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Preface

Th e book MATLAB Recipes for Earth Sciences is designed to help under-
graduates, and PhD students, post-doctoral researchers, and professionals 
fi nd quick solutions for common problems in data analysis in earth  sciences. 
It provides a minimum amount of theoretical background, and demon-
strates the application of all described methods through the use of exam-
ples. Th e MATLAB soft ware is used since it not only provides numerous 
ready-to-use algorithms for most methods of data analysis but also allows 
the existing routines to be modifi ed and expanded, or new soft ware to be 
developed. Th e book contains MATLAB scripts, or M-files, to solve typical 
problems in earth sciences, such as simple statistics, time-series analysis, 
geostatistics, and image processing, and also demonstrates the application 
of selected advanced techniques of data analysis such as nonlinear time-
series analysis, adaptive fi ltering, bootstrapping, and terrain analysis. It 
comes with a compact disk that contains all MATLAB recipes and example 
data fi les as well as presentation fi les for instructors. Th e MATLAB codes 
can be easily modifi ed for application to the reader’s data and projects.

Th is revised and updated Th ird Edition includes new sections on soft -
ware-related issues (Sections 2.4, 2.5, 2.8 and 2.9). Chapter 2 was diffi  cult 
to update since MATLAB has expanded so much over the years, and I have 
deliberately tried to restrict this chapter to demonstrating of those tools ac-
tually used in the book. A second diffi  culty arose from the current move 
by The MathWorks Inc. to use and incorporate objects and classes in some 
areas of their MATLAB routines, although there does not seem to be any in-
tention of abandoning the existing procedural code. Again, I have restricted 
the introduction and use of objects and classes to the absolute minimum, 
even at the expense of omitting one of the new features of MATLAB. Some 
functions, however, such as those for distribution fi tting use this new con-
cept of object-oriented programming, and I hope that the reader will forgive 
me for not explaining all the details of the MATLAB code when using it. 
Th e other new sections are on distribution fi tting (Section 3.9), and on non-
linear and weighted regression (Section 4.10), as these techniques are widely 
used in, for instance, isotope geochemistry and geochronology. Sections 8.7 
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to 8.9 introduce some advanced methods in image analysis such the ex-
traction of color-intensity transects from laminated sediments, automatic 
grain size analysis, and the quantifi cation of charcoal in microscope images. 
Th ese techniques are frequently used in my research projects and are always 
in demand during the short courses that I teach.

In order to derive the maximum benefi t from this book the reader 
will need to have access to the MATLAB soft ware and be able to execute 
the recipes while reading the book. Th e MATLAB recipes display various 
graphs on the screen that are not shown in the printed book. Th e tutorial-
style book does, however, contain numerous fi gures making it possible to 
go through the text without actually running MATLAB on a computer. I 
have developed the recipes using MATLAB 7 Release R2010a, but most of 
them will also work with earlier soft ware releases. While undergraduates 
participating in a course on data analysis might go through the entire book, 
the more experienced reader may use only one particular method to solve 
a specifi c problem. Th e concept of the book and the contents of its chapters 
are therefore outlined below, in order to make it easier to use for readers 
with a variety of diff erent requirements.

Chapter 1•  – Th is chapter introduces some fundamental concepts of sam-
ples and populations. It also links the various types of data, and questions 
to be answered from the data, to the methods described in the succeeding 
chapters.

Chapter 2•  – A tutorial-style introduction to MATLAB designed for earth 
scientists. Readers already familiar with the soft ware are advised to pro-
ceed directly to the succeeding chapters. Th e Th ird Edition now includes 
new sections on data structures and classes of objects, on generating 
M-fi les to regenerate graphs and on publishing M-fi les.

Chapters 3 and 4•  – Fundamentals in univariate and bivariate statistics. 
Th ese two chapters contain basic concepts in statistics, and also introduc-
es advanced topics such as resampling schemes and cross validation. Th e 
reader already familiar with basic statistics might skip these two chapters. 
Th e Th ird Edition now includes new sections on fi tting normal distribu-
tions to observations and on nonlinear and weighted regression analysis.

Chapters•  5 and 6 – Readers who wish to work with time series are rec-
ommended to read both of these chapters. Time-series analysis and signal 
processing are closely linked. A good knowledge of statistics is required 
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to work successfully with these methods. Th ese two chapters are inde-
pendent of the preceding chapters.

Chapters 7 and 8•  – I recommend reading through both of these chapters 
since the processing methods used for spatial data and for images have 
much in common. Moreover, spatial data and images are oft en combined 
in earth sciences, for instance when projecting satellite images onto digi-
tal elevation models. Th e Th ird Edition now includes new sections on 
color-intensity transects of laminated sediments, automated grain size 
analysis from photos and quantifying charcoal in microscope images.

Chapter 9•  – Data sets in earth sciences oft en have many variables and 
many data points. Multivariate methods are applied to a great variety of 
large data sets, including satellite imagery. Any reader particularly inter-
ested in multivariate methods is advised to read Chapters 3 and 4 before 
proceeding to this chapter.

Chapter 10 • – Methods to analyze circular and spherical data are wide-
ly used in earth sciences. Structural geologists measure and analyze 
the orientation of slickensides (or striae) on a fault plane. Th e statisti-
cal analysis of circular data is also used in paleomagnetic applications. 
Microstructural investigations include the analysis of the grain shapes 
and quartz c-axis orientations in thin sections.

While the book MATLAB Recipes for Earth Sciences is about data analy-
sis it does not attempt to cover modeling. For this subject, I recommend 
the excellent book Environmental Modeling Using MATLAB by Ekkehard 
Holzbecher (Springer 2007), which fi rst introduces basic concepts of 
modeling and then provides a great overview of modeling examples us-
ing MATLAB. Holzbecher’s book uses a very similar concept to MATLAB 
Recipes for Earth Sciences as it gives a brief introduction to the theory, 
and then explains MATLAB examples. Neither book provides a complete 
introduction to all available techniques, but they both provide a quick 
overview of basic concepts for data analysis and modeling in earth sci-
ences. One of the few critical reviewers of the First Edition of MATLAB 
Recipes for Earth Sciences raised the question of why I had not included 
a chapter on fi nite-element and fi nite-diff erence modeling, and on solv-
ing diff erential equations – in his opinion a major omission in the book. 
However, this is far beyond of the scope of the book and my own expertise. 
Students and colleagues interested in this topic are directed to the book 
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MATLAB Guide to Finite Elements: An Interactive Approach by Peter I. 
Kattan (Springer 2007). While my book may be considered by some to be a 
little light on image processing, I have included in Chapter 8 three new sec-
tions on the analysis of sediment images. I would also strongly recommend 
to anyone interested in this topic the very successful book Digital Image 
Processing Using MATLAB by Gonzales, Woods and Eddins (Gatesmark 
Publishing 2009), for which a 2nd edition has just been published.

I have taken all other critiques quite seriously and invite all readers to 
also comment on the Th ird Edition: the book is constantly changing and 
evolving. As the Th ird Edition appears on the bookshelves I will create a 
new folder on the hard disk of my computer named Fourth Edition, where 
new ideas will be collected. Th e book has benefi ted from the comments 
of many people, in particular my contributing authors Robin Gebbers 
and Norbert Marwan, my colleagues Ira Ojala, Lydia Olaka, Jim Renwick, 
Jochen Rössler, Rolf Romer, Annette Witt, and the students Matthias 
Gerber, Mathis Hain, Martin Homann, Stefanie von Lonski, Oliver Rach, 
Marius Walter and Max Zitzmann. I very much appreciate the expertise 
and patience of Elisabeth Sillmann at blaetterwaldDesign who created the 
graphics and the complete page designs of the book. I am much obliged to 
Ed Manning for professional proofreading of the text. I also acknowledge 
Naomi Fernandez from the Book Program and Kate Fiore from Academic 
Support at The MathWorks Inc., Claudia Olrogge and Annegret Schumann 
at The MathWorks GmbH Deutschland, Christian Witschel, Chris Bendall 
and their team at Springer, and Andreas Bohlen, Brunhilde Schulz and their 
team at UP Transfer GmbH. I also thank the NASA/GSFC/METI/ERSDAC/
JAROS and the U. S./Japan ASTER Science Team and the  director Mike 
Abrams for allowing me to include the ASTER images in this book.

Potsdam, April 2010

Martin Trauth
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1 Data Analysis in Earth Sciences

1.1 Introduction

Earth scientists make observations and gather data about the natural pro-
cesses that operate on planet Earth. Th ey formulate and test hypotheses on 
the forces that have acted on a particular region to create its structure and 
also make predictions about future changes to the planet. All of these steps 
in exploring the Earth involve the acquisition and analysis of numerical 
data. An earth scientist therefore needs to have a fi rm understanding of sta-
tistical and numerical methods as well as the ability to utilize relevant com-
puter soft ware packages, in order to be able to analyze the acquired data.

Th is book introduces some of the most important methods of data anal-
ysis employed in earth sciences and illustrates their use through examples 
using the MATLAB® soft ware package. Th ese examples can then be used as 
recipes for the analysis of the reader’s own data, aft er having learned their 
application with synthetic data. Th is introductory chapter deals with data 
acquisition (Section 1.2), the various types of data (Section 1.3) and the ap-
propriate methods for analyzing earth science data (Section 1.4). We there-
fore fi rst explore the characteristics of typical data sets and subsequently 
investigate the various ways of analyzing data using MATLAB.

1.2 Data Collection

Most data sets in earth sciences have a very limited sample size and also 
contain a signifi cant number of uncertainties. Such data sets are typically 
used to describe rather large natural phenomena, such as a granite body, a 
large landslide or a widespread sedimentary unit. Th e methods described 
in this book aim to fi nd a way of predicting the characteristics of a larger 
 population from a much smaller  sample (Fig. 1.1). An appropriate sampling 
strategy is the fi rst step towards obtaining a good data set. Th e development 

M.H. Trauth, MATLAB® Recipes for Earth Sciences, 3rd ed.,  
DOI 10.1007/978-3-642-12762-5_1, © Springer-Verlag Berlin Heidelberg 2010  
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Geological
sample

Accessible
Population

Road cut

Outcrop

River valley

Available
Population

Hypothetical
Population

Fig. 1.1 Samples and populations. Deep valley incision has eroded parts of a sandstone 
unit ( hypothetical population). Th e remaining sandstone ( available population) can only 
be sampled from outcrops, i.e., road cuts and quarries ( accessible population). Note the 
diff erence between a statistical sample as a representative of a population and a geological 
sample as a piece of rock.

of a successful strategy for fi eld sampling requires decisions on the  sample 
size and the  spatial sampling scheme.

Th e sample size includes the sample volume, the sample weight and the 
number of samples collected in the fi eld. Th e sample weights or volumes can 
be critical factors if the samples are later analyzed in a laboratory and most 
statistical methods also have a minimum requirement for the sample size. 
Th e sample size also aff ects the number of subsamples that can be collected 
from a single sample. If the population is heterogeneous then the sample 
needs to be large enough to represent the population’s variability, but on 
the other hand samples should be as small as possible in order to minimize 
the time and costs involved in their analysis. Th e collection of smaller pilot 
samples is recommended prior to defi ning a suitable sample size.

Th e design of the spatial sampling scheme is dependent on the availabil-
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ity of outcrops or other material suitable for sampling. Sampling in quarries 
typically leads to clustered data, whereas sampling along road cuts, shoreline 
cliff s or steep gorges results in one-dimensional traverse sampling schemes. 
A more uniform sampling pattern can be designed where there is 100 % ex-
posure or if there are no fi nancial limitations. A regular sampling scheme 
results in a gridded distribution of sample locations, whereas a uniform sam-
pling strategy includes the random location of a sampling point within a 
grid square. Although these sampling schemes might be expected to provide 
superior methods for sampling collection, evenly-spaced sampling locations 
tend to miss small-scale variations in the area, such as thin mafi c dykes with-
in a granite body or the spatially-restricted occurrence of a fossil (Fig. 1.2).

Th e correct sampling strategy will depend on the objectives of the inves-
tigation, the type of analysis required and the desired level of confi dence in 
the results. Having chosen a suitable sampling strategy, the quality of the 
sample can be infl uenced by a number of factors resulting in the samples 
not being truly representative of the larger population. Chemical or physi-
cal alteration, contamination by other material or displacement by natural 
and anthropogenic processes may all result in erroneous results and inter-
pretations. It is therefore recommended that the quality of the samples, the 
method of data analysis employed and the validity of the conclusions drawn 
from the analysis be checked at each stage of the investigation.

1.3 Types of Data

Most earth science data sets consist of numerical measurements, although 
some information can also be represented by a list of names such as fossils 
and minerals (Fig. 1.3). Th e available methods for data analysis may require 
certain types of data in earth sciences. Th ese are

 • nominal data – Information in earth sciences is sometimes presented as 
a list of names, e. g., the various fossil species collected from a limestone 
bed or the minerals identifi ed in a thin section. In some studies, these 
data are converted into a binary representation, i. e., one for present and 
zero for absent. Special statistical methods are available for the analysis 
of such data sets.

 • ordinal data – Th ese are numerical data representing observations that 
can be ranked, but in which the intervals along the scale are irregularly 
spaced. Mohs’ hardness scale is one example of an ordinal scale. Th e hard-
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Fig. 1.2 Sampling schemes. a  Regular sampling on an evenly-spaced rectangular grid, 
b  uniform sampling by obtaining samples randomly located within regular grid squares, 
c  random sampling using uniformly-distributed xy coordinates, d  clustered sampling 
constrained by limited access in a quarry, and e traverse sampling along road cuts and river 
valleys.
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Fig. 1.3 Types of earth science data. a Nominal data, b ordinal data, c ratio data, d interval 
data, e  closed data, f spatial data, and g directional data. All of these data types are described 
in this book.

1.3 TYPES OF DATA  
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ness value indicates the material’s resistance to scratching. Diamond has 
a hardness of 10, whereas the value for talc is 1, but in terms of absolute 
hardness diamond (hardness 10) is four times harder than corundum 
(hardness 9) and six times harder than topaz (hardness 8). Th e Modifi ed 
Mercalli Scale, which attempts to categorize the eff ects of earthquakes, is 
another example of an ordinal scale; it ranks earthquakes from intensity 
I (barely felt) to XII (total destruction).

 • ratio data – Th ese data are characterized by a constant length of succes-
sive intervals, therefore off ering a great advantage over ordinal data. Th e 
zero point is the natural termination of the data scale, and this type of 
data allows for either discrete or continuous data sampling. Examples of 
such data sets include length or weight data.

 • interval data – Th ese are ordered data that have a constant length of 
successive intervals, but in which the data scale is not terminated by zero. 
Temperatures C and F represent an example of this data type even though 
arbitrary zero points exist for both scales. Th is type of data may be sam-
pled continuously or in discrete intervals.

In addition to these standard data types, earth scientists frequently encoun-
ter special kinds of data such as

 • closed data – Th ese data are expressed as proportions and add up to a 
fi xed total such as 100 percent. Compositional data represent the majority 
of closed data, such as element compositions of rock samples.

 • spatial data – Th ese are collected in a 2D or 3D study area. Th e spatial 
distribution of a certain fossil species, the spatial variation in thickness of 
a sandstone bed and the distribution of tracer concentrations in ground-
water are examples of this type of data, which is likely to be the most 
important data type in earth sciences.

 • directional data – Th ese data are expressed in angles. Examples include 
the strike and dip of bedding, the orientation of elongated fossils or the 
fl ow direction of lava. Th is is another very common type of data in earth 
sciences.

Most of these diff erent types of data require specialized methods of analysis, 
which are outlined in the next section.
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1.4 Methods of Data Analysis

Data analysis uses precise characteristics of small samples to hypothesize 
about the general phenomenon of interest. Which particular method is 
used to analyze the data depends on the data type and the project require-
ments. Th e various methods available include:

Univariate methods•  – Each variable is assumed to be independent of the 
others, and is explored individually. Th e data are presented as a list of 
numbers representing a series of points on a scaled line. Univariate sta-
tistical methods include the collection of information about the variable, 
such as the minimum and maximum values, the average, and the disper-
sion about the average. Examples are the sodium content of volcanic glass 
shards that have been aff ected by chemical weathering, or the sizes of 
snail shells within a sediment layer.

Bivariate methods•  – Two variables are investigated together to detect re-
lationships between these two parameters. For example, the correlation 
coeffi  cient may be calculated to investigate whether there is a linear re-
lationship between two variables. Alternatively, the bivariate regression 
analysis may be used to fi nd an equation that describes the relationship 
between the two variables. An example of a bivariate plot is the Harker 
Diagram, which is one of the oldest methods of visualizing geochemical 
data from igneous rocks and simply plots oxides of elements against SiO2.

Time-series analysis•  – Th ese methods investigate data sequences as a 
function of time. Th e time series is decomposed into a long-term trend, a 
systematic (periodic, cyclic, rhythmic) component and an irregular (ran-
dom, stochastic) component. A widely used technique to describe cyclic 
components of a time series is that of spectral analysis. Examples of the 
application of these techniques include the investigation of cyclic climatic 
variations in sedimentary rocks, or the analysis of seismic data.

Signal processing•  – Th is includes all techniques for manipulating a signal 
to minimize the eff ects of noise in order to correct all kinds of unwanted 
distortions or to separate various components of interest. It includes the 
design and realization of fi lters, and their application to the data. Th ese 
methods are widely used in combination with time-series analysis, e. g., 
to increase the signal-to-noise ratio in climate time series, digital images 
or geophysical data.
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Spatial analysis•  – Th is is the analysis of parameters in 2D or 3D space 
and hence two or three of the required parameters are coordinate num-
bers. Th ese methods include descriptive tools to investigate the spatial 
pattern of geographically distributed data. Other techniques involve 
spatial regression analysis to detect spatial trends. Also included are 2D 
and 3D interpolation techniques, which help to estimate surfaces repre-
senting the predicted continuous distribution of the variable throughout 
the area. Examples are drainage-system analysis, the identifi cation of old 
landscape forms and lineament analysis in tectonically active regions.

Image processing•  – Th e processing and analysis of images has become in-
creasingly important in earth sciences. Th ese methods involve importing 
and exporting, compressing and decompressing, and displaying images. 
Image processing also aims to enhance images for improved intelligibil-
ity, and to manipulate images in order to increase the signal-to-noise ra-
tio. Advanced techniques are used to extract specifi c features, or analyze 
shapes and textures, such as for counting mineral grains or fossils in mi-
croscope images. Another important application of image processing is 
in the use of satellite remote sensing to map certain types of rocks, soils 
and vegetation, as well as other parameters such as soil moisture, rock 
weathering and erosion.

Multivariate analysis•  – Th ese methods involve the observation and 
analysis of more than one statistical variable at a time. Since the graphi-
cal representation of multidimensional data sets is diffi  cult, most of these 
methods include dimension reduction. Multivariate methods are widely 
used on geochemical data, for instance in tephrochronology, where volca-
nic ash layers are correlated by geochemical fi ngerprinting of glass shards. 
Another important usage is in the comparison of species assemblages in 
ocean sediments for the reconstruction of paleoenvironments.

Analysis of directional data•  – Methods to analyze circular and spherical 
data are widely used in earth sciences. Structural geologists measure and 
analyze the orientation of slickensides (or striae) on a fault plane, circular 
statistical methods are common in paleomagnetic studies, and micro-
structural investigations include the analysis of grain shapes and quartz 
c-axis orientations in thin sections. 

Some of these methods of data analysis require the application of numeri-
cal methods such as interpolation techniques. While the following text 
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deals mainly with statistical techniques it also introduces several numerical 
methods commonly used in earth sciences.
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2 Introduction to MATLAB

2.1 MATLAB in Earth Sciences

 MATLAB® is a soft ware package developed by The MathWorks Inc., found-
ed by Cleve Moler, Jack Little and Steve Bangert in 1984, which has its head-
quarters in Natick, Massachusetts (http://www.mathworks.com). MATLAB 
was designed to perform mathematical calculations, to analyze and visual-
ize data, and to facilitate the writing of new soft ware programs. Th e advan-
tage of this soft ware is that it combines comprehensive math and graphics 
functions with a powerful high-level language. Since MATLAB contains a 
large library of ready-to-use routines for a wide range of applications, the 
user can solve technical computing problems much more quickly than with 
traditional programming languages, such as C++ and FORTRAN. Th e 
standard library of functions can be signifi cantly expanded by add-on tool-
boxes, which are collections of functions for special purposes such as image 
processing, creating map displays, performing geospatial data analysis or 
solving partial diff erential equations.

During the last few years, MATLAB has become an increasingly popu-
lar tool in earth sciences. It has been used for fi nite element modeling, pro-
cessing of seismic data, analyzing satellite imagery, and for the generation of 
digital elevation models from satellite data. Th e continuing popularity of the 
soft ware is also apparent in published scientifi c literature, and many confer-
ence presentations have also made reference to MATLAB. Universities and 
research institutions have recognized the need for MATLAB training for 
staff  and students, and many earth science departments across the world now 
off er MATLAB courses for undergraduates. The MathWorks Inc. provides 
classroom kits for teachers at a reasonable price, and it is also possible for 
students to purchase a low-cost edition of the soft ware. Th is student version 
provides an inexpensive way for students to improve their MATLAB skills.

Th e following sections contain a tutorial-style introduction to MATLAB, 
to the setup on the computer (Section 2.2), the syntax (Section 2.3), data 

M.H. Trauth, MATLAB® Recipes for Earth Sciences, 3rd ed.,  
DOI 10.1007/978-3-642-12762-5_2, © Springer-Verlag Berlin Heidelberg 2010  
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input and output (Sections 2.4 and 2.5), programming (Section 2.6), and 
visualization (Section 2.7). Advanced sections are also included on gener-
ating M-fi les to regenerate graphs (Section 2.8) and on publishing M-fi les 
(Section 2.9). It is recommended to go through the entire chapters in order 
to obtain a good knowledge of the soft ware before proceeding to the follow-
ing chapter. A more detailed introduction can be found in the MATLAB 7 
Getting Started Guide (Th e MathWorks 2010) which is available in print 
form, online and as PDF fi le.

In this book we use MATLAB Version 7.10 (Release 2010a), the Image 
Processing Toolbox Version 7.0, the Mapping Toolbox Version 3.1, the Signal 
Processing Toolbox Version 6.13, the Statistics Toolbox Version 7.3 and the 
Wavelet Toolbox Version 4.5.

2.2 Getting Started

Th e soft ware package comes with extensive documentation, tutorials and 
examples. Th e fi rst three chapters of the book MATLAB 7 Getting Started 
Guide (Th e MathWorks 2010) are directed at beginners. Th e chapters on 
programming, creating graphical user interfaces (GUI) and development 
environments are aimed at more advanced users. Since MATLAB 7 Getting 
Started Guide provides all the information required to use the soft ware, 
this introduction concentrates on the most relevant soft ware components 
and tools used in the following chapters of this book.

Aft er the installation of MATLAB, the soft ware is launched either by 
clicking the shortcut icon on the desktop or by typing

matlab

in the operating system prompt. Th e soft ware then comes up with several 
window panels (Fig. 2.1). Th e default desktop layout includes the  Current 
Folder panel that lists the fi les in the directory currently being used. Th e 
 Command Window presents the interface between the soft ware and the 
user, i. e., it accepts MATLAB commands typed aft er the prompt, >>. Th e 
 Workspace panel lists the variables in the MATLAB workspace, which is 
empty when starting a new soft ware session. Th e  Command  History panel 
records all operations previously typed into the Command Window and en-
ables them to be recalled by the user. In this book we mainly use the Command 
Window and the built-in  Editor, which can be launched by typing
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Fig. 2.1 Screenshot of the MATLAB default desktop layout including the  Current Folder 
(left  in the fi gure), the  Command Window (center), the  Workspace (upper right) and 
 Command History (lower right) panels. Th is book uses only the Command Window and 
the built-in  Editor, which can be called up by typing  edit aft er the prompt. All information 
provided by the other panels can also be accessed through the Command Window.

edit

or by selecting the Editor from the Desktop menu. By default, the soft -
ware stores all of your MATLAB-related fi les in the startup folder named 
MATLAB. Alternatively, you can create a personal working directory in 
which to store your MATLAB-related fi les. You should then make this new 
directory the working directory using the Current Folder panel or the 
Folder Browser at the top of the MATLAB desktop. Th e soft ware uses a 
search  path to fi nd MATLAB-related fi les, which are organized in directo-
ries on the hard disk. Th e default search path includes only the MATLAB 
directory that has been created by the installer in the applications folder and 
the default working directory. To see which directories are in the search path 
or to add new directories, select  Set Path from the   File menu, and use the 
Set Path dialog box. Th e modifi ed search path is saved in a fi le  pathdef.m 
on your hard disk. Th e soft ware will then in future read the contents of this 
fi le and direct MATLAB to use your custom path list.



14  2 INTRODUCTION TO MATLAB

2.3 The Syntax

Th e name MATLAB stands for matrix laboratory. Th e classic object han-
dled by MATLAB is a  matrix, i. e., a rectangular two-dimensional  array 
of numbers. A simple 1-by-1 matrix or array is a  scalar. Matrices with one 
 column or  row are  vectors,  time series or other one-dimensional data fi elds. 
An m-by-n matrix or array can be used for a digital elevation model or a 
grayscale image. Red, green and blue (RGB) color images are usually stored 
as three-dimensional arrays, i. e., the colors red, green and blue are repre-
sented by an m-by-n-by-3 array.

Before proceeding, we need to clear the workspace by typing

clear

aft er the prompt in the Command Window. Clearing the workspace is al-
ways recommended before working on a new MATLAB project. Entering 
matrices or arrays in MATLAB is easy. To enter an arbitrary matrix, type

A = [2 4 3 7; 9 3 -1 2; 1 9 3 7; 6 6 3 -2]

which fi rst defi nes a variable A, then lists the elements of the matrix in 
 square brackets. Th e rows of A are separated by  semicolons, whereas the ele-
ments of a row are separated by  blank spaces, or alternatively, by  commas. 
Aft er pressing  return, MATLAB displays the matrix

A =
    2     4     3     7
    9     3    -1     2
    1     9     3     7
    6     6     3    -2

Displaying the elements of A could be problematic for very large matrices, 
such as digital elevation models consisting of thousands or millions of ele-
ments. To suppress the display of a matrix or the result of an operation in 
general, the line should be ended with a semicolon.

A = [2 4 3 7; 9 3 -1 2; 1 9 3 7; 6 6 3 -2];

Th e matrix A is now stored in the  workspace and we can carry out some 
basic operations with it, such as computing the  sum of elements,

sum(A)

which results in the display
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ans =
    18    22     8    14

Since we did not specify an output variable, such as A for the matrix entered 
above, MATLAB uses a default variable  ans, short for  answer or most re-
cent answer, to store the results of the calculation. In general, we should 
defi ne variables since the next computation without a new variable name 
will overwrite the contents of ans.

Th e above example illustrates an important point about MATLAB: the 
soft ware prefers to work with the columns of matrices. Th e four results of 
sum(A) are obviously the sums of the elements in each of the four columns 
of A. To sum all elements of A and store the result in a scalar b, we simply 
need to type

b = sum(sum(A));

which fi rst sums the columns of the matrix and then the elements of the re-
sulting vector. We now have two variables, A and b, stored in the workspace. 
We can easily check this by typing

 whos

which is one the most frequently-used MATLAB commands. Th e soft -
ware then lists all variables in the workspace, together with information 
about their sizes or  dimensions, number of  bytes,  classes and attributes (see 
Section 2.5 for details about classes and attributes of objects).

Name      Size            Bytes  Class     Attributes
A         4x4               128  double
ans       1x4                32  double
b         1x1                 8  double

Note that by default MATLAB is  case sensitive, i. e., A and a can defi ne two 
diff erent  variables. In this context, it is recommended that  capital letters be 
used for matrices and  lower-case letters for vectors and scalars. We could 
now delete the contents of the variable ans by typing

 clear ans

Next, we will learn how specifi c  matrix elements can be accessed or ex-
changed. Typing

A(3,2)

simply yields the matrix element located in the third row and second col-
umn, which is 9. Th e  matrix indexing therefore follows the rule (row, col-
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umn). We can use this to replace single or multiple matrix elements. As an 
example, we type 

A(3,2) = 30

to replace the element A(3,2) by 30 and to display the entire matrix.

A =
     2     4     3     7
     9     3    -1     2
     1    30     3     7
     6     6     3    -2

If we wish to replace several elements at one time, we can use the colon 
operator. Typing

A(3,1:4) = [1 3 3 5]

or

A(3,:) = [1 3 3 5]

replaces all elements of the third row of the matrix A. Th e  colon operator 
also has several other uses in MATLAB, for instance as a shortcut for enter-
ing matrix elements such as

c = 0 : 10

which creates a row vector containing all integers from 0 to 10. Th e resultant 
MATLAB response is

c =
     0   1   2   3   4   5   6   7   8   9   10

Note that this statement creates 11 elements, i. e., the integers from 1 to 10 
and the zero. A common error when  indexing matrices is to ignore the zero 
and therefore expect 10 elements instead of 11 in our example. We can check 
this from the output of  whos.

Name      Size            Bytes  Class     Attributes
A         4x4               128  double
ans       1x1                 8  double
b         1x1                 8  double
c         1x11               88  double

Th e above command creates only integers, i. e., the interval between the vec-
tor elements is one unit. However, an arbitrary interval can be defi ned, for 
example 0.5 units. Th is is later used to create evenly-spaced time axes for 
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time series analysis. Typing

c = 1 : 0.5 : 10

results in the display

c =
  Columns 1 through 6 
    1.0000    1.5000    2.0000    2.5000    3.0000    3.5000
  Columns 7 through 12 
    4.0000    4.5000    5.0000    5.5000    6.0000    6.5000
  Columns 13 through 18 
    7.0000    7.5000    8.0000    8.5000    9.0000    9.5000
  Column 19 
   10.0000#

which autowraps the lines that are longer than the width of the Command 
Window. Th e display of the values of a variable can be interrupted by press-
ing  Ctrl+C ( Control+C) on the keyboard. Th is interruption aff ects only 
the output in the Command Window, whereas the actual command is pro-
cessed before displaying the result.

MATLAB provides standard arithmetic operators for  addition, +, and 
 subtraction, -. Th e  asterisk, *, denotes  matrix  multiplication involving  in-
ner products between rows and columns. For instance, we multiply the ma-
trix A with a new matrix B

B = [4 2 6 5; 7 8 5 6; 2 1 -8 -9; 3 1 2 3];

the matrix  multiplication is then

C = A * B'

where ' is the complex conjugate  transpose, which turns rows into columns 
and columns into rows. Th is generates the output

C =
    69   103   -79    37
    46    94    11    34
    75   136   -76    39
    44    93    12    24

In linear algebra, matrices are used to keep track of the coeffi  cients of  linear 
transformations. Th e multiplication of two matrices represents the combi-
nation of two linear transformations into a single transformation. Matrix 
multiplication is not commutative, i. e., A*B' and B*A' yield diff erent re-
sults in most cases. Similarly, MATLAB allows  matrix divisions, right, /, 
and left , \, representing diff erent transformations. Finally, the soft ware also 
allows  powers of matrices, ^.
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In earth sciences, however, matrices are oft en simply used as two-di-
mensional  arrays of numerical data rather than an array representing a lin-
ear transformation. Arithmetic operations on such arrays are carried out 
element-by-element. While this does not make any diff erence in addition 
and subtraction, it does aff ect multiplicative operations. MATLAB uses a 
dot as part of the notation for these operations.

As an example,  multiplying A and B  element-by-element is performed 
by typing

C = A .* B

which generates the output

C =
     8     8    18    35
    63    24    -5    12
     2     3   -24   -45
    18     6     6    -6

2.4 Data Storage and Handling

Th is section deals with how to  store,  import and  export data with MATLAB. 
Many of the data formats typically used in earth sciences have to be con-
verted before being analyzed with MATLAB. Alternatively, the soft ware 
provides several import routines to read many binary data formats in earth 
sciences, such as those used to store digital elevation models and satellite 
data.

A computer generally stores data as  binary digits or  bits. A bit is analo-
gous to a two-way switch with two states, on = 1 and off  = 0. Th e bits are 
joined together to form larger groups, such as bytes consisting of 8 bits, in 
order to store more complex types of data. Such groups of bits are then used 
to encode data, e. g., numbers or characters. Unfortunately, diff erent com-
puter systems and soft ware use diff erent schemes for encoding data. For in-
stance, the characters in the widely-used text processing soft ware Microsoft  
Word diff er from those in Apple Pages. Exchanging binary data is therefore 
diffi  cult if the various users use diff erent computer platforms and soft ware. 
Binary data can be stored in relatively small fi les if both partners are using 
similar systems of data exchange. Th e transfer rate for binary data is gener-
ally faster than that for the exchange of other fi le formats.

Various formats for exchanging data have been developed during re-
cent decades. Th e classic example for the establishment of a data format 
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that can be used with diff erent computer platforms and soft ware is the 
American Standard Code for Information Interchange ( ASCII) that was 
fi rst published in 1963 by the American Standards Association (ASA). As 
a 7-bit code, ASCII consists of 27=128 characters (codes 0 to 127). Whereas 
ASCII-1963 was lacking lower-case letters, in the ASCII-1967 update lower-
case letters as well as various control characters such as escape and line feed 
and various symbols such as brackets and mathematical operators were also 
included. Since then, a number of variants appeared in order to facilitate the 
exchange of text written in non-English languages, such as the expanded 
ASCII containing 255 codes, e. g., the Latin-1 encoding.

Th e simplest way to exchange data between a certain piece of soft ware 
and MATLAB is using the ASCII format. Although the newer versions of 
MATLAB provide various import routines for fi le types such as Microsoft  
Excel binaries, most data arrive in the form of ASCII fi les. Consider a simple 
data set stored in a table such as

SampleID Percent C  Percent S
101   0.3657   0.0636
102   0.2208   0.1135
103   0.5353   0.5191
104   0.5009   0.5216
105   0.5415   -999
106   0.501   -999

Th e fi rst row contains the names of the variables and the columns provide the 
data for each sample. Th e absurd value -999 indicates  missing data in the 
data set. Two things have to be changed to convert this table into MATLAB 
format. First, MATLAB uses  NaN as the representation for  Not-a-Number 
that can be used to mark missing data or  gaps. Second, a  percent sign, %, 
should be added at the beginning of the fi rst line. Th e percent sign is used 
to indicate nonexecutable text within the body of a program. Th is text is 
normally used to include  comments in the code.

 
%SampleID Percent C  Percent S
101   0.3657   0.0636
102   0.2208   0.1135
103   0.5353   0.5191
104   0.5009   0.5216
105   0.5415   NaN
106   0.501   NaN

MATLAB will ignore any text appearing aft er the percent sign and continue 
processing on the next line. Aft er editing this table in a text editor, such as 
the  MATLAB  Editor, it can be saved as ASCII text fi le geochem.txt in the 
current working directory (Fig. 2.2). Th e MATLAB workspace should fi rst 

   DATA STORAGE  AND GHANDLIN2.  4
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Fig. 2.2 Screenshot of MATLAB  Editor showing the content of the fi le geochem.txt. Th e 
fi rst line of the text is commented by a percent sign at the beginning of the line, followed by 
the actual data matrix.

be cleared by typing

clear

aft er the prompt in the Command Window. MATLAB can now import the 
data from this fi le with the  load command.

load geochem.txt

MATLAB then loads the contents of fi le and assigns the matrix to a variable 
geochem specifi ed by the fi lename geochem.txt. Typing

whos

yields

Name         Size            Bytes  Class     Attributes
geochem      6x3               144  double

Th e command  save now allows workspace variables to be stored in a bi-
nary format.

save geochem_new.mat

MAT-files are double precision binary fi les using .mat as extension. Th e ad-
vantage of these binary MAT-fi les is that they are independent of the com-
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puter platforms running diff erent fl oating-point formats. Th e command

save geochem_new.mat geochem

saves only the variable geochem instead of the entire workspace. Th e op-
tion -ascii, for example

save geochem_new.txt geochem -ascii

again saves the variable geochem, but in an ASCII fi le named geochem_new.
txt. In contrast to the binary fi le geochem_new.mat, this ASCII fi le can be 
viewed and edited using the MATLAB Editor or any other text editor.

2.5 Data Structures and Classes of Objects

Th e default data type or  class in MATLAB is  double precision or  double, 
which stores data in a 64-bit array. Th is double precision array allows stor-
age of the sign of a number (fi rst bit), the exponent (bits 2 to 12) and roughly 
16 signifi cant decimal digits between approximately 10–3 0 8 and 10+3 0 8 (bits 
13 to 64). As an example, typing

clear

rand('seed',0)
A = rand(3,4)

creates a 3-by-4 array of  random numbers with double precision. We use the 
function  rand that generates uniformly distributed pseudorandom num-
bers within the open interval (0,1). To obtain identical data values, we reset 
the random number generator by using the integer 0 as  seed (see Chapter 3 
for more details on  random number generators and types of distributions). 
Since we did not use a semicolon here we get the output

A =
    0.2190    0.6793    0.5194    0.0535
    0.0470    0.9347    0.8310    0.5297
    0.6789    0.3835    0.0346    0.6711

By default, the output is in a scaled fi xed point format with 5 digits, e. g., 
0.2190 for the (1,1) element of A. Typing

format long

switches to a fi xed point format with 16 digits for double precision. Recalling 
A by typing
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A

yields the output

A =
  Columns 1 through 3
   0.218959186328090   0.679296405836612   0.519416372067955
   0.047044616214486   0.934692895940828   0.830965346112365
   0.678864716868319   0.383502077489859   0.034572110527461
  Column 4
   0.053461635044525
   0.529700193335163
   0.671149384077242

which autowraps those lines that are longer than the width of the Command 
Window. Th e command  format does not aff ect how the computations are 
carried out, i. e., the precision of the computation results is not changed. Th e 
precision is, however, aff ected by converting the data type from double to 
32-bit  single precision. Typing

B = single(A)

yields

B =
   0.2189592   0.6792964   0.5194164   0.0534616
   0.0470446   0.9346929   0.8309653   0.5297002
   0.6788647   0.3835021   0.0345721   0.6711494

Although we have switched to format long, only 8 digits are displayed. 
Th e command who lists the variables A and B with information on their 
sizes or dimensions, number of bytes and classes

Name      Size            Bytes  Class     Attributes
A         3x4                96  double
B         3x4                48  single              

Th e default class double is used in all MATLAB operations in applica-
tions where the physical memory of the computer is not a limiting factor, 
whereas  single is used when working with large data sets. Th e double pre-
cision variable A, whose size is 3×4 elements, requires 3×4×64=768 bits or 
768/8=96 bytes of memory, whereas B requires only 48 bytes and so has half 
the memory requirement of A. Introducing at least one complex number to 
A doubles the memory requirement since both real and imaginary parts are 
double precision by default. Switching back to format short and typing

format short
A(1,3) = 4i + 3



2.5 DATA STRUCTURES AND CLASSES OF OBJECTS  23

2 
 I

N
TR

O
D

U
CT

IO
N

 T
O

 M
AT

LA
B

yields

A =
   0.2190           0.6793           3.0000 + 4.0000i    0.0535          
   0.0470           0.9347           0.8310              0.5297          
   0.6789           0.3835           0.0346              0.6711         

and the variable listing is now

Name      Size            Bytes  Class     Attributes
A         3x4               192  double    complex
B         3x4                48  single

indicating the class double and the attribute  complex.
MATLAB also works with even smaller data types such as 1-bit, 8-bit 

and 24-bit data in order to save memory. Th ese data types are used to store 
 digital elevation models or  images (see Chapters 7 and 8). For example, m-
by-n pixel RGB true color images are usually stored as three-dimensional 
arrays, i. e., the three colors are represented by an m-by-n-by-3 array (see 
Chapter 8 for more details on  RGB composites and true color images). Such 
 multi-dimensional arrays can be generated by concatenating three two-di-
mensional arrays representing the m-by-n pixels of an image. First, we gen-
erate a 100-by-100 array of uniformly distributed random numbers in the 
range of 0 to 1. We then multiply the random numbers by 256 and round the 
results towards plus infi nity using the function  ceil to get values between 
1 and 256.

clear

I1 = 256 * rand(100,100); I1 = ceil(I1);
I2 = 256 * rand(100,100); I2 = ceil(I2);
I3 = 256 * rand(100,100); I3 = ceil(I3);

Th e command  cat concatenates the three two-dimensional arrays (8 bits 
each) to a three-dimensional array (3×8 bits = 24 bits).

I = cat(3,I1,I2,I3);

Since RGB images are represented by  integer values between 1 and 256 for 
each color, we convert the 64-bit double precision values to unsigned 8-bit 
integers using  uint8.

I = uint8(I);

Typing whos then yields
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Name            Size               Bytes  Class     Attributes
I             100x100x3            30000  uint8               
I1            100x100              80000  double              
I2            100x100              80000  double              
I3            100x100              80000  double  

Since 8 bits can be used to store 256 diff erent values, this data type can be 
used to store integer values between 1 and 256, whereas using  int8 to cre-
ate signed 8-bit integers generates values between -128 and +127. Th e value 
of zero requires one bit and therefore there is no space to store +128. Finally, 
 imshow can be used to display the three-dimensional array as a true color 
image.

imshow(I)

We next introduce  structure arrays as a MATLAB data type. Structure ar-
rays are multi-dimensional arrays with elements accessed by textual fi eld 
designators. Th ese arrays are data containers that are particularly helpful in 
storing any kind of information about a sample in a single variable. As an 
example, we can generate a structure array sample_1 that includes the im-
age array I defi ned in the previous example as well as other types of infor-
mation about a sample, such as the name of the sampling location, the date 
of sampling, and geochemical measurements, stored in a 10-by-10 array.

sample_1.location = 'Plougasnou';
sample_1.date = date;
sample_1.image = I;
sample_1.geochemistry = rand(10,10);

Th e fi rst layer of the structure array sample_1 contains a character array, 
i. e., a two-dimensional array of the data type  char containing a character 
string. We can create such an array by typing

location = 'Plougasnou';

We can list the size, class and attributes of a single variable such as loca-
tion by typing

whos location

and learn from

Name          Size            Bytes  Class    Attributes
location      1x10               20  char   

that the size of this character array location corresponds to the number 
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of characters in the word Plougasnou. Character arrays are 16 bit arrays, i. e., 
216=65,536 diff erent characters can be stored in such arrays. Th e character 
string location therefore requires 10×16=160 bits or 160/8=20 bytes of 
memory. Also the second layer datum in the structure array sample_1 
contains a character string generated by  date that yields a string contain-
ing the current date in dd-mm-yyyy format. We access this particular layer 
in sample_1 by typing

sample_1.date

which yields

ans =
   06-Oct-2009

Th e third layer of sample_1 contains the image created in the previous 
example, whereas the fourth layer contains a 10-by-10 array of uniformly-
distributed pseudorandom numbers. All layers of sample_1 can be listed 
by typing

sample_1

resulting in the output

sample_1 = 
        location: 'Plougasnou'
            date: '06-Oct-2009'
           image: [100x100x3 uint8]
    geochemistry: [10x10 double]

Th is represents a list of the layers location, date, image and geochem-
istry within the structure array sample_1. Some variables are listed in 
full, whereas larger data arrays are only represented by their size.  In the 
list of the layers within the structure array sample_1, the array image 
is characterized by its size 100x100x3 and the class uint8. Th e variable 
geochemistry in the last layer of the structure array contains a 10-by-10 
array of double precision numbers. Th e command

whos sample_1

does not list the layers in sample_1 but the name of the variable, the bytes 
and the class struct of the variable.

  Name            Size               Bytes  Class     Attributes
  sample_1        1x1                31546  struct

MATLAB also has  cell arrays as an alternative to structure arrays. Both 
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classes or data types are very similar and are containers of diff erent types 
and sizes of data. Th e most important diff erence between the two is that 
the containers of a structure array are named fields, whereas a cell array 
uses numerically indexed cells. Structures are oft en used in applications 
where organization of the data is of high importance. Cell arrays are oft en 
used when working with data that is intended for processing by index in a 
programming control loop.

2.6 Scripts and Functions

MATLAB is a powerful programming language. All fi les containing 
MATLAB code use .m as an extension and are therefore called  M-files. 
Th ese fi les contain ASCII text and can be edited using a standard text editor. 
However, the built-in Editor color-highlights various syntax elements such 
as comments in green, keywords such as  if,  for and  end in blue and charac-
ter strings in pink. Th is syntax highlighting facilitates MATLAB coding.

MATLAB uses two types of M-fi les:  scripts and  functions. Whereas 
scripts are a series of commands that operate on data in the workspace, 
functions are true algorithms with input and output variables. Th e advan-
tages and disadvantages of both types of M-fi les will now be illustrated by 
an example. We fi rst start the Editor by typing

edit

Th is opens a new window named untitled. Next, we generate a simple 
MATLAB script by typing a series of commands to calculate the average of 
the elements of a data vector x.

[m,n] = size(x);
if m == 1
   m = n;
end
sum(x)/m

Th e fi rst line of the if loop yields the dimensions of the variable x using 
the command  size. In our example, x should be either a column vector 
with dimensions (m,1) or a row vector with dimensions (1,n). Th e if 
statement evaluates a logical expression and executes a group of commands 
if this expression is true. Th e  end keyword terminates the last group of 
commands. In the example, the  if loop picks either m or n depending on 
whether m==1 is false or true. Here, the double equal sign '==' makes ele-
ment by element comparisons between the variables (or numbers) to the 
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left  and right of the equal signs and returns a matrix of the same size, made 
up of elements set to logical 1 where the relation is true and elements set to 
logical 0 where it is not. In our example, m==1 returns 1 if m equals 1 and 0 
if m equals any other value. Th e last line of the if loop computes the average 
by dividing the sum of elements by m or n. We do not use a semicolon here 
in order to allow the output of the result. We can now save our new M-fi le 
as average.m and type

clear

x = [3 6 2 -3 8];

in the Command Window to defi ne an example vector x. We then type

average

without the extension .m to run our script and obtain the average of the ele-
ments of the vector x as output.

ans =
    3.2000

Aft er typing 

whos

we see that the workspace now contains

Name         Size            Bytes  Class     Attributes
ans          1x1                 8  double
m            1x1                 8  double
n            1x1                 8  double
x            1x5                40  double

Th e listed variables are the example vector x and the output of the function 
size, m and n. Th e result of the operation is stored in the variable  ans. 
Since the default variable ans might be overwritten during one of the suc-
ceeding operations, we need to defi ne a diff erent variable. Typing

a = average

however, results in the error message

??? Attempt to execute SCRIPT average as a function.

Obviously, we cannot assign a variable to the output of a script. Moreover, 
all variables defi ned and used in the script appear in the workspace; in our 
example these are the variables m and n. Scripts contain sequences of com-
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Fig. 2.3 Screenshot of the MATLAB Editor showing the function average. Th e function 
starts with a line containing the keyword  function, the name of the function average, 
the input variable x and the output variable y. Th e subsequent lines contain the output 
for  help average, the copyright and version information, and also the actual MATLAB 
code for computing the average using this function.

mands that are applied to variables in the workspace. MATLAB functions, 
however, allow inputs and outputs to be defi ned. Th ey do not automatically 
import variables from the workspace. To convert the above script into a 
function, we have to introduce the following modifi cations (Fig. 2.3):

function y = average(x)
%AVERAGE    Average value.
%    AVERAGE(X) is the average of the elements in the vector X. 

% By Martin Trauth, Oct 6, 2009

[m,n] = size(x);
if m == 1
   m = n;
end
y = sum(x)/m;

Th e fi rst line now contains the keyword  function, the function name 
 average, the  input x and the  output y. Th e next two lines contain  com-
ments as indicated by the percent sign, separated by an empty line. Th e sec-
ond  comment line contains the author's name and the version of the M-fi le. 
Th e rest of the fi le contains the actual operations. Th e last line now defi nes 
the value of the output variable y, and this line is terminated by a semicolon 
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to suppress the display of the result in the Command Window. Next we 
type

help average

which displays the fi rst block of contiguous comment lines. Th e fi rst ex-
ecutable statement (or blank line in our example) eff ectively ends the help 
section and therefore the output of help. Now we are independent of the 
variable names used in our function. Th e workspace can now be cleared and 
a new data vector defi ned.

clear

data = [3 6 2 -3 8];

Our function can then be run by the statement

result = average(data);

Th is clearly illustrates the advantages of functions compared to scripts. 
Typing

whos

results in

Name        Size            Bytes  Class     Attributes
data        1x5                40  double
result      1x1                 8  double

revealing that all variables used in the function do not appear in the work-
space. Only the input and output as defi ned by the user are stored in the 
workspace. Th e M-fi les can therefore be applied to data as if they were real 
functions, whereas scripts contain sequences of commands that are applied 
to the variables in the workspace.

2.7 Basic  Visualization Tools

MATLAB provides numerous routines for  displaying data as graphs. Th is 
section introduces the most important  graphics functions. Th e graphs can 
be modifi ed, printed and exported to be edited with graphics soft ware other 
than MATLAB. Th e simplest function producing a graph of a variable y ver-
sus another variable x is  plot. First, we defi ne two vectors x and y, where 
y is the sine of x. Th e vector x contains values between 0 and 2π  with π /10 



30  2 INTRODUCTION TO MATLAB

increments, whereas y is the element-by-element sine of x.

clear

x = 0 : pi/10 : 2*pi;
y = sin(x);

Th ese two commands result in two vectors with 21 elements each, i. e., two 
1-by-21 arrays. Since the two vectors x and y have the same length, we can 
use plot to produce a linear 2d graph y against x.

plot(x,y)

Th is command opens a  Figure Window named  Figure 1 with a gray back-
ground, an x-axis ranging from 0 to 7, a y-axis ranging from –1 to +1 and 
a blue line. We may wish to plot two diff erent curves in a single plot, for 
example the sine and the cosine of x in diff erent colors. Th e command

x = 0 : pi/10 : 2*pi;
y1 = sin(x);
y2 = cos(x);

plot(x,y1,'r--',x,y2,'b-')

creates a dashed red line displaying the sine of x and a solid blue line rep-
resenting the cosine of this vector (Fig. 2.4). If we create another plot, the 
window Figure 1 will be cleared and a new graph displayed. Th e command 
figure, however, can be used to create a new fi gure object in a new win-
dow.

plot(x,y1,'r--')
figure
plot(x,y2,'b-')

Instead of plotting both lines in one graph simultaneously, we can also plot 
the sine wave, hold the graph and then plot the second curve. Th e command 
 hold is particularly important for displaying data while using diff erent plot 
functions, for example if we wish to display the second graph as a  bar plot.

plot(x,y1,'r--')
hold on
bar(x,y2)
hold off

Th is command plots y1 versus x as dashed line, whereas y2 versus x is 
shown as a group of blue vertical  bars. Alternatively, we can plot both 
graphs in the same Figure Window but in diff erent plots using  subplot. 
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Fig. 2.4 Screenshot of the MATLAB Figure Window showing two curves in diff erent colors 
and line types. Th e Figure Window allows editing of all elements of the graph aft er selecting 
 Edit Plot from the  Tools menu. Double clicking on the graphics elements opens an options 
window for modifying the appearance of the graphs. Th e graphics can be exported using 
 Save as from the File menu. Th e command  Generate M-File from the  File menu creates 
MATLAB code from an edited graph.

Th e  syntax  subplot(m,n,p) divides the  Figure Window into an m-by-n 
matrix of display regions and makes the pth display region active.

subplot(2,1,1), plot(x,y1,'r--')
subplot(2,1,2), bar(x,y2)

For example, the Figure Window is divided into two rows and one column. 
Th e 2D linear plot is displayed in the upper half, whereas the bar plot appears 
in the lower half of the Figure Window. It is recommended that all Figure 
Windows be closed before proceeding to the next example. Subsequent plots 
would replace the graph in the lower display region only, or in other words, 
the last generated graph in a Figure Window. Alternatively, the command

clf

clears the current fi gure. Th is command can be used in larger MATLAB 
scripts aft er using the function subplot for multiple plots in a Figure 
Window.
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An important modifi cation to graphs is the scaling of the axis. By de-
fault, MATLAB uses axis limits close to the minima and maxima of the 
data. Using the command  axis, however, allows the scale settings to be 
changed. Th e syntax for this command is simply axis([xmin xmax 
ymin ymax]). Th e command

plot(x,y1,'r--')
axis([0 pi -1 1])

sets the limits of the x-axis to 0 and π , whereas the limits of the y-axis are 
set to the default values –1 and +1. Important options of axis are 

plot(x,y1,'r--')
axis square

which makes the x-axis and y-axis the same length and

plot(x,y1,'r--')
axis equal

which makes the individual tick mark increments on the x-axis and y-axis 
the same length. Th e function  grid adds a grid to the current plot, whereas 
the functions  title,  xlabel and  ylabel allow a title to be defi ned and 
labels to be applied to the x- and y-axes.

plot(x,y1,'r--')
title('My first plot')
xlabel('x-axis')
ylabel('y-axis')
grid

Th ese are a few examples how MATLAB functions can be used to edit the 
plot in the Command Window. More graphics functions will be introduced 
in the following chapters of this book.

2.8  Generating M-Files to Regenerate Graphs

MATLAB supports various ways of editing all objects in a graph inter-
actively using a computer mouse. First, the  Edit Plot mode of the Figure 
Window has to be activated by clicking on the arrow icon or by selecting 
 Edit Plot from the Tools menu. Th e Figure Window also contains some 
other options, such as  Rotate 3D,  Zoom or  Insert Legend. Th e various ob-
jects in a graph, however, are selected by double-clicking on the specifi c 
component, which opens the   Property Editor. Th e Property Editor allows 
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changes to be made to many properties of the graph such as axes, lines, 
patches and text objects.

Th e  Generate M-Files option enables us to automatically generate the 
MATLAB code of a fi gure to recreate a graph with diff erent data. We use 
a simple plot to illustrate the use of the Property Editor and the Generate 
M-Files option to recreate a graph.

clear

x = 0 : pi/10 : 2*pi;
y1 = sin(x);
plot(x,y1)

Th e default layout of the graph is that of Figure 2.4. Clicking on the arrow 
icon in the  Figure Toolbar enables the Edit Plot mode. Th e selection han-
dles of the graph appear, identifying the objects that are activated. Double-
clicking an object in a graph opens the Property Editor.

As an example, we can use the Property Editor to change various prop-
erties of the graph. Double-clicking the gray background of the Figure 
Window gives access to properties such as Figure Name, the Colormap 
used in the fi gure and the Figure Color. We can change this color to light 
blue represented by the light blue square in the 4th row and 3rd column of 
the color chart. Moving the mouse over this square displays the RGB color 
code [0.7 0.78 1] (see Chapter 8 for more details on RGB colors). Activating 
the blue line in the graph allows us to change the line thickness to 2.0 and 
select a 6-point square marker. We can close the Property Editor by clicking 
on the X in the upper right corner of the Property Editor panel below the 
graph. Finally, we can deactivate the Edit Plot mode of the Figure Window 
by clicking on the arrow icon in the Figure Toolbar.

Aft er having made all necessary changes to the graph, the correspond-
ing commands can even be exported by selecting Generate M-File from 
the File menu of the Figure Window. Th e generated code displays in the 
MATLAB Editor.

function createfigure(X1, Y1)
%CREATEFIGURE(X1,Y1)
%  X1:  vector of x data
%  Y1:  vector of y data
 
%  Auto-generated by MATLAB on 06-Oct-2009 17:37:20
 
% Create figure
figure1 = figure('XVisual',...
  '0x24 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)',...
  'Color',[0.6784 0.9216 1]);
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% Create axes
axes('Parent',figure1);
box('on');
hold('all');
 
% Create plot
plot(X1,Y1,'Marker','square','LineWidth',2);

We can then rename the function  createfigure to mygraph and save the fi le 
as mygraph.m using Save As from the Editor File menu.

function mygraph(X1, Y1)
%MYGRAPH(X1,Y1)
%  X1:  vector of x data
%  Y1:  vector of y data
(cont'd)

Th e automatically-generated graphics function illustrates how graphics are 
organized in MATLAB. Th e function  figure fi rst opens a Figure Window. 
Using  axes then establishes a coordinate system, and using  plot draws 
the actual line object. Th e Figure section in the function reminds us that 
the light-blue background color of the Figure Window is represented by 
the RGB color coding [0.702 0.7804 1]. Th e Plot section reveals the 
square marker symbol used and the line width of 2 points.

Th e newly-created function mygraph can now be used to plot a diff er-
ent data set. We use the above example and 

clear

x = 0 : pi/10 : 2*pi;
y2 = cos(x);
mygraph(x,y2)

Th e fi gure shows a new plot with the same layout as the previous plot. Th e 
Generate M-File function of MATLAB can therefore be used to create tem-
plates for graphs that can be used to generate plots of multiple data sets us-
ing the same layout.

Even though the MATLAB provides enormous editing facilities and the 
 Generate M-File function even allows the generation of complex templates 
for graphs, a more practical way to modify a graph for presentations or pub-
lications is to export the fi gure and import it into a diff erent soft ware such as 
CorelDraw or Adobe Illustrator. MATLAB graphs are exported by selecting 
the command  Save as from the  File menu or by using the command print. 
Th is function exports the graph either as raster image (e. g., JPEG or GIF) or 
vector fi le (e. g., EPS or PDF) into the working directory (see Chapter 8 for 
more details on graphic fi le formats). In practice, the user should check the 
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various combinations of export fi le formats and the graphics soft ware used 
for fi nal editing of the graphs.

2.9  Publishing M-Files

A relatively new feature of the soft ware is the option to publish reports on 
MATLAB projects in various fi le formats such as HTML, XML, LaTeX and 
many others. Th is feature enables you to share your results with colleagues 
who may or may not have the MATLAB soft ware. Th e published code in-
cludes formatted commentary on the code, the actual MATLAB code and all 
results of running the code, including the output to the Command Window 
and all graphs created or modifi ed by the code.

To illustrate the use of the publishing feature, we create a simple exam-
ple of a commented MATLAB code to compute the sine and cosine of a time 
vector and display the results as two separate fi gures. Before we start devel-
oping the MATLAB code, we activate  Enable Cell Mode in the Cell menu 
of the Editor. Whereas single percent signs % are known (from Section 2.6) 
to initiate comments in MATLAB, we now use double percent signs %% that 
indicate the start of new cells in the Editor. Th e  Cell Mode is a feature in 
MATLAB that enables you to evaluate blocks of commands by using the 
buttons Evaluate Cell, Evaluate Cell and Advance and Evaluate Entire 
File on the Editor Cell Mode toolbar. Th e  Save and Publish button, which 
was situated next to the Cell Mode buttons in earlier versions of MATLAB, 
is now included in the Editor Toolbar emphasizing the importance and pop-
ularity of this feature.

We start the Editor by typing edit in the Command Window, which 
opens a new window named untitled. An M-fi le to be published starts with 
a document title at the top of the fi le followed by some comments that de-
scribe the contents and the version of the script. Th e subsequent contents 
of the fi le include cells of MATLAB code and comments separated by the 
 double percent signs %%.

%% Example for Publishing M-Files
% This M-file illustrates the use of the publishing feature
% of MATLAB.
% By Martin Trauth, Feb 8, 2009.

%% Sine Wave
% We define a time vector t and compute the sine y1 of t. 
% The results are displayed as linear 2D graph y1 against x.
x = 0 : pi/10 : 2*pi;
y1 = sin(x);
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plot(x,y1)
title('My first plot')
xlabel('x-axis')
ylabel('y-axis')

%% Cosine Wave
% Now we compute the cosine y2 of the same time vector
% and display the results.
y2 = sin(x);
plot(x,y2)
title('My first plot')
xlabel('x-axis')
ylabel('y-axis')

%%
% The last comment is separated by the double percent sign
% without text. This creates a comment in a separate cell
% without a subheader.

We save the M-fi le as myproject.m and click the Publish myproject.m but-
ton in the Editor Toolbar. Th e entire script is now evaluated and the Figure 
Windows pop up while the script is running. Finally, a window opens up 
that shows the contents of the published M-fi le. Th e document title and sub-
headers are shown in a dark red font, whereas the comments are in black 
fonts. Th e fi le includes a list of contents with jump links to proceed to the 
chapters of the fi le. Th e MATLAB commands are displayed on gray back-
grounds, but the graphs are embedded in the fi le without the gray default 
background of Figure Windows. Th e resulting HTML fi le can be easily in-
cluded on a course or project webpage. Alternatively, the HTML fi le and 
included graphs can be saved as a PDF-fi le and shared with students or col-
leagues.
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3 Univariate Statistics

3.1 Introduction

Th e statistical properties of a single parameter are investigated by means 
of  univariate analysis. Such a parameter could be, for example, the organic 
carbon content of a sedimentary unit, the thickness of a sandstone layer, the 
age of sanidine crystals in a volcanic ash or the volume of landslides. Both 
the number and the size of   samples that we collect from a larger  population 
are oft en limited by fi nancial and logistical constraints. Th e methods of uni-
variate statistics assist us to draw from the sample conclusions that apply to 
the population as a whole.

We fi rst need to describe the characteristics of the sample using statisti-
cal parameters, and compute an  empirical distribution ( descriptive statis-
tics) (Sections 3.2 and 3.3). A brief introduction to the most important statis-
tical parameters such as the measures of central tendency and dispersion 
is provided, followed by MATLAB examples. Next, we select a  theoretical 
distribution that shows similar characteristics to the empirical distribution 
(Sections 3.4 and 3.5). A suite of theoretical distributions is introduced and 
their potential applications outlined, prior to using MATLAB tools to ex-
plore these distributions. We then try to draw conclusions from the sample 
that can be applied to the larger phenomenon of interest (hypothesis test-
ing). Th e relevant sections below (Sections 3.6 to 3.8) introduce the three 
most important statistical tests for applications in earth sciences: the t-test 
to compare the means of two data sets, the F-test to compare variances and 
the χ 2-test to compare distributions. Th e fi nal section in this chapter intro-
duces methods used to fi t distributions to our own data sets (Section 3.9).

3.2 Empirical Distributions

Let us assume that we have collected a number of measurements xi from a 
specifi c object. Th e collection of data, or sample, as a subset of the popula-

M.H. Trauth, MATLAB® Recipes for Earth Sciences, 3rd ed.,  
DOI 10.1007/978-3-642-12762-5_3, © Springer-Verlag Berlin Heidelberg 2010  
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Fig. 3.1 Graphical representation of an empirical frequency distribution. a In a histogram, 
the frequencies are organized in classes and plotted as a bar plot. b Th e cumulative histogram 
of a frequency distribution displays the totals of all classes lower than and equal to a certain 
value. Th e cumulative histogram is normalized to a total number of observations of one.

tion of interest, can be written as a vector x

containing a total of N observations. Th e vector x may contain a large num-
ber of data points, and it may consequently be diffi  cult to understand its 
properties. Descriptive statistics are therefore oft en used to summarize the 
characteristics of the data. Th e statistical properties of the data set may be 
used to defi ne an empirical distribution, which can then be compared to a 
theoretical one.

Th e most straightforward way of investigating the sample characteris-
tics is to display the data in a graphical form. Plotting all of the data points 
along a single axis does not reveal a great deal of information about the data 
set. However, the density of the points along the scale does provide some 
information about the characteristics of the data. A widely-used graphi-
cal display of univariate data is the  histogram (Fig. 3.1). A histogram is a 
bar plot of a frequency distribution that is organized in intervals or  classes. 
Such histogram plots provide valuable information on the characteristics 
of the data, such as the  central tendency, the  dispersion and the  general 
 shape of the distribution. However, quantitative measures provide a more 
accurate way of describing the data set than the graphical form. In purely 
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Fig. 3.2 Measures of central tendency. a In an unimodal symmetric distribution, the mean, 
the median and the mode are identical. b In a skewed distribution, the median lies between 
the mean and the mode. Th e mean is highly sensitive to outliers, whereas the median and 
the mode are little infl uenced by extremely high and low values.

quantitative terms, the  mean and the  median defi ne the central tendency of 
the data set, while the data dispersion is expressed in terms of the  range and 
the  standard deviation.

Measures of Central Tendency

Parameters of central tendency or location represent the most important 
measures for characterizing an empirical distribution (Fig. 3.2). Th ese val-
ues help locate the data on a linear scale. Th ey represent a typical or best 
value that describes the data. Th e most popular indicator of central ten-
dency is the  arithmetic mean, which is the sum of all data points divided by 
the number of observations:

Th e arithmetic mean can also be called the mean or the average of a uni-
variate data set. Th e sample mean is used as an estimate of the population 
mean μ  for the underlying theoretical distribution. Th e arithmetic mean is, 
however, sensitive to outliers, i. e., extreme values that may be very diff erent 
from the majority of the data, and the  median is therefore oft en used as an 



40  3 UNIVARIATE STATISTICS

alternative measure of central tendency. Th e median is the x-value that is in 
the middle of the data set, i. e., 50 % of the observations are larger than the 
median and 50 % are smaller. Th e median of a data set sorted in ascending 
order is defi ned as

if N is odd and

if N is even. Although outliers also aff ect the median, their absolute values 
do not infl uence it.  Quantiles are a more general way of dividing the data 
sample into groups containing equal numbers of observations. For example, 
the three  quartiles divide the data into four groups, the four  quintiles di-
vide the observations in fi ve groups and the 99  percentiles defi ne one hun-
dred groups.

Th e third important measure for central tendency is the  mode. Th e 
mode is the most frequent x value or – if the data are grouped in classes – 
the center of the class with the largest number of observations. Th e data set 
has no mode if there are no values that appear more frequently than any of 
the other values. Frequency distributions with a single mode are called  uni-
modal, but there may also be two modes ( bimodal), three modes ( trimodal) 
or four or more modes ( multimodal).

Th e mean, median and mode are used when several quantities add to-
gether to produce a total, whereas the  geometric mean is oft en used if these 
quantities are multiplied. Let us assume that the population of an organism 
increases by 10 % in the fi rst year, 25 % in the second year, and then 60 % in 
the last year. Th e average rate of increase is not the arithmetic mean, since 
the original number of individuals has increased by a factor (not a sum) 
of 1.10 aft er one year, 1.375 aft er two years, or 2.20 aft er three years. Th e 
average growth of the population is therefore calculated by the geometric 
mean:

Th e average growth of these values is 1.4929 suggesting an approximate per 
annum growth in the population of 49 %. Th e arithmetic mean would result 
in an erroneous value of 1.5583 or approximately 56 % annual growth. Th e 
geometric mean is also a useful measure of central tendency for skewed or 
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log-normally distributed data, in which the logarithms of the observations 
follow a Gaussian or normal distribution. Th e geometric mean, however, 
is not used for data sets containing negative values. Finally, the  harmonic 
mean

is also used to derive a mean value for asymmetric or log-normally distrib-
uted data, as is the geometric mean, but neither is robust to outliers. Th e 
harmonic mean is a better average when the numbers are defi ned in relation 
to a particular unit. Th e commonly quoted example is for averaging veloci-
ties. Th e harmonic mean is also used to calculate the mean of sample sizes.

Measures of Dispersion

Another important property of a distribution is the dispersion. Some of 
the parameters that can be used to quantify dispersion are illustrated in 
Figure 3.3. Th e simplest way to describe the dispersion of a data set is by the 
 range, which is the diff erence between the highest and lowest value in the 
data set, given by

Since the range is defi ned by the two extreme data points, it is very suscep-
tible to outliers, and hence it is not a reliable measure of dispersion in most 
cases. Using the interquartile range of the data, i. e., the middle 50 % of the 
data attempts to overcome this problem.

A more useful measure for dispersion is the  standard deviation.

Th e standard deviation is the average deviation of each data point from the 
mean. Th e standard deviation of an empirical distribution is oft en used as 
an estimate of the population standard deviation σ. Th e formula for the 
population standard deviation uses N instead of N–1 as the denominator. 
Th e sample standard deviation s is computed with N–1 instead of N since it 
uses the sample mean instead of the unknown population mean. Th e sample 
mean, however, is computed from the data xi, which reduces the number of 
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Fig. 3.3  Dispersion and  shape of a distribution. a-b Unimodal distributions showing a 
negative or positive skew. c-d Distributions showing a high or low kurtosis. e-f Bimodal 
and trimodal distributions showing two or three modes.



3.2 EMPIRICAL DISTRIBUTIONS  43

3 
 U

N
IV

A
RI

AT
E 

ST
AT

IS
TI

CS

degrees of freedom by one. Th e  degrees of freedom are the number of values 
in a distribution that are free to be varied. Dividing the average deviation of 
the data from the mean by N would therefore underestimate the population 
standard deviation σ.

Th e  variance is the third important measure of dispersion. Th e variance 
is simply the square of the standard deviation.

Although the variance has the disadvantage of not having the same dimen-
sions as the original data, it is extensively used in many applications instead 
of the standard deviation.

In addition, both  skewness and  kurtosis can be used to describe the 
shape of a frequency distribution. Skewness is a measure of the asymmetry 
of the tails of a distribution. Th e most popular way to compute the asym-
metry of a distribution is by Pearson’s mode skewness:

A negative skew indicates that the distribution is spread out more to the left  
of the mean value, assuming values increasing towards the right along the 
axis. Th e sample mean is in this case smaller than the mode. Distributions 
with positive skewness have large tails that extend towards the right. Th e 
skewness of the symmetric normal distribution is zero. Although Pearson’s 
measure is a useful one, the following formula by Fisher for calculating the 
skewness is oft en used instead, including in the relevant MATLAB function.

Th e second important measure for the shape of a distribution is the  kurtosis. 
Again, numerous formulas to compute the kurtosis are available. MATLAB 
uses the following formula:

Th e kurtosis is a measure of whether the data are peaked or fl at relative to 
a normal distribution. A high kurtosis indicates that the distribution has a 
distinct peak near the mean, whereas a distribution characterized by a low 
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kurtosis shows a fl at top near the mean and broad tails. Higher peakedness in 
a distribution results from rare extreme deviations, whereas a low kurtosis is 
caused by frequent moderate deviations. A normal distribution has a kurtosis 
of three, and some defi nitions of kurtosis therefore subtract three from the 
above term in order to set the kurtosis of the normal distribution to zero.

Having defi ned the most important parameters used to describe an em-
pirical distribution, the measures of central tendency and dispersion are 
now illustrated by examples.

3.3 Example of Empirical Distributions

As an example, we can analyze the data contained in the fi le organicmat-
ter_one.txt. Th is fi le contains the organic matter content of lake sediments 
in weight percentage (wt %). In order to load the data, we type

clear

corg = load('organicmatter_one.txt');

Th e data fi le contains 60 measurements that can be displayed by

plot(corg,zeros(1,length(corg)),'o')

Th is graph shows some of the characteristics of the data. Th e organic carbon 
content of the samples ranges between 9 and 15 wt %, with most of the data 
clustering between 12 and 13 wt %. Values below 10 and above 14 are rare. 
While this kind of representation of the data undoubtedly has its advantages, 
histograms are a much more convenient way to display univariate data.

 hist(corg)

By default, the function hist divides the range of the data into ten equal 
intervals, bins or classes, counts the number of observations within each 
interval and displays the frequency distribution as a bar plot. Th e midpoints 
of the default intervals v and the number of observations per interval n can 
be accessed using

[n,v] = hist(corg)

n =
  Columns 1 through 8
     2     1     5     8     5    10    10     9
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  Columns 9 through 10
     8     2

v =
  Columns 1 through 5
    9.6740   10.1885   10.7029   11.2174   11.7319
  Columns 6 through 10
   12.2463   12.7608   13.2753   13.7898   14.3042

Th e number of classes should not be lower than six or higher than fi ft een for 
practical purposes. In practice, the square root of the number of observa-
tions, rounded to the nearest integer, is oft en used as the number of classes. 
In our example, we use eight classes instead of the default ten classes.

hist(corg,8)

We can even defi ne the midpoint values of the histogram classes. Here, it 
is recommended to choose interval endpoints that avoid data points fall-
ing between two intervals. We can use the minimum, the maximum and 
the range of the data to defi ne the midpoints of the classes. We can then 
add half of the interval width to the lowest value in corg to calculate the 
midpoint of the lowest class. Th e midpoint of the highest class is the highest 
value in corg reduced by half of the interval width.

 min(corg) + 0.5*range(corg)/8

ans =
   9.7383

 max(corg) - 0.5*range(corg)/8

ans =
   14.2399

 range(corg)/8

ans =
    0.6431

We can now round these values and defi ne 

v = 9.75 : 0.65 : 14.30;

as midpoints of the histogram intervals. Th is method for defi ning the mid-
points is equivalent to the one used by the function hist if v is not speci-
fi ed by the user. Th e commands for displaying the histogram and calculat-
ing the frequency distribution are

hist(corg,v)
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n = hist(corg,v)

n =
     2     2    11     7    14    11     9     4

Th e most important parameters describing the distribution are the mea-
sures for central tendency and the dispersion about the average. Th e most 
popular measure for central tendency is the arithmetic mean.

 mean(corg)

ans =
    12.3448

Since this measure is very susceptible to outliers, we can take the median as 
an alternative measure of central tendency,

 
 median(corg)

ans =
    12.4712

which does not diff er by very much in this particular example. However, we 
will see later that this diff erence can be signifi cant for distributions that are 
not symmetric. A more general parameter to defi ne fractions of the data 
less than, or equal to, a certain value is the quantile. Some of the quantiles 
have special names, such as the three quartiles dividing the distribution 
into four equal parts, 0–25 %, 25–50 %, 50–75 % and 75–100 % of the total 
number of observations. We use the function  quantile to compute the 
three quartiles.

 quantile(corg,[.25 .50 .75])

ans =
    11.4054   12.4712   13.2965

Less than 25 % of the data values are therefore lower than 11.4054, 25 % 
are between 11.4054 and 12.4712, another 25 % are between 12.4712 and 
13.2965, and the remaining 25 % are higher than 13.2965.

Th e third parameter in this context is the mode, which is the midpoint 
of the interval with the highest frequency. Th e MATLAB function mode to 
identify the most frequent value in a sample is unlikely to provide a good 
estimate of the peak in continuous probability distributions, such as the 
one in corg. Furthermore, the mode function is not suitable for fi nding 
peaks in distributions that have multiple modes. In these cases, it is better 
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to compute a histogram and calculate the peak of that histogram. We can 
use the function  find to locate the class that has the largest number of 
observations.

v(find(n == max(n)))

or simply

v(n == max(n))

ans =
    12.3500

Both statements are identical and identify the largest element in n. Th e in-
dex of this element is then used to display the midpoint of the correspond-
ing class v. If there are several elements in n with similar values, this state-
ment returns several solutions suggesting that the distribution has several 
modes. Th e median, quartiles, minimum and maximum of a data set can be 
summarized and displayed in a  box and whisker plot.

 boxplot(corg)

Th e boxes have lines at the lower quartile, the median, and the upper quartile 
values. Th e whiskers are lines extending from each end of the boxes to show 
the extent or range of the rest of the data.

Th e most popular measures for dispersion are range, standard deviation 
and variance. We have already used the range to defi ne the midpoints of the 
classes. Th e variance is the average of the squared deviations of each num-
ber from the mean of a data set.

 var(corg)

ans =
    1.3595

Th e standard deviation is the square root of the variance.

 std(corg)

ans =
    1.1660

Note that, by default, the functions var and std calculate the sample vari-
ance and sample standard deviation providing an unbiased estimate of the 
dispersion of the population. When using skewness to describe the shape 
of the distribution, we observe a slightly negative skew.
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 skewness(corg)

ans =
    -0.2529

Finally, the peakedness of the distribution is described by the kurtosis. Th e 
result from the function kurtosis,

 kurtosis(corg)

ans =
    2.4670

suggests that our distribution is slightly fl atter than a Gaussian distribution 
since its kurtosis is lower than three.

Most of these functions have corresponding versions for data sets con-
taining gaps, such as nanmean and nanstd, which treat NaNs as missing 
values. To illustrate the use of these functions we introduce a gap into our 
data set and compute the mean using mean and nanmean for comparison.

corg(25,1) = NaN;

mean(corg)

ans =
    NaN

 nanmean(corg)

ans =
    12.3371

In this example the function mean follows the rule that all operations with 
NaNs result in NaNs, whereas the function nanmean simply skips the miss-
ing value and computes the mean of the remaining data.

As a second example, we now explore a data set characterized by a sig-
nifi cant skew. Th e data represent 120 microprobe analyses on glass shards 
hand-picked from a volcanic ash. Th e volcanic glass has been aff ected by 
chemical weathering at an initial stage, and the shards therefore exhibit 
glass hydration and sodium depletion in some sectors. We can study the 
distribution of sodium (in wt %) in the 120 analyses using the same proce-
dure as above. Th e data are stored in the fi le sodiumcontent_one.txt.

clear

sodium = load('sodiumcontent_one.txt');

As a fi rst step, it is always recommended to display the data as a histogram. 
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Th e square root of 120 suggests 11 classes, and we therefore display the data 
by typing

hist(sodium,11)

[n,v] = hist(sodium,11)

n =
  Columns 1 through 10
     3     3     5     2     6     8    15    14    22    29
  Column 11
    13

v =
  Columns 1 through 6
    2.6738    3.1034    3.5331    3.9628    4.3924    4.8221
  Columns 7 through 11
    5.2518    5.6814    6.1111    6.5407    6.9704

Since the distribution has a negative skew, the mean, the median and the 
mode diff er signifi cantly from each other.

mean(sodium)

ans =
    5.6628

median(sodium)

ans =
    5.9741

v(find(n == max(n)))

ans =
    6.5407

Th e mean of the data is lower than the median, which is in turn lower than 
the mode. We can observe a strong negative skewness, as expected from our 
data.

skewness(sodium)

ans =
    -1.1086

We now introduce a signifi cant outlier to the data and explore its eff ect on 
the statistics of the sodium content. For this we will use a diff erent data set, 
which is better suited for this example than the previous data set. Th e new 
data set contains higher sodium values of around 17 wt % and is stored in 
the fi le sodiumcontent_two.txt.
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clear

sodium = load('sodiumcontent_two.txt');

Th is data set contains only 50 measurements, in order to better illustrate 
the eff ects of an outlier. We can use the same script used in the previous 
example to display the data in a histogram with seven classes and compute 
the number of observations n with respect to the classes v.

[n,v] = hist(sodium,7);

mean(sodium)

ans =
   16.6379

median(sodium)

ans =
   16.9739

v(find(n == max(n)))

ans =

   17.7569

Th e mean of the data is 16.6379, the median is 16.9739 and the mode is 
17.7569. We now introduce a single, very low value of 1.5 wt % in addition to 
the 50 measurements contained in the original data set.

sodium(51,1) = 1.5;

hist(sodium,7)

Th e histogram of this data set illustrates the distortion of the frequency dis-
tribution by this single outlier, showing several empty classes. Th e infl uence 
of this outlier on the sample statistics is also substantial.

mean(sodium)

ans =
   16.3411

median(sodium)

ans =
   16.9722

v(find(n == max(n)))
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ans =
   17.7569

Th e most signifi cant change observed is in the mean (16.3411), which is sub-
stantially lower due to the presence of the outlier. Th is example clearly dem-
onstrates the sensitivity of the mean to outliers. In contrast, the median of 
16.9722 is relatively unaff ected.

3.4 Theoretical Distributions

We have now described the  empirical  frequency distribution of our sample. 
A histogram is a convenient way to depict the frequency distribution of the 
variable x. If we sample the variable suffi  ciently oft en and the output ranges 
are narrow, we obtain a very smooth version of the histogram. An infi nite 
number of measurements N→ ∞  and an infi nitely small class width produce 
the random variable’s  probability density function (PDF). Th e probability 
distribution density f (x) defi nes the probability that the variable has a value 
equal to x. Th e integral of f (x) is normalized to unity, i. e., the total number 
of observations is one. Th e  cumulative distribution function (CDF) is the 
sum of the frequencies of a discrete PDF or the integral of a continuous PDF. 
Th e cumulative distribution function F(x) is the probability that the vari-
able will have a value less than or equal to x.

As a next step, we need to fi nd appropriate  theoretical distributions that 
fi t the empirical distributions described in the previous section. Th is sec-
tion therefore introduces the most important theoretical distributions and 
describes their application.

Uniform Distribution

A  uniform or  rectangular distribution is a distribution that has a constant 
probability (Fig. 3.4). Th e corresponding probability density function is

where the random variable x has any of N possible values. Th e cumulative 
distribution function is

Th e probability density function is normalized to unity
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Fig. 3.4 a Probability density function f(x) and b cumulative distribution function F(x) 
of a uniform distribution with N=6. Th e 6 discrete values of the variable x have the same 
probability of 1/6.
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i. e., the sum of all probabilities is one. Th e maximum value of the cumula-
tive distribution function is therefore one.

An example is a  rolling die with N=6 faces. A discrete variable such as the 
faces of a die can only take a countable number of values x. Th e probability 
for each face is 1/6. Th e probability density function of this distribution is

Th e corresponding cumulative distribution function is

where x takes only discrete values, x=1,2,…,6.
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Fig. 3.5 Probability density function f(x) of a binomial distribution, which gives the 
probability p of x successes out of N=6 trials, with probability a p= 0.1 and b p= 0.3 of 
success in any given trial.
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Binomial or Bernoulli Distribution

A  binomial or  Bernoulli distribution, named aft er the Swiss scientist Jakob 
Bernoulli (1654–1705), gives the discrete probability of x successes out of 
Ntrials, with a probability p of success in any given trial (Fig. 3.5). Th e prob-
ability density function of a binomial distribution is

Th e cumulative distribution function is

where
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Fig. 3.6 Probability density function f (x) of a Poisson distribution with diff erent values 
for  λ . a λ=0.5 and b λ=2.

Th e binomial distribution has two parameters N and p. An example for the 
application of this distribution is to determine the likely outcome of drilling 
for oil. Let us assume that the probability of drilling success is 0.1 or 10 %. Th e 
probability of x=3 successful wells out of a total number of N=10 wells is

Th e probability of exactly 3 successful wells out of 10 trials is therefore 6 % 
in this example.

Poisson Distribution

When the number of trials is N →∞  and the success probability is p → 0, 
the binomial distribution approaches a  Poisson distribution with a single 
parameter λ=Np (Fig. 3.6) (Poisson 1837). Th is works well for N > 100 and 
p < 0.05 or 5 %. We therefore use the Poisson distribution for processes char-
acterized by extremely low occurrence, e. g., earthquakes, volcanic erup-
tions, storms and fl oods. Th e probability density function is
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Fig. 3.7 a Probability density function f (x) and b cumulative distribution function F(x) 
of a Gaussian or normal distribution with a mean μ=3 and various values for standard 
deviation σ .

and the cumulative distribution function is

Th e single parameter λ  describes both the mean and the variance of this 
distribution.

Normal or Gaussian Distribution

When p=0.5 (symmetric, no skew) and N→∞ , the binomial distribution 
approaches a  normal or  Gaussian distribution defi ned by the  mean μ  and 
 standard deviation σ  (Fig. 3.7). Th e probability density function of a normal 
distribution is



56  3 UNIVARIATE STATISTICS

and the cumulative distribution function is

Th e normal distribution is therefore used when the mean is both the most 
frequent and the most likely value. Th e probability of deviations is equal in 
either direction and decreases with increasing distance from the mean. 

Th e  standard normal distribution is a special member of the normal 
distribution family that has a mean of zero and a standard deviation of one. 
We can transform the equation for a normal distribution by substituting 
z=(x–μ)/σ. Th e probability density function of this distribution is

Th is defi nition of the normal distribution is oft en called the  z distribution.

Logarithmic Normal or Log-Normal Distribution

Th e  logarithmic normal or  log-normal distribution is used when the data 
have a lower limit, e. g., mean-annual precipitation or the frequency of 
earthquakes (Fig. 3.8). In such cases, distributions are usually characterized 
by signifi cant skewness, which is best described by a logarithmic normal 
distribution. Th e probability density function of this distribution is

and the cumulative distribution function is

where x>0. Th e distribution can be described by two parameters: the mean 
μ  and the standard deviation σ. Th e formulas for the mean and the standard 
deviation, however, are diff erent from the ones used for normal distributions. 
In practice, the values of x are logarithmized, the mean and the standard 
deviation are computed using the formulas for a normal distribution, and 
the empirical distribution is then compared with a normal distribution.
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Fig. 3.8 a Probability density function f(x) and b cumulative distribution function F(x) of a 
logarithmic normal distribution with a mean μ=0 and with various values for σ .

Student’s t Distribution

Th e  Student’s  t distribution was fi rst introduced by William Gosset (1876–
1937) who needed a distribution for small samples (Fig. 3.9). Gosset was 
an employee of the Irish Guinness Brewery and was not allowed to publish 
research results. For that reason he published his t distribution under the 
pseudonym Student (Student 1908). Th e probability density function is

where Γ  is the Gamma function

which can be written as
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Fig. 3.9 a Probability density function f (x) and b cumulative distribution function F(x) of 
a Student's t distribution with two diff erent values for Φ.

if x>0. Th e single parameter Φ  of the t distribution is the number of degrees 
of freedom. In the analysis of univariate data, this distribution has n–1 de-
grees of freedom, where n is the sample size. As Φ →∞ , the t distribution 
converges towards the standard normal distribution. Since the t distribu-
tion approaches the normal distribution for Φ>30, it is rarely used for dis-
tribution fi tting. However, the t distribution is used for hypothesis testing 
using the t-test (Section 3.6).

Fisher’s F Distribution

Th e  F distribution was named aft er the statistician Sir Ronald Fisher (1890–
1962). It is used for hypothesis testing using the F-test (Section 3.7). Th e F dis-
tribution has a relatively complex probability density function (Fig. 3.10):
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Fig. 3.10 a Probability density function f (x) and b cumulative distribution function F(x) of 
a Fisher’s F distribution with diff erent values for Φ1 and Φ 2.

where x>0 and Γ  is again the  Gamma function. Th e two parameters Φ1 and 
Φ 2 are the numbers of degrees of freedom.

χ 2 or  Chi-Squared Distribution

Th e  χ 2 distribution was introduced by Friedrich Helmert (1876) and Karl 
Pearson (1900). It is not used for fi tting a distribution, but has important 
applications in statistical hypothesis testing using the χ 2-test (Section 3.8). 
Th e probability density function of the χ 2 distribution is

where x>0, otherwise f (x)=0; Γ  is again the  Gamma function. Once again, 
Φ  is the number of degrees of freedom (Fig. 3.11).

3.5 Example of Theoretical Distributions

Th e function  randtool is a tool to simulate discrete data with statistics sim-
ilar to our data. Th is function creates a histogram of  random numbers from 
the distributions in the Statistics Toolbox. Th e random numbers that have 
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Fig. 3.11 a Probability density function f (x) and b cumulative distribution function F(x) of 
a χ 2 distribution with diff erent values for Φ.

been generated by using this tool can then be exported into the workspace. 
We start the  graphical user interface ( GUI) of the function by typing

randtool

aft er the prompt. We can now create a data set similar to the one in the fi le 
organicmatter_one.txt. Th e 60 measurements have a mean of 12.3448 wt % 
and a standard deviation of 1.1660 wt %. Th e GUI uses Mu for μ  (the mean 
of a population) and Sigma for σ  (the standard deviation). Aft er choosing 
Normal for a Gaussian distribution and 60 for the number of samples, we 
get a histogram similar to the one in the fi rst example (Section 3.3). Th is 
synthetic distribution based on 60 samples represents a rough estimate of 
the true normal distribution. If we increase the sample size, the histogram 
looks much more like a true Gaussian distribution.

Instead of simulating discrete distributions, we can use the  probabil-
ity density function (PDF) or  cumulative distribution function (CDF) to 
compute a theoretical distribution. Th e MATLAB Help gives an overview 
of the available theoretical distributions. As an example, we can use the 
functions normpdf(x,mu,sigma) and normcdf(x,mu,sigma) to 
compute the PDF and CDF of a Gaussian distribution with Mu=12.3448 
and Sigma=1.1660, evaluated for the values in x, to compare the results 
with those from our sample data set.
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clear

x = 9 : 0.1 : 15;
pdf = normpdf(x,12.3448,1.1660);
cdf = normcdf(x,12.3448,1.1660);
plot(x,pdf,x,cdf)

MATLAB also provides a GUI-based function for generating PDFs and 
CDFs with specifi c statistics, which is called  disttool.

disttool

We choose PDF as function type and, then defi ne the mean as Mu=12.3448 
and the standard deviation  as Sigma=1.1660. Although the function 
disttool is GUI-based, it uses the non-GUI functions for calculating 
probability density functions and cumulative distribution functions, such 
as normpdf and normcdf.

Th e remaining sections in this chapter are concerned with methods of 
drawing conclusions from the sample that can then applied to the larger 
phenomenon of interest ( hypothesis testing). Th e three most important sta-
tistical tests for earth science applications are introduced, these being the 
two-sample t-test to compare the means of two data sets, the two-sample 
F-test to compare the variances of two data sets, and the χ 2-test to compare 
distributions. Th e last section introduces methods that can be used to fi t 
distributions to our data sets.

3.6 The t-Test

Th e Student’s t-test by William Gossett compares the means of two distri-
butions. Th e  one-sample t-test is used to test the hypothesis that the mean 
of a Gaussian-distributed population has a value specifi ed in the null hy-
pothesis. Th e two-sample t-test is employed to test the  hypothesis that the 
means of two Gaussian distributions are identical. In the following text, the 
two-sample t-test is introduced to demonstrate hypothesis testing. Let us 
assume that two independent sets of na and nb measurements have been 
carried out on the same object, for instance, measurements on two sets of 
rock samples taken from two separate outcrops. Th e  t-test can be used to de-
termine whether both sets of samples come from the same population, e. g., 
the same lithologic unit ( null hypothesis) or from two diff erent populations 
( alternative hypothesis). Both sample distributions must be Gaussian, and 
the variance for the two sets of measurements should be similar. Th e appro-
priate test statistic for the diff erence between the two means is then
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where na and nb are the sample sizes, and sa2 and sb2 are the variances of 
the two samples a and b. Th e null hypothesis can be rejected if the measured 
t-value is higher than the critical t-value, which depends on the number of 
degrees of freedom Φ =na+nb–2 and the  signifi cance level α . Th e signifi -
cance level α  of a test is the maximum probability of accidentally rejecting 
a true null hypothesis. Note that we cannot prove the null hypothesis, in 
other words not guilty is not the same as innocent (Fig. 3.12). Th e hypoth-
esis test can be performed either as a one-tailed (one-sided) or two-tailed 
(two-sided) test. Th e term tail derives from the tailing off  of the data to the 
far left  and far right of a probability density function, as, for example, in 
the t distribution. Th e one-tailed test is used to test against the alternative 
hypothesis that the mean of the fi rst sample is either smaller or larger than 
the mean of the second sample at a signifi cance level of 5 % or 0.05. Th e one-
tailed test would require the modifi cation of the above equation by replac-
ing the absolute value of the diff erence between the means by the diff erence 
between the means. Th e two-tailed t-test is used when the means are not 
equal at a 5 % signifi cance level, i. e., when is makes no diff erence which of 
the means is larger. In this case, the signifi cance level is halved, i. e., 2.5 % is 
used to compute the critical t-value.

We can now load an example data set of two independent series of mea-
surements. Th e fi rst example shows the performance of the two-sample t-
test on two distributions with means of 25.5 and 25.3, while the standard 
deviations are 1.3 and 1.5, respectively.

clear

load('organicmatter_two.mat');

Th e binary fi le organicmatter_two.mat contains two data sets corg1 and 
corg2. First, we plot both histograms in a single graph

[n1,x1] = hist(corg1);
[n2,x2] = hist(corg2);
 
h1 = bar(x1,n1);
hold on
h2 = bar(x2,n2);
hold off
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set(h1,'FaceColor','none','EdgeColor','r')
set(h2,'FaceColor','none','EdgeColor','b')

Here we use the command set to change graphic objects of the bar plots h1 
and h2, such as the face and edge colors of the bars. We then compute the 
frequency distributions of both samples, together with the sample sizes, the 
means and the standard deviations.

[n1,x1] = hist(corg1);
[n2,x2] = hist(corg2);

na = length(corg1);
nb = length(corg2);
ma = mean(corg1);
mb = mean(corg2);
sa = std(corg1);
sb = std(corg2);

Next, we calculate the t-value using the translation of the equation for the 
t-test statistic into MATLAB code.

tcalc = abs((ma-mb))/sqrt(((na+nb)/(na*nb)) * ...
   (((na-1)*sa^2+(nb-1)*sb^2)/(na+nb-2)))

tcalc =
    0.7279

We can now compare the calculated tcalc of 1.7995 with the critical 
tcrit. Th is can be accomplished using the function tinv, which yields 
the inverse of the t distribution function with na-nb-2 degrees of freedom 
at the 5 % signifi cance level. Th is is a two-sample t-test, i. e., the means are 
not equal. Computing the two-tailed critical tcrit by entering 1–0.05/2 
yields the upper (positive) tcrit that we compare with the absolute value 
of the diff erence between the means.

tcrit = tinv(1-0.05/2,na+nb-2)

tcrit =
    1.9803

Since the tcalc calculated from the data is smaller than the critical 
tcrit, we cannot reject the null hypothesis without another cause. We 
conclude therefore that the two means are identical at a 5 % signifi cance 
level. Alternatively, we can apply the function  ttest2(x,y,alpha) to 
the two independent samples corg1 and corg2 at an alpha=0.05 or a 
5 % signifi cance level. Th e command

[h,p,ci,stats] = ttest2(corg1,corg2,0.05)
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yields

h =
    0

p =
    0.4681

ci =
   -0.3028    0.6547

stats = 
    tstat: 0.7279
       df: 118
       sd: 1.3241

Th e result h=0 means that we cannot reject the null hypothesis without an-
other cause at a 5 % signifi cance level. Th e p-value of 0.4681 suggests that the 
chances of observing more extreme t values than the values in this example, 
from similar experiments, would be 4681 in 10,000. Th e 95 % confi dence in-
terval on the mean is [–0.3028 0.6547], which includes the theoretical (and 
hypothesized) diff erence between the means of 25.5–25.3=0.2.

Th e second synthetic example shows the performance of the two-sam-
ple t-test in an example with very diff erent means, 24.3 and 25.5, while the 
standard deviations are again 1.3 and 1.5, respectively.

clear

load('organicmatter_three.mat');

Th is fi le again contains two data sets corg1 and corg2. As before, we fi rst 
compute the frequency distributions of both samples, together with the 
sample sizes, the means and the standard deviations.

[n1,x1] = hist(corg1);
[n2,x2] = hist(corg2);

na = length(corg1);
nb = length(corg2);
ma = mean(corg1);
mb = mean(corg2);
sa = std(corg1);
sb = std(corg2);

Next, we calculate the t-value using the translation of the equation for the 
t-test statistic into MATLAB code.

tcalc = abs((ma-mb))/sqrt(((na+nb)/(na*nb)) * ...
   (((na-1)*sa^2+(nb-1)*sb^2)/(na+nb-2)))
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tcalc =
    4.7364

We can now compare the calculated tcalc of 4.7364 with the critical 
tcrit. Again, this can be accomplished using the function tinv at a 5 % 
signifi cance level. Th e function tinv yields the inverse of the t distribution 
function with na-nb-2 degrees of freedom at the 5 % signifi cance level. 
Th is is again a two-sample t-test, i. e., the means are not equal. Computing 
the two-tailed critical tcrit by entering 1–0.05/2 yields the upper (posi-
tive) tcrit that we compare with the absolute value of the diff erence be-
tween the means.

tcrit = tinv(1-0.05/2,na+nb-2)

tcrit =
    1.9803

Since the tcalc calculated from the data is now larger than the critical 
tcrit, we can reject the null hypothesis and conclude that the means are 
not identical at a 5 % signifi cance level. Alternatively, we can apply the func-
tion ttest2(x,y,alpha) to the two independent samples corg1 and 
corg2 at an alpha=0.05 or a 5 % signifi cance level. Th e command

[h,p,ci,stats] = ttest2(corg1,corg2,0.05)

yields

h =
     1

p =
    6.1183e-06

ci =
    0.7011   1.7086

stats = 
    tstat: 4.7364
       df: 118
       sd: 1.3933

Th e result h=1 suggests that we can reject the null hypothesis. Th e p-value 
is extremely low and very close to zero suggesting that the null hypothesis is 
very unlikely to be true. Th e 95 % confi dence interval on the mean is [0.7011 
1.7086], which again includes the theoretical (and hypothesized) diff erence 
between the means of 25.5–24.3=1.2.
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3.7 The F-Test

Th e two-sample  F-test by Snedecor and Cochran (1989) compares the vari-
ances sa2 and sb2 of two distributions, where sa2>sb2 . An example is the 
comparison of the natural heterogeneity of two samples based on replicated 
measurements. Th e sample sizes na and nb should be above 30. Both, the 
sample and population distributions must be Gaussian. Th e appropriate test 
statistic with which to compare the variances is then

Th e two variances are signifi cantly diff erent, i. e., we can reject the null hy-
pothesis without another cause, if the measured F-value is higher than the 
critical F-value, which in turn will depend on the number of degrees of free-
dom Φa=na–1 and Φb =nb–1, respectively, and the signifi cance level α . Th e 
one-sample F-test, in contrast, virtually performs a χ2-test of the hypothesis 
that the data come from a normal distribution with a specifi c variance (see 
Section 3.8). We fi rst apply the two-sample F-test to two distributions with 
very similar standard deviations of 1.2550 and 1.2097.

clear

load('organicmatter_four.mat');

Th e quantity F is the quotient of the larger variance divided by the smaller 
variance. We can now compute the standard deviations, where

s1 = std(corg1)

s2 = std(corg2)

which yields

s1 =
    1.2550

s2 =
    1.2097

Th e F-distribution has two parameters, df1 and df2, which are the num-
bers of observations of both distributions reduced by one, where

df1 =  length(corg1) - 1
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df2 = length(corg2) - 1

which yields

df1 =
    59

df2 =
    59

Next we sort the standard deviations by their absolute values,

if s1 > s2
  slarger  = s1
  ssmaller = s2
else
  slarger  = s2
  ssmaller = s1
end

and get

slarger =
    1.2550

ssmaller =
    1.2097

We now compare the calculated F with the critical F. Th is can be accom-
plished using the function  finv at a signifi cance level of 0.05 or 5 %. Th e 
function finv returns the inverse of the F distribution function with df1 
and df2 degrees of freedom, at the 5 % signifi cance level. Th is is a two-
tailed test and we therefore must divide the p-value of 0.05 by two. Typing

Fcalc = slarger^2 / ssmaller^2

Fcrit = finv(1-0.05/2,df1,df2)

yields

Fcalc =
    1.0762

Fcrit =
    1.6741

Since the F calculated from the data is smaller than the critical F, we cannot 
reject the null hypothesis without another cause. We conclude therefore that 
the variances are identical at 5 % signifi cance level. Alternatively, we can ap-
ply the function vartest2(x,y,alpha) to the two independent samples 
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corg1 and corg2 at an alpha=0.05 or a 5 % signifi cance level. MATLAB 
also provides a one-sample variance test vartest(x,variance) analo-
gous to the one-sample t-test discussed in the previous section. Th e one-
sample variance test, however, virtually performs a χ 2-test of the hypothesis 
that the data in the vector x come from a normal distribution with a vari-
ance defi ned by variance. Th e χ 2-test is introduced in the next section. 
Th e command

[h,p,ci,stats] = vartest2(corg1,corg2,0.05)

yields

h =
     0

p =
    0.7787

ci =
    0.6429    1.8018

stats = 
    fstat: 1.0762
      df1: 59
      df2: 59

Th e result h=0 means that we cannot reject the null hypothesis without an-
other cause at a 5 % signifi cance level. Th e p-value of 0.7787 means that the 
chances of observing more extreme values of F than the value in this exam-
ple, from similar experiments, would be 7,787 in 10,000. A 95 % confi dence 
interval is [–0.6429 1.8018], which includes the theoretical (and hypoth-
esized) ratio var(corg1)/var(corg2) of 1.25502/1.20972=1.0762.

We now apply this test to two distributions with very diff erent standard 
deviations, 1.8799 and 1.2939.

clear

load('organicmatter_five.mat');

We again compare the calculated Fcalc with the critical Fcrit at a 5 % 
signifi cance level, using the function finv to compute Fcrit.

s1 = std(corg1);
s2 = std(corg2);

df1 = length(corg1) - 1;
df2 = length(corg2) - 1;
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if s1 > s2
  slarger  = s1;
  ssmaller = s2;
else
  slarger  = s2;
  ssmaller = s1;
end

Fcalc = slarger^2 / ssmaller^2

Fcrit = finv(1-0.05/2,df1,df2)

and get

Fcalc =
    3.4967

Fcrit =
    1.6741

Since the Fcalc calculated from the data is now larger than the critical 
Fcrit, we can reject the null hypothesis. Th e variances are therefore diff er-
ent at a 5 % signifi cance level.

Alternatively, we can apply the function vartest2(x,y,alpha), 
performing a two-sample F-test on the two independent samples corg1 
and corg2 at an alpha=0.05 or a 5 % signifi cance level.

[h,p,ci,stats] = vartest2(corg1,corg2,0.05)

yields

h =
     1

p =
   3.4153e-06

ci =
    2.0887    5.8539

stats =
    fstat: 3.4967
      df1: 59
      df2: 59

Th e result h=1 suggests that we can reject the null hypothesis. Th e p-value 
is extremely low and very close to zero suggesting that the null hypoth-
esis is very unlikely. Th e 95 % confi dence interval is [2.0887 5.8539], which 
again includes the theoretical (and hypothesized) ratio var(corg1)/
var(corg2) of 1.87992/1.29392=1.0762.
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3.8 The  χ 2-Test

Th e  χ 2-test introduced by Karl Pearson (1900) involves the comparison of 
distributions, allowing two distributions to be tested for derivation from 
the same population. Th is test is independent of the distribution that is be-
ing used, and can therefore be used to test the hypothesis that the observa-
tions were drawn from a specifi c theoretical distribution.

Let us assume that we have a data set that consists of multiple chemical 
measurements from a sedimentary unit. We could use the χ 2-test to test the 
null hypothesis that these measurements can be described by a Gaussian 
distribution with a typical central value and a random dispersion around 
it. Th e n data are grouped in K classes, where n should be above 30. Th e 
frequencies within the classes Ok should not be lower than four, and should 
certainly never be zero. Th e appropriate test statistic is then

where Ek are the frequencies expected from the theoretical distribution 
(Fig. 3.12). Th e null hypothesis can be rejected if the measured χ 2 is higher 
than the critical χ 2 , which depends on the number of degrees of freedom 
Φ =K–Z, where K is the number of classes and Z is the number of param-
eters describing the theoretical distribution plus the number of variables 
(for instance, Z=2+1 for the mean and the variance from a Gaussian distri-
bution of a data set for a single variable, Z=1+1 for a Poisson distribution 
for a single variable).

As an example, we can test the hypothesis that our organic carbon mea-
surements contained in organicmatter_one.txt follow a Gaussian distribu-
tion. We must fi rst load the data into the workspace and compute the fre-
quency distribution n_obs for the data measurements.

clear

corg = load('organicmatter_one.txt');

v = 9.40 : 0.74 : 14.58;
n_obs = hist(corg,v);

We then use the function normpdf to create the expected frequency distri-
bution n_exp with the mean and standard deviation of the data in corg.

n_exp = normpdf(v,mean(corg),std(corg));
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Fig. 3.12 Principles of a χ 2-test. Th e alternative hypothesis that the two distributions are 
diff erent can be rejected if the measured χ 2 is lower than the critical χ 2 . χ 2 depends on 
Φ =K–Z, where K is the number of classes and Z is the number of parameters describing the 
theoretical distribution plus the number of variables. In the example, the critical χ 2(Φ =5, 
α= 0.05) is 11.0705. Since the measured χ 2=6.0383 is below the critical χ 2 , we cannot reject 
the null hypothesis. In our example, we can conclude that the sample distribution is not 
signifi cantly diff erent from a Gaussian distribution.

Th e data need to be scaled so that they are similar to the original data set.

n_exp = n_exp / sum(n_exp);
n_exp = sum(n_obs) * n_exp;

Th e fi rst command  normalizes the observed frequencies n_obs to a total 
of one. Th e second command  scales the expected frequencies n_exp to the 
sum of n_obs. We can now display both histograms for comparison.

subplot(1,2,1), bar(v,n_obs,'r')
subplot(1,2,2), bar(v,n_exp,'b')

Visual inspection of these plots reveals that they are similar. It is, howev-
er, advisable to use a more quantitative approach. Th e χ 2-test explores the 
squared diff erences between the  observed and  expected frequencies. Th e 
quantity chi2calc is the sum of the squared diff erences divided by the 
expected frequencies.

chi2calc = sum((n_obs - n_exp).^2 ./ n_exp)

chi2calc =
    6.0383
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Th e critical chi2crit can be calculated using  chi2inv. Th e χ 2-test re-
quires the number of degrees of freedom Φ. In our example, we test the hy-
pothesis that the data have a Gaussian distribution, i. e., we estimate the two 
parameters μ  and σ. Th e number of degrees of freedom is Φ =8–(2+1)=5. 
We can now test our hypothesis at a 5 % signifi cance level. Th e function 
chi2inv computes the inverse of the χ 2 CDF with parameters specifi ed by 
Φ  for the corresponding probabilities in p.

chi2crit = chi2inv(1-0.05,5)

chi2crit = 
    11.0705

Since the critical chi2crit of 11.0705 is well above the measured chi2calc 
of 5.4256, we cannot reject the null hypothesis without another cause. We can 
therefore conclude that our data follow a Gaussian distribution. Alternatively, 
we can apply the function chi2gof(x) to the sample. Th e command

[h,p,stats] = chi2gof(corg)

yields

h =
     0

p =
    0.6244

stats = 
 chi2stat: 2.6136
       df: 4
    edges: [9.417 10.960 11.475 11.990 12.504 13.018 13.533 14.5615]
        O: [8 8 5 10 10 9 10]
        E: [7.0506 6.6141 9.1449 10.4399 9.8406 7.6587 9.2511]

Th e function automatically defi nes seven classes instead of the eight classes 
that we used in our experiment. Th e result h=0 means that we cannot reject 
the null hypothesis without another cause at a 5 % signifi cance level. Th e p-
value of 0.6244 means that the chances of observing either the same result 
or a more extreme result, from similar experiments in which the null hy-
pothesis is true, would be 6,244 in 10,000. Th e structure array stats con-
tains the calculated χ 2 , which is 2.6136 and diff ers from our result of 5.2456 
due to the diff erent number of classes. Th e array stats also contains the 
number of degrees of freedom Φ =7–(2+1)=4, the eight edges of the seven 
classes automatically defi ned by the function chi2gof, and the observed 
and expected frequencies of the distribution.
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3.9 Distribution Fitting

In the previous section we computed the mean and standard deviation of our 
sample and designed a normal distribution based on these two parameters. 
We then used the χ 2-test to test the hypothesis that our data indeed follow 
a Gaussian or normal distribution.  Distribution fi tting functions contained 
in the Statistics Toolbox provide powerful tools for estimating the distribu-
tions directly from the data. Distribution fi tting functions for supported 
distributions all end with fit, as in binofit, or expfit. Th e function 
to fi t normal distributions to the data is  normfit. To demonstrate the use 
of this function we fi rst generate 100 synthetic, Gaussian-distributed values, 
with a mean of 6.4 and a standard deviation of 1.4.

clear

randn('seed',0)
data = 6.4 + 1.4*randn(100,1);

We then defi ne the midpoints v of nine histogram intervals, display the 
result and calculate the frequency distribution n.

v = 2 : 10;
hist(data,v)
n = hist(data,v);

Th e function normfit yields estimates of the mean, muhat, and standard 
deviation, sigmahat, of the normal distribution for the observations in 
data.

[muhat,sigmahat] = normfit(data)

muhat =
    6.5018

sigmahat =
    1.3350

Th ese values for the mean and the standard deviation are similar to the 
ones that we defi ned initially. We can now calculate the probability density 
function of the normal distribution with the mean muhat and standard 
deviation sigmahat, scale the resulting function y to same total number 
of observations in data and plot the result.

x = 2 : 1/20 : 10;
y = normpdf(x,muhat,sigmahat);
y = trapz(v,n) * y/trapz(x,y);
bar(v,n), hold on, plot(x,y,'r'), hold off
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Alternatively, we can use the function  mle to fi t a normal distribution, but 
also other distributions such as binomial or exponential distributions, to 
the data. Th e function mle(data,'distribution',dist) computes 
parameter estimates for the distribution specifi ed by dist. Acceptable 
strings for dist can be obtained by typing help mle.

phat = mle(data,'distribution','normal');

Th e variable phat contains the values of the parameters describing the type 
of distribution fi tted to the data. As before, we can now calculate and scale 
the probability density function y, and display the result.

x = 2 : 1/20 : 10;
y = normpdf(x,phat(:,1),phat(:,2));
y = trapz(v,n) * y/trapz(x,y);

bar(v,n), hold on, plot(x,y,'r'), hold off

In earth sciences we oft en encounter  mixed distributions. Examples are 
multimodal grain size distributions (Section 8.8), multiple preferred paleo-
current directions (Section 10.6), or multimodal chemical ages of monazite 
refl ecting multiple episodes of deformation and metamorphism in a moun-
tain belt. Fitting  Gaussian mixture distributions to the data aims to deter-
mine the means and variances of the individual distributions that combine 
to produce the mixed distribution. In our examples, the methods described 
in this section help to determine the episodes of deformation in the moun-
tain range, or to separate the diff erent paleocurrent directions caused by 
tidal fl ow in an ocean basin.

As a synthetic example of Gaussian mixture distributions we generate 
two sets of 100 random numbers ya and yb with means of 6.4 and 13.3, 
respectively, and standard deviations of 1.4 and 1.8, respectively. We then 
vertically concatenate the series using  vertcat and store the 200 data val-
ues in the variable data.

clear

randn('seed',0)
ya = 6.4 + 1.4*randn(100,1);
yb = 13.3 + 1.8*randn(100,1);
data = vertcat(ya,yb);
 

Plotting the histogram reveals a bimodal distribution. We can also deter-
mine the frequency distribution n using hist.

v = 0 : 30;
hist(data,v)
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n = hist(data,v);

We use the function  mgdistribution.fit(data,k) to fi t a Gaussian 
mixture distribution with k components to the data. Th e function fi ts the 
model by maximum likelihood, using the  Expectation-Maximization (EM) 
algorithm. Th e EM algorithm introduced by Arthur Dempster, Nan Laird 
and Donald Rubin (1977) is an iterative method alternating between per-
forming an expectation step and a maximization step. Th e expectation step 
computes an expectation of the logarithmic likelihood with respect to the 
current estimate of the distribution. Th e maximization step computes the 
parameters which maximize the expected logarithmic likelihood computed 
in the expectation step. Th e function mgdistribution.fit constructs 
an object of the gmdistribution class (see Section 2.5 and MATLAB Help on 
object-oriented programming for details on objects and classes). Th e func-
tion gmdistribution.fit treats NaN values as missing data: rows of 
data with NaN values are excluded from the fi t. We can now determine the 
Gaussian mixture distribution with two components in a single dimension.

gmfit = gmdistribution.fit(data,2)

Gaussian mixture distribution with 2 components in 1 dimensions
Component 1:
Mixing proportion: 0.509171
Mean:     6.5478

Component 2:
Mixing proportion: 0.490829
Mean:    13.4277
 

Th us we obtain the means and relative mixing proportion of both distribu-
tions. In our example, both normal distributions with means of 6.5492 and 
13.4300, respectively, contribute ca. 50 % (0.51 and 0.49, respectively) to the 
mixture distribution. Th e object  gmfit contains several layers of informa-
tion, including the mean gmfit.mu and the standard deviation gmfit.
Sigma that we use to calculate the probability density function y of the 
mixed distribution.

x = 0 : 1/30 : 20;
y1 = normpdf(x,gmfit.mu(1,1),gmfit.Sigma(:,:,1));
y2 = normpdf(x,gmfit.mu(2,1),gmfit.Sigma(:,:,2));

Th e object gmfit also contains information on the relative mixing propor-
tions of the two distributions in the layer gmfit.PComponents. We can 
use this information to scale y1 and y2 to the correction proportions rela-
tive to each other.
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Fig. 3.13 Fitting Gaussian mixture distributions. As a synthetic example of Gaussian 
mixture distributions we generate two sets of 100 random numbers with means of 6.4 and 
13.3, respectively, and standard deviations of 1.4 and 1.8, respectively. Th e Expectation-
Maximization (EM) algorithm is used to fi t a Gaussian mixture distribution (solid line) 
with two components to the data (bars).

y1 = gmfit.PComponents(1,1) * y1/trapz(x,y1);
y2 = gmfit.PComponents(1,2) * y2/trapz(x,y2);
 

We can now superimpose the two scaled probability density functions y1 
and y2, and scale the result y to the same integral of 200 as the original data. 
Th e integral of the original data is determined using the function  trapz to 
perform a trapezoidal numerical integration.

y = y1 + y2;
y = trapz(v,n) * y/trapz(x(1:10:end),y(1:10:end));
 

Finally, we can plot the probability density function y upon the bar plot of 
the original histogram of data.

bar(v,n), hold on, plot(x,y,'r'), hold off
 

We can then see that the Gaussian mixture distribution closely matches the 
histogram of the data (Fig. 3.13).
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4 Bivariate Statistics

4.1 Introduction

 Bivariate analysis aims to understand the relationship between two vari-
ables x and y. Examples are the length and the width of a fossil, the sodium 
and potassium content of volcanic glass or the organic matter content along 
a sediment core. When the two variables are measured on the same object, 
x is usually identifi ed as the  independent variable, and y as the  dependent 
variable. If both variables have been generated in an experiment, the vari-
able manipulated by the experimenter is described as the independent vari-
able. In some cases, neither variable is manipulated and neither is indepen-
dent. Th e methods of bivariate statistics aim to describe the strength of the 
relationship between the two variables, either by a single parameter such as 
Pearson’s correlation coeffi  cient for linear relationships or by an equation 
obtained by regression analysis (Fig. 4.1). Th e equation describing the rela-
tionship between x and y can be used to predict the y-response from any ar-
bitrary x within the range of the original data values used for the regression 
analysis. Th is is of particular importance if one of the two parameters is dif-
fi cult to measure. In such a case, the relationship between the two variables 
is fi rst determined by regression analysis on a small training set of data. Th e 
regression equation can then be used to calculate the second parameter.

Th is chapter fi rst introduces Pearson’s correlation coeffi  cient (Section  
4.2), and then explains the widely-used methods of linear and curvilinear 
regression analysis (Sections 4.3, 4.9 and 4.10). A selection of other meth-
ods that are also used to assess the uncertainties in regression analysis are 
explained (Sections 4.4 to 4.8). All methods are illustrated by means of syn-
thetic examples since these provide an excellent means of assessing the fi nal 
outcome.

M.H. Trauth, MATLAB® Recipes for Earth Sciences, 3rd ed.,  
DOI 10.1007/978-3-642-12762-5_4, © Springer-Verlag Berlin Heidelberg 2010  
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Fig. 4.1 Display of a  bivariate data set. Th e thirty data points represent the age of a sediment 
(in kiloyears before present) at a certain depth (in meters) below the sediment-water 
interface. Th e combined distribution of the two variables suggests a linear relationship 
between age and depth, i.e., the rate of increase in the sediment age with depth is constant. 
Pearson’s correlation coeffi  cient (explained in the text) of r= 0.96 supports a strong 
linear interdependency between the two variables. Linear regression yields the equation 
age=21.2+5.6 depth, indicating an increase in sediment age of 5.6 kyrs per meter of sedi-
ment depth (the slope of the regression line). Th e inverse of the slope is the sedimentation 
rate of ca. 0.2 meters/kyr. Furthermore, the equation defi nes an age for the sediment surface 
of 21.2 kyrs (the intercept of the regression line with the y-axis). Th e deviation of the surface 
age from zero can be attributed either to the statistical uncertainty of regression or to a 
natural process such as erosion or bioturbation. Th e assessment of the statistical uncertainty 
of regression is discussed in this chapter, but a careful evaluation of the possible eff ects of 
the various natural processes at the sediment-water interface will be required.

4.2 Pearson’s Correlation Coeffi  cient

Correlation coefficients are oft en used in the early stages of bivariate sta-
tistics. Th ey provide only a very rough estimate of a rectilinear trend in a 
bivariate data set. Unfortunately, the literature is full of examples where the 
importance of correlation coeffi  cients is overestimated, or where outliers in 
the data set lead to an extremely biased estimation of the population cor-
relation coeffi  cient.

Th e most popular correlation coeffi  cient is  Pearson’s linear product-
moment  correlation coefficient ρ  (Fig. 4.2). We estimate the population's 
correlation coeffi  cient ρ  from the sample data, i.e., we compute the sample 
correlation coeffi  cient r, which is defi ned as
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Fig. 4.2 Pearson’s correlation coeffi  cent r for various sample data sets. a–b Positive and 
negative linear correlation, c random scatter with no linear correlation, d an outlier causing 
a misleading value of r, e curvilinear relationship causing a high r since the curve is  close 
to a straight line, f curvilinear relationship clearly not described by r.
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where n is the number of pairs xy of data points, sx and sy are the univariate 
standard deviations. Th e numerator of Pearson’s correlation coeffi  cient is 
known as the  corrected sum of products of the bivariate data set. Dividing 
the numerator by (n–1) yields the  covariance

which is the summed products of deviations of the data from the sample 
means, divided by (n–1). Th e covariance is a widely-used measure in bivari-
ate statistics, although it has the disadvantage of being dependent on the 
dimension of the data. Dividing the covariance by the univariate standard 
deviations removes this eff ect and leads to Pearson’s correlation coeffi  cient.

A popular way to test the signifi cance of Pearson’s correlation coeffi  cient 
is to determine the probability of an r value for a random sample from a 
population with a ρ =0. Th e signifi cance of the correlation coeffi  cient can be 
estimated using a t statistic

Th e correlation coeffi  cient is signifi cant if the calculated t is higher than the 
critical t (n–2 degrees of freedom, α=0.05). Th is test, however, is only valid 
if both variables are Gaussian distributed with respect to both variables.

Pearson’s correlation coeffi  cient is very sensitive to various disturbances 
in the bivariate data set. Th e following example illustrates the use of the cor-
relation coeffi  cients and highlights the potential pitfalls when using these 
measures of linear trends. It also describes the resampling methods that can 
be used to explore the confi dence level of the estimate for ρ. Th e synthetic 
data consist of two variables, the age of a sediment in kiloyears before pres-
ent and the depth below the sediment-water interface in meters. Th e use of 
synthetic data sets has the advantage that we fully understand the linear 
model behind the data.

Th e data are represented as two columns contained in fi le agedepth_1.txt. 
Th ese data have been generated using a series of thirty random levels (in me-
ters) below the sediment surface. Th e linear relationship age=5.6  meters+20 
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was used to compute noise-free values for the variable age. Th is is the equa-
tion of a straight line with a slope of 5.6 and an intercept with the y-axis of 
20. Some Gaussian noise with a zero mean and a standard deviation of 10 
has been added to the age data.

clear

rand('seed',40), randn('seed',0)
meters = 20 * rand(30,1);
age =  5.6 * meters + 20;
age = age + 10.* randn(length(meters),1);

plot(meters,age,'o')
axis([0 20 0 140])

agedepth(:,1) = meters;
agedepth(:,2) = age;
agedepth = sortrows(agedepth,1)

save agedepth_1.txt agedepth -ascii

Th e synthetic bivariate data set can be loaded from the fi le agedepth_1.txt.

clear

agedepth = load('agedepth_1.txt');

We then defi ne two new variables, meters and age, and generate a scatter 
plot of the data.

meters = agedepth(:,1);
age = agedepth(:,2);

plot(meters,age,'o')
axis([0 20 0 140])

In the plot, we can observe a strong  linear trend suggesting some depen-
dency between the variables, meters and age. Th is trend can be described 
by Pearson’s correlation coeffi  cient r, where r=1 indicates a perfect posi-
tive correlation, i.e., age increases with meters, r=0 suggests no correla-
tion, and r=–1 indicates a perfect negative correlation. We use the function 
 corrcoef to compute Pearson’s  correlation coeffi  cient.

corrcoef(meters,age)

which results in the output

ans =
    1.0000    0.9567
    0.9567    1.0000
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Th e function corrcoef calculates a matrix of correlation coeffi  cients for 
all possible combinations of the two variables age and meters. Th e value 
of r=0.9567 suggests that the two variables age and meters are dependent 
on each other.

Pearson’s correlation coeffi  cient is, however, highly sensitive to outliers, 
as can be illustrated by the following example. Let us generate a normally-
distributed cluster of thirty data with zero mean and a standard deviation 
one. To obtain identical data values, we reset the random number generator 
by using the integer 5 as seed.

clear

 randn('seed',5);
x = randn(30,1); y = randn(30,1);

plot(x,y,'o'), axis([-1 20 -1 20]);

As expected, the correlation coeffi  cient for these random data is very low.

corrcoef(x,y)

ans =
    1.0000    0.1021
    0.1021    1.0000

Now we introduce a single outlier to the data set in the form of an excep-
tionally high (x,y) value, in which x=y. Th e correlation coeffi  cient for the 
bivariate data set including the outlier (x,y)=(5,5) is much higher than 
before.

x(31,1) = 5; y(31,1) = 5;

plot(x,y,'o'),  axis([-1 20 -1 20]);

corrcoef(x,y)

ans =
    1.0000    0.4641
    0.4641    1.0000

Increasing the absolute (x,y) values for this outlier results in a dramatic 
increase in the correlation coeffi  cient.

x(31,1) = 10; y(31,1) = 10;

plot(x,y,'o'), axis([-1 20 -1 20]);

corrcoef(x,y)
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ans =
    1.0000    0.7636
    0.7636    1.0000
 

and reaches a value close to r=1 if the  outlier has a value of (x,y) 
=(20,20).

x(31,1) = 20; y(31,1) = 20;

plot(x,y,'o'), axis([-1 20 -1 20]);

corrcoef(x,y)  

ans =
    1.0000    0.9275
    0.9275    1.0000

Th e bivariate data set still does not provide much evidence for a strong inter-
dependency between the variables. As we have seen, however, the combina-
tion of the random bivariate data with a single outlier results in a dramatic 
increase in the correlation coeffi  cient. Although outliers are easy to iden-
tify in a bivariate scatter, erroneous values can easily be overlooked in large 
multivariate data sets.

Various methods exist to calculate the signifi cance of Pearson’s corre-
lation coeffi  cient. Th e function corrcoef also includes the possibility of 
evaluating the quality of the result.  Th e p-value is the probability of obtain-
ing a correlation as large as the observed value by random chance, when 
the true correlation is zero. If the p-value is small, then the correlation coef-
fi cient r is signifi cant.

[r,p] = corrcoef(x,y)

r =
    1.0000    0.9275
    0.9275    1.0000

p =
    1.0000    0.0000
    0.0000    1.0000

In our example, the p-value is zero suggesting that the correlation coeffi  -
cient is signifi cant. We conclude from this experiment that this particu-
lar signifi cance test fails to detect correlations attributed to an outlier. We 
therefore try an alternative t-test statistic to determine the signifi cance of 
the correlation between x and y. According to this test, we can reject the 
null hypothesis that there is no correlation if the calculated t is larger than 
the critical t (n–2 degrees of freedom, α=0.05).
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tcalc = r(2,1) * ((length(x)-2)/(1-r(2,1)^2))^0.5
tcrit = tinv(0.95,length(x)-2)

tcalc =
   13.3594

tcrit =
    1.6991

Th is result indeed indicates that we can reject the null hypothesis and the 
correlation coeffi  cient is signifi cant. As an alternative to detecting outli-
ers,  resampling schemes or  surrogates such as the  bootstrap or  jackknife 
methods represent powerful tools for assessing the  statistical  signifi cance 
of the results. Th ese techniques are particularly useful when scanning large 
multivariate data sets for outliers (see Chapter 9). Resampling schemes re-
peatedly resample the original data set of n data points either by choosing 
n–1 subsamples n times (the jackknife), or by picking an arbitrary set of 
subsamples with n data points with replacement (the bootstrap). Th e sta-
tistics of these subsamples provide better information on the characteristics 
of the population than the statistical parameters (mean, standard devia-
tion, correlation coeffi  cients) computed from the full data set. Th e function 
 bootstrp allows resampling of our bivariate data set including the outlier 
(x,y)=(20,20).

rhos1000 = bootstrp(1000,'corrcoef',x,y);

Th is command fi rst resamples the data a thousand times, calculates the 
correlation coeffi  cient for each new subsample and stores the result in the 
variable rhos1000. Since corrcoef delivers a 2 × 2 matrix as mentioned 
above, rhos1000 has the dimension 1000 × 4, i.e., 1000 values for each ele-
ment of the 2 × 2 matrix. Plotting the histogram of the 1000 values for the 
second element, i.e., the correlation coeffi  cient of (x,y) illustrates the dis-
persion of this parameter with respect to the presence or absence of the 
outlier. Since the distribution of rhos1000 contains many empty classes, 
we use a large number of bins.

hist(rhos1000(:,2),30)

Th e histogram shows a cluster of correlation coeffi  cients at around r=0.1 
that follow the normal distribution, and a strong peak close to r=1 (Fig. 4.3). 
Th e interpretation of this histogram is relatively straightforward. When the 
subsample contains the outlier, the correlation coeffi  cient is close to one, but 
subsamples without the outlier yield a very low (close to zero) correlation 
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Fig. 4.3 Bootstrap result for Pearson’s correlation coeffi  cient r from 1000 subsamples. 
Th e histogram shows a roughly normally-distributed cluster of correlation coeffi  cients at 
around r= 0.1 suggesting that these subsamples do not include the outlier. Th e strong peak 
close to r=1, however, suggests that an outlier with high values of the two variables x and y 
is present in the corresponding subsamples.

coeffi  cient suggesting no strong dependence between the two variables x 
and y.

Bootstrapping therefore provides a simple but powerful tool for either 
accepting or rejecting our fi rst estimate of the correlation coeffi  cient for the 
population. Th e application of the above procedure to the synthetic sedi-
ment data yields a clear unimodal Gaussian distribution for the correlation 
coeffi  cients of the subsamples.

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

corrcoef(meters,age)

ans =
    1.0000    0.9567
    0.9567    1.0000
    
rhos1000 = bootstrp(1000,'corrcoef',meters,age);

hist(rhos1000(:,2),30)
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Most of the values for rhos1000 fall within the interval between 0.92 and 
0.98. Since the correlation coeffi  cients for the resampled data sets have an 
obvious Gaussian distribution, we can use their mean as a good estimate for 
the true correlation coeffi  cient.

mean(rhos1000(:,2))

ans =
    0.9562

Th is value is similar to our fi rst result of r=0.9567, but now we have con-
fi dence in the validity of this result. In our example, however, the distri-
bution of the bootstrap estimates of the correlations from the age-depth 
data is quite skewed, as the upper limited is fi xed at one. Nevertheless, the 
bootstrap method is a valuable tool for assessing the reliability of Pearson’s 
correlation coeffi  cient for bivariate analysis. 

4.3 Classical Linear Regression Analysis and Prediction

 Linear regression off ers another way of describing the relationship between 
the two variables x and y. Whereas Pearson’s correlation coeffi  cient provides 
only a rough measure of a linear trend, linear models obtained by regres-
sion analysis allow the prediction of arbitrary y values for any given value 
of x within the data range. Statistical testing of the signifi cance of the linear 
model provides some insights into the accuracy of these predictions.

 Classical regression assumes that y responds to x, and that the entire 
dispersion in the data set is in the y-value (Fig. 4.4). Th is means that x is 
then the  independent,  regressor, or  predictor variable. Th e values of x are 
defi ned by the experimenter and are oft en regarded as being free of errors. 
An example is the location x within a sediment core of a clay sample from 
which the variable y has been measured. Th e  dependent variable y contains 
errors as its magnitude cannot be determined accurately. Linear regression 
minimizes the deviations Δy between the data points xy and the value y 
predicted by the best-fi t line y=b 0+b1x using a least-squares criterion. Th e 
basic equation for a general linear model is

where b0 and b1 are the regression coeffi  cients. Th e value of b0 is the inter-
cept with the y-axis and b1 is the slope of the line. Th e squared sum of the 
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Fig. 4.4 Linear regression. Whereas classical regression minimizes the Δy deviations, 
 reduced major axis regression minimizes the triangular area 0.5*(ΔxΔy) between the data 
points and the regression line, where Δx and Δy are the distances between the predicted 
and the true x and y values. Th e intercept of the line with the y-axis is b0, and the slope is b1. 
Th ese two parameters defi ne the equation of the regression line.

Δy deviations to be minimized is

Partial diff erentiation of the right-hand term in the equation and setting it 
to zero yields a simple equation for the  regression coeffi  cient b1:

Th e regression line passes through the data centroid defi ned by the sample 
means, and we can therefore compute the other regression coeffi  cient b0,

using the univariate sample means and the slope b1 computed earlier.
As an example, let us again load the synthetic age-depth data from the 
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fi le agedepth_1.txt. We can defi ne two new variables, meters and age, 
and generate a  scatter plot of the data.

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

A signifi cant  linear trend in the bivariate scatter plot, together with a cor-
relation coeffi  cient of more than r=0.9 suggests a strong linear dependence 
between meters and age. In geological terms, this implies that the sedi-
mentation rate was constant through time. We now try to fi t a linear model 
to the data that will help us predict the age of the sediment at levels for which 
we have no age data. Th e function  polyfit computes the coeffi  cients of a 
polynomial p(x) of a specifi c degree that fi ts the data y in a least-squared 
sense. In our example, we fi t a fi rst degree (linear) polynomial to the data.

p = polyfit(meters,age,1)

p =
    5.5760   21.2480

Since we are working with synthetic data, we know the values for the slope 
and the intercept with the y-axis. Th e estimated slope (5.5760) and the in-
tercept with the y-axis (21.2480) are in good agreement with the true values 
of 5.6 and 20, respectively. Both the data and the fi tted line can be plotted 
on the same graph.

plot(meters,age,'o'), hold on
plot(meters,p(1)*meters+p(2),'r'), hold off

Instead of using the equation for the regression line, we can also use the 
function polyval to calculate the y-values.

plot(meters,age,'o'), hold on
plot(meters,polyval(p,meters),'r'), hold off

Both, the functions polyfit and polyval are incorporated in the GUI 
function  polytool.

polytool(meters,age)

Th e coeffi  cients p(x) and the equation obtained by linear regression can 
now be used to predict y-values for any given x-value. However, we can only 
do this within the depth interval for which the linear model was fi tted, i.e., 
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Fig. 4.5 Th e result of  linear regression. Th e plot shows the original data points (circles), the 
regression line (solid line), and the error bounds (dashed lines) of the regression. Note that 
the error bounds are actually curved although they seem to be almost straight lines in the 
example.

between 0 and 20 meters. As an example, the age of the sediment at a depth 
of 17 meters is given by

 polyval(p,17)

ans =
   116.0405

Th is result suggests that the sediment at 17 meters depth has an age of ca. 
116 kyrs. Th e  goodness-of-fi t of the linear model can be determined by cal-
culating  error bounds. Th ese are obtained by using an additional output pa-
rameter s from polyfit as an input parameter for polyconf to calculate 
the 95 % (alpha=0.05) prediction intervals.

[p,s] = polyfit(meters,age,1);
[p_age,delta] = polyconf(p,meters,s,'alpha',0.05);

plot(meters,age,'o',meters,p_age,'g-',...
   meters,p_age+delta,'r--',meters,p_age-delta,'r--')
axis([0 20 0 140]), grid on
xlabel('Depth in Sediment (meters)')
ylabel('Age of Sediment (kyrs)')

Th e variable delta provides an estimate for the standard deviation of the 
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error in predicting a future observation at x by p(x). Since the plot state-
ment does not fi t on one line, we use an  ellipsis (three periods, i.e., ...) 
followed by return or enter to indicate that the statement continues on the 
next line. Th e plot now shows the data points, and also the regression line 
and the error bounds of the regression (Fig. 4.5). Th is graph already pro-
vides some valuable information on the quality of the result. However, in 
many cases a better understanding of the validity of the model is required, 
and more sophisticated methods for  testing the confi dence in the results are 
therefore introduced in the following sections.

4.4 Analyzing the Residuals

When we compare how much the  predicted values vary from the actual or 
 observed values, we are performing an  analysis of the  residuals. Th e statis-
tics of the residuals provide valuable information on the quality of a model 
fi tted to the data. For instance, a signifi cant trend in the residuals suggests 
that the model does not fully describe the data. In such cases, a more com-
plex model such as a polynomial of a higher degree should be fi tted to the 
data. Residuals are ideally purely random, i.e., Gaussian distributed with 
zero mean. We therefore test the hypothesis that our residuals are Gaussian 
distributed by visual inspection of the histogram and by employing a  χ 2-test, 
as introduced in Chapter 3.

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

p = polyfit(meters,age,1);

res = age - polyval(p,meters);

Since plotting the residuals does not reveal any obvious pattern of behavior, 
no more complex model than a straight line should be fi tted to the data.

plot(meters,res,'o')

An alternative way to plot the residuals is as a stem plot using stem.

subplot(2,1,1)
plot(meters,age,'o'), hold on
plot(meters,p(1)*meters+p(2),'r'), hold off
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subplot(2,1,2)
stem(meters,res);

To explore the distribution of the residuals, we can choose six classes and 
calculate the corresponding frequencies.

[n_exp,x] = hist(res,6)

n_exp =
     4     6     5     7     5     3

x =
   -12.7006   -7.3402   -1.9797    3.3807    8.7412   14.1016

By selecting bin centers in the locations defi ned by the function hist, a 
more practical set of classes can be defi ned.

v = -25 : 8 : 20;

n_exp = hist(res,v);

Th e mean and the standard deviation of the residuals are then computed, 
and used to generate a theoretical distribution that can be compared with 
the frequency distribution of the residuals. Th e mean is found to be close to 
zero, and the standard deviation is 8.7922. Th e function normpdf is used 
to create the frequency distribution n_syn similar to that in our example. 
Th e theoretical distribution is scaled according to our original sample data 
and displayed.

n_syn = normpdf(v,mean(res),std(res));

n_syn = n_syn ./ sum(n_syn);
n_syn = sum(n_exp) * n_syn;

Th e fi rst line normalizes n_syn to a total of one. Th e second command 
scales n_syn to the sum of n_exp. We can now plot both distributions for 
comparison.

subplot(1,2,1), bar(v,n_syn,'r')
subplot(1,2,2), bar(v,n_exp,'b')

Visual inspection of the bar plots reveals similarities between the data sets. 
Hence, the χ 2-test can be used to test the hypothesis that the residuals fol-
low a Gaussian distribution.

chi2calc = sum((n_exp - n_syn) .^2 ./ n_syn)

chi2calc =
    3.3747
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Th e critical χ 2 can be calculated using  chi2inv. Th e χ 2 test requires the 
degrees of freedom Φ, which is the number of classes reduced by the num-
ber of variables and the number of parameters involved. In our example, we 
defi ned six classes, we tested the residuals for a Gaussian distribution with 
two parameters (i.e., the mean and the standard deviation), testing at a 95 % 
signifi cance level, and the number of variables (i.e., the residuals) is one. Th e 
degrees of freedom are therefore Φ =6–(2+1)=3.

chi2crit = chi2inv(0.95,3)

chi2crit =
    7.8147

Since the critical χ 2 of 7.8147 is well above the measured χ 2 of 3.3747, it is 
not possible to reject the null hypothesis. Hence, we can conclude that our 
residuals follow a Gaussian distribution and that the bivariate data set is 
therefore well described by the linear model.

4.5 Bootstrap Estimates of the Regression Coeffi  cients

In this section we use the  bootstrap method to obtain a better estimate of 
the regression coeffi  cients. As an example, we use the function bootstrp 
with 1000 samples (Fig. 4.6).

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

p = polyfit(meters,age,1);

p_bootstrp = bootstrp(1000,'polyfit',meters,age,1);

Th e statistic of the fi rst coeffi  cient, i.e., the slope of the regression line is

hist(p_bootstrp(:,1),15)

mean(p_bootstrp(:,1))
std(p_bootstrp(:,1))

ans =
    5.5644

ans =
    0.3378
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Fig. 4.6 Histogram of a, the fi rst (y-axis intercept of the regression line) and b, the second 
(slope of the line) regression coeffi  cient as estimated from bootstrap resampling. Whereas 
the fi rst coeffi  cient is well constrained, the second coeffi  cient shows a broad scatter.

Because of variations in the random number generators used by bootstrp 
results might vary slightly. Th e small standard deviation indicates that we 
have an accurate estimate. In contrast, the statistic of the second parameter 
shows a signifi cant dispersion.

hist(p_bootstrp(:,2),15)

mean(p_bootstrp(:,2))
std(p_bootstrp(:,2))

ans =
    21.5378

ans =
    4.0745

Th e true values as used to simulate our data set are 5.6 for the slope and 
20 for the intercept with the y-axis, whereas the corresponding coeffi  cients 
calculated using polyfit were 4.0745 and 21.5378.

4.6 Jackknife Estimates of the Regression Coeffi  cients

Th e  jackknife method is a resampling technique that is similar to the boot-
strap method. From a sample with n data points, n subsamples with n–1 
data points are taken. Th e parameters of interest, e. g., the regression coef-
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fi cients, are calculated for each of the subsamples. Th e mean and dispersion 
of the coeffi  cients are computed. Th e disadvantage of this method is the 
limited number of n subsamples. A jackknife estimate of the regression co-
effi  cients is therefore less precise than a bootstrap estimate.

Th e relevant code for the jackknife is easy to generate:

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

p = polyfit(meters,age,1);

for i = 1 : 30
    j_meters = meters;
    j_age = age;
    j_meters(i) = [];
    j_age(i) = [];
    p(i,:) = polyfit(j_meters,j_age,1);
end

Th e jackknife for subsamples with n–1=29 data points can be obtained by a 
simple for loop. Within each iteration, the ith data point is deleted and re-
gression coeffi  cients are calculated for the remaining data points. Th e mean 
of the i subsamples gives an improved estimate of the regression coeffi  cients. 
As with the bootstrap result, the slope of the regression line (fi rst coeffi  cient) 
is well defi ned, whereas the intercept with the y-axis (second coeffi  cient) has 
a large uncertainty,

mean(p(:,1))

ans =
    5.5757

compared to 5.56±0.34 calculated by the bootstrap method and
    
mean(p(:,2))

ans =
    21.2528

compared to 21.54±4.07 from the bootstrap method. Th e true values, as 
before, are 5.6 and 20. Th e histograms of the jackknife results from 30 sub-
samples (Fig. 4.7)

subplot(1,2,1), hist(p(:,1)), axis square
subplot(1,2,2), hist(p(:,2)), axis square
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Fig. 4.7 Histogram of a, the fi rst (y-axis intercept of the regression line) and b, the second 
(slope of the line) regression coeffi  cient as estimated from jackknife resampling. Note that 
the parameters are not as well defi ned as those from bootstrapping.

do not display such clear distributions for the coeffi  cients as the histograms 
of the bootstrap estimates. As an alternative to the above method, MATLAB 
provides the function jackknife with which to perform a jackknife ex-
periment.

p = jackknife('polyfit',meters,age,1);

mean(p(:,1))  
mean(p(:,2))

ans =
    5.5757

ans =
   21.2528

subplot(1,2,1), hist(p(:,1)), axis square
subplot(1,2,2), hist(p(:,2)), axis square

Th e results are identical to the ones obtained using the code introduced 
above. We have seen therefore that resampling using either the jackknife 
or the bootstrap method is a simple and valuable way to test the quality of 
regression models. Th e next section introduces an alternative approach for 
quality estimation, which is much more commonly used than the resam-
pling methods.
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4.7 Cross Validation

A third method to test the goodness-of-fi t of a regression is  cross valida-
tion. Th e regression line is computed by using n–1 data points. Th e nth 
data point is predicted and the discrepancy between the prediction and the 
actual value is computed. Th e mean of the discrepancies between the actual 
and predicted values is subsequently determined.

In this example, the cross validation is computed for n=30 data points. 
Th e resulting 30 regression lines, each computed using n–1=29 data points, 
display some dispersion in their slopes and y-axis intercepts.

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

p = polyfit(meters,age,1);

for i = 1 : 30
    j_meters = meters;
    j_age = age;
    j_meters(i) = [];
    j_age(i) = [];
    p(i,:) = polyfit(j_meters,j_age,1);
    plot(meters,polyval(p(i,:),meters),'r'), hold on
    p_age(i) = polyval(p(i,:),meters(i));
    p_error(i) = p_age(i) - age(i);
end
hold off

Th e  prediction error is – in the best case – Gaussian distributed with zero 
mean.

mean(p_error)

ans =
    0.0550

Th e standard deviation is an unbiased mean of the deviations of the true 
data points from the predicted straight line.

std(p_error)

ans =
    9.6801

Cross validation gives valuable information on the  goodness-of-fi t of the 
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regression result, and can also be used also for quality control in other fi elds, 
such as those of temporal and spatial prediction (Chapters 5 and 7).

4.8  Reduced Major Axis Regression

In some cases, neither variable is manipulated and both can therefore be 
considered to be independent. In these cases, several methods are available 
to compute a best-fi t line that minimizes the distance from both x and y. 
As an example, the method of  reduced major axis (RMA) minimizes the 
triangular area 0.5*(ΔxΔy) between the data points and the regression line, 
where Δx and Δy are the distances between predicted and the true x and y 
values (Fig. 4.4). Although this optimization appears to be complex, it can 
be shown that the fi rst regression coeffi  cient b1 (the slope) is simply the ratio 
of the standard deviations of y and x.

As with classical regression, the regression line passes through the data cen-
troid defi ned by the sample mean. We can therefore compute the second 
regression coeffi  cient b0 (the y-intercept),

using the univariate sample means and the slope b1 computed earlier. Let us 
again load the age-depth data from the fi le agedepth_1.txt and defi ne two 
variables, meters and age. It is assumed that both of the variables contain 
errors and that the scatter of the data can be explained by dispersions of 
meters and age.

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

Th e above formula is used for computing the slope of the regression line b1.

p(1,1) = std(age)/std(meters)

p =
   5.8286
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Th e second coeffi  cient b0, i.e., the y-axis intercept, can therefore be com-
puted by

p(1,2) = mean(age) - p(1,1) * mean(meters)

p =
   5.8286   18.7686

Th e regression line can be plotted by

plot(meters,age,'o'), hold on
plot(meters,polyval(p,meters),'r'), hold off

Th is linear fi t diff ers slightly from the line obtained from classical regres-
sion. Note that the regression line from RMA is not the bisector of the lines 
produced by the x-y and y-x classical linear regression analyses, i.e., those 
produced using either x or y as an independent variable while computing 
the regression lines.

4.9  Curvilinear Regression

It is apparent from our previous analysis that a linear regression model pro-
vides a good way of describing the scaling properties of the data. However, 
we may wish to check whether the data could be equally well described by 
a polynomial fi t of a higher degree, for instance by a second degree poly-
nomial:

To clear the workspace and reload the original data, we type

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

A second degree polynomial can then be fi tted by using the function 
 polyfit.

p = polyfit(meters,age,2)

p =
   -0.0544    6.6600   17.3246
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Th e fi rst coeffi  cient is close to zero, i.e., has little infl uence on predictions. 
Th e second and third coeffi  cients are similar to those obtained by linear re-
gression. Plotting the data yields a curve that resembles a straight line.

plot(meters,age,'o'), hold on
plot(meters,polyval(p,meters),'r'), hold off
 

Let us compute and plot the error bounds obtained by using an optional sec-
ond output parameter from polyfit as an input parameter to polyval.

[p,s] = polyfit(meters,age,2);
[p_age,delta] = polyval(p,meters,s);

As before, this code uses an interval of ± 2s, corresponding to a 95 %  confi -
dence interval. Using polyfit not only yields the polynomial coeffi  cients p, 
but also a structure s for use with polyval to obtain error bounds for the 
predictions. Th e variable delta is an estimate of the standard deviation of 
the prediction error of a future observation at x by p(x). We then plot the 
results:

plot(meters,age,'o',meters,p_age,'g-',...
   meters,p_age+2*delta,'r', meters,p_age-2*delta,'r')
axis([0 20 0 140]), grid on
xlabel('Depth in Sediment (meters)')
ylabel('Age of Sediment (kyrs)')

We now use another synthetic data set that we generate using a quadratic 
relationship between meters and age.

clear

rand('seed',40), randn('seed',40)
meters = 20 * rand(30,1);
age =  1.6 * meters.^2 - 1.1 * meters + 50;
age = age + 40.* randn(length(meters),1);

plot(meters,age,'o')

agedepth(:,1) = meters;
agedepth(:,2) = age;

agedepth = sortrows(agedepth,1);

save agedepth_2.txt agedepth -ascii

Th e synthetic bivariate data set can be loaded from the fi le agedepth_2.txt.

clear

agedepth = load('agedepth_2.txt');
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Fig. 4.8 Curvilinear regression from measurements of barium contents. Th e plot shows the 
original data points (circles), the regression line for a polynomial of degree n=2 (solid line), 
and the error bounds (dashed lines) of the regression.

meters = agedepth(:,1);
age = agedepth(:,2);

plot(meters,age,'o')

Fitting a second order polynomial yields a convincing regression result.

p = polyfit(meters,age,2)

p =
    1.6471   -4.2200   80.0314

As shown above, the true values for the three coeffi  cients are + 1.6, –1.1 and 
+ 50, which means that there are some discrepancies between the true val-
ues and the coeffi  cients estimated using polyfit. Th e regression curve 
and the error bounds can be plotted by typing (Fig. 4.8)

plot(meters,age,'o'), hold on
plot(meters,polyval(p,meters),'r'), hold off
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[p,s] = polyfit(meters,age,2);
[p_age,delta] = polyval(p,meters,s);

plot(meters,age,'o',meters,p_age,'g',meters,...
   p_age+2*delta,'r--',meters,p_age-2*delta,'r--')
axis([0 20 0 700]), grid on
xlabel('Depth in Sediment (meters)')
ylabel('Age of Sediment (kyrs)')

Th e plot shows that the quadratic model for this data is a good one. Th e 
quality of the result could again be tested by exploring the residuals, by em-
ploying resampling schemes or by cross validation. Combining regression 
analysis with one of these methods provides a powerful tool in bivariate 
data analysis, whereas Pearson’s correlation coeffi  cient should be used only 
as a preliminary test for linear relationships.

4.10 Nonlinear and Weighted Regression

Many bivariate data in earth sciences follow a more complex trend than a 
simple linear or curvilinear trend. Classic examples for  nonlinear trends are 
the exponential decay of radionuclides, or the exponential growth of algae 
populations. In such cases, MATLAB provides various tools to fi t nonlinear 
models to the data. An easy-to-use routine to fi t such models is  nonlinear 
regression using the function  nlinfit. To demonstrate the use of nlin-
fit we generate a bivariate data set where one variable is exponentially 
correlated with a second variable. We fi rst generate evenly-spaced values 
between 0.1 and 3 in 0.1 intervals and add some Gaussian noise with a stan-
dard deviation of 0.2 to make the data unevenly spaced. Th e resulting 30 
data points are stored in the fi rst column of the variable data.

clear

randn('seed',0)
data(:,1) = 0.1 : 0.1 : 3;
data(:,1) = data(:,1) + 0.2*randn(size(data(:,1)));
 

Next, we can compute the second variable, which is the exponent of the fi rst 
variable multiplied by 0.2 and increased by 3. We again add Gaussian noise, 
this time with a standard deviation of 0.5, to the data. Finally, we can sort 
the data with respect to the fi rst column and display the result.

data(:,2) = 3 + 0.2 * exp(data(:,1));
data(:,2) = data(:,2) + 0.5*randn(size(data(:,2)));
data =  sortrows(data,1);
plot(data(:,1),data(:,2),'o')
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xlabel('x-Axis'), ylabel('y-Axis')
 

Nonlinear regression aims to estimate the two coeffi  cients of the expo-
nential function, i.e., the multiplier 0.2 and the summand 3. Th e function 
beta=nlinfit(data(:,1),data(:,2),fun,beta0) returns a vec- 
tor beta of coeffi  cient estimates for a nonlinear regression of the re-
sponses in data(:,2) on the predictors in data(:,1) using the model 
specifi ed by fun. Here, fun is a function handle to a function of the form: 
hat= modelfun(b,X), where b is a coeffi  cient vector. A function handle 
is passed in an argument list to other functions, which can then execute 
the function using the handle. Constructing a function handle uses the at 
sign, @, before the function name. Th e variable beta0 is a vector containing 
initial values for the coeffi  cients, and is the same length as beta. We can 
design a function handle model representing an exponential function with 
variables an input variable t and coeffi  cients phi. Th e initial values of beta 
are [0 0]. We can then use nlinfit to estimate the coeffi  cients beta us-
ing the data, the model and the initial values.

model = @(phi,t)(phi(1)*exp(t) + phi(2));
beta0 = [0 0];
beta = nlinfit(data(:,1),data(:,2),model,beta0)
 
beta =
    0.2006    3.0107 
 

We can now use the resulting coeffi  cients beta(1) and beta(2) to calcu-
late the function values fittedcurve using the model and compare the 
results with the original data.

fittedcurve = beta(1)*exp(data(:,1)) + beta(2);
plot(data(:,1),data(:,2),'o')
hold on
plot(data(:,1),fittedcurve,'r')
xlabel('x-Axis'), ylabel('y-Axis')
title('Unweighted Fit')
hold off
 

As we can see from the output of beta and the graph, the fi tted red curve 
describes the data fairly well. We can now also use  nlinfit to perform a 
 weighted regression. Let us assume that we know the one-sigma errors of 
the values in data(:,2). We can generate synthetic errors and store them 
in the third column of data.

data(:,3) = abs(randn(size(data(:,1))));
errorbar(data(:,1),data(:,2),data(:,3),'o')
xlabel('x-Axis'), ylabel('y-Axis')
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Fig. 4.9 Weighted regression from synthetic data. Th e plot shows the original data points 
(circles), the error bars of all data points, and the regression line for an exponential model 
function (solid line).

We can now normalize the data points so that they are weighted by the in-
verse of the relative errors. We therefore normalize data(:,3) so that the 
total of all errors in data(:,3) is one and store the normalized errors in 
data(:,4).

data(:,4) = data(:,3)/sum(data(:,3));
 

To make a weighted fi t, we fi rst defi ne weighted versions of the data 
data(:,5) and the model function model, and then use nonlinear least 
squares to make the fi t.

data(:,5) = data(:,4).*data(:,2);
model = @(phi,t)(data(:,4).*(phi(1)*exp(t) + phi(2)));
beta0 = [0 0];
beta = nlinfit(data(:,1),data(:,5),model,beta0)

beta =
    0.2045    2.9875
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As before, nlinfit will compute weighted parameter estimates beta. We 
again use the resulting coeffi  cents beta(1) and beta(2) to calculate the 
function values fittedcurve using the model and compare the results 
with the original data.

fittedcurve = beta(1)*exp(data(:,1)) + beta(2);
errorbar(data(:,1),data(:,2),data(:,3),'o')
hold on
plot(data(:,1),fittedcurve,'r')
xlabel('x-Axis'), ylabel('y-Axis')
title('Weighted Fit')
hold off

Comparing the coeffi  cients beta and the red curves from the weighted re-
gression with the previous results from the unweighted regression reveals 
slightly diff erent results (Fig. 4.9).
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5 Time-Series Analysis

5.1 Introduction

 Time-series analysis aims to investigate the temporal behavior of one of 
several variables x(t). Examples include the investigation of long-term re-
cords of mountain uplift , sea-level fl uctuations, orbitally-induced insolation 
variations and their infl uence on the ice-age cycles, millenium-scale varia-
tions in the atmosphere-ocean system, the eff ect of the El Niño/Southern 
Oscillation on tropical rainfall and sedimentation (Fig. 5.1) and tidal infl u-
ences on noble gas emissions from bore holes. Th e temporal pattern of a 
sequence of events can be random, clustered, cyclic or chaotic. Time-series 
analysis provides various tools with which to detect these temporal pat-
terns. Understanding the underlying processes that produced the observed 
data allows us to predict future values of the variable. We use the Signal 
Processing and Wavelet Toolboxes, which contain all the necessary routines 
for time-series analysis.

Th e next section discusses signals in general and contains a technical 
description of how to generate synthetic signals for time-series analysis 
(Section 5.2). Th e use of spectral analysis to detect cyclicities in a single 
time series (auto-spectral analysis) and to determine the relationship be-
tween two time series as a function of frequency (cross-spectral analysis) 
is then demonstrated in Sections 5.3 and 5.4. Since most time series in 
earth sciences have uneven time intervals, various interpolation techniques 
and subsequent methods of spectral analysis are introduced in Section 5.5. 
Evolutionary power spectra to map changes in cyclicities through time are 
demonstrated in Section 5.6. An alternative technique for analyzing uneven-
ly-spaced data is explained in Section 5.7. In the subsequent Section 5.8, the 
very popular wavelet power spectrum is introduced, that has the capability 
to map temporal variations in the spectra, in a similar way to the method 
demonstrated in Section 5.6. Th e chapter closes with an overview of nonlin-
ear techniques, in particular the method of recurrence plots (Section 5.9).

M.H. Trauth, MATLAB® Recipes for Earth Sciences, 3rd ed.,  
DOI 10.1007/978-3-642-12762-5_5, © Springer-Verlag Berlin Heidelberg 2010  
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Fig. 5.1 a Photograph of ca. 30 kyr-old varved sediments from a landslide-dammed lake 
in the Andes of Northwest Argentina. Th e mixed clastic-biogenic varves consist of reddish-
brown and green to buff -colored clays sourced from Cretaceous redbeds (red-brown) and 
Precambrian-Early Paleozoic greenshists (green-buff  colored). Th e clastic varves are capped 
by thin white diatomite layers documenting the bloom of silica algae aft er the austral-summer 
rainy season. Th e distribution of the two source rocks and the interannual precipitation 
pattern in the area suggests that the reddish-brown layers refl ect cyclic recurrence of 
enhanced precipitation, erosion and sediment input into the landslide-dammed lake. b Th e 
power spectrum of a red-color intensity transect across 70 varves is dominated by signifi cant 
peaks at frequencies of ca. 0.076, 0.313, 0.455 and 1.0 yrs-1 corresponding to periods of 13.1, 
3.2, 2.2, and around 1.0 years. Th ese cyclicities suggest a strong infl uence of the tropical 
Atlantic sea-surface temperature (SST) variability (characterized by 10 to 15 year cycles), 
the El Niño/Southern Oscillation (ENSO) (cycles between 2 and 7 years) and the annual 
cycle at 30 kyrs ago, similar to today (Trauth et al. 2003).

5.2 Generating Signals

A  time series is an ordered sequence of values of a variable x(t) at certain 
times tk .

If the time interval between any two successive observations x(tk) and 
x(tk+1) is constant, the time series is said to be equally spaced and the sam-
pling interval is

Th e sampling frequency fs is the inverse of the  sampling interval Δt. In most 
cases, we try to sample at regular time intervals or constant  sampling fre-
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quencies. However, in some cases equally-spaced data are not available. As 
an example, imagine deep-sea sediments sampled at fi ve-centimeter inter-
vals along a sediment core. Radiometric age determinations at certain levels 
in the sediment core revealed signifi cant fl uctuations in the sedimentation 
rates. Despite the samples being evenly spaced along the sediment core, they 
are therefore not equally spaced on the time axis. Here, the quantity

where T is the full length of the time series and N is the number of data 
points, represents only an average sampling interval. In general, a time 
series x(tk) can be represented as the linear sum of a  periodic component 
xp(tk), a long-term component or  trend xtr(tk), and  random noise xn(tk).

Th e long-term component is a linear or higher-degree trend that can be 
extracted by fi tting a polynomial of a certain degree and subtracting the 
values of this polynomial from the data (see Chapter 4). Noise removal will 
be described in Chapter 6. Th e periodic – or cyclic in a mathematically less 
rigorous sense – component can be approximated by a linear combination 
of sine (or cosine) waves that have diff erent  amplitudes Ai ,  frequencies fi 
and  phase angles ψi .

Th e phase angle ψ  helps to detect temporal shift s between signals of the 
same frequency. Two signals x and y with the same period are out of phase 
unless the diff erence between ψx and ψy is equal to zero (Fig. 5.2).

Th e frequency f of a periodic signal is the inverse of the period τ . Th e 
 Nyquist frequency fnyq is half the sampling frequency fs and represents the 
maximum frequency the data can produce. As an example, audio compact 
disks (CDs) are sampled at frequencies of 44,100 Hz (Hertz, where 1 Hz 
=1 cycle per second). Th e corresponding Nyquist frequency is 22,050 Hz, 
which is the highest frequency a CD player can theoretically produce. Th e 
performance limitations of anti-alias fi lters used by CD players further re-
duces the frequency band and causes a cutoff  frequency of around 20,050 Hz, 
which is the true upper frequency limit of a CD player.

We can now generate synthetic signals to illustrate the use of time-series 
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Fig. 5.2 a Periodic signal x a function of time t defi ned by the amplitude A, and the period 
τ  which is the inverse of the frequency f. b  Two signals x and y of the same period are out 
of phase if the diff erence between ψx and ψ y is not equal to zero.

analysis tools. When using synthetic data we know in advance which fea-
tures the time series contains, such as periodic or random components, and 
we can introduce a linear trend or gaps in the time series. Th e user will en-
counter plenty of examples of the possible eff ects of varying the parameter 
settings, as well as potential artifacts and errors that can result from the ap-
plication of spectral analysis tools. We will start with simple data, and then 
apply the methods to more complex time series. Th e fi rst example illustrates 
how to generate a basic synthetic data series that is characteristic of earth 
science data. First, we create a time axis t running from 1 to 1000 in steps of 
one unit, i. e., the sampling frequency is also one. We then generate a simple 
periodic signal y(t): a sine wave with a period of fi ve and an amplitude of 
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two by typing

clear

t = 1 : 1000;
x = 2*sin(2*pi*t/5);

plot(t,x), axis([0 200 -4 4])

Th e period of τ =5 corresponds to a frequency of f=1/5=0.2. Natural data 
series, however, are more complex than a simple periodic signal. Th e slight-
ly more complicated signal can be generated by superimposing several 
periodic components with diff erent periods. As an example, we compute 
such a signal by adding three sine waves with the periods τ 1=50 ( f1=0.02), 
τ 2=15 ( f2≈ 0.07) and τ 3=5 ( f3=0.2). Th e corresponding amplitudes are 
A1=2, A2=1 and A3=0.5.

t = 1 : 1000;
x = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

plot(t,x), axis([0 200 -4 4])

By restricting the t-axis to the interval [0 200], only one fi ft h of the original 
data series is displayed. It is, however, recommended that long data series 
be generated as in the example in order to avoid edge eff ects when applying 
spectral analysis tools for the fi rst time.

In contrast to our synthetic time series, real data also contain various 
disturbances, such as random noise and fi rst or higher-order trends. In or-
der to reproduce the eff ects of noise, a random-number generator can be 
used to compute Gaussian noise with zero mean and standard deviation 
one. Th e seed of the algorithm should be set to zero. One thousand random 
numbers are then generated using the function randn.

randn('seed',0)
n = randn(1,1000);

We add this noise to the original data, i. e., we generate a signal containing 
additive noise (Fig. 5.3). Displaying the data illustrates the eff ect of noise on 
a periodic signal. Since in reality, no record is totally free of noise, it is im-
portant to familiarize oneself with the infl uence of noise on powerspectra.

xn = x + n;

plot(t,x,'b-',t,xn,'r-'), axis([0 200 -4 4])

Signal processing methods are oft en applied to remove a major part of the 
noise, although many fi ltering methods make arbitrary assumptions con-
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cerning the signal-to-noise ratio. Moreover, fi ltering introduces artifacts 
and statistical dependencies into the data, which may have a profound in-
fl uence on the resulting powerspectra.

Finally, we introduce a linear long-term trend to the data by adding a 
straight line with a slope of 0.005 and an intercept with the y-axis of zero 
(Fig. 5.3). Such trends are common in earth sciences. As an example, consid-
er the glacial-interglacial cycles observed in marine oxygen isotope records, 
overprinted on a long-term cooling trend over the last six million years.

xt = x + 0.005*t;

plot(t,x,'b-',t,xt,'r-'), axis([0 200 -4 4])

In reality, more complex trends exist, such as higher-order trends or trends 
characterized by variations in gradient. In practice, it is recommended that 
such trends be eliminated by fi tting polynomials to the data and subtract-
ing the corresponding values. Our synthetic time series now contains many 
characteristics of a typical earth science data set. It can be used to illustrate 
the use of the spectral analysis tools that are introduced in the next section.

5.3 Auto-Spectral and Cross-Spectral Analysis

 Auto-spectral analysis aims to describe the distribution of variance con-
tained in a single signal x(t) as a function of  frequency or  wavelength. A 
simple way to describe the variance in a signal over a time lag k is  by means 
of the autocovariance. An unbiased estimator of the  autocovariance covxx of 
the signal x(t) with N data points sampled at constant time intervals Δt is

Th e autocovariance series clearly depends on the amplitude of x(t). 
Normalizing the covariance by the variance σ 2 of x(t) yields the  autocor-
relation sequence. Autocorrelation involves correlating a series of data with 
itself as a function of a time lag k.

Th e most popular method used to compute powerspectra in earth sciences 
is the method introduced by Blackman and Tukey (1958). Th e  Blackman-
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Fig. 5.3 a Synthetic signal with the periodicities τ 1=50, τ 2=15 and τ 3=5, with diff erent 
amplitudes, and b the same signal overprinted with Gaussian noise. c In addition, the time 
series shows a signifi cant linear trend.
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Tukey method uses the complex Fourier transform Xxx(f ) of the autocor-
relation sequence corrxx(k),

where M is the maximum lag and fs the sampling frequency. Th e Blackman-
Tukey auto-spectrum is the absolute value of the Fourier transform of the 
autocorrelation function. In some fi elds, the power spectral density is used 
as an alternative way of describing the auto-spectrum. Th e Blackman-Tukey 
power spectral density PSD is estimated by

where X*xx( f ) is the conjugate complex of the Fourier transform of the 
autocorrelation function Xxx( f ) and fs is the sampling frequency. Th e ac-
tual computation of the power spectrum can only be performed at a fi nite 
number of frequency points by employing a  Fast Fourier Transformation 
(FFT). Th e FFT is a method of computing a discrete Fourier transform with 
reduced execution time. Most FFT algorithms divide the transform into 
two portions of size N/2 at each step of the transformation. Th e transform 
is therefore limited to blocks with dimensions equal to a power of two. In 
practice, the spectrum is computed by using a number of frequencies that is 
close to the number of data points in the original signal x(t).

Th e discrete Fourier transform is an approximation of the continuous 
Fourier transform. Th e continuous Fourier transform assumes an infi nite 
signal, but discrete real data are limited at both ends, i. e., the signal am-
plitude is zero beyond either end of the time series. In the time domain, a 
fi nite signal corresponds to an infi nite signal multiplied by a rectangular 
window that has a value of one within the limits of the signal and a value 
of zero elsewhere. In the frequency domain, the multiplication of the time 
series by this window is equivalent to a convolution of the power spectrum 
of the signal with the spectrum of the rectangular window (see Section 6.4 
for a defi nition of convolution). Th e spectrum of the window, however, is a 
sin(x)/x function, which has a main lobe and numerous side lobes on either 
side of the main peak, and hence all maxima in a power spectrum leak, i. e., 
they lose power on either side of the peaks (Fig. 5.4).

A popular way to overcome the problem of  spectral leakage is by win-
dowing, in which the sequence of data is simply multiplied by a smooth 
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Fig. 5.4 Spectral leakage. a Th e relative amplitude of the side lobes compared to the main 
lobe is reduced by multiplying the corresponding time series by b a smooth bell-shaped 
window function. A number of diff erent windows with advantages and disadvantages are 
available for use instead of the default rectangular window, including Bartlett (triangular) 
and Hanning (cosinusoidal) windows. Graph generated using the function wvtool.

bell-shaped curve with positive values. Several window shapes are available, 
e. g.,  Bartlett (triangular),  Hamming (cosinusoidal) and  Hanning (slightly 
diff erent cosinusoidal) (Fig. 5.4). Th e use of these windows slightly modifi es 
the equation for the Blackman-Tukey auto-spectrum

where w(k) is the windowing function. Th e Blackman-Tukey method there-
fore performs auto-spectral analysis in three steps: calculation of the au-
tocorrelation sequence corrxx(k), windowing and, fi nally, computation of 
the discrete Fourier transform. matlab allows power spectral analysis to be 
performed with a number of modifi cations to the above method. One use-
ful modifi cation is the Welch method (Welch 1967) (Fig. 5.5). Th is method 
involves dividing the time series into overlapping segments, computing the 
power spectrum for each segment, and then averaging the power spectra. 
Th e advantage of averaging the spectra is obvious: it simply improves the 
signal-to-noise ratio of a spectrum. Th e disadvantage is a loss of resolution 
in the spectra.

 Cross-spectral analysis correlates two time series in the frequency do-
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Fig. 5.5 Principle of  Welch’s power spectral analysis. Th e time series is fi rst divided into 
overlapping segments; the power spectrum for each segment is then computed and all 
spectra are averaged to improve the signal-to-noise ratio of the power spectrum.

main. Th e  cross-covariance is a measure for the variance in two signals over 
a time lag k. An unbiased estimator of the cross-covariance covxy of two 
signals x(t) and y(t) with N data points sampled at constant time intervals 
Δt is
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Th e cross-covariance series again depends on the amplitudes of x(t) and 
y(t). Normalizing the covariance by the standard deviations of x(t) and y(t) 
yields the cross-correlation sequence.

Th e Blackman-Tukey method uses the complex Fourier transform Xxy(f ) 
of the  cross-correlation sequence corrxy(k) 

where M is the maximum lag and fs the sampling frequency. Th e absolute 
value of the complex Fourier transform Xxy( f ) is the  cross-spectrum while 
the angle of Xxy( f ) represents the phase spectrum. Th e phase diff erence is 
important in calculating leads and lags between two signals, a parameter 
oft en used to propose causalities between two processes documented by the 
signals. Th e correlation between two spectra can be calculated by means of 
the  coherence:

Th e coherence is a real number between 0 and 1, where 0 indicates no cor-
relation and 1 indicates maximum correlation between x(t) and y(t) at the 
frequency f. A signifi cant degree of coherence is an important precondition 
for computing phase shift s between two signals.

5.4 Examples of Auto-Spectral and Cross-Spectral Analysis

Th e Signal Processing Toolbox provides numerous methods for computing 
spectral estimators for time series.  Th e introduction of object-oriented pro-
gramming with MATLAB has led to the launch of a new set of functions 
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performing spectral analyses. Type help spectrum for more informa-
tion about object-oriented spectral analysis. Th e non-object-oriented func-
tions to perform spectral analyses, however, are still available. One of the 
oldest functions in this toolbox is  periodogram(x,window,nfft,fs) 
which computes the power spectral density Pxx of a time series x(t) using 
the periodogram method. Th is method was invented by Arthur Schuster 
in 1898 for studying the climate, and calculates the power spectrum by 
performing a Fourier transform directly on a sequence without requiring 
prior calculation of the autocorrelation sequence. Th e  periodogram meth-
od can therefore be considered a special case of the  Blackman and Tukey 
(1958) method, applied with the lag parameter k set to unity (Muller and 
Macdonald 2000). At the time of its introduction in 1958, the indirect com-
putation of the power spectrum via an autocorrelation sequence was faster 
than calculating the Fourier transformation for the full data series x(t) di-
rectly. Aft er the introduction of the  Fast Fourier Transform (FFT) by Cooley 
and Turkey (1965), and subsequent faster computer hardware, the higher 
computing speed of the Blackman-Tukey approach compared to the peri-
odogram method became relatively unimportant.

For this next example we again use the synthetic time series x, xn and 
xt generated in Section 5.2 as the input:

clear

t = 1 : 1000; t = t';
x = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

randn('seed',0)
n = randn(1000,1);
xn = x + n;

xt = x + 0.005*t;

We then compute the periodogram by calculating the  Fourier transform of 
the sequence x. Th e fastest possible Fourier transform using  fft computes 
the Fourier transform for nfft frequencies, where nfft is the next power 
of two closest to the number of data points n in the original signal x. Since 
the length of the data series is n=1000, the Fourier transform is computed 
for nfft=1024 frequencies, while the signal is padded with nfft-n=24 
zeros. 

Xxx = fft(x,1024);

If nfft is even as in our example, then Xxx is symmetric. For example, 
as the fi rst (1+nfft/2) points in Xxx are unique, the remaining points 
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are symmetrically redundant. Th e power spectral density is defi ned as 
Pxx2=(abs(Xxx).^2)/Fs, where Fs is the sampling frequency. Th e 
function periodogram also scales the power spectral density by the length 
of the data series, i. e., it divides by Fs=1 and length(x)=1000.

Pxx2 = abs(Xxx).^2/1000;

We now drop the redundant part in the power spectrum and use only the 
fi rst (1+nfft/2) points. We also multiply the power spectral density by 
two to keep the same energy as in the symmetric spectrum, except for the 
fi rst data point.

Pxx = [Pxx2(1); 2*Pxx2(2:512)];

Th e corresponding frequency axis runs from 0 to Fs/2 in Fs/(nfft-1) 
steps, where Fs/2 is the Nyquist frequency. Since Fs=1 in our example, the 
frequency axis is

f = 0 : 1/(1024-1) : 1/2;

We then plot the power spectral density Pxx in the Nyquist frequency range 
from 0 to Fs/2, which in our example is from 0 to 1/2. Th e Nyquist fre-
quency range corresponds to the fi rst 512 or nfft/2 data points.

plot(f,Pxx), grid

Th e graphical output shows that there are three signifi cant peaks at the posi-
tions of the original frequencies 1/50, 1/15 and 1/5 of the three sine waves. 
Th e code for the power spectral density can be rewritten to make it indepen-
dent of the sampling frequency,

Fs = 1;

t = 1/Fs :1/Fs : 1000/Fs; t = t';
x = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

nfft = 2^nextpow2(length(t));
Xxx = fft(x,nfft);

Pxx2 = abs(Xxx).^2 /Fs /length(x);
Pxx = [Pxx2(1); 2*Pxx2(2:512)];
f = 0 : Fs/(nfft-1) : Fs/2;

plot(f,Pxx), grid
axis([0 0.5 0 max(Pxx)])

where the function  nextpow2 computes the next power of two closest to 
the length of the time series x(t). Th is code allows the sampling frequency 
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to be modifi ed and the diff erences in the results to be explored.
We can now compare the results with those of the function 

periodogram(x,window,nfft,fs). Th is function allows the window-
ing of the signals with various window shapes to overcome spectral leakage. 
We use, however, the default rectangular window by choosing an empty 
vector [] for window to compare the results with the above experiment. 
Th e power spectrum Pxx is computed using a FFT of length nfft=1024 
which is the next power of two closest to the length of the series x(t), and 
which is padded with zeros to make up the number of data points to the 
value of nfft. A sampling frequency fs of one is used within the function 
in order to obtain the correct frequency scaling for the f-axis.

[Pxx,f] = periodogram(x,[],1024,1);

plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')
title('Auto-Spectrum')

Th e graphical output is almost identical to our Blackman-Tukey plot and 
again shows that there are three signifi cant peaks at the position of the orig-
inal frequencies of the three sine waves. Th e same procedure can also be 
applied to the noisy data:

[Pxx,f] = periodogram(xn,[],1024,1);

plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')
title('Auto-Spectrum')

Let us now increase the noise level by using Gaussian noise with a standard 
deviation of fi ve and zero mean.

randn('seed',0);
n = 5 * randn(size(x));
xn = x + n;

[Pxx,f] = periodogram(xn,[],1024,1);

plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')
title('Auto-Spectrum')

Th is spectrum resembles a real data spectrum in the earth sciences. Th e 
spectral peaks now sit on a signifi cant background noise level. Th e peak of 
the highest frequency even disappears into the noise, and cannot be dis-
tinguished from maxima that are attributed to noise. Both spectra can be 
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Fig. 5.6 Comparison of the auto-spectra for a the noise-free and b the noisy synthetic signals 
with the periods τ 1=50 ( f1=0.02), τ 2=15 ( f2≈0.07) and τ 3=5 ( f3=0.2). In particular, the 
highest frequency peak disappears into the background noise and cannot be distinguished 
from peaks attributed to the Gaussian noise.

compared on the same plot (Fig. 5.6):

[Pxx,f] = periodogram(x,[],1024,1);
[Pxxn,f] = periodogram(xn,[],1024,1);

subplot(1,2,1)
plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')

subplot(1,2,2)
plot(f,Pxxn), grid
xlabel('Frequency')
ylabel('Power')

Next, we explore the infl uence of a linear trend on a spectrum. Long-term 
trends are common features in earth science data. We will see that this trend 
is misinterpreted as a very long period by the FFT, producing a large peak 
with a frequency close to zero (Fig. 5.7).

[Pxx,f] = periodogram(x,[],1024,1);
[Pxxt,f] = periodogram(xt,[],1024,1);

subplot(1,2,1)
plot(f,Pxx), grid
xlabel('Frequency')
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Fig. 5.7 Comparison of the auto-spectra for a the original noise-free signal with the periods 
τ 1=50 ( f1= 0.02), τ 2=15 ( f2≈0.07) and τ 3=5 ( f3= 0.2) and b the same signal overprinted on 
a linear trend. Th e linear trend is misinterpreted by the FFT as a very long period with a 
high amplitude.

ylabel('Power')

subplot(1,2,2)
plot(f,Pxxt), grid
xlabel('Frequency')
ylabel('Power')

To eliminate the long-term trend, we use the function detrend.

xdt = detrend(xt);

subplot(2,1,1)
plot(t,x,'b-',t,xt,'r-'), grid
axis([0 200 -4 4])

subplot(2,1,2)
plot(t,x,'b-',t,xdt,'r-'), grid
axis([0 200 -4 4])

Th e resulting spectrum no longer shows the low-frequency peak.

[Pxxt,f] = periodogram(xt,[],1024,1);
[Pxxdt,f] = periodogram(xdt,[],1024,1);

subplot(1,2,1)
plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')
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Fig. 5.8 Cross-spectrum of two sine waves with identical periodicities τ =5 (equivalent to 
f= 0.2) and amplitudes of 2. Th e sine waves show a relative phase shift  of t=1. In the argument 
of the second sine wave this corresponds to 2π /5, which is one fi ft h of the full wavelength 
of τ =5. a Th e magnitude shows the expected peak at f= 0.2. b Th e corresponding phase 
diff erence in radians at this frequency is 1.2566, which equals (1.2566*5)/(2*π)=1.0000, 
which is the phase shift  of 1 that we introduced at the beginning.

subplot(1,2,2)
plot(f,Pxxdt), grid
xlabel('Frequency')
ylabel('Power')

Some data contain a high-order trend that can be removed by fi tting a high-
er-order polynomial to the data and by subtracting the corresponding x(t) 
values.

We now use two sine waves with identical periodicities τ =5 (equivalent 
to f=0.2) and amplitudes equal to two to compute the cross-spectrum of two 
time series. Th e sine waves show a relative phase shift  of t=1. In the argu-
ment of the second sine wave this corresponds to 2π/5, which is one fi ft h of 
the full wavelength of τ =5.

clear

t = 1 : 1000;
x = 2*sin(2*pi*t/5);
y = 2*sin(2*pi*t/5 + 2*pi/5);

plot(t,x,'b-',t,y,'r-')
axis([0 50 -2 2]), grid

Th e cross-spectrum is computed by using the function  cpsd, which uses 
Welch's method for computing power spectra (Fig. 5.8). Pxy is complex and 
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contains both amplitude and phase information.

[Pxy,f] = cpsd(x,y,[],0,1024,1);

plot(f,abs(Pxy)), grid
xlabel('Frequency')
ylabel('Power')
title('Cross-Spectrum')

Th e function cpsd(x,y,window,noverlap,nfft,fs) specifi es the 
number of FFT points nfft used to calculate the cross power spectral den-
sity, which is 1024 in our example. Th e parameter window is empty in our 
example, and therefore the default rectangular window is used to obtain 
eight sections of x and y. Th e parameter noverlap defi nes the number of 
overlapping samples, which is zero in our example. Th e sampling frequency 
fs is 1 in this example. Th e coherence of the two signals is one for all fre-
quencies since we are working with noise-free data.

[Cxy,f] = mscohere(x,y,[],0,1024,1);

plot(f,Cxy), grid
xlabel('Frequency')
ylabel('Coherence')
title('Coherence')

Th e function   mscohere(x,y,window,noverlap,nfft,fs) specifi es 
the number of FFT points nfft=1024, the default rectangular window, and 
the overlap of zero data points. Th e complex part of Pxy is required for com-
puting the phase shift  between the two signals using the function angle.

phase = angle(Pxy);

plot(f,phase), grid
xlabel('Frequency')
ylabel('Phase Angle')
title('Phase Spectrum')

Th e phase shift  at a frequency of f=0.2 (period τ =5) can be interpolated 
from the phase spectrum

interp1(f,phase,0.2)

which produces the output

ans =
  -1.2566

Th e phase spectrum is normalized to one full period τ =2π , therefore the 
phase shift  of –1.2566 equals (–1.2566*5)/(2*π) = –1.0000, which is the phase 
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shift  of one that we introduced at the beginning.
We now use two sine waves with diff erent periodicities to illustrate 

cross-spectral analysis. Both signals x and y have a periodicity of 5, but 
with a phase shift  of 1.

clear

t = 1 : 1000;
x = sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);
y = 2*sin(2*pi*t/50) + 0.5*sin(2*pi*t/5+2*pi/5);

plot(t,x,'b-',t,y,'r-')
axis([0 100 -3 3]), grid

We can now compute the cross-spectrum Pxy, which clearly shows the 
common period of τ =5 or frequency of f=0.2.

[Pxy,f] = cpsd(x,y,[],0,1024,1);

plot(f, abs(Pxy)), grid
xlabel('Frequency')
ylabel('Power')
title('Cross-Spectrum')

Th e coherence shows a high value that is close to one at f=0.2.

[Cxy,f] = mscohere(x,y,[],0,1024,1);

plot(f,Cxy), grid
xlabel('Frequency')
ylabel('Coherence')
title('Coherence')

Th e complex part of the cross-spectrum Pxy is required for calculating the 
phase shift  between the two sine waves.

[Pxy,f] = cpsd(x,y,[],0,1024,1);
phase = angle(Pxy);

plot(f,phase), grid

Th e phase shift  at a frequency of f=0.2 (period τ =5) is

interp1(f,phase,0.2)

which produces the output of

ans =
  -1.2572

Th e phase spectrum is normalized to one full period τ =2π , therefore the 
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phase shift  of –1.2572 equals (–1.2572*5)/(2*π) = –1.0004, which is again 
the phase shift  of one that we introduced at the beginning.

5.5  Interpolating and Analyzing  Unevenly-Spaced Data

We can now use our experience in analyzing evenly-spaced data to run a 
spectral analysis on  unevenly-spaced data. Such data are very common in 
earth sciences, for example in the fi eld of paleoceanography, where deep-
sea cores are typically sampled at constant depth intervals. Th e transforma-
tion of evenly-spaced length-parameter data to time-parameter data in an 
environment with changing length-time ratios results in unevenly-spaced 
time series. Numerous methods exist for interpolating unevenly-spaced se-
quences of data or time series. Th e aim of these  interpolation techniques for 
x(t) data is to estimate the x-values for an equally-spaced t vector from the 
irregularly-spaced x(t) actual measurements.  Linear interpolation predicts 
the x-values by eff ectively drawing a straight line between two neighboring 
measurements and by calculating the x-value at the appropriate point along 
that line. However, this method has its limitations. It assumes linear transi-
tions in the data, which introduces a number of artifacts, including the loss 
of high-frequency components of the signal and the limiting of the data 
range to that of the original measurements. 

 Cubic-spline interpolation is another method for interpolating data that 
are unevenly spaced. Cubic splines are piecewise continuous curves, requir-
ing at least four data points for each step. Th e method has the advantage that 
it preserves the high-frequency information contained in the data. However, 
steep gradients in the data sequence, which typically occur adjacent to ex-
treme minima and maxima, could cause spurious amplitudes in the inter-
polated time series. Since all these and other interpolation techniques might 
introduce artifacts into the data, it is always advisable to (1) keep the total 
number of data points constant before and aft er interpolation, (2) report 
the method employed for estimating the evenly-spaced data sequence, and 
(3) explore the eff ect of interpolation on the variance of the data.

Following this brief introduction to interpolation techniques, we can 
apply the most popular linear and cubic spline interpolation techniques 
to unevenly-spaced data. Having interpolated the data, we can then use 
the spectral tools that have previously been applied to evenly-spaced data 
(Sections 5.3 and 5.4). We must fi rst load the two time series:

clear

series1 = load('series1.txt');
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series2 = load('series2.txt');

Both synthetic data sets contain a two-column matrix with 339 rows. Th e 
fi rst column contains ages in kiloyears, which are unevenly spaced. Th e sec-
ond column contains oxygen-isotope values measured on calcareous algae 
(foraminifera). Th e data sets contain 100, 40 and 20 kyr cyclicities and they 
are overlain by Gaussian noise. In the 100 kyr frequency band, the second 
data series has shift ed by 5 kyrs with respect to the fi rst data series. To plot 
the data we type

plot(series1(:,1),series1(:,2))
figure
plot(series2(:,1),series2(:,2))

Th e statistics for the spacing of the fi rst data series can be computed by

intv1 = diff(series1(:,1));

plot(intv1)

Th e plot shows that the spacing varies around a mean interval of 3 kyrs with 
a standard deviation of ca. 1 kyrs. Th e minimum and maximum values for 
the time axis

min(series1(:,1))
max(series1(:,1))

of tmin=0 and tmax=997 kyrs provide some information about the tempo-
ral range of the data. Th e second data series

intv2 = diff(series2(:,1));

plot(intv2)

min(series2(:,1))
max(series2(:,1))

has a similar range from 0 to 997 kyrs. We see that both series have a mean 
spacing of 3 kyrs and range from 0 to ca. 1000 kyrs. We now interpolate the 
data to an evenly-spaced time axis. While doing this, we follow the rule that 
the number of data points should not be increased. Th e new time axis runs 
from 0 to 996 kyrs with 3 kyr intervals.

t = 0 : 3 : 996;

We can now interpolate the two time series to this axis with linear and 
spline interpolation methods, using the function  interp1.

series1L = interp1(series1(:,1),series1(:,2),t,'linear');
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Fig. 5.9 Interpolation artifacts. Whereas the linearly interpolated points are always within 
the range of the original data, the spline interpolation method causes unrealistic high and 
low values.

series1S = interp1(series1(:,1),series1(:,2),t,'spline');

series2L = interp1(series2(:,1),series2(:,2),t,'linear');
series2S = interp1(series2(:,1),series2(:,2),t,'spline');

Th e results are compared by plotting the fi rst series before and aft er inter-
polation.

plot(series1(:,1),series1(:,2),'ko'), hold on
plot(t,series1L,'b-',t,series1S,'r-'), hold off

We can already observe some signifi cant artifacts at ca. 370 kyrs. Whereas 
the linearly-interpolated points are always within the range of the original 
data, the spline interpolation method produces values that are unrealisti-
cally high or low (Fig. 5.9). Th e results can be compared by plotting the sec-
ond data series.

plot(series2(:,1),series2(:,2),'ko'), hold on
plot(t,series2L,'b-',t,series2S,'r-'), hold off

In this series, only a few artifacts can be observed. We can apply the func-
tion used above to calculate the power spectrum computing the FFT for 
256 data points, with a sampling frequency of 1/3 kyrs–1.

[Pxx,f] = periodogram(series1L,[],256,1/3);

plot(f,Pxx)
xlabel('Frequency')
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ylabel('Power')
title('Auto-Spectrum')

Signifi cant peaks occur at frequencies of approximately 0.01, 0.025 and 0.05, 
corresponding approximately to the 100, 40 and 20 kyr cycles. Analysis of 
the second time series

[Pxx,f] = periodogram(series2L,[],256,1/3);

plot(f,Pxx)
xlabel('Frequency')
ylabel('Power')
title('Auto-Spectrum')

also yields signifi cant peaks at frequencies of 0.01, 0.025 and 0.05 (Fig. 5.10). 
Now we compute the cross-spectrum for both data series.

[Pxy,f] = cpsd(series1L,series2L,[],128,256,1/3);

plot(f,abs(Pxy))
xlabel('Frequency')
ylabel('Power')
title('Cross-Spectrum')

Th e correlation, as indicated by the high value for the coherence, is quite 
convincing.

[Cxy,f] = mscohere(series1L,series2L,[],128,256,1/3);

plot(f,Cxy)
xlabel('Frequency')
ylabel('Magnitude Squared Coherence')
title('Coherence')

We can observe a fairly high coherence at frequencies of 0.01, 0.025 and 0.05. 
Th e complex part of Pxy is required for calculating the phase diff erence for 
each frequency.

phase = angle(Pxy);

plot(f,phase)
xlabel('Frequency')
ylabel('Phase Angle')
title('Phase spectrum')
 

Th e phase shift  at a frequency of f=0.01 is calculated by

interp1(f,phase,0.01)

which produces the output of
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Fig. 5.10 Result from cross-spectral analysis of the two linearly-interpolated signals: 
a signals in the time domain, b cross-spectrum of both signals, c coherence of the signals in 
the frequency domain and d phase spectrum in radians.

ans = 
  -0.2796

Th e phase spectrum is normalized to a full period τ =2π , and therefore the 
phase shift  of –0.2796 equals (–0.2796*100 kyrs)/(2*π)=–4.45 kyrs. Th is 
corresponds roughly to the phase shift  of 5 kyrs introduced to the second 
data series with respect to the fi rst series.

As a more convenient tool for spectral analysis, the Signal Processing 
Toolbox also contains a GUI function named sptool, which stands for 
 Signal Processing Tool.
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5.6  Evolutionary Power Spectrum

Th e amplitude of spectral peaks usually varies with time. Th is is particularly 
true for paleoclimate time series. Paleoclimate records usually show trends 
in the mean and variance, but also in the relative contributions of rhythmic 
components such as the Milankovitch cycles in marine oxygen-isotope re-
cords. Evolutionary powerspectra have the ability to map such changes in 
the frequency domain. Th e  evolutionary or  windowed power spectrum is a 
modifi cation of the method introduced in Section 5.3, which computes the 
spectrum of overlapping segments of the time series. Th ese overlapping seg-
ments are relatively short compared to the windowed segments used by the 
Welch method (Section 5.3), which is used to increase the signal-to-noise 
ratio of powerspectra. Th e evolutionary power spectrum method therefore 
uses the  Short-Time Fourier Transform (STFT) instead of the Fast Fourier 
Transformation (FFT). Th e output of evolutionary power spectrum is the 
short-term, time-localized frequency content of the signal. Th ere are vari-
ous methods to display the results. For instance, time and frequency can be 
plotted on the x- and y-axes, respectively, or vice versa, with the color of the 
plot being dependent on the height of the spectral peaks.

As an example, we generate a data set that is similar to those used in 
Section 5.5. Th e data series contains three main periodicities of 100, 40 and 20 
kyrs and additive Gaussian noise. Th e amplitudes, however, change through 
time and this example can therefore be used to illustrate the advantage of the 
evolutionary power spectrum method. We fi rst create a time vector t.

clear

t = 0 : 3 : 1000;

We then introduce some Gaussian noise to the time vector t to make the 
data unevenly spaced.

randn('seed',0);
t = t + randn(size(t));

Next, we compute the signal with the three periodicities and varying am-
plitudes. Th e 40 kyr cycle appears aft er ca. 450 kyrs, whereas the 100 and 20 
kyr cycles are present throughout the time series.

x1 = 0.5*sin(2*pi*t/100) + ...
     1.0*sin(2*pi*t/40)  + ...
     0.5*sin(2*pi*t/20);
x2 = 0.5*sin(2*pi*t/100) + ...
     0.5*sin(2*pi*t/20);
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x = x1; x(1,150:end) = x2(1,150:end);

We then add Gaussian noise to the signal.

x = x + 0.5*randn(size(x));

Finally, we save the synthetic data series to the fi le series3.txt on the hard 
disk and clear the workspace.

series3(:,1) = t;
series3(:,2) = x;
series3(1,1) = 0;
series3(end,1) = 1000;
series3 = sortrows(series3,1);
save series3.txt series3 -ascii

Th e above series of commands illustrates how to generate synthetic time 
series that show the same characteristics as oxygen-isotope data from cal-
careous algae (foraminifera) in deep-sea sediments. Th is synthetic data set 
is suitable for use in demonstrating the application of methods for spectral 
analysis. Th e following sequence of commands assumes that real data are 
contained in a fi le named series3.txt. We fi rst load and display the data 
(Fig. 5.11).

clear

series3 = load('series3.txt');
plot(series3(:,1),series3(:,2))
xlabel('Time (kyr)')
ylabel('d18O (permille)')
title('Signal with Varying Cyclicities')

Since both, the standard and the evolutionary power spectrum methods re-
quire evenly-spaced data, we interpolate the data to an evenly-spaced time 
vector t as demonstrated in Section 5.5.

t = 0 : 3 : 1000;
series3L = interp1(series3(:,1),series3(:,2),t,'linear');

We then compute a non-evolutionary power spectrum for the full length of 
the time series (Fig. 5.12). Th is exercise helps us to compare the diff erences 
between the results of the standard and the evolutionary power spectrum 
methods.

[Pxx,f] = periodogram(series3L,[],1024,1/3);
plot(f,Pxx)
xlabel('Frequency')
ylabel('Power')
title('Power Spectrum')
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Fig. 5.11 Synthetic data set containing three main periodicities of 100, 40, and 20 kyrs and 
additive Gaussian noise. Whereas the 100 and 20 kyr cycles are present throughout the time 
series, the 40 kyr cycle only appears at around 450 kyrs before present.

Th e auto-spectrum shows signifi cant peaks at 100, 40 and 20 kyr cyclicities, 
as well as some noise. Th e power spectrum, however, does not provide any 
information about fl uctuations in the amplitudes of these peaks. Th e non-
evolutionary power spectrum simply represents an average of the spectral 
information contained in the data.

We now use the function spectrogram to map the changes in the 
power spectrum with time. By default, the time series is divided into eight 
segments with a 50 % overlap. Each segment is windowed with a Hamming 
window to suppress spectral leakage (Section 5.3). Th e function spectro-
gram uses similar input parameters to those used in periodogram in 
Section 5.3. We then compute the evolutionary power spectrum for a win-
dow of 64 data points with a 50 data point overlap. Th e STFT is computed 
for nfft=256. Since the spacing of the interpolated time vector is 3 kyrs, 
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Fig. 5.12 Power spectrum for the full time series showing signifi cant peaks at 100, 40 and 
20 kyrs. Th e plot, however, does not provide any information on the temporal behavior of 
the cyclicities.

the sampling frequency is 1/3 kyr–1.

spectrogram(series3L,64,50,256,1/3)
title('Evolutionary Power Spectrum')
xlabel('Frequency (1/kyr)')
ylabel('Time (kyr)')

Th e output of spectrogram is a color plot (Fig. 5.13) that displays vertical 
stripes in red representing signifi cant maxima at frequencies of 0.01 and 
0.05 kyr–1, or 100 and 20 kyr cyclicities. Th e 40 kyr cycle (corresponding 
to a frequency of 0.025 kyr–1), however, only occurs aft er ca. 450 kyrs, as 
documented by the vertical red stripe in the lower half of the graph.

To improve the visibility of the signifi cant cycles, the coloration of the 
graph can be modifi ed using the colormap editor.

colormapeditor
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Fig. 5.13 Evolutionary power spectrum using spectrogram, which computes the short-
time Fourier transform STFT of overlapping segments of the time series. We use a Hamming 
window of 64 data points and 50 data points overlap. Th e STFT is computed for a nfft=256. 
Since the spacing of the interpolated time vector is 3 kyrs the sampling frequency is 1/3 kyr-1. 
Th e plot shows the onset of the 40 kyr cycle at around 450 kyrs before present.

Th e colormap editor displays the colormap of the fi gure as a strip of rect-
angular cells. Th e nodes that separate regions of uniform slope in the RGB 
colormap can be shift ed by using the mouse, which introduces distortions 
in the colormap and results in modifi cation of the spectrogram colors. For 
example, shift ing the yellow node towards the right increases the contrast 
between vertical peak areas at 100, 40 and 20 kyrs, and the background.

5.7 Lomb-Scargle Power Spectrum

Th e power spectrum methods introduced in the previous sections require 
evenly-spaced data. In earth sciences, however, time series are oft en  un-
evenly spaced. Although interpolating the unevenly-spaced data to a grid of 
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evenly-spaced times is one way to overcome this problem (Section 5.5), in-
terpolation introduces numerous artifacts to the data, in both the time and 
frequency domains. For this reason, an alternative method of time-series 
analysis has become increasingly popular in earth sciences  Lomb-Scargle 
algorithm (e. g., Scargle 1981, 1982, 1989, 1990, Press et al. 1992, Schulz et al. 
1998).

Th e Lomb-Scargle algorithm evaluates the data of the time series only 
at the times ti that are actually measured. Assuming a series y(t) of N data 
points, the Lomb-Scargle normalized periodogram Px as a function of an-
gular frequency ω = 2π f > 0 is given by

where

and

are the arithmetic mean and the variance of the data (Section 3.2). Th e con-
stant τ  is an off set that makes Px(ω) independent of shift ing the ti ’s by any 
constant amount. Scargle (1982) showed that this particular choice of the 
off set τ  has the consequence that the solution for Px(ω) is identical to a 
least-squares fi t of sine and cosine functions to the data series y(t): 

Th e least-squares fi t of harmonic functions to data series in conjunction 
with spectral analysis had previously been investigated by Lomb (1976), and 
hence the method is called the normalized Lomb-Scargle Fourier transform. 
Th e term normalized refers to the factor s2 in the dominator of the equation 
for the periodogram.
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Scargle (1982) has shown that the Lomb-Scargle periodogram has an 
exponential probability distribution with unit mean. Th e probability that 
Px(ω) will be between some positive quantity z and z+dz is exp(–z)dz. If 
we scan M  independent frequencies, the probability of none of them having 
a larger value than z is (1–exp(–z))M. We can therefore compute the false-
alarm probability of the null hypothesis, e. g., the probability that a given 
peak in the periodogram is not signifi cant, by

Press et al. (1992) suggested using the Nyquist criterion (Section 5.2) to de-
termine the number of independent frequencies M assuming that the data 
were evenly spaced. In this case, the appropriate value for the number of in-
dependent frequencies is M = 2N, where N is the length of the time series.

More detailed discussions of the Lomb-Scargle method are given in 
Scargle (1989) and Press et al. (1992). An excellent summary of the method 
and a TURBO PASCAL program to compute the normalized Lomb-Scargle 
power spectrum of paleoclimatic data have been published by Schulz and 
Stattegger (1998). A convenient MATLAB algorithm lombscargle for com-
puting the Lomb-Scargle periodogram has been published by Brett Shoelson 
(Th e MathWorks Inc.) and can be downloaded from File Exchange at

http://www.mathworks.com/matlabcentral/fileexchange/

Th e following MATLAB code is based on the original FORTRAN code pub-
lished by Scargle (1989). Signifi cance testing uses the methods proposed by 
Press et al. (1992) explained above.

We fi rst load the synthetic data that were generated to illustrate the use 
of the evolutionary or windowed power spectrum method in Section 5.6. 
Th e data contain periodicities of 100, 40 and 20 kyrs, as well as additive 
Gaussian noise, and are unevenly spaced about the time axis. We defi ne two 
new vectors t and x that contain the original time vector and the synthetic 
oxygen-isotope data sampled at times t.

clear

series3 = load('series3.txt');
t = series3(:,1);
x = series3(:,2);

We then generate a frequency axis f. Since the Lomb-Scargle method is not 
able to deal with the zero-frequency portion, i. e., with infi nite periods, we 
start at a frequency value that is equivalent to the spacing of the frequency 
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vector. ofac is the  oversampling parameter that infl uences the resolution 
of the frequency axis about the N(frequencies)=N(datapoints)case. 
We also need the  highest frequency fhi that can be analyzed by the Lomb-
Scargle algorithm: a common way to choose fhi is to take the  Nyquist fre-
quency fnyq that would be obtained if the N data points were evenly spaced 
over the same time interval. Th e following code uses the input parameter 
hifac, which is defi ned by Press et al. (1992) as hifac=fhi/fnyq.

int = mean(diff(t));
ofac = 4; hifac = 1;
f = ((2*int)^(-1))/(length(x)*ofac): ...
    ((2*int)^(-1))/(length(x)*ofac): ...
    hifac*(2*int)^(-1);
 

where int is the mean sampling interval. We normalize the data by sub-
tracting the mean.

x = x - mean(x);

We can now compute the normalized Lomb-Scargle periodogram px as a 
function of the angular frequency wrun using the translation of Scargle's 
FORTRAN code into MATLAB code.

for k = 1:length(f)
    wrun = 2*pi*f(k);
    px(k) = 1/(2*var(x)) * ...
       ((sum(x.*cos(wrun*t - ...
       atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2))).^2) ...
       /(sum((cos(wrun*t - ...
       atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2)).^2)) + ...
       ((sum(x.*sin(wrun*t - ...
       atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2))).^2) ...
       /(sum((sin(wrun*t - ...
       atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2)).^2));
end

Th e signifi cance level for any peak in the power spectrum px can now be 
computed. Th e variable prob indicates the false-alarm probability for the 
null hypothesis: a low prob therefore indicates a highly signifi cant peak in 
the power spectrum.

prob = 1-(1-exp(-px)).^length(x);

We now plot the power spectrum and the probabilities (Fig. 5.14):

plot(f,px)
xlabel('Frequency')
ylabel('Power')
title('Lomb-Scargle Power Spectrum')
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figure
plot(f,prob)
xlabel('Frequency')
ylabel('Probability')
title('Probabilities')

Th e two plots suggest that all three peaks are highly signifi cant since the er-
rors are extremely low at the cyclicities of 100, 40 and 20 kyrs.

An alternative way of displaying the signifi cance levels was suggested by 
Press et al. (1992). In this method the equation for the false-alarm probabil-
ity of the null hypothesis is inverted to compute the corresponding power 
of the signifi cance levels. As an example, we choose a signifi cance level of 
95 %. However, this number can also be replaced by a vector of several sig-
nifi cance levels such as signif=[0.90 0.95 0.99]. We can now type

m = floor(0.5*ofac*hifac*length(x));
effm = 2*m/ofac;
signif = 0.95;
levels = log((1-signif.^(1/effm)).^(-1));

where m is the true number of independent frequencies and effm is the ef-
fective number of frequencies using the oversampling factor ofac. Th e sec-
ond plot displays the spectral peaks and the corresponding probabilities.

plot(f,px)
hold on
for k = 1:length(signif)
    line(f,levels(:,k)*ones(size(f)),'LineStyle','--')
end
xlabel('Frequency')
ylabel('Power')
title('Lomb-Scargle Power Spectrum')
hold off

All three spectral peaks at frequencies of 0.01, 0.025 and 0.05 kyr–1 exceed 
the 95 % signifi cant level suggesting that they represent signifi cant cyclici-
ties. We have therefore obtained similar results to those obtained from the 
periodogram method. However, the Lomb-Scargle method does not require 
any interpolation of unevenly-spaced data. Furthermore, it allows for quan-
titative signifi cance testing.

5.8  Wavelet Power Spectrum

Section 5.6 demonstrated the use of a modifi cation to the power spectrum 
method for mapping changes in cyclicity through time. In principle, a 
similar modifi cation could be applied to the Lomb-Scargle method, which 
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Fig. 5.14 a Lomb-Scargle power spectrum and b the false-alarm probability of the null 
hypothesis. Th e plot suggests that the 100, 40 and 20 kyr cycles are highly signifi cant.
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would have the advantage that it could then be applied to unevenly-spaced 
data. Both methods, however, assume that the data are a composite of sine 
and cosine waves that are globally uniform in time and have infi nite time 
spans. Th e evolutionary power spectrum method divides the time series 
into overlapping segments and computes the Fourier transform of these 
segments. To avoid spectral leakage, the data are multiplied by windows 
that are smooth bell-shaped curves with positive values (Section 5.3). Th e 
higher the temporal resolution of the evolutionary power spectrum the 
lower the accuracy of the result. Moreover, short time windows contain a 
large number of high-frequency cycles whereas the low-frequency cycles are 
underrepresented.

In contrast to the Fourier transform, the  wavelet transform uses base 
functions ( wavelets) that have smooth ends per se (Lau and Weng 1995, 
Mackenzie et al. 2001). Wavelets are small packets of waves; they are de-
fi ned by a specifi c frequency and decay towards either end. Since wavelets 
can be stretched and translated in both frequency and time, with a fl ex-
ible resolution, they can easily map changes in the time-frequency domain. 
Mathematically, a wavelet transformation decomposes a signal y(t) into el-
ementary functions ψa,b(t) derived from a  mother wavelet ψ (t) by dilation 
and translation,

where b denotes the  position ( translation) and a (>0) the  scale ( dilation) of 
the wavelet (Lau and Weng 1995). Th e wavelet transform of the signal y(t) 
about the mother wavelet ψ (t) is defi ned as the convolution integral

where ψ * is the complex conjugate of ψ  defi ned on the open time and scale 
real (b,a) half plane.

Th ere are many mother wavelets available in the literature, such as the 
classic  Haar wavelet, the  Morlet wavelet and the  Daubechies wavelet. Th e 
most popular wavelet in geosciences is the Morlet wavelet, which is given 
by
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Fig. 5.15 Morlet mother wavelet with wavenumber 6.

where η  is the time and ω 0 is the wavenumber (Torrence and Compo 1998). 
Th e wavenumber is the number of oscillations within the wavelet itself. We 
can easily compute a discrete version of the Morlet wavelet wave by trans-
lating the above equation into MATLAB code where eta is the non-di-
mensional time and w0 is the wavenumber. Changing w0 produces wavelets 
with diff erent wave numbers. Note that it is important not to use i for index 
in for loops, since it is used here for imaginary unit (Fig. 5.15).

clear

eta = -10 : 0.1 : 10;
w0 = 6;
wave = pi.^(-1/4) .* exp(i*w0*eta) .* exp(-eta.^2/2);
plot(eta,wave)
xlabel('Position')
ylabel('Scale')
title('Morlet Mother Wavelet')

In order to familiarize ourselves with  wavelet powerspectra, we use a pure 
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sine wave with a period fi ve and additive Gaussian noise.

clear

t = 0 : 0.5 : 50;
x = sin(2*pi*t/5) + randn(size(t));

As a fi rst step, we need to defi ne the number of scales for which the wave-
let transform will be computed. Th e scales defi ne how much a wavelet is 
stretched or compressed to map the variability of the time series at diff erent 
wavelengths. Lower scales correspond to higher frequencies and therefore 
map rapidly-changing details, whereas higher scales map the long-term 
variations. As an example, we can run the wavelet analysis for 120 diff erent 
 scales between 1 and 120.

scales = 1 : 120;

In the next step, we compute the real or complex continuous Morlet wavelet 
coeffi  cients, using the function  cwt contained in the Wavelet Toolbox.

coefs = cwt(x,scales,'morl');

Th e function  scal2frq converts scales to pseudo-frequencies, using the 
Morley mother wavelet and a sampling period of 0.5.

f = scal2frq(scales,'morl',0.5);

We use a fi lled contour plot to portray the power spectrum, i. e., the absolute 
value of the wavelet coeffi  cients (Fig. 5.16).

contour(t,f,abs(coefs),'LineStyle','none','LineColor', ...
   [0 0 0],'Fill','on')
xlabel('Time')
ylabel('Frequency')
title('Wavelet Power Spectrum')

We now apply this concept to the synthetic data from the example to dem-
onstrate the windowed power spectrum method, and load the synthetic 
data contained in fi le series3.txt, remembering that the data contain 
periodicities of 100, 40, 20 kyr as well as additive Gaussian noise, and are 
unevenly spaced about the time axis.

clear

series3 = load('series3.txt');

As for the Fourier transform and in contrast to the Lomb-Scargle algorithm, 
the wavelet transform requires evenly-spaced data, and we therefore inter-
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Fig. 5.16 Wavelet power spectrum showing a signifi cant period at 5 cycles that persists 
throughout the full length of the time vector.

polate the data using interp1.

t = 0 : 3 : 1000;
series3L = interp1(series3(:,1),series3(:,2),t,'linear');
 

We then compute the wavelet transform for 120 scales using the function 
cwt and a Morley mother wavelet, as we did for the previous example.

scales = 1 : 120;
coefs = cwt(series3L,scales,'morl');

We use scal2freq to convert scales to pseudo-frequencies, using the 
Morley mother wavelet and the sampling period of three.

f = scal2frq(scales,'morl',3);
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Fig. 5.17 Wavelet power spectrum for the synthetic data series contained in series_3.txt. 
Th e plot clearly shows signifi cant periodicities at frequencies of 0.01, 0.25, and 0.5 kyr-1 

corresponding to the 100, 40, and 20 kyr cycles.  Th e 100 kyr cycle is present throughout the 
entire time series, whereas the 40 kyr cycle only appears at around 450 kyrs before present. 
Th e 20 kyr cycle is relatively weak but probably present throughout the entire time series.

We can now use a fi lled contour plot to portray the wavelet power spectrum, 
i. e., the absolute value of the wavelet coeffi  cients (Fig. 5.17).

contour(t,f,abs(coefs),'LineStyle', 'none', ...
   'LineColor',[0 0 0],'Fill','on')
xlabel('Time'),ylabel('Frequency')
title('Wavelet Power Spectrum')

Th e graph shows horizontal clusters of peaks at 0.01 and 0.05 kyr–1 cor-
responding to 100 and 20 kyr cycles, although the 20 kyr cycle is not very 
clear. Th e wavelet power spectrum also reveals a signifi cant 40 kyr cycle 
or a frequency of 0.025 kyr–1 that appears at ca. 450 kyrs before present. 
Compared to the windowed power spectrum method, the wavelet power 
spectrum clearly shows a much higher resolution on both the time and the 
frequency axes. Instead of dividing the time series into overlapping seg-
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ments and computing the power spectrum for each segment, the wavelet 
transform uses short packets of waves that better map temporal changes in 
the cyclicities. Th e disadvantage of both the windowed power spectrum and 
the wavelet power spectral analyses, however, is the requirement for evenly-
spaced data. Th e Lomb-Scargle method overcomes this problem but as for 
the power spectrum method, has limitations in its ability to map temporal 
changes in the frequency domain.

5.9  Nonlinear Time-Series Analysis (by N. Marwan)

Th e methods described in the previous sections detect linear relationships 
in the data. However, natural processes on the Earth oft en show a more 
complex and chaotic behavior, and methods based on linear techniques may 
therefore yield unsatisfactory results. In recent decades, new techniques for 
nonlinear data analysis derived from chaos theory have become increas-
ingly popular. Such methods have, for example, been employed to describe 
nonlinear behavior by defi ning, e. g., scaling laws and fractal dimensions of 
natural processes (Turcotte 1997, Kantz and Schreiber 1997). However, most 
methods of nonlinear data analysis require either long or stationary data se-
ries, and these requirements are rarely satisfi ed in the earth sciences. While 
most nonlinear techniques work well on synthetic data, these methods are 
unable to describe nonlinear behavior in real data. 

In the last decade,  recurrence plots have become very popular in sci-
ence and engineering as a new method of nonlinear data analysis (Eckmann 
1987, Marwan 2007). Recurrence is a fundamental property of dissipative 
dynamical systems. Although small disturbances in such systems can cause 
exponential divergence in their states, aft er some time the systems will re-
turn to a state that is arbitrarily close to a former state and pass through a 
similar evolution. Recurrence plots allow such recurrent behavior of dy-
namical systems to be visually portrayed. Th e method is now a widely ac-
cepted tool for the nonlinear analysis of short and nonstationary data sets.

 Phase Space Portrait

Th e starting point for most nonlinear data analyses is the construction of a 
phase space portrait for a system. Th e state of a system can be described by 
its state variables x1(t), x2(t), …, xd(t). As an example, suppose the two vari-
ables temperature and pressure are used to describe the thermodynamic 
state of the Earth’s mantle as a complex system. Th e d state variables at time 
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t form a vector in a d-dimensional space – the so-called phase space. Th e 
state of a system typically changes with time and the vector in the phase 
space therefore describes a trajectory representing the temporal evolution, 
i. e., the dynamics of the system. Th e course of the trajectory provides es-
sential information on the dynamics of the system, such as whether systems 
are periodic or chaotic.

In many applications, the observation of a natural process does not yield 
all possible state variables, either because they are not known or because 
they cannot be measured. However, due to coupling between the system’s 
components, we can reconstruct a  phase space trajectory from a single ob-
servation ui:

where m is the embedding dimension and τ  is the time delay (index based; 
the real time delay is τ =Δt). Th is reconstruction of the phase space is called 
 time delay embedding. Th e phase space reconstruction is not exactly the 
same as the original phase space, but its topological properties are preserved, 
provided the embedding dimension is large enough. In practice, the embed-
ding dimension must be more than twice the the dimension of the attractor, 
or exactly m>2d+1. Th e reconstructed trajectory is then suffi  ciently accurate 
for subsequent data analysis.

As an example, we now explore the phase space portrait of a harmonic 
oscillator, such as an undamped pendulum. First, we create the position 
vector x1 and the velocity vector x2

clear

t = 0 : pi/10 : 3*pi;
x1 = sin(t);
x2 = cos(t);

Th e phase space portrait

plot(x1,x2)
xlabel('x_1') 
ylabel('x_2')

is a circle, suggesting an exact recurrence of each state aft er one complete 
cycle (Fig. 5.18). Using the time delay embedding, we can reconstruct this 
phase space portrait using only a single observation, e. g., the velocity vec-
tor, and a delay of 5, which corresponds to a quarter of the period of our 
pendulum.



148  5 TIME-SERIES ANALYSIS

−1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1
−1

0

1

−1

0

1

0.5

−0.5

0.5

−0.5

x1

x 2

x1

x 2

Periodic Signal Phase Space Portrait

a b

Fig. 5.18 a Original and b reconstructed phase space portrait for a periodic system. Th e 
reconstructed phase space is almost the same as the original phase space. 

tau = 5;
plot(x2(1:end-tau),x2(1+tau:end))
xlabel('x_1')
ylabel('x_2')

As we can see, the reconstructed phase space is almost the same as the 
original phase space. Next, we compare this phase space portrait with the 
one for a typical nonlinear system, the  Lorenz system (Lorenz 1963). When 
studying weather patterns, it is clear that weather oft en does not change as 
predicted. In 1963, Edward Lorenz introduced a simple three-dimensional 
model to describe the chaotic behavior exhibited by turbulence in the at-
mosphere. Th e variables defi ning the Lorenz system are the intensity of at-
mospheric convection, the temperature diff erence between ascending and 
descending currents and the distortion of the vertical temperature profi les 
from linearity. Small variations in the initial conditions can cause dramati-
cally divergent weather patterns, a behavior oft en referred to as the butterfl y 
eff ect. Th e dynamics of the Lorenz system is described by three coupled 
nonlinear diff erential equations:
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Integrating the diff erential equation yields a simple MATLAB code for com-
puting the xyz triplets of the Lorenz system. As system parameters control-
ling the chaotic behavior we use s=10, r=28 and b=8/3, the time delay is 
dt=0.01. Th e initial values for the position vectors are x1=8, x2=9 and 
x3=25. Th ese values, however, can be changed to any other values, which of 
course will then change the behavior of the system.

clear

dt = .01; 
s = 10; 
r = 28; 
b = 8/3; 
x1 = 8; x2 = 9; x3 = 25; 
for i = 1 : 5000 
   x1 = x1 + (-s*x1*dt) + (s*x2*dt); 
   x2 = x2 + (r*x1*dt) - (x2*dt) - (x3*x1*dt); 
   x3 = x3 + (-b*x3*dt) + (x1*x2*dt); 
   x(i,:) = [x1 x2 x3];
end
 

Typical traces of a variable, such as the fi rst variable can be viewed by plot-
ting x(:,1) over time in seconds (Fig. 5.19).

t = 0.01 : 0.01 : 50;
plot(t,x(:,1))
xlabel('Time')
ylabel('Temperature')

We next plot the phase space portrait for the Lorenz system (Fig. 5.20).

plot3(x(:,1),x(:,2),x(:,3))
grid, view(70,30)
xlabel('x_1') 
ylabel('x_2') 
zlabel('x_3')

In contrast to the simple periodic system described above, the trajectories 
of the Lorenz system obviously do not precisely follow the previous course, 
but recur very close to it. Moreover, if we follow two very close segments of 
the trajectory, we see that they run into diff erent regions of the phase space 
with time. Th e trajectory is obviously circling around a fi xed point in the 
phase space and then, aft er a random time period, circling around another. 
Th e curious orbit of the phase states around fi xed points is known as the 
Lorenz attractor.

Th ese observed properties are typical of  chaotic systems. While small 
disturbances of such a system cause exponential divergences of its state, the 
system returns approximately to a previous state through a similar course. 
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Fig. 5.19 Th e Lorenz system. As system parameters we use s=10, r=28 and b=8/3;  the 
time delay is dt=0.01.
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Th e reconstruction of the phase space portrait using only the fi rst state and 
a delay of six

tau = 6; 
plot3(x(1:end-2*tau,1),x(1+tau:end-tau,1),x(1+2*tau:end,1)) 
grid, view([100 60])
xlabel('x_1'), ylabel('x_2'), zlabel('x_3')

reveals a similar phase portrait with the two typical ears (Fig. 5.20). Th e 
characteristic properties of chaotic systems can also be observed in this re-
construction.

Th e  time delay and  embedding dimension need to be chosen by a pre-
ceding analysis of the data. Th e delay can be estimated with the help of the 
autocovariance or autocorrelation function. For our example of a periodic 
oscillation,

clear

t = 0 : pi/10 : 3*pi;
x = sin(t);

we compute and plot the autocorrelation function

for i = 1 : length(x) - 2
    r = corrcoef(x(1:end-i),x(1+i:end));
    C(i) = r(1,2);
end
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Fig. 5.20 a Th e phase space portrait for the Lorenz system. In contrast to the simple periodic 
system, the trajectories of the Lorenz system obviously do not follow precisely the previous 
course, but recur very close to it. b Th e reconstruction of the phase space portrait using only 
the fi rst state and a delay of 6 seconds reveals a topologically similar phase portrait to a, with 
the two typical ears.
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plot(C)
xlabel('Delay'), ylabel('Autocorrelation')
grid on

We now choose a delay such that the autocorrelation function equals zero 
for the fi rst time. In our case this is 5, which is the value that we have already 
used in our example of phase space reconstruction. Th e appropriate em-
bedding dimension can be estimated by using the false nearest neighbors 
method, or more simple, using recurrence plots which are introduced in the 
next subsection. Th e embedding dimension is gradually increased until the 
majority of the diagonal lines are parallel to the line of identity.

Th e phase space trajectory or its reconstruction is the basis of several 
measures defined in nonlinear data analysis, such as Lyapunov exponents, 
Rényi entropies or dimensions. Th e book on nonlinear data analysis by 
Kantz and Schreiber (1997) is recommended for more detailed information 
on these methods. Phase space trajectories or their reconstructions are also 
necessary for constructing recurrence plots.
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Recurrence Plots

Th e phase space trajectories of dynamic systems that have more than three 
dimensions are diffi  cult to portray visually. Recurrence plots provide a way 
of analyzing systems with higher dimensions. Th ey can be used, e. g., to 
detect transitions between diff erent regimes or to detect interrelations or 
synchronisation between several systems (Marwan 2007). Th e method was 
fi rst introduced by Eckmann and others (1987). Th e recurrence plot is a tool 
that displays the recurrences of states in the phase space through a two-
dimensional plot.

If the distance between two states i and j on the trajectory is smaller than a 
given threshold ε , the value of the recurrence matrix R is one; otherwise it 
is zero. Th is analysis is therefore a pairwise test of all states. For N states we 
compute N2 tests. Th e recurrence plot is then the two-dimensional display 
of the N-by-N matrix, where black pixels represent Ri,j=1 and white pixels 
indicate Ri,j=0, with a coordinate system representing two time axes. Such 
recurrence plots can help to fi nd a preliminary characterization of the dy-
namics of a system or to fi nd transitions and interrelations within a system 
(cf. Fig. 5.21).

As a fi rst example, we load the synthetic time series containing 100 kyr, 
40 kyr and 20 kyr cycles already used in the previous sections. Since the data 
are unevenly spaced, we have to linearly interpolate the data to an evenly-
spaced time axis.

clear

series1 = load('series1.txt');
t = 0 : 3 : 996;
series1L = interp1(series1(:,1),series1(:,2),t,'linear');

We start with the assumption that the phase space is only one-dimensional. 
Th e calculation of the distances between all points of the phase space trajec-
tory produces the distance matrix S.

N = length(series1L);
S = zeros(N, N);
for i = 1 : N,
    S(:,i) = abs(repmat(series1L(i), N, 1 ) - series1L(:));
end
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Fig. 5.21 Recurrence plots representing typical dynamical behaviors: a stationary un-
correlated data (white noise), b periodic oscillation, c chaotic data (Roessler system) and d 
non-stationary data with abrupt changes.

We can now plot the distance matrix

imagesc(t,t,S)
colorbar
xlabel('Time'), ylabel('Time')

for the data set, where a colorbar provides a quantitative measure of the dis-
tances between states (Fig. 5.22). We now apply a threshold ε  to the distance 
matrix to generate the black/white recurrence plot (Fig. 5.23).

imagesc(t,t,S<1)
colormap([1 1 1;0 0 0])
xlabel('Time'), ylabel('Time')
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Fig. 5.22 Display of the distance matrix from the synthetic data providing a quantitative 
measure for the distances between states at certain times; blue colors indicate small 
distances, red colors represent large distances.

Both plots reveal periodically recurring patterns. Th e distances between 
these periodically recurring patterns represent the cycles contained in the 
time series. Th e most signifi cant periodic patterns have periods of 200 and 
100 kyrs. Th e 200 kyr period is most signifi cant because of the superposi-
tion of the 100 and 40 kyr cycles, which are common divisors of 200 kyrs. 
Moreover, there are smaller substructures within the recurrence plot, which 
have periods of 40 and 20 kyrs.

As a second example, we now apply the method of recurrence plots to 
the Lorenz system. We again generate xyz triplets from the coupled diff er-
ential equations.

clear

dt = .01; 
s = 10; 
r = 28; 
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Fig. 5.23 Th e recurrence plot for the synthetic data derived from the distance matrix as 
shown in Fig. 5.22 aft er applying a threshold of ε =1.
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b = 8/3; 
x1 = 8; x2 = 9; x3 = 25; 
for i = 1 : 5000 
   x1 = x1 + (-s*x1*dt) + (s*x2*dt); 
   x2 = x2 + (r*x1*dt) - (x2*dt) - (x3*x1*dt); 
   x3 = x3 + (-b*x3*dt) + (x1*x2*dt); 
   x(i,:) = [x1 x2 x3];
end

We then choose the resampled fi rst component of this system and recon-
struct a phase space trajectory by using an embedding of m=3 and τ =2, 
which corresponds to a delay of 0.17 seconds.

t = 0.01 : 0.05 : 50;
y = x(1:5:5000,1);
m = 3; tau = 2;

N = length(y);
N2 = N - tau*(m - 1);
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Th e original data series had a length of 5,000 data points, reduced to 1,000 
data points equivalent to 50 seconds, but because of the time delay method, 
the reconstructed phase space trajectory has a length of 996 data points. We 
can create the phase space trajectory with

for mi = 1:m
   xe(:,mi) = y([1:N2] + tau*(mi-1));
end

We can accelerate the pair-wise test between each pairs of points on the 
trajectory with a fully vectorized algorithm supported by MATLAB. For 
this we need to transfer the trajectory vector into two test vectors, whose 
element-wise test will provide the pair-wise test of the trajectory vector:

x1 = repmat(xe,N2,1);
x2 = reshape(repmat(xe(:),1,N2)',N2*N2,m);

Using these vectors we calculate the recurrence plot using the Euclidean 
norm without any FOR loop (see Section 9.4 for details on Euclidean dis-
tances).

S = sqrt(sum((x1 - x2).^ 2,2 ));
S = reshape(S,N2,N2);

imagesc(t(1:N2),t(1:N2),S<10)
colormap([1 1 1;0 0 0])
xlabel('Time'), ylabel('Time')

Th is recurrence plot reveals many short diagonal lines (Fig. 5.24). Th ese lines 
represent epochs, where the phase space trajectory runs parallel to earlier or 
later sequences in this trajectory, i. e., at the times when the states and dy-
namics were similar. Th e distances between these diagonal lines represent 
the periods of the cycles, which vary and are not constant, in contrast to 
those for a harmonic oscillation (Fig. 5.21).

Th e structure of recurrence plots can also be described by a suite of 
quantitative measures. Several measures are based on the distribution of 
the lengths of diagonal or vertical lines. Th ese parameters can be used to 
trace hidden transitions in a process. Bivariate and multivariate extensions 
of recurrence plots furthermore permit nonlinear correlation tests and syn-
chronization analyses to be carried out. A detailed introduction to recur-
rence plot based methods can be found at the web site

http://www.recurrence-plot.tk

Th e analysis of recurrence plots has already been applied to many problems 
in earth sciences. Th e comparison of the dynamics of modern precipita-
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Fig. 5.24 Th e recurrence plot for the Lorenz system using a threshold of ε =2. Th e regions 
with regular diagonal lines reveal unstable periodic orbits, typical of chaotic systems.

tion data with paleo-rainfall data inferred from annual-layered lake sedi-
ments in the northwestern Argentine Andes provides a good example of 
such analyses (Marwan et al. 2003). In this example, the method of recur-
rence plots was applied to red-color intensity transects across ca. 30 kyr-old 
varved lake sediments (Section 8.7). Comparing the recurrence plots from 
the sediments with the ones from modern precipitation data revealed that 
the reddish layers document more intense rainy seasons that occurred dur-
ing the La Niña years. Th e application of linear techniques was not able 
to link the increased fl ux of reddish clays and enhanced precipitation to 
either the El Niño or La Niña phase of the El Niño/Southern Oscillation. 
Moreover, recurrence plots helped to prove the hypothesis that longer rainy 
seasons enhanced precipitation and the stronger infl uence of the El Niño/
Southern Oscillation caused an increase in the number of landslides 30 kyrs 
ago (Marwan et al. 2003, Trauth et al. 2003).
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Input signal Output signalSignal transformation

LTI System

Fig. 6.1 Schematic of a linear time-invariant (LTI) system. Th e input signal is transformed 
into an output signal.

6 Signal Processing

6.1 Introduction

 Signal processing involves techniques for manipulating a signal in order to 
minimize the eff ects of  noise, to correct all kinds of unwanted distortions, 
and to separate out various components of interest. Most signal process-
ing algorithms include the design and realization of fi lters. A  filter can be 
described as a system that transforms signals.  System theory provides the 
mathematical background for fi lter design and realization. A fi lter has an 
input and an output, with the  output signal y(t) being modifi ed with re-
spect to the  input signal x(t) (Fig. 6.1). Th e signal transformation can be 
carried out through a mathematical process known as convolution or, if 
fi lters are involved, as filtering.

Th is chapter deals with the design and  realization of  digital filters with 
the help of a computer. Many natural processes, however, resemble  analog 
filters that act over a range of spatial dimensions. A single rainfall event 
is not recorded in lake sediments because short and low-amplitude events 
are smeared over a longer time span. Bioturbation also introduces serious 
distortions for instance to deep-sea sediment records. Aside from such  nat-
ural fi lters, the fi eld collection and sampling of geological data alters and 

M.H. Trauth, MATLAB® Recipes for Earth Sciences, 3rd ed.,  
DOI 10.1007/978-3-642-12762-5_6, © Springer-Verlag Berlin Heidelberg 2010  
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smoothes the data with respect to its original form. For example, a fi nite 
sized sediment sample is integrated over a certain period of time and there-
fore smoothes the natural signal. Similarly, the measurement of magnetic 
susceptibility in a sediment core with the help of a loop sensor introduces 
signifi cant smoothing since the loop response is integrated over a section 
of the core.

Th e characteristics of these natural fi lters are oft en diffi  cult to determine, 
whereas numerical fi lters are designed with well-defi ned characteristics. In 
addition,  artifi cial fi lters are time invariant in most cases, whereas natural 
fi lters, such as mixing within the water body of a lake or bioturbation at the 
water-sediment interface, may vary with time. An easy way to describe or 
predict the eff ect of a fi lter is to explore the fi lter output from a simple input 
signal, such as a sine wave, a square wave, a sawtooth function, a ramp func-
tion or a step function. Although there is an endless variety of such input 
signals, most systems or fi lters are described by their impulse response, i. e., 
the output resulting from the input of a unit impulse.

Th is chapter starts with a technical section on generating periodic sig-
nals, trends and noise, similar to Section 5.2 of the previous chapter. Section 
6.3 then considers linear time-invariant systems, providing the mathemati-
cal background for fi lters. Th e succeeding Sections 6.4 to 6.9 deal with the 
design, the realization and the application of linear time-invariant fi lters. 
Section 6.10 then considers the use of adaptive fi lters originally developed 
in telecommunication. Adaptive fi lters automatically extract noisefree sig-
nals from duplicate measurements on the same object. Such fi lters can be 
used in a large number of applications, for example to remove noise from 
duplicate paleoceanographic time series, or to improve the signal-to-noise 
ratio of parallel color-intensity transects across varved lake sediments (see 
Chapter 5, Fig. 5.1). Adaptive fi lters are also widely used in geophysics for 
noise canceling.

6.2 Generating Signals

MATLAB provides numerous tools for generating basic signals that can be 
used to illustrate the eff ects of fi lters. In Chapter 5 we generated a signal by 
adding together three sine waves with diff erent amplitudes and periods. In 
the following example, the time vector is transposed in order to generate 
column vectors.
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t = (1:100)';
x = 2*sin(2*pi*t/50) + ... 
      sin(2*pi*t/10) + ...
  0.5*sin(2*pi*t/5);

plot(t,x) 
axis([0 100 -4 4])

 Frequency-selective fi lters are very common in earth sciences. Th ey are used 
to remove specifi c frequency bands from the data. As an example, we can 
design a fi lter to suppress that portion of the signal that has a periodicity 
of τ =10, leaving the other two cycles unaff ected. Th e eff ects of such fi lters 
on simple periodic signals can also be used to predict signal distortions of 
natural fi lters.

A  step function is another basic input signal that can be used to explore 
fi lter characteristics. It describes the transition from a value of one towards 
a value of zero at a specifi c time. Th e function stairs draws a stairstep 
graph of the elements of x.

t = (1:100)';
x = [ones(50,1);zeros(50,1)];

stairs(t,x) 
axis([0 100 -2 2])

Th is signal can be used to study the eff ects of a fi lter on a sudden transition. 
An abrupt climate change could be regarded as an example. Most natural 
fi lters tend to smooth such a transition and smear it over a longer time pe-
riod.

A  unit impulse is a third important signal type that we will use in the 
following examples. Th is signal equals zero at all times except for a single 
data point, at which it equals one. Th e function stem plots the data se-
quence x as stems from the t-axis with circles for the data values.

t = (1:100)';
x = [zeros(49,1);1;zeros(50,1)];

stem(t,x) 
axis([0 100 -4 4])

Th e unit impulse is the most popular synthetic signal used to study the 
performance of a fi lter. Th e output of the fi lter, i. e., the impulse response, 
describes the characteristics of a fi lter very well. Moreover, the output of a 
linear time-invariant fi lter can be described by the superposition of impulse 
responses that have been scaled by multiplying the output of the fi lter by the 
amplitude of the input signal.

clear
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6.3 Linear Time-Invariant Systems

Filters can be described as systems with an input x(t) and output y(t). We 
will therefore fi rst describe the characteristics of systems in general before 
then considering fi lters. Important characteristics of a system are

 • Continuity – A system with continuous inputs x(t) and outputs y(t) is a 
continuous system. Most natural systems are continuous. However, aft er 
sampling natural signals we obtain discrete data series and model these 
natural systems as discrete systems, with discrete inputs and outputs.

Linearity•  – For linear systems, the output y(t) of the linear combination 
of several input signals xi(t)

is the same as the linear combination of the outputs yi(t):

Important properties of linearity are scaling and additivity ( superposi-
tion), which means that input and output can be multiplied by a constant 
ki , either before or aft er transformation. Superposition allows additive 
components of the input to be extracted and transformed separately. 
Fortunately, many natural systems follow a linear pattern of behavior. 
Complex linear signals such as additive harmonic components can be 
separated out and transformed independently. Milankovitch cycles pro-
vide an example of linear superposition in paleoclimate records, although 
there is an ongoing debate about the validity of this theory. Numerous 
nonlinear systems also exist in nature, which do not possess the proper-
ties of scaling and additivity. An example of a  linear system is

x = (1:100)';
y = 2*x;

plot(x,y)

where x is the input signal and y is the output signal. An example of a 
 nonlinear system is

x = (-100:100)';
y = x.^2;

plot(x,y)
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 • Time invariance – Th e system output y(t) does not change as a result of 
a delay in the input x(t+i): the system characteristics are constant with 
time. Unfortunately, natural systems oft en change their characteristics 
with time. For instance, benthic mixing or bioturbation depends on vari-
ous environmental parameters such as nutrient supply, and the system’s 
properties consequently vary signifi cantly with time. In a such case, it 
is diffi  cult to determine the actual input of the system from the output, 
e. g., to extract the actual climate signal from a bioturbated sedimentary 
record.

 • Invertibility – An invertible system is a system in which the original in-
put signal x(t) can be reproduced from the system’s output y(t). Th is is an 
important property if unwanted signal distortions are to be corrected, in 
which case the known system is inverted and the output then used to re-
construct the undisturbed input. As an example, a core logger measuring 
magnetic susceptibility with a loop sensor integrates over a certain core 
interval with highest sensitivity at the location of the loop and decreas-
ing sensitivity down- and up-core. Th is system is invertible, i. e., we can 
compute the input signal x(t) from the output signal y(t) by inverting the 
system. Th e inverse system of the above linear system is

x = (1:100)';
y = 0.5*x;

plot(x,y)

where x is the input signal and y is the output signal. A nonlinear system

x = (-100:100)';
y = x.^2;

plot(x,y)

is not invertible. Since this system yields equal responses for diff erent 
inputs, such as y=+4 for inputs x=–2 and x=+2, the input x cannot be 
reconstructed from the output y. A similar situation can also occur in 
linear systems, such as

x = (1:100)';
y = zeros(size(x));

plot(x,y)

Th e output y is zero for all inputs x, and the output therefore does not 
contain any information about the input.
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 • Causality – Th e system response only depends on present and past in-
puts x(0), x(–1), …, whereas future inputs x(+1), x(+2), … have no ef-
fect on the output y(0). All real-time systems, such as telecommunication 
systems, must be causal since they cannot have future inputs available to 
them. All systems and fi lters in MATLAB are indexed as causal. In earth 
sciences, however, numerous non-causal fi lters are used. Th e fi ltering of 
images and signals extracted from sediment cores are examples where 
the future inputs are available at the time of fi ltering. Output signals have 
to be delayed aft er fi ltering in order to compensate for the diff erences 
between causal and non-causal indexing. 

Stability•  – A system is stable if the output y(t) of a fi nite input x(t) is also 
fi nite. Stability is critical in fi lter design, where fi lters oft en have the dis-
advantage of provoking divergent outputs. In such cases, the fi lter design 
has to be revised and improved.

 Linear time-invariant ( LTI) systems are very popular as a special type of 
fi lter. Such systems have all the advantages that have been described above, 
as well as being easy to design and use in many applications. Th e following 
Sections 6.4 to 6.9 describe the design, realization and application of LTI-
type fi lters to extract specifi c frequency components from signals. Th ese 
fi lters are mainly used to reduce the noise level in signals. Unfortunately, 
however, many natural systems do not behave as LTI systems in that the 
signal-to-noise ratio oft en varies with time. Section 6.10 describes the ap-
plication of adaptive fi lters that automatically adjust their characteristics in 
a time-variable environment.

6.4 Convolution and Filtering

Convolution is a mathematical description of a system transformation. 
Filtering is an application of the convolution process. A running mean of 
length fi ve provides an example of such a simple fi lter. Th e output of an 
arbitrary input signal is

Th e output y(t) is simply the average of the fi ve input values x(t–2), x(t–1), 
x(t), x(t+1) and x(t+2). In other words, all the fi ve consecutive input values 
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are multiplied by a factor of 1/5 and summed to form y(t). In this exam-
ple, all input values are multiplied by the same factor, i. e., they are equally 
weighted. Th e fi ve factors used in the above operation are also called fi lter 
weights bk . Th e fi lter can be represented by the vector

b = [0.2 0.2 0.2 0.2 0.2]

consisting of the fi ve identical fi lter weights. Since this fi lter is symmetric, 
it does not shift  the signal on the time axis: the only function of this fi lter 
is to smooth the signal. Running means of a given length are oft en used to 
smooth signals, mainly for cosmetic reasons. Modern spreadsheet soft ware 
usually contains running means as a function for smoothing data series. 
Th e eff ectiveness of a smoothing fi lter increases with the fi lter length.

Th e weights that a fi lter of arbitrary length uses may be varied. As an 
example, let us consider an asymmetric fi lter of fi ve weights.

b = [0.05 0.08 0.14 0.26 0.47]

Th e sum of all of the fi lter weights is one, and therefore it does not introduce 
any additional energy into the signal. However, since it is highly asymmet-
ric, it shift s the signal along the time axis, i. e., it introduces a phase shift .

Th e general mathematical representation of the fi ltering process is the 
 convolution:

where bk is the vector of  filter weights, and N1+N2 is the  order of the filter, 
which is the length of the fi lter reduced by one. Filters with fi ve weights, as 
in our example, have an order of four. In contrast to this format, MATLAB 
uses the engineering standard for indexing fi lters, i. e., fi lters are always de-
fi ned as  causal. Th e convolution used by MATLAB is therefore

where N is the order of the fi lter. A number of the frequency-domain tools 
provided by MATLAB cannot simply be applied to  non-causal fi lters that 
have been designed for applications in earth sciences. Hence, it is common 
to carry out phase corrections in order to simulate non-causality. For exam-
ple, frequency-selective fi lters, as will be introduced in Section 6.9, can be 
applied using the function  filtfilt, which provides zero-phase forward 
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and reverse fi ltering.
Th e functions  conv and  filter that provide digital fi ltering in 

MATLAB are best illustrated in terms of a simple running mean. Th e n ele-
ments of the vector x(t1), x(t2), x(t3), …, x(tn) are replaced by the arith-
metic means of subsets of the input vector. For instance, a running mean 
over three elements computes the mean of inputs x(tn–1), x(tn), x(tn+1) to 
obtain the output y(tn). We can illustrate this simply by generating a ran-
dom  signal

clear

t = (1:100)';
randn('seed',0);
x1 = randn(100,1);

designing a fi lter that averages three data points of the input signal

b1 = [1 1 1]/3;

and convolving the input vector with the fi lter

y1 =  conv(b1,x1);

Th e elements of b1 are the weights of the fi lter. In our example, all fi lter 
weights are the same and equal to 1/3. Note that the conv function yields a 
vector that has the length n+m–1, where m is the length of the fi lter.

m1 = length(b1);

We can explore the contents of our workspace to check the length of the 
input and output of conv. Typing

whos

yields

Name        Size            Bytes  Class     Attributes
b1          1x3                24  double
m1          1x1                 8  double
t         100x1               800  double
x1        100x1               800  double
y1        102x1               816  double

Here, we see that the actual input series x1 has a length of 100 data points, 
whereas the output y1 has two additional elements. Generally, convolution 
introduces (m–1)/2 data points at each end of the data series. To compare 
input and output signal, we clip the output signal at either end.
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y1 = y1(2:101,1);

A more general way to correct the phase shift s of conv is

y1 = y1(1+(m1-1)/2:end-(m1-1)/2,1);

which, of course, only works for an odd number of fi lter weights. We can 
then plot both input and output signals for comparison, using legend to 
display a legend for the plot.

plot(t,x1,'b-',t,y1,'r-')
legend('x1(t)','y1(t)')

Th is plot illustrates the eff ect that the running mean has the original input 
series. Th e output y1 is signifi cantly smoother than the input signal x1. If 
we increase the length of the fi lter, we obtain an even smoother signal out-
put.

b2 = [1 1 1 1 1]/5;
m2 = length(b2);

y2 = conv(b2,x1);
y2 = y2(1+(m2-1)/2:end-(m2-1)/2,1);

plot(t,x1,'b-',t,y1,'r-',t,y2,'g-')
legend('x1(t)','y1(t)','y2(t)')

Th e next section provides a more general description of fi lters.

6.5 Comparing Functions for Filtering Data Series

Th e fi lters described in the previous section were very simple examples of 
nonrecursive filters, in which the fi lter output y(t) depends only on the fi l-
ter input x(t) and the fi lter weights bk . Prior to introducing a more general 
description of linear time-invariant fi lters, we replace the function  conv 
by  filter, which can also be used for recursive filters. In this case, the 
output y(tn) depends not only on the fi lter input x(t), but also on previous 
elements of the output y(tn–1), y(tn–2), y(tn–3) and so on (Section 6.6). We 
will fi rst use conv for nonrecursive fi lters in order to compare the results of 
conv and filter.

clear

t = (1:100)';
randn('seed',0);
x3 = randn(100,1);
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We design a fi lter that averages fi ve data points of the input signal.

b3 = [1 1 1 1 1]/5;
m3 = length(b3);

Th e input signal can be convolved using the function conv. As in the ex-
amples demonstrated in the previous section, the phase shift  of conv needs 
to be corrected.

y3 = conv(b3,x3);
y3 = y3(1+(m3-1)/2:end-(m3-1)/2,1);

Next, we follow a similar procedure with the function filter and com-
pare the result with that obtained using the function conv. In contrast to 
the function conv, the function filter yields an output vector with the 
same length as the input vector; we also have to correct this output. Here, 
the function filter assumes that the fi lter is causal. Th e fi lter weights 
are indexed n, n–1, n–2 and so on, and therefore no future elements of the 
input vector, such as x(n+1), x(n+2) etc. are needed to compute the output 
y(n). Th is is of great importance in electrical engineering, the classic fi eld 
of MATLAB application, where fi lters are oft en applied in real time. In 
earth sciences, however, in most applications the entire signal is, in most 
applications, available at the time of processing the data. Th e data series is 
fi ltered by

y4 = filter(b3,1,x3);

and then the phase correction is carried out using

y4 = y4(1+(m3-1)/2:end-(m3-1)/2,1);
y4(end+1:end+m3-1,1) = zeros(m3-1,1);

which works only for an odd number of fi lter weights. Th is command sim-
ply shift s the output by (m–1)/3 towards the lower end of the t-axis, and 
then fi lls the data to the end with zeros. Comparing the ends of both out-
puts illustrates the eff ect of this correction, where

y3(1:5,1)
y4(1:5,1)

yields

ans =
    0.3734
    0.4437
    0.3044
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    0.4106
    0.2971

ans =
    0.3734
    0.4437
    0.3044
    0.4106
    0.2971

Th is was the lower end of the output. We can see that both vectors y3 and 
y4 contain the same elements. Now we explorer the upper end of the data 
vector, where

y3(end-5:end,1)
y4(end-5:end,1)

causes the output

ans =
    0.2268
    0.1592
    0.3292
    0.2110
    0.3683
    0.2414

ans =
    0.2268
    0.1592
         0
         0
         0
         0

Th e vectors are identical up to element y(end–m3+1), but then the second 
vector y4 contains zeros instead of true data values. Plotting the results 
with

subplot(2,1,1), plot(t,x3,'b-',t,y3,'g-')
subplot(2,1,2), plot(t,x3,'b-',t,y4,'g-')

or in one single plot,

plot(t,x3,'b-',t,y3,'g-',t,y4,'r-')

shows that the results of conv and filter are identical except for the up-
per end of the data vector. Th ese observations are important for our next 
steps in signal processing, particularly if we are interested in leads and lags 
between various components of signals.
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bi T

+

T ai

+

Input signal x(t)

Output signal y(t)

Fig. 6.2 Schematic of a  linear time-invariant fi lter with an input x(t) and an output y(t). Th e 
fi lter is characterized by its weights ai and bi . and the delay elements T. Nonrecursive fi lters 
have only nonrecursive weights bi , whereas the recursive fi lter also requires the recursive 
fi lter weights ai .

6.6 Recursive and Nonrecursive Filters

We now expand the  nonrecursive fi lters by a recursive component, such that 
the output y(tn) depends not only on the fi lter input x(t), but also on previ-
ous output values y(tn–1), y(tn–2), y(tn–3) and so on. Th is fi lter requires not 
only the nonrecursive fi lter weights bi , but also the  recursive fi lters weights 
ai (Fig. 6.2), and can be described by the  difference equation:

Although this is a non-causal version of the diff erence equation, MATLAB 
again uses the  causal indexing,

with the known problems in the design of zero-phase fi lters. Th e larger of 
the two quantities M, and N1+N2 or N, is the order of the fi lter.

We use the same synthetic input signal as in the previous example to 
illustrate the performance of a recursive fi lter.
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clear

t = (1:100)';
randn('seed',0);
x5 = randn(100,1);

Th is input is then fi ltered using a recursive fi lter with a set of weights a5 
and b5,

b5 = [0.0048    0.0193    0.0289    0.0193    0.0048];
a5 = [1.0000   -2.3695    2.3140   -1.0547    0.1874];

m5 = length(b5);

y5 = filter(b5,a5,x5);

and the output corrected for the phase

y5 = y5(1+(m5-1)/2:end-(m5-1)/2,1);
y5(end+1:end+m5-1,1) = zeros(m5-1,1);

Now we can plot the results.

plot(t,x5,'b-',t,y5,'r-')

Th is fi lter clearly changes the signal dramatically. Th e output contains only 
low-frequency components and all higher frequencies have been eliminated. 
A comparison of the periodograms for the input and the output reveals that 
all frequencies above f=0.1, corresponding to a period of τ =10 are sup-
pressed.

[Pxx,f] =  periodogram(x5,[],128,1);
[Pyy,f] = periodogram(y5,[],128,1);

plot(f,Pxx,f,Pyy)

We have now designed a frequency-selective fi lter, i. e., a fi lter that elimi-
nates certain frequencies, while other periodicities remain relatively unaf-
fected. Th e next section introduces tools that are used to characterize a fi lter 
in the time and frequency domains, and that help to predict the eff ect of a 
frequency-selective fi lter on arbitrary signals.

6.7 Impulse Response

Th e  impulse response is a very convenient way of describing the character-
istics of a fi lter (Fig. 6.3). Th e impulse response h is useful in LTI systems 
where the convolution of the input signal x(t) with h is used to obtain the 
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Fig. 6.3 Transformation of a a  unit impulse to compute b the impulse response of a system. 
Th e  impulse response is oft en used to describe and predict the performance of a fi lter.

output signal y(t).

It can be shown that the impulse response h is identical to the fi lter weights 
in nonrecursive fi lters, but not for recursive fi lters. Th e above convolution 
equation is oft en written in a short form:

In many examples, convolution in the  time domain is replaced by a simple 
multiplication of the  Fourier transforms H( f ) and X( f ) in the  frequency 
domain.

Th e output signal y(t) in the time domain is then obtained by a reverse 
Fourier transform of Y( f ). Th e signals are oft en convolved in the frequency 
domain rather than the time domain because of the relative simplicity of 
the multiplication. However, the Fourier transformation itself introduces a 
number of artifacts and distortions, and convolution in the frequency do-
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main is therefore not without problems. In the following examples we apply 
the convolution only in the time domain.

First, we generate a unit impulse:

clear

t = (0:20)';
x6 = [zeros(10,1);1;zeros(10,1)];

stem(t,x6), axis([0 20 -4 4])

Th e function stem plots the data sequence x6 as stems from the x-axis ter-
minated with circles for the data value. Th is might be a better way to plot 
digital data than using the continuous lines generated by plot. We now 
feed this into the fi lter and explore the output. Th e impulse response is iden-
tical to the weights of nonrecursive fi lters.

b6 = [1 1 1 1 1]/5;
m6 = length(b6);

y6 = filter(b6,1,x6);

We again correct this for the  phase shift  of the function filter, although 
this might not be important in this example.

y6 = y6(1+(m6-1)/2:end-(m6-1)/2,1);
y6(end+1:end+m6-1,1) = zeros(m6-1,1);

We obtain an output vector y6 of the same length and phase as the input 
vector x6. We now plot the results for comparison.

stem(t,x6)
hold on
stem(t,y6,'filled','r')
axis([0 20 -2 2])
hold off

In contrast to plot, the function  stem accepts only one data series, and 
the second series y6 is therefore overlaid on the same plot using the func-
tion hold. Th e eff ect of the fi lter is clearly seen on the plot: it averages the 
unit impulse over a length of fi ve elements. Furthermore, the values of the 
output equal the fi lter weights of a6, in our example 0.2 for all elements of 
a6 and y6.

For a recursive fi lter, however, the output y6 does not match with the 
fi lter weights. Once again, an impulse is generated fi rst of all.

clear
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t = (0:20)';
x7 = [zeros(10,1);1;zeros(10,1)];

An arbitrary recursive fi lter with weights of a7 and b7 is then designed.

b7 = [0.0048    0.0193    0.0289    0.0193    0.0048];
a7 = [1.0000   -2.3695    2.3140   -1.0547    0.1874];

m7 = length(b7);

y7 = filter(b7,a7,x7);
 
y7 = y7(1+(m7-1)/2:end-(m7-1)/2,1);
y7(end+1:end+m7-1,1) = zeros(m7-1,1);
 

Th e stem plot of the input x2 and the output y2 shows an interesting im-
pulse response:

stem(t,x7)
hold on
stem(t,y7,'filled','r')
axis([0 20 -2 2])
hold off

Th e signal is smeared over a broader area, and is also shift ed towards the 
right. Th is fi lter therefore not only aff ects the amplitude of the signal, but 
also shift s the signal towards lower or higher values. Such phase shift s are 
usually unwanted characteristics of fi lters, although in some applications 
shift s along the time axis might be of particular interest.

6.8 Frequency Response

We next investigate the  frequency response of a fi lter, i. e., the eff ect of a fi lter 
on the  amplitude and  phase of a signal (Fig. 6.4). Th e frequency response 
H( f ) of a fi lter is the Fourier transform of the impulse response h( f ). Th e 
absolute value of the complex  frequency response H( f ) is the  magnitude 
response of the fi lter A( f ).

Th e argument of the complex frequency response H( f ) is the phase response 
of the fi lter.
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Fig. 6.4 a Magnitude and b phase response of a running mean over eleven elements.

Since MATLAB fi lters are all causal it is diffi  cult to explore the phase of 
signals using the corresponding functions included in the Signal Processing 
Toolbox. Th e user’s guide for this toolbox simply recommends that the fi lter 
output be delayed in the time domain by a fi xed number of samples, as we 
have done in the previous examples. As another example, a sine wave with a 
period of 20 and an amplitude of 2 is used as an input signal.

clear

t = (1:100)';
x8 = 2*sin(2*pi*t/20);

A  running mean over eleven elements is designed and this fi lter applied to 
the input signal.

 
b8 = ones(1,11)/11;
m8 = length(b8);

y8 = filter(b8,1,x8);

Th e phase is corrected for causal indexing.

y8 = y8(1+(m8-1)/2:end-(m8-1)/2,1);
y8(end+1:end+m8-1,1) = zeros(m8-1,1);

Both input and output of the fi lter are plotted.
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plot(t,x8,t,y8)

Th e fi lter clearly reduces the amplitude of the sine wave. Whereas the input 
signal has an amplitude of 2, the output has an amplitude of

max(y8)

ans =
    1.1480

Th e fi lter reduces the amplitude of a sine with a period of 20 by

1-max(y8(40:60))/2

ans =
    0.4260

i. e., by approximately 43 %. Th e elements 40 to 60 are used for computing 
the maximum value of y8, in order to avoid edge eff ects. Nevertheless, the 
fi lter does not aff ect the phase of the sine wave, i. e., both input and output 
are in phase.

Th e same fi lter, however, has a diff erent impact on a diff erent input sig-
nal. Let us design another sine wave with a similar amplitude, but with a 
diff erent period of 15.

clear

t = (1:100)';
x9 = 2*sin(2*pi*t/15);

Applying a similar fi lter and correcting the output for the phase shift  of the 
function filter yields

b9 = ones(1,11)/11;
m9 = length(b9);

y9 = filter(b9,1,x9);

y9 = y9(1+(m9-1)/2:end-(m9-1)/2,1);
y9(end+1:end+m9-1,1) = zeros(m9-1,1);

Th e output is again in phase with the input, but the amplitude is dramati-
cally reduced compared to that of the input.

plot(t,x9,t,y9)

1-max(y9(40:60))/2

ans =
    0.6768
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Th e running mean over eleven elements reduces the amplitude of this signal 
by 67 %. More generally, the fi lter response clearly depends on the frequency 
of the input. Th e frequency components of a more complex signal contain-
ing multiple periodicities are aff ected in a diff erent way. Th e frequency re-
sponse of a fi lter

clear

b10 = ones(1,11)/11;

can be computed using the function  freqz.

[h,w] = freqz(b10,1,512);

Th e function freqz returns the complex frequency response h of the digital 
fi lter b10. Th e frequency axis is normalized to π. We transform the frequency 
axis to the true frequency values. Th e true frequency values are w times the 
sampling frequency, which is one in our example, divided by 2*pi.

f = 1*w/(2*pi);

Next, we calculate and display the magnitude of the frequency response.

magnitude = abs(h);
 
plot(f,magnitude)
xlabel('Frequency'), ylabel('Magnitude')
title('Magnitude')

Th is plot can be used to predict the eff ect of the fi lter for any frequency of an 
input signal. We can interpolate the magnitude of the frequency response 
to calculate the increase or reduction of a signal's amplitude for a specifi c 
frequency. As an example, the interpolation of magnitude for a frequency 
of 1/20

1-interp1(f,magnitude,1/20)

ans =
    0.4260

results in the expected ca. 43 % reduction in the amplitude of a sine wave 
with a period of 20. Th e sine wave with a period of 15 experiences an ampli-
tude reduction of

1-interp1(f,magnitude,1/15)

ans =
    0.6751
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i. e., around 68 % similar to the value observed previously. Th e frequency 
response can be calculated for all kinds of fi lters. It is a valuable tool for 
predicting the eff ects of a fi lter on signals in general. Th e phase response 
can also be calculated from the complex frequency response of the fi lter 
(Fig. 6.4):

phase = 180*angle(h)/pi;

plot(f,phase)
xlabel('Frequency'), ylabel('Phase in degrees')
title('Phase')

Th e phase angle is plotted in degrees. We observe frequent 180° jumps in 
this plot that are an artifact of the function arctangent within the func-
tion angle. We can unwrap the phase response to eliminate the 180° jumps 
using the function unwrap.

plot(f, unwrap(phase))
xlabel('Frequency'), ylabel('Phase in degrees')
title('Phase')

Since the fi lter has a linear phase response, no shift s occur in the frequency 
components of the signals relative to each other. We would therefore not ex-
pect any distortions of the signal in the frequency domain. Th e phase shift  
of the fi lter can be computed using

interp1(f,unwrap(phase),1/20) * 20/360 

ans =
   -5.0000

and 

interp1(f,unwrap(phase),1/15) * 15/360

ans =
   -5.0000

for the sine waves with periods of 20 and 15, respectively. Since MATLAB 
uses causal indexing for fi lters, the phase needs to be corrected, in a similar 
way to the delayed output of the fi lter. In our example, we used a fi lter with 
a length of eleven. We therefore have to correct the phase by (11–1)/2=5, 
which suggests a zero phase shift  for the fi lter for both frequencies.

Th is also works for recursive fi lters. Consider a simple sine wave with a 
period of 8 and the previously employed recursive fi lter.

clear
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t = (1:100)';
x11 = 2*sin(2*pi*t/8);

b11 = [0.0048    0.0193    0.0289    0.0193    0.0048];
a11 = [1.0000   -2.3695    2.3140   -1.0547    0.1874];

m11 = length(b11);

y11 = filter(b11,a11,x11);

We correct the output for the phase shift  introduced by causal indexing and 
plot both input and output signals.

y11= y11(1+(m11-1)/2:end-(m11-1)/2,1);
y11(end+1:end+m11-1,1) = zeros(m11-1,1);

plot(t,x11,t,y11)

Th e magnitude is reduced by

1-max(y11(40:60))/2

ans =
    0.6465

which is also supported by the magnitude response

[h,w] = freqz(b11,a11,512);

f = 1*w/(2*pi);

magnitude = abs(h);

plot(f,magnitude)
xlabel('Frequency'), ylabel('Magnitude')
title('Magnitude Response')

1-interp1(f,magnitude,1/8)

ans =
    0.6462

Th e phase response

phase = 180*angle(h)/pi;

f = 1*w/(2*pi);

plot(f,unwrap(phase))
xlabel('Frequency'), ylabel('Phase in degrees')
title('Magnitude Response')

interp1(f,unwrap(phase),1/8) * 8/360
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ans =
    -5.0144

must again be corrected for causal indexing. Since the sampling interval 
was one and the fi lter length is fi ve, we have to add (5–1)/2=2 to the phase 
shift  of –5.0144. Th is suggests a corrected phase shift  of –3.0144, which is 
exactly the delay seen on the plot.

plot(t,x11,t,y11), axis([30 40 -2 2])

Th e next section gives an introduction to the design of fi lters with a desired 
frequency response. Th ese fi lters can be used to amplify or suppress diff er-
ent components of arbitrary signals.

6.9  Filter Design

We now aim to design fi lters with a specifi c frequency response. We fi rst 
generate a synthetic signal with two periods, 50 and 5. Th e power spectrum 
of the signal shows the expected peaks at frequencies of 0.02 and 0.20.

clear

t = 0 : 1000;
x12 = 2*sin(2*pi*t/50) + sin(2*pi*t/5);

plot(t,x12), axis([0 200 -4 4])

[Pxx,f] = periodogram(x12,[],1024,1);

plot(f,Pxx)
xlabel('Frequency')
ylabel('Power')

Th e  Butterworth fi lter design technique is widely used in order to create 
fi lters of any order with a  lowpass,  highpass,  bandpass and  bandstop con-
fi guration (Fig. 6.5). In our example, we would like to design a fi ve-order 
lowpass fi lter with a  cutoff  frequency of 0.10. Th e inputs of the function 
 butter are the order of the fi lter and the cutoff  frequency normalized to 
the  Nyquist frequency, which in our example is 0.5, i. e., half of the sampling 
frequency.

 
[b12,a12] = butter(5,0.1/0.5);
 

Th e  frequency characteristics of the fi lter show a relatively smooth transi-
tion from the  passband to the  stopband, but the advantage of the fi lter is its 
low order.
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Fig. 6.5 Frequency responses for the fundamental types of frequency-selective fi lters. 
a Lowpass fi lter to suppress the high-frequency component of a signal. In earth sciences, 
such fi lters are oft en used to suppress high-frequency noise in a low-frequency signal. 
b Highpass fi lters are employed to remove all low frequencies and trends in natural data. 
c–d  Bandpass and  bandstop fi lters extract or suppress a certain frequency band. Th e solid 
line in all graphs depicts the ideal  frequency response of a  frequency-selective fi lter, while 
the gray band shows the tolerance for a low-order design of such a fi lter. In practice, the 
frequency response lies within the gray band.

[h,w] = freqz(b12,a12,1024);
f = 1*w/(2*pi);

plot(f,abs(h)), grid
xlabel('Frequency')
ylabel('Magnitude')

We can again apply the fi lter to the signal by using the function  filter. 
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However,  frequency selective fi lters such as lowpass, highpass,  bandpass and 
 bandstop fi lters are designed to suppress certain frequency bands, but phase 
shift s should be avoided. Th e function  filtfilt provides zero-phase for-
ward and reverse digital fi ltering. Aft er fi ltering in the forward direction, the 
fi ltered sequence is reversed and runs back through the fi lter. Th e magnitude 
of the signal is not aff ected by this operation, since it is either 0 or 100 % of 
the initial amplitude, depending on the frequency. Any phase shift s intro-
duced by the fi lter are canceled out by the forward and reverse application 
of the same fi lter. Th is function also helps to overcome the problems with 
causal indexing of fi lters in MATLAB by eliminating the phase diff erences 
between the causal and non-causal versions of the same fi lter. Filtering, and 
then plotting the results clearly illustrates the eff ects of the fi lter.

xf12 = filtfilt(b12,a12,x12);

plot(t,x12,'b-',t,xf12,'r-')
axis([0 200 -4 4])

One might now wish to design a new fi lter with a more rapid transition from 
passband to stopband. Such a fi lter requires a higher order, i. e., it needs a 
larger number of fi lter weights. We now create a 15-order Butterworth fi lter 
as an alternative to the above fi lter.

[b13,a13] = butter(15,0.1/0.5);

[h,w] = freqz(b13,a13,1024);

f = 1*w/(2*pi);

plot(f,abs(h)), grid
xlabel('Frequency')
ylabel('Magnitude')

Th e frequency response is clearly improved. Th e entire passband is relatively 
fl at at a value of 1.0, whereas the stopband is approximately zero everywhere. 
We next modify our input signal by introducing a third period of 5. Th is sig-
nal is then used to illustrate the operation of a Butterworth bandstop fi lter.

clear

t = 0 : 1000;
x14 = 2*sin(2*pi*t/50) + sin(2*pi*t/10) + 0.5*sin(2*pi*t/5);
plot(t,x14), axis([0 200 -4 4])

[Pxx,f] = periodogram(x14,[],1024,1);

plot(f,Pxx)
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Th e new Butterworth fi lter is a bandstop fi lter. Th e stopband of the fi lter is 
between the frequencies 0.05 and 0.15. It can therefore be used to suppress 
the period of 10, corresponding to a frequency of 0.1.

xn14 = x14 + randn(1,length(t));

[b14,a14] = butter(5,[0.05 0.15]/0.5,'stop');
xf14 = filtfilt(b14,a14,x14);

[Pxx,f] = periodogram(xf14,[],1024,1);

plot(f,Pxx)

figure
plot(t,xn14,'b-',t,xf14,'r-'), axis([0 200 -4 4])

Th e plots show the eff ect of this fi lter. Th e frequency band between 0.05 and 
0.15, and therefore also the frequency of 0.1, have been successfully removed 
from the signal.

6.10  Adaptive Filtering

Th e fi xed fi lters used in the previous sections make the basic assumption that 
the signal degradation is known and does not change with time. In most ap-
plications, however, an a priori knowledge of the  signal and  noise statistical 
characteristics is not usually available. In addition, both the noise level and 
the variance of the genuine signal can be highly nonstationary with respect 
to time, e. g., stable isotope records during the glacial-interglacial transition. 
Fixed fi lters cannot thus be used in a nonstationary environment without 
any knowledge of the signal-to-noise ratio.

Adaptive fi lters, widely used in the telecommunication industry, could 
help to overcome these problems. An adaptive fi lter is an example for an 
inverse modeling process that iteratively adjusts its own coeffi  cients auto-
matically without requiring any a priori knowledge of the signal and the 
noise. Th e operation of an adaptive fi lter includes (1) a fi ltering process, the 
purpose of which is to produce an output in response to a sequence of data, 
and (2) an  adaptive process providing a mechanism for the adaptive control 
of the fi lter weights (Haykin 1991).

In most practical applications, the adaptive process is oriented towards 
minimizing an estimation error e. Th e estimation error e at an instant i is 
defi ned by the diff erence between the desired response di and the actual 
fi lter output yi , which is the fi ltered version of a signal xi , as shown by
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where i=1, 2, …, N and N is the length of the input data vector. In the case 
of a nonrecursive fi lter characterized by a vector of fi lter weights W with f 
elements, the fi lter output yi is given by the inner product of the transposed 
vector W and the input vector Xi .

Th e choice of desired response d that is used in the adaptive process depends 
on the application. Traditionally, d is a combination signal that is comprised 
of a signal s and random noise n0. Th e signal x contains noise n1 that is 
uncorrelated with the signal s but correlated in some unknown way to the 
noise n0. In noise canceling systems, the practical objective is to produce 
a system output y that is a best fi t in the least-squares sense to the desired 
response d.

Diff erent approaches have been developed to solve this multivari-
ate minimum error optimization problem (e. g., Widrow and Hoff  1960, 
Widrow et al. 1975, Haykin 1991). Th e selection of one algorithm over an-
other is infl uenced by various factors, including the rate of convergence (the 
number of adaptive steps required for the algorithm to converge closely 
enough to an optimum solution), the misadjustment (the measure of the 
amount by which the fi nal value of the mean-squared error deviates from 
the minimum squared error of an optimal fi lter, e. g., Wiener 1945, Kalman 
and Bucy 1961), and the tracking (the capability of the fi lter to work in a 
nonstationary environment, i. e., to track changing statistical characteris-
tics of the input signal) (Haykin 1991).

Th e simplicity of the  least-mean-squares (LMS) algorithm, originally 
developed by Widrow and Hoff  (1960), has made it the benchmark against 
which other adaptive fi ltering algorithms are tested. For applications in 
earth sciences, we use this fi lter to extract the noise from two signals S and 
X, both containing the same signal s, but with uncorrelated noise n1 and n2 
(Hattingh 1988). As an example, consider a simple duplicate set of measure-
ments on the same material, e. g., two parallel stable isotope records from 
the same foraminifera species. You would expect two time-series, each with 
N elements, containing the same desired signal overlain by diff erent, uncor-
related noise. Th e fi rst record is used as the primary input S
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and the second record as the reference input X.

As demonstrated by Hattingh (1988), the required noise-free signal can be 
extracted by fi ltering the  reference input X using the  primary input S as the 
desired response d. Th e minimum error  optimization problem is solved by 
the least-mean-square norm. Th e  mean-squared error ei2 is a second-order 
function of the weights in the nonrecursive fi lter. Th e dependence of ei2 on 
the unknown weights may be seen as a multidimensional paraboloid with a 
uniquely defi ned minimum point. Th e weights corresponding to the mini-
mum point on this error performance surface defi ne the optimal Wiener so-
lution (Wiener 1945). Th e value computed for the weight vector W using the 
 LMS algorithm represents an estimator whose expected value approaches 
the Wiener solution as the number of iterations approaches infi nity (Haykin 
1991). Gradient methods are used to reach the minimum point on the error 
performance surface. To simplify the optimization problem, Widrow and 
Hoff  (1960) developed an approximation for the required gradient function 
that can be computed directly from the data. Th is leads to a simple relation 
for updating the fi lter-weight vector W.

Th e new parameter estimate Wi+1 is based on the previous set of fi lter 
weights Wi  plus a term that is the product of a bounded step size u, a func-
tion of the input state Xi and a function of the error ei . In other words, 
error ei calculated from the previous step is fed back into the system to 
update fi lter coeffi  cients for the next step (Fig. 6.6). Th e fi xed convergence 
factor u regulates the speed and stability of adaption. A low value ensures 
a higher level of accuracy, but more data are needed to enable the fi lter to 
reach the optimum solution. In the modifi ed version of the LMS algorithm 
by Hattingh (1988), this problem is overcome by feeding the data back so 
that the fi lter can have another chance to improve its own coeffi  cients and 
adapt to the changes in the data.

In the following function  canc, each of these loops is called an iteration, 
and many of these loops are required if optimal results are to be achieved. 
Th is algorithm extracts the noise-free signal from two vectors x and s con-
taining the correlated signals and uncorrelated noise. As an example, we 
generate two signals containing the same sine wave, but diff erent  Gaussian 
noise.
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Fig. 6.6 Schematic of an adaptive fi lter. Each iteration involves a new estimate of the fi lter 
weights Wi+1 based on the previous set of fi lter weights Wi plus a term which is the product 
of a bounded step size u, a function of the fi lter input Xi , and a function of the error ei . In 
other words, error ei calculated from the previous step is fed back into the system to update 
fi lter coeffi  cients for the next step (modifi ed from Trauth 1998).

clear

x = 0 : 0.1 : 100;
y = sin(x);
yn1 = y + 0.2*randn(size(y));
yn2 = y + 0.2*randn(size(y));

plot(x,yn1,x,yn2)

We then save the following code in a text fi le canc.m and include it into the 
search path. Th e algorithm canc formats both signals, feeds them into the 
fi lter loop, corrects the signals for phase shift s and formats the signals for 
the output.

function [zz,ee,mer] = canc(x,s,u,l,iter)
% CANC Correlated Adaptive Noise Canceling
[n1,n2] = size(s); n = n2; index = 0;       % Formatting
if n1 > n2
    s = s'; x = x'; n = n1; index = 1;
end
w(1:l) = zeros(1,l); e(1:n) = zeros(1,n);   % Initialization
xx(1:l) = zeros(1,l); ss(1:l) = zeros(1,l);
z(1:n) = zeros(1,n); y(1:n) = zeros(1,n);
ors = s; ms(1:n) = mean(s) .* ones(size(1:n));
s = s - ms; x = x - ms; ors = ors - ms;
for it = 1 : iter                           % Iterations
    for I = (l+1) : (n+1)                   % Filter loop
        for k = 1 : l
            xx(k) = x(I-k); ss(k) = s(I-k);
        end
        for J = 1 : l
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            y(I-1) = y(I-1) + w(J) .* xx(J);
            z(I-1) = z(I-1) + w(J) .* ss(J);
        end
            e(I-1) = ors(I-1-(fix(l/2)))-y(I-1);
        for J = 1 : l
            w(J) = w(J) + 2.*u.*e(I-1).*xx(J);
        end
    end                                     % End filter loop
    for I = 1 : n                           % Phase correction
        if I <= fix(l/2)
            yy(I) = 0; zz(I) = 0; ee(I) = 0;
        elseif I > n-fix(l/2)
            yy(I) = 0; zz(I) = 0; ee(I) = 0;
        else
            yy(I) = y(I+fix(l/2));
            zz(I) = z(I+fix(l/2));
            ee(I) = abs(e(I+fix(l/2)));
        end
            yy(I) = yy(I) + ms(I);
            zz(I) = zz(I) + ms(I);
    end                                     % End phase 
correction
    y(1:n) = zeros(size(1:n));
    z(1:n) = zeros(size(1:n));
    mer(it) = mean(ee((fix(l/2)):(n-fix(l/2))).^2);
end                                         % End iterations
if index == 1                               % Reformatting
    zz = zz'; yy = yy'; ee = ee';
end

Th e required inputs are the signals x and s, the step size u, the fi lter length 
l and the number of  iterations iter. In our example, the two noisy signals 
are yn1 and yn2. We make an arbitrary choice of a fi lter with l=5 fi lter 
weights. A value of u in the range of 0 < u  < l/λmax where λmax is the larg-
est eigenvalue of the autocorrelation matrix for the reference input, leads to 
reasonable results (Haykin 1991) (Fig. 6.7). Th e value of u is computed by

k = kron(yn1,yn1');
u = 1/max(eig(k))

which yields

u =
    0.0018

We now run the adaptive fi lter canc for 20 iterations and use the above 
value of u.

[z,e,mer] = canc(yn1,yn2,0.0019,5,20);

Th e plot of the mean-squared error mer versus the number of performed 
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Fig. 6.7 Output of the adaptive fi lter. a Th e duplicate records corrupted by uncorrelated 
noise are fed into the adaptive fi lter with 5 weights with a convergence factor of 0.0019. Aft er 
20 iterations, the fi lter yields the b learning curve, c the noisefree record and d the noise 
extracted from the duplicate records.

iterations it with stepsize u

plot(mer)

illustrates the performance of the adaptive fi lter, although the chosen step 
size u=0.0019 clearly results in a relatively rapid convergence. In most ex-
amples, a smaller step size decreases the rate of convergence, but increases 
the quality of the fi nal result. We therefore reduce u by one order of magni-
tude and run the fi lter again with further iterations.
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[z,e,mer] = canc(yn1,yn2,0.0001,5,20);

Th e plot of the mean-squared error against the iterations

plot(mer)

now converges aft er about six iterations. We can now compare the fi lter out-
put with the original noise-free signal.

plot(x,y,'b',x,z,'r')

Th is plot shows that the noise level of the signal has been reduced dramati-
cally by the fi lter. Finally, the plot

plot(x,e,'r')

shows the noise extracted from the signal. In practice, the user should vary 
the parameters u and l to obtain the optimum result.

Th e application of this algorithm has been demonstrated on duplicate 
oxygen-isotope records from ocean sediments (Trauth 1998). Th is work by 
M. Trauth illustrates the use not only of the modifi ed LMS algorithm, but 
also of another type of adaptive fi lter, the recursive least-squares (RLS) al-
gorithm (Haykin 1991) in various environments.
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7 Spatial Data

7.1 Types of Spatial Data

Most data in earth sciences are  spatially distributed, either as  vector data, 
(points, lines, polygons) or as  raster data (gridded topography). Vector data 
are generated by  digitizing map objects such as drainage networks or out-
lines of lithologic units. Raster data can be obtained directly from a satel-
lite sensor output, but gridded data can also, in most cases, be interpolated 
from irregularly-distributed fi eld samples ( gridding).

Th e following section introduces the use of vector data by using coast-
line data as an example (Section 7.2). Th e acquisition and handling of raster 
data are then illustrated using digital topographic data (Sections 7.3 to 7.5). 
Th e availability and use of digital elevation data has increased considerably 
since the early 90s. With a resolution of 5 arc minutes (ca. 8 km), ETOPO5 
was one of the fi rst data sets for topography and bathymetry. In October 
2001, it was replaced by ETOPO2, which has a resolution of 2 arc minutes 
(ca. 4 km), and just recently the ETOPO1 became available, which has a 
resolution of 1 arc minutes (ca. 2 km). In addition, there is a data set for 
topography called GTOPO30 completed in 1996 that has a horizontal grid 
spacing of 30 arc seconds (ca. 1 km). Most recently, the 30 and 90 m reso-
lution data from the Shuttle Radar Topography Mission (SRTM) have re-
placed the older data sets in most scientifi c studies.

Th e second part of this chapter deals with the estimation of continuous 
surfaces from unevenly-spaced data, and statistics of spatial data (Sections 
7.6 to 7.8). In earth sciences, most data are collected in an irregular pattern. 
Access to rock samples is oft en restricted to natural outcrops such as shore-
line cliff s and the walls of a gorge, or anthropogenic outcrops such as road 
cuttings and quarries. Th e sections on interpolating such unevenly-spaced 
data illustrate the use of the most important gridding routines and outline 
the potential pitfalls when using these methods. Sections 7.9 to 7.11 intro-
duce various methods for statistically analyzing spatial data, including the 
application of statistical tests to point distributions (Section 7.9), the spatial 

M.H. Trauth, MATLAB® Recipes for Earth Sciences, 3rd ed.,  
DOI 10.1007/978-3-642-12762-5_7, © Springer-Verlag Berlin Heidelberg 2010  
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analysis of digital elevation models (Section 7.10) and an overview of geosta-
tistics and kriging (Section 7.10).

Th is chapter requires the Mapping Toolbox although most graphics rou-
tines used in our examples can be easily replaced by standard MATLAB 
functions. An alternative and useful mapping toolbox by Rich Pawlowicz 
(Earth and Ocean Sciences, at the University of British Columbia) is avail-
able from

http://www.eos.ubc.ca/~rich/

Th e handling and processing of large spatial data sets also requires a com-
puting system with at least 2 GB physical memory.

7.2 The GSHHS Shoreline Data Set

Th e Global Self-consistent, Hierarchical, High-resolution  Shoreline ( GSHHS) 
database is an amalgamation of two public domain databases by Paul Wessel 
(SOEST, University of Hawaii, Honolulu, HI) and Walter Smith (NOAA 
Laboratory for Satellite Altimetry, Silver Spring, MD). Th e shoreline vector 
data can be downloaded as MATLAB vector data from the web page of the 
US National Geophysical Data Center (NGDC):

http://rimmer.ngdc.noaa.gov/mgg/coast/getcoast.html

We fi rst need to defi ne the geographic range of interest in decimal degrees, 
with west and south denoted by a negative sign. For example, the north-east 
coast of African would be displayed between the latitudes of 0 and +15 de-
grees and between the longitudes of +35 and +55 degrees. We then need to 
choose the  coastline data base from which the data is to be extracted. As an 
example, the World Data Bank II provides maps at the scale 1:2,000,000. 
Finally, the compression method is set to None for the ASCII data and the 
coast format option is set to MATLAB. Th e resulting Generic Mapping Tool 
(GMT) map and a link to the raw text data can be displayed by pressing the 
Submit-Extract button at the end of the web page. By opening the 350 KB 
text fi le on a browser, the data can be saved onto a new fi le called coastline.
txt. Th e two columns in this fi le represent the longitude/latitude coordi-
nates of NaN-separated polygons or coastline segments.

NaN   NaN
42.892067 0.000000
42.893692 0.001760
NaN   NaN
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Fig. 7.1 Display of the GSHHS shoreline data set. Th e map shows an area between latitudes 
0° and 15° north, and longitudes 40° and 50° east. Th is simple map is made using the 
function plot with equal axis aspect ratios.

42.891052 0.001467
42.898093 0.007921
42.904546 0.013201
42.907480 0.016721
42.910414 0.020828
42.913054 0.024642
42.915987 0.028749
42.918921 0.032562
42.922441 0.035789
(cont'd)

Th e NaNs perform two functions: they provide a means of identifying break 
points in the data and they serve as pen-up commands when the Mapping 
Toolbox plots vector maps. Th e shorelines can be displayed by using

clear

data = load('coastline.txt');

plot(data(:,1),data(:,2),'k'), axis equal
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xlabel('Longitude'), ylabel('Latitude')

More advanced plotting functions are contained in the Mapping Toolbox, 
which allows an alternative version of this plot to be generated (Fig. 7.1):

 axesm('MapProjection','lambert', ...
      'MapLatLimit',[0 15], ...
      'MapLonLimit',[35 55], ...
      'Frame','on', ...
      'MeridianLabel','on', ...
      'ParallelLabel','on');
plotm(data(:,2),data(:,1),'k');

Note that the input for plotm is given in the order longitude, followed by 
the latitude, i.e., the second column of the data matrix is entered fi rst. In 
contrast, the function plot requires an xy input, i.e., the fi rst column is en-
tered fi rst. Th e function axesm defi nes the map axis and sets various map 
properties such as the map projection, the map limits and the axis labels.

7.3 The 2-Minute Gridded Global Relief Data  ETOPO2

ETOPO2 is a global data base of  topography and  bathymetry on a regular 
2-minute grid (approximately 4 km). It is a compilation of data from a va-
riety of sources. It can be downloaded from the US National Geophysical 
Data Center (NGDC) web page

http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html

From the menu bar Free On-line we select custom grids which is linked to 
the GEODAS Grid Translator. First, we choose a Grid ID (e. g., grid01), the 
Grid Database (e. g., ETOPO2 2-minute Global Relief Ver 2), our computer 
system (e. g., Macintosh) and the Grid Format (e. g., ASCII) for both the 
data and the header. Next we defi ne the latitude and longitude bounds; for 
example, the latitude (lat) from 20 S to 20 N and a longitude (lon) between 
30 E and 60 E corresponds to the East African coast. Th e selected area can be 
transformed into a digital elevation matrix by pressing Submit. Th is matrix 
may be downloaded from the web page by pressing Compress and Retrieve 
Your Grid followed by Retrieve compressed file in the subsequent windows. 
Decompressing the fi le grid01.tgz creates a directory grid01_data, which 
contains various data and help fi les. Th e subdirectory grid01 contains the 
ASCII raster grid fi le grid01.asc that has the following content:

NCOLS   901
NROWS  1201
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Fig. 7.2 Display of the ETOPO2 elevation data set. Th e map uses the function surf to 
generate a colored surface. Th e colorbar provides information on the colormap used to 
portray the topographic and bathymetric variations.

XLLCORNER  30.00000
YLLCORNER -20.00000
CELLSIZE 0.03333333
NODATA_VALUE  -32768
299    286    285    273    267    260 ...
298    279    282    273    263    254 ...
284    272    275    274    266    260 ...
267    267    269    270    272    269 ...
254    267    268    268    264    258 ...
(cont'd)

Th e headers document the size of the data matrix (e. g., 901 columns and 
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1201 rows in our example), the coordinates of the lower-left  corner (e. g., 
x=30 and y=–20), the cell size (e. g., 0.033333 = 1/30 degree latitude and 
longitude) and the –32768 fl ag for data voids. We comment the header by 
typing % at the beginning of the fi rst six lines

%NCOLS   901
%NROWS  1201
%XLLCORNER  30.00000
%YLLCORNER -20.00000
%CELLSIZE 0.03333333
%NODATA_VALUE  -32768
299    286    285    273    267    260 ...
298    279    282    273    263    254 ...
284    272    275    274    266    260 ...
267    267    269    270    272    269 ...
254    267    268    268    264    258 ...
(cont'd)

and load the data into the workspace. 

clear

ETOPO2 = load('grid01.asc');

We fl ip the matrix up and down. Th e –32768 fl ag for data voids must then be 
replaced by the MATLAB representation for  Not-a-Number  NaN.

ETOPO2 = flipud(ETOPO2);
ETOPO2(find(ETOPO2 == -32768)) = NaN;

Finally, we check whether the data are now correctly stored in the work-
space by printing the minimum and maximum elevations for the area.

max(ETOPO2(:))
min(ETOPO2(:))

In this example, the maximum elevation for the area is 5,149 m and the 
minimum elevation is –5,656 m. Th e reference level is the sea level at 0 m. 
We now defi ne a coordinate system using the information that the lower-left  
corner is latitude 20° south and longitude 30° east. Th e resolution is 2 arc 
minutes corresponding to 1/30 degree. 

[LON,LAT] = meshgrid(30:1/30:60,-20:1/30:20);

We now generate a colored surface from the elevation data using the func-
tion surf.

surf(LON,LAT,ETOPO2)
 shading interp



7.4 THE 30-ARC SECONDS ELEVATION MODEL GTOPO30  199

7 
 S

PA
TI

A
L 

D
AT

A

axis equal, view(0,90)
  colorbar

Th is script opens a new fi gure window and generates a colored surface. Th e 
surface is highlighted by a set of color shades in an overhead view (Fig. 7.2). 
Additional display methods will be described in the section on SRTM eleva-
tion data.

7.4 The 30-Arc Seconds Elevation Model  GTOPO30

Th e 30 arc second (approximately 1 km) global digital elevation data set 
GTOPO30 contains only elevation data, not bathymetry. Th e data set has 
been developed by the Earth Resources Observation System Data Center 
and is available from the web page

http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/
   gtopo30_info

Th e model uses a variety of international data sources, but is mainly based 
on raster data from the   Digital Terrain Elevation Model ( DTEM) and vector 
data from the Digital Chart of the World (DCW). Th e GTOPO30 data set 
has been divided into 33 tiles. Th e tile names refer to the longitude and lati-
tude of the upper-left  (northwest) corner of the tile. Th e tile name e020n40 
refers to the coordinates of the upper-left  corner of the tile, i.e., longitude 
20 degrees east and latitude 40 degrees north. As an example, we select and 
download the tile e020n40, which is provided as a 24.9 MB compressed tar 
fi le. Aft er decompressing the fi le, we obtain eight fi les containing the raw 
data and header fi les in various formats. Th e tar fi le also provides a GIF im-
age of a shaded relief display of the data.

Importing the GTOPO30 data into the workspace is simple. Th e Mapping 
Toolbox provides an import routine gtopo30 that reads the data and stores 
it onto a regular data grid. We import only a subset of the original matrix:

clear

latlim = [-5 5]; lonlim = [30 40];
GTOPO30 = gtopo30('E020N40',1,latlim,lonlim);

Th is script reads the data from the tile e020n40 (without fi le extension) at 
full resolution (scale factor = 1) into the matrix GTOPO30, which has the di-
mension of 1,200 × 1,200 cells. Th e coordinate system is defi ned by using the 
lon/lat limits as listed above. Th e resolution is 30 arc seconds correspond-
ing to 1/120 degrees. 
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Fig. 7.3 Display of the GTOPO30 elevation data set. Th e map uses the function surf to 
generate a gray surface. We use the colormap gray to the power of four in order to darken 
the colormap with respect to the higher elevation. In addition, we fl ip the colormap in up/
down directions using flipud to obtain dark colors for high altitudes and light colors for 
low elevations.

[LON,LAT] =  meshgrid(30:1/120:40-1/120,-5:1/120:5-1/120);

We need to reduce the limits by 1/120 to obtain a matrix of similar dimen-
sions to the GTOPO30 matrix. A grayscale image can be generated from the 
elevation data using the function  surf. Th e fourth power of the colormap 
gray is used to darken the map at higher levels of elevation, and the color-
map is then fl ipped vertically in order to obtain dark colors for high eleva-
tions and light colors for low elevations.

surf(LON,LAT,GTOPO30)
shading interp
 colormap(flipud(gray.^4))
axis equal, view(0,90)
colorbar
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Th is script opens a new fi gure window and generates the gray surface using 
interpolated shading in an overhead view (Fig. 7.3).

7.5 The Shuttle Radar Topography Mission  SRTM

Th e  Shuttle Radar Topography Mission (SRTM) consists of a radar system 
that fl ew onboard the Space Shuttle Endeavour during an 11-day mis-
sion in February 2000. SRTM was an international project spearheaded 
by the National Geospatial-Intelligence Agency (NGA) and the National 
Aeronautics and Space Administration (NASA). Detailed information on 
the SRTM project including a gallery of images and a user's forum can be 
accessed through the NASA web page:

http://www2.jpl.nasa.gov/srtm/

Th e data were processed at the Jet Propulsion Laboratory. Th ey are distribut-
ed through the United States Geological Survey‘s (USGS) EROS Data Center 
using the Seamless Data Distribution System.

http://seamless.usgs.gov/

Alternatively, the raw data fi les can be downloaded from

http://dds.cr.usgs.gov/srtm/

Th is directory contains zipped fi les of SRTM DEMs from various areas of the 
world, processed by the SRTM global processor and sampled at resolutions 
of 1 arc second (SRTM-1, 30 meter grid) and 3 arc seconds (SRTM-3, 90 me-
ter grid). As an example, we download the 1.7 MB large fi le s01e036 hgt.zip 
from

http://dds.cr.usgs.gov/srtm/version2_1/SRTM3/Africa/

containing SRTM-3 data for the Kenya Rift  Valley in East Africa. All eleva-
tions are in meters referenced to the WGS84 EGM96 geoid as documented at

http://earth-info.nga.mil/GandG/wgs84/index.html

Th e name of this fi le refers to the longitude and latitude of the lower-left  
(southwest) pixel of the tile, i.e., latitude one degree south and longitude 36 
degrees east. SRTM-3 data contain 1,201 lines and 1,201 samples with simi-
lar numbers of overlapping rows and columns. Aft er having downloaded 
and unzipped the fi le, we save s01e036.hgt in our working directory. Th e 
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digital elevation model is provided as 16-bit signed integer data in a simple 
binary raster. Bit order is Motorola (big-endian) standard with the most 
signifi cant bit fi rst. Th e data are imported into the workspace using

clear

fid = fopen('S01E036.hgt','r');
SRTM = fread(fid,[1201,inf],'int16','b');
fclose(fid);

Th is script opens the fi le s01e036.hgt for read access using fopen and de-
fi nes the fi le identifi er fid, which is then used for reading the binaries from 
the fi le using fread, and writing it into the matrix SRTM. Function fclose 
closes the fi le defi ned by fid. First, the matrix needs to be transposed and 
fl ipped vertically.

SRTM = SRTM'; SRTM = flipud(SRTM);

Th e –32768 fl ag for data voids can be replaced by NaN, which is the MATLAB 
representation for Not-a-Number.

SRTM( find(SRTM == -32768)) = NaN;

Th e SRTM data contain numerous gaps that might cause spurious eff ects 
during statistical analysis or when displaying the digital elevation model in 
a graph. A popular way to eliminate gaps in digital elevation models is fi ll-
ing gaps with the arithmetic means of adjacent elements. We use the func-
tion nanmean since it treats NaNs as missing values and returns the mean 
of the remaining elements that are not NaNs. Th e following double for 
loop averages SRTM(i-1:i+1,j-1:j+1) arrays, i.e., averages over three-
by-three element wide areas of the digital elevation model.

for i = 2 : 1200
    for j = 2 : 1200
        if isnan(SRTM(i,j)) == 1
            SRTM(i,j) = nanmean(nanmean(SRTM(i-1:i+1,j-1:j+1)));
        end
    end
end
clear i j

Finally, we check whether the data are now correctly stored in the work-
space by printing the minimum and maximum elevations of the area.

max(SRTM(:))

ans =
   3992
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Fig. 7.4 Display of the fi ltered SRTM elevation data set. Th e map uses the function surfl 
to generate a shaded-relief map with simulated lighting using interpolated shading and a 
gray colormap in an overhead view. Note that the SRTM data set contains a lot of gaps, in 
particular in the lake areas.
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min(SRTM(:))

ans =
   1504

In our example, the maximum elevation of the area is 3,992 m above sea 
level and the minimum is 1,504 m. A coordinate system can be defi ned by 
using the information that the lower-left  corner is s01e036. Th e resolution is 
3 arc seconds corresponding to 1/1,200 degree.

[LON,LAT] =  meshgrid(36:1/1200:37,-1:1/1200:0);

A shaded grayscale map can be generated from the elevation data using the 
function surfl. Th is function displays a shaded surface with simulated 
lighting.
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surfl(LON,LAT,SRTM)
shading interp
colormap gray
view(0,90)

Th is script opens a new fi gure window and generates the shaded-relief map 
using interpolated shading as well as a gray colormap in an overhead view. 
Since SRTM data contain a large amount of noise, we fi rst smooth the data 
using an arbitrary 9 × 9 pixel moving average fi lter. Th e new matrix is then 
stored in the matrix SRTM_FILTERED.

B = 1/81 * ones(9,9);
SRTM_FILTERED = filter2(B,SRTM);

Th e corresponding shaded-relief map is generated by

surfl(LON,LAT,SRTM_FILTERED)
shading interp
colormap gray
view(0,90)

Aft er having generated the shaded-relief map (Fig. 7.4), the plot must be ex-
ported to a graphics fi le. For instance, the fi gure may be written into a JPEG 
format with a 70% quality level and 300 dpi resolution.

print -djpeg70 -r300 srtmimage

Th e new fi le srtmimage.jpg has a size of 320 KB; the decompressed image 
has a size of 16.5 MB. Th is fi le can now be imported into another soft ware 
package such as Adobe Photoshop.

7.6  Gridding and  Contouring Background

Th e previous data sets were all stored in evenly-spaced two-dimensional 
arrays. Most data in earth sciences, however, are obtained from irregular 
sampling patterns. Th e data are therefore unevenly-spaced and need to be 
interpolated in order to allow a smooth and continuous surface to be com-
puted from our measurements in the fi eld.  Surface estimation is typically 
carried out in two major steps. Firstly, the number of  control points needs 
to be selected, and secondly, the value of the variable of interest needs to 
be estimated for the  grid points. Control points are the unevenly-spaced 
fi eld measurements, such as the thicknesses of sandstone units at diff erent 
outcrops or the concentrations of a chemical tracer in water wells. Th e data 
are generally represented as xyz triplets, where x and y are spatial coordi-
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Control Point

Grid Point

a b

Fig. 7.5 Methods of selecting the control points to use for estimating the values at the grid 
points. a Construction of a circle around the grid point (plus sign) with a radius defi ned by 
spatial autocorrelation of the z-values at the control points (small circles). b Triangulation: 
the control points are selected from the vertices of the triangle surrounding the grid point, 
with the option of also including the vertices of the adjoining triangles.

nates, and z is the variable of interest. In such cases, most gridding methods 
require continuous and unique data. However, spatial variables in earth sci-
ences are oft en discontinuous and not spatially unique. As an example, the 
sandstone unit may be faulted or folded. Furthermore, gridding requires 
spatial autocorrelation, i.e., the neighboring data points should be correlated 
with each other through a specifi c relationship. Th ere is no point in making 
a surface estimation if the z variables are random, and have no autocorrela-
tion. Having selected the control points, a number of diff erent methods are 
available for calculating the z values at the evenly-spaced grid points.

Various techniques exist for selecting the control points (Fig. 7.5). Most 
methods make arbitrary assumptions on the autocorrelation of the z vari-
able. Th e  nearest-neighbor criterion includes all control points within a 
circular neighborhood of the grid point, where the radius of the circle is 
specifi ed by the user. Since the degree of spatial autocorrelation is likely to 
decrease with increasing distance from the grid point, considering too many 
distant control points is likely to lead to erroneous results when computing 
values for the grid points. On the other hand, too small radii may limit the 
number of control points used in calculating the grid point values to a very 
small number, resulting in a noisy estimate of the modeled surface.

It is perhaps due to these diffi  culties that  triangulation is oft en used 
as an alternative method for selecting the control points (Fig. 7.5b). In this 
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technique, all control points are connected in a triangular network. Every 
grid point is located within the triangular area formed by three control 
points. Th e z value of the grid point is computed from the z values of the 
three grid points. A modifi cation of this form of gridding also uses the three 
points at the apices of the three adjoining triangles. Th e  Delauney triangu-
lation method uses a triangular net in which the acuteness of the triangles 
is minimized, i.e., the triangles are as close as possible to equilateral.

 Kriging, introduced in Section 7.11, is an alternative approach selecting 
control points. It is oft en regarded as the method of gridding. Some people 
even use the term  geostatistics synonymously with kriging. Kriging is a 
method for quantifying the spatial autocorrelation and hence the circle's 
dimension. More sophisticated versions of kriging use an elliptical area in-
stead of a circle.

As mentioned above, the second step in surface estimation is the actual 
computation of the z values for the grid points. Th e  arithmetic mean of the 
measured z values at the control points

provides the easiest way of computing the values at the grid points. Th is is 
a particularly useful method if there are only a limited number of control 
points. If the study area is well covered by control points and the distance 
between these points is highly variable, the z values of the grid points should 
be computed by a  weighted mean. Th is involves weighting the z values at 
the control points by the inverse of the distance di from the grid points.

Depending on the spatial scaling relationship of the parameter z, the inverse 
of the square root of the distance may be used to weight the z values, rather 
than simply the inverse of distance. Th e fi tting of 3D  splines to the control 
points off ers another method for computing the grid point values, which is 
commonly used in the earth sciences. Most routines used in surface estima-
tion involve  cubic polynomial splines, i.e., a third-degree 3D polynomial is 
fi tted to at least six adjacent control points. Th e fi nal surface consists of a 
composite of portions of these splines. MATLAB also provides interpolation 
with biharmonic splines generating very smooth surfaces (Sandwell, 1987).
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7.7 Gridding Example

MATLAB has, from the start, provided a biharmonic spline interpolation 
method that was developed by Sandwell (1987). Th is gridding method is 
particularly well suited for producing smooth surfaces from noisy data sets 
with unevenly-distributed control points. 

As an example, we use synthetic xyz data representing the vertical dis-
tance between the surface of an imaginary stratigraphic horizon that has 
been displaced by a normal fault, and a reference surface. Th e foot wall 
of the fault shows roughly horizontal strata, whereas the hanging wall is 
characterized by the development of two large sedimentary basins. Th e xyz 
data are irregularly distributed and so need to be interpolated onto a regu-
lar grid. Th e xyz data are stored as a three-column table in a fi le named 
normalfault.txt.

4.3229698e+02   7.4641694e+01   9.7283620e-01
4.4610209e+02   7.2198697e+01   6.0655065e-01
4.5190255e+02   7.8713355e+01   1.4741054e+00
4.6617169e+02   8.7182410e+01   2.2842172e+00
4.6524362e+02   9.7361564e+01   1.1295175e-01
4.5526682e+02   1.1454397e+02   1.9007110e+00
4.2930233e+02   7.3175896e+01   3.3647807e+00
(cont'd)

Th e fi rst and second column contain the coordinates x (between 420 and 
470 of an arbitrary spatial coordinate system) and y (between 70 and 120), 
while the third column contains the vertical z values. Th e data are loaded 
using

clear

data = load('normalfault.txt');

Initially, we wish to create an overview plot of the spatial distribution of the 
control points. In order to label the points in the plot, numerical z values of 
the third column are converted into character string representations with a 
maximum of two digits.

labels = num2str(data(:,3),2);

Th e 2D plot of our data is generated in two steps. Firstly, the data are dis-
played as empty circles by using the plot command. Secondly, the data 
are labeled by using the function text(x,y,'string') which adds text 
contained in string to the xy locations. Th e value 1 is added to all x coor-
dinates in order to produce a small off set between the circles and the text.
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plot(data(:,1),data(:,2),'o'), hold on
text(data(:,1)+1,data(:,2),labels), hold off

Th is plot helps us to defi ne the axis limits for gridding and contouring, 
xlim = [420 470] and ylim = [70 120]. Th e function meshgrid trans-
forms the domain specifi ed by vectors x and y into arrays XI and YI. Th e 
rows of the output array XI are copies of the vector x and the columns of the 
output array YI are copies of the vector y. We choose 1.0 as grid intervals.

x = 420:1:470; y = 70:1:120;
[XI,YI] = meshgrid(x,y);

Th e biharmonic spline interpolation is used to interpolate the irregular-
spaced data at the grid points specifi ed by XI and YI.

ZI =  griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

Th e option v4 selects the biharmonic spline interpolation, which was the sole 
gridding algorithm available until MATLAB4 was replaced by MATLAB5. 
MATLAB provides various tools with which to display the results. Th e sim-
plest way to display the gridding results is as a contour plot using contour. 
By default, the number of contour levels and the values of the contour levels 
are chosen automatically. Th e choice of the contour levels depends on the 
minimum and maximum values of z.

contour(XI,YI,ZI)

Alternatively, the number of contours can be chosen manually, e. g., ten con-
tour levels.

contour(XI,YI,ZI,10)

Contouring can also be performed at values specifi ed in a vector v. Since 
the maximum and minimum values of z are

min(data(:,3))

ans =
   -27.4357

max(data(:,3))

ans =
   21.3018

we choose

v = -40 : 10 : 20;
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Th e command

[c,h] = contour(XI,YI,ZI,v);

yields contour matrix c and a handle h that can be used as input to the func-
tion clabel, which labels contours automatically.

 clabel(c,h)

Alternatively, the plot can be labeled manually by selecting the manual op-
tion in the function clabel. Th is function places labels onto locations that 
have been selected with the mouse. Labeling is terminated by pressing the 
return key.

[c,h] = contour(XI,YI,ZI,v);
clabel(c,h,'manual')

Filled contours are an alternative to the empty contours used above. Th is 
function is used together with colorbar which displays a legend for the 
plot. In addition, we can plot the locations (small circles) and z values (con-
tour labels) of the true data points (Fig. 7.6).

 contourf(XI,YI,ZI,v), colorbar, hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels), hold off

A pseudocolor plot is generated by using the function pcolor. Black con-
tours are also added at the same levels as in the above example.

 pcolor(XI,YI,ZI), shading flat, hold on
contour(XI,YI,ZI,v,'k'), hold off

Th e third dimension is added to the plot using the mesh command. We can 
also use this example to introduce the function view(az,el) to specify 
the direction of viewing. Herein, az is the azimuth or horizontal rotation 
and el is the elevation (both in degrees). Th e values az = –37.5 and el = 30 
defi ne the default view for all 3D plots,

mesh(XI,YI,ZI), view(-37.5,30)

whereas az = 0 and el = 90 is directly overhead and the default 2D view

 mesh(XI,YI,ZI), view(0,90)

Th e function mesh provides one of many methods available in MATLAB 
for 3D presentation, another commonly used function being surf. Th e 
fi gure may be rotated by selecting the Rotate 3D option on the Edit Tools 
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Fig. 7.6 Contour plot with the locations (small circles) and z-values (contour labels) of the 
true data points.

menu. We also introduce the function colormap, which uses predefi ned 
color look-up tables for 3D graphs. Typing help  graph3d lists a number 
of built-in colormaps, although colormaps can also be arbitrarily modifi ed 
and generated by the user. As an example, we use the  colormap hot, which 
is a black-red-yellow-white colormap.

 surf(XI,YI,ZI), colormap('hot'), colorbar

Using Rotate 3D only rotates the 3D plot, not the colorbar. Th e function 
surfc combines both a surface and a 2D contour plot in one graph.

 surfc(XI,YI,ZI)

Th e function surfl can be used to illustrate an advanced application for 
3D visualization, generating a 3D colored surface with interpolated shading 
and lighting. Th e axis labeling, ticks and background can be turned off  by 
typing axis off. In addition, black 3D contours can be added to the sur-
face as above. Th e grid resolution is increased prior to data plotting in order 
to obtain smooth surfaces (Fig. 7.7).
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Fig. 7.7 Th ree-dimensional colored surface with interpolated shading and simulated 
lighting. Th e axis labeling, ticks and background are turned off . Th e plot also contains 3D 
contours, in black.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

surf(XI,YI,ZI), shading interp, light, axis off, hold on
contour3(XI,YI,ZI,v,'k'), hold off

Th e biharmonic spline interpolation described in this section provides a so-
lution to most gridding problems. It was therefore, for some time, the only 
gridding method that came with MATLAB. However, diff erent applications 
in earth sciences require diff erent methods of interpolation, although they 
all have their problems. Th e next section compares biharmonic spline inter-
polation with other gridding methods and summarizes their strengths and 
weaknesses.

7.8 Comparison of Methods and Potential  Artifacts

Th e fi rst example in this section illustrates the use of the  bilinear interpola-
tion technique for gridding irregular-spaced data. Bilinear interpolation is 
an extension of the one-dimensional technique of linear interpolation in-
troduced in Section 5.5. In the two-dimensional case, linear interpolation 
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is fi rst performed in one direction, and then in the other direction. Th e 
bilinear method would appear to be one of the simplest interpolation tech-
niques, which might intuitively not be expected to produce serious artifacts 
or distortions in the data. Th e opposite is true, however, as this method has 
a number of disadvantages and other methods are therefore preferred in 
many applications.

Th e sample data used in the previous section can again be loaded to 
study the eff ects of a bilinear interpolation.

clear

data = load('normalfault.txt');
labels = num2str(data(:,3),2);

We now choose the option linear while using the function griddata to 
interpolate the data.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI =  griddata(data(:,1),data(:,2),data(:,3),XI,YI,'linear');

Th e results are plotted as contours. Th e plot also includes the locations of 
the control points.

v = -40 : 10 : 20;
contourf(XI,YI,ZI,v), colorbar, hold on 
plot(data(:,1),data(:,2),'o'), hold off

Th e new surface is restricted to the area that contains control points: by 
default, bilinear interpolation does not extrapolate beyond this region. 
Furthermore, the contours are rather angular compared to the smooth 
shape of the contours from the biharmonic spline interpolation. Th e most 
important character of the bilinear gridding technique, however, is illus-
trated by a projection of the data in a vertical plane.

plot(XI,ZI,'k'), hold on
plot(data(:,1),data(:,3),'ro')
text(data(:,1)+1,data(:,3),labels)
title('Linear Interpolation'), hold off

Th is plot shows the projection of the estimated surface (vertical lines) and 
the labeled control points. Th e z-values at the grid points never exceed the 
z-values of the control points. As with the linear interpolation of time series 
(Section 5.5), bilinear interpolation causes signifi cant smoothing of the data 
and a reduction in high-frequency variations.

Biharmonic spline interpolations are, in many ways, the other extreme. 
Th ey are oft en used for extremely irregular-spaced and noisy data.
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[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

v = -40 : 10 : 20;
contourf(XI,YI,ZI,v), colorbar, hold on
plot(data(:,1),data(:,2),'o'), hold off

Th e contours suggest an extremely smooth surface. In many applications, 
this solution is very useful, but the method also produces a number of ar-
tifacts. As we can see from the next plot, the estimated values at the grid 
points are oft en beyond the range of the measured z-values.

plot(XI,ZI,'k'), hold on
plot(data(:,1),data(:,3),'o')
text(data(:,1)+1,data(:,3),labels)
title('Biharmonic Spline Interpolation'), hold off

Th is can sometimes be appropriate and does not smooth the data in the way 
that bilinear gridding does. However, introducing very close control points 
with diff erent z-values can cause serious artifacts. As an example, we intro-
duce one reference point with a z-value of +5 close to a reference point with 
a negative z-value of around –26.

data(79,:) = [450 105 5];
labels = num2str(data(:,3),2);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

v = -40 : 10 : 20;
contourf(XI,YI,ZI,v), colorbar, hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels), hold off

Th e extreme gradient at the location (450,105) results in a  paired low and 
high (Fig. 7.8). In such cases, it is recommended that one of the two control 
points be deleted and the z-value of the remaining control point be replaced 
by the arithmetic mean of both z-values.

Extrapolation beyond the area supported by control points is a common 
feature of spline interpolation (see also Section 5.5). Extreme local trends 
combined with large areas with no data oft en result in unrealistic estimates. 
To illustrate these  edge eff ects we eliminate all control points in the upper-
left  corner.

[i,j] = find(data(:,1)<435 & data(:,2)>105);
data(i,:) = [];

labels = num2str(data(:,3),2);

plot(data(:,1),data(:,2),'ko'), hold on
text(data(:,1)+1,data(:,2),labels), hold off



214  7 SPATIAL DATA

 
420 425 430 435 440 445 450 455 460 465 470

70

75

80

85

90

95

100

105

110

115

120

–40

–30

–20

–10

0

10

20

 

 

0.97
0.61

 1.5

 2.3

0.11

 1.9

 3.4

 7.4  3.9

 3.8

 6.9

 6.2 3.2

 7.6

  12  8.5    9

  11

  14

  15
  13

  17

  15

  15

  15

  14
  15

  19   20

  21

  20

  21

-6.5

-5.6
-3.6

-4.1

-5.2

-4.7

-8.5
 -12

-9.5
 -12

 -10
 -11

-8.1
 -12 -8.7

-7.6

-7.5

-8.6 -10

 -10

 -16

 -14

 -16  -13  -14

 -15

 -14

 -16 -15

 -13 -14
 -16
 -13

 -14

 -22 -21

 -19

 -19

 -21  -20 -20

 -22

 -22

 -26 -27

 -26
   5

Fig. 7.8 Contour plot of a data set gridded using a biharmonic spline interpolation. At the 
location (450,105), very close control points with diff erent z values have been introduced. 
Interpolation causes a paired low and high, which is a common artefact in spline 
interpolation of noisy data.

We again employ the biharmonic spline interpolation technique.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

v = -40 : 10 : 40;
contourf(XI,YI,ZI,v)
caxis([-40 40])
colorbar
hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)
hold off

As can be seen from the plot, this method extrapolates the gradients beyond 
the area with control points, up to the edge of the map (Fig. 7.9). Such an 
eff ect is particular undesirable when gridding closed data, such as percent-
ages, or data that have only positive values. In such cases, it is recommended 
that the estimated z values be replaced by NaN. For instance, we delete the 
areas with z values larger than 20, which are regarded as unrealistic values. 
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Fig. 7.9 Contour plot of a data set gridded using a biharmonic spline interpolation. No 
control points are available in the upper left  corner. Th e spline interpolation then beyond 
the area with control points using gradients at the map edges resulting in unrealistic z 
estimates at the grid points.

Th e resulting plot now contains a sector with no data.

ZID = ZI;
ZID(find(ZID > 20)) = NaN;

contourf(XI,YI,ZID,v)
caxis([-40 40])
colorbar
hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)
hold off

Alternatively, we can eliminate a rectangular area with no data.

ZID = ZI;
ZID(131:201,1:71) = NaN;

contourf(XI,YI,ZID,v)
caxis([-40 40])
colorbar
hold on
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plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)
hold off

In some examples, the area with no control points is simply concealed by 
placing a legend on this part of the map.

Another very useful MATLAB gridding method is  splines with tension 
by Wessel and Bercovici (1998). Th e  tsplines use biharmonic splines in ten-
sion t, where the parameter t can vary between 0 and 1. A value of t=0 
corresponds to a standard cubic spline interpolation. Increasing t reduces 
undesirable oscillations between data points, e. g., the paired lows and highs 
observed in one of the previous examples. Th e limiting situation t → 1 cor-
responds to linear interpolation.

7.9 Statistics of Point Distributions

Th is section is about the statistical distribution of objects within an area, 
which may help explain the relationship between these objects and proper-
ties of the area. For instance, the spatial concentration of hand-axes in an 
archaeological site may suggest that a larger population of hominins lived in 
that part of the area: the clustered occurrence of fossils may document en-
vironmental conditions that were favorable to those particular organisms; 
the alignment of volcanoes may oft en help in mapping tectonic structures 
concealed beneath the surface.

Th e rest of the section introduces methods for the statistical analysis of 
 point distributions. We fi rst consider a test for a uniform spatial distribu-
tion of objects, followed by a test for a random spatial distribution. Finally, a 
simple test for clustered distributions of objects is presented.

Test for Uniform Distribution

In order to illustrate the test for a uniform distribution we fi rst need to com-
pute some synthetic data. Th e function rand computes uniformly-distrib-
uted pseudo-random numbers drawn from a uniform distribution within 
the unit interval. We compute xy data using rand and multiply the data by 
ten to obtain data within the interval [0,10].

clear

rand('seed',0)
data = 10 * rand(100,2);
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Fig. 7.10 Two-dimensional plot of a point distribution. Th e distribution of objects in the 
fi eld is tested for uniform distribution using the χ2–test. Th e xy data are now organized in 
25 classes that are subareas of the size 2-by-2.

We can use the χ 2-test introduced in Section 3.8 to test the hypothesis that 
the data have a uniform distribution. Th e xy data are now organized in 25 
classes that are square subareas of the dimension 2-by-2. Th is defi nition of 
the classes ignores the rule of thumb that the number of classes should be 
close to the square root of the number of observations (see Section 3.3). Our 
choice of classes, however, does not result in empty classes, which should be 
avoided when applying the χ 2-test. Furthermore, 25 classes produce integer 
values for the expected number of observations that are more easy to work 
with. We display the data as blue circles in a plot of y versus x. Th e rectan-
gular areas are outlined with red lines (Fig. 7.10).

plot(data(:,1),data(:,2),'o')
hold on
x = 0:10; y = ones(size(x));
for i = 1:4, plot(x,2*i*y,'r-'), end
for i = 1:4, plot(2*i*y,x,'r-'), end
hold off

A three-dimensional version of a histogram  hist3 is used to display the 
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Fig. 7.11 Th ree-dimensional histogram displaying the numbers of objects for each subarea. 
Th e histogram was created using hist3.

spatial data organized in classes (Fig. 7.11).

hist3(data,[5 5]), view(30,70)

As with the equivalent two-dimensional function, the function hist3 can 
be used to compute the frequency distribution n_obs of the data.

n_obs = hist3(data,[5 5]);
n_obs = n_obs(:);

For a uniform distribution, the theoretical frequencies for the diff erent 
classes are identical. Th e expected number of objects in each square area is 
the size of the total area 10 × 10=100 divided by the 25 subareas or classes, 
which comes to be four. To compare the theoretical frequency distribution 
with the actual spatial distribution of objects, we generate a 5-by-5 array 
with an identical number of four objects.

n_exp = 4 * ones(25,1);

Th e χ 2-test explores the squared diff erences between the observed and ex-
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pected frequencies (Section 3.8). Th e quantity χ 2 is defi ned as the sum of the 
squared diff erences divided by the expected frequencies.

chi2_data = sum((n_obs - n_exp).^2 ./n_exp)

chi2 =
    14

Th e critical χ 2 can be calculated by using chi2inv. Th e χ 2-test requires the 
degrees of freedom Φ. In our example, we test the hypothesis that the data 
are uniformly distributed, i.e., we estimate only one parameter (Section 3.4). 
Th e number of degrees of freedom is therefore Φ =25–(1+1)=23. We test 
the hypothesis at a p=95 % signifi cance level. Th e function chi2inv com-
putes the inverse of the χ 2 CDF with parameters specifi ed by Φ  for the cor-
responding probabilities in p.

chi2_theo = chi2inv(0.95,25-1-1)

ans = 
    35.1725

Since the critical χ 2 of 35.1725 is well above the measured χ 2 of 14, we can-
not reject the null hypothesis and conclude that our data follow a uniform 
distribution.

Test for Random Distribution

Th e following example illustrates the test for random distribution of objects 
within an area. We use the uniformly-distributed data generated in the pre-
vious example and display the point distribution.

clear

rand('seed',0)
data = 10 * rand(100,2);
plot(data(:,1),data(:,2),'o')
hold on
x = 0:10; y = ones(size(x));
for i = 1:9, plot(x,i*y,'r-'), end
for i = 1:9, plot(i*y,x,'r-'), end
hold off

We generate the three-dimensional histogram and use the function hist3 
to count the objects per class. In contrast to the previous test, we now count 
the subareas containing a certain number of observations. Th e number of 
subareas is larger than would usually be used for the previous test. In our 
example, we use 49 subareas or classes.
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Fig. 7.12 Frequency distribution of subareas with N objects. In our example, the subareas 
with 0, …, 5 objects are counted. Th e histogram of the frequency distribution is displayed 
as a two-dimensional histogram using hist. 

hist3(data,[7 7])
view(30,70)

counts = hist3(data,[7 7]);
counts = counts(:);

Th e frequency distribution of those subareas that contain a specifi c number 
of objects follows a Poisson distribution (Section 3.4) if the objects are ran-
domly distributed. First, we compute a frequency distribution of the subar-
eas containing N objects. In our example, we count the subareas with 0, …, 
5 objects. We also display the histogram of the frequency distribution as a 
two-dimensional histogram using hist (Fig. 7.12).

N = 0 : 5;

[n_obs,v] = hist(counts,N);

hist(counts,N)
title('Histogram')
xlabel('Number of observations N')
ylabel('Subareas with N observations')

Here, the midpoints of the histogram intervals v correspond to the N=0, …, 5 
objects contained in the subareas. Th e expected number of subareas Ej with 
a certain number of objects j can be computed using
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where n is the total number of objects and T is the number of subareas. For 
j=0, j! is taken to be 1. We compute the theoretical frequency distribution 
using the equation shown above,

for i = 1 : 6
    n_exp(i) = 49*exp(-100/49)*(100/49)^N(i)/factorial(N(i));
end
n_exp = sum(n_obs)*n_exp/sum(n_exp);

and display both the empirical and theoretical frequency distributions in a 
single plot.

h1 = bar(v,n_obs);
hold on
h2 = bar(v,n_exp);
hold off

set(h1,'FaceColor','none','EdgeColor','r')
set(h2,'FaceColor','none','EdgeColor','b')

Th e  χ 2-test is again employed to compare the empirical and theoretical dis-
tributions. Th e test is performed at a p=95 % signifi cance level. Since the 
Poisson distribution is defi ned by only one parameter (Section 3.4), the 
number of degrees of freedom is Φ =6–(1+1)=4. Th e measured χ 2 of

chi2 = sum((n_obs - n_exp).^2 ./n_exp)

chi2 =
    1.4357

is well below the critical χ 2 , which is

chi2inv(0.95,6-1-1)

ans = 
    9.4877

We therefore cannot reject the null hypothesis and conclude that our data 
follow a Poisson distribution and the point distribution is random.

Test for Clustering

Point distributions in geosciences are oft en clustered. We use a  nearest-
neighbor criterion to test a spatial distribution for clustering. Davis (2002) 
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published an excellent summary of the nearest-neighbor analysis, summa-
rizing the work of a number of other authors. Swan and Sandilands (1996) 
presented a simplifi ed description of this analysis. Th e test for clustering 
computes the distances di separating all possible pairs of nearest points in 
the fi eld. Th e observed mean nearest-neighbor distance is

where n is the total number of points or objects in the fi eld. Th e arithmetic 
mean of all distances between possible pairs is related to the area covered 
by the map. Th is relationship is expressed by the expected mean nearest-
neighbor distance, which is

where A is the area covered by the map. Small values for this ratio then sug-
gest signifi cant clustering, whereas large values indicate regularity or uni-
formity. Th e test uses a Z statistic (Section 3.4), which is

where se is the standard error of the mean nearest-neighbor distance, which 
is defi ned as

Th e null hypothesis  randomness is tested against two alternative hypotheses, 
 clustering and  uniformity or  regularity. Th e Z statistic has critical values 
of 1.96 and –1.96 at a signifi cance level of 95 %. If –1.96<Z<+1.96, we cannot 
reject the null hypothesis that the data are randomly distributed. If Z<–1.96, 
we reject the null hypothesis and accept the fi rst alternative hypothesis of 
clustering. If Z>+1.96, we also reject the null hypothesis, but accept the sec-
ond alternative hypothesis of uniformity or regularity.

As an example, we again use the synthetic data analyzed in the previous 
examples.

clear
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rand('seed',0)
data = 10 * rand(100,2);
plot(data(:,1),data(:,2),'o')

We fi rst compute the pairwise Euclidian distance between all pairs of ob-
servations using the function  pdist (Section 9.4). Th e resulting distance 
matrix distances is then converted into a symmetric, square format, so 
that distmatrix(i,j) denotes the distance between i and j objects in 
the original data.

distances = pdist(data,'Euclidean');
distmatrix =  squareform(distances);

Th e following for loop fi nds the nearest neighbors, stores the nearest-
neighbor distances and computes the mean distance.

for i = 1 : 100
    distmatrix(i,i) = NaN;
    k = find(distmatrix(i,:) == min(distmatrix(i,:)));
    nearest(i) = distmatrix(i,k(1));
end
observednearest = mean(nearest)

observednearest =
    0.5171

In our example, the mean nearest distance observednearest comes to 
0.5471. Next, we calculate the area of the map. Th e expected mean nearest-
neighbor distance is half the square root of the map area divided by the 
number of observations.

maparea = (max(data(:,1)-min(data(:,1)))) ...
         *(max(data(:,2)-min(data(:,2))));
expectednearest = 0.5 * sqrt(maparea/length(data))

expectednearest =
    0.4940

In our example, the expected mean nearest-neighbor distance expected-
nearest is 0.4940. Finally, we compute the standard error of the mean 
nearest-neighbor distance se

se = 0.26136/sqrt(length(data).^2/maparea)

se =
    0.0258

and the test statistic Z.

Z = (observednearest - expectednearest)/se
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Z =
    0.8960

In our example, Z is 0.8960. Since –1.96<Z<+1.96, we cannot reject the null 
hypothesis and conclude that the data are randomly distributed, but not 
clustered.

7.10 Analysis of  Digital Elevation Models (by R. Gebbers)

Digital elevation models ( DEMs) and their derivatives (e. g., slope and as-
pect) can indicate surface processes such as lateral water fl ow, solar irra-
diation or erosion. Th e simplest derivatives of a DEM are the slope and the 
aspect. Th e  slope (or  gradient) is a measure of the steepness, the incline or 
the grade of a surface measured in percentages or degrees. Th e  aspect (or 
 exposure) refers to the direction in which a slope faces.

We use the  SRTM data set introduced in Section 7.5 to illustrate the 
analysis of a digital elevation model for slope, aspect and other derivatives. 
Th e data are loaded by

clear

fid = fopen('S01E036.hgt','r');
SRTM = fread(fid,[1201,inf],'int16','b');
fclose(fid);

SRTM = SRTM';
SRTM = flipud(SRTM);
SRTM(find(SRTM==-32768)) = NaN;

Th ese data are elevation values in meters above sea level sampled on a 3 arc 
second or 90 meter grid. Th e SRTM data contain small-scale spatial distur-
bances and noise that could cause problems when computing a drainage 
pattern. We therefore fi lter the data with a two-dimensional moving-average 
fi lter, using the function  filter2. Th e fi lter calculates a spatial running 
mean of 3 × 3 elements. We use only the subset SRTM(400:600,650:850) 
of the original data set, in order to reduce computation time. We also re-
move the data at the edges of the DEM to eliminate fi lter artifacts.

F = 1/9 * ones(3,3);
SRTM = filter2(F, SRTM(750:850,700:800));
SRTM = SRTM(2:99,2:99);

Th e DEM is displayed as a pseudocolor plot using  pcolor and the color-
map  demcmap included in the Mapping Toolbox. Th e function demcmap 
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Fig. 7.13 Local neighborhood showing the MATLAB cell number convention.

creates and assigns a colormap appropriate for elevation data since it relates 
land and sea colors to hypsometry and bathymetry. 

h = pcolor(SRTM); 
demcmap(SRTM), colorbar
set(h,'LineStyle','none')
axis equal
title('Elevation [m]')
[r c] = size(SRTM);
axis([1 c 1 r])
set(gca,'TickDir','out');

Th e DEM indicates a horseshoe-shaped mountain range surrounding a val-
ley that slopes down towards the south-east (Fig. 7.15a).

Th e SRTM subset is now analyzed for slope and aspect. While we are 
working with DEMs on a regular grid, slope and aspect can be estimated 
using centered fi nite diff erences in a local 3 × 3 neighborhood. Figure 7.13 
shows a  local neighborhood using the MATLAB cell indexing convention. 
For calculating slope and aspect, we need two  fi nite diff erences in the DEM 
elements z, in x and y directions:

and

where h is the cell size, which has the same units as the elevation. Using the 
fi nite diff erences, the quantity slope is then calculated by

Z(4)

Z(2)

Z(3)

Z(7)

Z(5) Z(8)

Z(6) Z(9)

Z(1)
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Other primary relief attributes such as the  aspect, the  plan, the  profile 
and the  tangential curvature can be derived in a similar way using fi nite 
diff erences (Wilson and Galant 2000). Th e function  gradientm in the 
Mapping Toolbox calculates the slope and aspect of a data grid z in de-
grees above the horizontal and degrees clockwise from north. Th e func-
tion gradientm(z,refvec) requires a three-element reference vector 
refvec. Th e reference vector contains the number of cells per degree as 
well as the latitude and longitude of the upper-left  (northwest) element of 
the data array. Since the SRTM digital elevation model is sampled on a 3 arc 
second grid, 60 × 60/3=1200 elements of the DEM correspond to one degree 
of longitude or latitude. For simplicity, we ignore the actual coordinates of 
the SRTM subset in this example and use the indices of the DEM elements 
instead.

refvec = [1200 0 0];
[asp, slp] = gradientm(SRTM, refvec);

We display a pseudocolor map of the DEM slope in degrees (Fig. 7.15b).

h = pcolor(slp);
colormap(jet), colorbar
set(h,'LineStyle','none')
axis equal
title('Slope [°]')
[r c] = size(slp);
axis([1 c 1 r])
set(gca,'TickDir','out');

Flat areas are common on the summits and on the valley fl oors. Th e south-
eastern and south-south-western sectors are also relatively fl at. Th e steepest 
slopes are concentrated in the center of the area and in the south-western 
sector. Next, a pseudocolor map of the aspect is generated (Fig. 7.15c).

h = pcolor(asp);
colormap(hsv), colorbar
set(h,'LineStyle','none')
axis equal
title('Aspect')
[r c] = size(asp);
axis([1 c 1 r])
set(gca,'TickDir','out');

Th is plot displays the aspect in degrees, clockwise from north. For instance, 
mountain slopes facing north are displayed in red colors, whereas green 
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areas depict east-facing slopes.
Th e aspect changes abruptly along the ridges of the mountain ranges 

where neighboring drainage basins are separated by  watersheds. Th e Image 
Processing Toolbox includes the function  watershed to detect these 
drainage divides and to ascribe numerical labels to each catchment area, 
starting with 1.

watersh = watershed(SRTM);

Th e catchment areas are displayed in a pseudocolor plot, in which each area 
is assigned a color from the color table hsv (Fig . 7.15d), according to its 
numerical label.

h = pcolor(watersh);
colormap(hsv), colorbar
set(h,'LineStyle','none')
axis equal
title('Watershed')
[r c] = size(watersh);
axis([1 c 1 r])
set(gca,'TickDir','out');

Th e watersheds are represented by a series of red pixels. Th e largest catch-
ment area corresponds to the medium blue region in the center of the map. 
To the north-west, this large catchment area appears to be bordered by three 
catchments areas (represented by green colors) with no outlets. As in this 
example, watershed oft en generates unrealistic results as watershed algo-
rithms are sensitive to local minima that act as spurious sinks. We can de-
tect such sinks in the SRTM data using the function imregionalmin. Th e 
output of this function is a binary image that has the value 1 corresponding 
to the elements of the DEM that belong to local minima and the value of 0 
otherwise.

sinks = 1*imregionalmin(SRTM);

h = pcolor(sinks);
colormap(gray)
set(h,'LineStyle','none')
axis equal
title('Sinks')
[r c] = size(sinks);
axis([1 c 1 r])
set(gca,'TickDir','out');

Th e pseudocolor plot of the binary image shows twelve local sinks, repre-
sented by white pixels, that are potential locations for spurious areas of in-
ternal drainage and should be born in mind during any subsequent compu-
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Fig. 7.14 Schematic of calculation of fl ow accumulation by the D8 method.
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tation of hydrological characteristics from the DEM.
 Flow accumulation, also called specific catchment area or upslope 

contributing area, is defi ned as the number of cells, or area, that contrib-
ute runoff  to a particular cell (Fig. 7.14). In contrast to the local parameters 
slope and aspect, fl ow accumulation can only be determined from the glob-
al neighborhood. Th e principal operation is to add cell infl ows from higher 
neighboring cells, starting from the specifi ed cell and working up to the 
watersheds. Before adding together the outfl ows from each cell, we need 
to determine the gradient of each individual cell towards each neighbor-
ing cell, indexed by N. Th e array N contains indices for the eight adjacent 
cells according to the MATLAB convention as shown in Figure 7.13. We 
make use of the  circshift function to access the neighboring cells. For 
a two-dimensional matrix Z, the function circshift(Z,[r c]) circu-
larly shift s the values in the matrix Z by an amount of rows and columns 
given by r and c, respectively. For example, circshift(Z,[1 1]) will 
circularly shift  Z one row down and one column to the right. Th e individual 
gradients are calculated by

for the eastern, southern, western, and northern neighbors (the so-called 
rook’s case) and by

for the diagonal neighbors (bishop’s case). In these formulae, h is the 
cell size, zr,c is the elevation of the central cell and zr+y,c+x the eleva-
tion of a neighbor. Th e cell indices x and y are obtained from the matrix 
N. Th e gradients are stored in a three-dimensional matrix grads, where 
grads(:,:,1) contains the gradients towards the neighboring cells to 
the east, grads(:,:,2) contains the gradients towards the neighboring 
cells to the south-east, and so on. Negative gradients indicate outfl ow from 
the central cell towards the relevant neighboring cell. To obtain the sur-
face fl ow between cells, gradients are transformed by the inverse tangent of 
grads divided by 0.5π .

N = [0 -1;-1 -1;-1 0;+1 -1;0 +1;+1 +1;+1 0;-1 +1];
[a b] = size(SRTM);
grads = zeros(a,b,8);
for c = 2 : 2 : 8
   grads(:,:,c) = (circshift(SRTM,[N(c,1) N(c,2)]) ...
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      -SRTM)/sqrt(2*90);
end
for c = 1 : 2 : 7
   grads(:,:,c) = (circshift(SRTM,[N(c,1) N(c,2)]) ...
      -SRTM)/90;
end
grads = atan(grads)/pi*2;

Since a central cell can have several downslope neighbors, water can fl ow 
in several directions. Th is phenomenon is called  divergent f low. Early fl ow 
accumulation algorithms were based on the single-fl ow-direction method 
(know as the D8 method, Fig. 7.14), which allows fl ow to only one of the 
cell's eight neighboring cells. Th is method cannot model divergence in 
ridge areas and tends to produce parallel fl ow lines in some situations. Here, 
we illustrate the use of a multiple-fl ow-direction method, which allows fl ow 
from a cell to multiple neighboring cells. Th e proportion of the total fl ow 
that is assigned to a neighboring cell is dependent on the gradient between 
the central cell and that particular neighboring cell, and is therefore a frac-
tion of the total outfl ow. Even though multiple-fl ow methods produce more 
realistic results in most situations, they tend to result in dispersion in val-
leys, where the fl ow should be more concentrated. A weighting factor w is 
therefore introduced, which controls the relationship between the outfl ows.

A recommended value for w is 1.1; higher values would concentrate the fl ow 
in the direction of the steepest slope, while w=0 would result in an extreme 
dispersion. In the following sequence of commands, we fi rst select those 
gradients that are less than zero and then multiply the gradients by the 
weighting.

w = 1.1;
flow = (grads.*(-1*grads<0)).^w;

We then sum up the upslope gradients along the third dimension of the 
flow matrix. Replacing all upslope gradient values of 0 by a value of 1 
avoids the problems created by division by zero.

upssum = sum(flow,3);
upssum(upssum==0) = 1;

We divide the fl ows by upssum to obtain fractional weights that add up to a 
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Fig. 7.15 Display of a subset of the SRTM data set used in Section 7.5 and primary and 
secondary attributes of the digital elevation model; a elevation, b slope, c aspect, d watershed, 
e fl ow accumulation and f wetness index.
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total of one. Th is is achieved separately for each layer of the 3D flow matrix 
by a for loop:

for i = 1:8
   flow(:,:,i) = flow(:,:,i).*(flow(:,:,i)>0)./upssum;
end

Th e 2D matrix inflowsum will store the intermediate infl ow totals for each 
iteration. Th ese intermediate totals are then summed to reach a fi gure for 
the total accumulated fl ow flowac at the end of each iteration. Th e initial 
values for inflowsum and flowac are obtained through upssum.

inflowsum = upssum;
flowac = upssum;
 

Another 3D matrix inflow is now needed, in which to store the total inter-
mediate infl ow from all neighbors:

inflow = grads*0;

Flow accumulation is terminated when there is no infl ow, or translated 
into MATLAB code, we use a conditional while loop that terminates if 
sum(inflowsum(:))==0. Th e number of non-zero entries in inflow-
sum will decrease during each loop. Th is is achieved by alternately updating 
inflow and inflowsum. Here, inflowsum is updated with the interme-
diate inflow of the neighboring cells weighted by flow under the condi-
tion that the neighboring cells are contributing cells, i.e., where grads are 
positive. Where not all neighboring cells are contributing cells, the inter-
mediate inflowsum is reduced, as also is inflow. Th e fl ow accumula-
tion flowac increases through consecutive summation of the intermediate 
 inflowsum.

while sum(inflowsum(:))>0
   for i = 1:8
      inflow(:,:,i) = circshift(inflowsum,[N(i,1) N(i,2)]);
   end
   inflowsum = sum(inflow.*flow.*grads>0,3);
   flowac = flowac + inflowsum;
end

We display the result as a pseudocolor map with log-scaled values 
(Fig. 7.15e).

h = pcolor(log(1+flowac));
colormap(flipud(jet)), colorbar
set(h,'LineStyle','none')
axis equal
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title('Flow accumulation')
[r c] = size(flowac);
axis([1 c 1 r])
set(gca,'TickDir','out');

Th e plot displays areas with high fl ow accumulation in shades of blue, and 
areas with low fl ow accumulation, usually corresponding to ridges, in 
shades of red. We used a logarithmic scale for mapping the fl ow accumula-
tion in order to obtain a better representation of the results. Th e simplifi ed 
algorithm introduced here for calculating fl ow accumulation can be used 
to analyze sloping terrains in DEMs. In fl at terrains, where the slope ap-
proaches zero, no fl ow direction can be generated by our algorithm and thus 
fl ow accumulation stops. Such situations require more sophisticated algo-
rithms to perform analyses on completely fl at terrain. Th ese more advanced 
algorithms also include sink-fi lling routines to avoid spurious sinks that 
interrupt fl ow accumulation. Small depressions can be fi lled by smoothing, 
as we did at the beginning of this section.

Th e fi rst part of this section was about primary relief attributes. 
Secondary attributes of a DEM are functions of two or more primary at-
tributes. Examples of secondary attributes are the wetness index and the 
stream power index. Th e  wetness index for a cell is the log of the ratio be-
tween the area of the catchment for that particular cell and the tangent of 
its slope:

Th e term 1+f lowac avoids the problems associated with calculating the loga-
rithm of zero when flowac=0. Th e wetness index is used to predict the soil 
water content ( saturation) resulting from lateral water movement. Th e po-
tential for waterlogging is usually highest in the lower parts of catchments, 
where the slopes are more gentle. Flat areas with a large upslope area have 
a high wetness index compared to steep areas with small catchments. Th e 
wetness index weti is computed and displayed by

weti = log((1+flowac)./tand(slp));

h = pcolor(weti);
colormap(flipud(jet)), colorbar
set(h,'LineStyle','none')
axis equal
title('Wetness index')
[r c] = size(weti);
axis([1 c 1 r])
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set(gca,'TickDir','out');

In this plot, blue colors indicate high values for the wetness index, while red 
colors represent low values (Fig. 7.15f). In our example, soils in the south-
east are the most likely to have a high water content due to the runoff  from 
the large central valley and the fl atness of the terrain.

Th e  stream power index is another important secondary relief attribute 
which is frequently used in hillslope hydrology, geomorphology, soil sci-
ence, and related disciplines. As a measure of stream power it provides an 
indication of the potential for sediment transport and erosion by water. It 
is defi ned as the product of the area of catchment for a specifi c cell and the 
tangent of the slope of that cell:

Th e potential for erosion is high when large quantities of water (calculated 
by fl ow accumulation) are fast fl owing due to an extreme slope. Th e follow-
ing series of commands compute and display the stream power index:

spi = flowac.*tand(slp);

h = pcolor(log(1+spi));
colormap(jet), colorbar
set(h,'LineStyle','none')
axis equal
title('Stream power index')
[r c] = size(spi);
axis([1 c 1 r])
set(gca,'TickDir','out');

Th e wetness and stream power indices are particularly useful in high res-
olution terrain analysis, i.e., digital elevation models sampled at intervals 
of less than 30 meters. In our terrain analysis example we have calculated 
weti and spi from a medium resolution DEM, and must expect a degree 
of scale dependency in these attributes.

Th is section has illustrated the use of basic tools for analyzing digital 
elevation models. A more detailed introduction to digital terrain modeling 
is given in the book by Wilson & Galant (2002). Furthermore, the article 
by Freeman (1991) provides a comprehensive summary of digital terrain 
analysis including an introduction to the use of advanced algorithms for 
fl ow accumulation.
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7.11 Geostatistics and Kriging (by R. Gebbers)

 Geostatistics describes the autocorrelation of one or more variables in 1D, 
2D, and 3D space, or even in 4D space-time, to make predictions for un-
observed locations, to give information about the accuracy of the predic-
tions and to reproduce spatial variability and uncertainty. Th e shape, range, 
and direction of the spatial autocorrelation are described by a  variogram, 
which is the main tool in linear geostatistics. Th e origins of geostatistics can 
be traced back to the early 1950s when the South African mining engineer 
Daniel G. Krige fi rst published an interpolation method based on the spa-
tial dependency of samples. In the 60s and 70s, the French mathematician 
George Matheron developed the  theory of  regionalized variables, which 
provides the theoretical foundations for Krige’s more practical methods. 
Th is theory forms the basis of several procedures for the analysis and esti-
mation of spatially dependent variables, which Matheron called geostatis-
tics. Matheron as well coined the term  kriging for spatial interpolation by 
geostatistical methods.

Theorical Background

A basic assumption in geostatistics is that a spatiotemporal process is com-
posed of both deterministic and stochastic components (Fig. 7.16). Th e de-
terministic components can be  global and  local trends (sometimes called 
 drifts). Th e stochastic component is composed of a purely random part and 
an autocorrelated part. Th e autocorrelated component implies that on aver-
age, closer observations are more similar to each other than more widely 
separated observations. Th is behavior is described by the variogram where 
squared diff erences between observations are plotted against their separa-
tion distances. Krige's fundamental idea was to use the variogram for inter-
polation, as means of determining the amount of infl uence that neighboring 
observations have when predicting values for unobserved locations. Basic 
linear geostatistics includes two main procedures: variography for model-
ing the variogram, and kriging for interpolation.

Preceding Analysis

Because linear geostatistics as presented here is a parametric method, the 
underlying assumptions need to be checked by a preceding analysis. As 
with other parametric methods, linear geostatistics is sensitive to outli-
ers and deviations from a normal distribution. We fi rst open the data fi le 



236  7 SPATIAL DATA

0 100 200 300 400 500 600 0 100 200 300 400 500 600

0 100 200 300 400 500 600

0 100 200 300 400 500 600

0 100 200 300 400 500 600

0 10 20 30 40 50 60

3.0

1.5

0.0

-1.5

-3.0

3.0

1.5

0.0

-1.5

-3.0

3.0

1.5

0.0

-1.5

-3.0

3.0

1.5

0.0

-1.5

-3.0

3.0

1.5

0.0

-1.5

-3.0

0.8

0.6

0.4

0.2

0

1.0

x x

x

x

x

Lag Distance

Spatiotemporal Process Global Trend Component

Local Trend Component Random Component

Autocorrelation Component Variogram

a

c

e f

d

b

Fig. 7.16 Components of a spatiotemporal process and the variogram. Th e variogram (f) 
should only be derived from the autocorrelated component.
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geost_dat.mat containing xyz data triplets, and then plot the sampling lo-
cations. By doing this, we can check the point distribution and detect any 
major errors in the data coordinates, x and y.

clear

load geost_dat.mat

plot(x,y,'.')

Th e range of the observations z can be checked by

min(z)

ans =
    3.7199

max(z)

ans =
    7.8460

For linear geostatistics, the observations z should be Gaussian distributed. 
Th is is usually only tested by visual inspection of the histogram because sta-
tistical tests are oft en too sensitive if the number of samples exceeds ca. 100. 
One can also calculate the skewness and kurtosis of the data.

hist(z)

skewness(z)

ans =
    0.2568

kurtosis(z)

ans =
    2.5220

A fl at-topped or multiple-peaked distribution suggests that there is more 
than one population present in the data set. If these populations can be 
related to particular areas they should be treated separately. Another rea-
son for multiple peaks can be preferential sampling of areas with high and/
or low values. Th is usually happens as a result of some a priori knowledge 
and is known as a cluster eff ect. Dealing with a cluster eff ect is described in 
Deutsch and Journel (1998) and Isaaks and Srivastava (1998).

Most problems arise from positive skewness, i.e., if the distribution has 
a long tail to the right. According to Webster and Oliver (2001), one should 
consider root transformation if the skewness is between 0.5 and 1, and loga-
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rithmic transformation if the skewness exceeds 1. A general transformation 
formula is: 

for min(z)+m>0. Th is is the so called Box-Cox transform with the special 
case k=0 when a logarithm transformation is used. In the logarithm trans-
formation, m should be added if z is zero or negative. Interpolation results 
of power-transformed values can be back-transformed directly aft er kriging. 
Th e back-transformation of log-transformed values is slightly more com-
plicated and will be explained later. Th e procedure is known as  lognormal 
kriging. It can be important because lognormal distributions are not un-
common in geology.

 Variography with the  Classical Variogram

A variogram describes the spatial dependency of referenced observations 
in a uni- or multidimensional space. Since the true variogram of the spatial 
process is usually unkown, it has to be estimated from observations. Th is 
procedure is called variography. Variography starts by calculating the  ex-
perimental variogram from the raw data. In the next step, the experimen-
tal variogram is summarized by the  variogram estimator. Th e variography 
then concludes by fi tting a variogram model to the variogram estimator. 
Th e experimental variogram is calculated as the diff erences between pairs of 
the observed values, and is dependent on the  separation vector h (Fig. 7.17). 
Th e classical experimental variogram is defi ned by the  semivariance,

where zx is the observed value at location x and zx+h is the observed value at 
another point at a distance h. Th e length of the separation vector h is called 
the  lag distance or simply the lag. Th e correct term for γ (h) is the  semivar-
iogram (or  semivariance), where semi refers to the fact that it is half of the 
variance of the diff erence between zx and zx+h . It is, nevertheless, the vari-
ance per point when points are considered as in pairs (Webster and Oliver, 
2001). Conventionally, γ (h) is termed variogram instead of semivariogram, 
a convention that we shall follow for the rest of this section. To calculate the 
experimental variogram we fi rst need to group pairs of observations. Th is 
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Fig. 7.17 Separation vector h between two points.

is achieved by typing

[X1,X2] = meshgrid(x);
[Y1,Y2] = meshgrid(y);
[Z1,Z2] = meshgrid(z);

Th e matrix of separation distances D between the observation points is

D = sqrt((X1 - X2).^2 + (Y1 - Y2).^2);

We then get the experimental variogram G as half the squared diff erences 
between the observed values:

G = 0.5*(Z1 - Z2).^2; 

In order to to speed up the processing we use the MATLAB capability to 
vectorize commands instead of using for loops to run faster. However, we 
have computed n2 pairs of observations although only n(n–1)/2 pairs are 
required. For large data sets, e. g., more than 3,000 data points, the soft -
ware and physical memory of the computer may become limiting factors. In 
such cases, a more effi  cient method of programming is described in the user 
manual for the SURFER soft ware (SURFER 2002). Th e plot of the experi-
mental variogram is called the  variogram cloud (Fig. 7.18), which we obtain 
by extracting the lower triangular portions of the D and G arrays.

indx = 1:length(z);
[C,R] = meshgrid(indx);
I = R > C;
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Fig. 7.18 Variogram cloud: Plot of the experimental variogram (half the squared diff erence 
between pairs of observations) versus the lag distance (separation distance between the two 
components of a pair).

plot(D(I),G(I),'.' )
xlabel('lag distance')
ylabel('variogram')

Th e variogram cloud provides a visual impression of the dispersion of val-
ues at the diff erent lags. It can be useful for detecting outliers or anomalies, 
but it is hard to judge from this presentation whether there is any spatial 
correlation, and if so, what form it might have and how we could model it 
(Webster and Oliver 2001). To obtain a clearer view and to prepare a vario-
gram model the experimental variogram is now replaced by the variogram 
estimator.

Th e  variogram estimator is derived from the experimental variograms 
in order to summarize their central tendency (similar to the descriptive 
statistics derived from univariate observations, Section 3.2). Th e classical 
variogram estimator is the averaged empirical variogram within certain 
distance classes or bins defi ned by multiples of the lag interval. Th e clas-
sifi cation of separation distances is illustrated in Figure 7.19.
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Fig. 7.19 Classifi cation of separation distances for observations that are equally spaced. 
Th e lag interval is h1, and h2 , h3 etc. are multiples of the lag interval.

Th e variogram estimator is calculated by:

where N(h) is the number of pairs within the lag interval h.
We fi rst need to decide on a suitable lag interval h. If sampling has been 

carried out on a regular grid, the length of a grid cell can be used. If the 
samples are unevenly spaced, as in our case, the mean minimum distance 
of pairs is a good starting point for the lag interval (Webster and Oliver 
2001). To calculate the mean minimum distance of pairs we need to replace 
the zeros in the diagonal of the lag matrix D with NaNs, otherwise the mean 
minimum distance will be zero:

D2 = D.*(diag(x*NaN)+1);
lag = mean(min(D2))

lag =
    8.0107

Since the estimated variogram values tend to become more erratic with in-
creasing distances, it is important to place a maximum distance limit on the 
calculation. As a rule of thumb, half of the maximum distance is a suitable 
limit for variogram analysis. We obtain the half maximum distance and the 
maximum number of lags by:
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hmd = max(D(:))/2

hmd =
  130.1901

max_lags = floor(hmd/lag)

max_lags =
    16

Th e separation distances are then classifi ed and the classical variogram es-
timator is calculated:

LAGS = ceil(D/lag);

for i = 1 : max_lags
    SEL = (LAGS == i);
    DE(i) = mean(mean(D(SEL)));
    PN(i) = sum(sum(SEL == 1))/2;
    GE(i) = mean(mean(G(SEL)));
end

where SEL is the selection matrix defi ned by the lag classes in LAG, DE is 
the mean lag, PN is the number of pairs and GE is the variogram estimator. 
We can now plot the classical variogram estimator (variogram versus mean 
separation distance) together with the population variance:

plot(DE,GE,'.' )
var_z = var(z); 
b = [0 max(DE)]; 
c = [var_z var_z];
hold on

plot(b,c, '--r') 
yl = 1.1 * max(GE); 
ylim([0 yl])
xlabel('Averaged distance between observations')
ylabel('Averaged semivariance')
hold off

Th e variogram in Figure 7.20 exhibits a typical pattern of behavior. Values 
are low at small separation distances (near the origin), they increase with 
increasing distances until reaching a plateau ( sill) which is close to the pop-
ulation variance. Th is indicates that the spatial process is correlated over 
short distances while there is no spatial dependency over longer distances. 
Th e extent of the spatial dependency is called the  range and is defi ned as the 
separation distance at which the variogram reaches the sill.

Th e  variogram model is a parametric curve fi tted to the variogram es-
timator. Th is is similar to frequency distribution fi tting (see Section 3.5), 
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Fig. 7.20 Th e classical variogram estimator (dots) and the population variance (dashed 
line).

where the frequency distribution is modeled by a distribution type and its 
parameters (e. g., a normal distribution with its mean and variance). For 
theoretical reasons, only functions with certain properties should be used 
as variogram models. Common authorized models are the spherical, the 
exponential and the linear model (more models can be found in the litera-
ture).

Spherical model:
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Exponential model:

Linear model:

where c is the sill, a is the range, and b is the slope (for a linear model). Th e 
parameters c and either a or b must be modifi ed if a variogram model is fi t-
ted to the variogram estimator. Th e so called  nugget effect is a special type 
of variogram model. In practice, when extrapolating the variogram towards 
a separation distance of zero, we oft en observe a positive intercept on the 
y-axis. Th is is called the nugget eff ect and it is explained by measurement 
errors and by small scale fl uctuations ( nuggets), which are not captured due 
to the sampling intervals being too large. We sometimes have expectations 
about the minimum nugget eff ect from the variance of repeated measure-
ments in the laboratory, or from other previous knowledge. More details 
about the nugget eff ect can be found in Cressie (1993) and Kitanidis (1997). 
If there is a nugget eff ect, it can be added into the variogram model. An 
exponential model with a nugget eff ect looks like this:

where c0 is the nugget eff ect.
We can even combine variogram models, e. g., two spherical models 

with diff erent ranges and sills. Th ese combinations are called  nested models. 
During variogram modeling the components of a nested model are regarded 
as spatial structures which should be interpreted as the results of geological 
processes. Before we discuss further aspects of variogram modeling let us 
just fi t some models to our data. We begin with a spherical model with no 
nugget eff ect, and then add an exponential model and a linear model, both 
with nugget variances:

plot(DE,GE,'o','MarkerFaceColor',[.6 .6 .6]) 
var_z = var(z);
b = [0 max(DE)];
c = [var_z var_z];
hold on
plot(b,c,'--r') 
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xlim(b)
yl = 1.1*max(GE);
ylim([0 yl])

% Spherical model with nugget
nugget = 0;
sill = 0.803;
range = 45.9;
lags = 0:max(DE);
Gsph = nugget + (sill*(1.5*lags/range - 0.5*(lags/...
   range).^3).*(lags<=range) + sill*(lags>range));
plot(lags,Gsph,':g')
 
% Exponential model with nugget
nugget = 0.0239;
sill = 0.78;
range = 45;
Gexp = nugget + sill*(1 - exp(-3*lags/range));
plot(lags,Gexp,'-.b')
 
% Linear model with nugget
nugget = 0.153;
slope = 0.0203;
Glin = nugget + slope*lags;
plot(lags,Glin,'-m')
xlabel('Distance between observations')
ylabel('Semivariance')
legend('Variogram estimator','Population variance',...
   'Sperical model','Exponential model','Linear model')
hold off

Th e techniques of variogram modeling are very much under discussion. 
Some advocate  objective variogram modeling by automated curve fi tting, 
using a weighted least squares, maximum likelihood or maximum entropy 
method. In contrast, it is oft en argued that geological knowledge should 
be included in the modeling process, and visual fi tting is therefore recom-
mended. In many cases the problem with variogram modeling is much less 
a question of whether the appropriate procedure has been used than a ques-
tion of the quality of the experimental variogram. If the experimental var-
iogram is good, either procedure will yield similar results.

Another important question in variogram modeling is the intended 
use of the model. In our case, the linear model at fi rst does not appear to 
be appropriate (Fig. 7.21). Following a closer look, however, we can see that 
the linear model fi ts reasonably well over the fi rst three lags. Th is can be 
suffi  cient if we use the variogram model only for kriging, because in krig-
ing the nearby points are the most important points for the estimate (see 
discussion of kriging below). Th us, diff erent variogram models with similar 
fi ts close to the origin will yield similar kriging results when the sampling 
points are regularly distributed. If the objective is to describe the spatial 
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Fig. 7.21 Variogram estimator (gray circles), population variance (solid line), and spherical, 
exponential, and linear models (dotted and dashed lines).

structures then the situation is quite diff erent. It then becomes important to 
fi nd a model that is suitable over all lags, and to accurately determine the sill 
and the range. A collection of geological case studies in Rendu and Readdy 
(1982) show how process knowledge and variography can be interlinked. 
Good guidelines for variogram modeling are provided by Gringarten and 
Deutsch (2001) and Webster and Oliver (2001).

We will now briefl y discuss a number of other aspects of variography:

 • Sample size – As in any statistical procedure, as large a sample as pos-
sible is required in order to obtain a reliable estimate. For variography 
it is recommended that the number of samples should be in excess of 
100 to 150 (Webster and Oliver 2001). For smaller sample numbers a 
maximum likelihood variogram should be computed (Pardo-Igúzquiza 
and Dowd 1997).

 • Sampling design – In order to obtain a good estimation close to the ori-
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gin of the variogram, the sampling design should include observations 
over small distances. Th is can be achieved by means of a nested design 
(Webster and Oliver 2001). Other possible designs have been evaluated 
by Olea (1984). 

 • Anisotropy – Th us far we have assumed that the structure of spatial 
correlation is independent of direction. We have calculated  omnidirec-
tional variograms ignoring the direction of the separation vector h. In 
a more thorough analysis, the variogram should be discretized not only 
in distance but also in direction (directional bins). Plotting  directional 
variograms, usually in four directions, we sometimes can observe dif-
ferent ranges ( geometric anisotropy), diff erent scales ( zonal anisotropy), 
and diff erent shapes (indicating a trend). Th e treatment of anisotropy 
requires a highly interactive graphical user interface, which is beyond 
the scope of this book (see the soft ware VarioWin by Panatier 1996).

Number of pairs and the lag interval•  – When calculating the classical 
variogram estimator it is recommended that more than 30 to 50 pairs 
of points be used per lag interval (Webster and Oliver 2001). Th is is due 
to the sensitivity to outliers. If there are fewer pairs, the lag interval 
should be increased. Th e lag spacing does not necessarily need to be 
uniform, but can be chosen individually for each distance class. It is also 
possible to work with overlapping classes, in which case the  lag width 
( lag tolerance) must be defi ned. However, increasing the lag width can 
cause unnecessary smoothing, with a resulting loss of detail. Th e sepa-
ration distance and the lag width therefore must be chosen with care. 
Another option is to use a more robust variogram estimator (Cressie 
1993, Deutsch and Journel 1998).

Calculation of •  separation distance – If the observations cover a large 
area, for example more than 1,000 km2 , spherical distances should be 
calculated instead of Pythagorean distances from a planar Cartesian co-
ordinate system. 

Kriging

We will now interpolate the observations onto a regular grid by  ordinary 
point kriging which is the most popular kriging method. Ordinary point 
kriging uses a weighted average of the neighboring points to estimate the 
value of an unobserved point: 
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where λi are the weights that have to be estimated. Th e sum of the weights 
should be equal to one in order to guarantee that the estimates are unbi-
ased:

Th e expected (average) error for the estimation must be zero. Th at is:

where zx 0 is the true, but unknown value. We can use the above equations to 
compute algebraically the mean-squared error in terms of the variogram:

where E is the estimation or  kriging variance, which must be minimized, 
γ (xi, x0) is the variogram (semivariance) between the data points and the 
unobserved points, γ (xi, xj) is the variogram between the data points xi and 
xj, and λi and λj are the weights of the ith and jth data point.

For kriging we must minimize this equation (a quadratic objective func-
tion), satisfying the condition that the sum of the weights should be equal 
to one (linear constraint). Th is optimization problem can be solved using a 
Lagrange multiplier ν  resulting in a  linear kriging system of N+1 equations 
and N+1 unknowns:

Aft er obtaining the weights λi , the kriging variance is given by

Th e kriging system can be presented in a matrix notation:
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where

is the matrix of the coeffi  cients: these are the modeled variogram values for 
the pairs of observations. Note that on the diagonal of the matrix, where 
separation distance is zero, the value of γ  disappears.

is the vector of the unknown weights and the Lagrange multiplier.

is the right-hand-side vector. To obtain the weights and the Lagrange multi-
plier the matrix G_mod is inverted:

Th e kriging variance is given by
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For our calculations with MATLAB we need the matrix of coeffi  cients de-
rived from the distance matrix D and a variogram model. D was calculated 
in the variography section above and we use the exponential variogram 
model with a nugget, sill and range from the previous section:

G_mod = (nugget + sill*(1 - exp(-3*D/range))).*(D>0);

We then take the number of observations and add a column and row vector 
of all ones to the G_mod matrix and a zero in the lower left  corner: 

n = length(x);
G_mod(:,n+1) = 1;
G_mod(n+1,:) = 1;
G_mod(n+1,n+1) = 0;

Now the G_mod matrix has to be inverted:

G_inv = inv(G_mod);

A grid with the locations of the unknown values is needed. Here we use a 
grid cell size of fi ve within a quadratic area ranging from 0 to 200 in x and y 
direction. Th e coordinates are created in matrix form by:

R = 0 : 5 : 200;
[Xg1,Xg2] = meshgrid(R,R);

and converted to vectors by:

Xg = reshape(Xg1,[],1);
Yg = reshape(Xg2,[],1);

We then allocate memory for the kriging estimates Zg and the kriging vari-
ance s2_k by:

Zg = Xg * NaN;
s2_k = Xg * NaN;

We now krige the unknown values at each grid point:

for k = 1 : length(Xg)
    DOR = ((x - Xg(k)).^2 + (y - Yg(k)).^2).^0.5;
    G_R = (nugget + sill*(1 - exp(-3*DOR/range))).*(DOR>0);
    G_R(n+1) = 1; 
    E = G_inv * G_R; 
    Zg(k) = sum(E(1:n,1).*z); 
    s2_k(k) = sum(E(1:n,1).*G_R(1:n,1))+E(n+1,1); 
end

Th e fi rst command computes the distance between the grid points (Xg,Yg) 
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and the observation points (x,y). Th en we construct the right-hand-side 
vector of the kriging system by using the variogram model G_R and adding 
one to the last row. We next obtain the matrix E with the weights and the 
Lagrange multiplier. Th e estimate Zg at each point k is the weighted sum of 
the observations z. Finally, the kriging variance s2_k of the grid point is 
computed and we can plot the results. First, we create a grid of the kriging 
estimate and the kriging variance:

r = length(R);
Z = reshape(Zg,r,r);
SK = reshape(s2_k,r,r);

A subplot on the left  presents the kriged values:

subplot(1,2,1)
h = pcolor(Xg1,Xg2,Z);
set(h,'LineStyle','none')
axis equal
ylim([0 200])
title('Kriging Estimate')
xlabel('x-Coordinates')
ylabel('y-Coordinates')
colorbar

Th e left  hand subplot presents the kriging variance:

subplot(1,2,2)
h = pcolor(Xg1,Xg2,SK);
set(h,'LineStyle','none')
axis equal
ylim([0 200])
title('Kriging Variance')
xlabel('x-Coordinates')
ylabel('y-Coordinates')
colorbar
hold on

and we overlay overlaying the sampling positions:

plot(x,y,'ok')
hold off

Th e kriged values are shown in Figure 7.22a. Th e kriging variance depends 
only on the distance from the observations and not on the observed values 
(Fig. 7.22b). Kriging reproduces the population mean when observations 
are beyond the range of the variogram; at the same time, the kriging vari-
ance increases (lower right corner of the maps in Figure 7.22). Th e kriging 
variance can be used as a criterion to improve sampling design and it is 
needed for back-transformation in lognormal kriging. Back-transformation 
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Fig. 7.22 Interpolated values on a regular grid by ordinary point kriging using a an ex-
ponential variogram model; b kriging variance as a function of the distance from the 
observations (empty circles).

for lognormal kriging is achieved by:

Discussion of Kriging

 Point kriging as presented here is an exact interpolator. It reproduces ex-
actly the values at an observation point, even though a variogram with a 
nugget eff ect is used. Smoothing can be achieved by including the variance 
of the measurement errors (see Kitanidis 1997), and by  block kriging which 
averages the observations within a certain neighborhood (or block). While 
kriging variance depends only on the distance between the observed and 
the unobserved locations it is primarily a measure of the density of infor-
mation (Wackernagel 2003). Th e accuracy of kriging is better evaluated 
by cross-validation using a resampling method or surrogate test (Sections 
4.6 and 4.7). Th e infl uence of the neighboring observations on the estima-
tion depends on their confi guration, as summarized by Webster and Oliver 
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(2001): "Near points carry more weight than more distant ones; the relative 
weight of a point decreases when the number of points in the neighborhood 
increases; clustered points carry less weight individually than isolated ones 
at the same distance; data points can be screened by ones lying between 
them and the target." Sampling design for kriging is diff erent from the de-
sign that might be optimal for variography. A regular grid, triangular or 
quadratic, can be regarded as optimal. 

Th e MATLAB code presented here is a straightforward implementa-
tion of the above formulae. In professional programs the number of data 
points entering the G_mod matrix is restricted and the inversion of G_mod 
is avoided by working with the covariances instead of the variograms 
(Webster and Oliver 2001, Kitanidis 1997). For those who are interested in 
programming and in a deeper understanding of algorithms, Deutsch and 
Journel (1992) is essential reading. Th e best internet source is the homepage 
for AI-GEOSTATISTICS:

http://www.ai-geostats.org
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8  Image Processing

8.1 Introduction

Computer graphics are stored and processed as either  vector or  raster data. 
Most of the data types that were encountered in the previous chapter were 
vector data, i. e., points, lines and polygons. Drainage networks, the outlines 
of geologic units, sampling locations and topographic contours are all ex-
amples of vector data. In Chapter 7, coastlines are stored in a vector format 
while bathymetric and topographic data are saved in a raster format. Vector 
and raster data are oft en combined in a single data set, for instance, to dis-
play the course of a river on a satellite image. Raster data are oft en converted 
to vector data by digitizing points, lines or polygons. Conversely, vector data 
are sometimes transformed to raster data.

 Images are generally represented as raster data, i. e., as a 2D array of 
color intensities. Images are everywhere in geosciences. Field geologists use 
aerial photos and satellite images to identify lithologic units, tectonic struc-
tures, landslides and other features within a study area. Geomorphologists 
use such images for the analysis of drainage networks, river catchments, 
and vegetation or soil types. Th e analysis of images from thin sections, the 
automated identifi cation of objects, and the measurement of varve thick-
nesses all make use of a great variety of image processing methods.

Th is chapter is concerned with the analysis and display of image data. 
Firstly, the various ways that raster data can be stored on the computer are 
explained (Section 8.2). Th e main tools for importing, manipulating and 
exporting image data are presented in Section 8.3. Th is knowledge is then 
used to process and to georeference satellite images (Sections 8.4 and 8.5). 
On-screen digitization techniques are discussed in Section 8.6. Finally, sec-
tions 8.7 to 8.9 are concerned with color-intensity transects of laminated 
sediments, and with automated grain size analysis and charcoal quanti-
fi cation in microscope images. Th e Image Processing Toolbox is used for 
the specifi c examples throughout this chapter. While the MATLAB User’s 
Guide to the Image Processing Toolbox provides an excellent general in-

M.H. Trauth, MATLAB® Recipes for Earth Sciences, 3rd ed.,  
DOI 10.1007/978-3-642-12762-5_8, © Springer-Verlag Berlin Heidelberg 2010  
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troduction to the analysis of images, this chapter provides an overview of 
typical applications in earth sciences.

8.2 Data Storage

Vector and raster graphics are the two fundamental methods for storing 
pictures. Th e typical format for storing  vector data has already been intro-
duced in the previous chapter. In the following example, the two columns 
in the fi le coastline.txt represent the longitudes and latitudes of the points 
of a polygon.

NaN   NaN
42.892067 0.000000
42.893692 0.001760
NaN   NaN
42.891052 0.001467
42.898093 0.007921
42.904546 0.013201
42.907480 0.016721
42.910414 0.020828
42.913054 0.024642
(cont'd)

Th e NaNs help to identify break points in the data (Section 7.2).
Th e  raster data are stored as 2D arrays. Th e elements of these arrays 

represent variables such as the altitude of a grid point above sea level, the 
annual rainfall or, in the case of an image, the color intensity values.

174 177 180 182 182 182
165 169 170 168 168 170
171 174 173 168 167 170
184 186 183 177 174 176
191 192 190 185 181 181
189 190 190 188 186 183

Raster data can be visualized as 3D plot. Th e x and y are the indices of 
the 2D array or any other reference frame, and z is the numerical value of 
the elements of the array (see also Chapter 7). Alternatively, the numerical 
values contained in the 2D array can be displayed as a pseudocolor plot, 
which is a rectangular array of cells with colors determined by a colormap. 
A colormap is an m-by-3 array of real numbers between 0.0 and 1.0. Each 
row defi nes a red, green, blue (RGB) color. An example is the above array 
that could be interpreted as grayscale intensities ranging from 0 (black) to 
255 (white). More complex examples include satellite images that are stored 
in 3D arrays.
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As previously discussed, a computer stores data as bits that have one of 
two states, one and zero (Chapter 2). If the elements of the 2D array repre-
sent the color intensity values of the  pixels (short for  picture elements) of an 
image, 1-bit arrays contain only ones and zeros.

0   0   1   1   1   1
1   1   0   0   1   1
1   1   1   1   0   0
1   1   1   1   0   1
0   0   0   0   0   0
0   0   0   0   0   0

Th is 2D array of ones and zeros can be simply interpreted as a black-and-
white image, where the value of one represents white and zero corresponds 
to black. Alternatively, the 1-bit array could be used to store an image con-
sisting of any two diff erent colors, such as red and blue.

In order to store more complex types of data, the bits are joined together 
to form larger groups, such as bytes consisting of eight bits. Since the earli-
est computers could only process eight bits at a time, early computer code 
was written in sets of eight bits, which came to be called bytes. Hence, each 
element of the 2D array or pixel contains a vector of eight ones or zeros.

  1    0    1    0    0    0    0    1

Th ese 8  bits (or 1  byte) allow 28=256 possible combinations of the eight ones 
or zeros. Th erefore, 8 bits are enough to represent 256 diff erent intensities 
such as grayscales. Th e 8 bits can be read in the following way reading from 
right to left : a single bit represents two numbers, two bits give four numbers, 
three bits show eight numbers, and so forth up to a byte, or eight bits, which 
represents 256 numbers. Each added bit doubles the count of numbers. Here 
is a comparison of binary and decimal representations of the number 161: 

128   64   32   16    8    4    2    1         (value of the bit)
  1    0    1    0    0    0    0    1         (binary)

128 +  0 + 32  + 0 +  0 +  0 +  0 +  1 = 161   (decimal)

Th e end members of the binary representation of grayscales are

  0    0    0    0    0    0    0    0

which is black, and

  1    1    1    1    1    1    1    1

which is pure white. In contrast to the above 1-bit array, the one-byte array 
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allows a  grayscale image of 256 diff erent levels to be stored. Alternatively, the 
256 numbers could be interpreted as 256 discrete colors. In either case, the 
display of such an image requires an additional source of information con-
cerning how the 256 intensity values are converted into colors. Numerous 
global colormaps for the interpretation of 8-bit color images exist that allow 
the cross-platform exchange of raster images, while local colormaps are of-
ten embedded in a graphics fi le.

Th e disadvantage of 8-bit color images is that the 256 discrete colorsteps 
are not enough to simulate smooth transitions for the human eye. A 24-bit 
system is therefore used in many applications, with 8 bits of data for each  RGB 
channel giving a total of 2563=16,777,216 colors. Such a 24-bit image is stored 
in three 2D arrays, or one 3D array, of   intensity values between 0 and 255.

195  189  203  217  217  221
218  209  187  192  204  206
207  219  212  198  188  190
203  205  202  202  191  201
190  192  193  191  184  190
186  179  178  182  180  169

209  203  217  232  232  236
234  225  203  208  220  220
224  235  229  214  204  205
223  222  222  219  208  216
209  212  213  211  203  206
206  199  199  203  201  187

174  168  182  199  199  203
198  189  167  172  184  185
188  199  193  178  168  172
186  186  185  183  174  185
177  177  178  176  171  177
179  171  168  170  170  163

Compared to the 1-bit and 8-bit representations of raster data, the 24-bit 
storage certainly requires a lot more computer memory. In the case of very 
large data sets such as satellite images and digital elevation models the user 
should therefore think carefully about the most suitable way to store the 
data. Th e default data type in MATLAB is the 64-bit array, which allows 
storage of the sign of a number (fi rst bit), the exponent (bits 2 to 12) and 
roughly 16 signifi cant decimal digits in the range of approximately 10–3 0 8 
to 10+3 0 8 (bits 13 to 64). However, MATLAB also works with other data 
types, such as 1-bit, 8-bit and 24-bit raster data, to save memory.

Th e memory required for storing a raster image depends on the data 
type and the image’s dimension. Th e dimension of an image can be de-
scribed by the numbers of pixels, which is the number of rows multiplied by 
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the number of columns of the 2D array. Let us assume an image of 729 × 713 
pixels, such as the one we will use in the following section. If each pixel 
needs 8 bits to store a grayscale value, the memory required by the data is 
729 × 713 × 8=4,158,216 bits or 4,158,216/8=519,777 bytes. Th is number is 
exactly what we obtain by typing whos in the command window. Common 
prefi xes for bytes are kilo-, mega-, giga- and so forth.

bit = 1 or 0 (b)
8 bits = 1 byte (B)
1024 bytes = 1 kilobyte (KB)
1024 kilobytes = 1 megabyte (MB)
1024 megabytes = 1 gigabyte (GB)
1024 gigabytes = 1 terabyte (TB)

Note that in data communication 1 kilobit = 1,000 bits, while in data stor-
age 1 kilobyte=1,024 bytes. A 24-bit or  true color image then requires 
three times the memory required to store an 8-bit image, or 1,559,331 bytes 
= 1,559,331/1,024 kilobytes (KB)≈1,523 KB≈1,559,331/1,0242=1.487 mega-
bytes (MB).

However, the dimension of an image is oft en given, not by the total num-
ber of pixels, but by the length and height of the picture and its resolution. Th e 
resolution of an image is the number of  pixels per inch ( ppi) or  dots per inch 
( dpi). Th e standard resolution of a computer monitor is 72 dpi although mod-
ern monitors oft en have a higher  resolution such as 96 dpi. For instance, a 17 
inch  monitor with 72 dpi resolution displays 1,024 × 768 pixels. If the monitor 
is used to display images at a diff erent (lower, higher) resolution, the image 
is resampled to match the monitor’s resolution. For scanning and printing, a 
resolution of 300 or 600 dpi is enough in most applications. However, scanned 
images are oft en scaled for large printouts and therefore have higher resolu-
tions such as 2,400 dpi. Th e image used in the next section has a width of 25.2 
cm (or 9.92 inches) and a height of 25.7 cm (10.12 inches). Th e resolution of 
the image is 72 dpi. Th e total number of pixels is therefore 72 × 9.92≈713 in a 
horizontal direction, and 72 × 10.12≈729 in a vertical direction.

Numerous formats are available for saving vector and raster data into 
a fi le. All of these formats have their own particular advantages and disad-
vantages. Choosing one format over another in an application depends on 
the way the images are to be used in a project, and whether or not the im-
ages are to be analyzed quantitatively. Th e most popular formats for storing 
vector and raster data are:

Compuserve Graphics Interchange Format•  (GIF) – Th is format was de-
veloped in 1987 for raster images using a fi xed colormap of 256 colors. 
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Th e GIF format uses compression without loss of data. It was designed for 
fast transfer rates over the Internet. Th e limited number of colors means 
that it is not the right format for the smooth color transitions that occur 
in aerial photos or satellite images. It is, however, oft en used for line art, 
maps, cartoons and logos (http://www.compuserve.com/).

 • Microsoft Windows Bitmap Format ( BMP) – Th is is the default image 
format for computers running Microsoft  Windows as the operating sys-
tem. However, numerous converters also exist to read and write BMP 
fi les on other platforms. Various modifi cations of the BMP format are 
available, some of them without compressions and others with eff ective 
and fast compression (http://www.microsoft .com/).

 • Tagged Image File Format ( TIFF) – Th is format was designed by the 
Aldus Corporation and Microsoft  in 1986 to become an industry standard 
for image-fi le exchange. A TIFF fi le includes an image fi le header, a direc-
tory and the data in all available graphics and image fi le formats. Some 
TIFF fi les even contain vector and raster versions of the same picture, 
as well as images in diff erent resolutions and with diff erent colormaps. 
Th e main advantage of TIFF fi les was originally their portability. A TIFF 
should perform on all computer platforms, but unfortunately, numerous 
modifi cations of the TIFF evolved in subsequent years, resulting in in-
compatibilities. Th e TIFF is therefore now oft en called the Thousands of 
Incompatible File Formats.

 • PostScript ( PS) and  Encapsulated PostScript ( EPS) – Th e PS format 
has been developed by John Warnock at PARC, the Xerox research in-
stitute. Warnock was also co-founder of Adobe Systems, where the EPS 
format was created. Th e PostScript vector format would never become 
an industry standard without Apple Computers. In 1985, Apple needed 
a typesetter-quality controller for the new Apple LaserWriter printer and 
the Macintosh operating system and adopted the PostScript format. Th e 
third partner in the history of PostScript was the company Aldus, the de-
veloper of the soft ware PageMaker and now a part of Adobe Systems. Th e 
combination of Aldus PageMaker soft ware, the PS format and the Apple 
LaserWriter printer led to the creation of Desktop Publishing. Th e EPS 
format was then developed by Adobe Systems as a standard fi le format for 
importing and exporting PS fi les. Whereas a PS fi le is generally a single-
page format containing either an illustration or a text, the purpose of an 
EPS fi le is to allow the inclusion of other pages, i. e., a fi le that can contain 
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any combination of text, graphics and images (http://www.adobe.com/).

In 1986, the •  Joint Photographic Experts Group ( JPEG) was founded 
for the purpose of developing various standards for image compression. 
Although JPEG stands for the committee, it is now widely used as the name 
for an image compression and a fi le format. Th is compression consists of 
grouping pixel values into 8 × 8 blocks and transforming each block with a 
discrete cosine transform. As a result, all unnecessary high-frequency in-
formation is deleted, which makes this compression method irreversible. 
Th e advantage of the JPEG format is the availability of a three-channel, 
24-bit, true color version. Th is allows images with smooth color transi-
tions to be stored. Th e new JPEG-2000 format uses a wavelet transform 
instead of the cosine transform (Section 5.8) (http://www.jpeg.org/).

 • Portable Document Format ( PDF) – Th e PDF designed by Adobe Systems 
is now a true self-contained cross-platform document. PDF fi les contain 
the complete formatting of vector illustrations, raster images and text, or 
a combination of all these, including all necessary fonts. Th ese fi les are 
highly compressed, allowing a fast internet download. Adobe Systems 
provides the free-of-charge Acrobat Reader for all computer platforms to 
read PDF fi les (http://www.adobe.com/).

Th e PICT format was developed by Apple Computers in 1984 as the de-• 
fault format for Macintosh graphics. Th e PICT format can be used for 
raster images and for vector illustrations. PICT uses various methods for 
compressing data. Th e PICT 1 format only supports monochrome graph-
ics, but PICT 2 supports a color depth of up to 32 bits. Th e PICT format 
is not supported on other platforms although some PC soft ware tools can 
work with PICT fi les (http://www.apple.com).

8.3 Importing, Processing and Exporting Images

We fi rst need to learn how to read an image from a graphics fi le into the 
workspace. As an example, we use a satellite image showing a 10.5 km by 
11 km subarea in northern Chile:

http://asterweb.jpl.nasa.gov/gallery/images/unconform.jpg

Th e fi le unconform.jpg is a processed  TERRA-ASTER satellite image that 
can be downloaded free-of-charge from the NASA web page. We save this 
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image in the working directory. Th e command

clear

unconform1 = imread('unconform.jpg');

reads and decompresses the JPEG fi le, imports the data as 24-bit RGB image 
array and stores the data in a variable unconform1. Th e command

whos

shows how the  RGB array is stored in the workspace:

Name              Size                 Bytes  Class    Attributes
unconform1      729x713x3            1559331  uint8

Th e details indicate that the image is stored as a 729 × 713 × 3 array represent-
ing a 729 × 713 array for each of the colors red, green and blue. Th e listing 
of the current variables in the workspace also gives the information  uint8 
array, i. e., each array element representing one pixel contains 8-bit integers. 
Th ese integers represent intensity values between 0 (minimum intensity) 
and 255 (maximum). As an example, here is a sector in the upper-left  corner 
of the data array for red:

unconform1(50:55,50:55,1)

ans =
   174 177 180 182 182 182
   165 169 170 168 168 170
   171 174 173 168 167 170
   184 186 183 177 174 176
   191 192 190 185 181 181
   189 190 190 188 186 183

Next, we can view the image using the command

 imshow(unconform1)

which opens a new Figure Window showing an RGB composite of the image 
(Fig. 8.1).

In contrast to the RGB image, a grayscale image needs only a single ar-
ray to store all the necessary information. We therefore convert the RGB im-
age into a grayscale image using the command rgb2gray (RGB to gray):

unconform2 = rgb2gray (unconform1);

Th e new workspace listing now reads
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Name              Size                 Bytes  Class    Attributes
ans               6x6                     36  uint8
unconform1      729x713x3            1559331  uint8
unconform2      729x713               519777  uint8

in which the diff erence between the 24-bit RGB and the 8-bit grayscale ar-
rays can be observed. Th e commands

imshow(unconform2)

display the result. It is easy to see the diff erence between the two images in 
separate Figure Windows (Figs. 8.1 and 8.2). Let us now process the gray-
scale image. First, we compute a histogram of the distribution of intensity 
values.

 imhist(unconform2)

A simple technique to enhance the contrast of such an image is to transform 
this histogram to obtain an equal distribution of grayscales.

unconform3 = histeq(unconform2);

We can view the diff erence again using

imshow(unconform3)

and save the results in a new fi le.

 imwrite(unconform3,'unconform3.jpg')

We can read the header of the new fi le by typing

 imfinfo('unconform3.jpg')

which yields

Filename: 'unconform3.jpg'
FileModDate: '20-Jan-2010 16:11:12'
FileSize: 138419
Format: 'jpg'
FormatVersion: ''
Width: 713
Height: 729
BitDepth: 8
ColorType: 'grayscale'
FormatSignature: ''
NumberOfSamples: 1
CodingMethod: 'Huffman'
CodingProcess: 'Sequential'
Comment: {}
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Fig. 8.1 RGB true color image contained in the fi le unconform.jpg. Aft er decompressing 
and reading the JPEG fi le into a 729 × 713 × 3 array, MATLAB interprets and displays the 
RGB composite using the function imshow. See detailed description of the image on the 
NASA TERRA-ASTER webpage http://asterweb.jpl.nasa.gov. Original image courtesy of 
NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.

Hence, the command imfinfo can be used to obtain useful information 
(name, size, format and color type) concerning the newly-created image fi le.

Th ere are many ways of transforming the original satellite image into 
a practical fi le format. Th e image data could, for instance, be stored as an 
 indexed color image, which consists of two parts: a  colormap array and a 
data array. Th e colormap array is an m-by-3 array containing fl oating-point 
values between 0 and 1. Each column specifi es the intensity of the red, green 
and blue colors. Th e data array is an x-by-y array containing integer ele-
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into a grayscale image stored in a 729 × 713 array, the result is displayed using imshow. 
Original image courtesy of NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER 
Science Team.

ments corresponding to the lines m of the colormap array, i. e., the specifi c 
RGB representation of a certain color. Let us transfer the above RGB image 
into an indexed image. Th e colormap of the image should contain 16 diff er-
ent colors. Th e result of

[x,map] = rgb2ind(unconform1,16);
imshow(unconform1), figure, imshow(x,map)

clearly shows the diff erence between the original 24-bit RGB image (2563 or 
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Fig. 8.3 Indexed color image using a colormap containing 16 diff erent colors. Th e result is 
displayed using imshow. Original image courtesy of NASA/GSFC/METI/ERSDAC/JAROS 
and U.S./Japan ASTER Science Team.

ca. 16.7 million diff erent colors) and a color image of only 16 diff erent colors 
(Figs. 8.1 and 8.3).

8.4 Importing, Processing and Exporting  Satellite Images

In the previous section, we used a processed ASTER image that we down-
loaded from the ASTER web page. Th e original ASTER raw data contain a 
lot more information and higher resolution than the free-of-charge image 
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stored in unconform.jpg. Th e ASTER instrument produces two types of data, 
Level-1A and Level-1B. Whereas the L1A data are reconstructed, unprocessed 
instrument data, L1B data are radiometrically and geometrically corrected. 
Each ASTER data set contains 15 data arrays representing the intensity values 
from 15 spectral bands (see the  ASTER-web page for more detailed informa-
tion) and various other items of information such as location, date and time. 
Th e raw satellite data can be purchased from the USGS online store:

https://wist.echo.nasa.gov/wist-bin/api/ims.cgi

On this webpage we can select a discipline/topic (e. g., Land: ASTER), and 
then choose from the list of data sets (e. g., DEM, Level 1A or 1B data), defi ne 
the search area, and click Start Search. Th e system now needs a few minutes 
to list all relevant data sets. A list of data sets, including various types of ad-
ditional information (cloud coverage, exposure date, latitude and longitude), 
can be obtained by clicking on List Data Granules. Furthermore, a low 
resolution preview can be accessed by selecting Image. Having purchased 
a particular data set, the raw image can be downloaded using a temporary 
FTP-access. As an example, we process an image from an area in Kenya 
showing Lake Naivasha. Th e data are stored in two fi les

naivasha.hdf
naivasha.hdf.met

Th e fi rst fi le (111 MB large) contains the actual raw data, whereas the second 
fi le (100 KB) contains the header, together with all sorts of information about 
the data. We save both fi les in our working directory. Th e Image Processing 
Toolbox contains various tools for importing and processing fi les stored 
in the hierarchical data format (HDF). Th e graphical user interface (GUI) 
based import tool for importing certain parts of the raw data is

hdftool('naivasha.hdf')

Th is command opens a GUI that allows us to browse the content of the 
HDF-fi le naivasha.hdf, obtains all information on the contents, and im-
ports certain frequency bands of the satellite image. Alternatively, the com-
mand hdfread can be used as a quicker way of accessing image data. An 
image such as that used in the previous section is typically achieved by com-
puting an RGB composite from the vnir_Band3n, 2 and 1 in the data fi le. 
First, we read the data

clear

I1 = hdfread('naivasha.hdf','VNIR_Band3N','Fields','ImageData');
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I2 = hdfread('naivasha.hdf','VNIR_Band2','Fields','ImageData');
I3 = hdfread('naivasha.hdf','VNIR_Band1','Fields','ImageData');

Th ese commands generate three 8-bit image arrays each representing the 
intensity within a certain infrared (IR) frequency band of a 4200 × 4100 
pixel image. Th e vnir_Band3n, 2 and 1 typically contain much information 
about lithology (including soils), vegetation and water on the Earth’s sur-
face. Th ese bands are therefore usually combined into 24-bit RGB images

naivasha_rgb = cat(3,I1,I2,I3);

As with the previous examples, the 4200 × 4100 × 3 array can now be dis-
played using

imshow(naivasha_rgb);

MATLAB scales the images to fi t the computer screen. Exporting the pro-
cessed image from the Figure Window, we only save the image at the moni-
tor’s resolution. To obtain an image at a higher resolution (Fig. 8.4), we use 
the command

imwrite(naivasha_rgb,'naivasha.tif','tif')

Th is command saves the RGB composite as a TIFF-fi le naivasha.tif (ca. 50 
MB) in the working directory, which can then be processed with other soft -
ware such as Adobe Photoshop.

8.5 Georeferencing Satellite Images

Th e processed ASTER image does not yet have a coordinate system, and the 
image therefore needs to be tied to a geographical reference frame ( georef-
erencing). Th e raw data can be loaded and transformed into a RGB compos-
ite by typing

clear

I1 = hdfread('naivasha.hdf','VNIR_Band3N','Fields','ImageData');
I2 = hdfread('naivasha.hdf','VNIR_Band2','Fields','ImageData');
I3 = hdfread('naivasha.hdf','VNIR_Band1','Fields','ImageData');

naivasha_rgb = cat(3,I1,I2,I3);

Th e  HDF browser

hdftool('naivasha.hdf')
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Fig. 8.4  RGB composite of a TERRA-ASTER image using the spectral infrared bands  vnir_
Band3n, 2 and 1. Th e result is displayed using imshow. Original image courtesy of NASA/
GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.

can be used to extract the geodetic coordinates of the four corners of the 
image. Th is information is contained in the header of the HDF fi le. Having 
launched the HDF tool, we select on the uppermost directory called 
naivasha.hdf and fi nd a long list of fi le attributes in the upper right panel of 
the GUI, one of which is productmetadata.0, which includes the attribute 
scenefourcorners that contains the following information:

upperleft  = [-0.319922, 36.214332];
upperright = [-0.400443, 36.770406];
lowerleft  = [-0.878267, 36.096003];
lowerright = [-0.958743, 36.652213];
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Th ese two-element vectors can be collected into a single array input-
points. Subsequently, the left  and right columns can be fl ipped in order to 
have x=longitudes and y=latitudes.

inputpoints(1,:) = upperleft;
inputpoints(2,:) = lowerleft;
inputpoints(3,:) = upperright;
inputpoints(4,:) = lowerright;
inputpoints = fliplr(inputpoints);

Th e four corners of the image correspond to the pixels in the four corners of 
the image, which we store in a variable named basepoints.

basepoints(1,:) = [1,4200];
basepoints(2,:) = [1,1];
basepoints(3,:) = [4100,4200];
basepoints(4,:) = [4100,1];

Th e function  cp2tform now takes the pairs of control points, input-
points and basepoints, and uses them to infer a spatial transformation 
matrix  tform.

tform = cp2tform(inputpoints,basepoints,'affine');

Th is transformation can be applied to the original RGB composite 
naivasha_rgb in order to obtain a georeferenced version of the satellite 
image newnaivasha_rgb.

[newnaivasha_rgb,x,y] = imtransform(naivasha_rgb,tform);

An appropriate grid for the image can now be computed. Th e grid is typi-
cally defi ned by the minimum and maximum values for the longitude and 
latitude. Th e vector increments are then obtained by dividing the longitude 
and latitude range by the array dimension and by subtracting one from the 
result. Note the diff erence between the MATLAB numbering convention 
and the common coding of maps used in the literature. Th e north/south 
suffi  x is generally replaced by a negative sign for south, whereas MATLAB 
coding conventions require negative signs for north.

X = 36.096003 : (36.770406-36.096003)/8569 : 36.770406;
Y =  0.319922 : ( 0.958743- 0.319922)/8400 :  0.958743;

Th e georeferenced image is displayed with coordinates on the axes and a 
superimposed grid (Fig. 8.5).

imshow(newnaivasha_rgb,'XData',X,'YData',Y), axis on, grid on
xlabel('Longitude'), ylabel('Latitude')
title('Georeferenced ASTER Image')
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Fig. 8.5 Geoferenced RGB composite of a TERRA-ASTER image using the infrared bands 
vnir_Band3n, 2 and 1. Th e result is displayed using imshow. Original image courtesy of 
NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.

Exporting the image is possible in many diff erent ways, for example using

 print -djpeg70 -r600 naivasha_georef.jpg

to export it as a JPEG fi le naivasha_georef.jpg compressed to 70 %, with a 
resolution of 600 dpi.

8.6  Digitizing from the Screen

On-screen digitizing is a widely-used image processing technique. While 
practical digitizer tablets exist in all formats and sizes, most people prefer 
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digitizing vector data from the screen. Examples for this type of application 
include the digitizing of river networks and catchment areas on topographic 
maps, the outlines of lithologic units on geological maps, the distribution 
of landslides on satellite images, or the distribution of mineral grains in a 
microscope image. Th e digitizing procedure consists of the following steps. 
Firstly, the image is imported into the workspace. A coordinate system is then 
defi ned, allowing the objects of interest to be entered by moving a cursor or 
cross hair and clicking the mouse button. Th e result is a two-dimensional 
array of xy data, such as longitudes and latitudes of the corner points of a 
polygon or the coordinates of the objects of interest in a particular area.

Th e function  ginput included in the standard MATLAB toolbox al-
lows graphical input using a mouse on the screen. It is generally used to 
select points, such as specifi c data points, from a fi gure created by an arbi-
trary graphics function such as plot. Th e function ginput is oft en used 
for interactive plotting, i. e., the digitized points appear on the screen aft er 
they have been selected. Th e disadvantage of the function is that it does not 
provide coordinate referencing on an image. We therefore use a modifi ed 
version of the function, which allows an image to be referenced to an arbi-
trary rectangular coordinate system. Save the following code for this modi-
fi ed version of the function ginput in a text fi le minput.m.

function data =  minput(imagefile)
% Specify the limits of the image
xmin = input('Specify xmin! ');
xmax = input('Specify xmax! ');
ymin = input('Specify ymin! ');
ymax = input('Specify ymax! ');

% Read image and display
B = imread(imagefile);
a = size(B,2); b = size(B,1);
imshow(B); 

% Define lower left and upper right corner of image
disp('Click on lower left and upper right corner, then <return>')
[xcr,ycr] = ginput;
XMIN = xmin-((xmax-xmin)*xcr(1,1)/(xcr(2,1)-xcr(1,1)));
XMAX = xmax+((xmax-xmin)*(a-xcr(2,1))/(xcr(2,1)-xcr(1,1)));
YMIN = ymin-((ymax-ymin)*ycr(1,1)/(ycr(2,1)-ycr(1,1)));
YMAX = ymax+((ymax-ymin)*(b-ycr(2,1))/(ycr(2,1)-ycr(1,1)));

% Digitize data points
disp('Click on data points to digitize, then <return>')
[xdata,ydata] = ginput;
XDATA = XMIN + ((XMAX-XMIN)*xdata/size(B,2));
YDATA = YMIN + ((YMAX-YMIN)*ydata/size(B,1));
data(:,1) = XDATA; data(:,2) = YDATA;
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Th e function minput has four stages. In the fi rst stage, the user enters the 
limits of the coordinate axes as reference points for the image. Next, the im-
age is imported into the workspace and displayed on the screen. Th e third 
stage uses ginput to defi ne the upper left  and lower right corners of the im-
age. In the fourth stage the relationship between the coordinates of the two 
corners on the fi gure window and the reference coordinate system is then 
used to compute the transformation for all of the digitized points.

As an example, we use the image stored in the fi le naivasha_georef.jpg 
and digitize the outline of Lake Naivasha in the center of the image. We 
activate the new function minput from the Command Window using the 
commands

clear

data = minput('naivasha_georef.jpg')

Th e function fi rst asks for the coordinates for the limits of the x- and y-axis 
for the reference frame. We enter the corresponding numbers and press re-
turn aft er each input.

Specify xmin! 36.1
Specify xmax! 36.7
Specify ymin! -1
Specify ymax! -0.3

Th e function then reads the fi le naivasha_georef.jpg and displays the image. 
We ignore the warning

Warning: Image is too big to fit on screen; displaying at 33%

and wait for the next response

Click on lower left and upper right corner, then <return>

Th e image window can be scaled according to user preference. Clicking on 
the lower left  and upper right corners defi nes the dimension of the image. 
Th ese changes are registered by pressing return. Th e routine then references 
the image to the coordinate system and waits for the input of the points we 
wish to digitize from the image.

Click on data points to digitize, then <return>

We fi nish the input by again pressing return. Th e xy coordinates of our digi-
tized points are now stored in the variable data. We can now use these vec-
tor data for other applications.
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8.7 Color-Intensity Transects of Varved Sediments

High-resolution core logging has, since the early 1990s, become popular as 
an inexpensive tool for investigating the physical and chemical properties of 
marine and lacustrine sediments. During the early days of nondestructive 
core logging, magnetic susceptibility and grayscale intensity transects were 
measured on board research vessels to generate a preliminary stratigraphy 
of marine cores, since the cyclic recurrence of light and dark layers seemed 
to refl ect glacial-interglacial cycles during the Pleistocene. Paleolimnologists 
adopted these techniques to analyze annually-layered (varved) lake sedi-
ments and to statistically detect short-term variabilities such as the 11 year 
sunspot cycle, the 3–7 year El Niño cycle or the 78 year Gleissberg cycle. 
Modern multi-sensor core loggers are now designed to log a great variety of 
physical and chemical properties using optical scanners, radiograph imag-
ing, and x-ray fl uorescence elemental analyzers.

As an example, we explore varved sediments deposited around 33 kyrs 
ago in a landslide-dammed lake in the Quebrada de Cafayate of Argentina 
(Trauth et al. 1999, 2003). Th ese lake sediments have been intensively stud-
ied for paleoclimate reconstructions since they document episodes of a 
wetter and more variable climate that eventually fostered mass movements 
in the NW Argentine Andes during the Late Pleistocene and Holocene. 
Aside from various sedimentological, geochemical and micropaleontologi-
cal analyses, the coloration of the sediments has been studied as a proxy 
for rainfall intensities at the time of deposition. Color-intensity transects 
were analyzed to detect interannual variations in precipitation caused by 
the El Niño/Southern Oscillation (ENSO, 3–7 year cycles) and the Tropical 
Atlantic Sea-Surface Temperature Variability (TAV, 10–15 year cycles) us-
ing linear and nonlinear methods of time-series analysis (e. g., Trauth et al. 
2000, Marwan et al. 2003).

Th e El Paso section in the Quebrada de Cafayate contains well-devel-
oped annual layers in most parts of the profile (Fig. 8.6). Th e base of each 
of these mixed clastic and biogenic varves consists of reddish silt and clay, 
with a sharp lower boundary. Towards the top of the varves, reddish clay 
and silt are gradually replaced by light-brown to greenish clay. Th e change 
from reddish hues correlates with a slight decrease in grain size. Th is clas-
tic portion of the varves is capped by a thin layer of pure white diatomite. 
Diatomites are sediments comprised mainly of porous siliceous skeletons of 
single-cell algae, i. e. diatoms. Th is internal structure of the laminae is typi-
cal of annual-layered sediments. Th e recurrence of these layers and the dis-
tribution of diatoms, together with the sediment coloration and provenance, 
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Fig. 8.6 Photograph of varved lake sediments from the Quebrada de Cafayate in the Santa 
Maria Basin with cyclic occurrence of intense dark-red coloration refl ecting enhanced 
precipitation and sediment input during ENSO- and TAD-type periodicities (350 cm above 
the base of the El Paso section). Th e solid blue line denotes the course of the digitized color-
intensity transect. Th e red circles note the position of the diatomite layers representing 
annual layers.

all provide additional evidence that rhythmic sedimentation in this region 
was controlled by a well-defi ned annual cycle. Th e provenance of the sedi-
ments contained in the varved layers can be traced using index minerals 
characteristic of the various possible watershed source areas. A comparison 
of the mineral assemblages in the sediments with those of potential source 
rocks within the catchment area indicates that Fe-rich Tertiary sedimentary 
rocks exposed in the Santa Maria Basin were the source of the red-colored 
basal portion of the varves. In contrast, metamorphic rocks in the moun-
tainous parts of the catchment area were the most likely source of the drab-
colored upper part of the varves.

In nearly every second to fift h, and every tenth to fourteenth varve, the 
varve thickness increases by a factor of 1.5 to 2 and the basal reddish color-
ation is more intense, suggesting a greater fluvial input of Fe-rich Tertiary 
material. Exceptionally well-preserved sections containing 70–250 varves 
were used for more detailed statistical analysis of the observed cyclicities 
(see Chapter 5). High-quality photographs from these sections were scanned 
and subjected to standardized color and illumination corrections. Pixel-
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wide representative red-color intensities were subsequently extracted from 
transects across the images of these varves. Th e resolution of these time 
series was of the order of ten intensity values per varve.

We will now analyze a 22-year package of varved lake sediments from 
the Quebrada de Cafayate as an example (Fig. 8.6). Th e photo was taking 
in the fi eld during an expedition in the late 1990s using an analog camera. 
It was then scanned and the contrast levels adjusted to heighten details us-
ing standard photo processing soft ware. We import the image from the fi le 
varves.tif as a 24-bit RGB image array and store the data in a variable I.

clear

I = imread('varves.tif');

We display the image using imshow and turn the axis labeling, tick marks 
and background back on.

imshow(I), axis on

Th e image is scaled to pixel indices or coordinates, so we fi rst need to scale 
the image to a centimeter scale. While keeping the fi gure window open we 
use ginput to count the numbers of pixels per centimeter. Th e function 
ginput provides a crosshair to gather an unlimited number of points until 
the return key is pressed. Place the crosshair at 1 cm and 6 cm on the scale 
in the image and click to gather the pixel coordinates of the 5-cm interval.

[x,y] = ginput;

Th e image is size(I,2)=1830 pixels wide and size(I,1)=1159 pixels 
high. We convert the width and the height of the image into centimeters using 
the conversion 5/sqrt((y(2,1)-y(1,1))^2+(x(2,1)-x(1,1))^2) 
where 5 corresponds to the 5 cm interval equivalent to the sqrt((y(2,1)-
y(1,1))^2+(x(2,1)-x(1,1))^2) pixels gathered using ginput.

ix = 5 * size(I,2) / sqrt((y(2,1)-y(1,1))^2+(x(2,1)-x(1,1))^2);
iy = 5 * size(I,1) / sqrt((y(2,1)-y(1,1))^2+(x(2,1)-x(1,1))^2);

We can now display the image using the new coordinate system where ix 
and iy are the width and height of the image in centimeters.

imshow(I,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')

We now digitize the color-intensity transect from top to bottom of the im-
age. Th e function improfile determines the RGB pixel values C along line 
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segments defi ned by the coordinates [CX,CY].

[CX,CY,C] = improfile;

Th e scaled image and the polygon are displayed in the same fi gure window. 
Th e three color-intensity curves are plotted in a separate window.

imshow(I,'XData',[0 ix],'YData',[0 iy]), hold on
plot(CX,CY), hold off

figure
plot(CY,C(:,1),'r',CY,C(:,2),'g',CY,C(:,3),'b')
xlabel('Centimeters'), ylabel('Intensity')
 

Th e image and the color-intensity profi les are on a centimeter scale. To de-
tect the interannual precipitation variability, as recorded in the color inten-
sity of the sediments, we need to convert the length scale to a time scale. We 
use the 22 white diatomite layers as time markers to defi ne individual years 
in the sedimentary history. We use ginput again to mark the diatomite 
layers from top to bottom along the color-intensity transect and store the 
coordinates of the laminae in the new variable laminae.

imshow(I,'XData',[0 ix],'YData',[0 iy]), hold on
plot(CX,CY), hold off
laminae = ginput;

To inspect the quality of the age model we plot the image together with the 
polygon and the marked diatomite layers.

imshow(I,'XData',[0 ix],'YData',[0 iy])
hold on
plot(CX,CY)
plot(laminae(:,1),laminae(:,2),'ro')
xlabel('Centimeters'), ylabel('Centimeters')
hold off

We defi ne a new variable newlaminae that contains the vertical y-compo-
nent of laminae as the fi rst column and the years 1 to 22 (counting back-
wards in time). Th e 22 years are equivalent to the length of laminae. Th e 
function interp1 is used to interpolate the color-intensity transects over 
an evenly-spaced time axis stored in the variable age.

newlaminae(:,1) = laminae(:,2);
newlaminae(:,2) = 1 : length(laminae(:,2));
age = interp1(newlaminae(:,1),newlaminae(:,2),CY);

We complete the analysis by plotting the color-intensity curves on both a 
length and a time scale for comparison (Fig. 8.7).
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Fig. 8.7 Color-intensity curves red, green and blue plotted against  a depth and  b age.

subplot(2,1,1), plot(CY,C(:,1),CY,C(:,2),CY,C(:,3))
xlabel('Pixel ID'), ylabel('Intensity'), title('Color vs. 
Length')
subplot(2,1,2), plot(age,C(:,1),age,C(:,2),age,C(:,3))
xlabel('Years'), ylabel('Intensity'), title('Color vs. Age')

Th e interpolated color-intensity transects can now be further analyzed us-
ing the time-series analysis tools. Th e analysis of a representative red-color 
intensity transect across 70-250 varves during the project described above 
revealed significant peaks at 13.1, 3.2, 2.2, and around 1.0 yrs, suggesting 
both ENSO and TAV infl uences in the area at around 33,000 years ago (see 
Chapter 5 and Fig. 5.1). 
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8.8  Grain Size Analysis from Microscope Images

Identifying, measuring and  counting particles in an image are the classic 
applications of image analysis. Examples from the geosciences include grain 
size analysis, counting pollen grains, and determining the mineral com-
position of rocks from thin sections. For grain size analysis the task is to 
identify individual particles, measure their size and then count the number 
of particles per size class. Th e motivation to use image analysis is the ability 
to perform automated analyses of large sets of samples in a short period of 
time and at relatively low costs. Th ree diff erent approaches are commonly 
used to identify and count objects in an image: (1) region-based segmenta-
tion using the watershed segmentation algorithm, (2) object detection using 
the Hough Transformation and (3) thresholding using color diff erences to 
separate objects. Gonzalez, Woods and Eddins (2009) describe these meth-
ods in great detail in the 2nd edition of their excellent book, which also 
provides numerous MATLAB recipes for image processing. Th e book has a 
companion webpage at

http://www.imageprocessingplace.com/

that off ers additional support in a number of important areas, including 
classroom presentations, M-fi les and sample images, as well as providing 
numerous links to other educational resources. Here, we will describe the 
application of image processing in identifying, measuring and counting 
particles by means of two examples. In this section we will demonstrate an 
application of  watershed segmentation in grain size analysis and then in 
Section 8.9 we will introduce thresholding as a method for quantifying char-
coal in microscope images. Both applications are also implemented in the 
MATLAB-based RADIUS soft ware by Klemens Seelos from the University 
of Mainz (Seelos and Sirocko 2005). RADIUS is a particle-size measure-
ment technique, based on the evaluation of digital images from thin sec-
tions, that off ers a sub-mm sample resolution and allows sedimentation pro-
cesses to be studied within the medium silt to coarse sand size range. It is 
coupled with an automatic pattern recognition system for identifi cation of 
sedimentation processes within undisturbed samples. Th e MATLAB code 
for RADIUS can be downloaded from

http://www.particle-analysis.info/

Readers interested in the use of the  Hough Transformation to detect objects 
such as pollen grains are referred to the excellent algorithms by Tao Peng 
(University of Maryland), for the detection of circles and lines in images. 
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Th e MATLAB routines circularhough_grd.m and hough_grd.m can 
be downloaded from File Exchange at

http://www.mathworks.com/matlabcentral/fileexchange/

Th e fi le circularhough_grd.m was selected as the MATLAB Central 
pick of the week on May 23rd, 2008. In this blog, the use of the Hough 
Transformation to detect circles is demonstrated for counting red blood 
cells in an image.

http://blogs.mathworks.com/pick/2008/05/23/
   detecting-circles-in-an-image/

Th e blog describes all steps in great detail and the algorithm described can 
be easily modifi ed for the application to other objects such as sand grains 
or pollen grains. Th e sister algorithm hough_grd.m for detection of lines 
and line segments in an image can be used for fracture-trace and lineament 
analysis in photogeologic applications.

Th e following example for object segmentation illustrates the segmen-
tation, measuring and counting of objects using the  watershed segmen-
tation algorithm (Fig. 8.8). We fi rst read an image of coarse lithic grains 
of diff erent sizes and store it in the variable I1. Th e size of the image is 
284 × 367 pixels, and since the width is 3 cm, the height is 3 cm × 284 pix-
els/367 pixels=2.32 cm.

clear

I1 = imread('grainsize.tif');
ix = 3; iy = 284 * 3 / 367;
imshow(I1,'XData',[0 ix],'YData',[0 iy])
title('Original Image')

Here, ix and iy denote the coordinate axes used to calibrate the image 
I1 to a centimeter scale. Th e true number of objects counted in this im-
age is 236 including three grains that overlap the borders of the image and 
therefore will be ignored in the following experiment. We reject the color 
information of the image and convert I1 to grayscale using the function 
 rgb2gray.

I2 = rgb2gray(I1);
imshow(I2,'XData',[0 ix],'YData',[0 iy])
title('Grayscale Image')

Th is grayscale image I2 is relatively low in contrast. We therefore use the 
function  imadjust to adjust the image intensity values. Th e function im-
adjust maps the values in the intensity image I2 to new values in I3 such 
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Fig. 8.8 Display of results from automated grain size analysis of a microscope image; 
a original grayscale image, b image aft er removal of background, c image aft er conversion 
to binary image, d image aft er eliminating objects overlapping the image border, e image 
with objects detected by tracing the boundaries of connected pixels, and f image with 
objects detected using a watershed segmentation algorithm.
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that 1 % of the data is saturated at low and high intensities. Th is increases 
the contrast of the new image I3.

I3 = imadjust(I2);
imshow(I3,'XData',[0 ix],'YData',[0 iy])
title('Adjusted Intensity Values')

We next determine the  background of the image I3, i. e., basically the 
texture of the black foil upon which the grains are located. Th e function 
 imopen(im,se) determines objects in an image im below a certain pixel 
size and a fl at structuring element se such as a disk with a radius of 3 pixels 
generated by the function  strel. We then produce a background-free im-
age, I4.

I4 = imopen(I3,strel('disk',1));
imshow(I4,'XData',[0 ix],'YData',[0 iy])
title('No Background')

We substract the background-free image I4 from the original grayscale im-
age I3 to observe the background I5 that has been eliminated.

I5 = imsubtract(I3,I4);
imshow(I5,'XData',[0 ix],'YData',[0 iy])
title('Background')

Th e function  im2bw converts the background-free image I4 to a binary im-
age I6 by  thresholding. If the threshold is 1.0 the image is all black, corre-
sponding to the pixel value of 0. If the threshold is 0.0 the image is all white, 
equivalent to a pixel value of 1. We manually change the threshold value 
until we get a reasonable result and fi nd 0.2 to be a suitable threshold.

I6 = im2bw(I4,0.2);
imshow(I6,'XData',[0 ix],'YData',[0 iy])
title('Binary Image')

We next eliminate objects in I6 that overlap the image border, since they 
are actually larger than shown in the image and will result in false estimates. 
We eliminate these using  imclearborder and generate image I7.

I7 = imclearborder(I6);
himage1 = imshow(I6,'XData',[0 ix],'YData',[0 iy]); hold on
set(himage1, 'AlphaData', 0.7);
himage2 = imshow(imsubtract(I6,I7),'XData',[0 ix],'YData',[0 iy]);
set(himage2, 'AlphaData', 0.4);
title('Image Border'), hold off

We then trace the boundaries using  bwboundaries in a binary image 
where non-zero pixels belong to an object whereas zero pixels are back-
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ground. By default, the function also traces the boundaries of holes in the 
image I7. We therefore choose the option noholes to suppress the tracing 
of the holes. Function  label2grb converts the label matrix L resulting 
from bwboundaries to an RGB image. We use the colormap jet, the 
zerocolor w for white, and the color order shuffle that simply shuffl  es 
the colors of jet pseudorandomly.

[B,L] = bwboundaries(I7,'noholes');
imshow(label2rgb(L,@jet,'w','shuffle'),...
   'XData',[0 ix],'YData',[0 iy])
title('Define Objects')

Th e function bwlabeln is used to obtain the number of connected objects 
found in the binary image. Th e integer 8 defi nes the desired connectivity, 
which can be either 4 or 8 in two-dimensional neighborhoods. Th e elements 
of L are integer values greater than or equal to 0. Th e pixels labeled 0 are the 
background. Th e pixels labeled 1 make up one object, the pixels labeled 2 
make up a second object, and so on.

[labeled,numObjects] = bwlabeln(I7,8);
numObjects

In our example, the method identifi ed 192 grains, which is signifi cantly 
lower than the 236 grains counted manually, reduced by the three objects 
that overlap the borders of the image. Visual inspection of the color-coded 
image generated by bwboundaries reveals the reason for the underesti-
mated number of grains. Two large grains in the middle of the image have 
been observed as being connected, giving a single, very large grain in the 
fi nal result. Reducing the disk size with strel from disk=1 to disk=5 
can help separate connected grains. Larger disks, on the other hand, reduce 
the number of grains because smaller grains are lost by fi ltering. We now 
determine the areas each of the grains.

graindata = regionprops(labeled,'basic');
grainareas= [graindata(:).Area];
objectareas = 3^2 * grainareas * 367^(-2);

We then fi nd the maximum, minimum and mean areas for all grains in the 
image, in cm2 .

max_area = max(objectareas)
min_area = min(objectareas)
mean_area = mean(objectareas)

Th e connected grain in the middle of the image has a size of 0.16 cm2 , which 
represents the maximum size of all grains in the image. Finally, we plot the 
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histogram of all the grain areas.

clf
v = 0.0005 : 0.0005 : 0.15;
hist(objectareas,v)
xlabel('Grain Size in Millimeters^2')
ylabel('Number of Grains')
axis([0 0.1 0 30])

Several methods exist that partly overcome the artifact from connected 
grains in grain size analyses. Th e most popular technique for region-based 
segmentation is the watershed segmentation algorithm. Watersheds in geo-
morphology are ridges that divide areas contributing to the hydrological 
budget of adjacent catchments (see Section 7.10).  Watershed segmentation 
applies to grayscale images the same methods used to separate catchments 
in digital elevation models. In this application, the grayscale values are in-
terpreted as elevations in a digital elevation model, where the watershed 
then separates the two objects of interest.

Th e commonly used criterion to identify pixels that belong to one object 
is the  nearest-neighbor distance. We use the distance transform performed 
by bwdist, which assigns to each pixel a number that is the distance be-
tween a pixel and the nearest non-zero pixel in I7. In an image in which 
objects are identifi ed by pixel values of zero and the background by pixel 
values of one, the distance transform has zeros in the background areas 
and increasing non-zero values that increase progressively with increasing 
distances from the edges of the objects. In our example, however, the objects 
have pixel values of one and the background has pixels with zero values. We 
therefore have to apply bwdist to the complement of the binary image I7 
instead of the image itself.

D = bwdist(~I7,'cityblock');

Th e function  bwdist provides several methods for computing the nearest-
neighbor distances, including Euclidean distances, cityblock distances, 
chessboard distances and quasi-Euclidean distances. We choose the city-
block option in this particular example, but other methods might be more 
appropriate for separating objects in other images. Th e distance matrix now 
contains positive non-zero values in the object pixels and zeros elsewhere. 
We then complement the distance transform, and ascribe a value of -Inf to 
each pixel that does not belong to an object.

D = -D;
D(~I7) = -Inf;
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We compute the  watershed transform for the distance matrix, and display 
the resulting label matrix.

L2 = watershed(D); 
imshow(label2rgb(L2,@jet,'w','shuffle'),...
   'XData',[0 ix],'YData',[0 iy])
title('Watershed Segmentation')

Aft er having displayed the results from watershed segmentation, we deter-
mine the number of pixels for each object using the recipe from above, ex-
cept for index i running from 2 to max(objects) since the value 1 de-
notes the background and 0 denotes the boundaries of the objects. Th e fi rst 
true object is therefore marked by the value of 2.

objects = sortrows(L2(:),1);
max(objects)
clear objectsizes
for i = 2 : max(objects)
    clear individualobject
    individualobject = objects(objects == i);
    objectsizes(i) = length(individualobject);
end
objectsizes = objectsizes';
objectsizes = sortrows(objectsizes,1);
objectsizes = objectsizes(objectsizes~=0);

We have now recognized 205 objects, i. e., more objects than were identifi ed 
in the previous experiment without watershed segmentation. Visual inspec-
tion of the result, however, reveals some  oversegmentation due to noise or 
other irregularities in the image, i. e., larger grains are divided into smaller 
pieces. On the other hand, very small grains have been eliminated by fi lter-
ing the image with the morphological structuring element  strel. We scale 
the object sizes. Th e area of one pixel is (3 cm/367)2 .

objectareas = 3^2 * objectsizes * 367^(-2);

We now determine the areas for each of the grains. We again fi nd the maxi-
mum, minimum and mean areas for all grains in the image, in cm2 .

max_area = max(objectareas)
min_area = min(objectareas)
mean_area = mean(objectareas)

Th e largest grain in the center of the image has a size of 0.09 cm2 , which 
represents the maximum size of all grains in the image. Finally, we plot the 
histogram of all the grain areas.

clf
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v = 0.0005 : 0.0005 : 0.15;
hist(objectareas,v)
xlabel('Grain Size in Millimeters^2'), ylabel('Number of Grains')
axis([0 0.1 0 70])

As a check of the fi nal result we digitize the outline of one of the larger 
grains and store the polygon in the variable data.

figure
imshow(I1,'XData',[0 ix],'YData',[0 iy])
data = ginput;

We close the polygon by copying the fi rst row of coordinates to the end of 
the array. Th en, we display the polygon upon the original image.

data(end+1,:) = data(1,:)

imshow(I1,'XData',[0 ix],'YData',[0 iy]), hold on
plot(data(:,1),data(:,2)), hold off

Th e function  polyarea yields the area of the large grain.

polyarea(data(:,1),data(:,2))

ans =
    0.0951

Th e calculated area corresponds approximately to the result from the grain 
size analysis. If oversegmentation is a major problem when using segmen-
tation to count objects in an image, the reader is referred to the book by 
Gonzalez, Woods and Eddins (2009) that describes marker-controlled wa-
tershed segmentation as an alternative method to avoid oversegmen tation. 

8.9  Quantifying Charcoal in Microscope Images

Quantifying the composition of substances in geosciences, such as the min-
eral composition of a rock in thin sections, or the amount of charcoal in 
sieved sediment samples is facilitated by the use of image processing methods. 
 Th resholding provides a simple solution to segmenting objects within an im-
age that have diff erent colora tion or grayscale values. During the threshold-
ing process, pixels with an intensity value greater than a threshold value are 
marked as object pixels (e. g., pixels representing charcoal in an image) and 
the rest as background pixels (e. g., all other substances). Th e threshold value 
is usually defi ned manually through visual inspection of the image histo-
gram, but numerous automated algorithms are also available.
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As an example, we analyze an image of a sieved lake-sediment sample 
from Lake Nakuru, Kenya (Fig. 8.9). Th e image shows abundant light-gray 
oval ostracod shells and some mineral grains, as well as gray plant remains 
and black charcoal fragments. We use thresholding to separate the dark 
charcoal particles and count the pixels of these particles aft er segmentation. 
Aft er having determined the number of pixels for all objects distinguished 
from the background by thresholding, we use a lower threshhold value to 
determine the ratio of the number of pixels representing charcoal to the 
number of pixels representing all particles in the sample, i. e., to determine 
the percentage of charcoal in the sample.

We read the image of size 1500 × 1500 pixels and assume that the width 
and the height of the square image are both one centimeter.

clear

I1 = imread('lakesediment.jpg');
ix = 1; iy = 1;
imshow(I1,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeter'), ylabel('Centimeter')
title('Original Image')

Th e RGB color image is then converted to a grayscale image using the func-
tion  rgb2gray.

I2 = rgb2gray(I1);
imshow(I2,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('Grayscale')

Since the image contrast is relatively low we therefore use the function  im-
adjust to adjust the image intensity values. Th e function imadjust maps 
the values in the intensity image I1 to new values in I2 such that 1 % of the 
data is saturated at low and high intensities of I2. Th is increases the con-
trast of the new image image I2.

I3 = imadjust(I2);
imshow(I3,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('Better Contrast')

We next determine the background of the lithic grains, i. e., basically the 
texture of the black foil upon which the grains are located. Th e function 
 imopen(im,se) determines objects in an image im below a certain pixel 
size and a fl at structuring element se such as a disk with a radius of 5 pixels 
generated by the function  strel. Th e variable I4 is the background-free 
image resulting from this operation.



288  8 IMAGE PROCESSING

1
0 0.5 1 0 0.5 1

0 0.5 1 0 0.5 1

0 0.5 1 0 0.5 1
1

0

0.5

0

0.5

1

0

0.5

1

0

0.5

1

1

0

0.5

0

0.5

Original Image Grayscale

Better Contrast W/O Background

Only Charcoal All Objects

a

c

e f

d

b

Fig. 8.9 Display of results from automatic quantifi cation of charcoal in a microscope image; 
a original color image, b grayscale image, c image aft er enhancement of contrast, d image 
aft er removal of background, e image aft er thresholding to separate charcoal particles, 
f image aft er thresholding to separate all objects.
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I4 = imopen(I3,strel('disk',5));
imshow(I4,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('W/O Background')

We substract the background-free image I4 from the original grayscale im-
age I3 to observe the background I5 that has been eliminated.

I5 = imsubtract(I3,I4);
imshow(I5,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('Background')

Th e function  im2bw converts the image I4 to a binary image I6 by thresh-
olding. If the threshold is 1.0 the image is all black, corresponding to the 
pixel value of 0. If the threshold is 0.0 the image is all white, equivalent to 
a pixel value of 1. We manually change the threshold value until we get a 
reasonable result. In our example, a threshold of 0.03 gives good results for 
identifying charcoal fragments.

I6 = im2bw(I4,0.03);
imshow(I6,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('Only Charcoal')

We can now simply count the number of pixels to estimate the total amount 
of charcoal in the image knowing the size of a pixel. Finally, we compute the 
area of all objects including charcoal.

I7 = im2bw(I4,0.6);
imshow(I7,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('All Objects')

We are not interested in the absolute areas of charcoal in the image but in 
the percentage of charcoal in the sample.

100*sum(sum(I6==0))/sum(sum(I7==0))

ans =

   13.4063

Th e result suggests that approximately 13 % of the sieved sample is charcoal. 
As a next step, we could quantify the other components in the sample, such 
as ostracods or mineral grains, by choosing diff erent threshold values.
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9 Multivariate Statistics

9.1 Introduction

 Multivariate analysis aims to understand and describe the relationship 
between an arbitrary number of variables. Earth scientists oft en deal with 
 multivariate data sets, such as microfossil assemblages, geochemical fi nger-
prints of volcanic ash layers, or clay mineral contents of sedimentary se-
quences. If there are complex relationships between the diff erent param-
eters, univariate statistics ignores the information content of the data. Th ere 
are, however, a number of methods available for investigating the scaling 
properties of multivariate data.

A multivariate data set consists of measurements of p variables on n 
objects. Such data sets are usually stored in n-by-p arrays:

Th e columns of the array represent the p variables, and the rows represent 
the n objects. Th e characteristics of the 2nd object in the suite of samples are 
described by the vector in the second row of the data array:

As an example, consider a set of microprobe analyses on glass shards from 
volcanic ash layers in a tephrochronology project. Th e variables then rep-
resent the p chemical elements and the objects are the n ash samples. Th e 
aim of the study is to correlate ash layers by means of their geochemical 
fi ngerprints.

Most of the  multi-parameter methods simply try to overcome the main 

M.H. Trauth, MATLAB® Recipes for Earth Sciences, 3rd ed.,  
DOI 10.1007/978-3-642-12762-5_9, © Springer-Verlag Berlin Heidelberg 2010  
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diffi  culty associated with multivariate data sets, which relates to data visual-
ization. Whereas the character of univariate or bivariate data sets can easily 
be explored by visual inspection of a 2D histogram or an xy plot (Chapter 3), 
the graphical display of a three variable data set requires a projection of the 
3D distribution of data points into 2D. It is impossible to imagine or display 
a higher number of variables. One solution to the problem of visualization 
of high-dimensional data sets is to  reduce the number of dimensions. A 
number of methods group highly-correlated variables contained within the 
data set and then explore the reduced number of groups.

Th e classic methods for reducing the number of dimensions are by  prin-
cipal component analysis (PCA), and by the  factor analysis (FA). Th ese 
methods seek the directions of maximum variance in the data set and use 
these as new coordinate axes. Th e advantage of replacing the variables by 
new groups of variables is that the groups are uncorrelated. Moreover, these 
groups oft en help in the interpretation of the multivariate data set since they 
oft en contain valuable information on the process itself that generated the 
distribution of the data points. In a geochemical analysis of magmatic rocks, 
the groups defi ned by the method usually contain chemical elements with 
similar ion sizes that are observed in similar locations within the lattices 
of certain minerals. Examples of such behavior are Si4 + and Al3+, and Fe2+ 
and Mg2+, in silicates.

A second important suite of multivariate methods aims to group ob-
jects by their similarity. As an example,  cluster analysis (CA) is oft en ap-
plied to correlate volcanic ash layers as described in the above example. 
Tephrochronology attempts to correlate tephra by means of their geochemi-
cal fi ngerprints. In combination with a few radiometric age determinations 
from the key ash layers, this method allows correlation of the sedimentary 
sequences that contain these ash layers (e. g., Westgate 1998, Hermanns et al. 
2000). Additional examples for the application of cluster analysis come from 
the fi eld of micropaleontology. In this context, multivariate methods are 
employed, for example, to compare the pollen, foraminifera or diatoms con-
tents of microfossil assemblages (e. g., Birks and Gordon 1985).

Th e following sections introduce the most important techniques of mul-
tivariate statistics: principal component analysis (PCA) and cluster analysis 
(CA) in sections 9.2 and 9.4, and  independent component analysis (ICA), 
which is a nonlinear extension of PCA, in section 9.3. Th ese sections fi rst 
provide an introduction to the theory behind the techniques, followed by 
illustration of the use of these methods in analyzing earth sciences data is 
illustrated with MATLAB functions.
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Fig. 9.1 Principal component analysis (PCA) illustrated for a bivariate scatter. Th e original 
xy coordinate system is replaced by a new orthogonal system, where the fi rst axis passes 
through the long axis of the data scatter and the new origin is the bivariate mean. We can 
now reduce the number of dimensions by dropping the second axis without losing much 
information.

9.2 Principal Component Analysis

 Principal component analysis (PCA) detects linear dependencies between 
variables and replaces groups of correlated variables by new uncorrelated 
variables, the  principal components (PC). Th e method was introduced by 
Karl Pearson (1901) and further developed by Harold Hotelling (1931). Th e 
performance of PCA is better illustrated with help of a bivariate data set 
than with a multivariate data set. Figure 9.1 shows a bivariate data set that 
exhibits a strong linear correlation between the two variables x and y in an 
orthogonal xy coordinate system. Th e two variables have their individual 
univariate means and variances (Chapter 3). Th e bivariate data set can be 
described by the bivariate sample mean and the covariance (Chapter 4). Th e 
xy coordinate system can be replaced by a new orthogonal coordinate sys-
tem, where the fi rst axis passes through the long axis of the data scatter and 
the new origin is the bivariate mean. Th is new reference frame has the ad-
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vantage that the fi rst axis can be used to describe most of the variance, while 
the second axis contributes only a little additional information. Prior to the 
transformation two axes were required to describe the data set, but it is now 
possible to reduce the data dimension by dropping the second axis without 
losing very much information as shown in Figure 9.1.

Th is process is now expanded to an arbitrary number of variables and 
samples. Assume a data set comprised of measurements of p parameters on 
n samples stored in an n-by-p array.

Th e columns of the array represent the p variables and the rows represent 
the n samples. Aft er rotating the axis and moving the origin, the new coor-
dinates Yj can be computed by

Th e fi rst principle component PC1, denoted by Y1, contains the greatest vari-
ance, PC2 contains the second highest variance, and so forth. All the PCs 
together contain the full variance of the data set. Th e variance is largely 
concentrated in the fi rst few PCs, which include most of the information 
content of the data set. Th e last PCs are generally ignored to reduce the data 
dimensions. Th e factors aij in the above equations are the  principal compo-
nent  loads. Th e values of these factors represent the relative contribution of 
the original variables to the new PCs. If the load aij of a variable Xj in PC1 is 
close to zero, the infl uence of this variable is low. A high positive or negative 
aij suggests a strong contribution of the variable Xj. Th e new values Yj of the 
variables computed from the linear combinations of the original variables 
Xj weighted by the loads are called the  principal component  scores.

In the following example, a synthetic data set is used to illustrate the use 
of the function  princomp included in the Statistics Toolbox. Th irty sam-
ples were taken from diff erent levels in a sedimentary sequence containing 
varying quantities of certain minerals. Our data set contains proportions of 
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various minerals identifi ed in these sediment samples. Th e sediments de-
rived from two distinct rock types. PCA is used to verify the infl uence of the 
two diff erent source rocks and to estimate their relative contributions. First, 
the data stored in sediment_1.txt are loaded by typing

clear

data = load('sediments_1.txt');

We display the quantities of minerals in the thirty samples as a time series, 
in two separate plots.

subplot(2,1,1)
plot(data(:,1:3)), grid
legend('MinA1','MinA2','MinA3')
xlabel('Sample ID'), ylabel('Quantity')

subplot(2,1,2)
plot(data(:,4:6)), grid
legend('MinB1','MinB2','MinB3')
xlabel('Sample ID'), ylabel('Quantity')

Th e fi rst source rock contains minerals A1 and A2. Th e quantities of A1 and 
A2 are therefore highly correlated within the sample series. Mineral A3 is 
a weathering product of one of these minerals and has therefore a negative 
correlation with A1 and A2. Th e second source rock contains mineral B1, 
while B2 is the weathering product of B1 and has therefore a negative corre-
lation with the main constituent of the second rock type. Mineral B3 occurs 
in both source rocks and therefore shows a complex correlation with the 
other minerals. We now defi ne labels for the various graphs created by the 
PCA. We number the samples 1 to 30, with the minerals being identifi ed by 
fi ve-character abbreviations.

for i = 1 : 30
    sample(i,:) = [sprintf('%02.0f',i)];
end
minerals = ['MinA1';'MinA2';'MinA3';'MinB1';'MinB2';'MinB3'];

A successful PCA requires linear correlations between variables. Th e  cor-
relation matrix provides a technique for exploring such dependencies in 
the data set (Chapter 4). Th e elements of the correlation matrix are Pearson’s 
correlation coeffi  cients for each pair of variables, as shown in Figure 9.2. 
Here, the variables are minerals.

corrmatrix = corrcoef(data);
corrmatrix = flipud(corrmatrix);

imagesc(corrmatrix), colormap(hot), caxis([-1 1])
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Fig. 9.2 Correlation matrix containing  Pearson’s correlation coeffi  cients for each pair of 
variables, such as minerals in a sediment sample. Light colors represent strong positive 
linear correlations, whereas dark colors document negative correlations. Orange suggests 
no correlation.

title('Correlation Matrix')
axis square, colorbar, hold
set(gca,'XTickLabel',minerals,'YTickLabel',flipud(minerals))

Th is pseudocolor plot of the correlation coeffi  cients shows strong positive 
correlations between the minerals A1 and A2 and a strong negative cor-
relation between these minerals and A3, as would be expected from the 
composition of the fi rst source rock. Minerals B1 and B2 are signifi cantly 
anticorrelated, whereas B3 shows positive and negative correlations with 
minerals from both source rocks. We also observe no dependency between 
some of the variables, for instance between B2 and the two minerals A1 and 
A2, and between B1 and A3. From the observed dependencies, we would 
expect interesting results from the application of a PCA.

Various methods exist for scaling the original data before applying the 
PCA, such as  mean centering (a mean equal to zero) or  autoscaling (a mean 
equal to zero and a standard deviation equal to one). However, we use the 
original data for computing the PCA. Th e output of the function princomp 
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includes the principal component loads pcs, the scores newdata and the 
variances variances.

[pcs,newdata,variances] =  princomp(data);

Th e loads of the fi rst fi ve principal components PC1 to PC5 can be shown 
by typing

pcs(:,1:5)

ans =
    0.5377   -0.1595   -0.7201    0.0675   -0.3224
    0.5514   -0.2354    0.5115   -0.4833    0.0730
   -0.3889    0.1213    0.1727    0.1442   -0.5364
   -0.0179    0.2249    0.0322   -0.5469   -0.6666
    0.0040   -0.7541    0.2708    0.3820   -0.3602
    0.5052    0.5340    0.3401    0.5442   -0.1702

We observe that PC1 (fi rst column) has high positive loads in the fi rst two 
variables A1 and A2 (fi rst and second row), a high negative load in the third 
variable A3 (third row) and a high positive load in the sixth variable B3 
(sixth row), whereas the other loads are close to zero. PC2 (second column) 
has a high negative load in variable B2 (fi ft h column) and a positive load in 
B3 (sixth column), whereas the load of variable B2 is only slightly higher in 
PC2 than in PC1. We create a number of plots to visualize the PCs.

subplot(2,2,1), plot(1:6,pcs(:,1),'o'), axis([1 6 -1 1])
text((1:6)+0.2,pcs(:,1),minerals,'FontSize',8), hold
plot(1:6,zeros(6,1),'r'), title('PC 1')
 
subplot(2,2,2), plot(1:6,pcs(:,2),'o'), axis([1 6 -1 1])
text((1:6)+0.2,pcs(:,2),minerals,'FontSize',8), hold
plot(1:6,zeros(6,1),'r'), title('PC 2')
 
subplot(2,2,3), plot(1:6,pcs(:,3),'o'), axis([1 6 -1 1])
text((1:6)+0.2,pcs(:,3),minerals,'FontSize',8), hold
plot(1:6,zeros(6,1),'r'), title('PC 3')
 
subplot(2,2,4), plot(1:6,pcs(:,4),'o'), axis([1 6 -1 1])
text((1:6)+0.2,pcs(:,4),minerals,'FontSize',8), hold
plot(1:6,zeros(6,1),'r'), title('PC 4')

Th e loads of the index minerals and their relationships to the PCs can be 
used to interpret the relative infl uence of the diff erent source rocks. PC1 is 
characterized by strong contributions of A1 and A2, refl ecting a relatively 
strong infl uence of the fi rst rock type as a source of the sediments. A contri-
bution of A3 with an opposite sign appears to support the interpretation of 
A3 as a weathering product of A1 and A2. Th e second principal component 
PC2 is clearly dominated by the second source rock, as indicated by the high 
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load of B1. Again, the high infl uence of B2 with an opposite sign refl ects the 
weathering of B1 to produce B2. Th e occurrence of B3 in both source rocks 
results in high loads of B3 in both PC1 and PC2. Principle components PC3 
and PC 4 show mixed and contradictory patterns of loads and are therefore 
not easy to interpret, most probably as a result of noise in the data set.

An alternative way to plot of the loads is as a bivariate plot of two princi-
pal components. We therefore ignore PC3 and PC 4 at this point and concen-
trate on PC1 and PC2. Remember to either close the fi gure window before 
plotting the loads or clear the fi gure window using clf, in order to avoid 
integrating the new plot as a fourth subplot in the previous fi gure window.

plot(pcs(:,1),pcs(:,2),'o'), hold on
text(pcs(:,1)+0.02,pcs(:,2),minerals,'FontSize',14)
plot([-0.8 0.8],[0 0],'r')
plot([0 0],[-0.8 0.8],'r')
xlabel('First Principal Component Loads')
ylabel('Second Principal Component Loads')
hold off

We can now observe in a single plot the same relationships that were previ-
ously shown on several graphs (Fig. 9.3). It is also possible to plot the data 
set as functions of the new variables. Th is requires the second output of 
princomp, containing the principal component scores.

plot(newdata(:,1),newdata(:,2),'+'), hold on
text(newdata(:,1)+0.01,newdata(:,2),sample)
plot([-80 100],[0 0],'r')
plot([0 0],[-60 80],'r')
xlabel('First Principal Component Scores')
ylabel('Second Principal Component Scores')
hold off

Th is plot clearly defi nes groups of samples with similar infl uences. Samples 
5, 8, 20, 27 and 30, dominated by infl uences of the fi rst source rock, all clus-
ter in the right half of the diagram, while samples 7, 9, 24 and once again 30, 
strongly infl uenced by the second rock type, all fall in the upper half of the 
graph. Next, we use the third output of the function princomp to compute 
the variances of the PCs.

percent_explained = 100*variances/sum(variances)

percent_explained =
   72.7390
   14.6658
    4.3129
    4.1775
    2.7791
    1.3257
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Fig. 9.3 Principal components suggesting that the PCs are infl uenced by diff erent minerals. 
See text for detailed interpretation of the PCs.

We see that almost 73 % of the total variance is contained in PC1, and around 
15 % is contained in PC2, while none of the other PCs contribute very much 
to the total variance of the data set. Th is means that most of the variability 
in the data set can be described by just two new variables. As would be ex-
pected, the two new variables do not correlate with each other as illustrated 
by a correlation coeffi  cient between newdata(:,1) and newdata(:,2) 
that is close to zero.

corrcoef(newdata(:,1),newdata(:,2))

ans =
    1.0000    0.0000
    0.0000    1.0000

We can therefore plot the time series of the thirty samples as two indepen-
dent variables PC1 and PC2, in a single plot.

plot(1:30,newdata(:,1),1:30,newdata(:,2)), grid, 
legend('PC1','PC2')
xlabel('Sample ID'), ylabel('Value')

Th is plot displays ca. 73 %+15 %=88 % of the variance contained in the mul-
tivariate data set. According to our interpretation of PC1 and PC2 this plot 
shows the variability in the relative contributions from the two sources to 
the sedimentary column under investigation.

In summary, the approach described above has been used to study the 
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provenance of varved lake sediments deposited around 33 kyrs ago in a 
landslide-dammed lake in the Quebrada de Cafayate (Trauth et al. 2003). 
Th e provenance of the sediments contained in the varved layers can be 
traced using index minerals characteristic of the various possible watershed 
source areas. A comparison of the mineral assemblages in the sediments 
with those of potential source rocks within the catchment area indicates 
that Fe-rich Tertiary sedimentary rocks exposed in the Santa Maria Basin 
were the source of the red-colored basal portion of the varves. In contrast, 
metamorphic rocks in the mountainous parts of the catchment area were 
the most likely source of the relatively drab-colored upper part of the varves 
(see also Section 8.7).

9.3 Independent Component Analysis (by N. Marwan)

Principal component analysis (PCA) is the standard method for separating 
mixed signals. Such analyses produce signals that are linearly uncorrelated. 
Th is method is also called  whitening since this property is characteristic of 
white noise. Although the separated signals are uncorrelated, they can still 
be interdependent, i.e., nonlinear correlation may still remain. Th e  inde-
pendent component analysis (ICA) was developed to investigate such data. 
It separates mixed signals into independent signals, which are then non-
linearly uncorrelated. Fast ICA algorithms use a criterion that estimates 
how Gaussian the combined distribution of the independent components is. 
Th e less Gaussian this distribution is, the more independent the individual 
components are.

According to the model, n independent signals x(t) are linearly mixed 
in m measurements,

in which we are interested in the source signals si and the mixing matrix A. 
For example, we can imagine that we are at a party in which a lot of people 
are carrying on independent conversations. We can hear a mixture of these 
conversations but perhaps cannot distinguish them individually. We could 
install some microphones and use these to separate out the individual con-
versations: hence, this dilemma is sometimes known as the  cocktail party 
problem. Its correct term is  blind source separation, which is defi ned by
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where WT is the separation matrix required to reverse the mixing and ob-
tain the original signals. Let us consider a mixing of three signals, s1, s2 and 
s3, and their separation using PCA and ICA. First, we create three periodic 
signals

clear

i = (1:0.01:10 * pi)';
[dummy index] = sort(sin(i));

s1(index,1) = i/31; s1 = s1 - mean(s1);
s2 = abs(cos(1.89*i)); s2 = s2 - mean(s2);
s3 = sin(3.43*i);

subplot(3,2,1), plot(s1), ylabel('s_1'), title('Raw signals')
subplot(3,2,3), plot(s2), ylabel('s_2')
subplot(3,2,5), plot(s3), ylabel('s_3')

Now we mix these signals and add some observational noise. We obtain a 
three-column vector x which corresponds to our measurements (Fig. 9.4).

randn('state',1);

x = [.1*s1 + .8*s2 + .01*randn(length(i),1), ...
     .4*s1 + .3*s2 + .01*randn(length(i),1), ...
     .1*s1 +   s3  + .02*randn(length(i),1)];

subplot(3,2,2), plot(x(:,1)), ylabel('x_1'), title('Mixed 
signals')
subplot(3,2,4), plot(x(:,2)), ylabel('x_2')
subplot(3,2,6), plot(x(:,3)), ylabel('x_3')

We begin with the separation of the signals using PCA. We calculate the 
principal components and the whitening matrix W_PCA with

[E sPCA D] = princomp(x);
sPCA = sPCA./repmat(std(sPCA),length(sPCA),1);

Th e PC scores sPCA are the linearly  separated components of the mixed 
signals x (Fig. 9.5).

subplot(3,2,1), plot(sPCA(:,1))
ylabel('s_{PCA1}'), title('Separated signals - PCA')
subplot(3,2,3), plot(sPCA(:,2)), ylabel('s_{PCA2}')
subplot(3,2,5), plot(sPCA(:,3)), ylabel('s_{PCA3}')

Th e  mixing matrix A can be found with

A_PCA = E * sqrt(diag(D));
W_PCA = inv(sqrt(diag(D))) * E';



302  9 MULTIVARIATE STATISTICS

0 1000 2000 3000 4000

1000

1000

2000

2000

3000

3000

4000

4000

0 1000 2000 3000 4000

0 1000 2000 3000 4000

0 1000 2000 3000 4000

0

0

−2

−1

0

1

2

−0.4

−0.2

0

0.2

0.4

−1.0

−0.5

0

0.5

−1.0

−0.5

0

0.5

1.0

−1.0

−0.5

0

0.5

−0.5

0

0.5

x 1
x

2
x 3

s
1

s
2

s 3

Raw Signals Mixed Signals

a

c

e f

d

b

Fig. 9.4 Sample input for the independent component analysis. We fi rst generate three 
period signals (a, c, e), mix the signals and add some Gausssian noise (b, d, f).

Next, we separate the signals into independent components. We will do 
this by using a FastICA algorithm, which is based on a fi xed-point iteration 
scheme, to fi nd the least Gaussian distributed of the independent compo-
nents WTx. For the nonlinearity function we use a power of three function, 
as an example,

rand('state',1);

div = 0;
B = orth(rand(3, 3) - .5);
BOld = zeros(size(B));

while (1 - div) > eps
   B = B * real(inv(B' * B)^(1/2));
   div = min(abs(diag(B' * BOld))); 
   BOld  = B;
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Fig. 9.5 Output of the principal component analysis (a, c, e) compared with the output of 
the independent component analysis (b, d, f). Th e PCA has not reliably separated the mixed 
signals, whereas the ICA identifi ed the source signals almost perfectly.

   B = (sPCA' * (sPCA * B) .^ 3) / length(sPCA) - 3 * B;
   sICA = sPCA * B;
end

We plot the separated components (Fig. 9.5) with

subplot(3,2,2), plot(sICA(:,1)), ylabel('s_{ICA1}'),
   title('Separated signals - ICA')
subplot(3,2,4), plot(sICA(:,2)), ylabel('s_{ICA2}')
subplot(3,2,6), plot(sICA(:,3)), ylabel('s_{ICA3}')

We can now see that the PCA algorithm has not provided a satisfactory 
separation of the mixed signals. Th e saw-tooth signal, in particular, was not 
correctly identifi ed. In contrast, the ICA has identifi ed the source signals 
almost perfectly. Th e only noticeable diff erences are the noise level, which 
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derives from the observations, the incorrect sign, and the incorrect order 
of the signals. However, the sign and the order of the signals are not really 
important, since we generally do not have any knowledge of the real sources 
or of their order. With

A_ICA = A_PCA * B;
W_ICA = B' * W_PCA;

we compute the mixing matrix A and the separation matrix W. Th e mixing 
matrix A can be used to estimate the proportions of the separated signals in 
our measurements  Th e components aij of the mixing matrix A correspond 
to the principal component loads, as introduced in Section 9.2. A FastICA 
package is available for MATLAB and can be found at

http://www.cis.hut.fi/projects/ica/fastica/

9.4 Cluster Analysis

 Cluster analysis creates groups of objects that are very similar to each other, 
compared to other individual objects or groups of objects. It fi rst computes 
the similarity between all pairs of objects, and then ranks the groups ac-
cording to their similarity, fi nally creating a hierarchical tree visualized as 
a dendrogram. Examples for grouping objects in earth sciences are correla-
tions within volcanic ash layers (Hermanns et al. 2000) and comparisons 
between microfossil assemblages (Birks and Gordon 1985).

Th ere are numerous methods for calculating the similarity between two 
data vectors. Let us defi ne two data sets consisting of multiple measure-
ments on the same object. Th ese data can be described by vectors. 

Th e most popular measures of similarity between the two sample vectors 
are the

Euclidian distance•  – Th is is simply the shortest distance between the two 
points describing two measurements in the multivariate space:
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Th e Euclidian distance is certainly the most intuitive measure for simi-
larity. However, in heterogeneous data sets consisting of a number of dif-
ferent types of variables, a better alternative would be the

 • Manhattan distance – In the city of Manhattan, one must walk along 
perpendicular avenues rather than crossing blocks diagonally. Th e 
Manhattan distance is therefore the sum of all diff erences:

Other alternative measures of similarity include the

 • Correlation  similarity coefficient – Th is uses Pearson’s linear product-
moment correlation coeffi  cient to compute the similarity of two objects:

Th is measure is used if one is interested in the ratios between the vari-
ables measured on the objects. However, Pearson’s correlation coeffi  -
cient is highly sensitive to outliers and should be used with care (see also 
Section 4.2).

 • Inner-product  similarity index – Normalizing the length of the data vec-
tors to a value of one and computing the inner product of these yields 
another important similarity index that is oft en used in transfer function 
applications. In this example, a set of modern fl ora or fauna assemblages 
with known environmental preferences is compared with a fossil sample 
to reconstruct the environmental conditions in the past.

Th e inner-product similarity varies between 0 and 1. A zero value sug-
gests no similarity and a value of one represents maximum similarity. 
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Th e second step in performing a cluster analysis is to rank the groups by 
their similarity and build a hierarchical tree visualized as a dendrogram. 
Most clustering algorithms simply link the two objects with the highest 
level of similarity. In the following steps, the most similar pairs of objects or 
clusters are linked iteratively. Th e diff erence between clusters, each made up 
of groups of objects, is described in diff erent ways depending on the type of 
data and the application.

 • K-means clustering – Here, the Euclidean distance between the multi-
variate means of a number of K clusters is used as a measure of the dif-
ference between the groups of objects. Th is distance is used if the data 
suggest that there is a true mean value surrounded by random noise.

 • K-nearest-neighbors clustering – Alternatively, the Euclidean distance of 
the nearest neighbors is used as measure of this diff erence. Th is is used 
if there is a natural heterogeneity in the data set that is not attributed to 
random noise.

It is important to evaluate the data properties prior to the application of 
a clustering algorithm. Th e absolute values of the variables should fi rst be 
considered. For example, a geochemical sample from volcanic ash might 
show an SiO2 content of around 77 % and a Na2O contents of only 3.5 %, but 
the Na2O content may be considered to be of greater importance. Here, the 
data need to be transformed to zero means ( mean centering). Diff erences 
in both the variances and the means are corrected by  autoscaling, i.e., the 
data are standardized to zero means and variances equal to one. Artifacts 
arising from closed data, such as artifi cial negative correlations, are avoided 
by using  Aitchison’s  log-ratio transformation (Aitchison 1984, 1986). Th is 
ensures data independence and avoids the constant sum normalization 
constraints. Th e log-ratio transformation is

where xtr denotes the transformed score (i=1, 2, 3, …, d–1) of some raw data 
xi. Th e procedure is invariant under the group of permutations of the vari-
ables, and any variable can be used as the divisor xd.

As an example for performing a cluster analysis, the sediment data 
stored in sediment_2.txt are loaded. Th is data set contains the percent-
ages of various minerals contained in sediment samples. Th e sediments 
are sourced from three rock types: a magmatic rock containing amphibole 
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(amp), pyroxene (pyr) and plagioclase (pla), a hydrothermal vein character-
ized by the occurrence of fl uorite (f lu), sphalerite (sph) and galena (gal), as 
well as some feldspars (plagioclase and potassium feldspars, ksp) and quartz, 
and a sandstone unit containing feldspars, quartz and clay minerals (cla). 
Ten samples were taken from various levels in this sedimentary sequence 
containing varying amounts of these minerals. First, the distances between 
pairs of samples can be computed. Th e function pdist provides many ways 
for computing this distance, such as the Euclidian or Manhattan city block 
distance. We use the default setting which is the Euclidian distance.

clear

data = load('sediments_2.txt');
Y =  pdist(data);

Th e function pdist returns a vector Y containing the distances between 
each pair of observations in the original data matrix. We can visualize the 
distances in another pseudocolor plot.

 imagesc( squareform(Y)), colormap(hot)
title('Euclidean distance between pairs of samples')
xlabel('First Sample No.')
ylabel('Second Sample No.')
colorbar

Th e function squareform converts Y into a symmetric, square format, 
so that the elements (i,j) of the matrix denote the distance between the  
i and j objects in the original data. Next, we rank and link the samples 
with respect to the inverse of their separation distances using the function 
linkage.

Z =  linkage(Y)

Z =
    2.0000    9.0000    0.0564
    8.0000   10.0000    0.0730
    1.0000   12.0000    0.0923
    6.0000    7.0000    0.1022
   11.0000   13.0000    0.1129
    3.0000    4.0000    0.1604
   15.0000   16.0000    0.1737
    5.0000   17.0000    0.1764
   14.0000   18.0000    0.2146

In this 3-column array Z, each row identifi es a link. Th e fi rst two columns 
identify the objects (or samples) that have been linked, while the third col-
umn contains the separation distance between these two objects. Th e fi rst 
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Fig. 9.6 Output of the cluster analysis. Th e dendrogram shows clear groups consisting of 
samples 1, 2, 8, 9 and 10 (the magmatic source rocks), samples 3, 4 and 5 (the magmatic dyke 
containing ore minerals), and samples 6 and 7 (the sandstone unit).

row (link) between objects (or samples) 1 and 2 has the smallest distance, 
corresponding to the highest similarity. In our example, samples 2 and 9 
have the smallest separation distance of 0.0564 and are therefore grouped 
together and given the label 11, i.e., the next available index higher than the 
highest sample index 10. Next, samples 8 and 10 are grouped to 12 since 
they have the second lowest diff erence of 0.0730. Th e next row shows that 
the new group 12 is then grouped with sample 1, which have a diff erence 
of 0.0923, and so forth. Finally, we visualize the hierarchical clusters as a 
dendrogram which is shown in Figure 9.6.

 dendrogram(Z);
xlabel('Sample No.')
ylabel('Distance')
box on

Clustering fi nds the same groups as the principal component analysis. We 
observe clear groups consisting of samples 1, 2, 8, 9 and 10 (the magmatic 
source rocks), samples 3, 4 and 5 (the hydrothermal vein) and samples 6 
and 7 (the sandstone). One way to test the validity of our clustering result is 
to use the   cophenet correlation coefficient:

cophenet(Z,Y)

ans =
    0.7579



RECOMMENDED READING  309

9 
 M

U
LT

IV
A

RI
AT

E 
ST

AT
IS

TI
CS

Th e result is convincing since the closer this coeffi  cient is to one, the better 
is the cluster solution.
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10 Statistics on Directional Data

10.1 Introduction

Methods for analyzing  circular and spherical data are widely used in earth 
sciences. For instance, structural geologists measure and analyze the ori-
entation of slickensides (or striae) on fault planes.  Circular statistics is also 
common in paleomagnetic applications. Microstructural investigations 
include the analysis of grain shapes and quartz c-axis orientations in thin 
sections. Paleoenvironmentalists also reconstruct paleocurrent directions 
from fossil alignments (Fig. 10.1). In principle, two types of  directional data 
exist in earth sciences:  directional data sensu stricto, and  oriented data. 
Directional data have a true polarity, such as the paleocurrent direction of a 
river as documented by fl ute marks, or the fl ow direction of a glacier as in-
dicated by glacial striae. Oriented data describe axial data and lines without 
any sense of direction, such as the orientation of joints.

MATLAB is not the fi rst choice for analyzing directional data since it 
does not provide the relevant functions, such as an algorithm to compute 
the probability distribution function of a  von Mises distribution or to run a 
Rayleigh’s test for the signifi cance of a mean direction. Earth scientists have 
therefore developed numerous stand-alone programs with which to ana-
lyze such data, e. g., the excellent soft ware developed by Rick Allmendinger, 
available for Mac OS 9 and OS X as well as for Microsoft  Windows:

http://www.geo.cornell.edu/geology/faculty/RWA/programs.html

Th e following tutorial on the analysis of directional data is independent of 
these tools. It provides simple MATLAB codes to display directional data, to 
compute the von Mises distribution and to run simple statistical tests. Th e 
fi rst section introduces rose diagrams as the most widely used method to 
display directional data (Section 10.2). With a similar concept to Chapter 3 
on univariate statistics, the next sections are on empirical and theoretical 
distributions to describe directional data (Sections 10.3 and 10.4). Th e last 
three sections then describe the three most important tests for directional 

M.H. Trauth, MATLAB® Recipes for Earth Sciences, 3rd ed.,  
DOI 10.1007/978-3-642-12762-5_10, © Springer-Verlag Berlin Heidelberg 2010  
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Fig. 10.1 Orthoceras fossils from an outcrop Neptuni Acrar near Byxelkrok on Öland, 
Sweden. Orthoceras is a cephalopod with a straight shell and that lived in the Ordovician 
era, about 450 million years ago. Such elongated, asymmetric objects tend to orient 
themselves in the hydrodynamically most stable position. Th e fossils can therefore indicate 
 paleocurrent directions. Th e statistical analysis of cephalopod orientations at Neptuni 
Acrar reveals a signifi cant southerly paleocurrent direction, which is in agreement with the 
paleogeographic reconstructions.

data, these being the tests for randomness of directional data (Section 10.5), 
for the signifi cance of a mean direction (Section 10.6), and for the diff erence 
between two sets of directional data (Section 10.7).

10.2 Graphical Representation

Th e classic way to display directional data is the  rose diagram. A rose dia-
gram is a histogram for measurements of  angles. In contrast to a bar histo-
gram with the height of the bars proportional to frequency, the rose diagram 
comprises segments of a circle with the radius of each sector being propor-
tional to the frequency. We use synthetic data to illustrate two types of rose 
diagrams used to display directional data. We load a set of directional data 
from the fi le directional_1.txt.
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clear

data_degrees_1 = load('directional_1.txt');

Th e data set contains forty measurements of angles, in degrees. We use the 
function  rose(az,nb) to display the data. Th e function plots an angle 
histogram for the angles az in radians, where nb is the number of classes. 
However, since the original data are in degrees, we need to convert all mea-
surements to radians before we plot the data.

data_radians_1 = pi*data_degrees_1/180;
rose(data_radians_1,12)

Th e function rose counts in a counterclockwise direction in which zero de-
grees lies along the x-axis of the coordinate graph. In geosciences, however, 
0° points due north, 90° points due east and the angles increase clockwise. 
Th e command view rotates the plot by +90° (the  azimuth) and mirrors the 
plot by –90° (the  elevation) (Fig. 10.2).

rose(data_radians_1,12)
view(90,-90)

Th e area of the arc segments increases with frequency. In a fi nal modifi -
cation the rose diagram is therefore scaled to the square root of the class 
frequency. Th e function rose does not allow plotting of the square root of 
the frequencies by default, but the corresponding fi le rose.m can be eas-
ily modifi ed as follows. Aft er the histogram of the angles is computed in 
line 58 by using the function histc, add a line with the command nn = 
sqrt(nn); which computes the square root of the frequencies nn. Save 
the modifi ed function as fi le rose_sqrt.m and apply the new function to 
the data set.

rose_sqrt(data_radians_1,12)
view(90,-90)

Th is plot satisfi es all conventions in geosciences (Fig. 10.3).

10.3 Empirical Distributions

Th is section introduces statistical measures used to describe empirical dis-
tributions of directional data. Th e characteristics of directional data are de-
scribed by measures of central tendency and dispersion, similar to the sta-
tistical characterization of univariate data sets (Chapter 3). Assume that we 
have collected a number of  angular measurements such as fossil alignments. 



314  10 STATISTICS ON DIRECTIONAL DATA

5
10 15

90

120

20

60

30

0

330

300

270

240

210

180

150

Fig. 10.2 Rose diagram to display directional data using the function rose. Th e radii of 
the area segments are proportional to the frequencies for each class.

Th e collection of data can be written as

containing N observations θ i. Sine and cosine values are computed for each 
direction θ i to compute the  resultant or  mean direction for the set of  an-
gular data.
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Fig. 10.3 Modifi ed rose diagram to display directional data using the function rose_
sqrt. In this version of rose, 0° points due north, 90° points due east and the angles 
increase clockwise. Th e plot scales the rose diagram to the square root of the class frequency. 
Th e area of the arc segments now increases with frequency.

Th e  resultant direction of the data set is

Th e length of the resultant is

Th e resultant length clearly depends on the dispersion of the data. 
Normalizing the  resultant length to the number of observations yields the 



316  10 STATISTICS ON DIRECTIONAL DATA

1=30°

2=170°

3=40°

Short resultant vector

1=80° 2=130°

3=60°Long resultant vector

θ

θ

θ

θ θ

θ

Fig. 10.4 Resultant direction of directional data. Th e resultant length R of a sample 
decreases with increasing dispersion of the data θi..

 mean resultant length.

Th e value of the mean resultant length decreases with increasing disper-
sion (Fig. 10.4). Th e diff erence between one and the mean resultant length is 
therefore oft en used as a measure of dispersion for directional data,

which is the  circular variance. 
Th e following example illustrates the use of these parameters by means 

of synthetic directional data. We fi rst load the data from the fi le direction-
al_1.txt and convert all measurement to radians.

clear

data_degrees_1 = load('directional_1.txt');
data_radians_1 = pi*data_degrees_1/180;

We now calculate the resultant vector R. Firstly, we compute the x and y 
components of the resultant vector.

x_1 = sum(sin(data_radians_1))
y_1 = sum(cos(data_radians_1))
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x_1 =
  -24.3898

y_1 =
  -25.9401

Th e  mean direction is the inverse tangent of the ratio of x and y.

mean_radians_1 = atan(x_1/y_1)
mean_degrees_1 = 180*mean_radians_1/pi

mean_radians_1 =
    0.7546

mean_degrees_1 =
   43.2357

Th is result suggests that the resultant vector R is around 0.75 radians or 43°. 
However, since both x and y are negative, the true value of mean_degrees 
is located in the third quadrant and we therefore add 180°.

mean_degrees_1 = mean_degrees_1 + 180

mean_degrees_1 =
  223.2357

which results in a mean direction of around 223°. Th e length of this vector 
is the absolute value of the vector, which is

R_1 = sqrt(x_1^2 + y_1^2)

R_1 =
   35.6055

Th e resultant length depends on the dispersion of the directional data. 
Normalizing the resultant length to the sample size yields the mean resul-
tant length of

Rm_1 = R_1 / (length(data_radians_1))

Rm_1 =
    0.8901

Higher Rm suggests less variance. We then compute the circular variance 
sigma, which is

sigma_1 = 1 - Rm_1

sigma_1 =
    0.1099



318  10 STATISTICS ON DIRECTIONAL DATA

10.4 Theoretical Distributions

As in Chapter 3, the next step in a statistical analysis is to fi nd a suitable 
theoretical distribution that we fi t the empirical distribution visualized 
and described in the previous section. Th e classic theoretical distribution 
to describe directional data is the  von Mises distribution, named aft er the 
Austrian mathematician Richard Edler von Mises (1883–1953). Th e prob-
ability density function of a von Mises distribution is

where μ  is the mean direction and κ  is the concentration parameter 
(Fig. 10.4). I0(κ) is the modifi ed  Bessel function of the fi rst kind and order 
zero of κ . Th e Bessel functions are solutions of a second-order diff erential 
equation, Bessel’s diff erential equation, and are important in many prob-
lems of wave propagation in a cylindrical waveguide, and of heat conduc-
tion in a cylindrical object. Th e von Mises distribution is also known as the 
 circular normal distribution since it has similar characteristics to a nor-
mal distribution (Section 3.4). Th e von Mises distribution is used when the 
mean direction is the most frequent direction. Th e probability of deviations 
is equal on either side of the   mean direction and decreases with increasing 
distance from the mean direction.

As an example, let us assume a mean direction of mu=0 and fi ve diff er-
ent values for the  concentration parameter kappa.

clear

mu = 0; kappa = [0 1 2 3 4]';

In a fi rst step, an angle scale for a plot that runs from –180 to 180 degrees is 
defi ned in intervals of one degree.

theta = -180:1:180;

All angles are converted from degrees to radians.

mu_radians = pi*mu/180;
theta_radians = pi*theta/180;

In a second step, we compute the von Mises distribution for these values. 
Th e formula uses the modifi ed Bessel function of the fi rst kind and order 
zero that can be calculated by using the function  besseli. We compute 
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Fig. 10.5 Probability density function f (x) of a von Mises distribution with μ= 0 and fi ve 
diff erent values for κ .

the probability density function for the fi ve values of kappa.

for i = 1:5   
   mises(i,:) = (1/(2*pi*besseli(0,kappa(i))))* ...
   exp(kappa(i)*cos(theta_radians-mu_radians));
   theta(i,:) = theta(1,:);
end

Th e results are plotted by

for i = 1:5
   plot(theta(i,:),mises(i,:))
   axis([-180 180 0 max(mises(i,:))])
   hold on
end

Th e mean direction and concentration parameter of such theoretical distri-
butions are easily modifi ed to compare them with empirical distributions.
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10.5 Test for Randomness of Directional Data

Th e fi rst test for directional data compares the data set with a uniform 
distribution. Directional data following a uniform distribution are purely 
random, i. e., there is no preference for any direction. We use the  χ 2-test 
(Section 3.8) to compare the empirical frequency distribution with the theo-
retical uniform distribution. We fi rst load our sample data.

clear

data_degrees_1 = load('directional_1.txt');

We then use the function hist to count the number of observations within 
12 classes, each with a width of 30 degrees.

counts = hist(data_degrees_1,15:30:345);

Th e expected number of observations is 40/12, where 40 is the total number 
of observations and 12 is the number of classes.

expect = 40/12 * ones(1,12);

Th e χ 2-test explores the squared diff erences between the observed and ex-
pected frequencies. Th e quantity χ 2 is defi ned as the sum of these squared 
diff erences divided by the expected frequencies.

chi2 = sum((counts - expect).^2 ./expect)

chi2 = 
    89.6000

Th e critical χ 2 can be calculated by using chi2inv. Th e χ 2-test requires 
the degrees of freedom Φ. In our example, we test the hypothesis that the 
data are uniformly distributed, i. e., we estimate one parameter, which is the 
number of possible values N. Since the number of classes is 12, the num-
ber of degrees of freedom is Φ =12–(1+1)=10. We test our hypothesis on 
a p=95 % signifi cance level. Th e function chi2inv computes the inverse 
of the cumulative distribution function (CDF) of the χ 2 distribution with 
parameters specifi ed by Φ  for the corresponding probabilities in p.

chi2inv(0.95,12-1-1)

ans = 
    18.3070

Since the critical χ 2 of 18.3070 is well below the measured χ 2 of 89.600, we 
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reject the null hypothesis and conclude that our data do not follow a uni-
form distribution, i. e., they are not randomly distributed.

10.6 Test for the Signifi cance of a Mean Direction

Having measured a set of directional data in the fi eld, we may wish to know 
whether there is a prevailing direction documented in the data. We use the 
Rayleigh’s test for the signifi cance of a mean direction. Th is test uses the 
mean resultant length introduced in Section 10.3, which increases with a 
more signifi cant preferred direction.

Th e data show a preferred direction if the calculated mean resultant length 
is below the critical value (Mardia 1972). As an example, we again load the 
data contained in the fi le directional_1.txt.

clear

data_degrees_1 = load('directional_1.txt');
data_radians_1 = pi*data_degrees_1/180;

We then calculate the mean resultant vector Rm.

x_1 = sum(sin(data_radians_1));
y_1 = sum(cos(data_radians_1));

mean_radians_1 = atan(x_1/y_1);
mean_degrees_1 = 180*mean_radians_1/pi;
mean_degrees_1 = mean_degrees_1 + 180;

Rm_1 = 1/length(data_degrees_1) .*(x_1.^2+y_1.^2).^0.5

Rm_1 =
    0.8901

Th e mean resultant length in our example is 0.8901. Th e critical Rm (α=0.05, 
n=40) is 0.273 (Table 10.1 from Mardia 1972). Since this value is lower than 
the Rm from the data, we reject the null hypothesis and conclude that there 
is a preferred single direction, which is

theta_1 = 180 * atan(x_1/y_1) / pi

theta_1 =
   43.2357
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Th e negative signs of the sine and cosine, however, suggest that the true 
result is in the third sector (180–270°), and the correct result is therefore 
180+43.2357=223.2357.

10.7 Test for the Diff erence between Two Sets of Directions

Let us consider two sets of measurements in two fi les directional_1.txt and 
directional_2.txt. We wish to compare the two sets of directions and test the 
hypothesis that these are signifi cantly diff erent. Th e test statistic for testing 
the similarity between two mean directions is the  F-statistic (Section 3.7)

where κ  is the concentration parameter, RA and RB are the resultants of 
samples A and B, respectively, and RT is the resultant of the combined 
 samples. Th e concentration parameter can be obtained from tables using RT 
(Batschelet 1965, Gumbel et al. 1953, Table 10.2). Th e calculated F is com-
pared with critical values from the standard F tables. Th e two mean direc-
tions are not signifi cantly diff erent if the measured F-value is lower than 
the critical F-value, which depends on the degrees of freedom Φ a=1 and 
Φ b=n–2, and also on the signifi cance level α . Both samples must follow a 
von Mises distribution (Section 10.4).

We use two synthetic data sets of directional data to illustrate the ap-
plication of this test. We fi rst load the data and convert the degrees to radi-
ans.

clear

data_degrees_1 = load('directional_1.txt');
data_degrees_2 = load('directional_2.txt');

data_radians_1 = pi*data_degrees_1/180;
data_radians_2 = pi*data_degrees_2/180;

We then compute the lengths of the resultant vectors.

x_1 = sum(sin(data_radians_1));
y_1 = sum(cos(data_radians_1));
x_2 = sum(sin(data_radians_2));
y_2 = sum(cos(data_radians_2));

mean_radians_1 = atan(x_1/y_1);
mean_degrees_1 = 180*mean_radians_1/pi;
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Table 10.1 Critical values of mean resultant length for Rayleigh’s test for the signifi cance of 
a mean direction of N samples (Mardia 1972).

mean_radians_2 = atan(x_2/y_2);
mean_degrees_2 = 180*mean_radians_2/pi;

mean_degrees_1 = mean_degrees_1 + 180
mean_degrees_2 = mean_degrees_2 + 180

R_1 = sqrt(x_1^2 + y_1^2);

Level of Signifi cance, α
N  0.100 0.050 0.025 0.010 0.001

5  0.677 0.754 0.816 0.879 0.991
6  0.618 0.690 0.753 0.825 0.940
7  0.572 0.642 0.702 0.771 0.891
8  0.535 0.602 0.660 0.725 0.847
9  0.504 0.569 0.624 0.687 0.808

10  0.478 0.540 0.594 0.655 0.775
11  0.456 0.516 0.567 0.627 0.743
12  0.437 0.494 0.544 0.602 0.716
13  0.420 0.475 0.524 0.580 0.692
14  0.405 0.458 0.505 0.560 0.669

15  0.391 0.443 0.489 0.542 0.649
16  0.379 0.429 0.474 0.525 0.630
17  0.367 0.417 0.460 0.510 0.613
18  0.357 0.405 0.447 0.496 0.597
19  0.348 0.394 0.436 0.484 0.583

20  0.339 0.385 0.425 0.472 0.569
21  0.331 0.375 0.415 0.461 0.556
22  0.323 0.367 0.405 0.451 0.544
23  0.316 0.359 0.397 0.441 0.533
24  0.309 0.351 0.389 0.432 0.522

25  0.303 0.344 0.381 0.423 0.512
30  0.277 0.315 0.348 0.387 0.470
35  0.256 0.292 0.323 0.359 0.436
40  0.240 0.273 0.302 0.336 0.409
45  0.226 0.257 0.285 0.318 0.386

50  0.214 0.244 0.270 0.301 0.367
100  0.150 0.170 0.190 0.210 0.260
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R_2 = sqrt(x_2^2 + y_2^2);

mean_degrees_1 =
  223.2357

mean_degrees_2 =
  200.8121

Th e orientations of the resultant vectors are ca. 223° and 201°. We also need 
the resultant length for both samples combined, so we combine both data 
sets and compute the resultant length again.

data_radians_T = [data_radians_1;data_radians_2];

x_T = sum(sin(data_radians_T));
y_T = sum(cos(data_radians_T));

mean_radians_T = atan(x_T/y_T);
mean_degrees_T = 180*mean_radians_T/pi;

mean_degrees_T = mean_degrees_T + 180;

R_T = sqrt(x_T^2 + y_T^2)
Rm_T = R_T / (length(data_radians_T))

R_T =
   69.5125

Rm_T =
    0.8689

We apply the test statistic to the data for kappa=4.177 for Rm_T=0.8689 
(Table 10.2). Th e computed value for F is

n = length(data_radians_T);

F = (1+3/(8*4.177)) * (((n-2)*(R_1+R_2-R_T))/(n-R_1-R_2))

F =
   12.5844

Using the F statistic, we fi nd that for 1 and 80–2 degrees of freedom and 
α=0.05, the critical value is

finv(0.95,1,78)

ans =
    3.9635

which is well below the observed value of F=12.5844. We therefore reject 
the null hypothesis and conclude that the two samples could have not been 
drawn from populations with the same mean direction.
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Table 10.2 Maximum likelihood estimates of concentration parameter κ  for calculated 
mean resultant length (adapted from Batschelet, 1965 and Gumbel et al., 1953).

R κ R κ R κ R κ
0.000 0.000 0.260 0.539 0.520 1.224 0.780 2.646

0.010 0.020 0.270 0.561 0.530 1.257 0.790 2.754

0.020 0.040 0.280 0.584 0.540 1.291 0.800 2.871

0.030 0.060 0.290 0.606 0.550 1.326 0.810 3.000

0.040 0.080 0.300 0.629 0.560 1.362 0.820 3.143

0.050 0.100 0.310 0.652 0.570 1.398 0.830 3.301

0.060 0.120 0.320 0.676 0.580 1.436 0.840 3.479

0.070 0.140 0.330 0.700 0.590 1.475 0.850 3.680

0.080 0.161 0.340 0.724 0.600 1.516 0.860 3.911

0.090 0.181 0.350 0.748 0.610 1.557 0.870 4.177

0.100 0.201 0.360 0.772 0.620 1.600 0.880 4.489

0.110 0.221 0.370 0.797 0.630 1.645 0.890 4.859

0.120 0.242 0.380 0.823 0.640 1.691 0.900 5.305

0.130 0.262 0.390 0.848 0.650 1.740 0.910 5.852

0.140 0.283 0.400 0.874 0.660 1.790 0.920 6.539

0.150 0.303 0.410 0.900 0.670 1.842 0.930 7.426

0.160 0.324 0.420 0.927 0.680 1.896 0.940 8.610

0.170 0.345 0.430 0.954 0.690 1.954 0.950 10.272

0.180 0.366 0.440 0.982 0.700 2.014 0.960 12.766

0.190 0.387 0.450 1.010 0.710 2.077 0.970 16.927

0.200 0.408 0.460 1.039 0.720 2.144 0.980 25.252

0.210 0.430 0.470 1.068 0.730 2.214 0.990 50.242

0.220 0.451 0.480 1.098 0.740 2.289 0.995 100.000

0.230 0.473 0.490 1.128 0.750 2.369 0.999 500.000

0.240 0.495 0.500 1.159 0.760 2.455 1.000 5000.000

0.250 0.516 0.510 1.191 0.770 2.547
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