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Chapter 1
Introduction

Quantum field theory is an important research area in theoretical physics, with a
wide range of applications and an impressive agreement with experiment. Despite
this success, the mathematical foundations of this theory are still under investigation
and many fundamental questions remain open. The rapid development of the field
makes it difficult to find textbooks which are up to date with all the recent advances,
especially if one looks for a mathematically rigorous approach. It is a common
misconception that working with QFT necessarily implies doing something “not-
well defined”, while in fact most of the formalmanipulations presented in the physics
literature can be made completely rigorous.

Forme quantumfield theory is a beautiful bizarreworld full ofwonders suspended
somewhere in-between mathematics and physics. It charms physicists by providing
results that agree with experiments with incredible precision. It lures mathematicians
seeking to explore the land of QFT and get a closer look at the beautiful mathematical
structures that inhabit it. And yet, after more than 50 years of research, we do not
fully understand what QFT really is and what wonders it is hiding from us deep in
its conceptual roots.

As both a physicist and a mathematician, I am fascinated by the richness of
structures that one can encounter in QFT land, and from my first visit I have decided
that I do not want to leave it ever again. So what is this book about?Well, maybe first
I should explain what it isn’t about…It is far from being a complete account of what
has been done in QFT research (this would have taken multiple volumes!). It also
doesn’t touch the problem of non-perturbative construction of models of interacting
quantum field theories, which at the moment remains open.

You can think of this book as amathematician’s diary from a journey into an exotic
land. As opposed to some other textbooks on the subject, I will not use the excuse that
“physicists often do something that is not well defined”, so as mathematicians we
don’t need to bother and just turn around for awhile, until it’s over. Instead, Iwill jump
straight into the lion’s den and will try to make mathematical sense of perturbative
QFT all the way from the initial definition of the model to the interpretation of the

© The Author(s) 2016
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2 1 Introduction

results. This is not always easy and sometimes I will have to bring into the story
results from several fields of mathematics at once. I hope this will not discourage
you from exploration of the QFT wonderland. After all, its beauty lies in the fact that
it is so diverse and full of surprises…So, come along! Our journey starts here.



Chapter 2
Algebraic Approach to Quantum Theory

2.1 Algebraic Quantum Mechanics

Before entering the realm of the quantum theory of fields, let’s have a look at some-
thing simpler and better understood, namely quantum mechanics (QM). To prepare
the ground for what follows, we will present an abstract formulation of QM and dis-
cuss how it relates to the more standard Dirac–von Neumann axioms [Dir30, vN32].
The exposition presented in this chapter is based on [BF09b, Mor13, Fre13, Str08].

2.1.1 Functional Analytic Preliminaries

Let us start by recalling some basic definitions from functional analysis. For more
information see [Rud91, RS80, BR87, BR97, Kad83]. Readers familiar with basic
functional analysis can skip this subsection.

Definition 2.1 An algebra A over the field K = R or C is a K-vector space with an
operation · : A× A→ A called the product with the following properties:

1. (A · B) · C = A · (B · C), ∀A, B, C ∈ A (associativity),
2. A · (B + C) = A · B + A · C , (B + C) · A = B · A + C · A,

α(A · B) = (αA) · B = A · (αB), for all A, B, C ∈ A, α ∈ K (distributivity).

Wewill usually denote the algebra product · simplyby juxtaposition, i.e. A · B ≡ AB.

Definition 2.2 An algebra A is said to have a unit (i.e. A is unital) if there exists an
element 1 ∈ A such that 1A = A1 = A, for all A ∈ A.

Definition 2.3 An involutive complex algebra (a ∗-algebra) A is an algebra over
the field of complex numbers, together with a map, ∗ : A→ A, called an involution.
The image of an element A of A under the involution is written A∗. Involution is
required to have the following properties:

© The Author(s) 2016
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1. for all A, B ∈ A: (A + B)∗ = A∗ + B∗, (AB)∗ = B∗A∗,
2. for every λ ∈ C and every A ∈ A: (λA)∗ = λA∗,
3. for all A ∈ A: (A∗)∗ = A.

Definition 2.4 A ∗-morphism is a map ϕ : A→ B between ∗-algebras A and B,
which is an algebra morphism compatible with the involution, i.e.:

1. ϕ(AB) = ϕ(A)ϕ(B), for all A, B ∈ A,
2. ϕ(λA + B) = λϕ(A)+ ϕ(B), for all A, B ∈ A, λ ∈ C,
3. ϕ(A∗) = ϕ(A)∗ for every A ∈ A.

Up to now all the properties we have considered are purely algebraic. In order to
quantify the notion of distance between the elements of the algebra we need some
topology.

Let us start with some basic definitions and notation.

Definition 2.5 A topological space X is a pair (X, τ ), where X is a set X and τ is a
collection of subsets of X (called open sets), with the following properties:

• X ∈ τ
• ∅ ∈ τ
• the intersection of any two open sets is open: U ∩ V ∈ τ for U, V ∈ τ
• the unionof every collectionof open sets is open:

⋃
α∈A Uα ∈ τ for Uα ∈ τ ∀α ∈ A,

where A is some index set.

Consider mappings between topological spaces. A topology tells us something
about the regularity of those mappings, since it contains already a notion of “being
close to something” and we can ask ourselves to what extend a given map preserves
this notion.

Definition 2.6 A function f : X→ Y, where X and Y are topological spaces, is
continuous if and only if for every open set V ⊆ Y , the inverse image:

f −1(V ) = {x ∈ X | f (x) ∈ V } (2.1)

is open.

Given a collection of topological spaces, one can define a new topological space
by taking their Cartesian product. This is a very commonly used operation, so we
recall here the definition of a natural topology on such product.

Definition 2.7 Let X be a set such that

X =
∏

i∈I

Xi

is the Cartesian product of topological spaces Xi , indexed by i in some set I . Let
pi : X → Xi be the canonical projections. The product topology on X is defined as
the coarsest topology (i.e. the topology with the fewest open sets) for which all the
projections pi are continuous.
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In our applications the topology will not be enough to capture all the structure
we need. In the physics context it is common that we want to add certain quantities
and scale them. This leads in a natural way to a vector space structure. We want this
structure to be compatible also with the topology.

Definition 2.8 A Topological vector space (tvs) over a fieldK = R orC (with their
standard topologies) is a pair (X, τ ) ≡ X, where τ is a topology such that:

• every point of X is a closed set (i.e. its complement is an open set),
• vector additionX× X→ X and scalar multiplicationK× X→ X are continuous
functions with respect to the product topology on the respective domains.

Definition 2.9 LetX,Y be topological vector spaces over the field K. We denote by
L(X,Y) the space of continuous linear maps from X to Y and by X′ the topological
dual of X, i.e. the space of continuous linear maps from X to K.

A topology can be introduced for example by means of a norm. This leads to the
concept of a normed space.

Definition 2.10 A complex normed space is a vector spaceX overC, equipped with
a map ‖.‖ : X→ R, which satisfies:

1. ‖λA‖ = |λ|‖A‖ (scaling),
2. ‖A + B‖ ≤ ‖A‖ + ‖B‖ (triangle inequality also called subadditivity),
3. If ‖A‖ = 0, then A is the zero vector (separates points).

One of the nice features of normed spaces is that the continuity of maps between
such spaces can be probed by convergent sequences. Recall that in general:

Definition 2.11 A point x of the topological space X is the limit of the sequence
(xn) in X if, for every neighbourhood U of x , there is an N such that, for every
n ≥ N , xn ∈ U .

In particular, for normed spaces:

Definition 2.12 A point x of a normed space (X, ‖.‖) is the limit of the sequence
(xn) if, for all ε > 0, there is an N such that, for every n ≥ N , ‖xn − x‖ < ε. A
sequence that has a limit is called convergent.

Definition 2.13 Let X, Y be topological spaces. Then a function f : X→ Y is said
to be sequentially continuous if for every convergent sequence (xn) in X with the
limit x we have f (xn) → f (x) in Y.

An elementary result from analysis states that if X, Y are normed spaces equipped
with topologies induced by the respective norms then f : X→ Y is continuous if
and only if it is sequentially continuous. However, in Sect. 2.4.1 we will consider
spaces where these two notions do not coincide.

Having defined the notion of convergence of sequences, we are now ready to
introduce the notion of completeness. First we define:



6 2 Algebraic Approach to Quantum Theory

Definition 2.14 A sequence (xn) in a normed spaceX is called aCauchy sequence if
for every ε > 0 there exists N ∈ N such that for all integers m, n such that m, n > N
we have ‖xn − xm‖ < ε.

Definition 2.15 A normed space X in which every Cauchy sequence converges to
an element of X is called complete.

Given a normed space X that is not complete one can always construct its com-
pletion,1 i.e. a complete normed space that contains X as a dense subspace.

Let us now come back to our algebras. If an algebraA is equipped with a norm, we
can ask for the continuity of the algebraic relations with respect to the norm topology
and for some notion of completeness. This leads to the following definitions.

Definition 2.16 A normed algebra A is a normed vector space whose norm ‖.‖
satisfies

‖AB‖ ≤ ‖A‖‖B‖.

If A is unital, then it is a normed unital algebra if in addition ‖1‖ = 1.

Definition 2.17 A Banach space is a normed vector space equipped with the norm-
induced topology that is complete with respect to this topology. A Banach (unital)
algebra is a Banach space and a normed (unital) algebra with respect to the same
norm.

A particularly important class of Banach algebras with involution is distinguished
by the C∗-property. We will see in this chapter that such algebras can be used to
describe spaces of observables in quantum systems.

Definition 2.18 A C∗-algebra is a Banach involutive algebra (Banach algebra with
involution satisfying ‖A∗‖ = ‖A‖), such that the norm has the C∗-property:

‖A∗A‖ = ‖A‖‖A∗‖, ∀A ∈ A.

2.1.2 Observables and States

In this section we will see how the structures introduced in the previous section
are used in quantum physics. First note that in order to describe a physical system
we need to specify a collection of physical quantities, which we want to measure
(we call them observables) and a collection of states in which the system can be
prepared. Now we want to deduce what kind of mathematical structure is suitable
to describe observable and states. Operationally, each observable corresponds to
some measurement apparatus, which measures given properties of the system. An
example of such an apparatus is a particle detector localized in some region of space.

1The completion ofXcan be constructed as a set of equivalence classes of Cauchy sequences inX.
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Next, one considers operations that can be performed on observables. Scaling of
the measurement apparatus means multiplying the corresponding observable A by
a real number. One can also consider other functions of the observables, which
can be operationally realized as “repainting the scale”. The simplest examples are
monomials An , interpreted as measuring the observable A and taking the nth power
of the result.

Now we discuss the notion of states. We need to assume that we are able to
repeat experiments, so that we can measure a given observable repeatedly in the
same state (i.e. for the same preparation of the system). This statistical interpretation
presupposes that each experiment comes with a protocol that allows us to obtain
the same initial condition each time it is repeated. Under this assumption, a state ω
associates to an observable A a real number ω(A) obtained by averaging the results
of measurements of A for the system prepared to be in the state ω. It is natural to
assume that ω(λA) = λω(A) for λ ∈ R+ (scaling). Let 1 be the observable, which
always takes value 1. For this observable we require that ω(1) = 1. One can also
deduce the positivity of states from the fact that the average of positive numbers is
positive, so ω(A2) ≥ 0.

If we assume that physical properties of observables can be measured only by
looking at expectation values in various states of the system, it is natural to identify
the observables that give the same expectation values in all the states. Now let A be
the space of equivalence classes of observables, where A ∼ B if ω(A) = ω(B) for
all states ω of the system. A notion of a norm can be introduced by assigning to each
observable A ∈ A a finite positive number defined by

‖A‖ .= sup
ω
|ω(A)|

The operational properties of states imply that ‖λA‖ = |λ|‖A‖ for λ ∈ R and ‖A‖ =
0 implies that A = 0 (states separate observables). What is still missing is the linear
structure on A and the product. Let us start with the linear structure. We want to be
able to construct measuring devices that measure the sum of any two observables
A and B, i.e. we need the operation “A + B”. This operation has to satisfy

ω(A + B) = ω(A)+ ω(B),

for all states of the system. It is, however, not clear if an element “A + B” exists inA,
so one needs to embed the initial space of observables in a larger structure in such a
way that states will remain positive linear functionals on this enlarged space. Further
considerations (see for example [Str08]) lead to the notion of Jordan algebras [Jor33,
JvNW34] and finally, by bringing in a complex structure, to C∗-algebras, introduced
in [Gel43] and discussed in [Seg47a, Seg47b] in the context of quantum mechanics.
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We can summarize the basic axioms in the algebraic approach to QM as follows:

1. A physical system is defined by its unital C∗-algebra A.
2. States are identified with positive, normalized linear functionals on A, i.e.

ω(A∗A) ≥ 0 for all A ∈ A and ω(1) = 1.

Note that on a unital C∗-algebra a positive, normalized linear functional is auto-
matically continuous with respect to the topology induced by the C∗-norm. More
generally, we can define states also on involutive topological algebras.

Definition 2.19 A state on an involutive algebraA is a linear functionalω, such that:

ω(A∗A) ≥ 0, ω(1) = 1.

Observables are self-adjoint elements of A and possible measurement results for
an observable A are characterized by its spectrum σ(A). Recall that an element A of
a C∗-algebra is called self-adjoint if A∗ = A.

Definition 2.20 The spectrum spec(A) of A ∈ A is the set of all λ ∈ C such that
A − λ1 has no inverse in A.

A standard result from functional analysis states that a spectrum of self-adjoint
element is a subset of the real line and this agrees with the physical intuition, as
outcomes of measurements have to be real.

2.1.3 Hilbert Space Representations

Having defined the abstract setup we can proceed to a more concrete description that
provides a way to recover the Dirac–von Neumann axioms. The crucial observation
is that abstract elements of an involutive algebra A can be realized as operators on
some Hilbert space by a choice of a representation. Definitions introduced in this
section follow closely [Mor13, RS80]. First let us recall the definition of a Hilbert
space.

Definition 2.21 Let H be a complex vector space. A map 〈., .〉 : H×H → C is a
Hermitian inner product if

1. 〈u, v〉 = 〈u, v〉, ∀u, v ∈ H,
2. 〈u,αv + βw〉 = α〈u, v〉 + β〈u, w〉 (linear in the second argument),
3. 〈v, v〉 ≥ 0 where the case of equality holds precisely when v = 0 (positive defi-

nite).

Properties 1 and 2 imply that 〈., .〉 is antilinear in the first argument. One can
define a norm onH by setting

‖v‖ .= √〈v, v〉.
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Definition 2.22 AHilbert spaceH is a complex vector space with a Hermitian inner
product 〈., .〉 such that the norm induced by this productmakesH into aBanach space.

In physics separable Hilbert spaces play an important role.

Definition 2.23 AHilbert spaceH is called separable if it admits a countable subset
whose linear span is dense in H. In fact a Hilbert space is separable if it is either
finite dimensional or has a countable basis.

We are ready to define the notion of linear operators on Hilbert spaces, which is
important in the context of C∗-algebras and physical observables.

Definition 2.24 An operator A on aHilbert spaceH is a linear map from a subspace
D ⊂ H into H. In particular, if D = H and A satisfies ||A|| .= sup||x ||=1{||Ax ||} <

∞, it is called bounded.

We will always assume that D is dense inH (i.e. A is denesly defined).

Definition 2.25 Let A be a densly defined linear operator on a Hilbert spaceH. Let
D(A∗) be the set of all v ∈ H such that there exists u ∈ H with

〈Aw, v〉 = 〈w, u〉, ∀w ∈ D(A).

For each such v ∈ D(A∗) we define A∗v = u. A∗ is called the adjoint of A.

An important class of bounded operators is provided by the unitary ones.

Definition 2.26 A bounded linear operator U : H → H on a Hilbert space H is
called a unitary operator if it satisfies U ∗U = UU ∗ = 1.

Note that the spaceB(H) of bounded linear operators on a Hilbert spaceH forms
a C∗-algebra. We will see later on that one can argue the other way and realize any
abstractC∗-algebra as the algebra of bounded operators on someH. If A is a bounded
operator on a Hilbert space then the self-adjointness is the same as hermiticity, i.e.
is the condition that A∗ = A. In general this is not sufficient.

Definition 2.27 Anoperator A on aHilbert spaceHwith a dense domain D(A) ⊂ H

is called symmetric if for any vectors u, v ∈ D(A) we have 〈u, Av〉 = 〈Au, v〉. This
implies that D(A) ⊆ D(A∗). A symmetric operator A is self-adjoint if in addition
D(A∗) ⊂ D(A).

Definition 2.28 Let A be an operator on a Hilbert space H with a dense domain
D(A) ⊂ H. A self-adjoint operator A′ is called a self-adjoint extension of A if
D(A) ⊆ D(A′) and if A′v = Av for any v ∈ D(A).

A is called essentially self-adjoint if it admits a unique self-adjoint extension.

Abstract elements of an involutive algebra A are realized as operators on some
Hilbert space by a choice of a representation.
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Definition 2.29 A representation of an involutive unital algebra A is a unital ∗-
homomorphism π into the algebra of linear operators on a dense subspace K of
a Hilbert space H. In particular, a representation of a C∗-algebra A is a unital ∗-
homomorphism π : A→ B(H).

A representation π is called faithful if Ker π = {0}. It is called irreducible if there
are no non-trivial subspaces of H invariant under π(A).

Definition 2.30 Two representations (π1,H1) and (π2,H2) of a C∗-algebra A are
called unitarily equivalent, if Uπ1(A) = π2(A)U holds for all A ∈ A with some
unitary map U : H1 → H2.

In the Dirac–von Neumann axiomatic framework, one postulates that physical
observables are self-adjoint operators acting on some Hilbert space. The connection
between the algebraic formulation and the Hilbert space picture is provided bymeans
of the famous GNS (Gelfand–Naimark–Segal) theorem.

Theorem 2.1 Let ω be a state on an involutive unital algebra A. Then there exists a
representation π of the algebra by linear operators on a dense subspace K of some
Hilbert space H and a unit vector � ∈ K, such that

ω(A) = (�,π(A)�),

and K = {π(A)�, A ∈ A}.
Proof First we introduce a scalar product on the algebra A using the state ω:

〈A, B〉 .= ω(A∗B).

Linearity for the right and antilinearity for the left argument are easy to prove.
Hermiticity 〈A, B〉 = 〈B, A〉 follows from the positivity of ω and the fact that we
can write A∗B and B∗A as linear combinations of positive elements:

2(A∗B + B∗A) = (A + B)∗(A + B)− (A − B)∗(A − B),

2(A∗B − B∗A) = −i(A + i B)∗(A + i B)+ i(A − i B)∗(A − i B).

From the positivity ofω, it also follows that the scalar product is positive semidefinite,
i.e. 〈A, A〉 ≥ 0 for all A ∈ A. We now study the set

N
.= {A ∈ A|ω(A∗A) = 0}.

We show thatN is a left ideal of A. Because of the Cauchy–Schwarz inequalityN is
a subspace of A. The same inequality implies that for A ∈ N and B ∈ A we obtain

ω((B A)∗B A) = ω(A∗B∗B A) = 〈
B∗B A, A

〉

≤ √〈B∗B A, B∗B A〉√〈A, A〉 = 0,
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hence B A ∈ N. Let us define K as the quotient A/N. Clearly, the scalar product is
positive definite onK and we complete it to obtain a Hilbert spaceH. The represen-
tation π is induced by the operation of left multiplication on A, i.e.

π(A)(B +N)
.= AB +N,

and we set � = 1+N. If A is a C*-algebra, one can show that the operators π(A)

are bounded, hence admitting unique continuous extensions to bounded operators
onH.

We now show that the construction is unique up to unitary equivalence. Let
(π′,K′,H′,�′) be another quadruple satisfying the conditions of the theorem. Then
we define an operator U : K→ K′ by

Uπ(A)�
.= π′(A)�′.

U is well defined, since π(A)� = 0 if and only if ω(A∗A) = 0, but then also
π′(A)�′ = 0. Moreover U preserves the scalar product and is invertible, hence it
has a unique extension to a unitary operator from H to H′. It follows that π and π′
are unitarily equivalent. �

The representation π is in general not irreducible, i.e. there may exist a nontrivial
closed invariant subspace. In this case, the state ω is not pure, which means that it is
a convex combination of other states,

ω = λω1 + (1− λ)ω2 , 0 < λ < 1 , ω1 �= ω2.

We have seen that the algebraic formulation of quantum mechanics (QM) allows
us to characterize a physical system purely in terms of its observable C∗-algebra A
and states on it. The Hilbert space representations can then be obtained from states
by means of the GNS theorem. One can also obtain the probabilistic interpretation of
QMas follows. Given an observable A and a stateω on aC*-algebraAwe reconstruct
the full probability distribution μA,ω of measured values of A in the state ω from its
moments, i.e. the expectation values of powers of A,

∫

λndμA,ω(λ) = ω(An).

We can now apply these methods to some simple physical situations. The first
example is related to the canonical commutation relations.

Example 2.1 Let L be a real vector space with a symplectic form σ, i.e. a bilinear
form σ on L which is antisymmetric,

σ(x, y) = −σ(y, x),
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and nondegenerate,
σ(x, y) = 0 ∀ y ∈ L implies x = 0.

We consider the unital *-algebra W(L ,σ) over C generated by abstract symbols
W (x) (the Weyl generators), satisfying the relation

W (x)W (y) = eiσ(x,y)W (x + y).

The involution is defined by
W (x)∗ = W (−x)

and the unit is 1 = W (0).
We define a norm onW(L ,σ) by

∥
∥
∥
∥
∥

n∑

i=1
λi W (xi )

∥
∥
∥
∥
∥
1

=
n∑

i=1
|λi |.

This norm satisfies the condition ‖AB‖1 ≤ ‖A‖1 ‖B‖1 of an algebra norm. More-
over, the involution is isometric, ‖A∗‖1 = ‖A‖1 and we obtain an involutive normed
algebra W(L ,σ).

After [Mor13] we recall known facts about the existence of the unique C∗-norm
onW(L ,σ).

Proposition 2.1 The following hold true:

1. There exists a norm ‖.‖0 on W(L ,σ) satisfying the C∗-property,
2. In any C∗-norm Weyl generators have norm 1.
3. If we set

‖A‖c
.= sup{‖A‖0, such that ‖.‖0 :W(L ,σ) → [0,∞) is a C∗-norm},

then ‖.‖c is a C∗-norm.
4. Let W(L ,σ) be the completion of W(L ,σ) with respect to ‖.‖c, then W(L ,σ)

is a C∗-algebra, associated to (L ,σ) uniquely up to isomorphism.
5. W(L ,σ) is simple, i.e. there are no non-trivial closed, *-invariant two-sided

ideals.

Proof For proof see [BGP07] as well as [Mor13]. To see that the supremum defining
‖.‖c is finite, note that generators W (x) are of norm 1 with respect to every C∗-norm,
so if A = ∑

i ai W (xi ), then ‖A‖ ≤ ∑
i |ai | = ‖A‖1,which provides the upper bound

for the supremum. �

Let’s consider a particular example of a symplectic space (L ,σ), which realizes
canonical commutation relations for a free quantum particle in d dimensional space.
In this case L = R

2d and we write elements of L in the form X = (α,β), where
α = (α1, . . . ,αd),β = (β1, . . . ,βd) ∈ R

d . We define
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σ
(
(α,β), (α′,β′)

) = −1

2
�(α · β′ −α′ · β),

where · is the scalar product on R
d . If the generators of the resulting Weyl C∗-

algebraW(L ,σ) are represented by operators on a Hilbert space in such a way that
they depend strongly continuously2 on the parameters α,β, then such a representa-
tion is called regular. It was proven by von Neumann that all the regular reducible
representations of the resultingWeyl algebra are unitary equivalent. Another theorem
important in this context is due to Stone [Sto30]:

Theorem 2.2 Let (Ut )t∈R be a strongly continuous one-parameter unitary group.
Then there exists a unique (not necessarily bounded) self-adjoint operator A such
that

Ut = eit A, ∀t ∈ R.

Conversely, if A is a (not necessarily bounded) self-adjoint operator on a Hilbert
space H, then the one-parameter family (Ut )t∈R of unitary operators defined by
means of the Spectral Theorem for Self-Adjoint Operators (see for example Chap.9
[Mor13]) as

t �→ Ut := eit A

is strongly continuous.

For W(L ,σ) this implies that there exist self-adjoint generators q1, . . . , qd ,

p1, . . . , pd of 1-parameter groups of unitary operators

W (0, . . . ,αk, . . . , 0) = eiαk pk
, W (0, . . . ,βk, . . . , 0) = eiβk qk

,

We denote p
.= (p1, . . . , pd), q

.= (q1, . . . , qd). Generators p and q satisfy the
canonical commutation relations

[qk, p j ] = δk j , [qk, q j ] = 0, [pk, p j ] = 0

and one can write an arbitrary generator W (α,β) in the form

W (α,β) = e−
i�α·β

2 eiα· peiβ·q = e
i�α·β

2 eiβ·qeiα· p.

The Schrödinger representation of this Weyl algebra is defined on the Hilbert space
of square integrable functions L2(R

d) with

(π(W (α,β))�) (X) = e
i�α·β

2 eiβ·X�(X + �α) , (2.2)

2A net {Tα} of operators on a Hilbert space H converges strongly to an operator T if and only if
||Tαx − T x || → 0 for all x ∈ H. The definition of a net is at p. 22 in Footnote 5.
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for� ∈ L2(R
d). As mentioned before, all the regular irreducible representations are

unitary equivalent to this one. If one does not require continuity there are many more
representations. In quantum field theory this uniqueness result does not apply, and
one has to deal with a huge class of inequivalent representations. Note, however, that
the construction of the Weyl algebra makes sense also for L infinite dimensional, so
it can be applied in the context of field theory.

A particularly interesting class of states on W(L ,σ) is provided by quasi-free
states.

Definition 2.31 A state ω on W(L ,σ) is called quasi-free if there exists η : L ×
L → R, a symmetric form such that

ω (W (x)) = e−
1
2 η(x,x).

The form η is then called the covariance of the quasi-free state ω.

The following theorem provides a way to easily find quasi-free states.

Theorem 2.3 Let η : L × L → R be a symmetric form. The following are equiva-
lent:

1. ηC + i
2σC ≥ 0 on LC, the complexification of L, where ηC,σC : LC × LC → C

are canonical sesquilinear extensions of η,σ.
2. |σ(x1, x2)| ≤ 2

√
η(x1, x1)

√
η(x2, x2), for all x1, x2 ∈ L.

3. There exists a quasi-free state ωη on W(L ,σ) with covariance η.

Proof For proof see for example [AS71, DG13a]. �

This result holds also if L is infinite dimensional and will be used later in Sect. 5.3.
We define a complex scalar product on the complex vector space LC by

〈x, y〉 = ηC(x, y)+ i

2
σC(x, y). (2.3)

TheGNSHilbert space representation corresponding toωη turns out to be the bosonic
Fock space:

H =
∞⊕

n=0
(H⊗n

1 )symm ;H1 = LC/Ker(〈., .〉)

The state ωη is pure (i.e. the associated GNS representation is irreducible) if and only
if the map L → LC/Ker(〈., .〉) is surjective. The latter holds if and only if the pair
(2η,σ) is Kähler.

Definition 2.32 A pair (2η,σ) consisting of a symmetric form 2η and symplectic
form σ on L is called Kähler if the ranges of the two coincide Ran(2η) = Ran(2σ),
2η is positive definite and J

.= σ−12η satisfies J 2 = −1 (i.e. J is an anti-involution).

If (2η,σ) is Kähler, then the quadruple (L , 2η,σ, J ) is a Kähler space. We will
come back to this structure in the context of QFT in Sect. 5.3.

http://dx.doi.org/10.1007/978-3-319-25901-7_5
http://dx.doi.org/10.1007/978-3-319-25901-7_5
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2.1.4 Dynamics and the Interaction Picture

If we want to model a physical system that evolves with time, we need to introduce
the notion of dynamics. A very detailed discussion of quantum dynamics can be
found in [BR87, BR97]. Here we only sketch the main ideas. Let A be a C∗-algebra
of observables and let At ∈ A be some observable corresponding to the measure-
ment apparatus A at time t .3 We postulate that the algebra of observables A doesn’t
change with time, so the assignment t �→ At can be described by a 1-parameter
group of automorphisms αt , such that At = αt (A) and we assume that αt is strongly
continuous.

For a given state ω we consider the family of states that are related to it by
time-translations and it is natural to require some stability properties from the GNS-
associated representationπω . Ifπω is irreducible, this stability requirement is realized
as the condition that αt has to be implemented by some unitary operator U (t), i.e.

πω(αt (A)) = U (t)−1πω(A)U (t), ∀A ∈ A. (2.4)

Nowwe apply Stone’s Theorem2.2 to deduce the existence of a self-adjoint generator
H , called the Hamiltonian and we write

U (t) = e−i t H ∀t ∈ R.

By differentiating (2.4) we obtain the known evolution equation in the Heisenberg
picture,

d

dt
A(t) = i[H, A(t)], (2.5)

where we have put A(t) = U (t)∗AU (t) and we have omitted the symbol πω . To get
the Schrödinger picture, we considerψ ∈ D(H) a Hilbert space vector in the domain
of essential selfadjointness (see Definition2.28) of H , and define ψS(t)

.= U (t)ψ.
We can now rewrite (2.5) in the form

i
d

dt
ψS(t) = HψS(t). (2.6)

This is time-evolution in the Schrödinger picture. If we want to construct a model
of a quantum dynamical system, we usually start with a Hamiltonian H which is
an operator on Hπ that solves (2.6) for some initial data ψS(0), within the domain
D(H). A solution to the initial value problem then defines the propagator U (t, 0),
i.e.

ψS(t) = U (t, 0)ψS(0).

3As sharp localization is physically impossible, operationally we can think of At as the average
over some interval [t − ε, t + ε] centered at t , for a fixed value of ε > 0.
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Note that themain difference between (2.5) and (2.6) is that in the Heisenberg pic-
ture states remain stationary and operators evolve with time, while in the Schrödinger
picture it is the other way round. Often, solving the initial value problem of the form
(2.6) is very difficult and it is convenient to split the Hamiltonian into two terms

H = H0 + Hint ,

where the propagator for H0 can be found relatively easily and thenwe try to solve the
problem perturbatively. This point of view is something in-between the Heisenberg
and Schrödinger pictures and we call it the interaction picture. Hint is called the
interaction Hamiltonian. Let U0

.= e−i t H0 . In the interaction picture the states are
represented by

ψI (t) = U ∗
0 ψS(t) = eit H0ψS(t) = eit H0e−i t H ψ,

where ψS is a state in the Schrödinger picture and ψ is a state in the Heisenberg
picture. Observables of the interaction picture evolve according to

A(t) = U0(t)
∗ASU0(t),

where AS denotes the Schrödinger picture observable. In particular

Hint = U0(t)
∗HintU0(t)

for the interaction Hamiltonian Hint . Now the evolution Eq. (2.6) implies that

i
d

dt
ψI = Hint ψI . (2.7)

Given initial data ψI (t0), we want to find the solution to this equation in terms of a
propagator UI (t, t0), so that

ψI (t) = UI (t, t0)ψI (t0).

By definition we have

UI (t, t0) = eit H0e−i(t−t0)H e−i t0 H0 ,

and from (2.7) it follows that the propagator has to satisfy

i
d

dt
UI (t, t0) = Hint (t)UI (t, t0), UI (t0, t0) = 1. (2.8)



2.1 Algebraic Quantum Mechanics 17

A formal solution to the above equation is then given by the Dyson series

UI (t, t0) = 1− i
∫ t

t0

Hint (t1)dt1 −
∫ t

t0

∫ t2

t0

Hint (t2)Hint (t1)dt1dt2 + . . .

= 1+
∞∑

n=1
(−i)n

∫

· · ·
∫

t0<t1<···<tn<t

Hint (tn) . . . Hint (t1)dt1 . . . dtn. (2.9)

We can simplify the notation by introducing the time-ordering operator T defined
on operators A(t) and B(t) by

T (A(t)B(t ′)) =
{

A(t)B(t ′), if t < t ′
B(t ′)A(t), if t ′ < t

. (2.10)

We can now rewrite the formula (2.9) as a time-ordered exponential, i.e.

UI (t, t0) = 1+ T

[ ∞∑

n=1

(−i)n

n!
(∫ t

t0

Hint (t
′)dt ′

)n
]

= T

[

exp

(

−i
∫ t

t0

Hint (t
′)dt ′

)]

. (2.11)

We define the Møller operators S± as the strong limits of UI (t, t0) as t0 approaches
±∞, as long as these limits exist.

S±
.= s-lim

t→±∞UI (0, t).

The scattering operator S (the S-matrix) is then defined by

S
.= S∗+S−. (2.12)

We will use these ideas later on, in Sect. 6.1 to perturbatively construct QFT models.

2.2 Causality

After introducing basic notions fromquantummechanics, the next step towards quan-
tum field theory leads through spacetime geometry. Historically, QFTwas conceived
as a framework that allows us to combine quantummechanics with special relativity.
The latter is based on concepts such as Minkowski spacetime and causality. In fact,
the algebraic approach to QFT can be generalized beyondMinkowski spacetime and
one can apply it to construct models on a wide class of Lorenzian manifolds. In

http://dx.doi.org/10.1007/978-3-319-25901-7_6
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this section we will review some basic concepts from Lorentzian geometry that are
relevant for our framework.

Definition 2.33 A spacetime is a pair M = (M, g), where M is a smooth (4-
dimensional) manifold (we assume it to be Hausdorff, paracompact, connected) and
g is a smooth Lorentzian metric, i.e. a smooth tensor field g ∈ �(T ∗M ⊗ T ∗M), s.t.
for every p ∈ M , gp is a symmetric non-degenerate bilinear form. We require the
metric g to be of the Lorentz signature (+,−,−,−).

Remark 2.1 Let us make a few remarks concerning the above definition:

1. The assumption for a manifold to be Hausdorff means that points can be sepa-
rated (for every pair of points x , y, there exists a neighbourhood U of x and a
neighbourhood V of y such that U and V are disjoint (U ∩ V = ∅)). In general
topology one can drop this assumption and an example of a non-Hausdorff man-
ifold is a line with two origins, i.e. the quotient space of two copies of the real
line R× {a} and R× {b}, with the equivalence relation (x, a) ∼ (x, b) if x �= 0.

2. The paracompactness is needed as a sufficient condition for the existence of
partitions of unity. It means that for every open cover (Uα)α∈A, there exists a
refinement4 (Vβ)β∈B that is locally finite, i.e. each x ∈ M has a neighborhood
that intersects only finitely many sets of (Vβ)β∈B .

3. We assumed also that M is connected, i.e. it cannot be represented as a disjoint
union of two or more non-empty sets. Later on we will see that in a more general
context one has to drop this assumption and consider manifolds that are not
connected.

Definition 2.34 A spacetimeM is said to be oriented if it is equipped with a differ-
ential form of maximal degree (a volume form) that does not vanish anywhere. We
say thatM is time-oriented if it is equipped with a smooth vector field u on M such
that for every p ∈ M , g(u, u) > 0 holds.

We will always assume that our spacetimes are orientable and time-orientable.
We fix the orientation and choose the time-orientation by selecting a specific vector
field u with the above property.

Example 2.2 A standard example is 4 dimensional Minkowski spacetime M, which
is R

4 with the diagonal metric η = diag(1,−1,−1,−1).
An important feature of the Lorentzian signature, which distinguishes it from the

Euclidean signature, is that it allows to introduce some important classes of smooth
curves.

Definition 2.35 Let γ : R ⊃ I → M be a smooth curve in M , for I an interval in
R and let γ̇ be the vector tangent to the curve. We say that γ is

4An open cover (Vβ)β∈B is a refinement of an open cover (Uα)α∈A, if ∀β ∈ B, ∃α such that
Vβ ⊆ Uα.
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• timelike, if g(γ̇, γ̇) > 0,
• spacelike, if g(γ̇, γ̇) < 0,
• lighlike (null), if g(γ̇, γ̇) = 0,
• causal, if g(γ̇, γ̇) ≥ 0.

The classification of curves defined above is referred to as the causal structure.
The presence of time orientation allows for a further refinement of this classification.

Definition 2.36 Given the global timelike vector field u (the time orientation) on M ,
a causal curve γ is called future-directed if g(u, γ̇) > 0 all along γ. It is past-directed
if g(u, γ̇) < 0.

Using the causal structure one can distinguish points of spacetime that are in the
future or in the past of a given point p ∈M.

Definition 2.37 Let p ∈M be a point in a time-oriented spacetime.

(i) J±(p) is defined to be the set of all points in M which can be connected to p
by a future(+)/past(−)-directed causal curve γ : I → M so that x = γ(inf I ).

(ii) The set J+(p) is called the causal future and J−(p) the causal past of p. The
boundaries ∂ J±(p) of these regions are called respectively: the future/past
lightcone.

(iii) The future (past) of a subset B ⊂ M is defined by

J±(B) =
⋃

p∈B

J±(p) .

The physical importance of the structures presented above becomes clear in the
context of general relativity (GR). One of the postulates of GR states that massive
particles can move only on time-like curves and light travels following null curves,
i.e. nothing travels faster than light. Consequently, one of the fundamental principles
of physics, the principle of causality, states that an event happening at a point p can
be influenced only by events in J−(p) and that the consequences of this event can
influence only the events in J+(p).

Definition 2.38 A subset A ⊂ M is called past-(future-) compact if A ∩ J∓(p) is
compact for all p ∈ M .

Definition 2.39 Two subsets O1 and O2 in M are called causally separated (or
spacetime separated) if they cannot be connected by a causal curve, i.e. if for all
x ∈ O1, J±(x) has empty intersection with O2.

Another important definition is that of the causal complement of a given region O .

Definition 2.40 The causal complement O⊥ is defined as the largest open set in M
that is causally separated from O .
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It follows from the principle of causality that events happening at spacelike sepa-
rated points cannot influence each other. In classical physics this property is realized
as a consequence of some properties of normally hyperbolic partial differential equa-
tions. In Sect. 2.3 wewill see how these ideas can be implemented into the framework
of quantum theory.

Example 2.3 Consider Minkowski spacetime M = (R4, η). The set of points that
are causally separated from a given point P ∈ M is called the lighcone with apex P .
It is easy to verify that a point Q ∈ M

• lies on the lightcone with apex P if and only if the vector
−→
P Q is lightlike,

• is in the future (past) of P if and only if the vector
−→
P Q is time-like and its 0th

component is positive (negative),
• is spacelike to P if and only if

−→
P Q is spacelike.

These concepts are illustrated in Fig. 2.1.

Definition 2.41 Motivated by Example2.3 we introduce the following notation:

• V+
.= {v ∈ R

4|η(v, v) ≥ 0, v0 > 0} is called the closed future lightcone.
• V−

.= {v ∈ R
4|η(v, v) ≥ 0, v0 ≤ 0} is called the closed past lightcone.

These definitions can also be applied to subsets of tangent and cotangent spaces Tx M
and T ∗

x M , as these spaces can be mapped to R
4 with the use of appropriate charts.

Not all Lorentzian spacetimes are equally convenient for constructing quantum
field theory models. For example, several conceptual and technical problems appear
when we consider spacetimes with closed time-like curves. To exclude such situa-
tions, we will restrict ourselves to spacetimes that are globally hyperbolic.

Fig. 2.1 A lightcone in
Minkowski spacetime
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Definition 2.42 (after [BS03]) A spacetime is called globally hyperbolic if it does
not contain closed causal curves and if for any two points x and y the set J+(x) ∩
J−(y) is compact.

It was shown in [BS03] that globally hyperbolic spacetimes have many important
features. To understand them better we need to introduce some further definitions.

Definition 2.43 A causal curve is future inextendible if there is no p ∈ M such that:

∀U ⊂ M open neighborhoods of p, ∃t ′ s.t. γ(t) ∈ U ∀t > t ′.

Definition 2.44 A Cauchy hypersurface in M is a smooth subspace of M such that
every inextendible causal curve intersects it exactly once.

The significance of Cauchy hypersurfaces lies in the fact that one can use them
to formulate the initial value problem for partial differential equations and for some
classes of such equations this problem has a unique solution. The fundamental theo-
rem relating different equivalent notions of global hyperbolicity has been proven in
[BS03].

Theorem 2.4 (after [BS03]) The following definitions of global hyperbolicty of a
Lorentzian manifold M are equivalent:

• M does not contain closed causal curves and for any two points x and y the set
J+(x) ∩ J−(y) is compact.

• M contains a Cauchy surface.
• M admits a foliation by Cauchy surfaces.

2.3 Haag–Kastler Axioms

In Sect. 2.1 we introduced such fundamental notions of quantum theory as states and
observables. Now we want to make these compatible with the ideas of special and
general relativity, reviewed in Sect. 2.2, where the causal structure plays an important
role. The main conceptual difficulty is to find a way to implement the idea that “noth-
ing travels faster than light” in such a way that it doesn’t contradict the existence of
quantum correlations in the theory. The groundbreaking idea of Rudolf Haag was to
combine these notions using the principle of locality (Nahwirkungsprincip). In this
framework, locality is the feature of observables, while states might exhibit correla-
tions, i.e. they carry global information. One defines a QFT model by assigning to
each bounded regionO ⊂ M ofMinkowski spacetime the C∗-algebra of observables
A(O) that can be measured in this region. The notion of subsystem is realized by the
requirement that ifO ⊂ O′, thenA(O) ⊂ A(O′). This condition is called isotony and
it guarantees that one doesn’t lose observables when considering a larger region of
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spacetime. The complete set of axioms for algebraic quantum field theory (AQFT)
can be found in [HK64, Haa93, Ara99]; we will recall them briefly in this section.

The Haag–Kastler axioms (also called Araki-Haag–Kastler axioms) for a net5 of
C∗-algebras O �→ A(O) are:

• Isotony. For O ⊂ O′ we have A(O) ⊂ A(O′) , see Fig. 2.2.
• Locality (Einstein causality). Algebras associated to spacelike separated regions
commute: if O1 is spacelike separated from O2, then [A, B] = 0, ∀A ∈ A(O1),
B ∈ A(O2), where the commutator is taken in the sense of the inductive limit
algebra A (see the Definition2.45 below). This expresses the “independence” of
physical systems associated to regions O1 and O2.

• Covariance. Minkowski spacetime has a large group of isometries, namely the
connected component of thePoincaré groupP.We require that for each L ∈ P there
exists an isomorphism αO

L : A(O) → A(LO), and that forO1 ⊂ O2 the restriction
of αO2

L to A(O1) coincides with αO1
L and αLO

L ′ ◦ αO
L = αO

L ′L .• Time slice axiom: The algebra of a neighborhood of a Cauchy surface of a given
region coincides with the algebra of the full region. Physically this correspond
to the well-posedness of an initial value problem, i.e. we only need to determine
our observables in some small time interval (t0 − ε, t0 + ε) to reconstruct the full
algebra.

• Spectrum condition. Physically this condition is interpreted as the positivity of
energy. One assumes that there exists a compatible family of faithful represen-
tations πO of A(O) on a fixed Hilbert space (i.e. the restriction of πO2 to A(O1)

coincides with πO1 for O1 ⊂ O2) such that translations are unitarily implemented,
i.e. there is a unitary representation U of the translation group satisfying

U (a)πO(A)U (a)−1 = πO+a(αa(A)) , A ∈ A(O),

and such that the joint spectrum of the generators Pμ of translations ea·P = U (a),
a · P = ∑3

μ=0 aμ Pμ, is contained in the closed future lightcone: σ(P) ⊂ V+.

Definition 2.45 The inductive limit of local algebras A(O) defines the quasilocal
algebra A

.= ⋃

O

A(O) (the bar means taking the completion in the norm topology).

All these axioms, apart from the Spectrum condition, can be generalized to
QFT’s on general globally hyperbolic spacetimes. We will discuss this in more detail
in the next section. There are many important conceptual results that have been
proven in the AQFT framework. The first major success was the development of the
Haag–Ruelle scattering theory [Haa58, Rue62], which provided an explanation why
quantum field theory yields a theory of interacting particles. It is, however, an open
question, whether all states in the vacuum representation admit a particle interpre-
tation (the problem of asymptotic completeness). For recent works on that topic see
[DT11, DG14b, DG14a]. Another remarkable result of AQFT is the Reeh–Schlieder

5A net in a topological spaceX is a function from some directed set (nonempty set with a reflexive
and transitive binary relation) A to X.
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Fig. 2.2 Diagram
representing inclusion of
spacetime regions and
corresponding C∗-algebras

Theorem [Haa93, RS61], see [BS14] for a recent discussion. Another known result
achieved with the AQFT methods is the analysis of the superselection structure of
QFT models [DHR71, DHR74]. Despite all this insight into the general structure of
QFT, there remains the difficulty of constructing 4 dimensional interacting models
that fulfil the Haag–Kastler axioms. For models in 2 dimensions see [Lec08, Tan12,
BT13, Ala13, BC13] and references therein.

2.4 pAQFT Axioms

In this book we explore the possibility of dropping some of the assumptions of the
Haag–Kastler framework, in order to allow for models that exist only in the for-
mal, perturbative sense. The resulting framework is called perturbative Algebraic
Quantum Field Theory (pAQFT). The generalization of the HK axioms to the pertur-
bative context has been developed in a series of papers [DF01a, DF02, DF04, DF07,
DF01b, BD08, Boa00, DB01, BDF09, Rej11b].

The generalization of the HK framework to curved spacetime has been for a
long time an independent development. Some important early contributions include
[Kay78, Dim80, KW91, Dim92]. Later these two generalizations met as the pAQFT
on curved spacetimes after a seminal series of papers [BFK96, BF97, BF00, BFV03,
HW01, HW02a, HW02b, HW05].

Abelian gauge theorieswere later treated in [DF98],while theYang–Mills theories
are the subject of [Hol08]. At the same time the mathematical foundations of pAQFT
became better understood, mainly with the use of the functional approach, which is
also the approach we take in this book. In [FR12b, FR12a, Rej11a] this framework
was used to add theBatalin–Vilkovisky (BV) formalism to the pAQFT toolbox,which
allows us to treat very general theories possessing local symmetries, including the
bosonic string [BRZ14] and effective quantum gravity [BFR13].
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2.4.1 More Functional Analysis

On the functional analytic side, we leave the realm of Banach spaces and allow for
structures that have more general topologies. This involves some technical compli-
cations, but gives more flexibility in terms of model building. The most general class
of topological vector spaces that we will use is the class of locally convex ones.

Definition 2.46 A topological vector space X ≡ (X, τ ) is called a locally convex
topological vector space (lcvs) if there is a local base T whose members are con-
vex.

Here by a local base we mean a collectionT , of neighborhoods of 0 such that every
neighborhood of 0 contains a member of T . The open sets of X are then precisely
those that are unions of translates of members of T .

There is another way to characterize locally convex vector spaces, which allows
us to make a connection with normed spaces, introduced in Definition2.10. Instead
of having one norm that characterizes the topology, we have a family of seminorms.
A seminorm differs from a norm by not fulfilling property 3 in Definition 2.10. More
precisely:

Definition 2.47 A seminorm on a vector space X is a real-valued function p on X
such that:

1. p(x + y) < p(x)+ p(y) for all x, y ∈ X .
2. p(λx) = |λ|p(x) for all x ∈ X and all scalars λ ∈ K.

We see that a seminorm already provides us with a lot of information, but it
doesn’t separate points. However, it is possible that a certain family of seminorms is
separating.

Definition 2.48 A familyP of seminorms on X is said to be separating if for each
x �= 0 there exists at least one p ∈P with p(x) �= 0.

Note that a separating family of seminorms already allows us to distinguish two
elements of X .

Theorem 2.5 To each separating family of seminorms on X we can associate a
locally convex topology τ on X and vice versa: every locally convex topology is
generated by some family of separating seminorms.

Proof See [Rud91]. �

In the pAQFT framework a lcvs is usually the best that one can expect. Unfor-
tunately it doesn’t share many of the nice properties of a Banach space, but there
are some distinguished classes of lcvs that are relatively well behaved and good
for defining calculus on them. The “nicest” ones are Fréchet spaces. They are dis-
tinguished by the fact that their topology can be described in terms of a metric.
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Theorem 2.6 A locally convex topological vector space X = (X, τ ) is metrizable
if and only if τ can be defined by P = {pn : n ∈ N} a countable separating family
of seminorms on X. One can equip X with a metric which is compatible with τ and
which provides a family of convex balls.

Proof See [Köt69, Rud91]. �

Usually a Fréchet space topology is defined explicitly by providing a countable
separating family of seminorms. A lcvs from Theorem2.6 can be equipped with the
metric:

d(x, y) :=
∑

n∈N
2−n pn(x − y)

1+ pn(x − y)
(2.13)

This metric is compatible with τ but in general it doesn’t provide convex balls (see
the discussion in [Rud91] after Theorem 1.24 and Exercise 18). Nevertheless it is
good to know that you have a metric that can actually be written down in a closed
form.

Definition 2.49 If X is complete with respect to the metric from Theorem 2.6, it is
a Fréchet space.

In locally convex topological vector spaceswhich are not Fréchet, using sequences
to probe continuity of maps is not enough and some important properties like for
example completeness have to be formulated in terms of nets (for definition of a net,
see Footnote 5 in Sect. 2.3).

Definition 2.50 A Cauchy net in a locally convex space is a net {xα}α such that
for every ε > 0 and every seminorm p, there exists an α such that for all λ,μ > α,
p(xλ − xμ) < ε. A locally convex space is complete if and only if every Cauchy net
converges.

Compare this with Definitions2.14 and 2.15 that are valid in normed space. For a
locally convex topological vector space that is not complete, one can always construct
a completion.

To end this section we remark on one more important aspect of lcvs, namely the
definition of tensor products. In quantum theory tensor products are used to model
systems that consist of independent subsystems. This is closely related to the notion
of causality and we will come back to this issue in Sect. 2.5.

Definition 2.51 Let E and F be locally convex topological vector spaces and let
⊗ : E × F → E ⊗ F be the canonical map into the corresponding tensor product.
The finest topology on E ⊗ F that makes⊗ continuous is called the projective tensor
topology or the π-topology. The space E ⊗ F equipped with this topology is denoted
by E ⊗π F and its completion by E⊗̂π F .

It can be shown that the topology π is locally convex. Another possible topology
on E ⊗ F is the so called injective tensor topology. Its definition is a little bit more
involved. In some sense it is the weakest well behaved topology one can put on
E ⊗ F , while the projective tensor topology is the strongest.



26 2 Algebraic Approach to Quantum Theory

The idea behind the injective topology is to define it via the topology on the space
of continuous linear mappings L(E ′

γ, F).

Definition 2.52 Weequip E ′ with the finest locally convex topology γ that coincides
with the weak one on equicontinuous6 sets. One can identify E ⊗ F with a subspace
of L(E ′

γ, F). Next we equip L(E ′
γ, F) with the topology of uniform convergence

on equicontinuous compact sets in E ′. We denote the resulting topological space by
EεF . It is called the ε-product of E and F . The corresponding topology induced on
E ⊗ F is called the ε-topology and E ⊗ F equipped with it is the injective tensor
product E ⊗ε F . The corresponding completion is denoted by E⊗̂εF

This topology is better behaved if we want to consider vector-valued distributions
and was used (in a slightly modified version) by L. Schwartz in [Sch57, Sch58].
Inequivalent notions of tensor products on lcvs can create problems, but there is a
large class of spaces where these notions coincide. These are nuclear locally convex
topological vector spaces, studied by A. Grothendieck in [Gro55].

2.4.2 Axioms

In this section we introduce the generalization of the Haag–Kastler axioms which is
the foundation of pAQFT. It is in fact convenient to extend the pAQFT framework
also to classical field theory, to keep a uniform language.

Definition 2.53 A classical field theory model on a spacetimeM is a net of locally
convex topological Poisson ∗-algebras P(O), each with sequentially continuous
product and Poisson bracket �.,.�;

O �→ P(O),

whereO ⊂M are bounded, simply-connected regions. The global algebra is obtained
as the inductive limit

P(M)
.= lim

O⊂M
P(O).

We require that Locality holds, i.e. if O1 is spacelike separated from O2, then

�A, B� = 0,

∀A ∈ P(O1), B ∈ P(O2), where the Poisson bracket �, � is taken in P(M).

6A set A of continuous functions between two topological spaces E and F is equicontinuous at the
points x0 ∈ E and y0 ∈ F if for any open setO around y0, there are neighborhoods U of x0 and V
of y0 such that for every f ∈ A, if the intersection of f (U ) and V is nonempty, then f (U ) ⊆ O.
One says that A is equicontinuous if it is equicontinuous for all points x0 ∈ E , y0 ∈ F . The notion
of equicontinuity becomes more intuitive, if we choose E and F to be metric spaces. The family A
is equicontinuous at a point x0 if for every ε > 0, there exists a δ > 0 such that d( f (x0), f (x)) < ε
for all f ∈ A and all x such that d(x0, x) < δ. In other words we require all member of the family
A to be continuous and to have equal variation over a given neighbourhood.
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InChap.4we showhow to constructmodels of classical field theories in agreement
with the above definition. In Chaps. 5–8 we will show how to quantize such classical
models perturbatively. The resulting structure is not a net of C∗-algebras, due to the
perturbative character of the construction. Nevertheless, many of the features of a
Haag–Kastler net are still present.

Definition 2.54 A perturbative algebraic quantum field theory (pAQFT) model on a
spacetimeM is a net of topological ∗-algebras with sequentially continuous product

O �→ A(O),

whereO ⊂M are bounded, simply-connected regions and we require Locality. The
global algebra is obtained as the inductive limit

A(M)
.= lim

O⊂M
A(O).

The remaining Haag–Kastler axioms from Sect. 2.3, apart from the Spectrum
condition, can be easily translated to a pAQFT context.

Definition 2.55 Further axioms:

1. A classical/quantum field theory model on a globally hyperbolic spacetime M

satisfies the Time-slice axiom if the algebra of a neighborhood of a Cauchy
surface of a given region coincides with the algebra of the full region.

2. If the underlying spacetimeMhas a non-trivial groupof symmetriesG,we say that
a model is Covariant on M, if for β ∈ G there exists a family of isomorphisms
αO

β : A(O) → A(βO), such that for O1 ⊂ O2 the restriction of αO2
β to A(O1)

coincides with αO1
β and α

gO
β′ ◦ αO

β = αO
β′β .

The spectrum condition cannot be meaningfully defined on an arbitrary globally
hyperbolic spacetime, as it relies on the action of translations, which is a special fea-
ture of M. We will replace this condition with a requirement we impose on preferred
states on our net of algebras. These preferred states are called Hadamard states and
they realize the idea of positivity of energy. We discuss them in detail in Sect. 5.1.

2.5 Locally Covariant Quantum Field Theory

In the previous section we recalled the Haag–Kastler axioms and reviewed the gen-
eralization of these axioms to the situation where we drop some of the regularity
conditions on the topology of local algebras andwe drop the restriction toMinkowski
spacetime, allowing for general globally hyperbolic backgrounds. We can go a step
further and see what happens if we replace the embeddings of bounded regions O
into a fixed spacetimeMwith arbitrary embeddings between pairs of globally hyper-
bolic spacetimes N and M. We formalize this idea by introducing the notion of an
admissible embedding.

http://dx.doi.org/10.1007/978-3-319-25901-7_4
http://dx.doi.org/10.1007/978-3-319-25901-7_5
http://dx.doi.org/10.1007/978-3-319-25901-7_8
http://dx.doi.org/10.1007/978-3-319-25901-7_5
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Definition 2.56 We call an embedding χ :M→ N of a globally hyperbolic mani-
foldM into another oneN admissible if it is an isometry and it preserves orientations
and the causal structure. The property of preserving the causal structure is defined
as follows: for any causal curve γ : [a, b] → N , if γ(a), γ(b) ∈ χ(M) then for all
t ∈]a, b[ we have: γ(t) ∈ χ(M) .

The generalization of AQFT which we discuss in this section is called Locally
Covariant Quantum Field Theory (LCQFT). For a recent extensive review of the
area, see [FV15].

As in the original AQFT framework, we assign algebras of observables to globally
hyperbolic spacetimes and we also want to require that for each such admissible
embedding there exists an injective homomorphism

αχ : A(M) → A(N) (2.14)

of the corresponding algebras of observables assigned to them, moreover if χ1 :
M→ N and χ2 : N → L are embeddings as above then we require the covariance
relation

αχ2◦χ1 = αχ2 ◦ αχ1 . (2.15)

Such an assignment A of algebras to spacetimes and algebra-morphisms to embed-
dings can be interpreted in the language of category theory as a covariant functor
between two categories: the category Loc which is an appropriate sub-category of
the category whose objects are globally hyperbolic spacetimes and arrows are the
admissible embeddings; and the category Obs of topological ∗-algebras. The pre-
cise choice of the category Loc depends on the kind of objects we want to study. If
the physical theory we consider is sensitive to some topological (hence non-local)
features of the underlying manifold, one first restricts the class of objects considered
and then studies possible extensions. The detailed analysis of such topological effects
has been provided in [BSS14]. In this section we will present the framework in the
simplest version, suitable for the study of scalar fields, as introduced in [BFV03].
First we recall some basic notions of category theory, which are relevant for LCQFT.

Definition 2.57 A category C consists of:

• a class of objects Obj(C),
• a class of morphisms (arrows) Hom(C), such that each f ∈ Hom(C) has a unique

source object and target object (both are elements of Obj(C)). For a fixed a, b ∈
Obj(C), we denote by Hom(a, b) the set of morphisms with a as a source and b
as a target,

• a binary associative operation ◦ : Hom(a, b)× Hom(b, c) → Hom(a, c), f, g �→
f ◦ g, called composition of morphisms,

• the identity morphism idc for each c ∈ Obj(C).
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Definition 2.58 LetC,D be categories. A covariant functor F assigns to each object
c ∈ C and object F(c) ofD and to each morphism f ∈ Hom(C), a morphism F( f ) ∈
Hom(D) in such a way that the following two conditions hold:

• F(idc) = idF(c) for every object c ∈ C.
• F(g ◦ f ) = F(g) ◦ F( f ) for all morphisms f : a → b and g : b → c.

Definition 2.59 Let F andG be functors between categories C and D, then a natural
transformation η fromF toG associates to every objecta ∈ C amorphismHom(D) �
ηa : F(a) → G(a), such that for every morphism Hom(C) � f : a → b we have:

ηb ◦ F( f ) = G( f ) ◦ ηa .

We denote the family of natural transformations between F and G by Nat(F,G).

For more details on categories and functors, see [ML78]. In LCQFT applied to
scalar fields we adopt the following definitions of categories Loc and Obs.

Definition 2.60 The category Loc is a category where objects are globally hyper-
bolic, oriented time-oriented spacetimes and morphisms are admissible embeddings
(see Definition2.56).

Remark 2.2 Note that Loc is a large category, i.e. its class of objects Obj(Loc) is
not a small set. It was shown in [Few07] that one can improve the situation with the
use of the Whitney embedding theorem, which states that every smooth manifold
of dimension d may be embedded as a smooth submanifold of R

2d+1. Hence the
collection of isomorphism equivalence classes in Obj(Loc) may be identified with
a subset of the power set of R

2d+1, so it is a small set. This makes Loc essentially
small.

Definition 2.61 Depending on the context, we have the following choices for the
category of observables.

(i) In the non-perturbative setting: Obs is the category with unital C∗-algebras as
objects and injective unit-preserving ∗-homomorphisms as arrows.

(ii) In classical theory:Obsc is the categorywith locally convex topological Poisson
algebras as objects and injective Poisson homomorphism as arrows.

(iii) In the perturbative setting:Obsp is the category with locally convex topological
unital ∗-algebras as objects and injective unit-preserving ∗-homomorphisms as
arrows.

We are now ready to give a definition of a classical/quantum field theory model
in the LCQFT setting.

Definition 2.62 In the LCQFT framework, a model is a functor A from Loc to …

(i) …Obs for a non-perturbative locally covariant QFT model,
(ii) …Obsc for a locally covariant classical field theory model,
(iii) …Obsp for a perturbative locally covariant QFT model.
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If we don’t want to specify the context, we write Obs∗. Moreover, we often use the
notation αχ ≡ Aχ, where χ ∈ Hom(Loc).

Another useful category is the category of locally convex topological vector
spaces.

Definition 2.63 DefineVec to be the categorywhose objects are locally convex topo-
logical vector spaces (lcvs) and whose morphisms are injective homomorphisms of
lcvs.

The requirement thatA is a covariant functor already generalizes theHaag–Kastler
axioms of Isotony and Covariance. We can impose further requirements:

• Einstein causality: let χi :Mi →M, i = 1, 2 be morphisms of Loc such that
χ1(M1) is causally disjoint from χ2(M2), then we require that:

[αχ1(A(M1)),αχ2(A(M2))] = {0},

• Time-slice axiom: let χ : N →M, if χ(N) contains a neighborhood of a Cauchy
surface � ⊂M, then αχ is an isomorphism.

The Einstein causality requirement reflects the commutativity of observables
localized in spacelike separated regions. From the point of view of category theory,
this property is encoded in the tensor structure of the functor A. In order to make
this statement precise, we need to equip our categories Loc and Obs∗ with tensor
structures (for a precise definition of a tensor category, see [ML78]).

Definition 2.64 We call a category C strictly monoidal (tensor category) if there
exists a bifunctor⊗ : C × C → C which is associative, i.e.⊗(⊗× 1) = ⊗(1×⊗)

and there exists an object e which is a left and right unit for⊗. If⊗ is associative up
to a natural isomorphism, then C is called monoidal.

The category of globally hyperbolic manifoldsLoc can be extended to amonoidal
categoryLoc⊗, if we extend the class of objectswith finite disjoint unions of elements
of Obj(Loc),

M =M1  . . .  Mk,

where Mi ∈ Obj(Loc). Morphisms of Loc⊗ are isometric embeddings, preserving
orientations and causality. More precisely, they are maps χ :M1  . . .  Mk →M

such that each component satisfies the requirements for a morphism of Loc and
additionally all images are spacelike to each other, i.e., χ(Mi ) ⊥ χ(M j ), for i �= j .
Loc⊗ has the disjoint union as a tensor product, and the empty set as unit object. It
is a monoidal category and, using the results of [JS93], it is tensor equivalent to a
strict monoidal category, which we will denote by the same symbol Loc⊗.

On the level of C*-algebras the choice of a tensor structure is less obvious, since, in
general, the algebraic tensor product A1 " A2 of two C∗-algebras can be completed
to a C∗-algebra with respect to many non-equivalent tensor norms. The choice of an
appropriate norm has to be based on some further physical indications. This problem
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was discussed in [BFIR14], where it is shown that a physically justified tensor norm
is the minimal C∗-norm ‖.‖min defined by

‖A‖min
.= sup{‖(π1 ⊗ π2)(A)‖B(H1⊗H2)} , A ∈ A1 ⊗ A2,

where π1 and π2 run through all representations of A1 and of A2 on Hilbert
spaces H1, H2 respectively. B denotes the algebra of bounded operators. If we
choose π1 and π2 to be faithful, then the supremum is achieved, i.e. ‖A‖min =
‖(π1 ⊗ π2)(A)‖B(H1⊗H2). The completion of the algebraic tensor product A1 " A2

with respect to the minimal norm ‖A‖min is denoted by A1 ⊗
min

A2. It was shown in

[BFIR14] that, under some technical assumptions, a functor A : Loc → Obs satis-
fies the axiom of Einstein causality if and only if it can be extended to a tensor
functor A⊗ : Loc⊗ → Obs⊗, which means that

A⊗ (M1  M2) = A⊗(M1)⊗min A
⊗(M2), (2.16)

A⊗(χ⊗ χ′) = A⊗(χ)⊗ A⊗(χ′), (2.17)

A⊗(∅) = C. (2.18)

In the perturbative setting, we face a similar problem with extending Obsp to a
tensor category, as there are many possibilities to chose a tensor product. The most
natural choices are the injective tensor product (Definition2.52) and the projective
tensor product (Definition2.51). A way out is to restrict Obsp to the category of
nuclear topological algebras, where these two notions coincide.

Let us now discuss the Time slice axiom. We use it to describe the evolution
between different Cauchy surfaces. We fix a spacetime M = (M, g). Let N , K be
subsets of M . We denote by ιK N the inclusion ofN

.= (N , g �N ) intoK
.= (K , g �K )

and byαK N
.= AιK N , the corresponding morphism in Hom(Obs). These morphisms

allow us to associate to each Cauchy surface � the inverse limit

A(�) = lim
N⊃�

A(N), (2.19)

which comes with natural projections αM� from the algebra A(�) into A(M).
From the time slice axiom it follows that each homomorphism αK N is an isomor-

phism. Hence αM� is also an isomorphism, and we obtain the “propagator” between
two Cauchy surfaces �1 and �2 by

αM
�1�2

= α−1
M�1

◦ αM�2 . (2.20)

This construction resembles constructions in topological field theory [Seg].
Another important notion in LCQFT is that of a local quantum field. In the Haag–

Kastler framework on Minkowski spacetime an essential ingredient was the transla-
tion symmetry. This symmetry allowed the comparison of observables in different
regions of spacetime. This is not possible in the generally covariant framework
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we describe here, because on a generic spacetime the isometry group might be triv-
ial. It follows that there is a priori no natural way to say what it means to have the
same observable in a different region. We need to introduce some extra labels for the
observables, which make such a comparison possible. This is where locally covari-
ant quantum fields come into the game. We can think of them as operator-valued
distributions assigned to all the objects of Loc in a coherent way. Before we give the
precise definition, we need to make clear what we mean by test function spaces.

Definition 2.65 Let D denote the functor from Loc to Vec that associates to every
spacetime M its space of compactly supported C∞-functions,

D(M) = D(M)
.= C∞c (M, R) , (2.21)

and to every embedding χ : M → N of spacetimes the pushforward of test functions
f ∈ D(M)

Dχ ≡ χ∗ χ∗ f (x) =
{

f (χ−1(x)) x ∈ χ(M)

0 else
. (2.22)

Note that D is a covariant functor. We are now ready to state the definition of a
locally covariant quantum field.

Definition 2.66 A locally covariant quantum/classical field� is defined as a natural
transformation from the functor D of test function spaces to the functor A of field
theory composed with the forgetful functor from Obs∗ to Vec.

More concretely, � is defined by a family of morphisms �M : D(M) → A(M),
M ∈ Obj(Loc) such that

Aχ ◦�M = �N ◦Dχ (2.23)

The category theory language, which is used to formulate the axioms of LCQFT,
is not only a convenient way to phrase known results, but also leads to new insights.
For example, one can use it to formulate what it means to have the same physics in all
spacetimes. This property, called SPASS, is a property of the QFT functor and it has
been extensively studied in [FV11a, FV11b]. Further study of structures appearing
in LCQFT led recently to construction of new theories by using symmetries of the
QFT functor [Few13].

The structure of Loc introduced above is suitable for scalar fields, but things get
more complicated if we want to consider Dirac fields or 1-forms (like in electrody-
namics). A convenient and operationally motivated way to do this is to extend the
LCQFT framework to the situation where Loc is replaced by the category of framed
manifolds. This idea has been proposed in [FV15] to prove the locally covariant
version of the spin-statistics theorem and presented in more detail in [Few15]. In this
book, we apply these concepts in Sect. 6.5.1 to describe the construction of time-
ordered products of local functionals that involve derivatives of field configurations.
Let us recall after [Few15] some basic definitions.

http://dx.doi.org/10.1007/978-3-319-25901-7_6
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Definition 2.67 Define the objects of the category FLoc to be pairs M
.= (M, e),

where M is a smooth manifold of a fixed dimension (in our context equal to 4),
e = (ea)a=0,...,3 is a co-tetrad, (a collection of four smooth linearly independent
1-forms on M) and M , equipped with the metric, orientation and time-orientation
induced by e is an object in Loc.

The metric induced by e is defined by

g =
3∑

a,b=0
ηabeaeb, (2.24)

where η is theMinkowskimetric in four dimensions. The existence of orientation and
time-orientation is guaranteed if we require that e0 ∧ · · · ∧ e3 is everywhere positive
and that e0 is future-directed.

Definition 2.68 Given (M, e), (M′, e′) ∈ Obj(FLoc), a morphism ψ in
Hom((M, e), (M ′, e′)) is a smooth map between the underlying manifolds induc-
ing a Loc-morphism (M, e) → (M′, e′) and obeying ψ∗e′ = e, whereM = (M, g),
M′ = (M ′, g′) and g, g′ are defined by (2.24).

Given a co-tetrad we obtain its dual tetrad (a set of four independent vector fields)
(ea)a=0,...,3 by requiring that

ea(eb) = ea
μeμ

b = δa
b ,

where δa
b is the Kronecker delta.

Geometrically, the four vector fields (ea)a=0,...,3 define aglobal sectionof the frame
bundle (a parallelization of M), i.e. they provide an isomorphism T M ∼= M × R

4.
The operational interpretation for elements of Obj(FLoc) is provided in terms of

rods and clocks, but this description is redundant. This corresponds to the freedom to
make global frame rotations by elements of the proper orthochronous Lorentz group
� ∈ L

↑
+ (the group of isometries ofMinkowski spacetime that leave the origin fixed).

There is a representation of this group as automorphisms of FLoc and given a locally
covariant QFT functor A one obtains a family of theories by applying such frame
rotations. More precisely, to each� ∈ L

↑
+, there is a functorT (�) : FLoc → FLoc

T (�)(M, e) = (M,�e), where (�e)a = �a
beb, � ∈ L

↑
+. (2.25)

Physically, theories defined byA ◦T (�) for different� ∈ L
↑
+ have to be equivalent,

so one needs to impose an additional condition onA that guarantees that this is indeed
the case.

• Independence of global frame rotations To each � ∈ L
↑
+, there exists a natural

transformation η(�) : A→ A ◦T (�), such that

η(�)(M,e)α(M,e) = α(M,�e)η(�)(M,e), ∀α ∈ Aut(A), (2.26)
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where Aut(A) is the group of natural transformations that are automorphisms of
the functor A, see [Few13] for more detail.

The next step in LCQFT research is the proper understanding of the structures
of gauge theories, where the topological features lead to new difficulties [DL12,
SDH14, BSS14]. It would be desirable to obtain for local symmetries a framework
similar to the DHR analysis done for global symmetries [DHR71, DHR74].
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Chapter 3
Kinematical Structure

In the framework of perturbative algebraic quantum field theory (pAQFT) we start
with the classical theory,which is subsequently quantized.Wework in theLagrangian
framework, but there are some modifications that we need to make to deal with the
infinite dimensional character of field theory. In this chapter we give an overview of
mathematical structures that will be needed later on to construct models of classical
and quantum field theories. Since we do not fix the dynamics yet, the content of this
chapter describes the kinematical structure of our model. Readers familiar with some
of the concepts we introduce here can skip corresponding sections.

3.1 The Space of Field Configurations

We start with a globally hyperbolic spacetime M = (M, g) (see Definition2.33).
The next step is to define the space of field configurations. This specifies what kind
of objects our model describes (e.g. scalar fields, Dirac fields, gauge fields, etc.). In
the simplest situation the configuration space E is a vector space.

Definition 3.1 The configuration space E on the fixed spacetime M = (M, g) is
realized as the space of smooth sections �(E → M) of some vector bundle E

π−→ M
over M. Let V be the finite dimensional vector space which constitutes the fibre of
E. We assume that there exists a bilinear pairing 〈., .〉E : V × V → R. This pairing
also defines an isomorphism between V and its dual V ∗.

Example 3.1 Examples of configuration spaces for commonly used theories:

• for the real scalar field: E = C∞(M, R),
• for Yang-Mills theories (see Chap.7) with the trivial principal bundle: E =

�1(M, k), where k is some Lie algebra of some compact Lie group K ,
• for effective quantum gravity (see Chap. 8): E = �((T∗M)⊗2).

© The Author(s) 2016
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Let us now comment on the differentiable structure on E. A natural way to intro-
duce a smooth structure on E is to equip it first with the standard Fréchet topology
(as defined below) and use this topology to define functional derivatives on E.

Definition 3.2 Let � ⊂ R
n be an open subset and C∞(�, R) ≡ E (�) the space of

smooth functions on it. We equip this space with a Fréchet topology generated by
the family of seminorms:

pK,m(ϕ) = sup
x∈K

|α|≤m

|∂αϕ(x)|, (3.1)

where α ∈ N
N is a multiindex, N ∈ N, and K ⊂ � is a compact set. This is just the

topology of uniform convergence of all the derivatives on compact sets.

The definition above can be applied to define a Fréchet topology on C∞(M, R)

with the use of coordinate charts, as M is locally R
4. It also generalizes easily to the

vector-valued case E = �(E→M). We will always assume that E is equipped with
this Fréchet topology.

Next we introduce a natural topology on the space of compactly supported func-
tions D(M)

.= C∞
c (M, R). This topology is locally convex, but is not Fréchet.

Definition 3.3 Let D(�)
.= C∞

c (�, R), � ⊂ R. The fundamental system of semi-
norms on D(�) is given by:

p{m},{ε},a(ϕ) = sup
ν

(
sup
|x|≥ν,

|p|≤mν

∣
∣Dpϕa(x)

∣
∣/εν

)
, (3.2)

where {m} is an increasing sequence of positive numbers going to +∞ and {ε} is a
decreasing one tending to 0.

The generalization of the above topology to the vector-valued case Ec
.=

�c(E → M) is straightforward.

Remark 3.1 We can also consider situations in which the configuration space E is
not a vector space, but still can be made into an infinite dimensional affine manifold
in the sense of [Mic84]. This happens for example with the space of all Lorentzian
metrics or the space of gauge connections, but this is beyond the scope of this book.

3.2 Functionals on the Configuration Space

Wemodel classical and quantum observables as smooth functions on E. Intuitively, a
classical measurement assigns a real number to a field configuration. The smoothness
condition is a regularity requirement which we need in our formalism in order to
introduce various algebraic structures on the space of functionals. The main feature
of the functional approach, which we advocate in this book, is that both the classical



3.2 Functionals on the Configuration Space 41

and quantum theory are defined in terms of the same set of functionals and differ
by algebraic structures on this set. The classical theory is defined in terms of a
Poisson bracket while the quantum theory in terms of a non-commutative product.
We will construct these structures for the scalar field in Chaps. 4, 5 and 6, but first
we need to define the underlying space of functionals, which is the main subject of
the present section. Having the quantization in mind, we work from the start with
complex-valued functionals.

For functions on E, the smoothness is understood in the sense of Bastiani calculus
[Bas64, Ham82, Mil84, Nee06], i.e.

Definition 3.4 (after [Nee06]) Let X and Y be topological vector spaces, U ⊆ X an
open set and f : U → Y a map. The derivative of f at x ∈ U in the direction of h ∈ X

is defined as
〈
f (1)(x), h

〉 .= lim
t→0

1

t
(f (x + th) − f (x)) (3.3)

whenever the limit exists. The function f is called differentiable at x if
〈
f (1)(x), h

〉

exists for all h ∈ X. It is called continuously differentiable if it is differentiable at all
points of U and f (1) : U × X → Y, (x, h) �→ 〈

f (1)(x), h
〉
is a continuous map. It is

called aC1-map if it is continuous and continuously differentiable. Higher derivatives
are defined by

〈
f (k)(x), v1 ⊗ · · · ⊗ vk

〉 .= ∂k

∂t1 . . . ∂tk
f (x + t1v1 + · · · + tkvk)

∣
∣
∣
∣
t1=···=tk=0

, (3.4)

and f is Ck if f (k) is jointly continuous as a map U ×Xk → Y. We say that f is smooth
if it is Ck for all k ∈ N.

This notion of differentiability is also referred to as Michal-Bastiani differen-
tiability, since the definition of differentiability at a point is equivalent to the one
proposed by Michal [Mic38, Mic40]. However, Bastiani differentiability on an open
set is a stronger notion.

We apply this to define derivatives of C-valued functionals F on E. By definition
F(1)(ϕ), if it exists, is an element of the complexified dual space E′C .= E′ ⊗C. More
generally, we have the following result.

Proposition 3.1 Let F : E → C be a Bastiani smooth functional, then

(i) F(n)(ϕ) is a linear continuous map from En to C,
(ii) F(n)(ϕ) induces a continuous map on the completed projective tensor product

E⊗̂πk ∼= �(E�n → Mn), where � is the exterior tensor products of vector
bundles, defined below in Definition3.6. Here we denote the map on E⊗̂πk by the
same symbol as the original differential, i.e. F(n)(ϕ).

http://dx.doi.org/10.1007/978-3-319-25901-7_4
http://dx.doi.org/10.1007/978-3-319-25901-7_5
http://dx.doi.org/10.1007/978-3-319-25901-7_6
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Proof Property (i) follows directly from the definition of continuous differentiability.
For (ii) it is crucial thatE is a Fréchet space. For the proof of the claim, see for example
[Tre06]. �

Definition 3.5 (after [BGP07]) Let E1
π1−→ M1, E2

π2−→ M2 be two vector bundles
over M1 and M2 with fibers V1, V2 respectively. The exterior tensor product E1 � E2

is defined as the vector bundle over M1 × M2, whose fiber over (x, y) ∈ M1 × M2 is
E1x ⊗ E2y, where E1x is the fibre of E1 over x and E2y is the fibre of E2 over y.

This definition has to be contrasted with the definition of the ordinary tensor
product of vector bundles.

Definition 3.6 The tensor product of vector bundles E1
π1−→ M, E2

π2−→ M is a vector
bundle over M, denoted by E1 ⊗ E2 whose fiber over a point x ∈ M is the tensor
product of vector spaces E1x ⊗ E2x.

It is clear from the discussion above that in order to better understand the behavior
of functional derivatives of smooth functionals on E we need to bring some notions
from the theory of distributions into our framework.

Definition 3.7 The space of distributions on� ⊂ R
n is defined to be the dualD ′(�)

of D(�) with respect to the topology given in the Definition3.3.

Equivalently, given a linear map L on D(�) we can decide if it is a distribution
by checking one of the equivalent conditions given in the theorem below [Tre06,
Rud91, Hor03].

Theorem 3.1 A linear map u on D(�) is a distribution if it satisfies the following
equivalent conditions:

1. To every compact subset K of � there exists an integer k and a constant C > 0
such that for all ϕ ∈ D(�) with support contained in K

|u(ϕ)| ≤ C max
p≤k

sup
x∈�

|∂pϕ(x)|.

We call ||u||Ck(�)
.= maxp≤k supx∈� |∂pϕ(x)| the Ck-norm and if the same integer

k can be used in all K for a given distribution u, then we say that u is of order k.
2. If a sequence of test functions {ϕl}, as well as all their derivatives converge

uniformly to 0 and if all the test functions ϕl have their supports contained in a
compact subset K ⊂ � independent of the index l, then u(ϕl) → 0.

Proof See for example [Hor03]. �

The localization of a distribution is characterised by its support.

Definition 3.8 Let u ∈ D ′(�). The support supp u of a distribution u ∈ D ′(�) is
the smallest closed set O such that u|�\O = 0. In other words:

supp u
.= {x ∈ �|∀x ∈ U ⊂ � open ∃ϕ ∈ D(�), supp ϕ ⊂ U, u(ϕ) �= 0}.
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Definition 3.9 LetE (�) denote the space of smooth functions on�with its standard
Fréchet topology (see Definition3.2).

Proposition 3.2 (after [Hor03, Hor12]) E ′(�), the topological dual of E (�), is the
space of compactly supported distributions.

The regularity of a distribution can be characterized in terms of the falloff condi-
tions for its Fourier transform.

Theorem 3.2 A distribution u ∈ E ′(�) is smooth if and only if for every N there is
a constant CN such that:

|û(k)| ≤ CN (1 + |k|)−N ,

where û denotes the Fourier transform of u.

Proof See for example [Hor03]. �
Definition 3.10 The singular support of a distribution u is the complement of the
largest open set on which u is smooth.

If a distribution has a nonempty singular support we can give a further character-
ization of its singularity structure by specifying the direction in which it is singular.
This is exactly the purpose of the definition of a wave front set.

Definition 3.11 For a distribution u ∈ D ′(�) the wavefront set WF(u) is the com-
plement in �× (Rn \ {0}) of the set of points (x, k0) ∈ �× (Rn \ {0}) such that there
exist

• a function f ∈ D(�) with f (x) = 1,
• an open conic neighborhood C of k0, with

sup
k∈C

(1 + |k|)N |̂f · u(k)| < ∞ ∀N ∈ N0.

On a manifold M the definition of the Fourier transform depends on the choice of
a chart, but the property of strong decay in some direction (characterized now by a
point (x, k), k �= 0 of the cotangent bundle T∗M) turns out to be independent of this
choice. Therefore the wave front (WF) set of a distribution on a manifold M is a well
defined closed conical subset of Ṫ∗M, the cotangent bundle (with the zero section
removed).

Wavefront sets provide us with a simple criterion for the existence of point-wise
products distributions. Before we give it, we prove a more general result concerning
the pullback. We will present all the proofs in the context of distributions on R

n. The
generalization can be found in [BGP07] and is mentioned also in [Hor03].

We follow closely [BF09a, Hor03]. Let α : � → �̃ be a smooth map between
� ⊂ R

m and �̃ ⊂ R
n. We define the normal set Nα of the map α as:

Nα
.= {(α(x), η) ∈ �̃ × R

n|(dαx)
T (η) = 0},

where (dαx)
T is the transposition of the differential of α at x.
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Theorem 3.3 Let � be a closed cone1 �̃×(Rn \{0}) and α : � → �̃ as above, such
that Nα ∩ � = ∅. Then the pullback α∗ : E (�) → E (�̃) has a unique, sequentially
continuous extension to a sequentially continuous map D ′

�(�̃) → D ′(�), where
D ′

�(�̃) denotes the space of distributions with WF sets contained in �.

Proof For proof see [BF09a, Hor03]. �

Using this theorem we can define the pointwise product of two distributions t, s
on an n-dimensional manifoldM as a pullback by the diagonal mapD : M → M ×M
if the pointwise sum of their wave front sets

WF(t) + WF(s) = {(x, k + k′)|(x, k) ∈ WF(t), (x, k′) ∈ WF(s)},

does not intersect the zero section of T∗M (see Theorem8.2.10 of [Hor03]). To
see that this is the right criterion, note that the set of normals of the diagonal map
D : x �→ (x, x) is given by ND = {(x, x, k,−k)|x ∈ M, k ∈ T∗M}. The product ts is
then defined by: ts = D∗(t ⊗ s) and if one of t, s is compactly supported, then so is
ts and we define the pointwise product by 〈t, s〉 .= t̂s(0). Another way of seeing that
the construction works is to look at the Fourier transformed version. For t, s ∈ E (�)

we have

〈ts, f g〉 = 1

(2π)n

∫

t̂f (k)ŝg(−k)dk, (3.5)

where f , g ∈ D(�) are chosen with sufficiently small support. We will now give a
brief argument for why the integral above converges. Note that if k �= 0, then either
t̂f is fast-decaying in a conical neighborhood around k or ŝg is fast-decaying in a
conical neighborhood around −k, while the other factor is polynomially bounded.

Motivated by the criterion above we can distinguish certain important classes of
functionals by analyzing the WF set properties of their derivatives. Before we move
to this task, there is one more concept we need to introduce first. Following the spirit
of AQFT we would like to define some notion of localization (on spacetime) of the
functionals we consider. Later on we will construct algebraic structures associated
to bounded regions of M, so we need to be able to decide if a given observable
(modeled as a smooth functional) belongs to a given region or not. We achieve this
by introducing the notion of the spacetime support.

Definition 3.12 Let F be a map from X = �(E → M) to Y, where E is a vector
bundle over M and Y is a set. The spacetime support of F is defined by

supp F
.= {x ∈ M|∀ neighborhoods U of x ∃ϕ,ψ ∈ X, supp ψ ⊂ U, (3.6)

such that F(ϕ + ψ) �= F(ϕ)}.

1We say that a subset � of �̃ × (Rn \ {0}) is a cone if (x,λk) ∈ � whenever (x, k) ∈ �, λ > 0. A
cone is said to be closed (open) if it is closed (open) in �̃ × (Rn \ {0}).
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Herewe rely on the fact that�(E → M) is equippedwith a linear structure, but the
concept of spacetime support generalizes to the case where X is a space of sections
of an arbitrary bundle over M [BFR13]. Note that if F is linear and X = C∞

c (�, R),
where � ⊂ R

n, then Definition3.12 reduces to the Definition3.8.
An even closer relation between the distributional support and the spacetime

support of a functional can be seen in the following result [BDLGR16]:

supp F =
⋃

ϕ∈E
supp (F(1)(ϕ)).

The concept of spacetime support also applies to functions of several variables.

Definition 3.13 LetF be amapon the productX ≡ �(E1 → M)×· · ·×�(Ek → M)

taking values in a set Y. Then the spacetime support of F is defined as

supp F
.= {x ∈ M|∀ neighborhoods U of x ∃ϕ = (ϕ1, . . . ϕk) ∈ X

and ψ ∈ �(Ei → M) for some i ∈ {1, . . . , k}, suppψ ⊂ U, (3.7)

such that F(ϕ1, . . . ,ϕi + ψ, . . . ,ϕk) �= F(ϕ)}.

We have already seen that functional derivatives of Bastiani smooth functionals
on E are compactly supported distributions. Further restrictions on regularity and
support of distributions appearing as functional derivatives are obtained for local
functionals.

Definition 3.14 A functional F ∈ C∞(E, C) is called local (an element of Floc) if
for each ϕ0 ∈ E there exists an open neighbourhood V in E and k ∈ N such that for
all ϕ ∈ V we have

F(ϕ) =
∫

M
α(jk

x(ϕ)), (3.8)

where jk
x(ϕ) is the kth jet prolongation of ϕ and α is a density-valued function on the

jet bundle.

Remark 3.2 If F is local then F(n)(ϕ) is a distribution supported on the thin diagonal

Diagn
.= {(x1, . . . , xn) ∈ Mn, x1 = · · · = xn}.

We equip the space Floc of local functionals on the configuration space with the
pointwise product using the prescription

(F · G)(ϕ)
.= F(ϕ)G(ϕ), (3.9)

where ϕ ∈ E. Floc is not closed under this product, but we can consider instead the
space F of multilocal functionals, which is defined as the algebraic closure of Floc

under the product (3.9). We introduce the involution operator ∗ on F using complex
conjugation, i.e.
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F∗(ϕ)
.= F(ϕ).

In this way we obtain a commutative ∗-algebra.
Local and multilocal functionals satisfy some important regularity properties.

Firstly, for local functionals the wavefront set of F(n)(ϕ) is orthogonal to TDiagn,
the tangent bundle of the thin diagonal. In particular, F(1)(ϕ) has empty wavefront
set, and so is smooth for each fixed ϕ ∈ E. The latter is true also for multilocal
functionals, i.e. for F ∈ F. Note that using the invariant volume form μg we can
therefore identify F(1)(ϕ) with an element of E∗c

c
.= �C

c (E
∗ → M), where E∗ is the

dual bundle of E and we denote its fiber by V ∗ (algebraic dual of V ).
Actually, one can characterize locality in an abstract way, using Bastiani smooth-

ness and WF set properties as well as support properties of the first and the second
derivative. The following result will be proven in [BDLGR16], based on the ideas
of [BFR12].

Theorem 3.4 Let U be an open subset of E (M)
.= C∞(M, R) and F : U → R be

smooth in the sense of Bastiani. Assume that

1. F is additive.
2. For every ϕ ∈ U, the differential F(1)(ϕ) of F at ϕ has empty WF set and the

induced map F(1) : U → D(M) is Bastiani smooth.

Then, for every ϕ ∈ U, there is a neighborhood V of the origin, an integer k and
a smooth real-valued function f on the k-jet bundle Jk(M) such that F(ϕ + ψ) =∫

M f (jk
xψ)dμg(x) for every ψ ∈ V , where jk

xψ is the k-jet of ψ at x.

Another class of functionalswith nice properties is the space of regular functionals
Freg.

Definition 3.15 A functional F ∈ C∞(E, C) is called regular if for all ϕ ∈ E and
n ∈ N the WF set of F(n)(ϕ) (seen as a distribution in �′C(E�n → Mn) by means of
the Proposition 3.1) is empty. Equivalently this means that we can identify

F(n)(ϕ) ∈ �C

c ((E
∗)�n → Mn) .

The space of regular functionals is denoted by Freg.

Note that a local functional can be regular if and only if it is at most linear in ϕ.

3.3 Fermionic Field Configurations

Up to nowwe have treated configuration spaces that are ordinary infinite dimensional
manifolds. Nowwewill consider a situation where the configuration space is graded.
Physically this becomes relevant whenwewant to describe fermionic field configura-
tions, like for example matter fields in QED (Dirac fields). Here we will use the term
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“fermionic” in the sense of “anticommuting”, rather than “non-integer spin”. The
later context is related to the spin-statistic theorem (see [SW00]), which, however,
doesn’t apply to auxiliary, non-physical field variables like ghosts and antighosts that
will be introduced in Chap.7.

There are several ways to define graded manifolds geometrically, and in the
infinite dimensional context the approach proposed by [Sac08] seems to be the most
appropriate. Here, however, we are not interested in the structure of gradedmanifolds
themselves, but we take the algebraic point of view and focus on their rings of
polynomial functions. As in earlier chapters we denote by E the space of sections of
some vector bundle E

π−→ M (this could be for example the Dirac bundle describing
the electrons in QED). Unless stated otherwise, E′ is understood as the strong dual
(i.e. topological dual space equipped with the topology of uniform convergence on
bounded sets of E).

We want to give meaning to the notion of odd E, i.e. E[1], where the number
in square brackets denotes the degree shift. We characterize this space in terms of
its ring of functions O(E[1]) and call the latter the space of antisymmetric func-
tionals on E. Before we can make this notion precise we quote a known result
from [Buc72].

Theorem 3.5 Let X, Y be two Fréchet spaces, one of which has the approximation
property (see the Definition3.16 below). Then

(i) X′⊗̂πY
′ ∼= (X⊗̂εY)′,

(ii) X′⊗̂εY
′ ∼= (X⊗̂πY)′,

where all the duals are meant as the strong duals.

Proof See [Buc72]. �

The approximation property is essentially reflecting how well the space of con-
tinuus linear maps from the given space is approximated by the tensor product with
its dual. More precisely:

Definition 3.16 Let X,Y be Hausdorff locally convex vector spaces and B be the
family of bounded sets of the completion of E (i.e. a bornology, see Definition3.17).
Let τB be the topology of uniformconvergence on bounded sets it induces onL(X,Y).
We say that X has the (sequential) approximation property if one of the following
equivalent conditions holds:

1. X′ ⊗ Y is (sequentially) dense in (L(X,Y), τB) for every Y,
2. X′ ⊗ X is (sequentially) dense in (L(X,X), τB),
3. idX is the τB-limit of some (sequence) net in X′ ⊗ X.

In the definition above we have used the notion of bornology, which will become
useful later on, so here we spell out the precise definition.

http://dx.doi.org/10.1007/978-3-319-25901-7_7
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Definition 3.17 A bornology on a set X is a family B of subsets of X (called the
bounded (sub)sets of X) such that:

(i) every one-element subset of X belongs to B,
(ii) if A ∈ B and B ⊂ A then B ∈ B,
(iii) if A and B are in B then A ∪ B ∈ B.

We can prove the following useful result concerning tensor products of E and its
strong dual.

Proposition 3.3 �′(E�n → Mn), the strong dual of �(E�n → Mn) is isomorphic
to �′(E)⊗̂πn.

Proof Since �(E) is Fréchet and has the approximation property (see [Jar12]), we
have (�(E)⊗̂πn)′ ∼= �′(E)⊗̂εn. From the nuclearity of �′(E) follows that the later can
be identified with �′(E)⊗̂πn. As �(E)⊗̂πn ∼= �(E�n → Mn), we obtain

�′(E�n → Mn) ∼= �′(E)⊗̂πn.

�

Next wewant to make precise the notion of antisymmetric functionals. Recall that∧n
X, the nth exterior tensor power of a complex vector space X, can be identified2

with the image of the anti-symmetrization operator A : X⊗n → X⊗n induced by the
multi-linear map

Xn → X⊗n,

(v1, . . . , vn) �→ 1

n!
∑

σ∈Sn

sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(n).

This identification allows us to treat
∧n

X as a subspace of X⊗n and hence equip it
with the induced projective tensor product topology. The same can be done for the
symmetric tensor product. We use this fact in the following definition.

Definition 3.18 Let E
π−→ M be a vector bundle with fiber V .

(i) We define �′
a(E

�n → Mn) as the completion of �′(E)
∧n with respect to the

topology of �′(E)⊗̂πn. The subscript “a” stands for antisymmetry.
(ii) Analogously, �′

s(E
�n → Mn) is the completion of the symmetric tensor product

�′(E)
⊗sn.

(iii) This generalizes. The completion of �′(E1)
∧p ⊗ �′(E2)

⊗sq will be denoted by
�′

p|q(E
�p
1 � E2

�q → Mp+q). In general we consider labels which are arbitrary
finite sequences of the type p1|p2|p3| . . . |pk , where integers in boldface indi-
cate the antisymmetric factors and the remaining indices correspond to totally
symmetric factors.

2This holds true, because C is a field of characteristic 0.
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Definition 3.19 We define O(E[1]), the space of odd (antisymmetric) functionals
on E as

A
.=

∞∏

k=0

Ak .=
∞∏

k=0

�′
a(E

�k → Mk) ⊗ C,

where the notation �′
a is clarified in Definition3.18.

The elements of A can be written as (possibly infinite) sequences: T = (Tk)k∈N,
where the components Tk ∈ Ak are referred to as homogeneous functionals. It is
convenient to introduce a notation for such functionals, which is commonly used in
physics

Definition 3.20 Let E = �(E → M) with fiber V . Choose a basis on the fiber
labelled by the index set I . For α ∈ I , x ∈ M, define �α

x ∈ E′ as the evaluation
functional

�α
x (ϕ)

.= ϕα(x).

Formally, we can write elements of T ∈ Ak in terms of integral kernels

T(u1 ⊗ · · · ⊗ uk)

=
∑

α1,...,αk

∫

T(x1, . . . , xk)α1,...,αk u1(x1)
α1 . . . uk(xk)

αk dμ(x1) . . . dμ(xk).

Wecan alsowrite this in terms of evaluation functionals, defined inDefinition3.20, as

T =
∑

α1,...,αk

∫

T(x1, . . . , xk)α1,...,αk �
α1
x1 . . . �αk

xk
dμ(x1) . . . dμ(xk).

Using this notation we are able to translate some formal expressions used in the
physics literature into our framework. The key point is that in physics one usually
identifies �α

x ’s with some abstract Grassmann-valued functions. We refrain from
that interpretation, since we want to avoid dealing with infinitely many Grassmann
parameters. Instead we treat �α

x ’s as honest, real-valued functionals. This viewpoint
on functionals of Fermionic fields has been proposed in [Rej11b].

The generalization of the Definition3.19 to the graded case is straightforward.

Definition 3.21 Define O(E0 ⊕ E1[1] ⊕ E2[2]) as C∞(E0,A), where

A
.=

∞∏

k=0
p+q=k

�′
p|q(E

�p
1 � E�q

2 → Mk) ⊗ C.

Adding further terms to E0 ⊕ E1[1] ⊕ E2[2] is reflected by adding further factors
in p|q, where odd degrees contribute antisymmetric tensor powers and even degrees
contribute symmetric tensor powers.
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We also introduce the notation

Ok(E0 ⊕ E1[1] ⊕ E2[2]) .= C∞(E0,A
k),

where Ak .= ⊕
p+q=k �′

p|q(E
�p
1 � E�q

2 → Mk) ⊗ C.

Remark 3.3 For the future reference, we make a distinction between O(E) and
O(E[0]). The former is always understood as the space of smooth functionals, while
the latter is the space of (potentially infinite) series in symmetric tensor products,
without any notion of convergence. We make this distinction in Sect. 7, where we
need formal objects of the type O(E[0]).

Next we introduce the notion of a derivative of a graded functional.

Definition 3.22 Let F ∈ Ak , u ∈ E⊗k−1, h ∈ E.

(i) The left derivative of F at u in the direction of h is defined by

〈
δlF

δϕ
(u), h

〉
.= F(h ∧ u), k > 0

δlF

δϕ
= 0 F ∈ A0.

We extend this definition to A by linearity.

(ii) Analogously, the right derivative of F at u in the direction of h is defined by

〈
δrF

δϕ
(u), h

〉
.= F(u ∧ h), k > 0

δrF

δϕ
= 0 F ∈ A0.

Clearly, for F ∈ A,
〈
δlF
δϕ

(.), h
〉
is an element of A and we can think of δlF

δϕ
as a

distribution (i.e. continuous linearmap) onEwith values in the graded algebraA. This
point of view has been adapted in [Rej11b]. We equip the space of such distributions
with the strong topology (the topology of uniform convergence on bounded sets)
and use the notation Lb(E,A). The theory of distributions taking values in general
locally convex vector spaces has been developed in [Sch57, Sch58]. One can define
the notions of convolution, Fourier transform and WF set for such objects. We also
have the analogue of Theorem3.3. The following definitions allow us to distinguish
important classes of graded functionals. For simplicity of notation we only explicitly
spell out the case where the configuration space is E0 ⊕E1[1]. By definition, we can
differentiate elements of O(E0 ⊕ E1[1]) as functionals on E0. The n-th derivative of
F ∈ O(E0,A) at a point ϕ ∈ E0 will be denoted by F(n)(ϕ) or δF

δϕ0
(ϕ), to distinguish

it from the graded derivative δlF(ϕ)

δϕ1
on A.

http://dx.doi.org/10.1007/978-3-319-25901-7_7
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Definition 3.23 The support of a graded functional F ∈ C∞(E0,A
k) is defined by

⋃

ϕ∈E0,u∈E⊗̂π k
1

supp

(
δF

δϕ0
(ϕ; u)

)

∪
⋃

ϕ∈E0,u∈E⊗̂π k−1
1

supp

(
δlF(ϕ)

δϕ1
(u)

)

,

where δ
δϕ0

denotes the usual Bastiani derivative with respect to the variable in E0,

while δl
δϕ1

is the graded derivative on A, defined in Definition3.22. The definition
of support generalizes to the case of E0 ⊕ E1[r1] ⊕ . . .EN [rN ], r1, . . . , rN ∈ N by
adding further terms in the union.

Definition 3.24 A graded functional F ∈ C∞(E0,A
k) is called local (an element of

C∞
loc(E0,A

k)) if it is compactly supported and for each ϕ ∈ E there exist k ∈ N and
i0, . . . , ik such that

F(ϕ; h1, . . . , hk) =
∫

M
α(ji0

x (ϕ), ji1
x (h1), . . . , jik

x (hk)) , (3.10)

where ϕ ∈ E0, h1, . . . , hk ∈ E1 and α is a density-valued function on the jet bundle.
We denote

Oloc(E0 ⊕ E1[1]) .=
∞∏

k=0

C∞
loc(E0,A

k).

Definition 3.25 We equip O(E0 ⊕ E1[1]) with the antisymmetric product:

〈
(F ∧ G)(ϕ); h1, . . . , hp+q

〉

.= 1

p!q!
∑

σ∈Sp+q

sgn(σ)
〈
F(ϕ); hσ(1), . . . , hσ(p)

〉 〈
G(ϕ); hσ(p+1), . . . , hσ(p+q)

〉
,

(3.11)

where F and G are of degree p and q respectively, ϕ ∈ E0 and hi ∈ E1.

Definition 3.26 We define Oml(E0 ⊕ E1[1])C∞
ml(E0,A) as the algebraic completion

of Oloc(E0 ⊕ E1[1]) with respect to the graded product ∧.
The following result allows us to characterize derivatives of compactly supported

functionals.

Proposition 3.4 Let F ∈ Ok(E0 ⊕ E1[1]) .= C∞(E0,A
k) be compactly supported,

then the n-the derivative of F can be extended to an element of

�′C(E�n
0 � E�k

1 → Mk+n) ∼= (E′
0)

⊗̂πn⊗̂π(E
′
1)

⊗̂πk ⊗ C,

for all ϕ ∈ E0 and we denote this extension also by F(n)(ϕ).
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Proof We start with F(1). By definition F(1)(ϕ) is a continuous linear map from
E0 to (E′

1)
⊗̂πk ⊗ C, and so is a vector-valued distribution in Lb(E0, (E

′
1)

⊗̂πk) ⊗ C.
Since E0 is a Montel space, the bounded sets are the same as equicontinuous sets,
so Lb(E0, (E

′
1)

⊗̂πk) is identified with Lε(E0, (E
′
1)

⊗̂πk), the space with the topology
of uniform convergence on equicontinuous sets. The latter is then isomorphic to
E′
0⊗̂ε(E

′
1)

⊗̂πk , since both arguments are complete and have the approximation prop-
erty. Next we use the fact thatE′

0 and (E′
1)

⊗̂πk are nuclear to conclude that the injective
product can be replaced with the projective product. Finally, we use Buchwalter’s
Theorem3.5 to conclude that

F(1)(ϕ) ∈ (E′
0)⊗̂π(E

′
1)

⊗̂πk ⊗ C ∼= �′C(E0 � E�k
1 → Mk+1),

for all ϕ ∈ E0. By iterating this procedure we obtain the result for all n. �

In analogy to the bosonic case, we can conclude that for a local functional F ∈
Ok

loc(E0 ⊕ E1[1]), the WF set of F(n)(ϕ) ∈ �′(E�n
0 � E�k

1 → Mk+n) is orthogonal
to TDiagk+n, the tangent bundle of the thin diagonal.

3.4 Vector Fields

In this section we define some important geometrical structures on E. Firstly, note
that we can view E (in a trivial way) as an infinite dimensional manifold modeled on
a locally convex topological vector space (a Fréchet space in this case). For a precise
definition of infinite dimensional manifolds see [KM97, Nee06]. The tangent space
to E is then given by

TE = E × E,

and smooth vector fields are smooth sections

�(TE) ∼= C∞(E,E).

As in the finite dimensional situation, vector fields on E form a Lie algebra, where
the Lie bracket is given by the commutator [., .].

We can also define differential forms on E, but here the definition is a bit more
tricky than for vector fields. In [Nee06] one uses the following

Definition 3.27 Let X be a differentiable manifold (possibly infinite dimensional)
and Y a locally convex topological vector space, then a Y-valued p-form on X is
a function that associates to each x ∈ X a p-linear alternating map ωx = ω(x) :
(TxX)p → Y such that in local coordinates themap (x, v1, . . . , vp) �→ ωx(v1, . . . , vp)

is smooth.

It follows fromProposition3.1 that first derivatives of Bastiani smooth functionals
are 1-forms in the above sense. However, later on we will need objects more general
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than these, so it is better to modify the concepts of vector fields and forms already
at this point.

We are interested in the complexification of �(TE), i.e. in �C(TE). This space
can be identified with C∞(E,EC). As we did with the functionals, we want to require
vector fields to be compactly supported in some sense. There are two possibilities
here; we can view a vector field X as an element of C∞(E,EC) or as a derivation on
C∞(E, R). The notion of support that we invoke here takes both these aspects into
account. First, we restrict ourselves to vector fields that are elements of C∞(E,EC

c).
We define the support as follows.

Definition 3.28 Let X ∈ C∞(E,EC

c) be a vector field. We define

supp X =
⋃

ϕ∈E
supp (X(1)(ϕ)) ∪

⋃

ϕ∈E
supp (X(ϕ)) (3.12)

From now on we will consider only vector fields that are compactly supported.
This implies that in particular they need to induce elements of C∞(E,EC

c). The first
part of the formula (3.12) refers to the support of X, as a function on E. The second
term is the support of X seen as a derivation. Next we define locality.

Definition 3.29 Let Vloc ⊂ �C(TE) denote the space of compactly supported com-
plexified vector fields X that can be written in the form

X(ϕ)(x) = X̃(jk
x(ϕ)) ≡ Xx(ϕ),

where k ∈ N and X̃ is some Ec-valued function on the jet bundle. Such vector fields
are called local.

Note that elements of Vloc are derivations of Floc and Vloc is a Lie subalgebra
(over C) of �C(TE), where the Lie bracket is given by the commutator of vector
fields. However, it is not an F-submodule of �C(TE). In the next step we define
multivector fields. We use a definition that differs from the standard one used in
the literature, but is more natural in our context. Let us start with some motivation.
Firstly, we want to be able to insert a differential F(1) of a local functional into a
local bi-vector field and the result should be an element of Vloc. Secondly, we want
antisymmetry, some smoothness conditions and the compact support requirement.
Locality implies that we have to consider objects more general than just elements of
C∞(E,EC

c ∧ EC

c), which would be the standard notion of the space of bi-vector fields
on an infinite dimensional manifold. Instead, we use the framework introduced in
Sect. 3.3 and view the complexified multivector fields as O(T∗[1]E), where T∗[1]E
is the odd cotangent bundle of E, i.e.

T∗[1]E .= E ⊕ E∗[1],
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where E∗ .= �(E∗ → M). The notion of functions on a graded space has been
clarified in Definition3.21. Among all elements of O(T∗[1]E) we distinguish the
local ones.

Definition 3.30 The space of local multivector fields is defined as Oloc(E ⊕ E∗[1])
in the sense of Definition3.24.

In particular, we identify Vloc with O1
loc(E ⊕ E∗[1]). Note that the notion of the

support of a vector field which we have introduced in Definition3.12 is now just a
special case of Definition3.23. The space of local multivector fields defined this way
is closed under insertion of differentials F(1) of local functionals, as required.

In the next step we introduce multilocal multivector fields.

Definition 3.31 The space ofmultilocal multivector fields
∧

V is defined asOml(E⊕
E∗[1]), in the sense of Definition3.26. We also denote V

.= O1
ml(E ⊕ E∗[1]).

Remark 3.4 Note that V is just the algebraic completion of Vloc as a F-module and
a Lie subalgebra (over C) of �C(TE). Elements of V are derivations of F.

At this point it is convenient to introduce some notation. The action of a vector
field X ∈ V on a functional F ∈ F can be written as

(∂XF)(ϕ) = 〈
F(1)(ϕ), X(ϕ)

〉
.

As F(1)(ϕ) is represented be a certain integration measure formally written as δF
δϕ(x) ,

we can use the notation

(∂XF)(ϕ) =
∫

M
Xx(ϕ)

δF

δϕ(x)
,

which motivates the following:

X =
∫

M
Xx

δ

δϕ(x)
.

This notation is analogous to the one adopted in the finite dimensional case, i.e.
v = ∑N

i=1 vi∂i, where v ∈ �(TR
N ). In the physics literature this formal notation

is commonly used, but one replaces δ
δϕ(x) with a formal generator ϕ‡(x) called the

antifield, i.e.

X(ϕ,ϕ‡) =
∫

M
Xx(ϕ)ϕ‡(x)

This way, vector fields in our approach can be identified with functions of ϕ and ϕ‡

present in other approaches. Similarly, we write k-vector fields Y ∈ ∧k
V in the form

Y(ϕ) =
∫

M
Y(ϕ)(x1, . . . , xk)

δ

δϕ(x1)
. . .

δ

δϕ(xk)
,
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where all the indices of the fiber V ∗ have been suppressed and Y(ϕ)(x1, . . . , xk) is a
distributional kernel with antisymmetry properties reflecting Definition3.18. If Y is
local, then this distribution is supported on the thin diagonal. In the antifield notation
we express Y as

Y(ϕ,ϕ‡) =
∫

M
Y(ϕ)(x1, . . . , xk)ϕ

‡(x1) . . . ϕ‡(xk).

This notation is actually not as formal as it seems, if we interpret ϕ‡(x) as an evalu-
ation functional, i.e. ϕ‡

α(x)(v)
.= vα(x), where v ∈ E∗. We can then understand the

above formula as a definition of an antisymmetric k-form on E∗

〈
Y(ϕ,ϕ‡); v1, . . . , vk

〉 =
∫

M
Y(ϕ)(x1, . . . , xk)v(x1) . . . v(xk),

where we have suppressed all the indices of the fiber V ∗ and we do not need to
antisymmetrize, as Y(ϕ)(x1, . . . , xk) is already antisymmetric. This agrees with the
formal notation introduced in Sect. 3.3.

3.5 Functorial Interpretation

All the constructions we have performed can be done covariantly across all space-
times, so we can reformulate them in the category theory language.

Definition 3.32 The configuration space functor is a contravariant functor E from
Loc toVec, such that for allM ∈ Obj(Loc),E(M) is a configuration space according
to the Definition3.1.

Let us consider some examples.

Example 3.2 For the theory of scalar fields, the configuration space functor E is a
contravariant functor (similar to a covariant functor, but reverses direction of the
arrows) from Loc to Vec, defined by

E(M) = C∞(M, R),

Eχ = χ∗,

where M = (M, g) ∈ Obj(Loc) and for a morphism χ ∈ Hom(M,N) we have the
pullback χ∗ : E(N) → E(M) defined by

χ∗ϕ .= ϕ ◦ χ,

where ϕ ∈ E(N).
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This definition generalizes in a straightforward way to the case where E(M) is
defined as the space of k-forms on M, since the pullback is still well defined. For
k-vectors we use the metric g to obtain k-forms, so we can define pullbacks of arbi-
trary tensor fields.

Example 3.3 For effective quantum gravity we set

E(M) = �((T∗M)⊗2),

Eχ = χ∗,

where
(χ∗h)(u, v)

.= h ◦ χ(Tχ(u), Tχ(v)),

where χ : M → N, u, v ∈ �(TM), h ∈ E(N) and Tχ is the tangent map.

The generalization to forms taking values in a fixed vector space is also straight-
forward.

Example 3.4 For Yang-Mills theories with a trivial bundle we set

E(M) = �1(M, k),

Eχ = χ∗,

where
(χ∗A)(u)

.= h ◦ χ(Tχ(u)),

where χ : M → N, u ∈ �(TM), A ∈ E(N).

Given E, the spaces of local and multilocal functionals are assigned to spacetimes
in a functorial way.

Proposition 3.5 The space of local functionals is a functor Floc : Loc → Vec. So
is the space of multilocal functionals F : Loc → Vec.

Proof WesetFloc(M)
.= Floc(M) andF(M)

.= F(M) for the objects andFlocχ(F)(ϕ)
.= F(Eχϕ), Fχ(G)(ϕ)

.= F(Eχϕ) for the morphisms, where χ ∈ Hom(M,N),
F ∈ Floc(M), G ∈ F(M) and χ ∈ E(N). �

The space of configurations is in a natural way a contravariant functor, but the
space of compactly supported configurations can be assigned to a spacetime in a
covariant way. As an example, consider the space of test functions in Definition2.65.
This motivates the following definition

Definition 3.33 The space of compactly supported configurations Ec is a covariant
functor from Loc to Vec, which acts on the objects as Ec(M) = Ec(M) and maps
morphisms χ ∈ Hom(Loc) to appropriate pushforwards χ∗.

http://dx.doi.org/10.1007/978-3-319-25901-7_2
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The vector fields on E that we consider are maps from E to Ec, so they transform
covariantly.

Proposition 3.6 Given E and Ec, the space of multi-local vector fields is a functor
V : Loc → Vec, the same holds for local vector fields.

Proof We setV(M)
.= V(M) andVχ(X)

.= Ecχ◦X ◦Eχ, where χ ∈ Hom(M,N),
X ∈ V(M). The same for local vector fields. �
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Chapter 4
Classical Theory

Having defined the essential kinematical structure we are now ready to introduce the
dynamics. To this endwe use a generalization of the Lagrange formalism. The precise
relation to notions known from classical mechanics will be explained in Sect. 4.5.

4.1 Dynamics

We start with introducing some definitions.

Definition 4.1 A generalized Lagrangian on a fixed spacetime M = (M, g) is a
map L : D(M) → Floc such that

(i) L( f + g + h) = L( f + g)− L(g)+ L(g + h) for f, g, h ∈ D with supp f ∩
supp h = ∅ (Additivity).

(ii) supp (L( f )) ⊆ supp ( f ) (Support).
(iii) Let G be the isometry group of the spacetime M (for Minkowski spacetime

we set G to be the proper orthochronous Poincaré group P
↑
+.). We require that

L( f )(β∗ϕ) = L(β∗ f )(ϕ) for every β ∈ G (Covariance).

Proposition 4.1 Let L be a generalized Lagrangian. The additivity of L in the test
function implies that:

(i) L( f ) is an additive functional on E.
(ii) For any fixed test function f ∈ D(M), L( f ) can be written as a finite sum of

additive functionals of arbitrarily small space-time support.

Proof See [BFR12]. �

Definition 4.1 formalizes the idea that the generalized Lagrangian associates
to a test function f the local functional L( f ) obtained by integrating f with the
Lagrangian density L(x)[ϕ] that depends locally on the field configuration ϕ. Intro-
ducing the cutoff function f is necessary because the manifold M , being globally
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hyperbolic, is non-compact. Moreover, it is not possible to restrict ourselves to com-
pactly supported configurations ϕ, since later on we will have to impose equations
of motion that are normally hyperbolic and non-trivial solutions to such equations
cannot be compactly supported. Let us consider some examples.

Example 4.1 Examples of generalized Lagrangians:

(i) Free scalar field:

L0( f )[ϕ] = 1

2

∫

M

(∇νϕ∇νϕ− m2ϕ2
)

f dμg, (4.1)

where dμg
.= √−gd4x is the volume form onM = (M, g) induced by the met-

ric,∇ is the covariant derivative, and we use the Einstein summation convention
for the indices, so ∇νϕ∇νϕ ≡ ∑3

ν=0 ∇νϕ∇νϕ.
(ii) Interaction term in the ϕ4 theory:

L I ( f )[ϕ] =
∫

M

1

4!ϕ
4 f dμg.

(iii) Yang-Mills Lagrangian:

LY M( f )(A) = −1

2

∫

M
f tr (F ∧ ∗F),

where A ∈ �1(M, k), F = d A + 1
2 [A, A] and ∗ is the Hodge operator and tr is

the trace in the adjoint representation given by the Killing-Cartan metric.
(iv) Einstein-Hilbert Lagrangian:

L E H( f )[h] .=
∫

R[g + h] f dμg+h,

where h ∈ �((T ∗M)⊗s2).

The cutoff function f is only an auxiliary tool, which allows us to formulate the
problem in amathematically rigorousway, but it has no physical meaning. Therefore,
the crucial structures in our classical model cannot depend on the choice of f . This
is achieved by means of the following definition:

Definition 4.2 The Euler-Lagrange derivative of L is a map S′ : E→ E′c
C defined

by 〈
S′(ϕ), h

〉 .= 〈
L( f )(1)[ϕ], h

〉
,

where h ∈ Ec and f ∈ D(M) is chosen in such a way that f ≡ 1 on supp h.

Since L( f ) is a local functional, S′ doesn’t depend on the choice of f . Moreover,
S′ would not change if we added to L a generalized Lagrangian that is supported in
the region where f is not constant. Therefore, the dynamical structure is not encoded
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in L’s, but rather in equivalence classes of generalized Lagrangians. This leads to
the following definition:

Definition 4.3 An action is an equivalence class of Lagangians under the following
equivalence relation [BDF09]:

L1 ∼ L2 iff supp ((L1 − L2)( f )) ⊂ supp d f. (4.2)

Remark 4.1 We write S instead of [L] to denote the equivalence class of L . For
example, the action corresponding to a Lagrangian denoted by L0 will be written as
S0 rather than S[L0].

The physical meaning of (4.2) is to identify Lagrangians that “differ by a total
divergence”. Note that two Lagrangians equivalent under the relation (4.2) induce
the same Euler-Lagrange derivative, so dynamics is a structure coming from actions
rather than Lagrangians. We are now ready to introduce the equations of motion
(eom’s).

Definition 4.4 The equation of motion (eom) corresponding to the action S is

S′(ϕ) ≡ 0, (4.3)

understood as a condition on ϕ ∈ E.

The space of solutions to (4.3) will be denoted by ES and it is a submanifold of E.
Physically, classical observables should be modeled as multilocal functionals on ES .
Let us denote the space of such functionals by FS . Note that it can be characterized
as the quotient

FS = F/IS,

where IS is the ideal of F consisting of functionals that vanish on ES .

Definition 4.5 The second variational derivative S′′ of the action S is defined by

〈
S′′(ϕ), h1 ⊗ h2

〉 .= 〈
L(2)( f )(ϕ), h1 ⊗ h2

〉
,

where f ≡ 1 on supp h1 and supp h2.

By definition S′′ is a linear map

S′′ : E→ L(Ec × Ec, C).

From the locality of the Lagrangian it follows that in fact S′′(ϕ) can be extended
to a linear map on Ec × E and the Schwarz kernel theorem (see [Hör03, Chap. 5])
implies that this induces a continuous linear operator PS(ϕ) : EC → E∗C, whereE∗ .=
�(E∗ → M). For details concerning the proofs of these statements, see [BDLGR16].
Note that if S is quadratic then PS(ϕ) ≡ P is the same for allϕ and S′(ϕ) = Pϕ. This
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is the case for the free scalar field described by the Lagrangian L0 from Example 4.1,
where P = −(�+ m2).

The crucial assumption in the pAQFT approach is that PS(ϕ) is a normally hyper-
bolic operator. We recall that an operator on E is normally hyperbolic if its principal
symbol is of the metric type, i.e. it is given by

σPS(ϕ)(ξ, ξ) = g(ξ, ξ)idEx ,

for all ξ ∈ T ∗x M and all x ∈ M . Here idEx denotes the identity on the fiber. For
more details on normally hyperbolic operators see [BGP07]. In the same reference
it is also shown that for such operators there exist unique retarded and advanced
Green’s functions (fundamental solutions) �R

S (ϕ), �A
S (ϕ) : E∗cC → EC defined by

the requirements

PS(ϕ) ◦�
R/A
S = idE∗cC ,

�
R/A
S ◦ PS(ϕ) �Ec = idEC

c
,

and the support properties

supp �A( f ) ⊂ J+(supp f ),

supp �R( f ) ⊂ J−(supp f ),

where f ∈ E∗c
C. Note that, by the Schwarz kernel theorem, these operators can be

written in terms of their integral kernels, which then satisfy appropriate support
properties and

�R
S (y, x) = �A

S (x, y). (4.4)

Let us define the causal propagator as

�S(ϕ)
.= �R

S (ϕ)−�A
S (ϕ). (4.5)

Due to (4.4) the causal propagator is antisymmetric, i.e. its integral kernel satisfies

�S(ϕ)(y, x) = −�S(ϕ)(x, y).

Remark 4.2 Note that in the conventionwe use here (following for example [DF02]),
the second derivative of the free action induces the differential operator P which is
minus the usualKlein-Gordon operator.As a consequence,whatwe call�R

S0
is−�ret

m ,
where �ret

m is the retarded Green’s function for �+ m2. similarly for the advanced
propagator. Consequently

�S0 = �adv
m −�ret

m ,
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which is in agreement with the convention used for example in [FV11a, FV11b].

Example 4.2 Consider the free scalar field (i.e. P = −(�+ m2)) on Minkowski
spacetime. We look for solutions to the equation

(�+ m2)x�
R/A
S0

(x, y) = −δ(x, y). (4.6)

with the appropriate support properties. The standardway to proceed (see for example
[IZ06]) is to use the Fourier transform. Translation invariance implies that the integral
kernels of �

R/A
S0

depend only on x − y, so we set

�
R/A
S0

(x, y) = 1

(2π)4

∫

e−i p·(x−y) ̂
�

R/A
S0

(p)d4 p, (4.7)

where p · x
.= p0x0 − p.x and p.x

.= ∑3
i=1 pi xi . From (4.6) follows that

(−p2 + m2)
̂
�

R/A
S0

(p) = −1

To obtain the explicit formulas for the Green’s functions we insert ̂
�

R/A
S0

(p) =
− 1
−p2+m2 back to equation (4.7) and choose the appropriate contour of integration

for the integral over p0. More precisely, we set

̂
�

R/A
S0

(p) = 1

(p0 ± iε)2 − p2 − m2
.

Using Cauchy’s theorem for the contour integrals obtained from the ε-prescription
above, we conclude that�R/A

S0
have indeed correct support properties. Performing the

integral over p0 we obtain explicit formulas for the Green’s functions on Minkowski
spacetime:

�
R/A
S0

(x, y) = ∓ iθ(±(x0 − y0))

(2π)3

∫ (
e−iω p(x0−y0)+i p.x − eiω p(x0−y0)+i p.x

) d3 p
2ω p

,

where ω p =
√

p2 + m2. Hence the causal propagator is given by the formula

�S0(x, y) = − i

(2π)3

∫ (
e−iω p(x0−y0)+i p.x − eiω p(x0−y0)+i p.x

) d3 p
2ω p

. (4.8)

4.2 Natural Lagrangians

There is an elegant way to describe generalized Lagrangians using the language of
category theory.
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Definition 4.6 A natural Lagrangian L is a natural transformations from the functor
D to Floc, such that for allM ∈ Obj(Loc) we have:

(i) LM( f + g + h) = LM( f + g)− LM(g)+ LM(g + h) for f, g, h ∈ D with
supp f ∩ supp h = ∅ (Additivity).

(ii) supp (LM( f )) ⊆ supp ( f ) (Support).

Note that L is fixed by a family of maps LM : D(M) → Floc(M) satisfying the
covariance condition

LM( f )(Eχ(ϕ)) = LN(Dχ f )(ϕ), (4.9)

whereχ ∈ Hom(M,N), f ∈ D(M),ϕ ∈ E(N). The following result shows the rela-
tion between natural Lagrangians and generalized Lagrangians introduced earlier in
this chapter.

Proposition 4.2 Let L be a natural Lagrangian from Definition 4.6, then for each
M ∈ Obj(Loc), LM is a generalized Lagrangian in the sense of Definition 4.1.

Proof Since the additivity and support conditions are included in the definition, it
suffices to show covariance under isometries of the spacetime. This, however, follows
from the general local covariance of L , expressed by the condition (4.9). �

Example 4.3 All the Lagrangians fromExample 4.1 give rise to natural Lagrangians.

In the following we will always assume that our generalized Lagrangians arise in
this way.

4.3 Homological Characterization of the Solution Space

We have already remarked that the space of multilocal functionals on the space ES

of solutions to eom’s can be understood as the quotient FS = F/IS . In this section
we make this statement precise and we find a nice homological interpretation of this
quotient. Since ES is the zero locus of S′, it is natural to use at this point the derived
critical locus construction.

Note that if X ∈ V is a multilocal vector field, then the multilocal functional〈
S′, X

〉
, obtained by contracting this vector fieldwith the one-form S′, vanishes on ES .

Let us define a map δS : V→ F by

δS
.= − 〈

S′, .
〉
.

The minus sign is introduced for future convenience. Clearly, δS(V) ⊂ IS . In general
the opposite inclusion can hold only locally, since the structure of the global solution
space of nonlinear PDE’s can be very complicated. Since our ultimate goal is the
quantum theory, we will avoid these complications by defining, from now on, IS

as δS(V).
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Definition 4.7 The ideal IS ⊂ F is defined as δS(V) and we call it “the ideal gen-
erated by the equations of the motion”. The space of on-shell functionals is defined
as

FS
.= F/IS.

SinceQFTmodels are often constructed bymeans of some quantization procedure
from classical field theory models, the space of solutions to classical eom’s is bound
to appear. However, in the approach to pAQFT which we advocate in this book, we
use FS rather than ES , so it is natural to give up the traditional point of view on the
space of solutions. This now allows for an algebraic interpretation of FS as the 0th
homology of the following complex:

. . . → ∧2
V

δS−→ V
δS−→ F → 0

2 1 0
, (4.10)

where δS is extended to the exterior algebra
∧
V by requiring the graded Leibniz

rule, acting from the right, with respect to the exterior product ∧ and by continuity.
Let us now discuss H1

(∧
V, δS

)
. The kernel of δS : V→ F (here denoted by

ker δS

∣
∣
1→0) consists of those vector fields X which satisfy

∂X S(ϕ)
.= 〈

S′(ϕ), X (ϕ)
〉 = 0, ∀ϕ ∈ E.

Geometrically, these vector fields correspond to directions in the configuration space
in which the action S is constant. In this sense, we interpret them as symmetries of
the action. Among all the symmetries we can distinguish those which are of the form
δS Z for some Z ∈ ∧2

V. In order to understand the meaning of such symmetries, let
us consider a bivector field of the form Z = X ∧ Y for some X, Y ∈ V. We have

δS (X ∧ Y ) = −(δS X)Y + (δSY )X.

Note that the vector field obtained this way vanishes identically on ES . For this
reason, such symmetries are called in the physics literature trivial symmetries. As a
result, one interprets

H1

(∧
V, δS

)
.= Ker δS

∣
∣
1→0

Im δS

∣
∣
2→1

(4.11)

as the space of non-trivial local symmetries. Theories that don’t possess non-trivial
local symmetries include the scalar field theory with a polynomial interaction (e.g.
ϕ4). One of the simplest examples of a theory with non-trivial H1

(∧
V, δS

)
is QED.

Yang-Mills theories and gravity also fall into this class. We will discuss these in
more detail in Chaps. 7 and 8. A simple criterion to decide that the theory has no
non-trivial local symmetries has been provided in [FR12b].

http://dx.doi.org/10.1007/978-3-319-25901-7_7
http://dx.doi.org/10.1007/978-3-319-25901-7_8
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Proposition 4.3 If the linearised equation of motion

PS(ϕ)ψ = 0

doesn’t have any non-trivial compactly supported solutions ψ for all ϕ ∈ E, then the
action S possesses no non-trivial symmetries.

Proof See the discussion at the end of Sect. 2 in [FR12b]. �

To end this section, we will introduce one more algebraic structure on
∧
V. As

noted before, V is a Lie subalgebra of �(TE), where the bracket is just minus the
commutator of vector fields. Now, using the graded Leibniz rule and continuity, one
can extend this structure to minus the Schouten bracket {., .} on ∧

V, fixed uniquely
by the following properties:

1. {X, F} .= −∂X F , for F ∈ F and X ∈ V,
2. {X, Y } .= −[X, Y ], for X, Y ∈ V,
3. {., .} fulfills the graded Leibniz rule in both arguments.

In the physics literature this structure is called the antibracket, where it is usually
expressed with the use of the antifield notation introduced in Sect. 3.4. Recall that
X ∈ ∧k

V is an element of Ok
ml(T

∗[1]E), where T ∗[1]E = E⊕ E∗[1] is the odd
cotangent bundle of E. We denote the nth derivative with respect to ϕ by δn X

δϕn and the
left derivative of X in the direction of v ∈ E∗ is denoted by

〈
δl X

δϕ‡
(ϕ), v

〉

.

Similarly, we denote the right derivative as

〈
δr X

δϕ‡
(ϕ), v

〉

.

Using this notation we write

{X, Y }(ϕ)
.=

〈
δr

δϕ
X (ϕ),

δl

δϕ‡
Y (ϕ)

〉

−
〈

δr

δϕ‡
X (ϕ),

δl

δϕ
Y (ϕ)

〉

. (4.12)

This expression is well defined, since the first derivatives of a multilocal vector
field with respect to both ϕ and ϕ‡ are, by definition, smooth compactly supported
sections.

Note that δS is locally generated by the bracket in the sense that

δS X = {X, S} .= {X, L( f )},

where f ≡ 1 on the support of X and L is the Lagrangian defining the theory.

http://dx.doi.org/10.1007/978-3-319-25901-7_3
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4.4 The Net of Topological Poisson Algebras

In this section we show how to construct a causal net of topological Poisson algebras
in the sense of Definition 2.53. First we introduce a Poisson bracket on an appropriate
space of functionals and next we equip this space of functionals with a topology that
makes this bracket sequentially continuous.

4.4.1 The Peierls Bracket and Microcausal Functionals

We equip F with a Poisson bracket called the Peierls bracket [Pei52]. It was shown
in [FR14] that this bracket is equivalent to the canonical bracket commonly used in
classical mechanics, if the latter exists. The advantage of using the Peierls bracket
is that it can be defined completely within the Lagrangian formalism, without the
need to pass to the Hamiltonian. This is important for example in cases when the
Hamiltonian vanishes. Another advantage of the Peierls bracket is that it is defined
in a completely covariant way, so it doesn’t require to introduce a foliation of M with
Cauchy surfaces.

Definition 4.8 Let F, G ∈ F. The Peierls bracket is defined by

�F, G�S (ϕ)
.= 〈

F (1)(ϕ),�C

S(ϕ)G(1)(ϕ)
〉
, (4.13)

The bracket defined in Definition 4.8 is antisymmetric (by the antisymmetry of
�S(ϕ)), bilinear and satisfies the Jacobi identity [Jak09]. Since F (1)(ϕ) and G(1)(ϕ)

are smooth, it is clear that �., .� is well defined on multilocal functionals. However,
F is not closed under this bracket. The natural question to ask is how to extend the
domain of definition of �., .�, so that the resulting space is closed under this bracket.
To answer this question, it is useful to look at the WF set of �S(ϕ).

WF(�S(ϕ)) = {(x, k; x ′,−k ′) ∈ Ṫ ∗M2|(x, k) ∼ (x ′, k ′)},

where the equivalence relation∼means that there exists a null geodesic strip such that
both (x, k) and (x ′, k ′) belong to it. Recall that a null geodesic strip is a curve in T ∗M
of the form (γ(λ), k(λ)),λ ∈ I ⊂ R, where γ(λ) is a null geodesic parametrized byλ
and k(λ) is given by k(λ) = g(γ̇(λ), ·). The formof theWFset of�S(ϕ) follows from
the theorem on the propagation of singularities together with the initial conditions
and the antisymmetry of �S(ϕ) (See [Rad96] for a details).

We can now use Hörmander’s criterion Theorem 3.3 to determine a class of
distributions that can be pointwise multiplied with �S(ϕ) and hence the condition
that has to be satisfied by the differentials F (1)(ϕ) and G(1)(ϕ) in (4.13). This leads
to the following definition

http://dx.doi.org/10.1007/978-3-319-25901-7_2
http://dx.doi.org/10.1007/978-3-319-25901-7_3
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Definition 4.9 A functional F ∈ C∞(E, R) is called microcausal if it is compactly
supported and satisfies

WF(F (n)(ϕ)) ⊂ �n, ∀n ∈ N, ∀ϕ ∈ E, (4.14)

where �n is an open cone defined as

�n
.= T ∗Mn\

{
(x1, . . . , xn; k1, . . . , kn)|(k1, . . . , kn) ∈ (V

n
+ ∪ V

n
−)(x1,...,xn)

}
,

(4.15)

where (V±)x is the closed future/past lightcone understood as a conic subset of T ∗x M .
In [BFR13] it is additionally required that the first derivative F (1)(ϕ) is smooth

for all ϕ ∈ E and ϕ �→ F (1)(ϕ) is smooth as a map E→ E∗C. We will call func-
tionals satisfying this additional property strongly microcausal. We denote the space
of microcausal functionals by Fμc and the space of the strongly microcausal ones
by Fsμc.

At this point it is convenient to introduce a notation for spaces of distributions
with WF sets contained in open and closed cones.

Definition 4.10 Let D ′
�(Mn) denote the space of distributions whose WF sets are

contained in a closed cone � ⊂ Ṫ ∗Mn . Similarly, E ′�(Mn) denotes the space of
distributions with compact support whose WF sets are contained in an open cone
� ⊂ Ṫ ∗Mn .

We can now rephrase Definition 4.9 by saying that nth derivatives of elements of
Fμc are distributions belonging to the corresponding spaces E ′�n

(Mn). The general-
ization of the Definition 4.9 to the graded case is straightforward. We spell out the
definition for O(E0 ⊕ E1[1]).
Definition 4.11 Let F ∈ Ok(E0 ⊕ E1[1]). We say that F is microcausal, i.e. an ele-
ment of Oμc(E0 ⊕ E1[1]) if it is compactly supported and

F (n)(ϕ) ∈ E ′�n+k
(Mn+k),

for all ϕ ∈ E0, n ∈ N.

F is said to be strongly microcausal if in addition

(i) F(ϕ, u) has an emptyWF set for allϕ ∈ E0, u ∈ E
⊗̂π(k−1)
1 and themap (ϕ, u) �→

F(ϕ, u) is smooth as a map from E0 × E
⊗̂π(k−1)
1 to E∗1C,

(ii) F (1)(ϕ, u) has an emptyWF set for all ϕ ∈ E0, u ∈ E
⊗̂πk
1 and the map (ϕ, u) �→

F (n)(ϕ, u) is smooth as a map from E0 × E
⊗̂πk
1 to E∗0C.

The following proposition is crucial for the construction of the local net of Poisson
algebras.
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Proposition 4.4 (Fsμc, �., .�) is closed under the bracket and is a Poisson algebra.
If �S doesn’t depend on ϕ, then (Fμc, �., .�) is also a Poisson algebra.

Proof See [BFR12, BFR13] �

Remark 4.3 The stronger version of microcausality is needed if �S depends on
ϕ, because otherwise the proof of the Jacobi identity given in [Jak09] would fail.
Alternatively, following Dabrowski [Dab14b], one can use a more refined definition
of microcausality that involves the notion of dual WF sets. We will give more details
on that in Sect. 4.4.2.

If the discussion applies to all the notions of microcausality introduced above, we
use the notation F∗μc.

4.4.2 Topologies on the Space of Microcausal Functionals

We now come to the important problem of introducing on F∗μc a topology that
will be appropriate for constructing models of classical and quantum theories in
the sense of Definitions 2.53 and 2.54. We have already seen that the regularity of
smooth functionals is governed by the regularity of their derivatives. The latter is
measured using the notion of a WF set. Clearly we need a topology that controls all
these regularity properties. In the light of the discussion from Sect. 2.5 it would be
desirable to use a topology that is nuclear. Other useful properties are completeness
and being bornological. At the moment there is no definite consensus in the literature
as to which choice is the most natural, so we will review the proposals that are most
relevant for the scope of this book.

The basic idea is to introduce a topology on the space E ′�n
(Mn) of distributions

with WF sets contained within the open cone �n defined by (4.15) and use this
topology to control the regularity of derivatives of functionals. At this point there
are several possibilities. The simplest one is to invoke the topology of pointwise
convergence of all the functional derivatives [BDF09], but the resulting space is not
complete, so it might be better to use some weak notion of uniform convergence
instead (see [Dab14b]).

We start by reviewing the proposal made by [BDF09], where the authors equip
D ′

�(Mn) with the locally convex topology proposed by Duistermat [Dui96]. For
simplicity we state the definition for R

n , but it generalizes to manifolds in a straight-
forward way with the use of local charts.

Definition 4.12 We define τH on D ′
�(Rn) as the locally convex topology given by

the following systems of seminorms:

(i) All the seminorms on D ′(Rn) for the weak topology: ||u|| f = | 〈u, f 〉 | for all
f ∈ D(Rn).

http://dx.doi.org/10.1007/978-3-319-25901-7_2
http://dx.doi.org/10.1007/978-3-319-25901-7_2
http://dx.doi.org/10.1007/978-3-319-25901-7_2
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(ii) The seminorms of the form

||u||m,V,χ = sup
k∈V

(1+ |k|)m |ûχ(k)|,

where m ≥ 0, χ ∈ D(Rn), and V ∈ R
n is a closed cone with (supp χ× V ) ∩

� = ∅.

This is also called the Hörmander topology, since the seminorms (ii) of the defini-
tion abovewere present in [Hör71],where theywere used to define a pseudo-topology
rather than topology. In [BDH14] it was shown that it in fact defines a bornology
(i.e. a family of bounded sets, see Definition 3.16).

In [BDH14] it is proven that convergence in the bornological sense (Mackey
convergence) in D ′

�(Rn) is the same as convergence in the sense of the Hörmander
pseudotopology.

Proposition 4.5 (after [BDH14]) A sequence u j in D ′
� converges to u in the sense

of Hörmander iff it Mackey-converges to u for the bornology (see Definition 3.16)
of D ′

� .

Proof See Proposition 3.1 of [BDH14]. �
There are several indications that the notion of bornology is more natural than

topology for the applications in physics. Another argument is that the family of
smooth curves in a topological vector space is determined by the bornology rather
than topology. In the convenient setting of global analysis [KM97] a map is smooth if
it maps smooth curves into smooth curves. This is a very elegant and robust notion of
smoothness and allows one to do geometry on infinite dimensional manifolds of the
type that appear commonly in physics. In [Mey04] it is pointed out that bornological
vector spaces are also very useful in non-commutative geometry and representation
theory. At the moment the formalism of bornological vector spaces hasn’t been fully
embraced by mathematical physicists studying QFT, so we refrain from formulating
everything in these terms as well. Nevertheless, it seems tempting to explore the
consequences of taking a purely bornological viewpoint on the foundations of QFT
in the future.

Let us come back to the main problem of the present section. For the definition
of a topology on microcausal functionals we still need to make one more step. The
topologydefined abovewasmeant for distributionswithWFsets contained in a closed
cone. However, in Definition 4.9 one uses open cones instead. It was proposed in
[BDF09] to introduce a topology on E ′�n

(Mn) as the inductive limit topology over a
countable family of spaces (D ′

C(Mn), τH ) with closed cones contained in �n . The
proof has been spelled out in detail in [BFR12, Lemma 4.0.18]. By a slight abuse of
notation, we denote the resulting topological spaces by (E ′�n

(Mn), τH ).

Remark 4.4 It is crucial, that the inductive limit in the definition of (E ′�n
(Mn), τH )

is countable, since this allows us to conclude that (E ′�n
(Mn), τH ) is nuclear.

In [BDF09] (E ′�n
(Mn), τH ), or rather its complexification, is used to define a

topology on Fμc.

http://dx.doi.org/10.1007/978-3-319-25901-7_3
http://dx.doi.org/10.1007/978-3-319-25901-7_3
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Definition 4.13 Equip Fμc with the topology τB DF defined as the initial topology
with respect to all the maps

Fμc → (E ′C�n
(Mn), τH ),

F �→ F (n)(ϕ),

where n ∈ N, ϕ ∈ E.

Definition 4.14 To obtain a topology on Fsμc, we replace in Definition 4.13 E ′�1
(M)

with D(M), equipped with its standard topology.

The topology τB DF is nuclear, but is not complete and it has been argued in [DB14]
that from the functional analytic viewpoint this is not the most optimal choice. The
authors of [DB14] point out that according to [Sch57] the spaces of distributions
most optimal for applications are the normal spaces of distributions.

Definition 4.15 A Hausdorff locally convex vector space X is said to be a normal
space of distributions if there are continuous injective linear maps i : D(�) ↪→ X

and j : X ↪→ D ′(�), where D ′(�) is equipped with its strong topology, such that:

(i) The image of i is dense in X,
(ii) for any f and g in D(�), 〈 j ◦ i( f ), g〉 = ∫

�
f (x)g(x)dx .

The motivation for using normal spaces of distributions is that they have a better
behaviour under duality, in particular, the dual space can also be equipped with a
normal topology. In order to make D ′

�(Rn) into a normal space of distributions one
needs to refine its topology. It was shown in [DB14] that this can be done simply by
replacing in Definition 4.12 the seminorms of the weak topology with the seminorms
of the strong topology.

Definition 4.16 (after [DB14])We define τN onD ′
�(Rn) as the locally convex topol-

ogy given by the following system of seminorms:

(i) All the seminorms onD ′(Rn) for the strong topology: pB(u) = sup f ∈B | 〈u, f 〉 |,
where B runs over the bounded sets of D(�).

(ii) The seminorms ||u||m,V,χ, where m ≥ 0, χ ∈ D(Rn), and V ∈ R
n is a closed

cone with (supp χ× V ) ∩ � = ∅.

With this choice of topologies oneobtains a duality betweenD ′
�(Mn) andE ′�(Mn),

where � = −�c.

Proposition 4.6 (after [DB14]) The dual of D ′
�(Mn) for its normal topology τN is

E ′�(Mn), where � is a closed cone and � = −�c.

Proof See Proposition 7 in [DB14]. �

The space E ′�(Mn) can be equipped with an inductive limit topology similar to
the one proposed in [BDF09] and spelled out in [BFR12]. It was shown in [DB14]
that this topology is equivalent to the strong topology coming from the duality with
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D ′
�(Mn). In the same reference it was also proven that both E ′�(Mn) and D ′

�(Mn)

are nuclear and that D ′
�(Mn) is complete. The latter property unfortunately doesn’t

hold for E ′�(Mn), which was the motivation for further study, done in [Dab14a].

Definition 4.17 Let τB DH denote the topology on the space of (strongly) microcausal
functionals given by replacing in Definition 4.13 the Hörmander topology τH with
the normal topology τN .

This topology hasmuch better functional properties than τB DF , but is not complete.
In order to obtain a complete topological space one needs to modify the definition
of the space of microcausal functionals as well. The idea in [Dab14a] is to control
not only the WF set of distributions but also the dual WF set defined as follows.

Definition 4.18 (after [Dab14a]) Let u ∈ D ′(�), � ⊂ R
n . The dual WF set1 is

defined as DWF(u) = ⋃
s>0, W Fs(u), i.e. the union of Sobolev H s-wave front sets.

A point (x, k0) /∈ W Fs(u) if there is a neighborhoodU of x and a conic neighborhood
C of k0 such that for any f ∈ D(U )

(1+ |k|2)s/2 f̂ u ∈ L2(C).

Note that if the H s-wave front set of a distribution u is empty, it means that u is
of Sobolev type s, just as a distribution with empty WF set is smooth.

The notion of theDWF set introduced above allows for an explicit characterisation
of the completion of E ′�(Mn). It was shown in [Dab14a] that the completion of
(E ′�(Mn), τn) is the space of distributions in E ′(Mn) with DWF sets contained in �.

In order to obtain a space of functionals with nice functionala analytic properties,
in [Dab14b] the following modifications are made, with respect to the Ansatz of
[BDF09]:

1. In Definition 4.9, view derivatives F (n)(ϕ) not as distributions in D ′(Mn), but
rather as multilinear maps between spaces of distributions with control on both
the WF set and DWF set,

2. Use a topology on the space of distributions with control on both the WF set
and the DWF set, which is complete, nuclear and bornological (the latter means
essentialy that it is compatible with the bornology),

3. Replace the pointwise convergence of all the derivatives with the uniform conver-
gence on images of compact subsets of R under smooth curves (this is a natural
choice from the point of view of the convenient setting [KM97]).

we denote the resulting space of functionals byFDμc and we will denote the topology
on this space by τD . It has been shown in [Dab14b] that (FDμc, τD) is complete,
nuclear and bornological.

1The name “dual” is meant as the indication that this notion behaves better under dualities of the
type mentioned in Proposition 4.6 than the usual WF set.
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4.4.3 The Classical Causal Net

We are now ready to construct a classical field theory model in the sense of Defini-
tion 2.53. The onlymissing ingredient is localization, but this can be easily introduced
in our case, using the notion of the spacetime support of a functional. We obtain the
following result

Proposition 4.7 Given a spacetime M = (M, g), the configuration space E =
�(E

π−→ M) and the generalized Lagrangian L, consider the net

O �→ (Fsμc, τB DH , �., .�S , ∗),

where S is the action corresponding to L, �., .�S is given by the formula (4.13) and
the involution ∗ is the pointwise complex conjugation of complex-valued functionals.
This net is a classical field theory model in the sense of Definition 2.53.

Proof The proof has been outlined in [BDF09] and [BFR13]. The main idea is to
reduce the problem to the problem involving basic operations on distribution. The
fact that �., .�S is well defined on the space of strongly microcausal functionals and
that Fsμc is stable under this bracket follow from theWF set properties of derivatives
of microcausal functionals and of �+

S (ϕ). The only missing step, not commented on
in [BDF09] and [BFR13], is the (sequential) continuity. We will fill this gap here.
For simplicity of notation, we spell out the proof for the example of the scalar field,
i.e. E = E (M). First we note that with the initial topology we are using it is sufficient
to show the continuity pointwise in ϕ, so it reduces to the continuity of operations
on distributions of the form

( f, g) �→ 〈 f,�Sg〉 ,

where f, g ∈ E ′�1
(M). This in turn is reduced to proving the sequential continuity

of the tensor product and the sequential continuity of the distributional pullback.
In the closed cone case these two results are well known (see [CP81, p. 511] and
[Hör03, 8.2.4] respectively). For the open cone, we will use the strategy proposed
by Dabrowski (private communication), based on the results of [BDH14, DB14,
Dab14a, Dab14b].

We start with the sequential continuity of the tensor product. It was proven in
[DB14, Proposition 28] that E ′�n

(Mn) is a barrelled space, so, following [Trè06,
Theorem 41.2] we conclude that the separate continuity implies hypocontninuity2

thus sequential continuity. By the definition of the inductive limit, the separate con-
tinuity follows from the separate continuity in the closed cone case, which has been
proven in [BDH14]. Another way to see it is to use the fact that for linear maps
Hörmander’s sequential continuity implies boundedness, hence continuity between

2Hypocontinuity of a bilinear map is a notion stronger than sequential continuity on the product
space, but is weaker than the joint continuity.

http://dx.doi.org/10.1007/978-3-319-25901-7_2
http://dx.doi.org/10.1007/978-3-319-25901-7_2
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the bornologifications. It was shown in [Dab14a, Proposition 33] that the inductive
limit topology on E ′�n

(Mn) is also an inductive limit of bornologifications, hence it
is itself bornological.

As for the continuity of the pull-back, see [Dab14a, Proposition 36]. �

Remark 4.5 In fact the argument presented above proves something stronger than
sequential continuity, namely the hypocontinuity of the product. This result would
not be possible with τH replacing τN , as shown by counterexamples provided in
[BDH14]. Therefore, to show the joint sequential continuity of the bracket with the
topology τB DF one needs to use a different, indirect argument (work in progress).

A major improvement of the above result has been obtained recently in [Dab14b].

Proposition 4.8 (after [Dab14b]) (FDμc, τD) Equipped with the Peierls bracket �, �
is a complete, nuclear and bornological topological Poisson algebra with hypocon-
tinuous operations.

Proof See [Dab14b]. �

4.5 Analogy with Classical Mechanics

In this section we show how the formalism developed in this chapter relates to the
more standard formulation of classical field theory in a simple example. We consider
the free scalar field with the field equation

Pϕ = 0, (4.16)

where P = −(�+ m2) is minus the Klein-Gordon operator, and we assume the
spacetime M = (M, g) to contain a compact Cauchy surface.

As mentioned before, the retarded and advanced Green’s functions exist for this
equation and for every f ∈ E whose support is past and future compact, � f is a
solution to (4.16). Conversely, every smooth solution of the Klein-Gordon equation
is of the form � f for some f ∈ E with future and past compact support.

Without the loss of generality M = R×� with compact Cauchy surfaces {t} ×
�, t ∈ R. The space of Cauchy data � � x �→ (ϕ(t, x), ϕ̇(t, x)) on the surface
{t} ×� is

C = {(φ,ψ) ∈ E (�)× E (�)},

where E (�)
.= C∞(�, R). This space is isomorphic to ES , the of smooth solutions

to (4.16).
As in classicalmechanics, equations ofmotion can be derived from the least action

principle. Elements of C play the role of generalized coordinates and generalized
velocities, while a smooth trajectory t �→ φ(t), t ∈ R is a function which assigns to



4.5 Analogy with Classical Mechanics 75

an instant of time t a function φ(t) ∈ E (�) such that trajectories φ are in one to one
correspondence with field configurations ϕ : (t, x) → φ(t)(x), i.e. elements of E.

In this setting, the Lagrangian L is a functional on C, typically given in terms of
a Lagrangian density L,

L(φ,ψ) =
∫

�

L(φ(x),∇φ(x),ψ(x))dσ(x),

and the action is, for every finite time interval I , a function on the space of trajectories
defined by

SI×�(φ) =
∫

I
L(φ(t), φ̇(t))dt =

∫

I

(∫

�

L(ϕ(t, x),∇xϕ(t, x), ϕ̇(t, x))dσt (x)

)

dt .

(4.17)

Solutions are configurations for which, for all I , SI×� is stationary under variations
δφ with support in the interior of I ×�. If L is the Lagrangian density of the free
scalar field, then the least action principle yields (4.16) as the equation of motion.

Now let F, G be two functions on the space of trajectories which depend only
on the restriction of the trajectory to [t1, t2] ×� and t1 < t2. Let ES be the space of
solutions for an action S, and let rλG : ES → ES+λG be the map which associates to
a solution for S a solution for S + λG such that both solutions coincide for t < t1
(rλG is called the retarded Møller map). Following the idea of Peierls, we consider
the change of F under the change of the action and set, for a solution ϕ ∈ ES ,

r1(G, F)(ϕ) = d

dλ
F(rλG(ϕ))

∣
∣
∣
λ=0

.

Similarly, we introduce the advancedMøller map aλF : ES → ES+λF where the solu-
tions coincide for t > t2, and set

a1(G, F)(ϕ) = d

dλ
F(aλG(ϕ))

∣
∣
∣
λ=0

.

The Peierls bracket of G and F was originally defined as

{G, F}Pei .= r1(G, F)− a1(G, F). (4.18)

Nowwe show that the formula of Peierls (4.18) is equivalent to (4.13), if PS(ϕ) is a
normally hyperbolic operator. Let G ∈ Floc be a local functional.We are interested in
the flow (	λ) on E which deforms solutions of the original field equation S′(ϕ) = 0
to those of the perturbed equation S′(ϕ)+ λG(1)(ϕ) = 0. Let 	0(ϕ) = ϕ and

d

dλ

(
S′(	λ(ϕ))+ λG(1)(	λ(ϕ))

) ∣
∣
∣
λ=0

= 0. (4.19)
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The vector field ϕ �→ X (ϕ) = d
dλ

	λ(ϕ)|λ=0 satisfies the equation

〈PS(ϕ), X (ϕ)〉 + G(1)(ϕ) = 0. (4.20)

Let �
R/A
S (ϕ) be the retarded/advanced Green’s function of the normally hyper-

bolic operator PS(ϕ) and let �S(ϕ) = �R
S (ϕ)−�A

S (ϕ) be the causal propagator.
We obtain now two distinguished solutions to the equation (4.20),

XR/A(ϕ) = −
〈
�

R/A
S (ϕ), G(1)(ϕ)

〉
. (4.21)

Note that XR(ϕ) = r1,1(G,	)(ϕ), where 	 is the evaluation functional 	x (ϕ)
.=

ϕ(x), hence

r1(G, F) = −
〈
F (1), �

R/A
S G(1)

〉
.

The difference X = XR − XA defines a vector field X ∈ �(TE) and it follows that

{G, F}Pei(ϕ)
.= r1(G, F)(ϕ)− a1(G, F)(ϕ) = 〈

G(1)(ϕ),�S(ϕ)F (1)(ϕ)
〉

= �G, F�(ϕ).

Next, following [FR15], we prove the equivalence between (4.13) and the canonical
bracket. We fix a Cauchy surface {t} ×�. Note that, given Cauchy data (φ,ψ) ∈ C,
we can write the unique solution ϕ corresponding to these Cauchy data as

ϕ(x) = β(φ,ψ)(x) ≡
∫

�

(

�S(x; t, y)ψ( y)− ∂

∂t
�S(x; t, y)φ( y)

)

dσt ( y).

(4.22)
Canonical momenta are obtained as distributional densities by

〈π(φ,ψ), h〉 .= d

dλ
|λ=0L(φ,ψ + λh) , h ∈ D(�) .

We assume that for the Lagrangians of interest π is always smooth. The phase space
is then

P = E (�)× Ed(�), (4.23)

where Ed(�) is the space of smooth densities. The phase space has the canonical
symplectic form

σ(( f1, f2), (g1, g2)) =
∫

�

( f1g2 − f2g1).

Note that E (�)× Ed(�) ⊂ E (�)×D ′(�) ∼= T ∗(E (�)), so (P,σ) is indeed the
analog of the phase space in classical mechanics.

For simplicity we consider an action S induced by a Lagrangian L which depends
on φ̇ only through the kinetic term 1

2 φ̇
2, hence π( y)

.= φ̇( y)dσt ( y). Letα : (φ,π) �→
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(φ, φ̇) and β̃
.= β ◦ α : P→ ES . We can now prove the equivalence of the canonical

and the Peierls bracket. Let F, G ∈ F. Using (4.22) we obtain

{F ◦ β̃, G ◦ β̃}can
=

∫

�

(〈
δF
δϕ
◦ β̃,

δβ̃
δφ(x)

〉 〈
δG
δϕ
◦ β̃,

δβ̃
δπ(x)

〉
−

〈
δF
δϕ
◦ β̃,

δβ̃
δπ(x)

〉 〈
δG
δϕ
◦ β̃,

δβ̃
δφ(x)

〉)

=
〈

, F (1) ◦ β̃ ⊗ G(1) ◦ β̃

〉
,

where 
 is given by


(z′, z) =
∫

�

(
�̇S(z

′; t, x)�S(z; t, x)− �̇S(z; t, x)�S(z
′; t, x)

)
dσ(x).

From general properties of the causal propagator �S (the generalization of (4.22) to
distributional Cauchy data) it follows that 
 is equal to �S . Hence, on the solution
space ES ,

{F ◦ β̃, G ◦ β̃}can = �F, G� ◦ β̃.

For another argument, valid for the interacting theory, see Sect. 3.3 of [FR15].

4.6 Classical Møller Maps Off-Shell

In the previous sectionwe introduced the notion of classicalMøller operators asmaps
between solution spaces for equations of motion induced by different Lagrangians.
Proving the existence of suchmaps in concretemodelswould require using some sub-
tle properties of solution spaces of non-linear partial differential equations. Claims
about a potential existence result have been made in [BFR12]. Here we take a dif-
ferent approach and following [DF02], we work off-shell and formulate the notion
of classical Møller operators on the space of functionals on the configuration space.

To avoid the functional analytic difficulties we define all the structures only for
regular functionalsFreg or local functionalsFloc. Extension tomore general classes of
functionals requires a careful analysis ofWFset conditions (see for example [Dab14a,
Dab14b, BFR12]). To further simplify the matters, we work perturbatively, i.e. we
use formal power series in λ, which plays a role of the coupling constant.

Let S0 be the free action and let λV ∈ Freg be the perturbation. Formally, we
can construct the classical Møller operators rS0+λV,S0 and aS0+λV,S0 between the
corresponding solution spaces ES0 and ES0+λV by following [DF02]. We require that

rS1,S2 ◦ rS2,S3 = rS1,S3 . (4.24)

To simplify the notation we abbreviate rS0+λV,S0 ≡ rλV , and aS0+λV,S0 ≡ aλV .
Møller maps act on the on-shell functionals by the pullback.
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rλV F(ϕ)
.= F ◦ rλV (ϕ), and (4.25)

aλV F(ϕ)
.= F ◦ aλV (ϕ), (4.26)

where F ∈ (Freg)S0+λV , ϕ ∈ ES0 . By a slight abuse of notation we use the same
symbol to denote a Møller map acting on functionals, as the symbol for a map
between the solution spaces. In order to get a consistent off-shell definition we also
require the off-shell extensions to satisfy

rλV (IS0+λV ) = IS0 ,

aλV (IS0+λV ) = IS0 .

Expanding the classical Møller maps in the powers of λ we get

rλV F =
∞∑

n=0

λn

n! rn(V⊗n; F), (4.27)

aλV F =
∞∑

n=0

λn

n! an(V⊗n; F), (4.28)

and call the coefficients of these expansions n-fold retarded and advanced products,
respectively. In the previous section we have seen that if V is local, then the first order
terms of this expansion can be expressed in terms of retarded and advanced Green’s
functions. Here we generalize to non-local interactions, but we have to workwith for-
mal power series. The retarded and advanced Green’s functions �R

S0+λV and�A
S0+λV

are now understood as formal power series with coefficients in distributions. The
following proposition shows the existence of such objects for a general class of
interactions, including the local and the regular ones.

Proposition 4.9 (after [DF02, BD08]) Let V ∈ Floc or V ∈ Freg. The retarded
(advanced) Green’s function corresponding to the linear operator P + V (2) induced
by the second derivative of the action S0 + λV is given by the formula

�
R/A
S0+λV (x, y) = �

R/A
S0

(x, y)+
∞∑

k=1
(−λ)k

∫

�
R/A
S0

(x, v1) (4.29)

· δ2V

δϕ(v1)δϕ(z1)
�

R/A
S0

(z1, v2) . . .
δ2V

δϕ(vk)δϕ(zk)
�

R/A
S0

(zk, y)dμg(v1) . . . dμg(zk).

(4.30)

Graphically the integral is represented by:

x

ΔR/A
S0

v1

V (2)
ΔR/A

S0

z1

V (2)

v2 z1
. . .

V (2)

vk zk

ΔR/A
S0

y
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The support of �
R/A
S0+λV (x, y) is contained in the set

{
(x, y)|x ∈ supp

(
δV
δϕ

)
+ V± ∧ y ∈ supp

(
δV
δϕ

)
+ V∓

}
∪ {

(x, y)|x ∈ y + V±
}
.

(4.31)

Proof The recursive formula is proven by induction in k. For the support property,
first note that supp

(
δ2V
δϕ2

) ⊂ supp
(

δV
δϕ

)× supp
(

δV
δϕ

)
. Therefore, in order to get a non-

vanishing contribution from the integral in (4.29), x has to lie in the future of u1 ∈
supp

(
δV
δϕ

)
and y in the past of vn ∈ supp

(
δV
δϕ

)
. �

Note that the uniqueness of �R
S0
and �A

S0
implies that �R

S0
( f, g) = �A

S0
(g, f ) and

using the recursive formula (4.29) we can also verify that

�R
S0+λV ( f, g) = �A

S0+λV (g, f ).

The following proposition has been proven in [DF02] and it demonstrates the exis-
tence of classical Møller operators in the sense of formal power series.

Proposition 4.10 (after [DF02]) Let V ∈ Floc or V ∈ Freg. The retarded Møller
operator rλV exists as a map on Floc ∪ Freg valued in formal power series in Fμc and
its coefficients satisfy the recursion relation:

rn+1(V⊗(n+1), F)

= −
n∑

l=0

(
n

l

)

rl

(

V⊗l ,

∫
δV

δϕ(x)
�

A (n−l)
S0

[V ](x, y)
δF

δϕ(y)
dμg(x)dμg(y)

)

, (4.32)

where

�
A (k)
S0

[V ](x, y)
.= dk

dλk

∣
∣
∣
λ=0

�A
S0+λV (x, y)

= (−1)kk!
∫

�A
S0(x, v1)

δ2V

δϕ(v1)δϕ(z1)
�A

S0(z1, v2)·

· . . . · δ2V

δϕ(vk)δϕ(zk)
�A

S0(zk, y)dμg(v1) . . . dμg(zk).

Analogously for the advanced Møller operator.

Proof differentiating the property (4.24) we obtain

d

dλ
rλV (F) = rλV

(− 〈
F (1), �R

S0+λV V (1)
〉) = rλV

(− 〈
V (1), �A

S0+λV F (1)
〉)

, (4.33)

Comparing the terms with the same power of λ on both sides yields the required
recursion relation. �
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In particular, for V ∈ Freg, rλV and aλV are well defined maps from Freg[[λ]] to
itself. The next proposition shows that the classical Møller operators satisfy a natural
intertwining property.

Proposition 4.11 Let F, G, V ∈ Floc or F, G, V ∈ Freg. The retarded Møller oper-
ator rλV preserves the Peierls bracket, i.e.

�rλV F, rλV G�S0 = rλV (�F, G�S0+λV )

The analogous statement holds also for aλV .

Proof See [DF02, Proposition 2]. �

If the interactionV is local, the recursion relation can be simplified and for M = M

one obtains the following expression for the n-fold retarded product:

rn(V⊗n, G)
o.s.= n!

∫

x0
1≤...≤x0

n

(RV (x1) · · ·RV (xn)G)d4x1 . . . d4xn, (4.34)

where

RV (x) := −
∫ ( δV

δϕ(x)
�R

S (y, x)
δ(.)

δϕ(y)

)
d4y, (4.35)

and o.s. means on-shell, i.e. modulo the ideal IS0 generated by the free equations of
motion. For proof see Proposition 3 of [DF02].
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Chapter 5
Deformation Quantization

The reformulation of classical theory done in Chap. 3 served as a preparation for
constructing QFT models. The framework that we are going to use is deformation
quantization combined with causal perturbation theory. To quantize a given theory
described by the action S we first need to split S into a free part S0 (at most quadratic
in field configurations) and the interaction term SI . Then, we quantize the theory
defined by S0, using deformation quantization based on a Moyal-type formula, and
in the final step we will re-introduce the interaction using causal perturbation theory.
This last step will be discussed in Chap. 6, while the present chapter deals with
deformation quantization.

The idea of deformation quantization goes back to Bayen, Flato, Fronsdal,
Lichnerowicz and Sternheimer [BFF+78a, BFF+78b] and the first attempt to use
these structures in quantum field theory is due to Dito [Dit90]. Based on these ideas
Brunetti, Dütsch, and Fredenhagen developed a formalism, which we present here
[DF01a, DF01b, BDF09]. At the moment this quantization method is known to work
only perturbatively, but the ultimate aim is to obtain some converegence results as
well.

5.1 Star Products

In this chapter we will focus on quantizing theories where no local symmetries are
present.Wewill also restrict ourselves to even (bosonic) field configurations, to avoid
extra complication with the signs. Let E = �(E → M) be the configuration space
and S an action that doesn’t possess non-trivial local symmetries and for which S′′(ϕ)

induces a normally hyperbolic operator for every ϕ ∈ E. In the first step we split
S = S0 + SI , where S0 is at most quadratic. This can be done by means of Taylor
expansion around any field configuration ϕ0, i.e.
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84 5 Deformation Quantization

L( f )(ϕ0 + ϕ) = L( f )(ϕ0) + 〈
L( f )(1)(ϕ0),ϕ

〉 + 1

2

〈
L( f )(2)(ϕ0),ϕ ⊗ ϕ

〉

︸ ︷︷ ︸
L0( f )

. . . ,

The constant term can be neglected, as it doesn’t affect the dynamics. Note that if
we choose ϕ0 to be a solution to the equations of motion (i.e. S′(ϕ0) = 0), then

〈
L( f )(1)(ϕ0),ϕ + ψ

〉 = 〈
L( f )(1)(ϕ0),ϕ

〉
,

if ψ ∈ Ec is supported in the region, where f = const . Hence

supp
〈
L( f )(1)(ϕ0), .

〉 ⊂ supp (d f )

and by means of the equivalence relation (4.2) we conclude that in such a situation
S0 contains only the quadratic term. Otherwise, S0 has both a quadratic and a linear
term. For simplicity, we will consider here only the situation where ϕ0 is a solution,
so S0 is quadratic and we denote the linear operator induced by S′′

0 by P . Moreover,
we assume that P is formally self-adjoint, i.e. for all f, g ∈ EC

c

∫

M
〈 f, Pg〉E dμg =

∫

M
〈P f, g〉E dμg,

where 〈., .〉E is the bilinear pairing introduced in Definition3.1.
Starting from the Poisson algebra (Fμc, 	., .
S0), formal deformation quantiza-

tion means constructing an associative algebra (Fμc[[�]], �), where the product � is
expressed as

F � G =
∞∑

n=0

�
n Bn(F, G), (5.1)

in terms of some differential (in the sense of calculus on E) operators Bn such that

B0(F, G) = F · G,

B1(F, G) − B1(G, F) = i� 	F, G
S0 .

Note that the second condition corresponds to Dirac’s idea that in order to quantize
a classical theory one should “replace canonical brackets with commutators”. In-
cluding terms of higher order in � is necessary to avoid the Groenewald-van Hove
no-go theorem, which states that (also in the finite dimensional case) a Dirac type
quantization prescription is not possible in the strict sense [Gro46, VH51].

More precisely (see [Wal07]), let h be the Lie algebra spanned by the canonical co-
ordinate andmomentum functions q1, . . . , q N , p1, . . . , pN and 1, with the canonical
Poissonbracket {., .}can. This algebra is aLie subalgebra ofg .= (Pol(T ∗

R
N ), {., .}can)

(polynomials on the phase space). According to the Groenewald-van Hove Theorem,
there exists no faithful irreducible representation of h by operators on a dense domain

http://dx.doi.org/10.1007/978-3-319-25901-7_4
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5.1 Star Products 85

of some Hilbert space which can be extended to a representation of g. As a result,
one cannot have a Dirac quantization map Q from g to the space of operators on
some Hilbert space H, such that

[Q( f ),Q(g)] = i�Q({ f, g}). (5.2)

There is, however a way out. Deformation quantization [BFF+78a, BFF+78b] allows
one to avoid this no-go result, by weakening the condition (5.2) to

[Q( f ),Q(g)] = Q([ f, g]�) = i�Q({ f, g}) + O(�2).

A stronger notion than formal deformation quantization is strict deformation quanti-
zation. In this case, instead of constructing a space of formal power series, one aims
at constructing a continuous field of C∗-algebras. This fits well with the algebraic
framework for quantum theory described in Sect. 2.3. The notion of strict deforma-
tion quantization has been introduced in [Rie94]. For a review on the current status
of the subject refer to [Rie98], see also [Haw08, BMS94].

As for formal deformation quantization, the most significant recent result is the
one of Kontsevich, who has proven in [Kon03] the existence of formal deformation
quantization for arbitrary finite dimensional Poisson manifolds. Unfortunately this
cannot be applied directly in field theory, as the configuration space E is infinite
dimensional. However, if S0 is at most quadratic, there exists an explicit formula for
the star product and we will focus on this construction for the rest of the present
chapter.

To understand the algebraic structure, it is helpful to put the functional analytic
aspects aside for the time being and work on Freg.

We define

(F � G)(ϕ)
.=

∞∑

n=0

�
n

n!
〈
F (n)(ϕ),

(
i
2�S0

)⊗n
G(n)(ϕ)

〉
, (5.3)

for F, G ∈ Freg. It is convenient to introduce the notation

D�(F ⊗ G)
.= 〈

F (1), �S0G
(1)〉 .

In this notation
F � G = m ◦ e

i�
2 D�(F ⊗ G),

where m is the pointwise multiplication of functionals.

Example 5.1 (Weyl algebra) For the free scalar field on a spacetime M = (M, g)

we have E = C∞(M, R) and the Lagrangian is given by Example4.1(i). Consider
regular functionals of the form

Ff (ϕ) =
∫

M
f (x)ϕ(x)dμg(x) ≡

∫

M
f ϕdμg, where f ∈ D(M),

http://dx.doi.org/10.1007/978-3-319-25901-7_2
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86 5 Deformation Quantization

We define W( f )
.= exp(i F f ) and verify that

〈
(W( f ))(1)(ϕ), h

〉 = d

dλ
ei

∫
f (ϕ+λh)dμg

∣
∣
λ=0

=
(

i
∫

f h dμg

)

W( f )(ϕ).

Hence
〈
(W( f ))(n)(ϕ), h⊗n

〉 =
(

i
∫

f h dμg

)n

W( f )(ϕ)

and we obtain the following formula for the star product:

W( f ) � W( f̃ ) =
∞∑

n=0

(
i�

2

)n (−1)n

n!
(∫

�S0 (x, y) f̃ (y) f (x)dμg(x)dμg(y)

)n
W( f + f̃ )

= e− i�
2 �S0 ( f, f̃ )W( f + f̃ ), (5.4)

which reproduces the Weyl relations from Example2.1, with the difference that now
we are dealing with a bilinear form which is Poisson, but not symplectic (has a
non-trivial kernel).

In the next step we extend the star product to the space of microcausal functionals.
To prepare for this task we take another look at the singularity structure of the
distribution �S0 . Note that the WF set of this distribution is composed of two parts:
one in V + and another with in V −, where V ± is the closed future/past lightcone.
As shown in [Rad96], one can decompose �S0 into two distributions with WF sets
corresponding to these two components

i
2�S0 = �+

S0
− H, (5.5)

where the WF set of �+
S0
is

WF(�+
S0

) = {(x, k; x,−k ′) ∈ Ṫ ∗M2|(x, k) ∼ (x ′, k ′), k ∈ (V +)x }, (H 0)

and in addition the following properties hold:

(H 1) �S0 = 2 Im(�+
S0

)

(H 2) �+
S0
is a distributional bisolution to the field equation, i.e.

〈
�+

S0
, P f ⊗ g

〉 = 0
and

〈
�+

S0
, f ⊗ Pg

〉 = 0 for all f, g ∈ EC

c .
(H 3) �+

S0
is of positive type,meaning that

〈
�+

S0
, f̄ ⊗ f

〉 ≥ 0,where f̄ is the complex
conjugate of f ∈ EC

c .

Example 5.2 On Minkowski spacetime it is natural to choose �+
S0
as

http://dx.doi.org/10.1007/978-3-319-25901-7_2
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�+
S0

(x, y) = 1

(2π)3

∫ (
e−iω p(x0−y0)+i p.(x− y)

) d3 p
2ω p

. (5.6)

with ω(p) = √
p2 + m2. We can now verify explicitly that

�+
S0

(x, y) − �+
S0

(y, x) = 1

(2π)3

∫ (
e−iω p(x0−y0)+i p.(x−y) − eiω p(x0−y0)−i p.(x−y)

) d3 p
2ω p

= i�S0 (x, y),

so i
2�S0 is the antisymmetric part of �+

S0
. It is also easy to see that

〈
�+

S0
, f̄ ⊗ f

〉 = 1

(2π)3

∫ ∣
∣
∣
∣

∫

e−iω px0+i p.x f (x)d4x

∣
∣
∣
∣

2 d3 p
2ω p

≥ 0,

so �+
S0
is of positive type. The symmetric part of �+

S0
is given by

�1 = 1

(2π)3

∫

cos
(
ω p(x0 − y0) + i p.(x − y)

) d3 p
2ω p

,

so we write �+
S0

= i
2�S0 + �1.

On general globally hyperbolic spacetimes a decomposition (5.5) with properties
(H 0)–(H 3) always exists but is not unique. If H and H ′ correspond to two
different choices of the split (5.5), then their difference H − H ′ is a smooth
symmetric bisolution to the field equations (a smooth symmetric function with
Px (H − H ′)(x, y) = Py(H − H ′)(x, y) = 0). Physically, the split of the causal
propagator into �+

S0
and H is interpreted as “taking the positive frequency part” of

the causal propagator. In flat spacetime this corresponds to the spectrum condition,
which is one of the Haag-Kastler axioms listed in Sect. 2.3.

The WF set of �+
S has better properties than the WF set of �S . If we now replace

i
2�S with�+

S in (5.3), then the new product, denoted by �H can be extended fromFreg

to Fμc (see [BDF09]). On Freg[[�]] the two star products � and �H are isomorphic.
To see this, consider the map αH : Freg[[�]] → Freg[[�]] given by

αH

.= e
�

2 DH , (5.7)

where DH
.= 〈H, δ2

δϕ2 〉.
It is easy to check that

F �H G = αH

(
(α−1

H F) � (α−1
H G)

)
, F, G ∈ Freg. (5.8)

We say that αH provides a gauge transformation between � and �H .

Definition 5.1 A gauge transformation is a map F �→ F + ∑
�≥1 �

n Bn(F), where
each Bn is a differential operator.

http://dx.doi.org/10.1007/978-3-319-25901-7_2


88 5 Deformation Quantization

If there exists a gauge transformation relating two star products � and �′, then they
define the same deformation quantization. In the case of αH , Bn = 1

n!2n (DH−H ′)n .
Physically, we can identify the transition between � and �H with normal ordering,
so passing to the �H -product is the algebraic version of Wick’s theorem (more detail
in Sect. 6.2.1). Note that the codomain of αH : Freg → Freg is sequentially dense
in a larger space Fμc (with respect to the topology τB DH described in Sect. 4.4.2,
Definition4.17) and we can also build a corresponding (sequential) completion Freg

of the domain. Next we extend Freg with all elements of the form limn→∞ α−1
H (Fn),

where (Fn) is a convergent sequence inFμc.Wedenote this space byα−1
H (Fμc) ⊂ Freg.

This motivates the following definition

Definition 5.2 The quantum algebra of the free theory A is defined as the extension
of Freg[[�]] by limits limn→∞ α−1

H (Fn), where (Fn) is a convergent sequence in Fμc.
A is equipped with the star product defined by

A � B = α−1
H (αH(A) �H αH(B))

and with the involution given by

A∗ .= α−1
H (αH(A)),

where bar denotes the complex conjugation of a functional. The support of A ∈ A
is defined by

supp A
.= supp αH(A).

Remark 5.1 Note thatA as an abstract unital involutive topological algebra is unique
up to an isomorphism, since different choices of H are related by

F �H ′ G = α−1
H−H ′ (αH−H ′(F) �H αH−H ′(G)) ,

and H − H ′ is a smooth function, so αH−H ′ is an isomorphism. This isomorphism
doesn’t change the support of a functional, so the notion of support introduced in
Definition5.2 is also independent of the choice of H .

Remark 5.2 We can also characterize A as the space of families (FH ), labeled by
possible choices of H , where FH ∈ AH .= (Fμc[[�]], �H) fulfill the relations

FH ′ = αH ′−H FH ,

and the product is defined by

(F � G)H = FH �H G H .

The map α−1
H associates to a classical functional F ∈ Fμc an element A ofA such

that AH = F . A different choice of the 2-point function �+
S0
(and hence H ) leads

to a different identification of classical functionals with elements of A. If H ′ �= H ,

http://dx.doi.org/10.1007/978-3-319-25901-7_6
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then α−1
H maps F to B ∈ A such that BH ′ = F and BH = αH−H ′(F), so clearly,

A �= B. We will come back to discussion of this ambiguity in Sect. 6.2.1.
We think of A as the abstract algebra of observables, while the choice of αH

corresponds to a choice of realization of A as an algebra of formal power series with
coefficients in some space of functionals. Although we are primarly interested in
the abstract structure, the concrete realization is important if we want to make some
computations. The diagram below summarizes the algebraic structures introduced
so far.

(Freg, �)
αH−−−−→ (Freg, �H)

dense

⏐
⏐
�∩ dense

⏐
⏐
�∩

A
α−1

H←−−−− (Fμc, �H)

We use the notion of support defined for the elements ofA to build a net of involutive
topological algebras.

Proposition 5.1 Given a spectimeM = (M, g), a configuration space E = �(E →
M) and a quadratic Lagrangian L0, which induces a formally selfadjoint differential
operator P, consider the net

O �→ A(O),

where A(O) is generated by elements with support contained in O. This net is a
quantum field theory model in the sense of Definition2.54 and it satisfies the axiom
of Covariance and the Time-slice axiom.

Proof The properties of covariance and causality are clear from the construction.
The time-slice axiom has been proven in [CF08]. �

The construction is fully covariant, so the assignment of unital ∗-algebras to
spacetime defined above induces a functor from Loc to Obsp. It acts on morphisms
χ ∈ Hom(M,N) by (see equation (13) in [Zah14]):

(Aχ(F))H
.= Fμcχ(Fχ∗ H ) ,

where χ∗ H is the pullback of the restriction of H to χ(M) × χ(M) and Fμc is the
functor which associates to objects M ∈ Loc the spaces of microcausal functionals
Fμc(M) and acts on morphisms by

FμcχF(ϕ)
.= F(χ∗ϕ) .

Proposition 5.2 A locally covariant QFT model in the sense of Definition2.66 is
obtained by assigning A(M) to objects of Loc. For morphisms χ ∈ Hom(M,N),
Aχ is defined with the use of the pullback of functionals, as in Proposition3.5.

Let us now discuss the existence of states. One obtains a family of states on A by
setting

http://dx.doi.org/10.1007/978-3-319-25901-7_6
http://dx.doi.org/10.1007/978-3-319-25901-7_2
http://dx.doi.org/10.1007/978-3-319-25901-7_2
http://dx.doi.org/10.1007/978-3-319-25901-7_3
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ωH,ϕ(F)
.= αH(F)(ϕ) = FH (ϕ),

where ϕ ∈ ES . This is well defined, since FH is a functional in Fμc, hence the
evaluation at a field configuration ϕ makes sense.

Example 5.3 We continue with the example of the free scalar field. We define AW

as the subalgebra of A generated by the Weyl generators W( f )
.= exp(i F f ), where

f ∈ D(M). Note that

DH

(

i
∫

f ϕdμg

)n

= − n!
(n − 2)! H( f, f )

(

i
∫

f ϕdμg

)n−2

.

Hence
αH (W( f )) = e

�

2 DHW( f ) = e− �

2 H( f, f )W( f ).

It follows now that
ωH,0 (W( f )) = e− �

2 H( f, f ),

so ωH,0 is a quasi-free state with covariance H (compare with the Definition2.31).

5.2 The Star Product on the Space of Multivector Fields

In the classical theory we have defined “going on-shell” as taking the quotient of the
algebra of classical observables by the ideal IS generated by the equations of motion.
Now we want to do something similar in the quantum theory.

Definition 5.3 The equations of motion ideal IH
S0
of AH is defined as the �H -ideal of

AH generated by elements of the form
〈
S′
0, X

〉
, where X ∈ Vloc. The ideal IS0 is then

defined by the requirement that F ∈ IS0 if and only if FH ∈ IH
S0
for one and hence

for all H (note that αH−H ′
〈
S′
0, X

〉 = 〈
S′
0,αH−H ′(X)

〉
).

The on-shell quantum algebra of the free theory is then understood as the quotient

AS0
.= A/IS0 .

Remark 5.3 Note that AS0 can be characterized as the space of families F = (FH ),
where

FH ∈ AH
S0

.= AH/IH
S0 .

The definition used here suggests that we can express it also in terms of the
differential δS0 , as defined in Sect. 4.3. The star product � can be easily extended to
the space

∧
V of vector fields, if one replaces the pointwise product in (5.3) with

the graded product ∧. Before we give the explicit formula for �H of two multivector
fields, it is convenient to introduce some notation.

http://dx.doi.org/10.1007/978-3-319-25901-7_2
http://dx.doi.org/10.1007/978-3-319-25901-7_4
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Definition 5.4 The space
∧k

Vμc of microcausal k-vector fields is identified with
Ok

μc(T
∗[1]E), see Definition4.11.

Using this definition, we can now introduce the star product of multivector fields:

〈
(X �H Y )(ϕ); v1, . . . , vp+q

〉

.=
∞∑

n=0

�
n

n!p!q!
∑

σ∈Sp+q

〈〈
δn X
δϕn (ϕ); vσ(1), . . . , vσ(p)

〉
, (�+

S0
)⊗n

〈
δn Y
δϕn (ϕ); vσ(p+1), . . . , vσ(p+q)

〉〉
,

where X, Y ∈ ∧
Vμc are of degree p and q respectively. In the 0th order, the star

product gives just the wedge product of two multivector fields. In the first order, one
obtains the extension of 	., .
 to ∧

Vμc.
We can now characterize the ideal A0 by means of the differential δS0 , as we did

in classical theory. First we note that since �+
S0
is a distributional bisolution for the

operator P (see property (H 1)), we have

〈
S′
0, f

〉
� F = 〈

S′
0, f

〉 · F + 〈
S′′
0 , f ⊗ �+

S0
F (1)〉 =

〈
δS0
δϕ

, f

〉

· F,

where f ∈ Ec, F ∈ Fμc. It follows that

δS0(X �H Y ) = (δS0 X) �H Y + (−1)|X | X �H (δS0Y ),

for X, Y ∈ ∧
Vμc, i.e. δS0 is a derivation with respect to the product �H . In particular

we can write AH
S0
as

AH
S0 = Ker δS0 �Fμc

Im δS0 �Vμc

Note that in our case Ker δS0 �Fμc= (Fμc, �H), but we will see later on that this is no
longer the case in gauge theories (Chap.7).

Example 5.4 Consider the algebra AW from Example5.3. Let IW,S0

.= IS0 ∩ AW .
Note that S′

0(ϕ) = Pϕ = −(�+ m2)ϕ, and using integration by parts, we conclude
that F(�+m2) f (ϕ) = − 〈

S′
0, f

〉
. It is then easy to verify that IW,S0

is generated by the
elements

W((� + m2) f ) − 1, f ∈ D(M) (5.9)

We denote AW /IW,S0
by AW,S0

. This algebra is then (algebraically) isomorphic to the
Weyl algebra W(L ,σ), with L = D(M)/PD(M) and σ = �S . States of the form
ωH,0 are well defined on the quotient AW,S0

, as H is a bisolution for the operator P .

http://dx.doi.org/10.1007/978-3-319-25901-7_4
http://dx.doi.org/10.1007/978-3-319-25901-7_7
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5.3 Kähler Structure

Objects introduced in the previous section have an interpretation in terms of a Kähler
structure, as in Definition2.32. H is a symmetric, non-degenerate bilinear form on
L = D(M)/PD(M), �S is the symplectic structure and �+

S = i
2�S + H is a

Hermitian 2-form on LC, as in formula (2.3).
We have seen in Example5.3 that H is the covariance of a quasi-free state ωH,0

on AW,S0
. If this state is pure, then the pair (�S, 2H) is Kähler. In general one can

always use �S and H to define an anti-involution J , but �S ◦ J = 2H holds only in
the case of pure ωH,0.

Let us now recall briefly the construction of J . We follow [DG13]. First
note that since H is the covariance of a quasi-free state, we know from
Theorem2.3 that

|�S( f1, f2)| ≤ 2
√

H( f1, f2)
√

H( f1, f2), ∀ f1, f2 ∈ L . (5.10)

We complete L with the product (., .)H
.= 〈., H.〉 to a real Hilbert space H and the

inequality (5.10) implies that�S is a bilinear form onHwith norm less than or equal
2. Therefore, there exists an operator A ∈ B(H) with ||A|| ≤ 1 such that

〈 f1,�S f2〉 = 2( f1, A f2)H

If the kernel of A is trivial, then we take the polar decomposition A = −J |A| and J
satisfies J 2 = −1. More generally, as in the proof of theorem 17.12 of [DG13], we
define Lsg

.= Ker A and L reg
.= L⊥

sg. Then we set Areg
.= A �L reg and construct the

polar decomposition Areg = −Jreg|Areg|. If the dimension of Lsg is even or infinite
(which is the case in the situation we are interested in), then there exist an orthogonal
anti-involution Jsg on Lsg and we set J = Jreg ⊕ Jsg. J constructed this way defines
an almost-complex structure on L .

We define the holomorphic and anti-holomorphic subspaces of LC as

Z
.= {( f − i J f )| f ∈ L} ,

Z
.= {( f + i J f )| f ∈ L},

respectively. Projections onto these subspaces are defined as 1Z = 1
2 (id − i J ) and

1Z = 1
2 (id + i J )

If ωH,0 is pure then the quadruple (L , 2H,�S, J ) is a Kähler structure. We de-
compose �+

S in the holomorphic basis to obtain

〈
1Z f1,�

+
S (1Z f2)

〉 = 〈
f1,�

+
S f2

〉
,

where f1, f2 ∈ LC and remaining components vanish. As a result, �+
S is represented

in the holomorphic basis as (
0 0

�+
S 0

)

,

http://dx.doi.org/10.1007/978-3-319-25901-7_2
http://dx.doi.org/10.1007/978-3-319-25901-7_2
http://dx.doi.org/10.1007/978-3-319-25901-7_2
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so it acts only on the holomorphic part of the first argument and the anti-holomorphic
part of the second argument.

We have seen in this section that it is natural to reformulate the construction of
the quantum algebra of the free field in the language of Kähler geometry. There is
also a hope that such concepts might allow us to go beyond the formal quantization.
This will be addressed in our future works.
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Chapter 6
Interaction and Renormalization
of the Scalar Field Theory

6.1 Outline of the Approach

In the previous chapter we have covered the quantization of free theories (quadratic
actions); now is the time to introduce the interactions. This is where we have to
start working perturbatively. The ultimate goal of AQFT is to be able to construct
interacting models in 4 spacetime dimensions non-perturbatively, but at the moment
no such models are known. The perturbative approach, on the other hand, has proven
to be successful in describingmany phenomena in particle physics, so it isworthwhile
to try to understand its mathematical foundations. It turns out that a careful analysis
of the problem and employing some tools from functional analysis allow us to avoid
dealingwith ill defined “divergent” expressions, as is often done in physics textbooks.

We will follow the ideas on renormalization developed by [BP57, BS59, Hep66,
EG73, SR50, Ste71]. The approach ismotivated by the interaction picture of quantum
mechanics, as outlined in Sect. 2.1.4. We begin with a heuristic argument and then
we will show how to make it rigorous. Let H0 be the free Hamiltonian and let Ht,I =
− ∫K :LI (0, x): dσt be the interactionHamiltonian, where :LI : is the normal-ordered
Lagrangian density (the precise definition of normal-orderingwill be introduced later
in this chapter), constructed from the classical quantityLI (x) and K is some compact
subset of a Cauchy surface �.

We would like to use the Dyson formula (2.11) for the interacting time evolution
operator UI (t, s), so formally we write

UI (t, s) = 1+
∞∑

n=1

i nλn

n!
∫

([s,t]×R3)n

T (:LI (x1): . . . :LI (xn):)d4x1 . . . d4xn,

where λ is the coupling constant, T denotes time-ordering and :LI : is an operator-
valued function given by

:LI (x): = ei H0x0 :LI (0, x): e−i H0x0
.

© The Author(s) 2016
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Heuristically, one would use the unitary map defined above to obtain interacting
fields as

ϕI (x) = U (x0, s)−1ϕ(x)U (x0, s) = U (t, s)−1U (t, x0)ϕ(x)U (x0, s), (6.1)

where s < x0 < t .
There are, however, serious problems with this idea. The first obvious difficulty is

the fact that typical Lagrangian densities likeLI (x) = ϕ(x)4 cannot be used to define
operator-valued distributions on a Cauchy surface �0 (they are too singular). This is
the source of the so called UV problem. Moreover, having the sharp cutoff function
in the Lagrangian andHamiltonian (i.e. integratingwith the characteristic function of
K × [s, t]) leads to additional divergences, called Stückelberg divergences. Finally
there is a problem with taking the adiabatic limit, as the integral of the Lagrangian
density over x does not exist if � is non-compact. Last but not least, the overall sum
might not converge.

Fortunately all these problems, apart from the last one, can be easily dealt with by
a slightmodification of the above idea. First, to avoid the Stückelberg divergences, we
replace the sharp cutoffs with smooth test functions. Next, we solve the UV problem
by using causal perturbation theory in the sense of Epstein and Glaser [EG73], where
the interaction is switched on only in a compact region of spacetime. Finally, we take
the adiabatic limit algebraically, as a certain inductive limit at the level of interacting
observable algebras.

6.2 Scattering Matrix and Time Ordered Products

Modifications of the Dyson formula described at the end of the previous section lead
to the definition of the formal S-matrix as

S(g) = 1+
∞∑

n=1

i nλn

n!
∫

g(x1) . . . g(xn)T (:LI (x1): . . . :LI (xn):)d4x1 . . . d4xn,

where g is a test function. Compare this formula with (2.12). In order to make this
formula mathematically rigorous, first we need to make sense of the normal ordering
operation :LI (x):, and then we have to define the time-ordered products of :LI (xi ):.
Finally, in order to make sense of the formula (6.1) for the interacting field we
interpret it as the definition of a distribution, rather than a function. Hence, for a test
function f we obtain

http://dx.doi.org/10.1007/978-3-319-25901-7_2
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∫

f (x)ϕI (x)d4x

= S(g)−1
∞∑

n=0

i nλn

n!
∫

f (x)g(x1) . . . g(xn)T ϕ(x)LI (x1) . . .LI (xn)d
4x1 . . . d4xn

= d

dλ
S(g)−1S(g,λ f )

∣
∣
λ=0 , (6.2)

where S(g, f ) is the formal S-matrix with the Lagrangian density λgLI + f ϕ. This
is called Bogoliubov’s formula [BS59].

6.2.1 Wick Products

Let us start our construction by defining the Wick-ordered quantities :LI (x):. In our
framework normal (Wick) ordering ismeant as a prescription for identifying classical
quantities with their quantum counterparts. More precisely, it is a map Floc → A,
F �→ :F :. An example of such map is provided by :F :H .= α−1H ◦ TH

(F), where TH :
Floc → AH . Note that both classical and quantum observables are understood as
(formal power series in) microcausal functionals, so the easiest way is define the
normal ordering is to set TH = id and hence

:F :H = α−1H (F), F ∈ Floc. (6.3)

Clearly, : . :H defined this way depends on the choice of H , so there is no distin-
guished choice of normal ordering on spacetimes with no distinguished states.

Example 6.1 (Algebraic Wick’s theorem) Wick’s theorem plays an important role in
physics, so we will show here how it follows from our algebraic definition of normal
ordering. To this end we will use the abstract definition of A, rather the one in terms
of families of functionals labeled by H . Consider the free scalar field. Let

Fn(ϕ) =
∫

ϕ(x)ϕ(y)gn(y − x) f (x)dμg(x)dμg(y),

where f ∈ D(M) and gn is a sequence of smooth compactly supported functions
that converges to the Dirac delta distribution δ(x − y) in the topology τN defined in
Definition4.16. By applying α−1H to the sequence (Fn), we obtain a sequence

α−1H Fn =
∫

(ϕ(x)ϕ(y)gn(y − x) f (x)− �H(x, y)gn(y − x) f (x))dμg(x)dμg(y),

The limit of this sequence is identified with the normally ordered expression∫ :ϕ(x)2:H f (x)dμg(x), i.e.:

http://dx.doi.org/10.1007/978-3-319-25901-7_4
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:F :H =
∫

:ϕ2:H f dμg

= lim
n→∞

∫

(ϕ(x)ϕ(y)− �H(x, y))gn(y − x) f (x)dμg(x)dμg(y).

Note that the right-hand side cannot be interpreted as a functional on the configuration
space, but is just a formal expression representing an abstract element of the extension
of Freg, as defined in Definition5.2. We write this expression in a short-hand notation
as a coinciding point limit:

:ϕ(x)2:H = lim
y→x

(ϕ(x)ϕ(y)− �H(x, y)).

This shows that transforming with α−1H corresponds formally to the subtraction of
�H(x, y).

Now, to recover Wick’s theorem, consider a product of two Wick squares
:ϕ(x)2:H :ϕ(y)2:H . Note that in our setting this has to be understood as the �-product
of two elements of A. Using the α−1H prescription we identify this product as

(

α−1H

∫

ϕ2 f1dμg

)

�

(

α−1H

∫

ϕ2 f2dμg

)

= α−1H

((∫

ϕ2 f1dμg

)

�H

(∫

ϕ2 f2dμg

))

= α−1H

(∫

ϕ2 f1dμg

∫

ϕ2 f2dμg + 4�
〈
f1ϕ,�+

S0
( f2ϕ)

〉

+ �
2

2

∫

(�+
S0

(x, y))2 f1(x) f2(y)dμg(x)dμg(y)

)

.

Omitting the test functions we obtain

:ϕ(x)2:H :ϕ(y)2:H = :ϕ(x)2ϕ(y)2:H + 4ϕ(x)ϕ(y):H��+
S0

(x, y)+ 2
(
��+

S0
(x, y)

)2
,

which is a familiar form of Wick’s theorem applied to :ϕ(x)2:H :ϕ(y)2:H .

6.2.2 Locally Covariant Wick Products

The normal ordering prescription (6.3) is not the optimal one if we work on curved
spacetime. This is because we would like to define the normal ordering on all glob-
ally hyperbolic spacetimes in a coherent way and the choice of H across different
spacetimes cannot be made covariantly. More precisely, we want to lift : . : to the
level of locally covariant fields in the sense of Definition2.66.

http://dx.doi.org/10.1007/978-3-319-25901-7_5
http://dx.doi.org/10.1007/978-3-319-25901-7_2
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Definition 6.1 Let : . :M be a Wick-ordering prescription on spacetime M ∈
Obj(Loc). Given a natural transformation� : D→ Floc we say that (: . :M)M∈Obj(Loc)

is covariant if the family :�:M defines a natural transformation from D to A.

Wewill now discuss the existence of such a family ofWick-ordering prescriptions
and the remaining renormalization freedom.

Even though Hadamard states on different spacetimes cannot be chosen in a
coherent way, it turns out that this is possible for a family of Hadamard parametrics.
The difference between�+

S0
, a 2-point function of aHadamard state, and a parametrix

is that the latter is a bi-solution of the linearized equations ofmotion only up to smooth
terms. Due to the covariance condition, it is more appropriate to define the normal
ordering by a prescription where only the singular part of H enters into α−1H . We
realize this idea by setting

:F :M = α−1H (αw F) = α−1H−w
F,

where F ∈ Floc and wherew is the smooth part of the Hadamard 2-point function. In
other words, we set TH ≡ αw. To understand what w is, we need to recall some facts
about the singularity structure of 2-point functions of Hadamard states. We follow
closely [KW91] and a recent review [FR14].

We begin by introducing some notation. Let t :M→ R be a time function
(smooth function with a timelike and future directed gradient field) and let

σε(x, y)
.= σ(x, y)+ 2iε(t (x)− t (y))+ ε2,

where σ(x, y) is half of the square geodesic distance between x and y, i.e.

σ(x, y)
.= 1

2
g(exp−1x (y), exp−1x (y)).

Definition 6.2 We say that a bi-distribution W on M is of local Hadamard form if,
for every x0 ∈ M , there exists a geodesically convex neighbourhood V of x0 such
that, for every integer N , W (x, y) on V × V can be written in the form

W = lim
ε↓0

(
u

σε
+

N∑

n=0
σnvn log

(σε

λ2

)
+ wN

)

= W sing
N + wN , (6.4)

where u, vn ∈ C∞(M2, R), n = 0, . . . , N are solutions of the transport equations
and are uniquely determined by the local geometry, λ is a free parameter with the
dimension of inverse length and wN is an 2N + 1 times continuously differentiable
real-valued function.

We now define

αw F
.= lim

N→∞αwN F, (6.5)
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for F ∈ Floc. This limit makes sense, because the series converges after finitely
many steps. It is crucial that in this formula F is local, since the limit of wN is well
defined only in a geodesically convex neighborhood of the diagonal in M × M . Since
functional derivatives of a local functional are supported on the diagonal, αwN F has
a well-defined limit. For details see [HW02a]. Note that in our definition of : . :M
is fixed up to the choice of the energy scale λ in Eq.6.4. One can, however, allow
additional freedom, staying consistent with the requirements of locality, covariance
and some regularity properties. This possibility has been investigated in [HW02a],
where it was shown that for the scalar field : . :M is fixed up to two parameters. The
choice of these parameters is then treated as additional renormalization freedom.

A slightly different point of view on the problem of finding locally covariant
Wick products is presented in section 5 of [BFV03]. Here we only give a sketch of
the argument for the Wick square. For each object M ∈ Loc we choose HM and
going through the definitions it is easy to see that, for an admissible embedding
χ ∈ Hom(M,M′) we obtain

Aχ
( :�2:HM

(x)
) = :�2:HM′ (χ(x))+ HM′(χ(x),χ(x))− HM(x, x) .

It was shown in [BFV03] that redefining Wick powers to become covariant amounts
to solving a cohomological problem. Note that given H and H ′, symmetric parts
of 2-point functions of Hadamard states on a given spacetime M′, we can define a
smooth function BH,H ′ on M′ by setting

BH,H ′(x ′) .= :�2:H(x ′)− :�2:H ′(x ′) .

These functions are covariant under embeddings χ ∈ Hom(M,M′) in the sense that

Bχ∗H,χ∗H ′(x) = BH,H ′(χ(x)) ,

whereχ∗H denotes the pullback of the restriction of H toχ(M)× χ(M). Moreover,
functions B fulfill a cocycle condition

BH,H ′ + BH ′,H ′′ + BH ′′,H = 0 .

The problem of finding a covariant normal-ordering prescription is then reduced to
the cohomological problem of trivialization of the above cocycle while preserving
the covariance property. To see that this is indeed the case, note that if the cocycle
trivializes, then there exists a family of functions fH labeled by different choices of
Hadamard states such that

BH,H ′(x) = fH (x)− fH ′(x)

and we can set
:�2:M(x)

.= :�2:HM
(x)− fH (x) .
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In fact, the cohomological problem above is solved by using the smooth part of the
Hadamard 2-point-function, i.e. one can take

fH (x) = w(x, x) .

6.2.3 Time-Ordered Products

After giving sense to normally ordered expressions we nowwant to define their time-
ordered products. In the first step we consider only regular functionals, to understand
the algebraic structure. We want to define the time-ordered product ·T as a binary
operation on Freg[[�]] that satisfies the condition (2.10), i.e.

F ·T G =
{

F � G if suppG ≺ supp F,

G � F if supp F ≺ suppG,
(6.6)

where the relation “≺” means “not later than” i.e. there exists a Cauchy surface that
separates suppG and supp F and in the first case supp F is in the future of this surface
and in the second case it is in the past. We postulate

F ·T G =
∞∑

n=0
�

n Bn(F, G), (6.7)

for some functional differential operators Bn . Now let f ∈ �C

c (E∗ → M) and define
a linear functional Ff (ϕ) = ∫ 〈 f,ϕ〉 dμg where 〈., .〉 is the duality between V ∗ and
V , the fibers of E∗ and E , respectively. Condition (6.6) implies

B0(Ff , Fg)+ �B1(Ff , Fg) =
{

Ff Fg + i
2�
〈
f,�S0g

〉
if supp g ≺ supp f,

Ff Fg + i
2�
〈
g,�S0 f

〉
if supp f ≺ supp g,

where f, g ∈ �C

c (E∗ → M). This suggests setting B0(F, G) = FG for all F, G ∈
Freg. To analyse thefirst order condition inmore detail,we note that�S0 = �R

S0
−�A

S0
and from the support properties of the advanced and retarded Green functions it
follows that in the example above

B1(Ff , Fg) =
{

i
2

〈
f,�R

S0
g
〉

if supp g ≺ supp f,
i
2

〈
f,�A

S0
g
〉

if supp f ≺ supp g,

Now, since B1 has to be a differential operator, the condition above fixes its coeffi-
cients by the first order derivatives up to diagonal, i.e.

B1 = m ◦
〈

t,
δ

δϕ
⊗ δ

δϕ

〉

+ higher derivatives,

http://dx.doi.org/10.1007/978-3-319-25901-7_2
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where m is the pointwise multiplication operator, i.e. m(F1, . . . , Fn)(ϕ)
.= F1(ϕ) ·

. . . · Fn(ϕ) and t is a distribution in �′c
C

((E∗)�2 → M2) with a kernel satisfying

t (x, y) =
{

i
2�S0(x, y) = i

2�
R
S0

(x, y) if y ≺ x,

− i
2�S0(x, y) = i

2�
A
S0

(x, y) if x ≺ y.

Note that the relations x ≺ y and y ≺ x require that there is a Cauchy surface sepa-
rating x and y, so the case x = y is not affected by the above and there is an ambiguity
in choosing t (x, x).

It turns out that a consistent choice is provided by t = i�D
S0
, where�D

S0

.= 1
2 (�

R
S0
+

�A
S0

) is the Dirac propagator. Let us introduce the notation

DD
.=
〈

�D
S0 ,

δ

δϕ
⊗ δ

δϕ

〉

.

Using the higher order conditions and requiring associativity leads to the following
formula for the time-ordered product:

F ·T G
.= m ◦ ei�DD(F ⊗ G)

=
∞∑

n=0

�
n

n!
〈
F (n),

(
i�D

S0

)⊗n
G(n)
〉
, (6.8)

where F, G ∈ Freg. In contrast to �, the product defined this way is commutative,
since �D

S0
is symmetric. It is also equivalent to the pointwise product by means of

F ·T G = T
(
T−1F · T−1G

)
, (6.9)

where
T = e

i�
2 DD , (6.10)

and

DD
.=
〈

�D
S0 ,

δ2

δϕ2

〉

,

or more precisely

(TF)(ϕ)
.=

∞∑

n=0

�
n

n!
〈
(i�D

S0)
⊗n, F (2n)(ϕ)

〉
.

The linear operator T defined above plays a role of the quantization map; it goes
from the classical world to the quantum world, i.e.

(Freg, ·)
classical

T−→ (Areg, ·T )

quantum
,



6.2 Scattering Matrix and Time Ordered Products 103

where Areg
.= (Freg[[�]], �). Compare this with the notion of the normal-ordering

prescription discussed in Sects. 6.2.1 and 6.2.2, which plays the same role for local
functionals, as T for the regular ones. Later on we will use this fact to extend T to
local non-linear functionals.

Note that on the quantum side there are two products, the non-commutative � and
commutative ·T .
Remark 6.1 There are several propagators and Green’s functions relevant in the
pAQFT framework and they all induce some distinguished differential operators. To
simplify the notation, in this book we will always write

D∗
.=
〈

�∗
S0 ,

δ

δϕ
⊗ δ

δϕ

〉

,

where∗ = A,R,F for the advanced, retarded andFeynmanGreen’s functions,∗ = D
for theDirac propagator and ∗ = + for the 2-point function; for the causal propagator
we denote the corresponding functional differential operator by D�. Similarly we
denote

DF
.=
〈

�F
S0 ,

δ2

δϕ2

〉

,

and

DH
.=
〈

H,
δ2

δϕ2

〉

.

6.2.4 The Formal S-Matrix and Møller Operators

Consider a theory where the interaction is given by λV , where V ∈ Freg and λ is the
coupling constant, treated from now on as a formal parameter (similarly to �).

We start with introducing some notation. LetAH((�))[[λ]] .= (Fμc((�))[[λ]], �H),
where Fμc((�))[[λ]] means formal power series in λ with coefficients in Laurent
series in �. Similarly, Let AH [[λ]] .= (Fμc[[�,λ]], �H). By obvious modification of
the definitions introduced up to now, we define A((�))[[λ]], A[[�,λ]], etc.

Using these objects is crucial for the definition of the S-matrix, since we hold
on to the convention, commonly used in physics, in which the action that enters
the expression for the S-matrix is divided by �. Alternatively, one can absorb this
negative power of � into the definition of the action, as was done in [BDF09].

Definition 6.3 Define the formal S-matrix as a map S : Areg[[λ]] → Areg((�))[[λ]]
given by the time-ordered exponential

S(F)
.= ei F/�

T
= T
(
ei(T−1F)/�

)
, (6.11)

where F is of order at least λ.
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In what follows we choose F = λV for V ∈ Areg and call the terms in the
λ-expansion of (6.11) the n-fold time-ordered products. More precisely

S(λV )
.=

∞∑

n=0

(
iλ
�

)n 1

n!Tn(V⊗n),

and
Tn(V1, . . . , Vn)

.= V1 ·T . . . ·T Vn,

where V1, . . . , Vn ∈ Areg.

Remark 6.2 Note that the S-matrix defined by the formula (6.11) is not unitary (i.e.
S(λV ∗)∗ � S(λV ) �= 1), unless V is linear. This problem is related to the non-locality
of regular non-linear interactions. If we use only local interaction, the unitarity prob-
lem is solved on the level of the renormalized theory (see Sect. 6.2.5) by a suitable
re-definition of time-ordered products. Note that this is to be expected, since non-
local interactions are known to cause problems in quantumfield theory [Kir67, Efi67,
BDFP02].

Interacting fields are obtained by means of the Bogoliubov formula, which reads

RλV (F) = −i�
d

dt

(
S(λV )�−1 � S(λV + t F)

)∣
∣
t=0

= (eiλV/�

T

)�−1
�
(
eiλV/�

T
·T F
)
. (6.12)

The formal inverse of RλV is defined as

R−1λV (G)
.= (eiλV/�

T
� G
) ·T e−iλV/�

T
.

Physically, we interpret RλV (F) as the interacting observable corresponding to F ,
constructed from free fields. The map RλV is often called the (formal) quantum
Møller operator. Expanding in λ we obtain

RλV (F) =
∞∑

n=0

λn

n! Rn(V⊗n, F)

and call maps Rn n-fold retarded products.
In the physics literature one can find the Bogoliubov formula written in terms of

antichronological products. To understand the connection with our formulation, first
write the �-inverse of eiλV/�

T in the form

(
eiλV/�

T

)�−1 =
∞∑

k=0

(iλ)k

�k

∑

P∈P ord
k

(−1)|P|
�∏

I∈P

V ·T |I | 1

|I |! , (6.13)
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where P ord
k is the set of ordered partitions (partitions P with an order relation < on

the elements I ∈ P) of a set with k non-distinguishable elements,
�∏
is the product

built with the use of � and

V ·T |I | .= V ·T . . . ·T V
︸ ︷︷ ︸

|I |
.

Terms in the λ-expansion of the formula (6.13) are called antichronological products
T̄k . More precisely

T̄k(F1, . . . , Fk)
.= k!

∑

P∈P ord
k

(−1)|P|+k
�∏

I∈P

1

|I |!T|I |
(
⊗

i∈I

Fi

)

, (6.14)

so
(

eiλV/�

T

)�−1 =
∞∑

k=0

(−iλ)k

�kk! T̄k(V⊗k).

The notation T|I |
(
⊗

i∈I
Fi

)

means taking the time-ordered product of functionals Fi ,

where i ∈ I . The order is irrelevant, as ·T is commutative. We can now express the
n-fold retarded product as:

Rn(V⊗n, F) = i n

�n

n∑

k=0

(
n

k

)

(−1)k T̄k(V⊗k) � Tn−k+1(V⊗(n−k) ⊗ F).

This almost reproduces the formula from [DF01a], the only difference being the
factor of i n

�n , which we prefer to include into the definition of Rn . The convention we
chose is natural in the context of the classical limit. In order to be able to take this
limit at all, we need to show that the terms with negative powers in � vanish in the
expression for the retarded Møller operator. Before we turn to this task, we need to
take one more step.

Working with time-ordered products and �-products becomes easier if we express
the �-product in the following form1

F � G = mT ◦ e−i�DA(F ⊗ G),

where mT

.= m ◦ ei�DD and F, G ∈ Freg((�))[[λ]]. In this way, we can rewrite
RλV (F) as

RλV (F) = mT ◦ e−i�DA

((
eiλV/�

T

)�−1 ⊗ eiλV/�

T
·T F
)

,

1Thanks to Eli Hawkins for making this crucial observation. This is related to a new way of
understanding the algebraic structures in pAQFT, which will be described in detail in the upcoming
publication [HR16].
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The next proposition shows that theMøller operator RλV contains no negative powers
in �. The original proof is due to [DF01a] and was presented for the case of local
functionals. Here we are working only with regular functionals, so we present a
simplified version of the proof for this case (due to E. Hawkins, to appear in [HR16]).

Proposition 6.1 Let F, G, V ∈ Freg, then the expression RλV (F) contains no neg-
ative powers of �.

Proof It is easier to work with the inverse quantum Møller operator. Note that

eiλV/�

T
·T R−1λV (G) = eiλV/�

T
� G = mT ◦ e−i�DA

(
eiλV/�

T
⊗ G
)
.

Using the fact that DA is a derivation in its left argument, we can “pull out” the
exponential on the right-hand side and write

eiλV/�

T
·T R−1λV (G) = eiλV/�

T
·T mT

〈 ∞∑

k=0

(−1)n

n! Pn(V ) ⊗, (�A
S0)

⊗nG(n)

〉

,

where the pairing above is the pairing of smooth compactly supported functions
on Mk taking values in Freg with distributions on Mk taking values in Freg where
the product on functionals is the tensor product ⊗, so the result of the pairing is a
functional in two variables. After applying the multiplication operator mT we arrive
at a functional in one variable. We spell out Pn(V ) explicitly as P0(V ) = 1 and

Pn(V ) =
∑

P∈Pn

i n+|P|
�

n−|P|λ|P|
·T∏

I∈P

V (|I |), n > 0,

so it is now clear that Pn(V ) does not contain negative powers in �. The final formula
for the inverse quantum Møller operator can be written as

R−1λV (G) = mT

〈 ∞∑

k=0

(−1)n

n! Pn(V ) ⊗, (�A
S0)

⊗nG(n)

〉

. (6.15)

Since R−1λV starts with identity and is well defined as a map on formal power series
in λ and �, so is RλV . �

From the proposition above it follows that RλV is a well defined map on
Freg[[�,λ]]. We introduce the interacting star product on Freg[[�,λ]] by

F �V G
.= R−1V (RV F � RV G)

and the �V -commutator by

[F, G]�V = F �V G − G �V F.
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Let us now discuss the classical limit.

Proposition 6.2 The 0th order in � part of the quantum Møller operator RλV agrees
with the classical Møller operator, i.e.

RλV (F)
∣
∣
�=0 = rλV (F).

Proof As in the previous proposition, it is easier to work with the inverse Møller
operator. Taking the � = 0 term in formula (6.15) results in

r̃−1λV (G)
.= R−1λV (G)

∣
∣
�=0 = m

〈 ∞∑

k=0

1

n!
(
λV (1)�A

S0

)n ⊗, G(n)

〉

.

We will now show that the operator r̃−1λV is equal to r−1λV introduced in Sect. 4.6. First
note that r̃−1λV is in fact a pullback of the operator that acts on E[[λ]] as

r̃−1λV (ϕ) = ϕ+ λ�R
S0 V (1)(ϕ) (6.16)

Clearly, if ϕλ is a formal solution for the interacting field equation P(ϕλ)+
λV (1)(ϕλ) = 0, then r̃−1λV (ϕλ) is a solution to the free field equation. The equation
for the inverse of r̃−1λV can be obtained by setting ϕλ = r̃λV (ϕ). We arrive at

r̃λV (ϕ) = ϕ− λ�R
S0 V (1)(r̃λV (ϕ)),

which is the Yang–Feldmann equation. Differentiating with respect to λ results in

d

dλ
r̃λV (ϕ) = −

(

�R
S0 V (1)(r̃λV (ϕ))+ λ�R

S0 ◦ V (2)(r̃λV (ϕ))
d

dλ
r̃λV (ϕ)

)

.

Now we bring the derivative of r̃λV (ϕ) to the left-hand side.

(
id +�R

S0 ◦ V (2)(r̃λV (ϕ))
) d

dλ
r̃λV (ϕ) = −�R

S0 V (1)(r̃λV (ϕ))

Applying P (the differential operator induced by S′′0 ) to both sides we obtain

(
P + V (2)(r̃λV (ϕ))

) d

dλ
r̃λV (ϕ) = −V (1)(r̃λV (ϕ))

Now apply the inverse of P + V (2).

d

dλ
r̃λV (ϕ) = −�R

S0+λV V (1)(r̃λV (ϕ))

http://dx.doi.org/10.1007/978-3-319-25901-7_4
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On the level of functionals this coincides with the relation (4.32), so r̃λV satisfies
the same recursion relation as rλV . Clearly, the 0th and the 1st orders of both maps
coincide, hence r̃λV = rλV . �

It is now easy to see that the theory defined by �V is indeed a quantization of the
classical theory defined by the Poisson bracket �., .�S0+λV given in Definition4.8.

Proposition 6.3 Let F, G, V ∈ Freg, then

1

i�
[F, G]�V

∣
∣
∣
�=0

= �F, G�S0+V .

Proof This is a straightforward consequence of Propositions4.11 and 6.1. �

The interacting theory for regular functionals is the algebra (Freg[[�,λ]], �V ) and
RV acts as the intertwining map between the free quantum theory and the interacting
quantum theory, i.e.

(Freg, ·)
classical

T−→ (Areg, ·T )
free

quantum

R−1V−−→ (Freg[[�,λ]], �V )
interacting
quantum

. (6.17)

The formula (6.9) for the time-ordered product makes sense if we restrict our-
selves to regular functionals. This is, however, not enough, since typical interactions
appearing in particle physics are local and non-linear (hence not regular). In the first
attempt to fix the problem we pass to a different star product, which amounts to
replacing i

2�S0 by �+
S0
and i�D

S0
by the Feynman propagator �F

S0
= i�D

S0
+ H , so

we obtain now

(Freg, ·)
classical

TH−→ (AH
reg, ·TH )

α−1H−−→ (Areg, ·T )
free

quantum

R−1V−−→ (Freg[[�,λ]], �V )
interacting
quantum

,

where TH .= e
�

2 DF , and DF
.= 〈�F

S0
, δ2

δϕ2 〉, so T = α−1H ◦ TH .

Remark 6.3 Note that here we use a convention where the factor of i is absorbed into
the definition of the Feynman propagator. This means that �F

S0
is i times a Green’s

function for the differential operator P induced by S′′0 .

Unfortunately the modification we have made is not sufficient to extend the time-
ordered products to arbitrary local functionals. The difficulty that we have to face is
that theWF set of�F

S0
on the diagonal behaves like theWF set of the Dirac delta (i.e.

contains all non-zero covectors), hence the tensor powers of�F
S0
cannot be contracted

with derivatives of local functionals.

Example 6.2 Consider the example of Minkowski spacetime. Let Ff (ϕ) = ∫ ϕ(x)

f (x)d4x be a smeared field and we want to find an explicit formula for Ff ·T Fg for
f, g ∈ D(M), starting from first principles. By the definition of time-ordering we
have

http://dx.doi.org/10.1007/978-3-319-25901-7_4
http://dx.doi.org/10.1007/978-3-319-25901-7_4
http://dx.doi.org/10.1007/978-3-319-25901-7_4
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Ff ·T Fg =
∫

θ(τ )�+
S0

(x, y) f (x)g(y)d4x d4y

+
∫

θ(−τ )�+
S0

(y, x) f (x)g(y)d4x d4y,

where τ = x0 − y0. Using formula (5.6) for the 2-point function we get

θ(τ )�+
S0

(x, y)+ θ(−τ )�+
S0

(y, x)

= 1

(2π)3

∫
(
θ(τ )e−iω pτ+i p.(x− y) + θ(−τ )eiω pτ−i p.(x− y)) d3 p

2ω p

= 1

(2π)3

∫
(
θ(τ )e−iω pτ + θ(−τ )eiω pτ

)
ei p.(x− y) d3 p

2ω p
.

We can now use the known trick to rewrite the last integral as

1

(2π)4

∫
i

p2 − m2 + iε
eip·(x−y)d4 p.

Comparing with Ff ·T Fg =
〈
f,�F

S0
g
〉
, we conclude that on Minkowski spacetime

�F
S0(x, y) = 1

(2π)4

∫
i

p2 − m2 + iε
eip·(x−y)d4 p,

as expected. For a final consistency check, we note that �F
S0

given by the formula
above is indeed i times a Green’s function for P = −(�+ m2), i.e.

−(�x + m2)�F
S0(x, y) = iδ(x − y).

Remark 6.4 On the Minkowski spacetime, the operator TH formally corresponds to
convolution with a Gaussian measure with covariance i��F

S0
, i.e.

TH F(ϕ)
formal=
∫

F(ϕ− φ)dμi��F
S0
(φ). (6.18)

The path integral above is not well defined as an integral, but the differential operator
TH that we use instead is much better behaved. Therefore, one can think of the
functional formalism we present in this book as a way to make path integrals and
other formulas used in perturbative QFT rigorous.

http://dx.doi.org/10.1007/978-3-319-25901-7_5
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6.2.5 Epstein–Glaser Axioms

In the next step we want to extend time-ordered products defined in Sect. 6.2.3 to
local non-linear functionals. This corresponds to what the physics literature calls the
renormalization problem. Its mathematically rigorous solution has been proposed
by Epstein and Glaser in the seminal paper [EG73] and it makes use of the causal
structure of spacetime. Here we follow a similar approach.

Note that the quantization operator TH acts on Floc by TH = αw, where αw is
defined by (6.5). On Minkowski spacetime we can alternatively set TH = id. The
subspace Floc[[�]] ⊂ AH ≡ (Fμc[[�]], �H) is denoted by AH

loc.
We define Floc as the image of AH

loc under α−1H . The definition makes sense, since
this subspace is the same vector space for all the choices of H .

Definition 6.4 Denote by (Floc)
⊗n
pds the subspace of (Floc)

⊗n spanned by F1 ⊗ · · · ⊗
Fn , where F1, . . . , Fn ∈ Floc have pairwise disjoint supports.

Definition 6.5 Let n ∈ N, n > 1. On (AH
loc)

⊗n
pds we define the n-fold time-ordered

product as a map TH
n : (AH

loc)
⊗n
pds → AH given by

TH
n (F1, . . . , Fn)

.= F1·TH
. . . ·TH

Fn.

Let F1 ⊗ · · · ⊗ Fn ∈ (AH
loc)

⊗n
pds such that the supports supp Fi , i = 1, . . . , k of the

first k entries do not intersect the past of the supports supp Fj , j = k + 1, . . . , n of
the last n − k entries. If follows from the definition of the time-ordered product that
in this case

TH
n (F1 ⊗ · · · ⊗ Fn) = TH

k (F1 ⊗ · · · ⊗ Fk) �H TH
n−k(Fk+1 ⊗ · · · ⊗ Fn), (6.19)

This is called the causal factorisation property. It is a crucial feature which we want
to require also from the extended n-fold time-ordered products. This motivates the
following, axiomatic definition.

Definition 6.6 Renormalized time-ordered products are multilinear maps
TH

n : F⊗n
loc → AH = (Fμc[[�]], �H), n ∈ N, satisfying:

(T 1) Causal factorisation property

TH
n (F1 ⊗ · · · ⊗ Fn) = TH

k (F1 ⊗ · · · ⊗ Fk) �H TH
n−k(Fk+1 ⊗ · · · ⊗ Fn)

if the supports supp Fi , i = 1, . . . , k of the first k entries do not intersect the
past of the supports supp Fj , j = k + 1, . . . , n of the last n − k entries.

(T 2) Starting element: TH
0 = 1, TH

1 = id.2

(T 3) Symmetry: For a purely bosonic theory TH
n is symmetric in its arguments. If

fermions are present, TH
n is graded-symmetric.

2One can leave some freedom in the definition of TH
1 which can then be used to absorb the renor-

malization ambiguity in defining the normal ordering : . :M.



6.2 Scattering Matrix and Time Ordered Products 111

(T 4) Field independence: TH
n (F1, . . . , Fn), as a functional on E, depends on ϕ

only via the functional derivatives of F1, . . . , Fn , i.e.

δ

δϕ
TH

n (F1, . . . , Fn) =
n∑

i=1
TH

n

(

F1, . . . ,
δFi

δϕ
, . . . , Fn

)

(T 5) ϕ-Locality: TH
n (F1, . . . , Fn) = TH

n (F [N ]1 , . . . , F [N ]n )+ O(�N+1), where F [N ]i
is the Taylor series expansion of the functional Fi up to the N th order.

Remark 6.5 Note that the property (T 5) allows one to reduce the problem of con-
structing the time-ordered products of local functionals to the construction of the
time-ordered products of polynomials. Property (T 4) is crucial to show that the
construction reduces to extensions of numerical distributions.

Given the family of maps {TH
n }n∈N, we can define time-ordered products of Wick-

ordered quantities and then finally the S-matrix.

Definition 6.7 We define Tn : A⊗n
loc → A by requiring that αH ◦ Tn = TH

n ◦ α⊗n
H , so

in a slightly formal way we write

Tn
.= α−1

H ◦ TH
n ◦ α⊗n

H ,

and the renormalized S-matrix is a map S : Aloc[[λ]] → A((�))[[λ]], given by

S(F)
.=

∞∑

n=0
i n

�nn!Tn(F⊗n),

where F is of order at least λ.

Analogously to the regular case, we consider F = λV , where V ∈ Aloc. We want
the S-matrix defined this way to be unitary, i.e. we require that

S(λV ∗)∗ � S(λV ) = 1,

This condition can be translated into an additional axiom for the time-ordered prod-
ucts:

(T 6) Unitarity: TH
n (F∗1 , . . . , F∗n )∗ = T̄H

n (F1, . . . , Fn), where T̄H
n is the antichrono-

logical product defined in (6.14).

Remark 6.6 Let V be a real-valued local functional. The unitarity property implies
that the renormalized quantum Møller operator satisfies the following relation:
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RλV (F)∗ = −i�
d

dt

(
S(λV )−1 � S(λV + t F)

)∗ ∣∣
∣
t=0

= −i�

(
d

dt

(
S(λV + t F∗)

)−1 ∣∣
∣
t=0

� S(λV )

)

= i� S(λV )−1 �
d

dt

(
S(λV + t F∗)

) ∣∣
∣
t=0
= RλV (F∗).

The final consideration is to ensure that the time-ordered products are covariant,
i.e. they are defined on all spacetimes in a coherent way. Denote by TnM the n-fold
time-ordered product on spactime M ∈ Obj(Loc).

Definition 6.8 LetM,N ∈ Obj(Loc) andχ :M→ N be an admissible embedding.
We say that the family (TnM)M∈Obj(Loc) defines a covariant n-fold time-ordered
product if

Aμcχ ◦ TnM(F1, . . . , Fn) = TnN(Alocχ(F1), . . . ,Alocχ(Fn)),

where F1, . . . , Fn ∈ Aloc(M).

The following is an obvious consequence of our notion of covariance and shows
the relation with covariant Wick products.

Proposition 6.4 Let TnM be a covariant n-fold time-ordered product on spactime
M ∈ Obj(Loc). Given locally covariant quantum fields

:�i :M ∈ Nat(D,Aloc), i = 1, . . . n,

the family
TnM ◦ (:�1:M, . . . :�n:M)

defines a natural transformation in Nat(Dn,A).

Finding the right notion of covariance for time-ordered productswas a very impor-
tant step in understanding quantum field theory on curved spacetime. The idea was
developed by Brunetti, Fredenhagen, Hollands, Verch and Wald [HW01, Ver01,
BFV03]. The requirement of covariance can be translated into another axiom for
TH

n ’s.

(T 7) Covariance: Tn
.= α−1

H ◦ TH
n ◦ α⊗n

H is covariant in the sense of Definition6.8.

More explicitely the Covariance condition can be written as

Fμcψ ◦ Tψ∗H
n = TH

n ◦ (Flocψ)⊗n ,

whereψ ∈ Hom(M,N), H is a distribution on N × N andψ∗H denotes the pullback
of its restriction to ψ(M)× ψ(M), by ψ.



6.2 Scattering Matrix and Time Ordered Products 113

Using the inductive method of [EG73], generalized to curved spacetimes by
[BF00, HW01, HW02a], one shows that a family of maps satisfying axioms (T 1)–
(T 7) exists and the non-uniqueness of the construction is fully absorbed into adding
multilinear maps ZH

n : F⊗n
loc → Floc[[�]], i.e.

T̃H
n(F1, . . . , Fn) = TH

n (F1, . . . , Fn)+ ZH
n (F1, . . . , Fn), (6.20)

where {TH
n }n∈N and {T̃H

n }n∈N
are two choices of families of n-fold time-ordered

products that coincide up to order n − 1. A detailed argument for the existence of
time-ordered products is given in Sect. 6.5.

The causal factorisation property for time-ordered products implies that the
S-matrix satisfies Bogoliubov’s factorization relation

S(F1 + F2 + F3) = S(F1 + F2) � S(F2)
−1 � S(F2 + F3) (6.21)

if the support of F1 does not intersect the past of the support of F3.

Definition 6.9 We define the renormalized map T : F→ A by T
.=⊕n α−1

H ◦ TH
n ◦

αw ◦ m−1, where m−1 : F→ S•F(0)
loc is the inverse of the multiplication, as defined

in [FR12a] and F
(0)
loc is the space of local functionals that vanish at 0.

Using T we conclude that the renormalized time-ordered product ·T is a binary
operation defined on the domain DT

.= T(F) ⊂ A.

6.3 Renormalization Group

In this section we discuss in detail the ambiguity arising in defining Tn’s. In physics
this is known as the renormalization ambiguity and is related to the notion of the
renormalization group. First note that the ambiguitiesZH

n appearing in formula (6.20)
give rise to maps Zn : A⊗n

loc → Aloc defined by

Zn
.= α−1H ◦ ZH

n ◦ α⊗n
H .

Next we define a map Z : Aloc → Aloc by summing up all the Zn’s relating two
chosen prescriptions to define the time-ordered products, i.e.

Z(V )
.=

∞∑

n=0

1

n!Zn(V⊗n) , V ∈ Aloc.

For any two choices of the families {Tn}n∈N, the corresponding map Z, which relates
them, has the following properties:

(Z 1) Z(0) = 0,
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(Z 2) Z(1)(0) = id,

(Z 3) Z = id + O(�),

(Z 4) Z(F + G + H) = Z(F + G)+ Z(G + H)− Z(G), if supp F ∩ supp G,

(Z 5) δZ
δϕ
= 0.

The group of formal diffeomorphisms of Aloc that fulfill (Z 1)–(Z 5) is called the
Stückelberg–Petermann renormalization group R. The relation between the formal
S-matrices and the elements ofR is provided by themain theorem of renormalization.
This theorem, originally formulated in an unpublished preprint byStora andPopineau
[PS82], was later generalized and improved, in particular by Pinter [Pin01]. Its final
version, which relies heavily on a proof of Stora’s “Action Ward Identity” [DF04,
DF07], was obtained in [HW02b, DF04] and was then further analyzed in [BDF09].

Theorem 6.1 Let S and Ŝ be two formal S-matrices, built from time ordered
products satisfying the axioms (T 1)–(T 7). Then there exists Z ∈ R such that

Ŝ = S ◦ Z, (6.22)

where Z ∈ R. Conversely, if S is an S-matrix satisfying the axioms (T 1)–(T 7) and
Z ∈ R then Ŝ defined by (6.22) also fulfils the axioms.

Proof For proof see [DF04, BDF09]. �

The abstract notion of the renormalization group can bemademore concrete when
we consider a specific model. This is done by fixing a natural Lagrangian (see Defin-
ition4.6) L I ∈ Nat(D,Floc), which defines the interaction term of the theory. Since
we defined the Wick-ordering in a covariant way (in the sense of Definition6.1),
the normally-ordered quantity :L I : is a natural transformation in Nat(D,Aloc). For
a fixed spacetime M the map :L I :M : D → Aloc satisfies additivity, the support
property and covariance from Definition4.1. This motivates the following defini-
tion.

Definition 6.10 A quantum Lagrangian on a fixed spacetimeM = (M, g) is a map
L : D(M) → Aloc such that

(i) L( f + g + h) = L( f + g)− L(g)+ L(g + h) for f, g, h ∈ D with supp f ∩
supp h = ∅ (Additivity).

(ii) supp(L( f )) ⊆ supp( f ) (Support).
(iii) Let G be the isometry group of the spacetimeM (for the Minkowski spacetime

we set G to be the proper orthochronous Poincaré group P
↑
+.). We require that

L( f )(β∗ϕ) = L(β∗ f )(ϕ) for every β ∈ G (Covariance).

In a given pQFTmodel we are interested in computing expectation values of such
quantum Lagrangians Li , i = 1, . . . , N in a given state ω. The following result is
crucial for our framework.

http://dx.doi.org/10.1007/978-3-319-25901-7_4
http://dx.doi.org/10.1007/978-3-319-25901-7_4
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Theorem 6.2 (Proposition 6.2 of [BDF09]) The space L of quantum Lagrangians
is invariant under the renormalization group R.

Proof For the details of the proof see [BDF09]. Note that the additivity property
for the transformed Lagrangians is a direct consequence of the property (Z 4) of the
renormalization group. �

Remark 6.7 It is convenient to choose the state ω as a quasi-free state of the form
ωH,0. On Minkowski spacetime there is a distinguished choice of H as �1, so that
�+

S0
= i

2�S0 +�1 is the Wightman 2-point function, as in Example5.2. In this case
ω�1,0 is just the usual vacuum expectation value, which can be compared with the
standard physics literature.

We are now ready to give an abstract definition of a theory.

Definition 6.11 A theory in pQFT on a spacetimeM is defined by fixing the space
E of field configurations and a complex vector space � of quantum Lagrangians that
is closed under the action of the renormalization group R.

From the point of view of physical interpretation, it is more appropriate to talk
aboutactions thanLagrangians.Classically,wedefinedactions as equivalence classes
under the equivalence relation (4.2) (see Definition4.3). In the quantum theory the
test function appearing in the Lagrangian has the interpretation of a point-dependent
coupling constant. For example in the ϕ4 theory the interaction Lagrangian takes the
form

L( f ) = 1

4

∫

λ f (x)ϕ4(x)dμg(x),

so λ(x) ≡ λ f (x) is seen as a point-dependent coupling constant.
The limit where f → 1 is called the adiabatic limit. In the next sectionwewill see

that in pAQFT it is replaced by a weaker notion, the algebraic adiabatic limit. The
presence of Lagrangians that are non-linear in the coupling constant is necessary
for example in non-abelian gauge theories, where the coupling constant enters in
different terms with different powers, in order to maintain the gauge symmetry. The
necessity of non-linear dependence on the test function was stressed in [BDF09],
where the additivity (in this book, property (i) in Definition4.1) has been proposed
as a weaker version of linearity.

The interpretation presented above motivates the following definition.

Definition 6.12

L1
q∼ L2, iff supp(L1 − L2)( f ) ⊂ ( f −1(1))c, (6.23)

where L1, L2 ∈ L and the superscript “c” denotes the complement of a set.

In other words, we identify Lagrangians that would coincide in the limit where
the test function goes to 1.

http://dx.doi.org/10.1007/978-3-319-25901-7_5
http://dx.doi.org/10.1007/978-3-319-25901-7_4
http://dx.doi.org/10.1007/978-3-319-25901-7_4
http://dx.doi.org/10.1007/978-3-319-25901-7_4
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Definition 6.13 We define the set of actions L̃ as L /
q∼, i.e. the set of quantum

Lagrangians L modulo the equivalence relation (6.23).

We are now ready to formulate the definition of power-counting renormalizability
in our framework.

Definition 6.14 Atheory definedby (E,�) is calledpower-counting renormalizable

if �/
q∼ is finite-dimensional (as a vector space).

6.4 Interacting Local Nets

In this section we show how to construct a perturbative model of an interacting
quantum theory, in the sense of Definition2.54. We follow closely the construction
proposed in [FR15]. Let L = (L1, . . . , L N ) be an N -tuple of Lagrangians relevant
for the physical theory we are interested in. Assume L1, . . . , L N to vanish at ϕ = 0,
i.e. Li ( f )[0] = 0 ∀ f ∈ D(M). We choose L1 = L I to be the interaction term and
the remaining Lagrangians are some chosen observables, for example conserved
currents, charges, etc. For each Lagrangian we introduce a formal parameter λi ,
i = 1, . . . , N and we denote the N -tuple of these parameters by λ. Define D N (M)

to be the space of compactly supported functions on M with values in R
N .

For a fixed f = ( f1, . . . , fN ) ∈ D N (M)we construct the S-matrices correspond-
ing to Li (λi fi ), i = 1, . . . , N and their linear combinations, using Epstein–Glaser
renormalization. This allows us to define a map from D N (M) to A by means of

f �→ S( f )
.= S

(
N∑

i=1
Li (λi fi )

)

(6.24)

In this way we obtain a family of unitaries (see condition (T 6)) {S( f )| f ∈ D N (M)}
with S(0) = 0, which generate a *-subalgebra AL of A((�))[[λ]] and satisfy for
f, g, h ∈ D Bogoliubov’s factorization relation

S( f + g + h) = S( f + g) � S(g)−1 � S(g + h) (6.25)

if the past J− of supp h does not intersect supp f (or, equivalently, if the future J+
of supp f does not intersect supp h).

Proposition 6.5 Assigning to bounded simply-connected regions O ⊂M subalge-
bras AL(O) ⊂ AL generated by {S( f )| supp f ⊂ O} and the unit defines a local,
covariant net in the sense of Definition2.54 (understood in terms of formal power
series in λ valued in Laurent series in �).

Proof The isotony condition, needed for the assignment O �→ AL(O) to be a net, is
straightforward to verify. All the structures used in constructing this net are covariant,
so O �→ AL(O) is covariant in the sense of Definition2.54. The Locality axiom
follows from the fact that for functions f, g with spacelike separated supports

http://dx.doi.org/10.1007/978-3-319-25901-7_2
http://dx.doi.org/10.1007/978-3-319-25901-7_2
http://dx.doi.org/10.1007/978-3-319-25901-7_2


6.4 Interacting Local Nets 117

supp f ∩ J±(supp g) = ∅ (6.26)

and hence

S( f ) � S(g) = S( f + g) = S(g) � S( f ). (6.27)

�

The net {AL(O)} is not yet the interacting net we are looking for. However, it
turns out that there is another way to assign subalgebras of AL to bounded regions
of spacetime, which takes the interaction into account. Let us come back to the
heuristic Bogoliubov formula (6.2) and its mathematically rigorous version (6.12).
Note that the formal Møller operator RV , which relates the free and interacting
theory, is written as the derivative of the relative S-matrix S(V )�−1 � S(V + F). Here
V ≡ L1(λ1g1) = L I (g1) for a test function g1 ∈ D(M). We choose F = Li (λi fi ),
for some i ∈ {2, . . . , N } and fi ∈ D(M). This way we expressed the relative S-
matrix using the elements of AL . We obtain a map

f �→ Sg( f )
.= S(g)−1 � S(g + f ) (6.28)

where f, g ∈ D N and g = (g1, 0, . . . , 0), f = (0, f2, . . . , fN ). S(g) as well as
S( f + g) are defined by means of (6.24). We can now prove a crucial result con-
cerning the relative S-matrices.

Proposition 6.6 (after [FR15]) All the maps Sg labelled by different choices of g (or
more precisely g0), satisfy Bogoliubov’s factorisation relation (6.25).

Proof We follow the proof given in [FR15]. Let f, h ∈ D N (M) such that supp f
does not intersect J−(supp h). Let g, g′ ∈ D N (M). Then

Sg( f + g′ + h) = S(g)−1 � S( f + (g + g′)+ h)

= S(g)−1 � S( f + (g + g′)) � S(g + g′)−1 � S((g + g′)+ h)

= Sg( f + g′) � Sg(g
′)−1 � S(g)−1 � S(g)

︸ ︷︷ ︸
=1

�Sg(g
′ + h). �

Example 6.3 For the case of N = 2, g = (g1, 0) and f = (0, f2) we have S(g +
f ) = S(L I (λ1g1)+ L2(λ2 f2)). Hence the derivative of Sg( f ) with respect to λ2, at
λ2 = 0 is just the retarded field

RL I (g1)

(
d

dλ2
L2(λ2 f2)

∣
∣
∣
λ2=0

)

,

and if the quantum Lagrangian L2 is linear in the test function, this reduces to

RL I (g1) (L2( f2)) .
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We interpret Sg( f ) as the generating function for retarded observable described
by
∑N

i=2 Li (λi fi ), under the influence of the interaction L I (g1). We are now ready
to define the interacting net of observables.

Definition 6.15 The interacting quantum net AL,g corresponding to observables
L = (L1, . . . , L N ) is defined by assigning to bounded simply-connected regions
O the local algebras AL,g(O) ⊂ A((�))[[λ]] that are generated by the relative
S-matrices Sg( f ) with supp f ⊂ O, g = (g1, 0, . . . , 0) and f = (0, f2, . . . , fN ).

Note that the algebras AL,g are subalgebras of A((�))[[λ]] but the net defined by
Definition6.15 differs from the net in Proposition6.5. This is a very subtle point,
since one could suspect that building interacting fields out of free fields should imply
that the resulting theories are identical. Note, however, that in the algebraic approach
physical information is contained not in the global algebra, but in the net structure,
i.e. in thewaywe assign the elements of this algebra to bounded regions of spacetime.
The next proposition shows that elements of AL,g(O) can be indeed interpreted as
retarded observables, as indicated below Example 6.3.

Proposition 6.7 (after [FR15]) The relative S-matrix has the following properties:

1. Sg( f ) depends only on the behavior of g in the past of supp f .
2. Sg( f ) depends on the behavior of g outside of the future of supp f via a (formal)

unitary transformation which does not depend on f .

Proof (i) Let g and g′ be such that supp(g − g′) ∩ J−(supp f ) = ∅, i.e. they only
differ in regions outside the past of supp f . This implies

Sg( f ) = S(g)−1 � S((g − g′)+ g′ + f )

= S(g)−1 � S((g − g′)+ g′) � S(g′)−1 � S(g′ + f ) = Sg′( f ).

(ii) For supp(g − g′) ∩ J+(supp f ) = ∅ we have

Sg( f ) = S(g)−1 � S( f + g′ + (g − g′))

= S(g)−1 � S( f + g′) � S(g′)−1 � S(g′ + (g − g′))

= S(g)−1 � S(g′) � S(g′)−1 � S( f + g′) � Sg′(g − g′)

= Ad Sg′(g − g′)−1(Sg′( f )),

where we use the notation Ad B(A)
.= B−1 � A � B for A, B ∈ A((�))[[λ]]. �

Remark 6.8 We can think of AL,g(O) as the algebra of generating functions for
retarded fields localized in O. Note that, although elements of AL,g(O) contain neg-
ative powers of �, their derivatives

(
i

�

)−n dn

dλi1 . . . dλin

Sg( f )
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are at least of order 0 in � (see the proof in [DF01a] and the discussion in Sect. 6.2.4).
In the simple case of Example 6.2, with L I and L2 linear in test functions, we obtain
the expansion

Sg( f ) =
∑

n,m

(g1λ1)
n( f2λ2)

m

n!m!
dn+m

dλn
1dλm

2

Sg( f ) .

Denote (
i

�

)−m dn+m

dλn
1dλm

2

Sg( f ) ≡ Rn,m( f1, g2) .

This reproduces the expansionof the relative S-matrix into retardedproducts obtained
in [DF01a]. In particular, we have

Rn,1(g1, f2) ≡ Rn
(
L I (g1)

⊗n, L2( f2)
)
.

Proposition 6.7 shows that the structure of local algebras depends only locally
on the interaction. This allows us to perform the adiabatic limit directly on the
level of local algebras as a certain inductive limit (the algebraic adiabatic limit).
In the first step we remove the restriction to interactions with compact support. Let
G ∈ C∞(M, R

N ) and let O be a bounded simply connected region in M . We define

[G]O = {g ∈ D N (M)|g ≡ G on a neighborhood of J+(O) ∩ J−(O)}.

Next we consider the AL-valued maps

SG,O( f ) : [G]O � g �→ Sg( f ) ∈ AL .

We are now ready to extend the Definition6.15 to functions with arbitrary support.

Definition 6.16 The local net of algebrasO �→ AL,G(O) is defined by assigning toO
the algebra generated by SG,O( f ), where supp f ⊂ O. For O1 ⊂ O2 the embedding
iO2O1 of the corresponding algebras is defined on generators by

iO2O1 : SG,O1( f ) �→ SG,O2( f )

for f ∈ D N (M) with supp f ⊂ O1, G = (G1, 0, . . . , 0), f = (0, f2, . . . , fN ).

Let AL,G be the inductive limit of algebras AL,G(O) constituting the net defined
in Definition6.16. Let us denote the corresponding canonical embedding into AL,G

by
iO : AL,G(O) → AL,G

We set
SG( f ) = iO(SG,O( f )).
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The following result shows that the net defined in Definition6.16 is covariant in the
sense of Definition2.55.

Theorem 6.3 Let
αG,O

β (SG( f ))
.= SG(β∗ f ), (6.29)

where SG( f ) ∈ AL,G(O), β ∈ G is an element of the isometry group of M and
β∗ f

.= f ◦ β. Then αG,O
β , β ∈ G extends to a family of isomorphisms αG,O

β : AL,G

(O) → AL,G(βO) satisfying the conditions of Definition2.55.

Before we prove the theorem, we need a lemma that allows us to reduce the
problem to the problem that involves the net {AL,g(O)}.
Lemma 6.1 The evaluation maps

γg,G : SG,O( f ) → Sg( f )

extend to isomorphisms of AL,G(O) and AL,g(O) for every g ∈ [G]O.

Proof The only thing that we need to check is that the map γg,G is injective. Assume
that γg,G(SG,O( f )) = γg,G(SG,O( f ′)) for some f, f ′ with supports contained in O.
Then Sg,O( f ) = SG,O( f ′) and using Proposition6.7 we conclude that Sg,O( f ) =
SG,O( f ′) for every g′ ∈ [G]O, so SG,O( f ) = SG,O( f ′). �

Proof of the theorem We have to prove that the map αG,O
β given by (6.29) extends

to an isomorphism AL,G(O) → AL,G(βO). Let O1 ⊃ O ∪ βO and g ∈ [G]O1 . Then
g,β∗g ∈ [G]O and β∗g = g + hβ

+ + hβ
− with supp hβ

± ∩ J∓(O) = ∅. By the causal
factorization property (6.25) we obtain

αGO
β = γ−1g,G ◦ AdUg(β) ◦ αO

β ◦ γg,G

where Ug(β) = Sg(h
β
−) and

αO
β (S( f )) = S(β∗ f ).

It is now apparent that (6.29) extends to an isomorphism. From the definition (6.29)
it is also clear that if O1 ⊂ O2, then the restriction of αGO2

β to AL,G(O1) coincides

with αGO1
β and for any β,β′ ∈ G, we have αGO

β′ ◦ αGO
β = αGO

β′◦β . �

6.5 Construction of Time-Ordered Products

In this section we review the abstract Epstein–Glaser construction of time-ordered
products on Minkowski spacetime following [EG73, BF00, HW02a]. We will also

http://dx.doi.org/10.1007/978-3-319-25901-7_2
http://dx.doi.org/10.1007/978-3-319-25901-7_2
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show how to obtain more explicit formulas using regularization prescriptions and
combinatorics involving Feynman diagrams.

Time-ordered products TH
n are maps from F⊗n

loc to Fμc[[�]] and, as indicated in
Sect. 6.2.5, they are obtained by extending non-renormalized expressions that are
originally defined only on (Floc)

⊗n
pds. Let us consider F ≡ F1 ⊗ · · · ⊗ Fn ∈ (Floc)

⊗n
pds.

Note that F induces a map from En to C by F(ϕ1, . . . ,ϕ2) = F1(ϕ1) · · · Fn(ϕn).
When we talk about functionals on E we will denote the variable by ϕ and for
functionals on En , the variable is an n-tuple (ϕ1, . . . ,ϕn). For a multiindex β ∈ N

n
0

we denote

δβ F(ϕ1, . . . ,ϕn)
.= δ|β|F

δϕ
β1
1 . . . δϕ

βn
n

(ϕ1, . . . ,ϕn),

where F is a smooth functional on En and (ϕ1, . . . ,ϕn) ∈ En . Clearly δβ F(ϕ1, . . . ,

ϕn) ∈ L(E|β|;C) and byProposition3.1 it induces an element of�′C(E�|β| → M |β|).

6.5.1 Existence of Time-Ordered Products (Abstract Proof)

We have seen in Sect. 6.2.5 that the renormalization problem amounts to extending
the maps TH

n to local functionals with arbitrary supports. In fact, we will see that
it reduces to extending numerical distributions defined everywhere outside certain
subdiagonals in Mn (see [BF00]). The construction proceeds recursively; having
constructed the time-ordered products of order k < n, at order n one is left with the
problem of extending a distribution defined everywhere outside the thin diagonal of
Mn . One way of explicitly constructing such distributional extensions relies on the
splitting method (see for example [Sch95]). Here we take a different approach, based
on the notion of Steinmann’s scaling degree [Ste71].

Definition 6.17 Let U ⊂ R
d be a scale invariant open subset (i.e. λU = U for

λ > 0), and let t ∈ D ′(U ) be a distribution on U . Let tλ(x) = t (λx) be the scaled
distribution. The scaling degree sd of t is

sd t = inf{δ ∈ R| lim
λ→0

λδtλ = 0}. (6.30)

The degree of divergence, another important concept used often in the literature,
is defined as:

div(t)
.= sd(t)− d.

The crucial result that allows us to construct time-ordered products is stated in the
following theorem:

Theorem 6.4 Let t ∈ D(Rn \ {0}) with scaling degree sd t < ∞. Then there exists
an extension of t to an everywhere defined distribution with the same scaling degree.
The extension is unique up to the addition of a derivative P(∂)δ of the delta function,

http://dx.doi.org/10.1007/978-3-319-25901-7_3
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where P is a polynomial with degree smaller or equal to div(t) (hence P vanishes
for sd t < n).

In order to apply Theorem6.4, we need to reduce the problem of constructing the
time-ordered products to the problem of extending numerical distributions defined
everywhere outside the thin diagonal. In this section wework on the level of quantum
Lagrangians in the sense of Definition6.10. A construction performed on the level
of functionals will be presented in Sect. 6.5.2.

An n-fold time-ordered product of Lagrangians L1, . . . , Ln induces a map

( f1, . . . , fn) �→ TH
n (L1( f1), . . . , Ln( fn)), (6.31)

We denote L
.= (L1, . . . , Ln) and the map (6.31) by TH

n (L1, . . . , Ln) or by TH
n,L .

Similarly, let I = {i1, . . . , ik} ⊆ {1, . . . , n}. We introduce the notation TH
I,L for

the map
( f1, . . . , fk) �→ TH

k (Li1( f1), . . . , Lik ( fk)).

Ultimately we needmaps TH
n,L to construct the S-matrix and interacting local nets,

as outlined in Sect. 6.4. For this purpose, it is convenient to formulate the problem
of constructing the time-ordered products as the problem of constructing maps TH

n,L .
A method formulated on the level of local functionals, rather than such maps will be
presented in the next subsection.

Let us start by formulating the axioms that the maps TH
n,L have to fulfil.

(TL 1) Causal factorisation property

TH
n,L( f1 ⊗ · · · ⊗ fn) = TH

I,L( f1 ⊗ · · · ⊗ fk) �H TH
I c,L( fk+1 ⊗ · · · ⊗ fn)

where I = {1, . . . , k} and the supports supp fi , i = 1, . . . , k of the first k
arguments do not intersect the past of the supports supp f j , j = k + 1, . . . , n
of the last n − k entries.

(TL 2) Starting element: TH
0 = 1, TH

1,L( f ) = L( f ).
(TL 3) Symmetry: For a bosonic theory TH

I,L = TH
I,σ(L), where σ is a permutation of

n elements and we define σ(L1, . . . , Ln)
.= (Lσ(1), . . . , Lσ(n)). In the pres-

ence of fermions, each permutation of two elements introduces an extra
minus sign.

(TL 4) Field independence: δ
δϕ
TH

n,L = TH
n

(
L1, . . . ,

δLi
δϕ

, . . . , Ln

)
.

(TL 5) ϕ-Locality: TH
n,L = TH

n

(
L [N ]1 , . . . , L [N ]n

)
+ O(�N+1).

(TL 6) Unitarity: TH

n,L∗ = T̄H
n,L , where L∗ .= (L∗1, . . . , L∗n) and L∗i ( f )

.= Li ( f ).

(TL 7) Covariance:Fμcψ
(
Tψ∗H

n,L( f1, . . . , fn)
) = TH

n,L(ψ∗ f1, . . . ,ψ∗ fn),where fi ∈
D(M), and ψ ∈ Hom(M,N).

In the first step we reduce the problem of defining the time-ordered products TH
n,L

to the problem involving only C-valued distributions. To this end, we use properties
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(TL 4) and (TL 5) and write the n-fold time-ordered product TH
n,L in terms of its

Taylor expansion around 0.

TH
n,L( f1 ⊗ · · · ⊗ fn)[ϕ] = TH

n,L( f1 ⊗ · · · ⊗ fn)[0]
+
∑

|β|>0

〈
TH

n (δβ1 L1( f1), . . . , δ
βn Ln( fn))[0],ϕ⊗β1 ⊗ · · · ⊗ ϕ⊗βn

〉
, (6.32)

where β ∈ N
n
0. In the physics literature this is called the Wick expansion.

Remark 6.9 Note that this expansion converges at each order in �, because due to
(TL 5), at each order in � the sum contains only finitely many terms. Therefore it is
sufficient to know the time-ordered products of polynomials.

For the simplicity of notation now we restrict ourselves to the scalar field, i.e.
E = C∞(M, R).

Recall that �x denotes the evaluation functional on E, i.e.

�x (ϕ)
.= ϕ(x).

Denote by fx the evaluation functional on D(M). Let 〈., .〉 be the natural pairing
betweenD(M) andE given explicitly by the integration with the integrationmeasure
dμg .

In this notation
∫

ϕ(x)k f (x)dμg(x) ≡
∫

(�k
x fx )(ϕ, f )dμg(x) ≡ 〈�k, f

〉
(ϕ, f ),

More generally, we can consider local functionals that involve derivatives of both the
field configuration and the test function. To this end, we equip M with a co-tetrad
e and its dual tetrad. This is always possible, as all oriented globally hyperbolic
spacetimes in dimension 4 are parallelizable. Introducing a (co-)tetrad means that
effectively we work in FLoc, the category of framed spacetimes, as given in Defini-
tions2.67 and 2.68.

Using the tetrad allows us to introduce functionals of the form

eμ1
(a1

. . . eμn

an)
∇μ1 . . .∇μn �x (ϕ)

.= eμ1
(a1

. . . eμn

an)∇μ1 . . .∇μn ϕ(x),

where we have used the Einstein summation convention for the indices μ1, . . . ,μn

and the round brackets around indices mean symmetrization (antisymmetric deriv-
atives will be introduced by means of the Riemann tensor). To make the notation
more compact we will write the above contraction of tetrad components with covari-
ant derivatives as

(∇)(a1,...,an)�x (6.33)

Similarly, we introduce the following functionals on D(M):

http://dx.doi.org/10.1007/978-3-319-25901-7_2
http://dx.doi.org/10.1007/978-3-319-25901-7_2
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(∇)b1,...,bk fx (6.34)

Denote by Fx the algebra generated (with respect to the pointwise product) by
functionals on D(M) that are of the form (6.34).

The generalized Lagrangians we consider depend locally and covariantly on the
metric g. Let C be a local and covariant curvature tensor of type (0, k). It is effec-
tively a map from the space of globally hyperbolic metrics on the manifold M to
�((T ∗M)⊗k). We assume that C depend smoothly on the metric in the sense that it
maps smooth curves to smooth curves. Denote by

Ca1,...,ak (x)
.= eμ1

a1 . . . eμk
ak

Cμ1,...,μk (x) (6.35)

the induced functional on �((T ∗M)⊗s2).
We are now ready to introduce the notion of Wick monomials (compare with

[HW05, DF07]).

Definition 6.18 Define a natural Wick monomial to be a natural transformation L
fromD to Floc (both functors seen as functors on FLoc) that is of the form

LM( f )[ϕ] = 〈La1,...,al (g;ϕ), pb1,...,bk ( f )
〉
, (6.36)

where M = (M, e) ∈ Obj(FLoc), La1,...,al (x) is a monomial in expressions (6.33)
and (6.35), pb1,...,bk (x) ∈ Fx , f ∈ D(M), ϕ ∈ E and g is the metric induced by the
co-tetrad e (see formula (2.24)). The pairing 〈., .〉 is the integration over M .

Definition 6.19 LetW denote the vector space spanned by the natural Wick mono-
mials.

Since our goal is to define the time-ordered products as a family of covariant
maps, in the sense of Definition6.8, it is convenient to work on the level of natural
transformations. As indicated above, we change the underlying category from Loc
to FLoc throughout this section and construct TnM,M ∈ Obj(FLoc), n ∈ N.

Remark 6.10 The renormalization group R has a well defined action onW , as well
as W / ∼, where ∼ is given by (6.23).

The combinatorics appearing in our formulas can be significantly simplified in the
algebraic language [Bro06, Dan13, BFK06]. We now show how to construct some
natural bi-algebras using natural Wick monomials.

LetHx denote the algebra of functionals of the field configuration ϕ ∈ E and the
metric g generated (with respect to the pointwise product) by functionals of the form
La1,...,al (x), with the notation of Definition6.18.

Since the space of field configurationsE is a vector space, it is in particular a group
with addition. We can consider the Hopf algebra dual to this group. Restricting to
Hx , the induced co-product �T : Hx → Hx ⊗Hx

3 is defined by

3We use the boldface notation�T for the co-product in order to distinguish it from�, which denotes
the causal propagator at other places in the book.

http://dx.doi.org/10.1007/978-3-319-25901-7_2
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�TLx (g;ϕ,ψ)
.= Lx (g;ϕ+ ψ)

and using the Taylor expansion we can express this co-product on generators as

�T

(

Cb1,...,bm (x)

k∏

i=1
(∇)(ai1,...,ai Ni )

�x

)

.=
∑

I⊂{1,...,k}
Cb1,...,bm (x)

∏

i∈I

(∇)(ai1,...,ai Ni )
�x ⊗

∏

j∈I c

(∇)(a j1,...,a j N j )
�x (6.37)

where each Ni ∈ N and ail ∈ {0, 1, 2, 3}.
Remark 6.11 By definition, an element ofHx ⊗Hx is a functional on�((T ∗M)⊗s2)

× E× E. In order to obtain a functional on �((T ∗M)⊗s2)× E (i.e. a functional of a
single field configuration and the metric) we can apply the pointwise multiplication
map m. If we want to consider functionals depending on the choice of n points of
spacetime M , we can use the exterior tensor product defined by

(L1 � · · ·� Ln)x1,...,xn (g;ϕ1, . . . ,ϕn)
.= Lx1(g;ϕ1) . . .Lxn (g;ϕn).

The unit e of Hx is identified with the constant functional �0
x ≡ 1. Define the

counit

ε(Lx ) =
{
1 if Lx = e,

0 else.
(6.38)

whereLx ∈ Hx . The bi-algebraHx can be equippedwith two gradings. Let rk denote
the polynomial rank, i.e.

rk

(
k∏

i=1
(∇)ai1,...,ai Ni

�x

)

= k.

The second grading is the total degree of all the derivatives, i.e.

deg

(
k∏

i=1
(∇)ai1,...,ai Ni

�x

)

=
k∑

i=1
Ni .

OnMinkowski spacetime the deg = 0 and rk = 0 subspace ofHx consists of multi-
ples of e, soHx is connected, the antipode can be constructed and we obtain a Hopf
algebra. In general, this is not the case, since deg = 0 and rk = 0 subspace contains
elements that differ by curvature tensors Cb1,...,bm (x).
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Example 6.4 Consider the special case of Wick monomials of the form
〈
�k, f
〉
and

call these objects Wick powers. Note that

〈
δl

δϕl
�k

x (ϕ),ψ⊗l

〉

= k!
(k − l)!�

k−l
x (ϕ)�l

x (ψ) = k!
(k − l)!�

k−l
x ⊗�l

x (ϕ,ψ).

Hence
δl

δϕl

〈
�k, f
〉 = k!

(k − l)!
〈
�k−l ⊗�l, f

〉
,

Let Hpow
x denote the algebra generated by evaluation functionals �k

x , where the
product is the pointwise product of functionals, as in the general case, i.e.

�k
x�

l
x

.= �k+l
x . (6.39)

The coproduct �T acts on H
pow
x as

�T (�k
x ) =

k∑

l=0

(
k

l

)

�k−l
x ⊗�l

x , (6.40)

and the counit ε is as in (6.38). The bi-algebra Hpow
x is graded by k and the degree

0 component contains just e, hence the antipode exists and H
pow
x becomes a Hopf

algebra, which is a subalgebra ofHx .
We write the Taylor expansion of �k

x as

�k
x (ϕ+ ψ) = �T (�k

x )(ϕ,ψ).

Hence

�T
〈
�k, f
〉 =

k∑

l=0

(
k

l

)
〈
�k−l ⊗�l, f

〉
, (6.41)

and we obtain 〈
�k, f
〉
(ϕ+ ψ; f ) = 〈�T (�k), f

〉
(ϕ,ψ; f ).

Wecomeback to the general case.Note that the representation of aWickmonomial
in terms of La1,...,al and pb1,...,bk (see formula (6.36)) is not unique, since we can
perform partial integration. Nevertheless, it is worth to put up with this redundancy
for the moment in order to get a simple characterisation of W .

Replace the evaluation functionals (∇)a1,...,an �x , Ca1,...,al (x) with abstract gener-
ators (∇)a1,...,an �,Ca1,...,al . Consider the free algebra generated by these symbols and
define the coproduct�T by adapting formula (6.37). Unit and co-unit are introduced
as above. The resulting bi-algebra is denoted by H and by definition is isomorphic
to Hx , so by choosing a spacetime M and fixing x ∈ M we can identify abstract
elements of H with concrete functionals.
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Now take the free algebra generated by the symbols (∇)b1,...,bk f and denote it by
F . By definition, every natural Wick monomial L ∈ W can be represented (non-
uniquely!) as a pair (L, p), whereL ∈ H and p ∈ F . Take L = (L1, . . . , Ln), where
L1, . . . , Ln ∈ W and choose their representations (L1, p1), . . . , (Ln, pn) in terms
of elements ofH andF . The Wick expansion (6.32) can now be written in the form

(Tn,L)H
M

=
∑

(L1,...,Ln)

〈
t H
n (L1(1), . . . ,Ln (1)) · m

(
L1(2) � . . . � Ln (2)

)
, p1 � · · ·� pn

〉
,

(6.42)

where we use the Sweedler notation L =∑(L) L(1) ⊗ L(2), m is the pointwise mul-
tiplication of functionals, the notation with � is clarified in Remark6.11, and the
product · is the pointwise multiplication of a distribution on Mn and a functional-
valued map on Mn .

It is clear from (6.32) and (6.42) that constructing the time-ordered products of
Wick monomials reduces to extending some numerical distributions

t H
n (L1, . . . ,Ln) ≡ t H

n,L.

Using the axioms (TL 1)–(TL 7) we can formulate the corresponding axioms for
t H
n,L’s (see [HW01]) for details. We label these axioms by (t 1)–(t 7). The non-
uniqueness in representing Wick monomials in terms of pairs (L, p) implies some
extra conditions on t’s. For example, if we consider just the scalar field in the presence
of field derivatives in Lagrangians, the non-uniquness arises due to the possibility of
integration by parts. For consistency, distributions t H

n,L have to satisfy the following
condition:

(t 8) Action Ward Identity

eμ
a∇xi

μ t H
n (L1, . . . ,Ln) = t H

n (L1, . . . , eμ
a∇μLi , . . .Ln), (6.43)

where ∇xi
μ is the covariant derivative with respect to the variable xi .

It was shown in [DF07] that on Minkowski spacetime this condition can be fulfilled
also for the extensions of t’s to the diagonal. Before AWI has been proven, the con-
struction of time-ordered products was known only on the level of formal generators
(here formalized in terms ofH andF ), not as functionals on the configuration space.
It was then suggested by Stora [Sto02] to impose the additional requirement (6.43).
The proof of this requirement achieved in [DF07] was a major breakthrough in math-
ematical pQFT since it opened the way for the functional formalism. In [HW05] this
condition is called the Leibniz rule, and its proof is generalized to curved spacetimes.

The construction of time-ordered products (Tk,L)H
M proceeds inductively. To sim-

plify the notation we keep the indexM implicit. We assume that the maps TH

k,L′ with
k < n are constructed for all possible k-tuples L′ of generalized Lagrangians of the
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theory. For a power-counting renormalizable theory this is achieved through extend-
ing finitely many distributions t H

n,L (compare with Definition6.11). Using the causal
factorisation property (TL 1) we fix the values of TH

n,L outside the thin diagonal
Diagn .

Maps constructed this way are called non-renormalized time-ordered products
and we denote them by T̊H

n,L .

Definition 6.20 Let I be a proper subset of {1, . . . , n} and we denote by CI the
subset of Mn defined by

CI = {(x1, . . . , xn)|xi /∈ J+(x j ) for all i ∈ I, j ∈ I c},

where I c is the complement of I .

The sets CI are open and they constitute an open covering of Mn \ Diagn .

Definition 6.21 Let I be a proper subset of {1, . . . , n}. Let ( f1, . . . , fn) be test
functions such that supp fi ≺ supp f j for all i ∈ I , j ∈ I c. Define

TH
I c|I,L( f1, . . . , fn)

.= TH
I c,L( f I c) �H TH

I,L( f I ),

where for I = {i1, . . . , ik} we define f I
.= ( fi1 , . . . , fik ).

For each TH
I c|I,L choose a representation as

TH
I c|I,L =

〈
ωH

I c|I,L, p1 � · · ·� pn
〉
,

where ωH
I c|I,L is a functional-valued distribution on Mn and p1, . . . , pn ∈ F .

Let {gI } be a partition of unity subordinate to the open covering introduced in
Definition6.20.We define the non-renormalized time-ordered products T̊H

n,L as maps
on test functions such that supp( f1 · . . . · fn) doesn’t intersect Diagn . We set

T̊H
n,L

.=
∑

I�{1,...,n}
I �=∅

〈
gI · ωH

I |I c,L, p1 � · · ·� pn
〉
,

The construction presented here depends on the choice of the partition of unity and
distributionsωH

I |I c,L , but since we are only interested in showing existence, we are not
concerned about this issue. The following proposition has been proven in [HW01].

Proposition 6.8 Assuming that time ordered products T̊H

k,L′ with up to n − 1 argu-
ments have been defined in such a way that they satisfy properties (TL 1)–(TL 7) as
maps on Dn−1. Then the maps T̊H

n,L automatically satisfy the restrictions of proper-
ties (TL 1)–(TL 7) to maps on test functions functions such that supp( f1 · . . . · fn)

doesn’t intersect Diagn.
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Proof See the proof in [HW01]. �

Combining the result above with the Wick expansion, we can conclude that the
renormalization problem reduces to extending numerical distributions t̊ H

n,L to Diagn .
It is convenient to impose some additional, more technical requirements, which
control the regularity of distributions t H

n,L. These are:

(t 9) Almost homogeneous scaling,
(t 10) Microlocal spectrum condition,
(t 11) Smoothness,
(t 12) Analyticity.

The final two axioms concern the dependence on the background metric. The precise
statement of these axioms can be found in Sect. 3.3 of [HW01].

Theorem 6.5 (after [HW01]) There exists a family of distributions t H
n,L, n ∈ N sat-

isfying the axioms (t 1)–(t 12).

Proof See [BF00, HW01, HW05]. A more robust and mathematically cleaner
method for constructing such distributional extension has been provided in
[Dan13]. �

Having constructed the numerical distributions t H
n,L satisfying conditions (t 1)–(t

12)weuse the formula (6.42) to constructmapsTH
n (L1, . . . , Ln) satisfying properties

(TL 1)–(TL 7). Using linearity and contracting with appropriate p ∈ F , this allows
to construct time-ordered products of arbitraryLagrangians in�.Note that all theway
throughout this section we have worked purely on the level of topological algebras
of functionals, without the need to refer to a concrete Hilbert space representation.
This functional viewpoint is very useful in QFT on curved spacetimes, where there
is no unique vacuum state and hence no distinguished vacuum representation.

6.5.2 Explicit Construction and Feynman Graphs

In Sect. 6.5.1 we have reviewed the existence proof for time ordered products, refor-
mulating it in the language of the functional formalism. The drawback of the method
presented there was that it relies on a (potentially non-unique) parametrisation of
local functionals in terms of Lagrangians and also, that the existence proof is rather
abstract and doesn’t provide an explicit expression for time-ordered products. There
is a more direct method to construct TH

n , which is formulated on the level of function-
als, rather than the natural Lagrangians. For simplicity we will present it only in the
context of Minkowski spacetime. The generalization to arbitrary globally hyperbolic
spacetimes is not difficult and can be done using the methods of [BF00, Dan13].

In this section we work on Minkowski spacetime, so we set H = �1 and �+
S0
=

i
2�S0 +�1 is the Wightman 2-point function. In this case �F

S0
is the “standard”

Feynman propagator.
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Theorem6.4 allows us in principle to extend all the numerical distributions we
need for the construction of time-ordered products. Although it is possible to argue
on the level of TH

n s, here we use a perturbative expansion of time-ordered products in
terms of Feynman graphs, tomake the relation to other approaches to renormalization
more apparent. Note, however, that in the pAQFT framework, Feynman graphs are
not fundamental objects, but instead they are derived (togetherwith the corresponding
Feynman rules) from the definition of time-ordered products.

Let us denote Di j
F

.= 〈�F
S0

, δ2

δϕi δϕ j
〉 and recall that DF

.= 〈�F
S0

, δ2

δϕ2 〉. The Leibniz
rule for differentiation can be formulated as

δ

δϕ
◦ m = m ◦

(
n∑

i=1

δ

δϕi

)

, (6.44)

where m is the pointwise multiplication (in this case of n arguments), or in other
words, the pullback through the diagonal map E→ En , ϕ �→ (ϕ, . . . ,ϕ).

Proposition 6.9 The unrenormalized n-fold time ordered product TH
n : (Floc)

⊗n
pds →

Fμc[[�]] can be expressed as

TH
n (F1, . . . , Fn) = m ◦ e�

∑
i< j Di j

F (F1 ⊗ · · · ⊗ Fn).

Proof By definition we have

TH
n (F1, . . . , Fn) = F1 ·TH · · · ·TH Fn = e

�

2 DF ◦ m(e−
�

2 D11
F F1, . . . , e−

�

2 Dnn
F Fn).

The Leibniz rule implies that

e
�

2 DF ◦ m = m ◦ e�
∑

i< j Di j
F + �

2

∑
i Dii

F ,

hence

TH
n (F1, . . . , Fn) = m ◦ e�

∑
i< j Di j

F + �

2

∑
i Dii

F (e−
�

2 D11
F F1, . . . , e−

�

2 Dnn
F Fn).

It is now clear that all the factors e− �

2 Dii
F cancel, which proves the result. �

Let us denote
Tn

.= e�
∑

i< j Di j
F ,

so Tn is a map from (Floc)
⊗n
pds to F

n
μc. The identity

e�
∑

i< j Di j
F =
∏

i< j

∞∑

li j=0

(
� Di j

F

)li j

li j ! (6.45)
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allows us to express time ordered products in terms of graphs. Let Gn be the set of
all graphs with vertex set V (�) = {1, . . . n} and li j be the number of lines e ∈ E(�)

connecting the vertices i and j . We set li j = l ji for i > j and lii = 0. If e connects
i and j we set ∂e := {i, j}. Then

Tn =
∑

�∈Gn

T�, (6.46)

where

T� = 1

Sym(�)
〈t�, δ�〉, (6.47)

with

δ� = δ2 |E(�)|
∏

i∈V (�)

∏
e:i∈∂e δϕi (xe,i )

and
t� =

∏

e∈E(�)

��F
S0(xe,i , i ∈ ∂e) (6.48)

The symmetry factor Sym(�) is the number of possible permutations of lines joining
the same two vertices, Sym(�) =∏i< j li j !. Note that T� is a map from (Floc)

⊗V (�)
pds to

F|V (�)|[[�]], where⊗V (�)means that the factors in the tensor product are numbered
by vertices and to a vertex v ∈ V (�) we assign the variable ϕv . The renormalization
problem to extend Tn’s to maps on (Floc)

⊗n is now reduced to extending all the maps
T� . For the latter we can use methods relying on the combinatorics of Feynman
graphs, as is done in other approaches to pQFT. In particular, one can establish a
relation with the Connes–Kreimer approach [CK00, CK01] (see [Pin00, GBL00,
DFKR14]).

Note that functional derivatives of local functionals are of the form

F (l)(ϕ)(x1, . . . , xl) =
∫ N∑

j=1
g j [ϕ](y)p j (∂x1 , . . . , ∂xl )

l∏

i=1
δ(y − xi )dμ(y),

(6.49)
where N ∈ N, p j ’s are polynomials in partial derivatives and g j [ϕ] are ϕ-dependent
test functions. The representation above is not unique, since some of the partial
derivatives ∂xi can be replaced with ∂y and applied to g j [ϕ]. Another representation
of F (l)(ϕ) is obtained by performing the integral above and using the centre of mass
and relative coordinates:

F (l)(ϕ)(x1, . . . , xl) =
∑

β

fβ[ϕ](z)∂βδ(x rel) (6.50)

where β ∈ N
4(l−1)
0 , test functions fβ[ϕ](x) ∈ D(M) are now ϕ-dependent functions

of the center of mass coordinate z = (x1 + · · · + xk)/k and x rel = (x1 − z, . . . , xk −
z) denotes the relative coordinates.
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Using (6.49)we see that the functional differential operator δ� applied to F ∈ F⊗n
loc

yields, at any n-tuple of field configurations (ϕ1, . . . ,ϕn), a compactly supported dis-
tribution in the variables xe,i , i ∈ ∂e, e ∈ E(�) with support on the partial diagonal
Diag� = {xe,i = x f,i , i ∈ ∂e ∩ ∂ f, e, f ∈ E(�)} ⊂ M

2|E(�)| and with a wavefront
set perpendicular to TDiag� . Note that the partial diagonal Diag� can be parame-
trized using the center of mass coordinates

z
.= 1

valence(v)

∑

e:v∈∂e

xe,v,

assigned to each vertex. The remaining relative coordinates are x rel
e,v = xe,v − zv ,

where v ∈ V (�), e ∈ E(�) and v ∈ ∂e. Obviously, we have
∑

e|v∈∂e x rel
e,v = 0 for all

v ∈ V (�). In this parametrization δ� F can be written as a finite sum

δ� F =
∑

β

f β∂βδrel,

where β ∈ N
4|V (�)|
0 , each f β(ϕ1, . . . ,ϕn) is a test function on Diag� and δrel is the

Dirac delta distribution in relative coordinates, i.e. δrel(g) = g(0, . . . , 0), where g is
a function of (x rel

e,v, v ∈ V (�), e ∈ E(�)).
We can simplify our notation even further. Let Y� denote the vector space spanned

by derivatives of the Dirac delta distributions ∂βδrel, where β ∈ N
4|V (�)|
0 . Obviously,

Y� is graded by |β|. Let D(Diag�, Y�) denote the graded space of test functions on
Diag� with values in Y� . With this notation we have δ� F ∈ D(Diag�, Y�) and if
F ∈ (Floc)

⊗n
pds, then δ� F is supported on Diag� \ DIAG, where DIAG is the large

diagonal:

DIAG = {z ∈ Diag�| ∃v,w ∈ V (�), v �= w : zv = zw

}
.

We can now write (6.47) in the form

1

Sym(�)
〈t�, δ�〉 =

∑

β

〈
f β∂βδrel, t�

〉

where the sum contains only finitely many terms and t� is now written in terms of
centre of mass and relative coordinates. To see that this expression is well defined,
note that we can move all the partial derivatives ∂β to t� by formal partial integration.
Then the contraction with δrel is just the pullback through the diagonal map ρ� :
Diag� → M

2|E(�)| given by

(ρ�(z))e,v = zv if v ∈ ∂e.

From the wavefront set properties of �F
S0
, we deduce that the pullback ρ∗� of each

tβ
�

.= ∂β t� is a well defined distribution on Diag�\DIAG, so (6.47) makes sense if
F ∈ (Floc)

⊗n
pds, as expected. We conclude that t� ∈ D(Diag�\DIAG, Y�), where the
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duality between t� and a “test function” f =∑β f β∂βδ is given by

〈t�, f 〉 .=
∑

β

〈tβ
� , fβ〉.

The renormalization problem now reduces to finding the extensions of all the distri-
butions tβ

� appearing in the above expression, so that t� gets extended to an element
of D(Diag�, Y�). The solution to this problem is obtained by using the inductive
procedure of Epstein and Glaser. The induction step works as follows: if t�′ is known
for all graphs �′ with fewer vertices than �, then t� can be uniquely defined for all
disconnected, all connected one particle reducible and all one particle irreducible
one vertex reducible graphs. Graphs that are irreducible and do not contain any
non-trivial irreducible subgraphs are called EG-primitive. For the remaining graphs,
called EG-irreducible, t� is defined uniquely on all f ∈ D(Diag�, Y�), where fβ
vanishes together with all its derivatives of order ≤ ω� + |β| on the thin diagonal of
Diag� . Here

ω� = (d − 2)|E(�)| − d(|V (�)| − 1)

is the degree of divergence of the graph � and d denotes the dimension of the
Minkowski spacetimeM (in our case d = 4).Wedenote this subspace byDω�

(Diag�,

Y�). Renormalization amounts to projecting a generic f to this subspace by a trans-
lation invariant projection W� : D(Diag�, Y�) → Dω�

(Diag�, Y�). Different renor-
malization schemes differ by different choices of the projections W� (see [DFKR14]
for details).

By exploiting the translation invariance in Minkowski spacetime we find that, at
each step of the recursive construction of time-ordered products, the renormalization
problem reduces to the problem of extension of some distribution defined everywhere
outside the origin, so this is what we will focus on now.

6.5.3 Regularization of Distributions

There is an important conceptual difference between the Epstein Glaser framework
and other approaches to renormalization; namely from the EG point of view one con-
structs objects (e.g. time-ordered products, the S-matrix) which are already renor-
malized and can be physically interpreted. In other approaches, one first introduces
some regularization, which renders the Feynman graphs well defined, and then in
the next steps performs renormalization, which is some procedure that allows one
to recover physically relevant information after the regularization parameters are
removed by some limiting process.

In this section we show how introducing an explicit regularization procedure is
related to the problem of extension of distributions.

Definition 6.22 We define

Dλ(R
n) := { f ∈ D(Rn) | (∂α f )(0) = 0 ∀|α| ≤ λ} (6.51)
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to be the space of functions with derivatives vanishing up to order λ and D ′
λ(R

n) is
the corresponding space of distributions.

Theorem 6.6 ([Ste71, BF00]) A distribution t ∈ D ′(Rn \ {0}) with scaling degree
sd(t) has a unique extension t̄ ∈ D ′

λ(R
n), λ = sd(t)− n that satisfies the condition

sd(t̄) = sd(t).

Definition 6.23 ([DFKR14]) Let t ∈ D ′(Rn \ {0}) be a distribution with degree of
divergence λ, and let t̄ ∈ D ′

λ(R
n) be the unique extension of t with the same degree

of divergence. A family of distributions {tζ}ζ∈�\{0}, tζ ∈ D ′(Rn), with � ⊂ C a
neighborhood of the origin, is called a regularization of t , if

∀g ∈ Dλ(R
n) : lim

ζ→0
〈tζ , g〉 = 〈t̄, g〉. (6.52)

The regularization {tζ} is called analytic, if for all functions f ∈ D(Rn) the map

� \ {0} � ζ �→ 〈tζ , f 〉 (6.53)

is analytic with a pole of finite order at the origin. The regularization {tζ} is called
finite, if the limit limζ→0〈tζ , f 〉 ∈ C exists ∀ f ∈ D(Rn); in this case limζ→0 tζ ∈
D ′(Rn) is called an extension or renormalization of t .

Given the unique extension t̄ one can define an (in general not unique) extension
of t to a distribution in D(Rn) by the choice of a projection W : D(Rn) → Dλ(R

n)

defined as
W f

.= f −
∑

|γ|≤sd(t)−n

wγ ∂γ f (0), (6.54)

given in terms of functions wγ ∈ D(Rn) , |β| ≤ sd(t)− n, fulfilling

∂γwβ(0) = δ
γ
β ∀γ ∈ N

n
0 (6.55)

In particular, it was shown in [Kel10, DFKR14] that for an analytic regularization
{tζ} we can write (6.52) in the form

〈t̄, W f 〉 = lim
ζ→0

⎡

⎣〈tζ , f 〉 −
∑

|γ|≤sd(t)−n

〈tζ , wγ〉 ∂γ f (0)

⎤

⎦ . (6.56)

and each of the two expressions appearing inside the square brackets can be expanded
in a Laurent series around ζ = 0. This allows us to perform Minimal Subtraction, as
done in

Corollary 6.1 (Minimal Subtraction [DFKR14]) The regular part (rp
.= id − pp,

where pp denotes the principal part) of any analytic regularization {tζ} of a distrib-
ution t ∈ D ′(Rn \ {0}) defines by
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〈tMS, f 〉 := lim
ζ→0

rp(〈tζ , f 〉) (6.57)

an extension tMSof t with the same scaling degree, sd(tMS) = sd(t), which we call
the Minimal Subtraction.

Let us now come back to the construction of the S-matrix. To relate this to the
method of divergent counter terms, we need to find a family of renormalization group
elements Z ζ ∈ R such that

S = lim
ζ→ζ0

Sζ ◦ Zζ . (6.58)

It was shown in [DFKR14, BDF09] that for a given S, such a family (Zζ) exists and
is uniquely determined up to a sequence which converges to the identity.

Remark 6.12 Note that, by construction, the maps Zζ obtained in this way are local,
so the construction provided in [DFKR14] automatically yields local counter terms.
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Chapter 7
Gauge Theories

In Sect. 4.3 we saw that the space of multilocal on-shell functionals FS(M) can be
characterized as the 0th homology of the differential complex (�V, δS) (see 4.10).
The 1st homology of this complex is interpreted as the space of non-trivial local
symmetries. Nowwe discuss the quantization of theories where this homology group
is non-trivial, using the BV framework, in the version proposed in [FR12b, FR12a].

7.1 Classical Gauge Theory

Recall from Sect. 4.3 that
∧

V, as the space of multivector fields, is equipped with
the natural structure of the Schouten bracket {., .} and the BV differential δS is locally
generated by the bracket in the sense that

δS X = {X, S} .

The triple (
∧

V, {., .}, δS) is an algebraic structure called a differential Gerstenhaber
algebra. In the quantized theory this structure, togetherwith a certain grade 1 operator
gives rise to a BV algebra.

In this chapter we will use a slightly formal notation X (ϕ) = ∫ Xx (ϕ) δ
δϕ(x)

intro-
duced in Sect. 3.4 for a vector field X ∈ V. This notation allows us to make contact
with the standard physics literature on the BV formalism, if one identifies δ

δϕ
with a

formal generator ϕ‡, called the antifield.
The structure described above also appears in theories where local symmetries are

present, but there the space of multivector fields on an infinite dimensional manifold
E has to be replaced by the space of multivector fields on a certain graded infinite
dimensional manifold, which we denote by E. We show how this space is constructed
on the example of Yang–Mills theories and the free electromagnetic field.
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7.1.1 Dynamics and Symmetries

Let K be a finite dimensional semisimple compact Lie group and k
.= Lie(K ) its

Lie algebra. Consider the trivial principal bundle P = M × K over M . We take the
point of view that the QFT model on a given spacetime should be first constructed
from “simple building blocks”, i.e. algebras associated to regions that are topologi-
cally trivial, and the global structure should be recovered from the properties of the
extension of the local net to a structure where arbitrary regions are allowed [Rob76,
Rob77]. Therefore, it is sufficient for our purposes to restrict ourselves to trivial
principal bundles.

Globally the configuration space E for a Yang–Mills theory should is the space of
connection 1-forms. After fixing a background connection A0 we can characterize
all the connection 1-forms in terms of one forms on M with values in the associated
bundle kP

.= P ×K k. We denote this space by �1(M, kP) and use it as our con-
figuration space. As the bundle we consider is trivial, we choose A0 is the trivial
connection. For the discussion of the general case see [Zah13].

Definition 7.1 Define the configuration spaceE for aYang–Mills theory as the space
�1(M, kP) of one forms on M with values in the associated bundle kP

.= P ×K k.
Since P is assumed to be trivial, E = �1(M, k).

Let F denote the space of multilocal compactly supported functionals on E and V
the space of multilocal vector fields. The generalized Lagrangian of the Yang–Mills
theory is given by

LY M( f )(A) = −1

2

∫

M
f tr(F ∧ ∗F), (7.1)

where F = d A + 1
2 [A, A], ∗ is the Hodge operator and tr is the trace in the adjoint

representation, given by the Killing–Cartan metric. The equation of motion reads:

S′
Y M(A) = DA∗F = 0,

where DA is the covariant derivative induced by the connection A. To analyse
H 1(

∧
V, δSYM ), we will explicitly construct non-trivial symmetries of the action

corresponding to the Lagrangian (7.1). Let us define the gauge group as the space of
vertical K -equivariant compactly supported diffeomorphisms of P:

G := {α ∈ Diffc(P)|α(p · g) = α(p) · g,π(α(p)) = π(p), ∀g ∈ K , p ∈ P}.

We can also characterize G as�c(M, P ×K K ) and for a trivial bundle P this reduces
to C∞

c (M, K ). It is known ([Nee04, Glö02, KM97], see also [Nee06, Woc06]) that
C∞

c (M, K ) can be equipped with the structure of an infinite dimensional Lie group
modelled on its Lie algebra gc = C∞

c (M, k). Since the gauge group is just a subgroup
of Diff(P), it has a natural action on �1(P, k)K by the pullback. This induces the
action of G on E, and the corresponding derived action σ of gc is given by

σ(c)(A) = dc + [A, c] = DAc, c ∈ gc (7.2)
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The Yang–Mills action is invariant under the transformation (7.2), in the sense that

〈
S′

Y M(A),σ(c)(A)
〉 = 0, ∀A ∈ E, ∀c ∈ gc ,

so σ induces a map from gc to V, whose image is contained in the kernel of δSYM .
More generally, we consider G

.= C∞
ml(E, gC

c), the space of multilocal functionals on
the configuration space with values in the (complexified) gauge algebra, and a map
ρ : G → V defined by ρ(�)(A)

.= σ(�(A))A, i.e.

∂ρ(�)F(A)
.= 〈F (1)(A),σ(�(A))A

〉
.

Remark 7.1 The assignment of G(M) to M induces a functor from Loc to Vec,
which we denote by the same letter, i.e.G. The fact that the action of gc on E is local
implies that ρ is a natural transformation between G andV, both treated as functors
from Loc to Vec.

Remark 7.2 To see a more geometrical interpretation of the map ρ, note that G ⊂
�(E × gc) (the space of sections of a trivial bundle over E), and we have a morphism
of vector bundles E × gc(M) → TE given by (A, c) 
→ (A, ρ(c)A). In this way
E × gc is made into a Lie algebroid.

7.1.2 The Koszul–Tate Complex

The invariance of the Yang–Mills action under σ implies that ρ(G) ⊂ Ker(δSYM ). In
fact, one can characterize all non-trivial local symmetries in this way, in the sense
that for each X ∈ KerδSYM there exists an element � ∈ G and a trivial symmetry
I ∈ δSYM (�2V) such that

X = I + ρ(�).

We can use this fact to kill the homology in degree one of the differential complex
(4.10). We extend the complex by addingG in degree 2 and symmetric powers ofG
in higher degrees. This idea is made precise in the following definition.

Definition 7.2 The underlying algebra of the Koszul–Tate complex is

KT
.= Oml(E ⊕ E∗[1] ⊕ g∗[2])

where g∗ ≡ C∞(M, k∗) and the notation Oml is explained in Definitions3.24, 3.25
and 3.26.

http://dx.doi.org/10.1007/978-3-319-25901-7_4
http://dx.doi.org/10.1007/978-3-319-25901-7_3
http://dx.doi.org/10.1007/978-3-319-25901-7_3
http://dx.doi.org/10.1007/978-3-319-25901-7_3
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Remark 7.3 Note thatKT contains
∧

V andG as subspaces. To see thatKT contains
G, note that

Oml(g
∗[2]) ⊂

∞∏

k=0

�′
s((g

∗)�k → Mk) ⊗ C

with appropriate WF set conditions. For O1
ml(g

∗[2]) the WF set has to be empty,
hence O1

ml(g
∗[2]) = gc ⊗ C and therefore

Oml(KT)
∣
∣
#gh=2 = C∞

ml(E, gc) ⊗ C ⊕
2∧
V = G ⊕

2∧
V .

For the precise definition of C∞
ml, see Definition 3.26.

We equipKT with a differential δK T which acts on
∧

V as δSYM , on G is given by
ρ and we extend to the whole space KT by means of the graded Leibniz rule. The
resulting differential complex is called the Koszul–Tate complex.

. . . →
2∧
V ⊕ G

δ=δSYM ⊕ρ−−−−−→ V
δ=δSYM−−−−→ F → 0 (7.3)

The 0th homology of this complex is FSYM and higher homologies are trivial, so
(KT, δ) provides a resolution of FSYM .

7.1.3 The Chevalley–Eilenberg Complex

We have already seen how to characterize the space of on-shell functionals in Yang–
Mills theory; nowwewant to find a homological interpretation for the space of gauge
invariant ones. This can be done with the use of the Chevalley–Eilenberg complex.

Definition 7.3 The underlying algebra of the Chevalley–Eilenberg complex isCE =
Oml(E ⊕ g[1]), where g .= C∞(M, k).

Remark 7.4 The graded manifold E
.= E ⊕ g[1] is called the extended configuration

space.

The Chevalley–Eilenberg differential γ is constructed in such a way that it encodes
the action σ of the gauge algebra g on F, induced by (7.2). For F ∈ F we define

γF ∈ O1
ml

(
E
)

= C∞
ml(E, g′C) as

(γF)(A, c)
.= (σ(c)F)(A) = 〈F (1)(A), DAc

〉
, (7.4)

where c ∈ g. Note that now we have dropped the restriction on the support of gauge
parameters. For a form ω ∈ g′C, which doesn’t depend on A we set

http://dx.doi.org/10.1007/978-3-319-25901-7_3
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γω(c1, c2)
.= ω([c1, c2]) .

Since γ is required to be nilpotent of order 2 and has to satisfy the graded Leibniz

rule, for a general F ∈ O
q
ml

(
E
)
we define

(γF)(A; c0, . . . , cq)
.=

q∑

i=0

(−1)i∂σ(ci )(ι(c0,...,ĉi ,...,cq )F)(A)

+
∑

i< j

(−1)i+ j F(A, [ci , c j ], . . . , ĉi , . . . , ĉ j , . . . , cq),

where the hat over a variable means that this variable is omitted and ι denotes the
insertion of n-vector fields into an n-form. The differential complex looks as follows:

0 → F
γ−→ O1

ml

(
E
)

γ−→ O2
ml

(
E
)

→ . . . (7.5)

Note that from (7.4) it follows that the kernel of γ in degree 0 consists of all the
multilocal functionals invariant under the action σ. Hence H 0(CE, γ) = Finv, the
space of invariants.

Remark 7.5 Note that the assignment of CE(M) to a spacetime M induces a co-
variant functor CE from Loc to Vec and the differential γ can be lifted to a natural
transformation.

Remark 7.6 Formally we write elements of CE as sums of functionals of the form

F(A)(c1, . . . , cn)

=
∑

a1,...,an

∫

f (A)(x1, . . . , xn)a1,...,an c1(x1)
a1 . . . cn(Xn)

an dμ(x1) . . . dμ(xn),

where f (A) ∈ �′
a(Mn, k�n). Let us denote by Ca

x the evaluation functional C
a
x (c)

.=
ca(x) (compare with Sect. 3.3). Clearly Ca(x) ∈ g′. We call these evaluation func-
tionals ghosts and we write

F(A, C) =
∑

a1<...<an

∫

f (A)(x1, . . . , xn)a1,...,an

· C(x1)
a1 . . . C(xn)

an dμ(x1) . . . dμ(xn).

Following Definition3.21 from Sect. 3.3 we introduce δl
δc , the graded left derivative

on Oml

(
E
)
.

http://dx.doi.org/10.1007/978-3-319-25901-7_3
http://dx.doi.org/10.1007/978-3-319-25901-7_3
http://dx.doi.org/10.1007/978-3-319-25901-7_3
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7.1.4 The BV Complex

TheChevalley–Eilenberg complex and the Koszul–Tate complex fit together into one
structure called theBV complex, which encodes information about both the equations
of motion and the invariants. To see how it arises in a natural way it is worth looking
back at the example of scalar fields, which we recalled at the beginning of this
section. There, in order to characterize the space of on-shell functionals we needed
to consider the space of multilocal vector fields on the configuration space. Now, to
take the gauge symmetries into account, we have extended the configuration space
into a graded manifold E. The space of multivector fields on E is formally given as
the algebra of functions on

T ∗[−1]E = E ⊕ g[1] ⊕ E∗[−1] ⊕ g∗[−2], (7.6)

the odd cotangent bundle of E, with the negative grading on the fiber. Here g∗ .=
C∞(M, k∗) and k∗ is the algebraic dual of k. To give the odd cotangent bundle a
meaning in the infinite dimensional situation we again apply Definitions3.24, 3.25
and 3.26 from Sect. 3.3 and define

BV
.= Oml(T

∗[−1]E). (7.7)

to be the underlying algebra of the BV complex. This geometric interpretation fits
very well with the spirit of the functional approach; we are still working with multi-
local functionals but we have to pass from infinite dimensional manifolds to graded
infinite dimensional manifolds. Clearly, both CE andKT with inverted grading1 are
subalgebras of BV.

On BV we introduce two gradings:

• the pure ghost number #pg, which is inherited from the grading of the Chevalley–
Eilenberg complex, i.e. assigns grade +1 to elements of g′.

• the antifield number #af, which is inherited from the grading of the Koszul–Tate
complex, i.e. assigns grade +1 to elements of (E∗)′ and +2k to elements of (g∗)′.

The total grading of the BV complex is called the ghost number #gh and is
defined by

#gh = #pg − #af

and it reflects the grading of the graded manifold (7.6).
We will now extend the differentials δ and γ to the whole ofBV. As in the case of

the scalar field, BV can be equipped with the graded Schouten bracket {., .} defined
by formula 4.12. It fulfills the following properties:

1The grading assigned to the vector fields in the bicomplex BV is minus the grading of the KT

complex. In themathematical literature, the resulting structure is called aBeilinson–Drinfeld algebra
[BD04], rather than a BV algebra.

http://dx.doi.org/10.1007/978-3-319-25901-7_3
http://dx.doi.org/10.1007/978-3-319-25901-7_3
http://dx.doi.org/10.1007/978-3-319-25901-7_3
http://dx.doi.org/10.1007/978-3-319-25901-7_3
http://dx.doi.org/10.1007/978-3-319-25901-7_4
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{X, Y } = −(−1)(εX +1)(εY +1){Y, X} ,

0 = {{X, Y }, Z} + (−1)(εX +1)(εY +εZ ){{Y, Z}, X}
+ (−1)(εZ +1)(εX +εY ){{Z , X}, Y } .

where εX = #gh(X) mod 2, similarly for εY and εZ . We use this structure to extend
the Koszul–Tate differential to the whole algebra BV by setting

δX
.= {X, SY M}, X ∈ BV.

The Chevalley–Eilenberg differential can also be written in terms of the bracket in
a similar manner. To this end we need to find a natural Lagrangian that implements
γ. Firstly, note that the assignment of BV(M) to spacetimes M induces a functor
BV : Loc → Vec. We denote this functor by BV.

Proposition 7.1 There exists a natural transformation θ : D → BV such that

γX = {X, θM( f )},

where f ≡ 1 on supp f and X ∈ CE(M).

Proof γ is a derivation of CE(M), so by definition a vector field on E(M). It can be
written as

γ(A, C) =
〈

δ

δA
,σ(C)A

〉

+ 1

2

〈
δr

δC
, [C, C]

〉

,

or in the antifield notation

γ(A, C, A‡, C‡) = 〈A‡,σ(C)A
〉+ 1

2

〈
C‡, [C, C]〉 ,

where we use the identification C‡ = δr
δC . In order to obtain an element of BV, we

modify γ by multiplying with a cutoff function. Define

θM( f )[A, C, A‡, C‡] .= 〈A‡,σ( f C)A
〉+ 1

2

〈
C‡, f [C, C]〉 .

This definition is local and covariant and it can easily be checked that θ ∈ Nat
(D,BV). �

Note that Proposition4.2 easily generalizes to natural Lagrangians in Nat(D,BV),
so we can conclude that for a fixed spacetime M, θM is a generalized Lagrangian.
We will denote the action corresponding to the Lagrangian θM by γM, or simply γ,
if we work on a fixed spacetime. We can now write

γX
.= {X, θM( f )}, X ∈ BV(M),

http://dx.doi.org/10.1007/978-3-319-25901-7_4
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where f ≡ 1 on the support of X . On a fixed spacetimewewill just use the shorthand
notation

γX = {X, γ},

since γ can be understood both as a differential on CE and a generalized action. We
define the BV differential as the sum

sBV = δ + γ = {., SY M + γ},

and call Sext .= S + γ the extended action of the Yang–Mills theory. In this case
s2BV = 0, since both δ and γ are nilpotent and they anti-commute. The latter is a
consequence of the gauge invariance of the equations of motion. For a detailed
discussion see [Rej13]. In general, sBV defined above would not be automatically
nilpotent and one would need to add to it further terms. To do it systematically, it
is convenient to formulate the problem in terms of natural Lagrangians. First we
need some notation. Extend the equivalence relation (4.2) to natural Lagrangians
depending on several test functions.

Definition 7.4 For L1, L2 ∈ Nat(Dk,BVloc), we say that L1 ∼ L2, if:

supp((L1 − L2)M( f1, . . . , fk)) ⊂ supp(d f1) ∪ · · · ∪ supp(d fk),

∀ f1, . . . , fk ∈ Dk(M) (7.8)

Next we lift the antibracket to the level of natural transformations.

Definition 7.5 Let L1 ∈ Nat(Dp,BVloc), L2 ∈ Nat(Dq ,BVloc) be natural
Lagrangians. We define

{L1, L2}M( f1, . . . , f p+q)

= 1

p!q!
∑

π∈Sp+q

{L1M( fπ(1), . . . , fπ(p)), L2M( fπ(p+1), . . . , fπ(p+q))}, (7.9)

where Pp+q denotes the permutation group.

It was shown in [FR12b] that the nilpotency of sBV is equivalent to the condition
that

{Lext, Lext} ∼ 0, (7.10)

formulated for the natural Lagrangian Lext. The equivalence relation ∼ was intro-
duced in Definition4.3. Condition (7.10) is called the classical master equation. One
can now formulate the problem of finding the BV differential that extends δ + γ to
the problem of finding a natural Lagrangian that satisfies (7.10), with fixed initial
terms in degree #af = −1 and #af = 0.

Using the two gradings of BV we construct a bicomplex, whose columns are
numbered by #af and rows by #gh. We obtain

http://dx.doi.org/10.1007/978-3-319-25901-7_4
http://dx.doi.org/10.1007/978-3-319-25901-7_4
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. . .
δ−−−−→ �2V ⊕ G

δ−−−−→ V
δ−−−−→ F

δ−−−−→ 0
⏐
⏐
�γ

⏐
⏐
�γ

⏐
⏐
�γ

. . .
δ−−−−→ . . .

δ−−−−→ C∞
ml

(
E,Ec⊗̂πg

′C) δ−−−−→ C∞
ml

(
E, g′C) δ−−−−→ 0

⏐
⏐
�γ

⏐
⏐
�γ

⏐
⏐
�γ

The grading of the total complex is #gh. Note that the first row is just the Koszul–
Tate complex KT with inverted grading. The higher order rows are obtained by
tensoring KT with powers of g′ and taking appropriate topological completions, so
they are resolutions as well. A standard result in homological algebra tells us that
the cohomology of the total complex is given by

H k(BV, sBV ) = H k(H0(BV, δ), γ).

Note that taking the 0th homology of δ amounts to going on-shell, while taking the
0th cohomology of γ characterizes gauge invariants. Hence,

H 0(BV, sBV ) = Finv
S ,

is the space of gauge invariant on-shell functionals.

7.2 Gauge-Fixing

In the next step we use the differential complex (BV, sBV ) to implement the gauge
fixing bymodifying the extended action. Note that the #af = 0 term of Sext is still the
original Yang–Mills action, which doesn’t induce normally hyperbolic equations of
motion, so we cannot construct retarded and advanced Green’s operators. The idea
now is to find an automorphism α of (BV, {., .}) such that S̃ext .= α(Sext) at #af = 0
induces normally hyperbolic equations of motion. Such an automorphism can be
defined by means of a gauge fixing fermion.

Definition 7.6 Let � ∈ Nat(D,BV) be a natural Lagrangian of degree #gh = −1.
We call it the gauge fixing fermion and define

α�(X) :=
∞∑

n=0

1

n! {�M( f ), . . . , {�M( f )
︸ ︷︷ ︸

n

, X} . . . }, (7.11)

where X ∈ BV(M) and f ≡ 1 on supp X .

A concrete form of� depends on the choice of gauge fixing and for particular choices
one might need to extend BV with some further generators. This is the case for the
Lorentz gauge, which is commonly used in the context of Yang–Mills theory.
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We extend the BV-complex by adding to the configuration space the non-minimal
sector. It consists of the Nakanishi–Lautrup fields b ∈ g∗[0], which we add in degree
0 and the antighosts c̄ ∈ g∗[−1], added in degree−1. The newextended configuration
space is written explicitly as

E = E ⊕ g[1] ⊕ g∗[0] ⊕ g∗[−1].

The underlying algebra of the BV complex is defined as the space of multilocal
functionals on T ∗[−1]E, analogously to (7.7).

The BV differential is extended to the non-minimal sector is such a way that
the cohomology of the BV complex remains unchanged. We define: s F = 0, and
sG = i�G for F ∈ S1g′C, G ∈∧1 g′C, where i� denotes the grade shift by +1 and
multiplication of the argument by i . The last operation is just a convention used
in physics to make antighosts hermitian. We adopt it to stay consistent with the
literature. The extended Lagrangian is now:

Lext( f )[A] = −1

2

∫

M
f tr(F ∧ ∗F) +

〈
δ

δA
,σ( f C)A

〉

+ 1

2

〈
δr

δC
, f [C, C]

〉

+

−i

〈
δr

δC̄
, f B

〉

.

(7.12)

The last term corresponds to the action of s on the non-minimal sector and we used
the traditional notation B for evaluation functionals on the space of the Nakanishi–
Lautrup fields and C̄ for the evaluation functional in the antighosts.

Let us define S̃ext .= α�(Sext) and s
.= α� ◦ sBV ◦ α−1

� = {., S̃ext}. Clearly, we
have H 0(BV, s) = H 0(BV, sBV ) = Finv

S (M), so we didn’t lose the information about
the gauge invariant on-shell observables.Wewant to choose the gauge fixing fermion
in such a way that the #af = 0 term of the new extended action S̃ induces normally
hyperbolic EOM’s. This is achieved in the Lorentz gauge, which is implemented by

�M( f )[A] = i
∫

M

f
(α

2
κ(C̄, B) + 〈C̄, ∗d ∗ A

〉
k

)
dμ, (7.13)

where κ is the pairing on k∗ induced by the Killing–Cartan form on the Lie algebra k;
〈., .〉k is the pairing between k and its dual k∗. The transformed extended Lagrangian
takes the form
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L̃ext( f ) = − 1

2

∫

M

f tr(F ∧ ∗F)

+ i
∫

M

f
〈
dC̄, ∗DC

〉
k

−
∫

M

f
(α

2
κ(B, B) + 〈B, ∗−1d ∗ A

〉
k

)
dμ + L AF( f ) , (7.14)

where L AF( f ) is the term with #af > 0.
Now it is convenient to redefine the gradings again. Let #ta denote the total

antifield number, which is 1 for all the vector fields on E and 0 for functions. We
decompose s with respect to this grading and obtain two terms

s = δ̃ + γ̃,

where the first term has #ta = −1 and the second #ta = 0. Both δ̃ and γ̃ are nilpotent
and they anti-commute with each other.

δ̃ is the Koszul differential for the Lagrangian L defined as the #ta = 0 term
in (7.14). L is a graded functional depending on the multiplet of variables ϕ =
(A, c, c̄, b) and we label the components in this multiplet by ϕα. We define S′′ as a
map from the extended configuration space to the space of vector-valued distributions
(see Sect. 3.3 and [Rej11b]) given by

〈
(S′′)βα,ψα

1 ⊗ ψ
β
2

〉
.=
〈

δr

δϕβ

δl

δϕα
L( f ),ψα

1 ⊗ ψ
β
2

〉

,

where ψ1 ∈ E, ψ2 ∈ Ec are field configuration multiplets and f ≡ 1 on the support
of ψ2. Note that S′′ induces normally hyperbolic equations of motion, so using (4.3)
we conclude that there are no non-trivial local symmetries and hence (BV, δ̃) is a
resolution. Explicitly the gauge-fixed equations of motion take the form

∗−1D∗D A = −d B − i[dC̄∗κ , C]∗κ , (7.15)

∗−1d∗ A + αB∗κ = 0 , (7.16)

∗−1d∗DC = 0 ,

∗−1D∗dC̄ = 0 ,

where Dω = D + [A,ω] denotes the covariant derivative and for ξ ∈ k∗, we de-
note ξ∗κ

.= κ(ξ, .) ∈ k. Acting with ∗−1D∗ on equation (7.15) we obtain:

∗−1D ∗ d B = −i ∗ [dC̄∗κ , ∗DC]∗κ .

Equation (7.16) is the gauge-fixing condition.

http://dx.doi.org/10.1007/978-3-319-25901-7_3
http://dx.doi.org/10.1007/978-3-319-25901-7_4
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The differential γ̃ is called the gauge-fixed BV differential, or just the BRST
differential. The action of γ̃ on the elements ofBV is summarized in the table below.

γ̃

F ∈ F
〈
F (1), dC + [., C]〉

C + 1
2 [C, C]

B 0
C̄ i B

Because (BV, δ̃) is a resolution, we can characterize the space of gauge invariant
on-shell functionals as

Finv
SYM

= H 0(BV, s) = H 0(H0(BV, δ̃), γ̃).

The advantage of this reformulation is that now we are working with field equations
that are normally hyperbolic and the abstract homological argument tells us that the
we still recover the correct space of functionals at the end.

For the action S we can find �A
S and �R

S and introduce the Peierls bracket {., .}S

on BV, analogously to (4.8):

�F, G�(g, bμ, c, cμ)
.=
∑

α,β

〈
δl F

δϕα
,�

αβ
S

δr G

δϕβ

〉

(g, bμ, c, cμ), �S = �A
S − �R

S .

Note that L can be expressed as

L( f ) = LY M( f ) + γ̃(�( f )),

and SY M is invariant under γ̃, so S is also γ̃-invariant. The latter can be expressed as

{L , θ̃} ∼ 0, (7.17)

where θ̃ is the natural Lagrangian implementing γ̃. This identity allows one to prove
the following result, stated in [FR12a] generalized in [BFR13].

Proposition 7.2 (after [BFR13]) The BRST differential γ̃ is a derivation with
respect to the Peierls bracket induced by the gauge-fixed action S, modulo the
image of δ̃.

Proof To prove the result we need to show that

m ◦ (γ̃ ⊗ 1 + 1 ⊗ γ̃) ◦ D�S = m ◦ D�S ◦ (γ̃ ⊗ 1 + 1 ⊗ γ̃),

modulo the image of δ̃. Where

http://dx.doi.org/10.1007/978-3-319-25901-7_4
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D�S

.=
∑

α,β

〈

�S
αβ,

δl

δϕα
⊗ δr

ϕβ

〉

.

Note that, in contrast to differential operator D� introduced in Sect. 5.1, D�S depends
onϕ, since the action S is non-linear.After a short calculation,weobtain the following
condition (compare with Prop. 2.3. of [Rej13]):

(−1)|σ|Kϕ
σ
β(x)�S(ϕ)βα(x, y) + Kϕ

α
β(y)�S(ϕ)σβ(x, y) = γ̃(�S(ϕ)σα(x, y)),

(7.18)

where |σ| denotes #gh(ϕσ), while Kϕ is defined with the use of the evaluation
funsctionals 	α

x as

γ0ϕ	α
x =

∑

σ

Kϕ
α
σ(x)	σ

x ≡ (Kϕ	)α,

and γ0ϕ is the linearization of γ̃ around ϕ. In a more compact notation we can write
this condition as

(−1)|σ|(Kϕ ◦ �S(ϕ))σα + (�S(ϕ) ◦ K †
ϕ)σα = γ̃(�S(ϕ)σα),

where K †
ϕ means taking the transpose of the operator-valued matrix and adjoints of

its entries. Now we use (7.17) to conclude that we can write

〈
δr L( f ′)

δϕα
, θ̃α( f )

〉

= F( f, f ′),

where θ̃α( f ) is the term in θ̃( f ) which is contracted with δl
δϕα and F is a generalized

Lagrangian, with the support contained in supp( f ) ∪ supp( f ′). We can now apply

on the both sides the differential operator
〈

f1�R
S (ϕ)μβ ◦ δr

δϕβ
δl

δϕκ ,�R
S (ϕ)κν f2

〉
, where

f1, f2 ∈ D(M). We obtain

〈

f1�
R
S (ϕ)μβ ◦

〈
δr

δϕβ

δr

δϕα

δl

δϕκ
L( f ′), θ̃α( f )

〉

,�R
S (ϕ)κν f2

〉

+
〈

f1�
R
S (ϕ)μβ ◦

〈
δr

δϕβ

δr

δϕα
L( f ′),

δl θ̃
α( f )

δϕκ

〉

,�R
S (ϕ)κν f2

〉

+
〈

f1�
R
S (ϕ)μβ ◦

〈
δr

δϕα

δl

δϕκ
L( f ′),

δr θ̃
α( f )

δϕβ

〉

�R
S (ϕ)κν f2

〉

+
〈

f1�
R
S (ϕ)μβ ◦

〈
δr L( f ′)

δϕα
,

δl

δϕκ

δr

δϕβ
θ̃α( f )

〉

,�R
S (ϕ)κν f2

〉

=
〈

δr

δϕβ

δl

δϕκ
F( f, f ′),�A

S (ϕ)βμ f1 ⊗ (�R
g )κν f2

〉

http://dx.doi.org/10.1007/978-3-319-25901-7_5
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Setting f ′ ≡ 1 on the support of f we see that the last term is proportional to
the equations of motion, so we can ignore it. In the remaining terms on the left-
hand side we can make use of the fact that �R

S (ϕ) is the Green’s function for S′′.
As for the right-hand side, we choose f and f ′ such that they are equal to 1 on
J−(supp f2) ∩ J+(supp f1). Now use the fact that F is local and depends locally on
both f and f ′, and the support of F( f, f ′) is contained within supp d f ∪ supp d f ′.
It follows that the term on the right-hand side vanishes and because f1, f2 were
chosen arbitrarily, we obtain the identity

γ(�R
S )

o.s.= (−1)|σ|(Kϕ ◦ �R
S (ϕ))σα + (�R

S (ϕ) ◦ K †
ϕ)σα.

The same argument can be applied to �A
S (ϕ), so the identity (7.18) follows. This

concludes the proof. �
Since γ̃ is a derivation with respect to the Peierls bracket modulo the image of δ̃,

�., .�S̃ is well defined on H0(BV, δ̃) and on Finv
SYM

. In order to obtain a space which is
closed under the Poisson bracket, we extend BV to the space BVμc of microcausal
functionals on T ∗[−1]E.

The classical net of local algebras on a spacetimes M is then defined by assign-
ments

O 
→ (Finv
S,μc(O), �., .�),

where O ⊂ M.
Wedefine a functorBVμc : Loc → Vec by settingBVμc(M)

.= BVμc(M) for the
objects.As for themorphisms, letχ ∈ Hom(M,N) F ∈ BVμc(M) = Oμc(T ∗[−1]E),
then

BVμcχF(ϕ)
.= F(χ∗ϕ),

where χ∗ : E(N) → E(M) is the natural pull-back map.

Example 7.1 (Electromagnetic field) Let us illustrate the general construction
described above on the example of the electromagnetic field. The gauge group is
K = U (1), so k = R and the Lagrangian takes the form

LM( f )(A) = −1

2

∫

M
f (F ∧ ∗F).

E is the space of principal connections on M × U (1) and it is an affine spacemodeled
on Ec(M) = �1

c(M). As in the case of the free field we can consider the space Flin

of linear functionals on E. They are of the form

Fβ(A) =
∫

M
A ∧ ∗β,

We can now apply to Flin the general BV formalism and compare with the construc-
tion of [Dim92]. The equation of motion is given by
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δd A = 0,

where δ
.= ∗−1d∗ ia the codifferential.2 It follows that the image of δS consists of

functionals Fβ , where β = δdη for some η ∈ �1
c(M). We can realize Flin,S as the

space of equivalence classes of forms

Flin,S
∼= �1

c(M)

δd�1
c(M)

.

Now we have to characterize the kernel of γ. It consists of linear functionals that
satisfy

0 = (γFβ)(c) =
∫

M
dc ∧ ∗β =

∫

M
c ∧ ∗δβ.

It follows that δβ = 0. Let us denote �1
c,δ(M)

.= {ω ∈ �1
c(M)|δω = 0}. The space

of gauge invariant on-shell linear functionals is isomorphic to

Finv
lin,S

∼= �1
c,δ(M)

δd�1
c(M)

.

This is in agreement with the approach of [Dim92, SDH14, DS13, DL12]. Among
these functionals we can distinguish the ones which are constructed from the field
strength, i.e. those of the form

∫

M
d A ∧ ∗η =

∫

M
A ∧ ∗δη = Fδη(A).

If H 3(M) is trivial, then all elements of Finv
lin,S arise from field strength functionals,

since all co-closed forms are also co-exact.

7.3 Quantization in the Batalin–Vilkoviski Formalism

In this section we discuss quantization along the lines of [FR12a]. We start with
a discussion of the free scalar field. We consider the deformation of δS0 under the
time-ordering operator T. This deformation corresponds to the difference between
the ideal generated by eom’s in the classical theory (i.e. with respect to “·”) and the
ideal generated by eom’s with respect to ·T . We define

δTS0 = T−1 ◦ δS0 ◦ T, (7.19)

2Here we use the boldface letter to denote the codifferential, in order to clearly distinguish it from
the Koszul–Tate operator δS .
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Let us first consider regular functionals. Explicit computation shows that, on
∧

V,

δTS0 := T−1 ◦ δS0 ◦ T = δS0 − i��,

where � acts on regular vector fields X ∈ Vreg as

�X (ϕ) = −
∫

δXx

δϕ(x)
(ϕ), where X (ϕ) =

∫

Xx (ϕ)
δ

δϕ(x)
,

For general X ∈∧V we define

�X
.= −

∑

α

〈
δr

δϕ

δr

δϕ‡
X, 1

〉

.

It’s remarkable that the operator � is “almost” a right derivation of
∧

Vreg and the
failure is characterized by {., .}, i.e.:

�(X ∧ Y ) − (−1)|Y | � (X) ∧ Y − X ∧ �(Y ) = (−1)|Y |{X, Y },

The triple (
∧

Vreg, {., .},�) is an example of a BV algebra.

Remark 7.7 Physically the relation between δTS0 and δS0 corresponds to the
Schwinger–Dyson equation. Let X (ϕ) = ∫ Xx (ϕ) δ

δϕ(x)
. We obtain

−(δTS0 X)(ϕ) = T−1
∫ (

TXx · δS0(ϕ)

δϕ(x)

)

(ϕ) =
∫

Xx (ϕ)
δS0(ϕ)

δϕ(x)
− i�

∫
δXx

δϕ(x)
(ϕ),

where δS0(ϕ)

δϕ(x)
is a shorthand notation for δL0( f )(ϕ)

δϕ(x)
, where we take the limit f → 1.

Note that ∫

TXx (ϕ)
δS0(ϕ)

δϕ(x)
=
∫ (

TXx 

δS0

δϕ(x)

)

(ϕ).

Hence,

T

∫ (

Xx · δS0(ϕ)

δϕ(x)

)

(ϕ) = i�T
∫

δXx

δϕ(x)
(ϕ) ,

modulo the 
-ideal generated by the eom’s. This is exactly the algebraic Schwinger–
Dyson equation.

In the quantization of gauge theories, one simply replaces �Vreg with BVreg and
S0 is the #af = 0 quadratic term of the extended action. The nilpotent operator � is
now defined by

�X
.=
∑

α

(−1)εα+1

〈
δr

δϕα

δr

δϕ‡
α

X, 1

〉

,

where εα is the grade corresponding to the variable ϕα, modulo 2.



7.3 Quantization in the Batalin–Vilkoviski Formalism 153

For Yang-Mills theories the quadratic linearized Lagrangian (i.e. the #ta = 0 term
in Lext) is (compare with [Hol08]):

L0( f ) = 1

2

∫

M
f tr(d A ∧ ∗d A) + i

∫

M
f
〈
dC̄, ∗dC

〉
k
+

−
∫

M
f
(α

2
κ(B, B) + κ

〈
B, ∗−1d ∗ A

〉
k

)
dμg ,

where the linearizion has been done around the trivial connection A0 = 0 and the
basis is (A, b, c, c̄). Choose α = 1. The equations of motion are

S′′(z, x) = δ(z, x)

⎛

⎜
⎜
⎝

�H + dδ −d 0 0
δ −1 0 0
0 0 0 i�H

0 0 −i�H 0

⎞

⎟
⎟
⎠ (x) , (7.20)

where �H
.= −(δd + dδ).

The retarded and advanced Green’s functions for S′′
0 are given by

�A/R(x, y) =

⎛

⎜
⎜
⎜
⎝

�
A/R
v −d�

A/R
v 0 0

δ�
A/R
v dδ�

A/R
v 0 0

0 0 0 i�A/R
s

0 0 −i�A/R
s 0

⎞

⎟
⎟
⎟
⎠

,

where�
A/R
v denotesGreen’s functions for theHodge Laplacian on 1-forms and�

A/R
s

denotes Green’s functions for the Hodge Laplacian on scalar functions. Construction
of the free quantum algebra A proceeds now the same as in Chap.5.

Let us now consider a deformation of δS0 which corresponds to introducting the
interaction. Here we treat the scalar field and gauge theories together (they differ by
the choice of S0 and V , but all the relevant equations have the same form), but still
restrict to regular functionals, i.e. V ∈ BVreg is a regular interaction term. We define
the quantum BV operator ŝ as

ŝ
.= R−1

V ◦ δS0 ◦ RV . (7.21)

Analogously to Sect. 6.2.3, RV is a map from the interacting quantum theory to the
free quantum theory, so δS0 acts on A0, as explained in detail in Sect. 5.2. Note that
F ∈ BV is physical (i.e. and observable) if RV (F) is in ker(δS0) and is identified
with elements that differ by the image of ŝ, i.e. RV (F) is in in the same equivalence
class as RV (F) + RV (I ), where I ∈ Im(δ0). This is the same equivalence relation as
the one used in Sect. 5.2 to define the space of on-shell observables. The difference
is that now the kernel of δS0 is not the full space of functionals, but only a subspace,
since δS0 has non-trivial action on antifields.

http://dx.doi.org/10.1007/978-3-319-25901-7_5
http://dx.doi.org/10.1007/978-3-319-25901-7_6
http://dx.doi.org/10.1007/978-3-319-25901-7_5
http://dx.doi.org/10.1007/978-3-319-25901-7_5
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Let us assume that
δS0

(
eiV/�

T

) = 0. (7.22)

This condition reduces to the known quantum master equation qme, since

− i�δS0

(
eiV/�

T

) =
(
1

2
{S0 + V, S0 + V } − i� � V

)

·TeiV/�

T
, (7.23)

where we set {S0, S0} ≡ 0, since S0 doesn’t contain antifields. If (7.22) holds, then

ŝ F = {F, S0 + V } − i� � F, (7.24)

for F ∈ Freg. If qme is fulfilled, then the cohomology of ŝ characterizes the space
of quantum gauge invariant on-shell observables.

Now we want to extend the qme and ŝ to local functionals. This is done by renor-
malizing the time-ordered products present in (7.21) and (7.22) using the Epstein–
Glaser framework. Clearly, formulas (7.23) and (7.24) are not well defined for local
arguments, since � is singular. Nevertheless, very similar results can be obtained
using the anomalous Master Ward Identity ([BD08, Hol08]), which states that there
exists a family of maps

�̃n : T(BVloc)
n+1 → Aloc(M), (7.25)

which depend locally on their arguments, and the formal power series

�̃(V )
.=

∞∑

n=0

�̃n
(V ⊗n; V )

fulfills the identity

∫ (

eiV/�

T
·T δV

δϕ(x)

)



δS0

δϕ(x)
= eiV/�

T
·T ( 12 {V + S0, V + S0}T − �̃(V )),

(7.26)
The maps �̃n

can be determined recursively. For an explicit formula, see [BD08,
Rej13]. We can now see that the renormalized qme reduces to

δS0

(
eiV/�

T

) = 1

2
{S0 + V, S0 + V } − i��̃(V ). (7.27)

and the renormalized quantum BV operator takes the form

ŝ F = {F, S0 + V } − i� �V F, (7.28)
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where �V (F)
.= d

dλ

∣
∣
∣
λ=0

�̃(V + λF). Note that the renormalized operator �V de-

pends on V , in contrast to the non-renormalized one �. It no longer has the interpre-
tation of a graded Laplacian but is still a functional differential operator.

The construction outlined above allows us to choose V which is a local functional.
In the Yang–Mills theory example, which we are focusing on, we can define the
local interacting net corresponding to the region O ⊂ M by taking V = L̃ext

M( f ) −
L0M( f ) and choosing f ≡ 1 on O. The details of the construction, in particular the
algebraic adiabatic limit, can be found in [FR12a].

Remark 7.8 The remarkable aspect of the approach presented above is that using
the BV formalism in the sense of [FR12a] we can construct Møller maps RV that
intertwine between theories with different gauge symmetries. Indeed, the symmetries
are encoded in the Chevalley–Eilenberg differential γ, which then enters into the
extended action Sext and consequently into V .
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Chapter 8
Effective Quantum Gravity

The functional approach to pQFT together with the BV framework introduced in
Chap.7 has been successfully applied to gauge theories [FR12a, FR12b] and can
also be used in quantization of theories where the local symmetries involve transfor-
mation of spacetime points. The first model, where this has been achieved was the
quantization of a bosonic string in arbitrary dimension, where the local symmetries
are compactly supported diffeomorphisms of the string world-sheet. Recently these
methods have also been applied to construct the effective theory of quantum gravity
[BFR13]. By this we mean a quantum theory understood in terms of formal power
series in both � and the coupling constant, where at each order of the perturbative
construction new types of contributions appear, but they are always finite. The theory
is not UV complete, so the relevant formal power series do not converge, but one can
nevertheless apply it to model physical situations where the quantum gravity (QG)
effects are not very strong. This seems to be a sensible Ansatz for the start, as the
QG effects which we expect to observe in the near future should be relatively small.
Example physical applications include cosmology and black hole physics.

8.1 From LCQFT to Quantum Gravity

The road to quantum gravity is paved with numerous technical and conceptual prob-
lems. In contrast to QFT on curved spacetimes, in QG the spacetime structure is
dynamical. This means that we cannot treat the metric as a fixed structure, but it
interactswith thematter fields. One can partiallymodel this situation using the frame-
work involving backreaction. In this formalism one treats matter fields as quantum
objects and studies their effect of the metric by inserting the expectation value of the
quantum stress-energy tensor in a given state ω into Einstein’s equations:

〈Tμν〉ω = Gμν,

© The Author(s) 2016
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where Gμν = Rμν − 1
2 Rgμν is the Einstein tensor. In the pAQFT framework this

approach has been applied in cosmology and in the study of QFT in black-hole
spacetimes, see for example [Hac10, Hac14, DMP09a, DMP09b, DMP11] and a
recent book [Hac15].

On the next level of approximation one can split the metric g into the background
metric g0 and a perturbation h and quantize the perturbation as a quantum field on
the background g0. This is the approach which has been taken in [BFR13]. Since this
tentative split into background and perturbation is not physical, one needs to show
that the predictions of the theory do not depend on the way g is being split. This
consistency condition is called background independence and we will come back
to it later in this chapter. In the pAQFT approach, the background independence of
effective QG has been proven in [BFR13] in the sense that a localized change in the
background which formally yields an automorphism on the algebra of observables
(called relative Cauchy evolution in [BFV03]) is actually trivial, in agreement with
the proposal made in [BF07] (see also [FR12c]).

Another conceptual difficulty in quantizing gravity is that the Einstein–Hilbert
action is reparametrization invariant, hence the theory has a huge symmetry group,
the diffeomorphism group. This means that labeling of spacetime points doesn’t have
a physical meaning. As a consequence, physical observables have to be diffeomor-
phism invariant. In the frameworkof [BFR13] the characterization of diffeomorphism
invariant observables is given by means of the BV formalism. The abstract setting
looks very similar to the one discussed in Chap.7, but there remains the difficulty in
finding non-trivial elements of the 0th cohomology of the BV differential. In [FR12b,
Rej11a] it has been proposed to use locally covariant quantum fields in the sense of
Definition2.66 as diffeomorphism invariant physical quantities in effective classical
and quantum gravity. In [BFR13] this idea has been refined and a more explicit char-
acterisation of these objects has been given in terms of relational observables. The
latter are conceptually similar to the notion of observables introduced by Rovelli in
the framework of loop quantum gravity [Rov02] and later used and further developed
in [Dit06, Thi06].

Finally, there is a known difficulty that quantum gravity, as a QFT, is power count-
ing non-renormalizable. We deal with this problem by using the Epstein–Glaser
renormalization scheme, which allows us to calculate finite contributions to renor-
malized time-ordered products to every order in � and the coupling constant. The
theory is then interpreted as an effective theory with the property that only finitely
many parameters have to be considered below a fixed energy scale [GW96]. Another
possible direction would be to make contact with the asymptotic safety approach.
A theory is called asymptotically safe if there exists an ultraviolet fixed point of
the renormalisation group flow1 with only finitely many relevant directions [Wei79].
Results supporting this perspective have been obtained by Reuter et al. [Reu98,
RS02].

1Reuter et al. [Reu98, RS02] define the renormalisation group flow in terms of Wetterich equations
[Wet93]. We expect that this notion is related to the Stückelberg-Petermann renormalization group
we have introduced in Sect. 6.3 A result connecting the later to the Wilsonian flow has been already
obtained in [BDF09].

http://dx.doi.org/10.1007/978-3-319-25901-7_7
http://dx.doi.org/10.1007/978-3-319-25901-7_2
http://dx.doi.org/10.1007/978-3-319-25901-7_6
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8.2 Dynamics and Symmetries

We consider a formal metric g on a M given by g = g0 + λh, where λ is a formal
parameter. In this setting M ≡ (M, g0) is the background manifold and λh is the
metric perturbation. For the effective theory of gravity the configuration space is
E(M) = �((T ∗M)⊗s2).

Definition 8.1 In this section F(M) denotes the space of multilocal functionals on
E(M) that are Laurent series in λ.

Note that for the physical interpretation to make sense, the observables we obtain
at the end cannot depend on negative powers of λ.

Definition 8.2 A functional derivative of F ∈ F(M) is defined by

〈
F (1)(h), h1

〉 .= 1

λ

〈
F (1)(h), h1

〉
,

where F (1)(h) means that we take the functional derivative of coefficients of F at
each order in λ separately.

It is convenient to use natural units, where λ (identified with the square of the
coupling constant) has a dimension of length, so h has a dimension of 1/length. The
action used in quantization must be dimensionless, so we use L E H/λ2, where L E H is
the Einstein–Hilbert Lagrangian

L E H
(M,g)( f )[h] .=

∫
R[g] f dμg, g = g0 + λh, h ∈ E(M), (8.1)

The Euler-Lagrange derivative of L E H is defined as in Definition4.2, i.e.

〈SE H
M

′
(h), h1〉 .= 〈L E H

M( f )(1)(h), h1〉,

where f ≡ 1 on supp h1. For general relativity, local symmetries arise from infinites-
imal diffeomorphism symmetries. The compactly supported diffeomorphism group
acts onE(M)via the pullback:ρM(α)h = (α−1)∗h,whereα ∈ Diffc(M), t ∈ E(M).
This induces the action of X(M) ≡ �(T M) via the Lie derivative:

ρM(ξ)λh
.= d

dt

∣∣∣
t=0

(exp(−tξ))∗g = £ξ(g0 + λh),

where ξ ∈ X(M). On the level of functionals F ∈ F we obtain

ρM(ξ)F[h] .= 〈
F (1)(h), £ξ(g + λh)

〉
.

Definition 8.3 CE(M), the underlying algebra of the Chevalley–Eilenberg complex,
is defined as the space of Laurent series inλwith coefficients inmultilocal functionals

http://dx.doi.org/10.1007/978-3-319-25901-7_4
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on the extended configuration space E(M)
.= E(M) ⊕ X[1](M). The Chevalley–

Eilenberg differential γC E is defined as in Sect. 7.1.3.

Definition 8.4 BV(M), the underlying algebra of the BV complex is defined as
Oml(T ∗[−1]E(M)); compare with (7.7).

As in gauge theories,BV(M) is equippedwith the natural structure of theSchouten
bracket {., .} and the BV differential sBV can be expressed as

sBV = {., SE H + γ},

where we choose the natural Lagrangian θ, which represents γ as

θC E
(M,g0)

( f )[h, C, h‡, C‡] = 〈
h‡, £ f Cg

〉 − 1

2

〈
C‡, f [C, C]〉 , (8.2)

The space of “gauge-invariant” on-shell observables, Finv
S is characterized by

Finv
S (M) = H 0(BV(M), sBV ).

In the next step we perform the gauge-fixing. In general relativity fixing the gauge
means essentially fixing the coordinate system. For the specific choice of gauge we
need, we have to extend the BV complex by adding auxiliary scalar fields: 4 scalar
antighosts cμ in degree−1 and 4 scalar Nakanishi-Lautrup fields bμ, μ = 0, . . . , 3 in
degree 0. The new extended configuration space is again denoted byE(M).We define
s on functionals of antighosts and Nakanishi-Lautrup fields by fixing the action of s
on evaluation functionals Cμ(x), Bμ(x):

s(Cμ) = i Bμ − £C Cμ,

s(Bμ) = £C Bμ.

To implement these new transformation laws we add to the Lagrangian a term

〈
C

‡
μ, i f Bμ − £ f C Cμ,

〉
+ 〈

B‡
μ, £ f C Bμ,

〉
.

Next, we perform an automorphism α� of (BV(M), {., .}) such that the part of
the transformed action which doesn’t contain antifields has a well posed Cauchy
problem. We choose the gauge-fixing Fermion as

�(M,g0)( f )[h, c, cμ, bμ] = i
∑

μ,ν

∫
(∂μcνg

μν − 1
2bμcνκ

μν) f dμg, (8.3)

where g = g0 + λh andκ is a non-degenerate 2-form onR
4. The explicit appearance

of this form in the gauge fixing Fermion is related to the choice of a dual pairing

http://dx.doi.org/10.1007/978-3-319-25901-7_7
http://dx.doi.org/10.1007/978-3-319-25901-7_7
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for Nakanishi-Lautrup fields. Note that expression (8.3) is explicitly coordinate-
dependent. This is necessary because we need to break the reparametrization invari-
ance of the action. The new terms appearing in the α�-transformed action arise
from

{�( f ′), Lext( f )}(h, c, cμ, bμ) = −
∫

(∂μ( f bν)g
μν − 1

2 f2bμbνκ
μν)

√− det gd4x

+ i
∫

(∂μcν

√− det g gμα∂α( f cν))d4x,

where f ′ ≡ 1 on supp f . We rewrite the above expression as

−
∫

∂μ( f bν)g
μνdμg +

∫ (
1
2 f bμbν

)
κμνdμg + i

∫
cν f �gcνdμg,

where �g is the d’Alembertian constructed from the formal metric g = g0 + λh.
We denote the first term in the above formula by LG F( f ) and the second by
L F P( f ) (gauge-fixing and Fadeev-Popov terms, respectively). The full transformed
Lagrangian is given by:

Lext = L E H + LG F + L F P + L AF, (8.4)

where L AF is the term containing antifields.
The variables of the theory (i.e. the components ϕα of the multiplet ϕ ∈ E(M)

are now: the metric h ∈ E(M), the Nakanishi-Lautrup fields bμ, the antighosts cμ,
μ = 0, . . . , 3 (scalar fields) and the ghosts c ∈ X(M). As in Sect. 7.2 we introduce
a new grading #ta, which is equal to 0 for functions on E(M) and equal to 1 for all
the vector fields on E(M).

The newfield equations are now equations for the fullmultipletϕ = (h, bμ, c, cμ),
μ = 0, . . . , 3 and are derived from the #ta = 0 term of Lext, denoted by L . The
α�-transformed BV differential s = α� ◦ sBV ◦ α−1

� is given by:

s = {., Sext} = γ + δ.

The action of γ on F(M) and the evaluation functionals Bμ, C , Cμ is summarized in
the table below:

γ

F ∈ F 〈F (1), £Cg〉
C − 1

2 [C, C]
Bμ £C Bμ

Cμ iB − £C Cμ

The equations of motion are:

http://dx.doi.org/10.1007/978-3-319-25901-7_7
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Rλν[g] = −i∂λCα ∂νCα − ∂(λ Bν) (8.5)

�gCμ = 0 (8.6)

�gCμ = 0 (8.7)
1√− det g

∂μ(g
μν

√− det g) = Bμκ
μν (8.8)

where Bμ, Cμ, Cμ are evaluation functionals. The equation for Bμ is obtained by
using the Bianchi identity satisfied by Rλν[g] in Eq. (8.5) and takes the form

�g Bμ = 0. (8.9)

8.3 Linearized Theory

Definition 8.5 The linearized Lagrangian L0 is defined as

L0
.= λ2

2
L(2)

(M,g0)(g0, 0, 0, 0),

where L is the #af = 0 term in Lext. We introduce the notation Sext = λ2(S0 + SI ).

Remark 8.1 The dimensionless action we use in the quantization is Sext/λ2, so its
quadratic part is of order 0 in λ. If g0 is not a solution to Einstein’s equations, the
λ-linear term in Sext doesn’t vanish and negative powers ofλ appear in the interatction
SI . Formally, we solve this problem by introducing another parameter μ, so that
1
λ

L(1)
(M,g0)(g0, 0, 0, 0) ≡ μJg0 , where Jg0 is the source term, linear in h. Our observables

are now formal power series in bothλ andμ. For the physical interpretationwe restrict
ourselves to spacetimes where g0 is a solution and put μ = 0, but algebraically we
can perform our construction of quantum theory on arbitrary backgrounds.

We choose from now on the gauge where the pairing κ is obtained from g0
expressed in a fixed coordinate system. Let us introduce some notation.

Definition 8.6 The divergence operator div : �((T ∗M)⊗s2) → �(T ∗M) is defined
by

(div t)α
.= 1√− det g0

g
βμ
0 ∂μ(tβα

√− det g0).

Definition 8.7 We define a product

〈u, v〉g0 =
∫

M
〈u#, v〉dμg0 ,

where u, v are tensors of the same rank and # is the isomorphism between T ∗M and
T M induced by g0.

Definition 8.8 The formal adjoint of divwith respect to the product 〈., .〉g0 is denoted
by div* : �(T ∗M) → �((T ∗M)⊗s2).
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Definition 8.9 The trace reversal operator G : (T M)⊗2 → (T M)⊗2 is defined by

Gt = t − 1

2
(tr t)g0. (8.10)

We have tr(Gt) = − tr t and G2 = id. Using the notation above we write L0M

in the form:

L0M( f )[h, c, cμ, bμ]

=
∫

M

δ

δg
(R f dμ)

∣∣∣∣
g0

(h) + 2i
3∑

ν=0

〈
dcν, d( f cν)

〉
g0

+ 〈
f b, div(Gh) − 1

2b
〉
g0

,

where δ
δg

(Rdμ)

∣∣∣
g0

(h) denotes the linearization of the Einstein–Hilbert Lagrangian

density around the background g0 and b is a 1-form on M constructed from bν’s in
the fixed coordinate system. The linearized eom’s are

S′′
M

(z, x) = δ(z, x)

⎛

⎜⎜
⎝

− 1
2

(
�L G + 2G div* ◦ div ◦G

)
G ◦ div∗ 0 0

div ◦G −1 0 0
0 0 0 −i�H

0 0 i�H 0

⎞

⎟⎟
⎠ (x),

(8.11)

where the variables are (h, b, c0, . . . , c3, c0, . . . , c3); �H = δd is the Hodge Lapla-
cian, δ

.= ∗−1d∗ is the codifferential and �L is given in local coordinates by

(�L h)αβ = ∇μ∇μhαβ − 2(R μ
(α hβ)μ + R μν

(α β)hμν). (8.12)

The retarded and advanced propagators for S0 are given by:

�
R/A
S0

(x, y) = −2

⎛

⎜⎜⎜
⎝

G�
R/A
t G�

A/R
t G ◦ div* y 0 0

divx ◦�
R/A
t divx ◦�

R/A
t G ◦ div* y + 1

2δ4 0 0
0 0 0 −i�R/A

s

0 0 i�R/A
s 0

⎞

⎟⎟⎟
⎠

,

where�
R/A
t is the retarded/advancedGreen’s function for�L on symmetric covariant

2-tensors, �
R/A
s is the retarded/advanced Green’s function for �H on scalars, δ4

denotes theDirac delta in 4 dimensions and subscript y in div∗
y means that the operator

should be applied on the secondvariable.We introduce thePeierls bracket onBV(M):

�F, G�g0 =
∑

α,β

〈
δl F

δϕα
�

αβ
S0

δr G

δϕβ

〉
,
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where �S0 = �R
S0

− �A
S0
. As in Chap.7 we extendBV(M) to the spaceBVμc(M) of

microcausal functionals, which is closed under the Peierls bracket.

8.4 Quantization

For the definition of the �-product we need a 2-point function �+
S0
. Assume that

�+
S0
is of the form:

�+
S0

= −2

⎛

⎜⎜
⎝

Gωt ωT
t div* y 0 0

divx ωt divx G ωT div* y 0 0
0 0 0 −iωs

0 0 iωs 0

⎞

⎟⎟
⎠ , (8.13)

In this case, the conditions for �+
S0
to be a Hadamard 2-point function reduce to:

ωs/t (x, y) − ωs/t (y, x) = i�s/t (x, y), (8.13a)

�L ωt = 0, �H ωs = 0, (8.13b)

WF(ωs/t ) ⊂ C+, (8.13c)

ωs/t (x, y) = ωs/t (y, x). (8.13d)

We choose arbitrary parametrices ωt , ωs of �L and �H respectively. Their existence
was already proven in [SV00] (the paper actually discusses general wave operators
acting on vector-valued field configurations). Now, from a parametrix, one can con-
struct a bisolution using a following argument: let ω be a Hadamard parametrix for
the hyperbolic operator O = �L or= �H . By definition, Oxω = h, Oyω = k, hold
for some smooth functions h and k. Let χ be a smooth function such that supp χ is
past-compact and supp(1 − χ) is future-compact (see Definition 2.38). Define

Gχ
.= �Rχ + �A(1 − χ).

ClearlyGχ is a right inverse for O . AHadamard bisolutionωχ can nowbe obtained as

ωχ
.= (1 − GχO) ◦ ω ◦ (1 − OGT

χ ).

From Hadamard solutions for �L and �H we can then construct �+
S0
using (8.13).

We define A(M) as in Sect. 5.1 and introduce the interaction using the Epstein–
Glaser renormalization. The rest of the construction follows exactly the scheme
described in Chaps. 6 and 7, so the abstract net of algebras can be defined without
problems on arbitrary backgrounds. There are two questions that remain. First is the
existence of a non-trivial gauge invariant observable and the other is the background
independence of the resulting theory.Wewill address these problems in the following
two sections, referring to the results of [BFR13].

http://dx.doi.org/10.1007/978-3-319-25901-7_7
http://dx.doi.org/10.1007/978-3-319-25901-7_2
http://dx.doi.org/10.1007/978-3-319-25901-7_5
http://dx.doi.org/10.1007/978-3-319-25901-7_6
http://dx.doi.org/10.1007/978-3-319-25901-7_7
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8.5 Relational Observables

Abstractly we have characterized the classical gauge-invariant observables as

Finv
S (M) = H 0(BV(M), s),

but there is no a priori reason for this space to be non-empty. To prove that non-
trivial observables exist, we will construct some explicitly. We start with heuristic
reasoning. If we think about an experiment that locally probes the geometric structure
of spacetime, we can associate to our setup a causally convex spacetime region O

of spacetime M and an observable � localised in O, which we measure. Since the
experiment has a finite resolution, we don’t really measure values of the geometric
data at a point. There is always some smearing involved. For example, we can model
the measurement of the Ricci curvature R by defining our observable quantity as
�( f ) = ∫

f (x)R(x), where f is a smearing function with supp( f ) ⊂ O. In certain
situations, we can think of the measured observable as a perturbation of the fixed
background metric. This is for example the case if we want to observe gravitational
waves. We make a tentative split: g = g0 + λh. The situation is pictured on the
Fig. 8.1. To formulatewhat diffeomorphism invariancemeans,wefirst have to answer
the question: What happens if we move our experimental setup to a different region
O′?Now to compare�(O,g)( f ) and�(O′,α∗g)(α∗ f )we need to knowwhat it means to
have “the same observable in a different region”. We can give sense to this statement
using the notion of locally covariant quantum fields, as defined in Definition2.66.

Recall that the condition for � to be a locally covariant field reads

�O( f )(χ∗h) = �M(χ∗ f )(h). (8.14)

For a fixed spacetime M we define the action of the infinitesimal diffeomorphism
algebra X(M) on maps �M as

Fig. 8.1 Experimental
situation while probing the
spacetime geometry

http://dx.doi.org/10.1007/978-3-319-25901-7_2
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(ρ(ξ)�(M,g0))( f )[h] .= 〈
(�(M,g0)( f ))(1)(h), £ξg

〉 + �(M,g0)(£ξ f )[h],

where ξ ∈ X(M).

Definition 8.10 Wesay that a locally covariant quantumfield�M is diffeomorphism
invariant if

ρ(ξ)�M ≡ 0 , ∀ M ∈ Obj(Loc), ξ ∈ X(M).

Example 8.1 As an example of a diffeomorphism invariant field we can take

�1(M,g0)( f )[h] =
∫

R[g] f dμg , where g = g0 + λh.

Note that both the scalar curvature and the volume form depend on the full metric g.
However if we take a field defined as

�2(M,g0)( f )[h] =
∫

R[g] f dμg0 , where g = g0 + λh,

it is still a locally covariant quantum field, but it is no longer diffeomorphism
invariant.

The reasoning presented above suggests that locally covariant quantum fields are
good candidates for diffeomorphism invariant quantities. The question remains, how
to relate these with non-trivial elements of H 0(BV(M), s).

For a fixed spacetime M and a locally covariant quantum field �, a test function
specifies the geometrical setup for an experiment, and the concrete choice of f ∈
D(M) can be made only if we fix a coordinate system. In our framework, following
[BFR13], we realize the choice of a coordinate system by introducing four scalar
fields Xμ, which will parametrize points of spacetime.We can write any test function
f ∈ D(M) in the coordinate basis induced by X

.= (Xμ|μ = 0, . . . , 3), so if we fix
f : R

4 → R, then the change of f = X∗ f due to the change of the coordinate system
is realized through the change of scalar fields Xμ.

Definition 8.11 For a natural transformation � ∈ Nat(D,F) we obtain a map

�M, f (h, X)
.= �M(X∗ f )(h).

As long as we keep M fixed, we drop M in �M, f and use the notation � f

instead. � f is a function of the metric and the coordinate system and transforms
under infinitesimal diffeomorphisms according to

(ρ(ξ)� f ) =
〈
δ� f

δg

∣∣∣
X
, £ξg

〉
+

3∑

μ=0

〈
δ� f

δXμ

∣∣∣
g
, £ξ Xμ

〉
. (8.15)

This is still not satisfactory, since the Xμ’s are not dynamical variables, so there
are no vector fields in BV(M) that would implement the second term in the above
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transformation. To solve this problem, we can replace Xμ with some scalars Xμ
g ,

μ = 0, . . . , 3 that depend locally on the metric. They could be, for example, scalars
constructed from the Riemann curvature tensor and its covariant derivatives. The
caveat is that some particularly symmetric spacetimes do not admit such metric
dependent coordinates, since in such cases the curvature might vanish (for a detailed
discussion see [CHP09, HC10]). If matter field are present, one can construct Xμ’s
using thematter fields.A known example is theBrown–Kuchařmodel [BK95],which
uses dust fields.

Let us denote by β the map g �→ (X0
g , . . . , X3

g) and define

�
β
f (h)

.= � f (g, Xg), (8.16)

where g = g0 + λh. Note that for (8.16) to be well defined we need to choose f and
β in such a way that the support of f is contained in the interior of the image of M
inside M under the quadruple of maps Xμ

g0
. If this can be done, then a functional of

the form (8.16) is an element of H 0(BV(M), s) if and only if � is a diffeomorphism
invariant locally covariant quantum field. Observables of this type are interpreted as
relational observables, since they capture the relations between different quantities
constructed from the metric (and possibly also matter fields) and they do not rely
on absolute labeling of spacetime points. Instead, the map β provides relative labels
Xg , which change with g.

Example 8.2 Assume that for a fixed background M = (M, g0) we can choose f
and β in such a way that f

.= X∗
g0

f is compactly supported. Then an exampleX(M)-
invariant functional can be obtained from the scalar curvature

�
β
f (h) =

∫

M
R[g0] f (Xg0)dμg0

+ λ

(∫

M
f (Xg0)

δ

δg
(Rdμ)

∣∣∣∣
g0

(h) +
∫

M
R[g0]∂μ f (Xg0)

δXμ
g

δg

∣∣∣∣
g0

(h)

)

+ O(λ2).

To summarize, we have three ways to realize diffeomorphism invariant quantities
in classical gravity:

• as locally covariant fields �M : D(M) → F(M),
• as functionals of the metric and the coordinates � f (h, X),
• as relational observables � f (., Xg).

8.6 Background Independence

The last issue which we have to discuss is the background independence. We have
made a tentative split into the free and interacting Lagrangian, relying on the Taylor
expansion around the background metric g0. Now we want to see what will happen
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if we slightly perturb the background. If the theory is background independent then
physical quantities do not change under such a perturbation. Following [BFR13] we
sketch the argument that this is true in effective QG constructed by the methods of
pAQFT.

In [BF07] it was proposed that a condition of background independence can
be formulated by means of relative Cauchy evolution. Let us fix a spacetime
M1 = (M, g1) ∈ Obj(Loc) and choose �− and �+, two Cauchy surfaces in M1,
such that �+ is in the future of �−. Consider another globally hyperbolic metric g2
on M , such that k

.= g2 − g1 is compactly supported and its support K lies between
�− and �+. Let us take N± ∈ Obj(Loc) that embed intoM1,M2, via χ1±, χ2± and
χi±(N±), i = 1, 2 are causally convex neighborhoods of�± inMi . For a visual rep-
resentation of this construction, seeFig. 8.2.Weuse the time-slice axiom to define iso-
morphisms αχi±

.= Aχi± and the free relative Cauchy evolution is an automorphism
of A(M1) given by β0k = α0χ1− ◦ α−1

0χ2− ◦ α0χ2+ ◦ α−1
0χ1+ . It was shown in [BFV03]

that the functional derivative of β0k with respect to k is the commutator with the free
stress-energy tensor. A different proof of this result has been given in [BFR13] with
the use of the principle of perturbative agreement, which is a condition introduced
by Hollands and Wald in [HW05] and recently proven in a more general context in
[DHP15]. Following these ideas, we introduce a map τ ret : A(M2) → A(M1), such
that τ ret maps �M2( f ) to �M1( f ) (modulo the image of δ0), if the support of f
lies outside the causal future of K . Physically it means that free algebras A(M1)

and A(M2) are identified in the past of K . Analogously, we introduce a map τ adv,

Fig. 8.2 Embeddings of neighborhoods of Cauchy surfaces into spacetimes M1 = (M, g1) and
M2 = (M, g2)
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which identifies the free algebras in the future. The free relative Cauchy evolution is
then expressed as

β0k
.= τ ret

g1g2
◦ (τ adv

g1g2
)−1, (8.17)

As we choose to work off-shell, we define τ ret as the classical retarded Møller oper-
ator constructed in [DF02]. The perturbative agreement is a condition that, on shell,

τ ret
g1g2

◦ S2 = SS0M2−S0M1
. (8.18)

Here SS0M1−S0M2
denotes the relative S-matrix constructed with the interaction

S0M1
− S0M2

and the background metric g1, while S2 is the S-matrix constructed
onM2 with the TM2 product. The perturbative agreement condition for τ adv

g1g2
is anal-

ogous to (8.18). A straightforward calculation shows that The functional derivative
of β0k with respect to k

.= g2 − g1 can now be easily calculated, yielding

δ

δkμν
β0k

(
e

i�M1 f ′ /�

TM1

) ∣∣∣
g1

= − i

�

[
T μν
0 , e

i�M1 f ′ /�

TM1

]

�
,

where T μν
0 is the stress-energy tensor of the linearized theory.

To obtain the relative Cauchy evolution for the full interacting theory, we use the
quantum Møller maps introduced in (6.12). The following theorem has been proven
in [BFR13]

Theorem 8.1 The functional derivative �μν of the relative Cauchy evolution can
be expressed, on-shell, as

�μν(�M1( f ))
o.s.= i

�
[RV1(�M1( f )), RV1(T

μν)]�,

where T μν is the stress-energy tensor of the extended action and one can define the
time-ordered products in such a way that T μν = 0 holds, so the interacting theory is
background independent.

Proof We write the interacting relative Cauchy evolution as:

β = R−1
V1

◦ τ ret
g1g2

◦ RV2 ◦ A−1
V2

◦ (τ adv
g1g2

)−1 ◦ AV1 .

The condition of background independence is

R−1
V1

◦ τ ret
g1g2

◦ RV2 = A−1
V1

◦ τ adv
g1g2

◦ AV2 .

Differentiating with respect to kμν yields a condition

[RV1(�M1 f ′), RV1(T (η))]� o.s.= 0,

http://dx.doi.org/10.1007/978-3-319-25901-7_6
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where

T (ζ)
.= 〈T μν

f , ζμν〉 =
〈

δLext
M2 f

δkμν

∣∣∣
0
, ζμν

〉

To prove that the infinitesimal background independence is fulfilled, we have to show
that T (η) = 0 in the cohomology of ŝ. This is easily done, as

T (ζ) =
〈

δSext
M2

δkμν

∣∣∣
0
, ζμν

〉

=
〈

δSext
M1

δhμν

∣∣∣
0
, ζμν

〉

= s
〈
h‡, ζ

〉 = ŝ
〈
h‡, ζ

〉
,

where h is the perturbation metric. The last equality follows from the fact that the
anomaly can always be removed for linear functionals [BD08]. This concludes the
argument, so the theory is perturbatively background independent. �
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Glossary

TableA.1 contains a list of frequently used symbols, together with clarifications.

Table A.1 Glossary of frequently used notation

Symbol Clarification

X A topological vector space, X= (X, τ )

ω A state

‖.‖ A norm

τ Topology (family of open sets)

B Bornology (family of bounded sets)

E Configuration space of the theory,
E= �(E → M)

E Extended configuration space used in the
presence of symmetries, typically E= E⊕ g[1]

E∗ Dual bundle of E

E∗ �(E∗ → M)

E′ Topological dual of E, i.e. �′(E → M)

E (�) C∞(�, R)

D(�) C∞
c (�, R)

H Typically a Hilbert space, in Sect. 6.5.1 a Hopf
algebra

B(H) The space of bounded operators on the Hilbert
space H

F (n)(ϕ0) ≡ δn F
δϕn (ϕ0) nth functional derivative of the functional F at

point ϕ0

T ∗[−1](.) Odd cotangent bundle of …(cotangent bundle
with the degree shift on the fibre)

(continued)
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Table A.1 (continued)

Symbol Clarification

C∞(.) Smooth functions on …

O(.) Functions on a graded manifold …

Oloc(.) Local functions on a graded manifold …

Oml(.) Multilocal functions on a graded manifold …

Vloc Multilocal vector fields on E

V Multilocal vector fields on E
∧
V Multilocal multi-vector fields on E

KT Underlying algebra of the Koszul–Tate
complex, KT

.= Oml(E⊕ E∗[1] ⊕ g∗[2]) =
C∞
ml(E,�E∗′⊗̂π S•g∗′ ⊗ C)

CE Underlying algebra of the Chevalley–Eilenberg
complex, CE

.= Oml(E⊕ X[1]) = C∞
ml(E,�g′)

BV Underlying algebra of the BV complex,
BV

.= Oml(T ∗[−1]E) =
C∞
ml(E, S•gc⊗̂π�Ec⊗̂π�g′ ⊗ C)

rλV Classical Møller operator for the interaction V ,
see Sect. 4.6

RλV Quantum Møller operator for the interaction V ,
see Sect. 6.2.4

S(.) on Areg[[λ]] Non-renormalized S-matrix, see Definition6.3

S(.) on Aloc[[λ]] Renormalized S-matrix, see Definition6.7

Spaces of functionals on E

Floc The space of local functionals on, see
Definition3.14

F The space of multilocal functionals, i.e. the
algebraic completion of Floc with respect to the
pointwise product

FS On-shell multilocal functionals for the action S

Finv Gauge-invariant multilocal functionals

Finv
S Gauge invariant on-shell multilocal functionals

for the action S

Fμc The space of microcausal local functionals, see
Definition4.9

Fsμc The space of strongly microcausal local
functionals, see Definition4.9

(Floc)
⊗n
pds The subspace of (Floc)

⊗n spanned by
F1 ⊗ · · · ⊗ Fn , where F1, . . . , Fn ∈ Floc have
pairwise disjoint supports

(continued)
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Table A.1 (continued)

Symbol Clarification

Products of functionals

· Pointwise product, (F · G)(ϕ) = F(ϕ)G(ϕ)

� Star product, (F � G)(ϕ)
.=

∞∑
n=0

�
n

n!
〈
F (n)(ϕ),

( i
2�S0

)⊗n
G(n)(ϕ)

〉

�H Star product, (F �H G)(ϕ)
.=

∞∑
n=0

�
n

n!
〈
F (n)(ϕ), (�+

S0
)⊗n G(n)(ϕ)

〉

·T on Freg Non-renormalized time-ordered product,

F ·T G
.=

∞∑
n=0

�
n

n!
〈

F (n),
(

i�D
S0

)⊗n
G(n)

〉

=
T(T−1F · T−1G)

·T on T(F) Renormalized time-ordered product,
F ·T G = T(T−1 · T−1G)

·TH
on Freg Non-renormalized time-ordered product,

F ·TH
G

.=
∞∑

n=0

�
n

n!
〈

F (n),
(
�F

S0

)⊗n
G(n)

〉

=
TH (TH −1F · TH −1G)

�V on Freg Interacting star product for the interaction V ,
F �V G

.= R−1
V (RV F � RV G)

Algebras

A in Chap.2 An algebra

A in Chaps. 5–8 The quantum algebra of the free theory, see
Definition5.2

AH (Fμc[[�]], �H )

Areg (Freg[[�]], �)
Aloc T(Floc) ⊂ A, where T

.= α−1
H ◦ TH

AH
loc TH (Floc) ⊂ AH

Categories

Loc Category of spacetimes

FLoc Category of framed spacetimes

Obs Category of unital C∗-algebras
Obsc The category of locally convex topological

Poisson algebras

Obsp The category of locally convex topological
unital ∗-algebras

Vec Category of locally convex topological vector
spaces

(continued)
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Table A.1 (continued)

Symbol Clarification

Functors

Floc Covariant functor of local functionals

F Covariant functor of multilocal functionals

D Covariant functor of test function spaces

E Contravariant functor of configuration spaces

Ec Covariant functor of compactly supported
configurations spaces

Propagators

�A
S0

Advanced Green’s function

�R
S0

Retarded Green’s function

�S0 Causal propagator �R
S0

− �A
S0

�D
S0

Dirac propagator 1
2 (�R

S0
+ �A

S0
)

�+
S0

2-point function i
2 (�R

S0
− �A

S0
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