as changes in
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the twisting curvature. Using the �150ıC temperature change and assuming

the laminate is flat at the processing temperature (i.e., all curvatures are

zero), we find that the curvatures that develop represent the shape of the

unsymmetric laminate after it has cooled to the ambient temperature. We use

equation (11.84) to determine the deformations. For the Œ˙30=0�T laminate,

from equation (11.71) for the unit thermal forces and moments,

ON T
x D 48:6 N/m=ıC OM T

x D �12:65 � 10�4N�m/m/ıC

ON T
y D 116:1 N/m=ıC OM T

y D 12:65 � 10�4N�m/m/ıC

ON T
xy D 0 OM T

xy D 21:9 � 10�4N �m/m/ıC

(11.107)

Using �T D �150ıC and the values of aij , bij , and dij for this laminate

from Chapter 7, equation (7.93), results in

"o
x D 199:8 � 10�6 �o

x D �0:919=m

"o
y D �2900 � 10�6 �o

y D �2:32/m

o
xy D �742 � 10�6 �o

xy D �9:40/m

(11.108)

The deformations in the y direction, both the reference surface strain and

the reference surface curvature, are much larger than the reference surface

deformations in the x direction. There is a significant twisting curvature �o
xy .

If the reference surface strains and curvatures do not vary with x and y,

then equation (11.85) can be used to determine the displacements; in partic-

ular, the third equation describes the out-of-plane displacements. The out-of-

plane shape of a rectangular Œ˙30=0�T laminate is depicted in Figure 11.19;

considerable warping from the originally flat condition is evident. The use of

y
x

z

Undeformed

Deformed

FIGURE 11.19. Shape of Œ˙30=0�T laminate subjected to �T D �150ıC (shape

assumed flat at �T D 0).
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unsymmetric laminates has the potential for designing shape into a laminate.

Of course, if the laminate is to be used in an environment with changing

temperature, the shape of the laminate will change. For some applications this

may be desirable, while for others it may not be desirable. If the displacements

predicted by using equation (11.85) are many times the thickness of the

laminate, then the predictions may not be accurate because the equation is

not applicable. For large deflections, geometrically nonlinear effects must be

included in the formulation governing the change in curvature. The inclusion

of geometrically nonlinear effects results in significantly different predictions

for wo.x; y/ than are given by equations (11.84) and (11.85).

Figure 11.20 ndicates the distributions of the total strains through the

thickness of the Œ˙30=0�T ; the curvatures cause differences between the

strains on the top of the laminate and the strains on the bottom. Figure 11.21

shows the distributions of the residual stresses, and Figure 11.22 illustrates

the distribution of the stresses in the principal material system. It is evident

that the stresses vary rapidly within a layer, and that the stress component �1

varies from positive to negative within the C30ı layer.
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FIGURE 11.20. Strain distribution through the thickness of Œ˙30=0�T laminate

subjected to �T D �150ıC.
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FIGURE 11.21. Stress distribution through the thickness of Œ˙30=0�T laminate

subjected to �T D �150ıC.

11.8.4 CLT Example 14: Œ˙30=0�S Laminate Subjected

to a Known �M

Using the values of ON M
x and ON M

y , as calculated from equation (11.76),

in equation (11.95) leads to the coefficients of moisture expansion for the

Œ˙30=0�S laminate, namely,

Ň
x D �261 � 10�6=%

Ň
y D 3340 � 10�6=%

(11.109)

These numbers tacitly assume that the percent moisture absorbed by the

laminate is uniform through the thickness. If that uniform level of moisture is

2%, for example, then the total strains due to this level of moisture absorption

are

"o
x D �522 � 10�6

"o
y D 6690 � 10�6

o
xy D 0

(11.110)
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FIGURE 11.22. Principal material system stress distribution through the thickness

of Œ˙30=0�T laminate subjected to �T D �150ıC.

These strains are determined by multiplying the coefficients of moisture

expansion, equation (11.109), by �M D 2%, or alternatively, the analog to

equation (11.89) for moisture expansion effects. It is implicit that these strains

are measured relative to the state of the laminate before the 2% moisture was

absorbed. This could be the completely dry state, for example.

Comparing these strains with the strains due to a �150ıC temperature drop

in the Œ˙30=0�S laminate, equation (11.102), we see that the magnitudes of

the moisture strains are greater, and the signs are opposite. The changes in

the stresses due to this level of moisture absorption are given by using the

moisture analog to equation (11.4).

For the C30ı layers:

�x D 67:7 MPa

�y D 18:56 MPa

�xy D 97:5 MPa

.11:111a/
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For the �30ı layers:

�x D 67:7 MPa

�y D 18:56 MPa

�xy D �97:5 MPa

.11:111b/

For the 0ı layers:

�x D �135:4 MPa

�y D �37:1 MPa

�xy D 0

.11:111c/

With free moisture absorption effects as with free thermal effects, the

integrals of the stresses must be zero. Thus, for this case �x and �y in the

0ı layers are twice the magnitude of these stress components in the ˙30ı

layers, and of opposite sign.

The changes in the principal material system stresses for the 2 percent

moisture increase are:

For the C30ı layers:

�1 D 139:9 MPa

�2 D �53:6 MPa

�12 D 27:5 MPa

.11:112a/

For the �30ı layers:

�1 D 139:9 MPa

�2 D �53:6 MPa

�12 D �27:4 MPa

.11:112b/

For the 0ı layers:

�1 D �135:4 MPa

�2 D �37:1 MPa

�12 D 0

.11:112c/

Moisture absorption produces compression �2 components in each layer,

whereas the cooldown residual stress components �2 are, from equation

(11.104), tensile. As was mentioned, the tensile �2 due to cooldown can

produce a stress that is a significant fraction of the failure stress. If we

assume that after the cooldown the 2% moisture is absorbed, the net effect is

compressive �2 in all layers. The principal material system stresses that result

from a 2% moisture change, the stresses that result from a �150ıC temper-

ature change, and the sum of the two effects are illustrated in Figure 11.23.
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FIGURE 11.23. Principal material system stress distribution through the thickness

of Œ˙30=0�S laminate subjected to �T D �150ıC alone, �M D 2% alone, both

�T D �150ıC and �M D 2%.

We can conclude that for this case, because it relieves the residual tensile

stress �2 that results from the cooldown from the processing temperature,

it is advantageous to absorb moisture. Unfortunately, moisture degrades the

strength of laminates. It is thus not really an advantage to utilize the stress-

relieving tendencies of moisture absorption.

This completes the discussion of the free thermal response and free mois-

ture response of laminates. This represents an important class of problems,

particularly if the responses are considered as residual effects stemming from

cooldown from the processing temperature. With our examples we found

that the stress levels �2 resulting from the �150ıC temperature change may

not be small when compared to the failure stress levels for that component

of stress. In addition, we showed how laminate construction—for example,

Œ0=90�S versus Œ˙30=0�S—influences thermally induced stresses. Though we

have used the study of residual effects to illustrate free thermal response,

any temperature change can be used. In fact, if the laminate is to operate at
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50ıC above ambient, then the difference in stress levels between the ambient

condition and the 50ıC condition can be determined by using �T D 50ıC in

equation (11.84) and proceeding as we did. Alternatively, the stresses relative

to the stress-free condition can be determined by using �T D �100ıC.

The next section addresses one more aspect of including free thermal

response in the analysis of composite laminates, specifically, cases where

both the applied load and the temperature change will be specified. The

reference surface strains and curvature will be dictated by the sum of these

effects, and the resulting stresses and strains determined from these reference

surface responses.

Exercises for Section 11.8

1. The ability to tailor a material so that the coefficient of thermal expansion in one

direction is zero is an extreme advantage. There are a number of applications where

this property would be useful. Consider a Œ˙�=0�S laminate, 0 � � � �=2. (a)

Compute and plot N̨x and N̨y for this laminate as a function of � . (b) Is there a

value of � that results in either N̨x or N̨y being zero? What value of � is this? (c)

Compute the residual thermal stresses for this case, assuming �T D �150ıC. (d)

Are the magnitudes of the stresses in the principal material system significantly

different for the value of � that leads to N̨x or N̨y equal to zero than for the case

� D 30ı?

2. Using the values of ON M
x and ON M

y for the Œ˙30=0�S laminate, equation (11.76),

verify equation (11.109).

11.9 Response Due to Stress Resultants and

a Temperature Change

As our final series of examples in this chapter, we shall revisit the problems

of the Œ0=90�S and Œ˙30=0�S laminates subjected to a known normal force

resultant Nx, and the Œ˙30=0�S laminate subjected to a known bending

moment resultant Mx . These were CLT Examples 6, 7, and 8 in Chapter 8.

Here we will consider the influence on laminate stresses and strains of a

temperature change combined with the application of known stress resul-

tants. The resultant levels will be the same as those used in Chapter 8, and

in keeping with the examples in this chapter, and because it represents a

temperature change of significant interest, we will assume the temperature

change is the �150ıC temperature change associated with the cooldown from

the processing temperature. Thus, we shall be able to evaluate the effects

of residual thermal effects and an applied load on the stress levels in the

laminates. In the final section of this chapter we shall examine how the

residual thermal stress levels influence failure predictions. First, however,
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let us examine the character of the response when both residual effects and

applied load are present.

The form in equation (11.66) is the most convenient for studying the

combined effects of a temperature change and an applied load. For symmetric

balanced laminates,
(

"o
x

"o
y

)

D
"

a11 a12

a12 a22

# (

Nx C N T
x

Ny C N T
y

)

.11:113a/

with

o
xy D a66.Nxy C N T

xy/ .11:113b/
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8
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>
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We again use the concept of the unit thermal stress resultants, which were

given in equations (11.72) and (11.73) for the Œ0=90�S and the Œ˙30=0�S
laminates, respectively. The unit thermal moment resultants are zero for both

of these laminates, as are the unit thermal inplane shear force resultants.

Using �T D �150ıC, we find that for the Œ0=90�S laminate

N T
x D �0:016 46 MN/m M T

x D 0

N T
y D �0:016 46 MN/m M T

y D 0

N T
xy D 0 M T

xy D 0

(11.114)

while for the Œ˙30=0�S laminate

N T
x D �0:014 57 MN/m M T

x D 0

N T
y D �0:0348 MN/m M T

y D 0

N T
xy D 0 M T

xy D 0

(11.115)

If, in addition, moisture absorption effects are to be included, equation (11.113)

takes the form
(

"o
x

"o
y

)

D
"

a11 a12

a12 a22

# (

Nx C N T
x C N M

x

Ny C N T
y C N M

y

)

.11:116a/

with

o
xy D a66.Nxy C N T

xy C N M
xy / .11:116b/
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Using a value of �M D 2% and equations (11.75) and (11.76), we find that

for the Œ0=90�S laminate

N M
x D 0:0537 MN/m M M

x D 0

N M
y D 0:0537 MN/m M M

y D 0

N M
xy D 0 M M

xy D 0

(11.117)

while for the Œ˙30=0�S laminate

N M
x D 0:0732 MN/m M M

x D 0

N M
y D 0:0988 MN/m M M

y D 0

N M
xy D 0 M M

xy D 0

(11.118)

11.9.1 CLT Example 15: Œ0=90�S Laminate Subjected

to Known Nx and Known �T

To add physical dimensions to the developments that have been presented,

let us cast a problem as follows: Consider a Œ0=90�S laminate that is cooled

150ı from its stress-free processing temperature and cut to be 0.250 m long

in the x direction by 0.125 m wide in the y direction. Forces of 6300

N, acting in the x direction and uniformly distributed along the 0.125-m

end, are then applied. With this loading on the boundary, every point on

the 0.0312 m2 reference surface of this laminate is subjected to the stress

resultants

Nx D 50 400 N/m Mx D 0

Ny D 0 My D 0

Nxy D 0 Mxy D 0

(11.119)

This is exactly the situation studied in CLT Example 6 of Chapter 8, specif-

ically equation (8.3), but with the addition of having thermal effects present.

From equation (11.113), the total reference surface strains are given by

"o
x D a11.Nx C N T

x / C a12N
T
y

"o
y D a12.Nx C N T

x / C a22N
T
y

o
xy D 0

(11.120)

or, if we use numerical values for the various quantities, equations (7.91a),

(11.114), and (11.119),

"o
x D 686 � 10�6

"o
y D �351 � 10�6

o
xy D 0

(11.121)
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There are no curvatures for this problem and, as expected, the total strains for

this problem are the sum of strains due to the free thermal response, equation

(11.97),

"o
x D �316 � 10�6

"o
y D �316 � 10�6

o
xy D 0

(11.122)

and the strains due to the stress resultant Nx , equation (8.4),

"o
x D 1001 � 10�6

"o
y D �36:0 � 10�6

xy D 0

(11.123)

The free thermal response results in contraction in both the x and y directions,

and the response due to Nx results in stretching in the x direction and, due

to Poisson effects, further contraction in the y direction. With combined

thermal effects and applied loads, the strains and the subsequent stresses in

this problem are measured relative to the stress-free processing temperature

of the laminate.

The distributions of the total strains through the thickness of the laminate

with and without the effects of free thermal response are illustrated in Fig-

ure 11.24; the case of no thermal effects is repeated from Figure 8.2. The

contractions in both the x and y directions are reflected in the differences in

the strains with and without thermal effects. Equation (11.4) gives the stresses

in each layer; all the quantities in that equation have been given previously.

The stresses are:

For the 0ı layers:

�x D 116:3 MPa

�y D 42:1 MPa

�xy D 0

.11:124a/

For the 90ı layers:

�x D 51:6 MPa

�y D �42:1 MPa

�xy D 0

.11:124b/

Because these stresses represent the combined effects of the applied stress

resultant Nx and the free thermal response of the laminate, the stresses are the

sum of the stresses due to the two individual effects, namely, equation (8.5)

and equation (11.98). For convenience, equation (8.5) is, for the 0ı layers,

�x D 155:8 MPa

�y D 2:58 MPa

�xy D 0

.11:125a/



Response Due to Stress Resultants and a Temperature Change 527

0.300

0.150

0.0

–0.150

–0.300

90°

90°

0°

0°

0.300

0.150

0.0

–0.150

–0.300

90°

90°

0°

0°

0.300

0.150

0.0

–0.150

–0.300

rad

z,
 m

m
z,

 m
m

z,
 m

m

90°

90°

0°

0°

Layer

Layer

Layer

 x,  mm/mm

 y,  mm/mm

ε

ε

γ

µ

µ

µ



Thermal effects No thermal effects

0 500 1000 1500

–500 –400 –300 –200 –100 0

0 1000

xy ,

FIGURE 11.24. Strain distribution through the thickness of Œ0=90�S laminate sub-

jected to Nx D 50 400 N/m and �T D �150ıC.

and for the 90ı layers,

�x D 12:07 MPa

�y D �2:58 MPa

�xy D 0

.11:125b/

Figure 11.25 illustrates the distribution of the stresses through the thick-

ness with and without the effects of free thermal response; the case of no

thermal effects is repeated from Figure 8.3. It is key to the understand-

ing of thermal effects to realize that in Figure 11.25 the integral of the

stress component �x with thermal effects present, the solid line, is Nx D
50 400 N/m, and the integral of the stress component �x without thermal

effects present, the dashed line, is also Nx D 50 400 N/m! Likewise, the

integral of the stress component �y with and without thermal effects is

zero. Because the stress resultants have been specified for this problem

in equation (11.119), independently of whether or not thermal effects are
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FIGURE 11.25. Stress distribution through the thickness of Œ0=90�S laminate sub-

jected to Nx D 50 400 N/m and �T D �150ıC.

present, the integrals of the stress components must lead back to those

resultants. This is different from the first example in this chapter, where

the deformations of the reference surface were specified and inclusion or

exclusion of thermal effects resulted in different values of the stress resultants.

The distinction between specifying deformations and specifying resultants,

though discussed in the past, is reemphasized here in the presence of thermal

effects.

Figure 11.26 illustrates the distributions of the stresses in the principal

material system; the inclusion of the temperature change causes the stress

component �2 in the 90ı layers to exceed the failure level of 50 MPa. The

distributions of the total strains and the mechanical strains in the principal

material system are shown in Figures 11.27 and 11.28, respectively. In all

these figures, the difference between the solid lines and the dashed lines

should be exactly the numbers from the free thermal response calculations,

Section 11.8.1.
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FIGURE 11.26. Principal material system stress distribution through the thickness

of Œ0=90�S laminate subjected to Nx D 50 400 N/m and �T D �150ıC.

11.9.2 CLT Example 16: Œ˙30=0�S Laminate Subjected

to Known Nx and Known �T

For our second example of combined thermal effects and applied loads,

consider a Œ˙30=0�S graphite-reinforced laminate that is cooled 150ı, cut

to be 0.250 m long by 0.125 m wide, and is then loaded with uniformly

distributed loads of 0.0128 MN acting in the x direction on the 0.125-m

ends. For this situation the stress resultants at every point on the reference

surface are

Nx D 0:1024 MN/m Mx D 0

Ny D 0 My D 0

Nxy D 0 Mxy D 0

(11.126)

the situation of CLT Example 7 in Chapter 8, equation (8.11), but here with

thermal effects included. Equation (11.113) is again applicable; the numerical
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FIGURE 11.27. Principal material system strain distribution through the thickness

of Œ0=90�S laminate subjected to Nx D 50 400 N/m and �T D �150ıC.

values lead to

"o
x D 1599 � 10�6

"o
y D �4010 � 10�6

o
xy D 0

(11.127)

An examination of equation (8.12), the case of applied load only, and equation

(11.102), the case of free thermal response, indicates the strains of equation

(11.127) are again the sum of these two conditions. These strains are il-

lustrated in Figure 11.29; the additional expansion in the x direction when

thermal effects are included is due to the negative coefficient of thermal

expansion of this laminate. The majority of the contraction in the y direction,

again, is due to thermal effects; the large positive coefficient of thermal

expansion in this direction for this laminate is responsible. The stresses,

shown in Figure 11.30, are definitely influenced by the addition of thermal

effects. The integral of the stress component �x both with and without

thermal effects results in Nx D 0:1024 MN/m, and the integral of the
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FIGURE 11.28. Principal material system mechanical strain distribution through the

thickness of Œ0=90�S laminate subjected to Nx D 50 400 N/m and �T D �150ıC.

stress component �y in both cases results in Ny D 0. The principal material

system stresses, Figure 11.31, still the most effective view of the stress state

in a laminate, show significant differences in the stress state, particularly

the component �2. The component �2 is predicted to be everywhere tensile

when accounting for thermal effects, while it is predicted to be everywhere

compressive if thermal effects are not included. The shear stress component

�12 is more than doubled by the inclusion of thermal effects.

What must be realized in this and the other examples of the combined

effects of a temperature change and an applied load is that the relative

importance of each effect can change as a function of the particular ap-

plication of a composite laminate. Using a composite in space applications

may lead to an operating environment of 100ı or so below 0ıC. For this case,

then, a temperature change of 200–300ıC below the stress-free processing

temperature must be used for computing stresses. If the laminate is lightly

loaded, as is often the case in space applications, thermal effects dominate.
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FIGURE 11.29. Strain distribution through the thickness of Œ˙30=0�S laminate

subjected to Nx D 0:1024 MN/m and �T D �150ıC.

On the other hand, with the �150ıC temperature change, the applied load

may be much larger than the loads that have been used in the examples.

Thus, whether or not the inclusion or exclusion of thermal effects has a great

influence on any one stress component can only be determined by a detailed

study of the particular problem.

The distributions of the total strains and the mechanical strains in the

principal material system are illustrated in Figures 11.32 and 11.33.

11.9.3 CLT Example 17: Œ˙30=0�S Laminate Subjected

to Known Mx and Known �T

As our last example of the combination of a temperature change and applied

loads, consider again the Œ˙30=0�S laminate. If the 0.125-m ends of the

cooled laminate are subjected to uniformly distributed bending moments of
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FIGURE 11.30. Stress distribution through the thickness of Œ˙30=0�S laminate

subjected to Nx D 0:1024 MN/m and �T D �150ıC.

1.605 N�m, then the stress resultants at every point on the 0.0312 m2 reference

surface are given by

Nx D 0 Mx D 12:84 N�m/m

Ny D 0 My D 0

Nxy D 0 Mxy D 0

(11.128)

To study the response of the laminate, we return again to equation (11.113).

Though there are no applied force resultants, there are thermal force resultants

that must be accounted for. For this problem, these governing equations

reduce to

"o
x D a11N T

x C a12N T
y

"o
y D a12N T

x C a22N T
y

o
xy D 0

.11:129a/
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FIGURE 11.31. Principal material system stress distribution through the thickness

of Œ˙30=0�S laminate subjected to Nx D 0:1024 MN/m and �T D �150ıC.

and

�o
x D d11Mx

�o
y D d12Mx

�o
xy D d16Mx

.11:129b/

Using numerical values in these equations results in

"o
x D 324 � 10�6 �o

x D 4:24 m�1

"o
y D �2520 � 10�6 �o

y D �5:40 m�1

o
xy D 0 �o

xy D �1:669 m�1

(11.130)

As the applied bending moment results in no reference surface strains, they

are due solely to free thermal response of the laminate and are identical to

equation (11.102). Likewise, as the temperature change results in no reference

surface curvatures, they are due solely to the applied bending moment and
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FIGURE 11.32. Principal material system strain distribution through the thickness

of Œ˙30=0�S laminate subjected to Nx D 0:1024 MN/m and �T D �150ıC.

are identical to equation (8.21). Figure 11.34 shows the distribution of the

total strains with and without thermal effects. The linear variation of the

moment-only strains, which are all zero at z D 0, is shifted uniformly by

the free thermal strains of the laminate. Because of the negative coefficient

of thermal expansion of this laminate in the x direction, the strains in the x

direction are all more positive when free thermal strains are included. The

strains in the y direction are all more negative, by a significant amount. As

this is a balanced laminate, the shear strains are not influenced by thermal

effects.

The stresses, illustrated in Figure 11.35, are strongly influenced by the

inclusion of thermal effects, which prevent the stresses from being strictly

odd functions of z. In addition, the integrals of all components of stress,

both with and without thermal effects, are zero because there are no applied

force resultants. On the other hand, the integral of the stress component �x

times z yields Mx D 12:84 N�m/m. The integrals of the two other stress
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FIGURE 11.33. Principal material system mechanical strain distribution through the

thickness of Œ˙30=0�S laminate subjected to Nx D 0:1024 MN/m and �T D �150ıC.

components, multiplied times z, are zero. Again we have this interesting

point: Thermal effects will alter the stress state relative to the case with no

thermal effects; however, the integrals of the stresses yield the same force

and moment resultants as the nonthermal case. It is interesting to see how

the stresses in the various layers adjust to compensate for the effect of free

thermal strain in each layer, yet from the prospective of the entire laminate,

they still integrate to the same value they had when thermal effects were not

included. That this can all be predicted and explained is the essence of the

study of the mechanics of composites with the effects of free thermal strains

included.

Figure 11.36 shows the principal material system stresses; the stress com-

ponent �2 is most influenced by thermal effects. With thermal effects, this

stress component is everywhere tensile and much closer to failure levels than

without thermal effects included. This is another example of the stresses

due to the applied loads being quite small, and of opposite sign, relative

to the stresses due to thermal effects. The shear stress component �12 is
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FIGURE 11.34. Strain distribution through the thickness of Œ˙30=0�S laminate

subjected to Mx D 12:84 N�m/m and �T D �150ıC.

also influenced. Thermal effects result in practically no shear stress in the

upper C30ı layer, whereas the shear stress in the lower C30ı layer is

nearly doubled. Thermal effects can alter the predicted location of failure.

For example, if it is felt that high shear stresses should be avoided, then with

no thermal effects, both C30ı layers have the same tendency to control the

failure, in particular, at the outer location in each layer. However, with thermal

effects, attention must be focused on the outer location in just the lower C30ı

layer; the upper C30ı layer has no role due to its low level of shear stress.

Interestingly, the maximum values of �1 and �2 do not occur in the outer

layers. Also, if the sign of the applied load changes (i.e., Mx D �12:84
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subjected to Mx D 12:84 N�m/m and �T D �150ıC.

N�m/m), then the stresses at a given point z do not simply change sign if

thermal effects are present. The stresses at a given value of z consist of a

portion that changes sign if the sign of the load changes, and a portion that

does not change sign, that is, the portion due to �T . Thus, the location of

failure will also depend on the sign of the applied load.

The principal material system strains and the principal material system

mechanical strains are illustrated in Figures 11.37 and 11.38, respectively.

11.9.4 CLT Example 18: Œ˙30=0�S Laminate Subjected

to Known Nx, Known �T , and Known �M

Suppose that in addition to the applied load of Nx D 0:1024 MN/m and the

temperature change of �T D �150ıC, the moisture change in the Œ˙30=0�S
laminate is �M D 2%. From equations (11.116a) and (11.116b), along with
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equation (11.118), the total reference surface strains are given by

"o
x D a11.Nx C N T

x C N M
x / C a12.N T

y C N M
y /

"o
y D a12.Nx C N T

x C N M
x / C a22.N T

y C N M
y /

o
xy D 0

(11.131)

Using numerical values results in

"o
x D 1076 � 10�6

"o
y D 2680 � 10�6

o
xy D 0

(11.132)

The principal material system stresses for the Œ˙30=0�S laminate with load,

residual thermal effects, and moisture absorption effects are shown in Fig-

ure 11.39. In addition, the stresses due to just the load, and the load plus
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FIGURE 11.37. Principal material system strain distribution through the thickness

of Œ˙30=0�S laminate subjected to Mx D 12:84 N�m/m and �T D �150ıC.

thermal effects are illustrated. We see that for this example, the combination

of load, temperature, and moisture tends to make �2 almost independent of z.

This is a coincidence.

This concludes our examples of the combined response due to thermal

effects and applied load. We examined only one set of material proper-

ties, namely, those of graphite-reinforced materials. Less-stiff materials, say,

glass-reinforced materials, do not respond in the same way to a temperature

change. Thermal effects may not be as pronounced. On the other hand,

stiffer materials, say, higher modulus graphite-reinforced materials, may have

much more pronounced thermal effects. Each particular problem must be
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FIGURE 11.38. Principal material system mechanical strain distribution through the

thickness of Œ˙30=0�S laminate subjected to Mx D 12:84 N�m/m and �T D �150ıC.

examined in its own context. If loads are to be applied at elevated tem-

peratures, the temperature dependence of the material properties may have

to be included. The study of thermal effects is complex. What has been

presented here represents a good foundation, but it is important to know

that the findings have limitations. From the foundation, further topics can be

pursued.

The final section in this chapter will examine failure in the context of

combined thermal effects and applied loads. This also is a complex subject.

However, we shall again lay the foundation for further study.
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FIGURE 11.39. Principal material system stress distribution through the thickness

of Œ˙30=0�S laminate subjected to Nx D 0:1024 MN/m, �T D �150ıC, and �M D

2%.

11.10 Influence of Thermal Effects on Failure:

The Maximum Stress Criterion

As we have mentioned several times, the inclusion of free thermal strain

effects due to a temperature change of �150ıC causes the stress component

�2 in the 90ı layers of the Œ0=90�S laminate to approach and even exceed

failure levels. In CLT Example 11, a Œ0=90�S laminate subjected to a �T of

�150ıC, the stress component �2, shown in Figure 11.11, was C39:5 MPa,

or 79 percent of the failure level of C50 MPa. In CLT Example 15, the

same laminate subjected to a �T of �150ıC and a loading of Nx D 0:0504

MN/m, the stress component �2 in Figure 11.26 exceeded the failure level

of C50 MPa. Thus, properly accounting for thermal effects in the analysis

of failure is important. The conscious or unconscious omission of thermal

effects could lead to erroneous conclusions.
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In the most basic form, accounting for thermal effects in the analysis of

failure is exactly like the analysis of failure due to combined loads. In one

of the examples involving failure of the tube, there was interest in knowing

the level of torsion that was possible, given that there was a certain level

of axial load present before the torsion was applied. Under the maximum

stress criterion, we used the stresses due to the specific level of axial load P

together with the stresses due to a unit torsion load to determine the levels

of torsion that would cause failure. Under the Tsai-Wu criterion, we used

these same stresses to find the roots of the quadratic equation for each layer;

the roots represented the levels of torsion that caused failure. This same

approach can be used to account for thermal effects, for example, residual

thermal effects. The temperature change from the processing temperature

causes stresses before any load is applied. The thermally induced stresses,

together with the stresses due to a unit load, can then be used with either

failure criterion to find failure load levels. In the tube examples, we developed

failure envelopes by using a combination of stresses due to a unit tension

and stresses due to a unit torsion. Both the maximum stress failure criterion

and the Tsai-Wu criterion were used to find combinations of tension and

torsion that would cause failure. In analogy to the tension-torsion problem,

if temperature is to be varied, as well as load, temperature-load envelopes

can be developed much like tension-torsion envelopes were. The key would

be computing the stresses due to a unit temperature change, and combining

these results with the stresses due to a unit load, whatever the loading may

be. In Section 11.7, on the free thermal response of a laminate, we developed

the procedure for computing the stresses due to a unit temperature change.

In the chapters on failure we have computed the stresses due to a unit load.

Hence, we really are in a position to study, in a comprehensive manner, a wide

variety of problems involving failure in the presence of free thermal strain

effects. We shall not present a general discourse on the topic here because

it really is a matter of reinterpreting what has been covered in the examples

dealing with combined load. Here we shall examine the problems in the last

section with the Œ0=90�S and Œ˙30=0�S laminates and determine what load

level causes failure. The load levels that cause failure with residual thermal

effects accounted for will be compared with the load levels that cause failure

when residual thermal effects are not included. We will use both the maximum

stress criterion and the Tsai-Wu criterion. The sections to follow will examine

the problems first from the view of the maximum stress criterion, then from

the view of the Tsai-Wu criterion. We have at our disposal the distributions

of the stresses through the thickness. Thus, we might be tempted to again

minimize the number of calculations and focus on specific stress components

in specific layers for determining the failure characteristics. We shall again

avoid this temptation and conduct a comprehensive analysis of possible failure

conditions of all the layers. To do this we shall construct tables of the stresses

in each layer due to a unit temperature change and use tables from Chapter 9
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for the stresses due to a unit load. With the stresses due a unit load and unit

temperature change in hand, failure analysis follows the previous procedures

used for combined loads.

Recall from Chapter 9 that the boundaries of the maximum stress failure

envelope for a layer are given by

�1 D �C
1

�1 D �T
1

�2 D �C
2

�2 D �T
2

�12 D �F
12

�12 D ��F
12

(11.133)

Examining each of these six equations in each layer makes it possible to

determine the layer responsible for failure, the load level, and the mode of

failure.

11.10.1 Failure Example 13: Œ0=90�S Laminate Subjected

to Nx and Known �T

For the first example of the influence of thermal effects on failure predictions,

consider the Œ0=90�S laminate that has experienced a temperature change of

�150ıC and is loaded so the only nonzero stress resultant is Nx. To be

determined is the value of Nx that causes failure. In Chapter 9, in Table 9.14,

we found that, according to the maximum stress criterion, for no thermal

effects, failure occurs with a tensile load of Nx D C0:209 MN/m due to

failure of the 90ı layers in tension perpendicular to the fibers. Failure also

occurs with a compressive load of Nx D �0:404 MN/m due to failure of the

0ı layers in compression in the fiber direction. To study failure with thermal

effects, consider the stresses in the layers due to a temperature change �T ,

and the stresses in the layers due to a load nx . The stresses in the principal

material system are the important stresses for studying failure. The stresses

due to load nx were given in Chapter 9 in Table 9.13, and the stresses

due to a temperature change �T are given in Table 11.1. These stresses,

of course, are the stresses due to the free thermal response of the Œ0=90�S
laminate, where the numerical values are determined by scaling the previously

computed residual table thermal stresses. Specifically, the stresses in equation

(11.99), the stresses due to a �150ıC temperature change, were divided

by �150.
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TABLE 11.1. Principal material system

stresses (MPa) in Œ0=90�S laminate due to a

temperature change �T (ıC)

+0.263∆T

+0.263∆T

−0.263∆T

−0.263∆T

0

0

Layer

0°

90°

σ1 σ2 τ12

With both a load nx and the temperature change �T , the stresses are given

by:

For the 0ı layers:

�1 D 3090nx C 263 000�T

�2 D 51:3nx � 263 000�T

�12 D 0

.11:134a/

For the 90ı layers:

�1 D �51:3nx C 263 000�T

�2 D 240nx � 263 000�T

�12 D 0

.11:134b/

With this particular situation �T D �150ıC, so:

For the 0ı layers:

�1 D 3090nx � 39:5 � 106

�2 D 51:3nx C 39:5 � 106

�12 D 0

.11:135a/

For the 90ı layers:

�1 D �51:3nx � 39:5 � 106

�2 D 240nx C 39:5 � 106

�12 D 0

.11:135b/

To determine the layer responsible for failure, and the failure load and

mode, the expressions for �1, �2, and �12 are substituted into equation (11.133)

and the resulting equations solved for nx. The results of this substitution and

solving for nx are summarized in Table 11.2, where we can see that a load

of Nx D C0:0437 MN/m will cause the 90ı layers to fail in tension perpen-

dicular to the fibers, and a load of Nx D �0:391 MN/m will cause the 0ı

layers to fail in compression parallel with the fibers. The results of this table

should be compared with the results of Table 9.14, the summary of failure

loads for this laminate but with no thermal effects accounted for. Thermal

effects strongly influence the tensile capacity in this situation; the tensile
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TABLE 11.2. Summary of failure loads Nx (MN/m) for Œ0=90�S laminate,

�T D �150ıC: Maximum stress criterion

Failure mode

−0.391

+23.6

+0.498

−30.0

−4.67

−1.000

+0.204

+0.0437

−∞
−∞

+∞
+∞

Layer

0°

90°

σ σ σσ − +
1
C

1
T

2
C

2
T τ

12
F τ

12
F

capacity decreases from Nx D C0:209 to C0:0437 MN/m. The influence

on compressive capacity is less pronounced. The comparison between the

failure loads and failure characteristics with and without thermal effects is

summarized in the upper portion of Table 11.3.

In light of the strong influence of residual thermal effects on failure, it

is interesting to determine what temperature decrease alone, no load being

applied, causes failure. The stresses in both the 0ı and 90ı layers with just

thermal effects are given by, from equation (11.134),

�1 D 263 000�T

�2 D �263 000�T

�12 D 0

(11.136)

Substituting these equations into the six of equation (11.133) results in the

determination of the temperature change that causes failure in the various

modes in the 0ı and 90ı layers; Table 11.4 summarizes these results. The

table indicates that at 190:0ıC below the processing temperature the layers

will fail because stress component �2 reaches the tensile failure level. Based

on these results, it appears that the use of the Œ0=90�S laminate in cryo-

genic environments or in the cold of space would be unwise. Even at room

TABLE 11.3. Failure loads (MN/m) with and without thermal effects: Maximum

stress criterion

Thermal effects No thermal effects

[0/90]s

with

Nx

Load level

Layer 

Mode


[±30/0]s

with

Nx

Load level

Layer 

Mode


[±30/0]s

with

Mx

Load level

Layer 

Mode







Problem Failure < 0 < 0> 0 > 0

Nx = –0.391 

0°





Nx = –0.404

0° 
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90°

     





Mx = +33.0 

–30°





Mx = –33.0

–30°

 





Mx = +57.1

–30°

 





Mx = –57.1

–30°

 





Nx = –0.254 

0°





Nx = –0.360

0°

 



     

Nx = +0.763 

 0°





Nx = +0.791
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TABLE 11.4. Temperature changes �T (ıC) that cause failure in Œ0=90�S
laminate: Maximum stress criterion

−4740 +5690 +759



−190.0 −∞ +∞

Layer

0° & 90°

σ σ σσ − +1
C

1
T

2
C

2
T τ

12
F τ

12
F

temperature, its capacity in tension is inhibited by the residual stress state.

This is a well-known characteristic of cross-ply laminates and one reason

they see limited application.

11.10.2 Failure Example 14: Œ˙30=0�S Laminate Subjected

to Nx and Known �T

In a manner similar to the approach for the Œ0=90�S laminate, we wish to

evaluate the influence of residual thermal effects on the load capacity of a

Œ˙30=0�S laminate subjected to a loading Nx . The stresses due to a loading

nx were given in Table 9.15 and the stresses due to a temperature change

�T are given in Table 11.5. The entries in Table 11.5 are the stresses due

to the free thermal response of the laminate and they were determined by

scaling equation (11.104) by �150. For a temperature change of �150ıC the

stresses in the layers are:

For the C30ı layers:

�1 D 866nx � 55:2 � 106

�2 D �77:3nx C 21:1 � 106

�12 D �102:8nx � 10:84 � 106

.11:137a/

For the �30ı layers:

�1 D 866nx � 55:2 � 106

�2 D �77:3nx C 21:1 � 106

�12 D 102:8nx C 10:84 � 106

.11:137b/

TABLE 11.5. Principal material system stresses

(MPa) in Œ˙30=0�S laminate due to a temperature

change �T (ıC)

+0.368∆T

+0.368∆T

−0.356∆T

−0.1410∆T +0.0723∆T

−0.1410∆T

−0.0976∆T

−0.0723∆T

0

Layer

+30°

−30°

0°

σ1 σ2 τ12
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For the 0ı layers:

�1 D 1894nx C 53:4 � 106

�2 D �138:9nx C 14:64 � 106

�12 D 0

.11:137c/

Using these equations and equation (11.133) leads to a determination of

the layer, load, and mode that causes failure. Table 11.6 summarizes these

results; this table is the counterpart to Table 9.16, the case of no thermal

effects. Table 11.6 indicates that a tensile load of C0:763 MN/m causes

failure due to a tensile stress in the fiber direction in the 0ı layer. For

the case of no thermal load, Table 9.16, a tensile load of C0:791 MN/m

causes failure for the same reason. Thus, due to thermal effects, tensile load

capacity is reduced. Furthermore, Table 11.6 indicates a compressive load

of �0:254 MN/m causes failure due to a tensile stress perpendicular to the

fibers in the 0ı layers. For the case of no thermal load, the compressive load

required is, according to Table 9.16, �0:360 MN/m. Thermal effects dimish

compressive capacity as well. Though it is not a critical issue, it is important

to realize that with thermal effects, for a given layer the last two statements

of equation (11.133) lead to loads of different magnitude, as well as different

sign. With no thermal effects, the last two statements of equation (11.133)

lead to loads of opposite sign but the same magnitude. This is a reflection

of the fact that failure in shear is not influenced by the sign of the shear

stress. However, the inclusion of thermal effects biases the shear stress in

such a way that the shear stress produced by a positive loading is different in

magnitude than the shear stress produced by a negative loading. The biasing

can be strong enough to remove shear from contention as a possible failure

mode. Only by systematically examining all facets of the maximum stress

failure criterion, equation (11.133), can the failure mode and failure load be

predicted for both positive and negative loads, and for inclusion or exclusion

of thermal effects.

The middle portion of Table 11.3 summarizes the comparison between the

case of thermal effects and the case of no thermal effects.

TABLE 11.6. Summary of failure loads Nx (MN/m) for Œ˙30=0�S laminate,

�T D �150ıC: Maximum stress criterion

Failure mode

−1.380

−1.380

−0.687

+1.796

+1.796

+0.763

+2.86

+2.86

+1.545

−0.373

−0.373

−0.254

+0.868

−1.079

−∞

−1.079

+0.868

+∞

Layer

+30°

−30°

0° 

σ σ σσ − +1
C

1
T

2
C

2
T τ

12
F τ

12
F
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11.10.3 Failure Example 15: Œ˙30=0�S Laminate Subjected

to Mx and Known �T

With bending, the signs of the stresses depend not only on the sign of the

applied load or the sign of the specified curvature, but also on whether one

is considering positive or negative z locations within the laminate. To study

the influence of thermally induced stresses on the level of bending moment

Mx to cause failure in the Œ˙30=0�S laminate, we shall proceed as we did

for the other two cases. The stresses produced at the outermost location in

each layer as a result of bending moment Mx D mx are documented in

Table 9.17. Recall that these stresses are for positive z locations. The stresses

due to temperature change �T were given in Table 11.5. As a result, the

stresses at the outermost locations of the layers for positive z are given by:

For the 30ı layers:

�1 D .5:79mx � 55:2/ � 106

�2 D .�0:850mx C 21:1/ � 106

�12 D .�1:415mx � 10:84/ � 106

.11:138a/

For the �30ı layers:

�1 D .9:01mx � 55:2/ � 106

�2 D .�0:875mx C 21:1/ � 106

�12 D .0:772mx C 10:84/ � 106

.11:138b/

For the 0ı layers:

�1 D .7:52mx C 53:4/ � 106

�2 D .�0:618mx C 14:64/ � 106

�12 D �0:0858mx � 106

.11:138c/

Table 11.7 summarizes the results of substituting these equations into the

six of equation (11.133) and of solving for the various values of mx . Another

TABLE 11.7. Summary of failure loads Mx (N�m/m) for Œ˙30=0�S laminate,

�T D �150ıC: Maximum stress criterion�

Failure mode

−206

−132.5

−173.4

+269

+172.5

+192.5

+260

+253

+348

−34.0

−33.0

−57.2

+63.0

−143.6

+1166

−78.3

+115.5

−1166

Layer

+30°

−30°

0° 

* Positive z locations.
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T τ
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table can be constructed for negative z locations. This table, which will not

be shown, would be based on the fact that for negative z locations the stresses

due to Mx D mx would be of opposite sign to those stresses in Table 9.17.

As a result, the principal material system stresses at outer locations in the

various layers would be as given by equation (11.138) except that the sign

of the terms involving mx would be changed. For example, from equation

(11.138a), the stresses at the outer location of the 30ı layer at the negative

z location, would be

�1 D .�5:79mx � 55:2/ � 106

�2 D .0:850mx C 21:1/ � 106

�12 D .1:414mx � 10:84/ � 106

(11.139)

Using these equations and the counterparts to equations (11.138b) and (c) in

equation (11.133), we can find the values of mx to cause failure at negative

z locations and can put them in tabular form. The table would be identical to

Table 11.7 except that the signs of all the entries would be opposite. Thus,

consider Table 11.7 to have ˙ signs with all the entries. From Table 11.7

we can then conclude that a bending moment of Mx D �33:0 N�m/m causes

failure at the outer location of the �30ı layer on the positive z side of the

laminate due to a tensile stress perpendicular to the fibers in that layer, and

that a bending moment of Mx D C33:0 N�m/m causes failure at the outer

location of the �30ı layer on the negative z side of the laminate, also due

to a tensile stress perpendicular to the fibers in that layer. Table 11.7 is the

counterpart to Table 9.18, which also has the implication of ˙ with each of

the entries. A comparison of the thermal and nonthermal cases, which is given

in the last entries of Table 11.3, indicates that for this example the inclusion

of residual thermal effects, as with the previous examples, has a detrimental

effect on laminate load capacity. In fact, an examination of all three problems

in Table 11.3 indicates that residual thermal effects can generally be viewed

as reducing the load capacity of a laminate. However, by comparing entries in

Tables 9.14 versus 11.2, 9.16 versus 11.6, and 9.18 versus 11.7, we see that for

some failure modes in some layers, inclusion of thermal effects actually leads

to increased load capacity. It would be considered a special case, however,

if, overall, thermal effects were beneficial.

Exercise for Section 11.10

Consider the Œ˙30=0�S graphite-reinforced laminate. (a) Use the maximum stress

failure criterion to compute the value of �T below the processing temperature that

causes failure in the laminate, assuming the stresses are zero at the processing tem-

perature. (b) Discuss the failure mode associated with this temperature change. (c) Is

this temperature higher or lower than the failure-producing temperature change for

the Œ0=90�S laminate?



Influence of Thermal Effects on Failure: The Tsai-Wu Criterion 551

11.11 Influence of Thermal Effects on Failure:

The Tsai-Wu Criterion

As with all failure examples, we shall use the Tsai-Wu criterion to study

failure for the cases studied with the maximum stress criterion and compare

the results. Recall from Chapter 10, equation (10.38), that the Tsai-Wu

criterion is written as

F1�1 C F2�2 C F11�
2
1 C F22�2

2 C F66�
2
12 �

p

F11F22�1�2 D 1 (11.140)

where the quantities F1; : : : ; F66 are related to the strengths of the material in

the various directions and are given by Table 10.1. When solving for a load

to produce failure, the Tsai-Wu criterion results in a quadratic equation, with

one root being positive load and the other root being negative. In addition,

the equation must be applied to each layer in the laminate, resulting in a

number of failure loads for a given laminate. The lowest of these loads is

considered the failure load. For this load, an examination of the contribution

of each term in the criterion to the value of unity provides an indication of

the failure mode.

11.11.1 Failure Example 16: Œ0=90�S Laminate Subjected

to Nx and Known �T

The determination of the failure loads for the Œ0=90�S laminate subjected to a

load Nx and a temperature change �T D �150ıC can be determined by the

direct substitution of previous results into equation (11.140). The methodical

approach to the application of the maximum stress criterion has provided

us with the necessary information. Specifically, equation (11.135) provides

us with the stresses due to an applied load of Nx D nx and a temperature

change �T D �150ıC that are to be used in equation (11.140). Using these

equations, we find that the Tsai-Wu criterion becomes:

For the 0ı layers:

F1.3090nx � 39:5 � 106/ C F2.51:3nx C 39:5 � 106/

C F11.3090nx � 39:5 � 106/2 C F22.51:3nx C 39:5 � 106/2

�
p

F11F22.3090nx � 39:5 � 106/.51:3nx C 39:5 � 106/ � 1 D 0

(11.141a)

For the 90ı layers:

F1.�51:3nx � 39:5 � 106/ C F2.240nx C 39:5 � 106/

C F11.�51:3nx � 39:5 � 106/2 C F22.240nx C 39:5 � 106/2

�
p

F11F22.�51:3nx � 39:5 � 106/.240nx C 39:5 � 106/ � 1 D 0

(11.141b)
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TABLE 11.8. Summary of failure loads Nx (MN/m) for Œ0=90�S laminate,

�T D �150ıC: Tsai-Wu criterion�

−683

    28.9

      0

786

  53.2

    0

0.091

0.433

−0.105

  0.798



σ

τ

σ
1

2

12

, MPa

, MPa

 , MPa

Nx = −0.208

(−0.391)

Nx = +0.267

(+0.204)

Nx = −0.997

(−1.000)

Nx = +0.0402

(+0.0437)

    11.6

−199

      0

−41.6

  49.1

    0

−0.002

−2.99

0.006

0.737

0° layers 90° layers

1.000 1.000 1.000 1.000

* Maximum stress failure theory predictions in parenthesis.

Total

σ1

σ2

F1

F2

σ1

σ

σ2

σ

1
2

2
2

−   F11F22

τ 12
2

√

F11

F22

F66

0.249

0.083

0

0.144

  0.329

  0.283

  0

−0.305

  0

  3.98

  0

  0.017

0.001

0.242

0

0.015

Table 11.8 summarizes the results of solving these quadratic forms for nx

and gives the positive and negative root for each layer. Also tabulated are the

principal material system stresses at the various failure load levels and the

contributions of the terms in the failure criterion to unity. The predictions of

the maximum stress failure criterion are indicated in parenthesis in the table.

Table 11.8 indicates that in the presence of residual thermal stresses,

the Œ0=90�S can only sustain a tensile load Nx D C0:0402 MN/m and a

compressive load of Nx D �0:208 MN/m. Failure due to tensile loading is

predicted to be due to failure in the 90ı layers due to tensile perpendicular

to the fibers, while failure due to compressive loading appears to occur

in the 0ı layers due to a combination of fiber direction compression and

tension perpendicular to the fiber. The results of this table can be compared

with the results of Table 10.6, where the predictions are based on the Tsai-

Wu criterion with no thermal stresses present. Table 10.6 indicated that if

you do not account for residual thermal effects, the laminate can sustain

a tensile load of Nx D C0:208 MN/m and a compressive load of Nx D
�0:532 MN/m. Like the maximum stress criterion, the Tsai-Wu criterion

predicts that residual thermal effects are detrimental, particularly in tension.

In addition, the tensile failure load of C0:0402 MN/m compares well with the

prediction of the maximum stress criterion, Table 11.2, of C0:0437 MN/m,

while the compressive load prediction of �0:208 MN/m is somewhat lower

than the maximum stress criterion prediction of �0:391 MN/m.

Again, it is interesting to determine the temperature change, with no load,

that causes failure in the laminate. This can be determined by using equation
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TABLE 11.9. Temperature changes �T (ıC) that

cause failure in Œ0=90�S laminate: Tsai-Wu criterion�

−49.0

  49.0

    0

  189.3

−189.3

      0

0.007

0.735



−0.025

−2.84



σ

τ

σ
1

2

12

, MPa

, MPa

 , MPa

∆T = −185.9 ∆T = 719

0° and 90° layers

1.000 1.000

* Maximum stress theory predicts ∆T = −190.0 and 759°C.

Total

σ1

σ2

F1

F2

σ1

σ

σ2

σ

1
2

2
2

−   F11F22

τ 12
2

√

F11

F22

F66

0.001

0.240

0

0.018

  0.019

  3.58

  0

  0.272

(11.134) with nx D 0 in the Tsai-Wu criterion. For this case and for this

laminate the Tsai-Wu criterion is the same for each layer, namely,

.F1 �F2/263 000�T C .F11 C F22 �
p

F11F22/.263 000�T /2 �1 D 0

(11.142)

where the roots for �T are summarized in Table 11.9.

The results of the table indicate that at a temperature �185:9ıC below the

stress-free processing temperature, both layers fail due to excessive stresses

perpendicular to the fibers. This finding correlates well with the results of the

maximum stress criterion.

Table 11.10 provides a good summary comparison of this problem as

viewed with the two failure criteria with and without residual thermal effects.

TABLE 11.10. Failure loads Nx (MN/m) for Œ0=90�S laminate with and without

thermal effects: Tsai-Wu and maximum stress criteria

Thermal effects No thermal effects

Tsai-Wu

Load level

Maximum

stress

Load level

Criterion Failure < 0 < 0> 0 > 0

Nx = −0.208 Nx = +0.0402 Nx = −0.532 Nx = +0.208

Layer

Mode

Layer

Mode

&

0°

Nx = −0.391

0°

90°

Nx = +0.0437

90°

0°

Nx = −0.404

0°

90°

Nx = +0.209

90°
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1
C σ

1
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The failure load, the layer that fails, and the failure mode, as predicted by

each criterion, are indicated. Regarding the tensile load to cause failure, both

criteria agree on load level, the layer that causes failure, and the failure mode,

not only for the case of including thermal effects, but also for the case of

excluding thermal effects. The agreement on the compressive load to cause

failure is not so good. The lack of agreement can be traced to interaction

effects predicted by the Tsai-Wu criterion.

11.11.2 Failure Example 17: Œ˙30=0�S Laminate Subject

to Nx and Known �T

According to the Tsai-Wu criterion, the influence of residual thermal stresses

on the load capacity of the Œ˙30=0�S laminate can be determined in the same

straightforward manner. Equation (11.137) provides us with the principal

material system stresses for the case of Nx D nx and �T D �150ıC. These

stresses can be directly substituted into the Tsai-Wu criterion to yield:

For the C30ı layers:

F1.866nx � 55:2 � 106/ C F2.�77:3nx C 21:1 � 106/

C F11.866nx � 55:2 � 106/2 C F22.�77:3nx C 21:1 � 106/2

C F66.�102:8nx � 10:84 � 106/2

�
p

F11F22.866nx � 55:2 � 106/.�77:3nx C 21:1 � 106/ � 1 D 0

(11.143a)

For the �30ı layers:

F1.866nx � 55:2 � 106/ C F2.�77:3nx C 21:1 � 106/

C F11.866nx � 55:2 � 106/2 C F22.�77:3nx C 21:1 � 106/2

C F66.102:8nx C 10:84 � 106/2

�
p

F11F22.866nx � 55:2 � 106/.�77:3nx C 21:1 � 106/ � 1 D 0

(11.143b)

For the 0ı layers:

F1.1894nx C 53:4 � 106/ C F2.�138:9nx C 14:64 � 106/

C F11.1894nx C 53:4 � 106/2 C F22.�138:9nx C 14:64 � 106/2

�
p

F11F22.1894nx C 53:4 � 106/.�138:9nx C 14:64 � 106/ � 1 D 0

(11.143c)

Table 11.11 summarizes the results from solving these equations for nx.

Again, the values of the principal stresses at the failure load levels and the

contributions to the Tsai-Wu criterion for the three layer directions are given.
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TABLE 11.11. Summary of failure loads Nx (MN/m) for Œ˙30=0�S laminate,

�T D �150ıC: Tsai-Wu Criterion�

−287

    41.8

    16.66

  720

  −48.0

−102.8

0.038

0.627



−287

    41.8

  −16.66

0.038

0.627

−0.096

−0.721

  720

  −48.0

  102.8

−0.096

−0.721

σ

τ

σ
1

2

12

, MPa

, MPa

 , MPa

Nx = −0.268

(−1.079)

Nx = +0.895

(+0.868)

Nx = −0.268

(−1.079)

Nx = +0.895

(+0.868)

+30° layers −30° layers

1.000 1.000 1.000 1.000

Nx = −0.1966

(−0.254)

Nx = +0.679

(+0.763)

    −319

        42.0

          0

1341

  −79.7

      0

0.043

0.629

−0.179

−1.196

0° layers

1.000 1.000

* Maximum stress criterion in parenthesis.

Total

σ1

σ2

F1

F2

σ1

σ

σ2

σ

1
2

2
2

−   F11F22

τ 12
2

√

F11

F22

F66

0.044

0.175

0.028

0.088

  0.276

  0.231

  1.057

  0.253

0.044

0.175

0.028

0.088

  0.276

  0.231

  1.057

  0.253

0.054

0.176

0

0.098

  0.959

  0.635

  0

  0.780

From the table it appears that a positive load is limited to C0:679 MN/m

by the 0ı layers and the mode of failure is a tensile stress in the fiber

direction. A negative load is limited to �0:1966 MN/m by the 0ı layers,

and the layers fail due to the combined effect of tension perpendicular to the

fibers and, to some degree, compression in the fiber direction. An examination

of Table 10.7, the counterpart to this case but with no thermal effects,

indicates that, overall, thermal effects are again detrimental and the positive

and negative limiting loads cause similar failure characteristics. However,

there is an anomaly for the 0ı layers and positive Nx , the case of including

thermal effects resulting in a higher value of Nx (C0:679 MN/m) than with

no thermal effects (C0:665 MN/m). Table 11.12 summarizes the findings for

the Œ˙30=0�S laminate.

TABLE 11.12. Failure loads Nx (MN/m) for Œ˙30=0�S laminate with and without

thermal effects: Tsai-Wu and maximum stress criteria

Thermal effects No thermal effects

Tsai-Wu

Load level

Maximum

stress

Load level

Criterion Failure < 0 < 0> 0 > 0

Nx = −0.1966 Nx = +0.679 Nx = −0.260 Nx = +0.665

Layer

Mode

Layer

Mode

0°

Nx = −0.254

0°

0°

Nx = 0.763

0°

0°

Nx = −0.360

0°

0°

Nx = +0.791

0°

&σ
1
Cσ T

2
σ T

1

σ T
1
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1

σ T
1

σ T
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11.11.3 Failure Example 18: Œ˙30=0�S Laminate Subjected

to Mx and Known �T

The principal material system stresses at the outer location of each layer of the

Œ˙30=0�S laminate with Mx D mx and �T D �150ıC are given by equation

(11.138). Recall the dual role of these expressions for the stresses, where the

stresses as written in equation (11.138) are for the positive z locations, and

the stresses for the negative z locations are given by changing the sign of the

term associated with mx . The results of substituting equation (11.138) into

the Tsai-Wu criterion are summarized in Table 11.13 in the usual fashion. If

the negative z locations were considered and summarized in table form, then

that table would be similar to Table 11.13 except that the signs of the failure

loads would reverse, resulting in a switching of columns. The two roots to

the three polynomials would be

Mx D �73:3 Mx D 25:5

Mx D �103:4 Mx D 24:8

Mx D �164:2 Mx D 45:6

(11.144)

for the C30ı, �30ı, and 0ı layers, respectively. The signs of some of the

entries in the columns below the failure loads would change. As a result,

we can conclude that failure occurs when Mx D ˙24:8 N�m/m, and that

failure occurs at the outer location in the �30ı layer due to a tensile stress

perpendicular to the fibers. Failure for the case of no thermal effects occurs,

from Table 10.8, when Mx D ˙38:4 N�m/m, and failure occurs at the outer

location in the C30ı layer due to a combination of a shear stress and a

TABLE 11.13. Summary of failure loads Mx (N�m/m) for Œ˙30=0�S laminate,

�T D �150ıC: Tsai-Wu criterion�

−202

    42.8

    25.2

  369

  −41.2

−114.6

0.027

0.642

−279

    42.9

    −8.33

0.037

0.643



−0.049

−0.617

 877

  −69.3

    90.7

−0.117

−1.040

σ

τ

σ
1

2

12

, MPa

, MPa

 , MPa

Mx = −25.5

(−34.0)

Mx = +73.3

(+63.0)

Mx = −24.8

(−33.0)

Mx = +103.4

(+115.5)

Outer location

of +30° layers

Outer location

of −30° layers

Outer location

of 0° layers

1.000 1.000 1.000 1.000

Mx = −45.6

(−57.2)

Mx = +164.2

(+192.5)

    −289

        42.8

          3.91

1288

  −86.8

  −14.08

0.039

0.642

−0.172

−1.302

1.000 1.000

* Positive z locations.  Maximum stress criterion in parenthesis.

Total

σ1

σ2

F1

F2

σ1

σ

σ2

σ

1
2

2
2

−   F11F22

τ 12
2

√

F11

F22

F66

0.022

0.183

0.063

0.063

  0.073

  0.169

  1.313

  0.111

0.042

0.184

0.007

0.087

  0.410

  0.481

  0.832

  0.444

0.044

0.183

0.002

0.090

  0.884

  0.753

  0.020

  0.816
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TABLE 11.14. Failure loads Mx (N�m/m) for Œ˙30=0�S laminate, with and without

thermal effects: Tsai-Wu and maximum stress criteria

Thermal effects No thermal effects

Tsai-Wu

Load level

Maximum

stress

Load level

Criterion Failure < 0 < 0> 0 > 0

Mx = −24.8 Mx = +24.8 Mx = −38.4 Mx = +38.4

Layer

Mode

Layer

Mode

−30°

Mx = −33.0

−30°

−30°

Mx = +33.0

−30°

+30°

Mx = −57.1

−30°

+30°

Mx = +57.1

−30°

&σ T
2

σ T
2

σ T
2

σ T
2

σ T
2

τ 12
F

σ T
2

σ T
2

&τ 12
F σ T

2

tensile stress perpendicular to the fibers. Table 11.14 provides an overview of

this problem from several perspectives and it is evident that thermal effects

are detrimental to this bending problem. The Tsai-Wu criterion predicts a

change of failure mode and failure location due to thermal effects, whereas

the maximum stress criterion predicts the same mode and same location, with

merely a reduced bending moment capacity.

This completes our discussion of the influence of thermal effects on failure.

We have examined it from the view of the maximum stress and the Tsai-Wu

criteria. We have considered thermal effects due to cooldown from processing,

a very realistic case. Obviously, other thermal conditions can be studied with

the approaches outlined here. Care must be taken, however, to ensure that

the material strengths used in the failure criterion reflect the strength at that

temperature. Because the presence of moisture tends to weaken composite

materials, we have not presented any examples of failure in the presence of

moisture-induced stresses. We have seen that the moisture-induced stresses

tend to relieve the residual stresses due to cooldown from processing, but a

moisture-weakened material may not take advantage of this relief in stresses.

If another failure criterion is more applicable to a certain situation, the work

presented here lays the foundation for incorporating thermal effects into that

criterion. To be sure, whatever criterion is being used, it is important to

examine all aspects of its predictions by approaching each problem in a

thorough manner, examining all the stresses in all the layers. It is easy to

overlook an important feature of the problem if thoroughness is not used.

Exercise for Section 11.11

Use the Tsai-Wu failure criterion to compute the value of �T below the processing

temperature that causes failure in the Œ˙30=0�S laminate, assuming the stresses are

zero at the processing temperature. Discuss the failure mode associated with this

temperature change and compare the results with the results from the maximum stress

criterion, the Exercise for Section 11.10.
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11.12 Summary

This brings to a close the chapter on the influence of thermal effects on

laminates. In this chapter we started with the basic assumptions necessary

to incorporate free thermal expansion strains into the analysis of laminates.

Following the development for the case of no thermal effects, the definitions

of the classical A, B , and D matrices remained intact, and equivalent thermal

force and moment resultants evolved as natural definitions. These equivalent

resultants could then be used with the ABD matrix to determine the reference

surface strains and curvatures that resulted from a temperature change. The

discussions were limited to the case of temperature-independent material

properties and temperature changes that did not depend on z. Definitions

of the coefficients of thermal deformation of the laminate followed naturally

from the derivations. We discussed example problems that considered thermal

effects due to the cooling of a laminate from its consolidation temperature,

and we considered the influence of the resulting residual stresses on the stress

distributions through the thickness of the laminate, and on failure. At certain

key points analogies to the effects of free strains due to moisture absorption

were made. In the next chapter, we will present further discussion of the

effects of free thermal strains. However, the discussion will be not in the

context of stresses, but rather in the context of through-thickness dimensional

changes in a laminate.

11.13 Suggested Readings

The following are several of the original papers dealing with environmental effects in

laminates:

1. Hahn, H. T., and N. J. Pagano. “Curing Stresses in Composite Laminates.” Journal

of Composite Materials 9 (1975), pp. 2–20.

2. Pipes, R. B.; J. R. Vinson; and T.-W. and Chou. “On the Hygrothermal Response

of Laminated Composite Structures.” Journal of Composite Materials 10 (1976),

pp. 129–48.

3. Hahn, H. T., and R. Y. Kim. “Swelling of Composite Laminates.” In Advanced

Composite Materials—Environmental Effects, ASTM STP 658, ed. J. R. Vinson.

Philadelphia: American Society for Testing and Materials, 1978.

Several classic references for understanding the moisture absorption characteristics of

composite materials are the following:

4. Shen, C.-H., and G. S. Springer. “Moisture Absorption and Desorption of Com-

posite Materials.” Journal of Composite Materials 10 (1976), pp. 2–20.

5. Browning, C. E.; G. E. Husman; and J. M. Whitney. “Moisture Effects in Epoxy

Matrix Composites.” In Composite Materials: Testing and Design: Fourth Con-

ference, ASTM STP 617, ed. S. W. Tsai. Philadelphia: American Society for

Testing and Materials, 1977.
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6. Vinson, J. R., ed. Advanced Composite Materials—Environmental Effects, ASTM

STP 658. Philadelphia: American Society for Testing and Materials, 1978.

7. Loos, A. C., and G. S. Springer. “Moisture Absorption of Graphite/Epoxy Com-

posites Immersed in Liquids and in Humid Air.” Journal of Composite Materials

13 (1979), pp. 131–47.

In addition to the stresses within the laminate, other consequences of thermal effects

in laminates are described in the following:

8. Springer, G. S., ed. Environmental Effects on Composite Materials. Vols. 1 and

2. Lancaster, PA: Technomic Publishing Co., 1981 and 1984.

9. Meyers, C. A., and M. W. Hyer. “Thermal Buckling and Postbuckling of Sym-

metrically Laminated Composite Plates.” Journal of Thermal Stress 14 (1991),

pp. 519–40.

10. Noor, A. K.; J. H. Starnes, Jr.; and J. M. Peters. “Thermomechanical Buckling and

Postbuckling of Multilayer Composite Panels.” Composite Structures 23 (1993),

pp. 233–51.

Some unusual thermally induced effects in unsymmetric laminates, specifically when

equation (11.85) is not valid, are discussed in:

11. Hyer, M. W. “Calculations of the Room-Temperature Shapes of Unsymmetric

Laminates.” Journal of Composite Materials 15 (1981), pp. 296–310.



CHAPTER 12

Through-Thickness Laminate Strains

The key assumption that resulted in a simplification of the stress analysis of

composite materials, and that led to what we have called classical lamination

theory, was the plane-stress assumption. This assumption stated that the

stresses �3, �23, and �13 in the principal material coordinate system are so

small in comparison to �1, �2, and �12 that they can be assumed to be zero.

After introducing this assumption and examining plane-stress problems for

a single layer, from time to time we reminded ourselves that a layer of

material still experiences strains in the 3 direction. We computed "3.D "z/

in several examples, and in Exercise 3 in the Exercises for Section 5.2 we

computed "z and then the change in layer thickness, �h, as a function of

� for the tensile loading of an off-axis layer. When studying the response

of laminates, we must not forget that they also experience strains in the

thickness direction when loaded, or when subjected to a temperature change,

or when they absorb moisture. This effect is so important to having a complete

understanding of laminate response within the context of classical lamination

theory that we have devoted this separate chapter to the subject. Additionally,

through-thickness strains are important when mechanical fasteners through

the thickness of the laminate, such as bolts or rivets, are used to connect two

laminates. A bolt and nut combination improperly torqued could loosen due

to through-thickness contraction from inplane loading if the through-thickness

strains of the laminate are not properly computed. Also, to ensure dimensional

tolerances in the application of composite materials to optical devices that

experience temperature changes, every aspect of the thermal expansion or

contraction of the material must be known. By using a combination of �1, �2,

and �12 as computed from classical lamination theory and the 3-dimensional

stress-strain relations, the through-thickness strains can be computed. In this

chapter we shall compute the change in thickness of a laminate subjected to

inplane loads, define two laminate Poisson’s ratios in the thickness direction,

561
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and define a through-thickness thermal expansion coefficient. These relations

will be exact within the context of classical lamination theory.

12.1 Thickness Change of a Laminate, No Free Thermal

or Moisture Strain Effects

According to equation (4.1), in the principal material coordinate system,

the 3-dimensional stress-strain relations, with no free thermal or moisture

absorption effects and written with the plane-stress assumption incorporated,

are
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

"1

"2

"3

23

13

12

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

D

2

6

6

6

6

6

6

6

6

6

4

S11 S12 S13 0 0 0

S12 S22 S23 0 0 0

S13 S23 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S55 0

0 0 0 0 0 S66

3

7

7

7

7

7

7

7

7

7

5

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�1

�2

0

0

0

�12

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

(12.1)

As indicated in equations (4.2) and (4.3), from the above equation the through-

thickness strains "3, 23, and 13 are given by

"3 D S13�1 C S23�2 23 D 0 13 D 0 (12.2)

These equations remind us that by the plane-stress assumption the through-

thickness shear strains are identically zero. The extensional strain is not zero

and can be computed directly from the inplane stresses �1 and �2 and the

compliances S13 and S23. Because "3 is not zero, a layer in a state of plane

stress experiences a change in thickness, �h, given by

�h D "3h (12.3)

h being the thickness of the layer.

The expressions of equations (12.2) and (12.3) for "3 and �h are indepen-

dent of whether the layer is within a laminate or is isolated by itself. In fact,

to indicate that the above expressions for "3 and �h are valid for any layer,

specifically the kth layer, the expressions can be rewritten as

"3k
D S13k

�1k
C S23k

�2k
(12.4)

and

�hk D "3k
hk (12.5)

The stress analysis of a laminate subjected to loads Nx, Ny , Nxy , Mx , My ,

Mxy leads to a layer-by-layer calculation of �1 and �2. Hence, the thickness

change of each layer can be computed and the total change in laminate

thickness determined by summing the various layer thickness changes. Using
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the above notation, we find that the total thickness change of an N -layer

laminate, �H , is

�H D

N
X

kD1

�hk (12.6)

As an example of this calculation, consider the response of the graphite-

reinforced Œ˙30=0�S laminate subjected to a load in the x direction of Nx D
0:1024 MN/m. Table 12.1 lists the principal material system stresses �1 and �2

in each layer based on the results of classical lamination theory as calculated

in Chapter 8, equation (8.14).

From Chapter 2, equation (2.56),

S13 D �
�13

E1

D �1:600 � 10
�12

S23 D �
�23

E2

D �37:9 � 10
�12

(12.7)

Using equation (12.4), we find that for the ˙30ı layers, layers 1, 2, 5, and 6,

"31
D "32

D "35
D "36

D .�1:600 � 10�12/.88:7 � 106/

C .�37:9 � 10�12/.�7:92 � 106/

D 157:8 � 10�6

(12.8)

Since a layer is 150 � 10�6 m thick, the change in thickness of each of the

˙30ı layers is as given by equation (12.5), namely,

�h1 D �h2 D �h5 D �h6 D "31
h1

D .157:8 � 10�6/.150 � 10�6/ D 23:7 � 10�9 m
(12.9)

Each of the ˙30ı layers expands in the thickness direction due to the

compressive value of �2 in those layers. The thickness strain in the two

TABLE 12.1. Thickness response of Œ˙30=0�S laminate to

load of Nx D 0:1024 MN/m

1

2

3

4

5

6

+30

−30

0

0

−30

+30

88.7

88.7

194.1

194.1

88.7

88.7

−7.92

−7.92

−14.23

−14.23

−7.92

−7.92

157.8

157.8

228

228

157.8

157.8

23.7

23.7

34.2

34.2

23.7

23.7

Layer

no.

Angle

deg.
   1

MPa
   2

psi
  3

×10−6
∆h

×10−9 m

σ σ ε

∆H = 163.1 × 10−9 m
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0ı layers is, from equation (12.4),

"33
D "34

D .�1:600 � 10�12/.194:1 � 106/

C .�37:9 � 10�12/.�14:23 � 106/

D 228 � 10�6

(12.10)

Each of the 0ı layers also expands in the thickness direction. As a result, the

thickness change of the 0ı layers is, from equation (12.5),

�h3 D �h4 D 34:2 � 10
�9 m (12.11)

Summing the change in thickness of all 6 layers, we find that the total change

in thickness of the laminate, �H , is

�H D

6
X

kD1

�hk D 163:1 � 10
�9 m (12.12)

These various numerical values are entered in Table 12.1.

An average through-thickness strain for an N layer laminate, N"z , can be

defined as the sum of the change in the thicknesses of the individual layers

divided by the original thickness of the laminate, H ; that is:

N"z D
�H

H
D

1

H

N
X

kD1

.S13k
�1k

C S23k
�2k

/hk (12.13)

where

H D

N
X

kD1

hk (12.14)

Like all average quantities, no one layer necessarily experiences the thickness

strain of the laminate. Continuing with our numerical example, we find, using

equation (12.13), that the average thickness strain for the Œ˙30=0�S laminate

is

N"z D
�H

H
D

163:1 � 10�9

6.150 � 10�6/
D 181:2 � 10

�6 (12.15)

It should be realized that, in general, the average strain in the thickness

direction is not the average of the individual layer strains. Rather, the entire

thickness change due to individual layer strains must be computed, and the

average strain computed from this. Here, however, with all layers the same

thickness and made of the same material, the average of the six strains is

identical to the average strain.

12.2 Through-Thickness Laminate Poisson’s Ratios

While the thickness change of a specific laminate in a particular loading

situation may be of interest, the through-thickness Poisson’s ratios of the
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laminate provide a general measure of the thickness response. We can define

through-thickness Poisson’s ratios much as we defined the three Poisson’s

ratios for a small element of material in Chapter 2 or the effective Poisson’s

ratio N�xy for a laminate in Chapter 7. A brief review of those chapters indicates

that Poisson’s ratios can be defined only in the context of the deformations

that result from the application of a single uniaxial applied loading. Then, for

a laminate the through-thickness Poisson’s ratio N�xz is defined to be minus the

ratio of the through-thickness strain of the laminate divided by the laminate

strain in the x direction, given that the laminate is loaded only in the x

direction. In such a situation the laminate strain in the x direction is given

by "o
x, the reference surface strain in the x direction. With this,

N�xz � �
N"z

"o
x

(12.16)

For a symmetric laminate loaded only by force resultant Nx, the strain "
o
x is

given by equation (7.102a) as

"
o
x D a11Nx (12.17)

As a result, from equation (12.16),

N�xz D �
N"z

"o
x

D �
N"z

a11Nx

(12.18)

For the Œ˙30=0�S laminate, using numerical results from equation (7.92a),

with Nx D 0:1024 MN/m, and equation (12.15), we find that

N�xz D �0:142 (12.19)

A more formal expression for N�xz can be developed by using equations

(12.4), (12.5), (12.13), and (12.18) to give

N�xz D �

N
X

kD1

.S13k
�1k

C S23k
�2k

/hk

Nxa11H
(12.20)

A unit value of Nx can be considered, so equation (12.20) becomes

N�xz D �

N
X

kD1

.S13k
�1k

C S23k
�2k

/hk

a11H
(12.21)

With a unit Nx , for a symmetric laminate, from equation (7.102a),

"
o
x D a11 "

o
y D a12 

o
xy D a16 (12.22)

For the kth layer, then, the principal material system strains are given by

equation (5.21) as

"1k
D m

2
ka11 C n

2
ka12 C mknka16

"2k
D n2

k
a11 C m2

k
a12 � mknka16

(12.23)
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Here

mk D cos.�k/ nk D sin.�k/ (12.24)

and �k is the fiber orientation of the kth layer. Using the plane-stress stress-

strain relation, equation (4.14), for the kth layer, we find that

�1k
D Q11k

"1k
C Q12k

"2k

�2k
D Q12k

"1k
C Q22k

"2k

(12.25)

Combining all these expressions, equation (12.21) becomes

N�xz D �
1

a11H

N
X

kD1

ŒfS13k
.Q11k

m
2
k C Q12k

n
2
k/

C S23k
.Q12k

m
2
k C Q22k

n
2
k/ga11

C fS13k
.Q11k

n
2
k C Q12k

m
2
k/

C S23k
.Q12k

n
2
k C Q22k

m
2
k/ga12

C fS13k
.Q11k

� Q12k
/

C S23k
.Q12k

� Q22k
/gmknka16�hk

(12.26)

For balanced laminates a16 D 0, and if in addition all layers are identical

except for fiber orientation, then equation (12.26) simplifies to

N�xz D �
1

Na11

N
X

kD1

ŒfS13.Q11m
2
k C Q12n

2
k/

C S23.Q12m
2
k C Q22n

2
k/ga11

C fS13.Q11n
2
k C Q12m

2
k/

C S23.Q12n
2
k C Q22m

2
k/ga12�

(12.27)

The relative simplicity of equation (12.27) points to the importance of casting

problems in terms of the principal material system.

All quantities in equations (12.26) or (12.27) are either a material or

geometric property of the laminate and hence N�xz truly represents an inherent

property of the laminate. Though equations (12.26) or (12.27) can be used to

compute N�xz , the approach taken in constructing Table 12.1, whereby �h of

each layer is computed and the results added, as in equation (12.6), provides

physical insight on a layer-by-layer basis which can be valuable, particularly

if some layers increase in thickness and some layers decrease. With equations

(12.26) or (12.27) these important effects are hidden and the exact makeup

of N�xz is obscured.
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The Poisson’s ratio N�yz based on the average through-thickness strain due

to a load applied to the laminate in the y direction can be defined in a similar

manner. Specifically, with only Ny acting,

N�yz D �
N"z

"o
y

(12.28)

where, for a unit value of Ny ,

"
o
x D a12 "

o
y D a22 

o
xy D a26 (12.29)

Then, like equation (12.21),

N�yz D �

N
X

kD1

.S13k
�1k

C S23k
�2k

/hk

a22H
(12.30)

Transforming the strains in the x-y system, equation (12.29), to the principal

material system, as in equation (12.23), results in

"1k
D m

2
ka12 C n

2
ka22 C mknka26

"2k
D n2

k
a12 C m2

k
a22 � mknka26

(12.31)

Using the plane-stress stress-strain relations, equation (12.25), and equation

(12.31) in equation (12.30) leads to the final expression for N�yz , namely,

N�yz D �
1

a22H

N
X

kD1

ŒfS13k
.Q11k

m
2
k C Q12k

n
2
k/

C S23k
.Q12k

m
2
k C Q22k

n
2
k/ga12

C fS13k
.Q11k

n
2
k C Q12k

m
2
k/

C S23k
.Q12k

n
2
k C Q22k

m
2
k/ga22

C fS13k
.Q11k

� Q12k
/

C S23k
.Q12k

� Q22k
/gmknka26�hk

(12.32)

For the case of all layers being identical except for fiber orientation and the

laminate being balanced, equation (12.32) simplifies to

N�yz D �
1

a22N

N
X

kD1

ŒfS13.Q11m
2
k C Q12n

2
k/

C S23.Q12m
2
k C Q22n

2
k/ga12

C fS13.Q11n
2
k C Q12m

2
k/

C S23.Q12n
2
k C Q22m

2
k/ga22�

(12.33)
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FIGURE 12.1. Variation of N�xz and N�yz with � for a Œ˙�=0�S laminate.

Of course N�yz can be computed by constructing a table such as Table

12.1 for a given Ny, computing �h of each layer, then �H , and directly

computing

N"z D
�H

H
(12.34)

Then

N�yz D �
N"z

a22Ny

(12.35)

This approach again provides insight into details of the change in thickness of

the individual layers. We find, using either the tabular approach or equation

(12.33) directly, that for the Œ˙30=0�S laminate

N�yz D 0:378 (12.36)

Figure 12.1 shows how the two through-thickness Poisson’s ratios N�xz and

N�yz for a Œ˙�=0�S laminate vary with � . As can be seen, the sign of N�xz

depends strongly on � , and there are two values of � for which a loading in

the x direction, Nx ¤ 0, Ny D Nxy D 0, produces no thickness change; that

is, N�xz D 0. For other values of � , the laminate will either expand or contract

in the thickness direction. Of course for � D 0ı, N�xz D �13 and N�yz D �23.

Exercise for Section 12.2

By constructing tables similar to Table 12.1, compute N�xz and N�yz for a Œ0=90�S
laminate.
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12.3 Thickness Change of a Laminate Due to Free Thermal

Strain Effects

In Chapter 11, equations (11.92) and (11.93), we computed the laminate

coefficients of thermal deformation N̨x, N̨y, and N̨xy by using classical lam-

ination theory, incorporating the free thermal strain effects into the stress-

strain relations, defining thermal force resultants, and properly interpreting

the strain response of the laminate subjected to a temperature change. Nothing

was said about the thickness expansion of the laminate, yet an isolated layer

has a thermal expansion coefficient of ˛3 in the thickness direction and

changes thickness by the amount ˛3h�T when the temperature is changed

an amount �T . At first thought one may innocently assume that an entire

laminate expands by an amount ˛3h�T . After all, the thickness direction of

the laminate and the thickness direction of each individual layer coincide.

However, nothing could be further from the truth. If such an assumption

was made, then it would indicate that nothing had been learned about the

interaction of layers when they are in a laminate. How does a laminate

respond in the thickness direction when heated and cooled? Can we define a

through-thickness expansion coefficient for the laminate? How does it depend

on ˛3?

To answer these questions, it is necessary to return to the case where

free thermal strain effects are included in the three-dimensional stress-strain

relations. Specifically, equation (4.28), with �M D 0, is an expression for the

through-thickness strain in the principal material system when free thermal

strains must be accounted for, namely,

"3 D ˛3�T C S13�1 C S23�2 (12.37)

We have seen throughout Chapter 11 that when a laminate is heated or cooled

relative to some reference state, stresses �1 and �2 develop, and their values

are changed with respect to that reference state. Equation (12.37) indicates

that through the compliances S13 and S23 these stresses couple with the

free thermal expansion ˛3�T to produce a thickness strain in a layer that

is different from simply ˛3�T . Only under very special circumstances is

S13�1 C S23�2 D 0 and the thickness expansion given simply by ˛3�T . For

the kth layer, then,

"3k
D ˛3k

�T C S13k
�1k

C S23k
�2k

(12.38)

and

�hk D "3k
hk (12.39)

We have implied, as in the past, that �T is not dependent on spatial location.

For the entire N -layer laminate the total thickness change is

�H D

N
X

kD1

�hk (12.40)
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As an example of a thermally induced thickness change, consider the

Œ˙30=0�S laminate subjected to the cooldown from the processing tempera-

ture of �150ıC. Table 12.2 lists the stresses in each layer that result from the

free thermal deformation of the laminate. The results are taken directly from

Chapter 11, equation (11.104). Using equation (12.38), for the ˙30
ı layers,

layers 1, 2, 5, and 6, we find that

"31
D "32

D "35
D "36

D .24:3 � 10�6/.�150/ C .�1:600 � 10�12/.�55:2 � 106/

C .�37:9 � 10�12/.21:1 � 106/

D �4360 � 10�6

(12.41)

with the value of ˛3 being taken from Table 2.1. With a layer being 150�10�6

m thick, the thickness change for each of these four layers is given by equation

(12.39), namely,

�h1 D �h2 D �h5 D �h6 D "31
h1

D .�4360 � 10�6/.150 � 10�6/

D �654 � 10�9 m

(12.42)

These layers contract in thickness due to the temperature decrease. Note that

they decrease in thickness more than the value given by ˛3h�T ; that value

is

˛3h�T D �547 � 10
�9 m (12.43)

The through-thickness strain for the 0ı layers is

"33
D "34

D .24:3 � 10
�6

/.�150/ C .�1:600 � 10
�12

/.53:4 � 10
6
/

C .�37:9 � 10
�12

/.14:64 � 10
6
/

D �4280 � 10
�6

(12.44)

TABLE 12.2. Thickness response of Œ˙30=0�S laminate

due to �T D �150ıC

1

2

3

4

5

6

+30

−30

0

0

−30

+30

−55.2

−55.2

53.4

53.4

−55.2

−55.2

21.1

21.1

14.64

14.64

21.1

21.1

−4360

−4360

−4280

−4280

−4360

−4360

−654

−654

−643

−643

−654

−654

Layer

no.

Angle

deg.
   1

MPa
   2

MPa
  3

×10−6
∆h

×10−9 m

σ σ ε

∆H = −3900 × 10−9 m
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The change in thickness of each 0ı layer is thus

�h3 D �h4 D "3h3 D �643 � 10
�9 m (12.45)

and the total change in thickness of the laminate is, from equation (12.40),

�H D �3900 � 10
�9 (12.46)

The total thickness change due to the temperature change divided by the

laminate thickness H is the average thermally induced strain in the thickness

direction, N"T
z , the superscript T denoting thermal effects, that is,

N"T
z D

�H

H
(12.47)

Continuing with the numerical example for the Œ˙30=0�S laminate, we find

that

N"T
z D

�3900 � 10
�9

6.150 � 10�6/
D �4330 � 10

�6 (12.48)

12.4 Through-Thickness Laminate Coefficient

of Thermal Expansion

The average through-thickness coefficient of thermal expansion N̨z is defined

as the average thermally induced strain in the thickness direction divided by

the temperature change that caused it. Using this definition and the above

expressions, we find that

N̨z D
N"T
z

�T
(12.49)

or, using equation (12.48) for the Œ˙30=0�S laminate, that

N̨z D
�4330 � 10�6

�150
D 28:9 � 10

�6
=

ıC (12.50)

This value of thickness expansion is different from the value of ˛3 D 24:3 �

10�6=ıC, attesting to the fact that the layers interact to produce an overall

thickness expansion that is a combination of free thermal expansion effects

and through-thickness elastic properties of the individual layers. Specifically,

it is the through-thickness Poisson’s ratios that are responsible for the thick-

ness expansion due to thermal effects being different from ˛3�T .

More formally, we can develop an expression for N̨z in a manner similar

to the approach used find N�xz , equation (12.26), and N�yz , equation (12.32).

Combining equations (12.38), (12.39), (12.40), (12.47), and (12.49) results

in

N̨ z D
1

H�T

N
X

kD1

.˛3k
�T C S13k

�1k
C S23k

�2k
/hk (12.51)
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For a unit temperature change, from equation (11.92) for a symmetric lami-

nate, the strains are

N̨x � "o
x D a11

ON T
x C a12

ON T
y C a16

ON T
xy

N̨y � "o
y D a12

ON T
x C a22

ON T
y C a26

ON T
xy

N̨xy � 
o
xy D a16

ON T
x C a26

ON T
y C a66

ON T
xy

(12.52)

Transforming these strains to the principal material 1-2 system for the kth

layer yields

"1k
D N̨xm2

k C N̨yn2
k C N̨xymknk

"2k
D N̨xn2

k C N̨ym2
k � N̨xymknk

(12.53)

and then the principal material system stresses become, for the kth layer,

�1k
D Q11k

. N̨xm2
k C N̨yn2

k C N̨xymknk � ˛1k
/

C Q12k
. N̨xn

2
k C N̨ym

2
k � N̨xymknk � ˛2k

/

�2k
D Q12k

. N̨xm
2
k C N̨yn

2
k C N̨xymknk � ˛1k

/

C Q22k
. N̨xn2

k
C N̨ym2

k
� N̨xymknk � ˛2k

/

(12.54)

Substituting equation (12.54) into equation (12.51) results in a rather cum-

bersome expression. However, if every layer is identical, except for fiber

orientation, and the laminate is balanced as well as being symmetric, the

expression for N̨ z becomes

N̨z D
1

N

N
X

kD1

ŒfS13.Q11m2
k C Q12n2

k/ C S23.Q12m2
k C Q22n

2
k/g N̨x

C fS13.Q11n2
k C Q12m

2
k/ C S23.Q12n2

k C Q22m
2
k/g N̨y

C ˛3 � fS13.Q11˛1 C Q12˛2/ C S23.Q12˛1 C Q22˛2/g�

(12.55)

Figure 12.2 shows the variation with � of N̨ z for a Œ˙�=0�S laminate. Of

course, for � D 0ı, N̨z D ˛3 as the six layers act as one thicker unidirectional

layer, and except for � D 0ı, the value of N̨z is greater than ˛3, being about

35 percent greater for � > 60ı.

By direct analogy, expressions for the thickness response of a laminate

due to moisture absorption can be developed. The moisture-induced strain

and moisture-induced thickness change of the kth layer are given by

"3k
D ˇ3k

�M C S13k
�1k

C S23k
�2k

(12.56)

and

�hk D .ˇ3k
�M C S13k

�1k
C S23k

�2k
/hk (12.57)
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FIGURE 12.2. Variation of N̨z with � for a Œ˙�=0�S laminate.

The total change in thickness of the laminate due to moisture absorption is

�H D

N
X

kD1

.ˇ3k
�M C S13k

�1k
C S23k

�2k
/hk (12.58)

The average moisture-induced thickness strain is

N"M
z D

�H

H
D

1

H

N
X

kD1

.ˇ3k
�M C S13k

�1k
C S23k

�2k
/hk (12.59)

Finally, the average coefficient of moisture expansion in the thickness direc-

tion can be written as

Ň
z D

1

H�M

N
X

kD1

.ˇ3k
�M C S13k

�1k
C S23k

�2k
/hk (12.60)

As long as it can validly be assumed that each layer is in a state of plane

stress, the definitions just presented for through-thickness response are valid

independently of laminate thickness.

Exercise for Section 12.4

By constructing a table similar to Table 12.2, compute N̨z for a Œ0=90�S laminate.
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12.5 Summary

Based on these simple examples, we can see that the through-thickness strain

can be computed in a straightforward manner using fundamental principles.

The through-thickness strain may or may not be important in a particular

application, but it is important to remember that it is not zero and to assume

so is wrong.

12.6 Suggested Readings

For further discussions of through-thickness Poisson’s ratios, consult:

1. Herakovich, C. T. “Composite Laminates with Negative through-the-thickness Pois-

son’s Ratios.” Journal of Composite Materials 18 (1984), pp. 447–55.

Through-thickness thermal expansion is considered in:

2. Fahmy, A. A., and A. N. Ragai-Ellozy. “Thermal Expansion of Laminated Fiber

Composites in the Thickness Direction.” Journal of Composite Materials 8 (1974),

pp. 90–92.

If you read the above citation, it is important to also read:

3. Pagano, N. J. “Thickness Expansion Coefficients of Composite Laminates.” Journal

of Composite Materials 8 (1974), pp. 310–12.

Another treatment of the same topic is given in:

4. Wetherhold, R. C., and C. S. Boss. “Transverse Thermal Expansion Coefficients

for Composite Laminates.” Journal of Composite Materials 22 (1988), pp. 812–17.



CHAPTER 13

Introduction to Fiber-Reinforced
Laminated Plates

To this point the discussions have centered on the behavior of fiber-reinforced

composites without regard to the structure they are part of. Chapters 2, 4, and

5 dealt with assumptions regarding the behavior of a fiber-reinforced material

at a point, specifically the stress-strain relations, including the influence of

free thermal strain. Stress-strain relations are algebraic relations that are

defined at a point, so the results of those chapters are valid in any structure,

independently of loading, shape, or size. Chapters 6, 7, and 8 focused on

classical lamination theory, and rather than describing behavior at a point,

described behavior on an entire line through the thickness of the laminate.

Nonetheless, because the response on the line was directly tied to what was

happening at a point on the reference surface, what we did in those chapters

was still confined to a small region of a laminate. Ultimately, we want to

be able to accurately describe the response at all points in a fiber-reinforced

structure and examine the stresses, strains, and the issue of failure throughout

the structure. We need to study the influence of the loading type, temperature

change, laminate shape, laminate size, boundary conditions, as well as fiber

orientation, material properties, and lamination sequence on the response.

Maximum deflections, maximum stresses, loads to cause material failure,

loads to cause buckling, and natural frequencies of vibration are some of the

more important structural responses that depend on the details of the entire

structure. To study these it is necessary to develop the tools for determining

how laminate response varies with x and y. Within the context of classical

lamination theory, we now know how laminate response varies with z, but we

must expand our thinking to variations in the other two coordinate directions.

The development of the tools depends to a large degree on the issue being

studied (do we want to know maximum deflections, or buckling loads, or

natural frequencies?) as well as the type of the structure (is it a thin plate, a

thick plate, a cylindrical shell, a conical shell, etc.?). In this chapter we shall

575



576 INTRODUCTION TO FIBER-REINFORCED LAMINATED PLATES

develop the tools necessary to study flat laminated plates and apply these

tools to several problems that illustrate the unique response characteristics

of fiber-reinforced structures in general, and plates in particular. Because the

study of laminated plates can lead to several books in itself, this chapter will

be limited to the study of the linear response of laminated plates. Thus, for

example, buckling will not be addressed. Furthermore, the discussions of this

chapter will be limited to rectangular plates. Our primary purpose here is to

establish the principles of classical laminated plate theory and illustrate these

principles with simple examples. Advanced topics can then be pursued from

these basic principles. The next section develops the equations governing the

behavior of plates. In subsequent sections the examples are presented.

13.1 Equations Governing Plate Behavior

There are several approaches to developing the equations that govern the

behavior of plates. It must be clear from the onset that the equations that

govern the behavior must include the proper specification of the condi-

tions at the boundary, as well as the specification of the conditions that

govern the behavior away from the boundary, in the interior of the plate.

The latter conditions are generally referred to as the governing differential

equations, whereas the former are, naturally, referred to as boundary con-

ditions. The most consistent method of deriving the governing conditions

is through energy and variational principles. With this approach, we obtain

the governing differential equations and the boundary conditions. This is the

preferred approach, but unfortunately not everybody feels comfortable with

the principles of variational calculus. As a result, the alternative Newtonian

approach, summing forces and moments, is often used to derive the governing

differential equations. The disadvantage of this approach is that there is no

direct information regarding the boundary conditions. Nonetheless, we will

use the Newtonian approach in this chapter; the differential equations of

equilibrium will be derived by summing forces and moments on a differential

element of laminate, and the boundary conditions will simply be stated.

Consider a plate, as in Figure 13.1, with length a in the x direction, width

b in the y direction, and thickness H . The plate is made of a number of layers

of fiber-reinforced material, as the inset shows, and the reference surface of

the plate will be taken as the reference surface of the laminate. The plate is

subjected to a known distributed force q.x; y/ acting in the Cz direction.

Plate theory cannot distinguish whether this distributed force is pushing on

the top surface or whether it is pulling on the bottom surface. The fact that

the distributed force can vary with spatial location .x; y/ is indicated by the

functional dependence of q on x and y. In addition to the distributed force, the

boundaries of the plate can be subjected to a variety of forces and moments.

Figure 13.2 illustrates the possible forces and moments that can be applied
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q (x,y)

y

z

a

x

b

H

FIGURE 13.1. Geometry, nomenclature, and loading of a rectangular laminated

plate.

on the edge x D Ca=2, namely, three forces and two moments. Note the

nomenclature associated with these forces and moments. The superscript C

denotes that the application is at x D Ca=2, and the functional dependence

on y indicates that these forces and moments can vary with distance along the

edge. Figure 13.3 illustrates such a variation for the normal force resultant

N C
x . In Figure 13.2 four of the five resultants are familiar. These are the

normal force resultant N C
x .y/, the shear force resultant N C

xy.y/, the bending

moment resultant M C
x .y/, and the twisting moment resultant M C

xy.y/. The

transverse shear force resultant QC
x .y/ has not previously appeared. This

resultant is defined by

QC

x .y/ D

Z

C
H
2

zD�
H
2

�xz

�

C
a

2
; y; z

�

dz (13.1)

One can immediately raise the issue that because of the plane-stress assump-

tion, �xz D 0, and thus the transverse shear force resultant must be zero.

y

z

Mxy(y)+

Nxy(y)+

Mx (y)+

Nx (y)+

Qx (y)+

FIGURE 13.2. Stress resultants specified at boundary x D Ca=2.
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y

z

Nx (y)+

FIGURE 13.3. Variation of N C
x .y/ with y.

Therefore we should not be able to say anything about defining this resultant.

As will be seen shortly, there must be transverse shear force resultants Qx,

and, shortly to be introduced, Qy to maintain equilibrium in the z direction.

Thus, there is an inconsistency in plate theory. The theory needs stresses

�xz and �yz for equilibrium, yet the theory is based on the plane-stress

assumption. The variational approach does not have to explicitly define Qx

and Qy because it is not based on equilibrium principles.

Despite this inconsistency, the theory we are developing allows for the

application of any or all of these five resultants on the edge x D Ca=2.

In particular, if the edge is free, as in a cantilevered plate, then all five

resultants would be zero. On the edge y D Cb=2, Figure 13.4, five other

force resultants can be applied. Again, note the superscript C signifying the

location y D Cb=2 and the possible variation of these resultants along the

edge, in this case with the x coordinate. The subscripts yx instead of xy on

N and M simply denote the difference between the edge x D Ca=2 and the

edge y D Cb=2. The transverse shear force resultant QC
y .x/ is defined as

QC

y .x/ D

Z

C
H
2

zD�
H
2

�yz

�

x; C
b

2
; z

�

dz (13.2)

x

Nyx(x)+

Myx(x)+

Ny (x)+

My (x)+

Qy (x)+

FIGURE 13.4. Stress resultants specified at boundary y D Cb=2.
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(y)

N
xy

(y)M
x 
(y)

N
x 
(y)

Q
x 
(y)

-

- 

-

-

-

FIGURE 13.5. Stress resultants specified at boundary x D �a=2.

The forces and moments that can be applied on the other two boundaries

are indicated in Figures 13.5 and 13.6. Note the superscript � indicating the

location of the edges, x D �a=2 and y D �b=2. Note also the sense of the

applied resultants, the sense being consistent with past notation. The sense

of the Q’s is consistent with the sense of �xz and �yz .

To derive the governing equilibrium equations, we must consider force and

moment equilibrium of a differential element of laminated plate. Because

equilibrium considers the sums of forces and moments, not the sums of force

and moment resultants, the force and moment resultants must be multiplied

by an appropriate length. Recall that because the units of Nx, for example,

are N/m, Nx must be multiplied by a length to have the units of force. To

derive the equilibrium equations, several figures of the differential element

will be used, and each figure will depict a specific set of force or moment

resultants. In reality, all force and moment resultants act simultaneously on

y

z

x

Myx(x)–

Nyx(x)
–

Qy (x)
–

My (x)–
Ny (x)–

FIGURE 13.6. Stress resultants specified at boundary y D �b=2.
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the differential element, but to avoid cluttering the figure, sets of forces are

illustrated separately.

Six equilibrium conditions must be considered. The sum of the forces in

each of the three coordinate directions must be zero, and the sum of moments

about each of the three coordinate axes must be zero. To sum forces in the

x direction, consider Figure 13.7, which shows the differential element; the

length in the x direction is �x and the length in the y direction is �y. The

element is centered about the point .x; y/. This differential element is cut

from the interior of the plate, away from the edges, and includes the entire

thickness of the laminate. Because the force and moment resultants vary with

the x and y coordinates, and because the element is of differential size, we

can use a Taylor series expansion to represent the resultants on the edges

of the element in terms of the resultants at .x; y/. In each case, only the

first term of the Taylor series is retained. In the figure the force resultant on

each edge is multiplied by the length of the edge to properly define a force.

For convenience, only the forces affecting equilibrium in the x direction

are shown and the force is assumed to act at midlength along each edge.

Summing forces in the Cx direction gives
�

Nx C
@Nx

@x

�x

2

�

�y C

�

Nxy C
@Nxy

@y

�y

2

�

�x

�

�

Nx C
@Nx

@x

�

�
�x

2

��

�y

�

�

Nxy C
@Nxy

@y

�

�
�y

2

��

�x D 0

(13.3)

(x, y)

x

x

z

y

Nx +
∂

x∂

Nx x
y

2
–

Nxy +  
∂

y∂

Nxy y
x

   2

∆

∆

∆

y∆

∆

Nxy +
∂

y∂

Nxy y
x

2
– ∆

∆

∆

Nx +  
∂

x∂

Nx x y
   2

∆∆

FIGURE 13.7. Summing forces in the x direction on a differential element of plate.
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The algebra leads to
@Nx

@x
C

@Nxy

@y
D 0 (13.4)

This is one equilibrium equation. It is a partial differential equation, whose

partial derivatives are gradients of the force resultants. The equation is an

algebraic equation in the force resultant gradients, and the equation states

that if Nx varies with x, then Nxy must vary with y.

The second equilibrium equation can be derived by summing forces in

the y direction, where the force resultants involved in this summation are

illustrated in Figure 13.8. Repeating the steps that led to equation (13.4), we

find that the second equilibrium equation is

@Nxy

@x
C

@Ny

@y
D 0 (13.5)

To derive the third equilibrium equation, we must define the transverse

shear force resultants in the interior of the plate; these definitions are similar

to the definitions of the transverse shear force resultants at the edges of the

plate, equations (13.1) and (13.2). Accordingly, the transverse shear force

resultant Qx is defined as

Qx D

Z

C
H
2

zD�
H
2

�xzdz (13.6)

while the transverse shear force resultant Qy is defined as

Qy D

Z

C
H
2

zD�
H
2

�yzdz (13.7)

both resultants, of course, varying with x and y.

(x, y)

x

y

x

z

y

Ny +
∂

y∂

Ny y
x

2
–

Nxy + 
∂

x∂

Nxy
y

∆

∆

∆

x

2
–

∆

Nxy + 
∂

x∂

Nxy
y∆x

2
∆

Ny + 
∂

y∂

Ny
x∆

y

2

∆

∆

∆

FIGURE 13.8. Summing forces in the y direction on a differential element of plate.
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Figure 13.9 shows the force resultants pertinent to summing forces in the

z direction. The pertinent forces are directly related to these just-defined

transverse shear force resultants, and the applied distributed force q.x; y/.

To have the units of force, the distributed force must be multiplied by the

differential area it acts on. The differential element is small enough that we

can assume that the force due to the distributed load acts at point .x; y/.

Summing forces in the Cz (downward) direction results in
�

Qx C
@Qx

@x

�x

2

�

�y C

�

Qy C
@Qy

@y

�y

2

�

�x

�

�

Qx C
@Qx

@x

�

�
�x

2

��

�y

�

�

Qy C
@Qy

@y

�

�
�y

2

��

�x

C q�x�y D 0

(13.8)

and the subsequent algebra leads to

@Qx

@x
C

@Qy

@y
C q D 0 (13.9)

We now must consider moment equilibrium; Figure 13.10 illustrates the

force and moment resultants that produce a moment about the x axis.

Summing moments about the point .x; y/ results in
�

My C
@My

@y

�

�
�y

2

��

�x C

�

Mxy C
@Mxy

@x

�

�
�x

2

��

�y

C

�

Qy C
@Qy

@y

�

�
�y

2

��

�x

�

�y

2

�

C

�

Qy C
@Qy

@y

�y

2

�

�x

�

�y

2

�

(13.10)

�

�

My C
@My

@y

�y

2

�

�x

�

�

Mxy C
@Mxy

@x

�x

2

�

�y D 0

Though the equivalent force of the distributed load, q.x; y/�x�y, acts ver-

tically, it acts through point .x; y/ and hence has no moment arm. Collecting

terms, the above equation becomes

Qy D
@My

@y
C

@Mxy

@x
(13.11)

This equation, rather than equation (13.7), could be considered the definition

of the shear force resultant Qy . With this definition, it is unnecessary to
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FIGURE 13.9. Summing forces in the z direction on a differential element of plate.
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FIGURE 13.10. Summing moments about the x axis on a differential element of

plate.
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appeal to using stresses that have been defined as zero, in this case �yz , to

define a quantity that is absolutely necessary for equilibrium. Rather Qy is

defined to be equal to derivatives of moment resultants Mx and Mxy . These

moment resultants have been an integral part of classical lamination theory

and thus we are familiar with them. As we can see, if it were not for Qx and

Qy , there would be nothing to react to the applied load q.x; y/. Plate theory

based on the plane-stress assumption indeed presents a dilemma; however,

the theory is quite accurate.

If we sum the moments about the y axis, Figure 13.11, an equation

involving Qx is derived:

Qx D
@Mx

@x
C

@Mxy

@y
(13.12)

Finally, moments must be summed about the z axis; Figure 13.12 illustrates

a planform view of the important force resultants. Summing moments about

point .x; y/ results in

�

�

Nxy C
@Nxy

@y

�

�
�y

2

��

�x

�

�y

2

�

�

�

Nxy C
@Nxy

@y

�y

2

�

�x

�

�y

2

�

C

�

Nxy C
@Nxy

@x

�

�
�x

2

��

�y
�x

2

C

�

Nxy C
@Nxy

@x

�x

2

�

�y
�x

2
D 0

(13.13)

Completing the algebra on the left-hand side leads to satisfaction of the

equation identically. No new information is derived from this equation.

Generally the equations defining Qx and Qy in terms of the moments,

equations (13.11) and (13.12), are used to eliminate these variables from the

problem. If this is done, equation (13.9) becomes

@2Mx

@x2
C 2

@2Mxy

@x@y
C

@2My

@y2
C q D 0 (13.14)

Thus, the equilibrium equations that govern the response of a laminated plate

are

@Nx

@x
C

@Nxy

@y
D 0

@Nxy

@x
C

@Ny

@y
D 0

@2Mx

@x2
C 2

@2Mxy

@x@y
C

@2My

@y2
C q D 0

(13.15)
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plate.
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Note that the issue of material properties has not entered the discussion.

Material properties do not influence the equilibrium conditions; thus, the

above equations are valid for any rectangular plate, independently of whether

it is a single layer, a cross-ply laminate, a balanced laminate, an unsymmetric

laminate, and so on.

The boundary conditions which must be satisfied along each edge are as

follows:

Along edge x D Ca=2:

.i/ Either Nx D N C
x or uo must be specified

.ii/ Either Nxy D N C
xy or vo must be specified

.iii/ Either
@Mx

@x
C 2

@Mxy

@y
D QC

x C
@M C

xy

@y
or wo must be specified

.iv/ Either Mx D M C

x or
@wo

@x
must be specified .13:16a/

Along edge x D �a=2:

.i/ Either Nx D N �
x or uo must be specified

.ii/ Either Nxy D N �
xy or vo must be specified

.iii/ Either
@Mx

@x
C 2

@Mxy

@y
D Q�

x C
@M �

xy

@y
or wo must be specified

.iv/ Either Mx D M �

x or
@wo

@x
must be specified .13:16b/

Along edge y D Cb=2:

(i) Either Ny D N C
y or vo must be specified

.ii/ Either Nxy D N C

yx or uo must be specified

.iii/ Either
@My

@y
C 2

@Mxy

@x
D QC

y C
@M C

yx

@x
or wo must be specified

.iv/ Either My D M C
y or

@wo

@y
must be specified .13:16c/

Along edge y D �b=2:

.i/ Either Ny D N �
y or vo must be specified

.ii/ Either Nxy D N �
yx or uo must be specified

.iii/ Either
@My

@y
C 2

@Mxy

@x
D Q�

y C
@M �

yx

@x
or wo must be specified

.iv/ Either My D M �
y or

@wo

@y
must be specified .13:16d/
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These boundary conditions have important physical interpretations. At each

edge four conditions must hold. The four conditions are determined by

satisfying one option from each of four pairs of conditions, .i/ through .iv/.

The first two conditions at each edge have rather simple interpretations. For

example, along the edge at x D Ca=2, condition .i/ states that at that edge

either the normal force resultant in the plate, Nx, must equal the resultant

applied normal to that edge, N C
x , or the displacement normal to the edge

must be given. Condition .ii/ states that either the shear force resultant in

the plate, Nxy , must equal the resultant applied tangent to the edge, N C
xy ,

or the displacement tangential to that edge must be given. In contrast to the

simplicity of the first two conditions, the interpretation of the third condition

at each edge is not so obvious; however, it is a well-known and important

condition. The condition states that the combination of the derivatives of the

moment resultants within the plate must equal the sum of the applied shear

force resultant and the derivative of the applied twisting moment resultant;

otherwise the vertical displacement of the edge must be specified. In condition

.iii/, on each plate edge the derivative of the twisting moment resultant is

taken with respect to the coordinate parallel with that edge. For example, at

x D Ca=2, the derivative of M C
xy is taken with respect to y, the coordinate

parallel to that edge. Though this complicated boundary condition is a natural

result of the variational process and is really nothing more than a result

of the mathematical manipulation, the condition is not obvious when using

the force equilibrium approach. Its physical interpretation is far-reaching. It

basically implies that, for example, at x D Ca=2, the edge of the plate

does not respond to an applied transverse shear force resultant QC
x and an

applied twisting moment M C
xy separately if both are applied. Rather, the plate

responds to the combination

QC

x C
@M C

xy

@y
(13.17)

In fact, because the derivative in the above has the units of force per unit

length, the above combination can be considered an applied effective trans-

verse shear force resultant at the edge of the plate at x D Ca=2; that is:

QC

x C
@M C

xy

@y
D QC

xeff
(13.18)

In the same vein, the quantity

@Mx

@x
C 2

@Mxy

@y
(13.19)

can also be considered as an effective transverse shear force resultant within

the plate. Because the transverse shear force resultant within the plate is

defined by equation (13.12) as

Qx D
@Mx

@x
C

@Mxy

@y
(13.20)
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the expression in equation (13.19) can be written

Qx C
@Mxy

@y
(13.21)

or defining

Qxeff
D Qx C

@Mxy

@y
D

@Mx

@x
C 2

@Mxy

@y
(13.22)

boundary condition .iii/ for the edge x D Ca=2 can be stated as

either Qxeff
D QC

xeff
or wo must be specified (13.23)

meaning that at the edge either the effective transverse shear force resultant

in the plate must be equal to the applied effective transverse shear force

resultant, or the displacement wo must be specified. If the edge of the plate

is free from forces or moments, then

QC

x D M C

xy D 0 (13.24)

but rather than applying each condition independently, the boundary condition

becomes

@Mx

@x
C 2

@Mxy

@y
D QC

x C
@M C

xy

@y
D 0 (13.25)

This is the famous Kirchhoff free-edge condition. Equation (13.22) defines

what is referred to as the Kirchhoff shear force resultant, namely Qxeff
.

Condition .iv/ is not so complicated. It states that either the bending

moment resultant in the plate, Mx , must equal the bending moment applied

to that edge, M C

x , or the rotation (slope) of the edge must be given. For

a clamped edge, for example, the slope would be specified to be zero and

nothing could be stated regarding the moment. For a simply supported edge

the applied bending moment resultant M C
x would be taken to be zero and

nothing could be stated regarding the slope.

The boundary conditions on the other three edges follow similar interpre-

tations. Within the plate the effective transverse shear force resultant Qyeff

can be defined as

Qyeff
D Qy C

@Mxy

@x
D

@My

@y
C 2

@Mxy

@x
(13.26)

Likewise, the applied effective transverse shear force resultant at y D Cb=2,

for example, can be defined as

QC

yeff
D QC

y C
@M C

yx

@x
(13.27)

Thus, boundary condition .iii/ at y D Cb=2 can be alternatively stated as

either Qyeff
D QC

yeff
or wo must be specified (13.28)

The important conclusion from examining the boundary conditions is that

pairs of variables must be considered on each boundary. Each pair always
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consists of what can be considered complementary response variables. One

component of the pair involves a force or moment resultant, and the other

component involves a displacement or rotation. In the study of plates, only the

boundary conditions that conform to these conditions are legitimate. Imposing

a boundary condition not covered by one of the four complementary pairs of

variables results in an ill-posed problem. This will lead to erroneous conclu-

sions if pursued, assuming, of course, you could even solve the problem.

In addition to conditions along each edge, certain conditions must be

specified at each corner. Corner conditions, which result because the circum-

ferential boundary of the plate is not smooth (i.e., it has corners) will not be

discussed here. However, each of the corner conditions requires that either a

particular twisting moment within the plate equal the applied twisting moment

at the corner, or the displacement of the plate corner must be specified.

If the displacements of all four edges of the plate are specified, as with

simply supported or clamped edges, the corner conditions are automatically

satisfied. If two adjacent edges are free, then the corner condition must be

satisfied by the twisting moments being zero. It might be added that for

a simply supported or clamped edge, boundary condition .iii/ is satisfied

by specification of the displacement. This is opposed to a free edge, where

condition .iii/ must be satisfied by the Kirchhoff free-edge condition (i.e., the

effective transverse shear force resultant is zero). The required satisfaction of

the force portion of boundary condition .iii/ and the moment portion of the

corner condition poses a larger challenge in finding solutions to the governing

equations than enforcing displacement conditions. In practice, fortunately,

the edges of a plate are usually simply supported or clamped, so the corner

conditions and boundary condition .iii/ can easily be satisfied.

Exercises for Section 13.1

1. Refer to Figure 13.8 to derive equation (13.5).

2. Fill in the details necessary for arriving at equation (13.12); refer to Figure 13.11.

13.2 Governing Conditions in Terms of Displacements

Because the displacements are the basic variables in the problem, all other

responses being derivable from the displacements, it is meaningful to ex-

press the equilibrium equations and boundary conditions in terms of the

displacements. In addition, we usually have more of a physical feel for the

displacement response of a structure and so it is useful to write the equations

in terms of these quantities. In equation (7.85) the stress resultants were

expressed in terms of the reference surface strains and curvatures. In equation

(6.14) the reference surface strains and curvatures were defined in terms of

the reference surface displacements. Accordingly, the stress resultants can be

written in terms of the reference surface displacements as
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Nx D A11

@uo

@x
C A12

@vo

@y
C A16

�

@uo

@y
C

@vo

@x

�

� B11

@2wo
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C B12
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@y
C B16

�

@uo

@y
C

@vo
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�
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@2wo

@x2
� D12
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@y2
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My D B12
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C B22
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C B26
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@y
C

@vo

@x

�

� D12

@2wo
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� D22

@2wo
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� 2D26

@2wo

@x@y

Mxy D B16

@uo
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C B26
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C B66

�
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C
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�

� D16

@2wo
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� D26

@2wo

@y2
� 2D66

@2wo

@x@y

(13.29)

Substituting these expressions into the equilibrium equations, equation (13.15),

leads to three partial differential equations which govern the displacement

response of a fiber-reinforced laminated plate, namely,

A11

@2uo

@x2
C 2A16

@2uo

@x@y
C A66

@2uo

@y2
C A16

@2vo

@x2

C .A12 C A66/
@2vo

@x@y
C A26

@2vo

@y2
� B11

@3wo

@x3

� 3B16

@3wo

@x2@y
� .B12 C 2B66/

@3wo

@x@y2
� B26

@3wo

@y3
D 0

(13.30a)
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A16

@2uo

@x2
C .A12 C A66/

@2uo

@x@y
C A26

@2uo

@y2
C A66

@2vo

@x2

C 2A26

@2vo

@x@y
C A22

@2vo

@y2
� B16

@3wo

@x3

� .B12 C 2B66/
@3wo

@x2@y
� 3B26

@3wo

@x@y2
� B22

@3wo

@y3
D 0

(13.30b)

D11

@4wo

@x4
C 4D16

@4wo

@x3@y
C 2.D12 C 2D66/

@4wo

@x2@y2
C 4D26

@4wo

@x@y3

C D22

@4wo

@y4
� B11

@3uo

@x3
� 3B16

@3uo

@x2@y

� .B12 C 2B66/
@3uo

@x@y2
� B26

@3uo

@y3
� B16

@3vo
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� .B12 C 2B66/
@3vo

@x2@y
� 3B26

@3vo

@x@y2
� B22

@3vo

@y3
D q

(13.30c)

The four boundary conditions along each of the four edges can also be

expressed in terms of the displacements. Substituting for the stress resultants

Nx, Nxy , and so on, in terms of the displacements in equation (13.16), we

find that the boundary conditions become:

Along edge x D Ca=2:

.i/ Either

�

A11

@uo

@x
C A12

@vo

@y
C A16

�

@uo

@y
C

@vo

@x

�

� B11

@2wo

@x2

� B12

@2wo

@y2
� 2B16

@2wo

@x@y

�

D N C
x

or uo must be specified

.ii/ Either

�

A16

@uo

@x
C A26

@vo

@y
C A66

�

@uo

@y
C

@vo

@x

�

� B16

@2wo

@x2

� B26

@2wo

@y2
� 2B66

@2wo

@x@y

�

D N C
xy

or vo must be specified
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.iii/ Either

�

B11

@2uo

@x2
C 2B66

@2uo

@y2
C 3B16

@2uo

@x@y
C B16

@2vo

@2x2

C 2B26

@2vo

@y2
C .B12 C 2B66/

@2vo

@x@y

� D11

@3wo

@x3
� 2D26

@3wo

@y3
� .D12 C 4D66/

@3wo

@x@y2

� 4D16

@3wo

@x2@y

�

D QC
x C

@M C
xy

@y

or wo must be specified

.iv/ Either

�

B11

@uo

@x
C B12

@vo

@y
C B16

�

@uo

@y
C

@vo

@x

�

� D11

@2wo

@x2

� D12

@2wo

@y2
� 2D16

@2wo

@x@y

�

D M C
x

or
@wo

@x
must be specified .13:31a/

Along edge x D �a=2:

.i/ Either

�

A11

@uo

@x
C A12

@vo

@y
C A16

�

@uo

@y
C

@vo

@x

�

� B11

@2wo

@x2

� B12

@2wo

@y2
� 2B16

@2wo

@x@y

�

D N �
x

or uo must be specified

.ii/ Either

�

A16
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@x
C A26

@vo
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C A66

�
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@y
C

@vo

@x

�

� B16

@2wo

@x2

� B26

@2wo

@y2
� 2B66

@2wo

@x@y

�

D N �
xy

or vo must be specified
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.iii/ Either

�

B11

@2uo

@x2
C 2B66

@2uo

@y2
C 3B16

@2uo

@x@y
C B16

@2vo

@x2

C 2B26

@2vo

@y2
C .B12 C 2B66/

@2vo

@x@y
� D11

@3wo

@x3

� 2D26

@3wo

@y3
� .D12 C 4D66/

@3wo
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� 4D16

@3wo

@x2@y

�

D Q�

x C
@M �

xy

@y

or wo must be specified

.iv/ Either

�

B11
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C B12
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C B16

�
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@vo

@x

�

� D11

@2wo

@x2

� D12

@2wo

@y2
� 2D16

@2wo

@x@y

�

D M �

x

or
@wo

@x
must be specified .13:31b/

Along edge y D Cb=2:

.i/ Either

�

A12

@uo

@x
C A22
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@y
C A26

�

@uo

@y
C

@vo

@x

�

� B12

@2wo

@x2

� B22

@2wo

@y2
� 2B26

@2wo

@x@y

�

D N C
y

or vo must be specified

.ii/ Either

�

A16

@uo

@x
C A26

@vo

@y
C A66

�

@uo

@y
C

@vo

@x

�

� B16

@2wo

@x2

� B26

@2wo

@y2
� 2B66

@2wo

@x@y

�

D N C
yx

or uo must be specified
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.iii/ Either

�
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@x3
� D22

@3wo

@y3
� 4D26

@3wo

@x@y2

�.D12 C 4D66/
@3wo

@x2@y

�

D QC
y C

@M C
yx

@x

or wo must be specified

.iv/ Either

�

B12

@uo

@x
C B22

@vo

@y
C B26

�

@uo

@y
C

@vo

@x

�

� D12

@2wo

@x2

� D22

@2wo

@y2
� 2D26

@2wo

@x@y

�

D M C
y

or
@wo

@y
must be specified .13:31c/

Along edge y D �b=2:

.i/ Either

�

A12

@uo

@x
C A22

@vo

@y
C A26

�

@uo

@y
C

@vo

@x

�

� B12

@2wo

@x2

� B22

@2wo

@y2
� 2B26

@2wo

@x@y

�

D N �
y

or vo must be specified

.ii/ Either

�

A16

@uo

@x
C A26

@vo

@y
C A66

�

@uo

@y
C

@vo

@x

�

� B16

@2wo

@x2

� B26

@2wo

@y2
� 2B66

@2wo

@x@y

�

D N �
yx

or uo must be specified
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.iii/ Either

�

2B16

@2uo

@x2
C B26

@2uo

@y2
C .B12 C 2B66/

@2uo

@x@y

C 2B66

@2vo

@x2
C B22

@2vo

@y2
C 3B26

@2vo

@x@y

� 2D16

@3wo

@x3
� D22

@3wo

@y3
� 4D26

@3wo

@x@y2

� .D12 C 4D66/
@3wo

@x2@y

�

D Q�

y C
@M �

yx

@x

or wo must be specified

.iv/ Either

�

B12

@uo

@x
C B22

@vo

@y
C B26

�

@uo

@y
C

@vo

@x

�

� D12

@2wo

@x2

� D22

@2wo

@y2
� 2D26

@2wo

@x@y

�

D M �
y

or
@wo

@y
must be specified .13:31d/

The rather awesome display of algebra in equations (13.30) and (13.31) is

the proper formulation of the governing equilibrium equations and boundary

conditions for the problem of determining the displacement response of a

rectangular laminated fiber-reinforced plate subjected to loads on the plate

edges, and/or normal loads acting on the top and/or bottom surfaces. All

laminated plate problems that can be solved within the context of the assump-

tions of classical lamination theory are contained in the above formulation.

Conversely, only within the above formulation can one solve for the response

of a laminated plate that obeys the assumptions of classical lamination theory.

In spite of the overwhelming amount of algebra, several features of the

response of laminated plates are evident in the above. First, each equi-

librium equation, equations (13.30a), (13.30b), and (13.30c), involves all

three components of displacement. This means that each component of dis-

placement is coupled with the other two components of displacement. For

a general unsymmetric laminate it is not possible to solve for the out-of-

plane component of displacement, for example, without solving for the two

inplane components. Second, the boundary conditions can involve all three

components of displacement. This provides another coupling mechanism for

the three components of displacement. Finally, the manner in which the

material and geometric properties of the plate enter the problem, and hence

influence the response, is seen explicitly. The elastic properties, thickness,

location through the thickness, and fiber orientation of each layer influence the
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components of the A, B , and D matrices. Furthermore, because in equations

(13.31a)–(d) the values of uo, vo, wo and their derivatives are evaluated on

the boundaries x D ˙a=2 and y D ˙b=2, the length and width of the plate

enter the problem by way of the boundary conditions.

Operationally, the solutions for the displacements uo, vo, and wo are

determined from the governing set of partial differential equations. These

solutions will be in terms of unknown constants of integration and known

functions of x and y. The constants and functions resulting from the inte-

gration are determined by the application of the boundary conditions. For

example, if the displacement portion of boundary condition .iii/ of equation

(13.31a) is being enforced because of a simple support condition, then setting

wo.Ca=2; y/ to zero results in one equation from which to evaluate the

constants of integration. If, on the other hand, the force portion of that

boundary condition is being specified because of a free-edge condition, then

the combination of derivatives of displacements in the bracketed term of

condition .iii/ of equation (13.31a) is set to zero to provide one equation from

which to evaluate the unknown constants. Conditions exist on all four edges

and when the problem is done properly, there are enough boundary conditions

from which to solve for all of the unknown constants and functions. When

one attempts to make up boundary conditions other than those specified by

equations (13.31a)–(d), there may not be enough conditions from which to

solve for all of the unknown constants, or there may be too may conditions.

Not having exactly the same number of conditions and unknown constants of

integration is an indication one may be trying to solve a physically impossible

problem. Such a problem can be generated as a result of applying boundary

conditions other than those allowed by the theory.

In the next section we shall discuss simplifications to the above equations

which result from considering special plates (e.g., symmetrically laminated

plates). Though both the governing differential equations and the bound-

ary conditions will simplify, the basic concepts of having three governing

differential equations for the three components of displacement, and four

boundary conditions along each of the four edges, still are valid. In the

sections following the simplifications, we will solve specific problems and

obtain numerical results. These problems will illustrate the steps necessary for

solving the governing equations and enforcing boundary conditions, and will

illustrate some important characteristics of the response of fiber-reinforced

plates.

13.3 Simplifications to the Governing Equations

As we showed in Chapter 7, for specific classes of laminates some of the

elastic coupling coefficients in the A, B , and D matrices vanish. The van-

ishing of these elastic coefficients can considerably simplify the differen-
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tial equations and boundary conditions governing plate response. Some of

the simplifications are minor, but some are quite significant. Three major

simplifications are discussed next: symmetric laminates, symmetric balanced

laminates, and symmetric cross-ply laminates. For comparison and reference

purposes, simplifications for a single isotropic layer are also presented. This

results in, of course, classical plate theory for isotropic materials.

13.3.1 Symmetric Laminates

By far, the most dramatic simplification to the governing equations and

boundary conditions for a plate occur when the plate is symmetrically lami-

nated. For this situation, all Bij terms are zero, and the equilibrium equations

become

A11

@2uo

@x2
C 2A16

@2uo

@x@y
C A66

@2uo

@y2
C A16

@2vo

@x2

C .A12 C A66/
@2vo

@x@y
C A26

@2vo

@y2
D 0

(13.32a)

A16

@2uo

@x2
C A12 C A66/

@2uo

@x@y
C A26

@2uo

@y2
C A66

@2vo

@x2

C 2A26

@2vo

@x@y
C A22

@2vo

@y2
D 0

(13.32b)

D11

@4wo

@x4
C 4D16

@4wo

@x3@y
C 2.D12 C 2D66/

@4wo

@x2@y2

C 4D26

@4wo

@x@y3
C D22

@4wo

@y4
D q

(13.32c)

The boundary conditions reduce to:

Along edge x D Ca=2:

.i/ Either

�

A11

@uo

@x
C A12

@vo

@y
C A16

�

@uo

@y
C

@vo

@x

��

D N C
x

or uo must be specified

.ii/ Either

�

A16

@uo

@x
C A26

@vo

@y
C A66

�

@uo

@y
C

@vo

@x

��

D N C

xy

or vo must be specified
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.iii/ Either

�

�D11

@3wo

@x3
� 2D26

@3wo

@y3
� .D12 C 4D66/

@3wo

@x@y2

� 4D16

@3wo

@x2@y

�

D QC
x C

@M C
xy

@y

or wo must be specified

.iv/ Either

�

�D11

@2wo

@x2
� D12

@2wo

@y2
� 2D16

@2wo

@x@y

�

D M C
x

or
@wo

@x
must be specified .13:33a/

Along edge x D �a=2:

.i/ Either

�

A11

@uo

@x
C A12

@vo

@y
C A16

�

@uo

@y
C

@vo

@x

��

D N �
x

or uo must be specified

.ii/ Either

�

A16

@uo

@x
C A26

@vo

@y
C A66

�

@uo

@y
C

@vo

@x

��

D N �
xy

or vo must be specified

.iii/ Either

�

�D11

@3wo

@x3
� 2D26

@3wo

@y3
� .D12 C 4D66/

@3wo

@x@y2

� 4D16

@3wo

@x2@y

�

D Q�
x C

@M �
xy

@y

or wo must be specified

.iv/ Either

�

�D11

@2wo

@x2
� D12

@2wo

@y2
� 2D16

@2wo

@x@y

�

D M �
x

or
@wo

@x
must be specified .13:33b/

Along edge y D Cb=2:

.i/ Either

�

A12

@uo

@x
C A22

@vo

@y
C A26

�

@uo

@y
C

@vo

@x

��

D N C
y

or vo must be specified

.ii/ Either

�

A16

@uo

@x
C A26

@vo

@y
C A66

�

@uo

@y
C

@vo

@x

��

D N C

yx

or uo must be specified
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.iii/ Either

�

�2D16

@3wo

@x3
� D22

@3wo

@y3
� 4D26

@3wo

@x@y2

� .D12 C 4D66/
@3wo

@x2@y

�

D QC
y C

@M C
yx

@x

or wo must be specified

.iv/ Either

�

�D12

@2wo

@x2
� D22

@2wo

@y2
� 2D26

@2wo

@x@y

�

D M C
y

or
@wo

@y
must be specified .13:33c/

Along edge y D �b=2:

.i/ Either

�

A12

@uo

@x
C A22

@vo

@y
C A26

�

@uo

@y
C

@vo

@x

��

D N �
y

or vo must be specified

.ii/ Either

�

A16

@uo

@x
C A26

@vo

@y
C A66

�

@uo

@y
C

@vo

@x

��

D N �
yx

or uo must be specified

.iii/ Either

�

�2D16

@3wo

@x3
� D22

@3wo

@y3
� 4D26

@3wo

@x@y2

� .D12 C 4D66/
@3wo

@x2@y

�

D Q�

y C
@M �

yx

@x

or wo must be specified

.iv/ Either

�

�D12

@2wo

@x2
� D22

@2wo

@y2
� 2D26

@2wo

@x@y

�

D M �

y

or
@wo

@y
must be specified .13:33d/

These simplifications are quite far-reaching. Note that in the governing

equations and in the boundary conditions, the equations governing the inplane

displacement components uo and vo separate from the equations govern-

ing the out-of-plane component wo. The first two governing equilibrium

equations, equations (13.32a) and (b), and boundary conditions .i/ and .ii/

in equations (13.33a)–(d) separate into a problem independent of the third

equilibrium equation and boundary conditions .iii/ and .iv/. As a result, for a

symmetrically laminated plate, the determination of the out-of-plane response,

and the strains and stresses that accompany it, is totally independent of the
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determination of the inplane response. This is a major reduction in the level

of effort if the out-of-plane response is the primary concern.

13.3.2 Symmetric Balanced Laminates

If, in addition to being symmetric, the laminate is also balanced, then both

A16 and A26, in addition to Bij , are zero and the equations simplify further

to become

A11

@2uo

@x2
C A66

@2uo

@y2
C .A12 C A66/

@2vo

@x@y
D 0 (13.34a)

.A12 C A66/
@2uo

@x@y
C A66

@2vo

@x2
C A22

@2vo

@y2
D 0 (13.34b)

D11

@4wo

@x4
C 4D16

@4wo

@x3@y
C 2.D12 C 2D66/

@4wo

@x2@y2

C 4D26

@4wo

@x@y3
C D22

@4wo

@y4
D q

(13.34c)

The boundary conditions reduce to:

Along edge x D Ca=2:

.i/ Either

�

A11

@uo

@x
C A12

@vo

@y

�

D N C
x

or uo must be specified

.ii/ Either

�

A66

�

@uo

@y
C

@vo

@x

��

D N C
xy

or vo must be specified

.iii/ Either

�

�D11

@3wo

@x3
� 2D26

@3wo

@y3
� .D12 C 4D66/

@3wo

@x@y2

�4D16

@3wo

@x2@y

�

D QC
x C

@M C
xy

@y

or wo must be specified

.iv/ Either

�

�D11

@2wo

@x2
� D12

@2wo

@y2
� 2D16

@2wo

@x@y

�

D M C
x

or
@wo

@x
must be specified .13:35a/
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Along edge x D �a=2:

.i/ Either

�

A11

@uo

@x
C A12

@vo

@y

�

D N �
x

or uo must be specified

.ii/ Either

�

A66

�

@uo

@y
C

@vo

@x

��

D N �
xy

or vo must be specified

.iii/ Either

�

�D11

@3wo

@x3
� 2D26

@3wo

@y3
� .D12 C 4D66/

@3wo

@x@y2

� 4D16

@3wo

@x2@y

�

D Q�
x C

@M �
xy

@y

or wo must be specified

.iv/ Either

�

�D11

@2wo

@x2
� D12

@2wo

@y2
� 2D16

@2wo

@x@y

�

D M �

x

or
@wo

@x
must be specified .13:35b/

Along edge y D Cb=2:

.i/ Either

�

A12

@uo

@x
C A22

@vo

@y

�

D N C
y

or vo must be specified

.ii/ Either

�

A66

�

@uo

@y
C

@vo

@x

��

D N C
yx

or uo must be specified

.iii/ Either

�

�2D16

@3wo

@x3
� D22

@3wo

@y3
� 4D26

@3wo

@x@y2

� .D12 C 4D66/
@3wo

@x2@y

�

D QC
y C

@M C
yx

@x

or wo must be specified

.iv/ Either

�

�D12

@2wo

@x2
� D22

@2wo

@y2
� 2D26

@2wo

@x@y

�

D M C
y

or
@wo

@y
must be specified .13:35c/
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Along edge y D �b=2:

.i/ Either

�

A12

@uo

@x
C A22

@vo

@y

�

D N �

y

or vo must be specified

.ii/ Either

�

A66

�

@uo

@y
C

@vo

@x

��

D N �
yx

or uo must be specified

.iii/ Either

�

�2D16

@3wo

@x3
� D22

@3wo

@y3
� 4D26

@3wo

@x@y2

� .D12 C 4D66/
@3wo

@x2@y

�

D Q�
y C

@M �
yx

@x

or wo must be specified

.iv/ Either

�

�D12

@2wo

@x2
� D22

@2wo

@y2
� 2D26

@2wo

@x@y

�

D M �
y

or
@wo

@y
must be specified .13:35d/

The simplifications for this situation influence only the inplane portion of

the problem. The inplane portion of the problem is strictly orthotropic, and,

as will be seen, not too different from the form for isotropic materials.

13.3.3 Symmetric Cross-Ply Laminates

Finally, if the plate is a symmetric cross-ply lamination, then in addition to

having zero values for A16, A26, and Bij , D16 and D26 are also zero, and the

equilibrium equations reduce to

A11

@2uo

@x2
C A66

@2uo

@y2
C .A12 C A66/

@2vo

@x@y
D 0 (13.36a)

.A12 C A66/
@2uo

@x@y
C A66

@2vo

@x2
C A22

@2vo

@y2
D 0 (13.36b)

D11

@4wo

@x4
C 2.D12 C 2D66/

@4wo

@x2@y2
C D22

@4wo

@y4
D q (13.36c)

The boundary conditions reduce to:
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Along edge x D Ca=2:

.i/ Either

�

A11

@uo

@x
C A12

@vo

@y

�

D N C
x

or uo must be specified

.ii/ Either

�

A66

�

@uo

@y
C

@vo

@x

��

D N C
xy

or vo must be specified

.iii/ Either

�

�D11

@3wo

@x3
� .D12 C 4D66/

@3wo

@x@y2

�

D QC
x C

@M C
xy

@y

or wo must be specified

.iv/ Either

�

�D11

@2wo

@x2
� D12

@2wo

@y2

�

D M C
x

or
@wo

@x
must be specified .13:37a/

Along edge x D �a=2:

.i/ Either

�

A11

@uo

@x
C A12

@vo

@y

�

D N �

x

or uo must be specified

.ii/ Either

�

A66

�

@uo

@y
C

@vo

@x

��

D N �
xy

or vo must be specified

.iii/ Either

�

�D11

@3wo

@x3
� .D12 C 4D66/

@3wo

@x@y2

�

D Q�
x C

@M �
xy

@y

or wo must be specified

.iv/ Either

�

�D11

@2wo

@x2
� D12

@2wo

@y2

�

D M �
x

or
@wo

@x
must be specified .13:37b/

Along edge y D Cb=2:

.i/ Either

�

A12

@uo

@x
C A22

@vo

@y

�

D N C
y

or vo must be specified
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.ii/ Either

�

A66

�

@uo

@y
C

@vo

@x

��

D N C
yx

or uo must be specified

.iii/ Either

�

�D22

@3wo

@y3
� .D12 C 4D66/

@3wo

@x2@y

�

D QC
y C

@M C

yx

@x

or wo must be specified

.iv/ Either

�

�D12

@2wo

@x2
� D22

@2wo

@y2

�

D M C
y

or
@wo

@y
must be specified .13:37c/

Along edge y D �b=2:

.i/ Either

�

A12

@uo

@x
C A22

@vo

@y

�

D N �
y

or vo must be specified

.ii/ Either

�

A66

�

@uo

@y
C

@vo

@x

��

D N �
yx

or uo must be specified

.iii/ Either

�

�D22

@3wo

@y3
� .D12 C 4D66/

@3wo

@x2@y

�

D Q�
y C

@M �
yx

@x

or wo must be specified

.iv/ Either

�

�D12

@2wo

@x2
� D22

@2wo

@y2

�

D M �
y

or
@wo

@y
must be specified .13:37d/

In this case the simplifications occur to the out-of-plane portion of the

problem. The vanishing of D16 and D26 eliminates odd derivatives with

respect to x and y in the third equilibrium equation. This makes it easier

to find exact solutions to the third equilibrium equation for certain situa-

tions. Vanishing of D16 and D26 also eliminates the twisting curvature �o
xy

.D �2@2wo=@x@y/ from the moment boundary condition, condition .iv/ in

equation (13.37).
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13.3.4 Isotropic Plates

For completeness, the degenerate case of an isotropic plate is presented.

Recall from Chapter 7, equation (7.111), that for a single isotropic layer of

thickness H , Young’s modulus E, and Poisson’s ratio v,

A11 D A22 D
EH

1 � v2
D A A12 D v

EH

1 � v2
D vA

A66 D
EH

2.1 C v/
D

1 � v

2
A A16 D A26 D 0

D11 D D22 D
EH 3

12.1 � v2/
D D D12 D v

EH 3

12.1 � v2/
D vD

D66 D
EH 3

24.1 C v/
D

1 � v

2
D D16 D D26 D 0

(13.38)

Thus, the equilibrium equations reduce to

A

�

@2uo

@x2
C

�

1 � v

2

�

@2uo

@y2
C

�

1 C v

2

�

@2vo

@x@y

�

D 0 (13.39a)

A

��

1 C v

2

�

@2uo

@x@y
C

�

1 � v

2

�

@2vo

@x2
C

@2vo

@y2

�

D 0 (13.39b)

D

�

@4wo

@x4
C 2

@4wo

@x2@y2
C

@4wo

@y4

�

D q (13.39c)

The boundary conditions reduce to:

Along edge x D Ca=2:

.i/ Either

�

A

�

@uo

@x
C v

@vo

@y

��

D N C

x

or uo must be specified

.ii/ Either

�

1 � v

2
A

�

@uo

@y
C

@vo

@x

��

D N C
xy

or vo must be specified

.iii/ Either

�

�D

�

@3wo

@x3
C .2 � v/

@3wo

@x@y2

��

D QC

x C
@M C

xy

@y

or wo must be specified
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.iv/ Either

�

�D

�

@2wo

@x2
C v

@2wo

@y2

��

D M C

x

or
@wo

@x
must be specified .13:40a/

Along edge x D �a=2:

.i/ Either

�

A

�

@uo

@x
C v

@vo

@y

��

D N �
x

or uo must be specified

.ii/ Either

�

1 � v

2
A

�

@uo

@y
C

@vo

@x

��

D N �
xy

or vo must be specified

.iii/ Either

�

�D

�

@3wo

@x3
C .2 � v/

@3wo

@x@y2

��

D Q�

x C
@M �

xy

@y

or wo must be specified

.iv/ Either

�

�D

�

@2wo

@x2
C v

@2wo

@y2

��

D M �
x

or
@wo

@x
must be specified .13:40b/

Along edge y D Cb=2:

.i/ Either

�

A

�

v
@uo

@x
C

@vo

@y

��

D N C
y

or vo must be specified

.ii/ Either

�

1 � v

2
A

�

@uo

@y
C

@vo

@x

��

D N C
yx

or uo must be specified

.iii/ Either

�

�D

�

@3wo

@y3
C .2 � v/

@3wo

@x2@y

��

D QC
y C

@M C

yx

@x

or wo must be specified
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.iv/ Either

�

�D

�

v
@2wo

@x2
C

@2wo

@y2

��

D M C

y

or
@wo

@y
must be specified .13:40c/

Along edge y D �b=2:

.i/ Either

�

A

�

v
@uo

@x
C

@vo

@y

��

D N �
y

or vo must be specified

.ii/ Either

�

1 � v

2
A

�

@uo

@y
C

@vo

@x

��

D N �
yx

or uo must be specified

.iii/ Either

�

�D

�

@3wo

@y3
C .2 � v/

@3wo

@x2@y

��

D Q�
y C

@M �

yx

@x

or wo must be specified

.iv/ Either

�

�D

�

v
@2wo

@x2
C

@2wo

@y2

��

D M �
y

or
@wo

@y
must be specified .13:40d/

The equations governing the response of isotropic plates are much simpler

than the equations for the most general laminate or even a symmetric lami-

nate. In fact, only the symmetric cross-ply plate has as simple a form as the

isotropic case. For composite plates there are many situations where A16 and

A26 are zero. There are very few situations where D16 and D26 are actually

zero. However, assuming D16 and D26 are negligible and thus setting them

to zero simplifies the equations for symmetric balanced laminates to the level

of the cross-ply case. For this reason, often D16 and D26 are equated to zero

even though they are not. Errors can be encountered in interpreting the results

for these situations.

We will now focus on examples of the application of the plate equations

to some very special cases. These cases are chosen as much to illustrate

the steps necessary to obtain answers from the governing equations and

boundary conditions as they are to illustrate some of the characteristics of the

response of composite plates. For many cases of interest, it is not possible to

find solutions to the governing equations. Thus, approximate methods must

be employed that do not satisfy the governing equations or the boundary

conditions. If one continually works with the approximate solutions, it is
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easy to loose track of the exact conditions required by the equations being

discussed here.

13.4 Plate Example 1: A Long Œ0=90�S Plate

We will consider several plate examples. The first consists of a symmetrically

laminated Œ0=90�S plate that is infinitely long in the y direction, loaded by

a uniform load on its upper surface, and simply supported at x D ˙a=2.

Because the plate is infinitely long in the y direction, the formulation is

essentially one-dimensional.

The second example considers the same problem except that the laminate

will be unsymmetric with a stacking sequence of Œ02=902�T . We will study

the coupling of the inplane and out-of-plane responses due to boundary

conditions.

The third example focuses on an infinitely long uniformly loaded Œ˙30=0�S
plate simply supported at x D ˙a=2. The influence of D16 is illustrated by

this example.

The fourth example considers a simply supported, uniformly loaded rect-

angular plate. This example illustrates the effects at a finite geometry in both

the x and y directions.

Let us consider a four-layer Œ0=90�S plate graphite-epoxy that has width a

in the x direction and is infinitely long in the y direction. Because it is long,

we can assume that the plate response is independent of the y coordinate.

Also, for simplicity, assume the displacement in the y direction is restrained

to be zero. Forces will be required to effect this restraint and they will be

computed. Let us assume the plate is loaded by a uniformly distributed load

of the form

q.x; y/ D qo (13.41)

where qo is a known constant. The situation is depicted in Figure 13.13,

and interest will focus on the deflections as a function of x, and the stresses

as a function of x and z. Using the boundary condition equations, equation

(13.31), we shall see what boundary conditions are allowed, and enforce

conditions that correspond to simple supports.

13.4.1 Solution of Governing Differential Equations

Because the plate is constructed of a symmetric cross-ply laminate

A16 D A26 D D16 D D26 D 0 (13.42a)

and

Bij D 0 all i and j (13.42b)
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a

x

zy

q (x, y) = qo

FIGURE 13.13. Semi-infinite plate loaded with a uniformly distributed load.

As a result of these material properties being zero, because the response is

considered to be independent of y, and vo is taken to be zero, the force and

moment resultants, equation (13.29), reduce to

Nx D A11

duo

dx
Ny D A12

duo

dx
Nxy D 0

Mx D �D11

d 2wo

dx2
My D �D12

d 2wo

dx2
Mxy D 0

(13.43)

Note that because the plate response is independent of y and vo is taken to

be zero,

@(any quantity)

@y
D 0 (13.44)

and the partial derivative on x has been replaced with the total derivative.

Note also that there are force and moment resultants in the y direction even

though the response is independent of y. These are the resultants which are

required to have vo be zero and wo be independent of y.

The equilibrium equations in terms of force resultants, equation (13.15),

reduce to

dNx

dx
D 0 (13.45a)

0 D 0 (13.45b)

d 2Mx

dx2
C qo D 0 (13.45c)
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The two nontrivial equations can be integrated directly, resulting in

Nx.x/ D C1 (13.46a)

Mx.x/ D �qo

x2

2
C C2x C C3 (13.46b)

where C1, C2, and C3 are unknown but to-be-determined constants of inte-

gration.

Using equation (13.43), we find that in terms of the displacements the

integrated results are

A11

duo

dx
D Nx D C1 (13.47a)

�D11

d 2wo

dx2
D Mx D �qo

x2

2
C C2x C C3 (13.47b)

Both of these equations can also be integrated directly to yield

uo.x/ D
1

A11

fC1x C C4g (13.48a)

wo.x/ D
1

D11

�

qo

x4

24
� C2

x3

6
� C3

x2

2
� C5x � C6

�

(13.48b)

C4, C5, and C6 being additional unknown constants of integration. All of the

constants will be determined by examining the boundary conditions. Because

the plate is infinitely long in the y direction, only the boundary conditions

at x D ˙a=2 are examined. Because the plate is symmetrically laminated,

the constants associated with uo, namely, C1 and C4, do not appear in the

equation for wo. Conversely, the constants associated with wo, namely, C2,

C3, C5, and C6, do not appear in the equation for uo . This will always be

the case for symmetric laminates. For unsymmetric laminates, some of the

same constants of integration will appear in both the equation for uo.x/ and

the equation wo.x/. It should be noted well that because of the nature of

classical lamination theory, specification of the boundary conditions means

specification of conditions at the boundaries of the reference surface, not

conditions at the boundaries of the top surface or bottom surface of the plate.

If rotation is to be prevented at the boundary, then this means rotation of the

reference surface is to be prevented at the boundary.

13.4.2 Application of Boundary Conditions

Equations (13.16a) and (13.16b), parts .i/ and .ii/, are the boundary con-

ditions for uo and vo. Because vo is specified to be zero everywhere, part

.ii/ is automatically satisfied. Thus, we only need to be concerned with part

.i/. If the plate is fixed by pinning it at x D Ca=2 and at x D �a=2, as in
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Figure 13.14(a), then at both x D Ca=2 and x D �a=2, uo is specified to

be zero, and from equation (13.48a)

uo
�

C
a

2

�

D
1

A11

�

C1

�

C
a

2

�

C C4

�

D 0

uo
�

�
a

2

�

D
1

A11

�

C1

�

�
a

2

�

C C4

�

D 0

(13.49)

which imply

C1 D C4 D 0 (13.50)

(a) Simple supports but no horizontal motion — fixed-fixed

(b) Horizontal motion allowed at x = + a/2 — fixed-free

(c) Horizontal motion allowed at x = – a/2 — free-fixed

(d) Horizontal motion allowed at both ends — free-free

a

z

x

z

x

H

z

x

z

x



FIGURE 13.14. Various simple support boundary conditions at x D ˙a=2.
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If, as in Figure 13.14(b), the reference surface of the plate is fixed by

pinning at x D �a=2 but is free to move horizontally because it is on rollers

at x D Ca=2, then uo is not specified at x D Ca=2, but rather N C
x is zero

there, so

Nx

�

C
a

2
; y

�

D N C

x D 0 (13.51)

But by equation (13.46a)

Nx D C1 (13.52)

so it must be concluded that

C1 D 0 (13.53)

At x D �a=2, uo is specified to be zero; that is, from equation (13.48a)

uo
�

�
a

2

�

D 0 D
1

A11

�

0 �
�

�
a

2

�

C C4

�

(13.54)

which implies

C4 D 0 (13.55)

For the case of Figure 13.14(c), namely, the free-fixed case, it is also true

that

C1 D C4 D 0 (13.56)

The case of Figure 13.14(d), the free-free case, is quite interesting. Both

edges are on rollers and so uo is not specified at either edge. However,

N C
x D N �

x D 0 and boundary conditions of equation (13.16a) and (13.16b),

part .i/, become

Nx

�

C
a

2
; y

�

D N C

x D 0 (13.57a)

and

Nx

�

�
a

2
; y

�

D N �

x D 0 (13.57b)

Both conditions can be satisfied by choosing, from equation (13.46a),

C1 D 0 (13.58)

If this is the case, then, from equation (13.48a),

uo.x/ D
C4

A11

(13.59)

That is, uo.x/ is everywhere the same and is a constant. This corresponds to

the plate experiencing rigid body translation in the x direction. This makes

sense, as both edges are on rollers and nothing prevents translation in the x

direction. Translation can be suppressed by setting C4 to zero. Doing this has

no influence on the problem, so it will be done.
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Independently of the whether the ends are fixed or free, as long as there

are no resultant forces acting in the x direction at either edge of the plate,

C1 D C4 D 0 (13.60)

This implies that for this loading and this laminate, there are no boundary

conditions which will lead to values of uo.x/ other than zero! This is an

important finding. For unsymmetric laminates, as we shall see, the findings

will be different.

To satisfy the boundary conditions of equations (13.16a) and (b), parts

.iii/ and .iv/, the support conditions of no vertical deflection and no applied

moment will be enforced. This implies

wo
�

C
a

2
; y

�

D 0 and Mx

�

C
a

2
; y

�

D M C

x D 0 (13.61a)

and

wo
�

�
a

2
; y

�

D 0 and Mx

�

�
a

2
; y

�

D M �

x D 0 (13.61b)

The second expressions of each of equations (13.61a) and (b), along with

equation (13.47b), lead to

�qo

1

2

�

C
a

2

�2

C C2

�

C
a

2

�

C C3 D 0

�qo

1

2

�

�
a

2

�2

C C2

�

�
a

2

�

C C3 D 0

(13.62)

or

C2 D 0 C3 D
qoa2

8
(13.63)

The first expressions of each of equations (13.61a) and (b), along with

equation (13.48b), lead to

1

D11

�

qo

24

�

C
a

2

�4

�
qoa2

8

1

2

�

C
a

2

�2

� C5

�

C
a

2

�

� C6

�

D 0

1

D11

�

qo

24

�

�
a

2

�4

�
qoa2

8

1

2

�

�
a

2

�2

� C5

�

�
a

2

�

� C6

�

D 0

(13.64)

or

C5 D 0 C6 D �
5qoa

4

384
(13.65)

As a result of applying the boundary conditions, then, the complete solution

for the displacements is

uo.x/ D 0

vo.x/ D 0

wo.x/ D
qoa4

384D11

�

16
�x

a

�4

� 24
�x

a

�2

C 5

�

(13.66)
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The support conditions at each end are classic simple-support conditions.

However, here we have had to differentiate as to whether the simple support

allows motion in the x direction (free), or whether it prevents motion in the x

direction (fixed). Though the distinction was not important for this symmetric

laminate, it will be quite important for the unsymmetric laminate studied in

the next section.

The force and moment resultants across the width of the plate are given

by equations (13.43), (13.46), and (13.66) as

Nx.x/ D Ny.x/ D Nxy.x/ D 0

Mx.x/ D
qoa2

8

�

1 � 4
�x

a

�2
�

My.x/ D
D12

D11

qoa2

8

�

1 � 4
�x

a

�2
�

Mxy.x/ D 0

(13.67)

From the expressions for the displacements, equation (13.66), the strains, and

hence stresses, at any point in the plate can be determined. The stresses and

strains will, of course, be independent of y. The reference surface strains are

zero, as

"o
x D

@uo

@x
D 0 "o

y D
@vo

@y
D 0 o

xy D
@uo

@y
C

@vo

@x
D 0 (13.68)

and the reference surface curvatures are

�o
x D �

@2wo

@x2
D

qoa2

8D11

�

1 � 4
�x

a

�2
�

�o
y D �

@2wo

@y2
D 0 �o

xy D �2
@2wo

@y@x
D 0

(13.69)

As a result, the strains at any location through the thickness, z, are given by

"x D "o
x C z�o

x D z
qoa2

8D11

�

1 � 4
�x

a

�2
�

"y D 0 xy D 0

(13.70)

In the two 0ı layers

"1 D "x D z
qoa2

8D11

�

1 � 4
�x

a

�2
�

"2 D 12 D 0

(13.71a)
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and in the two 90ı layers

"2 D "x D z
qoa2

8D11

�

1 � 4
�x

a

�2
�

"1 D 12 D 0

(13.71b)

where z is in a range appropriate to each layer. The stresses in each layer

are:

For the 0ı layers:

�x D �1 D z
Q11

D11

qoa2

8

�

1 � 4
�x

a

�2
�

�y D �2 D z
Q12

D11

qoa2

8

�

1 � 4
�x

a

�2
�

�xy D �12 D 0

(13.72a)

For the 90ı layers:

�y D �1 D z
Q12

D11

qoa2

8

�

1 � 4
�x

a

�2
�

�x D �2 D z
Q22

D11

qoa2

8

�

1 � 4
�x

a

�2
�

�xy D �12 D 0

(13.72b)

Numerical results for the deflections and stresses for a Œ0=90�S plate will

be presented after the solution for Plate Example 2 is discussed. How-

ever, at this point it is important to note that nothing that has been done

in solving the equations has restricted the solution to the Œ0=90�S case.

The results obtained apply to any simply supported symmetrically laminated

cross-ply plate. It is the value of D11 that makes the results unique to any

particular cross-ply plate. In fact, the solution procedure, and indeed, the

actual form of the solution for wo.x; y/, equation (13.66), applies to the case

of any symmetrically laminated plate. Because for the general symmetric

laminate D16 ¤ 0, there will be an Mxy associated with the response, as

opposed to Mxy D 0 for the cross-ply case. A nonzero Mxy will be the case

for the Œ˙30=0�S plate to be discussed shortly.

Exercise for Section 13.4

Consider the semi-infinite plate of Figure 13.13. Assume the displacement in the y-

direction is restrained to be zero. Furthermore, assume the plate is a symmetric cross-

ply laminate and the ends at x D ˙a=2 are prevented from vertical displacement,
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rotational displacement, and horizontal displacement; that is:

uo
�

�
a

2
; y

�

D 0 uo
�

C
a

2
; y

�

D 0

wo
�

�
a

2
; y

�

D 0 wo
�

C
a

2
; y

�

D 0

dwo

dx

�

�
a

2
; y

� dwo

dx

�

C
a

2
; y

�

D 0

These boundary conditions correspond to the case of clamped edges. Develop ex-

pressions for uo.x/, wo.x/, Nx.x/; : : : ; Mxy .x/ for these conditions. Note that the

expressions of equations (13.45) through (13.48) are valid for these conditions. Thus,

apply the above boundary conditions to these expressions and find the constants C1

through C6. Comment on the location of the maximum magnitude of Mx.x/ for this

clamped boundary condition case compared to the simple support boundary condition

case of Figure 13.14(a), equation (13.67).

13.5 Plate Example 2: A Long [02/902]T Plate

Let us now consider the plate in the previous example to be unsymmetric,

and in particular, a Œ02=902�T laminate. This laminate has the same number

of layers in both the 0ı and 90ı directions as the first example. Because of

the cross-ply nature of this unsymmetric laminate,

A16 D A26 D D16 D D26 D B16 D B26 D B12 D B66 D 0 (13.73)

13.5.1 Solution of Governing Differential Equations

As a result of the above properties being zero, and the conditions of this

response being independent of y, and there being no displacement in the y

direction, the force and moment resultants of equation (13.29) reduce to

Nx D A11

duo

dx
� B11

d 2wo

dx2
Ny D A12

duo

dx
Nxy D 0

Mx D B11

duo

dx
� D11

d 2wo

dx2
My D �D12

d 2wo

dx2
Mxy D 0

(13.74)

The equilibrium equations in terms of the force resultants, as with the sym-

metric laminate, are, from equation (13.15),

dNx

dx
D 0 (13.75a)

0 D 0 (13.75b)

d 2Mx

dx2
C qo D 0 (13.75c)
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The solutions to these two equations are as before, equation (13.46a) and (b),

Nx.x/ D C1 (13.76a)

Mx.x/ D �qo

x2

2
C C2x C C3 (13.76b)

In terms of the displacements, by equation (13.74), equation (13.76) becomes

A11

duo

dx
� B11

d 2wo

dx2
D Nx D C1 (13.77a)

B11

duo

dx
� D11

d 2wo

dx2
D Mx D �qo

x2

2
C C2x C C3 (13.77b)

Unlike equations (13.47a) and (b) for the symmetric laminate, for this case

the equations governing uo and wo are coupled and each equation cannot be

solved directly. To solve for uo and wo, the first equation can be substituted

into the second equation to yield

�

B2
11

A11

� D11

�

d 2wo

dx2
D �qo

x2

2
C C2x C C3 �

B11

A11

C1 (13.78)

This equation can now be integrated directly to result in

wo.x/ D

�

A11

A11D11 � B2
11

�

�

�

qo

x4

24
� C2

x3

6
�

�

C3 �
B11

A11

C1

�

x2

2
� C5x � C6

�

(13.79)

Note the differences between this expression and the counterpart for the

symmetrically laminated plate, equation (13.48b). Note also, with B11 D 0

in equation (13.79), equation (13.48b) is recovered.

Back-substituting and using the expression for wo.x/ in the first expression

of equation (13.77), we can write an equation for determining uo.x/, namely

A11

duo

dx
D

�

A11D11

A11D11 � B2
11

�

C1

C

�

A11B11

A11D11 � B2
11

� �

qo

x2

2
� C2x � C3

�

(13.80)

Integration results in

uo.x/ D
D11

A11D11 � B2
11

C1x C

�

B11

A11D11 � B2
11

�

�

�

qo

x3

6
� C2

x2

2
� C3x

�

C
C4

A11

(13.81)
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When B11 D 0, this reduces to equation (13.48a). As with the first example,

six unknown constants of integration, C1 � C6, are involved. However, unlike

the first example, some constants appear in both the expression for uo.x/

and in the expression for wo.x/, indicating the coupling of the inplane and

out-of-plane response due to the unsymmetric laminate.

13.5.2 Application of Boundary Conditions

Let us consider the fixed-fixed simple supported case, Figure 13.14(a). For

this situation, examining all three boundary conditions at each end, we find

that

uo
�

C
a

2
; y

�

D 0 wo
�

C
a

2
; y

�

D 0 Mx

�

C
a

2
; y

�

D M C

x D 0

(13.82a)

and

uo
�

�
a

2
; y

�

D 0 wo
�

�
a

2
; y

�

D 0 Mx

�

�
a

2
; y

�

D M �

x D 0

(13.82b)

If we use equation (13.76b), the third expressions of equations (13.82a)

and (b) lead to the conclusion that

C2 D 0 C3 D
qoa2

8
(13.83)

The first expressions of equations (13.82a) and (b) result in, from equation

(13.81),

D11C1

�

C
a

2

�

� B11

qoa3

24
C

�

A11D11 � B2
11

A11

�

C4 D 0

D11C1

�

�
a

2

�

C B11

qoa3

24
C

�

A11D11 � B2
11

A11

�

C4 D 0

(13.84)

From these relations it follows that

C4 D 0 C1 D
B11

D11

qoa2

12
(13.85)

Finally, the second expressions of equations (13.82a) and (b) and equation

(13.79) lead to

qo

24

�

C
a

2

�4

� qoa2

�

1

8
�

B2
11

12A11D11

�

1

2

�

C
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As a result of applying the simple support boundary conditions of Fig-

ure 13.14(a), then, we find that
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where
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11 D A11
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and
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(13.89b)

are referred to as the reduced extensional stiffness and the reduced bending

stiffness, respectively. These displacements should be compared with the

results in equation (13.66) for the symmetric laminate. For the unsymmetric

laminate there is a displacement in the x direction, even though it is zero at

the edges of the plate, and the expression for wo.x/ is more complicated.

With B11 D 0, equation (13.66) is recovered from equation (13.88).

The force and moment resultants across the width of the plate are given

by equations (13.74) and (13.76) as
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We see that because of the coupling due to B11, the applied loading causes

inplane force resultants in both the x and y directions. Whether these two

force resultants are tensile or compressive depends on the sign of B11. The

expressions here have been developed with a Œ02=902�T laminate in mind;

however, the analysis is equally valid for a Œ902=02�T laminate and these two

laminates have B11’s of opposite sign, and hence cause Nx.x/ and Ny.x/ to

have opposite signs. While Nx.x/ is not a function of plate width, Ny.x/ is.

The nonzero moment resultants are both functions of plate width but are not

sensitive to the sign of B11.

The reference surface strains for the unsymmetric laminate are
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(13.91)

and the reference surface curvatures are
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In a manner similar to the first example, the strains, and hence stresses, at

any location through the thickness and across the width of the plate can be

determined.

Let us now consider the boundary conditions of Figure 13.14(b), the fixed-

free case. With these boundary conditions, the left edge of the plate is fixed

against displacement in the x direction, while the right edge is free to move.

Thus, the three conditions to be enforced on the edges are
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(13.93a)

and
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2
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�

D M �
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(13.93b)

Obviously the solutions to the governing differential equations given by equa-

tions (13.76), (13.79), and (13.81) are valid for this case because boundary

conditions had not been applied to obtain those general solutions. Thus, from

the first expressions of equations (13.93a) and (13.76a),

Nx.x/ D C1 D 0 (13.94)
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From the third expressions of equations (13.93a) and (b), and (13.76b), as

before,

C2 D 0 C3 D
qoa2

8
(13.95)

Using these results and the first expression of equation (13.93b), we find from

(13.81) that

C4 D �
A11B11qoa3
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(13.96)

Finally, using the second expression of equations (13.93a) and (b) and equa-

tion (13.79) we find that
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or

C5 D 0 C6 D �
5qoa
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(13.98)

As a result
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It is important to compare the functional forms of uo.x/ and wo.x/ for

the unsymmetric laminate with the two types of boundary conditions, Fig-

ure 13.14(a) and (b). The response for the fixed-fixed boundary conditions

of Figure 13.14(a) is given by equation (13.88), while the response for the

fixed-free case of Figure 13.14(b) is given by the equations just derived,

equation (13.99). In fact, comparison of the fixed-free unsymmetric laminate

just derived and the symmetric laminate, equation (13.66), is interesting. The

forms of wo.x/ for the two cases are identical except for magnitude. For any

laminate the relation

1

DR
11

D
1

D11

�
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11

A11D11

�
>

1

D11

(13.100)

is valid. Thus, the wo.x/ deflection of the unsymmetric laminate with the

fixed-free boundary conditions will be greater than the deflection of the

symmetric laminate.
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The force and moment resultants for the fixed-free conditions are given by
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Note there is no Nx because the free end prevents Nx from developing. Inter-

estingly enough, there is an Ny . The reference surface strains and curvatures

for the fixed-free case are
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The strains as a function of thickness and length, and hence the stresses, can

be computed from the above.

For the edge support conditions studied here, the plate is statically determi-

nant. Thus, the moment expression, for example, is independent of material

properties. If the edges of the plate were clamped, or if one edge was clamped,

the moment Mx would not be known at that edge. The problem would not

be statically determinant and the evaluation of C2 and C3 would be coupled

with the evaluation of the other constants.

The response of the unsymmetric laminate is dependent on the details of

the boundary conditions on uo and Nx at the edges of the plate. We saw that

the response of the symmetric laminate was independent of these boundary

conditions. The impact of this dependence on boundary conditions for the

unsymmetric laminate will be seen shortly when we look at numerical results.

Exercise for Section 13.5

Consider the unsymmetric Œ02=902�T laminate discussed in Plate Example 2. In the

discussion we considered the boundary conditions of Figure 13.14(a) and (b). Show

that for the Œ02=902�T laminate, the boundary condition of Figure 13.14(c) leads to

practically the same results for the displacements as a function of x as the boundary

condition in Figure 13.14(b) does, the difference being one term in uo.x/.
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13.6 Plate Example 3: A Long Œ˙30=0�S Plate

As a final example of a long plate, consider a uniformly loaded Œ˙30=0�S
plate simply supported at the edges x D ˙a=2. With this laminate

A16 D A26 D 0 (13.103a)

and

Bij D 0 all i and j (13.103b)

but neither D16 nor D26 are zero for this laminate. Assume also that vo is

zero. The force and moment resultants, equation (13.29), reduce to

Nx D A11v
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duo

dx
Nxy D 0

Mx D �D11

d 2wo
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(13.104)

The equilibrium equations in terms of the force resultants, equation (13.15),

reduce to

dNx

dx
D 0 (13.105a)

0 D 0 (13.105b)

d 2Mx

dx2
C qo D 0 (13.105c)

Integration of the two nontrivial equations above results in

Nx.x/ D C1 (13.106a)

Mx.x/ D �qo

x2

2
C C2x C C3 (13.106b)

In terms of the displacements,

A11
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D Nx D C1 (13.107a)
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These equations can be integrated to yield

uo.x/ D
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fC1x C C4g (13.108a)
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Because the laminate is symmetric, the constants of integration, C1 and

C4, associated with the inplane displacement, uo.x/, do not appear in the

equation for the out-of-plane displacement, wo.x/, nor do the constants of

integration associated with the out-of-plane displacements, C2, C3, C4, and

C6, appear in the equation for the inplane displacement. Thus, the results for

all four boundary conditions depicted in Figure 13.14 will be identical:
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and
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Except for the presence of a nonzero value of Mxy .x/, the development

for this Œ˙30=0�S laminate parallels exactly the development for the Œ0=90�S
laminate. As with My.x/ and the value of D12 relative to D11, it is the value

of D16 relative to D11 that is important. Though it is not the case for the

Œ˙30=0�S laminate, D16 can be larger than D12. For these cases, the twisting

moment Mxy will be larger than My .

From the expressions for the displacements, the reference surface and

curvatures are given by
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The strains at any location through the thickness are given by

"x D "o
x C z�o

x D z
qoa2

8D11

�

1 � 4
�x

a

�2
�

"y D 0 xy D 0

(13.112)



Numerical Results for Plate Examples 1, 2, and 3 625

and the stresses are given by
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The values of NQ11, NQ12, and NQ16 are a function of whether z is within a

C30ı layer, a �30ı layer, or a 0ı layer. The value of NQ16 in the C30ı layers

is opposite in sign to the value of NQ16 in the �30ı layers, and in the 0ı layers
NQ16 D 0.

Next, numerical results for the plates just discussed will be presented.

13.7 Numerical Results for Plate Examples 1, 2, and 3

It is now appropriate to turn to numerical examples to illustrate the differences

between the Œ0=90�S , Œ02=902�T , and the Œ˙30=0�S plates, and the differences

between the various boundary conditions applied to the edges of the Œ02=902�T
plate. The material properties for a graphite-reinforced material are used. For

the various plates, the pertinent laminate properties are as follows:

For the Œ0=90�S plate:

D11 D 2:48 N�m D12 D 0:0543 N�m (13.114a)

For the Œ02=902�T plate:

A11 D 50:4 MN/m A12 D 1:809 MN/m B11 D �6 460 N

D11 D 1:511 N�m D12 D 0:0543 N�m (13.114b)

For the Œ˙30=0�S plate:

D11 D 5:78 N�m D12 D 1:766 N�m D16 D 1:261 N�m (13.114c)

A unit pressure load qo D 1 N/m2 and a plate span of a D 0:5 m are

considered for purpose of the examples.

13.7.1 Cross-Ply Plates

Figure 13.15 illustrates the out-of-plane deflection, wo.x/, as a function of

plate width for the three cross-ply cases. In this and subsequent figures,

nondimensionalized responses are shown as a function of normalized distance
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FIGURE 13.15. Out-of-plane deflection response wo.x/ of semi-infinite, uniformly

loaded Œ0=90�S and Œ02=902�T plates.

across the width. The nondimensionalizing factor is
�

384SD11

5qoa4

�

(13.115)

where SD11 is the value of D11 for the symmetric cross-ply laminate, namely,

S D11 D 2:48 N�m (13.116)

This factor was chosen so the out-of-plane deflections of the three cross-ply

cases could be easily compared.

As we can see from Figure 13.15, the symmetric Œ0=90�S plate deflects out-

of-plane the least. This is because the symmetric laminate has a larger bending

stiffness D11 than the unsymmetric laminate, and D11 is an important material

property for resisting bending deflection. Having the two 0ı layers on opposite

sides of the laminate, as opposed to having them both on the same side, results

in a larger D11. The unsymmetric Œ02=902�T laminate with the fixed-free ends

deflects out of plane the most; the smaller value of D11 is largely responsible

for this increased deflection. However, for the unsymmetric laminate, D11

alone is not responsible for controlling the out-of-plane deflections. The fixed-

fixed unsymmetric Œ02=902�T laminate deflects much less than the fixed-free

one (see Figure 13.15). The coupling of uo.x/ and wo.x/ is responsible for

this; the restraint on uo.x/ at both edges causes the reduced level of out-of-

plane deflection for the fixed-fixed case.

Figure 13.16 shows the inplane displacement uo.x/. The displacements

are nondimensionalized by the same parameter used with the out-of-plane
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FIGURE 13.16. Inplane deflection response uo.x/ of semi-infinite, uniformly loaded

Œ0=90�S and Œ02=902�T plates.

displacements, but using a scale factor of 100. The magnitudes of the inplane

displacements for the unsymmetric laminates are considerably smaller than

the magnitude of the out-of-plane displacements. In addition, among the

three cross-ply cases, there is a significant difference in the magnitudes

of this displacement component. The symmetric laminate simply has zero

displacement in the x direction, independently of the boundary conditions.

This was emphasized in the discussion relating to equation (13.60). The

fixed-free unsymmetric laminate, on the other hand, has its maximum inplane

displacement on the free end. Furthermore, the sign of the displacement indi-

cates that every point across the width moves in the same direction. For the

fixed-fixed unsymmetric laminate, the uo.x/ displacements are dramatically

less than for the fixed-free case. Also, for the fixed-fixed boundary conditions

the sign of uo.x/ depends on location across the width. Please note that the

sign of B11 controls the sign of uo.x/ for the two unsymmetric cases.

For the symmetric case and the unsymmetric fixed-free case

Nx D 0 (13.117a)

while for the unsymmetric fixed-fixed case
�

D11

B11

� �

12

qoa2

�

Nx D 1 (13.117b)
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The variation of the force resultant Ny across the plate is illustrated in

Figure 13.17; the resultant is nondimensionalized by the quantity
�

D11

B11

� �

12

qoa2

�

(13.118)

This force resultant is responsible for enforcing the condition vo.x/ D 0.

The symmetric laminate needs no Ny to enforce vo.x/ D 0, whereas the

unsymmetric ones do. Also, for the fixed-free case, even though there is no

Nx due to the loading, there is an Ny . From the figure we can see that

the primary difference in the force resultants for the two unsymmetric cases

amounts to a vertical shift in the values.

The variation of Mx with width is the same for all three cases; however, the

variation of My with width is a function of laminate and boundary conditions.

This point is illustrated in Figures 13.18 and 13.19, where the moments have

been nondimensionalized by the parameter
�

8

qoa2

�

(13.119)

Compared to Mx , the magnitude of My for all three cases is quite small.

Figure 13.19 is a more detailed illustration of My , and we see that the

magnitude of My is greatest for the unsymmetric fixed-free unsymmetric

laminate. The condition of being fixed against uo displacement at both ends

causes a slight reversal of the sign of My for the unsymmetric fixed-fixed

case.
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FIGURE 13.17. Force resultant Ny.x/ in semi-infinite, uniformly loaded Œ0=90�S
and Œ02=90�T plates.
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FIGURE 13.18. Moment resultants Mx.x/ and My .x/ in semi-infinite, uniformly

loaded Œ0=90�S and Œ02=902�T plates.

–0.5 0.0 0.5

My(x), sym

8

qoa2
My(x)

–0.10

–0.05

 0.00

 0.05

 0.10

My(x), unsym, fixed-fixed

x
a

My(x), unsym, fixed-free

FIGURE 13.19. Moment resultant My .x/ in semi-infinite, uniformly loaded Œ0=90�S
and Œ02=902�T plates.
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FIGURE 13.20. Stresses at midspan in a semi-infinite, uniformly loaded Œ0=90�S
plate, qo D 1, a D 0:5 m.

Finally, the all-important stress response is illustrated for the three cases

in Figures 13.20–13.22; the stresses are shown as a function of location

through the thickness at midspan; that is, x D 0. Keeping in mind the fiber

orientations for these cross-ply configurations, we see that the symmetric

laminate, Figure 13.20, clearly is subjected to the least stresses; the stresses in

the fiber direction are ˙0:589 MPa, and the stresses perpendicular to the fibers

are ˙0:0230 MPa. The fixed-free laminate experiences the largest stresses;

the fiber direction stress �1 reaches �1:22 MPa and �2 reaches C0:238 MPa.

13.7.2 [˙30/0]S Plate

The response of the Œ˙30=0�S plate is quite similar to the response of the

symmetric Œ0=90�S plate. Because the bending stiffness D16 is involved, there

is a nonzero distribution of Mxy .x/ across the span of the plate, and in the

C30ı and �30ı layers �xy is nonzero.

The distribution of the out-of-plane deflection across the width of the plate

is shown in Figure 13.23, where again, nondimensionalization has been used.
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FIGURE 13.21. Stresses at midspan in a semi-infinite, uniformly loaded Œ02=902�T
fixed-fixed plate, qo D 1, a D 0:5 m.

The distributions of Mx.x/, My.x/, and Mxy .x/ across the width of the plate

are illustrated in Figure 13.24. Comparing the distributions of the Œ˙30=0�S
plate with those of the cross-ply plates shown in Figure 13.18, we see that

relative to the magnitude of Mx.x/, My.x/ for the Œ˙30=0�S plate is larger,

and Mxy .x/ is of comparable magnitude. The stresses through the thickness

of the Œ˙30=0�S plate at midspan .x D 0/ are shown in Figure 13.25. These

are not the principal material system stresses, but we see that the magnitude

of the shear stress �xy is greater than the magnitude of �y .

Exercise for Section 13.7

Consider the semi-infinite plates just discussed in considerable detail. Instead of

studying the response to the uniform load, consider a harmonic load, that is, q.x; y/ D

qn cos
�

n�x
a

�

. The counterpart to equation (13.45) is

dNx

dx
D 0

d 2Mx

dx2
C qn cos

�n�x

a

�

D 0
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FIGURE 13.22. Stresses at midspan in a semi-infinite, uniformly loaded Œ02=902�T
fixed-free plate, qo D 1, a D 0:5 m.

Develop equations for the displacements uo.x/ and wo.x/, and the six stress re-

sultants for the boundary conditions in Figure 13.14(a) for a symmetric laminate.

These equations provide the solution for a typical term in a Fourier series rep-

resentation of a load that is distributed symmetrically about x D 0. Fourier se-

ries representations will be discussed shortly. Note, this solution is also valid for

the boundary conditions of Figure 13.14(b), (c), and (d) because the laminate is

symmetric.

13.8 Plate Example 4: A Rectangular, Uniformly Loaded,

Cross-Ply Plate

As a final example, consider a uniformly loaded, rectangular, symmetric,

cross-ply plate that is free from any inplane forces and moments on its edges

and, in fact, is free to move in the x and y direction on all the edges, but

is prevented from out-of-plane motions at the edges. Assume that the origin

of the x-y-z coordinate system is at the geometric center of the plate, as in
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FIGURE 13.23. Out-of-plane deflection response wo.x/ of a semi-infinite, uniformly

loaded Œ˙30=0�S plate.
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FIGURE 13.24. Moment resultants Mx.x/, My.x/, and Mxy .x/ of a semi-infinite,

uniformly loaded Œ˙30=0�S plate.
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FIGURE 13.25. Stresses at midspan in a semi-infinite, uniformly loaded Œ˙30=0�S
plate, qo D 1, a D 0:5 m.

Figure 13.1. Since the plate is symmetric and of cross-ply construction

A16 D A26 D D16 D D26 D 0

Bij D 0 all i and j
(13.120)

As a result, the governing equations, from equation (13.36), are

A11

@2uo

@x2
C A66

@2uo

@y2
C .A12 C A66/

@2vo

@x@y
D 0

.A12 C A66/
@2uo

@x@y
C A66

@2vo

@x2
C A22

@2vo

@y2
D 0

D11

@4wo

@x4
C 2.D12 C 2D66/

@4wo

@x2@y2
C D22

@4wo

@y4
D qo

(13.121)

with qo being the magnitude of the uniform load. Since N C
x , N �

x , N C
xy ,

N �
xy , N C

y , N �
y , N C

yx, N �
yx, M C

x , M �
x , M C

y , and M �
y are zero, the boundary

conditions are formally stated as follows:
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At x D ˙a=2:

.i/ Nx D A11

@uo

@x
C A12

@vo

@y
D 0

.ii/ Nxy D A66

�

@uo

@y
C

@vo

@x

�

D 0

.iii/ wo D 0

.iv/ Mx D �

�

D11

@2wo

@x2
C D12

@2wo

@y2

�

D 0

(13.122a)

At y D ˙b=2:

.i/ Ny D A12

@uo

@x
C A22

@vo

@y
D 0

.ii/ Nxy D A66

�

@uo

@y
C

@vo

@x

�

D 0

.iii/ wo D 0

.iv/ My D �

�

D12

@2wo

@x2
C D22

@2wo

@y2

�

D 0

(13.122b)

As is sometimes the case, for a particular problem the form of the solution

can be determined by inspection. For this problem a solution of the form

uo.x; y/ D 0

vo.x; y/ D 0

wo.x; y/ D

1
X

mD1;3

1
X

nD1;3

Wmn cos
�m�x

a

�

cos
�n�y

b

�

(13.123)

satisfies the first two governing differential equations in equation (13.121),

and all the boundary conditions at each edge, equation (13.122a) and (b).

The Wmn can be determined by substituting the form for wo.x; y/ into the

third governing differential equation, expanding the uniform load in the same

double cosine series, and equating coefficients. The form given by equation

(13.123) happens to be the exact solution for this problem. If the plate was not

of cross-ply construction, then the terms involving D16 and D26 would appear

in the third governing differential equation and the boundary conditions .iv/

at each edge, and the form given by equation (13.123) would not be the

solution form. However, for any symmetric cross-ply laminate with these

same boundary conditions, the following procedure is valid if the load can

be expanded in terms of a Fourier series.
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The Fourier series representation of the uniform load is

qo D

1
X

mD1;3

1
X

nD1;3

Qmn cos
�m�x

a

�

cos
�n�y

b

�

(13.124a)

with

Qmn D
16qo

mn�2
.�1/

mCn
2 �1 m; n D 1; 3; : : : (13.124b)

Substituting the series expressions for wo.x; y/ and qo into the governing

equation, the third expression of equation (13.121), and equating like terms

in m and n lead to
�

D11

�m�

a

�4

C 2.D12 C 2D66/
�m�

a

�2 �n�

b

�2

C D22

�n�

b

�4
�

Wmn D Qmn

(13.125)

This results in

Wmn D
Qmn

D11

�m�

a

�4

C 2.D12 C 2D66/
�m�

a

�2 �n�

b

�2

C D22

�n�

b

�4

(13.126)

or

Wmn D 16qo

.�1/
mCn

2 �1

mn�6

�

D11

�m

a

�4

C 2.D12 C 2D66/
�m

a

�2 �n

b

�2

C D22

�n

b

�4
�

(13.127)

With the above solution for Wmn, expressions for the curvatures, moments,

strains, and stresses can be obtained in series form. There are no inplane

force resultants or inplane strains for this problem. With the Wmn known, the

curvatures are

�o
x D �

@2wo

@x2
D

1
X

mD1;3

1
X

nD1;3

Wmn

�m�

a

�2

cos
�m�x

a

�

cos
�n�y

b

�

�o
y D �

@2wo

@y2
D

1
X

mD1;3

1
X

nD1;3

Wmn

�n�

b

�2

cos
�m�x

a

�

cos
�n�y

b

�

�o
xy D �2

@2wo

@x@y
D �2

1
X

mD1;3

1
X

nD1;3

Wmn

�m�

a

� �n�

b

�

sin
�m�x

a

�

sin
�n�y

b

�

(13.128)
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and the moment resultants are

Mx D D11�
o
x C D12�o

y D

1
X

mD1;3

1
X

nD1;3

�

D11

�m�

a

�2

C D12

�n�

b

�2
�

� Wmn cos
�m�x

a

�

cos
�n�y

b

�

My D D12�
o
x C D22�o

y D

1
X

mD1;3

1
X

nD1;3

�

D12

�m�

a

�2

C D22

�n�

b

�2
�

� Wmn cos
�m�x

a

�

cos
�n�y

b

�

Mxy D D66�
o
xy

D �2D66

1
X

mD1;3

1
X

nD1;3

Wmn

�m�

a

� �n�

b

�

sin
�m�x

a

�

sin
�n�y

b

�

(13.129)

The transverse shear force resultants are

Qx D
@Mx

@x
C

@Mxy

@y

D �

1
X

mD1;3

1
X

nD1;3

Wmn

�

D11

�m�

a

�3

C D12

�n�

b

�2 �m�

a

�

C 2D66

�m�

a

� �n�

b

�2
�

sin
�m�x

a

�

cos
�n�y

b

�

Qy D
@My

@y
C

@Mxy

@x

D �

1
X

mD1;3

1
X

nD1;3

Wmn

�

D22

�n�

b

�3

C D12

�m�

a

�2 �n�

b

�

C 2D66

�m�

a

�2 �n�

b

�

�

cos
�m�x

a

�

sin
�n�y

b

�

(13.130)

Note, these are not the effective, or Kirchhoff, transverse shear force resultants

discussed earlier. The strains at any point x, y, or z within the laminate are
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"x D z�o
x D z

1
X

mD1;3

1
X

nD1;3

Wmn

�m�

a

�2

cos
�m�x

a

�

cos
�n�y

b

�

"y D z�o
y D z

1
X

mD1;3

1
X

nD1;3

Wmn

�n�

b

�2

cos
�m�x

a

�

cos
�n�y

b

�

xy D z�o
xy D �2z

1
X

mD1;3

1
X

nD1;3

Wmn

�m�

a

� �n�

b

�

sin
�m�x

a

�

sin
�n�y

b

�

(13.131)

The stresses �x , �y , and �xy can be determined on a layer-by-layer basis. Of

course, the strains, and stresses, in the principal material system depend on

the particular laminate.

As a specific case, consider a Œ0=90�S laminate, as in the previous example,

and assume the laminate has an aspect ratio a=b D 0:5, namely, the plate is

twice as long as it is wide. The deflection of the center of the plate is given,

from equation (13.123), by

wo.0; 0/ D

1
X

mD1;3

1
X

nD1;3

Wmn (13.132)

Obviously the sums cannot be made infinite and so it is of value to determine

the predicted deflection as a function of the upper limits of the summation

M and N , where now

wo.0; 0/ D

M
X

mD1;3

N
X

nD1;3

Wmn (13.133)

Table 13.1 shows the convergence characteristics of the series for the midplate

deflection. The midplate deflection has been normalized as before for the sake

of comparison. Recall that SD11 is the value of D11 for a Œ0=90�S laminate,

equation (13.116). About four terms .M D N D 7/ are all that are required

to provide the converged answer for the deflection at the center of the plate.

With this number of terms the nondimensional deflection at the center for

the plate is just slightly greater than 1. This is interesting in that for the

semi-infinite Œ0=90�S plate the nondimensionalized midspan deflection was

1.0 (see Figure 13.15). Obviously as far as the deflection in the middle of the

plate is concerned, the plate being only twice as long as it is wide, that is,

a=b D 0:5, is equivalent to the plate being infinitely long, that is, b ! 1,

or a=b ! 0.
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TABLE 13.1. Convergence characteristics for Œ0=90�S plate

1

3

5

7

9







15

17







35

37







45

47

1.209758

1.035223

1.058815

1.054079

1.055400

 





1.055032

1.055084







1.055065

1.055066

 





1.055066

1.055066



1.250537

1.033101

1.062241

1.055854

1.057856







1.057028

1.057319







1.057179

1.057207







1.057202

1.057189

0.095158

0.004721

0.037980

0.025005

0.030969







0.028457

0.029301







0.028907

0.028989







0.028973

0.028933

M, N
384sD

11

5qoa4
wo(0,0)

8

qoa2
Mx(0,0)

8

qoa2
My(0,0)

a/b = 0.5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Also of interest are the moment resultants Mx and My at the center of the

plate (Mxy D 0 there). From equation (13.129) these are

Mx.0; 0/ D

M
X

mD1;3

N
X

nD1;3

�

D11

�m�

a

�2

C D12

�n�

b

�2
�

Wmn

My.0; 0/ D

M
X

mD1;3

N
X

nD1;3

�

D12

�m�

a

�2

C D22

�n�

b

�2
�

Wmn

Mxy .0; 0/ D 0

(13.134)

The convergence characteristics of these moments are also shown in Ta-

ble 13.1; convergence is less rapid than for the deflection of the center, and

the moments are nondimensionalized as before, simply for comparison. As

with the deflections, the values of the nondimensionalized moments Mx and

My at the center of the plate are similar in magnitude to the values of these

moments at the midspan of the semi-infinite Œ0=90�S plate. We can see this
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by comparing the converged values of the nondimensionalized values of Mx

and My at the center of the plate .M D N D 47/ with the values from the

plots of Figures 13.18 and 13.19.

The stresses �x, �y , and �xy at the center of the plate for a unit load and

with a D 0:5 m are illustrated in Figure 13.26. Comparing these stresses

with the stresses at midspan in a semi-infinite Œ0=90�S plate, Figure 13.20,

again reveals a similarity between the semi-infinite plate and the rectangular

plate.

The results of Table 13.1 and the stresses in Figure 13.26 can be con-

trasted with the results of Table 13.2 and the stresses of Figure 13.27, where

the midplate deflections and moments for a Œ90=0�S plate are illustrated

in this second table and it is evident a simple switching of layer orienta-

tions makes a large change in the plate response. The deflection is four

times larger than for the Œ0=90�S plate. In addition, overall, the moment

and stress levels have increased for the following reason: For most plate

problems, the bending stiffness in the direction of the shorter span controls

the plate response. In this problem the bending stiffness in the short span
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FIGURE 13.26. Stresses at center of pressure-loaded, simply supported, rectangular

Œ0=90�S plate, qo D 1, a D 0:5 m, b D 1:0 m.
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TABLE 13.2. Convergence characteristics for Œ90=0�S plate

1

3

5

7

9







15

17







35

37







45

47

3.946309

3.853063

3.858660

3.858419

3.858766







3.858665

3.858679







3.858674

3.858674







3.858674

3.858674



0.908713

0.851638

0.859876

0.856518

0.858028







0.857344

0.857572







0.857463
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0.857480
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1.103067

0.930295

0.964304

0.951863

0.957629







0.955100

0.955960







0.955556

0.955639







0.955622

0.955814

M, N
384sD

11

5qoa4
wo(0,0)

8

qoa2
Mx(0,0)

8

qoa2
My(0,0)

a/b = 0.5
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.

.

.

.

.

.

direction is D11. The Œ0=90�S laminate has a larger D11 than the Œ90=0�S
laminate; therefore, the Œ90=0�S laminate deflects more, and as a result, has

larger stresses. Viewed another way, the 0ı layers are closer together in the

Œ90=0�S laminate than in the Œ0=90�S laminate, yet they must support the same

load across span a; as they are closer together in the Œ90=0�S laminate and

are the primary load-carrying layers for span a, they must be more highly

stressed than in the Œ0=90�S laminate to produce the same moment to support

the load.

Finally, it is worth commenting on the convergence in the representation of

the uniform load qo. By equation (13.124) the load too is being represented

by a double cosine series. This series is truncated at m D M and n D N , as

are the series for wo.x; y/, Mx.x; y/, and the like. The load is represented

as a function of the number of terms in the series in Figure 13.28. Here the

load, normalized by the value of the intended uniform load qo, as a function

of location along the plate centerline y D 0 varies as the number of terms

in the series increases. Obviously M D N D 1 does not represent a uniform

load well and seriously biases the load toward the center of the plate. Thus,

convergence of the various series for wo.x; y/, Mx.x; y/, and so on, also

involves how well the intended uniform load is represented.
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FIGURE 13.27. Stresses at center of pressure-loaded, simply supported, rectangular

Œ90=0�S plate, qo D 1, a D 0:5 m, b D 1:0 m.
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FIGURE 13.28. Variation of load along centerline y D 0 as a function of the number

of terms in series, equations (13.124a) and (13.124b).



Summary 643

Exercises for Section 13.8

1. As we saw from Tables 13.1 and 13.2, the moments converged less rapidly with

increasing M and N than did the deflection. This is because the coefficients in

the sum, Wmn, are inversely proportional to the fourth power of m and n. The

larger m and n are, the less the contribution of Wmn to the summation. Hence, the

converged displacement solution is contained in the .1; 1/, .3; 3/, .5; 5/, and .7; 7/

terms. The moments, however, are inversely proportional to the second power of

m and n. Hence, the coefficients in the sums for the moments make contributions

until m D n D 15. (a) To what power of m and n are the transverse shear stress

resultants proportional? (b) Add two columns to Tables 13.1 and 13.2 and compute

the value of Qx.a=2; 0/ and Qy.0; b=2/ as a function of M and N .

2. It is instructional to plot the variation of the plate response as a function of spatial

location, and as a function of the number of terms in the series, M and N . For

the Œ0=90�S laminate with a=b D 0:5, plot the variation of wo.x; 0/, Mx.x; 0/,

and Qx.x; 0/ versus x, 0 � x � a=2, as a function of M and N . Do a separate

plot for each variable and let M D N . Note that besides requiring a certain

number of terms for the response to converge at a particular point (e.g., x D 0,

y D 0), a certain number of terms is required to have the functional relationships

converge also.

3. We spent considerable time studying the semi-infinite plate. Is there any value to

this? To answer this question, let’s compare the response of a semi-infinite plate

with the response of plates with a=b D 1, and less. For variety, consider a special

laminate, specifically one with a stacking sequence of ŒC�= ��= ��= C�= ��= C

�= C �= � ��S , � D 30ı. This laminate has no D16 or D26 terms, and hence the

analysis for this laminate is identical to the analysis for a cross-ply laminate. For

this laminate plot wo.x/ versus x as determined by a semi-infinite plate analysis

and wo.x; 0/ versus x as determined by the double series rectangular plate solution.

Do this for a=b D 1, 0.75, 0.50, and so on. Comment on the value of a=b for

which, as far as out-of-plane deflection is concerned, the rectangular plate behaves

as an infinitely long plate.

13.9 Summary

This completes our brief introduction to plates. Though limited, the examples

illustrate the fundamentals of studying plate response. For general plate prob-

lems convenient exact solutions are not always readily available. However,

approximate solutions based on variational methods, such as the Rayleigh-

Ritz or Galerkin techniques, can give good results. Finite-element analysis,

which is based on variational methods, is also very useful for difficult prob-

lems. Important results are often revealed by the proper use of approximate

methods. One example of this is the out-of-plane deflection characteristics of

a Œ˙30=0�S simply supported plate. Figure 13.29(a) shows a contour plot of

the out-of-plane deflections of the Œ0=90�S cross-ply plate. This contour plot
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(a) [0/90]S laminate

(b) [±30/0]S laminate
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(c) [+452 / –452]S laminate

(d) [–452 / +452]S laminate

x

y

FIGURE 13.29. Out-of-plane deflection characteristics of various laminated plates.

is obtained directly from equations (13.123) and (13.127). Figure 13.29(b)

shows the out-of-plane deflection contours of a Œ˙30=0�S plate; this plot

was obtained by a Rayleigh-Ritz solution to the governing equation for a

Œ˙30=0�S laminate, namely, equations (13.34) and (13.35). With a careful

consideration, we can see there is a slight skewing of the contour lines of

the Œ˙30=0�S laminate when compared to the contour lines of the Œ0=90�S
laminate. This skewing is due to the nonzero values of D16 and D26 for

the Œ˙30=0�S laminate. The contour plot for an eight-layer ŒC452= � 452�S
laminate of Figure 13.29(c) exemplifies this skewing even more. This can be

contrasted to the skewing in the opposite direction for the Œ�452= C 452�S
laminate of Figure 13.29(d). The clustering of the C45 and �45 layers (i.e.,

having two adjacent layers with the same fiber orientation), results in large
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values for D16 and D26, and hence more skewing. Furthermore, the direction

of skewing is dependent on the signs of D16 and D26. The signs of D16 and

D26 for the Œ�452= C 452�S laminate are opposite the signs of D16 and D26

for the ŒC452=�452�S laminate. Skewing is an important effect and can only

be studied by using approximate techniques.

A concluding comment is in order regarding the approach taken to study the

rectangular cross-ply plate versus the approach taken to study the semi-infinite

plate. With the semi-infinite plate, the solution to the governing equations and

boundary conditions was obtained by a methodical step-by-step integration

of equations and determination of the constants of integration. By contrast,

the solution to the rectangular plate more or less appeared out of thin air.

The approach taken with the semi-infinite plate is the preferred approach.

Unfortunately, for many problems even the first step in obtaining exact

solutions is not possible; hence, the analysis is stopped early. However, often

it is possible to envision, guess, or assume what the deflected shape might look

like, and then to translate this shape into known functions of x and y. These

known functions are then used in the equations, and often it is possible to

move forward and obtain answers in the context of these functions. This is the

basis for many approximate methods, including the Rayleigh-Ritz technique.

More often than not, this is the approach that must be taken. The key issue

is this: How good are the assumed functions? The answer to this question is

not really known unless the assumed-function approach is used for a situation

where there is actually an exact solution and the answers are compared. For

the rectangular cross-ply plates considered here, the assumed double series

of harmonic functions is the exact solution. Though this was not proven, it

was stated when the double series was introduced. This assumed-function

approach to the rectangular-plate example was taken because for laminates

other than cross-ply, it is the only approach that will yield numerical results.

However, studying problems that can be solved by integrating the governing

differential equations and applying the boundary conditions always provides

good insight into a problem. These problems also serve as a benchmark for

approximate-solution techniques. With the exact solution, there is never a

concern as to whether an unusual response is a physical reality or is the

result of not assuming quite the right functions. With the exact solution, the

physics of the problem are never in doubt, nor are they ever masked or biased

by approximations.

13.10 Suggested Readings

For additional derivations, solutions to other plate problems (such as vibrations and

thermal effects, through-thickness shear deformations), and extensions of the concepts

developed in this chapter to other structural forms (e.g., cylindrical shells), consult

these works:
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1. Vinson, J. R. The Behavior of Shells Composed of Isotropic and Composite Mate-

rials. Hingham, MA: Kluwer Academic Publishers, 1993.

2. Vinson, J. R., and R. L. Sierakowski. The Behavior of Structures Composed of

Composite Materials. Hingham, MA: Kluwer Academic Publishers, 1987.

3. Whitney, J. M. Structural Analysis of Laminated Anisotropic Plates. Lancaster, PA:

Technomic Publishing Co., 1987.

For insights into more advanced topics, consult the following:

4. Turvey, G. J., and I. H. Marshall, eds. Buckling and Postbuckling of Composite

Plates. New York: Chapman & Hall, 1994.

5. Palazotto, A. N., and S. T. Dennis. Nonlinear Analysis of Shell Structures. Wash-

ington, DC: American Institute of Aeronautics and Astronautics, 1992.

6. Vasiliev, V. V. Mechanics of Composite Structures. Bristol, PA: Taylor and Francis,

1993.

The definitive text for inplane loading of laminates that contain holes—and which is

based on analysis using the theory of complex variables—is the following:

7. Lekhnitskii, S. G. Anisotropic Plates. New York: Gordon and Breach Publishers,

1968.

Several other classic texts in the field address structural level problems:

8. Jones, R. M. Mechanics of Composite Materials, 2nd Ed. Philadelphia: Taylor &

Francis, 1999.

9. Calcote, L. R. The Analysis of Laminated Composite Structures. New York: Van

Nostrand Reinhold, 1969.



CHAPTER 14

Appendix: Manufacturing
Composite Laminates

14.1 Background and Overview

The multitude of tasks involved in the manufacturing of composite laminates

can be categorized into two phases: (1) fabrication and (2) processing. In the

fabrication phase the fiber reinforcement and accompanying matrix material

are placed or shaped into a structural form such as a flat or curved plate, a

cylinder or other body of revolution, and the like. The fiber and matrix may

be in preimpregnated form, or the fiber and matrix material may be combined

for the first time during this step of developing the structural form. During

the processing phase, heat and pressure are used to densify and consolidate

the structure. For thermoset matrices the chemical cross-linking reaction (i.e.,

curing) solidifies the structure, whereas thermoplastic matrices become hard

after cooling from their melting temperature.

Fabrication techniques for composites are not dependent on the type of

matrix material. In fact, some metal forming techniques have been adapted to

composites fabrication (e.g., matched-metal die molding). However, process-

ing conditions are entirely dependent on the type of matrix material used. For

instance, thermosets require long processing times, whereas thermoplastics

require relatively high pressures and temperatures.

In this appendix we present a brief introduction to the manufacturing of

composites by addressing three important areas. First, we discuss fabrication

techniques. Next, processing issues are presented. We conclude with a short

discussion of manufacturing defects. Overall, we approach the topic of man-

ufacturing from a general perspective. However, to keep the discussion in the

context of this book, we begin by focusing on the manufacture of structural

components from layers, or plies, of preimpregnated material, called prepreg.

Specifically, layers of material, with the fibers in each layer aligned in a

647
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specific direction, are used to form a laminate. We will assume that the

laminate is fabricated by hand, and we will describe the necessary steps of

fabrication. We will further assume that this hand-fabricated laminate will

be processed in an autoclave, which is a pressurized oven that provides the

proper levels of heat and pressure to solidify and consolidate the structure.

In the early years of the development of fiber-reinforced materials, structural

components were fabricated by hand. Even today, in prototype development,

hand fabrication is common, and this is also the case for specialty manu-

facturing and in many university laboratories. However, as labor costs and

the need for consistency have increased, engineers have been charged with

designing low-cost automated manufacturing techniques. Now, automated

techniques like robotic tow and tape placement methods, injection molding,

and pultrusion have dramatically reduced the cost of manufacturing some

composite structures. Later in the appendix we will consider these various

other approaches to fabricating and processing a laminate.

Common to all manufacturing methods is the use of a die, mold, or

mandrel. They provide the structural shape for the composite material, and in

this discussion they will be referred to generally as the tool. Tools are usually

an inverse, or female, replica of the desired structural shape. The design of the

tool is a critical and expensive process. The cost of the tool often far exceeds

the material and labor costs to produce a composite structure. Also common

to all manufacturing methods is, as mentioned, the need to apply temperature

and pressure to the structural component after the fiber and matrix are brought

together into the desired structural form. The pressure takes two forms: actual

pressure, ideally hydrostatic, to consolidate the tows and layers; a vacuum

to remove air entrapped between the layers and to reduce the amount of

unwanted gases given off by the resin as it cures. The application of pressure

can be in the form of closing both halves of the tool or, as with a flat structural

component, pressing the laminate in a hot press. More commonly, however,

and as will be assumed here, pressure is applied by putting the uncured

structural component into an autoclave. Finally, the vacuum requirement is

met by enclosing the structural component in a vacuum-tight bag and drawing

a vacuum.

14.2 Fabrication

14.2.1 Tooling and Specialty Materials

Tooling

As all fabrication methods require tools to provide the shape of the composite

structure during processing, the design and construction of the tool are critical
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TABLE A.1. Thermal expansion of tooling materials

Material system

Coefficient of thermal expansion

(×10–6/°C)

Polymer matrix composites (fiber dir.,   1)

     • Aramid or graphite-reinforced

     • Boron fiber-reinforced

     • Glass fiber-reinforced

α

Slip cast and fired ceramic   0.83

Tool steel 11.1

Electroformed iron 11.7

Electroformed nickel 12.8

Plaster

High-temperature epoxy

Aluminum

13.9

19.4

23.3

−1.5 to 1.1

  2.3 to 3.0

  6.3 to 8.4

components of the manufacturing process. Because the tool is heated and

pressurized, especially critical is the choice of tooling material. Factors which

must be considered in tool material selection are dimensional stability and

compatibility, cost, surface finish, and durability. Table A.1 lists the coeffi-

cients of thermal expansion for several tool materials. Of the metals, tool

steel most closely matches that of the composites. Steel tools are also highly

durable and have good thermal conductivity; however, they are extremely

heavy and they take substantial time to heat and cool. Ceramic tools have the

lowest thermal expansion, so their dimensional stability is the best, and they

also have a thermal conductivity close to that of tool steels. However, they

are brittle and must be protected from chipping and cracking. Sometimes

ceramic inserts are used in steel tools to combine the best characteristics of

both materials.

Aluminum tools are easily machined and less expensive than steel or

ceramic. They are lighter than steel tools and they heat and cool faster

than steel; however, they are not as durable as steel tools and their thermal

expansion is excessive. Plaster tools are sometimes used when durability is

not required. They can be made easily by pouring the uncured plaster around a

model. Once the plaster has been cast, it is cured and then hardened by coating

with a varnish. Actually, graphite- or glass-reinforced composite materials can

be used to fabricate a tool. If this is the case the thermal expansion of the

tool can be exactly matched to that of the composite structure. Composite

tools are durable, their surface finish is excellent, and they are less expensive

than steel tools. However, they usually require that a plaster casting be made

of the structure first.
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Specialty materials

Many secondary or specialty materials are used in composites manufacturing.

Before we discuss the various types of specialty materials it is helpful to

examine a typical lay-up of a composite structure prepared for autoclave

processing. Figure A.1 shows a cross section of an autoclave specimen. In

addition to the actual composite laminate, there are release coatings, peel

plies, release film, bleeder plies, breather plies, vacuum bags, sealant tape,

and damming material. Each of these materials serves a specific function.

For instance, release agents are used to prevent the composite material from

bonding to the tool. The illustration in Figure A.1 is based on processing a

flat laminate, and thus the portion of the tool at the bottom of the figure is

actually a flat plate and the portion of the tool toward the top is also a flat

plate, sometimes called a caul plate when used in this fashion. However, it

is easy to imagine the bottom and top tool components having curvature, or

only a curved bottom plate being present and the peel plies, release film, and

so on, being draped over the curved uncured laminate.

Release agents

Release agents are used to coat the tool so that the composite structure is

prevented from bonding to the surface. They are usually a paste or liquid

that is coated onto the tool surface and allowed to dry. Films are also

used, but they are limited to flat or single-curvature surfaces. Table A.2 lists

TABLE A.2. Mold release agents

Films or

dispersions

Coated paper,

extruded film

Liquids, resins,

greases

Teflon (tetrafluoroethylene),

Tedlar (polyvinylfluoride)

Polyvinyl alcohol (PVA),

polyamines, polyethylene,

cellophane

Silicone polymers

Type Form Examples

Fluorocarbons

Polymer films

Silicones

Paste Parafin, carnuba,

microcrystalline waxes

Waxes

Liquids or

particles (external

and internal

release agents)

Stearic acids (calcium, zinc,

lead, aluminum, magnesium

salts)

Metal salts

Powders Talcum, micaInorganic

compounds



Resin dam

Edge bleeder

Sealant
tape

Vacuum bagging film

Sacrificial ply (optional)

Peel ply

Composite laminate

Peel ply

Porous release film

Bleeder plies

Porous release film

Breather plies

Top caul plate (optional)

Breather plies

Release coat/film

Tool (flat plate)

FIGURE A.1. Typical autoclave lay-up.

6
5

1
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several types of release agents that are used.

1. Fluorocarbons. Fluorocarbon polymers are used extensively in autoclave

molding. Tedlar®, a polyvinyl fluoride, is a fluorocarbon film manufac-

tured by DuPont. FEP (fluoroethylene propylene) forms a continuous film

on the mold surface and is used for composites cured up to 177ıC.

Above this temperature the fluorine disassociates from the polymer. PTFE

(polytetrafluoroethylene), a polymeric dispersion of Teflon®, is stable up

to 260ıC.

2. Polymer films. These polymers are insoluble in most solvents, so they are

applied as extruded or blown films. PVA (polyvinyl alcohol), cellophane,

polyamines, and polyethylene have all been used as release agents.

3. Silicones. The commercial silicones are cured polymers with high melting

points and low volatility. They are applied in liquid form or as a grease.

Some special silicone release agents are stable up to 480ıC; however, most

are limited to about 200ıC.

4. Waxes. Carnuba paste wax is cheap and easily applied. It is sometimes

polished before the composite is laid onto the tool surface. Carnuba waxes

are excellent mold release agents for composites cured below 250ıF.

Above this temperature the wax begins to degrade.

5. Metal salts. Stearic acid, a fatty acid, is used widely for mold release.

It has a sharply defined melting point at 71:5ıC and has good wetting

properties. The main derivatives of stearic acid (such as calcium, zinc,

and lead salts) are also used as release agents. The choice of metallic

stearate to use for a specific application depends primarily on the type of

polymer matrix.

6. Inorganic compounds. These are probably the oldest known release agents.

Because they are insoluble, they are applied as powders. Talcum and mica

are the most common compounds used. In some cases they are mixed with

metal stearates to improve their release ability.

Peel plies and release films and fabrics

Surfaces are protected from contamination by peel plies, and they are nor-

mally removed from the composite structure just before bonding or secondary

coating operations. The most common peel plies are heat-cleaned-and-scoured

nylon, heat-cleaned lightweight fiberglass, or polyester fabrics. User prefer-

ence of the surface texture after the removal of the peel ply dictates the choice

of a specific type.

Release films and fabrics serve many different purposes. Sometimes they

are used as separators between successive layers of preimpregnated material,

and they are also used to separate the bleeder or breather materials from

the composite laminate. They are most commonly a Teflon-coated fiberglass
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fabric, and in some cases the release film is porous so that resin can flow

through the film. For example, porous release films are used to separate the

bleeder plies from the composite laminate. This allows the resin to flow from

the laminate through the release film and into the bleeder plies.

Bleeder and breather plies

Bleeder and breather plies are porous, high-temperature fabrics which are

used to absorb excess resin during processing. Most preimpregnated mate-

rials are supplied with excess resin, which is subsequently removed during

processing. The resin is removed to increase the fiber volume fraction and

flush voids from the laminate. The excess resin is trapped and absorbed by

the porous bleeder plies. Fiberglass, cellulose, and polyester fabrics are all

used as bleeder plies.

Breather plies are used to provide a vacuum pathway into the composite

laminate, and they also act as a conduit for the removal of volatiles during

cure. They must remain porous at high temperatures and pressures. Most

bleeder materials can also be used as breather plies. In addition, perforated

fluorocarbon or nylon films and Teflon-coated fiberglass are sometimes used.

Bagging films

Bagging films form a barrier between the composite laminate and the oven or

autoclave environment. The bagging film is sealed around the edge of the lay-

up by sealant tape, and the film is drawn down onto the composite laminate by

pulling a vacuum under the bag. Vacuum bags must be heat resistant, flexible,

nonvolatile, and resistant to tearing. Several high-temperature polymer films

are used, including Kapton® (up to 316ıC), nylon (180ıC), and PVA (121ıC).

Silicon rubber bags are also used up to about 200ıC, and they have the added

advantage of being reusable.

14.2.2 Hand Lay-up

Even though the method has been replaced with automated techniques, the

lay-up of preimpregnated material by hand is the oldest and most common

fabrication method for advanced composite structures. Furthermore, the basic

features of the method remain unchanged. A pictorial essay showing each

step in the hand lay-up of a flat composite laminate is shown in Figures

A.2–A.15. Each step must follow in successive fashion in order to obtain a

high-quality composite laminate after final processing. A description of these

steps follows.
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Release film

Mold surface

FIGURE A.2. Step 1 in the hand lay-up method: The mold is covered with a release

film.

Peel ply

Release film

FIGURE A.3. Step 3 in the hand lay-up method: A peel ply is laid on top of release

film. No sacrificial layer is used in the example lay-up.
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Prepreg

Cutting blade

Straight
edge

FIGURE A.4. Step 4 in the hand lay-up method: The prepreg plies are cut to design

specifications.

Prepreg plies laid
onto mold surface

Prepreg ply with backing paper

FIGURE A.5. Step 5 in the hand lay-up method: The prepreg plies are oriented and

laid on the tool surface.
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Peel ply

Prepreg lay-up

Roller

Mold surface

FIGURE A.6. Step 5 (continued) in the hand lay-up method: The prepreg plies are

rolled out to remove wrinkles and air bubbles trapped during lay-up.

Flexible resin dam

Mold surface

Prepreg lay-up

FIGURE A.7. Step 6 in the hand lay-up method: A flexible resin dam is placed

around the edge of the laminate. The dam prevents resin flow in the plane of the

laminate.
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Prepreg lay-up

Peel ply

FIGURE A.8. Step 7 in the hand lay-up method: Another peel ply is placed on top

of the laminate to protect the laminate surface.

Bleeder plies

Peel ply

FIGURE A.9. Step 9 in the hand lay-up method: Bleeder plies are cut and placed

on top of the lay-up to absorb excess resin. Note: No porous release film was used in

the example lay-up. The peel ply serves as a release film in this case.
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Bottom mold

Lay-up

Top caul plate

FIGURE A.10. Step 13 in the hand lay-up method: A caul plate is placed on top of

the lay-up. Bleeder and breather plies can be seen directly underneath the caul plate.

Breather plies

Mold and lay-up

FIGURE A.11. Step 14 in the hand lay-up method: Additional breather plies are

wrapped around the entire lay-up to protect the vacuum bag from puncture and to

provide a vacuum pathway into the laminate.
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Sealant tape

Vacuum bag

FIGURE A.12. Steps 15 and 16 in the hand lay-up method: Sealant tape is placed

around the periphery of the lay-up, and a vacuum bag is cut to size to cover the

lay-up.

Sealed vacuum bag

FIGURE A.13. Step 17 in the hand lay-up method: The bag is sealed by pressing

the bag over the sealant tape.
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Rubber gasket

Vacuum port
Vacuum port base

FIGURE A.14. Step 18 in the hand lay-up method: A vacuum port is installed

through the vacuum bag.

Autoclave

Vacuum lines

FIGURE A.15. Finished lay-up after vacuum has been applied ready for autoclave

processing.
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Step 1, Figure A.2

The surface of the tool is cleaned and a release agent is applied. If the surface

is not clean, then the release agent will not function properly. The release

agent can be in liquid form, or it may be a solid film. (In the photo-essay,

to provide an indication of scale, a hand-held pointer or knife is included in

the photographs.)

Step 2, not shown

An optional sacrificial layer is laid up on the tool surface. This layer is

usually a fiberglass fabric made with the same resin system as the composite

laminate. The sacrificial layer protects the laminate from surface abrasion and

surface irregularities during manufacturing.

Step 3, Figure A.3

A peel ply is placed on top of the sacrificial layer. The peel ply will be

removed after processing.

Step 4, Figure A.4

The preimpregnated plies are cut according to design specifications. They

can be cut by hand using shears or a steel blade knife. However, automated

cutting machines have largely replaced hand cutting. The Gerber knife is a

reciprocating-knife system originally developed for the textile industry. It is

extremely fast and can cut up to 20 plies at one time. Lasers have been used

for cutting, but they are expensive and have limitations on the number of plies

that can be cut at one time. Water-jet cutters are also used extensively, and

they can cut a large number of plies (> 40) at one time, but some moisture

absorption occurs during the cutting operation. Ultrasonic cutters have been

used as well.

Step 5, Figures A.5, A.6

The first prepreg ply is oriented and placed upon the tool or mold. Subsequent

plies are placed one upon another; a roller or other small hand tool is used

to compact the plies and remove entrapped air that could later lead to voids

or layer separations. It is important that the preimpregnated material have

sufficient tack so that it sticks slightly to the peel ply and to the adjacent

plies. Tackiness, a characteristic of preimpregnated material, quantifies the

relative stickiness of the plies at room temperature. As the preimpregnated

material ages, its tackiness is reduced. Eventually, the plies no longer stick



662 APPENDIX: MANUFACTURING COMPOSITE LAMINATES

together and they may have to be heated slightly to soften them during lay-

up. Oils and dirt on the surface of the preimpregnated plies will contribute

to reducing composite strength after processing. Technicians should wear

gloves during lay-up so that oils and dirt from the hands do not contaminate

the prepreg plies during lay-up. In some cases the hand lay-up procedure

may be carried out in a clean room to reduce the risk of contamination of

the prepreg plies.

Step 6, Figure A.7

A flexible resin dam is anchored to the sacrificial layer approximately 3

mm from the edge of the laminate. The dam prevents resin flow out of the

laminate, in the plane of the laminate. Flexible dams can be made from silicon

rubber, cork, or release coated metal. (As no sacrificial layer is being used

in the procedure here, the flexible dam is anchored to the peel ply.)

Step 7, Figure A.8

Another peel ply is placed on top of the laminate to protect the laminate

surface.

Step 8, not shown

A sheet of porous release film is laid over the dam and the laminate. The

porous release film will serve as a barrier to prevent bonding of the composite

laminate to the secondary materials to follow.

Step 9, Figure A.9

Next, bleeder plies are laid up over the release film, in this case the peel ply.

The bleeder plies extend to the edge of the laminate. The number of bleeder

plies to be used for a given laminate can be determined by using a resin flow

process model or through empirical observation. As the number of bleeder

plies increases, the final fiber volume fraction of the composite laminate

increases. Eventually, a maximum number of bleeder plies is reached and no

further increase in fiber volume fraction occurs.

Step 10, not shown

Another porous release ply is next laid up over the bleeder plies extending

past the flexible dam. This prevents excessive resin flow into the breather

material while maintaining a vacuum pathway into the composite laminate.
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Step 11, not shown

Breather plies are placed over the entire lay-up. The breather plies will

conduct the vacuum path into the laminate. It is critically important that

sufficient breather material is used throughout the entire laminate. Creases

and areas with shallow curvature are sometimes reinforced with additional

layers of breather material to ensure that the breather plies do not collapse

in these areas. Usually, two or three breather plies are sufficient.

Step 12, not shown

An edge bleeder is used to connect to the vacuum ports. An edge bleeder is

nothing more than a strip of breather material folded along its length several

times. It is placed so that it overlays the breather material surrounding the

laminate and extends out to a convenient location for the placement of the

vacuum port.

Step 13, Figure A.10

Caul plates are sometimes placed on top of the lay-up. The caul plate is a steel

or aluminum plate that protects the surface from sharp temperature increases

(it acts as a heat sink) and it gives a smooth nonwavy surface texture.

Step 14, Figure A.11

If a caul plate is used, then additional breather or bleeder plies are placed

over the plate to protect the vacuum bag from puncture.

Step 15, Figure A.12

Sealant tape is placed around the entire periphery of the lay-up.

Step 16, Figure A.12

The vacuum bag is cut to size and placed over the lay-up.

Step 17, Figure A.13

The bag is sealed by pressing the bag over the sealant tape. It is critically

important to ensure that the bag is adequately sealed before proceeding to the

processing cycle. Many parts are scrapped because the vacuum fails during

processing, causing excessive voids, inadequate resin flow, or incomplete

consolidation.
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Step 18, Figures A.14 and A.15

The vacuum port is installed through the bag and the contents are evacuated.

The bag is now checked for leaks. If any are detected, they are repaired

before processing. Usually a leak test calls for application of a vacuum to

some specified level (cm of Hg), followed by a 30–60 minute hold. During the

hold the bag is disconnected from the vacuum source and the pressure level

within the bag is monitored. If the bag is sealed well and there are no leaks,

then the vacuum level should not change for the 30–60 minutes. Some leaking

generally occurs, so it is a question of having sufficient vacuum pump capacity

to maintain the specified vacuum level. When the vacuum is satisfactory, the

composite part is ready for processing. The specific processing steps depend

on the particular composite material being used, and the operation of the

autoclave depends on the specific make and model. General discussions of

processing and autoclave features are presented in the sections to follow.

Obviously, there is a significant amount of skilled labor necessary for

the hand lay-up of composite parts. Each step has a specific purpose and

function. This type of fabrication is the most time-consuming, but it is also

the most flexible and when combined with autoclave processing, it results in

high-quality parts.

Automated equipment can be used to cut and place the preimpregnated

material onto the tool surface. The economics of manufacturing dictate that a

relatively large volume of parts must be made to make automated equipment

cost-effective. Some of these automated methods will be discussed later.

14.3 Processing

14.3.1 Overall Considerations

Once the matrix and fibers are combined, and they have the desired structural

shape, it is necessary to apply the proper temperature and pressure for specific

periods of time to produce the fiber-reinforced structure. A judicious choice

of temperature, pressure, and time produces composites that are fully cured,

compacted, and of high quality. Slight deviations from the recommended pro-

cessing conditions can result in unacceptable quality. The temperature cycle

is usually referred to as the cure cycle, as it is the heating of the resin that

initiates the cure reaction. The overall cycle, which includes pressurization

and the temperature cycle, is referred to as the process cycle.

The typical cure cycle for thermosetting polymer matrix composites is a

two-step cycle shown in Figure A.16. In such cycles the temperature of the

material is increased from room temperature to some elevated temperature,

and this temperature is held constant for the first dwell period. Afterwards,

the temperature is increased again to a second temperature and held constant
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FIGURE A.16. Typical two-step cure cycle.

for the second dwell period. After the second dwell, the part is cooled to

room temperature at a constant rate. Because there are two dwell periods,

this type of cure cycle is referred to as a two-step cure cycle. The purpose of

the first dwell is to allow gases (entrapped air, water vapor, or volatiles) to

escape from the matrix material and to allow the matrix to flow, facilitating

compaction of the part. Thus, the viscosity must be low during the first dwell.

Typical viscosity versus temperature profiles of polymer matrices show that

as the temperature is increased, the viscosity of the polymer decreases until

a minimum viscosity is reached. As the temperature is increased further, the

polymer begins to cure rapidly and the viscosity increases dramatically. Thus,

the first dwell temperature must be chosen judiciously to allow the viscosity

of the resin to be low, while keeping the cure to a minimum. Isothermal

viscosity versus time profiles of the resins involved are useful in determining

pot life, namely, the maximum length of time at a specific temperature for

the resin to remain fluidlike. The first dwell time must be less than the pot

life of the polymer at the dwell temperature.

The purpose of the second dwell is to allow cross-linking of the resin

to take place. Here the strength and related mechanical properties of the

composite are developed. What is important to realize is that the cross-linking,

or curing, process gives off heat (i.e., it is exothermic). Thus, temperatures

can increase during cure even with no heat being added. However, since

curing is accelerated by supplying heat, care must be taken not to overheat

the composite by a combination of the exothermic nature of cure and the heat

added to speed up the process. To characterize the exothermic cross-linking

reaction of a thermosetting polymer matrix, a thermal cure monitor technique

such as isothermal differential scanning calorimetry (DSC) is commonly

used. Figure A.17 shows a typical isothermal DSC trace for a thermosetting

polymer. The resin releases energy as the exothermic cross-linking reaction

proceeds. Eventually, the DSC trace approaches a flat line as the cross-linking

reaction nears completion. If the applied temperature, T , is increased, the
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FIGURE A.17. Typical isothermal DSC relations for a polymer resin: Applied

temperature T1 > applied temperature T2.

reaction rate increases and the time to complete the reaction decreases. If the

applied temperature is decreased, the reaction rate decreases and the time to

complete the reaction increases.

Several competing priorities take place in the choice of the second dwell

temperature. First, a low temperature is desirable to ease manufacturing and

to reduce thermally induced stresses at the micromechanics level that are a

result of the mismatch in the coefficients of thermal expansion between the

fiber and matrix, and at the layer level that are a result of the mismatch

in coefficients of expansion between layers with different fiber orientations.

Second, the processing time should be as short as possible for economic

considerations. Because low temperatures require longer dwell times, these

two concerns must be compromised. Third, however, the temperatures due

to the exothermic nature of curing must be kept in check. Often a vacuum

is applied to the part during processing, typically during the first dwell to

help facilitate removal of entrapped gases. Vacuum is discontinued after the

viscosity of the resin increases significantly, and pressure is then applied

to consolidate the laminate and to ensure fiber-matrix interaction. Pressure

is removed either after significant cross-linking, or after completion of the

process cycle. Thus, we see that the second dwell temperature is one of the

most critical parameters in the process cycle. Its choice is largely material

dependent. A certain minimum temperature must be reached before the cross-

linking reaction begins.

Demands for increased performance have led to the development of several

high-temperature resins (e.g., polyimides and bismaleimides). These high-

temperature resins retain good mechanical properties at elevated tempera-

tures. Processing these resins requires higher temperatures than conventional

epoxy-matrix composites, and the higher temperatures lead to higher residual
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stresses. In some cases, processing-induced residual stresses can be high

enough to cause cracking within the matrix even before a load is applied.

This microcracking of the matrix can expose the fibers to degradation by

chemical attack, and strength is adversely affected as stresses are initially

present.

Chemically, the reinforcing fibers are affected very little during the process

cycle. The polymer matrix, on the other hand, will contract by as much

as 6 percent due to chemical skrinkage during cross-linking. Stress relax-

ation during the second dwell period can reduce chemical shrinkage effects,

and this relaxation behavior increases with higher temperatures. However,

these higher temperatures will increase thermally induced residual stresses.

Increased pressure during cooldown reduces thermal contraction, and thus

thermally induced residual stresses are reduced. However, too much pressure

could lead to damage of the fibers or matrix cracking. Thus, we can see that

the optimization of processing parameters is a complicated and interrelated

problem. Once a process cycle is chosen, the resulting mechanical properties

of the composite must be evaluated. Significant degradation in strength and

stiffness or other mechanical properties would not generally be acceptable.

For processing thermoplastic matrix composites, as no cross-linking pro-

cess occurs, there is no need to maintain elevated temperatures for extended

periods. However, the processing temperatures are generally much higher

than for thermosets, and therefore thermally induced residual stresses are an

issue.

The area of process modeling is an attempt to quantify the effects of

processing on physical parameters such as degree of cure, temperature, fiber

volume fraction, and residual stresses. These models can be used to search

for optimal processing conditions for specific material systems and structural

shapes. Process modeling is an important component of the analysis of

composite materials.

What really distinguishes the various processing methods that are available

is how pressure, vacuum, and temperature are applied. Autoclave curing is

discussed in the next section; other methods are discussed in a later section.

14.3.2 Autoclave Curing

The best quality parts are cured using an autoclave. Autoclaves have been

used extensively for processing high-performance composite materials in

the civilian and military aerospace industries. An autoclave consists of a

large cylindrical metal pressure vessel with end enclosures that is thermally

insulated and heated. Most autoclaves have a forced-hot-gas circulation sys-

tem as well. An autoclave is pressurized using air or an inert gas such

as nitrogen. What distinguishes the autoclave from the curing oven and

hot press, to be discussed later, is the ability to cure parts using large,
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hydrostaticlike pressure. A typical autoclave can pressurize up to 20 atm.

The large majority of composite structures can be processed using autoclaves

with 2–4 m internal diameter, although some extremely large aerospace

structures require autoclaves over 20 m in diameter. The capital equipment

costs and operating costs for large autoclaves make this type of processing

very costly. However, the high quality and high performance of autoclaved

parts makes them attractive for certain applications. A typical autoclave is

shown in schematic form in Figure A.18. The primary component is the

pressure vessel itself, which is cylindrical and contains embedded heaters

and cooling coils. A door at one end allows access to the interior to load

parts and perform periodic maintenance. Also, several ports may be installed

through the autoclave wall for access to the interior. Some of these ports are

dedicated to vacuum lines connected to the parts to be cured. Others are used

for control functions such as thermocouples, dielectric sensors, and pressure

sensors, all of which help monitor the curing of the material. The interior of

the autoclave is heated by radiation from the vessel walls and convection of

hot gases as they circulate through the vessel. A circulating fan forces the

hot gases through a series of baffles within the autoclave in a circulation loop

that runs the length of the autoclave. Typically, this fan is housed at one end

of the autoclave and the interior gases are drawn from the central portion

of the cylinder, through the baffles, and they return to the other end through

a jacket that covers the interior wall. The autoclave applies a pressure to

the outer surface of the composite part through pressurization of the interior

gases. This pressure is then transferred through the tool plate(s), breather

plies, bleeder plies, and other secondary materials to the laminate surface.

From there the pressure is shared between the fiber and matrix during curing.

The most important aspect is the matrix resin pressure during cure. If it is too

Pressurized
gas

Vacuum-bagged
laminate

Vacuum
line

Mold
baseplate

autoclave trolley

FIGURE A.18. Schematic of an autoclave.
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low, then voids can grow in the resin or inadequate resin bleeding may occur.

In general, composite structures which have been processed in an autoclave

exhibit uniform thicknesses, good consolidation, and very low void content.

14.4 Manufacturing by Other Methods

Obviously, hand lay-up represents an extreme that cannot be scaled to high

volume or large components; to address these issues, and because fibers

are not always in the form of impregnated parallel tows in a layer, other

fabrication techniques have been developed. In addition, it may be easier

in some instances to bring the fibers and matrix together when forming the

structural component. We begin this discussion of other fabrication methods

by surveying other ways to make fibers available, either by themselves or

with matrix material.

14.4.1 Fiber-Only Preforms

If the resin and fiber are to be combined during the fabrication of a composite

structure, then they are both supplied as separate materials. Fibers when

supplied as a separate material can come in many different forms. Most

commonly they are continuous and grouped into bundles, as with tows. The

bundles, or strands, are a collection of many hundreds or thousands of fibers

twisted or bound together. These strands are wound onto a spool. The fibers

usually have a binder that keeps them together and other coating agents

to provide better handleability. A yarn is a twisted assemblage of fibers,

usually less than 10,000. By contrast, a tow, for the most part, is untwisted.

The simplest yarn is made from a single strand of fibers, and heavier yarns

are obtained by twisting and plying several strands together. Typically, this

consists of twisting two or more individual strands together, then twisting

two or more twisted strands together. Yarns which are simply twisted will

kink, corkscrew, and unravel because the twist is only in one direction. This

problem is normally eliminated by countering the twist in the twisted yarns

with the opposite twist when plying together the twisted yarns.

A woven fabric is a material with interlaced yarns, strands, or fibers.

Typical fabrics are manufactured by interlacing warp (lengthwise) yarns or

strands with fill (crosswise) yarns or strands on a conventional weaving loom.

The weave of a fabric determines how the warp and fill yarns are interlaced.

Popular weave patterns include plain, twill, crowfoot satin, long-shaft satin,

leno, and unidirectional. The plain weave, shown in Figure A.19, is the oldest

and most common textile weave. Each fill yarn is repetitively woven over one

warp yarn and under the next. It is the most stable of the weave constructions

and mechanically it behaves much like a cross-ply laminate. Twill weaves
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Warp fibers

Fill fibers

FIGURE A.19. Plain weave fiber preform.

have one or more warp yarns passing over and under two, three, or more

fill yarns in a regular pattern. Theses weaves drape better than the plain

weave. In the crowfoot or long-shaft satin weaves, one warp yarn is woven

over several successive fill yarns, then under one fill yarn. A weave pattern

in which one warp end passes over four and under one fill yarn is called

a five-harness satin weave and is shown in Figure A.20. Satin weaves are

less open than other weaves and the strength is high in both the warp and

fill directions. The unidirectional weave has a large number of yarns in the

warp direction with fewer and generally smaller yarns in the fill direction,

and the resulting product has much greater strength in warp direction. Several

types of two-dimensional weaves are shown in Figure A.21. More recently,

three-dimensional weaves, shown in Figure A.22, have been developed to

provide better through-thickness strength in a composite structure. Three-

dimensional weaves behave orthotropically because there are three principal

material directions.

A nonwoven fabric is a sheet of parallel yarns or tows held together by an

occasional transverse yarn or tow, or by a periodic crossbond with a binder.

Mats are blankets of chopped fibers or continuous fibers formed as a

continuous flat sheet. The fibers are evenly and randomly distributed and
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Warp fibers

Fill fibers

FIGURE A.20. Five-harness satin weave fiber preform.

are held together by a binder. The binder used must be able to dissolve in

the liquid matrix once it infiltrates the mat. Low-solubility binders are used

when the fabrication procedure is such that the matrix may wash out the

fibers and create resin-rich regions during infiltration. The binder, due to its

low solubility, remains intact until the infiltration process is complete, after

which it dissolves in the matrix. A mat acts like a single layer of material with

nearly the same properties in all inplane directions (i.e., isotropic behavior).

Continuous fibers can be chopped into short lengths, usually between 3

and 50 mm in length. These chopped strands can then be mixed with a liquid

resin and injected into a mold, sprayed onto a mold surface, or sprinkled onto

a polymer sheet; these sheets then act like a single isotropic layer.

14.4.2 Other Combined Fiber-Matrix Preforms

As with tows, yarns, woven forms, nonwoven forms, and mats can be preim-

pregnated with resin before forming them into a structural shape. Combining

the fiber and resin in a separate step makes the fabrication process simpler and

results in composite structures with better quality. In particular, the proportion
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FIGURE A.22. Examples of three-dimensional weave patterns for fiber preforms.

of resin to fiber is kept within very close tolerance and fiber orientation is

more controlled and reproducible.

Sheet molding compound (SMC) is a type of preform used in the auto-

motive industry. It consists of chopped glass fibers randomly distributed in a

polyester sheet; these sheets are stacked one on top of the other and molded

to shape with heat and pressure.

Some thermoplastic polymers, for example polyphenylene sulfide (PPS),

can be drawn into fiber form. Once the polymer fibers are formed, they can be

comingled with reinforcing fibers. The resulting strands of reinforcing fibers

and polymer are then wound onto a mandrel or pulled through a heated mold.

During fabrication and processing the polymer fibers melt and infiltrate the

reinforcement.

14.5 Forming Structural Shapes

14.5.1 Wet Lay-up and Spray-up

Two other manual techniques have a long history in the composites industry,

wet lay-up and spray lay-up. Both were developed for the fiberglass industry

and they are still used very extensively. Wet lay-up is similar to the lay-up

of preimpregnated material discussed previously. The only difference is that

the reinforcement and matrix are now combined during fabrication. After the

tool is properly prepared and a gel coat (a layer of unreinforced pigmented

polyester that serves as the outer surface of the laminate when completed)

is applied on the tool or mold, the reinforcement is put down in the form of
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chopped strand mat or woven materials. Once the reinforcement is in place,

the resin and catalyst are mixed and poured onto the tool surface. To ensure

that the resin infiltrates the reinforcement and that no air bubbles remain, it

is rolled or brushed into place using hand rollers, brushes, or paddles. The

resin mixture can also be sprayed onto the tool surface using a spray gun

that automatically meters the appropriate mixture. This type of fabrication is

called spray laminating. In some cases, chopped glass fibers are combined

with the resin in the metering head and deposited onto the tool surface by

spraying.

Wet lay-up and spray-up fabrication produces a glass-reinforced structure

with 30–50 percent glass content. Higher glass concentrations are not easily

fabricated using these techniques; however, the use of prepreg can give higher

fiber volume fractions (50–75 percent).

14.5.2 Filament Winding

Filament winding is a fabrication technique developed in the late 1940s and

early 1950s in which continuous tows of fibers are wound onto a rotating

tool, or mandrel. The construction of the mandrel is a key step in the

filament-winding process. The choice of material is critical, and of course, the

mandrel must be removed from the inside of the finished composite structural

form after processing. When complex enclosed shapes are manufactured by

filament winding, it is sometimes difficult to remove the mandrel. Mandrels

that can be disassembled in sections from inside the shape must be designed,

or plaster or sand polyvinyl acetate (PVA) mandrels that can be dissolved

with a solvent after processing can be used.

The filament-winding machine dispenses, or “pays out,” the fiber tows

while traversing along the mandrel axis of rotation. Some types of filament-

winding machines and control systems allow very complex winding patterns

to be generated. Filament winding is an automated fabrication method. Once

the mandrel has been installed and the fiber or tow material loaded, an

operator can start the machine and the fabrication proceeds automatically.

The two types of filament winding are wet winding and dry winding. Wet

winding refers to the use of a wet resin during winding. Fibers are passed

through a resin bath before being wound onto the mandrel; the reinforcement

and matrix are combined during fabrication. In dry winding, preimpregnated

fibers, in tape or tow form, are used instead, and the preimpregnated material

is wound directly onto the mandrel. Sometimes preheaters are used to soften

the preimpregnated material before it is placed onto the mandrel surface.

If thermoplastic composites are being wound, they are consolidated directly

on the mandrel surface by using highly localized heat sources that soften

the preimpregnated tape or tow right at the point of contact on the mandrel

surface.
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Surfaces of revolution are appropriate candidates for filament winding.

These types of structures include piping, pressure vessels, tubing, rotor blades,

or any spherical, conical, or geodesic shape. Other shapes, such as flat panels,

can be made by winding onto a rectangular mandrel and then cutting the

structure along the winding axis after fabrication.

Winding methods and patterns

The two basic types of winding patterns are polar and helical. The polar (or

planar) winding pattern results when the mandrel does not rotate, but the head

that dispenses the tows, commonly called the payout head, rotates about the

longitudinal axis. To produce a given orientation of the tow along the axis,

the payout head is inclined at the appropriate winding angle, and the mandrel

moves longitudinally as the payout head rotates. This pattern is described as

a single-circuit polar wrap and is shown in Figure A.23. As more tows are

wound, each tow is placed adjacent to the next. A completed layer consists of

many tows integrally woven at plus and minus the orientation angle covering

the entire mandrel surface.

A helical pattern results when the mandrel rotates continuously while the

fiber payout head traverses back and forth over the mandrel, as in Figure A.24.

The carriage speed and mandrel rotation are controlled to generate the desired

winding angle. A hoop winding can be made by advancing the payout head

slowly along the mandrel axis so that the fiber tows are wound transversely to

the axis of rotation. As the longitudinal speed of the payout head is increased,

the angle that the tows make with the axis of the mandrel rotation decreases.

In general, a helical winding pattern does not deposit the next tow adjacent

to the previous one. In fact, several circuits may be required before the full

mandrel surface is covered. Because of tension in the tow as it is wound

on the mandrel, the tows flatten out and the fibers tend to spread into bands.

Individual winding patterns can be calculated from the mandrel geometry and

the desired lay-up.

End view

Mandrel

Mandrel extension = winding angleθ

θ

Fiber path

FIGURE A.23. Polar filament winding pattern.



FIGURE A.24. Helical filament winding patterns.
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Winding machines

Filament winders are designed for either polar or helical winding. Polar

winders are usually operated with the mandrel in the vertical position to

eliminate deflections due to weight. A major advantage of the polar type is

that machine control is much simpler. The rotation of the payout head is

continuous and at a uniform speed. This eliminates inertial effects that occur

in a helical winder when the traverse speed is changed abruptly or when the

traverse direction is changed. However, polar winders are generally limited

to dispensing only preimpregnated material.

Helical winders require at least two degrees of freedom: mandrel rotation

and traverse of the payout head along the longitudinal axis. More complicated

machines include motion of the payout head perpendicular to the mandrel

axis, and rotation of the feed eye; both of these motions permit more accurate

placement of the fiber tows around the ends. Figure A.25 shows a typical

helical filament winder used in composites manufacturing.

Another component of the filament winder is the fiber tensioner. Fiber

tensioning plays an important role in filament winding, as it helps to control

the placement of the tow, the resin content of the structure, the width the

tow flattens to, and the layer thickness. Improper tensioning of a filament-

wound structure can result in unacceptable quality. Tensioning is accom-

plished through the use of guide eyes, brakes of the drum type, scissor bars,

and, for wet winding, the viscous drag through the resin bath. Generally,

FIGURE A.25. En-Tec model 5K240-060-4 four-axis helical filament winder.
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the fiber tow unwinds from a spool of tow and passes through a series of

rollers that are designed to impart a modest amount of tensioning, say, 5 to

50 Newtons/tow. Normally, the tensioning on dry tows is kept to a minimum

to reduce abrasion. As the tows pass through the resin bath, the tension level

is increased before the tow is placed onto the mandrel.

14.5.3 Pultrusion

During the early 1950s a continuous-processing technique called pultrusion

was developed. The process involves the pulling of reinforcing fibers and

resin matrix through a die or series of dies that shape and cure the material.

Structures fabricated using pultrusion must possess a constant cross-sectional

shape. Examples of pultruded structures include tubing, box beams or I-

beams, C-channels, rectangular strips, or other cross-sectional shapes that are

invariant with length. As with filament winding, both wet and dry pultrusion

processes exist. In wet pultrusion, dry tows are pulled through a resin bath

before being drawn into a die, whereas in dry pultrusion preimpregnated

material is used as the raw material, often called feedstock.

Pultrusion equipment

The basic parts of the pultrusion process, shown schematically in Figure A.26,

are the resin impregnator (for wet pultrusion), preheaters, shaping die, curing

and forming die, pullers, and cut-off saw. Resin impregnation is usually by

a resin bath through which the fiber tows are pulled, although prepreg tape

may also be used. Guide rollers and tensioning rollers may be used to flatten

and spread the tows and hence allow more complete infiltration of the resin.

During the forming process in pultrusion, it is very difficult to make

dramatic changes in the feedstock shape. Gradual changes in shape, for

example, from a flat plate to a V-shaped section, are much more efficient.

Thus, there are often a series of shaping dies before the final curing die is

approached. Interspersed throughout the forming line may be several pre-

heaters. Preheating the feedstock material before it reaches the curing die

reduces the amount of time (and line length) devoted to curing. Alternatively,

the shaping dies may be heated to a temperature that facilitates forming, but

does not promote excessive curing.

The curing and forming die is one of the most costly parts of the pultrusion

process. It is usually a tool steel mold that is split along the longitudinal

axis, and the interior is polished to extreme smoothness and then plated with

chrome. The surface smoothness of the die is critical. If the resin sticks

to a surface scratch while being pulled through the die, this feature will

imprint on the material emerging from the die. The curing die may be quite

long (up to 2 m) and it is usually heated to a temperature necessary to
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FIGURE A.26. Schematic of a pultrusion processing line.
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initiate the curing reaction of the resin. Sometimes oven heaters are used after

the material emerges from the die to finish the curing reaction. Before the

material emerges from the curing die it must be fully gelled so that it retains

its structural shape.

As Figure A.27 shows, pullers are of two basic designs. The first consists

of two rubber-cleated tread or chain drives that grip the pultruded shape and

continuously pull it; the gripping pressure is controlled by mechanical or

pneumatic control. The second design uses an intermittent vise clamp and

rubber cleat mechanism that grips on the forward stroke and releases on

the back stroke. Two of the intermittent clamps may be combined to give a

continuous pulling action.

The cut-off saw is usually a wet or dry silicon carbide grit or diamond

blade. While the pultrusion line is operating, the pultruded section is gripped

and clamped to the saw table, which then travels with the pultruded structure.

An appropriate length of structure is cut off and the saw returns to its original

position to await for the next cut.

Rubber cleated tread

(a) Traction puller

(b) Intermittent puller

Vice clamps

Pultrusion

direction

Rubber

cleat

Pultruded

part

Pultruded

part
Pultrusion

direction

Rollers

FIGURE A.27. Types of pullers used in pultrusion.
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14.5.4 Resin Transfer Molding

Resin transfer molding (RTM) is a process in which a structural component

consisting only of dry fibers, the fiber preform, is infiltrated with resin and

cured in a tool. There are three basic steps: (1) making the fiber preform

and loading it into the tool or mold, (2) infiltrating the resin into the fiber

preform, and (3) curing the composite structure in the mold. One requirement

of the fiber preform is that it retain its shape during resin infiltration. Thus,

most preforms are stitched or bonded together with a binder. Dry fabrics

can be laid up in a desired orientation and then stitched together. Some

current development efforts are focused on braiding fiber preforms for RTM

operations; the braided preform retains its shape through the interlocking of

the reinforcing strands. Most fiber preforms are limited to 50–60 percent fiber

volume fraction before infiltration, as higher fiber volume fractions cannot

be infiltrated properly. The resin infiltration step is usually accomplished

by pumping the resin into the mold under pressure. The resin viscosity

must be low enough to allow full infiltration, and it must not cure too

quickly so that sufficient fiber wet-out occurs. Both polyesters and epoxies

have been used successfully in RTM operations. Curing is accomplished by

heating the mold either before or after infiltration. If the mold is heated

before infiltration, the resin must be slow curing so that it does not cross-

link before the entire preform is infiltrated. Usually a vacuum is applied

to the mold during infiltration and curing so that voids are expelled or

reduced.

RTM equipment

Figure A.28 shows a typical set-up for an RTM process, with the mold as the

most important component. It must be constructed so that resin is completely

and uniformly distributed throughout the mold. The infiltration step must

occur before cross-linking of the resin occurs and the fiber preform must

remain stationary throughout the process. All of this should occur with a

minimum resin pumping pressure. The mold should also be vented so that

air is expelled from the mold as it fills with resin. If the mold is heated,

then it should have uniform temperature control, though some molds are

designed to be heated in an oven after resin infiltration. Resin pumping

equipment is generally of simple design, as pumping pressures are low.

Pressure-driven pistons that move through a cylindrical resin cavity are used

to force resin through feedlines into the mold. In other cases, gas-pressurized

diaphragms are used. Sufficient clamping pressure must be available to keep

the two halves of the mold together while the resin is pumped into it.
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FIGURE A.28. Schematic of an RTM process.

14.6 Nonautoclave Curing

While the use of an autoclave is the most desirable way to process a composite

laminate, other methods of curing can, with care, lead to similar high-quality

components. Two of these are described below.

14.6.1 Oven Curing

Ovens are the least-expensive processing equipment. However, unlike an

autoclave, they have no capability to apply pressure during cure. Oven-cured

parts are either vacuum bagged so that atmospheric pressure consolidates

the part, or they are sealed in a mold with an expansive insert so that

thermal expansion forces the composite component against the mold walls.

A typical curing oven is a large, thermally insulated, forced-air-circulating

metal oven with large access doors at one end. Curing ovens hundreds of

cubic meters in volume are common. The most important aspect for curing

ovens is temperature uniformity. If the volume of circulating air within the

oven is small, then the response time to temperature fluctuations will be long.

If there is insufficient baffling of the circulating air, then hot spots or zones

will develop in the oven. Often oven-cured parts cured with vacuum-bagging

techniques suffer from lack of uniformity in thickness, excessive voids, and

lack of consolidation. However, the equipment is relatively inexpensive and

for many low-performance applications the quality is sufficient.
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14.6.2 Hot Pressing

Good quality parts can be obtained by hot pressing. A hot press is a mechan-

ical or hydraulic press with heated platens. Processing using the hot press

requires that the composite structure be enclosed between two matched-metal

molds. The molds are placed between the platens and the platens are forced

together to apply pressure to the mold. The platens are heated so that the mold

temperature increases to a sufficient level to promote curing of the matrix. If

the composite part is simply a flat plate, then the “mold” is simply two flat

plates, one on the top of the laminate and one on the bottom.

Pressurization is by compression of the mold through the thickness; the

pressurization forces the laminate to conform to the contour of the mold

surface. The mold must be sealed to prevent uncontrolled resin loss and to

promote hydrostatic pressurization of the resin. The pressurization of the

resin is important to reduce voids created during cure or entrapped during

the fabrication procedure. To mimic the autoclave, the composite part can

be enclosed in a vacuum bag as part of the curing process. Alternatively,

a special diaphragm mold can be used to apply a vacuum to a hot-pressed

laminate during curing. Application of the vacuum helps to eliminate voids

during cure.

The platens in the hot press must be uniformly heated. Typically, this is

accomplished by having multiple heating sources embedded in the platens.

More elaborate platens have multiple cooling channels bored throughout the

platens so that the capability exists to both heat and cool specific regions

of the platen. The transfer of thermal energy from the platens to the mold

is largely by conduction, although some radiation and convection occurs.

Platen and mold materials should be chosen to minimize the response time

for thermal conduction. In general, platens are made from tool steel, and

molds are either steel or aluminum. Molds are often insulated on the edges

to increase temperature uniformity.

Hot-pressed composite structures show good consolidation and moderate

void content. Some variation in thickness occurs due to lack of uniformity in

resin flow and small misalignment of the matched-metal surfaces.

14.7 Manufacturing Defects

No matter how carefully the manufacturing process is carried out, all com-

posite structures exhibit processing defects. When a material is designated

as high-quality, it has relatively few defects. Some processing defects have

the potential to be quite detrimental to the mechanical performance of a

composite structure. In other cases, they are more of a nuisance than a

significant problem.
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There are many different types of manufacturing defects: voids, delami-

nations, residual stress-induced cracking, resin starvation, resin-rich pockets,

damaged fibers, fiber-matrix debonding, thermal decomposition, and under-

cured and overcured regions. The processing parameters have a profound

impact on when and where these defects occur, and how they can be pre-

vented.

Voids are extremely detrimental to the mechanical performance of com-

posite materials. Their effect on structural performance has been extensively

studied in the past. For a number of reasons voids can be created during

processing. Air pockets can be trapped during the lay-up procedure, absorbed

water in the resin can vaporize during the cure cycle, and gaseous by-products

of the cure reaction may be released during curing. In resin transfer molding,

voids can occur if the resin flow front does not uniformly infiltrate the

reinforcement. The current methodology to control voids in processing is

to apply sufficient pressure to prevent their growth during the cure cycle.

Delaminations or separated layers can arise during processing as a result of

transport of gas bubbles, emitted from the resin as it is curing, to the interface

between layers. If a sufficient number of voids collect at the interface, then

a delamination is produced. In addition, dirt, grease, or other contaminants

on the surface of the prepreg layers during lay-up may prevent layer bonding

and consolidation. Most aerospace companies nondestructively evaluate each

composite laminate for the presence of delaminations before releasing the

part for service.

Residual stresses arise in composite materials due to the mismatch in

thermal expansion between the constituents. As the material is cooled down

from processing temperatures, this mismatch in thermal expansion leads to the

build-up of residual stresses. If the mismatch is too great or if the processing

temperature is too high, then residual stresses can lead to matrix cracking

during cooldown.

If the consolidation has not been properly carried out, then either resin

starvation or resin-rich pockets can result. Resin starvation is seen when the

applied pressure is too high, causing too much resin to be squeezed out of the

material. If too little pressure is applied or if resin flow from the material is

not uniform, then resin-rich regions may be created. These regions are weak

areas for the composite and they may ultimately be the initiation site for final

failure.

Similarly, nonuniform curing can lead to weak regions of the material

where the local degree of cure is reduced. This type of defect occurs when

the temperature distribution during cure is nonuniform. In the extreme case,

excessive temperatures may occur when the thickness of the article is large.

The energy released by the resin during curing is trapped within the material

and the local temperature can rise to very high levels, ultimately leading to

thermal decomposition of the matrix.



Suggested Readings 685

90° plies

0° plies

Graphite
fibers

Resin rich
region

Shape memory
alloy wire

Void

Delamination

Resin starvation

FIGURE A.29. Examples of manufacturing defects in a polymer matrix composite.

The material is a graphite-epoxy composite laminate with an embedded shape memory

alloy wire.

Even when all reasonable precautions are taken, some types of defects are

to be expected in composites processing. No process is perfect and a typical

component made from a composite material will show some voids, resin-rich

regions, delaminations, and residual stress-induced cracking. Figure A.29

shows such a part with several defect regions labeled. Understanding the

effects of these kinds of defects on the mechanical performance of composite

structures is the challenge that scientists and engineers must continually

address.

14.8 Suggested Readings

1. Lubin, G., ed. Handbook of Composites. New York: Van Nostrand Reinhold, 1982.

2. Schwartz, M. M., ed. Composite Materials Handbook. 2nd ed. New York: McGraw-

Hill, 1992.

3. Strong, A. B. Fundamentals of Composites Manufacturing: Materials, Methods,

and Applications. Dearborn, MI: Society of Manufacturing Engineers, 1989.

Companies that supply various forms of composite materials, and the specialty mate-

rials needed for fabrication, usually advertise in trade publications. The following is

one such publication:

4. SAMPE Journal. Published by the Society for the Advancement of Materials and

Process Engineering, 1161 Parkview Drive, Covina, CA 91724.
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Transverse modulus (see Extensional 

    modulus) 

Transverse shear 118–122 

Transverse strength 391–392 

Transversely isotropic materials 

 compliance matrix for 63 

 definition of 63 

 in finite element models 100 122 

 stiffness matrix for 64 

Transverse shear force resultants, in plates 581 587–588 

Tsai-Wu failure criterion, statement of 432–433 

Tube, failure of 

 with combined loading 411–421 451–458 

 in tension  397–404 444–449 

 in torsion  405–411 449–451 

U 

Unit cell models (see also 

    Micromechanical models) 

 stresses at boundaries of, from finite 

    element models 

  fiber direction tensile loading 111 

  temperature change 106 

  transverse shear loading 121 

  transverse tensile loading 117 

Unsymmetric laminates 296–301 329 355–360

     516–519 
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V 

Vacuum bagging 653 663 

Variational methods 576 578 

Voids    684 

von Mises failure criterion, for metals 431 

 use in Tsai-Wu failure criterion 439–440 

W 

Whiskers   3 

Woven fabrics 669–670 

Y 

Young's modulus 337 605 


