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Preface 

Intended Audience, Approach and Presentation 

This text is intended for a course of about fifteen weeks for undergraduate 
students. It arises from the adaptation and the amendments to a text for a 
full-year course in Structure of Matter, written by one of the authors (A.R.) 
about thirty years ago. At that time only a few (if any) textbooks having the 
suited form for introduction to basic quantum properties of atoms, molecules 
and crystals in a comprehensive and interrelated way, were available. Along 
the last twenty years many excellent books pursuing the aforementioned aim 
have been published (some of them are listed at the end of this preface). 
Still there are reasons, in our opinion, to attempt a further text devoted to 
the quantum roots of condensed matter properties. A practical aspect in this 
regard involves the organization of the studies in Physics, after the huge scien­
tific outburst of the various topics of fundamental and technological character 
in recent decades. In most Universities there is now a first period of three or 
four years, common to all the students and devoted to elementary aspects, 
followed by a more advanced program in rather specialized fields of Physics. 
The difficult task is to provide a common and formative introduction in the 
first period still suitable as a basis for building up more advanced courses 
and to bridge the large area between elementary physics and the topics per­
taining to research activities. The present attempt towards a readable book, 
hopefully presenting those desired characteristics, essentially is based on a 
mixture of simplified institutional theory with solved problems. The hope, in 
this way, is to provide physical insights, basic culture and motivation, without 
deteriorating the possibility of more advanced subsequent learning. 

Organization 

Structure of Matter is such a wide field that a first task to undertake is 
how to confine an introductory text. The present status of that discipline 
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represents a key construction of the scientific knowledge, possibly equated 
only by the unitary description of the electromagnetic phenomena. Even by 
limiting attention only to the conventional parts of the condensed matter, 
namely atoms, molecules and crystals, still we are left with an ample field. 
For instance, semiconductors or superconductors, the electric and magnetic 
properties of the matter and its interaction with the electromagnetic radi­
ation, the microscopic mechanisms underlying solid-state devices as well as 
masers and lasers, are to be considered as belonging to the field of structure 
of matter (without mentioning the "artificial" matter involving systems such 
as nanostructures, photonic crystals or special materials obtained by subtle 
manipulations of atoms by means of special techniques). In this text the choice 
has been to limit the attention to key concepts and to the most typical aspects 
of atoms (Chapters 1-5) , molecules (Chapters 7-10) and of crystalline solids 
(Chapters 11-14) , looking at the basic "structural" aspects without dealing 
with the properties that originate from them. This choice is exemplified by 
referring to crystals: electronic states and quantum motions of the ions have 
been described without going into the details regarding the numerous and 
relevant properties related to these aspects. Only in a few particularly illus­
trative cases favoring better understanding or comprehensive view, derivation 
of some related properties has been given (examples are some thermodynami­
cal properties due to nuclear motions in molecules and crystals or some of the 
electric or magnetic properties). Chapter 6 has the particular aim to lead the 
reader to an illustrative overview of quantum behaviors of angular momenta 
and magnetic moments, with an introduction to spin statistics, magnetic res­
onance and spin motions and a mention to spin thermodynamics, through 
the description of the adiabatic demagnetization used in order to approach 
the zero-temperature condition. All along the text emphasis is given to the 
role of spectroscopic experiments giving access to the quantum properties by 
means of electromagnetic radiation. In the spirit to limit the attention to 
key arguments, frequent referring is given to the electric dipole moment and 
to selection rules, rather than to other aspects of the many experiments of 
spectroscopic character used to explore the matter at microscopic level. Other 
unifying concepts present along the text are the ones embedded in statistical 
physics and thermal excitations, as it is necessary in view of the many-body 
character of condensed matter in equilibrium with a thermal reservoir. 

Prerequisite, appendices and problems 

Along the text the use of quantum mechanics, although continuous, only in­
volves the basic background that the reader should have achieved in under­
graduate courses. The knowledge in statistical physics is the one based on the 
Boltzmann, Fermi-Dirac and Bose-Einstein statistical distributions, with the 
relationships of thermodynamical quantities to the partition function (some 
of the problems work as proper recall, particularly for the statistical physics of 
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paramagnets or for the black-body radiation). Finally the reader is assumed 
to have knowledge of classical electromagnetism and classical Hamiltonian 
mechanics. Appendices are intended to provide ad hoc recalls, in some cases 
applied to appropriate systems or to phenomena useful for illustration. The 
Gaussian cgs emu units are used. The problems should be considered entan­
gled to the formal presentation of the arguments, being designed as an intrinsic 
part of the pathway the student should move by in order to grasp the key con­
cepts. Some of the problems are simple applications of the equations and in 
these cases the solutions are only sketched. Other problems are basic building 
blocks and possibly expansions of the formal description. Then the various 
steps of the solution are presented in some detail. The aim of the melange 
intuition-theory-exercises pursued in the text is to favor the acquisition of 
the basic knowledge in the wide and wonderful field of the condensed matter, 
emphasizing how phenomenological properties originate from the microscopic, 
quantum features of the nature. 

It should be obvious that a book of this size can present only a minute 
fraction of the present knowledge in the field. If the reader could achieve even 
an elementary understanding of the atoms, the molecules and the crystals, 
how they are affected by electric and magnetic fields, how they interact with 
electromagnetic radiation and respond to thermal excitation, the book will 
have fulfilled its purpose. 

The fundamental blocks of the physical world are thought to be the sub­
nuclear elementary particles. However the beauty of the natural world rather 
originates from the architectural construction of the blocks occurring in the 
matter. Ortega Y Gasset wrote "If you wish to admire the beauty of a cathe­
dral you have to respect for distance. If you go too close, you just see a brick" . 
Furthermore, one could claim that the world of condensed matter more easily 
allows one to achieve a private discovery of phenomena. In this respect let 
us report what Edward Purcell wrote in his Nobel lecture: "To see the world 
for a moment as something rich and strange is the private reward of many a 
discovery" . 

Acknowledgments 

The authors wish to acknowledge Giacomo Mauro D' Ariano, who has in­
spired and solved several problems and provided enlightening remarks with 
his collaboration to the former course "Structure of Matter" given by one 
of us (A.R.), along two decades. Acknowledgments for suggestions or indi­
rect contributions through discussions or comments are due to A. Balzarotti, 
A. Barone, G. Benedek, G. Bonera, M. Bornatici, F. Borsa, G. Caglioti, R. 
Cantelli, L. Colombo, M. Corti, A. Debernardi, A. Lascialfari, D. Magnani, 
F. Miglietta, G. Onida, G. Pastori Parravicini, E. Reguzzoni, S. Romano, G. 
Senatore, J. Spalek, V. Tognetti , A.A. Varlamov. 



VIII Preface 

N. Papinutto is acknowledged for his help in preparing several figures. The 
problems have been revised by Dr. D. Magnani and Dr. G. Ventura, when stu­
dents. The authors anticipate their gratitude to other students who, through 
vigilance and desire of learning will found errors and didactic mistakes. 

Dr. M. Medici is gratefully thanked for her c areful revision of the typed 
text. 

This book has been written while recelvmg inspiration from a number 
of text books dealing with particular items or from problems and exercises 
suggested or solved in them. The texts reported b elow are not recalled as a 
real "further-reading list" , since it would be too ample and possibly useless. 
The list is more an acknowledgment of the suggestions received when seeking 
inspiration, information or advices. 

A. Abragam, L'effet Mossbauer et ses applications a l 'e tude des champs in-
ternes, Gordon and Breach (1964). 

M. Alonso and E.J. Finn, Fundamental University Physics Vol.III- Quan-
tum and Statistical Physics, Addison Wesley (1973). 

D.J. Amit and Y. Verbin, Statistical Physics - An Introductory course, 
World Scientific (1999). 

N.W. Ashcroft and N.D. Mermin, Solid State Physics, Holt, Rinehart 
and Winston (1976). 

P.W. Atkins and R.S. Friedman, Molecular Quantum Mechanics, Oxford 
University Press, Oxford (1997). 

A. Balzarotti, M. Cini, M. Fanfoni, Atomi, Molecole e Solidi. Esercizi 
risolti, Springer V erlag (2004). 

F. Bassani e U.M. Grassano, Fisica della Stato Solido , Bollati Boringhieri 
(2000). 

J .S. Blakemore, Solid State Physics, W.B. Saunders Co. (1974). 

S. Blundell, Magnetism in Condensed Matter, Oxford Master S eries in Con­
densed Matter Physics, Oxford U.P. (2001). 

S. Boffi , Da Laplace a Heisenberg, La Goliardica Pavese (1992). 



Preface IX 

B.H. Bransden and C.J. Joachain, Physics of atoms and molecules, Pren­
tice Hall (2002). 

D. Budker, D.F. Kimball and D.P. De Mille, Atomic Physics - An Ex-
ploration Through Problems and Solutions, Oxford University Press (2004). 

G. Burns, Solid State Physics, Academic Press, Inc. (1985). 

G. Caglioti, Introduzione alla Fisica dei Materiali, Zanichelli (1974). 

B. Cagnac and J .C. Pebay - Peyroula, Physique atomique, tome 2, Dunod 
Universit, Paris (1971). 

P. Caldirola, Istituzioni di Fisica Teorica, Editrice Viscontea, Milano (1960). 

M. Cini, Corso difisica atomica e molecolare, Edizioni Nuova Cultura (1992). 

L. Colombo, Elementi di Struttura della Materia, Hoepli (2002). 

E.U. Condon and G.H. Shortley, The Theory of Atomic Spectra, Cam­
bridge University Press, London (1959). 

C.A. Coulson, Valence, Oxford Clarendon Press (1953). 

J.A. Cronin, D.F. Greenberg, V.L. Telegdi, University of Chicago Grad-
uate Problems in Physics, Addison-Wesley (1967). 

G.M. D ' Ariano, Esercizi di Struttura della Materia, La Goliardica Pavese 
(1989) . 

J.P. Dahl, Introduction to the Quantum World of Atoms and Molecules, 
World Scientific (2001). 

w. Demtroder, Molecular Physics, Wiley-VCH (2005). 

W. Demtroder, Atoms, Molecules and Photons, Springer Verlag (2006). 

R.N. Dixon, Spectroscopy and Structure, Methuen and Co LTD London 
(1965) . 

R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, 
Nuclei and Particles, J. Wiley and Sons (1985). 



X Preface 

H. Eyring, J. Walter and G.E. Kimball, Quantum Chemistry, J. Wiley, 
New York (1950). 

R.P. Feynman, R.B. Leighton and M. Sands, The Feynman Lectures an 
Physics Vol. III, Addison Wesley, Palo Alto (1965). 

R. Fieschi e R. De Renzi, Struttura della Materia, La Nuova Italia Scien­
tifica, Roma (1995). 

A.P. French and E.F. Taylor, An Introduction to Quantum Physics, The 
M.LT. Introductory Physics Series, Van Nostrand Reinhold (UK)(1986). 

R. Gautreau and W. Savin, Theory and Problems of Modem Physics, 
(Schaum's series in Science) Mc Graw-Hill Book Company (1978). 

H. Goldstein, Classical Mechanics, Addison-Wesley (1965). 

H.J. Goldsmid (Editor) , Problems in Solid State Physics, Pion Limited 
(London, 1972). 

D.L. Goodstein, States of Matter, Dover Publications Inc. (1985). 

G. Grosso and G. Pastori Parravicini , Solid State Physics, Academic 
Press (2000). 

A.P. Guimares, Magnetism and Magnetic Resonance in Solids, J. Wiley and 
Sons (1998). 

H. Haken and H.C. Wolf, Atomic and Quantum Physics, Springer V erlag 
Berlin (1987). 

H. Haken and H.C. Wolf, Molecular Physics and Elements of Quantum 
Chemistry, Springer Verlag Berlin (2004). 

G. Herzberg, Molecular Spectra and Molecular Structure, Vol. I, II and III, 
D. Van Nostrand, New York (1964-1966 , reprint 1988-1991). 

J.R. Hook and H.E. Hall, Solid State Physics, J. Wiley and Sons (1999). 



Preface XI 

H. Ibach and H. Liith, Solid State Physics: an Introduction to Theory and 
Experiments, Springer Verlag (1990). 

C.S. Johnson and L.G. Pedersen, Quantum Chemistry and Physics, 
Addison - Wesley (1977). 

C. Kittel, Elementary Statistical Physics, J. Wiley and Sons (1958). 

C. Kittel, Introduction to Solid State Physics, J. Wiley and Sons (1956,1968). 

J.D. Mc Gervey, Quantum Mechanics - Concepts and Applications, 
Academic Press, New York (1995). 

L. Mih:ily and M.C. Martin, Solid State Physics - Problems and Solutions, 
J. Wiley (1996). 

M.A. Morrison, T.L. Estle and N.F. Lane, Quantum States of Atoms, 
Molecules and Solids, Prentice - Hall Inc. New Jersey (1976). 

E.M. Purcell, Electricity and Magnetism, Berkley Physics Course Vol.2, Mc 
Graw-Hill (1965). 

A. Rigamonti, Introduzione alla Struttura della Materia, La Goliardica 
Pavese (1977). 

M.N. Rudden and J. Wilson, Elements of Solid State Physics, J. Wiley 
and Sons (1996). 

M. Roncadelli, Aspetti Astrofisici della Materia OSCUTa, Bibliopolis, Napoli 
(2004). 

H. Semat, Introduction to Atomic and Nuclear Physics, Chapman and H all 
LTD (1962). 

J.C. Slater, Quantum Theory of Matter, Mc Graw-Hill, New York (1968). 

C.P. Slichter, Principles of Magnetic Resonance, Springer Verlag Berlin 
(1990) . 

S. Svanberg, Atomic and Molecular Spectroscopy, Springer Verlag Berlin 
(2003). 

D. Tabor, Gases, liquids and solids, Cambridge University Press (1993). 



XII Preface 

P.L. Taylor and O. Heinonen, A Quantum Approach to Condensed Matter 
Physics, Cambridge University Press (2002). 

M.A. Wahab , Solid State Physics (Second Edition), Alpha Science Interna­
tional Ltd. (2005). 

s. Weinberg, The first three minutes: a modem view of the origin of the 
universe, Amazon (2005). 

M. White, Quantum Theory of Magnetism, McGraw-Hill (1970). 

J .M. Ziman, Principles of the Theory of Solids, Cambridge University Press 
(1964). 

Pavia, 
J anuary 2007 

Attilio Rigamonti 
Pietro Carretta 



Contents 

1 Atoms: general aspects .................................... 1 
1.1 Central field approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2 
1.2 Self-consistent construction of the effective potential .. . . . . . .. 5 
1.3 Degeneracy from dynamical equivalence. . . . . . . . . . . . . . . . . . .. 5 
1.4 Hydrogenic atoms: illustration of basic properties ........... 7 

Problems 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14 
1.5 Finite nuclear mass. Positron, Muonic and Rydberg atoms ... 23 

Problems 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25 
1.6 Orbital and spin magnetic moments and spin-orbit interaction 27 

Problems 1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32 
1. 7 Spectroscopic notation for multiplet states. . . . . . . . . . . . . . . . .. 35 

Appendix 1.1 Electromagnetic spectral ranges and useful 
numbers ................................................ 39 
Appendix 1.2 Perturbation effects in two-levels system. . . . . . .. 40 
Appendix 1.3 Transition probabilities and selection rules. . . . .. 43 
Problems F.I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 47 

2 Typical atoms ............................................. 63 
2.1 Alkali atoms ............................................ 63 

Problems 11.1 ......................................... 70 
2.2 Helium atom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 73 

2.2.1 Generalities and ground state. . . . . . . . . . . . . . . . . . . . . .. 73 
2.2.2 Excited states and the exchange interaction. . . . . . . . . .. 76 
Problems 11.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 79 

2.3 Pauli principle, determinantal eigenfunctions and 
superselection rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 84 
Problems F.II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 85 

3 The shell vectorial model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 91 
3.1 Introductory aspects ..................................... 91 
3.2 Coupling of angular momenta ............................. 93 



XIV Contents 

3.2.1 LS coupling model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 93 
3.2.2 The effective magnetic moment ..................... 97 
3.2.3 Illustrative examples and the Hund rules for the 

ground state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 99 
Problems 111.2 ........................................ 103 

3.3 jj coupling scheme ....................................... 110 
Problems 111.3 ........................................ 114 

3.4 Quantum theory for multiplets. Slater radial wavefunctions ... 116 
3.5 Selection rules .......................................... 120 

Problems F.II1 ........................................ 121 

4 Atoms in electric and magnetic fields ...................... 129 
4.1 Introductory aspects ..................................... 129 
4.2 Stark effect and atomic polarizability ...................... 132 

Problems IV.2 ........................................ 136 
4.3 Hamiltonian in magnetic field ............................. 138 

4.3.1 Zeeman regime .................................... 139 
4.3.2 Paschen-Back regime .............................. 140 
Problems IV.3 ........................................ 141 

4.4 Paramagnetism of non-interacting atoms and mean field 
interaction .............................................. 147 

4.5 Atomic diamagnetism .................................... 151 
Problems IV.5 ........................................ 153 
Appendix IV.1 Electromagnetic units and Gauss system ...... 154 
Problems F.IV ........................................ 157 

5 Nuclear moments and hyperfine interactions ............... 167 
5.1 Introductory generalities ................................. 167 
5.2 Magnetic hyperfine interaction - F states ................... 169 

Problems V.2 ......................................... 174 
5.3 Electric quadrupole interaction ............................ 177 

Problems V.3 ......................................... 180 
Appendix V.1 Fine and hyperfine structure in Hydrogen ...... 184 
Problems F. V ......................................... 187 

6 Spin statistics, magnetic resonance, spin motion and echoes205 
6.1 Spin statistics, spin-temperature and fluctuations ............ 205 

Problems Vl.l ........................................ 210 
6.2 The principle of magnetic resonance and 

the spin motion ......................................... 214 
Problems VI.2 ........................................ 218 

6.3 Spin and photon echoes .................................. 221 
6.4 Ordering and disordering in spin systems: 

cooling by adiabatic demagnetization ...................... 223 
Problems F. VI ........................................ 226 



Contents XV 

7 Molecules: general aspects ................................. 237 
7.1 Born-Oppenheimer separation and the adiabatic approximation238 
7.2 Classification of the electronic states ....................... 242 

7.2.1 Generalities ....................................... 242 
7.2.2 Schrodinger equation in cylindrical symmetry ......... 243 
7.2.3 Separated-atoms and united-atoms schemes and 

correlation diagram ................................ 245 
Problems F.VII ....................................... 249 

8 Electronic states in diatomic molecules .................... 251 
8.1 Ht as prototype of MO approach ......................... 251 

8.1.1 Eigenvalues and energy curves ...................... 251 
Problems VIlLI ...................................... 258 
8.1.2 Bonding mechanism and the exchange of the electron .. 260 

8.2 Homonuclear molecules in the MO scenario ................. 262 
Problems VIIL2 ...................................... 266 

8.3 H2 as prototype of the VB approach ....................... 267 
Problems VIIL3 ...................................... 271 

8.4 Comparison of MO and VB scenarios in H2: equivalence from 
configuration interaction ................................. 272 

8.5 Heteronuclear molecules and the electric dipole moment ...... 275 
Problems VIIL5 ...................................... 279 
Problems F. VIII ...................................... 280 

9 Electronic states in selected polyatomic molecules ......... 285 
9.1 Qualitative aspects of NH3 and H20 molecules .............. 286 
9.2 Bonds due to hybrid atomic orbitals ....................... 286 
9.3 Delocalization and the benzene molecule ................... 292 

Appendix IX.1 Ammonia molecule in electric field and the 
Ammonia maser ......................................... 294 
Problems F .IX ........................................ 300 

10 Nuclear motions in molecules and related properties ....... 303 
10.1 Generalities and introductory aspects for diatomic molecules .. 303 
10.2 Rotational motions ...................................... 305 

10.2.1 Eigenfunctions and eigenvalues ...................... 305 
10.2.2 Principles of rotational spectroscopy ................. 306 
10.2.3 Thermodynamical energy from rotational motions ..... 309 
10.2.4 Orientational electric polarizability .................. 310 
10.2.5 Extension to polyatomic molecules and effect of the 

electronic motion in diatomic molecules .............. 311 
Problems X.2 ......................................... 313 

10.3 Vibrational motions ..................................... 316 
10.3.1 Eigenfunctions and eigenvalues ...................... 316 



XVI Contents 

10.3.2 Principles of vibrational spectroscopy and 
anharmonicityeffects .............................. 318 

Problems X.3 ......................................... 321 
10.4 Morse potential ......................................... 323 

Problems X.4 ......................................... 324 
10.5 Roto-vibrational eigenvalues and coupling effects ............ 326 

Problems X.5 ......................................... 328 
10.6 Polyatomic molecules: normal modes ....................... 332 
10.7 Principles of Raman spectroscopy ......................... 336 

Problems X.7 ......................................... 340 
10.8 Franck - Condon principle ................................ 340 

Problems X.8 ......................................... 342 
10.9 Effects of nuclear spin statistics in homonuclear diatomic 

molecules ............................................... 343 
Problems X.9 ......................................... 347 
Problems F.X ......................................... 348 

11 Crystal structures ......................................... 353 
11.1 Translational invariance, Bravais lattices and Wigner-Seitz cell 354 
11.2 Reciprocal lattice and Brillouin cell ........................ 359 
11.3 Typical crystal structures ................................. 362 

Problems F .XI ........................................ 365 

12 Electron states in crystals ................................. 369 
12.1 Introductory aspects and the band concept ................. 369 
12.2 Translational invariance and the Bloch orbital ............... 371 
12.3 Role and properties of k .................................. 374 

Problems XII.3 ....................................... 375 
12.4 Periodic boundary conditions and reduction to the first 

Brillouin zone ........................................... 377 
12.5 Density of states, dispersion relations and critical points ...... 379 
12.6 The effective e lectron mass ............................... 382 

Problems XII.6 ....................................... 383 
12.7 Models of crystals ....................................... 385 

12.7.1 Electrons in empty lattice .......................... 385 
12.7.2 Weakly bound electrons ............................ 389 
12.7.3 Tightly bound electrons ............................ 393 
Problems XII.7 ....................................... 398 
Problems F .XII ....................................... 405 

13 Miscellaneous aspects related to the electronic structure ... 409 
13.1 Typology of crystals ..................................... 409 
13.2 Bonding mechanisms and cohesive energies ................. 412 

13.2.1 Ionic crystals ..................................... 412 
13.2.2 Lennard-Jones interaction and molecular crystals ...... 414 



Contents XVII 

Problems XIII.2 ...................................... 417 
13.3 Electron states of magnetic ions in a crystal field ............. 419 
13.4 Simple picture of the e lectric transport ..................... 423 

Appendix XIII. 1 M agnetism from itinerant e lectrons ......... 427 
Problems F.XIII ...................................... 431 

14 Vibrational motions of the ions and thermal effects ........ 435 
14.1 Motions of the ions in the harmonic approximation .......... 435 
14.2 Branches and dispersion relations .......................... 437 
14.3 Models of lattice vibrations ............................... 437 

14.3.1 Monoatomic one-dimensional crystal ................. 438 
14.3.2 Diatomic one-dimensional crystal .................... 440 
14.3.3 Einstein and Debye cryst als ......................... 443 

14.4 Phonons ................................................ 447 
14.5 Thermal properties related to lattice vibrations .............. 449 

Problems XIV.5 ....................................... 451 
14.6 The Mossbauer effect .................................... 453 

Problems F .XIV ...................................... 458 

Index .......................................................... 465 



1 

Atoms: general aspects 

Topics 

Central field approximation 
Effective potential and one-electron eigenfunctions 
Special atoms (hydrogenic, muonic, Rydberg) 
Magnetic moments and spin-orbit interaction 
Electromagnetic radiation, matter and transitions 
Two-levels systems and related aspects 

The aim of this and of the following three Chapters is the derivation of the 
main quantum properties of the atoms and the description of their behavior in 
magnetic and electric fields . We shall begin in the assumption of point-charge 
nucleus with mass much larger than the electron mass and by taking into account 
only the Coulomb energy. Other interaction terms , of magnetic origin as well as 
the relativistic effects, will be initially disregarded. 

In the light of the central field approximation it is appropriate to recall the 
results pertaining to one-electron atoms, namely the hydrogenic atoms (§1.4) . 
When dealing with the properties of typical multi-electron atoms, such as alkali 
atoms or helium atom (Chapter 2) one shall realize that relevant modifications 
to that simplified framework are actually required . These are , for instance, the 
inclusion of the spin-orbit interaction (recalled at §1.6) and the effects due to 
the exchange degeneracy (§1.3, discussed in detail at §2.2) . 

The properties of a useful reference model, the two-levels system , and some 
aspects of the electromagnetic radiation in interaction with matter , are recalled in 
Appendices and / or in ad-hoc problems at the end of the Chapter (Final Problems, 
F.I). 



2 1 Atoms: general aspects 

1.1 Central field approximation 

The wave function 'ijJ (rl , r2 , .. , rN) describing the stationary state of the N 
electrons in the atom follows from the Schrodinger equation 

where in the Hamiltonian one has the kinetic energy Te, the potential energy 
Vne describing the Coulomb interaction of the electrons with the nucleus of 
charge Ze and the electron-electron repulsive interaction Vee (Fig. 1.1). 

-e, m 

Fig. 1.1. Schematic view of mul ti-electrons atom . The nucleus is assumed as a point 
charge Ze, with mass M much larger than the mass m of the e lectron , of charge -e. 

If the inter-electron interaction Vee could be neglected, t he total Hamil­
tonian would be H = L i Hi, with Hi the one-electron Hamiltonian. Then 
'ijJ(rl' r2, ... ) = ITi ¢ (ri)' with ¢ (ri) the one-electron eigenfunction. Vee does 
not allow one to separate the variables r i, in correspondence to the fact that 
the motion of a given electron does depend from the ones of the others. Fur­
thermore Vee is too large to be treated as a perturbation of [Te + Vne]. As we 
shall see (§2.2) , even in the case of Helium atom, with only one pair of inter­
acting electrons, the ground-state energy correction related to Vee is about 30 
percent of the energy of the unperturbed state correspondent to Vee = O. 

The search for an approximate solution of Eq.1.1 can initiate by consider­
ing the form of the potential energy V(ri )' for a given electron, in the limiting 
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cases of distances 'i from the nucleus much larger and much smaller than the 
average distance d of the other (N - 1) electrons: 

Ii» d 

'i «d 
- Z e2 

V('i) c::: -- + const. 
Ii 

(1.2) 

having taken into account that for neutral atoms (N = Z) when Ii »d the 
electrons screen (Z - 1) protons, while for Ii «d (N - 1) electrons yield 
a constant effective potential, as expected for an average spherical charge 
distribution (Fig. 1.2). We shall discuss in detail the role of the screening 
cloud due to the inner electrons when dealing with alkali atoms (§2.1). 

V(r) 

I , , 

/ _; 2/r 
I 

-e 
outer electron 

~ screening cloud due to the inner 
electrons, (Z-I) for Z=N 

-- --- ------ -

.. ' .. ' 

r 

. ... 

Fig. 1.2. Sketchy view of the electronic cloud screening the nuclear charge for an 
outer electron and correspondent forms of the potential energy in the limiting cases 
of large and small distances and of the effective central field potential energy (green 
solid line) . Details on the role of the screening cloud shall be given in describing the 
alkali atoms (§2 .1) . 
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In the light of the form of the potential energy suggested by Eqs. 1.2 and 
neglecting correlation effects in the electronic positions, one deals with the 
central field approximation, first considered by Hartree and Slater. In 
this context any e lectron is moving in an effective average field , due to the 
nucleus and to the other electrons, which depends only from the distance 
, == Ir l, with limiting expressions given by Eqs. 1.2. 

Within this approximation Eq. 1.1 is rewritten 

(1.3) 

implying 
(1.4) 

where the one-electron eigenfunctions are solutions of the Equation 

(1.5) 

in correspondence to a set of quantum numbers a, b ... , and to one-electron 
eigenvalues Ef, E~ .... Moreover 

(1.6) 

From the central character of V('i ), implying the commutation of 'Hi with 
the angular momentum operators, one deduces 

(1.7) 

where Yi (i)m(i) (ei , !.pi ) are the spherical harmonics and then the set of quantum 
numbers is a == ni, I i, m i . 

Thus the one-electron states are labeled b y the numbers (nl , h) , (n2 , 12) 
etc ... or by the equivalent symbols (Is), (2s) , (2p) etc .... 

The spherical symmetry associated with 2::i V('i ) implies that the total 
angular momentum L = 2:: i Ii is a constant of motion. Then one can label 
t he atomic states with quant um numbers L = 0, 1, 2 .... L(L + l)n? is the 
square of the angular momentum of the whole atom, while the number M 
(the equivalent for the atom of the one-electron number m) characterizes 
the component M'h of L along a given direction (usually indicated by z). It is 
noted that at this point we have no indication on how Land M result from the 
correspondent numbers l i and mi. The composition of the angular momenta 
will be discussed at Chapter 3. Anyway, since now we realize that the atomic 
states can be classified in the form S, P, D, F etc ... in correspondence to the 
values L = 0, I, 2, 3 etc .... 
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1.2 Self-consistent construction of the effective potential 

In the assumption that the one-electron wavefunctions ¢a(ri) have been found 
one can achieve a self-consistent construction of the effective potential energy 
V(ri)' As it is known -el¢a(r)1 2dT can be thought as the fraction of electronic 
charge in the volume element dT. Owing to the classical analogy, one can write 
the potential energy for a given j-th electron as 1 (see Fig. 11.1) 

(1.8) 

This relationship between V(r) and ¢a suggests that once a given V(r) is 
assumed, Eq. 1.5 can be solved (by means of numerical methods) to obtain 
¢(ri) in the form 1.7. Then one can build up a new expression for V(ri) and 
iterate the procedure till the radial parts of the wavefunctions at the n-th step 
differ from the ones at the (n-l)th step in a negligible way. This is the phys­
ical content of the self-consistent method devised by Hartree to obtain 
the radial part of the one-electron eigenfunctions or, equivalently, the best 
approximate expression for V(ri)' Here we only mention that a more appro­
priate procedure has to be carried out using eigenfunctions which include the 
spin variables and the dynamical equivalence (§1.3) , with the antisymmetry 
requirement. Such a generalization of the Hartree method has been introduced 
by Fock and Slater and it is known as Hartree-Fock method. The appropri­
ate many-electrons eigenfunctions have the determinantal form (see §2.3). 
A detailed derivation of the effective potential energy for the simplest case of 
two electrons on the basis of Eq. 1.8 is given in Prob. 11.2.3. 

The potential energy V(ri) can be conveniently described through an ef­
fective nuclear charge Zeff(r) by means of the relation 

(1.9) 

(now the index i is dropped). The sketchy behavior of the effective nuclear 
charge is shown in Fig.1.3. The dependence on r at intermediate distance has 
to be derived, for instance, by means of the self-consistent method or by other 
numerical methods. 

1.3 Degeneracy from dynamical equivalence 

From Eqs. 1.3, 1.5 and 1. 7 the N -electron wavefunction implies the assign­
ment of a set of quantum numbers ai to each i-th electron. This assignment 

1 Eq.1.8 can also be derived by applying the variational principle to the energy 
function constructed on the basis of the cPa's with the complete Hamiltonian, for 
a variation 15cPa leaving the one-electron eigenfunction normalized. 
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r 

Fig. 1.3. Sketchy behavior of the effective nuclear charge acting on a given electron 
at the distance r from the nucleus of charge Ze, arising from the screening due to 
other electrons. The charge (Z - N - 1) (1 for neutral atom with Z = N) is often 
called residual charge (for a quantitative estimate of ZeJf (r) for Helium atom see 
Prob. 11.2.3). 

cannot be done in a unique way, since the electrons are indistinguishable, 
the Hamiltonian H = L i Hi being invariant upon exchange of the indexes 
(exchange symmetry). Therefore, for a state of the atom correspondent to 
a given eigenvalue, one has to write an eigenfunct ion combining with equal 
weights all the possible configurations, with the quantum numbers a i variously 
assigned to different electrons. Therefore 

1/! (r l ,r2 , ... , r N) = LP[¢al (r l )¢a2 (r2) ... ¢an (r N)] 
p 

where P is an operator permuting electrons and quantum numbers. 

(1.10) 

It should be stressed that this remark on the role of the dynamical equiv­
alence is incomplete and somewhat misleading. In fact we shall reformulate it 
after the introduction of a further quantum number, the spin number. More­
over, we will have to take into account the Pauli principle, that limits the 
acceptable wavefunctions obtained upon permutation to the ones changing 
sign (antisymmetric). This topic will be discussed after the analysis of He­
lium atom, with two electrons (§2.2). The eigenfunction in form of the Slater 
determinant (§2.3) does take into account the exchange degeneracy and the 
antisymmetry requirement. 

We conclude these preliminary aspects observing that a proper quantum 
treatment, within a perturbative approach, at least should take into account 
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the modifications to the central field approximation due to the Hamiltonian 

(1.11) 

resulting from the difference between Hamiltonian in 1.1 and the one in 1.3. 
This is the starting point of the Slater theory for multiplets. 

1.4 Hydrogenic atoms: illustration of basic properties 

The central field approximation allows one to reduce the Schrodinger equation 
to the form given by Eq. 1.3 and by Eq. 1.5. This latter suggests the oppor­
tunity to recall the basic properties for one-electron atoms, with Z protons at 
the nuclear site (Hydrogenic atoms). The Schrodinger equation is rewritten 

(1.12) 

with cPn ,l,m of the form in Eq. 1.7. To abide by the description for the Hydrogen 
atom, one can substitute everywhere the proton charge (+e) by Ze in the 
eigenvalues and in the wavefunctions. Then 

(1.13) 

(with RH Rydberg constant, given by 109,678 cm- 1 , correspondent to 13.598 
eV). Yim are the spherical harmonics entering the wavefunction cPn,l,m (see 
Eq. 1.7), reported in Tables 1.4.1 up to l = 3. 

or 

The radial funct ions Rnl(r) in Eq. 1.7 result from the solution of 

_ 112 ~r2dR + [l(l + 1)112 _ ze2 ]R=ER 
2mr2 dr dr 2mr2 r ' 

(1.14) 

(1.15) 

namely a one-dimensional (lD) equation with an effective potential energy 
V ej j which includes the centrifugal term related to the non-inertial frame 
of reference of the radial axis. The shape of V ej j is shown in Fig.8.1. In 
comparison to the Hydrogen atom, Eq. 1.15 shows that in Hydrogenic atoms 
one has to rescale the distances by the factor Z. Instead of ao = 112 / me2 = 
0.529 A (radius of the first orbit in the Bohr atom, corresponding to an energy 
- RHhc = -e2/2ao), the characteristic length becomes (ao/Z). 
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Table l.4.1a. Normalized spherical harmonics, up to l = 3. 

s( l = 0) 

p(l = 1) 

d(l = 2) 

f(l = 3) 

Y;2 -2 = ~ (X-iy)2 - ~sin2ee-2i</> 
3271" r2 3271" 

y; _ = !l5 z (x-iy) = !l5 sinecosee-i</> 
2 1 V 87f r2 V 87f 

Y20 = j"li;3z: j r2 = j"li;(3cos2e - 1) 

y; = _ !l5 z(x+iy) = _ !l5 sinecoseei</> 
21 V 87f r2 V 87f 

15 (X+iy)2 _ 
Y22 = 3271" - r- 2-

y; 35 (X-iy) 3 _ 35· 3e -3i</> 
3-3 = 6471" - r- s- 6471" szn e 

Y3- 2 = /¥ifr Z(X~3iy)2 = /¥ifrsin2eCOSee-2i </> 

y; _ !2l (5z 2 -r2)(x-iy) _ !2l(5 2e _ 1) . e -i</> 
3- 1 - V i341r r3 - V i341r cos sm e 

y; - 17 (5z 2 -3r2 )z _ 17(5 2e 3) e 
30 - V I&; r3 - V I&; cos - cos 

y; - !2l (5z 2-r2)(x+iy) _ !2l(5 2e 1)· e i</> 
31 - - V i341r r3 - - V i341r cos - sm e 

Y32 = /¥ifr z(X;3iy )2 = /¥ifrsin2eCOsee2i</> 

y; _ _ ..1Q.. (x+iy) 3 _ ..1Q..sin3ee3i</> 
33 - 6471" r S 6471" 

Since 11>(r, e, 1> WdT corresponds to the probability to find the electron 
inside the volume e lement dT = r2 sinedrded1> , from the form of the eigenfunc­
tions the physical meaning of the spherical harmonics is grasped: Y *Y sineded1> 
yields the probability that the vector r , ideally following the electron in its 
motion, falls within the elemental solid angle dJ? around the direction defined 
by the polar angles e and 1>: 
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Table 1.4.1b. Normalized spherical harmonics in the real form (see text). 

s(l = 0) Yoo = ~ 
V 471" 

p(l = 1) Y = j..l..!!'. = j..l..sin8cos¢ x 471" r 4n 

Yo = jl;u = jl;sin8sin¢ y 471" r 471" 

Y = jl;.f = jl;cos8 z 4n r 4n 

d(l = 2) Y {J; 3z2_r2 {J;( 28 ) Z2 = 16n ----:rr- = 1671" 3cos - 1 

Y = V* zx = V*sin8cos8cos¢ zx 471" r:z 471" 

y - V*~ - V* . 8 8 ' ¢ zy - 471" r2 - 471" stn cos stn 

Y - j1i x2_y2 - j1i . 28 2¢ x2_y2 - 1671" r2 - 16n stn cos 

Y = JTJ!y = !1isin28sin2¢ xy 471" r:z 1671" 

f(l = 3) Y 1- 7 (5z 2-3r2)z i 7 (5 28 3) 8 Z3 = 1671" r3 = 1671" COS - cos 

y - /"if (5Z 2-r2)x - /"if(5 28 1)' 8 ¢ z2 x - 32n r3 - 3271" COS - stn cos 

Y - /"if (5z2_r2)y - /"if(5 28 1)' 8 . ¢ Z2 y - 3271" r3 - 32n COS - stn stn 
Y - ~Z(X2_y2) _ ~ . 28 8 2¢ z(x2_y2) - 1671" rO - 1671"stn cos cos 

Y = I¥iEEJL = ~sin28cos8sin2¢ zxy 471" r3 1671" 
Y 2 = jli; (3x2y_ y3) = jli;sin38cos3¢ x y 3271" rO 32n 
Yo - jli;.(X3_3y2 X) - jli;i' 38 . 3¢ y2x - 3271" r3 - 3271" stn stn 

In the states labeled by the quantum numbers (n , I , m) the eigenvalue 
equations for the modulus square and for the z-component of the angular 
momentum are 

['2¢nlm = Rnl(r)['2Yzm(8 , cp ) = Rnl(r)l(l + 1)1i?Yzm(8, cp); 
lz¢nlm = Rnl(r)LYzm(8, cp) = Rnl(r)lz8 1m(8) eim<p = 

= Rnl(r)81m (8)lzeim<p = Rnl(r)Yzm(8, cp)mn (1.16) 

Finally, it is noted that a given state of the Hydrogenic atom is Z2 times 
more bound than the correspondent state in the Hydrogen atom because, on 
the average, the electron is Z -times closer to a nuclear charge increased by 
a factor Z. 

The normalized wave functions for Hydrogenic atoms are reported in Table 
I.4.2. It is remarked that for r « ao/Z one has 

(1.17) 

while for large distance 
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0.50 

0.25 

0.00 +-----Ir-------'~----------_+ 

-0.25 

-0.50 -I--------.d r--- _ _ 

o 2 4 6 8 10 

r/(a/Z) 
Fig. 1.4. Effective potential energy in the 1D Schrodinger equation for R(r) (Eq. 
1.15), for the lowest energy states. Horizontal lines indicate the eigenvalues for n = 

1,2 and 3, given by _Z2 RHhc/ n 2 (ao = h 2 /me2 ) . 

r Z 
(cPnlm)r-+oo ex: Rnl ex: e - ao n (1.18) 

From the wavefunctions relevant properties of the states, such as the radial 
probability density 

(1.19) 

or the expectation values of any positional function fer) 

(1.20) 

can be derived. The radial probability densities for the Is, 2s and 2p states 
are depicted in Fig. 1.5. 
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Table 1.4.2. Normalized eigenfunctions for Hydrogenic atoms, for n = 1,2 and 
3. 

n l m Eigenfunctions 
1 0 0 cP = ---.L( ~)3/2e-Zr/ao 100 ..j7r ao 
2 0 0 cP = _ 1_( ~ )3/2 (2 _ Zr )e- Zr/2ao 200 4y'2;;" ao ao 
2 1 0 cP = _1_(~)3/2Zre-Zr/2ao cosB 210 4y'2;;" ao ao 
2 1 ± 1 cP = =f _ 1_( ~ )3/2 Zr e- Zr/2aosinBe±i<p 21±1 S..j7r ao ao 
3 0 0 cP = _1_(~)3/2(27_18Zr +2Z2r2 )e-Zr/3ao 

300 SI vI31r ao ao --ar-
3 1 0 cP = V2 (~)3/2(6_ Zr ) Zre-Zr/3aocosB 310 Sl..j7r ao ao ao 
3 1 ± 1 cP = =f _ 1_( ~ )3/2 (6 _ Zr ) Zr e- Zr/3aosinBe±i<p 31±1 SI..j7r ao ao ao 
32 0 cP = _1_(~)3/2(Z2r2)e-Zr/3ao(3cos2B - 1) 320 SI y'6;;" ao --ar 
32 ± 1 cP = =f _ 1_ ( ~ )3/2 ( Z9r2 )e-Zr/3aosinBcosBe±i<p 32±1 Sl..j7r ao --ar 
32 ± 2 cP = _1_( ~ )3/ 2( z 9,r2 )e-Zr/3aosin2Be±2i<p 

32±2 162..j7r ao --ar-

For spherical symmetry Pnl(r) can be written as 47rr2IcPnlI 2. It should be 
remarked that for Z = 1 the maximum in PIs occurs at r = ao, corresponding 
to the radius of the first orbit in the Bohr model (see Problem 1.4.4). For the 
states at n = 2 the correspondence of the maximum in Pnl (r) with the radius 
of the Bohr orbit pertains to the 2p states. 

The first excited state (n = 2) , corresponding to the eigenvalue 
E2 = - (Z2 e2/2ao)(1 /4 ), is the superposition of four degenerate states: 
2s , 2Pl, 2po and 2p- l' To describe the 2p states, instead of the wavefunctions 
cP2p,m=±1,0 (see Table 1.4.2) one may use the linear combinations 

1 
cP2px = y'2 [cP2P,1 + cP2p,- I] ex sinBcos<p ex x 

i 
cP2py = y'2 [cP2P,1 - cP2p,- I] ex sinBsin<p ex y 

cP2pz = cP2p,0 ex cosB ex z (1.21 ) 

From these expressions, also in the light of t he P2p(r) depicted in Fig.1.5 
and in view of the equivalence between the x, y and z directions, one can 
represent t he atomic orbitals (the quantum equivalent of t he classical orbits) 
in the form reported in Fig. 1.6. 

The degeneracy in x, y, z is necessary, in view of the spherical symmetry 
of the potential. On the contrary the degeneracy in l , namely same energy for 
s, p, d ... states for a given n, is accidental, being the consequence of the par­
ticular, Coulombic form of the potential. We shall see that when the potential 
takes a different radial dependence because of Zeff(r) the degeneracy in l is 
removed (§2.1). 
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Fig . 1.5. Radial proba bility densities for I s, 2s and 2p states in Hydrogenic atoms. 

2p, 

p-orbitals 

Fig. 1.6. Ill ustra tive plots, for the 2p sta tes of Hydrogenic atoms , of the a tomic 
orbitals , defined as the shape of the surfaces where l¢nll 2 = constant , meantime 
with probability of presence of the e lectron in the internal volume given by 0 .9. It 
should be remarked that the sign + or - , related to the sign of Y2p, can actually be 
interchanged . However the rela tio n ship o f the sign a long the different directions is 
relevant , since it fixes the parity of the state under the operation of reversing the 
direction of the axes or, equivalently, of bringing r in - r . 

It is reminded that the difference between the 2Pl ,O,-1 and the 2px,y,z 
representation involves the e igenvalue for lz. The former are e igenfunct ions of 
lz while the latter are not, as shown for instance for ¢2px : 

(1.22) 
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Obviously the difference is only in the description and no real modification 
occurs in regard of the measurements. This is inferred, for example, from the 
definition of ¢2px in t erms of the basis of the e igenfunctions for [z (see Eq. 
1.21). 

Finally in Fig. 1.7a the radial probability densities for the n = 3 states 
are plotted. The linear combinations of 3d states with different m 's , leading 
to the most common representation, with the correspondent atomic orbitals 
are shown in Fig. 1.7b. 

a) 

;;;: 

b) 

d-orbitals 

Yq.p= 
(l.p=x,y,z 

0.1 

0.0 
0 

I 
I 

I 
I 

I 

eg 

sin29 cos2$ 

eI:?-Yl 

/ \ 

10 15 
r/(arlZ) 

3cos29-1 

elz2 

--1l- 3,IK O 
. . .... n;:3, 1= 1 
- - - - 1l~3,1~2 

20 25 

sin9cos9 
sin$ 

elyz 

30 

I2g 

sin9cos9 sin29 sin2tJ! 
COS$ 

elxz ~~y 

Fig. 1.7. Radial probability densities (a) for the n = 3 states of Hydrogenic atoms. 
In part b) of the Figure the angular distribution of the 3d atomic orbitals is reported. 
T he d z 2 and dx 2 _y2, grouped together are commonly called e g levels, while the d xy , 

dxz and dyz are called t 2g levels (we shall return to t hese aspects at §13.3) 

Some expectation values of current use a re reported in Table 1.4.3 
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Table 1.4.3 Expectation values of some quantities in Hydrogenic atoms 

< r >nlm=- J cP~lm (r)rcPnlm(r)dT =- Jooo IRnl 12r3dr = 

= n2~ [1 + ~(1 - 1(~"t1)) ] = ~~ [3n2 - l(l + 1)] 

< r2 >nlm= ~2 (~)2 [5n2 + 1 - 3l(l + 1)] 

< r - l >nlm= [n2~ ]- 1 

< r- 2 >nlm= ~[n3(l + ~)]-1 ao 

Z2 e2 < V >nlm = - --2 aon 

Z2e2 < T >nlm= 2aon2 

-3 Z3 < r >nlm= agn3[1 (I+l )(l+ ~) J (l f= 0) 

For l = 0 one has the divergence in the lower limit of the integral, 
since in < r - 3 >nlm = J cP~1 T13 cPnlr2 sinBdrdBdcp 

cPnl ex rl for r ---+ 0 (see Eq. 1.17). 

Problems 1.4 

Problem 1.4.1 For two independent electrons, give a simple proof of Eqs. 
1.4 and 1.6. 

Solution: 
From Hl cPl = ElcPl and H 2cP2 = E 2cP2 , by multiplying the first equation 

for cP2 and the second for cPl, recalling that Hl,2 do not operate on cP2,1, 
respectively, one has H1cPlcP2 = E 1cPlcP2 and H 2cPlcP2 = E 2cPlcP2 ' By summing 
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Problem 1.4.2 One electron is in a state where the eigenvalue of the z-
component of the angular momentum is 311 while the square of the angular 
momentum is 12112. Evaluate the expect ation value of the square of the x-
component of the a ngular momentum. 

Solution: 
2 A A A A 

In 11 units, from < I; > + < l~ >= 12 - < I; >, by taking into account 

that x and y directions are equivalent , one deduces < [; >= (12 - 9) / 2 = 1.5. 
The expectation value of [x is zero. 

Problem 1.4.3 Prove that the angular momentum operators [z and [2 
commute with the central field Hamiltonian and that a common set of eigen­
functions exists, so that Eq. 1.16 follows. 

Solution: 
In Cartesian coordinates, omitting i11 

In analogous way the commutation rules for the components turn out 

In spherical polar coordinates, since 

[2 = _ 112 [_1_ o(sinefe) + _1_ 02 ] 
sine oe sin2e Orp2 

while L = -i11o / o rp one finds [[2, LJ = O. 
For the central field Hamiltonian 'H = - V'2 + V(r) and in Cartesian coor­

dinates, for the kinetic energy 

2 0 20 0 0 2 Tl z = yV' - - x V' - = (y- - x -)V' = lzT ox oy ox oy 

while for the rp-independent potential energy V(r) the commutation with [z 
follows. 
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Now we prove that when an operator M commutes with the Hamiltonian 
a set of simultaneous eigenstates can be found , so that the two operators (one 
being H , although the statement holds for any pair of commuting operators) 
describe observables with well defined values. 

From MH - HM = 0 any matrix element involving the Hamiltonian eigen­
functions reads 

< i lMH - HM IJ >=< i lMHIJ > - < i lHM IJ >= o. 

From the multiplication rule 

L < i lM ll >< llH lj > - L < i lH lk >< k lM lj >= 0 . 
k 

H being diagonal one writes 

< i lMIJ >< j lH lj > - < i lH li >< ilMlj >= 0, 

namely < ilMlj > (Ei - E j ) = 0, that for i i= j proves the statement, when 
E j i= Ei (for degenerate states the proof requires taking into account linear 
combinations of the eigenfunctions). 

Problem 1.4.4 In the Bohr model for the Hydrogen atom (with nuclear 
mass M ---+ (0) the electron moves along circular orbits (stationary states) 
with no emission of electromagnetic radiation. The Bohr-Sommerfeld con­
dition reads 

f pedB = lh l = 1,2, ... 

Pe being the moment conjugate to the polar angle in the plane of motion. 
Show that this quantum condition implies that the angular momentum is an 
integer multiple of n and derive the radius of the orbits and the correspondent 
energies of the atom. 

Plot the energy levels in a scale of increasing energy and indicate the 
transitions allowed by the selection rule £::.l = ± 1, estimating numerically the 
wavelengths of the first lines in the Balmer spectroscopic series (transi­
tions n" ---+ n' , with n' = 2). 

Compare the energy levels for H with the ones for He+ and for Li2+ . 
Finally consider the motion of the electron in three-dimensions and by 

applying the quantum condition to the polar angles, by means of vectorial 
arguments obtain the spatial quantization lz = mn for the z-component of 
the angular momentum. 

Solution: 
From the Lagrangian L = J(aB/ at)2 / 2 + e2/r one has Pe = JaB/at , with 

J moment of inertia and aB / at = w = constant. The quantum condition 
becomes 
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so that mr2w27f = lh and mvr = In. 
From the latter equation and the equilibrium condition for the stationary 

orbits, where mv2 jr = e2 jr2, the radii turn out 

with ao = n2 jme2 = 0.529 A. 
The energy is 

1 e2 e2 
E = T + V = -mv2 - -

2 r 2r 

(in agreement with the virial theorem, < T >=< V > nj2 , with n exponent 
in V ex rn) and thus 

as from Eq. 1.13, for Z = 1. 
A pictorial view of the orbits is 
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and the levels are 

n ioni zation limit 
o 
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Balmer series 

-'2-: r 
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The Balmer series is shown below 
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Comparison of the energy levels with the ones in He+ and in Li2+ : 
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In the three-dimensional space 

z 

B'(in the plane 
of motion) 

and Po' dB' = PodB+p<p d<p (since the energy is the same in the frame of reference 
(r, B') and (r, B, <p )). Thus 

with m quantum number and Pip constant , so that Pip = mn and PO' = kn, 
while coso: = m j k, with k = 1,2,3 ... and m varies from - k to + k. 
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The pictorial view of the spatial quantization in terms of precession of the 
angular momentum for I = 2 (the "length" being Jl(l + 1)1i): 

z 

Problem 1.4.5 In the first atomic model, due to Thomson, the atom was 
idealized as a uniform positive electric charge in a sphere, with point-charge 
electrons embedded in it. By referring t o Hydrogen atom derive t he mot ion 
of t he e lectron and in the assumpt ion t hat the radius of the sphere R = 1 A 
estimate the frequency of the radiation expected in t he classical description. 

Solution: 
The force at the distance, from the center of the sphere is 

e, 3 e 
f(,) = - --R3 ,2 

and the e lectron motion is harmonic w ith angular frequency w = J e2 / mR3. 
For m = 9.0910- 28 g, e = 4.8 x 10- 10 u.e.s . and R = 1 A the frequency turns 
out v = 2.53 X 1015 sec- I. In the classical picture the emission is at the same 
frequency (and multiples) of the acceleration. 

Problem 1.4.6 In the assumption that the proton can be thought as 
a sphere with homogeneous charge distribution and radius R = 10- 13 cm, 
evaluate the shift in t he ground state e nergy of t he Hydrogen atom due t o the 
finite size of the nucleus in the perturbative approach (Note that R « ao). 
Repeat the calculation for uniform distribution onto the surface of the sphere. 

Solution: 
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At the distance r < R from the origin the potential energy is 

The difference with respect to the energy for point charge nucleus implies an 
energy shift given by 

and for r < R « ao 

corresponding to about 3.9 x 10-9 eV. 
For a uniform distribution onto the surface the perturbation Hamiltonian 

is 'Hp = +e2 /r - e2 / R, for 0 :s; r :s; R. The first order energy correction is 

Problem 1.4.7 For a Hydrogenic atom in the ground state evaluate the 
radius R of the sphere inside which the probability to find the electron is 0.9. 

Solution: 
From 

foR 47rr2 1¢181 2dr = 0.9 

with ¢18 = Jl/7r(Z/ao)3/2 exp( -Zr/ao), since 

a trial and error numerical estimate yields R c::: 2.66ao/Z. 

Problem 1.4.8 In the assumption that the ground state of Hydrogenic 
atoms is described by an eigenfunction of the form exp( -ar2 /2), derive the 
best approximate eigenvalue by means of variational procedure. 
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Solution: 
The energy function is E(a) =< 1>11t11> > / < 1>11> >, with 

1t = _ (n2 /2m) [(d2 /dr2) + (2/r)d/dr] - (Ze2/r) 

(see Eq. 1.14). 
One has < 1>11> >= 47r(1/4a)J7r/a, while 

< 1>11t11> >= 47r [(3n2 /16m)J7r/a - (Ze2/2a) ] 

Then 

3n2 2~ E(a) = -a - 2Ze -
4m 7r 

From dE/da = 0 one has a;1i2n = 4mZe2 /3n2 J7f and E min = - 4e4 Z2 m /37rn2 c::: 
0.849E~ (for Z = 1). 

Problem 1.4.9 Prove that on the average the electronic charge distribu­
tion associated with n = 2 states in Hydrogenic atoms is spherically symmet­
ric. Observe how this statement holds for multi-electrons atoms in the central 
field approximation. 

Solution: 
The charge distribution is controlled by 

1 2 1 2 2 2 411>2,0,01 + 4[11>2, 1,- 11 + 11>2, 1,01 + 11>2,1 ,11 ] 

where the latter term (see Table 1.4.1) is proportional to [(1/2)sin2B+cos2B+ 
(1/2)sin2B] = 1. 

In the central field approximation the statement holds, the wavefunctions 
being described in their angular dependence by spherical harmonics (This is 
a particular case of the Unsold theorem L::~: ll~m Yi ,m = (2l + 1)/47r). 

Problem 1.4.10 On the basis of a perturbative approach evaluate the 
correction to the ground state energy of Hydrogenic atoms when the nuclear 
charge is increased from Z to (Z + 1) (1000 xnexp( - ax)dx = n!/an+l). 

Solution: 
The exact result is E Z+l = - (e2/2ao)(Z + 1)2. 
The perturbative correction reads 

E (l) _ J( A.1S )* e2 (A.1S )d _ 47re2 Z3 J - 2 Zr d _ e2 Z - - 'PZ - 'PZ T - - e ao r r - - -
per r 7ra~ ao 

In (_ e2 /2ao) units the energy difference is (2Z + 1) and for large Z this would 
practically coincide with 2Z. It is noted that for the fractional correction goes 
as l/Z , since EO ex Z2. 



1.5 Finite nuclear mass. Positron, Muonic and Rydberg atoms 23 

1.5 Finite nuclear mass. Positron, Muonie and Rydberg 
atoms 

To take into account the finite nuclear mass M in Hydrogenic atoms one can 
substitute the e lectron mass m with the reduced mass fL = Mmj(M + m). In 
fact this results from the very beginning, namely from the classical two-body 
Hamiltonian, the kinetic energy being 

namely the one for a single mass fL rotating with angular velocity w at the 
distance r : 

Center of mass 

The potential energy does not change even though the nucleus is moving 
and therefore in order to account for the effects of finite nuclear mass, one 
simply substitutes m for fL in the eigenvalues and in the eigenfunctions. Then 

(1.23) 

with a(; = Ji2 j fLe2 . In particular, the wavenumbers of the spectral lines (see 
Prob. 1.4.4) are corrected according to 

_ 2 1 1 1 
v = Z RH ( m) ( 2 - 2) 

1 + M n f n i 
(1.24) 

where RH is the Rydberg constant for the Hydrogen in the assumption of 
infinite nuclear mass (see Eq. 1.13). 

The Deuterium has been discovered (1932) from slightly shifted weak 
spectroscopic lines (isotopic shift), related to the correction to the eigenval­
ues in Eq. 1.23, due to the different nuclear masses for Hand D. 

A two particle system where the correction due to finite "nuclear" mass is 
strongly marked is obviously the positronium i.e. the Hydrogen-like "atom" 
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where the proton is substituted by the positron. The reduced mass in this 
case is JL = m j 2 , implying strong corrections to the eigenvalues and to the 
correspondent spect ral lines ( and to other effects that w e s hall discuss in 
following Chapters). 

In Hydrogenic atoms it is possible to substitute the e lectron with a negative 
muon. From high energy collisions of protons on a target , two neutrons and 
a negative pion are produced. The pion decays into an antineutrino and a 
negative muon, of charge -e and mass about 206.8 times the e lectron mass. 
The muon decays into an electron and two neutrinos, with life-time T ':::' 2.2JLs. 
Before the muon decays it can b e t rapped b y atoms in "electron-like orbits" , 
thus generating the so called muonic atoms. 

Most of the results derived for Hydrogenic atoms can be transferred to 
muonic atoms by the substitution of the electron mass with the muon mass 
m" = 206.8m. Thus the dist ances h ave t o b e rescaled b y t he same amount 
and the muonic atoms a re very "small" , the dimension being of the order 
or less of the nuclear size (see Fig. 1.8). It is obvious that in this condition 
the approximation of nuclear point charge and Coulomb potential must be 
abandoned. 

Fig. 1.8. Sketch of 1</->181 2 for a muon in Pb (Z = 82) in the I s sta te in the assumption 
of point charge nucleus (red line) , in comparison with the charge distribut ion of the 
nucleus itself, of radius around 6 F ermi (dashed area). 

However , qualitatively, in the muonic atoms the eigenvalues can still be 
obtained from the ones in Eq. 1.13 by mult iplying for 206.8. Under this ap­
proximation t he wavenumbers of the correspondent s pectral lines become 
v" = 206.8 VH and the emission falls in the X-ray spectral range. The ion­
ization potential is increased up to several MeV 2. 

2 It should be observed tha t dramatic effect s in muonic a toms involve a lso other 
quantities or interactions, for inst ance the spin-orbit interaction and the hyperfine 
field (see §5.1) 
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Somewhat opposite to the muonic atoms are the "gigantic" Rydberg 
atoms, in which the electron, usually the one outside the inner shells (see the 
alkali atoms at §2.1) on the average is at very large distance from the nucleus. 
These atoms are found in interstellar spaces or can be produced in laboratory 
by irradiating atomic beams with lasers. The Rydberg atoms are therefore 
similar to Hydrogen atoms in excited states, the effective charge Z eJJ (Fig. 
1.3) being close to unit. Typically the quantum number n can reach several 
tens, hundreds in cosmic space. Since the expectation value of the distance 
(Table 1.4.3) increases with n2 , the "dimension" of the Rydberg atoms can 
reach 103 - 104 A. In these states the life time is very long (we shall see 
in Appendix 1.2 how the life time is related to the spontaneous emission of 
radiation) of the order of one second instead of the typical 10- 8 s for inner 
levels in the Hydrogenic atoms. The eigenvalues scale with n 2 (Eq. 1.13) and 
become of the order of 10- 2 eV. Thus the Rydberg atoms are easily ionized 
and highly polarizable, the e lectric polarizability increasing approximately 
with the seventh power of the quantum number n (see §4.2 and Problem 
F.IV.ll). 

Problems 1.5 

Problem 1.5.1 In the Hydrogen atom the He> line (see Prob. 1.4.4) has a 
wavelength 6562.80 A. In Deuterium the He> line shifts to 6561.01 A. Estimate 
the ratio of the proton to deuteron mass. 

Solution: 
From Eq. 1.24, AD / AH = (1 + m /MD)/ (l + m / M H) and then 

m(MH - MD) ~ m(MH - MD) 1 79 M.ti. - 1 
_ _-__ .__ ~ _M~D~ __ 

M HMD(1 + ~1) MHMD 6562.8 1836 

yielding MH /MD ':::' 0.4992, i. e. MD = 2.0032MH. 

Problem 1.5.2 Show that in Rydberg atoms the frequency of the photon 
emitted from the transition between adjacent states at large quantum numbers 
n is close to the rotational frequency of the electron in the circular orbit of 
the Bohr atom (a particular case of the correspondence principle). 

Solution 
From Eq. 1.24, by neglecting the reduced mass correction, the transition 

frequency turns out 
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which for ni,nf» 1 and n i - nf = 1 becomes v c:::: 2RHc/n3. 
The Bohr rotational frequency, (see Problem 1.4.4) by taking into account 

the equilibrium condition mv2/r = e2 /r2, results 

mvr nlim2e4 

Vrot = 21fmr2 = 21fmn4li4 

Problem 1.5.3 By direct scaling arguments estimate the order of mag­
nitude of the corrections in the wavefunction and in the eigenvalue for the 
ground state of Hydrogen when the electron is replaced by a negative muon. 

Solution: 
Since j.L-l = (mp1 + m;/) , ao in the wavefunction is corrected by a factor 

c:::: 186. Since the eigenvalue depends linearly on the mass, the energy is larger 
than the one in Hydrogen atom by a factor c:::: 186. It is noted that these 
estimates neglect any modification in the potential energy. This is somewhat 
possible since Z = 1, while for heavy atoms (see Fig. 1.8) one should take 
into account the relevant modification in the potential energy. Similar con­
siderations hold for Protonium (i.e. the "atom" with one positive and one 
negative proton) , where only the states at small n are sizeably affected b y the 
modified nuclear potential. 

Problem 1.5.4 By direct scaling arguments evaluate how the ground state 
energy, the wavelength of (2p ---+ Is) transition and the life time of the 2p 
state are modified from Hydrogen atom to Positronium (for the life time see 
Appendix 1.3 and neglect the annihilation process related to the overlap of 
the wavefunctions in the Is state). 

Solution: 
The reduced mass is about half of t he one in Hydrogen. Therefore the 

eigenvalue for the ground state is 6.8 eV, instead of 13.6 eV. The transition 
frequency is at wavelength 2430 A. 

For the life-time, one has to observe from Appendix 1.3 that the decay 
rate is proportional to the third power of the energy separation and to the 
second power of the dipole matrix element. Since the energy separation is one 
half while the length scale is twice, the decay rate is 1/ 2 and the life time 
is increased by a factor 2, namely from 1.6 ns to 3.2 ns. One could remark 
that nuclear-size effects, which are relevant in high-resolution spectroscopy for 
Hydrogen (App. V.1), are absent for positronium. 

Problem 1.5.5 In experiments with radiation in cavity interacting with 
atoms, collimated beams of 85Rb atoms in the 63p state are driven to the 61d 
state. On the basis of the classical analogy (see Problem 1.5.2) estimate the 
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frequency required for the transition, the "radius" of the atom (for n = 63) 
and the order of magnitude of the electric dipole matrix element. 

Solution: 
v ':::' 2RHciJ.njn3 = 55.2 GHz; < r >':::' n2ao = 2100.4 A; dipole matrix 

element 15 ':::' e < r >= 1.009 x 10-14 u.e.s. cm. 

Problem 1.5.6 In a Rydberg atom the outer electron is in the n = 50 
state. Evaluate the electric field E required to ionize the atom (Hint: assume 
a potential energy of the form V(r) = _e2 jr - erEcosB and disregard the 
possibility of quantum tunneling). 

Solution: 
From dV j dr = 0 the maximum in the potential energy is found at r m = 

JejE, where V(rm) = -2e3/ 2v'£. 
The energy of the Rydberg atom is approximately En ':::' (-e2 j2ao)(ljn2) 

and equating it to V(rm) one obtains (e2 j2ao)(ljn2) = 2e3/ 2v'£, i.e. E = 
ej16a6n4, corresponding to 

E,:::, 51Vjcm 

1.6 Orbital and spin magnetic moments and spin-orbit 
interaction 

As we shall see in detail in Chapter 2, the spectral lines observed in moderate 
resolution (e.g. the yellow doublet resulting from the 3p f-4 3s transition in 
the N a atom) indicate that also interactions of magnetic character have to be 
taken into account in dealing with the electronic structure of the atoms. 

The magnetic moment associated with the orbital motion, somewhat cor­
responding to a current, can be derived from the Hamiltonian for an electron 
in a static magnetic field H along the z direction, with vector potential 

1 
A = 2H x r 

and scalar potential ¢ = o. 
The one-electron Hamiltonian3 is 

1 e 2 
H = - (p + - A) + V - e¢ 

2m c 

yielding, to the first order in A , the operator 

en H = Ho - i-A.V 
mc 

(1.25) 

(1.26) 

(1.27) 

3 This form of classical Hamiltonian associated with the force F = -e£ -e(v /c) xH 
is required in order to have the kinetic energy expressed in terms of the generalized 
moment p = mv - eA /c (see the text by Goldstein quoted in the Preface) so 
that, in the quantum mechanical description, p = -in V . 
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where Ho is the Hamiltonian in the absence of magnetic or electric fields and 
where it has been t aken into account that A and V are commuting opera­
tors (Lorentz gauge). Therefore, in the light of Eq. 1.25 the Hamiltonian 
describing the effect of the magnetic field is 

en e 
Hmag = - i--H x r.V = --l.H 

2mc 2mc 
(1.28) 

Compared to the classical Hamiltonian - M.H for a magnetic moment in a 
field, Hmag allows one to assign to the angular momentum I a magnetic mo­
ment operator given by 

e 
Ml = - -1il = - /L E I 2mc 

(1.29) 

where /L E = en/ 2mc is called Bohr magneton, numerically 0.927 x 10- 20 

erg / Gauss. Equation 1.29 can be obtained even classically in the framework 
of the Bohr model for the Hydrogen atom (See Problem 1.6.2). 

Experimental evidences, such as spectral lines from atoms in magnetic field 
(see Chapter 4) as well t he quantum electrodynamics developed b y Dirac, 
indicate that an intrinsic angular momentum, the spin s , has to be assigned 
to the e lectron. 

By extending the eigenvalue equations for the orbital angular momentum 
to spin, one writes 

n 
szla >= "2 la > 

n 
szl,8 >= - - 1,8 > 

2 
(1. 30) 

la > and 1,8 > being t he spin eigenfunctions corresponding t o quantum spin 
numbers m s = 1/ 2 and m s = - 1/ 2, respectively, while s = 1/ 2. 

As a first consequence of the spin, in the one-electron eigenfunction (spin­
orbital) one has to include the spin variable, labeling t he value of Sz . When 
the coupling between orbital and spin variables (the spin-orbit interaction 
that we s hall estimate in the following) i s weak, one can factorize t he function 
in the form 

'I/J (r, B, 'P , s) = ¢(r, B, 'P )xspin (1. 31 ) 

where Xspin is la > or 1,8 > depending on the value of the quantum number 
m s· 

To express the magnetic moment associated with s without resort ing to 
quantum electrodynamics, one has to make a n ansatz based on the experi­
mental evidence. In partial analogy to Eq. 1.29 we write 

(1.32) 

Due to the existence of elementary magnetic moments, an external magnetic 
field can b e expected to r emove t he degeneracy in the z -component of the 
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angular momenta. For instance for sz, two sublevels are generated by the 
magnetic field, with energy separation .tJ.E = (en/mc)H, a phenomenon that 
can be called magnetic splitting (Problem 1.6.1). 

Now we are going to derive the Hamiltonian describing the interaction 
between the orbital and the spin magnetic moments. This will be done in the 
semiclassical model first used by Thomas and Frenkel, assuming classical 
expressions for the electric and magnetic fields acting on the electron. By 

spin 

Fig. 1.9. Definition of the magnetic field H acting on the electron due to the relative 
motion of the nucleus of charge Ze , creating an electric field at the position r , in 
view of the relativistic transformation. 

referring to Fig. 1.9, the electric field at the electron is E = (l/er)(dV/dr)r 
(where V is the central field energy). From the relativistic transformation and 
by adding a factor 1/2 introduced by Thomas to account for the non-inertial 
motion, one has 

1 dV 
H = ----r x v 

2cer dr 
Thus the magnetic Hamiltonian becomes 

1 dV 
'H spin-orbit = - JL s· H = 2 2 d (1.s) == ~(r )1.s 

2m err 

(1.33) 

(1.34) 

which can be viewed as an effective r -dependent magnetic field along I direc­
tion, acting on the spin magnetic moment when the electron is at the position 
r. It is noted that the function ~(r), of central character, is essentially pos­
itive and includes n2 from I and s. 
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An immediate physical interpretation of the Hamiltonian in Eq. 1.34 can 
be achieved by referring to Hydrogenic atoms, where 

Ze2 h2 
~ (r) - -------=-~ - 2m2c2r3 

Then the energy associated with 'Hspin-orbit is of the order of 

and from Table 1.4.3, where < r - 3 >c::: Z3 /a~n3l3, one has 

e2 h2 Z4 
Eso ~ --::-~~ - 4m2c2a~n5 

(1.35) 

(1.36) 

displaying a strong dependence on the atomic number Z. For small Z the 
spin-orbit interaction turns out of the order of the correction related to the 
velocity dependence of the mass or to other relativistic terms, that have been 
neglected (see Problem F.I.15). Typical case is the Hydrogen atom, where the 
relativistic corrections of Dirac and Lamb are required in order to account 
for the detailed fine structure (see Appendix V.I). 

From Eq. 1.36 one realizes that the effects of the spin-orbit interaction are 
strongly reduced for large quantum number n , as it is conceivable in view of 
the physical mechanism generating the effective magnetic field on the electron. 

The energy corrections can easily be derived within the assumption that 
'Hspin -orbit is sizeably weaker than 'Ho , in Eq. 1.27. Then the perturba­
tion theory can be applied to spin-orbital eigenfunctions, 'IjJ (r, e , t.p, s) = 
¢ (r, e , t.p )xspin == ¢n,l.m,ms' the operators [2 ,82 , l z , S z being diagonal for the 
unperturbed system. Since the energy terms are often small in comparison 
to the energy separation between unperturbed states at different quantum 
numbers nand l , one can evaluate the e nergy corrections due to 'Hspin-orbit 
within the (nl) representation: 

l1Eso = J R~I(r)~(r)Rnl(r)r2dr L J X;;, ~ Yz;;',(l.s)xm)'lmsinededt.p 
sp,n 

that can be written in the form 4 

(l1Eso)m"m~,m,ms = ~nl < m'm~ l l.s lmms > 

The spin orbit constant 

(1.37) 

(1.38) 

(1.39) 

4 It could be remarked that the cPn,[,m,m s are not the proper eigenfunctions since 
(1.s) does not commute with l z and S z . However, when (1.s) is replaced by the 
linear combination of P , rand {;2 (see Eq. 1.41) and the eigenvalues are derived on 
the basis of the e igenfunctions of P and j z, the appropriate i1Eso are obtained . 
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can be thought as a measure of the "average" magnetic field on the electron 
in the nl state. This average field is again along the direction of I and acting 
on /Ls implies an interaction of the form H spin-orbit ex - h eff. /Ls. 

To evaluate the energy corrections due to the Hamiltonian ~nl1.s instead of 
the formal diagonalization one can proceed with a first step of a more general 
approach (the so-called vectorial model) that we will describe in detail at 
Chapter 3. Let us define 

j = 1+ s (1.40) 

as the total, single-electron, angular momentum. For analogy with I and s , j is 
specified by a quantum number j (integer or half-integer) and by the magnetic 
quantum number mj taking the (2j + 1) values from -j to +j , with the usual 
meaning in terms of quantization of the modulus and of the z-component of 
j , respectively. 

The operators I and s commute since they act on different variables, so 
that I.s can be substituted by 

(1.41) 

involving only the modula, with eigenvalues j(j + 1) , l(l + 1) and s(s + 1) 4. 

Therefore, for I i- 0 one has the two cases, j = I + 1/2 and j = I - 1/2, 
that in a vectorial picture correspond to spin parallel and antiparallel to 1. 

Then the energy corrections due to H spin-orbit are 

for j = l + 1/2, and 
i1Eso = -~nl1i2(1 + 1)/2 

for j = (l-1/2). Being ~nl positive the doublet sketched below is generated. 

degenerate in ms in the 

absence of ~pin-orbit 

j=(l + 112) 

t:nl=li (1+ 1)/2 

j=(1-1I2) 

For s state only a shift, of relativistic origin, has to be associated with 
H spin-orbit (see Problems 1.6.3 and F.I.15). 
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Problems 1.6 

Problem 1.6.1 Show that because of the spin magnetic moment, a mag­
netic field removes the degeneracy in ms and two sublevels with energy sepa­
ration (en/mc)H are induced (magnetic splitting). 

Solution: 
From the Hamiltonian 

and the Sz eigenvalues ±1/2, one has 

with the splitting sketched below 

H= O 
+1/2 

magnetic moment J.l s 

;- parallel to H 

-1/2 

Problem 1.6.2 By referring to the electron in the circular orbit of the 
Bohr model, derive the relationship between angular momentum and magnetic 
moment. By assigning to the electron the spin magnetic moment derive the 
correction to the energy levels due to spin-orbit interaction, comparing the 
results for n = 2 and n = 3 to the estimates in the Thomas-Frenkel approach 
(§1.6) . 

Solution: 
The magnetic moment is /1 = (iA/c)n with current i = -eVrot (see Prob­

lem 1.5.2). A is the area of the orbit of radius rand n t he normal. Thus 
/1 = -(eV7rr2 /27rrc)n == - /LEI. 

The magnetic field turns out 

/1 e 
H = - r3 = 2cr3 v x (-r) 

Therefore the spin-orbit Hamiltonian is 'Hspin-orbit = - /1s.H = (e2n2 /2m2c2r 3) l.s. 
For rn = n2ao and Eq. 1.41 the energy correction is 
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e2 h2 1 
Eso = 2263 [j(j + l) - l(l + I) - s(s + I) ] 

2m c n ao 2 

By using for r;;:3 the expectation value 

and indicating e2h2 /4m2c2a~ = 3.62 x 10- 4 eV with Eo, one writes 

1 
Eso = Eo n3 l(l + 1)(l + ~) [j(j + 1) - l(l + 1) - s(s + 1)] 

and 
n = 2, l = l,j = 1/2 
n = 2, l = l,j = 3/2 
n = 3, l = l,j = 1/2 
n = 3, l = l,j = 3/2 

Eso = - f~ 
Eso = ~~ 
Eso = _2:i0 

Eso = ff 

Problem 1.6.3 By referring to one-electron s states try to derive the cor­
rection to the unperturbed energy value due to 'Hspin-orbit, making a remark 
on what has to be expected. 

Solution: 
'Hspin-orbit = ~nl(1.S) with ~nl ex J R~I(r)~(r)Rnl(r)r2dr. 
Since Rnl (r) ex rl , for l = 0, ~nl diverges for r -+ 0, while 1.s = o. 
The final result is an energy shift that cannot be derived along the pro­

cedure neglecting relativistic effects (see Problem F.1.15). A discussion of the 
fine and hyperfine structure in the Hydrogen atom, including the relativistic 
effects, is given in Appendix V.1. 

Problem 1.6.4 Evaluate the effective magnetic field that can be associ­
ated with the orbital motion of the optical electron in the Na atom, knowing 
that the transition 3p -+ 3s yields a doublet with two lines at wavelenghts 
5889.95 A and 5895.92 A. 

Solution: 
From the difference in the wavelengths the e nergy separation of the 3p 

levels turns out 

ILlEI = hC~~A I = 2.13 x 1O- 3eV 

LlE can be thought to result from an effective field H = LlE/2MB (see Prob. 
1.6.1). Thus, H = 2.13 X 10- 3 / 2 x 5.79 x 10- 5 Tesla = 18.4 Tesla. 
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Problem 1.6.5 The ratio (magnetic moment JL/angular momentum L) , 
often expressed as (JL / MB)/ (L / h) , is called gyromagnetic ratio. Assuming 
that the electron i s a sphere of mass m and charge -e homogeneously dis­
tributed onto the surface, rotating at constant angular velocity, show that the 
gyromagnetic ratio turns out I = JL / L = -5e/6m e. 

Solution: 
m = (41f/3)pR3 while the angular momentum is 
L = f027r fo7r foR pwr4sin3ededcpdr = (2 /5 )mR2w, p being the specific mass. 

m 

The surface charge density is (J = -e/ 41f R2 and from 
M = Ai/e = (1fR4(Jw /e) f sin3 ede = -5eL/6m e one has I = -5e/6me. 

Problem 1.6.6 Express numerically the spin-orbit constant ~nl for the 
3p,3d and 4f states of the Hydrogen atom. 

Solution: 
From Eq. 1.35 and the expectation values of < r-3 > (Table 1.4.3 ) 
6 p = 1.29 X 1037 erg- 1sec-2 h2= 8.94 x 10- 6 eV, 
6d = 2.58 x 1036 erg- 1sec-2 h2= 1.79 x 10- 6 eV, 
~4f = 3.88 x 1035 erg- 1sec- 2 h2= 0.27 x 10- 6 eV. 

Problem 1.6.7 Show that when the spin-orbit interaction is taken into 
account the effective magnetic moment of an electron can be written 

JL± = (-e/2me)g± (l + s) with g± = 1 ± [1/ (21 + 1)]. 
Solution: 
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Here g is a particular case of the Lande' g factor , to be discussed at §3.2. 
± means spin parallel or antiparallel to 1. 

For s il l 

(2l + 1)(2l + 3) + 3 - 2l(2l + 2) 1 
9 - 1 + - 1 + ..,......,.--:-
+- 2(2l + 1)(2l +3) - (2l + 1) 

while for g_ , s antiparallel to I 

(2l - 1)(2l + 1) +3- 2l(2l + 2) 1 
g_= l + 2(2l + 1)(2l - 1) = 1 - (2l + 1) 

1. 7 Spectroscopic notation for multiplet states 

In the light of spin-orbit interaction the one-electron states have to be la­
beled by quantum numbers n, l , j and mj, with s = 1/ 2. Accordingly, a fine 
structure of the levels is induced , in form of doublets. 

As we shall see in detail in Chapters 2 and 3, in the atom other couplings 
between Ii and S i occur. At the moment we only state that the whole electronic 
structure of the atom can be described by the following quantum numbers: 

L , taking possible values 0, I , 2, 3 ... 
S, taking possible values 0, 1/2, I, 3/2, 2 .. . 
J, taking possible values 0, 1/2, I, 3/2 , 2 .. . 

to be associated with the constants of motion 
L = Li I i , the total angular momentum of orbital character, 
S = L i Si, the total angular momentum of intrinsic character 

and with the total (orbital and spin) angular momentum J = L + S or to 
J =L ik 

It is customary to use the following notation for the multiplet state of the 
atom 

28+ 1 Letter J 

where Letter means S, P, D, F , etc ... for L = 0, 1, 2,3 etc ... , (2S + 1) is the 
total number of the fine structure levels when S < L ((2L + 1) the analogous 
when L < S). 

The e lectronic configurations and the spectroscopic notations for the 
ground-state of the atoms are reported in the following pages. 
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7 Element Symbol Conti uration Term 
y rogen S 1/2 

2 Helium He ls2 ISO 
Hd H 1 S 

3 Lithium Li ls22s1 2SI/2 
4 Beryllium Be ls22s2 ISO 
5 Boron B ls22s22pl 2PI/2 
6 Carbon C 

:::l:~:: 
3po 

7 Nitrogen N 4S3/2 
8 Oxygen 0 3P2 
9 Fluorine F ls22s22ps 2P3/2 
10 Neon Ne ls22s22p6 ISO 
11 Sodium Na [Ne]3s1 2SI/2 
12 Magnesium Mg [Ne]3s2 ISO 
13 Aluminum Al [Ne]3s23pl 2PI/2 
14 Silicon Si [Ne]3s23p2 3po 
15 Phosphorus P [Ne]3s23p3 4S3/2 
16 Sulfur S [Ne]3s23p4 3P2 
17 Chlorine CI [Ne]3s23ps 2P3/2 
18 Argon Ar [Ne]3s23p6 ISO 
19 Potassium K [Ar]4s l 2SI/2 
20 Calcium Ca [Ar]4s2 ISO 
21 Scandium Sc [Ar)3d I4s2 2D3/2 
22 Titanium Ti [Ar]3d24s2 3F2 
23 Vanadium V [Ar]3d34s2 4F3/2 
24 Chromium Cr [Ar]3ds4s1 7S3 
25 Manganese Mn [Ar)3ds4s2 6S5/2 
26 Iron Fe [Ar)3d64s2 5D4 
27 Cobalt Co [Ar)3d74s2 4F9/2 
28 Nickel Ni [Ar)3d84s2 3F4 
29 Copper Cu [Ar)3d I04s1 2SI/2 
30 Zinc Zn [Ar)3d I 04s2 ISO 
31 Gallium Ga [Ar)3dI04s24pl 2PI/2 
32 Germanium Ge [Ar)3dI04s24p2 3pO 
33 Arsenic As [Ar)3dI04s24p3 4S3/2 
34 Selenium Se [Ar)3d I04s24p4 3P2 
35 Bromine Br [Ar)3dlo4s24ps 2P3/2 
36 Krypton Kr [Arj3d104s24p6 ISO 
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1 Element Symbol Conn uratioll Term 
u I JUm r s 1f2 

38 Strontium Sr [Kr1Ss2 ISO 
39 Yttrium Y [Kr14d1Ss2 2D3/2 
40 Zirconium Zr [Kr14d2Ss2 3F2 
41 Niobium Nb [Kr14d4Ss1 6DII2 

37 R b d Rb [K lS S 

42 Molybdenum Mo [Kr14dsSs l 7S3 
43 Technetium Tc [Kr14dsSs2 6SSf2 
44 Ruthenium Ru [Kr14d7Ss1 sFs 
45 Rhodium Rh [Kr14d8Ss1 4F9/2 
46 Palladium Pd [Kr14dlO ISO 
47 Silver Ag [Kr14dlOSsl 2SIf2 
48 Cadmium Cd [Kr14d1OSs2 ISO 
49 Indium In [Kr14dIOSS2SpI 2PI12 
50 Tin Sn [Kr14d1OSs2Sp2 3pO 
51 Antimony Sb [Kr14d1OSs2Sp3 4S3f2 
52 Tellurium Te [Kr14dlOSs2Sp4 3P1 
53 Iodine I [Kr14d IOSSlSpS 2PJ/l 
54 Xenon Xe [Kr14d loSs1Sp6 ISO 
55 Cesium Cs [Xe16s1 2SI/2 
56 Barium Ba [Xe16s2 ISO 
57 Lanthanum La [Xe1Sd 16s2 2D3/2 
58 Cerium Ce [Xe14flSd 16s2 IG4 

59 Praseodymium Pr [Xe14f6s2 419/2 
60 Neodymium Nd [Xe14r6s2 sl4 
61 Promethium Pm [Xe14f6s2 6Hs12 
62 Samarium Sm [Xe14r6s2 7Fo 
63 Europium Eu [Xe14f76s2 8S712 

64 Gadolinium Gd [Xe14f7Sd 16s2 9D2 
65 Terbium Tb [Xe14(l6s2 6H IS12 
66 Dysprosium Dy [Xe14f106s2 51s 
67 Holmium Ho [Xe] 4fll 6s2 41 I S/2 
68 Erbium Er [Xe]4f126s2 3H6 
69 Thulium Tm [Xe]4fI36s2 IF712 
70 Ytterbium Yb [Xe]4fI46s2 ISO 
71 Lutetium Lu [Xe]4fI4SdI6s2 ID312 
72 Hafnium Hf [Xe]4f14Sd26s2 3F2 
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1 Element Symbol Configuration Term 
an a um a e s ll2 

74 Tungsten W lXe)4fl4Sd46s2 500 
75 Rbenium Re lXe)4fl4Sd56s2 6S512 
76 Osmium Os lXe)4fl4Sd66s2 504 
77 Iridium Ir lXe)4fl4Sd76s2 4F912 
78 Plati.num Pt [Xe)4f14Sd96s1 lOl 
79 Gold Au [Xe)4f14Sd106s1 2S112 
80 Mercury Hg [Xe)4fl4Sd 106s2 ISO 
81 Tballium Tl [Xe)4fl4Sd 106s26p I 2PI12 
82 Lead Pb [Xe]4fl4Sd 106s26p2 lpO 
83 Bismutb Bi [Xe]4fl4Sd 106s26pl 4S312 

84 Polonium Po [Xe]4fl4Sd 106s26p4 lp2 
85 Astatine At [Xe]4fl4Sd 106s26pS 2P312 

86 Radon Ro [Xe]4fl4Sd 106s26p6 ISO 
87 Francium Fr [Ro]7sl 2S112 
88 Radium Ra [Ro]7s2 ISO 
89 Actinium Ac [Ro] 6d l7s2 20312 
90 Tborium Tb [Ro] 6d27s2 lF2 
91 Protactinium Pa [Rn)Sr26d 17s2 4KII12 
92 Uranium U [Rn)Sf6d l7s2 5L6 
93 Neptunium Np [Rn)Sf'6d I7s2 6LII12 
94 Plutonium Pu [Rn)Sf'7s2 7Fo 
95 Americium Am [Rn)Sf77s2 sS712 
96 Curium Cm [Rn)Sf76d 17s2 902 
97 Berkelium Bk [Rn)Sf7s2 6H1512 
98 Californium Cf [Rn)Sf107s2 sis 
99 Einsteinium Es [Rn)Sf117s2 41 15/2 
100 Fermium Fm [Rn)Sf127s2 lH6 
101 Mendelevium Md [Rn)Sfll7s2 2F712 
102 Nobelium No [Rn)Sf147s2 ISO 
103 Lawrencium Lr [Rn)Sf147s27pl 2PI12 
104 Rutberfordium Rf [Rn) Sfl46d27s2 lF2 
105 Oubnium Ob [Rn) Sfl46dl7s2 4Fl12 

73 T tl T lX )4f Sd 6 F 

106 Seaborgium Sg [Rn) Sfl46d47s2 500 
107 Bobrium Bh [Rn) Sfl46d57s2 6S512 
108 Hassium Hs [Ro) Sfl46d67s2 504 
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Appendix 1.1 Electrom agn et ic sp ectra l r a nges a nd 
usefu l number s 

W . ,'t lt ng, lh I I I I I I I I 
(mtlcn) 10J 10' 10' 10' 10,1 10,1 IO-J 10"" IO~\ 104 10-1 10 .... 10''9 10-10 10, 11 10.11 10·IJ 

om"l(ln Infnin~d Ultraviort Ih.n:I X-rays Or Camma ni)'S 

JUlmeOrWII ' -(' 3 • II- I • <: Radiowave§ ~. 

::T 
Microw:lves ;;- Soft X-rays 

Frtqut ru:y I I I I I I I I I I I I I I I I 
(IIt " "I,) 

IO~ 10' 10' 10' 10' IOlt 10" IOu (01) l Ou 1 0' ~ J0 16 10" 1018 10'· 10'" lOll 

Photon t nC'rlO' I I I I I I I I I I I I I I I 
(.V) 

IO~ 10" 10-' 10"' Ixl 0-1o l xl04 10" 10·' 10·' 10' 10' 10' 10' 10' I O~ 10' 10' 

U seful numbers a n d fundament a l const a nts (for magnetic quantities 
see App.IV.l) 

Speed of light in vacuum c=2.99792 x 1010 cm/s 
Electron charge e=-1.60218 X 10019 Coulomb=-4.8 X 10010 u.e.s. 
Electron mass (at rest) m=9. 1 0938 x 10028 g 
Proton mass M=1.67262x 10024 g 
Neutron mass M.=1.675x 10024 g 
Atomic mass unit (m("C)/12) u=1.661x 10024 g 
Planck constant h=6.62607x 10"27 erg.s=4.1357x 10015 eV.s 

1l=(h/21t)=1.05457x 10027 erg.s 
Boltzmann constant ks= I .38065X 10016 erg/K 
Stefan-Boltzmann constant a=5.67x 1005 ergl(s.cm2.K4)= 5.67x 10-8 
(total emittance) W/(m2.K4) 
Bohr radius for atomic ao=0.52918x 10-8 cm= 0.52918 A 
hydrogen (infinite nuclear mass) 
Rydberg constant (or Bohr RH=109737 cmol= 13.606 eV=h.(3.29x 1015 Hz) 
energy e/2ao) (infinite nuclear 
mass) 
Bohr magneton J.lB=ell/2mc=0.9274x 10020 erg/Gauss= 

0.9274x 10023 A.m2= 0.9274x 10023 Jrresla (see 
App.IV.I) 

Nuclear magneton M =J.lsm/M= J.l8/1836.15= 
=ell/2Mc=5.0508x 10-24 erg/Gauss 

Proton magnetic moment J.lr=M gNI=MN(5.586)(1I2)=1.4106X 10-23 

(maximum component) erg/Gauss 
Neutron magnetic moment J.I.=-1.9 I 315 MN 
Avogadro number NA=6.022x 1023 mor l 

Electron volt 1 eV= 1.602x 10-12 erg= h.(2.418X 1014 Hz) 
1 erg= 6.242x 10" eV 

Gas constant R=N" kB= 8.31447x 107 erg/(mol.K) 
kB T at room temperature 0.0259 eV"" 1140 eV 
Fine strncture constant a=ez/llc=I/137.036 
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Appendix 1.2 Perturbation effects in two-levels system 

We s hall refer to a model system with two eigenstates, labeled 11 > and 
12 >, and correspondent eigenfunctions ¢~ and ¢g forming a complete or­
thonormal basis. The model H amiltonian is Ho and Ho¢r;, = Em¢r;" with m = 
1,2. In real systems the Hamiltonian H can differ from Ho owing to a small 
perturbation Hp. Following a rapid transient (after turning on the perturba­
t ion) the stationary states are described b y eigenfunctions that differ from the 
ones of the model system by a s mall amount, that can be written in terms of 
the unperturbed basis. This is equivalent to state that the e igenfunctions of 
the equation 

H¢=E¢ (A.I.2.1) 

are 
(A.I.2.2) 

with Cl and C2 constants. By inserting ¢ in A.I.2.1 and multiplying by < ¢~ I 
and by < ¢g I in turn, in the light of the orthonormality of the states, one 
derives for Cl,2 

cl (Hu - E) + c2 H12 = 0 

c1H21 + c2 (H22 - E) = 0 

with Hmn =< mlHln >. Non-trivial solutions imply 

and the eigenvalues turn out 

When the diagonal elements of Hp are zero, A.I.2.3 reduces to 

where c2 = I < 21Hpl l > 12 , Hp being Hermitian. 

(A.I.2.3) 

(A.I.2.4) 

The perturbation effects strongly depend on the energy separation i1E = 
E2 - E 1 . For degenerate energy levels (i1E = 0) the largest shift of the levels 
occurs, given by 2c. For perturbation much weaker than i1E , Eq.A.I.2.4 can 
be expanded, to yield the second-order corrections 

(A.I.2.5) 



Appendix 1.2 Perturbation effects in two-levels s ystem 41 

The corrections to the unperturbed eigenvalues as a function of 11E are 
illustrated below 

Energy 
--

e _~_/--_//-/--_/ "~E,-E, 

The eigenfunctions in the presence of Hp can be obtained by deriving the 
coefficients Cl ,2 in A.I.2.2 in correspondence to E = E+ and E = E _ . For 
widely separated unperturbed states one obtains 

while for degenerate eigenstates 

1 0 H12 0 
¢+ = y'2(¢1 + IH 121 ¢2 ) ' (A.1.2.6) 

Now we turn to the time evolution of the system, by considering two 
cases. The first is the evolution of the system after a static, t ime-independent 
perturbation has been turned on, the second (to be discussed as Appendix 
1.3) when a periodic time-dependent perturbation is applied. 

To deal with the time dependence one has to refer to the complete unper­
turbed eigenfunctions and to the time-dependent Schrodinger equation: 

(A.1.2.7) 

The e igenfunction A.1.2.2 i s now written with time dependent coefficients 

(A.1.2.8) 

with ICll2 + IC212 = 1. Let us assume the initial condition Cl(t = 0) = 1 
and C2 (t = 0) = O. The probability that at the time t after turning on the 
perturbation the system is found in the state 12 > is given by 
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(A.I.2.9) 

The equation for C2(t) is obtained by inserting A.I.2.8 into A.I.2.7. Recall­
ing that 

0· /,0 
'1.J 0/,0 - 'n~ 
I to 'l-"I ,2 - z ot 

one has 

(A.I.2.1O) 

By multiplying this equation by ( 'IjJ~ )* , integrating over the spatial coordinates 
and by taking into account that 'IjJ~,2 (t) = ¢~ ,2exp( -iEf,2t/n) one finds 

. t dCl 
Cl < 11'Hp ll > +C2 < 11'Hp 12 > e-'W21 = indt (A.I.2.11) 

where W2l = (Eg - E~)/n; < 11'Hp ll >= 'H 11 == J(¢~) * 'Hp¢~dT and 
< 11'Hp 12 >= 'H l 2 == J(¢~)*'HP¢gdT are the matrix elements of the per­

turbation between the stationary states of the unperturbed system 5. 

In analogous way, from A.I.2.10, multiplying by ('ljJg)* one derives 

'1.J +iW2 t '1.J .~ dC2 
Cl't2le 1 +C2 1t22 =zndt (A.I.2.12) 

In order to illustrate these equations for Cl,2, let us refer to a perturba­
tion which is constant in time, with no diagonal elements. Then ('HP)11 = 
('Hp h2 = 0 and ('Hp h2 = nT, ('H p hI = nT*. Eqs. A.I.2.11 and A.I.2.12 
become 

dCI . t 'T -'W21 dt = -z e C2 dC2 = -iT* e +iW21 t CI 
dt 

By taking the derivative of the second and by using the first one, one has 

of general solution 

C2(t) = (AeWt + Be-Wt)eiW~ll 

with n = (1/2)JW§1 + 4T2. The constants A and B are obtained from the 
initial conditions already considered, yielding 

iT iW?JI 

C2(t) = - - sinDte 2 n 
5 In the Feynman formulation the coefficients Ci =< i l'lj!(t) > are the ampli­

tudes that the system is in state Ii > at the time t and one has in(dci/dt) = 

Lj Hij(t)Cj(t) , Hij being the elements of the matrix Hamiltonian. 
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and therefore 

(A.L2.13) 

known as Rabi equation. Pl(t) = 1 - P2(t). 
It is worthy to illustrate the Rabi equation in the case of equivalent states, 

so that E~ = Eg. We shall refer to such a situation in discussing the molecular 
Hydrogen ion Ht where an electron is shared between two protons (§8.1). 
Then W21 = 0 and Eq. A.L2.13 becomes 

(A.L2.14) 

namely the system oscillates between the two states. After the time t = 7r /2T 
the system is found in state 12 >, even though the perturbation is weak. For 
Ht one can say that the electron is being exchanged between the two protons. 

For widely separated states so that W~l » 4T2 Eq. A.I.2.13 yields 

p. () _ (2T)2 .2W21t 
2 t - - szn--

W21 2 
(A.L2.15) 

predicting fast oscillations but very small probability to find the system in 
state 12 >. 

Pulse resonance techniques (see Chapter 6) can be thought as an applica­
tion of the Rabi formula once that the two spin states (spin up and spin down 
in a magnetic field) are "forced to become degenerate" by the on-resonance 
irradiation at the separation frequency (Eg - E~) /h . 

In the presence of a relaxation mechanism driving the system to the low­
energy state, a term -itry (with 'Y the relaxation rate) should be included in 
the matrix element 'H.22. In this case, from the solution of the equations for 
the coefficients Cl,2(t) the probability P2(t) corrects Eq. A.L2.14 for the Rabi 
oscillations with a damping effect. For strong damping the oscillator crosses 
to the overdamped regime: after an initial raise P2 (t) decays to zero without 
any oscillation (see the book by Budker, Kimball and De Mille quoted 
in the preface). Some more detail on the relaxation mechanism for spins in a 
magnetic field will be given at Chapter 6. 

Appendix 1.3 Transition probabilities and selection 
rules 

The phenomenological transition probabilities induced by electromagnetic 
radiation are defined in Problem F.Ll, where the Einstein relations are also 
derived. To illustrate the mechanism underlying the effect of the radiation one 
has to express the absorption probability W 12 between two levels 11 > and 
12 > in terms of the Hamiltonian describing the interaction of the radiation 
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with the system. Here this description is carried out by resorting to the time­
dependent perturbation theory. 

The perturbation Hamiltonian H p(t), already introduced in Appendix 1.2, 
is then specified in the form 

(A.1.3.1) 

appropriate to the electromagnetic (e.m.) radiation. In fact, from the one­
electron Hamiltonian in fields (see Eq. 1.26) 

(p + eA)2 
H = C - ec.p 

2m 
(A.1.3.2) 

(A and c.p vector and scalar potentials) , recalling that [p , A ] = - in(V.A) ex 
divA = 0 in the Lorentz gauge and that for electromagnetic radiation 
A(r, t) = Aoexp[i(k.r - wt)], the first order perturbation Hamiltonian turns 
out 

By expanding A(r , t) 

ine Hrad = - -A.V 
mc 

A(r, t) = Aoe-iwt [l + i(k.r) + ... ] 

(A.1.3.3) 

(A.1.3.4) 

and limiting the attention to the site-independent t erm (electric dipole ap­
proximation or long-wave length approximation) one can show that6 

Therefore HI in A.1.3.1 takes the form HI = -er.Eo, with Eo amplitude of 
the e.m. field (electric dipole mechanism of transition). 

Now we use the results obtained in Appendix A.I.2, again considering 
that (Hrad) 11 = (Hradh2 = 0 and (Hradh2 = (Hrad)h. The equations for 
the coefficients Cl,2 become 

(A.1.3.5) 

for a given x-component of the operator r. For Eqs. A.1.3.5 only approximate 
solutions are possible, essentially based on the perturbation condition 

6 It is recalled that E = - (1/c)8A/8t and that the matrix element of the V 
operator can be expressed in terms of the one for r: 

< 21VII >= - mW21 < 21rll > /n 
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Hp « Ho (while they are solved exactly for w = 0, as seen in App.I.2). 
For w around W21 one finds 

sin2 ( W-W2,)t ) 
t2 2 

IC2(tW = 2" ( )2 2 1 < 21Hl l1 > 12 . n w - w21 t 
(A.I.3.6) 

IC2 (t) 12 has the time dependence depicted b elow, with a maximum at w = W21 
proportional to t2 . 

·4Jr!1 4Jr!1 

On increasing t the zeroes of the function tend to the origin while the 
maximum increases. Thus for t ---+ 00 one has IC2 (t) 12 ex: J(w - w2d, J being 
the Dirac delta function. By taking into account the spread of the excited 
state due to the finite width (see Prob. F.I.1) or by resorting to the non­
monocromatic character of the radiation, one writes 

t 2 J sin2 (W-W21)t 
IC2 (t) 12 ex: 2" p(w) 2 t 2 dw n (w - w2d2"4 

(A.I.3.7) 

where the frequency distribution p(w) of the radiation is a slowly varying 
function around W21. Then one can set p( w) ':::' p( w2d. The integration over w 
yields 27r /t, and thus the transition probability per unit time becomes 

2 27r 2 
W 12 = IC2(t) 1 / t = n21 < 21Hl 11 > 1 J(w - w2d 

For the electric dipole mechanism and linear polarization of the radiation 
along E this Equation reads 

(A.I.3.8) 

For random orientation of r with respect to the e.m. wave one has to average 
cos2e over e, to obtain 1/3. By introducing the energy density p(w2d or p(v2d 
(p =< E2 > / 47r) one finally obtains 
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27f 2 
W 12 = -2P(V2d IR 21 1 3n (A.I.3.9) 

where IR21 12 = 1 < 21- exl l > 12 + 1 < 21- eYl l > 12 + 1 < 21- ezl 1 > 12 . 
R21 represents an effective quantum electric dipole associated with 

a pair of states. The selection rules arise from the condition 

R21 =< 21 - er l1 ># O. 

In the central field approximation the selection rules are 
i) each electron makes a transition independently from the others; 
ii) neglecting the spin, the electric dipole transitions are possible when 

11l = ± 1 and 11m = 0, ± 1 (according to parity arguments involving the 
spherical harmonics). 

When the spin-orbit interaction is taken into account the selection rules 
are 

11j = 0, ± 1 and j = 0 ~ j = 0 transition not allowed; 
11m = 0, ± 1 and no transition from m = 0 ~ m = 0, when 11j = 0 (in 

view of the conservation of the angular momentum). 

The magnetic dipole transitions (mechanism associated with the term 
(ik.r) in A.I.3.4) are controlled by the selection rules 

111 = 0 and 11m = 0, ± 1 
while for the transition driven by the electric quadrupole mechanism 

111 = 0, ± 2 and 11m = 0, ± 1, ± 2 (I = 0 ~ I' = 0 forbidden) 
Further details on the selection rules will be given at §3.5. Here we remark 

that the transition probabilities associated with the magnetic dipole or with 
the electric quadrupole mechanisms are smaller than W 12 in A.I.3.9 by a factor 
of the order of the square of the fine structure constant 0: = e2 Inc c:::: 1/137 
(for e.m. radiation in the visible spectral range). 
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Problems F.I 

Problem F.I.l Refer to an ensemble of non-interacting atoms, each with 
two levels of energy El (ground state) and E2 (excited state). By applying 
the conditions of statistical equilibrium in a black-body radiation bath, derive 
the relationships among the probabilities of spontaneous emission A21 , of 
stimulated emission W 21 and of absorption W 12 ( Einstein relations) , 
in the assumption that the levels are non-degenerate. Repeat for degenerate 
levels, with statistical weights gl and g2. 

Then assume that at t = 0 all the atoms are in the ground state and derive 
the evolution of the statistical populations Nl (t) and N2 (t) as a function of the 
t ime t at which electromagnetic radiation at the transition frequency is turned 
on (consider the ground and the excited states non-degenerate). Comment the 
equilibrium situation in terms of the ratio W 12 / A 21 . 

Briefly discuss some aspects of the Einstein relations in regards of the pos­
sible maser and laser actions and about the finite width of the spectral line 
(natural broadening) , by comparing t he result based on the Heisenberg 
principle with the classical description of emission from damped harmonic 
oscillator (Lorentz model). 

Solution: 
From the definition of transition probabilities, 

1 1 ~ 

the time dependence of the statistical populations are given by 

dN1 dt = -Nl W 12 + N 2W 21 + N2A21 

dN2 dt = +N1 W 12 - N 2W 21 - N2A21 

The transition probabilities can be written in terms of the e.m. energy 
density at the transition frequency: W 12 = B 12 P(V12) , W 21 = B21P(V12). B12 

and B21 are the absorption and emission coefficients, respectively. 
One can assume that the system attains the equilibrium at a given tem­

perature T inside a cavity where the black-body radiation implies the energy 
density (see Problem F.I.2) 
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At equilibrium (dNI/dt) = (dN2/dt) = o. Then 

while in accordance to Boltzmann statistics 

These three equations are satisfied for 

and A - 87rhvr2 B 
21 - - c-3- 21 

These Einstein relations, derived in equilibrium condition are assumed to 
hold also out of equilibrium. 

For levels 1 and 2 with statistical weights gl and g2 respectively, N1 / N2 = 
hV12 

9.l. e kBT and from the equilibrium condition 
92 

and 

so that glB12 = g2B21. 

A 87rhvr2 B 
21 = -c-3- 21 

Now the system in the presence of radiation at the transition frequency 
(with initial condition N 1(t = 0) = Nand N 2(t = 0) = 0) is considered. Since 

one derives 

N N (t) = (A + W + W e-(2W+A)t ) 
1 2W + A 

plotted below: 

'-N(t=O)= N 

for I -> 00 N i l N2 = (W+A)IW 

N(W+A)/(2W+A) 

For A « W == W 12 = W 21 the saturation condition N1 = N2 = N /2 is 
achieved. It is noted that for A « W, by means of selective irradiation at the 
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transition frequency the equilibrium condition implies a statistical tempera­
ture (describing NI/N2 ) different from the one of the thermostat. For Nl < N2 
the statistical temperature would be negative (further discussion of these 
concepts is given at Chapter 6). 

The condition of negative temperature (or population inversion) is 
a pre-condition for having radiation amplification in masers or in lasers. In the 
latter the spontaneous emission (i.e. A) acts as a disturbance, since the 
"signal" at the output is not driven by the signal at the input of the device. 

Since A21 ex Vr2 the spontaneous emission can be negligible with respect 
to the stimulated emission B 12 P(V12) in the Microwave (MW) or in the 
Radiofrequency (RF) ranges, while it is usually rather strong in the visible 
range. 

For the finite linewidth of a transition line the following is remarked. Ac­
cording to the uncertainty principle, because of the finite life-time 7 of the 
excited state, of the order of A- I , the uncertainty in the energy E2 is i1E ':::' An 
and then the linewidth is at least i1V12 ':::' 7 - 1 . In the classical Lorentz descrip­
tion, the electromagnetic emission is related to a charge (the electron) in har­
monic oscillation, with damping (radiation damping). The one-dimensional 
equation of motion of the charge can be written 

d2x dx 2 
m dt 2 + 2rm dt + mwox = 0 

with solution x(t) = xoexp( - rt)exp( -iwot). The Fourier transform is FT[x(t)] = 
2xo/ [r - i( w - wo)] implying an intensity of the emitted radiation proportional 
to 

2 r J(w, r) ex IFT[x(t)] I ex r 2 ( )2 + w-wo 

namely a Lorenztian curve, of width r: 

000 

One can identify r with 7 - 1 rv A and a certain equivalence of the classical 
description with the semi-classical theory of radiation is thus established. 
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Problem F.I.2 (The black-body radiation). 
Black-body radiation is the one present in a cavity of a body (e.g. a hot 

metal) brought to a given temperature T. It is related to the emission of e.m. 
energy over a wide frequency range. 

The energy density u(v, T) per unit frequency range around v can be 
measured from the radiation ps (v, T) coming out from a small hole of area 
S (the black-body) , per unit time and unit area. Prove that ps (v, T) = 
u(v, T) cj4 . 

The electromagnetic field inside the cavity can be considered as a set 
of harmonic oscillators (the modes of the radiation). From the Planck's 
estimate of the thermal statistical energy, prove that the average number 
< n > describing the degree of excitation of one oscillator is 

< n >= 1j[exp(hv j k B T) - 1] . 
Then derive the number of modes D(w)dw in the frequency range dw 

around w. (Note that D(w) does not depend on the shape of the cavity). 
By considering the photons as bosonic particles derive the Planck dis­

tribution function, the Wien law, the total energy in the cavity and the 
number of photons per unit volume. 

Then consider the radiation as a thermodynamical system, imagine an 
expansion at constant energy and derive the exponent I in the adiabatic 
transformation TV"y- 1 = canst. Evaluate how the entropy changes during the 
expansion. 

F inally consider the e.m. r adiation in the universe. During t he expansion 
of the universe by a factor J each frequency is reduced by the factor J1 /3 . 
Show that the Planck distribution function is retained along the expansion 
and derive the J-dependence of the temperature. 

Solution: 

Cavity 

V=ABC 

dQ 

The energy emitted in dJ? from the element dS is 

dJ? 
PsdSdv = u(v, T)c casBdv-dS 

47r 
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Then 

( T) u(v, T)c 1271" d 1'71"/2 e' ede u(v, T)c 27f u(v, T)c Ps v = 'P cos szn = - = 
, 47f 0 0 47f 2 4 

In the Planck estimate the average energy per oscillator instead of be­
ing < c >= kBT (as from the equipartition principle in the Maxwell­
Boltzmann statistics) is evaluated according to 

where co = hv is the quantum grain of energy for the oscillator at frequency 
v. By defining x = exp( -co/kBT) one writes 

,\,00 nxn 
< c >= c L..m=O o ,\,00 n 

L..m=Ox 

and since L~=o xn = 1/(1-x) for x < 1, while L~=o nxn = xd(L~=o xn)/dx , 
one obtains 

< c >= hv < n >, with 
1 

< n > = ---;/'""w--

e kB T - 1 

It is noted that for kBT» hv, < n >-+ kBT/hv and < c >-+ kBT, the 
classical result for the average statistical energy of one-dimensional oscillator, 
i.e. for one of the modes of t he e.m. field. 

The number of modes having angular frequency between wand w + dw is 
conveniently evaluated by referring to the wavevector space and considering 
kx = (7f / A)nx, ky = (7f / B)ny and kz = (7f /C)nz (see the sketch of the cavity). 
Since the e.m. waves must be zero at the boundaries, one must have an integer 
number of half-waves along A, Band C, i.e. nx ,y,z = 1,2,3 .... By considering 
n as a continuous variable one has dnx = (A/7f)dkx and analogous expressions 
for the y and z directions. The number of k modes verifying the boundary 
conditions per unit volume of the reciprocal space, turns out 

dnxdnydnz = D(k) = ABC = ~ 
dkxdkydkz - 87f3 87f3 ' 

D(k) is the density of k-modes or density of k-states7 . 

7 This concept will be used for the electronic states and for the vibrational states 
in crystals, Chapter 12 and Chapter 14. It is noted that the factor 8 is due to 
the fact that in this method of counting only positive components of the wave 
vectors have to be considered. For running waves, in the Born-Von Karmann 
periodical conditions (§12.4), the same number of excitations in the reciprocal 
space is obtained. 
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For photons the dispersion relation is w = ek and the number of modes 
D(w) in dw can be estimated from the volume dk in the reciprocal space in 
between the two surfaces at constant frequency wand w + dw: 

Then 

and 

V 2 
D(w) = 2"3w 

7r e 
or 

The factor 2 has been introduced to take into account the two polarization 
states of photons. 

Photons are bosonic particles and therefore, by referring to the Bose­
Einstein statistical distribution function 

!BE = l/ [exp(hv/ k BT) - 1] 

one derives the Planck distribution function p(v) (e.m. energy per unit 
volume in the unit frequency range) as follows. 

The energy related to the number of photons dn" within dv around the 
frequency v is 

dE(v) = hvdn" and 
87rV v 2 dv 

dn" = !BED(v)dv = --3 - ~ 
e ekBT- 1 

By definition p(v)dv = dE(v)/V and then 

87rhv3 1 
p(v) =~ ~ 

e kBT - 1 

The Wien law can be obtained by looking for the maximum in p(v): 
dp/dv = 0 for hvmax/k BT ~ 2.8214, corresponding to 
Vmax ~ T x 5.88 X 1010 Hz (for T in Kelvin). It can be remarked that Amax i=-
e/vmax . In fact Amax = (O.2898 /T ) cm. 
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The total energy per unit volume U(T) is obtained by integrating over the 
frequency and taking into account the number of modes in dv and the average 
energy per mode hv < n >: 

U(T) = j'dV ~,~)hv = 3!((4) k~T43 
ekBT - 1 Jr 2 c 3n 

where ( is the Riemann zeta function, thus yielding 

with 

known as Stefan-Boltzmann law. 
The density of photons is obtained by omitting in U(T) the one-photon 

energy: 

For instance in the universe, with T ':::' 2.73 K, the number of photons per 
cubic centimeter turns out ntot ':::' 413 cm -3 . 

To derive the coefficient 'Y for expansion without exchange of energy, the 
radiation in the cavity is considered as a thermodynamical system of volume 
V = ABC and temperature T (the t emperature entering the energy distribu­
tion function). From VU(T) = aT4V = canst, one has 4VdT = - TdV , i.e. 
TV 1/ 4 = canst and therefore 'Y = 5/4. 

During the expansion, since N = ntot V ex T 3V, while TV 1/ 4 = canst, if 
the volume is increased by a factor f one has 

Vinitial 1 _ 1 
Tfinal = Tinitial (11: f) 4 = Tinitiad 4 

initial 

and the number of photons becomes 

Tfinal 3 1 Nfinal = Ninitiad( -rp--) = Ninitiad 4 
.L initial 

To evaluate the entropy the equation of state is required. The pressure of 
the radiation is obtained by considering the transfer of moment of the photons 
when they hit the surface and the well-known result P = U /3 is derived. For 
the entropy 

1 PdV V dU 4U 
dS = Td(UV) + ----;y- = T dT dT + 3T dV 

and since it has to be an exact differential dU / dT = 4U /T. Thus the equation 
of state is 

PV = Utot 
3 
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where Utot = UV and then 

From the condition of exact differential S = 4Utot!3T. The decrease of T 
yields an increase of the entropy because the number of photons increases in 
the expansion. 

It is noted that for T -+ 0, S, P and U tend to zero. 
For transformation at constant entropy, assumed reversible, one would 

have dS = 0 and then 

so t hat TV 1/ 3 = canst . 

In the expansion of the universe by a factor f the cosmological principle 
(each galaxy is moving with respect to any other by a velocity proportional 
to the distance) implies that each frequency Vi is shifted to vf = vi/ f1 /3 . 
As a consequence of the expansion the energy density dU(Vi, Ti ) in a given 
frequency range dVi is decreased by a factor f because of the increase in the 
volume and by a factor f1 /3 because of the energy shift for each photon. Then 

du = dUi = 87r hv:; dVi ~ 
f ffl 3 hVi f1 

3 C ekBT_13 

which can be rewritten in terms of the new frequency vf = vd jI/3 

namely the same existing before the expansion, provided that the temperature 
is scaled to T / jI/3. 

It is noted that since Utot = UV ex T4 V the entropy of the universe is 
constant during the expansion, while the energy decreases by a factor f1 /3 . 
The number of photons is constant. 
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the Planck distribution function (solid line) for the cosmic background radi­
ation, resulting from a series of experimental detections, is evidenced. 

Problem F .1.3 Derive the life-time of the Hydrogen atom in the 2p state 
and the natural broadening of the line resulting from the transit ion to 
the ground state. By neglecting relativistic effects (see Problem F.I.15 and 
Appendix V.1) evaluate the energy split due to the spin-orbit interaction 
(§1.6) and the effective field of orbital origin acting on the e lectron in the 2p 
state. 

Solution: 
The life time (Prob. F.I.1) is T = 1j A2p-> l s, with A2p-> l s the spontaneous 

emission transition probability. Then 

321f3 V 3 1 
A2p-> l s = 3c3 Ji 3' L 1 < ¢2pal - er l¢ls > 12 (0: == 0, ± 1) 

a 

From the evaluations of the matrix elements of the electric dipole compo­
nents (See Eq. A.I.3.9 and Tables I.4.1 a and 1.4.1 b) one obtains 

2 8 e8 8 - 1 A 2p->ls = (-) ---4 = 6.27 x 10 s , 
3 c3aoJi 

or T = 1.6 X 10- 9 S. 
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Then the natural line-width can be written Llv = (2.54 X 1O- 7 /27r)V2p->ls . 
The energy split due to the spin-orbit interaction is LlE = (3/2)6p, with 

6 p = e2Ji2 /(2m2c2a~ x 24), so that LlE = 4.53 x 10- 5 eV and therefore 
H = (LlE/2J.LB) ':::' 4 kGauss (see also Problems II.1.2 and I.6.4). 

Problem F .1.4 Show that the stimulated emission probability W 21 due 
to thermal radiation is equivalent to the spontaneous emission probability A21 
times the average number of photons (Prob. F.I.1). 

Solution: 
From < n >= l /[exp(hv/kBT ) - 1], while 

p(v) = (87rhv3 /c3 )/[exp(hv /kBT) - 1] 

(Prob. F.I.2), and from the Einstein relation B21P(V) = A21 < n >. 

Problem F .1.5 By considering the sun as a source of black-body radia­
tion at the temperature T ':::' 6000 K, evaluate the total power emitted in a 
bandwidth of 1 MHz around the wavelenght 3 cm (the diameter of the sun 
crown can be taken 2R = 106 km). 

Solution: 
For A = 3 cm the condition hv « kBT is verified. To each e.m. 

mode one can attribute an average energy < c >= kBT. The density of 
modes is (87r/c3 )v2 and thus the energy in the bandwidth Llv is Llu = 
(87r/C3 )v2LlvkBT. The power emitted per unit surface is Ps = uc/4 (see Prob. 
F .I.2) and therefore 

Problem F .1.6 The energy flow from the sun arriving perpendicularly to 
the earth surface (neglecting atmospheric absorption) is <P = 0.14 Watt/cm2 . 

The distance from the earth to the sun is about 480 second-light. In the 
assumption that the sun can be considered as a black-body emitter, derive 
the temperature of the external crown. 

Solution: 
The flow scales with the square of the distances. Thus the power emitted 

per unit surface from the sun can be written <Ptot = (d/ R)2<p (d average 
distance, R radius of the sun). Then <Ptot = 8 X 103 Watt/cm2 and since 
(Problem F.I.2) <P = acT4/4 = (5.67 x 10- 12 x T4) Watt /cm2 , one obtains 
TSun ':::' 6129 K. 
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Problem F.1. 7 Because of the thermal motions of the atoms the shape 
of the emission line from a lamp is usually Gaussian. By referring to the 
yellow line emitted at about 5800 A by Sodium atom, neglecting the life­
time broadening and assuming the Maxwellian distribution of the velocities, 
prove this statement. Estimate the order of magnitude of the broadening, for 
a temperature of the lamp of about 500 K. 

Show that the shift due to the recoil of the atom when the photon is 
emitted is negligible in comparison to the motional broadening. Comment 
on the possibility of resonance absorption by atoms in the ground state. 
At which wavelength one could expect that the resonance absorption would 
hardly be achieved? 

Solution: 
Along the direction x of the motion the Doppler shift is 

.\ = .\0(1 ± VX) 
c 

The number of atoms dn(vx ) moving with velocity between Vx and Vx + dvx 

is 

(N number of atoms with mass M). The number of atoms emitting in the 
range d.\ around .\ is 

MC2 ( A- AO ) 2 

2kBTAg d.\ 

The intensity J(.\) in the emission spectrum is proportional to dn(.\) 

with 0 = J2kB T /M (.\0 /c ). 
Numerically, for the Na yellow line one has a broadening of about 1700 

MHz, in wave-numbers, 1/0 c::: 0.0576 em-I. 
The photon moment being hv/c, the recoil energy is ER = (hv /c)2/2M c::: 

10- 10 e V and the resonance absorption is not prevented. For wavelength in 
the range of the 1'-rays the recoil energy would be larger than the Doppler 
broadening and without the Mossbauer effect (see §14.6) the resonance 
absorption would hardly be possible. 

Problem F.1.8 X-ray emission can be obtained by removing an electron 
from inner states of atoms, with the subsequent transition of another electron 
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from higher energy states to fill the vacancy. The X-Ray frequencies vary 
smoothly from element to element, increasing with the atomic number Z (see 
plot). Qualitatively justify the Moseley law >, - 1 ex (Z - 0")2 (0" screening 
constant): 

200 

100 Ka 
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Fig. 1.10. Wavelength of the K" line as a function of the atomic number. 

Solution: 
From the one-electron eigenvalues in central field with effective nuclear 

charge (Z - 0") (0" reflecting the screening from other electrons, see §2 .1 and 
§2.2), transitions between n i and nf imply the emission of a photon at energy 

The K-lines are attributed to the transitions to the final state nf = 1. The 
K" line corresponds to the longest wavelength (ni = 2). 

Problem F .1.9 Estimate the order of magnitude of the voltage in an 
X-ray generator with Fe anode yielding the emission of the K" line and the 
wavelength of the correspondent photon. 

Solution: 
The energy of the K term is EK = +13.6(Z - 0")2(3/ 4) eV. For O"K ~ 2 

one would obtain for the voltage V ~ 5800 Volts. The wavelength of the K" 
line turns out around 1.8 A. 
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Problem F.LI0 An electron is inside a sphere of radius Rs = 1 A, with 
zero angular momentum. From the Schrodinger equation for the radial part of 
the wavefunction derive the lowest eigenvalue En=l and the quantum pressure 
P = -dEn=ddV. 

Solution: 
The equation for rR(r) reads 

17,2 d 
- --(rR) = E(rR) 2mdr2 

(see Eq. 1.14). From the boundary condition R(Rs) 
[sin(kr)]/kr, with knRs = mr for n = 1, 2,3 .... Then 

and 
P = 7fn2 

4mR~ 

o one has R ex 

For R = 1 A one has P = 9.6 X 1012 dyne/cm2 . Compare this value with the 
one of the electron Fermi gas in a metal (§12.7). 

Problem F.LII From the Boltzmann distribution of the molecular ve­
locities in ideal gas, show that the number of molecules nc that hit the unit 
surface of the container per second is given by n < v > /4 (n number of 
molecules per cm3 ) with < v > the average velocity. Then numerically esti­
mate nc for molecular Hydrogen at ambient temperature and pressure. 

Solution: 
From the statistical distribution of the velocities the number of molecules 

moving along a given direction x with velocity between Vx and Vx + dvx is 

The molecules colliding against the unit surface in a second are 

The average velocity is 



60 1 Atoms: general aspects 

Numerically, for H2 , nc = 1.22 x 1024 molecules/(s.cm2 ). 

Problem F.I.12 Hydrogen atoms in the ground-state are irradiated at 
the resonance frequency (En=2 - En=d/h, with e.m. radiation having the 
following polarization: a) linear; b) circular; c) unpolarized. 

By considering only electric dipole transitions, discuss the polarization of 
the fluorescent radiation emitted when the atoms return to the ground-state. 

Solution: 
a) The only possible transition is to the 2pz state, with z the polarization 

axis (L1m = 0). No radiation is re-emitted along z while it is emitted in the 
xy plane, with polarization of the electric field along z. 

b) Only transitions to 2p±1 state are possible (L1m = ± 1). The fluores­
cent radiation when observed along the z direction is circularly polarized. By 
turning the observation axis from the z axis to the xy plane, the fluorescent 
radiation will progressively turn to the elliptical polarization, then to linearly 
polarized when the observation axis is in the xy plane. 

c) Any transition Is ---+ 2P± I,O is possible, with uniform distribution over 
all the solid angle. The atom will be brought in the superposition state and the 
fluorescent radiation will have random wave-vector orientation and no defined 
polarization state. 

Problem F.I.13 An electron is moving along the x-axis under a potential 
energy V(x) = (1/2)kx2, with k = 5 X 104 dyne/cm. From the Sommerfield 
quantization (see Prob. 1.4.4) obtain the amplitudes A of the motion in the 
lowest quantum states. 

Solution: 
From x(t) = ASin[(Jk/m)t + cp] the quantum condition in terms of the 

period T = 21f J m / k reads 

Thus Ao = 0 (the zero-point energy is not considered here), 
Al = 1.47 x lO- scm, A2 = 2.07 x lO- scm. 

Problem F.I.14 The emission of radiation from intergalactic Hydro­
gen occurs at a wavelength )...' = 21 cm (see §5.2). The galaxy, that can be ide­
alized as a rigid disc with homogeneous distribution of Hydrogen, is rotating. 
Estimate the Doppler broadening L1vrot of the radiation, assuming a period 
of rotation of lOs years and a radius of the galaxy R = lOkps = 3.091 x lOIS 
cm. Prove that L1vrot is much larger than the broadening L1vT due to the 
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thermal motion of the Hydrogen gas (assumed at a temperature T = 100 K) 
and larger than the shift due to the drift motion of the galaxy itself (at a 
speed of approximately Vd = 107 cm/s). 

observation 
y 

x 

Solution: 
The Doppler shift at large distance along the y direction is 

v 
V("e) c:::: vo(l + - case) 

e 

with Vo = A' ie. The mean-square average frequency is 

1 1R 1 271" w2 v2 j.R 1271" w2 R2 172 = --2 ,d, v2(" e)de = v5+ ------% ,3d, cos2ede = v5(1+--2-) 
7rR 0 0 e7rR 0 0 4e 

Therefore 
wR 7rR -3 .dvrot = Vo- = Vo- c:::: vo.lO 
2e eT 

From Problem F.1. 7 one ded uces the order of magnitude of the thermal broad­
ening: 

For the drift associated with the linear motion of the galaxy one can ap­
proximately estimate the frequency shift of the order of .dvd = (vd l e)vo c:::: 
3.3 x 1O-4 vo. 
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Problem F .1.15 In a description of the relativistic effects more detailed 
than the Thomas-Frenkel model (§1.6) to derive the one-electron spin-orbit 
Hamiltonian, the Darwin term 

nn2 2 _ 2 Z e2 3 H D = --2 -2 Ze o(r) = n a -aoo(r) 
2m c 2ao 

(with a = e2 /nc = 1/ 137.036 the fine structure constant) is found to be 
present. 

Discuss the effects of H D in Hydrogenic atoms, numerically comparing the 
corrections to the e igenvalues with the ones due to the spin-orbit Hamiltonian 
~nll.S. 

Solution: 

From 

with D = na2 Z e2a6 / 2, one sees that no effects due to HD are present for 
non-s states (within the approximation of nuclear point-charge). 

The shift for s states can be written (see Table 1.4.2) 

l1ED = Z2 a 2 ( e2 Z2 ) == _ Z2 a 2 EO 
n 2aon2 n n 

with E~ = - Z2 e2/ 2aon2 the unperturbed eigenvalues. 
From 

~nl = (Ze2/ 2m2c2) < r - 3 >nlm 

and < r - 3 > nlm = Z 3 /[a~n3 1(1 + 1/ 2)(l + 1)] (see Table 1.4.3), (l -=l= 0) 

Z2 2( EO) 
l1E80 = 2nl(l: ~)(l : 1) [j(j + 1) - l(l + 1) - 3/ 4] 

The relativistic corrections associated with the kinetic e nergy is 

From l1ED + l1E80 + l1Ek in the eigenvalues of the Dirac theory, namely 

E . = _ Eo Z2a 2 [~ _ _ n_] 
n ,] n n2 4 j + ~ 

are obtained (see Appendix V.1). 
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Typical atoms 

Topics 

Effects on the outer electron from the inner core 
Helium atom and the electron-electron interaction 
Exchange interaction 
Pauli principle and the antisymmetry requirement 
Slater determinantal eigenfunctions 

2.1 Alkali atoms 

Li, Na, K, Rb, Cs and Fr are a particular group of atoms characterized by 
one electron (often called optical being the one involved in optical spectra) 
with expectation value of the distance from the nucleus < r > considerably 
larger than the one of the remaining (N - 1) electrons, forming the internal 
"core" . The alkali atoms are suited for analyzing the role of the core charge in 
modifying the Coulomb potential (- Ze2 /T) pertaining to Hydrogenic atoms 
(§1.4), as well as to illustrate the effect of the spin-orbit interaction (§1.6). 

From spectroscopy one deduces t he diagram of the energy levels for Li 
atom reported in Fig. 2.1, in comparison to the one for Hydrogen. 

In Fig. 2.2 t he a nalogous level scheme for Na atom is shown, with the main 
electric-dipole transitions yielding the emission spectrum. 

The quantum numbers for the energy levels in Fig. 2.1 are the ones pertain­
ing to the outer electron. At first we shall neglect the fine structure related to 
the spin-orbit interaction, which causes the splitting in doublets of the states 
at l i=- 0, as indicated for Na in Fig. 2.2. 

A summarizing collection of the energy levels for alkali atoms is reported 
in Fig. 2.3. It should be remarked that because of the different extent of 
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Fig. 2.1. Energy level diagram (Grotrian diagra m) of Li atom, in term of the 
quantum numbers nl of the optical electron and comparison with the correspondent 
levels (n > 1) for H atom. T he quantum d e fect (j (or Rydbe rg defect) indicated 
for 28 and 38 states, is a measure of the additional (negative) energy of the state 
in comparison to the correspondent state in Hydrogen_ The wavelengths (in A) for 
some transitions a re reported . 

penetration in the core (as explained in the following) an inversion of t he order 
of the energy levels in terms of the quantum number n (namely IEnl > lEn-II ) 
can occur_ 

From the Grotrian diagrams one deduces the following: 
i) the sequence of the energy levels is similar to the one for H, with more 

bound and no more I-degenerate states; 
ii) t he quantum defect <5 for a g iven n-state (see Fig_ 2_1) increases on 

decreasing the quantum number I; 
iii) the ground state for Li is 28 (38 for Na, etc ___ ), with L = l (and not 

t he 18 state); 
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5~------~--------~------~------~--------~ 

E(eV) 

Fig. 2.2. Energy levels for Na atom with the electric dipole transitions (ill = ±1) 
generating some spectral lines and correspondent wavelengths (in A). The doublets 
related to spin-orbit interaction and resulting in states at different j == J, are indi­
cated (not in scale). The yellow emission line (a doublet) is due to the transition 
from the 2 P3/2 and 2 P 1/ 2 states to the ground state 251 / 2 with the optical electron 
in the 38 state. 

iv) the transitions yielding the spectral lines obey the selection rule 
i1l = ±1. 

These remarkable differences with respect to Hydrogen are related to an 
effective charge Zeff(r) for the optical electron (see §1.2) different from unit 
over a sizeable range of distance r from the nucleus. 

In order to give a simple quantitative description of these effects we shall 
assume an ad hoc effective charge, of the form Zeff = (1 + blr), 
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Fig. 2.3. Energy levels (neglecting the fine structure) for some alkali atoms, again 
compared with the states for Hydrogen at n > 1. The 48 state is more bound than 
the 3d state (see arrows) , typical inversion of the order of the energies due to the 
extent of penetration of the 8-electrons in the core, where the screening is not fully 
effective (see text and Fig. 2.6) 

depicted in Fig. 2.4. The characteristic length b depends from the particular 
atom, it can be assumed constant over a large range of distance while for 
r ----+ 0 it must be such that Zell(r) ----+ Z. 

As a consequence of that choice for Zel I (r) the radial part of the Schrodinger 
equation for the optical electron takes a form strictly similar to the one in Hy­
drogen (see §1.4): 

(2.1) 

where B = 2/ao and C = 1(1 + 1) - Bb. It is remarked that for b = 0 the 
eigenvalues associated with Eq. 2.1 are En = - R H hc/n2 (Eq. 1.13, for Z = 1). 

If an effective quantum number 1* such that 
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r 

Fig. 2.4. Sketchy behavior of a plausible effective charge for the optical electron 
in Li atom. The dashed part of the Figure (not in scale) corresponds to the region 
of r not taken into account in the derivat ion of the energy levels. For Na, K, etc ... 
atoms Zeff(r --> 0) --> Z. A similar form of effective charge experimented by one 
electron because of the part ial screening of the nuclear charge by the second electron 
is derived in Problem 11.2.3 for He atom. 

l * (l * + 1) = C = l(l + 1) - 2m~2b == l(l + 1) - Bb n 
is introduced, then in the light of the formal treatment for Hydrogen, from 
Eq. 2.1 one derives the eigenvalues 

(2.2) 

with n* not integer. To evidence in these energy levels the numbers nand 
l pertaining to Hydrogen atom, we write n* = n - 8l , with 8l = l * - l , thus 
obtaining 

By neglecting the term in 81 2 

(2.3) 

The eigenvalues are l-dependent , through a term that is atom-dependent 
(via b) and that decreases on increasing l, in agreement with the phenomeno­
logical findings. 

The physical interpretation of the result described by Eq. 2.3 involves the 
amount of penetration of the optical electron within the core. In Fig. 2.5 it 
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is shown that for T :s: ao the electron described by the 28 orbital has a radial 
probability of presence sizeably larger than the one for the 2p electron. This 
implies a reduced screening of the nuclear charge and then more bound state. 
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Fig. 2.5. Radial probability of presence for 28 and 2p electrons in Hydrogen and 
sketchy behavior of the effective charge for Li (see Fig. 2.4). 

As a general rule one can state that the penetration within the core in­
creases on decreasing I. In Fig. 2.6 it is shown how it is possible to have a more 
penetrating state for n = 4 rather than for n = 3, in spite of the fact that on 
the average the 3d electron is closer to the nucleus than the 48 electron. This 
effect is responsible of the inversion of the energy levels, with I E48 I > I E3d I, 
as already mentioned. 

At the sake of illustration we give some quantum defects 6n ,1 to be included 
in Eq. 2.3, for Na atom: 

638 = 1.373 63p = 0.883 63d = 0.01 
648 = 1.357 64p = 0.867 64d = 0.011 

... ... 64! c::: 0 

These values for the quantum defects can be evaluated from the energy 
levels reported in Fig. 2.2 (see also Problem II.1.I). 

Finally a comment on the selection rule 111 = ± I is in order. This rule is 
consistent with the statement that each electron makes the transition indepen-
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Fig. 2.6. Radial probability of presence for 3d and 48 electrons in Hydrogen. From 
the dashed area it is noted how the bump in P(r) for r ::; 2ao grant a presence of 
the 48 electron in the vicinity of the nucleus larger than the one pertaining to the 
3d state. 

dently from the others, with the one-electron selection rule given in Appendix 
1.3. In fact , the total wavefunction for the alkali atom, within the central field 
approximation, can be written 

The electric dipole matrix element associated to a given 1 f-+ 2 transition 
becomes 

R 1 ..... 2 = -e J ( 4)~~~e ) * (rl ' r2 , ... )(4)(2l(rn))* [rl + r2 + ... rn + ... + rN ] 

x4>~~~e(rl ' r2 , ... )4>(1) (rn)dTl dT2 ... dTN 

Because of the orthogonality conditions the above integral is different from 
zero in correspondence to a given term involving rn only when 4>~~~e = 4>~~~e, 
while 

yields the selection rule (Lll)n = ± 1 and (Llm)n = 0, ± l. 
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Now we take into account the doublet structure of each of the states at 
l i- 0 (see the illustrative diagram in Fig. 2.2). The doublets result from spin­
orbit interaction, as discussed at §1.6. The splitting of the np states of t he 
optical electron t urns out 

Li Na K Rb Cs 
2p 3p 4p 5p 6p 

0.337 17.2 57.7 238 554 cm- 1 

0.042 2.1 7.2 29.5 68.7 meV 

supporting the energy corrections derived in terms of the spin-orbit constant 
~nl (see for instance Prob. II.1.2). It can be observed that because of the 
selection rule L1j = 0, ± 1 (0 ~ 0 forbidden) (see App. 1.3) the spectral lines 
involving transit ions between two non-S states in alkali atoms can display a 
fine structure in the form of three components (compound doublets). 

Problems ILl 

Problem 11.1.1 The empirical values of the quantum defects on,l (see Eq. 
2.3) for the optical electron in the Na atom are 

Term n=3 n= 4 n=5 n=6 
1= 0 s 1.373 1.357 1.352 1.349 
1= 1 p 0.883 0.867 0.862 0.859 
1=2 d 0.010 0.011 0.013 0.011 
1=3 f - 0.000 -0.001 -0.008 

By neglecting spin-orbit fine structure, indicate how the main spectral se­
ries can be derived (see Fig. 2.2). 

Solution: 
The main spectral series are 

principal (transitions from p to s terms) , at wave numbers 

sharp (transitions from s to p electron terms) 
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diffuse ( transitions from d to p electron terms) 

fundam ental (transitions from f to d terms): 

Problem 11.1.2 The spin-orbit splitting of the 62 P1/2 and 62 P3/2 states 
in Cesium atom causes a separation of the correspondent spectral line (tran-

o 0 

sition to the 281/ 2 ground-state) of 422 A, at wavelength around 8520 A. 
Evaluate the spin-orbit constant ~6p and the effective magnetic field acting on 
the electron in the 6p state. 

Solution: 
o 

From A" - A' = LlA = 422 A and vdA = - Adv one writes 

c 
LlE = hLlv c::: h· - 2 . LlA c::: 0.07 eV. 

A' 
From 

LlEso = ~;p {j(j + 1) - l(l + 1) - s(s + I)} 

one has 

LlE = ~6p [15 - ~] = ~~6 
2 4 4 2 p 

and then 
2 

~6p = 3"LlE = 0.045 eV 

The field (operator, Eq. 1.33) is 

H = _n_~dVI 
2emcr dr 

with the spin-orbit hamiltonian 

Thus 

H spin-orbit = - /-Ls . H nl = ~6pl . s . 

IH6p l = 0.045 eV III c::: 5.6.106 Oe = 560 Tesla 
2MB 
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Problem 11.1.3 In a maser 85 Rb atoms in the 63 2 P3/2 state are driven to 
the transition at the 61 2 D5/ 2 state. The quantum defects On,l for the states 
are 2.64 and 1.34 respectively. Evaluate the transition frequency and compare 
it to the one deduced from the classical analogy for Rydberg atoms (§1.5). 
Estimate the isotopic shift for 8 7 Rb. 

Solution: 
From 

*h 1 E 1 = - R e-
n n*2 

where R* is the Rydberg constant and n* = n - on,l, the transition frequency 
turns out 

The classical analogy (see Problem 1.5.2) yields 

* 2Lln* 6 2 
v ~ - R e (n*)3 = 3.29·10 GHz · 623 = 27.6GHz. 

The wavelengths are inversely proportional to the Rydberg constant: 

A 87 = RS5 ~ (1 1) (1 1) ~ 1 _ 1.47. 10- 7 

A 85 RS7 + 87·1836 / + 85·1836 

Therefore the isotopic shift results Llv ~ 3.16 kHz or LlA ~ - 20.6 A. 

Problem 11.1.4 By considering Li as a Hydrogenic atom estimate the 
ionization energy. Discuss the result in the light of the real value (5.39 eV) in 
terms of percent of penetration of the optical electron in the (ls)2 core. 

Solution: 
By neglecting the core charge one would have E2s = - 13.56Z2/n2 

-30.6 eV, while for total screening (i.e. zero penetration and Z = 1) E2s = 
- 13.56eV /4 = -3.4 eV. 

Then the effective charge experimented by the 2s electron can b e consid­
ered Z efJ rv 1.27, corresponding to about 15 % of penetration. 
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2.2 Helium atom 

2.2.1 Generalities and ground state 

The Helium atom represents a fruitful prototype to enlighten the effects due 
to the inter-electron interaction and then the arise of the central field potential 
V(r), (see §1.1), the effects related to the exchange symmetry for indistinguish­
able electrons and to discuss the role of the spins and the antisymmetry of 
the total wavefunction. 

First we shall start with the phenomenological examination of the energy 
levels diagram vis-a-vis to the one pertaining to Hydrogen atom (Fig. 2.7). 
A variety of comments is in order. It is noted that in He the state corre­
sponding to the electronic configuration (ls)(nl) when compared to the n 
state in Hydrogen shows the removal of the accidental degeneracy in t. This 
could be expected , being the analogous of the effect for the optical electron 
in alkali atoms (§2.1). A somewhat unexpected result is the occurrence of a 
double series of levels, in correspondence to the same electronic configura­
tion (Is) (nl). The first series includes the ground state, with first ionization 
energy 24.58 eV. It is labelled as the group of parahelium states and all the 
levels are singlets (classification 15,1 P , etc ... , see § 1. 7). The second series has 
the lowest energy state at 19.82 eV above the ground-state and identifies the 
orthohelium states. These states are all triplets, namely characterized by 
a fine structure (det ailed in the inset of the Figure for the 23 P state). Each 
level has to b e thought as the superposition of almost degenerate levels, the 
degeneracy being removed by the spin-orbit interaction (§1.6). The orthohe­
lium states are classified 35, 3 P , etc. ... Among the levels of a given series the 
transition yielding the spectral lines correspond to the rule L1L = ± 1, with 
an almost complete inhibition of the transitions from parahelium to orthohe­
lium (i.e. almost no singlets~ triplets transitions). Finally it can b e remarked 
that while (ls)2 , at 5 = 0, is the ground state, the corresponding (ls)2 triplet 
state is absent (as well as other states to be mentioned in the following). 

In the assumption of infinite nuclear mass and by t aking into account the 
Coulomb interaction only, the Schrodinger equation is 

(2.4) 

and it can be the starting point to explain the energy diagram. In Eq. 2.4 
Z = 2 for the neutral atom. 

Let us first assume that the inter-electron term e2 / r12 can be consider a 
perturbation of the hydrogenic-like Hamiltonian for two independent electrons 
(independent electron approximation). Then the unperturbed eigenfunc­
tion is 

(2.5) 

and 
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Fig. 2.7. Diagram of some e nergy levels for Helium atom and comparison with 
the correspondent levels for Hydrogen. The electron configuration of the states is 
(ls)(nl) . E = 0 corresponds to the first ionization threshold . The double-excited 
states (at weak transition probabilities and called autoionizing states) are un­
stable with respect to self-ionization (Auger effect) being at E > 0, within the 
continuum (Problem F.l1.6) . In the inset the fine structure of the 2 3 P state is re­
ported , to be compared with the separation, about 9000 cm - \ between the 2 3 S 
and the 2 3 P states. Note that this fine structure does not follow the multiplet rules 
described at §3,2. 

(EO)n'l' ,n" l" = Z2 E;;'l' + Z2 E:;"l" 

Ets being the eigenvalues for Hydrogen (degenerate in l). 
For the ground state (18)2 one has 

and 

(2.6) 

(2.7) 
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o 2 H e2 
E 1s Is = 2Z E 1s = - S- ':::' - lOS.S0 eV (2.S) , 2ao 

In this oversimplified picture the first ionization energy would be 54.4 eV, 
evidently far from the experimental datum (see Fig. 2.7). This discrepancy 
had to be expected since the effect of the electron-electron repulsion had not 
yet been evaluated. 

At the first order in the perturbative approach the repulsion reads 

Ei;)IS = j' J ¢is, l s(rl, r2)~¢IS, IS(rl' r2)dT1dT2 =< Is , 1s l~ 1 1S , Is >= h s, l s 
, r12 r12 

(2.9) 
hs, Is is called Coulomb integral in view of its classical counterpart, depicted 
in Fig. 2.S. 

Fig. 2.8. Illustrative plot sketching the classical analogy of the first order pertur­
bation term < e2/r12 > for the ground-state , in t erms of electrostatic repulsion of 
two electronic clouds. 

The estimate of the Coulomb integral can be carried out by expanding 
rj} in term of the associated Legendre polynomials (see Problem II.2.1). For 
the particular case of Is electrons, the Coulomb integral hs,ls can be worked 
out in a straightforward way on the basis of the classical analogy for the 
electrostatic repulsion. The result is 

5 5 e2 
h s Is = -Z(- Efs) = --Z 

' 4 Sao 
(2.10) 
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The ground state energy corrected to the first order turns out 

(0) ( 2 5 ) H 
E1S ,l S = E1s,ls + h S , l S = 2Z - 4Z E 1s c:::: - 74.8 eV (2.11) 

to be compared with the experimental value - 78.62 e V. 
The energy required to remove one electron is 

[(2Z2 - ~Z) - Z2].13.6eV c:::: 20.4 eV 

This estimate is not far from the value indicated in Fig. 2.7, in spite of the 
crudeness of the assumption for the unperturbed one-electron wavefunctions. 
An immediate refinement could be achieved by adjusting the hydrogen-like 
wave functions: in this way a good agreement with the experimental ionization 
energy would be obtained. 

Another way to improve the description is to derive variationally an effec­
tive nuclear charge Z*, which in indirect way takes into account the mutual 
screening of one electron by the other and the related correction in the wave­
functions. As shown in Problem II.2.2 , this procedure yields Z* = Z - (5/16) , 
implying for the ground state 

One can remark how the perturbative approach, without modification of the 
eigenfunctions, is rather satisfactory, in spite of the relatively large value of 
the first order energy correction. 

The ground state energy for He turns out about 94.6% of the "exact" one 
(numerically obtained via elaborate trial functions , see §3.4) with the first­
order perturbative correction and 98% with the variationally-derived effective 
charge. The agreement is even better for atoms with Z 2': 3, as Li+ or Be2+. 
At variance the analogous procedure fails for H- (see Problem II.2.4). 

2.2.2 Excited states and the exchange interaction 

The perturbative approach used for the ground state could be naively at­
tempted for the excited states with an electron on a given nl state. For a trial 
wavefunction of the form 

(2.12) 

the energy 

would not account for the experimental data, numerically falling approxi­
mately in the middle of the singlet and triplet (Is , nl) energy levels. The 
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striking discrepancy is evidently the impossibility to infer two energy levels 
in correspondence to the same electronic configuration from the wavefunction 
in Eq. 2.12. The obvious inadequacy of the tentative wavefunction is that it 
disregards the exchange symmetry (discussed at §1.3). At variance with 
Eq. 2.12 one has to write the functions 

¢~~~I(rl,r2) = ~ [¢ls(rd ¢nl(r2) + ¢nl(rd¢ ls(r2)] 

¢~~,~l(rl' r2) = ~ [¢lS(rd ¢nl(r2) - ¢nl(rd¢ lS(r2)] 

(2.13) 

(2.14) 

granting indistinguishable e lectrons, the same weights being attributed to the 
configurations ls(1)nl(2) and ls(2)nl(1). The labels sym and ant correspond 
to the symmetrical and antisymmetrical character of the wavefunctions 
upon exchange of the electrons. 

On the basis of the functions 2.13 and 2.14, along the same perturbative 
procedure used for the ground state, instead of Eq.2.11 one obtains 

(2.15) 

and 
(2.16) 

where 

(2.17) 

is the exchange integral, essentially positive and without any classical 
interpretation, at variance with the Coulomb integral I1s ,nl. Thus double series 
of levels is justified by the quantum effect of exchange symmetry. 

The wavefunctions 2.13 and 2.14 are not complete, spin variables having 
not yet been considered. In view of the weakness of the spin-orbit interaction, 
as already stated (§1.6) , one can factorize the spatial and spin parts. Then, 
again by taking into account indistinguishable electrons, the spin functions 
are 

a(1)a(2), (3 (1) (3(2) , ~[a (l )(3(2) + a(2)(3(1) 1 for S = 1 

~ [a (l )(3(2) - a(2)(3(1) 1 for S = 0 (2.18) 

The first group can be labelled x~y:;: and it includes the three eigenfunc­
tions corresponding to S = 1. The fourth eigenfunction is the one pertaining 
to S = O. Xsr;!;o is antisymmetrical upon the exchange of the electrons, while 
x~y:;: are symmetrical. 

Therefore the complete eigenfunctions describing the excited states of the 
Helium atom are of the form ¢tot = ¢ls ,nl XS and in principle in this way 
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one would obtain 8 spin-orbitals. However, from the comparison with the 
experimental findings (such as the spectral lines from which the diagram in 
Fig. 2.7 is derived) one is lead to conclude that only four states are actually 
found in reality. These states are the ones for which the total (spatial and spin) 
wavefunctions are antisymmetrical upon the exchange of the two electrons. 

This requirement of antisymmetry is also known as Pauli principle and 
we shall see that it corresponds to require that the electrons differ at least 
in one of the four quantum numbers n, l , m and ms. For instance, the lack of 
the triplet (ls)2 is evidently related to the fact that in this hypothetical state 
the two electrons would have the same quantum numbers, meantime having 
a wavefunction of symmetric character ¢tot = ¢ ls¢ l sX~~' Thus ¢symXs':!:o 
describes the singlet states, while ¢antx~~ describes the triplet states. 

Accordingly, one can give the following pictorial description 

when S X ¢(r) ¢tot Energy 

il 0 ant sym ant E+ 
II 1 sym ant ant E_ 

In other words, because of t he exchange symmetry a kind of relationship, 
arising from electron-electron repulsion, between the mutual "direction" of 
the spin momenta and the energy correction does occur. For "parallel spins" 
one has E_ < E+, the repulsion is decreased as the electron should move, on 
the average, more apart . 

The dependence of the energy from the spin orientation can be related to 
an exchange pseudo-spin interaction, in other words to an Hamiltonian 
operator of the form 1 

(2.19) 

In fact if we extend the vectorial picture to spin operators (in a way analogous 
to the definition of the j angular momentum for the electron (see §1.6)) and 
write 

S = Sl + S2 , (2.20) 

by "squaring" this sum one deduces Sl.S2 = (1/2) [S2 - S1 2 - S22]. Thus, from 
the Heisenberg Hamiltonian 2.19 the two energy values 

E' = - 2K(I/2) [S(S + 1) - 2(1/2)(1 + 1/2)] = - K/2 

for S = 1 and 
E" = 3K/2 

1 This Hamiltonian, known as Heisenberg Hamiltonian, is often assumed as 
starting point for quantum magnetism in bulk matter. Below a given temperature, 
in a three-dimensional array of atoms, this Hamiltonian implies a spontaneous 
ordered state, with magnetic moments cooperatively aligned along a common 
direction (see §4.4 for a comment). 
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for S = 0 are obtained. In other words, from the Hamiltonian 2.19, for a given 
Isnl configuration, the singlet and the triplet states with energy separation 
and classification consistent with Eq. 2.15 and 2.16, are deduced. 

Now it is possible to justify the weak singlet+--*triplet transition probabil­
ity indicated by the optical spectra. The electric dipole transition element 
connecting parahelium to ortohelium states can be written 

R S=O....,S=l CX< XantlXsym > J J ¢;ym[rl + r2 ]¢antdTl dT2 . (2.21) 

This matrix element is zero, both for the orthogonality of the spin states and 
because the function in the integral changes sign upon exchange of the indexes 
1 and 2, then requiring zero as physically acceptable result. Thus one under­
stands why orthohelium cannot be converted to parahelium and vice-versa. 
This selection rule would seem to prevent any transitions (including the ones 
related to magnetic dipole or electric quadrupole mechanisms) and then do 
not admit any violation. The weak singlet-triplet transitions actually observed 
in the spectrum are related to the non-total validity of the factorization in 
the form ¢ tot = ¢ (rl , r2)xspin . The spin-orbit interaction, by coupling spin 
and positional variables, partially invalidates that form of the wavefunctions. 
This consideration is supported by looking at the transitions in an atom sim­
ilar to Helium, with two electrons outside the core. Calcium has the ground 
state electronic configuration (ls)2 ... ( 4s)2 and the diagram of the energy lev­
els is strictly similar to the one in Fig. 2.7. At variance with Helium, because 
of the increased strength of the spin-orbit interaction, the lines related to 
S = 0 +--* S = 1 transitions are very strong. Analogous case is Hg atom (see 
Fig. 3.9). 

Problems 11.2 

Problem 11.2.1 Evaluate the Coulomb integral for the ground state of 
the Helium atom. 

Solution: 
In the expectation value 

< - >= - e-2Z(r,+r2) -drldr2. 1 Z6 J 1 
r12;r2 r12 

l/r12 is expanded in Legendre polynomials 

1 1 00 ( r2 ) 1 - = - L - Il(cosB), 
r 12 rl rl 

1= 0 

1 00 ( )1 = - L rl Il(cosB), 
r2 r2 

1= 0 
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where 8 is the angle between the vectors r l and r2 and 

cos 8 = cos 81 cos 82 + sin 81 sin 82 cos( (PI - (P2) 

In compact form 
1 00 (rdl 

- = L ( )l+l Pl(cos8) 
r12 l=O r> 

where r < is the smallest and r> the largest between r1 and r2. From the 
addition theorem one writes 

The function exp[- 2Z(r1 + r2) ] is spherically symmetric and Yoo = (47r) -! . 
By integrating over the polar angles one has 

All t erms in the sum vanish, except the one for I = m = O. Then 

and including ao and e in the complete form of the ¢'s hs ,ls = ~Ze2 / 2ao. 
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For spherically symmetric wavefunctions one can evaluate the Coulomb 
integral from the classical electrostatic energy: 

where 

and 

2Zr12 
PI ,2 = --'-, 

ao 
2Zr12 

PI2 = --
ao 

dT1,2 = Pi,2 sin e1,2 dP1 ,2 de1,2 d¢1,2 . 

The electric potential from the shell dPI at PI is 

Then the total potential turns out 

Problem 11.2.2 By resorting to the variational principle, evaluate the 
effective nuclear charge Z * for the ground state of the Helium atom. 

Solution: 
The energy functional is 

where 

E [¢] = < ¢I H I¢ > 
< ¢I¢ > 

Z *3 * ¢ (r1' r2) = __ e- z (r,+r2) 
7f 

with Z* variational parameter (ao is omitted). 

Then 

and 



82 2 Typical atoms 

while 

Since 

one has 

From 

Z' Z ' 1 * 2 
(¢IT1 1¢) = ('l/J1s IT11'I/J1s) = 2Z , 

(¢IT2 1¢) = (¢IT11¢) , 

( ¢ I :1 I ¢ ) = ( 'l/JfS'1 :1 I 'l/J fs' ) = Z * = ( ¢ I r12 1 ¢ ) 

( ¢ I r~2 1 ¢ ) = ~ Z * 

E [¢] == E(Z* ) = Z *2 - 2ZZ* + ~Z* 
8 

BE = 2Z* - 2Z + ~ = 0 
BZ* 8 

one deduces Z * = Z - 5/ 16. 

Problem 11.2.3 In the light of the interpretation of the Coulomb integral 
in terms of repulsion between t wo spherically symmetric c harge distributions, 
evaluate t he effective potent ial energy for a given electron in the ground state 
of He atom and the effective c harge ZejJ (r ). 

Solution: 
The electric potential due to a spherical shell of radius R (thickness dR 

and density -ep(R)) at distance r from the ce nter of the sphere is 

1 dR 
- -d¢ (r) = R 2p(R)-R for r :S; R , 

47re 
dR R2p(R)- for r ?: R. 
r 

By integrating over R and taking into account that 

one has 

1 (z) 3 [1 r 2 2Z R 00 2Z R ] = 7r ao r 10 dRR e - --;;;0 + I r dRRe - --;;;0 

= ...l.. (.£..) [1 ru dxx2e-x + roo dxxe-x] 
47r ao u Jo Ju 

= 4~ C~ ) t [2 -e-U (u + 2) ], 

where u = 2Zr . Therefore ao 
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e [ _2Z r (zr )] ¢( r ) = - :;: 1 - e ao ~ + 1 

and from 
_ ZeJJ(r )e2 = _ Z e2 _ e¢(r ) 

r r 
for Z = 2 one finds 

plotted below. 

Problem 11.2.4 The electron affinity (energy gain when an electron 
is acquired) for Hydrogen atom is 0.76 eV. Try t o d erive this result in the 
framework of a perturbative approach for t he ground st ate of H-, as well as 
by considering a reduced nuclear charge Z * . 

Comment the results in the light of the almost-exact v alue which, at v ari­
ance, is obtained only by means of a variational procedure with elaborate trial 
wavefunct ions. 

Solution: 
For H- , by resorting to the results for He and setting Z 1, in the 

perturbative approach one would obtain 

to b e compared with - R Hhc for H. With the variational effective c harge 
ZeJJ = (1 - 156) 

E~_ = - 2(0.473)RHhc 

again less bound than the ground-state for neut ral H ydrogen. 
Only more e laborate calculations y ield t he correct value, the reason being 

that for small Z the perturbation is too large with respect to the unperturbed 
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energy. By repeating the estimate for Z = 3 (Li+ ), for Z = 4 (Be2+) and for 
Z = 5 (B3+ ) a convergence is noted towards the "exact" values of the ground 
state energy (namely 198.1 eV, 371.7 eV and 606.8 eV, respectively) obtained 
from the variational procedure with elaborate trial functions. It should be 
remarked that the real experimental eigenvalues cannot be derived simply 
on the basis of the Hamiltonian in Eq. 2.4 which does not include the finite 
nuclear mass, the relativistic and the radiative terms (see for the Hydrogen 
atom the recall in Appendix V.1). 

2.3 Pauli principle, determinantal eigenfunctions and 
superselection rule 

In the light of the analysis of the properties of the e lectronic states in Helium 
atom, one can state the Pauli principle: the total wavefunction (spatial 
and spin) of electrons, particles at half integer spin, must be antisymmet­
rical upon exchange of two particles. This statement is equivalent to the one 
inhibiting a given set of the four quantum numbers (nlmms) to more than one 
electron. For instance, this could be realized by considering an hypothetical 
triplet ground state (ls)2 for orthohelium, for which the wavefunction would 
be <pls (rd <Pls (r2)a(1)a(2) (or j1 (1) j1(2) or (1 / v'2) [a(1) j1 (2) +a(2) j1(1)]) , and 
the quantum numbers n , I, m, ms would be the same for both electrons. At 
variance, one only finds the singlet ground state, for which ms = ± 1/2. 

From the specific case of Helium now we go back to the general prop­
erties of multi-electron atoms (see §1.1 and §1.3). Because of the exchange 
degeneracy and of the requirement of antisymmetrical wavefunction , the total 
eigenfunction, instead of Eq. 1.10 must be written 

1 '" P lPtot = /"i\Tf ~ P( - 1) lPa (1) lP,a (2)·· ·lPv (N) 
vN! p 

(2.22) 

where a , j1 , ... here indicate the group of quantum numbers (nlmms) and 
the numbers 1,2,3, ... N include spatial and spin variables. P is an operator 
exchanging the electron i with the e lectron j and the wavefunction changes 
(does not change) sign according to an odd (even) number of permutations. 
The sum includes all possible permutations. 

A total eigenfunction complying with exchange degeneracy and antisym­
metry is the determinantal wavefunction devised by Slater 2 

) 
2 This form is the basis for the multiplet theory in the perturbation approach 

dealing with operators r;l and r;;/ (see §3.4). 
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accounting for all the possible index permutations with change of sign when 
two columns are exchanged. On the other hand the determinant goes to zero 
when two groups of quant um numbers (and then two rows) are the same. 

Now it can be proved that no transition, by any mechanism, is possible 
between globally antisymmetric and symmetric st ates (in the assumption that 
they exist) , sometimes known as superselection rule. In fact such a transi­
tion would be controlled by matrix elements of the form 

(2.23) 

that must be zero in order to avoid the unacceptable result of having a change 
of sign upon exchange of indexes, since the integrand is globally antisymmet­
ric. 

In the light of what has been learned from the analysis of alkali atoms and 
of Helium atom, now we can move to a useful description of multi-electrons 
atoms which allows us to derive the structure of the eigenvalues and their 
classification in terms of proper quantum numbers (The vectorial model, 
Chapter 3). Other typical atoms, such as N, C and transition metals (Fe, Co, 
etc ... ) shall be discussed in that framework. 

Problems F.II 

Problem F.I1.1 By means of the perturbation approach for independent 
electrons derive the energy levels for the first excited states of Helium atom, 
in terms of Coulomb and exchange integrals, writing the eigenfunctions and 
plotting the energy diagram. 

Solution: 
The first excited ls2l states are 

Ul = ls(1)2s(2) U 5 = ls(1)2py(2) 
U2 = ls(2)2s(1) U6 = ls(2)2py (1) 

U 3 = ls(1)2Px(2) U7 = ls(1)2pz(2) 
U4 = ls(2)2Px(1) U s = ls(2)2pz(1) 

From the unperturbed H amiltonian without the electron-electron interac­
tion, by setting n = 2m = e = 1, one finds 

The secular equation involves the integrals 
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Is = \ 18(1 )28(2) I r~2118(1 )28(2) ) 

Ip = \ 18(1 )2p(2) I r~21 18(1 )2p(2) ) 

K s = \ 18(1)28(2) I r~2118(2)28(1)) 

Kp = \ 18(1)2p(2) I r~2118(2)2P(1)) 

(p here represents Px, Py or pz) and it reads 

Is - E' Ks 0 0 
Ks Is -E' 

0 
Ip -E' Kp 

0 
Kp Ip -E' 

0 0 
Ip -E' Kp 

Kp Ip -E' 

0 0 0 
Ip - E' 

Kp 

0 

0 
= 0 

0 

Kp 
Ip -E' 

From the first block E' = Is ± K s, with the associated eigenfunctions 

1 
(Pl ,2 = J2 [18(1 )28(2) ± 18(2)28(1)] . 

From the second block E" = Ip ± K p, with eigenfunctions 

and the analogous for y and z. Thus the following diagram is derived (I and 
K > 0 and Ip > Is). 
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(ls)(2p) 
2Kls,2p 

------~-

2Kls,2s 

(ls)(2s) 

(l s)2 115, 15 
------'----'------~----------------- --- --- -- _. 

Problem F.II.2 For the optical electron in Li atom consider the hybrid 
orbital 

¢2s and ¢2pz being normalized h ydrogen-like wavefunctions, with effective 
nuclear charge Z. Find the pseudo-dipole moment J.L = e(z) and the value of ), 
yielding the maximum of J.L (relevant connections for situations where hybrid 
orbitals are actually induced are to be found at §4.2 and §9.2). 

Solution: 
The pseudo-dipole moment turns out 

J.L = e J i[>* Zi[>dT = 

= (1: >,2) [J ¢~s (r)zdT + ),2 J ¢~p)r) zdT + 2), J ¢2S (r) ¢2P,(r)ZdT] , 

where the first two integrals are O. From Table 1.4.2 (setting for simplicity 
e=ao=l) 

J.L = 2),\2 (~) 3 ~ r27r d¢ r cos2BsinBdB r= Zr4(Zr - 2)e- ZT dr = 
1 + /\ 2 47r Jo Jo Jo 

= _),_Z3 [Z25! _ 2Z4!] _),_~ 
1 + ),2 12 Z6 Z5 1 + >,2 Z ' 

i.e. J.L = (6eao/Z)Aj(1 + ),2) in complete form. 
From 
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dfJ 6(1 + ,\2 - 2,\2) 6 (1 - ,\2) 
d'\ = Z (1 + ,\2)2 = Z (1 + ,\2)2 = 0 

the maximum is found for ,\ = 1, as it could be expected. 

Problem F.II.3 Prove that the two-particles spin-orbital 

represents an eigenstate for the z-component of the total spin at zero eigen­
value. Then evaluate the expectation value of S2. 

Solution: 
From 

and 

Thus 

Since 

while 

and 

< 'ifJA NTI'ifJ~NT >== -I J ¢~ (r)¢b(r)dT I 2 == - A 

(with the same result for the y component). By taking into account that 
(S)2 = (Sd2 + (S2)2 + 2S 1 .S2, then 

< 'ifJANTI (Sf'Y + S;,Y)2 1'ifJANT >= ~{1 - A} 

and 

Problem F.II.4 At Chapter 5 it will be shown that between one e lec­
tron and one proton an hyperfine interaction of the form AI.So(r) occurs, 
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where I is the nuclear spin (Fermi contact interaction). An analogous 
term, i.e. 'Hp = A81.82o(r12) (with r12 == r1 - r2) describes a relativistic in­
teraction between the two electrons in the Helium atom. In this case A turns 
out A = - (87f /3 )(en/me)2. Discuss the first-order p erturbation effect of 'Hp 
on the lowest energy states of orthohelium and parahelium, showing that only 
a small shift of the ground-state level of the latter occurs (return to Prob. 
F.I.15 for similarities) . 

Solution: 
For orthohelium the lowest energy states is described by the spin-orbital 

The evaluation of the expectation value of 'Hp yields zero since two electrons 
at parallel spin cannot have the same spatial coordinates. For the ground state 
of parahelium since 81.82 = -3/4 (see Eq. 2.20), by using hydrogenic wave 
functions <PIs (r1) and <PIs (r2) one estimates 

3A Z6 11 2 Z (rJ+ r 2 ) < Is , 1sl'Hp lls, Is >= - -26" e- ao o(r12)dT1dT2 = 
4 7f ao 

3A Z6 100 - 4Z..2:... 2 3 en 2 Z3 -3 = - ---47f e ao r dr = -(-) - ':::' 10 eV, 
4 7f 2a8 0 32 me a~ 

a small shift compared to -78.62 eV. 

Problem F .11.5 The spin-orbit constant 6 p for the 2p electron in Lithium 
turns out 6 p = 0.34cm- 1 . Evaluate the magnetic field causing the first cross­
ing between P3j2 and P1j2 levels, in the assumption that the field does not 
correct the structure of the doublet. 

Solution: 

j=3/2 

(3 /2)g")J.nH 

j =l/2 ( 1/2)g')J.nH 
---...L..--E···················· 
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The first crossing takes place when 

Since g' = 2/3 and g" = 4/3 the crossing occurs for H = t!1E/(7MB/3). 
The correction associated with the spin-orbit interaction is 

~~p [j (j + 1) - l(l + 1) - 8(8 + 1)] 

Then t!1E = (3 /2 )6p and H ':::' 4370 Oe. 
When the weak field condition is released and the perturbation theory 

for the full Hamiltonian ~nll.s + MBH.(l + 2s) is applied, the crossing is found 
at a slightly different field. Try to estimate it after having read Chapter 4 (or 
see Prob. 1.1.20 in the book by Balzarotti, Cini and Fanfoni quoted in the 
Preface). 

Problem F.II.6 Refer to the double-excited electron state 284p of the He­
lium atom. In the assumption that the 28 electron in practice is not screened 
by the 4p electron, which in turn feels just the residual charge Z(r) ':::' 1 
(see §2.1) , evaluate the wavelength of the radiation required to promote the 
transition from the ground state to that double-excited state. After the au­
toionization of the atom, and decay to the ground-state of He+ , one electron 
is ejected. Estimate the velocity of this electron. 

Solution: 
E(28,4p) = - 14.5 eV, then A = c/v = 192 A and v = 3.75 X 108 cm/s. 
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The shell vectorial model 

Topics 

"Aufbau" of the electronic structure and closed shells 
Coupling of angular momenta (LS and jj schemes) 
Rules for the ground state 
Low energy states of C and N atoms 
Effective magnetic moments and gyromagnetic ratio 
Approximate form of the radial wavefunctions 
Hartree-Fock-Slater theory for multiplets 
Selection rules 

3.1 Introductory aspects 

By resorting to the principles of quantum mechanics and after having dealt 
with specific atoms, one can now proceed to the description of the electronic 
structure in generic multi-electron atoms. We shall see that the sequence of 
electron states accounts for the microscopic origin of the periodic Table of the 
elements. 

First the one-electron states, described by orbitals of the form 
cPnlm = RnlYzm , have to be placed in the proper energy scale (diagram). 
Then the atom can be thought to result from the progressive accommodation 
of the electrons on the various levels, with the related eigenfunctions. This 
build-up principle (called aufbau from the German) has to be carried out by 
taking into account the Pauli principle (§2.3). Therefore a limited number 
of electrons can be accommodated on a given level and each electron has 
associated one (and only one) spin-orbital eigenfunction, differing in one or 
more of the quantum numbers n , I, m, ms from the others. 

The maximum number of electrons characterized by a given value of n is 
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~ 2(21 + 1) = 2n + 4 ~ 1 = 2n + 4 n(n 2- 1) (3.1) 
1= 0 1= 0 

When this maximum number is attained one has a closed shell. A closed sub­
shell, often called nl shell, occurs when a given nl state (which defines the 
energy in the absence of spin-orbit and exchange interactions) accommodates 
2(21 + 1) electrons, in correspondence to the degeneracy in the z-component 
of the orbital momentum and of the spin degeneracy. 

A complete sub-shell (or shell) implies electron charge distribution at 
spherical symmetry 1 and the quantum numbers L (for the total orbital 
momentum) and S (total spin) are zero, obviously implying J = 0 and spec­
tral notation (see §1.7) ISO. 

For the electrons outside the closed nl shells one has to take into account 
the spin-orbit interaction yielding j = (l + s) and the electron-electron inter­
action leading to the Coulomb and exchange integrals, as it has been discussed 
for alkali atoms (§2.1) and for Helium atom (§2.2). As a consequence, a vari­
ety of "couplings" is possible and a complex distribution of the energy levels 
occurs, the detailed structure depending on the relative strengths of the cou­
plings. For instance, the sequence of levels seen for Helium (§2.2) , with spin­
orbit terms much weaker than the Coulomb and exchange integrals, can be 
considerably modified on increasing the atomic number, when the spin-orbit 
interaction is stronger than the inter-electron effects. 

In order to take into account the various couplings and to derive the qual­
itative sequence of the eigenvalues (with the proper classification in terms of 
good quantum numbers corresponding to constants of motion) one can abide 
by the so-called vectorial model. Initiated by Heisenberg and by Dirac, 
this model leads to the structure of the energy levels and to their classification 
in agreement with more elaborate theories for the multiplets, although it does 
not provide the quantitative estimate of the energy separation of the levels. 

In the vectorial model the angular momenta and the associated magnetic 
moments are thought as classical vectors, as seen in the ad hoc definition of 
J and of Land S at §1.6, 1.7 and 2.2.2. Furthermore, somewhat classical 
equations of motion are used (for instance the precessional motion is often 
recalled). Moreover constraints are taken into account in the couplings, so 
that the final results do have characteristics in agreement with the quantum 
conditions. For example, the angular momenta of two p electrons are coupled 
and pictorially sketched as shown in Fig. 3.1 

The interactions are written in the form 

(3.2) 

where a) can be considered a generalization of the spin-orbit interaction (aii > 
0, as proved at §1.6); b) is the analogous for the orbital couplings, while c) is the 

1 The rule L~l=_l Yi~m((;l ,'P)Yi ,m (e ,'P ) = (21 + 1) / 47r is known as the Unsold 
theorem (See Problem 1.4.9 for a particular case). 
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i L=O 

\ I 1 L=1 

Fig. 3.1. Illustrative coupling of the angular momenta for two p electrons to yield 
the L = 0, L = 1 and L = 2 states. It is noted that the effective "lengths" of the 
"vectors" must be considered Jl(l+l) and JL(L + 1). 

extension of the exchange interaction discussed in Helium (Cjk = - 2K < 0). 
In these coupling forms the constants a, band C have usually the dimensions 
of energy, the angular momenta thus being in 'Ii units. 

On the basis of Eqs. 3.2 the energy levels are derived by coupling the 
electrons outside the closed shells and the states are classified in terms of 
good quantum numbers. The values of a, band C are left to be estimated on 
the basis of the experimental findings, for instance from the levels resulting 
from the optical spectra. 

In spite of these simplifying assumptions the many-body character of the 
problem prevents suitable solutions when a, b and C are of the same order of 
magnitude. Two limiting cases have to be considered: 

i) "small" atoms (nuclear charge Z not too large) so that the spin-orbit 
interaction is smaller than other coupling terms and the condition a « C can 
be assumed . This assumption leads to the so-called LS scheme; 

ii) "heavy" atoms at large Z, where the strong spin-orbit interaction im­
plies a » C (jj scheme). 

3.2 Coupling of angular momenta 

3.2.1 LS coupling model 

Within this scheme one couples S i to obtain S and Ii for L (in a way to account 
for the quantum prescriptions). For 

(3.3) 

the total spin number S = 0,1 / 2,1,3/2, ... and the total orbital momentum 
number L = 0,1 , 2, ... are defined. Then the spin orbit interaction is taken 
into account with an Hamiltonian of the form 
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Hso = ~LS L.S , (3.4) 

an extension of the Hamiltonian derived at §1.6 (see §3.2.2 in order to under­
stand that the precessions of Ii yield an average orbital momentum along L , 
while the average spin momentum is along S: then Eq. 3.4 follows). 

) 

0,112 0,- 112 - 1,112 - 1,- 112 m\ms 

0 1-:--7-:=----+-:-::-+---+--+---+--+----i 

j : :~: 
0, 112 

0, -112 

- 1, 112 

-1 , -112 

3p 
2,1,0 

Table 111.2.1 Derivation of the electronic states compatible with the Pauli 
principle for two equivalent p elect rons. It is noted that the group 3 D cannot exists 
since states with lvI = 2 and Ms = 1 are not found. The values lvIs = 0 and with 
M running from -2 to +2 are present and they correspond to 1 D states at S = 0, 
implying J = 2. The states at M = 1 and Ms = 1 are all found and then the 
multiplet S = 1 and L = 1 does exist, implying the values J = 2, 1, O. Finally the 
last case corresponds to the singlet state at S = 0 and L = O. The total number of 
original states is 36 (corresponding to 2 x 2 x (2h + 1) x (2l2 + 1)) and only 15 of 
them are allowed. Six states are eliminated because they violate Pauli principle. Of 
the remaining 30 states, only half are distinguishable. 

When the electrons to be coupled are equivalent, namely with the same 
quantum numbers nand l , one has to reject the coupling configurations that 
would invalidate the Pauli principle . In other words, one has to take into 
account the antisymmetry requirement for the total wavefunction and this 
corresponds to the problem of the Clebsch-Gordan coefficients. A simple 
method to rule out unacceptable states is shown in Table III.2.1 for two np 
electrons. All the possible values for m and ms are summed up to give M and 
M s. Then the states along the diagonal are disregarded , since they correspond 
to four equal quantum numbers. The states above the diagonal are also to be 
left out , since they correspond to the exchange of equivalent electrons, the 
exchange degeneracy being taken into account by the spin-spin interaction. 
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Finally the electronic states compatible with the values of M and Ms are 
found by inspection. This method corresponds to a brute-force counting of 
the states, as it is shown in the Problems for the low-energy electronic states 
in C and in N atoms (Problems III.2.1 and III.2.2). 

When the electrons are inequivalent (differing in n or in l) no restrictions 
to the possible sums has to be considered (see Problem III.2.3). 

Once that Land S are found and the structure of the levels expected from 
the couplings 3.2 is derived, then in the LS scheme one defines 

J = L + S, (3.5) 

characterized by the quantum number J. The spin-orbit interaction is taken 
into account according to Eq. 3.4 in order to derive the multiplets. Pictorially 

J=L+S 
J 

S J=L-S 

J 

with coupling energy Eso = ~LsIL I . I S lcos8 (8 angle between L and S). 
It is reminded that according to the classical equation of motion, a mag­

netic moment J.L L ex - L in magnetic field precesses with angular frequency 
WL = , H, with, the gyromagnetic ratio given by , = J.LL/L (Problem III.2.4). 
In terms of L and S and of the related torque of modulus -8Eso/88, a pre­
cession of each of them around the direction of J has to be expected. To show 
this one writes 

dL dt = ~LSS X L (3.6) 

dS dt = ~LsL x S. (3.7) 

and since S x S = L x L = 0 



96 3 The shell vectorial model 

dL dt = ~LSJ x L 

dS dt = ~LSJ x S, 

implying the precessional motions of Land S around an effective magnetic 
field along the direction of J , the angular frequency being proportional to ~LS 
(see Problem III.2.4). 

Therefore J and MJ are good quantum numbers while L z and Sz are 
no longer constant of motion (z is here an arbitrary direction). Then the 
energies of the multiplet are derived b y adding the corrections due to the 
spin-orbit Hamiltonian (in the form 3.4) to the energy EO(L, S) resulting 
from the couplings between S i and between Ii (see examples in subsequent 
Figures). From the definition of J (Eq. 3.5), again by the usual "squaring", 
one obtains 

E(L, S, J) = EO(L, S) + ~~LS [J(J + 1) - L(L + 1) - S(S + 1)] (3.8) 

An empirical rule for ~LS is ~LS ~ ±~nz/2 , with the sign + when the 
number of the electrons in the sub-shell in less then half of the maximun 
number that can be accommodated and - in the opposite case (according to 
§1.6 ~nl = all in Eq. 3.1). For sign + the multiplet is called regular, namely 
the state at lowest energy is the one corresponding to J minimum (pictorially 
with Land S antiparallel). For sign - the multiplet is inverted, the state at 
lowest energy being the one with maximum value for J (i.e. Land S parallel). 

For regular multiplets one immediately derives the interval rule, giving 
the energy separation between the states at J and (J + 1). From Eq. 3.8 

(3.9) 

implying, for example for L = 2 and S = 1, the structure of the levels shown 
in Fig. 3.2. This rule can be used as a test to check the validity of the LS 
coupling scheme. It is noted that the "center of gravity" of the levels, namely 
the mean perturbation of all the states of a given term, is not affected by the 
spin-orbit interaction. In fact 

L+S 
<i1(E-Eo»= L ~~S(2J+1)[J(J+1)-L(L+1)-S(S+1)] = 0 

J=IL-si 
(3.10) 

(see Figs. 3.2,3.4 and Problem F.III.5). 
When more than two electrons are involved in the coupling, t he procedure 

outlined above has to be applied by combining the third electron with the 
results of coupling the firs t two and so on. Examples (Problems III.2.2) will 
clarify how to deal with more than two electrons. 
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L S 

J=3 1 t degeneracy 7 

3¢'LS L;r average perturbation 
L,S J=2 

........................................ degeneracy 5 

2¢'LS 

1 
3¢'LS 

~ ..................................... degeneracy 3 
J=l 

Fig. 3.2. Illustration of the interval rule for the multiplet arising from the L = 2 
and S = 1 state. 

3.2.2 The effective magnetic moment 

At §1.6 the effect of an external magnetic field on one single electron has been 
considered. The quantum description for multi-electrons atom shall be given 
at Chapter 4. Here we derive the atomic magnetic moment that effectively 
interacts with the external field in the framework of the vectorial model and 
of the LS scheme. 

The magnetic field , acting on J.L L and J.Ls, induces torques on L and on 
S while they are coupled by the spin-orbit interaction. A general solution for 
the motions of the momenta and for the energy corrections in the presence of 
the field can h ardly be obtained. Rigorous results are derived in the limiting 
cases of strong and of weak magnetic field, namely for situations such that 
J.L L,s .H » ~LS and J.L L,s .H « ~LS, respectively. Let us first discuss the case 
of weak magnetic field (Fig. 3.3) 

In view of the meaning of L.J and of S.J , the angles between L and J and 
Sand J can be written 

cosD = L(L + 1) + J(J + 1) - S(S + 1) 
2JL(L + l)J J(J + 1) 

cosSJ = S(S + 1) + J(J + 1) - L(L + 1) 
2JS(S + l)J J(J + 1) 

(3.11) 

(3.12) 

Then the magnetic moment along the J direction, after averaging out the 
transverse components of L and S (due to fast precession induced by spin 
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L 

Transverse components 
average out 

Fig. 3.3. Vectorial description of angular and magnetic moments in magnetic field , 
within the LS model. The interaction with the field is weak in comparison to the 
spin-orbit interaction and fast precessions of L and S around J occur, controlled by 
~LS . Only t he " result" of the precessional motion can effectively interact with the 
field: t he precession of J at the Larmor frequency WL = , H is induced. WL is much 
smaller than the precessional frequency of L and S around J (see P roblem III.2.4). 

orbit interaction) is 2 

- -J.L J = - 2f..lBScosSJ - f..l BLcosLJ 

Therefore the effective magnetic moment t urns out 

(3.13) 

where g, called the Lande factor , is 

J(J + 1) + S(S + 1) - L(L + 1) 9 = 1 + ............................................................. . 
2J(J + 1) 

(3.14) 

2 T he formal proof is based on the Wigner-Eckart theore m (see §4.3) 
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Hence the energy corrections associated with the magnetic Hamiltonian are 
.tJ.E = - JLJ.H = - Ji/J H = gJ-lBHMJ. Thus the magnetic field removes the 
degeneracy in M J and the energy levels, in weak magnetic field, turn out 

(3.15) 

In the opposite limit when the magnetic field is strong enough that the 
Hamiltonians JLL.H and JLs .H prevail over the spin-orbit interaction, one 
can first disregard this latter and the energy levels are derived in terms of 
the quantum magnetic numbers M and Ms. Vectorially this corresponds to 
the decoupling of the orbital and spin momenta and to their independent 
quantization along the axis of the magnetic field, around which they precess at 
high angular frequency. The magnetic moment is the sum of the independent 
components and therefore the energy correction is written 

(3.16) 

The spin-orbit interaction can be taken into account subsequently, as pertur­
bation of the states labelled by the quantum magnetic numbers M and Ms. 
This will be described at Chapter 4 as the so-called Paschen-Back regime. 

3.2.3 Illustrative examples and the Hund rules for the ground 
state 

In the framework of the LS scheme, by taking into account the signs of the 
coupling constants for the spin-orbit interaction (§1.6) and for the spin-spin 
interaction (§2.2.2), one can figure out simple rules to predict the configuration 
pertaining to the ground state of the atom. This is an important step for the 
description of the magnetic properties of matter . The rules, first empirically 
devised by Hund, are the following: 

i) maximize the quantum number S. The reason for this is related to the 
sign of the exchange integral, since in the spin-spin coupling C12 plays the role 
of - 2K, as already observed ; 

ii ) maximize L , in a way compatible with Pauli principle; 
iii) minimize J for regular multiplets while maximize it for inverted 

multiplets. This rule follows from the sign of ~nl and then of ~LS (see Eq. 
3.8). 

As illustrative examples let us consider one atom of the transition elements, 
with incomplete 3d shell (Fe) and one of the rare earth group, with incomplete 
4f shell (Sm). The electronic configuration of iron is (Is )2(2s )2(2p)6 (3s )2(3p)6 
(3d)6(4s)2. Maximization of S implies the spin vectorial coupling in the form 
nin 1 yielding S = 2. The coupling of five of the six orbital momenta must 
be zero, since the m numbers must be all different (from -2 to + 2) in order to 
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a) 
~ 

r-r-I-:-= -O __ _____________ I_p_I _________ ____ _ <" ____ ~ 

Magnetic fie ld 

s 

==== i ~-r-3-P-=-2---.t~?------ -.( _OJ 

s = ] //2SLS . '---''---_ _____ _______ < _____ ___ __ • -2 

'\:.:. 3PI __ .[':"J ______ _ .,::: J 
.'---"------ -------- ------ ° 

3p 

j=O 

Degeneracy 
IP I 3 

ID2 5 

IF3 7 

~" LS 3PO 

- --- -- --- -
3PI 3 
3P2 5 

3D3 7 - --- -- --- - 3D, 5 2 ' 
3D~ 3 

2b l2 
3F4 

L=3 - ---~~~-- -
9 

3F3 7 
3~LS 3F2 5 

60 

Fig. 3.4 . Diagram of the energy levels and labeling of the electronic states within 
the LS scheme for: a) one s and one p electron; b) one p and one d electron 
(outside closed shells) . For case a) it is shown how a magnetic field r emoves all the 
degeneracies, while in case b) the number of degenerate states are indicated on the 
right (C LS has been taken negative) . 

preserve Pauli principle, Then for the sixth electron we take t he maximum, 
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namely L = 2. The multiplet is inverted, because the maximum number of 
electrons that can be accommodated in the 3d sub-shell is 10. Then J = 4. 
Thus the ground state for iron is 5D4 . 

Samarium has the e lectronic configuration ending with (4f)6(6s)2. Maxi­
mizing S yields S = 3. To complete half of the shell (that would give L = 0) 
one electron is missing. Then by taking the maximum possible value one has 
L = 3. The multiplet is regular and therefore the ground state is the one with 
J = 0, namely 7Fo. Other ground states are derived in Problem III.2.5. 

In Table III.2.2 the ground state of some 4f magnetic ions often in­
volved in paramagnetic crystals, with their effective magnetic moment IILI = 
gJ J( J + 1) are reported. As illustrative examples of the structure and classi­
fication of the energy levels in the LS scheme according to the prescriptions 
described above, in Fig. 3.4 the cases of atoms with one s and one p electron 
and with one p and one d electron outside the closed shells are shown. 

Ion Shell S L J Atomic I~I 
Configuration (in Bohr magneton) 

Ce>T 4f' 112 3 5/2 "Fsl2 2.54 
Pr3+ 4f I 5 4 3H4 3.58 

d3+ 4F 3/2 6 9/2 41912 3.62 
Pm3+ 4f' 2 6 4 S{4 2.68 
Sm3+ 4f5 5/2 5 5/2 6H S12 0.85 
Eu3+ 4F 3 3 0 7FO 0 
Gd3+ 4f7 7/2 0 7/2 SSm 7.94 
Tb3+ 4f 3 3 6 7F6 9.72 
Dl + 4f 512 5 15/2 6HI 512 10.65 
Ho3+ 4f'° 2 6 8 51s 10.61 
ErJ+ 4f'1 312 6 15/2 4{ 1512 9.58 

TmJ+ 4f'2 1 5 6 3H6 7.56 
Yb3+ 4f'3 112 3 7/2 2Fm 4.54 
Lu3+ 4f'4 0 0 0 ISO 0 

Table 111.2.2 Ground st at e of some magnetic ions of the 4f sub-shell, accord­
ing to Hund 's rules, and correspondent values of the effective magnetic moments . It 
should be remarked that these data refer to free ions, while the magnetic properties 
can change when the crystalline electric field is acting (see §13.3). 
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In Fig. 3.5 the energy levels of the p2 configuration are reported and the 
transitions to the sp configuration (see Fig. 3.4a), driven by electric dipole 
mechanism, are indicated (see §3.5). 

np2 ID 

3p 

Ip 

ns no 
3p I 

J=O 

J=2 
J=2 

J=l 
J=O 

J=l 

J=2 

J=l 
J=O 

Fig. 3.5. Multiplet structure in the LS scheme for the nsnp and the np2 configu­
rations and transitions allowed by the electric dipole mechanism (see §3.5) . 
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Problems 111.2 

Problem 111.2.1 Derive, with proper labeling, the first low-energy states 
of the carbon atom (ground state configuration (18)2 (28)2 (2p )2) by taking 
into account the inter-electronic interactions, first disregarding the spin-orbit 
interaction. 

Solution: 
The method to rule out unacceptable states for equivalent 2p electrons is 
shown in Table III.2.1. Equivalently, by indicating 1m = 1, ms = ~ >= 
a, 1 0,- ~ >= d, 1 1 ,- ~ >= b, I- l,~ >= e, 1 0 , ~ >= c, I- l ,- ~ >= f 
one has the possibilities listed below: 

MLMS 
ab 2 0 
ae 1 1 • 
ad 1 0 
ae 0 1 • 
af 0 0 () 
be 1 0 • 
bd 1 -1 • 
be 0 0 • 
bf 0 -1 • 
cd 0 0 
ee -1 1 • 
ef -1 0 
de -1 0 • 
df -1 -1 • 
ef -2 0 

~ terms correspond to L = 2 and S = 0, • to L = 1 and S = 1, while <; to 
L = 0 and S = 0 (see Table III.2.1). 

The first low-energy states are ISO, 1 D2 and 3 PO ,1,2, according to the 
vectorial picture and to the Hund rules: 

r 1 r 1 18o L = 0 8 = 0 

r r r 1 1 D2 L = 2 8 = 0 

"" / r r 3 PO ,1,2 L = 1 8 = 1 

The correspondent energy diagram, including the experimentally detected 
splitting of the lowest energy 3 P state due to spin-orbit interaction is 
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L=O, S=O:.~~ ____________ IS_O J~O 20649 em-' 

10195 em-I 

43 cm-1 

16cm-1 

3Po J~O 
O ·-~ground state 

An extended energy levels diagram of the atom (with spin-orbit splitting 
not detailed) is 

0 

E(eV) - \ -

-2 -

-3 -

-4 -

-5 -

-6 -

-7 -

-8 -

-9 -

- 10 -

-I I -

-12 -

Singlet (S=O) 

18 1p 1D 
I 

4'S--
4--

3' P 4'0-

2s'2P~ 
--3' P 

2s' 2p3s 

I 

Triplet (S=1) 
38 3p 3D 

I I 

-4--
--4 

-
3' 0 

--2s'2p3p-

3'~--
=-- --3 S 2s'2p3p 

2s' 2p3p 

~ -
2s'2p3s -

-
-
-
-
-
-
-

I I 

Problem 111.2.2 Derive the first low-energy states for the N atom (elec­
tronic configuration (ls)2 (2S)2 (2p )3) by taking into account the inter-electron 
couplings, labelling the states with the good quantum numbers. By assuming 
a spin-spin interaction of the form L::,j Asi,sj evaluate the shift of the ground 
state. 
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Solution: 
According to the notation used in Problem III.2.1 , the possible one-electron 
states are ab c d e f. 

The complete states, in agreement with the Pauli principle, are 

ML M s M L M s 
abc 2 1/ 2 bcd 1 -1/ 2 
abd 2 -1/ 2 bce 0 1/ 2 
abe 1 1/ 2 bcf 0 -1/ 2 
abf 1 -1/ 2 bde 0 -1/ 2 
acd 1 1/ 2 cde -1 1/ 2 
ace 0 3/2 cdf -1 -1/ 2 
acf 0 1/ 2 def -2 -1/ 2 
ade 0 1/ 2 bef -1 -1/ 2 
adf 0 -1/ 2 cef -2 1/ 2 
aef -1 1/ 2 bdf 0 -3/ 2 

( ~ t erms corresponding to L = 2, 8 = 1/2, i.e 2 D5/ 2,3/ 2 , etc ... ). 
Thus the three low-energy states are 

2P3 1 2D5 3 48 3 
2"2' 2 ' 2 2' 

correspondent to the vectorial picture 

"" / ---> 11 I 2 P 3 1 L = 15 = ~ 
2 ' 2 

Ii---> III 2 D 5 3 L = 25 = ~ 
2 ' 2 

11<- ill 45 3 L = 05 =~ 
2 
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The diagram is 

0 

E(eV) -I -

-2 -

-3 -

-4 -

-5 -

-6 -

-7 -

-8 -

-9 -

-10 -

-I I -

-12 -

-1 3 -

Doublet (5=112) 

28 2p 20 2F 

2' P,J2 __ 

2'0 __ 3f2 

Quartet (5=3/2) 

48 4p 40 4F 

-14 - 2'5 ... :~~:~~~I( ........ .. ......... _______ 3f2 

l-

I-

l-

I-

l-

I-

l-

I-

I-

- 1 5 ~--'--~--r--'~-~--r-~r--'--~ 

The shift of the ground state due to the spin-spin interaction is 3A/4. In 
fact 

and then 
3 
4 

The same structure and classification of the electronic states hold for 
phosphoro u s atom, in view of the same configuration s2p3 outside the closed 
shells. On increasing the atomic number along the V group of the periodic 
Table, the increase in the spin-orbit interaction can be expected to invalidate 
the LS sch e m e (see §3.3). However, for three e lectrons in the p sub-shell, 
since ~LS is almost zero (see Eq. 3.8), the 2 Pl /2 and 2 P 3/ 2 states, for instance, 
have approximately the same energy (i1Eso ~ 3.1 meV). 
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Problem 111.2.3 Reformulate the vectorial coupling for two inequivalent 
p electrons in the LS scheme, indicating the states that would not occur for 
equivalent electrons. 

Solution: 

Li 'i -

LjSj-

L 

i r 2 

V i 
! • 0 

s 

t i 
-+ • 0 

D 

states 

D 

p 

s 

multiplets 

3 

J = 3, 2, 1 for 8 = 1 

J = 2 for 8 = 0 

P J = 2, 1, 0 for 8 = 1 

J = 1 for 8 = 0 

8 J == 8 = 1,0 

For equivalent electrons only 3 P2 ,1,0 , 1 D2 and 180 are present (see Table 
III.2.1). 
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Problem 111.2.4 By referring to a magnetic moment /-L L in magnetic 
field H , derive the precessional motion of L with the Larmor frequency 
W L = ')' H , where,), is the gyromagnetic ratio (see Problem 1.6.5). 

i.e. 

Solution: 

il 

y 

The equation of mot ion is 

Then 

dL 
- = /-L L X H = -,),L x H dt 

dLz -- = 0 L z == Lcose = canst dt 

d2Lx __ 2H2L 
dt 2 - ')' x 

(and analogous for Ly), implying coherent rotation of the components in the 
x - y plane with W L = eH / 2mc. 

The frequency of the precessional motion can b e obtained b y writing (see 
Figure) 
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In 

!I 

so that 
WL = ILlL I_l_ = J-lLH sine = "(H 

Llt L sin e L sin e 

Problem 111.2.5 Derive the ground states for Fe++ , Y+++, Co, As, La, 
Yb+++ and Eu++ , in the framework of the LS coupling scheme (a similar 
Problem is F.III.3). 

Solution: 
The ion Fe++ has six 3d electrons. According to the Pauli principle and 

the Hund rules Then S = 2 L = 2 J = L + S = 4 ===} state 5 D4 ; 

m spin 

2 r 1 
1 r 
0 r 
-1 r 
-2 r 

y +++ has incomplete 3d shell (2 electrons): 
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m spin 

2 r 
1 r 
o 
-1 
-2 

Then S = 1 L = 3 J = L - S = 2 ===} state 3 P2 . 

Similarly 
Co (3d) 7 (4s)2 S - ~ - 2 L = 3 J - 2 - 2 ===} state 4pg. 

.,,' 
As (3d) 10 (4S)2 (4p) 3 S - ~ - 2 L = O J -~ - 2 ===} st ate 4S3 . 

.,, ' 
La (5d) 1 (6S)2 S = ~ L = 2 J = ~ ===} state 2D 3 . 

.,, ' 
Yb+++ ( 41)13 S - l - 2 L = 3 J = L + S = J.. 2 

===} state 2P7 . 
.,, ' 

Eu++ (41)7 S - J.. L = O J = S = J.. ===} state 8Sz . - 2 2 2 

(see Table III.2 .2) 

3.3 jj coupling schem e 

The experimental findings indicate that the interval rule (Eq. 3.9), character­
istic of the LS scheme, no longer holds for heavy atoms. This can b e expected 
in view of the increase of the spin-orbit interaction upon increasing Z, t hus 
invalidating the condition a « c at t he b asis of the LS coupling. In the oppo­
site limit of a » c one first has to couple the s ingle-electron orbit al and spin 
momenta to define j and then construct the total moment um J : 

with good quantum numbers j i and (mj) i (3.17) 

and 
with good quantum numbers J and Mj (3.18) 

The final state is characterized by t, s, j of each electron and by J and M J of 
the whole atom. The vectorial picture is shown in Fig. 3.6. j 1 and 12 are half 
integer while J is always integer. To label the states, the individual j/s are 
usually written between parentheses while J is written as subscript. 

In a way analogous to the couplings in Eqs. 3.3 and 3.5, jd2 leads to 

(3.19) 
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H 

III 

Fig. 3.6. Vectorial sketch of the jj coupling and of the precessional motions for two 
electrons, leading to the total J and /-L J precessing around the external magnetic 
field. 

The structure of the levels and their labelling is evidently different from 
the one derived within t he LS scheme, as it appears from the example for 
one s and one p electron in Fig. 3.7 (to be compared with Fig. 3.4a). In Fig. 
3.8 the comparison of the LS and jj schemes for two equivalent p electrons is 
shown. The jj coupling for two inequivalent p electrons is indicated b elow 

j 1 j 2 J Notation Degeneracy 
3/ 2 3 / 2 3,2,1,0 (3/2,3/2)3,2,1,0 16 
3/ 2 1 / 2 2,1 (3/ 2,1 / 2h,1 8 Total number o f states 36 
1/ 2 1 / 2 1,0 (1 / 2,1/ 2h,0 4 
1/ 2 3 / 2 2,1 (1 / 2,3/2h,1 8 

For equivalent p electrons t he following cases are excluded 

j 1 h J 
3/ 2 3/ 2 3 
3/ 2 3/ 2 1 

number o f states excluded 13 

1/ 2 1/ 2 1 
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J=1 
i.=1/2,j2=3/2 

SB'/4 
(3/2,112)1 

3B'/4 

a2/2 J=2 (3/2,112)2 

sp 
................ .... 

without 
interactions 

with In the presence of 
-an Bjl ·j2 the magnetic field 

with 
aU '2·s2 J=1 

(112,112)1 

i .=1/2,h=1!2 
(112,112)0 

J=O 

Fig . 3.7. j j coupling for sand p electrons. It is noted that for the state j 1 = 1/2 
and 12 = 3/2 the energy constant B' describing the coupling is equal and of opposite 
sign of the one (B) for the j1 = 1/2 and j2 = 1/2 state (this is proved in Problem 
III.3.1) . 

The first case implies parallel orbital momenta as well as parallel spins . 
T he t hird case corresponds to h = 12 = 0 and parallel spins. T he m iddle term 
is not pictorially evident ( it is t he analogous of the 1 P states at Table III. 2.1) 
and corresponds to a level for which no additional distinguishable states are 
available. 

The states allowed for equivalent p electrons are listed below, where t he 
M J degeneracy can be removed by a magnetic field : 

j 1 12 J Spectroscopic notation Degeneracy 

3/2 3/2 2,0 (~ , ~h,o 6 
3/2 1/ 2 2,1 (~ , ~h , l 8 

see Fig. 3.8 

1/ 2 1 / 2 ° (~, ~)o 1 
- - - - Total 15 
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IS J=O 

(3/2,3/2) 

J=O 

J=2 

J=2 

n 2 

J=2 
.... " ...... . 

:=2 <~.~s ... '.···· ··· ···· 
J=I 
J=O 

J=O (1/2,1/2) 

Fig. 3.8. Comparison of the structure and classification of the levels for two equiv­
alent p-electrons in the LS (left) and jj (right) coupling schemes. 

It is noted that the state (~ , ~ h,1 is indistinguishable from the (~, ~ h,1 
and this accounts for the other 8 states missing with respect to the original 
36 states. 

An example of heavy atom where a coupling intermediate between the LS 
and the jj schemes is Mercury. The energy diagram (simplified) is shown in 
Fig. 3.9. 

Besides the violation of the interval rule one should remark that the 
strongest lines in the spectral emission of a mercury lamp originate from 
the intercombination of the 1 So and 3 PI states. At the sake of illustration, 
since the line at 2537 A would be forbidden in the LS scheme (because of the 
orthogonality of singlet and triplet states), one realizes the breakdown of LS 
coupling. 

In very heavy atoms pure jj coupling does occur. The tendency from LS 
to jj coupling scheme is shown schematically in Fig. 3.10 for the sequence C, 
Si , Ge, Sn, Pb, in terms of the (sp) outer electrons configuration. 
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Singlets Triplets 
ns 'S. np 'p,. nd'O, ns'S, np'P; np'p,· np'P; 00'0, 00 '0, nd'O. 

"....., 

> v 
'-' 
;>., 
OIl .... v 
s:: 
~ 

10 

8 

6 

4 

2 

0 

-- -'--~ ====== 

Fig. 3.9. Energy diagram for Hg, emphasizing the strength of the intercombination 
lines between singlets and triplet states (at variance with Fig. 2.7) . I n the triplet 
63 D3 - 63 D2 - 63 DI the experimental measure of the separation 63 D3 - 63 D2 is 35 
em-I, while the separation for 63 D 2 - 63 DI is 60 em-I . The ratio of the intervals 
turns out 0.58, whereas in the LS scheme one would have 1.5 (Eq. 3.9) . 

,--- (3/2.1/2)1 ___ -'<, (3/2, 112)2 

Ip, L-S ---_/ / j.j 
----/' , 3 1----

-~.-.---
17 carbon' ---
2 2p3s 

-,' 
-==-""""'.=,...",....",,; -----_.---_._-----

silicoll 
3p4s 

::==:==;=-, ----, 
germanium -' __ ---:-,..-_,' 

4p5s tin '\ 
5p6s ,'---- (1/2, 1/2)1 

\ lead (112. 112)0 

6p7s 

Fig . 3.10. Schematic view of the progressive changeover from L S scheme towards 
j j scheme on increasing the atomic number for the two electrons energy levels. It 
should b e remarked that the L S scheme is often used to label the states eventhough 
their structure is rather close to the one pertaining to the j j coupling scheme. 

Problem s 111.3 

P roblem 111.3 .1 Prove that for the jj coupling of one s and one p electrons 
in the state at )1 = 1/2 and )2 = 3/2 the fine structure constant B' is equal 
to - B (see Fig. 3.7). 
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Solution: 
The couplings are 
aU ll . SI + a2212 . S2 + B(jl,j2)h . h with au and a22 > O. 

For s electron II = 0 

For p electron 12 = 1 S2 = ~ 
corresponding to the configuration 

. 1 
]I = :2 

. 3 1 
J2 = :2:2 

~ ~ 2, 1 

~ ~ 1, 0 

with B (~ , ~) == B' (a) and B (~, ~) == B (b). 
For case (a) 

Bh·h = B'SI' (h + S2) = B'h' SI + B'SI' S2 
"-v--" 
negligible 

while for case (b) 

Bjl . j 2 = BS1 . (h - S2) = Bh· SI - BS1 . S2 
'-v-" 

negligible 

Thus B == -C12 > 0 and B' = - B. 

Problem 111.3.2 For an electron in the lsjmj state, express the expecta­
tion values of sz, l z, l; and I;' (z is an arbitrary direction and x is perpendicular 
to z). 

Solution: 
By using arguments strictly similar to the ones at §2 .2.2 (see Eq. 3.12) and 
taking into account that because of the spin-orbit precession s must be pro­
jected along j: 

Sj = Islcos(sj) with 

cos(~) = [S(S + 1) + j(j + 1) - 1(1 + 1)] /2Js(s + l)Jj(j + 1). 

Then < Sz >= Sj mj/I) I = mjA, 

with A = [s(s + 1) + j(j + 1) - 1(1 + 1)]/2j(j + 1) 
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< lz >=< jz > - < Sz >= mj(l - A) 

< I; >=< (jz - Sz)2 >=< j; > + < S; > -2 < jzsz >= 
2 1 2 1 2 = m J + -4 - 2mj < Sz >= m· + - - 2mA 

J 4 J 

Since < 12 >=< I; > +2 < I; > « I; >=< l~ » then 

2 1[ 1 2 ] < Ix >= 2 1(1 + 1) - 4: - mj(l - 2A) 

The same result for < Sz > is obtained from the Wigner-Eckart theorem 
(Eq. 4.25): < I, s,j, mjlszll, s,j, mj >=< I(s, j)jzl > jj(j + 1) = 

3.4 Quantum theory for multiplets. Slater radial 
wavefunctions 

From the perturbative Hamiltonian reported in Eq. 1.11 and on the basis of 
the Slater determinantal eigenfunctions D(l, 2, 3, ... ) described at §2.3, one can 
develop a quantum treatment at the aim of deriving the multiplet structure 
discussed in the framework of the vectorial model. The perturbation theory 
for degenerate states has to be used. A particular form of this approach is 
described in Problem 11.1 for the ls21 states of Helium. At §2.2.2 a similar 
treatment was practically given, without involving a priori the degenerate 
eigenfunctions corresponding to a specific e lectronic configuration. 

In general the direct solution of the secular equation is complicated and 
the matrix elements include operators of the form ril and ri/ and the spin­
orbit term. Again two limiting cases of predominance of the spin-spin or of the 
spin-orbit interaction have to be used in order to fix the quantum numbers 
labelling the unperturbed states associated with the zero-order degenerate 
eigenfunctions. The eigenvalues are obtained in terms of generalized Coulomb 
and exchange integrals. First we shall limit ourselves to a schematic illustra­
tion of the results of the Slater theory for the electronic configuration (np) 2, 

to be compared with the results obtained at §3.2.3 in the framework of the 
vectorial model. 

For two non-equivalent p electrons (say 2p and 3p) the Slater multiplet 
theory yields the following eigenvalues in the LS scheme, 10,2 and KO ,2 being 
Coulomb and exchange integrals for different one-electron states: 

a) Ee D) = Eo + 10 + ~~ - Ko - ~J 
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b) Ee P) = Eo + 10 - 5!t + Ko - 5~2 

c) EeS) = Eo + 10 + 19i2 - Ko - 1~~2 

e) E( l P) = E + 1 _ !ili. - K + ~ o 0 25 0 25 

f) EeS) = Eo + 10 + 19i2 + Ko + l~~? 

(the indexes 0 and 2 result from the expansion of 1/r12 in terms of Leg­
endre polynomials). For equivalent 2p electrons only states b), d) and f) 
occur, with energies (Fig. 3.11) 

Ee P) = Eo + 10 - 5!t 

(the exchange integral formally coincides with the Coulomb integral h ere). 
The quantitative estimate of the energy levels cannot be given unless nu­

merical computation of 1 and K in terms of one-electron eigenfunctions is 
carried out. 

Approximate analytical expressions for the radial parts of the one-electron 
eigenfunction can be obtained as follows. 

An effective potential energy of the form 

- (Z - 0") e2 n* (n* - l)n? 
V(r) = + 2 

r 2mr 
(3.20) 

is assumed, with 0" and n* parameters to be determined. This form is strictly 
similar to the one for Hydrogenic atoms, with a screened Coulomb term and 
a centrifugal term (see §1.4). Thus the associated eigenfunctions are 

(3.21 ) 

with N normalization factor. 
The eigenvalues are similar to the ones at §1.4 and depend on 0" and n* . 

Then E(O", n*) is minimized to find the best approximate values for 0" and n* 
and the radial part of the eigenfunctions is derived. 

Empirical rules to assign the proper values to 0" and n* are the following. 
For quantum number n one has the correspondence 

n = 1 , 2, 3, 4, 5, and 6 
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~--------- ------_. ------

1/25 
~-------r--+-'------- - - - - - - _. ------

(~LS 3p 

- - - - - -~ -J~ - - - - - 3P: 3p 
3PO ----------------------------

Fig. 3.11. Schematic diagram for equivalent p2 electron configuration as derived 
in the Slater theory, in terms of Coulomb and exchange generalized integrals. The 
comparison with the results of the vectorial model (see Problem 111.2.1) clarifies that 
the same structure and classification of the levels is obtained. Quantitative estimates 
require the knowledge of the radial parts of the one-electron eigenfunctions. 

n* = 1, 2, 3, 3.7,4, and 4.2 
while Table III.4.1 gives the rules to derive (Z - oJ 

Table 111.4.1 The Clementi-Raimondi values for Z - a (ground states) . It 
can be noted that for He atom, since n' = n = 1 the value of Z - a must coincide 
with Z' variationally derived at Prob. 1I.2.2. 

The best atomic orbitals are actually obtained by the numerical solu­
tions along the lines devised by Hartree with the improvement by Fock and 
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Slater to include the electron exchange interaction. The so-called Hartree-
Fock equations for the one-electron eigenfunctions can be derived, by means 
of a rather l engthy procedure, applying the variational principle to the e nergy 
function, for a variation that leaves the determinantal Slater eigenfunctions 
normalized. The Hartree-Fock equation for the orbital cPa (ri) of the i-th elec­
tron can be written in the form 

{Hi + 2:)2IJ3 - K J3 ]} cPa (ri ) = E~ cPa (ri ) 
13 

(3.22) 

Hi is the one-electron core Hamiltonian (Ti - Z*e2 /ri ' with Z* == Z if 
no screening effects are considered), while 113 and K J3 are the Coulomb and 
exchange operators that generalize the correspondent terms derived at §2.3 
for He: 

IJ3cPa (ri ) = [cP~ (rj) ;i: cPJ3 (r j )dTj] cPa (ri) 

K J3cPa (ri ) = [cP~ (rj) ;i: cPa (rj)dTj ] cPJ3 (ri ) (3.23) 

Eo. in Eq. 3.22 is the one-electron energy. After an iterative numerical proce­
dure, once the best self-consistent cP's are obtained , by multiplying both sides 
of Eq. 3.22 by cP~ (ri ) and integrating, one obtains for the i-th electron 

Eo. = E~ + 2)210.13 - K aJ3 ) 
13 

(3.24) 

with E~ ==< alHila > and 10.13 and KaJ3 are the Coulomb and exchange 
integrals, respectively (with 11313 == K J3J3 ). A sum over all the energies Eo. would 
count all the interelectron interactions twice. Thus, by taking into account 
that each orbital in a closed shell configuration is double occupied, the total 
energy of the atom is written 

ET = 22: Eo. - 2:(210.13 - K aJ3 ) (3.25) 
a 0. ,13 

Although the eigenvalues obtained along the procedure outlined above are 
generally very close to the experimental data for the ground-state (for light 
atoms within 0.1 percent) still one could remark that any approach based on 
the model of independent electrons necessarily does not entirely account for 
the correlation effects. 

Suppose that an electron is removed and that the other electrons do not 
readjust their configurations. Then the one-electron energy Eo. corresponds 
to the energy required to remove a given electron from its orbital. This is the 
physical content of the Koopmans theorem, which identifies lEa l with the 
ionization energy. Its validity rests on the assumption that the orbitals of the 
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ion do not differ sizeably from the ones of the atom from which the electron 
has been removed. 

The Hartree-Fock procedure outlined here for multi-electron atoms is 
widely used also for molecules and crystals, by taking advantage of the fast 
computers available nowadays which allow one to manipulate the Hartree-Fock 
equations. When the spherical symmetry of the central field approximation 
has to be abandoned numerical solutions along Hartree-Fock approach are 
anyway hard to be carried out. Thus particular manipulations of the equa­
tions have been devised, as the widely used Roothaan's one. Alternative 
methods are based on the density functional theory (DFT) , implemented 
by the local density approximation (LDA). Correlation and relativistic 
effects are to be taken into account when detailed calculations are aimed, 
particularly for heavy atoms. Chapter 9 of the book by Atkins and Fried-
man (quoted in the preface) adequately deals with the basic aspects of the 
computational derivation of the electronic structure. 

Finally we mention that for atoms with a rather high number of electrons 
and when dealing in particular with the radial distribution function of the 
electron charge in the ground-state (and therefore to the expectation values), 
the semiclassical method devised by Thomas and Fermi can be used. This 
approach is based on the statistical properties of the so-called Fermi gas of 
independent non-interacting particles obeying to Pauli principle, that we shall 
encounter in a model of solid suited to describe the metals (§12.7.1). The 
Thomas-Fermi approach is often used as a first step in the self-consistent 
numerical procedure that leads to the Hartree-Fock equations. 

3.5 Selection rules 

Here the selection rules that control the transitions among the electronic levels 
in the LS and in the jj coupling schemes are recalled. Their formal deriva­
tion (the extension of the treatment in Appendix 1.3) requires the use of the 
Wigner-Eckart theorem and of the properties of the Clebsch-Gordan co-
efficients. We will give the rules for electric dipole, magnetic dipole and elec­
tric quadrupole transition mechanisms, again in the assumption that one elec­
tron at a t ime makes the transit ion. This is the process having the strongest 
probability with respect to the one involving two electrons at the same time, 
that would imply the breakdown of the factorization of the total wavefunction, 
at variance to what has been assumed, for instance, at §2.1. 

A) Electric dipole transition 

LS coupling 
l1L = 0, ±1 and 115 = 0, non rigorous (L = 0 --+ L' = 0 forbidden) 
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iJ.J = 0, ± 1, transition 0 +-+ 0 forbidden 3; 
iJ.MJ = 0, ± 1 for iJ.J = 0 the transition MJ = 0 ----+ M~ = 0 forbidden 3 . 

For the electron making the transition one has iJ.l = ± 1, according to 
parity arguments (see App.I.3). 

jj coupling 
For the atom as a whole 
iJ.J = 0, ± 1, transition 0 +-+ 0 forbidden 3; 
iJ.MJ = 0, ± 1 for iJ.J = 0 the transition M J = 0 ----+ M~ 0 is 

forbidden 3. 

For the electron making the transition iJ.l = ± 1, iJ.j = 0, ± l. 
B) Magnetic dipole transitions 

iJ.J = 0, ± 1 and iJ.MJ = 0, ± 1 (general validity) 

LS scheme 
iJ.S = 0, iJ.L = 0, iJ.M = ± 1 

C ) Electric quadrupole mechanism 

iJ.J = 0, ± 1, ± 2 (general validity) , 

LS scheme 
iJ.L = 0, ± 1, ± 2 
iJ.S = 0 

Fig. 3.5 shows an example of the selection rules given in A). 

Problems F .111 

Problem F .111.1 A beam of Ag atoms (in the ground state 52 Sl /2) flows 
with speed v = 104 cmls, for a length h = 5 cm, in a region of inhomogeneous 
magnetic field , with dH I dz = 104 Gaussl cm. After the exit from this region 
the beam is propagating freely for a length h = 10 cm and then collected on a 
screen, where a separation of about 0.6 cm between the split beam is observed 
(Stern-Gerlach experiment). From these data obtain the magnetic moment 
of Ag atom. 

Solution: 

3 Rules of general validity in both schemes. 
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In the first path 11 the acceleration is 

F J-Lz dH 
a = -- = ----

MAg MAg dz 

and the divergence of the atomic beam along z turns out 

In the second path 12, with V z = ah/v and then d" = ahI2/v2. 
The splitting of the two beams with different z-component of the magnetic 

moment (S = J = 1/2) turns out 

d = 2(d' + d") = a2 (li + 21 112 ) 
v 

Then 

Problem F.III.2 In the LS coupling scheme, derive the electronic states 
for the configurations (ns, n's) (i) , (ns , n'p)(ii), (nd)2(iii) and (np)3(iv). Then 
schematize the correlation diagram to the correspondent states in the jj 
scheme, for the nd2 and for the np3 configurations. 

Solution: 
i)S = 1 L = 0 3 SI 

S = 0 L = 0 ISO 

.. ) Ip 3 R 
II 1, 0,1 ,2 
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iii) 

2 2 1 1 ° ° -1 -1 -2 -2 ml 

2 
2 
1 
1 

° ° -1 
-1 
-2 
-2 
m l 

1 
2" 

1 
- 2" 

1 
2" 

1 
- 2" 

1 
2" 

1 - 2" 
1 
2" 

1 
- 2" 

1 
2" 

1 
- 2" 
m s 

4,0 
3,1 3,0 
3,03,-1 2,0 
2,1 2 ,0 1 ,1 1,0 
2,0 2 ,-1 1,0 1 ,-1 0,0 
1,1 1 ,0 0 ,1 0 ,0 -1 ,1 -1 ,0 
1,0 1 ,-1 0,0 0 ,-1 -1 ,0 -1,-1 -2,0 
0 ,1 0 ,0 -1 ,1 -1 ,0 -2 ,1 -2,0 -3,1 -3,0 
0 ,00,-1 -1 ,0 -1 ,-1 -2 ,0 -2 ,-1 -3,0 -3,-1 -4 ,0 

e tota num er 0 states IS Th I b f . (120) = 45 

iv) 4S~ , 2Pl ~, 2D~ ~ 
2 2 ' 2 2' 2 

The total number of states is (~) = 20 
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The correlation between the two schemes is given below for the p3 and d2 

configurations: 

p3 

2P3/2,1/2 

2Ds/2,3/2 

4S3/2 

LS coupling 

J=3/2 (312,312,3/2) 

J= 1I2 

J=3/2,5 /2 
(112,3 /2,312) 

J=3/2 
(112,112,3/2) 

jj coupling 

(5/2,5/2) 
--- -- --- -- --- --~:~:-;? 

"""""":/,, 

"" .. " ,/ 

/// 

---"---~ 
(5/2,3/2) 

'-----+-::~~~----~~:'_rp~ ..•••• ~;;;~;?: .. 
;,<:<~ 

~-----"--, --
L--------1-----"----/ -------___ (3 /2,3/2) 

---_:> 

p3 

Problem F .111.3 By resorting to the Hund rules derive the effective mag­
netic moments for Dy+++, Cr+++ and F e+++ (See Table IIL2.2). 

Solution: 
The ion Dy+++ has incomplete 41 shell (9 electrons). 
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According to the Pauli principle and the Hund rules 

m spin 

3 i 1 
2 i 1 
1 i 
o i 
-1 i 
-2 i 
-3 i 

s - ~ - 2 

The Lande factor is 

L = 5 J = L + S = ¥ ===? state 6 H1 5 
"2 

J(J + 1) + S(S + 1) - L(L + 1) 4 
g = l + 2J(J + l) = 3 = 1.33 

thus 

p = ~ = gVJ(J + l) = 1.33· 
J.LB 

15 (15 ) 2 2 + 1 = 10.65 

In similar way 

c,+++ S -~ - 2 L = 3 J = IL - S I = ~ 

g = 0.4 and p = 0.77 

F e+++ (3d)5 S = ~ L = 0 J == S = ~ 

g = 2 and p = 5.92 

===} state 6 S ~ ; 
2 

Problem F .111.4 Derive the multiplets for the 3 F and the 3 D states and 
sketch the transitions allowed by the electric dipole mechanism. 
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Solution: 

L = 3 8 = 1 

L = 2 =1 

, 
I 

I 

I t 
I 
I 
t+l; :J 

I 

--------------~~ -
____ l _____ 

f-=-~;-\ ........ 
\ 

\ 
\ 
\ 

\ 

./ 
./ 

./ 

--------------~~ -, ........ 
\ , 

-

\ ... 
- ... 

r 
I 
I 
I 

-l~ I I 

I 

1 
I+')L -.., 
J ---l ---r ---

. -~ ... I 
I 
~I I 

I 

Pro ble m F .111.5 When accelerated p rotons collide on 19F n uclei an ex­
cited state of 20 Ne is induced and transition to t he ground state yields , 
e mission. T he emission spectrum, as a function of t he energy of colliding 
protons, displays a line centered at 873.5 keY, with full width at half i nten­
sity of 4.8 keY. Derive the life t ime of the excited stat e of 20 Ne. Comment 
about the difference with the e mission spectrum of 57Fe, where the transition 
to t he ground stat e from the first excit ed state y ields a , -photon at 14.4 keY, 
wit h life time 10- 7 s. 

By referring to 57Fe, considering that the transition is due to a proton and 
assuming as radius of t he nucleus of 10- 12 cm, by means of order of magni­
tude estimates d iscuss the transit ion mechanism (electric dipole , e lectric 
quadrupo le , magnetic dipo le) driving t he, t ransit ion at 14.4 k eY in 57Fe. 

So lutio n : 
From 

T c::: ~ c::: 1.05 · 10- 27 erg sec = 1.37. 10- 19 s . 
iJ.E 4.8· 103 . 1.6 . 10- 12 erg 

for 2o Ne, while for 57Fe 

'Ii iJ.E c::: - = 1.05.10- 20 erg c::: 6.6 . 1O- 12keV 
T 
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The transition mechanism driving the I transition at 14.4 keY in 57Fe is 
discussed as follows: 

a) for electric dipole transition the spontaneous emission probability (see 
App.I.3) is 

A E = 327[3(E2 - E 1 )3
1 

21eR l1 12 c::: 992· (14.4.103 .1.6.10- 12 erg)3 (e.R )2 
21 3c31ih3 < > 8.1.1031.306.79.10- 108 N 

c::: 1.1 X lOll 8-1. 

Then one would expect 

b) for the electric quadrupole mechanism 

Af1 (A) 2 1 ( 6.6 . 10- 27 . 3 . 1010 ) 2 1 
A~l c::: RN 47[2 c::: 10- 12.14.4.103 .1.6.10- 12 47[2· 

Thus 

c) for the magnetic dipole mechanism 

Af1 [ eRN ]2 (4.8.10 - 10 .10- 12 )2 
rv c::: c::: 4100 

A~ 0.09 . J-L N 5 . 10- 24 

TM rv TE ·4100 rv 4 . 10- 7 8. 

On the basis of the experimental value it may be concluded that the tran­
sition is due to magnetic dipole mechanism. 

Problem F .111.6 Estimate the order of magnitude of the ionization en­
ergy of 92U in the case that Pauli principle should not operate (assume that 
the screened charge is Z / 2) and compare it with the actual ionization energy 
(4 eV). 

Solution: 
From 

J-LZ2 e4 Z2 
E = - -- = - - . 13.6eV 

21i2n2 n2 

and for n = 1 and Z = 46, the ionization energy would be 

lEI = (46)2 . 13.6 eV c::: 3 .104 eV. 
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Problem F .111. 7 The structure of the electronic states in the Oxygen 
atom can be derived in a way similar to the one for Carbon (Problem III.2.1) 
since the electronic configuration (IS)2 (2S)2 (2p)4 has two "holes" in the 2p 
shell, somewhat equivalent to the 2p two electrons. Discuss the electronic term 
structure for oxygen along these lines. 

Solution: 
From Table III.2.1 taking into account that for (2p)6 one would have 

ML = 0 and Ms = 0 the term 3 P, 1 D, IS are found. Since one has four 
electrons the spin-orbit constant changes sign, the multiplet is inverted and 
the ground state is 3 P2 instead of 3 Po (see Prob. III.2.1). 



4 

Atoms in electric and magnetic fields 

Topics 

Electric polarizability of the atom 
Linear and quadratic field dependences of the atomic energies 
Energy levels in strong and weak magnetic fields 
Atomic paramagnetism and diamagnetism 
Paramagnetism in the presence of mean field interactions 

4.1 Introductory aspects 

The analysis of the effects of magnetic or electric fields on atoms favors deeper 
understanding of the quantum properties of matter. Furthermore, electric or 
magnetic fields are tools currently used in several experimental studies. 

In classical physics the prototype atom is often considered as an electron 
rotating on circular orbit around the fixed nucleus. In the presence of electric 
and magnetic fields (see Fig. 4.1), the equation of motion for the electron 
becomes 

m d2r = _ e2r _ e £ _ ~ (dr x H) 
dt2 r3 c dt ( 4.1) 

For a static magnetic field H only (then the external electric field £ = 0) 
from Eq. 4.1 it is found that the Lorentz force induces a precessional motion 
of the charge around z, with angular frequency (see Problem IV.2.1) 

eH e2 eH {-!;2 
W = ± ( __ )2 + -- + -- ~ WL + --

2mc mr3 2mc - mr3 
( 4.2) 
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z H or G II z 

~:: ...................... ............... .. ........................... . -e, m 

y 

x 

Fig. 4.1. Variables used to account for the effects of electric or magnetic field in 
the classical atom (Eq. 4.1) . 

To give orders of magnitude, the orbital frequency in the plane of motion is 
Wo = e/v;:;;'-;:3 rv 1016rad s-l while the Larmor frequency WL = eH/2mc is 
around lO11rad s- l , for field H = 104 Oe (1 Tesla). 

The current related to the orbital motion corresponds to the magnetic mo­
ment /1,' = J-LBn (see Problem 1.6.2): its alignment along the field, contrasted 
by thermal excitation, implies the temperature dependent paramagnetism. 
The effective z component of the magnetic moment is expected of the order of 
(J..L') z rv J-LB(J-LBH/kBT) (formal description will be given at §4.4). Therefore 
the paramagnetic susceptibility Xpara = N (J-L~) / H , for a number N = 1022 

of atoms per cubic cm, is of the order of Xpara c::: NJ-L~/kBT rv 6 X 10- 5 (for 
T c::: 100 K). 

The current related to the precessional motion of the orbit is i = (-ew L /27r) = 
_e2 H/47rmc, along a ring of area A = 7r(rsinB)2 (see Fig. 4.1). The associated 
magnetic moment is 

(J-L" )z = ~~ = - "':':'~!!" ' 7rr2sin2B , 
c 47rmc2 

yielding a diamagnetic susceptibility Xdia = N J-L" / H c::: _e2 N r2 /4mc2, 
as order of magnitude around - 10- 6 (again for N = 1022 atoms per unit 
volume). 

On the ground of qualitative arguments the effect of an electric field £ II z 
can be understood by referring to the displacement <5z of the orbit along the 
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field direction: the component of the Coulomb force e2 ozjr3 equilibrates the 
force eE (see the sketch below). 

z 

r -e 

Then the dipole moment turns out eOz = Er3 and an atomic polariz-
ability given by a rv eozjE rv r 3 rv 10- 24 cm3 can be predicted. 

In the quantum mechanical descript ion the e lectric and magnetic forces 
imply the one-electron Hamiltonian (see Eq. 1.26) 

1 e 
'H = -(p + _A)2 + V(r) + 2f.LBs.rotA - erp = 

2m c 

p2 e [ ] e2 A2 = 2m + V(r) + 2f.LBs.rotA -erp+ 2mc (p.A) + (A.p) + 2mc2 = 'Ho + 'Hp 
\. J 

(4.3) 
'H p 

Here the magnetic term r elated to the spin moment (Eq. 1.32) has been added , 
while V(r) in 'Ho is the central field potent ial energy. rp and A in Eq. 4.3 are 
the scalar and vector potentials describing t he perturbation applied to the 
atom. 

For static and homogeneous electric field 

A = O, and rp = -lz Edz = -zE 

while for static and homogeneous magnetic field 

rp = 0, and 
1 

A = -H x r 
2 

(4.4) 

( 4.5) 

The corrections to the e nergy levels can b e e valuated on the basis of the e igen­
functions of the zero-field Hamiltonian 'Ho. In multi-electrons atoms this per­
turbative approach is generally hard to carry out, in view of the inter-electron 
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couplings (as it can be realized by recalling the description in the framework 
of the vectorial model (Chapter 3)). In the following we shall describe the 
basic aspects of the effects due to the fields by deriving the corrections to the 
atomic energy levels in some simplifying conditions. 

4.2 Stark effect and atomic polarizability 

Stark effect is usually called the modification to the energy levels in the 
presence of the Hamiltonian Hp = L i eZi£ (first studied in the Hydrogen 
atom also by Lo Surdo). In the perturbative approach energy corrections 
linear in the field in general are not expected, the matrix elements of the form 
J ¢* (r i )zi¢(ri )dTi being zero. 

The second order correction can be put in the form 

(4.6) 

where, in the light of the classical analogy for the electric dipole 1 

811E 
J-Le = - ---a[ , ( 4.7) 

0: defines the atomic polarizability. In fact , one can attribute to the atom 
an induced electric dipole moment J-Le = 0:[. The polarizability depends 
in a complicated way from the atomic state, in terms of the quantum numbers 
J and M J: 0: = o:(J, MJ). 

Let us first evaluate the atomic polarizability 0:18 for Hydrogen in the 
ground state. Instead of carrying out the awkward sum of the second order 
matrix elements we shall rather estimate the limits within which 0:18 falls. 
From Eqs. 4.3 and 4.4 one has 

l1E(2 ) = _ L 1 < ls lHp lnlm > 12 = - ~0:18[2 
n>l E n - E1 2 

(4.8) 

1 < ls lHp lnlm > 12 is always positive and En increases on increasing n. 
Therefore one can set the limits of variability of 0:18/2: 

(note that the state n = 1 can be included in the sum, since < ls lzI 1s >= 0). 
On the other hand 

L < ls lzl nlm >< nlmlzl 1s >=< ls lz2 11s >= ~ J 4?r r.4 e- 2r/ aodr = a6 . 
?rao 3 

1 Note that the field-related energy is i1E = - J: J.ledE' , so that for J.le = aE' Eq. 
4.6 follows. 
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From El = -e2 j2ao while (E2 - Ed = 3e2 j8ao, one deduces 

3 16 3 
4ao < al s < 3 ao . 

It is recalled that the "brute-force" second order perturbative calculation 
yields al s = 4.66a5. Thus the electric polarizability turns out of the order of 
magnitude of the "size" of the atom to the third power, as expected from the 
qualitative argument at §4.1. 

An approximate estimate of the polarizability of the ground state of the 
Hydrogen atom can also be obtained by means of variational procedures, on 
the basis of a trial function involving the mixture of the Is and the 2pz states: 

(4.10) 

This form could be expected on the ground of physical arguments, as sketched 
below in terms of atomic orbitals: 

z 
G Il z 

(see Problem F.II.2). 
The e nergy function is 

(4.11 ) 

where H is the total Hamiltonian, while 

H11 =< ls lH lls >, H22 =< 2pzI H I2pz >, H12 =< Is lH I2pz >, 
512 =< Is 12pz >= 0,511 = 522 = 1 (4.12) 

From 8Ej8c l ,2 = 0 

with secular equation 

cl(H11 - E) + c2H12 = 0 

cl H l 2 + c2(H22 - E) = 0 , (4.13) 

(4.14) 
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Since 'Hll = EYs, 'H22 = EYs/4, while from Table 1.4.2 for Z = 1 
'H12 =< ls l'Ho l2pz > + < ls lz1 2pz > eE = eE28ao/35y'2 == A, Eq. 4.14 
becomes 

( EYs - E A ) 
o = 0 A E" - E ' 
4 

( 4.15) 

of roots 

(4.16) 

By taking into account that A « EYs, from (1 + x) 1/2 ~ 1 + x /2 the lowest 
energy level turns out 

o 4 A2 _ 0 a~ 2 
E = E 1s + -3 EO = E 1s - 2.96-E 

I s 2 

corresponding to the polarizability O:ls = 2.96a~. 

In the particular case of accidental degeneracy (see §1.4) Stark effect 
linear in the field occurs. Let us consider the n=2 states of Hydrogen atom. 
The zero-order wavefunction is 

( 4.17) 

and the corrected eigenvalues are obtained from 

••• < 2p, l- ,z£ 12p, > -E ~ 0 ( 
< 2s1 - ezEI2s > - E ... . .. ) 

(4.18) 

Again recalling the selection rules for the z-component of the electric dipole 
(App.I.3) , this determinant is reduced to 

(4.19) 

where B = -3aoeE. 
From the roots R 1,2 = 0 and R3 ,4 = ± B the structure of the n = 2 levels 

in the presence of the field is deduced in the form depicted in Fig. 4.2. 
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z _m 
Is f 

2p, 
Fig. 4.2. Effect of the electric field on the n = 2 states of Hydrogen atom, illustrat­
ing how in the presence of accidental degeneracy a kind o f pse udo-orientational 
polarizability arises, with energy correction linear in the field E. 

The first-order Stark effect is observed in Hydrogen and in F -centers in 
crystals (where a vacancy of positive ion traps an electron and causes an effec­
t ive potential of Coulombic character which yields the accidental degeneracy). 

F inally in F ig. 4.3 the experimental observation of the Stark effect on the 
D I ,2 doublet of Na atom (see Fig. 2.2) is depicted. It is noted that the degener­
acy in ±MJ == ±mj is not removed, the energy correction being independent 
from the versus of the field. 

£*0 2P3/2 -=--T-....... -"'--""--~--:::--::-::--::--::--::--=--=-=--=--~--~--:.:.--:.:.-~--=--=--=--~--~-~--~--~--~--~--~-~--~--~-- . M
J
-3/2 

MJ- 1/2 

2P l/2 ---''i--I--=--=.:.--=---------------------------------------------- ---- ----. 

2S !l2 
....c=.....L.._....L.._~-."'-.=-.-.----------.-------.--------------.-.-.. _. __ . __ ._._. 

M,-1I2 

Fig. 4.3. G round state and first excited states of Na atom upon application of 
electric field and modification of the D doublet . The energy shift of the ground 
state is 40. 56 kHz/(kV/cm)2, corresponding to an electric polarizability ex = 24.11 · 
1O-24cm 3 . The shifts of the P states are about twice larger. 
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Problems IV.2 

Problem IV.2.1 Show how the classical equation for the electron in orbit 
around the nucleus in the presence of static and homogeneous magnetic field 
implies the precessional motion of the orbit with the Larmor frequency. 

Solution: 
From the force 

2 r e F = - e - - -(v x H) 
r 3 e 

for H along z 
dvx e e2 x m- + -Hv + - = 0 dt e y r3 

dvy e e2y 
m- - -Hvx + - = o. dt e r 3 

By transforming to polar coordinates 

x(t) = rcos wt ===} vx (t) = - rw sine 

y(t) = rsin wt ===} vy(t) = rwcos e 

where w = de j dt (see Fig. 4.1) , one writes 

dvx = - rw2 cos e· dvy = - rw2 sin e. 
dt ' dt 

By substitution into the equations of motion 

yielding 

w2 _ ( eH) w - ~ = 0 , 
me mr3 

eH 
w = -- ± 

2me 
( eH)2 e2 
- + -2me mr3 

Since, from order of magnit ude estimates (see §4.1) 

( eH)2 e2 - «-
2me mr3 ' 

Eq. 4.2 follows. 

Problem IV.2.2 By extending the procedure given at §4.2 for the Hydro­
gen states at n = 2 it can b e shown that the linear Stark effect yields correction 
energy of the form i1E = ee2ao)E'n(nl - n2), with nl and n2 running from 
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zero to (n-1). By neglecting the second order effect , evaluate the partition 
function and then the induced dipole moment, in the high temperature limit. 

Solution: 
When the quantum numbers n1,2 run from 0 to n-1 the partition function 

turns out 

where x = (3)...[ ((3 = l/kBT and)", = 3eao/2). 
The average thermal energy is 

= (Sinh~n2X)2 
sinh ~nx 

u = - :(3l09Z = -n[)... [ncoth (~n2x) - coth (~nx)] . 

At low temperatures (kBT « eao[) 

U c::: -n(n - 1)",[ + O(e- nx ), 

while at high temperatures 

corresponding to the induced dipole moment < J.Lz >c::: ~n2(n2 - 1)e2a6[(3. 

Problem IV.2.3 In the classical model for the atom and for the electro­
magnetic radiation source (Thomson and Lorentz models) the electron was 
thought as an harmonic oscillator, oscillating around the center of a sphere 
of uniform positive charge (see Problem 1.4.5). Show that the electric polariz­
ability was a = e2/k, with effective elastic constant k = 41fpe/3, p being the 
(uniform) positive charge density. 

By resorting to the second-order p erturbative derivation of the polariz­
ability for the quantum oscillator show that the same result is obtained and 
that it is actually the exact result. 

Solution: 
The restoring force is F = - (41fx3 p/3)e/x2 and then k = 41fpe/3, correspond­
ing for the electron to an oscillating frequency Vo = (1/21f)Jk/m c::: 2.53x 1015 

S-l. From e[ = F = kx and dipole moment ex = e2[/k, a = e2/ k follows. 
From Eq. 4.8, with perturbation Hamiltonian Hp = -e[z and quantum 

oscillator ground and excited states 

1 < exclzlf > 12 
a = 2e2 L 

E~xc - Efo excopf 
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From the matrix elements < vlzlv - 1 >= Jvh/ 2mw (according to the 
properties of Hermite polynomials) only the first excited state lexc > has to 
be taken into account. Then 

2e2 1< f + 1Izlf> 12 2e2 h e2 
a = - = --- = -

h2 Wo h2 2mw5 k 

The proof that this is the exact result is achieved by rewriting the Hamil­
tonian of the linear oscillator to include the electric energy ezE and observing 
that a shift of the eigenvalues by - ( eE)2 /2k occurs (see the analogous Prob­
lem X.5.6 for the vibrational motion of molecules, where it is also shown that 
a does not depend from the state Iv > of the oscillator). 

4.3 Hamiltonian in magnetic field 

From Eqs. 4.3 and 4.5, by including now the spin-orbit interaction, the per­
turbation of the central field Hamiltonian for multi-electron atoms is written 

The term 
2A2 

H(2 ) = ""~ 
p ~ 2mc2 

(4.20) 

(4.21 ) 

has been l eft out: it shall be taken into account in discussing the diamagnetism 
(§4.5). In writing Eq. 4.20 we have used the interaction in the form - JLl ,s .H, 
as it has been proved possible at §1.6. The magnetic field is considered static, 
homogeneous and applied along the z-direction. 

One could emphasize that in the hypothetical absence of the spin Eq. 4.20 
would reduce to 

(4.22) 

implying corrections to the energy levels in the form 11E = J.LBM H. There­
fore, in the light of the selection rule 11M = 0, ± 1 (see §3.5), one realizes that 
for a given emission line the magnetic field should induce a triplet, charac­
teristic of the so-called normal Zeeman effect (this terminology being due 
to the fact that for such a triplet an explanation in terms of classical Lorentz 
oscillators appeared possible, see Problem IV.3.1). The experimental observa­
tion that the effect of the magnetic field on the spectral lines is more complex, 
as shown in the following, can be considered stringent evidence for the exis­
tence of the spin. The real Zeeman effect (at first erroneously considered as 
"anomalous" ) in general does not consists in a triplet (see the case of the 
Na doublet in the following). The triplet actually can occur, in principle, in 
the presence of very strong field (Paschen-Back effect) , as we shall see at 
§4.3.2. 
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4.3 .1 Zeem a n regime 

In order to derive the e nergy of t he atom from the Hamiltonian 4 .20 one has 
to consider the relative magnitude of the terms fLBH (magnetic field energy) 
and ~nl (spin-orbit e nergy). In the weak fie ld regime, for fLBH « ~nl and 
in the LS coupling scheme, t he Hamiltonian is considered in the form 

(4.23) 

and acting as a perturbation on the states lEo, J, M J > resulting from the 
central field Hamiltonian, w ith the coupling L i Ii and L i Si and the spin­
orbit interact ion in the form ~LsL . S . 

MJg 

2 
2P 3/2 ~1 /2 

-1/2 

~/2 
2/3 g=4/3 

-2/3 
-2 

MJ 
Pl/2 1/2 

g=2/3 
-1/2 

DJ D2 

I I H=O 

D( D2 M I 
112 

MJg 
1111111111 H#O I 

g=2 
2S 

112 -1/2 
-1 

D( D2 ()n ncr ()n() ()n() 
I I I I I I I I I I I I 

Fig. 4.4. Structu re of the 251 / 2 ground-state and of the 2 P doublet of Na atom in a 
magnetic field and transitions allowed by t he e lectric dipole selection rules Ll5 = 0, 
LlJ = 0, ± 1 and LlMJ = 0, ± 1. The D1 line splits into four components, t he D2 line 
into six. Similar st ructure of the levels hold for the other alkali atoms. On increasing 
t he magnetic field strength the structure of t he lines, here shown for the weak fie ld 
r egime , progressively c hanges towards a c entral 7r line and two <7 + and <7 - doublets 
(see Problem IV.3.5) . 7r lines correspond to LlM J = 0, while <7 lines to LlM J = ± l. 

The operator (L + 2S) has to be projected a long J by using Wigner­
E ckart t heorem 

< Eo, J, M~ I Lz+2SzI Eo , J, M J >= 9 < Eo , J, M~ I JzI Eo, J, M J >= gMJJM~,MJ , 
(4.24) 

the constant 9 being obtained f rom the component of (L + 2S) along J : 
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(L + 2S).J 
9 =< Eo , J, L, 51 J2 lEo, J, L , 5 >= 

(L + S).J + S.J 
=< Eo, J, L, 51 J2 lEo, J, L, 5 >= 

J(J + 1) + 5(5 + 1) - L(L + 1) 
=1+ 2J(J+l) (4.25) 

This result is in close agreement with the deduction of the Lande' factor 
within the vectorial coupling model (§3.2.2). Then the energy corrections are 
given by 

( 4.26) 

the result that one would anticipate by assigning to the atom a magnetic 
moment J-LJ = -fJBgJ and by writing the perturbation Hamiltonian as 
'Hp = - J-LJ.H. 

As a consequence of Eqs. 4.25 and 4.26, in general the structure of the 
atomic levels in the magnetic field, in the Zeeman regime, is more complicated 
than the one for 5 = O. The spectral lines are modified in a form considerably 
different from a triplet. At the sake of illustration, the case of the Na doublet 
Dl and D2 is schematically reported in Fig. 4.4. By taking into account the 
selection rules iJ.MJ = 0, ±1 , for Na coinciding w ith the ones for single e lectron 
(see §2.1), also the polarization of the emission lines is justified. 

4.3.2 Paschen-Back regime 

When the strength of the magnetic field is increased the structure of the 
spectral lines predicted within the LS coupling model and weak field condition 
is progressively altered and in the limit of very strong field the condition of a 
triplet (as one would expect for 5 = 0) is restored. This crossover is related 
to the fact that for fJBH » ~LS the effect of the magnetic perturbation has 
to be evaluated for unperturbed states characterized by quantum numbers 
M and Ms pertaining to L z and 5 z , while the spin-orbit interaction can be 
taken into account only as a subsequent perturbation. This is the so-called 
Paschen-Back, or strong field, regime. 

From the field-related Hamiltonian in Eq. 4.23, in a way similar to the 
derivation within the vectorial model (see §3.2), the energy correction turns 
out 

iJ.E = fJBH(M + 2Ms). ( 4.27) 

From the selection rules iJ.M = 0, ±1 and iJ.Ms = 0 (the spin-orbit interaction 
being absent at this point) one sees that the frequency vi g) of a given line 
related to the transition 12 >---+ 11 > in zero-field condition, is modified by the 
field in 

( 4.28) 

implying the triplet , with two lines symmetrically shifted by (e/47rmc)H. 
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Then the spin-orbit interaction can be taken into account, yielding 

and causing a certain structure of the triplet (see Problems IV.3.2 and IV.3.5). 
Finally we mention that the effect of magnetic fields in the jj coupling 

scheme can be described by operating directly on the single-electron j moment 
and considering the relationship between the magnetic energy and the inter­
electron coupling leading to total J. Again one has to use the Wigner-Eckart 
theorem and the results anticipated in the framework of the vectorial model 
(§3.3) are derived. 

Problems IV.3 

Problem IV.3.1 By taking into account the Larmor precession (Problem 
IV.2.1), the classical picture of the Lorentz radiation in magnetic field implies a 
triplet for observation perpendicular to the field and a doublet for longitudinal 
observation. 

Discuss the polarization of the radiation in terms of the selection rules for 
the quantum magnetic number. 

Solution: 
The sketch of the experimental observation for classical oscillator in a mag­
netic field is given below: 

Without magnetic field 

An oscillating electron is resolved into 
three components. 

t + t With magnetic field in 
.. .. transverse observation 

E~ HoE II Ho E~ Ho (E electric field of the radiation) 

+ + With magnetic field in 
longitudinal observation 
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The frequency shift Ow can be calculated as follows (see Problem IV.2.l). 
For homogeneous magnetic field Ho along the z direction 

.. 2 e· 
m x + mwox + - y Ho = 0, 

c 
.. 2 e . 

mY + mwoY - - x Ho = 0, 
c 

m i + mw5z = 0, 

The frequency of the electron oscillating in the z direction (see sketch above) 
remains unchanged. To solve the equations for x and y we substitute u = x+iy 
and v = x - iy and to find 

.( eHO) 
U = uoe' wo+ 2 =c t and "( eHO)" v=voe"WO- 2=c t. 

namely the equations for left-hand and right-hand circular motions at frequen­
cies Wo ± Ow , with Ow = ~;:'~. The oscillators 2 and 3 in the sketch above have 
to emit or absorb radiation at frequency (wo ± ow), circularly polarized 
when detected along Ho . 

Oscillator 1 is along the field and therefore the intensity of the radiation 
is zero along that direction. If the radiation from the oscillators 2 and 3 is 
observed along the perpendicular direction is linearly polarized. 

The polarizations of the Zeeman components have their quantum corre­
spondence in the i1MJ = 0 and i1MJ = ± 1 transitions. These rules are used 
in the so-called optical pumping: the exciting light is polarized in a way 
to allow one to populate selectively individual Zeeman levels, thus inducing 
a given spin orientation (somewhat equivalent to the magnetic resonance, see 
Chapter 6). 

Problem IV.3.2 Illustrate the Paschen-Back regime for the 2P +-----+ 28 
transition in Lithium atom, by taking into account a posteriori the spin-orbit 
interaction. Sketch the levels structure and the resulting transitions, with the 
correspondent polarizations. 

Solution: 
The degenerate block 

J.L BH < nlm'm~llz + 2szlnlmms >= J.L BH(m + 2ms) 

is diagonal. The degeneracy is not completely removed. For the non-degenerate 
levels the spin-orbit interaction yields the correction 

~nl < mms llzszlmms >= n2~nlmms. 

For the degenerate levels one has to diagonalize the corresponding block. It 
is noted that the terms l+s_ and Ls+ have elements among the degenerate 
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states equal to zero (the perturbation does not connect the degenerate states 
with m = 1, ms = - 1/2 and m = - 1, ms = 1/ 2). So the degeneracy is not 
removed. 

The levels structure and the transitions are sketched below: 

112 

2p ~1I2 
-112 

~1/2 
-112 

-112 

1/2 

2S 
-1/2 

I 

0 

I 
-I 
0 

-I 

m' 
0 

(J 1t (J (J 1t (J 
III III 

~ -r 
~ 2 
Th~,J2 

Transition lines at energies 
EO(P)-EO(S)+ ~BH(m"-m ' )+ 

+ h2~2pm"ms 
with I'!.m= O,±j 

Problem IV.3.3 Evaluate the shift of a spectral line at ,\ = 1894.6 A 
due to the transition from the 1 PI to the ISO state when a magnetic field of 
1 Tesla is applied. 

Solution: 
The magnetic field gives rise to the triplet (11MJ = 0, ± 1) and the separation 
between the components is 

11v = El - Eo = gf-lBH c::: 1.4.1010 Hz 
h h 

From 11,\ c::: - (,\o/vo)11v = - (,\61c)11v one has 11,\ c::: 0.02 A. 
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Problem IV.3.4 Show that in positronium atom in the lowest energy 
state no Zeeman effect occurs (the magnetic moment of the positron is /-Lp = 
f-L BgSP). 

Solution: 
The Hamiltonian is 

1i = - (/-Le + /-Lp) . H = a(SZ - S~ ) , 

with a = f-L BgH. 
From the energy correction 

E = a < ¢ISZ - S~ I¢ > 

since in the singlet state the spin eigenfunction is antisymmetric and the 
operator (S~ - sg) is antisymmetric, the matrix element must be zero. A 
more formal proof can be obtained by applying the operator (S~ - sg) on the 
four spin eigenfunctions O:pO:e, (3p(3e, etc ... for the two particles. 

Problem IV.3.5 From the Paschen-Back structure of the D 1,2 doublet of 
Sodium atom imagine to decrease the magnetic field until the Zeeman weak 
field regime is reached. Classify the states and connect the levels in the two 
regimes. 
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Solution: 

In Ins I11j 

2P 312 +1/2 +3/2 

+1/2 

0 +1/2 -1 /2 
+fJ2 -3/2 

-\ +112 
2p 

+1 -112 

0 -112 

-~ 
- I -1 /2 

+112 2P l/2 

t 2P I12 
-1 /2 

I /H 
H=O 

P aschen-Back regime Zeem a n r egime 

i1E = fJBH(m + 2ms) i1E = gfJBHmj 

with Eo(n, l , m, m s) with Eo(n, l ,j, mj) 
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Upon increasing the field (from right to left in the Figure) the Dl and D2 
lines (Fig. 4.4) modify their structures as schematically shown below: 

1 
Energy weak 

field 
regime 

a- { 

, , , , , , 

strong field regime 

1t 
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4.4 Paramagnetism of non-interacting atoms and mean 
field interaction 

From the energy corrections induced by a magnetic field (Eq. 4.26) in the weak 
field regime and in the light of the classical analogy, one can attribute to the 
atom a magnetic moment /-LJ = -/LBgJ, with J the total angular momentum. 
This statement, already used in the vectorial description at §3.2, is at the 
basis of the theory for the magnetic properties of matter. 

As illustrative example we shall show how the magnetic properties of an 
assembly of atoms can be derived by referring to the statistical distribution on 
the levels, when the thermal equilibrium at a given temperature T is achieved. 
The atoms will first be considered as non-interacting (the only weak interac­
tions occurring with the other degrees of freedom of the thermal reservoir, so 
that statistical equilibrium can actually be attained). 

a) z 
H=O 

JlJ 
MJ degeneracy 

b) 

H"# 0 along z 

H= O 

Fig. 4.5. Pictorial sketch of non-interacting atomic magnetic moments in the ab­
sence (a) and in the presence (b) of the field. The field removes the degeneracy in 
MJ and after some time (of the order of T1 ) the statistical distribution yields an 
excess population on the low energy levels so that an effective component of the 
magnetic moment a long the field is induced. 
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In the absence of field, degeneracy in the magnetic quantum number MJ 
occurs, pictorially corresponding to equiprobable orientations of the magnetic 
moments with respect to a given z-direction, as sketched in Fig. 4.5. When 
the field is switched on, in a characteristic time usually called spin-lattice 
relaxation time Tl (for some detail on this process see Chapter 6), statis­
tical equilibrium is achieved, with the populations on the magnetic levels as 
depicted in Fig. 4.5b and with an average (statistical) expectation value of 
the magnetic moment along the field < J.L z >-1= o. 

1.0 

} 
~0.5 
1\ 
:::(" 
V 

0.0 -t'---.---,---.---,----.-----,---+ 
o 3 

Fig. 4.6. Normalized value of the effective magnetic moment along the field direction 
as a function of the dimensionless variable (Jgj.J,BH/kB T) , according to Eq. 4.32 , 
for different J 's. 

< J.L z > is written 

(4.30) 

where x = gJ.LBHjkBT. For x « 1 one has 
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Fig. 4.7. Sketchy behavior of the t emperature dependence of the paramagnetic sus­
ceptibility in presence of interactions among the magnetic moments. The state below 
Tc corresponds to spontaneous ordering of the magnetic moments along a given di­
rection as a consequence of a cooperative process, typical of phase transitions in 
many-body systems, driven by the interaction among the components . 

and since LMJ My = J(J + 1)(2J + 1) /3 , 

J(J + 1)(2J + 1) 
< fLz >= gfLBx 3(2J + 1) 

with 

(4.31 ) 

The volume paramagnetic susceptibility is X = N Xa, with N number of 
atoms per unit volume and Xa atomic susceptibility, given by Xa = fL) /3k B T, 
according to Eq. 4.31. Thus the quantum derivation of the Curie law has been 
obtained. 

Without the approximation of low field (or high temperature) , Eq. 4.30 
gives 

(4.32) 

the function depicted in Fig. 4.6 and known as Brillouin function. For 
J ---+ 00, the Brillouin function becomes the Langevin function, while for 
J = 1/2 it reduces to tanh(x / 2). 

The saturation magnetization Msat = N < fL z >T-.O corresponds to the 
situation where all the atoms are found on the lowest energy level of Fig. 4.5b 
and « fL z > )T-.O = gfLB J· 
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According to Eq. 4.31 on decreasing temperature the paramagnetic suscep­
tibility (in evanescent field) diverges as liT. However, when the temperature 
is approaching zero so that the condition x « 1 no longer holds, partial sat­
uration is achieved and X reaches a maximum and then decreases on cooling. 
In practice this can happen only in strong fields (of the order of several Tesla) 
and at low temperature. 

The assumption of ideal paramagnet in practice corresponds to the as­
sumption that the local magnetic field is the one externally applied (apart 
from the diamagnetic correction, see §4.5). This condition does not hold when 
some type of interaction among the atomic magnetic moments is active. In 
this case the susceptibility can diverge at finite temperature, as sketched in 
Fig. 4.7. 

A simple method to deal with the interactions is the mean field ap-
proximation, namely to assume that the local field is the external one H ext 
plus a second contribution, related to the interactions, proportional to the 
magnetization: 

H = H ext + AM 

Then the magnetization reads 

(4.33) 

and the susceptibility turns out 

Xo X = ---'..::..:....--
1- AXO 

(4.34) 
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where XO is the bare susceptibility of the ideal paramagnet, the one with­
out interactions. Eq. 4.34 is a particular case of a more general equation, for 
any system in the presence of many-body interactions (in the framework of 
the linear response theory and the so-called random phase approxima­
tion). 

By taking into account Eq. 4.31, Eq. 4.34 can be rewritten in the form 

NIL} NIL}A 
X = 3kB (T _ Tc) ' where Tc = 3kB (4.35) 

For T ----+ T: one has the divergence of the magnetic response and a phase 
transition to an ordered state, with spontaneous magnetization in zero 
field, is induced. Typical transition is the one from the paramagnetic to the 
ferromagnetic state and it can be expected to occur when the thermal energy 
kBT is of the order of the interaction energy. 

It is noted that the values of Tc's in most ferromagnets (as high as 
Tc = 1044 K, for instance for Fe bcc) , indicate that the transition is driven 
by interactions much stronger than the dipolar one. This latter, in fact, for 
an interatomic distance d of the order of 1 A, would imply Tc rv IL}/d3 kB, of 
the order of a few degrees K. Instead the interaction leading to the ordered 
states (ferromagnetic or antiferromagnetic, depending on the sign of A in Eq. 
4.34) is the one related to the exchange integral, as mentioned at §2.2 (for 
details see Appendix XIII.1). 

4.5 Atomic diamagnetism 

The magnetic Hamiltonian (Eq. 4.3) also implies the one-electron term (see 
Eq. 4.21 and 4.5) 

H 

2A2 H(2) _ _ e _ 
p - 2mc2 

-e 

r 

with A = (1/2)H x r = (1 /2 )Hrsine, the term usually neglected in compar­
ison with the one linear in the field and leading to paramagnetism. Instead 
H~) is responsible of the atomic diamagnetism. 
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Let us refer to atoms in the ground state where J.LL = J.Ls = O. The effect 
of H~) can be evaluated in the form of perturbation for states having L, S, M 
and Ms as good quantum numbers, the spin-orbit interaction being absent. 
Thus, from first-order perturbation theory the energy correction due to H~) 
is 

( 4.36) 

where the sum is over all the electrons. By resorting to J.L = - (8E/8H) , 
Eq. 4.36 implies an atomic magnetic moment linear in the field and in the 
opposite direction. Therefore the diamagnetic susceptibility is written 

e2 2 
Xdia = - N 4mc2 L "3 < r; > ( 4.37) 

(N number of atoms per unit volume) , the assumption of isotropy having been 
made, so that < x 2 >=< y2 >= 1/3 < r2 >. In the Table below the molar 
diamagnetic susceptibilities for inert-gas atoms (to a good approximation the 
same values apply in condensed matter) are reported: 

He Ne Ar Kr Xe 
Xdia(cm0 /mole)( x 10 -0) -2. 36 -8.47 -24.6 -36.2 -55.2 

Z 2 10 18 36 54 

When the perturbation effects from the magnetic Hamiltonian are ex­
tended up to the second order, a mixture of states is induced and a further 
energy correction is obtained, quadratic in the field and causing a decrease 
of the energy. Thus, even in atoms where in the ground state no paramagnetic 
moment is present , a positive paramagnetic-like susceptibility (Van Vleck 
paramagnetism) of the form 

( 4.38) 

is found. For a quantitative estimate the electronic wavefunctions cPo of the 
ground and of the excited states cPn are required. The Van-Vleck susceptibility 
is usually temperature-independent and small with respect to Curie suscepti­
bility. 
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Problems IV.5 

Problem IV.5.l Evaluate the molar diamagnetic susceptibility of He­
lium in the ground state, by assuming Hydrogen-like wavefunctions with the 
effective nuclear charge derived in the variational procedure (Problem II.2.2). 
Estimate the variation of the atom energy when a magnetic field of 1 Tesla is 
applied. 

Solution: 
From Eq. 4.37 

fVe2 2 2 
Xdia = - -6 2 [< r1 > + < r2 >J me 

and in hydrogenic atoms (Table 1.4.3) < r2 >= 3 (i') 2. For effective charge 
Z* = Z _ ~ = 27 

16 16 

6 emu 
Xdia c::: - 0.6·10- -Z-· moe 

The e nergy variation is i1E = (e2 H2/12me2)[< rr > + < r~ >J c::: 
10- 10 eV, very small compared to the ground state energy. 

Problem IV.5.2 In a diamagnetic crystal Fe3+ paramagnetic ions are in­
cluded, with density d = 1021 ions/cm3 . By neglecting interactions among 
the ions and the diamagnetic contribution, derive the magnetization at 
T = 300 K , in a magnetic field H = 1000 Oe. Then estimate the magnetic 
contribution to the specific heat (per unit volume). 

Solution: 
From Problem F.III.3 for Fe3+ in the ground state the effective magnetic 
moment is JL = PJLB with P = gJ J(J + 1) = v35. 
From Eq. 4.31 

JL 2 H 
M = d 3kBT = 0.0242 ergcm- 3 0e- 1 . 

The e nergy density is E = - M . H and for JLBH « kBT the specific heat 
is 

( aE) JL2 H2 -1 - 3 
Cv = aT v = d3kBT2 = 0.0808 erg K cm . 

Problem IV.5.3 For non-interacting spins in external magnetic field , in 
the assumption of high temperature, derive the Curie susceptibility from the 
density matrix for the expectation value of the magnetization. 
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Solution: 
The density matrix is 

1 'HZ p = -exp( _ eeman) 
Z kBT 

with Z the partition function, then 

with 

Since 

one obtains 
S(S + 1)g2/-L1 

X = 3kB T 

(as in Eq. 4.31 for S = J). 

Appendix IV.1 Electromagnetic units and Gauss 
system 

Throughout this book we are using the CGS system of units that when in­
volving the electromagnetic quantities is known as the Gauss system. This 
system corresponds to have assumed for the dielectric constant co and for the 
magnetic permeability /-Lo of the vacuum the dimensionless values co = /-Lo = 1, 
while the velocity of light in the vacuum is necessarily given by c = 3 X lO lD 

cm/s. 
As it is known, the most common units in practical procedures (such as 

Volt, Ampere, Coulomb, Ohm and Faraday) are better incorporated in the 
MKS system of units (and in the international SI). These systems of units 
are derived when in the Coulomb equation instead of assuming as arbitrary 
constant k = 1, one sets k = 1/47rco , with co = 8.85 X 10- 12 Coulomb2/Nm2 , 
as electrical permeability of the vacuum. In the SI system the magnetic field 
B, defined through the Lorentz force 

F = qE + qv x B 

is measured in Weber/m2 or Tesla. 
The auxiliary field H is related to the current due to the free charges by the 

equation H = nI, corresponding to the field in a long solenoid with n turns per 
meter, for a current of I Amperes. The unit of H is evidently Ampere/m. Thus 
in the vacuum one has B = /-LoH , with /-Lo = 47r10- 7 N/ Ampere2 = 47r10- 7 

Henry/m. 
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In the matter the magnetic field is given by 

B = J.1.o(H + M) 

where M is the magnetic moment per unit volume. 
The 81 system is possibly more convenient in engineering and for some 

technical aspects but it is not suited in physics of matter. In fact, the Maxwell 
equations in the vacuum are symmetric in the magnetic and electric fields 
only when H is used, while B and not H is the field involved in the matter. 
The 81 system does not display in a straightforward way the electromagnetic 
symmetry. In condensed matter physics the Gauss system should be preferred. 

Thus within this system the electric and magnetic fields have the same 
dimensions, the Lorentz force is 

B is related to H by 

F = qE + fJ.. v x B, 
c 

B = H + 41fM = J.1.H with 

(A.IV.1) 

(A.IV.2) 

M = XH defines the dimensionless magnetic susceptibility X. For 
J.1. BH « kBT , often called evanescent field condition, X is field indepen­
dent . As already mentioned J.1.0 and co are equal to unit, dimensionless. 

The practical units can still be used , just by resorting to the appropriate 
conversion factors , such as 

1 volt ---+ 2§§-.8 statvolt or erg/esu (esu electrostatic unit) 
1 ampere 2.998 x 109 esu/sec 
1 Amp/ m 41f x 10- 3 Oersted (see below) 

1 ohm 1.139 x 10- 12 sec/cm 
1 farad 0.899 x 1012 cm 
1 h enry 1.113 x 10- 12 sec2 /cm 
1 Tesla 104 Gauss 

1 Weber 108 Gauss/cm2 

The Bohr magneton, which is not an SI unit , is often indicated as J.1. B = 
9.274 X 10- 24 Joule/Tesla, equivalent to our definition J.1. B = 0.9274 X 10- 20 

erg/ Gauss. The gyromagnetic ratio is measured in the Gauss system in 
(rad/s.Oe) and in the 81 system in (rad.m/Amp.s). 

Unfortunately, some source of confusion is still present when using the 
Gauss system. According to Eq. A.IV.2, B and H have the same dimensions 
and are related to the currents (measured in esu/s) in the very same way. In 
spite of that , while B is measured in Gauss, without serious reason the unit 
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of H is called Oersted. Furthermore, there are two ways to describe elec­
tromagnetism in the framework of the CG8 system. One with electrostatic 
units (esu) and the other with electromagnetic units (emu). The latter is 
usually preferred in magnetism. Thus the magnetic moment is measured in 
the emu unit , which is nothing e lse than a volume and therefore c m3 . The 
magnetic susceptibility (per unit volume) is dimensionless and often indicated 
as emu/ cm3 . The symmetric Gauss-Hertz-Lorentz system (commonly known 
as Gauss system) corresponds to a mixing of the esu and of t he emu systems, 
having assumed both EO = 1 and fJo = 1. 

Here we do not have the aim to set the final word on the vexata quaestio 
of the most convenient system of units. Further details can be achieved from 
the books by Purcell and by Blundell, quoted in the foreword. 

A T able is given b elow for the magnetic quantities in the Gauss s ystem 
and in the 81 system, with the conversion factors. 

Quantity Symbol Gauss SI Conversion factor* 
Magnetic Induction B G = Gauss T 10 · 4 

Magnetic field intensity H Oe Am " 10" / 47r 
Magnetization M erg/ (G cm") Am " 10" 

Magnet ic moment fJ erg/ G(= emu) J / T(= Am") 10 'v 

Specific magnetization 17 emu/g A m" / kg 1 
Magnetic flux <P Mx (maxwell) Wb (Weber) 10 .~ 

Magnetic energy density E erg/ cm" J / m" 10 . , 

Demagnetizing factor N d - - 1/ 47r 
Susceptibility (per unit volume) X - - 47r 

Mass susceptibility Xg erg/ (G g Oe) m"/kg 47r x lO -v 

Molar susceptibility Xmol emu/ (moIOe) mel/mol 47r x 10 - 0 

Magnetic permeability fJ G/ Oe H/ m 47r x 10 
Vacuum permeability /-Lo G / Oe H/ m 47r x 10 
Anisotropy const ant K erg/cm" J / m" 10 . , 

Gyromagnetic ratio I rad/ (s Oe) r ad m iCA s) 47r x 10 -" 

*To obtain the values of the quanti t ies in the SI , the corresponding Gauss values 
should be multiplied b y the conversion factor. 

Finally a m ention to the atomic units (a. u.), frequently used, is in order. 
In this system of units one sets e = 11 = m = 1. Thus the Bohr radius for 
atomic Hydrogen (infinite nuclear mass) becomes ao = 1, the ground state 
energy b ecomes E n=l = - 1/ 2 a.u. , the a.u. for velocity is vo = a c with 
a c::: 1/ 137 the fine structure constant, so that the s peed of light is c c::: 137 
a. u .. Less practical are the a. u. 's for other quantities. For instance the a. u. for 
the magnetic field corresponds to 2.35 x 105 Tesla and the one for the e lectric 
field to 5.13 x 109 V /cm. 
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Problems F .IV 

Problem F .IV.1 The magnetization curves for crystals containing para­
magnetic ions Gd3+, Fe3+ and Cr3+ display the saturation (for about H/T = 
20 kGauss/K) about at the values 7/JB , 5/JB, and 3/JB (per ion), respectively. 
From the susceptibility measurements at T = 300 K for evanescent magnetic 
field one evaluates the magnetic moments 7.9/JB, 5.9/JB, and 3.8/JB, respec­
tively. Comment on the differences. Then obtain the theoretical values of the 
magnetic moments for those ions and prove that quenching of the orbital 
momenta occurs (see Problem F.IV.2). 

Solution: 
The susceptibility X = Ng2 J(J + 1)/J1/3kBT involves an effective magnetic 
moment /Jeff = g/JBV J(J + 1) different from < /Jz >max= g/JBJ obtained 
from the saturation magnetization, related to the component of J along the 
direction of the field. 

For Gd3+, electronic configuration (41) 7, one has S = ~ , L = 0, J = ~ 
and g = 2. 
Then /Jeff = g/JBVS(S + 1) c::: 7.9 /JB , while < /Jz >maxC::: 2/JB7/2 = 7/JB, in 
satisfactory agreement with the data. 

For Fe3+ (see Problem IV.5.2) J = 5/2 and g = 2 and then /Jeff = 5.92 /JB 
and < /Jz >maxC::: 5/JB. 

For Cr3+ , electronic configuration (3d)3, S = 3/2, L = 3, J = 3/2 and 
g = 2/5 = 0.4. For unquenched L one would have /Jeff = (2/5)/JBV15/4 = 
0.77 /JB , while for L = 0, /Jeff = 2/JBV15/4 c::: 3.87/JB' 

Problem F.IV.2 By referring to the expectation value of lz in 2p and 3d 
atomic states, in the assumption that the degeneracy is removed by crystal 
field, justify the quenching of the orbital momenta. 

Solution: 
When the degeneracy is removed the wavefunction ¢2px,y ,z are real. Then, 

since j. 0 
< lz >= - in ¢* Ot.p ¢dT 

cannot be imaginary, one must have lz = O. Analogous consideration holds 
for 3d states. Details on the role of the crystal field in quenching the angular 
momenta are given at §13.3 and at Problem F.XIII.3. 
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Problem F.IV. 3 In Hydrogen, the lines resulting from the transitions 
2 P3/2 ----+ 251/ 2 and 2 P l / 2 ----+ 251/ 2 occur at (1210 - 3.54 . 10- 3 ) A and 
(1210 + 1.77.10- 3 ) A, respectively. Evaluate the effect of a magnetic field of 
500 Gauss, by estimating the shifts in the wavelengths of these lines, in the 
weak fie ld regime. 

Solution: 
The relationship between the splitting of lines and the applied field is found 

from 

namely 

he 
dE2 - dEl = - - d>" >..2 ' 

The values for dE2 and dEl are g iven in T able below. There a re 10 transitions 
that satisfy the e lectric dipole selection rule iJ.MJ = ± 1, O. The deviation of 
each of these lines from >"0 = 1210 A is also given. 

dAo dE 2 dEl dA dAT = dAo + dA 
A .10- 3 Transition eV · 1O- 5 eV · 1O- 5 A · 1O- 3 A · 1O- 3 

-3.54 a + 0.579 + 0.289 -0 .342 -3.88 
-3.54 b + 0.193 + 0.289 + 0.114 -3 .43 
-3.54 c + 0.193 -0 .289 -0 .570 -4 .11 
-3.54 d -0.193 + 0.289 + 0.570 -2 .97 
-3.54 e -0.193 -0.289 -0.114 -3 .65 
-3.54 f -0.579 -0.289 + 0.342 -3 .20 
1.77 g + 0.096 + 0.289 + 0.228 + 2.00 
1.77 h + 0.096 -0.289 -0.456 + 1.31 
1.77 i -0.096 + 0.289 + 0.456 + 2.23 
1.77 j -0.096 -0.289 -0.228 + 1.54 

Problem F.IV.4 Refer to the Ha line in Hydrogen (see Problem I.4.4) . 
Report the s plitting of the sand p levels and the structure of the correspondent 
line when a magnet ic field of 45000 Gauss is applied . By taking into account 
that the separation between two adjacent lines is 6.29·1010 Hz and by ignoring 
the fine structure, evaluate the specific electronic charge (elm). Compare the 
estimate of (e l m) with the one obtained from the observation that a field of 
30000 Gauss induces the s plit ting of the s pectral line in C a atom at 4226 A 
in a triplet with separation 0.25 A (do not consider in this case the detailed 
structure of the energy levels). 
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Solution: 
In the Paschen-Back regime the energy correction is 

with electric dipole selection rules. One can observe three lines with splitting 
L1D = 2.098cm- 1 . Then from 

one has 

en 
L1E = f.L BHo = -Ho = hL1v 

2m 

lei 47r L1v 17 u.e.s. - = -- = 5.28 x 10 --. 
m Ho 9 

For Ca, from L1E c::: enH/2mc = - hcL1A/).,2 again 

~ = 47rc2 L1)" c::: 5.2 . 1017 u.e.s .. 
m H).,2 g 

Problem F.IV.5 Two particles at spin S = 1/2 and magnetic moments 
aO"l and b0"2, with 0"1 ,2 spin operators, interact through the Heisenberg ex­
change Hamiltonian (see §2.2). Derive eigenstates and eigenvalues in the pres­
ence of magnetic field. 

Solution: 
From the Hamiltonian 

one writes 

K (a - b) 
H = - (a + b)H8z + 2(48(8 + 1) - 6) - -2-(0"1Z - 0"2z)H. 

The first two terms are diagonal (in the representation in which the total 
spin is diagonal). Both the triplet and the singlet states have definite parity 
for exchange of particles (even and odd respectively). Thus the only non­
zero matrix element of the last term (which is odd for exchange) is the one 
connecting singlet and triplet states. One finds 

( _ ) (a(l )b(2) - a(2)b(1)) _ (a(l )b(2) + a(2)b(1)) 
O"l z 0"2z v'2 - 2 v'2 . 

the only non-zero matrix element being 

< 10 lH I00 >= - (a - b)H. 
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Therefore S = I , Sz = ± 1 classify the eigenstates, with eigenvalues 

E±=~(a+b)H+K, 

For the states with Sz = 0, the Hamiltonian can be represented by the matrix 

( K - (a - b)H) 
H(Sz = 0) = - (a _ b)H -3K ' 

where the out of diagonal elements involve the triplet-singlet mixture. From 
the secular equation the eigenvalues turn out 

Problem F.IV.6 The saturation magnetization (per unit volume) ofIron 
(Fe2+) is often reported to be 1.7.106 A/m. Derive the magnetic moment per 
atom and compare it to the theoretical estimate (density of iron 7.87 g/ cm3 ). 

Solution: 
From 

M sat = 1.7.103 erg Gauss- 1 cm-3 

and nat om = 0.85 . 1023 cm -3, one derives 

Ma c::: 2 . 10- 20 erg Gauss- 1 

or equivalently Ma = 2.2MB ' For Fe2+ (S = 2, L = 2, ] = 4 and 9 = ~) 
one would expect M = gMB ] = 6MB · For quenched orbital momentum M = 
2SMB = 4MB (see Problem F.IV.2 and §13.3). 

Problem F.IV.7 A bulb containing Hg vapor is irradiated by radiation 
propagating along the x axis and linearly polarized along z , along which a 
constant magnetic field is applied. When the wavelength of the radiation is 
2537 A, absorption and meantime re-emission of light along the y direction, 
with the same polarization, is detected. When a RF coil winding the bulb along 
the y direction is excited at the frequency 200 MHz one notes re-emission of 
light also along the z direction, light having about the same wavelength and 
circular polarization. Explain such a phenomenology and estimate the strength 
of the field. 

Solution: 
Since spin-orbit interaction is very strong the weak-field regime holds (see §3.3 
and Fig. 3.9). The electric dipole selection rule flMJ = 0 requires linearly 
polarized radiation. In the absence of radio frequency excitation, 7r radiation 
is re-emitted again, observed along y. Along the z direction the radiation is 
not observed. 
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The radio-frequency induces magnetic dipole transitions at 11MJ = ± 1 
among the Zeeman levels. The re-emission of light in such a way is about at 
the same wavelength ),. In fact 

),2 0 

11), c::: - 11v = 4.29 . 10- 4 A . 
c 

On the other hand, since among the levels involved in the emlSSlOn 
11MJ = ± 1, one has circular CJ polarization and so the radiation along z 
can be observed. 

From the resonance condition 

with 9 = 3/2, one deduces 

11E gfJBH v - -- - ---- h - h 

hv 
H = - = 95.260e. 

gfJB 

The levels (in the LS scheme and in the weak field regime) for the Hg ISO 

and 3 PI states (see Fig. 3.9) and the transitions are sketched below: 

3 PI ~ 
~ 

0 

(J (J 1t (J 

o 

-1 
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Problem F.IV.8 Consider a paramagnetic crystal, with non-interacting 
magnetic ions at J = 1/2. Evaluate the fluctuations < 11M2> of the mag­
netization and show that it is related to the susceptibility X = 8 < M > /8H 
by the relation X = < 11M2> /kBT (particular case of the fiuctuation-
dissipation theorem). 

Solution: 
The density matrix is p = (l/Z)e{3HMz ((3 == l/kBT ) and the partition 

function Z = Tr [e{3H Mz]. The magnetization can be written 

1 8 
< Mz >= H 8(3 log Z. 

Then 

= 8 < Mz > _ [Tr(e{3 HMzM; ) _ [Tr(e{3HMZMz)]2] _ 2 
X - 8H - (3 Tr(e{3HMz) Tr(e{3HMz) - (3 < 11Mz > . 

Without involving the density matrix, from the single-ion fluctuations 

with < /-L z > statistical average of J.L = - g/-LBJ , since 

and (see §4.4) 

2 122 2 (19/-LBH) 
« /-L z » = "4 g /-LB tanh "2 kBT ' 

by taking into account that 

one finds 2 

2 2 122 2 (19/-LBH) < 11M >= N < 11/-Lz >= -g /-LB N cosh- --k--
4 2 BT 

and then 

2 The single /-L'S are uncorrelated i.e. < i1Mni1Mm >=< i1Mn >< i1Mm >, for 
n i= m. 
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Problem F.IV.9 Consider an ensemble of N/2 pairs of atoms at S=I/2 
interacting through an Heisenberg-like coupling KS l . S2 with K > o. By 
neglecting the interactions among different pairs, derive the magnetic suscep­
tibility. Express the density matrix and the operator S z on the basis of the 
singlet and triplet states. Finally derive the time-dependence of the statistical 
ensemble average < Sf(O) . Sf(t) >, known as auto-correlation function. 

Solution: 
The eigenvalues are Es = (K/2)S(S + 1) , with S = 0 and S = 1. The 
susceptibility is 

where 

and 

Then 

x = (~) (PoXo + PlXI), 

K Ng 2f-L2 3e- k BT x- B ___ ----,-,_ 
- 3kB T 1 + 3e- k;T 

On the basis given by the states 

11 >= I + + >, 12 >= 1- - >, 

1 14 >= -(I + - > -1- + » 
v2 

omitting irrelevant constants, one has 

(
K 0 0 0) .. 0 K 0 0 

< tlHIJ >= 0 0 K 0 

o 0 0 0 

Then the density matrix is 

By letting Sf act on the singlet and triplet states, one has 

and 
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(
1 0 0 0) 

. z . 1 0 - 1 0 0 
< ZIS llJ >= 2 0 0 0 1 

o 0 1 0 

The autocorrelation-function is 

1 
g(t) =< {Sf (t)·Sf (O)} >= Re[< Sf (t)·Sf (O) >] where {A, B} = 2(AB+BA), 

< S f (t)· Sf (O) >= Tr [~e- i ~fl Sfe i ~fl Sf ] 

By setting We = f , (Heisenberg exchange frequency), one writes 

< Sf(t) . Sf(O) >= 4(1 + ~e-i3K) x 

CPK 
0 

o 0) 
Tr( ' ~ e- i3K o 0 

0 e-i3K 0 x 

0 o 1 

C~<' 
0 o 0)(10 00) e- iwet o 0 0 - 1 0 0 

x 0 0 e- iwet 0 0 0 0 1 x 
0 0 o 1 0 0 1 0 

('T 
0 

o 0) (1 0 00) eiwet o 0 o - 1 00 
0 eiwet 0 o 0 0 1 }, 
0 o 1 o 0 1 0 

and then 
g(t) = Re[< S f (t) . Sf (O) >] 

1 
g(t) = S [1 + cos(wet )]. 

l /we can b e defined as the correlation time, in the infinite temperature 
limit. 
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Problem F.IV.I0 By resorting to the Bohr-Sommerfeld quantiza­
tion rule (Problem 1.4.4) for the canonical momentum derive the cyclotron 
frequency and the energy levels for a free electron (without spin) moving in 
the xy plane, in the presence of a constant homogeneous magnetic field along 
the z axis. 

Solution: 
The canonical momentum is p = mv - eA/ c. From the quantization along 
the circular orbit 

f f ee 7reR2H 
p.dq = (mv - -A)dq = mv27rR - -7rR2H = ---

c c c 

(R radius of the orbit). The equilibrium condition along the trajectory implies 
v = eHR/mc and then the quantization rule yields 

7rR~eH . _-'-"....-- = nh, (WIth n = 1, 2, ... ) 
c 

The energy becomes 

with 
eH 

Wc=-
mc 

cyclotron frequency. For the quantum description, which includes n = 0 
and the zero-point energy nwc /2, see Appendix XII1.l. 

Problem F.IV.ll By referring to a Rydberg atom (§l.5) and consider­
ing that the diamagnetic correction to a given n-Ievel rapidly increases on 
increasing n , discuss the limit of applicability of the perturbative approach, 
giving an estimate of the breakdown value of n in a magnetic field of 1 Tesla 
(see Eq. 4.36). Then discuss why the Rydberg atoms are highly polarizable 
and ionized by a relatively small electric field. 

Solution: 
From 

e2H22 
t!1En = 8mc2 "3 < r;;, > 

considering (see Table 1.4.3) 

2 n 2 ao 2 2 a6 n 4 
< r >nlm= 2(Z) [5n + 1 - 31(l + 1)] c::: -2-

for large n and I and Z = I, as for ideal total screen. Then if one assumes that 
the perturbation approach can be safely used up to a diamagnetic correction 
t!1En (H) rv O.2E~ , one obtains 
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from which a limiting value of the quantum number n turns out around nlim rv 

70. 
As regards the electric polarizability, by considering that in Eq. 4.8 the 

relevant matrix elements imply a n increase of the numerator with n2 while 
the difference in energy at the denominator varies as 1/n3 (remember the 
correspondence principle, Problem 1.5.2) one can deduce that the electric po­
larizability must increase as n 7 . 
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Nuclear moments and hyperfine interactions 

Topics 

Angular, magnetic and quadrupole moments of the nucleus 
Magnetic electron-nucleus interaction 
Quadrupolar electron-nucleus interaction 
Hyperfine structure and quantum number F 
Hydrogen atom re-examined: fine and hyperfine structure 

5.1 Introductory generalities 

Until now the nucleus has been often considered as a point charge with infinite 
mass, when compared to the electron mass. The hyperfine structure in high 
resolution optical spectra and a variety of experiments that we shall mention 
at a later stage, point out that the nuclear charge is actually distributed over 
a finite volume. Several phenomena related to such a charge distribution occur 
in the atom and can be described as due to nuclear moments. One can state 
the following: 

i) most nuclei have an angular momentum, usually called nuclear spin. 
Accordingly one introduces a nuclear spin operator In, with related quantum 
numbers I and M J , of physical meaning analogous to the one of J and M J 

for electrons. 
Nuclei having even A and odd N have integer quantum spin number I 

(hereafter spin) while nuclei at odd A have semi-integer spin I ::; 9/2; nuclei 
with both A and N even have 1 = 0. 

ii) associated with t he angular momentum one has a dipole magnetic 
moment, formally described by the operator 

(5.1) 
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Nucleus Z N I ~/M" gn 
neutron 0 1 112 -1.913 -3.826 

IH 1 0 112 2.793 5.586 
2H 1 1 1 0.857 0.857 
3He 2 1 112 -2.12 -4.25 
4He 2 2 0 - -
12C 6 6 0 - -
l3C 6 7 1/2 0.702 1.404 
14N 7 7 1 0.404 0.404 
160 8 8 0 - -

170 8 9 512 -1.893 -0.757 
19F 9 10 1/2 2.628 5.257 
31 p 15 16 112 1.132 2.263 

133CS 55 78 712 2.579 0.737 

Table V.l. Properties of some nuclei 

where gn is the nuclear Lande factor and Mn the nuclear magneton, 
given by Mn = ILB/1836.15 = efi/2Mpc, with Mp proton mass. II is the 
gyromagnetic ratio. gn (which depends on the intrinsic nuclear properties) 
in general is different from the values that have been seen to characterize 
the electron Lande factor. For instance, the proton has I = 1/2 and ILl = 
2.796Mn and then gn = 5.59. For deuteron one has I = 1 and fLI = 0.86Mn . 
Since the angular momentum of the neutron is I = 1/2, from the comparison 
of the moments for proton and deuteron one can figure out a "vectorial" 
composition with the neutron and proton magnetic moments pointing along 
opposite directions. 

At variance with most nuclei, for which gn is positive, neutron as well as 
the nuclei 3He, 15N and 170 have magnetic moment opposite to the angular 
momentum. Thus for them gn is negative, similarly to electron. The pictorial 
composition indicated for deuteron does not account for a discrepancy of 
about 0.023 Mn , which is attributed to the fact that the ground state of 
the deuteron involves also the D excited state, with a little weight (about 4 
percent). Properties of some nuclei are listed in Table V.l. 

iii) nuclei with I 2': 1 are characterized by a charge distribution lacking 
spherical symmetry. Therefore, in analogy with classical concepts, they posses 
a quadrupole electric moment. For charge rotationally symmetric along 
the z axis the quadrupole moment is defined 

(5.2) 
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For uniform charge density p(r) , one has Q = (2/5)(b2 - a2 ) , a and b being 
the axis of the ellipsoid (see Problem F.V.1). Since the average radius of the 
nucleus can be written Rn = (a2b)1/3, by indicating with oRn the departure 
from the sphere (i.e. b = Rn + oRn) one has Q = (6/5)R; [oRn/ Rn]. 

iv) since proton and neutron (I = 1/2) are fermions , a nucleus with mass 
number A odd is a fermion while for A even the nuclei must obey to the 
Bose-Einstein statistics; in fact the exchange of two nuclei corresponds to 
the exchange of A pairs of fermions. 

5.2 Magnetic hyperfine interaction - F states 

The nuclear magnetic moment causes an interaction with the electrons of 
magnetic character, that can be thought to arise from the coupling between 
J.LJ and J.L I· In the framework of the vectorial model one can extend the usual 
assumptions (see §3.2) to yield a coupling Hamiltonian of the form 

'1Jmag - I J 
I~hyp - aJ . (5.3) 

In the quantum mechanical description the magnetic hyperfine interaction 
is obtained by considering the one-electron magnetic Hamiltonian (see §4.3) 

'Hm = _ e_ (P.A + A.P) + 2f..LBS,V x A 
2mc 

s 

(5.4) 

Fig. 5.1. Pictorial view of the nucleus-electron interaction of magnetic origin. 
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with a vector potential A due to the dipole moment J-LI at the origin (see 
the sketchy description in Fig. 5.1). 

By means of some vector algebra (see Problem F.V.14) and by singling 
out the terms having a singularity at the origin, as it could be expected on 
physical grounds, the magnetic hyperfine Hamiltonian can be written in the 
form 

'1Jmag - h Ithyp - - J-LI· eff (5.5) 

namely the one describing the magnetic moment J-LI in an effective field given 
by 

(5.6) 

The orbital term 

(5.7) 

is derived by considering the magnetic field at the nucleus due to the electronic 
current, in the a way similar to the deduction of the spin-orbit interaction (see 
§1.6), from hI = E x v jc = - elh jmcr3 . 

The field 

(5.8) 

is the classical field that a dipole at the position r induces at the origin: 

Finally 

(5.9) 
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is a field that includes all the singularities at the origin related to the expec­
tation values of operator of the form ,-3 (see Table 1.4.3), for s states. The 
contact term 'Hcont ex (I.s)b(r) can be derived from a classical model where 
the nucleus is treated as a sphere uniformly magnetized (see Problem F.V.14). 

It is remarked that an analogous contact term of the form AsI .s2b(rI2) , 
with A = -(87r/3)(en/mc)2, is involved in the electron-electron magnetic 
interaction, as already recalled at Problem F.II.4. 

The three fields in Eq. 5.6 are along different directions. However, by 
recalling the precessional motions and then the Wigner-Eckart theorem and 
the precession of I and s around j , (see Eq. 4.25) one writes 

. _ _ "'- < heff .j > _ _ "'- I '1 h eff· (I + s) II . 
aJ - lI n ' 2 - lI n < , S,) '2 ,S,) > 

<) > ) 
(5.10) 

Since r.l = 0 and < Is.r/,1 2 >= 1/4, one obtains 

2fJBII n . l2 87r. . 
aj = .( . ) < l, s,)I3" + -s.Jb(r) ll, S,) > 

))+1 , 3 
(5.11) 

Then 

for s electrons (5.12) 

and 

1 
for l =I- 0 , with j = I ± 2' (5.13) 

For l = 0 the angular average of h2 and hI (Eqs. 5.7 and 5.8) yields zero: only 
the contact term related to h 3 contributes to aj once that the expectation 
values are evaluated (see Problem V.2.5). 

From the Hydrogenic wavefunctions (§1.4) one evaluates 

and 
< ,-3 >1#0= Z3 /a~n3l(1 + 1/2)(l + 1) , in Eq. 5.13. 

Therefore the effective field turns out of the order of 8 x 104 (Z3/n3) Gauss 
for s electrons and of the order of 3 x 104(Z3/n5) Gauss for I =I- o. 

Values of the effective hyperfine field at the nucleus due to the optical 
electron, for the lowest energy states in alkali atoms, are reported in Table 
5.1. 

For two or more electrons outside the closed shells, in the LS coupling 
scheme one has to extend Eqs. 5.7-5.10 to total L, Sand J , thus specifying 
aJ in Eq. 5.3. 

The energy corrections related to the magnetic hyperfine interaction can 
be expressed by introducing the total angular momentum F 
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ZSl/2 zPI/2 zP3/2 
Na 45 4.2 2.5 
K 63 7.9 4.6 
Rb 130 16 28.6 
Cs 210 28 13 

Table 5.1. Magnetic field (in Tesla) at the nucleus in alkali atoms, as experimentally 
obtained by direct magnetic dipole transitions between hyperfine levels (see Chapter 
6) or by high-resolution irradiation in beams (see Fig. 5.3) . 

F=5/2 

E(L,S,J) ~E F, F+ l = aJ (F+l) 

'---------l- F=3/2 

F=1I2 

Fig. 5.2. Magnetic hyperfine structure for J = 3/2 and 1 = 1. 

F = I + J (5.14) 

with the related quantum numbers F ( integer or half integer) and MF taking 
the values from -F to +F. 

The structure of the hyperfine energy levels turns out 

< L, S, J, F laJI.J IL , S , J, F >= a; ( F(F + 1) - 1(1 + 1) - J(J + 1)) (5.15) 

The hyperfine structure for the electronic state J = 3/2 and nuclear spin 
1 = 1 is illustrated in Fig. 5.2, showing t he interval rule ilF,F+l = aJ(F+ 1) . 
In Fig. 5.3 the hyperfine structure of the D 1,2 doublet in Na atom is reported. 

It is reminded that the definition of the second as time unit and its metro­
logical measure is obtained through the magnetic dipole F = 4 {o} F = 3 
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Fig. 5.3. Hyperfine magnetic structure of the low-energy states in Na atom, with 
the schematic illustration of the lines detected by means of resonance irradiation for 
the D2 component in atomic beams (for details see Chapter 6) by using a narrow 
band variable-frequency dye laser (Problems F.V.2 and F .V.13). 

transition, at 9172.63 MHz, in 133Cs atom (I 
2S1/2' 

11= 1 
/= 0 
j= 112 

,--r---.- F=l i 
1/4 

3ul4 

O.0475em·' 
(1..=2 1 em) 

F=O i 

7/ 2) in the ground state 

spontaneous emission 

Fig. 5.4. Magnetic hyperfine structure of the ground state in Hydrogen and line at 
21 cm resulting from the spontaneous emission from t he F=l state, the transition 
being driven by the magnetic dipole mechanism. 
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The hyperfine energy levels for the ground state of Hydrogen are sketched 
in Fig. 5.4, with the indication of the spontaneous emission line at 21 cm, 
largely used in the astrophysical studies of galaxies. 

A complete description of the fine and hyperfine structure of the energy 
levels in Hydrogen, including the results by Dirac and from the Lamb elec­
trodynamics, is given in Appendix V.l. 

Finally we mention that the effect of an external magnetic field on the 
hyperfine states of the atom can be studied in a way strictly similar to what 
has been discussed at Chapter 4 in regards of the fine structure levels. Zeeman 
as well as Paschen-Back regimes are currently observed (see Problem F.V.3) 

Problems V.2 

Problem V.2.1 Evaluate the dipolar and the contact hyperfine splitting 
for the ground state of positronium. Estimate the effective magnetic field 
experimented by the electron. 

Solution: 
The hyperfine dipolar Hamiltonian is 

while the Fermi contact term is 

yielding 
87r 2 21 

EF(S) = 3(2f-LB) 11/!(O) 1 2S(S + 1) + canst., 

where 11/!(O) 12 represents the probability of finding the electron and the 
positron in the same position, in the Is state. Being zero the contribution 
from Hd , the separation between the singlet and triplet levels is given by 

with ap Bohr radius for positronium. The magnetic field experimented by the 
electron is about 4 x 104 Gauss. 
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Problem V.2.2 Consider a pair of electrons and a pair of protons at 
the distance e - e and p - p of 2 A. Evaluate the conditions maximizing and 
minimizing the dipole-dipole interaction, the energy corrections in both cases, 
and the magnetic field due to the second particle, for parallel orientation. 

Solution: 

~
2 

r 
p, . r 

I H (r} = - V-3 . r 

From the interaction energy 

E int = 0 for J.L2 ..1 H 1(r). 
For parallel orientation of the J.L'S E int = (J.LIJ.L2/r3)(1 - 3cos2 e) and for 

Ir l fixed the extreme values are 

E' = - 2J.LIJ.L2 for e = 0 7r 
r3 ' 

E" = J.LIJ.L2 for e = ~ 
r3 2 

For two electrons at Ir l = 2 A, for J.Ls = 2J.LB VS(S + 1) 

For two protons 

E' = -6.45 ·1O-17erg and IH' I = 4016 Oe 

E" = +3.22 ·1O-17erg and IH" I = 2008 Oe. 

J.Lp = gpJ.LNVI(I + 1) , 1 = 1/ 2, J.LN = J.LB/1836 , g1 = 5.6 

and then 
E' = - 1.5· 1O-22erg and IH' I = 6 Oe 

E" = 7.5· 1O-23erg and IH" I = 3 Oe. 

For the derivation of the eigenstates and eigenvalues see Problem F.V.8. 

Problem V.2.3 Evaluate the magnetic field at the nuclear site in the 
Hydrogen atom for an electron in the states Is , 2s and 3s. Estimate the 
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energy difference between the states for parallel and anti parallel nuclear and 
electronic spins. 

Solution: 
From Eq. 5.15 with 

91MN 87r 2 
y'j(j + 1) hJ = 3 ge ME g1 MN 11>(0) 1 

and 11>(0) 12 = 1 /7ra~n3 the field can be written 

The energy separation a for j == 8 = 1/2 (Fig. 5.4) and the field turn out 

n 
1 
2 
3 

11>(OW(cm- 3) 
2.15. 1024 
2.69.1023 
7.96. 1022 

a (cm- 1 ) 

0.0474 
0.00593 
0.00176 

hJ (kGauss) 
289 
36.1 
10.7 

Problem V.2.4 Consider a muonic atom (negative muon) and Hydro­
gen, both in the 2p state. Compare in the two atoms the following quantities: 

i) expectation values of the distance, kinetic and potential energies; 
ii) the spin-orbit constant and the separation between doublet due to 2p - 18 

transition (see §1.6); 
iii) the magnetic hyperfine constant and the line at 21 cm (note that the 

magnetic moment of the muon is about 10- 2 Bohr magneton). 

Solution: 

i) (r) ex a(; with a(; = ao/186; Et;: = 186E:!, with E:! = -e2/2aon2. 
By resorting to the virial theorem, (V) = 2 . 186E:! and (T) = - ( ~ ) . 

ii) From 
e2 h2 1 

'H s .o . = ----1· s 
2m2 c2 r3 

M 

by taking into account the scale factors for m M and for r , one finds 
~~p = 186 ~Ji" with doublet separation ~ ~~p-
Alternatively, by considering the spin-orbit Hamiltonian in the form 
M/ M~ \ r- 3 ), since Mr rv Mf/186 and M~ rv 10- 2, the order of magnitude 
of the correcting factor can be written (186)3 / 186· 100. 
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iii) From Hhyp = - J.Ln · he!! and Ihe!! 1 ex J..L" 1'IjI (O) 12, since J..L" rv 1O - 2 J..L B and 
1¢(O) 12 rv (186)3 /a~, one has ais ~ afs .6.5.104 and >-~1 = >-fA /6.5 . 104 . 

Problem V.2.5 Estimate the dipolar magnetic field that the e lectron in 
2Pl ,O states and spin eigenfunct ion ex creates at the nucleus in the Hydrogen 
atom. 

Solution: 
From Eq. 5.8, since J.L s = - 2J..L BS and - 2J..LB Sz = - J..L B, by taking into account 
that for symmetry reasons only the z-component is effective (the terms of the 
form z .x and z .y being a veraged out) one has 

di [1 3z2 
] J..L B [ 2 ] h p = - J..L B - - + - = - 1 - 3eas e z r3 r5 r3 

The expectation value of 3cos2e / r 3 on R21 (r )Yn (e, cp ) reads 

1 9 j.l 3 1 
< 3' > - d(cose)sin2 eeas2 e = - < 3' > 

r 4 - 1 2 r 

Thus < h~ip >= - (J..LB / 2) < 1/ r3 >. By taking < 1/ r3 >211 from Table 1.4.3, 
I h~ip i c::: 1.5 x 103 Gauss, to be compared to Eq. 5.13. 

For the electron in the 2po state one obtains < (1 - 3cos2e) / r3 >= 
- (4/ 5) < 1/ r 3 > (again considering as effective only the z component). 

This condit ion is the one usually occurring in strong magnetic fields where 
only the z components of s and of I are of interest. 

The vanishing of < h2 > (Eq. 5.8) in s s tates arises from 
J (1 - 3cos2 e)sinede = O. 

5.3 Electric quadrupole interaction 

Since the first studies of the hyperfine structure by means of high resolution 
spectroscopy, it was found that in some cases the interval rule LlF ,F+l = 
aJ(F + 1) was not obeyed . The breakdown of the interval rule was ascribed to 
t he presence of a fur ther electron-nucleus interaction of electrical character, 
related to the electric quadrupole moment of the nucleus. As we shall see, this 
second hyperfine interaction is described by an Hamiltonian different from the 
form aJ I.J which is at the basis of the interval rule. 

To derive the e lectric quadrupole Hamiltonian one can start from the clas­
sical energy of a charge distribution in a site dependent electric potential: 
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E = J Pn(r)Vp (r)dTn (5.16) 

By expanding the potential Vp due to electrons around the center of charge, 
one writes 

j. av, J 1 a2 v, J E = Pn (r)Vp (O)dTn + 2:) ;:.) P)o Pn(r) xa dTn + - 2:) a aP)o Pn(r) XaX{3 dTn+ ... uXa 2 Xa X{3 
a a ,{3 

(5.17) 
where one notices the monopole interaction (already t aken into account as 
potential energy in the electron core Hamiltonian) , a dipole term which is 
zero (the nuclei do not have electric dipole moment) and the quadrupole 
term of the form 

1 J 3xx · - or2 
EQ = 2" .2.: Q;,j Vi ,j, with Vi ,j = Pelec. (r) 'J r 5 ', J dT n . 

',J 
(5.18) 

In the quant um description 

Q;,j = e L (3x7x j - OU r;) (5.19) 
nucleons 

is the quadrupole moment operator, while Vi ,j is the electric field gradient 
operator , a sum of terms of the form -e(3xiXj - Oi,jr2)/ r 5 . 

Without formal derivation (for details see Problem F.V.15) , we state that 
t he correspondent Hamiltonian can b e rewritten 

3 
1i~yp = bJ [3(I.J)2 + 2"I.J - 1(1 + l)J(J + 1)] (5.20) 

where bJ = eQVzz / 21(21 - 1)J(2J - 1) , with eQVzz the quadrupole coupling 
constant. The z-component of the electric field gradient is 

(3z~ - r~ ) 
Vzz=< J, J I- eL 5 IJ,J > 

elec. r e 

(5.21 ) 

while 
(5.22) 

n 

is t he quantum equivalent of the classical quadrupole moment. Q is measured 
in cm2 and a practical unit is 10- 24 cm2 , called barn. Q positive means 
elongation of the nuclear charge along the spin direction while for negative 
Q the nuclear ellipsoid has its major axis perpendicular to I. For I = 0 or 
1 = 1/ 2, Q = O. 

It is remarked that in the Hamiltonian 5.20 the first t erm is the one im­
plying the breakdown of the interval rule. 

With the usual procedure to evaluate the coupling operators in terms of 
the correspondent squares of t he a ngular moment um operators, one can d erive 
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F=5/2 ................................ f ...... bI4 

J=1,I=3/2 

b 

Fig. 5.5. Hyperfine magnetic and electric quadrupole e nergy levels for an atom with 
I = 3/2 and J = 1; aJ is the hyperfine constant while here b = eQVzz (see Eqs. 
5.20- 5.22) . Q has been assumed positive. The value of aJ /b is arbitrary. 

the energy corrections associated with the Hamiltonian 5.20. In Fig. 5.5 the 
structure of the hyperfine (magnetic and electric) levels for I = 3/2 and J = 1 
is shown. 

The one-electron electric field gradient (Eq. 5.21) is written 
< j,j l(3cos2 e - 1) /r3 Ij,j >. 

For a wavefunction of the form 'Pj, j = Rn ,l rz,lX spin , since 

J * ( 2 ). 2l Yi ,l 3cos e - 1 rz,lsmede = - (2l + 3) 

for X spin == a, one has 

_ Vzz 2l -3 
q =- - = -- <r > . 

e 2l + 3 

In terms of j one can write 

(5.23) 

(5.24) 

valid for m s = 1/2 as well as for ms = - 1/ 2. For s states the spherical 
symmetry of the charge distribution implies q = O. 

For Hydrogenic wavefunctions t he order of magnitude of the quadrupole 
coupling constant is 

(5.25) 

for Q rv 10- 24 cm2 . 
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In the condensed matter the operators Vjk can be substituted by the corre­
spondent expectation values. The electric field gradient tensor has a principal 
axes frame of reference in which VXY = Vxz = Vy Z = 0, while La Vaa = 0, 
with IVzz l > lVyy l > IVxx l· 17 = (Vxx - Vyy) j Vzz is defined the asym­
metry parameter (see Problems V.3.1 and V.3.2). 

Problems V.3 

Problem V.3.1 Find eigenvalues, eigenstates and transition probabilities 
for a nucleus at I = 1 in the presence of an electric field gradient at cylindrical 
symmetry (expectation values Vzz = eq, Vxx = Vyy = -eqj 2). 

Repeat for an electric field gradient lacking of the cylindrical symmetry 
(Vxx i- Vyy ). 

Solution: 
From Eq. 5.20 and by referring to the expectation values for the e lectric field 
gradient the Hamiltonian is 

where 

eq = Vzz , 
Vxx - Vyy 

17 = ----­
Vzz 

For cylindrical symmetry 17 = 0 and 'HQ commutes with 1z and 12. The 
eigenstates are 

In matrix form 

(1 0 0) 
'HQ = A 0 - 2 0 

001 

and 

'HQ I ± 1 >= A I ± 1 > 'HQIO >= - 2A10 > . 
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It can be noticed that magnetic dipole transitions, with iJ.MI = ± 1 
and circular polarized radiation, are allowed (read §6.2). 

For 'TJ -I- 0 the Hamiltonian in matrix form can be written 1 

(
1 0 'TJ) 

HQ = A 0 - 20 . 
'TJ 0 1 

From 

the eigenvalues turn out 

E = AE = - 2A, (1 ± 'TJ)A 

with corresponding eigenvectors 

l(l ± ry)A >~ ~ UJ 
The unitary transformation that diagonalizes HQ is 

H'o = UHQU+ 

with 

1 (1 0 1) U=;7l 0V20 
v2 1 0 - 1 

1 The matrices of the angular momentum operators for 1=1 in a basis which diag­
onalizes I z and 12 are 

Ix = - 101 1 (010) 

V2 010 
I y = _1_ i 0 -i (0 - i 0 ) 

V2 0 i 0 

(1 0 0 ) (100) I z 00 0 12 = 2 0 1 0 
00 -1 001 

(100) 1 (020) 12 000 1+ = V2 0 0 2 z 
001 2 000 

(00 2 ) 12 000 + 
000 
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Then 

(
1 + 7] 0 0) 

HQ = A 0 - 2 0 
o 0 1 - 7] 

The structure of the energy levels is 

A(1 +11) 

A(1-11) 

-2A 

with transition frequencies 

and 
V3 = 2A7] j h. 

From the interaction Hamiltonian with a radio frequency field HRF (see 
Problem F.V.6 and for details Chapter 6) 

HI = -1'nHRF . I 

and by taking into account that 

one finds 
HRF HR F ) x z 

o iHRF y . 
_iHRF 0 

y 

The transition amplitudes are 

(A(l + 7]) I H~1 - 2A) = -1'nH!;F 

(-2A I H~ I A(1 - 7]) ) = i')'nH:F 
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All the transitions are allowed, with intensity depending on the orientation of 
the radio frequency field with respect to the electric field gradient . 

Problem V.3.2 Consider a 23Na nucleus at a distance 1 A from a fixed 
charge -e. Estimate the eigenvalues of the e lectric quadrupole interaction 
and the frequency of the radiation which induces transitions driven by the 
magnetic dipole mechanism (the electric quadrupole moment of 23Na is Q = 
+ 0.101 . 10- 24 cm2 ). 

Solution: 
From the eigenvalues of the electric quadrupole Hamiltonian (see Problem 
V.3.1, for 7] = 0) 

eQVzz (3M2 - 1(1 + 1)). 
41(21 - 1) I 

For 1 = ~ 

The transition probabilities related to a perturbation Hamiltonian of the 
form Hp ex Hx RF . I ex h (see §6.2) involve the matrix elements 

Then W 2 l ex 3, Wl _ l ex 4, W _ l _2 ex 3. The transition frequencies turn out 
2 ' 2 2 ' 2 2' 2 

V3 1 = ~ (E3 -El) = ~eQVzz 
2 ' 2 h 2 2 2 h ' 

From 

and 

(note that the Laplace equation holds) one estimates 
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Appendix V.I Fine and hyperfine structure III 
Hydrogen 

Having introduced the various interaction terms (spin-orbit, relativistic 
corrections and hyperfine interaction) to be taken into account for one-electron 
states in atoms, it is instructive to reconsider the Hydrogen atom and to look 
at the detailed energy diagram (Fig. 5.6). 

F=1 

F={) 

1.8 · 104 eV 

~uu;-~::~-· l~ __ --...:.1.:::S~1 12~ _ _ ~~:~~~:=} A=21 em 

Bohr model and 
Schrodinger equation 

without spin 

Fine structure 
according 

to Dirac theory 
(I.s coupling + 

relativistic mass 
increase) 

Lamb shift 
Hyperfine 
structure 

Fig. 5.6. Energy levels in Hydrogen including the effects contributing to its detailed 
structure. The scale is increased from left to right and some energy splittings are 
numerically reported to give an idea of the energy separations. The fine structure 
of the n=2 level is detailed in Figure 5.7. 

The solution of the non-relativistic Schrodinger equation (§1.4) provided 
the eigenvalues En,l = -RHhc/n2. Then the spin-orbit Hamiltonian 
Hso = (e2/2m2c2r 3)l.s was introduced (§1.6). However we did not really dis­
cuss at that point the case of Hydrogen (where other relativistic effects are of 
comparable strength) dealing instead with heavier atoms (§2.2 and Chapter 
3) where the most relevant contribution to the fine structure arises from Hso. 
At §2.2 and Problem F.I.15 it was pointed out that a more refined relativis-
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tic description would imply a shift of the 8-states (where I = 0 while at the 
same time a divergent behaviour for r ----+ 0 is related to the positional part of 
Hso). Finally the hyperfine magnetic interaction was introduced (§5.2) where 
Hhyp. = ajI.j , with I = 1/ 2, j = I ± 1/ 2 and aj given by Eqs. 5.12 and 5.13. 

The simplest relativistic correction which could remove the accidental de­
generacy in I was already deduced in the old quantum theory. As a conse­
quence of the relativistic mass m = m(v), for elliptical orbits in the Bohr 
model, Sommerfeld derived for the e nergy levels 

RHhe 0:2 n 3 
En k = - -2- [1 + -2 (-k - -) + ... j , n n 4 

where k is a second quantum number r elated to the quantization of the 
angular momentum J pede = kh (e polar angle)(see Problem 1.4.4) , while 
0: = (e2 the) c:::: 1/ 137 is the fine-structure constant. 

The Dirac electro dynamical theory , which includes spin-orbit inter­
action and classical relativistic effect s (the relativistic kinetic energy being 
e(p2 + m 2e2)1/ 2 - m e2 c:::: (p2 / 2m) - (p4/8m3e2) (see Prob. F.I.15), provided 
the fine-structure eigenvalues 

with the relevant findings that the quantum number j and not I is involved and 
the shift for the 8-states is explicit. Accordingly, the ground state of Hydrogen 
atom is shifted by - 1.8 x 10- 4 eV and the n = 2 energy level is splitted in 
a doublet, the P3/2 and P1 / 2 states ( this latter degenerate with 81/ 2) being 
separated by an amount of 0.3652 cm- I . The He> line of the Balmer series 
(at 6562.8 A) was then detected in the form of a doublet of two lines, since 
the Doppler broadening in optical spectroscopy prevented the observation of 
the detailed structure. 

Giulotto and other spectroscopists, through painstaking measurements, 
noticed that the relativistic Dirac theory had to be modified and that a more 
refined description was required in order to account for the detailed structure 
of the He> line. A few years later (1947) Lamb, by means of microwave spec­
troscopy (thus inducing magnetic dipole transitions between the levels) could 
directly observe the energy separation between terms at the same quantum 
number j. The energy difference between 2S and 2P states turned out 0.03528 
cm- I and the line had a fine structure of five lines, some of them broadened. 
Later on, by Doppler-free spectroscopy using dye lasers (Hansch et al., see 
Problem F.V. 13 for an example) the seven components of the He> line con­
sistent with the Lamb theory could be inferred. It was also realized that this 
result had to be generalized and the states with the same nand j quantum 
numbers, but different I , have different energy. 

The Lamb shift (reported in det ail in Fig. 5.7 for the n = 2 states) trig­
gered the development of the quantum electrodynamical theory, which 
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Dirac levels 

4.53 . 10.5 eV 

Corrections due to fluctuations of the e.m. 
field around the vacuum state (Lamb shift) 

8 MHz 

································r····2P3/2 

~-----.-- 2s 1/2 

1040 MHz 
----'-----'<:. ...................................... .. 

2PlI2 
17 MHz 

Fig. 5.7. Lamb shift for the n=2 levels in Hydrogen. 

fully account for the fine structure of the levels on the basis of physical grounds 
that electrons are continuously emitting and adsorbing photons by transitions 
to virtual states. These states are poorly defined in energy due to their very 
short lifetimes. Qualitatively the Lamb shift can be considered the result of 
zero-point fluctuations of the set of harmonic oscillators describing the elec­
tromagnetic radiation field. These fluctuations induce analogous effects on the 
motion of the electron. Since the electric field in the atom is not uniform, the 
effective potential becomes different from the one probed by the electron in 
the average position. 

The shift of the ground state due to the Lamb correction is about six times 
larger than the magnetic hyperfine splitting. 

As regards the hyperfine splitting in the Hydrogen atom, at §5.2 it has 
been shown how the structure depicted in Figure 5.6 is originated. 
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Problems F.V 

Problem F.V.l The electric quadrupole moment of the deuteron is 
Q = 2.8 . 10- 3 barn. By referring to an ellipsoid of uniform charge, evaluate 
the extent of departure of the nuclear charge distribution from the sphere. 
Assume for average nuclear radius Rn c::: 1.89· 1O- 13cm. 

Solution: 
From 

Q = ; e P 1 (3z 2 - ,2)dT, 

for the ellipsoid, defined by the equation (x 2+ y2) /a2+ (z2/b2) = 1, one obtains 
Q = (2/5)(b2 - a2). If the average nuclear radius is taken to be R~ = a2b (the 
volume of the ellipsoid is 17ra2b), with R n + oRn = b, then, for oRn « Rn 

2 R~ R~ R2 ( 0 Rn ) a - - ~ 1 
- Rn + oRn - 1 + 8Rn ~ n - Rn 

R n 

and 

- a ~ 1 + 2 - + - - 1 - -b2 2 ~ R2 [ (ORn) (ORn)2] R2 ( ORn) 
n Rn R n n Rn 

= R~ [3 ( O~n ) + ( O~n ) 2] ~ 3R~ ( O~n ) . 

Hence 

corresponding to (8li:) ~ 6.5 . 10- 2 . 

Problem F.V.2 The D2 line of the Na doublet (see Fig. 5.3) displays 
an hyperfine structure in form of triplet, with separation between pairs of 
adjacent lines in the ratio not far from 1.5. Justify this experimental finding 
from the hyperfine structure of the energy levels and the selection rules (see 
Prob. F.V.13 for some detail on the experimental method). 

Solution: 
From the splittings in Fig. 5.3 and the selection rule i1F = 0, ± 1 one can 
deduce that the hyperfine spectrum consists of three lines V{3 ,2 ,1}+-+2 corre­
sponding to the transitions 2 Pi!. (F = 3, 2, 1) ~ 2S1 (F = 2) and of three lines 

2 2 
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V{2 ,I,O} <-->l corresponding to the transitions 2P~(F = 2, 1,0) +-+ 2S!(F = 1) 
From the interval rule 

V3,2 - V2 ,2 

V2 ,2 - Vl,2 

V2 ,1 - Vl ,1 

Vl ,1 - VO ,1 

3 
"2 

= 2. 

The lines in Figure correspond to the transitions 2 P!J. (F 
2 

2S1 (F = 2). 
2 

3,2,1) +-+ 

Problem F.V.3 Plot the magnetic hyperfine levels for an atom in the 
state 2S1/2 and nuclear spin 1 = 1. Then derive the corrections due to a 
magnetic field, in the weak and strong field regimes (with respect to the 
hyperfine energy). Classify the states in the two cases and draw a qualitative 
correlation between them. 

Solution: 

In the weak-field regime the hyperfine correction is 

with 

F(F + 1) + J(J + 1) - 1(1 + 1) J-L N F(F + 1) + 1(1 + 1) - J(J + 1) 
gF = gJ 2F(F + 1) - g1 J-LB 2F(F + 1) 

where the second term can be neglected (J-LN «J-LB). 

A relatively small field breaks up the IJ coupling. The hyperfine Zeeman 
effect then is replaced by the hyperfine Paschen-Back effect. The oscillating 
components in the x and y directions average to zero and the final result 
is that the nuclear angular momentum vector I is oriented along Ho. The 
quantum number F is no longer d efined while the quantum numbers m1 and 
mJ describe I and J. This splitting of the energy involves three terms, one 
being gJ J-LB Ho mJ, already considered in the Zeeman effect (§4.3.2), the other 
is am1mJ and the third one, - J-L Ng1m1Ho is negligible. 
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See Figure: 

IllF lllJ lllj 

+3 .... 1 -- +1 
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\ 
\ 

\ -1/2 \ 
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~ 

"- +1 
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Fig. 5.8. Hyperfine structure of the 8 1/ 2 state with I = 1: a) in zero field; b) in 
weak field , Zeeman regime; c) in strong field , Paschen-Back regime. 

Problem F.V.4 In the Na atom the hyperfine interaction for the P state 
is much smaller t han the one in the S ground state. In poor resolut ion t he 
hyperfine structure is observed in the form of a doublet , with relative inten­
sities 5 and 3. From this observation derive the nuclear spin (see also Prob. 
F.V.13). 
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Solution: 
From 

-----= = = = == = = = = = 

F=I + 1I2 

S1/2 -------< 

F =I - 1I2 

The intensity being ex (2F + 1) and the ratio (I + 1) / 1 = 5/3, then 1 = 3/2. 

Problem F.V.5 For a solid ideally formed by a mole of non-interacting 
deuterons in an electric field gradient, derive the contributions to the entropy 
and to the specific heat, in the high temperature limit. 

Solution: 
The quadrupolar interaction e2qQ[3M2 - 1(I + 1)]/4 yields two energy levels, 
one doubly degenerate (M = 0, ± 1). 
By indicating with E the separation between the levels, the partition function 
is 

From the free energy 

F(T) = - kBTlnZ = - RTln(l + 2e- E/ kBT ) , 

the entropy turns out 

8F 2N - E/kBT 
S = - - = Rln(l + 2e-E/kBT ) + _ A_E_ e--,-_-,;-=. 

8T T 1 + 2e-€/kBT 

The internal energy is 
1 

U = 2NAE /k T . 
eE B + 2 

In the high temperature limit 

U c:::: ~NAE (1 __ E_) 
3 3kB T ' 

so that 
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au 2 ( E ) 2 -2 
C = aT = gR kBT ex T , 

namely the high-temperature tail of a Schottky anomaly (a "bump" in the 
specific heat vs temperature), typical of two-levels systems. 

Problem F.V.6 Consider the Hydrogen atom, in the ground state, in a 
magnetic field Ho and write the magnetic Hamiltonian including the hyper­
fine interaction. First derive the eigenvalues and the spin eigenvectors in the 
limit Ho --+ 0 and estimate the frequencies of the transitions induced by an 
oscillating magnetic field perpendicular to the quantization axis. 

Then d erive the correction to the eigenvalues due to a weak magnetic field. 
Finally consider the opposite limit of strong external magnetic field. Draw 

the energy levels with the appropriate quantum numbers, again indicating 
the possibility of inducing magnetic dipole transitions between the hyperfine 
levels (this is essentially the EPR experiment, see for details Chapter 6) and 
from the resulting lines show how the hyperfine constant can be extracted. 

Figure out a schematic correlation diagram connecting the eigenvalues for 
variable external field. 

Solution: 
From the Hamiltonian 

'Hs = 2J-lBS . Ho - , nI . Ho + aI . S 

(, nuclear gyromagnetic ratio , a hyperfine interaction constant, with a = he/ A 
and A = 21 cm), for Ho --+ 0 the eigenstates are classified by S, I, F and MF 
and for I = S = 1/ 2 two magnetic hyperfine states, F = 0 and F = 1, occur. 
Then El 1 1 = a/4 and El lO = -3/4a. 

2'2' 2 ' ~ ' 

The spin eigenvectors are the same of any two spins system, i.e. 

and 
1 

y'2 IO:e/Jp - O:p/Je > defining the singlet So ,o. 

The magnetic perturbation implies an operator of the form J-lx = 2J-lBSx -,nIx 
and the matrix elements involving the triplet and singlet states turn out 

1 1 
< 1, I IJ-lx 11,0 >= "2 y'2(9J-lB - , n) 

1 1 
< 1, I IJ-lxI O, 0 >= - jC)( - gJ-lB -,n) 

2 v 2 



192 5 Nuclear moments and hyperfine interactions 

1 1 
< 1, 01fLx1 1, - 1 >= - (;)(gfLB - "(Ii) 

2 v2 
1 1 

< 0, 01fLx 11, - 1 >= - (;)(gfLB + 1'1i) 
2 v2 

< 1, OlfLxl O, 0 >=< 1, 11fLx1 1, - 1 >= O. 

Therefore the allowed transitions are 5 -+ Tl and 5 -+ T- l corresponding to 
the transition frequency v = ~ = 1420 MHz (and formally T-l -+ To, To -+ 

T+l at v = 0). 

For weak field Ho, neglecting the interaction with the proton magnetic 
moment and considering that the perturbation acts on the basis where F2, 
Fz , [2 and 52 are diagonal, the matrix for H = aI . S + 2fLB S . Ho is 

From the secular equation the eigenvalues are found by solving 

a - + fLBHO - E = 0 
4 

a 
- - fLBHO - E = 0 
4 

a 3a 2 2 
(4 - E) ( - 4 - E) - fL BHO = 0 

yielding E 1 ,2 = a/4 ± fL BHO and E3 ,4 = - a/4 ± (a / 2) [1 + 4fL1Ho2/a2j1/2, 



Problems F.V 193 

namely the Breit-Rabi diagram reported below: 

E S I 

11 
1 ! 

F= I I..:::::-~ 

F=Or--~ 

In the strong field regime the eigenvalues are the ones for Sz, 1z S z and 1z : 

The first term is dominant and the diagram is 

M= 1, 

i 
I 

ms =+ Yz 
M = -1, I 

v, V2 

M = - y, 
T 

I 
m = - Yz s 

~ M = y, 
I 

with the electronic transit ions L1ms = ± 1 (and L1M J = 0) at the frequencies 

2/LBHo ± a/2 
Vl ,2 = ----------h---------· 

The nuclear transitions L1MJ = ± 1 (and L1ms = 0) occur at a/ 2h. 
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Since the internal field due to the electron is usually much larger than Ho 
the third term can be neglected (see t he Figure below). 

~ gllnHq'2 

Electron 
Zeeman 
energy 

< 
msMI 

+a/4 : -gn).l nHq'2 
+1/2 +112 

gn).lnHJ2 
-a/4 + 112 -112 

Hyperfine 
interaction 

-1/2 -1/2 ---CL--+_ 

-gn).lnHq'2 
1------- -112+1/2 

Nuclear 
Zeeman 
energy 

Magnetic 
dipole 

transiti ons M 'H 
EPR spectrum (see Chapter 6) 

Problem F.V.7 The 209Bi atom has an excited 2D5/2 state, with 6 sub­
levels due to hyperfine interaction. The separations between the hyperfine 
levels are 0.23, 0.31, 0.39, 0.47 and 0.55 cm- I . Evaluate t he nuclear spin 
and the hyperfine constant. 

Solution: 
From E(F, 1, J) = (a /2 ) [F(F + 1) - 1(1 + 1) - J(J + 1)] and 

EF+I - EF = a(F + 1), one finds a = 0.08 cm- 1 and Fmax = 7. 
Therefore F = 2,3,4,5, 6, 7 and since J = 5/2 the nuclear spin must be 1 = ~. 

Problem F.V.8 A proton and an anti-proton, at a given distance d, in­
teract through the magnetic dipole-dipole interaction. Derive the total spin 
eigenstates and eigenvalues in term of the proton magnetic moment(it is re­
minded that the magnetic moment of the antiproton is the same of the proton, 
with negative gyromagnetic ratio). 

Solution: 
From 
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with JL1 = 2J.LpS1 and JL2 = - 2J.LpS2, by choosing the z axis along r 

2 2 
H 4 J.L p 12 J.L p z z = - d3 Sl . S2 + d3 8182' 

Since Sl . S2 = S(S + 1) / 2 - 3/4 and 8f 82 = (1 / 2)M'§ - (1 / 2) . (1 / 2), one finds 

Eigenstates S Ms Energies 

singlet 0 0 0 

1 2J.L~/d3 
triplet 1 0 -4J.L~/d3 

- 1 2J.L~/d3 

i. e. 

----.-- I , ± I 

---r.L- 0,0 

1,0 

Problem F.V.9 Two electrons interact through the dipolar Hamiltonian, 
A strong magnetic field is applied along the z-direction, at an angle e with the 
line connecting the two electrons, Find the eigenvalues and the corresponding 
eigenfunctions for the two spins system, in terms of the basis functions 0!1 ,2 

and (31,2 . 

Solution: 
In the light of Eq, 5,8 for the dipolar field (see also Problem Y.2.2) the 

total Hamiltonian is 
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In order to evaluate the matrix elements it is convenient to write the 
perturbation Hamiltonian in the form (called dipolar alphabet) 

4J-L2 
Hd = --f[A+ B + C + D + E +F] r 

where 

A = 8(1) 8(2) [1 - 3 cos2 B] B = - ~ [8(1) 8(2) + 8(1) 8(2) ] (1 - 3 cos2 B) zz , 4+- -+ ' 

B angle between H o and r. The terms C, D, E and F involve operators of 
the form 8(1) 8(2) 8(1)8(2) 8(1) 8(2) 8(1) 8(2) and can be necrlected. In fact these +z , _z,++,__ b 

terms are off-diagonal and produce admixtures of the zero-order states to an 
amount of the order of (J-LB/r3) / Ho. 

Thus the dipolar Hamiltonian is written in the form 

H = 4J-L~ (1 - 3 cos2 B) [8(1) 8(2) _ ~ (8(1 ) 8(2) + 8(1) 8(2)) ] 
d ,r3 v ,z z 4 + - - + ' 

A 

most commonly used. 
The complete set of the basis functions is 0:10:2, 0:1/32 , 0:2(31 and (31(32 

and the matrix elements are 

< o:f3IHT 1(30: > 

< (3f31 HT 1(3(3 > 

1 
= 2 J-LBHo + 4A 

A 
< (3o:I H TI(3o: >= - "4 

A 
< (3o:I HT lo:(3 >= - "4 
- 2J-LBHo + A/4 

It is noted that while the term A is completely diagonal, the term B only 
connects Im(1)m(2) > to states < m(l) + 1 m(2) - 1 1 or < m(l) - 1 m(2) + 1 1 s s S ,8 S ,8 . 

B simultaneously flips one spin up and the other down. 
The secular equation is 

and the eigenvalues turn out 

o 
o 
o 

(- 2J-LBHO + 1) - E 

= O. 
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E1 = - 2MB (Ho - ~~ (1 - 3cos2 B)) 
E2 = 0 

2M1 2 E3 = - -(1 - 3 cos B) 
,3 

E4 = + 2MB (Ho - ~~ (1 - 3cos2 B)) . 
The correspondent eigenfunctions being a1a2, (31(32 and ~ [a1(32 ± a2(31], as 
expected. 

Problem F.V.I0 In the Ba atom the line due to the transition from the 
686p J = 1 to the (68)2 ground state in high resolution is evidenced as a 
triplet, with line intensities in the ratio 1, 2 and 3. Evaluate the nuclear spin. 

Solution: 
Since F = 1 + J 

for J = 0 one has 1 = F ===} no splitting 

for J = 1 ===} splitting in (21 + 1) or in (2J + 1) terms. 

1 = 0 ===} no splitting, 

for 1 = ~ and J = 1 iJ.F = 0, ± 1 ===} two lines 
2 

1 = 1 or 1 > 1 ===} three lines. 

Looking at the intensities, proportional to e- E / k8 T (2F + 1), where the 
energy E is about the same 

for 1 = 1 F = 0, 1,2 ===} intensities: 1, 3,5 

for 1 = ~ F = ~ ~ ~ ------,- . .. 2 4 6 2 2' 2' 2 -----T mtensltles: , , . 

Therefore 1 = ~. 

Problem F.V.ll In the assumption that in a metal the magnetic field 
on the electron due to the hyperfine interaction with 1 = 1/2 nuclei is Hz = 
(a/N)En1~ (a constant and same population on the two states) prove that 
the odd moments of the distribution are zero and evaluate < H; >. Then 
evaluate < H; > and show that for large N the distribution tends to be 
Gaussian, the width going to zero for N ----+ 00. 

Solution: 
(H;n+l ) = 0 for symmetry. Since (I~ )2 = ~ 
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(H;) = (~ f L (IiZIjItJn = (~ f 3 L \ (If) 2 (IJ)2) - (~ f L \ (If)4) 
i,j ,k,l i ,j i 

4 

= C~) (3N2 - N). 

In the thermodynamical limit one has (H;) c::: 3 U'Iv)4 N 2 : the first two even 
moments correspond to the Gaussian moments. 

Problem F.V.12 Evaluate the transition probability from the state 
M = - 1/2 to M = + 1/ 2 by spontaneous emission, for a proton in a mag­
netic field of 7500 Oe. 

Solution: 
From the expression for A21 derived in App. 1.3 and extending it to magnetic 
dipole transitions, one can write 

4w3 
3c3~ I < 21J.t ll > 12 

4wi I 11 I 1 12 I 11 I 1 12 3c3 ti { <"2 /-Lx - "2 > + <"2 /-Ly - "2 > } 

with J.t = ')'tiI. From I± = Ix ± iIy one derives A21 = (2/3)(,),2ti/c3 )wi and 
for ,), = 42.576 . 27r . 102 Hz/Gauss, WL = ')'Ho = 27r . 31.9 MHz, yielding 

A21 c::: 1.5 X 10- 25 8-1 . 

Problem F.V.13 High-resolution laser spectroscopy allows one to evi­
dence the hyperfine structure in the optical lines with almost total elimination 
of the Doppler broadening. 
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The Figure below 

F t.E(MHz) 
2H 3 

32P312 3 
59 

2 
35 

1 
0 16 

5890 A 

2 frequency 

1772 

shows the hyperfine structure of the 231/ 2 _2 P3/2 D2 line of Na at 5890 A. 
(This spectrum is obtained by irradiating a collimated beam of sodium atoms 
at right angles by means of a narrow-band single-mode laser and detecting 
the fluorescent light after the excitation. This and other high resolution spec­
troscopic techniques are nicely described in the book by Svanberg, quoted 
in the Preface). 

From the Figure, discuss how the magnetic and electric hyperfine con­
stants could be derived and estimate the life-time of the 2 P3/ 2 state (in the 
assumption that is the only source of broadening). 

Then compare the estimated value of the life time with the one known 
(from other experiments), T = 1.6 ns. In the assumption that the extra­
broadening is entirely due to Doppler second-order relativistic shift , 
quadratic in (v / c) and independent from the direction of motion, estimate the 
temperature of the oven from which the thermal atomic beam is emerging, 
discussing the expected order of magnitude of the broadening (see Problem 
F.I.7). 

Solution: 
For the ground-state 231/ 2 , I = 3/2 and J = 3 = 1/2, the quadrupole 
interaction being zero, from Eq. 5.15 the separation between the F = 2 and 
F = 1 states directly yields the magnetic hyperfine constant 
a = i11,2/(F + 1) = 886 MHz, corresponding to an effective magnetic field of 
about 45 Tesla (see Table V.2.1). 

The sequence of the hyperfine levels for the 2 P3 / 2 state does not follow 
exactly the interval rule. In the light of Eq. 5.20 an estimate of the quadrupole 
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coupling constant b can be derived (approximate, the correction being of the 
order of the intrinsic line-widths). 

In the assumption that the broadening (12 MHz) is due only to the life­
time one would have 7 = 1/ 27rL1v ':::' 13.3 x 10- 9 s, a value close to the one 
(7 ':::' 16 x 1O- 9 s) pertaining to the 32P3/2 state (L1v ':::' 10 MHz). 

The most probable velocity of the beam emerging from the oven is v = 
y'3kB T /MNa, that for T ':::' 500 K corresponds to about 7 x 104 cm/s. 

While the first-order Doppler broadening is in the range of a few GHz, 
scaling by a term of the order of v / c leads to an estimate of the second­
order Doppler broadening in the kHz range. Thus the extra-broadening 
of a few MHz is likely to be due to the residual first-order broadening 
(for a collimator ratio of the beam around 100 being typically around some 
MHz). 

Problem F.V.14 From the perturbation generated by nuclear magnetic 
moment on the electron , derive the effective magnetic field in the hyperfine 
Hamiltonian Hhyp = - J-tI.hejJ (Eq. 5.6). 

Solution: 
From the vector potential (see Fig. 5.1 and Eq. 5.4) the magnetic Hamil­

tonian for the electron is 

1. J-t I J-t I 
Hhyp = 2JL B - 3 + 2JLBS.V X [- V x - ] r r 

Since 

J-tI I 3(I.r)r . r 
V x [-V x - ] = - gnMn{ 3 - --5 -} + gn M nIdtv(3) , r r r r 

while div(r /r 3 ) = 47ro(r), one writes 

=:o A + B + C, 

To deal with the singularities at the origin involved in Band C, let us 
define with VE a little sphere of radius c centered at r = O. Then in the 
integral for the expectation values 

1 = r B ¢* (r) ¢ (r)d7 =:0 j' Bf(r)d7 lve Ve 

one can expand f(r) in Taylor series, within the volume Vc 

1 
f(r) = f(O) + r.V f(r) + 2(r.V)(r.V)f(r) 
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In I there are two types of terms, one of the form 

the other of the form 

82 1 
(sxly + sylx)~( -) (b) 

u XUY r 

In the expansion (r. V 1) is odd while (a) terms are even, thus yielding 
zero in I. The product of (a) terms with the third term in f (r) when even, 
contributes with a t erm quadratic in c. 

The terms of type (b) are odd in the two variables, while r.V f includes 
odd terms in a single variable. In the same way are odd (and do not give 
contribution) the terms (b)f(O). Finally the terms (b) times the third term in 
the expression again contribute to I only to the second order in c . Therefore, 
one can limit I only to 

Since \72(1/r) = - 47r<5(r) the magnetic hyperfine hamiltonian can be 
rewritten 2 

Thus the effective field h efJ in the form given in Eq. 5.6 is justified. 
A model which allows one to derive similar results for the dipolar and 

the contact t erms is to consider the nucleus as a small sphere with a uni­
form magnetization M, namely a magnetic moment /Ln = (47rR3 /3 )M. For 
r > R the magnetic field is the one of a point magnetic dipole. Inside the 
sphere H int = (87r /3)M. By taking the limit R ----+ 0, keeping f..Ln constant and 
then assuming that M ----+ 00, so that Jr< R H intdrn = 87rf..Ln/3 , the complete 
expression of the field turns out 

H __ /Ln (/Ln·r)r 87r '() 
- 3 + 3 5 + f..Ln U r . r r 3 

Problem F.V.15 From the energy of the nuclear charge distribution 
in the electric potential due to the electron (Eq. 5.16) derive the hyperfine 
quadrupole Hamiltonian (Eq. 5.20). 

2 T he star in the following equation means that in the expectation value a small 
sphere at the origin can be excluded in the integration and then c set to zero. All 
singularities are included in the contact term. 
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Solution: 
By starting from Eq. 5.18 a new tensor Qij so that Ll Qll = 0 is defined 

Qij = 3Q~j - 6ij L Q;l 
I 

and in t erms of Q~j one has 

EQ = ~ LQij1!ij + ~ LQ;1 LVJj 
ij I j 

The second term can be neglected since Lj VJj c::: o. Thus 

where the operators are 

Q'ij = e L(3xixj - 6ij';) 
n 

A L (3xx· - 6,2) v: .. - -e ' J 'J e 
'J - ,5 

e e 

This Hamiltonian can be simplified by expressing the five independent compo­
nents of Qij in terms of one. Semiclassically this simplification originates from 
the precession of the nuclear charges around I, yielding a charge distribution 
with cylindrical symmetry around the z direction of the nuclear spin. 

Then 
Qij = 0 for i i=- j and being Ll Qll = 0, one has Qu = Q22 = - Q33 / 2 

with Q33 = J Pn(r)(3 z2 - ,2)dTn. 
In the quantum description the reduction of 'H.~yp is obtained by consid­

ering that only the dependence from the orientation is relevant. Thus, for the 
matrix elements < I , M;IQij II , MJ > (other quantum numbers for the nuclear 
state being irrelevant), by using Wigner-Eckart theorem one writes 

By defining, in analogy to the classical description, the quadrupole moment 
Q in proton charge units as 

the constant C is obtained: 
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Therefore all the components Qij are expressed in terms of Q, which has the 
classical physical meaning (see Eq. 5.2 and Eq. 5.22). Then the quadrupole 
operator is 

• eQ 3 2 
Qij = 1(21 _ 1) {2(Ii1j + Ij1i ) - 6ij I } 

Analogous procedure can be carried out for the electric field gradient operator: 

where 

Finally, since 

L IJjJi J j = (L I i J i )2 = (I.J)2 
ij 

L IJj6ij J 2 = (L I i )2 J2 = 12 J2 
ij 

L IJjJjJi = (I.J)2 + (I.J) 
ij 

the quadrupole hyperfine Hamiltonian is written 

Q eqJQ 2 3 2 2 
H hyp = 21(21 _ 1)J(2J _ 1) {3(I.J) + 2(I.J) - I J } , 

as in Eq. 5.20 (see also Eq. 5.24). 

Problem F.V.16 At §1.5 the isotope effect due to the reduced mass 
correction has been m entioned. Since two isotopes may differ in the nuclear 
radius R by an amount 6R, once that a finite nuclear volume is taken into 
account a further shift of the atomic energy levels has to be expected. In the 
assumption of nuclear charge Ze uniformly distributed in a sphere of radius 
R = 'FA1/ 3 (with Fermi radius ' F = 1.2 X 10- 13 cm) estimate the volume 
shift in an hydrogenic atom and in a muonic atom. Finally discuss the effect 
that can be expected in muonic atoms with respect to ordinary atoms in 
regards of the hyperfine terms. 

Solution: 
The potential energy of the e lectron is V(,) = - Z e2 / , for, 2 R , while (see 
Problem 1.4.6) 

Z e2 ,2 
V(,) = -3-(1 - -) for, ::; R 

2R 3R2 
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The first-order correction, with respect to the nuclear point charge hydrogenic 
Hamiltonian, turns out 

The correction is negligible for non-s states, where Rnl(O) ':::' 0, while for s 
states one has 

£J.E = ~e2 R2 ~ 
5 a~n3 

In terms of the difference Ij R in the radii (to the first order) the shift turns 
out 

IjE ':::' ~Ze2R2~ IjR 
5 a~n3 R 

In muonic atoms (see §1.5) because of the change in the reduced mass and 
in the Bohr radius ao, the volume isotope effect is dramatically increased with 
respect to ordinary hydrogenic atoms. 

As regards the hyperfine terms one has to consider the decrease in the 
Bohr radius and in the Bohr magneton (/-lB ex 11m) (see Problem V.2.4). For 
the hyperfine quadrupole correction small effects have to be expected , since 
only states with l f= 0 are involved. 

Finally it is mentioned that an isomeric shift , analogous to the volume 
isotope shift, occurs when a radiative decay (e.g. from 57 Co to 57Fe) changes 
the radius of the nucleus. The isomeric shift is experimentally detected in the 
Mossbauer resonant absorption spectrum (see §14.6). 
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Spin statistics, magnetic resonance, spin 
motion and echoes 

Topics 

Spin temperature and spin thermodynamics 
Magnetic resonance and magnetic dipole transitions 
NMR and EPR 
Spin echo 
Cooling at extremely low temperatures 

This Chapter, dealing with nuclear and electronic angular momenta in mag-
netic fields, further develops topics already discussed in Chapters 4 and 5. The 
new arguments involve some aspects of spin statistics and of magnetic reso­
nance (namely how to drive the angular and magnetic moments and to change 
their components along a magnetic field) . The magnetic resonance experiment in 
most cases is equivalent to drive magnetic dipole transitions among Zeeman-like 
levels. 

6.1 Spin statistics, spin-temperature and fluctuations 

Let us refer to a number N (of the order of the Avogadro number) weakly 
interacting spins S = 1/2, each carrying magnetic moment JL = - 2f..LB S, 
in static and homogeneous magnetic field H along the z-axis. At the thermal 
equilibrium the statistical distribution depicted in Fig. 6.1 occurs. The number 
of spins on the two energy levels (statistical populations) are 

(6.1) 

and 
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N - /LBff 

N+ = - e kBT Z ' (6.2) 

with Z the partition function (for reminds see §4.4, Problems F.I.l and 
F.IV.8). The contribution to the thermodynamical energy is 

with 

MBH 
E = -- the "magnetic temperature" 

kB 
(having assumed U = 0 in the absence of the magnetic field). 

r 
1 lls M,=+ 1/2 

H=O 

Spin degeneracy 

I" M,= -112 "'s 

Fig. 6.1. Pictorial view of the statistical distribution of N spins S = 1/ 2 on the 
two "Zeeman levels" in a magnetic field, with N_ > N + at thermal equilibrium. In 
a field of 1 Tesla the separation energy 2/1>BH is 1.16 x 10- 4 eV, corresponding to 
the temperature T = 2/1>BH/kB = 1.343 K. 
An equivalent description holds for protons, with I = 1/2, with the lowest energy 
level corresponding to quantum magnetic number M J = + 1/ 2, the gyromagnetic 
ratio being posi tive (§5.1) . The energy separation between the two levels , for proton 
magnetic moments, is 2/1>pH, with /1>p = Mn9nI and Mn the nuclear magneton , 
9n = 5.586 the nuclear g-factor. In a field of 1 Tesla, for protons the separation 
turns out 1.76 x 10- 7 eV (or 20.4 x 10- 4 K) . 

The statistical populations N + or N _ are modified when the temperature 
(or the field) is c hanged and after some time a new equilibrium condition 
is attained. N± can be varied, while keeping the temperature of the ther­
mal reservoir and the magnetic field constant, by proper irradiation at the 
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transitional frequency v = 2JLBH/h , by resorting to the magnetic dipole 
transition mechanism (the methodology is known, in general, as magnetic 
resonance, described in some detail at §6.2). 

When N± are modified, in principle the e nergy U can take any value in 
between - NJLBH (corresponding to full occupation of the state at Ms = 
- 1/2) and + NJLBH (complete reversing of all the spins, with N + = N). 

From thermodynamics, no volume variation being involved, the entropy of 
the spin system can be defined 

(6.4) 

and therefore, from Eq. 6.3, 

(6.5) 

When the statistical distribution on the levels is modified the entropy 
changes, in the way sketched in Fig. 6.2 in terms of the e nergy U. 

~--T-~ 

o 

Smax= NkBln2, T,pin= 00 

(maximum disorder, N_=N+ =NI2) 

u 
Fig. 6.2. Entropy S as a function of the e nergy U in a spin system. The statistical 
entropy is defined as the logarithm of the number of ways a given spin distribution 
can be attained (See §6.4) . The zeroes at U = ±N /L B H correspond to a ll spins in a 
single state (see also Problems VI.1.2, VI.1.4 and F.VI.l). 

Since the temperature can be expressed as 

1 

T 

as 
au (6.6) 
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(in the partial differentiation keeping constant all the other thermodynamical 
variables) , one can define a spin temperature Tspin in terms of N+ and 
N _ . Thus a spin temperature is defined also for U > 0, event hough there 
is not a correspondent thermal equilibrium temperature T of the reservoir. 
When, by means of magnetic resonance methods (or, for example, simply by 
suddenly reversing the magnetic field) the equilibrium distribution is altered, 
then Tspin i- T. It should be remarked that this non-equilibrium situation can 
last for time intervals of experimental significance only when the probability 
of spontaneous emission (see Appendix 1.2) is not so strong to cause fast 
restoring. This is indeed the case for states of magnetic moments in magnetic 
fields (see the estimate in Problem F.V.12). However, exchanges of energy 
with the thermal bath, related to the time-dependence of the Hamiltonians 
coupling the spin system to all other degrees of freedom (the "lattice"), 
usually occur. This is why a given non-equilibrium spin distribution rather 
fast attains the equilibrium condition, usually through an exponential process 
characterized by a time constant called spin-lattice relaxation time Tl 
(see §6.2). The relaxation times T1 's, particularly at low temperatures, are 
often long enough to allow one to deal with non-equilibrium states. 

Let us imagine to have prepared one spin system at Tspin = -300 K and 
to bring it in thermal contact with another one, strictly equivalent but at 
thermal equilibrium, namely at Tspin = T = 300 K. The two systems reach a 
common equilibrium by means of spin-spin transitions in which two spins 
exchange their relative orientations (this process involves a spin-spin relax-
ation time T2 usually much shorter than Td. The total energy is constant 
while the temperatures of both the two sub-systems evolve, as well as the 
entropy. The final spin temperatures are +00 and -00 and the entropy takes 
its maximum value. The internal equilibrium, with Tspin = ±oo, is attained 
in very short times (for T2 « Td. Then the spin-lattice relaxation process 
drives the system towards the thermodynamical equilibrium condition, where 
Tspin = T. 

Now we return to the field induced magnetization 

M =N < J.L z >H , (6.7) 

< J.L z > H being the statistical average of the component of the magnetic 
moment along the field (see §4.4). 

From 

- gJ.LB L MJ MJe-9J.L BMJ H/kB T 8 (In(L MJ e-9J.L BMJ H/k BT)) 
Z = kBT 8H (6.8) 

(See Eq. 4.29) , the magnetization can be written 

M = Nk T (81nz) 
B 8H 

T 
(6.9) 
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For J = S = 1/2 

(6.10) 

Let us now evaluate the mean square deviation of the magnetization from 
this average equilibrium value, i.e. its fluctuations < (M - < M »2 > 
(now we have added the symbol <> to M in Eqs. 6.9 or 6.10 to mean its 
average character). The magnetization has a Gaussian distribution around 
the average value < M > , zero for H = 0 (See Problem VI. 1. 1) and the one 
in Eq. 6.10 in the presence of the field. 

For the fluctuations one has 

< 11M2 >=< (M- < M »2 >= 

=< M2 > - 2 < M < M » + < M >2=< M2 > - < M >2 (6.11) 

The single < Mz >'s are uncorrelated and therefore < 11M2 >= N < 11M; > 
with < 11M; >=< M; > - ( < Mz »2, yielding 

with x = (2MBH/kBT) and M§ = 1/4. 
Then < M2 >= NM~ and finally, from Eqs. 6.11 and 6.10 

< 11M2 >= NM~ [1 -tanh2 (~:~)] (6.12) 

Now we look for the relationship of the fluctuations to the response func­
tion, the magnetic susceptibility X = 8 < M > /8H. Again, form Eq. 6.10 
one derives 

[ 2 (MBH)] MB X = NMB 1 - tanh kBT kBT (6.13) 

and therefore 
(6.14) 

This relationship is a particular case of the fluctuation-dissipation theo­
rem, relating the spectrum of the fluctuations to the response functions (see 
Problem IV.S for an equivalent derivation). 

The considerations carried out in the present paragraph are a few illustra­
tive examples of the topic that one could call spin thermodynamics. This 
field includes the method of adiabatic demagnetization, which allows one 
to reach the lowest temperatures (§6.4). A valuable introduction to statistical 
physics with paramagnets, leading step by step the reader to the concepts 
suited for extending the arguments recalled in the present paragraph, can be 
found in Chapters 4 and 5 of the book by Amit and Verbin, quoted in the 
Preface. 
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Problems VI.l 

Problem VI.I.1 Express the probability distribution of the total "mag­
netization" along a given direction in a system of N independent spin S = 1/ 2, 
in zero magnetic field. 

Solution: 
Along the z-direction two values ± ILB are possible for the magnetic moment. 
The probability of a given sequence is (1 / 2) N. A magnetization M = nILB 
implies ~(N + n) magnetic moments "up" and ~(N - n) magnetic moments 
"down" (see Fig. 6.1). The total number of independent sequences giving such 
a distribut ion is 

W(n) = N! 
[~(N + n)] ! [ ~(N - n) ] !· 

The probability distribution for the magnetization is thus W(M) = W(n)(1 / 2) N. 
From Stirling approximation and series expansion 

( n) n n2 
In 1 ± - ;::::: ± - - -- ± N N 2N2 ... 

one has 
1 (7fN) n2 

InW(M);::::: - -In - - -
2 2 2N 

so that 

( 2 ) 1/ 2 [ 2 ] 
W(M);::::: 7fN exp - ~ 

namely a Gaussian distribution around the value <M>= O, at width about 
(N)1 /2 . It is noted that the fractional width goes as N - 1/ 2, rapidly decreas­
ing for large N. 

Problem VI.I.2 Express the entropy of an ensemble of S = 1/ 2 spins in 
a magnetic field and discuss the spin t emperature recalled in Fig. 6.2. 

Solution: 
The free energy is 

with (3 == l / kBT, having set U = 0 for the low-energy level. Then 

S = - (~~) H = - kB[(1 - u) In(l - u) + ulnu] 
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with u = U /2MBH. The temperature as a function of the energy is obtained 
by inversion (see Eq. 6.6): 

justifying the plot in Fig. 6.2. The maximum of S is for u = 1/2 (see Problem 
VI.1.4). 

An equivalent derivation is obtained by considering the number of available 
states 

N! 
W = (N+)!(N_ )! 

Resorting to the Stirling approximation (see Prob. VI.l.l) one has 

From Eq. 6.6 the temperature turns out 

or 

Problem VI. 1.3 Two identical spin systems at S = 1/ 2, prepared at spin 
temperatures Ta = E / 2 kB and n= -E / kB are brought into interaction. 
Find the energy and the spin temperature of the final state. 

Solution: 
By setting E = 0 for the low energy level, Ux = Ua + Ub is written 

Since 
Ua = NE exp( - 2) 

1 + exp( - 2) 

and 
Ub = NE exp(l) 

1 + exp( + 1)' 
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one has 

and then E E 
Tx = -k-l-;::::: 3.3-. B nz kB 

Problem VI.1.4 Show that the entropy of a system can be written 

where Pn is the probability that the system is found in the state at energy En, namely for a canonical ensemble 

with Z partition function. 
Solution: 

In fact 

lnZ"" (En) 1"" (En) En = kB--~ exp - -- + - ~exp - -- --
Z kBT T kBT Z n n 

1 L (En) En = kB lnZ + - exp - -- --. 
T kBT Z n 

On the other hand, from 

one can write 

and 

Then 

Since 

F = - kBTlnZ 

s = U - F = k 8(T lnZ) 
T B 8T 

U = k T28lnZ 
B 8T· 

[8F] 8lnZ s =- 8T = kB lnZ + kBT~. 
v,H 

8lnZ 1"" (En) En 
~= k T2~exp - k T Z 

B n B 
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one has 
1 L (En) En S=kBlnZ+ - exp - -- --. 
T kBT Z n 

Problem VI.1.5 A model widely used in statistics and in magnetism is 
the Ising model, for which an Hamiltonian of the form 'H. = - K L i,j Si Sj 
is assumed, with the spin variables Si taking the values + 1 and -1. K is the 
exchange integral (see § 2.2.2 ). Derive the partition function Z, the free 
energy F, the thermodynamical energy U and the specific heat Cv , for a 
system of N spins. 

Solution: 
By indicating with Np ,a the number of parallel (p) and anti parallel (a) spins 
with Np + Na = N - 1 the number of interacting pairs, the energy of a given 
spin configuration is E = - K(Np - N a) = - K(2Np + 1 - N). 

The number of permutations of the (N - 1) pairs is (N - I)! , of which 
(N - 1)!/ N a! N p! are distinguishable. Therefore the sum over the states reads 

Z = ~l [( N - I)!] [K(2N p + 1 - N) ] 
2 ~ N I N I exp + k T 

Np=O a' p' B 

[ K(l - N) ] [ (N - I)! ] [K(2N p) ] 
= 2 exp + kBT L (N _ 1 _ Np)!Np! exp + kBT 

Np 

(the factor 2 accounts for the configurations arising under the reversing of all 
the spins without changing Np or Na ). The sum is the expansion of 
{l+exp [ (2 K/kBT)]}N- l and therefore 

[ 
K ] N-l 

Z = 2N cosh kBT 

Then 

F = - kB T InZ = - kB T [N In2 + (N - 1) In (cosh k:T) ] , 

8(lnZ) 
U = -~ = - (N - l)Ktanh(;3K) , with 

and 
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6.2 The principle of magnetic resonance and 
the spin motion 

Transitions involving hyperfine states or nuclear and/or electronic Zeeman­
states in magnetic fields are carried out by resorting to the magnetic dipole 
mechanism. These transitions are usually performed by exploiting the phe­
nomenon elsewhere called magnetic resonance, which allows one to drive 
electronic or nuclear magnetic moments. This type of experiments are at the 
core of modern microwave and radiofrequency spectroscopies. 

The first experiment of magnetic resonance, by Rabi, involved molecular 
beams (see Fig. 6.3). 

dH j dz 1 "0 r dHj dz r 

a) 

Detector 

,<0 'u in Liel _---, .. 
. ~ . 
~ 70 

~ .. 
~ .. b) 

V",,= 5.585 MHz 

»-~~" .. ---~-~~ .. --~-
H. (Gauss) 

Fig. 6.3. a) Sketch of the experimental setup for magnetic resonance in beams 
(ABMR) . The magnetic fields A and C have gradients along opposite directions. 
In region B the magnetic field Ho II z is homogeneous. The radiofrequency (or the 
microwave) field HI in region B is perpendicular to H o. 
In part b) of the Figure the typical signal of magnetic resonance, detected as a 
minimum in the arrival of the atoms when in region C the refocusing of the deviations 
is inhibited (dotted line) by the resonance driven by HI in region B (see text) . 

The vectorial description, with classical equation of motion (Chapter 3) is 
the following (see Fig. 6.4). The motion of the angular momentum L in Ho is 
described by 

dL dt = J.LL X Ho (6.15) 
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y 
H I(in reality an osci llating field alongx is applied) 

x 

Fig. 6.4. Precessional motion of the magnetic moment J.t at the angular frequency 
W L = "( Ho and rotation of the radio frequency field HI at WR F. For WL = WR F the 
magnetic resonance occurs. The gyromagnetic ratio "( is IN / In for nuclear moment 
(see §5.1) or "( = j.tJ / In for electron magnetic moment . 

implying the precession at the Larmor frequency WL (see §3.2 and Problem 
III.2.4). In a frame of reference rotating at angular frequency w, Eq. 6.15 
becomes l 

d~L =-I' (Ho + ~) xjLL. (6.16) 

Thus in the presence of the radio frequency (or microwave) irradiation the 
effective field is 

H e!! = (Ho + W~F )k + H1i (6.17) 

When WRF = -I'Ho (the sign minus refers to clockwise precession) , in 
the rotating frame of reference only HI is active and the magnetic moment 
precesses around it, thus changing its component with respect to Ho. As a 
consequence of the change in the z-component of the magnetic moment in the 

1 It is reminded that 

dJ.t 8J.t dJ.t (dt )lab.frame = ( 7ft ) relative to rot. fram e + ( dt ) rot.frame 

the latter b eing w x J.t . 
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region B of the Rabi experimental set up (Fig. 6.3) the compensation of the 
deviations due to F = ±tLz(dH /dz) in the regions A and C does no longer 
occur. Then a minimum in the number of atoms (or molecules) reaching the 
detector is observed. 

The quantum mechanical description of the magnetic resonance corre­
sponds to the situation depicted in Fig. 6.5 for nuclear spin I = 1/2, already 
discussed in other circumstances. 

H=O 

M,=± 112 
Spin degeneracy 

Fig. 6.5. Quantum magnetic levels for magnetic moment J-LI = gMn I = "YIn , for 
I = 1/2 in a magnetic field . The resonance corresponds to transitions from MI = 
+ 1/2 to MI = - 1/2, driven by the magnetic dipole mechanism. 

The eigenvalues are ±MJgnMnHo and magnetic dipole transitions, with 
selection rule iJ.MJ = ± 1, are possible when the condition hVRF = gnMnHo == 
n,wL is verified, the perturbation Hamiltonian being Hp = - ILJ.HI = 
gnMnHIlxcoS(WRFt). In fact , by extending the description in Appendix 1.3, 
the transition probability has to be written 

(6.18) 

According to the properties of the I± operators and to the orthogonality of 
states at different M J, Eq. 6.18 leads to the selection rule iJ.MJ = ± 1. The 
circular polarization required for iJ.MJ = ± 1 transitions is the counterpart of 
the rotating field HI perpendicular to the quantization axes. 

A description of quantum character is possible by considering the time 
evolution of the expectation values for the spin components (Problem V1.2.1). 

The description in terms of spin motion is particularly suited for under­
standing the modern pulse resonance techniques, which allow one to drive 
the magnetic moments along a given direction by controlling the length of the 
radiofrequency irradiation. Examples are shown in Fig. 6.6. 
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HJ/ z 

Il. stopped in the xy plane 

y 

/ 
X Ix' 

Il. direction is reversed 

Fig. 6.6. Illustrative e xamples of the spin motions induced in pulse magnetic 
resonance, by stopping the irradiation after a given time. For the so-called 7r /2 
pulse the time of irradiation turns out (see t ext for the precession around HI) 
7 = (7r/ 2) /WI = (7r / 2) h H I = (7r/4)'Ii/HIf.1,J for nuclear spin I = 1/ 2 and 
7 = (7r / 2)'Ii / H I f.1, B for electron at S = 1/ 2. The 7r pulse requires an irradiation 
time 27 and it corresponds to the complete reversing of the spins in the magnetic 
field Ho (x' , y' ,z' is the rotat ing frame). 

Finally we mention that resonance experiments (NMR for nuclear, EPR 
for electron) nowadays are generally carried out in condensed matter, with a 
number of interesting applications. 

In condensed mat ter the interactions with the other degrees of freedom 
(the "lattice") or among spins themselves, play a relevant role. Phenomeno­
logically the interactions are taken into account by the Bloch equations, 
that for the expectation values of the spin components, averaged over the 
statistical ensemble, in the rotating frame can be written 

d<4> 
dt 

d < Ty > 
dt 

(6.19a) 

(6.19b) 

These equations account for the decay of the transverse components of 
< T >, that at long time must vanish. For the longitudinal component the 
Bloch equation is 
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(6.20) 

(where I~ is the expectation value of the z-component at the thermal equi­
librium). This equation describes the relaxation process towards equilibrium, 
after a given alteration of the statistical populations (see §4.4 for a qualitative 
definition of the relaxation time Td. 

In order to have a complete description of the spin motions Eqs. 6.19 and 
6.20 must be coupled to the equation 

d < j > gnMn-
= --~- < I > xHefJ dt n 

(6.21) 

where the effective field is defined in Eq. 6.17. Then one has a system of 
equations (6.19-6.21) for the expectation values of the spin components (often 
written in terms of the nuclear magnetization M nuclear ex: L i < 1-;- ». 
These equations can be solved under certain approximations, to yield the time 
evolution of < j > or of M nuclear. 

The quantum description of the t ime evolution of the spin operators in 
magnetic resonance experiments, in the presence of the relaxation processes 
imbedded in Eqs. 6.19 and 6.20, is usually based on a variant of the time­
dependent perturbation theory, the density matrix method. The textbook 
by Slichter, reported in the Preface, masterly deals with this matter to the 
due extent. We shall limit ourselves, in the next paragraph, to describe a 
very important phenomenon, the spin echo, that in simple circumstances 
can satisfactorily be treated on the basis of the semiclassical motions of the 
spin operators and of the Bloch equations. 

Problems VI.2 

Problem VI.2.1 Consider a single spin s in a constant and homogeneous 
magnetic field along the z-direction. From the time-dependent Schrodinger 
equation derive the expectation values of the spin components and show that 
similarly to the vectorial description, the precessional motion occurs. 
Then consider a small oscillating magnetic field along the x-direction and 
prove that at the resonance reversing of s with respect to the static field 
occurs. Discuss the cases of pulse application of the oscillating field for time 
intervals so that the rotation of s is by angles 7r /2 and 7r. Qualitatively figure 
out what happens if spin-spin and spin-lattice interactions are taken into 
account. 

Solution: 
From 
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with 
I¢(t) >= a(t)1 i> +,6(t) I 1> , 

one derives 

a(t) = a exp(-iwLt) ,6 (t) = b exp ( iw L t) 

with w L Larmor frequency. The expectation values are 

while 
< ¢(t) lsxl¢(t) >= (abn) COS(WL t) 

< ¢(t) lsyl¢(t) >= (abn)sin(wd) , 

indicating the precession depicted in Figs. 6.4 and 6.6. 

In the presence of HI rotating in the (xy) plane 

from the Schrodinger equation one derives 

n da 
- wLa + J.lB H lexp[-iwtl,6 = in-d 2 t 

o n 0 d,6 
J.l BH1 exp[+zwtla - -wL,6 = zn -d 0 

2 t 
By writing the coefficients a and ,6 in the form 

[ iWLt ] a = r(t) exp - -2- [ iw Lt] ,6 = L1(t) exp + -2-

those equations are rewritten 

At the resonance 

o 0 dr 
J.lBHlexp [-z (w - wL)tlL1 = zndi" 

dL1 
J.l BH lexp[+i (w - wdtlr = indi"o 

From the derivative of the first, substituted in the second, one finds 
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r = sin(Slt + 'IjI) and 

By setting 'IjI = 0, by repeating the derivation of the expectation values one 
has 

n 
< ¢(t) lszl¢(t) >= - "2 cos(2Slt) 

n 
< ¢(t) lsxl¢(t) >= - "2 sin(2Slt) sin(wL t) 

n . < ¢(t) lsyl¢(t) >= "2 sm(2Slt) COS(WL t). 

These equations can be interpreted in terms of the motion of s as the su­
perposition of the precession around z at the Larmor frequency and the 
rotation around HI at the angular frequency 2f-L B H d n. 

In the rotating frame (see Fig. 6.6) where HI is fixed , one has the rotation 
of s by a given angle, depending on the duration of the irradiation. Thus, 
in principle, one can prepare the magnetization M ex L i < S i > along any 
direction, as schematically illustrated below: 

Hj/z 

~ 
L.<S.> 

I 

y 

x 

It is noted that the (1f / 2) pulse corresponds to equalize of the statistical 
populations in the two Zeeman levels and magnetization in the x y plane. The 
1f pulse corresponds to the inversion of M and therefore to negative spin 
temperature (see §6.1). 

The spin-spin interaction implies the decay to zero in a time of the order 
of T2 of the transverse components of M. The spin-lattice interaction, with 
transfer of energy to the reservoir, drives the relaxation process towards the 
thermal equilibrium distribution, with M along Ho, attained in a time of the 
order of TI (see Problem F.VI.5). 
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6.3 Spin and photon echoes 

Let us imagine that a system of electronic or nuclear spins has been brought 
in the xy plane (perpendicular to the z-axis along the field Ho) by a 7r / 2 
pulse, by means of the experimental procedure described at §6.2 and Problem 
VI.2.1. Once in the plane, the transverse components have to decay towards 
zero according to Eqs. 6.19, in a time of the order of T2 , yielding in a proper 
receiver a signal called free induction decay (FID). 

Now let us suppose that in times much shorter than T2 another mechanism, 
different from the spin-spin interaction, causes a distribution of preces­
sional frequencies. This mechanism could be due for instance to magnetic 
field inhomogeneities, to spatially varying diamagnetic or paramagnetic cor­
rections to the external field Ho or to a field gradient created by external 
coils. Because of the spread in the precessional frequencies , in a time usually 
called T'; and much shorter than T2 , the transverse components of the total 
magnetization M x,y ex L i < I x,y (i) > decay to value close to zero. After a 
time tl larger than T'; but shorter than T2 , a second pulse, of duration 7r , 
is applied (see Fig. 6.7). Since all the spins are flipped by 1800 around the 
x'-axis, the ones precessing faster now are forced to return in phase with the 
ones precessing slower. 

Thus after a further time interval tl, refocussing of all the spins along 
a common direction occurs, yielding the "original" strength of the signal 
(only the reduction due to the intrinsic T2-driven process is now acting, but 
2tl « T2)' This is called the echo signal. By repeating the 7r-pulses the 
envelope of the echoes tracks the real, irreversible decay of the Mx,y com­
ponents, as depicted in part b) of Fig. 6.7. 

The relevance of pulse magnetic resonance experiments in the development 
of modern spectroscopies can hardly be over estimated. Besides the enlighten­
ment of fundamental aspects of the quantum machinery, the echo experiments , 
first devised by Hahn, have been instrumental in a number of applications 
in solid state physics, in chemistry and in medicine (NMR imaging). 

Furthermore the pulse magnetic resonance methodology has been trans­
ferred in the field of the optical spectroscopy, by using lasers. In this case 
special techniques are required , because in the optical range the "dipoles" go 
very fast out of phase (the equivalent of T2 is very short). 

In this respect we only mention that the pseudo-spin formalism can 
be applied to any system where approximately only two energy levels, corre­
sponding to the spin-up and spin-down states, can be considered relevant. For 
a pair of states in atoms, to a certain extent coherent electric radiation 
can be used to induce the analogous of the inversion of the magnetization de­
scribed at §6.2 and Problem VI.2.1, in terms of the populations on the lower 
and on the upper atomic or molecular levels. The "oscillating " e lectric dipole 
moment R21 (see Appendix I.3) plays the role analogous to the magnetic mo­
ment in the magnetic resonance phenomenon. After the "saturation of the 
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a) 
b) 

2 1, 

Fig. 6.7. Schematic representation of the spin motions generating the echo signal 
upon application of a sequence of 7r /2 and 7r pulses. Part a) shows the FID signal 
following the 7r /2 pulse and how the echo signal is obtained at the time 2tl owing to 
the reversible decay of the magnetization in a time shorter than T2 . The rotation 
of the spins in the (x , y) plane, as seen in the rotating frame of reference, evidences 
how refocussing generates the echo . 
It should be remarked that with pulse techniques, by switching the phase of the RF 
field it is possible to apply the second pulse (at time tl) along a direction different 
from the one of the first pulse at t = 0 (e.g. from x' to y' in the rotating frame, see 
Fig. 6.6) . 
Part b) shows the effect of a sequence of 7r pulses (after the initial 7r /2), with a train 
of echoes, the envelope yielding the intrinsic irreversible decay of the transverse 
magnetization due to the T2-controlled mechanism. 

line" corresponding to the equalization of the two levels (to a 7r/2-pulse), a 
second pulse 7r at a time tl later, can force the diverging phases of the os­
cillating electric dipoles to come back in phase: a "light pulse", the photon 
echo, is observed at the time 2tl' 

The analogies of two-levels atomic systems in interaction with coherent 
radiation with the spin motions in magnetic resonance experiments, are nicely 
described in the textbook by Haken and Wolf, quoted in the Preface. 
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6.4 Ordering and disordering in spin systems: 
cooling by adiabatic demagnetization 

As already shown (see Problem VI.1.4), the entropy of an ensemble of mag­
netic moments in a magnetic field is related to the partition function Z: 

s = _ (oF) = [o(NkBTlnZ) ] 
oT H oT H 

(6.22) 

F being the Helmholtz free energy. 
From the statistical definition the entropy involves the number of ways W 

in which the magnetic moments can be arranged: S = kBlnW. For angular 
momenta J, in the high temperature limit the MJ states are equally populated 
and W = (2J + 1) N. The statistical entropy is 

S = NkBln(2J + 1) (6.23) 

For T -+ 0, in finite magnetic field, there is only one way to arrange the 
magnetic moments (see §6.1) and then the spin entropy tends to zero. In 
general, since the probability p(MJ) that Jz takes the value M J is given by 

(6.24) 

the statistical entropy has to be written (see Problems VI.l.4 and F.VI.1) 

S = -NkB LP(MJ )In(p(MJ)) (6.25) 
MJ 

By referring for simplicity to non interacting magnetic ions with J = S = 
1/2, at finite temperature the entropy is 

( 
E E E ) S(T) = NkB (In2)cosh(yJ - Ttanh(yJ , 

where E = J.LBH/k B is the magnetic temperature and 
S(T -+ 00) = NkBln2 (Eq. 6.23). 

(6.26) 
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The temperature dependence of the entropy is plotted below: 
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Now we describe the basic principle of the process called adiabatic de­

magnetization, used in order to achieve extremely low temperatures. 
A crystal with magnetic ions, almost non-interacting (usually a param­

agnetic salt) is in thermal contact by means of an exchange gas (typically 
low-pressure Helium) with a reservoir, generally a bath of liquid Helium at 
T = 4.2 K. (This temperature can be further reduced, down to about 1.6 K, 
by pumping over the liquid so that the pressure is decreased). 

In zero external field the spin entropy is practically given by NkB ln2. 
Only at very low temperature the residual internal field (for instance the one 
due to dipolar interaction or to the nuclear dipole moments) would anyway 
induce a certain ordering. The schematic form of the temperature dependence 
of the magnetic entropy is the one given by curve 1 in Fig. 6.8. Then the 
external field is applied, in isothermal condition at T = Tinit, up to a certain 
value Hm. In a time of the order of the spin-lattice relaxation time T I , spin 
alignment is achieved, the magnetic temperature is increased and (T / E) « 1. 
Therefore the magnetic entropy is decreased down to Sinit (curve 2 in the 
Figure), at the same temperature of the thermal bath and of the crystal. The 
value S init in Figure corresponds to Eq. 6.26 for T « E and implies a large 
difference in the populations N+ and N_ (see Fig. 6.1 , where now the point 
at the energy E = -N f-L BH is approached). The external bath (the liquid 
Helium) absorbs the heat generated in the process, while the magnetic energy 
is decreased. The "internal" reservoir of the sample (namely all the other 
degrees of freedom besides the spins, already defined "lattice") has its own 
entropy Slattice related to the vibrational excitations of the ions (in number 
N', ten or hundred times the number N of the magnetic ions). 

Since in general the entropy is 
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Fig. 6.8. Schematic temperature dependences of the magnetic and lattice en­
tropies and of the decrease of the lattice temperature as a consequence of the 
demagnetization process. The order of magnitude of the lattice entropy is Slatt ice ~ 

10- 6 N' kBT3 (with N' say 10 or lOON, N being the number of magnetic ions). The 
initial lattice entropy, at T = T init has to be smaller than the spin entropy. 

by considering that at low temperature the specific heat Cv of the lattice goes 
as T3 (see the Debye contribution from acoustical vibrational modes at §14.5) 
one approximately has 

(curve 2 in Fig. 6.8). 
Now the exchange gas is pumped out and the sample remains in poor ther­

mal contact with the external bath. The magnetic field is slowly decreased 
towards zero and the demagnetization proceed ideally in isoentropic con­
dition. The total entropy stays constant while the magnetic entropy, step after 
step, each in time of the order of TI , has to return to curve 1. 

Therefore Slattice has to decrease of the same amount of the increase 
of the magnetic entropy S. Then the temperature of the "internal" thermal 
bath has to decrease to Tfinal « T init . 
The amount of cooling depends from the initial external field , from the lattice 
specific heat and particularly from the internal residual field H r es that limits 
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the value of the magnetic entropy at low temperature. In fact, it prevents the 
total randomization of the magnetic moments. As an order of magnitude one 
has Tfinal = T init (Hres/H init). 

The adiabatic demagnetization corresponds to the exchange of entropy 
between the spin system and the lattice excitations. In the picture of the 
spin temperature (§6.1) one has an increase of the spin temperature at the 
expenses of the lattice temperature. The final temperature usually is in the 
range of milliKelvin, when the electronic magnetic moments are involved in 
the process. Nuclear magnetic moments are smaller than the electronic ones 
by a factor 10- 3 - 10- 4 and then sizeable ordering of the nuclear spins can 
require temperature as low as 10- 6 K or very strong fields. In principle, by 
using the nuclear spins the adiabatic demagnetization could allow one to reach 
extremely low temperatures. However, one has to take into account that the 
relaxation times T1 become very long at low temperatures (while the spin­
spin relaxation time T2 remains of the order of milliseconds). The experimental 
conditions are such that negative spin temperature can easily be attained , 
for instance by reversing the magnetic field. 

From these qualitative considerations it can be guessed that a series of 
experiments of thermodynamical character based on spin ordering and spin 
disordering can be carried out , involving non equilibrium states when the 
characteristic times of the experimental steps are shorter than T1 or T2 . 

We s hall limit ourself to mention that by means of adiabatic demagnetiza­
t ion t emperature as low as 2.8 x 10- 10 K have been obtained. The nuclear mo­
ments of Copper have been found to order anti ferromagnetic ally at 5.8 x 10- 8 

K , while in Silver they order antiferromagnetically at TN = 5.6 X 10- 10 K 
and ferromagnetic ally at Tc = - 1. 9 x 10- 9 K. 

Problems F. VI 

Problem F. VI. 1 A magnetic field H of 10 Tesla is applied to a solid 
of 1 cm3 containing N = 1020 , S = 1/ 2 magnetic ions. Derive the magnetic 
contribution to the specific heat C v and to the entropy S. Then estimate the 
order of magnitude of Cv and S at T = 1 K and T = 300 K. 

Solution: 
The thermodynamical quantities can be derived from the partition func­

tion Z. From the single particle statistical average the energy is 
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and from Maxwell-Boltzmann distribution function the probability of occu­
pation of the i-th state is 

L i Pi = 1 and the partition function normalizes the probability Pi · 
The total contribution from the magnetic ions to the thermodynamical 

energy U (per unit volume) is 

and 
LiEiexp(- EdkBT) 18Z 8lnZ 

< E >= Z = - -Z 8(3 = - ------a;J 

thus yielding 

U = _ N 8InZ 
8(3 . 

For JL = - g MB Sand g = 2 (see §4.4) one has 

with 

( MBH) (MBH) Z = exp kBT + exp - kBT == 2coshx 

MBH x = -- == (3MB H. 
kBT 

For independent particles Ztotal = Z N . Then U = - NMBHtanhx and 

( 8U) (8(3 ) (8E) 2 (8U) Cv = 8T H = 8T 8(3 H = - kB (3 8(3 H ' 
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i.e. 
2 2 N kB X 2 

CV = NkB x sech x == 2 
cosh x 

plotted b elow. 
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For the entropy, since (see Problem VI.1.4) S = - kB L i Pdnpi 

S = - kB L [ exp( ; ,BEi ) ] (-,BEi - lnZ) = < ~ > + kB lnZ , 
, 

so that 
S = N kB [ln (2cosh x ) - x t anh x] , 

as it could also be obtained from S = - (8Fj 8T) H with F = - NkBTlnZ 
(see the plot at §6.4). 

Numerically, for H = 10 Tesla , T = 1 K corresponds to x» 1 and 
T = 300K to x«l , so that 

T = 1 K Cv ~ 0 , S ~ 0 

T = 300 K Cv ~ 0 , S ~ kBNln2 
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Problem F.VI.2 A spin system (S = 1/ 2) in a magnetic field of 10 Tesla, 
is prepared at a temperature close to 0 K and then put in contact with an 
identical spin system prepared in the condition of equipopulation of the two 
spin states. Find the spin temperature reached by the system after spin-spin 
exchanges, assuming that meantime no exchange of energy with the lattice 
occurs. Discuss the behavior of the entropy. 

Solution: 
The thermodynamical energies are 

N U2 = -[, 
2 ' 

From the final energy 

with [, energy separation between the two spin states. 

the spin temperature is obtained by writing 

2N[' ( [, ) 
Ufinal = Z exp - k B T spin 

Thus 
4 

1 = ---,-,---,-------:---
exp([,/kB T spin ) + 1 

and T spin c:::: ['/(kB ·1.1). For [, = 2JLB H one has T spin = 12.2 K. 
For the entropy see Problem F.VI.1 and look at Figure 6.1, by taking into 
account that no energy exchange with the reservoir is assumed to occur. 

It is noted that t he increase of the entropy can be related to the irre­
versibility of the process. 

Problem F.VI.3 Prove that the mean square deviation of the energy of 
a system from its mean value (due to exchange of energy with the reservoir) 
is given by kB T2 C v , Cv being the heat capacity. 

Solution: 
The mean square deviation is 

where 

while 
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Therefore 

Since 

one has 

and 

o<E> 
- --

0(3 

o<E> 
~= Cv 

«E - <E»2> = kB T 2CV ' 

another example of fluctuation-dissipation relationships (see Eq. 6.14). 
1 

The fractional deviation of the e nergy [( <E2> - <E>2) / <E>2] 2 at high 
temperatures, where <E> ;::::; NkBT and C v ;::::; NkB is of the order of N- 1/ 2, 
a very small number for N of the order of the Avogadro number (see Problem 
VI.1.1). 

Problem F.VI.4 Compare the magnetic susceptibility of non-interacting 
magnetic moments S = 1/2 with the classical S = 00 limit (where any orien­
tation with respect to the magnetic field is possible) . 

Solution: 
For S = 00 

<f-L cos e> = f-L J cos e exp ( /j,~:C;; (}) sin e de / J exp ( J1:~BCC;; (}) sin e de 

= f-L [coth k'l3HT - (k'l3HT ) -1] 
~ /j,2H 
~ 3k BT 

yielding the Langevin-like susceptibility. 
For S = 1/ 2 (see §4.4) 
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Problem F.VI.5 By taking inspiration from Fig. 6.7, devise an experi­
mental procedure suitable to measure the spin-lattice relaxation time TI . 

Solution: 

~ M,(tV'I nl2, Mz(O) ~"'\ 
x x y y 

[j 1[/2 

g' t -~~!v'" lk 
~ ~V vvo 

~ t) 

z z 
""'. 1[/2 

Mz(O) 
'--",1[/2 Mz(t2) '" \ \ x y x y 

n 9 ~!~, .t 
~r · 
~~A' 

~i" t2 
I 

Mz(t) 
MzC/2) MiO) 

t) t2 t 

At t= O the (1f/2) pulse brings the magnetization along y, saturating the 
populations of the two levels and yielding the FID signal. After a time tl a 
second (1f /2) pulse measures the magnetization Mz (tI) during the recovery 
towards the equilibrium value. By applying pairs of pulses with different h's 
(e.g. t2 ) the recovery plot towards the equilibrium is constructed and Tl is 
extracted. 
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Problem F. VI. 6 For an ensemble of particles with a ground state at 
spin S = 0 and the excited state at energy Ll and spin S = 1, derive the 
paramagnetic susceptibility. 
Then , by resorting to the fluctuation-dissipation theorem (see Eq. 6.14 and 
Problem F.IV.S) show that the same result is obtained. 

Solution: 
The energy levels are sketched below: 

H=O Ms =+l 
S= l Ms =O 

Ms =-l 

S=O 

The direct expression for the single particle susceptibility is 

x = XOPO + XIPI 

where xo = 0, Xl = fJ1g2S(S + 1) /3kBT = SfJ1/3kBT and 

(2S + l) e- J3 Eo, l 

PO,1 = Z ' 

with Z partition function. For Eo = 0 and EI = Ll one has 

SfJ1 e- J3Ll 

X = kBT (1 + 3e-J3Ll) 

It is noted that the above equation is obtained in the limit of evanescent 
field , condition that will be retained also in the subsequent derivation. The 
magnetization is 

with fJz = 2fJB . Then 

M = N2fJB { e- J3 (Ll - EH ) _ e- J3 (Ll+EH) } 
Z 

with Z = 1 + e- J3(Ll -EH) + e- J3Ll + e- J3(Ll+EH). Therefore, 

e-J3Ll[eJ3EH - e-J3Eff ] 
M = N2fJ B ----,,-.,-7--::-=-------':0:=--:-

1 + e-J3Ll [eJ3EH + 1 + e-J3EH] 



Problems F.VI 233 

and for (3EH « 1 

M = 2 N e-{3Ll 2(3E H 
fLB 1 + 3e-{3Ll 

yielding the susceptibility obtained from the direct expression. 

From the fluctuation-dissipation relationship (see Eqs. 6.11 - 6.14) , being 
the fluctuations uncorrelated 
< iJ.M2 >= N < iJ.fL; > with < iJ.fL; >=< fL ; > - < fLz >2, and 

Thus 

and again for (3EH « 1 

2 2 e-{3Ll e-2{3 Ll 2 2 e-{3Ll 
<iJ.M >=4NfLB----z-{2- -Z-((3EH) }~8NfLB1 +3e-{3Ll = kBTX· 

Problem F. VI. 7 Consider an ideal paramagnet, with S = 1/ 2 magnetic 
moments. Derive the expression for the relaxation time Tl in terms of the 
transition probability W (due to the time-dependent spin-lattice interaction) 
driving the recovery of the magnetization to the equilibrium, after a perturba­
tion leading to a spin temperature Ts , different from the temperature T = 300 
K of the thermal reservoir. Find the time-evolution of the spin temperature 
starting from the initial condition Ts = 00. 

Solution: 
The instantaneous statistical populations are 

while at the thermal equilibrium 
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with (3 = l / kBT and iJ.E = 2J.LBH. 
From the equilibrium condition N_W_+ = N+W+_ one deduces 

W - W N_,....,W l +(3E_ 
+- - -+ N+ - -+ 1 - (3E+ 

and W +_ ':::' W(l + (3iJ.E) , with W _+ == W. 
Since 

then N_(t) = ce-2Wt + N'!...q and from the initial condition 

Evidently dN+/dt = - dN_/dt. 
From the magnetization Mz(t) ex (N_ -N+ ) one has dMz/dt ex 2(dN_/dt) 

and 

Mz(t) = (M;nit - M:q)e- 2Wt + M :q 

implying l / Tl = 2W. 
M z is also inversely proportional to Ts and then one approximately writes 

(3s (t) = ((3!ni t - (3 )e-2Wt + (3 

and for (3!nit = 0, (3s (t) = (3 (1 - e- 2Wt ) 

(a) 

For exact derivation, over all the t emperature range, from Problem VI.1.2 
T s = (2J.LBH /kB )/ ln(u- l - 1) with u = N+/N. Then the exact expression of 
the spin temperature is 

(b) 
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See plots below. 
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Plot of Eq. a) (dotted line) and Eq. b) (dashed line) showing the equivalence 
of the two procedures for T > j.tB H / kB. (In plotting Eq. b) keep at least three 
significant digits in the expansion.) 

Problem F.VI.8 An hypothetical crystal has a mole of Na atoms, each 
at distance d = 1 A from a point charge ion of charge -e (and no magnetic 
moment). By taking into account the quadrupole interaction (§5.2) derive 
the energy, the entropy and the specific heat of the crystal around room 
temperature (Na nuclear spin I = 3/2 and nuclear quadrupole moment Q = 
0.14 X 10- 24 cm2 ) . 

Solution: 
The eigenvalues being E ± 1/2 = 0 and E ±3/2 = eQVzz /2 
V.3.2), the partition function is written 

z = [2: e-,6E MJ]NA = [2(1 + e-,6E) ]NA 

MJ 

Then the free energy is 

and 

E (see Prob. 
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and 

Since E rv 10- 8 eV « kBT , U and S can be written 

and 
1 E2 

S c::: R(21n2 - ---) 
8 k1 T2 

(see Prob. F.VI.l for the analogous case). From Cv = aU/aT, in the high 
temperature limit Cv c::: (1/4)R(E/ kB T)2 , the high-temperature t ail of the 
Schottky anomaly already recalled at Problem F.V.5. 
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Molecules: general aspects 

Topics 

Separation of electronic and nuclear motions 
Symmetry properties in diatomic molecules 
Labels for electronic states 
One electron in axially symmetrical potential 

In this Chapter we shall discuss the general aspects of the first state of "bonded 
matter" , the aggregation of a few atoms to form a molecule. The related issues are 
also relevant for biology, medicine, astronomy etc. The knowledge of the quantum 
properties of the electronic states in molecules is the basis in order to create new 
materials, as the ones belonging to the "artificial matter", often obtained by 
means of subtle manipulations of atoms by means of special techniques. 

We shall understand why the molecules are formed , why the H2 molecule 
exists while two He atoms do not form a stable system , why the law of definite 
proportions holds or why there are multiple valences, what controls the geometry 
of the molecules. These topics have to follow as natural extension of the properties 
of atoms. Along this path new phenomena , typical of the realm of the molecular 
physics, will be emphasized . 

In principle, the Schrodinger equation for nuclei and electrons contains all 
the information we wish to achieve. In practice, even the most simple molecule, 
the Hydrogen molecule-ion Ht, cannot be exactly described in the framework of 
such an approach : the Schrodinger equation is solved only when the nuclei are 
considered fixed . Therefore, in most cases we will have to deal with simplifying 
assumptions or approximations, which usually are not of mathematical charac-
ter but rather based on the physical intuition and that must be supported by 
experimental findings . 
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The first basic assumption we will have to take into account is the Born­
Oppenheimer approximation, essentially relying on the large ratio of the nuclear 
and electronic masses . It allows one to deal with a kind of separation between 
the motions of the electrons and of the nuclei. Another approximation that often 
will be used involves tentative wavefunctions for the electronic states as linear 
combination of a set of basis functions, that can help in finding appropriate 
solutions. For instance, a set of wavefunctions centered at the atomic sites will 
allow one to arrive at the secular equation for the approximate eigenvalues. 

Finally in this Chapter we have to find how to label the electronic states in 
terms of good quantum numbers. This will be done in a way similar to the 
one in atoms, by relying on the symmetry properties of the potential energy 
(for example, the cylindrical symmetry) and by referring to the limit atomic-like 
situations of united-atoms or of separated-atoms. 

7.1 Born-Oppenheimer separation and the adiabatic 
approximation 

For a system of nuclei and electrons the Hamiltonian is written (see Fig. 7.1) 

(7.1) 

The corresponding wave function ¢(R, r) involves both the group R of the 
nuclear coordinates and the group r for the electrons. In the Hamiltonian the 
spin-orbit interactions and the hyperfine interactions have not been included, 
since at a first stage they can be safely neglected. 

In order to solve the Schrodinger equation for ¢(R , r) one observes the 
large difference in nuclear and electronic masses (and the related differences 
in the electronic and roto-vibrational energies, as it will appear in subsequent 
Chapters). This difference suggests t hat in time intervals much shorter than 
the ones required for the nuclei to sizeably change their positions, the electrons 
have been able to take the quantum configuration pertaining to ideally fixed 
coordinates R. Then one can attempt an eigenfunction of the form 

(7.2) 

where ¢n(R) pertains to the nuclei, while the electronic wavefunction ¢e 
involves only parametrically the nuclear coordinates, these latter ideally 
frozen in the configuration specified by R. When such a function is included 
in the Schrodinger equation for the Hamiltonian given by Eq.7.1 and the 
following equivalences are taken into account 
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-e 

-e 

c (center of mass, fixed so far as only the 
electronic motions a re considered) 

R~ 

Za e R~------ _ 

Zpe 
Fig. 7.1. Nuclear and electronic coordinates used in Eq. 7.1. 

then one has 

(7.3) 

Let us assume that the terms included in the square brackets can be ne­
glected (the conditions for such an approximation, essentially corresponding 
to the so-called adiabatic approximation, shall be discussed subsequently). 
For the electronic wavefunction one can write 

(7.4) 

where E~g) (R) is the eigenvalue for the electrons in a frozen nuclear configu­
ration. Then, from Eq. 7.3, by neglecting the terms in square-brackets, after 
dividing by cPe one obtains the equation for the nuclear motions: 

(7.5) 
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with Veff(R) = Vnn (R) + E~g)(R). In Eq. 7.5 the effective Hamiltonian in­

cludes the eigenvalue for the electrons E~g), for given R 's , as effective po­
tential energy. 

Thus, by assigning to the nuclear and electronic states the appropriate set 
of quantum numbers v and g, under the approximations discussed above 
the wavefunction solution for the Hamiltonian 7.1 is 

(7.6) 

with ¢e and ¢n eigenfunctions from Eqs. 7.4 and 7.5 respectively. 
The electronic eigenvalue E~g), entering the effective potential energy in 

Eq. 7.5 , is not a number as in atoms but parametrically depends from the 
nuclear coordinates. The total energy of the molecule can b e written 

E(g,v) = E~gl(Rm) + Vnn (Rm) + E~) , (7.7) 

where R m means the nuclear configuration corresponding to the minimum for 
Veff(R) (see Eq. 7.5). 

from nuclear motions 

eigenvalues from Eq. 7.4 (include the 

short-range repulsive term Vnn (RJ) 

E (g • v) = E ,<g) (RJ + Vnn (RJ + E n (v) 

Fig. 7.2. Schematic view of the separation of the electronic and vibrational energies 
in a diatomic molecule and of the role of E~g) as effective potential energy for the 
nuclear motion , within the adiabatic approximation . The vibrational motion occurs 
in an effective potential energy, while the electrons follow adiabatically this motion. 

The physical contents of such a framework are more easily grasped by re­
ferring to a diatomic molecule, where in practice the only parameter required 
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to fix the nuclear configuration is the distance RAE between the two nuclei, 
since as a first approximation the electronic states can be considered unaf­
fected by the rotation of the molecule. A schematic view of the energy of the 
molecule for the electronic states as a function of RAE and of the effect of the 
eigenvalue for the vibrational motion of the nuclei (corresponding to a varia­
tion of RAE) is given in Fig. 7.2. Complete understanding of this illustration 
will be achieved after reading §8.1 and §10.3.1. 

Let us briefly comment on the possibility to neglect the terms in square 
brackets in Eq. 7.3, corresponding to the validity of the adiabatic approxima­
tion. The order of magnitude of the contribution of those terms to the energy 
can be estimated by looking at the expectation values 

Therefore a first term is 

Ji2 j' - Mcx rP:rP~ V nrPe . V nrPndTndTe 

that for rPe (r, R) in real form, becomes proportional to 

which is zero for a given electronic state gl. The second term is 

and by taking into account that the electronic wavefunction depends on 
(r - R) , one can write 

which is of the order of the contribution to the energy from the electronic 
kinetic term scaled by the factor mjMcx and thus negligible. 

Finally one would have to consider the non-diagonal terms involving the 
operator V n, of the form 

(7.8) 

These terms can be different from zero and in principle they drive transitions 
between electronic states associated with the nuclear motions, in other words 
to the non-adiabatic contributions. For large separation between the elec­
tronic states compared to the energy of the thermal motions, the transition 
probability is expected to be small. 
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One should remark that relevant effects in molecules (and in solids) actu­
ally originate from the non-adiabatic terms. We just mention pre-dissociation 
(spontaneous separation of the atoms), some removal of degeneracy in elec­
tronic states, the Jahn-Teller effect and, in solids, resistivity and super­
conductivity, related to the interaction of the electrons with the vibrations 
of the ions around their equilibrium positions (see Chapters 13 and 14). 

7.2 Classification of the electronic states 

7.2.1 Generalities 

As in atoms, also in the molecules first one has to find how to label the elec­
tronic states in terms of constants of motions, namely derive the good quan­
tum numbers. In atoms 12 and lz commute with the central field Hamiltonian 
and then n,l , and m have been used to classify the one-electron states. Also 
for molecules the symmetry arguments play a relevant role: a rigorous classi­
fication is possible only for diatomic (or at least linear molecules) so that one 
axis of rotational symmetry is present. 

Let us refer to Fig. 7.3. When the z axis is aligned along the molecular axis 
the potential energy V is a function of the cylindrical coordinates z and p, 
while it does not involve the angle cp. Then the lz operator -in t'{J commutes 
with the Hamiltonian: 

which is zero when the z axis is along the molecular axis. 
For homo nuclear molecules (A = B) in terms of the positional vector r one 
has 

1¢(r) 12 = I¢( _r) 12 i.e. ¢(r) = -¢( - r) or ¢(r) = +¢( - r) 

and one can classify the states with a letter g (from gerade) or u (from 
ungerade) according to the even or odd parity under the inversion of r with 
respect to the center of the molecule (see Fig. 7.3). One should also remark that 
the reflection with respect to the yz plane, bringing x in -x, changes the sign 
of the z-component of the angular momentum while the Hamiltonian is invari­
ant. It follows that the energy must depend on the square of the lz-eigenvalue 
while this operator has to convert the eigenfunction in the one having eigen­
value of opposite sign. The electronic states with lz-eigenvalue different from 
zero must be double degenerate, each of the two states corresponding to 
different direction of the projection of the orbital angular momentum along 
the z-axis. On the other hand, for lz-eigenvalue equal to zero a further -
or + sign has to be used to describe the behavior of the wavefunction upon 
reflection with respect to the planes containing the molecular axis. 
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z 

y 

Fig. 7.3. Schematic view for the discussion of the symmetry arguments involved in 
the classification of one-electron states in a diatomic molecule. A and B are nuclei 
dressed by the e lectrons uninvolved in the bonding mechanism. When A = B the 
molecule is homonuclear and it acquires the inversion symmetry with respect 
to the center. T hen ¢e(r) = ±¢e( - r) and the classification gerade or ungerade, 
according to the sign of the wavefunction upon inversion (parity) , becomes possible. 

Finally, in these introductory remarks it is noted that the z-component of 
the total angular momentum, implying an algebric sum L z = L i l ~, is also a 
constant of motion, with associated a good quantum number ML (see §7.2.3). 

7.2.2 Schrodinger equation in cylindrical symmetry 

By referring again to Fig. 7.3 and in the framework of the Born-Oppenheimer 
separation, the Schrodinger equation for the one-electron wavefunction is 

(7.9) 

where V = V(z , p). One should remark that if A and B are protons, namely 
we are dealing with the Hydrogen molecule ion, then 

(7.10) 
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By using ellipsoidal coordinates with the nuclei at the foci of the ellipse, 
then Eq.7.9, with V as in Eq.7.10, is exactly solvable in a way similar to 

A 

....1---" -e (/l,v,<P) 

Hydrogen atom, with separation of the variables. 
This solution would not be of much help, since when diatomic molecules 

with the nuclei dressed by t he atomic (core) electrons have to be considered, 
the potential is no longer of the form in Eq. 7.10 and therefore relevant mod­
ifications can be expected. A similar modification in the atom is the removal 
of the accidental degeneracy upon abandoning the Coulomb potential. Thus 
we prefer to disregard the formal solution of Eq. 7.9 for strictly Coulomb-like 
potential and first give the general properties of electronic states just by re­
ferring to the cylindrical symmetry of V (again in a way analogous to atoms, 
where only the spherical symmetry of the Hamiltonian in the central field 
approximation was taken into account). Subsequently approximate methods 
will allow us to derive specific forms of the wavefunctions of more general use, 
rather than the exact expressions pertaining to the Hydrogen molecule ion. 

The kinetic energy operator in cylindrical coordinates reads 

8 2 1 8 82 1 8 2 
\72 = - + -- + - +--

Z,P,<P 8p2 P 8p 8z2 p2 8cp2 
(7.11) 

and by factorizing ¢ in the form ¢ = X(z,p)if>(cp) Eq. 7.9 is rewritten 

(7.12) 

where at the first member one has only operators and functions of z and p 
while at the second member only of cp. As a consequence, Eq. 7.12 leads to 
solutions of the form ¢ = Xif>, where X and if> originate from the separate 
equations in which both members are equal to a constant independent on z , 
p and cp. We label that constant ).2 and then 
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so that 
if> = Aei'\<p + Be-i'\<p. (7.13) 

The boundary condition for if> is 

and exp(i)..n27r) = 1, thus yielding ).. integer. 
The meaning of the number ).. can be directly grasped by looking for the 

eigenvalue of the z component of the angular momentum of the electron: 

lz¢ = a¢ i.e. 
8 8e±i.\<p 

- in 8rpxif> = x( -in----a;-) = ± )..nxif> = ±)..n¢ , 

namely).. measures in n unit the component of I along the molecular axis, a 
constant of motion, as it was anticipated. 

From Eq. 7.12 it is realized that the eigenvalue E(RAE ) depends on )..2. 

Therefore we understand that from a given atomic-like state of angular mo­
mentum I, the presence of the second atom at the distance RAE generates 
(I + 1) states of different energy. These states correspond to lz = 0, ±1, ±2 ... 
and are in general double degenerate, in agreement with the fact that the en­
ergy cannot depend on the sign of lz, as we have previously observed. These 
one-electron states are labelled by the letters CJ, 7r, 6 ..... in correspondence to 
0,1,2, etc ... similarly to the atomic states 8, p, d ... 

7.2.3 Separated-atoms and united-atoms schemes and correlation 
diagram 

Other good quantum numbers for the electronic states to be associated with 
(z , p) in Eq. 7.12 can be introduced only when X(z , p) can be factorized in 
two functions , involving separately z and p. This happens when one refers to 
the limit situations of united atoms (i.e. RAE ---+ 0) or of separated atoms 
(i.e. RAE ---+ (0). In the united-atoms classification scheme (for example the 
Hydrogen molecule ion Ht tends to become the He+ atom) the two further 
quantum numbers are n and I, while).. tends to become m. Then the sequence 
of the states is 

18CJ, 28CJ, 2pCJ, 2p7r ... 

and the parity g or u i s fixed by the value of l , namely I even g, I odd u. 
For RAE ---+ 00 the atoms are far away (Ht becomes H with a proton at 

large distance) and for heteronuclear molecule one has 
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3d/) 
Ci1l3s 

3d1t 
3s 

3d Cig3s 

3dCi 

3p1t Ci1l2p 

3p 
1t g2p 

3pCi 2p 
1t1l2p 

3s 
3 SCi Cig2p 

2p1t 
Ciu2s 

2s 
2p Cig2s 

2pCi 

2s 
2SCi 

Ciu! s 
Is 

Cigl s 

Is 
I SCi 

RAB=O RAB ~O RAB~ 00 RAB = 00 

Fig. 7.4. Classification schemes for diatomic homonuclear molecules and correlation 
lines yielding a sketchy behavior of the eigenvalues E(RAB) as a function of the 
interatomic distance. 

For A = B (homonuclear molecule) (nl)A = (nl) B, the split ting of the level 
due to the perturbing effect of the other nucleus (e.g. H+ in the Hydrogen 
molecule ion) removes the degeneracy and the character g or u can be as­
signed. 

The two classification schemes are obviously correlated. For the lowest 
energy levels the correlation can be established by direct inspection, by taking 
into account that ,.\ and the g or u character do not depend on the distance 
RAB (see Fig. 7.4). A pictorial view of the correlation diagram in terms of 
transformation of the orbitals upon changing the distance RAB is given in 
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Fig. 7.5, having assumed the one-electron wavefunction in the form of linear 
combination of Is-atomic like wave functions and 2px-wavefunctions, centered 
at the two sites A and B (for the proper d escription see §8.1). 

For and <1> = <1> 1. (A) £><1>1 . (B) 

~ i) g corresponds to + , i.e. to'--+~----'-----+----l-- and for R AB --t 0 

it transforms to Is , i.e. I sO' ; 

~/U ii) u corresponds to - , i.e . to--+C7-----*~--+----l-- and for R AB --t 0 

it transfom1s to 2pz, i.e. 2pO' 

I nstead, for d '" - '" (A) £> '" (B) an 'f - 'f2p' 'I'2p' 

iii) for linear combination with sign + one h=--..."o:----r---~:_--

namely Ttt,2p or, for R AB --t 0, 2p1t ; 

iv) for linear combination with sign - one has---lt-----tt----

namely 1tg2p or, for R AB --t 0, 3d1t . 

Fig. 7.5. Schematic view of the correlation diagram by referring to the transfor­
mation with the interatomic distance RAB of the shape of the molecular orbitals 
generated by linear combination of atomic I s (cases i) and ii)) and 2px orbitals 
(cases iii) and iv)) centered at the A and B sites (see §8.1 for det ails). 
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3db 
3d1t 
3da 

2s 

J 5 
United atoms 

(RAB=O) 

a3sA 3s 

1t2PB 
a2PB 2 B 

1t2PA 
a2 

a2s 2s 

a2sA 2sA 

Separated atoms 

(RAB----t=) 

Fig. 7.6. Correlation diagram for heteronuclear diatomic molecules. For RAB -+ 00 

the assumption of effective nuclear charge ZA > ZB has been made. 

The correlation diagram for heteronuclear diatomic molecules is shown in 
Fig. 7.6. 

It should be observed that there is a rule that helps in establishing the 
correlation diagram, the so-called non-inte rsection or non-crossing rule 
(Von N eumann-Wig ner rule). This rule states that two curves El (R AB) 

and E 2 (RAB ) cannot cross if the correspondent wavefunctions (/h and (P2 be­
long to the same symmetry species. In other words they can cross if they have 
different values either of A or of the parity (g and u) or different multiplicities. 

F inally we mention that the electronic states in a mult ielectron molecule 
can be classified in a way similar to the one used in the LS scheme for the 
atom (Chapter 3). From the algebraic sum S z = L i sz(i) we construct Ms, 
while to L z = L i l )i) ML is associated. The symbols E, II, 11 ... (generic A) 
are used for ML = 0,1,2 etc. Then the state is labelled as 
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2S+lA 
g,u , 

g and u for homonuclear molecule. 
For the state E, namely the one with zero component of the total angu­

lar momentum along the molecular axis, in view of the consideration on the 
property upon reflection with respect to a plane containing the axis, one adds 
the symbol + or - as right apex. Illustrative examples shall be given in dealing 
with particular diatomic molecules (§8.2). 

Problems F. VII 

Problem F.VII.1 From order of magnitude estimates of the frequencies 
to be associated with the motions of the electrons of mass m and of the nuclei 
of mass M in a molecule of "size" d, derive the correspondent velocities by 
resorting to the Heisenberg principle. By using analogous arguments derive 
the amplitude of the vibrational motion. 

Solution: 
From Heisenberg principle p rv 'hId. The electronic frequencies can be defined 

Eelect 1 p2 1 'h2 'h 
Vel ect ':::' -h- rv h 2m rv h 2d2m = 47rmd2 

For the vibrational motion, by assuming for the elastic constant K 
K d2 rv Eelect (a crude approximation, see §10.3 and Problem VIII.1.3) 

m ! 
E Vi b rv hVvib rv (M) Eelect 

and 
'h 1 

Vvib rv d2 vmM 27r· 

Approximate expressions for the correspondent velocities are 

J Eelect 'h Velect ;v -- rv - , 

m md 

yielding 

Vvib (m) ~ 
--rv - «l. 
Velect M 

For the rotational motion (see §1O.1) 
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(P angular momentum and I moment of inertia, see §10.1) and then 

Estimates for the amplitude a of the vibrational motion can be obtained from 

so that 

and 



8 

Electronic states in diatomic molecules 

Topics 

H t as prototype of the molecular orbital approach (MO) 
H 2 as prototype of the valence bond approach (VB) 
How MO and VB become equivalent 
The quantum nature of the bonding mechanism 
Some multi-electron molecules (N2' O 2) 
The electric dipole moment 

In this Chapter we specialize the concepts given in Chapter 7 for the electronic 
states by introducing specific forms for the wavefunctions in diatomic molecules. 
Two main lines of description can be envisaged . In the approach known as molec­
ular orbital (MO) the molecule is built up in a way similar to the aufbau method 
in atoms, namely by ideally adding electrons to one electron states. The prototype 
for this description is the Hydrogen molecule ion Ht. In the valence bond (VB) 
approach, instead, the molecule results from the interaction of atoms dressed by 
their electrons. The prototype in this case is the Hydrogen molecule H2. 

8.1 Ht as prototype of MO approach 

8.1.1 Eigenvalues and energy curves 

In the Hydrogen molecule ion the Schrodinger equation for the e lectronic 
wavefunction ¢(r,B,<p) , or equivalently ¢(z, p,<p) (see Fig. 8.1) is written 
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rA _----

+ ------------------

A 

y 

x 

-e 

, , 
Z : : 

\j~ 
B 

Fig. 8.1. Schematic view of the Hydrogen molecule ion Hi and definition of the 
coordinates used in the MO description of the electronic states. 

As already mentioned the exact solution of this Equation can be carried out 
in elliptic coordinates. Having in mind to describe Ht as prototype for more 
general cases we shall not take that procedure. 

It should be remarked that in the Hamiltonian in Eq. 8.1 the proton-proton 
repulsion e2 / RA E (Vnn in Eq. 7.1; see Fig. 7.2) has been included , so that the 
total energy of the molecule, for a given inter-proton distance RAE, will be 
found. 

By taking into account that for RAE ----+ 00 the molecular orbital must 
transform into the atomic wavefunction ¢ ls centered at the site A or at the 
site B, one can tentatively write 

(8.2) 

This is a particular form of the molecular orbital, written as in the so-called 
MO-LCAO method, namely with the wavefunction as linear combination 
of atomic orbitals1 . 

From the variational procedure, by deriving with respect to Ci the e nergy 
function 

(8.3) 

with the tentative wavefunction given by Eq. 8.2, the usual equations 

1 A similar method is used also in more complex molecules, by writing ¢ = L i Ci¢i 

and constructing the energy function E = E(Ci) on the basis of the complete 

electronic Hamiltonian 'H = L( - n? /2m) \l; - e2 L . Z",,/ R ia + e2 L' .1 / rij, 
1. 0:,1. 1,,] 

by iterative procedure evaluating the self-consistent coefficients Ci. T his is the 
MO-LCAO-SCF method (see §9.1). 

z 
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are obtained. Here 

represents the energy of the H+H or of the HH+ configuration. 

H = H = J -I.,( B)* H A,(A) d = J A,( A )* H A,( B)d AB BA 'f'ls 'f' l s T 'f' l s 'f'ls T (8.5) 

called resonance integral, will be discussed at a later stage. 

S - J A,(A)* A,(B) d AB - 'f'ls 'f'ls T 

is the overlap integral, a measure of the region where ¢i~) and ¢i~) are 
simultaneously different from zero: 

From Eqs. 8.4 the secular equations yields 

E _ HAA ± H A B 
± - 1 ± SAB ' 

(8.6) 

with Cl = C2 for the sign + and Cl = -C2 for the sign - . Thus 

(8.7) 

In order to discuss the dependence of the approximate eigenvalues E± on the 
interatomic distance RAB one has to express H AA , HAB and SAB. One writes 
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H = / A-.( A )* {'l.J } A-.( A ) d + / A-. (A)* ~A-.(A) d - '/ A-. (A)* ~A-.(A) d ' 
AA <PIs I ~hydr. <PIs T <PIs R <PIs T <PIs <PIs T 

A B r B 
(8.8) 

The first term is - RHhc (with RH Rydberg constant), the second is 
e2 / R A B . The third term, EAA, represents the somewhat classical interaction 
energy of an electron centered at A with the proton at B: 

CAA can be evaluated by introducing confocal elliptic coordinates (see 
§7.2.2). 

Then 

_ 1
3 

{'27r 1,00 j+ 1 _R-'.1.o.=B,,-(:.:...f-L_2...,.._-=-v_2.:....) -;-e -_ (_J.L_+--,V:-) R_A_B_I_2a_o 

7rao Jo 1 - 1 4RAB (f-L - v) d¢df-Ldv = 

1 [ RAB~] = - 1 - (1 + -) e ao , 
RAB ao 

plotted below as a function of the internuclear distance in ao units: 

0.0 L-~L...-.........J""""".........J'--'----'~----'~----'­
o 
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Therefore 

[ 
- 2RAH RAB ] 

1 - e- ao-(l + ~) 

In analogous way the overlap integral S AB and the resonance integral H AB 

are evaluated. 

= 1 + -- + - -- e 00 [ 
RA B 1 (RAB )2] - H AB 

ao 3 ao 
(8.9) 

is plotted b elow 

0.8 

0.6 

0.4 

0.2 

0.0 '--------'-----'~-----'-~-----'--~-'----~---'--~-'-
o 

while 

with 
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j · rI.(B)* e2 rI.(A)d e2 
- RAI< (1 + RaAoB ) , CA B = - '1-'1 - '1-'1 T = - - e a o 

S T' B S ao 
(8.10) 

is approximately proportional to S AB. 
From Eq. 8.6 and the expressions for H AA , SAB and H AB , the energy 

curves E ± (RA B ) are obtained. In F ig. 8.2 E + (RA B ) is compared to t he exact 
eigenvalue for the ground-state that could be obtained from the solution of 
Eq. 8.1 through elliptic coordinates. 

0.15 I I 
I I 4 
I I 
I I 
I I 
I I 
I I 

,E 3 
0. 10 I -I , 

I , 
\ 2L + \ 2L + 
I g \ U 2 

~ 
\ 

C/'J \ OG ...... 0.05 I ,. . 
'§ I , 

m I , 
"" I CO , :::J 
~ I .... CD 

'" 
.... ..... 

C)) I CO 
'-' -Rjtc I '< 

I .-6ri 0.00 0 CD 
I < ;... I --<l) 
IE ::: 

~ I + 
I -\ 
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-0.05 
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"- ---
-2 

-0 .1 0 

0 2 3 4 5 

RAB lao 

Fig. 8.2 . Energy curve for the ground and first excited state of Hydrogen molecule 
ion as a function of the inter-proton distance RAB , according to MO-LCAO orbital 
(dotted lines), with the classification of the e lectronic states in the separated-atoms 
scheme (see § 7.3.3) and sketchy forms of the correspondent molecular orbitals. 
The bonding character of the O"g18 state grants a minimum of the e nergy (in qual­
itative agreement with t he exact calculation, solid line) while the O"u18 orbital, for 
which E _ > - RHhc == E(RAB -> 00), is a nti-bonding . The exact result for E _ 
(not reported in figure) is well above the approximate energy E _ (dotted line) . 
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The minimum in E+ indicates that when the electron occupies the lowest 
energy state (the CTg 1s according to § 7.3.3) bonding does occur. 

Starting from atomic orbitals pertaining to excited states, e.g. the 2px 
Hydrogen states, one can obtain the molecular orbitals for the excited states, 
as sketched below (see also Fig. 7.3.3): 

with linear 
combination + 

with linear combination -
(and higher energy) 

-----'1!:- ""*--1tg2p 

A better evaluation of eigenvalues and eigenfunctions (although still ap­
proximate) could be obtained by using more refined atomic orbitals. For in­
stance, in order to take into account the polarization of the atomic orbitals 
due to the proton charge nearby, one could assume a wavefunction 1}A) of the 
form 

.J..(A) = .J..(A) + aze-Ze TA / ao 
'I-' 'l-'ls , (8.11) 

with Ze an effective charge. Along these lines of procedure one could derive 
values of the bonding energy and of the equilibrium interatomic distance R~qB 
close to the experimental ones, which are 

(8.12) 

Rather than pursuing a quantitative numerical agreement with the experi­
mental data, now we shall move to the discussion of the physical aspects of 
the bonding mechanism. 
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Problems VIlLI 

Problem VIII. 1. 1 Consider a J.l-molecule formed by two protons and a 
muon. In the a ssumpt ion that the muon behaves as the e lectron in the Ht 
molecule, by means of scaling a rguments evaluate t he order of magnitude of 
the internuclear equilibrium dist ance, of the bonding e nergy and of t he zero­
point energy in the J.l-molecule. (The zero-point energy hv/ 2 in Ht is 0.14eV 
and it is reminded that v = 1/ 21fJk/ M, with k the elastic constant and M 
the reduced mass). 

Solution: 
R~qB is controlled by the a nalogous of t he Bohr radius ao, which i s reduced 
with the mass by factor ml-' / m e . Then 

and 

R~qB ;::::: _1_ R~qB(Hi ) ':::' 5 x 10- 3 A. 
200 

E ;::::: 200 ErR]: ) ':::' 500eV. 
2 

The force const ants can approximately be written k ;::::: ~3 and then k(J.l) = 
k(Hi )/ 8 X 106 . 

The vibrational energies scale with # , so that 

E~!!:o ;::::: 3 . 103 E~!!:o (Hi ) ':::' 400e V . 

Problem VIII.1.2 Derive t he behavior of the probability density for the 
electron in Ht at the middle of the molecular axis as a function of the inter­
proton distance, for the ground MO-LCAO state, for SA B « l. 

Solution: 
From 

T A + r B 2rA 2 rB 
p = 1<p+12 ex 2e- ao + e- -;;O + e- -;;O , 

for r A = rB = R AB / 2, p ex 4exp[- R AB / aO]. 

Problem VIII.1.3 In t he harmonic approximation the vibrational fre­
quency of a diatomic molecule is given b y 

where J.l is the reduced m ass and R the interatomic dist ance (for detail see 
§10.3). Derive t he vibrational frequency for Ht in t he ground-state. 
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Solution: 
From E(R) = (HAA + HA B)j (l + SAB) 

fj2 E [ 82 ( HA8AR~HA B ) (1 + SA B) - ~(HAA + HA B)](l + SAB) 
8R2 (1 + SAB)3 

2 [ 8(HA~~HAB ) (1 + SAB)~ - (~)2(HAA + HA B)] 
(1 + SAB)3 

From Eqs. S.S-S.10, for x = Rjao and kl = e2 j ao , one writes 

- 2x 1 k1 HAA(X) = k1e (1 + ;:) - 2 ' 

-x 1 1 7x x 2 
HAB(X) = k1 e (- - - - - - -). 

x 2 6 6 

Since 8Ej8R = (8E j 8x)(ljao) and 82Ej8R2 = (82E j 8x2)(lja6) , one can 
conveniently express the second derivative of E(R) in terms of x. 
The curves for E(R) and for (d2EjdR2) are reported below (dashed line 
(d2 E j dR2) , in e2 ja30 unit, dotted line E(R) referred to - RHhc). 

O.S , d1EldR2 , , 
0.' , , , , o. , 

, , 
0.2 

, , 
:" E(R) \ 

~ I , , 
, , 

M 

.0. 1 

At Req = 2.49ao one finds 8 2 E j 8R2 = 0.054e2 ja~ = 0.S39 x 105 dynejcm, 
yielding a vibrational frequency v = 5.04 X 1013 Hz (return to Problem 
F.VIl.1). 
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8.1.2 Bonding mechanism and the exchange of the electron 

How the bonded state of the Hydrogen molecule ion is generated? Why the 
bonding orbital is the CTgls while CTuls is antibonding? Which is the substantial 
role of the resonance integral H A B ? 

A first way to answer to these questions is to look at the electronic charge 
distribution, controlled by P± = 11>±12 , where 1> can b e taken as in Eqs. 8.7. 
The intersection of p with a plane containing the molecular axis is sketched 
in Fig. 8.3. 

In order to minimize the Coulomb energy one has to place the electron in 
the middle of the molecule. Thus one understands why only the CTgls state 
has a minimum in the energy E vs. R A B . 

It may be remarked that this consideration of forces between nuclei ac­
cording to "classical" Coulomb-like estimate of the energies is not in con­
trast with the quantum character of the system. In fact , as stated by the 
Hellmann-Feynman theorem the forces can actually be evaluated "classi­
cally" provided that the charge distribution is made according to the result 
of the quantum description. 

p+ == ¢+' ¢+oc 
oc (¢A 1<)2 + (¢r'.s)2 + 2 (¢A IS) (¢n IS) 

+ 
A 

p-

+ A B + 

Fig. 8.3. Sketches of the charge distribution according to the bonding and anti­
bonding molecular orbitals in Ht . For ¢_ there is no electronic charge in the plane 
perpendicular to the molecular axis at the center of the molecule. On the other hand , 
in order to avoid repulsion between the protons, the negative charge must be placed 
right in the middle of the molecule, as a classical estimate of the e nergy indicat es 
(see Problem VIII.2.1) . 
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Now we are going to discuss the role of the resonance integral (Eq. 8.10) 
that is the source of the minimum in the energy at a given inter-proton dis­
tance. A suggestive interpretation of the role of HAB can be given in terms 
of the exchange of the electron between the two equivalent Is states centered 
at the proton A and at the proton B. 

According to the model developed in Appendix 1.2, by considering the 
basis states 11) and 12) , as sketched below 

and by writing the generic state in term of linear combination 
11j;) = clll) + c212), the coefficients obey the equations 

inCl = HllCl + H 12C2 
inc2 = H 21 Cl + H22C2 

(8.13) 

with Hll = H22 = Eo. H12 is the probability amplitude that the electron 
moves from state 11) to state 12). 

By labeling A the value (negative) of H 12 , from Eqs. 8.13 by taking sum 
and difference, one has 

a .(Eo - A)t b .(Eo+A)t Cl(t) = - e- t - ,, - + - e- t - ,, -

2 2 
(8.14) 

a _i(Eo - A) t b _i(Eo+A)t C2(t) = - e " - - e " . 
2 2 

It is noted that for the choice of the integration constant a = 0 or b = 0, 
stationary states I±) are obtained , correspondent to 0'91s and to O'u1s, i.e. 

with energies E = Eo ± A. 
The constants a and b in Eqs. 8.14 can be written in terms of the initial 

conditions for Cl(t) and C2(t). By setting Cl(O) = 1 and C2(0) = 0, one has 
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Cl(t) = e- i ~o tcas (A tin) 
C2(t) = ie-i~o tsin(Atln) 

with the behavior of the correspondent probabilities of presence Pl,2 = ICl,2 12 
shown in Fig. 8.4. 
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Fig. 8.4. Time dependence of the probability of presence of the electron on the sites 
A and B according to the description of two-levels states for Ht. 

Thus one can idealize the formation of the molecule as due to the exchange 
of the electron from left to right and back, with the related decrease of the 
energy. 

This description has some correspondence in classical systems, such as two 
weakly-coupled mechanical oscillators or LC circuits, with their two normal 
modes and the correspondent exchange of energy. Scattering experiments of 
protons on Hydrogen atoms confirm that the exchange process of the electron 
is real. When a proton is in the neighborhood (distance of the order of ao) of 
an Hydrogen atom for a time of the order of n/2A, with A = (E+ - E_) (or 
multiple), an Hydrogen atom comes out after the scattering process. 

8.2 Homonuclear molecules in the MO scenarIO 

From the MO description of the states in Ht it is now possible to analyze 
multi-electron homonuclear diatomic molecules. In a way analogous to the 
auf bau method in atoms, to build up the molecule in a first approximation 
one has to accommodate the electrons on the one-electron states derived for 
the prototype. This procedure is particularly simple if a priori one does not 
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take into account the inter-electron interactions (e 2 /1 ij ), thus ideally assum­
ing independent electrons. Then the energy is evaluated on the basis of the 
complete Hamiltonian, for <Ptotal = ITi cPMO('i), by considering the dynami­
cal equivalence of the e lectrons when different states are hypothesized. At §S.4 
we shall discuss the hydrogen molecule to some extent, by taking into account 
the spin states and the antisymmetry requirement. For the moment, let us 
proceed to a qualitative description of some homonuclear diatomic molecules 
by referring most to the ground states. 

For H2 the ground state has the e lectronic configuration (O"gls)2, it is 
labelled 1 Et (see §7.2.3) and the MO wavefunction is 

cP( O"gls)2 (rl , r2) = O"gls(rl) O"gls(r2) ' 

that in the LCAO approximation is written (see Eq. S.7) 

(S.15) 

1 [ (A) (B) ] [ (A ) (B) ] cP(o-gls)2 (r1' r2) = 2(1 + SAB) cP1s (rd + cP1s (r1) . cP1s (r2) + cP1s (r2) 

(S.16) 
The energy E(RAB ), evaluated by including in the Hamiltonian the term 
(e2 / 112) by means of calculations strictly similar to the ones detailed for Ht 
at §S.l, is sketched below: 

RAB/aO -2R/l"C __ -+-_~I.--.7 _______ _ 

2.7 eV 

In Het the ground state has the electronic configuration (O"gls)2(O"u1s) 
and the notation is 2 Eu. The third electron has to be of u character, because 
of the Pauli principle. 
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The He2 molecule cannot exist in state a stable state2. In fact, the elec­
tronic configuration should be (O"gls)2(O"u1s)2, with the pictorial representa­
tion sketched below: 

E 

antibonding 

-2R,jlc 
-+---4~~--------------~ 

Since for RAE c::: R~qB one has E_ > IE+I (see Eq. 8.6) the two antibonding 
electrons force the nuclei apart in spite of the bonding role of the electrons 
placed in the ground energy state. 

Now we are going to discuss a pair of molecules exhibiting some aspects 
not yet encountered until now. In the N2 molecule we have an example of 
"strong bond" due to 0" MO orbital at large overlap integral and of "weak 
bond" due to 7r MO orbitals involving p atomic states, with little overlap. In 
fact one can depict the formation of the molecule as below 

r ,~ 

?/, 
(u~ l s)2 (u " ls)2 (U~2S)2 (U,,2S)2 ( lru2p)4 (Ug2p)2 

2 Van der Waals interactions (described at §13.2.2), leading to very weak bonds at 
large distances , are not considered here. 
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where it is noted that the linear combination with the sign + again implies 
electronic charge in the central plane (and therefore is a bonding orbital) 
although now the inversion symmetry is u. The CTg 2p orbital, ideally gen­
erated from the combination of 2pz atomic orbitals, implies strong overlap. 
Since HAB is somewhat proportional to SAB (see Eqs. 8.9 and 8.10) one has 
a deep minimum in the energy and then a strong contribution to the bonding 
mechanism. On the contrary, from the combination of 2px,y atomic orbitals 
to generate the 'IT MO's the overlap region is small and then one can expect 
a weak contribution to bond. The e lectronic state of the N2 molecule is la­
belled 117% and the molecular orbitals are fully occupied. Thus the molecule 
is somewhat equivalent to atoms at closed shells, explaining its stability and 
scarcely reactive character. 

Another instructive case of homonuclear diatomic molecule is O2 . Here 
there are two further electrons to add to the configuration of N2 . These elec­
trons must be set on the 'ITg2p orbital, in view of the Pauli principle. The 'ITg2p 
orbital is not fully occupied and one has to deal with LS coupling procedure, 
similar to the one discussed for atoms for non-closed shells. In principle there 
are the possibilities sketched below: 

• of g character 

Sz Lz Sltlfe -- ~ ILlg -- -- I~ -- ---- -- 3~ -+ --
According to Hund rules, that hold also in molecules, the ground state is 

317; corresponding to the the maximization of the total spin. The 9 and -
characters can be understood by inspection: in Fig. 8.5 it is shown how the 
property under the reflection in a plane containing the molecular axis results 
from the symmetry of the 'IT orbitals. 
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4 

E(eV) 

(a) (b) 
-2 

-4 

Fig. 8.5. Energy curves for the low energy states in the O2 molecule (a) and sketchy 
illustration of the ( + -) symmetries for 'iT + and 'iT - orbitals (b). The E state requires a 
label to characterize the behavior under reflection with respect to a plane containing 
the molecular axis. Since the two electrons occupy different 'iT orbitals, one of them 
is + and the other - , implying the overall - character of the configuration. 

The molecule is evidently paramagnetic and because of the partially 
empty external orbital has a certain reactivity, at variance with N2 . In fact 
the 0 3 molecule (ozone) is known to exist. 

Problems VIII.2 

Problem VIII.2.1 Evaluate the amount of electronic charge that should 
be placed at the center of the molecular axis in H2 in order to justify the 
dissociation energy (c::: 4.5 e V) at the interatomic equilibrium distance R~qB = 
0.74 A. 

Solution: 

-ef 
+e)--------t 
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From 

e2 [ e e] 
RAB - ef RAB/2 + RAB/2 = - 4.5eV. 

e2 
R eq = 19.5eV 

AB 

f = - 4.5eV - 19.5eV = 0.3. 
- 77.8eV 

Problem VIII.2.2 Write the spectroscopic terms for the ground state of 
the molecules Lh , B2, C2, Br2, N2", Nt, Ft and Net · 

Solution: 
For Li2, (O"gls)2(O"u1s)2(O"g2s)2, lEt-
For B2, (O"gls)2(O"u1s)2(O"g2s)2(O"u2s)2(7ru2p)2 , 3 Eg. 
For C2 the proper sequence of the e nergy levels has to be taken into account 

(one electron could be promoted from 7ru to the O"g state, see Fig. 7.4). However 
t he e lectronic configuration (O"g2S)2(O"u2s)2(7ru2p)4 seems to be favored and 
the ground state term is 1 E: . 

For 
Br2 (atoms in 2 P state) 

excited states I yo - III III I;\ 
u u ' 9' u, £..Jg 

8.3 H2 as prototype of the VB approach 

In the framework of the valence bond (VB) method, where the molecule 
results from the interaction of atoms dressed by their electrons, the prototype 
is the Hydrogen molecule. 

The Hamiltonian is written (see Fig. 8.6) 

== [a] + [b] + [c] + [d] (8.17) 
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Fig. 8.6. Definition of the coordinates involved in the Hamiltonian for the H2 
molecule. 

A tentative wavefunction could be ¢ (rl' r2) = ¢ t s(rd ¢ fs(r2) , correspond­
ing to the situation in which the two electrons keep their atomic character and 
only Coulomb-like interactions with classical analogies are supposed to occur. 
However, this wave-function does not lead to the formation of the real bonded 
state. In that case, in fact, for the [a] and [b] t erms in the Hamiltonian one 
obtains - 2RHhc and for the interaction terms [c] and [d] one has 

e2 J A 2 e2 B 2 J e2 B 2 J = ------- + I¢ls(rd l ----· I¢ls (r2) 1 dTl dT2 - 2 ----- l¢ls (r2) 1 dT2 
RA B r12 r A2 

(8.18) 
The latter term in Eq. 8.18 is twice the attractive interaction between 

electron A-proton B, as sketched below 

.~ A B 

All the above terms in Eq. 8.18 correspond to classical electrostatic inter­
actions and therefore J is usually called Coulomb integral. From the eval­
uation of J through elliptic coordinates, as described for CAA at §8.1.1, one 
could figure out that the e nergy curve E(RA B ) displays only a slight minimum, 
around 0.25 eV , in large disagreement with the experimental findings (see Fig­
ure 8.7). On the other hand, by recalling the description of the two electrons in 
Helium atom (§ 2.2) the inadequacy of the wavefunction ¢ ts(rl)¢fs (r2) can be 
expected, since the indistinguishability of the electrons, once that the atoms 
are close enough to form a molecule, is not taken into account. 

Then one rather writes 
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By deriving the energy function with the usual variational procedure (see Eqs. 
8.3-8.6) one obtains Cl = ±C2 and 

E± = Hn ± H 12 

1 ± S12 

where Hll == (1IH I1) = (2IH I2), H12 == (2IH I1), S12 = S~B and 

¢± = )2 (11± S12) [11) ± 12)]. 

The eigenvalues turn out 

where J is given by Eq. 8.18, while 

(8.20) 

(8.21 ) 

(8.22) 

j. A* B* [ e 2 e2 e2 e 2 ] A B K = ¢ls (rd ¢ls (r2) - - - - + -R + - ¢ls (r2) ¢ls (r1) dT1 dT2 
r A2 r B l A B r12 

(8.23) 
is the extended exchange integral, with no classical analogy and related 
to the quantum character of the wavefunction. K can be rewritten 

2 J 2 K = Re S~B - 2 SA B EAB + ¢fs* (rI) ¢fs*(r2) ~ ¢fs (r2) ¢fs(rI) dTl dT2 
AB r12 

(8.24) 
where again one finds the resonance integral EA B (Eq.8.1O) and a reduced 
exchange integral 

(8.25) 

analogous to the one in Helium atom and positive. 
From the evaluation of J and K the energy curves can be obtained, as 

depicted in Fig. 8.7. 
It should be remarked that most of the bond strength is due to the ex­

change integral K. 
As for any two electron systems (see §2.2) the spin wave functions are 

X;;~m i.e. 0:(1)0:(2), (3(1) (3 (2) and ~ [0:(1 )(3 (2) + 0:(2)(3(1)] 
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E 

-4.76 e ···························· .... · 
-exp 

Fig. 8.7. Sketch of the energy curves of the Hydrogen molecule in the VB scheme 
as a function of the interatomic distance RAB . The real curve (reconstructed by a 
variety of experiments) is indicated as exp, while curve c) illustrates the behavior 
expected from the Coulomb integral only (Eq. 8.18 in the text). Curves a) and b) 
illustrate the approximate eigenvalues E± in Eq. 8.22. 

and the antisymmetry requirement implies that Xant is associated with cP+, 
corresponding to the ground state 1 Eg , while for the eigenvalue E _ one has 
to associate X symm with cP- , to yield the state 3 Eu' 

At this point one may remark that the VB ground state for H2 (see Eq. 
8.21) is proportional to the MO state 

(1,2 for rl and r2) The "ionic" configurations cPA (1) cPA(2) and cPB(2) cPB(1) 
(Eqs. 8.7 and 8.16) are present in the MO orbital with the same coefficients, 
in order to account for the symmetry and to prevent electric charge transfer 
that would lead to a molecular dipole moment. A more detailed comparison 



Problems VIII.3 271 

of the electronic states for the Hydrogen molecule within the MO and VB 
approaches is discussed in the next Section. 

Problems VIII.3 

Problem VIII.3.l Reformulate the description of the H2 molecule in the 
VB approach in the assumption that the two Hydrogen atoms in their ground 
state are at a distance R so that exchange effects can be neglected. Prove 
that for large distance the interaction energy takes the dipole-dipole form and 
that by using the second order perturbation theory an attractive term going 
as R - 6 is generated (see §13.2.2 for an equivalent formulation). Then remark 
that for degenerate n = 2 states the interaction energy would be of the form 
R - 3 . 

Solution: 
From Fig. 8.6 and Eq. 8.17 the interaction is written 

Expansions in spherical harmonics (see Prob. II.2.1) yield 

1 _ '" r~l P ( B) _ ..!.. (rAl· p) 3(rAl· p)2 - r~l ... 
IRp - rIA l - 6 RA+l A cos - R + R2 + 2R3 +, 

1 

1 1 (rAI - rB2) . P 3[(rAI - rB2) . pj2 - (rAI - rB2)2 
-:-=-------,. = - + + + ... 
IRp + r B2 - rAl I R R2 2R3 ' 

1 

1 1 (rB2 . p) 3(rB2 . p)2 - r1n 
r A2 = Ii + R2 + 2R3 + ... 

(p unit vector along the interatomic axis). 
Thus the dipole-dipole term (see §13.2.2) is obtained 

the z-axis being taken along p. By resorting to the second-order perturbation 
theory and taking into account the selection rules (App.I.3 and §3.5) , the 
interaction energy turns out 

4 42 2 + 2 2 + 2 2 E(2) = ~ L ZOm ZOn XOm XOn YOm YOn 
R6 mn 2Eo - Em - En 

where Xom , Xon etc. are the matrix elements connecting the ground state (en­
ergy Eo) to the excited states (energies Em, En). E(2) being negative, the two 
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atoms attract each other (London interaction, see §13.2.2 for details). 

For the states at n = 2 the perturbation theory for degenerate states has 
to be used. From the secular equation a first order energy correction is found 
(see the similar case for Stark effect at §4.2). Thus the interaction energy must 
go as R - 3 . 

8.4 Comparison of MO and VB scenarios in H 2 : 

equivalence from configuration interaction 

Going back to the MO description for the H2 molecule, by considering the 
possible occurrence of the first excited au one-electron state and by taking 
into account the indistinguishability, four possible wavefunctions are: 

<PI(g,g) == cPg (1) cPg (2) 
<PII(U, u) == cPu (1) cPu (2) 

<PIII(g ,U) == ~ [cPg(1) cPu (2) + cPg (2) cPu (1)] 
<PIV(g ,U) == ~ [cPg(1) cPu (2) - cPg (2) cPu (1)] 

gg a) 

uu b) 

ugant d) (8.26) 

In view of the four spin wavefunctions Xant and Xsymm , in principle 16 
spin-molecular orbitals could be constructed. Due to the Pauli principle, in 
the H2 molecule one finds only 6 states, the ones of antisymmetric character. 

The ground MO state (ag 1s)(ag 1s)xant can be detailed by referring to the 
LCAO specialization, so that the complete spin-MO is 

(8.27) 

namely the VB form with the "ionic" states, as already mentioned. 
To find the excited MO state corresponding to the (V B) - wavefunction, 

in Eqs. 8.26 one can look for the one that without the ionic states does corre­
spond to 8.21 cP- without the ionic states. From Eq. 8.26d) with the LCAO 
specialization it is found that 

(8.28) 

is the same as cPv B· 
From another point of view, now one understands why the 3 Eu state is 

unstable: it corresponds to have one electron in the 9 bonding MO orbital and 
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SYMM. 

Ediss . 

a,(I) a, (2) 

u(l)u(2) 

12:+g 

u(l)g(2) 

SYMM. 

Fig. 8.8. Schematic energy curves for H2 corresponding to the wavefunctions in Eq. 
8.26. More accurate forms of the energies for the IE: and 317;; states are reported 
in Fig. 8.9, in comparison with the VB eigenvalues. 

one in the u antibonding MO (see § 8.2), this latter being strongly repulsive. 
In Fig. 8.8 the lowest energy levels in H2 corresponding to 8.26 are sketched. 

For a more quantitative comparison of the MO and the VB descriptions in 
H2, let us look at the values for the dissociation energies and the equilibrium 
distances (see also Fig. 8.9) in the ground state: 

¢VB E diss ':::' 3.14eV 

E diss ':::' 2.7 eV R'1B = 1.7 ao 

Experimental Ediss ':::' 4.75 eV 

One should remark that the VB orbital does not include the ionic states 
while the MO-LCAO overestimates their weight. In fact , the energy to remove 
the electron from the Hydrogen atom (13.56 eV) is much higher than the 
energy gain Ll in setting it on the configuration H- . The energy gain Ll 
(sometimes called electron affinity) in principle could be estimated from 
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4 4---~---L--~-r~--~~--L---~--+ 

E(eV) 
3 

2 

R eq 
AB -2R hc-- o+----+-------------------+ H 

-1 

-2 

-3 

-4 

o 3 4 

Fig. 8.9. Energy curves for the lowest energy states in H2 : dotted lines, within the 
VB approach; solid lines, more accurate evaluations for the 117: and the 317;:; states 
according to the procedure outlined in the text. 

the Coulomb integral in Helium atom (§2.2) , with Z =l for the nuclear charge 
(however, see Problem II.2.4). From accurate estimates one actually would find 
L1 = 0.75 eV. Therefore the ionic states cannot be weighted as much as they 
are MO-LCAO orbital. This observation suggests a tentative wavefunction of 
the form 

1Yv B + ).,1Yionic , (8.29) 

namely a mixture of the covalent VB and of ionic states with a coefficient )." 
for instance to be estimated variationally. From the derivative of the e nergy 
function E()") one could find that the minimum corresponds to )., = 0.25. 
Therefore, from the normalization of the wavefunction the weight of the ionic 
states is given by ).,2/().,2 + 1), about 6 percent. 
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How could the MO description of the ground state in H2 be improved? 
Since the wavefunctions 8.26 involve the ionic states with different coeffi­
cients, it is conceivable that a better approximation is obtained if a proper 
combination of the wavefunctions correspondent to different configurations is 
attempted. This procedure is an example of the approach called configura­
tion interaction (CI). In the combination one has to take into account that 
the mixture must involve states with the same symmetry properties and same 
spin. Thus one should combine the gg state with the uu one, both coupled 
to Xant : 

(8.30) 

From this wavefunction, as usual, one generates two energy levels, one of them 
having energy E < E+, E+ being the energy for ¢I. In this way one could 
find a dissociation energy and equilibrium distance close to the experimental 
values. Furthermore those quantities are found to coincide with the ones 
associated with the VB wavefunction with addition of the ionic states! This 
is not by chance. In fact, by collecting the various terms involving the atomic 
orbitals, one can rewrite Eq. 8.30 in the form 

¢cI(I , 2) = (1 - k)¢VE + (1 + k)¢ionic 

and by defining A = (1 + k)j(1 - k) one sees that it coincides with Eq. 8.29. 
This is an example of a more general issue: the MO-LeAO method with 

interaction of the configurations is equivalent to the VB approach with addition 
of the ionic states to the covalent wavefunctions. 

8.5 Heteronuclear molecules and the electric dipole 
moment 

In the following we shall recall some novel aspects present in diatomic 
molecules when the two atoms are different. 

First of all one remarks that the inversion symmetry, with the Hamiltonian 
H(r) equal to H( - r) , no longer holds. Therefore, within the separated atoms 
scheme one cannot longer classify the states as g or u and the one-electron 
states become (see Fig. 7.6) a-lsA, a-lSE, a-2sA, a-2sE , ... 

Within the MO-LCAO scheme the one-electron orbital is written 

with CA i- CE· Equivalently, in the normalized form 

(8.31 ) 
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Here A * can vary from -00 to +00 and it characterizes the polarization 
of the orbital, namely measuring the electronic charge transfer from one 
atom to the other. As illustrative example in Fig. 8.10 the molecular orbital 
for the HCl molecule is sketched. 

--+--+---+------elEI---+--z- VV -+C-( ___ I-~ =='3_»C_A ------<C- I ------t--» 

if' 10= CA if' IS" + CB if' lp,CI 

Fig. 8.10. Sketchy illustration of the polarized MO-LCAO orbital in HCI. The Px 
and py atomic orbitals are scarcely involved in the formation of the molecule since 
they imply small overlap integral SAB and resonance integral HAB (see text at § 
8.2). 

In the VB description the only way to account for the charge transfer is to 
add the ionic states in the molecular orbital, no longer with the same weight 
as for the homonuclear molecules (see Eq. 8.29). In practice only the ionic 
configuration favoured by the polarity of the molecule can be included. Then 

¢~e~ = ¢v B + A¢ionic 

The parameters A in the above definition and A* in Eq. 8.31 are difficult to 
evaluate from first principles. They have been empirically related to the elec­
tronegativity of the atoms or to the difference between the ionization energy 
with respect to the one pertaining to the purely covalent configuration. 

An illustrative relationship of A and A * to molecular properties is the 
one involving the electric dipole moment /-Le. By referring to the sketched 
schematization for a given molecular orbital with two electrons (pag. 277), 

the dipole moment is written /-Le = 2e < z >, with < z > the expectation 
value of the coordinate, corresponding to the first moment of the electronic 
charge distribution. 

For an MO-LCAO orbital as in Eq. 8.31 , one has 

The mixed term < AlzlB > is usually negligible. By assuming for simplicity 
S AB « 1 one obtains 

(8.33) 
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-e 

A 

-e 

By defining g = JLe/eRAB as degree of ionicity (g being the unit for total 
charge transfer and dipole moment JL ,:ax = eRAB)' ,\* can be expressed in 
terms of a relevant property of the molecule: 

,\*2 - 1 
g = ,\*2 + 1 (8. 34) 

In analogous way in the VB framework , where g is evidently given by the 
weight of the ionic structure, one has 

,\2 

g = ,\2 + 1 (8.35) 

As for t he homo nuclear molecules, the e nergy curve E(RAB ) in principle 
could be e valuated in terms of the overlap and resonance integrals. 

Direct understanding of the mechanism leading to the bonded state can 
easily be achieved by referring to a model of totally ionic molecule, i.e. 
cPMO = cPB (or configuration A+ B - ) and in the assumpt ion of Coulombic 
interaction between point charge ions. This is a n oversimplified way to d erive 
the e igenvalue as a function of the interatomic distance, still allowing one to 
grasp the main source of the bonding. 

For numerical clarity let us refer to the NaCI molecule (Fig. 8.11). One 
observes that for distances RAB above about 10 A the energy of the neutral 
atoms is below the one for ions. When the dist ance is s maller t han the R AB 
for which e2 / R AB ':::' (EJ - E A), the ionic configuration is favoured and the 
system r educes the e nergy by decreasing the interatomic dist ance. 

At short dist ance a repulsive term is acting. Its phenomenological form 
can be written 

(8.36) 

an expression known as Born-Mayer repulsion. Thus t he e nergy curve de­
picted as solid line in the Figure 8.11 is generated. 
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The dissociation energy E(R'Alp) can be evaluated by estimating the dis­
tance where the energy minimum occurs. A detailed calculation of this type 
will be used for the cohesive energy in ionic crystals (§13.2.1). 

, 
\ 
\ 
\ , , 

Ni· +.- + 0 n 
\Na+ 0 

S.l.V No 
ionization 

enetIY 

3.8.V 0 
electron 
affinity , 

\ , , 
\ i '. .. + 0-

O~~~~~~~~ __ ~~~~~~~~ ______ L-________ ~ 

2 I \3 No. + 0.:-_---- + 
~ : '" RABCA) _- -- Na+O .. ~ 
~ -1.3 - ---1---~-----------o:z::~,..---.L------------------

oS : 
I 
I 
I 
I 
I 
I 3.6 eV : , - J 
1 ______ --------------

Fig. 8.11. Energies of the neutral atoms and of the ionic configuration in the NaCI 
molecule. EJ is the ionization energy ofNa, about 5.14eV while EA = 3.82eV is the 
electron affinity in CI and it corresponds to the energy to remove an electron from 
CI- . 

Finally, for some polar diatomic molecules the electric dipole moment Me , 
the degree of ionicity and the value of ,\* according to Eqs. 8.32 are reported 
below (having used for SA B a value around 0.3). 

Me (Debye) Me/eRAB .>-* 
HF 1.91 0.43 1.88 
HCI 1.08 0.17 1.28 
HEr 0.78 0.11 1.19 
KF 8.6 0.67 2.93 
KCI 10.27 0.77 3.36 

(1 Debye = 10- 18 u.e .s cm). In H20, Me = 1.86 Debye. 
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Problems VIII.5 

Problem VIII.5.l Write the ground state configuration for the molecules 
CO, LiH, HBr, CN, NO. 

Solution: 

CO 

LiH 

117+ 

117+,317+ 

HBr (Br atom in 2 P state) 

CN (C atom in 3 P , N atom in 4S) 

NO 2II 

117+, 317+, 1 II, 3 II 

217+, 417+, 617+, 2 II, 4 II, 6 II 

Problem VIII.5.2 In the ionic bond approximation assume for the eigen­
value in the NaCI molecule the expression 

From the equilibrium interatomic distance R~qB = 2.51 A and knowing that 
the vibrational frequency is 1.14.1013 Hz, obtain A and n and estimate the 
dissociation energy. 

Solution: 
At the minimum 

thus 
e2 1 
nA R~- 1· 

The elastic constant is (see Problem VIII.1.3) 

Then 
e2 

k = -(n - 1) R 3 . 
e 

For the reduced mass 
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J.L = 2.3 . 10- 23 g 

the elastic constant takes the value 

(see §10.3). 
Then 

From 

kR3 
n - 1 = ~ ~8. 

e 

the energy at R e is 

E . = -~ + ~ = -~ (1 - ~) = -5.1 eV. 
mm R e R~ Re n 

and then the dissociation energy turns out 

Ediss = - [Emin + ~ hVo] ~ 5 e V . 

Problems F.VIII 

Problem F.VIII.1 The first ionization energy in the K atom is 4.34 
eV while the electron affinity for CI is 3.82 eV. The interatomic equilibrium 
distance in the KCI molecule is 2.79 A. Assume for the characteristic constant 
in the Born-Mayer repulsive term p = 0.28 A. In the approximation of point­
charge ionic bond, derive the energy required to dissociate the molecule in 
neutral atoms. 

Solution: 
From 

and the equilibrium condition 

one obtains 

e2 
( p ) V(Re) = - - 1 - - ~ - 4.66 eV. 

R e R e 
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The energy for the ionic configuration K + + Cl- is (4.34 - 3.82)eV = 0.52eV 
above the one for neutral atoms. Then the energy required to dissociate the 
molecule is 

Ediss = (+ 4.66 - 0.52) eV ':::' 4.12 eV. 

P roblem F.V III.2 In the molecule KF the interatomic equilibrium dis­
tance is 2.67 A and the bonding energy is 0.5eV smaller than the attractive 
energy of purely Coulomb character. By knowing that the electron affinity 
of Fluorine is 4.07 e V and that the first ionization potential for potassium is 
4.34 V , derive the e nergy required to dissociate the molecule in neutral atoms. 

So lutio n : 
Since 

e2 - 12 
E C oul omb = R e = 8.6·10 erg = 5.3g eV 

the energy required for the dissociation in ions is E i = (5.39 - 0.5) = 4.89 eV. 
For the dissociation in neutral atoms Ea = E i + Af - P ion = 4.89 + 4.07 -
4. 34eV = 4.62eV. 

P roblem F. VIII. 3 R eport the ground st ate configuration and the first 
excited configuration of the molecules H2 , Lh , N2 , LiH and CH. 

So lution : 

Molecule Ground st ate configura tion 
H2 (O"gl s )2 "Et 
Lb K K(O"g2s )2 "17; 
N2 KK(O"g2s )2(O"u2s )2(7ru2p)4(O"g2p)2 "Eg 
LiH K(2sO")2 "17 
CH K(2sO")2(2sO")22p7r ~II 

Molecule First excited configuration 
H2 (O"gl s )O"u1s "17;;- ,05 17;;-
Lb KK(O"g2s)O"u2s "17;;-, 05 17;;-
N2 KK(O"g2s )2(O"u2s)2(7ru2p)4(O"g2p) 17rg2p 1 IIg " IIu 
LiH K(2SO")2pO" "17+ / 17+ 
CH K (2sO" )2(2pO") (2p7r) 2 417 / L1 / E+ ,~ 17 
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Problem F. VIII.4 Derive the structure of the hyperfine magnetic states 
for the ground-state of the Hydrogen molecular ion. Then numerically evaluate 
their energy separation in the assumption of 0"91s molecular orbital in the 
form of linear combination of Is atomic orbitals (the interatomic equilibrium 
distance can be assumed 2ao). 

Solution: 
From the extension of Eq. 5.3 

with AH+ the hyperfine coupling constant. From I = IA + I B, 1 = 0 or 1 = I , 
2 

namely states with F = 1/2,3/2 are obtained. 
Since I .s = (1 / 2) [F(F + 1) - 1(1 + 1) - s(s + 1)] 
the F = 3/2 and F = 1/2 levels are separated by i1E = (3 / 2)AH+. 

2 

AH+ can be obtained from 
2 

considering r A = 0 and rB = RAB . Then 

for SAB ;::::; 0.58 (see Eq. 8.9). 
In atomic Hydrogen where l¢ls (OW = Il7ra~ the separation between the 

F = 1 and F = 0 hyperfine levels is AH / h = 1421.8 MHz. Then in Ht one 
deduces i1E/ h = (3 / 2)0.41AH c::: 810 MHz. (For the difference between the 
ortho-states at 1= 1 and the para-state at 1= 0 read §10.9). 

Problem F .VIII.5 In the assumption that an electric field [, applied 
along the molecular axis of Ht can be considered as a perturbation, evaluate 
the electronic contribution to the electric polarizability (for rigid molecule and 
for molecular orbital LCAO). 

Solution: 

Hp = -ez[, 

At first order < glHplg >= 0 (where Ig >= (1 / J2(1 + SAB ))(¢ A + ¢B )) , 
since it corresponds to the first moment of the electronic distribution, evi­
dently zero for a homonuclear molecule (see §8.5). 

At the second order, involving only the first excited state 
lu >= (1/ J2(1 - SAB))(¢ A - ¢B ), one has 
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From 

and then 
1 8E(2) e2 R~B 

a Hi = - E------a[ = 2(1 - S~B)(E- - E+) 

From R~qB ':::' 2ao, S~B « 1 and (E_ - E+) ':::' 0.l e2 / ao one has 
a H+ ':::' (R~qB) 3 / 0.4, of the expected order of magnitude (see Problem X. 3.4). 

2 

Problem F.VIII.6 For two atoms A and B with J = S = 1/ 2, in the 
initial spin st ate aA(3B , spin-exchange collision is the process by which at 
large dist ances (no molecule is formed) they interact and end up in the final 
spin state (3A aB (This process is often used in atomic opt ical spectroscopy 
to induce polarization and optical pumping). From the extension of the 
VB description of H2 (§8.3) one can assume a spin-dependent interaction 
'H = - 2K(R)SA . S B, where K(R) is the negative, R-dependent exchange 
integral favouring the S = 0 ground-state. 

Discuss the condition for the spin-exchange process by making reason­
able a ssumpt ions for the collision time Re/v , Re being a n average interaction 
distance and v the relative velocity of the two atoms. 

Solution: 
In the singlet ground-state the interaction is 

E(R) = - 2K(R) [S2 - S; - S~ ] 6K(R) 
4 

An approximate estimate of the t ime required to shift from aA(3B to (3AaB 
can b e obtained b y referring to the Rabi equation (App.I.2) , in a way some­
what analogous to the exchange of the electron discussed at §8.1.2 for the 
Ht molecule. Here the Rabi frequency has to be written r ;::::; E(R) / n, for R 
around Re. Then the t ime for spin exchange is of the order of ell" / 3)(n/I K(Re) I) 
while the time for interaction is Te = Re/v (v can be considered the thermal 
velocity at room temperature in atomic vapors, i.e. ;::::; 3.104 cm/ s). 

Thus one derives - 3K(Re)Re ':::' 7rnv . 
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For an order of magnitude estimate one can assume that at large distance 
K(Rc) is in the range 10-3 - 1O-4eV thus yielding Rc in the range 6 - 60 A. 

These crude estimates for the spin-exchange process and the limits of va­
lidity are better discussed at Chapter 5 of the book by Budker, Kimball 
and De Mille quoted in the Preface, where a more rigorous analysis of this 
problem can be found. 



9 

Electronic states in selected polyatomic 
molecules 

Topics 

Polyatomic molecules as formed by bonds between pairs of atoms 
Hybrid atomic orbitals 
Geometry of some molecules 
Bonds for carbon atom 
Electron delocalization and the benzene molecule 

In this Chapter a few general aspects of electronic states in polyatomic 
molecules shall be discussed . Some details will be given for typical molecules 
involving novel phenomena that do not occur in diatomic molecules. 

The electronic structure in polyatomic molecules is based on the same prin-
ciples described for diatomic molecules. As already mentioned , a general theory 
somewhat equivalent to the Slater theory for many-electron atoms can be de-
veloped . The steps of that approach are the following . Molecular orbitals of the 

form ¢ (ri) Si) = Lp C~i) ¢p(ri) X~~in are assumed as a basis, in terms of linear 
combination of atomic spin-orbitals centered at the various sites with unknown co-

efficients c~i). The determinantal wavefunction for all the electrons is then built up 
and the energy function is constructed from the full Hamiltonian (T + Vne + Vee ) 
(see § 7.1) . The Hartree-Fock variational procedure is then carried out in order 

to derive the coefficients C~i). This approach is known as MO.LCAO.SCF 
(self-consistent field) . Advanced computational methods are required and the one 
developed by Roothaan is the most popular. More recently the density func­
tional theory is often applied in ab-initio procedures, based on the idea that 
the energy can be written in terms of electron probability density, thus becoming 
a functional of the charge distribution , while the local density approxima­
tion is used to account for the exchange-correlation corrections. Configuration 
interaction (see § 8.4) is usually taken into account. We will not deal with these 
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advanced topics, essentially belonging to the realm of computational quantum 
chemistry. 

We shall see how qualitative aspects can be understood simply in terms of the 
idealization of independent bonds, by considering the molecule as resulting 
from pairs of atoms, each pair corresponding to a given bond . In this way the 
main aspects worked out in diatomic molecules (Chapter 8) can be extended to 
polyatomic molecules. Typical illustrative example is the NH3 molecule. 

At § 9.2 we will discuss the molecular bonds involving hybrid atomic orbitals 
and giving rise to particular geometries of the molecules , typically the ones related 
to the variety of bonds involving the carbon atom . In § 9.3 the delocalization of 
the electrons will be addressed, with reference to the typical case of the benzene 
molecule. 

9.1 Qualitative aspects of NH3 and H 2 0 molecules 

In the spirit of the simplified picture of localized orbitals and independent 
bonds, by considering the molecule as due to bonds between pairs of atoms, 
one can sketch the formation of the NH3 molecule as resulting from three 
mutually perpendicular CJ MO orbitals involving LCAO combination of 2p N 
atomic orbitals and Is Hydrogen orbital (see Fig. 9.1). 

Similar qualitative picture can b e given for the H20 molecule (Fig. 9.2). 
From those examples one can understand how the geometry of the molecules , 

with certain angles between bonds, is a consequence of the maxima for the 
probability of presence of the electrons controlled by atomic orbitals, coupled 
with the criterium of strong overlap, in order to maximize the resonance 
integral. 

However it should be remarked t hat the above picture is incomplete. In fact 
the angles between bonds are far from being 90°, in general. For instance in 
H20 the angle between the two OH bonds is about 105°. As we shall see in the 
next Section, the geometry of the molecules is consistent with the assumption 
of hybrid atomic orbitals involved in the formation of the MO's. 

9.2 Bonds due to hybrid atomic orbitals 

By naively referring to the electrons available to form bonds by sharing the 
molecular orbitals, Be, Band C atoms would be characterized by valence 
numbers nv = 0, 1 and 2, correspondent to the electrons outside the closed 
shells. The experimental findings (nv = 2,3 and 4, respectively) could qual­
itatively be understood by assuming t hat when molecules are formed, one 
electron in those atoms is promoted to an excited state. The increase in the 
number of bonds, with the related decrease of the total energy upon bonding, 
would account for the e nergy required to promote the electron to the excited 
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z 
a) 

overlap of 2p, and I s orbitals 

~ 
b) 

Fig. 9.1. Pictorial view of the formation of the NH3 molecule in terms of combina­
tion of localized Is Hydrogen and of 2px ,y,z N atomic orbitals, with the criterium 
of the maximum overlap to grant the largest contribution to the bonding energy 
from each bond (a). The equivalent configuration is shown in part (b) , where the 
molecule can be thought to result from the approach of the H atoms along the op­
posite directions of the coordinate axes. 
The evolution of the two level states is sketched in part (c) with the inversion 
doublet resulting from the removal of the degeneracy. The separation energy of the 
doublet is related to the exchange integral. These two states were used to obtain the 
first maser operation (see Appendix IX.I) . 

state. This argument by itself cannot justify the experimental evidence. At 
the sake of clarity, let us refer to the CH4 molecule: its structure, with four 
equivalent C-H bonds, with angles 109°28' in between, can hardly be justified 
by assuming for the carbon atom one e lectron in each 28, 2px , 2py and 2pz 
atomic orbitals. A related consideration, claiming for an explanation of the 
molecular geometry, is the one aforementioned for the angles between bonds 
in the H2 0 molecule. 

Again referring to CH4 and in the light of the equivalence of the four C-H 
bonds, one can still keep the criterium of the maximum overlap provided 
that atomic orbitals, not corresponding to states of definite angular momen­
tum, are supposed to occur in the atom when the molecule is being formed. 
These atomic orbitals are called hybrid. 
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x y 

Fig. 9.2. Schematic view of the H2 0 molecule as resulting from two (J MO's involv­
ing 2p 0 and Is H atomic orbitals, with strong overlap of the wavefunctions when 
the Hydrogen atoms approach the Oxygen along the directions of the x and y axes. 

To account for the geometry of the bonds in CH4 we have to generate 
hybrid orbitals with maxima in the probability of presence along the directions 
of the tetrahedral environment, as sketched below 

H 

From the linear combination 

Four equivalent bonds 
at angles 109°28 ' 

......... 

......... 

....... ·····2····· ........ . 

by resorting to the orthonormality condition, to the requirement of electronic 
charge displaced along the tetrahedral directions and by considering that for 
symmetry reasons the s electron has to be equally distributed on the four 
hybrid orbitals, one can figure out that the coefficients must be 



9.2 Bonds due to hybrid atomic orbitals 289 

yielding maxima for the probability of presence along the directions 

(1,1 , 1) , (1, - 1, - 1) , (- 1, 1,-1) , ( - 1,-1,1). 

Thus the hybrid orbitals of the C atom are 

rPI = ~ [28 + 2px + 2py + 2Pz] 

rPII = ~ [28 + 2px - 2py - 2Pz] 

rPIII = ~ [28 - 2px + 2py - 2Pz] 

rP IV = ~ [28 - 2px - 2py + 2Pz] 

The individual bonds with the H atoms can then b e thought to result from 
(J MO, given by linear combinations of the C hybrids and of the 18 H atomic 
orbitals, as sketched below 

That type of hybridization is called (8p3) or tetragonal. Besides the 
methane molecule, is the one that can be thought to occur in the molecular­
like bonding in some crystals, primarily in diamond (C) and in semiconductors 
such as Ge, Si and others (see Chapter 11). 

Another type of hybridization involving the carbon atom is (8p2) or trigo-
nal one, giving rise to planar geometry of the molecule, with three equivalent 
bonds forming angles of 1200 between them, such as in the ethylene molecule, 
C2H4 . The hybrid orbital can be derived in a way similar to the tetragonal 
hybridization, from a linear combination of 28, 2px and 2py. By taking into 
account that the coefficients band c are proport ional to the cosine of the re­
lated angles and that a2 = 1/3, b2 + c2 = 2/3, one has the following picture 
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2s + 2p:t 

1200 

x 

1200 

corresponding to C hybrid orbitals 

Therefore the (J MO bonds are generated from the linear combination of the 
Is H orbitals or of the equivalent hybrid orbital of the other carbon atom, as 
sketched below 

2p, 

Is 

It bond 

The 2p electron described by the atomic orbital 2pz, perpendicular to the 
plane of the molecule, is not involved in the hybrid and therefore it can form 
a 7r C-C MO of the type already seen in diatomic molecules, leading to an 
additional weak bond (see the N2 molecule at §8.2). 
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Another interesting hybrid orbital for the carbon atom and leading to 
linear molecule, such as acetylene (C2 H2 ) is the digonal (sp) hybrid. It mixes 
the s electron and one p electron only. The electronic configuration sketched 
below is derived 

The C-C bond here is a triple one (one strong bond and two weak bonds). 
More complex hybrid orbitals are generated in other multi-atoms molecules, 

with particular geometries. For its importance and at the sake of illustration 
we mention the (d2sp3) atomic orbitals, occurring in atoms with incomplete d 
shells. The hybridization implies six bonds, along the positive and negative 
directions of the Cartesian axes. By combining with 2p oxygen orbitals the 
octahedral structure depicted in Fig. 9.3 originates, for example for BaTi03 . 

We shall come back to this relevant atomic configuration, characteristic 
of the perovskite-type ferroelectric titanates such as BaTi03 , at §13.3 when 
dealing with the CU06 octahedron, which is the structural core of high­
temperature superconductors. 

y 

six hybrid orbitals 
for the central atom 

Fig. 9.3. The configuration of (J bonds involving the six atomic orbitals of the 
central atom (for example Titanium) associated with the d2 Sp3 hybridization. This 
atomic configuration is the one occurring, for example in the (Ti03)2- molecular-like 
unit in the BaTi03 crystal (oxygens are shared by two units) (see §1l.4) . 
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9.3 Delocalization and the benzene molecule 

Experimental evidences, such as X-ray (in the solid state) and roto-vibrational 
spectra (see Chapter 10) indicate that the benzene molecule, C6H6 , is charac­
terized by planar hexagonal structure, with the carbon atoms at the vertices 
of the hexagon. The C-H bonds form 1200 angles with the adjacent pair of 
C-C bonds. According to this atomic configuration one understands that the 
Carbon atom is in the Sp2 trigonal hybridization, as the one discussed for the 
C2H4 molecule (§9.2). The remaining 2pz electrons of the Carbon atoms, not 
involved in the hybrids, can form a 'ITMO between adjacent C atoms, yield­
ing three double bonds. However, all the C-C bonds are equivalent and the 
distances C-C are the same. This is one of the evidences that the simplified pic­
ture of localized electrons, with "independent" bonds between pairs of atoms, 
in some circumstances has to be abandoned. We shall see that the structure 
of the benzene molecule, as well as of other molecules with 'IT-bonded atoms 
like the polyenes, can be justified only by delocalizing the 2pz electrons all 
along the carbon ring. The delocalization process is a further mechanism of 
bonding, since the total energy is decreased. At Chapter 12 we shall see that 
the electronic states in crystals can be described as related to the delocaliza­
tion of the electrons. Thus, for certain aspects the benzene molecule can also 
be regarded as a prototype for the electronic states in crystals. 

By extending to the six Carbon atoms in the benzene ring the MO.LCAO 
description, the one-electron orbital is written 

(9.1) 
r 

where ¢~~z are C 2p orbitals centered at the r-th site of the hexagon (r runs 
from 1 to 6). Then the energy function, by referring only to the Hamiltonian 
H for the 2pz C electrons, is 

E(cr ) = J ¢MO H ¢MO dT 
J ¢MO ¢MO dT 

(9.2) 

By resorting to the concepts already used in diatomic molecules (§8.1) we 

label (Jrs = J ¢;~:) H ¢~~z dT as resonance integral, while Srs = J ¢;~:) ¢~~z dT 

is the overlap integral. One has J ¢;~:) H ¢~~z dT = Eo, energy of 2p electron 

in the C atom and J ¢*) ¢(r) dT = l. 2pz 2pz 
It is conceivable to assume Srs = 0 for r i= s and to take into account the 

resonance integral only between adjacent C atoms: (Jrs = (J for r = s ± 1 and 
zero otherwise. 

Then the secular Equation for the energy function E( cr ) reads 
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(Eo - E) (3 0 0 0 (3 
(3 (Eo - E) (3 0 0 0 
0 (3 (Eo - E) (3 0 0 

= 0 . 
0 0 (3 (Eo - E) (3 0 
0 0 0 (3 (Eo - E) (3 
(3 0 0 0 (3 (Eo - E) 

The roots are Eo + 2(3, Eo ± (3 (twice), Eo - 2(3 (note that (3 < 0). 
The lowest energy delocalized 7r orbital, correspondent to t he e igenvalue 

Eo + 2(3, can accommodate two electrons, while on t he state at energy Eo + (3 
one can place four electrons, as sketched below 

E 

The bonding energy turns out 2(2(3) + 4(3 = 8(3, lower t han the e nergy 6(3 t hat 
one would obtain for localized electrons. The energy 2(3 can be considered t he 
contribution to the ground state e nergy due to the delocalization. 

In correspondence to t he root (Eo + 2(3) t he coefficients c.,.. in Eq. 9.1 are 
equal. T he normalization yields c.,.. = 1/ y6 and t herefore t he molecular orbital 
is 

¢Mo(ri) = ~ [¢2pJri - 11) + ... + ¢2pJri - 16)] (9.3) 

where 1.,.. indicate n.,..a and specifies the posit ion of the Carbon atom along the 
ring of step a. The wavefunction 9.3 is sketched in Fig. 9.4. 

In correspondence to t he root (Eo + (3) different choices for t he coefficients 
c.,.. are possible (see Problem F .IX.2 for similar situation) . One choice is 

¢ Mo(r i) = vb [2¢2pJri - 11) + ¢2pJri - h ) - ¢2pJri - h) - 2¢2pJri - 14) -

-¢2pz (r i - 15) + ¢2pz (r i - 16)] (9.4) 

The eigenvalues can be written in t he form 

Ep = Eo + 2(3cos [(27r / 6a)pa] , (9.5) 
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Fig. 9.4. Pictorial view of the 7rMO delocalized orbital correspondent to Eq. 9.3 
(eigenvalue Eo + 2(3) . 

while for the coefficients 

(9.6) 

where p = 0, ± 1, ± 2, 3. 
The benzene ring can be considered the cyclic repetition of a "crystal" of 

six Carbon atoms. The eigenvalues and the coefficients in the forms 9.5 and 
9.6 are somewhat equivalent to the band states in a one-dimensional crystal 
(see Chapter 12). 

The quantitative evaluation (by means of numerical methods or by re­
sorting to approximate radial parts of the wavefunctions) of the electronic 
eigenvalue as a function of the interatomic distance a yields a minimum for 
a c::: 1.4 A, in between the values a' = 1.34 A and a" = 1.54 A pertaining to 
double and to simple C-C bond, respectively. 

The structural anisotropy of the molecule is reflected, for instance, in the 
strong dependence of the diamagnetic susceptibility Xdia on the orientation. 
In fact, by extending the arguments discussed for atoms (§4.5) one can expect 
Xdia ex 2::i < r;sin2ei >, with e angle between the magnetic field and the 

positional vector of a given electron. Then, in the benzene molecule, X~ia < < 
X Jia (with II and ..l to the plane of the hexagon). (See Problem F.IX.3). 

Appendix IX.1 Ammonia molecule in electric field and 
the Ammonia maser 

According to Fig. 9.1 the Ammonia molecule can be found in two equiv­
alent configurations, depending on the position of the N atom above (state 
11 » or below (state 12 » the xy plane of the H atoms. By considering 
the molecule in its ground electronic state and neglecting all other degrees of 
freedom, let us discuss the problem of the position of the N atom along the 
z direction perpendicular to the x y plane, therefore involving the vibrational 
motion in which N oscillates against the three coplanar H atoms (for details 
on the vibrational motions see §1O.3 and §10.6). 



Appendix IX.l Ammonia molecule in electric field and the Ammonia maser 295 

The potential energy V (z) , that in the framework of the Born-Oppenheimer 
separation (§7.1) controls the nuclear motions and that is the counterpart of 
the energy E(RA B ) in diatomic molecules , has the shape sketched below 

V(z)(meV) 

50 

4.7xlO·2 meV 

E~ 
E;-T 

z 

11> ~N 
7 

• 
1 2> N~ 

• 

The distance of the N atom from the xy plane corresponding to the minima 
in V(z) is Zo = 0.38 A, while the height of the potential energy for z = 0 is 
Vo c::: 25meV. In the state 11 > the molecule has an electric dipole moment J-Le 
along the negative z direction, while in the state 12 > the dipole moment is 
parallel to the reference z -axis. Within each state the N atoms vibrate around 
+zo or - zoo As for any molecular oscillator the ground state has a zero-point 
energy different from zero, that we label Eo (correspondent to the two levels 
A and B sketched in Fig. 9.l.c). The vibrational eigenfunction in the ground 
state is a Gaussian one, centered at ±zo (see §10.3). The effective mass of the 
molecular oscillator is f-L = 3MH MN / (3MH + MN)' 

Thus the system is formally similar to the Ht molecule discussed at §8.1, 
the 11 >,12> states corresponding to the electron hydrogenic states Is A and 
IsB , while the vibration zero-point energy corresponds to - R Hhc. Therefore, 
the generic state of the system is written 

(A.IX.l) 

with coefficients Ci obeying to Eqs. 8.13. Here H12 - A is the probability 
amplitude that because of the quantum tunneling the N atom jumps from 
11 > to 12 > and viceversa, in spite of the fact that Eo « Vo. Two stationary 
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states are generated, say Ig > and lu >, with eigenvalues Eo - A and Eo + A , 
respectively. The correspondent eigenfunctions are linear combinations of the 
Gaussian functions describing the oscillator in its ground state (see §10.3): 

If! 

z z 

lu> Ig> 

The degeneracy of the original states is thus removed and the vibrational 
levels are in form of doublets (inversion doublets). For the ground-state the 
splitting Eg - Eu = 2A corresponds to 0.793 cm-I, while it increases in the 
excited vibrational states, owing to the increase of H I2 . For the first excited 
state 2A' =36.5 cm- I and for the second excited state 2A" =312.5 cm- I . It 
can be remarked that the vibrational frequency (see §10.3) of N around the 
minimum in one of the wells is about 950 cm - 1. 

The inversion splitting are drastically reduced in the deuterated Ammonia 
molecule N D3 where for the ground-state 2A = 0.053 cm- I . Thus the tunneling 
frequency, besides being strongly dependent on the height of the effective 
potential barrier Vo , is very sensitive to the reduced mass f..L. For instance, in 
the AsH3 molecule, the time required for a complete tunneling cycle of the 
As atom is estimated to be about two years. These marked d ependences on 
Vo and f..L explains why in most molecules the inversion doublet is too small 
to be observed. 

In NH3 the so-called inversion spectrum was first observed (Cleeton 
and Williams, 1934) as a direct absorption peak at a wavelength around 
1.25 cm, by means of microwave techniques. This experiment opened the field 
presently known as microwave spectroscopy. 
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The typical experimental setup is schematically shown below 

Voltage 
ramp 

Frequency measurement 

Stark electrode 

Finally it should be remarked that the rotational motions of the molecule 
(§10.2) , as well as the magnetic and quadrupolar interactions (Chapter 5), in 
general cause fine and hyperfine structures in the inversion spectra. 

As already mentioned the Ig > and lu > states of the inversion doublet 
in NH3 have been used in the first experiment (Townes and collaborators) 
of microwave amplification by stimulated emission of radiation (see 
Problem F.I.l). The maser action requires that the statistical population Nu 
is maintained larger than N g while a certain number of transitions from lu > 
to Ig > take place. 

Now we are going to discuss how the Ammonia molecule behaves in a 
static electric field. Then w e show how by applying an electric field gradient 
(quadrupolar electric lens) one can select the Ammonia molecule in the 
upper energy state. 

In the presence of a field [ along z the eigenvalue for the states 11 > and 
12> become 

H u = Eo + !Je[ and H22 = Eo - !Je[ 

The rate of exchange can be assumed approximately the same as in absence 
of the field, namely H12 = - A. The analogous of Eqs. 8.13 for the coefficients 
Ci in A.IX.l are then modified in 

dCl 
ilidt = (Eo + !Je[)Cl - A C2 (A.IX.2) 

dC2 
ilidt = (Eo - !Je[) C2 - ACI (A.IX.3) 

The solutions of these equations must be of the form Ci = aiexp( -iEt/li) , 
with E the unknown eigenvalue. The resulting Eqs. for ai are 
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(E - Eo - J-le[)al + Aa2 = 0 

Aal + (E - Eo + J-le[)a2 = 0 

and the solubility condition yields 

(A.IX.4) 

(representing a particular case of the perturbation effects described in Ap­
pendix 1.2 (Eqs. A.1.2.4)). When the perturbation is not too strong compared 
to the inversion splitting, Eq. A.IX.4 can be approximated in the form 

J-l~[2 
E± = Eo±A± 2A 

E± are reported b elow as a function of the field. 

E 

/I~>.// .. /// ... // .. · , ,+pe f:'"'", 
Eo ~------------------------------~ 

Eo+A 

I:; ..... ........................ E, ", 

(A.IX.5) 

Eq. A.IX.5 can be read in terms of induced dipole moments J-l;'d = 
- dE±jd[ = =t= J-l~[jA. Therefore, if a collimated beam of molecules passes 
in a region with an electric field gradient across the beam itself, molecules in 
the lu > and Ig > states will be deflected along opposite directions (this 
effect is analogous to the one observed in the Rabi experiment at §6.2). In 
particular, the molecules in the Ig > state will be deflected towards the region 
of stronger [2 , owing to the force - V [- (J-le[)2 j 2A]. 

In practice, to obtain a beam with molecules in the upper energy state 
one uses quadrupole e lectric lenses, providing a radial gradient of [2. The 
square of the electric field varies across the beam. Passing through the lens 
the beam is enriched in molecules in the excited state and once they enter the 
microwave cavity the maser action becomes possible. The experimental setup 
of the Ammonia maser is sketched in the following Figure. 
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The basic principles outlined above for the Ammonia maser are also at 
work in other type of atomic or solid-state masers. In the Hydrogen or Ce­
sium atomic maser the stimulated transition involves the hyperfine atomic 
levels (see Chapter 5). For the line at 1420 MHz, for instance, the selection 
of the atoms in the upper hyperfine state with F = 1 is obtained by a mag­
netic multipolar lens. Then the atomic beam enters a microwave cavity tuned 
at the resonance frequency. The resolution (ratio between the linewidth and 
1420 MHz) can be improved up to 10- 10 , since the atoms can be kept in the 
cavity up to a time of the order of a second. The experimental value of the 
frequency of the F = 1 ---+ 0 transition in Hydrogen is presently known to be 
(1420405751.781 ± 0.016 Hz) , while for 133Cesium the F = 4 ---+ 3 transition 
is estimated 9192631770 Hz, which is the frequency used to calibrate the unit 
of time. 

Solid state masers are usually based on crystals with a certain number of 
paramagnetic transition ions, kept in a magnetic field and at low tempera­
ture, in order to increase the spin-lattice relaxation time Tl and to reduce the 
linewidth associated with the life-time broadening (see Chapter 6) (as well as 
to reduce the spontaneous emission acting against the populations inversion). 
A typical solid state maser involves ruby, a single crystal of Ah03 with di­
luted Cr3+ ions (electronic configuration 3d3 ). The crystal field removes the 
degeneracy of the 3d levels (details will be given at §13.3) and the magnetic 
field causes the splitting of the M J = ±3/2, ±1/2 levels. The population in­
version between these levels is obtained by microwave irradiation of proper 
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polarization. 

Here we have presented only a few aspects of the operational principles of 
masers, which nowadays have a wide range of applications, due to their reso­
lution (which can be increased up to 10- 12 ) and sensitivity (it can be recalled 
that maser signals reflected on the surface of Venus have been detected). 

Problems F .IX 

Problem F .IX.1 Under certain circumstances the cyclobutadiene molecule 
can be formed in a configuration of four C atoms at the vertices of a square. 
In the MO.LCAO picture of delocalized 2pz electrons derive the eigenvalues 
and the spin molteplicity of the ground state (within the same approximations 
used for C6H6 ). 

Solution: 
The secular equation is 

o-E 
(3 
o 
(3 

(3 
o-E 

(3 
o 

o 
(3 

o-E 
(3 

(3 
o 
(3 

o-E 

By setting 0 - E = x, one has X 4 - 4(32x2 = 0 

= o. 

and then El = - 21(31 + 0, E 2,3 = 0 , E4 = 21(31 + 0 . 
Ground state: 40 - 41(31, triplet. 

Problem F.IX.2 Refer to the C3H3 molecule, with carbon atoms at the 
vertices of an equilateral triangle. Repeat the treatment given for C6H6, de­
riving eigenfunctions and the energy of the ground-state. Then release the 
assumption of zero overlap integral among orbitals centered at different sites 
and repeat the derivation. Estimate, for the ground-state configuration, the 
average electronic charge per C atom. 

Solution: 
For S ij = 0 for i i= j, the secular equation is 

so that 

Eo - E 
(3 
(3 

E J = Eo + 2(3 

(3 (3 
Eo - E (3 = 0 

(3 Eo - E 

EII ,IIJ = Eo - (3 
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and the ground-state energy is 

Eg = 3Eo + 4(3 - (3 = 3Eo + 3(3 

The eigenfunctions turn out 

1 A 
cPI = y'3 [cPl + cP2 + cP3] == y'3 

1 B 
cPII = J2 [cPl - cP3] == J2 

1 C 
cPIII = J6 [-cPl + 2cP2 - cP3] == J6 

The total amount of electronic charge on a given atom (e.g. atom 1) is given 
by the sum of the squares of the coefficient pertaining to cPl in cPI ,II ,III: 

1211212 q = 2(-) + - [(-) + (-) ] = 1 
y'3 2 J2 J6 

(having taken the average of the two degenerate states). 

For Sij == S -I- 0, the secular equation becomes 

Eo - E (3 - SE (3 - SE 
(3 - S E Eo - E (3 - S E = 0 
(3 - SE (3 - SE Eo - E 

and the eigenvalues are 

E _ Eo + 2(3 
I - I + 2S 

The ground-state energy is 

Eo - (3 
EII ,III = l"="S 

Eo + (3 (1 - 2S) 
Eg = 2EI + EII = 3 (1 + 2S)(1 _ S) 

with normalized eigenfunctions 

A 
cPI = J3(1 + 2S) 

B 
cPII = J2(1 - S) 

C 
cP III = J6(1 - S) 
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Again, by estimating the squares of the coefficients the charge at a given 
atom turns out 

I 1 
q = (1 - 8)(1 + 28) . 

The charge in the region "in between" two atoms (e.g. atoms 1 and 2) is 
obtained by evaluating the sum of the coefficients CIC2 (for (PI and (h) in 
¢ I ,II,I II , multiplied by the overlap integral. Thus 

" 8(1 - 28) 
q = (1 - 8)(1 + 28) 

Problem F .IX.3 Estimate the order of magnitude of the diamagnetic 
contributions to the susceptibility in benzene, for magnetic field perpendicular 
to the molecular plane. 

Solution: 
The diamagnetic susceptibility (per molecule) can approximately be written 

where n'lj; is the number of electrons in a molecular state 7/J and < r2 > 'lj; is 
the mean square distance. 

In benzene there are 12 Is electrons of C , with < r2 >18':::: a6/Z2 (Z = 6). 
Then there are 24 electrons in (Y bonds for which, approximately, 

o 
the length of the (Y bond being L = 1.4 A. 

Finally there are 6 electrons in the delocalized bond 7r z , where one can 
assume < r2 >7rz ':::: L2. The diamagnetic correction at the center of the 
molecule is dominated by the delocalized electrons and one can crudely esti­
mate X7r ~ - 6· 10- 29 cm 3 . 



10 

Nuclear motions in molecules and related 
properties 

Topics 

Rotations and vibrations in diatomic molecules 
How the rotational and vibrational states are studied 
The normal modes in polyatomic molecules 
Basic principles of rotational, vibrational and Raman spectroscopies 
Nuclear spin statistics and symmetry-related effects 

10.1 Generalities and introductory aspects for diatomic 
molecules 

In the framework of the Born-Oppenheimer separation (§ 7.1), once that the 
electronic state has been described and the eigenvalue Ee(R) and wavefunc­
tion <Pe (r, R) have been found , then the motions of the nuclei are described by 
a function <pSg) (R), where g represents the quantum numbers for the electrons 
and v are the quantum numbers (to be found) for the nuclei. This wavefunc­
tion is solution of the Equation 

(10.1) 

(note that Vnn in Eq. 7.3 and 7.5 has been included in Ee(R), see for example 
Eq.8.1). 

Let us refer to a diatomic molecule in the ground electronic state, for 
which we assume A = 0 and S = 0 e E state) and let us indicate the effective 
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potential energy, resulting from the electronic eigenvalue and the nucleus­
nucleus repulsion, with V(R), R being the interatomic distance (previously 
often indicated by RAE)' It is reminded that V(R) has the form sketched 
below 

VCR) 

By introducing the reduced mass j..t = MAME/(MA + ME) the molecule 
becomes equivalent to a single particle. By recalling the treatment used for 
the Hydrogen atom, Eq. 10.1 is rewritten 

where the polar coordinates R, B and cp have been introduced and (To + T<p ) 
involves the angular momentum operator L 2. The only difference with re­
spect to the radial part of the Schrodinger equation for Hydrogen is in the 
potential energy V(R), obviously different from the Coulomb form. Thus the 
factorization of the wavefunction follows: 

1>(R,B, cp ) = R(R)Y(B,cp) , (10.3) 

Y K M (B , cp) being the spherical harmonics characterized by quantum numbers 
K and M (the analogous of I and m in the H atom), related to the eigenvalues 
for L 2 and L z . 

The radial part R(R) obeys the Equation 

T R [V(R) K(K + l)n?] R = ER 
R + + 2j..tR2 (10.4) 

and corresponds to the one-dimensional probability of presence along a given 
direction under a potential energy including the centrifugal term, as sketched 
below 

Re 

XA :t XB 
0 .. 0 .. 

MA MB 
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By indicating with Q the internuclear distance R with respect to the equi­
librium distance Re , in terms of the local displacements XA and XE one has 

(10.5) 

Thus Q is a non-local coordinate (we shall return to this point when dis­
cussing the vibrational motions in polyatomic molecules, § 10.6). Then the 
centrifugal term in Eq. 10.4 can be written 

(10.6) 

having taken into account that Q / Re « 1. 
In Eq. 10.6 the term 2Q / Re couples the vibrational and the rotational mo­

tions. In a first approximation this term can be considered as perturbation 
and one can deal with the rotational part of the Schrodinger equation only. 
After the analysis of the vibrational part and the derivation of the correspon­
dent wavefunction R(R) == cPvib (R), it will be possible to take into account 
the roto-vibrational coupling by referring to unperturbed states described by 

(10.7) 

10.2 Rotational motions 

10.2.1 Eigenfunctions and eigenvalues 

From §10.1 it follows that the contribution to the energy of the molecule from 
the rotational motion is 

(10.8) 

This result can be thought to derive directly from the quantization of the an­
gular momentum P in the classical expression of the rotational energy p2/21, 
I being the moment of inertia I = R~J.L . 

The eigenfunctions cProt (e , <p), so that cP;otcProt dD yields the probabil­
ity that the molecular axis is found inside the elemental solid angle dD = 
sine de dip, coincide with the spherical harmonics. In the light of the classical 
relation IPI = 1w, to a given quantum state with eigenvalue 
IPI = [K(K + 1)]1/2 1i , one can associate a frequency of rotation Vrot = 
(h/47r 21) [K(K + 1)]1/2 . 

A fundamental rotational frequency 

(10.9) 
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211E l r degene",,,, (2K+ l) 
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rotational "frequency" V ro! = 0 

Fig, 10.1. Levels diagram for the lowest-energy rotational states. 

or equivalently a rotational constant (in cm- 1 ) B = (n/47r I c), is usually 
defined (B == (n2 /2J.LR~)/hc). 

The energy diagram for the first rotational states is reported in Fig. 10.1. 
The probability distribution of the molecular axis involves Yk MY K M . Since 

the ~-dependence of the spherical harmonics goes as exp( ± i M ~), the dis­
tribution of the molecular axes is characterized by rotational symmetry with 
respect to a given z direction. For M = K and large value of the quantum 
numbers the distribution tends to t he classical one, as expected from the 
correspondence principle. 

10.2.2 Principles of rotational spectroscopy 

The rotational states are experimentally studied by means of spectroscopic 
techniques involving the microwave range (typically 10- 1 --;-10 cm - 1) or the far 
infrared r ange (10--;-500 cm- 1 ) of the electromagnetic spectrum (see Appendix 
1.1). Usually the sample is a gas at reduced pressure, since frequent collisions 
would prevent the definition of a precise quantum state (which is hard to be 
defined in the liquid state, for instance). 

The generators of the radiation are often metals at high temperature or 
arc lamps while the detectors are semiconductor devices (for wavenumbers 
typically larger than 10 cm - 1). When low frequencies are required (say be­
low 150 GHz), klystrons, magnetrons or Gunn diodes (usually fabricated with 
GaAs) are the microwave sources. Wave guides, resonant cells and again semi­
conductor detectors are commonly used. 
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Without going into details of technical character, we shall devote attention 
to the selection rules for electric dipole transitions between states K', M' and 
K" , M". 

The electric dipole matrix element reads 

(10.10) 

where /-Le is the dipole moment of the molecule. Therefore only heteronuclear 
polar molecules, where I/-Le l i- 0 can be driven into transitions between 
different rotational states. Homonuclear molecules cannot interact with the 
radiation. From the matrix element in Eq. 10.10, in a way similar to the 
deduction of the selection rules for atomic transitions (see § 3.5 and App. 1.3) , 
the selection rules for electric dipole transitions between rotational states in 
polar molecules are 

iJ.K =±l iJ.M = O, ± l , (10.11 ) 

the latter being relevant when a static electric field is applied (see §10.2.4). 
The energy difference between the states K and (K + 1) is 

Ji2 [ ] Ji2 iJ.EK +1, K = 21 (K + 2)(K + 1) - K(K + 1) = T (K + 1) (10.12) 

Then in principle one expects rotational transitions at frequencies v = n Vrot 

(Eq. 10.9) , with n integer. 
The intensities of the lines, to a good approximation, are controlled by the 

statistical populations of the rotational levels. The number of molecules on a 
given K state, at the thermal equilibrium, is 

(10.13) 

with gK = (2K + 1). The normalization constant can be expressed in terms 
of the population on the K = 0 level and thus one writes 

a function of the "variable" K of the form sketched below 

NdT) 

ocK 
.... ~-- ......... 

'" 
" 
", 

"""",,:,:~p (-K (K+ I) 

(10.14) 

K 
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and implying typical absorption spectrum of the form shown in Figs. 10.2 and 
10.3. 

The fundamental rotational constants B 
molecules are reported b elow 

'Ii / 47r lefor some diatomic 

Molecule B(cm 1 ) 

H2 60.8 

N2 2.01 
O2 1.45 

HCI 10.6 
NaCI 0.19 

4., ........... 

4 
0< 2K+ ] 

u \ 
} \ 

1/10 1.J 0< exp (_K2) 

1 

/ 1.:1 

1.:1 

Fig. 10.2. Sketch of the expected absorption rotat ional spectrum for the DEr 
molecule on the basis of Eqs. 10.14 and 10.9. The intensities of the lines are nor­
malized to the one of the K = 0 --> K = 1 line. The rotational frequency D = Vrot/C 

is around 8cm- l , corresponding to rotational temperature hVrot/k B ~ 12K. 
T he separation between adjacent lines is 2B and Brot is often defined as Brot = 

n? / 2IkB = Bhc/kB (see §10.2.1) . 
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HF 
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10 IS ~ ~ ~ n 40 
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Fig. 10.3. (left) Absorption rotational spectrum of the HF molecule. The intensities 
of the lines are normalized to the K = 0 --> K = 1 line. In the right panel the 
wavenumbers associated with the K --> K + 1 transitions are reported as a function 
of K. A departure from the interval rule is observed at high K, owing to the increased 
strength of the coupling between rotational and vibrational motions (see §1O.5) . 

10.2.3 Thermodynamical energy from rotational motions 

Once the structure of the quantum levels is known, from the statistical distri­
bution function it is possible to derive the thermodynamical energy Urot and 
the specific heat. One has 

with NK given by Eq.10.14, where NK=o(T) can be written 

(N total number of molecules) 

The rotational partition function Zrot is 

Zrot = L (2K + 1) e- EK / kB T 

K 

It is noted that the energy in terms of Zrot (see Problem VL1.4) is 

2 d 
Urot = kE T dT In Zrot 

(10.15) 

(10.16) 

In the high temperature limit T» Brot = Ji2 j2IkE (Brot rv 5--;.-10 K for most 
molecules, with the exception of H2 where Brot c::: 87 K) , the sum over K can 
be transformed to an integral: 
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100 2 T Z ~ 2K e- K (}rol/T dK - -rot ~ - e . 
o r~ 

(10.17) 

For one mole (N = N A)' Urot ;::::; N A kB T and the specific heat turns out 
Cv ;::::; R, as expected from classical statistics. 

The temperature behavior of the specific heat (see Problem F.VI.1) is 
schematically reported b elow 

R 
-------------------------------------------7-------. 

Cv 

T 

10.2.4 Orientational electric polarizability 

Let us outline how to describe the effect of a static electric field on a system 
of dipolar diatomic molecules and how the polarizability is evaluated. The 
perturbation to the rotational states is given by the Hamiltonian 
'Hp = - /-L e . [ == -I /-Le l [cose , with [ electric field along the z direction. 
From parity argument one notes that the first order contribution to the energy 
is zero: 

(K' , M' I 'Hp I K' , M') = 0 

Thus a correction term to the eigenvalues of the form L1E ex: [2 and 
(J1.e!! )z ex: [ is expected, implying an effective induced dipole moment 
and therefore positive polarizability, somewhat similar to the paramagnetic 
susceptibility derived at § 4.4. 

For the ground-state at K = M = 0 the second-order perturbation cor­
rection 

K,M#O 

reduces to 

L1E62) = -{2 J1.;[21 J sineded¢J1,~cose .~~cose I2 = _~ J1.;[2{2 ' 
(10.18) 

having taken into account that the only matrix element different from zero 
is the one connecting the state K = 0 to the state K = 1, M = 0, with 
eigenfunctions 1/ V4·7T and y'"314"ircose, respectively. Then 
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(10.19) 

For the states at K i- 0 we report the result of the estimate similar to the 
one given above: 

o j..L ~ E2I[ K(K + 1) -3M2 ] 
E(K,M,E) = EK + ~ K (K + 1)(2K - 1)(2K + 3) , (10.20) 

for K i- o. From the sum over M in a given state IK, M > (in first approx­
imation the energy can be considered to depend only on K) and from Eq. 
10.20, one deduces 

a(K) c::: L a(K,M) = 0 for K i- 0 
M 

(note that LK M2 = K(K + 1)(2K + 1)/3). 
Then only the ground state (K = M = 0) contributes to the orientational 

effective electric moment along the field. The polarizability is temperature 
dependent, since the population of this state is affected by the temperature. 

The thermal statistical average reads 

(10.21 ) 

When for Zrot the sum over K can be transformed into an integral (see 
Eq.10.17) , by taking into account Eq. 10.18 with Brot = 112/2IkE' the single­
molecule pol ariz ability becomes 

similar to the classical Langevin form 

J e l-tE. COSO/kB T cosB dD 1 _ 
(cosB) = J ef1£COSO/kB T dD = ctnhx - ;: = L(x ) 

with L(x) Langevin function, that for x = j..LE /kET« 1 becomes 
L(x « 1) c::: x/3. 

10.2.5 Extension to polyatomic molecules and effect of the 
electronic motion in diatomic molecules 

(10.22) 

In the following we sketch how the rotational eigenvalues can be obtained also 
in polyatomic molecules when particular symmetries allows one to extend the 
quantum rules for the angular momentum. 
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The classical rotational Hamiltonian reads 

(10.23) 

where IA ,E,e are the moments of inertia with respect to the principal axes of 
the tensor of inertia (conventionally IA < IE < Ie). 

When the molecule is a prolate rotator , namely IA < IE = Ie, as for 
instance in CH3F sketched below 

then the Hamiltonian can be rewritten 

p1 p1 p1 pi; + Pfj _ p 2 p2 1 1 
H rot = 2IA + 2IE - 2IE + 2IE - 2IE + A (2IA - 2IE ) (10.24) 

Therefore from the quantization rules 

p2 = K(K + 1) 17,2 

the eigenvalues of the rotational energy turn out 

E(K M) = K(K + 1) 1i2 M21i2 (_1 _ _ _ 1_) 
, 2 IE + 2IA 2 IE ' 

(10.25) 

where now M refers to the component along the molecular axis A. 
Equivalently, for an oblate rotator, where IA = I E < Ie (as for instance 

in C6H6 (see § 9.3)) , one has a similar result. 
In the general case, when IA i=- IE i=- I e, no simple expressions can be de­

rived for the eigenvalues and therefore reference to limit situations is usually 
made. 

Up to now, in discussing the rotational motions, the electronic motions 
have been disregarded. In fact, for diatomic molecules it has been assumed 
the most common case of 1 E ground-state where the components of the orbital 
and spin moments along the molecular axis are zero. 
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The derivation of the rotational eigenvalues carried out for the prolate 
polyatomic rotator leading to Eq. 10.25 can be used to include the effect of 
the electron motion for diatomic molecules in electronic state A -I- O. In a sim­
plified picture, in fact, the electronic clouds can be regarded as a rigid charge 
distribution rotating around the molecular z-axis. Thus the diatomic molecule 
can be considered somewhat equivalent to a prolate rotator, with moments 
of inertia IA == Ielec and IB = Ie = Inucl., with IA « IB,e . Then, from 
extension of Eq. 10.25, at variance with Eq. 10.8 the rotational eigenvalues 
for diatomic molecules in an electronic state different from E turn out 

(10.26) 

A being the quantum number for L z (or for J z in the case of strong spin­
orbit coupling). The last term in Eq. 10.26, much larger than the first one 
and independent from the rotational levels, is the one involved in the electron 
kinetic energy. When the molecule is in a state at A -I- 0 the roto-vibrational 
structure in the spectra involving electronic states display an extra line cor­
respondent to a transition at 11K = 0, called Q-branch. This line is fre­
quently observed in the electronic lines of band spectra (§10.8) or in Raman 
spectroscopy (§10.7), when transitions between different electronic states are 
involved (see for example Figs. 10.8 and 10.9). 

Problems X.2 

Problem X.2.1 As sketched in the following scheme the emission spec­
trum in the far infrared region from HBr molecules displays a series of lines 
regularly shifted by about 15 cm - 1. 

Derive the statistical populations of the rotational levels for T = 12 K , 
36 K and 120 K. Estimate the interatomic equilibrium distance and obtain the 
relationship between temperature and rotational number K max corresponding 
to the line of maximum intensity. 
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Solution: 
The separation among adjacent lines is 2Bhc, then 112 /21 = 1.06 meV and 
Re = 1.41 A . The maximum intensity implies (8N(K) / 8K)Kmax = O. Then, 
from Eq. 10.14, T = 112(2Kmax + 1)2/ 4kB l. 

The statistical populations as a function of K are reported below: 
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K 

Problem X.2.2 For an ensemble of diatomic molecules at the thermal 
equilibrium write the contribution from rotational motions to the free energy, 
to the entropy, to the thermodynamical energy and to the specific heat , in the 
limit T » Brot . 

Solution: 
The partition function is 
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K(K + l )r,2 

Z = 2:)2K + l) e- 2 J kBT 

K 

By substituting the sum with an integral 

Z c::: dK(2K + 1)e- K (K+ 1)8rot/T = --j.= T 
o t1rot 

one derives F = - kBTlnZ, U = kBT2a~ ln Z, S = UTF 
au 
aT . 

aF C 
-aT' v 

Problem X.2.3 By referring to t he three rotational levels depicted in 
Fig. 10.1 , plot the splittings induced by a static electric field (Stark effect). 
Indicate the transition that can be observed in rotational spectroscopy and 
estimate the order of magnitude of t he resolution required to evidence the 
splittings, for external field [; = 103 Volt /em. 

Solution: 
From Eqs. 10.18 and 10.20 

K 
2 

o 

4B 

2B 

£=0 

_ . .--'-:: 

.. ----_ .. ------ --~--~--~l 

M 

o 
± \ 

±2 

o 

± \ 

and for J..le rv 10- 18 u.e .s.cm and B rv 10 cm-I, i1v/ v rv 10- 7 . 
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Problem X.2.4 In the rotational spectrum of H35CI two lines are de­
tected with the same strength at 106 cm - 1 and at 233.2 cm - 1. Derive the 
temperature of the gas. 

Solution: 
From 

v = 2B(K + 1), 

with B = 1O.6cm- l , one has for VI = 106.0cm- 1 KI = 4 and for V2 = 
233.2 cm- I K2 = 10. The intensity is proportional to the population of the 
rotational l evels. Then 

h c BK , ( K, + , ) h c BK2 ( K2 + 1 ) 
(2K I + 1)e- kBT = (2K2 + 1)e- k8 T 

and 
90hcB 

T = 7 c::: 1620K 
kB In "3 

10.3 Vibrational motions 

10.3.1 Eigenfunctions and eigenvalues 

Going back to the radial p art of the Schrodinger equation (Eq.lO.4), again 
disregarding the term - 2Q / R e and without including the rotational terms 
K(K + 1) 17,2 / 21 which does not depend on (R - Re ), the function U(R) 
RR(R) is introduced, so that the equation becomes 

(10.27) 

While the full expression of the potential energy V(R) is unknown, the 
vibration involves small displacements around the equilibrium position R e 
and then one can write 

(10.28) 

Since (~~)Re is zero, by omitting the constant V(Re) (namely the energy E 
has to be added to the electronic energy at the equilibrium position, see Fig. 
7.2) , in terms of the non-local coordinate Q = XA - XB (Eq. 10.5), one has 

1 2 
V(R) = 2kQ + ... , (10.29) 

where k is the curvature of V(R) around the equilibrium position. In the 
harmonic approximation higher order terms in the expansion 10.28 are 
neglected . The equation for the vibration of the nuclei around the equilibrium 
position is thus written 
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(10.30) 

the well known form for the harmonic oscillator (with - R e ::; Q < 00). Then 
the eigenfunctions are related to t he Hermite polynomials and the eigen­
values are 

Ev = (v + 1/ 2)hvo (10.31 ) 

with quantum number v = 0, 1, 2,3 ... , while Vo = (l/27r) Jk/ IL corresponds to 
the frequency of the classical oscillator with same mass and elastic constant. 

The eigenvalues and eigenfunctions for low energy states are depicted in 
Fig. 10.4. The ground state (v = 0) is described by the wavefunction 

_ Q 2 b b __ 27rVolL U(Q)cx:e - 2- , with n (10.32) 

implying a behavior significantly different from the one expected for clas­
sical oscillator for which the maxima of probability of presence are at the 
boundaries of t he motion. Other relevant differences with respect to classical 
oscillator are the extension of the "motion" outside the extreme elongations 
and the occurrence of zero-point energy Ev=o = (1/2)hvo . 

The mean square displacement from the equilibrium position reads 

and from the expressions of the Hermite polynomials one finds 

2 n < Q >v= r.;y;(v + 1/2) = Ev / k 
v ILk 

(10.33) 

(10.34) 

implying Ev = k < Q2 >v, the same relation holding for the classical oscilla­
tor. 

To give a few representative examples, in the HCI molecule the vibra­
tional frequency is Vo = 8.658 X 1013 Hz, corresponding to a force constant 
k = 4.76 X 105 dyne/cm, while in CO Vo = 6.51 X 1013 Hz, corresponding to 
a force constant k = 18.65 X 105 dyne/cm. 
Some vibrational constants 170 for homonuclear diatomic molecules are re­
ported below: 

Molecule (cml) 

H2 4159 (see caption in Fig. 10.4) 
N2 2330 
O2 1556 (see caption in Fig. 10.4) 
Li2 246 
Na2 158 
CS2 42 
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Fig. 10.4. First vibrational states in a diatomic molecule, having assumed 
k = 5 X 105 dyne/cm and effective mass p, = 10- 23 g, corresponding to vibrational 
frequency va = 3.6 . 1013 Hz. The dotted lines correspond to the maxima elongations 
according to the classical oscillator in the parabolic potential energy indicated by 
the solid line. 
Typical values for the force constants are i) in H2 k c:::: 5 X 105 dyne/cm; ii) in O2 
(where a double bond is present) k c:::: 11 X 105 dyne/cm; iii) in N2 (triple bond) 
k c:::: 23 X 105 dyne/cm ; iv) in NaCI (ionic bond) k c:::: 1.2 X 105 dyne/cm . 

10.3.2 Principles of vibrational spectroscopy and anharmonicity 
effects 

In regards of the main aspects, the spectroscopic studies of the vibrational 
states in molecules are similar to the ones in optical atomic spectroscopy. The 
spectral range typically is in the range 100 - 4000 cm- 1 (see Appendix 1.1) 
and the devices are no longer based on glasses but rather use alkali halides, 
to reduce the absorption of the infrared radiation. The diffraction grat­
ings grant a better resolution and the detectors are usually semiconductor 
devices. Details of technical character can be found in the exhaustive book by 
Svanberg, quoted in the Preface. 

As for rotational spectroscopy, being more interested into the fundamental 
aspects, we turn our attention to the transition probability due to the electric 
dipole mechanism. For two vibrational states at quantum numbers Vi and v" , 
the component along the molecular axis of the electric dipole matrix element 
reads 
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(Rv' ---+v") z = J U;"MeUv,dQ (10.35) 

where Me(Q) is a complicate function of the interatomic distance R. 
The sketch of a plausible dependence of Me with R is given b elow 

f.Le 

R 

One can expand Me around R e in terms of Q: 

Me = Me(O) + (~ )oQ + ... , (10.36) 

where t he first t erm is involved in the rotational selection rules, while the ex­
pansion has been limited to the linear t erm in Q (often called linear electric 
approximation) . 

From Eq. 10.35 and 10.36 one concludes that only heteronuclear molecules, 
with Me i- 0, can be driven to transitions among vibrational states. Further­
more, from the t erm linear in Q one deduces that only s t ates of different parity 
imply a matrix element different from zero. Indeed, as it can b e seen from in­
spection to t he Hermite polynomials, only transitions between adjacent s tates 
are allowed: Llv = ± l. One can also remark that the frequency emitted or 
absorbed is the one expected for a classical Lorentz-like oscillator. 

Thus in the harmonic approximation (Eq. 10.29) and in the linear dipole 
approximation (Eq. 10.36) (sometimes called electrical harmonicity), one 
expects a single absorption line, at t he frequency Vo' The line y ields the 
curvature of the energy of the molecule at the equilibrium interatomic dis­
tance. The intensity of each component, to a large extent , is controlled by the 
statistical population on the vibrational levels: 

(10.37) 

with 
(10.38) 
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and N total number of molecules. 
For kET « hvo , as it is often the case, the ground state is by large the 

most populated and therefore the absorption line is related practically to the 
transition v = 0 ---+ v = 1. 

Now a brief discussion of the anharmonicity effects is in order. The 
electrical anharmonicity originates from the term in Q2 , neglected in the ex­
pansion 10.36. According to the correspondent matrix element in Eq. 10.35, 
because of parity characters of the operator and of the Hermite polynomials, 
that term implies transitions between states at the same parity. Therefore 
the selection rule L1v = ± 2 results, for states pertaining to the mechanical 
harmonic approximation (Eq. 10.29). 

The qualitative effect of the terms proportional to Q3 and Q4 in the expan­
sion 10.28 (mechanical anharmonicity) is to cause a progressive reduction 
in the separation between the states at high quantum number v, as sketched 
below 

E 

5 
4 

R 

Then from the matrix element of the form correspondent to Eq.1O.35, 
transitions at frequencies different from Vo have to be expected. 

The anharmonic terms can b e analyzed as perturbation of the vibrational 
states described by the wavefunctions Uv(Q). The term in Q3 must be consid­
ered up to the second order, its expectation value being zero for unperturbed 
states. Thus the eigenvalues turn out of the form 

(10.39) 

where the constant a, much smaller than the unit , is related to the ratio 
[(d3V/dR3 )Re F /k 5/ 2 . To give an idea, for the hydrogen molecule H2 , a = 
0.027567. In H35Cl, vo /e = 2990.95 cm- 1 and a = 0.0176. 
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For an heuristic potential V(R) in the Morse-like form (see §10.4) one 
derives a = hvo/4De, with De == - V(Re), as we shall discuss in a later 
Section (see Eq. 10.41 and 10.47). 

Problems X.3 

Problem X.3.1 Consider the H2 molecule in the vibrational ground state 
and in the first excited rotational state (K = 1). Evaluate the number of 
oscillations occurring during one rotation. 

Solution: 
From 

[K(K + 1)]1/2 n V2n v - - ---
rot - 27f I - 27f fJ.,R~ 

and Vvib = (1 / 27f)Jk/p, the number of oscillations is 

Problem X.3.2 The dissociation energy in the D2 molecule is increased 
by 0.08 eV with respect to the one in H2 (4.46 eV). Estimate the zero point 
energy for both molecules. 

Solution: 
From 

E=-A+nw(v+~) 
the dissociation energy is given by Ed = +A - ~nw, for v = O. Since A(H) = 
A(D), 

Hence 

nw(H) [l - w(D)/w(H)] = nw(H) [l - 1/ V2] = 0.08 eV 
22' 

and the zero-point energy of H2 turns out nw(H)/2 = 0.27 eV while for D2 
0.27/V2eV = 0.19 eV. 
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Problem X.3.3 The infrared spectrum of a gas of diatomic molecules is 
characterized by lines equally spaced by the amount of about 1011 Hz. A static 
electric field of 3k V / e m is applied. The lowest frequency line, with intensity 
2.7 times smaller than the adjacent one, splits in a doublet , with 1 MHz of 
separation between the lines. D erive the molar polarizability. 

Solution: 
From the ratio of the intensities 1(1) / 1(0) = 2.7 = 3exp( - hvrot/kBT) , with 
Vrot = 1011 Hz, the temperature is deduced: T c::: 45.6 K. 

Since kBT » hVrot the molar polarizability reads (see Eq. 10.22) 
cx = NAJ.L~/3kBT. 

The electric field partially removes the degeneracy of the K = 1 level. The 
separation between levels at MK=o e M K=±1 turns out (see Eq. 10.20) 

Then J.L~ = 14.6 x 1O- 38 u.e.s. 2cm2 and cx(T = 45.6K) = 4.7 emu/ mole. 

Problem X.3.4 Evaluate the order of magnitude of the electronic, rota­
tional and vibrational polarizabilities for the HCI molecule at T = 1000 K 
(the elastic constant is k = 4.76 X 105 dyne/cm and the internuclear distance 
R e = 1.27 A). From the Clausius-Mossotti relation estimate the dielectric 
constant of the gas, at ambient pressure. 

Solution: 
For order of magnitude estimates one writes (see Problem F.V1II.5 and Eq. 
10.22) 

e2 R2 
cx = __ e c::: 10- 22 cm3 . 

rot 3kB T 

For the vibrational contribution (see Prob. 1V.2.3 and Prob. X.5.6) 

From the equation of state PV = RT, by taking into account that at ambient 
pressure and temperature the molar volume is V = 2.24 * 104 cm3 , at T = 
10000 K one finds V rv 8.2 * 104 cm3 , corresponding to the density N c::: 1019 

molecules cm -3 . 

From Llf = (47rNcxrot)/ [1 - 47rNcxrot!3] c::: 47rNcxrot , one derives f ~ 1.01. 
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lOA Morse potential 

An heuristic energy curve for diatomic molecules that can be assumed as 
potential energy for the vibrational motion of the nuclei (Eq. 10.27) is the one 
suggested by Morse: 

(10.40) 

of the form sketched below. 

VM 

R 

o f-------"L---

This expression retains a satisfactory validity for R around the interatomic 
equilibrium distance Re. De corresponds to the energy of the molecule for R = 
Re (the real dissociation energy being De minus the zero-point vibrational 
energy (1 / 2)hvo) , while 13 is a characteristic constant. 

It is noted that for R close to Re Eq. 10.40 yields VM ~ DeQ2 f32, 
namely the harmonic potential with elastic constant k = 2Def32, with 
Vo = (13/ V27r) J De/ fL· 

The Morse potential, often useful for approximate expression of the elec­
tronic eigenvalue E(RAB ) in diatomic molecules, has the advantage that the 
Schrodinger equation for the vibrational motion (Eq. 10.27) can be solved an­
alytically, although with cumbersome calculations. The eigenvalues turn out 

EM = hvo [(v + 1/2) - a(v + 1/2)2] (10.41 ) 

with a = (hvo/4De) (see Eq. 10.39). The eigenfunctions are no longer even or 
odd functions for v even or odd, respectively, at variance with the ones derived 
in the harmonic approximation. Therefore one has transitions at Llv i- ± 1 
without having to invoke electrical anharmonicity. 
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Problems XA 

Problem X.4.1 From the approximate expression for the energy of a 
diatomic molecule 

V(R) = A (1 - exp[-B(R - C)])2 

with A = 6.4 eV, B = 0.7 X 108 cm- 1 and C = 10- 8 cm, derive the main 
properties of the rotational and vibrational motions. 
Sketch the qualitative temperature dependence of the specific heat. Assume 
for the reduced mass the one pertaining to HF molecule. 

Solution: 
The elastic constant is k = 2AB2 = 105 dyne/cm . For the reduced mass 
JL = 0.95M (with M the proton mass) , the fundamental vibrational frequency 
is Vo = 2 X 1013 Hz, corresponding to the vibrational temperature 8 v = 
hVo/kB c:::: 960 K. 

For an equilibrium distance Re = C , the moment of inertia is I = 1.577 X 

10- 40 g cm2 . The separation between adjacent lines in the rotational spectrum 
is LlD = 35.6 cm- 1 and therefore 8 r = Bhc/ k B = 25.6 K.The qualitative 
temperature dependence of the molar specific heat is sketched below. 

Cv 

2R 

R 

Problem X.4.2 In the RbH molecule (Re = 2.36 A) the fundamen­
tal vibrational frequency is Vo = 936.8 cm- 1 and the dissociation energy 
De = 15505 cm -1 . Derive the Morse potential and the correction due to the 
rotational term for K = 40 and K = 100. Discuss the influence of the rotation 
on the dissociation energy. 
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Solution: 
The parameter (3 = 27rvo J M/ 2De and from M = 1.65 . 10- 24 g one has (3 = 
9.14.107 cm- I . 

The rotational constant B at the equilibrium distance Re is 

h -1 B = 2 R2 c::: 3 cm . 
87r cM e 

To account for the rotational contribution the energy has to be written in 
terms of the R-dependent rotational constant in Eq. 10.4. Therefore 

R2 
Erot(R) = hcBK(K + 1) . R~ , 

so that the effective potential becomes 

plotted b elow. 
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On increasing the rotational number the molecular bond is weakened. 
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10.5 Roto-vibrational eigenvalues and coupling effects 

In high resolution an absorption line involving transitions between vibrational 
states evidences the fine structure related to simultaneous transitions between 
rotational states (See Fig. 10.5). 

K" 

,"~ 1 1 
K' 

,'~O 1 

3700 Vo 4200 
em-I 

Fig. 10.5. Rotational structure in the vibrational spectral line of the HF molecule 
and illustration of the transitions generating the P and R branches. 

Still assuming weak roto-vibrational coupling, the wavefunction is ¢!:c;r Rv(R) 
and the eigenvalues are 

is 

E _ ( !)h 112 K(K + 1) 
K,v - V + 2 Va + 2 R2 

f..L e 
(10.42) 

The electric dipole matrix element connecting two states K I , Vi and K", v" 
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RK' ,v'--7K" ,v" ex ¢rot ' *R v,, (R) * · (J-L e + cjQ)¢rot' R v, (R)sinBdBd¢dQ J K" M" K'M' 

(10.43) 
where j is a unitary vector along the molecular axis. The term involving J-Le 
drives the purely rotational transitions while 

(10.44) 

implies transitions with the selection rules 11K = ± 1 and l1v = ± 1 (see Eq. 
10.11 and §1O.3.2). When in the Vi -+ v" transition the quantum number K 
increases then the correspondent line is found at a frequency v > Vo (branch 
R in Fig. 10.5) while when K decreases one has v < Vo (branch P). 

It is noted that the line at v = Vo is no longer present. When electronic 
states at 11 i- 0 are involved in a transition a component at Vo can be observed 
(called Q branch) , usually in form of a broad line (see §10.2.5, Eq. 10.26 and 
examples at Figs. 10.8 and 10.9). 

From Eqs 10.42 and 10.44 the wavenumbers associated with the roto­
vibrational transitions are 

DR = Do + Bv,, (K + l)(K + 2) - Bv, K(K + 1) 

Dp = Do + Bv" K(K - 1) - Bv,K(K + 1) 

(10.45) 

(10.46) 

Since Bv' c::: Bv" c::: Bv the separation between the adjacent lines turns out 
about 2Bv, as shown in Fig. 10.5. 

Now a brief comment on the role of the terms coupling the rotational and 
vibrational motions is in order. In the framework of the perturbative approach, 
with unperturbed eigenfunctions YK,M (B ,¢)R(Q), according to Eq. 10.6 the 
perturbing Hamiltonian is 

Hp = 112 K(K + 1) ( -2~). 
2f..leRe Re 

No correction terms to the unperturbed eigenvalues are expected at the first 
order. Thus the evaluation of the roto-vibrational coupling has to be carried 
out at the second order in Hp. 

The final result for the second order correction is 

The term in al is the one due to mechanical anharmonicity, already dis­
cussed (Eq. 10.39). The term in a2 is related to the effect on the elastic 
constant produced by the centrifugal potential and by the contribution in Q 
and Q3. Finally the term in a3 in Eq.10.47 reflects the increase of the moment 
of inertia due to the rotation of the molecule (centrifugal distortion). 

The detailed expressions for the coefficients a i in Eq. 10.47 are al = 
(11/3847r f..l k v3)(5 0 2-3 k (3) , a2 = (113 / k2 R~)(Re 0+3 k) and a3 = 114 /2 k f..l2 R~ 
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(as it can be obtained also classically by writing kQ = J-l w2 R and then eval­
uating the rotational energy). Here a and (3 are the coefficients of the terms 
in Q 3 and in Q4 in the perturbative Hamiltonian resulting in the expansion 
in Eq. 10.6. 

Problems X.5 

Problem X.5.l The rotovibrational transmission spectrum for the HCl 
molecule is shown below. 

3000 2900 2800 2700 em·! 

Derive the equilibrium distance and the elastic constant for the molecule. 
Which is the origin of the doublets observed at each peak? How does the 
spacing between adjacent lines change for the deuterated molecule? 

Solution: 
From the spacing among adjacent lines .1v ~ 21cm- 1 = 2Bhc, the moment 
of inertia being I = 2.67 X 10- 40 g cm2 , the equilibrium distance turns out 
Re = 1.27 A. The vibrational frequency is about Vo = 2890cm- 1c ~ 8.67x 1013 

Hz, implying an elastic constant k = 41T2V6J-l = 4.56 x 105 dyne/cm. 
The doublet arises from the spectrum of the H35Cl and H37Cl molecules. 
Deuteration implies an increase of the reduced mass by about a factor 2, lead­
ing to a spacing of the lines about.1v ~ 1O.5cm- 1 . The vibrational frequency 
is reduced by a factor close to J2. 

Problem X.5.2 The fundamental vibrational frequency of the NaCl 
molecule is Vo = 1.14.1013 Hz. Report in a plot the temperature dependence 
of mean-square displacement from the equilibrium interatomic distance. 
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Solution: 
From Eqs. 10.34 and 10.37 (see Problem F.X.1 for the average energy): 

0.0 14 
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Problem X.5.3 Derive the equilibrium distance and the vibrational fre­
quency of a diatomic molecule in the assumption of interatomic effective po­
tential V(R) = 4U((a/R)12 - (a/R)6), with a = 3.98 A and U = 0.02 eV, for 
reduced m ass J.L = 10- 22 g. 

Solution: 
From av /aR I = 0 one has Req = a· (2)i = 4.47 A, while 

R = R eq 

V(Req) = 4U [~ - ~] = - U = - 0.02 eV. 

By deriving V(R) twice, one finds 

k = :~ (12.13. T 7/ 2 - 6·7· T 4/3) = 57.144 ~ = 11.558.102 dyne/ em. 

Then 

1 If 11 V = - - = 5.18·10 Hz. 
27f J.L 
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Problem X.5.4 In a diatomic molecule the eigenvalue E(R) for the elec­
tronic ground state is approximated in the form 

E(R) = - 2Vo [~ _ _ 1_] 
P 2p2 

(with p = Ri a and a characteristic length). Derive the rotational, vibrational 
and roto-vibrational energy levels in the harmonic approximation. 

Solution: 
The equivalent of Eq. 10.4 is 

where JL is the reduced mass. The effective potential has the minimum for 

K(K + 1)n? 
p = Po = l + = l + B 

2JLa2Vo 

For V (p) = - Vo (1 + B) -l + Vo (1 + B) -3 (p - po)2 the Schrodinger equation 
takes the form for the harmonic oscillator. Then 

E + Vo (l + B) - l = n - 1 + v+-2Vo ( B) -3 ( 1) 
JLa2 2 

For B« 1, 

Problem X.5.5 From the data reported in the Figure at Problem X.5.1 for 
the Hel molecule, estimate the vibrational contribution to the molar specific 
heat , at room temperature. 

Solution: 
From the thermodynamical energy < E >= Lv EvNv(T) (see Eq. 10.37) the 
molar specific heat turns out 

where TD is the vibrational temperature TD = hvolkB, given by 
TD = 4.15 . 103 K for Vo = 0.87 . 1014 Hertz. 
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At room temperature T« TD and C v c::: R(TD/T)2exp( -TD/T) = 
1.5· 104 erg/K mole. 

Problem X.5.6 A static and homogeneous electric field E is applied along 
the molecular axis of an heteronuclear diatomic molecule. In the harmonic 
approximation for the vibrational motion, by assuming an effective mass f-L 
and an effective charge -eJ (with 0 < J ::; 1, see §8 .5) derive the contribution 
to the electrical polarizability, in the perturbative approach. 

For 

Prove that the result derived in this way is actually the exact one. 
Solution: 

'Hp = JezE 

the first order correction is < vlzlv >= O. The matrix elements 'Hvv' for z are 

I (V+ 1)1/2 
'Hvv' =< vlzlv >= ~ for V i = V + 1 

and 

for V i = v- I , 

where 0: = f.L2~vO and Vo = 2~ y'k/ f-L , with k force constant . 
The second order correction to the energy E~ turns out 

= (feE)2 { v2~1 + 2'::. } = _ (feE)2 1 . 
- hvo hvo 8;r2 f-L V5 

Then the electric polarizability is 

independent of the state of the oscillator (N number of molecule for 
unit volume). 

The result for the single molecule polarizability 0: is the exact one. In fact , 
going back to the Hamiltonian of the oscillator in the presence of the field 

Ji2 d2 1 
'H = - -- + -kz2 + JeEz 

2f-L dz 2 2 

by the substitut ion z = Z l - (feE / k) it becomes 
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1 112 d2 1 (/)2 1 ( )2 H = - - - + -k z - - feE 
2fJ dZ'2 2 2k 

implying the eigenvalues 
E' = EO _ (f eE)2 

v v 2k 

and therefore ex = (fe)2 j k. 

10.6 Polyatomic molecules: normal modes 

In a polyatomic molecule with 8 atoms, (38 - 6) degrees of freedom involve 
the oscillations of the nuclei around the equilibrium positions. If qi indicate 
local coordinates expressing the displacement of a given atom, as sketched 
below, 

for small displacements the potential energy, in the harmonic approximation, 
can be written 

(10.48) 

Similarly, the kinetic energy is T = L i, j aijCjJlj. The classical equations 
of motion become 

(10.49) 

namely (38 - 6) coupled equations, corresponding to complex motions that 
can hardly be formally described. Before moving to the quantum mechanical 
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formulation it is necessary to introduce a new group of coordinates Q = 
Lj hjqj (and a group of constants Cl, C2, etc ... ) so that, by multiplying the 
first Eq.10.48 by Cl , the second by C2, etc ... and adding up, one obtains 
equations of the form d2Qjdt2 + )..,Q = O. This is the classical approach to 
describe small displacements around the equilibrium positions. The conditions 
to achieve such a new system of equations are 

(10.50) 

(10.51 ) 

Therefore, in terms of the constants Ci 

(10.52) 

implying 
I)..,aij - bijl = 0 (10.53) 

This secular equation yields the roots).., (1) , ).., (2), ... corresponding to the con­
ditions allowing one to find hj so that the equations of motions become 

These equations in terms of the non-local, collective coordinates 

Qi = Lhij qj 
j 

correspond to an Hamiltonian in the normal form 

where 
)..,(i) == (02V) 

oQ; 0 

(10.54) 

(10.55) 

(10.56) 

(10.57) 

The Q's are called normal coordinates. The normal form of the Hamilto­
nian will allow one to achieve a direct quantum mechanical description of the 
vibrational motions in polyatomic molecules and in crystals (see Chapter 14). 

A few illustrative comments about the role of the normal coordinates are 
in order. From the inverse transformation the local coordinates are written 

and therefore, from Eq. 10.54, 

qi = LgijQj 
j 

(10.58) 
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qi = L gij AjCOS [ v>:Wt + 'Pj ] 
J 

(10.59) 

Thus the local motion is the superposition of normal modes of vibra­
tion. Each normal mode corresponds to an harmonic motion of the full system, 
with all the S atoms moving with the same frequency VA (j) and the same 
phase. The amplitudes of the local oscillations change from atom to atom, in 
general. 

Taking a look back to a diatomic molecule and considering the vibration 
along the molecular axis (see § 10.3) it is now realized that the normal coordi­
nate is Q = (XA -XE ). The root of the secular equation analogous to Eq. 10.53 
yields the frequency w = Jk//-L and the (single) normal mode implies the har­
monic oscillation, in phase opposition, of each atom, with relationship in the 
amplitudes given by XA = -xE(ME /MA). 

The formal derivation of the normal modes in polyatomic molecules in 
most cases is far from being trivial and the symmetry operations are often used 
to find the det ailed form of the normal coordinates. For a linear molecule with 
three atoms, as CO2 , the description of the longitudinal vibrational motions in 
the harmonic approximation is straightforward (see for an illustrative example 
Prob. F.X.5). Fig. 10.6 provides the illustration of the four normal modes. 

The coupled character of the motions is hidden in the collective frequency 
A (i) == (~) 0, namely in the curvature of the potential energy under the 

variation of the i-th normal coordinate. 
It is noted that the stability of the system is related to the sign of A. 

St ructural and ferroelectric phase transitions in crystals, for instance, are 
associated with the temperature dependence of the frequency of a normal 
mode, so that at a given temperature the structure becomes unstable (A (i) is 
approaching zero) and a transition to a new phase, restoring large and posi­
tive A (i) , is driven. 

Once that the vibrational motions are described by normal coordinates 
Qi, the quantum formulation is straightforward. In fact , in view of the form 
of the classical Hamiltonian, the eigenfunction iJ>( Ql, Q2, ... ) is the solution of 
the equation 

(10.60) 

(the nuclear masses are included in mass-weighted coordinates Q 's). Therefore 
the wavefunctions and the eigenvalues are 

(10.61 ) 

n i = 0,1, ... (10.62) 



10.6 Polyatomic molecules: normal modes 335 

o c 

o J-.... --.. --....( C t----------{ .-.,~~ 

.' :f 
l-------{ c l----------{ 

••••••• 

-' 

s 

A 

Tranverse 
modes 

Fig. 10.6. Normal modes (longitudinal and transverse) in the C02 molecule. The 
symmetric mode S is not active in the infrared absorption spectroscopy, the selection 
rule requiring that the normal mode causes the variation of the electric dipole 
moment (see Eq. 10.66), while the anti symmetric mode A is active. The inverse 
proposition holds for Raman spectroscopy (see § 10.7) where the variation of the 
polarizability rather than of the dipole moment is required to allow one to detect 
the normal mode of vibration. 

where P(Qi) and Ei = (ni + 1/2)nV~Ci) are the single normal oscillator eigen­
functions and eigenvalues. Thus, by recalling the results for the diatomic 
molecule (§ 10.3), the vibrational state is described by a set of numbers 
nI, n2, ... , labelling the state of each normal mode. 

Now we are going to show that within the harmonic approximation any 
normal oscillator interacts individually with the electromagnetic radiation, in 
other words the normal modes are spectroscopically independent. 

The electric dipole matrix element for a transition from a given initial 
state to a final one, reads 

In the approximation of electrical harmonicity (see § 10.3) 

I/. ex """,(1!0<::!hlf.,_Z_) Q. 
fA'ex ,y,z ~ 8Q. 0' 

i ' 

(10.64) 
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Eq. 10.63 involves a sum of terms of the form 

This term is different from zero when 

( 8J.Le X,y,Z ) --L 0 
8Qi 0/ , 

(10.65) 

(10.66) 

meaning that the i-th normal mode must imply a variation of the electric 
dipole moment of the molecule. At the same time it is necessary that 

nf = n in for J' --L i 
J J' / 

nf = n in ± 1 , , (10.67) 

Therefore each normal oscillator interacts with the electromagnetic radiation 
independently from the others, with absorption spectrum displaying lines in 
correspondence to the eigenfrequencies of the various modes. 

When the selection rule in Eq. 10.66 is verified the mode is said to be 
infrared active. As a consequence of this condition, one can infer that in the 
CO2 molecule only the antisymmetric longitudinal mode can interact with the 
radiation while the symmetric one is silent (see Fig. 10.6). 

Finally we just mention that in the harmonic approximation the contri­
bution to the thermodynamic energy in polyatomic molecules is obtained by 
adding the contributions expected from each mode, of the form derived in 
diatomic molecules (see Problem X.5.5). 

10.7 Principles of Raman spectroscopy 

As it has been remarked, by means of infrared or microwave absorption spec­
troscopies some rotational or vibrational motions cannot be directly studied. 
This is the case of rotations and vibrations in homonuclear molecules or for 
normal modes which do not comply with the selection rule given b y Eq. 10.66. 
Motions of those types can often be investigated by means of a spectroscopic 
technique based on the analysis of diffuse radiation: the Raman spec­
troscopy. 
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Phenomenologically the Raman effect can be described by referring to the 
experimental set-up schematically reported below 

Sample 

Lase~D 
source Diffuse radiation 

'------;-_-'1 Detector (with monocromator) 

~ 
Typical sRectrum Rayleigh diffusion 

Intensityoc: v4 <!J.2> 
r-----------~~~~~----~ 

o 

Stokes 

V<VO 

flv 

The classical explanation for the occurrence of Stokes and of anti-Stokes 
lines in the diffuse radiation, although not appropriate in some respects, still it 
enlightens the physical basis of the phenomenon. A normal mode of vibration 
can be thought to cause a time dependence of the molecular polarizability: 

(10.68) 

Therefore the electric component of the radiation E(t) Eocos(wot) (the 
wavelength is much larger than the molecular size) induces an electric dipole 
moment 

/-L ind = E(t)o:(t) = O:oEocos(wot) + ~O:* EoCOS(wo - Wi)t + ~ O:* EoCOS(wo + Wi)t 
(10.69) 

From the phenomenological picture of oscillating dipoles as source of radiation 
one can realize that components of the diffuse light at frequencies Wo ±Wi have 
to be expected. 
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The inadequacy of the classical description can be emphasized by observing 
that the experimental findings indicate that the anti-Stokes lines, in general, 
are less intense than the Stokes lines. The interpretation based on the oscillat­
ing dipole as in Eq. 10.69, would predict intensities proportional to the fourth 
power of the frequency and then the anti-Stokes lines should be more intense 
than the Stokes ones. 

The quantum description of the Raman effect is based on the process of 
scattering of photons and provides a satisfactory description of all the 
aspects of the phenomenon. The intensity of the lines, in fact , are controlled 
by the statistical populations on the ground-state and on excited vibrational 
states, as it can be grasped from the sketch of the inelastic scattering of the 
photon (hVi ) given below: 

(II v,) virtual state 

~ 
virtual state 

~ v = I 
~ 

v= 1 (II Vi - .ill) CliVi + t.E) 

['I.E i.e. Stokes ['I.E i.e. anti tokes 

component component 

v = 0 v = 0 

The basic aspects of the Raman radiation can be realized by extending the 
idea of electric dipole moment associated with a pair of states (already used 
in a variety of cases) to include the field induced dipole moment. Then in 

the dipole moment aEocoswot, induced by the electric field of the incident 
radiation, is included: 

R n....,m(t) = [Eo / p~aPndT] e-i(wo - Em~En)t . (10.70) 

Again interpreting this expression as a kind of microscopic source of radi­
ation somewhat equivalent to irradiating dipoles, one sees that lines at the 
frequencies Wo ± Wmn have t o b e expected. 

The amplitude of the matrix element of the polarizability in Eq.10.70 
controls the strength of the Raman components and therefore the selection 
rules. By referring for simplicity to scalar polarizability, in a first order ap­
proximation the analogous of Eq. 10.64 can be written 

(10.71) 
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Thus to have Raman radiation the conditions 

must be fulfilled (see Eqs. 10.66 and 10.67). 

(10.72) 

(10.73) 

Going back to Fig. 10.6 now one realizes that the S mode, which is not 
active in direct infrared absorption, can give Raman diffusion and vice versa 1 . 

Raman spectroscopy can also be used to study the rotational motions. In 
this case the fundamental aspect to pay attention to is the tensorial character 
of the molecular polarizability. The rotation of the molecule implies the ro­
tation of the frame of reference E P of the principal axes of the polarizability 
tensor 0:, thus modulating the component along the direction of the electric 
field in the laboratory frame EL, as sketched below 

E 

H 
k 

Therefore the incident radiation interacts with a time-dependent molecular 
polarizability, "modulated" at a frequency 2 Vrot (the tensor being symmetric). 
For a molecule to be active in rotational Raman spectroscopy is not required 
to have a dipole moment. Any molecule not spherically symmetric and thus 
having anisotropic polarizability, is Raman active, in principle. The se­
lection rule in terms of the quantum number K is 11K = 0, ±2, according 
to parity arguments, at variance with the selection rules 10.11 for the direct 
electric dipole transition between rotational states. 

1 T his statement regarding the alternative role of symmetric and antisymmetric 
modes in Raman and infrared activity is a general one, holding in any molecule 
with inversion symmetry. It is related to the fact that the polarizability upon 
inversion transforms as a second order tensor while the dipole moment is a vector. 
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Problems X.7 

Problem X.7.1 For a gas of diatomic molecules , with non-identical nuclei 
the roto-vibrational energy diagram is sketched below 

3 

K" 2 
I v"=l t 8elO-4 eV 
0 ! 2.10' ,v 
3 

K' 2 

I t le10-3 eV 
0 v' =0 

Figure out which lines can be detected in infrared and in Raman spectro­
scopies. 
What do you expect if the molecule has two identical nuclei, with spin I = 0 
or 1 = 1/ 27 

Solution: 
The solution follows directly from Fig. 10.5 and from the selection rules 
iJ.K = ± 1, iJ.v = ± 1 for infrared absorption and from iJ.K = ± 2 for Raman 
lines. For identical nuclei read §10.9. 

10.8 Franck - Condon principle 

The details of the band spectra (usually in the optical or in the UV ranges 
of the electromagnetic spectrum (see Appendix 1.1)) associated with simulta­
neous transitions between electronic and roto-vibrational states in molecules 
involve rather complex selection rules. 

In diatomic molecules one can easily illustrate a relevant and general as­
pect: the Franck-Condon principle. In Fig. 10.7 the typical energy curves 
for the ground and the first excited states are sketched and some transitions 
involving the vibrational states are indicated. 

The classical description of the principle (given by Franck) was based on 
the following arguments. The nuclei-electron coupling is weak, the electronic 
transitions occur in very short times (typically 10- 15 --;.-10- 16 seconds in com­
parison to the typical periods, around 10- 13 s, of the vibrational motions). 
Therefore the interatomic distance can hardly change while the electrons are 
carried from one e lectronic state to the other. Since for the classical oscillator 
the probability to find the atoms at a given distance is large in correspondence 
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to the maxima elongations, it is conceivable to expect a certain prevalence of 
the end-to-end transitions, as the one indicated in Fig. 10.7 by the arrow on 
the right side. 

The basic aspect of the quantum description is outlined hereafter. The 
transition probability is controlled by the matrix element 

R _ j rl.92*rl.V2 *rl.K2 * [ + ]rl.91 rl.Vlrl.Kl d d 91--->92 ,V,--->V2,K, --->K2 - '+'e '+'vi b '+'rot /-L e /-L N '+'e '+'vib'+'rot Te T N 

(10.73) 
with /-L e = -e 2:: i r i and /-LN = e 2::a ZaRa. The rotational part of the wave­
function involves only the angles e and ¢ and therefore it can be considered 
separately. Thus one is left with 

(10.74) 

This term can be separated in two, the one involving /-LN being zero since the 
electronic wavefunctions for gl and g2 are orthogonal. Then only the term 

Vibrational 
Ic.l'els 

~~~==~==========~~-----
3~~---+------~----~ 

g, 

Fig. 10.7. Energy curves for the electronic ground state gl and the first excited 
state g2 and sketches of the transitions involving the vibrational Vi and v" levels. 
The solid lines indicate transitions with large Franck-Condon factors , at variance 
with the classical prediction (dashed arrow on the right) . The grey line refers to a 
transition with small Franck-Condon factor. 
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involving J-Le has to be considered and by assuming that the electronic wave­
functions are only slightly modified when the interatomic distance is varied, 
the matrix element is written 

Rgl ~g2,Vl ~V2 = / ¢~;; ¢~~bdTN / ¢~2* [J-Le] ¢~"dTe = SFC / ¢~2* [J-Le] ¢~"dTe . 
(10.75) 

Thus the matrix element appears as the usual electronic term multiplied by 
the Franck-Condon factor S FC . For VI i= V2 SFC can be different from 
zero since two different electronic states are involved in correspondence to the 
two vibrational levels. 

The Franck-Condon factor is a kind of overlap integral and now it can 
be realized why for large quantum vibrational numbers the empirical formu­
lation of the principle is again attained. The intensity of the transition line, 
proportional to the square of the transition dipole moment given by Eq. 10.75, 
is controlled by the factor ISFCI 2 (see Problem X.8.1). 

Problems X.8 

Problem X.B.l Evaluate the Franck-Condon term ISFCI 2 involving two 
v = 0 vibrational states for electronic states gl and g2 (see Fig. 10.7) having 
the same curvature at the equilibrium distances, one at R e and the other at 
R e + iJ.Re· 

Solution: 
The vibrational wavefunctions are 

¢61) = (~) 1/4 e- bQ2 /2 , ¢62) = (~) 1/4 e- b(Q-£1R e )2/ 2 

where b = J.Lwo/h ( see Eq. 10.32). The overlap integral is 

and 
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as plotted below: 

0.8 
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10.9 Effects of nuclear spin statistics in homonuclear 
diatomic molecules 

Now we turn to an impressive demonstration of quantum principles, without 
any classical counterpart: the influence of the nuclear spins on the statis­
tics, the related selection of molecular states and the occurrence of zero­
temperature rotations. 

In a diatomic homonuclear molecule, let us consider the behavior of the 
total wavefunction 

¢T = ¢e ¢vib ¢rot Xspin (10.76) 

upon exchange of the nuclei, each having nuclear spin 1. The total number 
of spin wavefunctions is (21 + 1)2. (21 + 1) of them are symmetric, since 
the magnetic quantum numbers m[ are the same for both nuclei. Half of 
the remaining wavefunctions are symmetric and half antisymmetric. Thus 
[(21 + 1)2 - (21 + 1)]/2 + (21 + 1) = (1 + 1)(21 + 1) are symmetric and 
the remaining 1(21 + 1) antisymmetric. Therefore the ratio of the ortho 
(symmetric) to para (antisymmetric) molecules is (Npara/Northo) = 1/(1 + 1). 
For example, for Hydrogen 75% of the molecules belong to orthohydrogen type 
and 25% t o parahydrogen. 

Let F indicate the operator exchanging spatial and spin coordinates of 
the nucleus A with the ones of the nucleus B. One has F ¢T = +¢T for nuclei 
with integer 1 (bosons) while F ¢T = -¢T for nuclei with half integer spin 
(fermions) . 
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to: 

x 

z 

y 

For the electronic wavefunction 1Ye the exchange of the nuclei is equivalent 

i) rotation by 180 degrees around the x axis; 
ii) inversion of the e lectronic coordinates with respect to the origin; 
iii) reflection with respect to the yz plane. 
For the most frequent case of electronic ground state 17: one concludes 

(10.77) 

The vibrational wavefunction is evidently symmetrical, i.e. P1Yvib = +1Yvib, 
since it depends only on (R - Re). For the rotational wavefunctions one has 

(10.78) 

namely they are symmetrical (positive parity) upon rotation when the number 
K is even while are antisymmetric (negative parity) the ones having odd ro­
tational numbers K. By taking into account Eqs. 10.76-10.78 one deduces the 
requirement that for half integer nuclear spin (total wavefunction antisymmet­
ric upon exchange of the nuclei) ortho molecules (having symmetric spin 
functions) can be found only in rotational states with odd K. On the contrary 
para molecules (having antisymmetric spin functions) can be found only in 
rotational states with K even. For integer nuclear spins the propositions are 
inverted. It is noted that ortho to para transitions are hardly possible, for the 
same argument used to discuss the (almost) lack of transitions from singlet 
to triplet states in the Helium atom (see § 2.2). 

A relevant spectroscopic consequence of the symmetry properties in di­
atomic molecules, for instance, is the fact that in Raman spectra in H2 the 
lines associated to transitions starting from rotational states at K odd (see the 
illustrative plot in the following Figure) are approximately three time stronger 
than the ones involving the states at K even, once that thermal equilibrium 
is established between the two species ortho and para (see Problem X.9.l). 
For D2 an opposite alternation in the intensities occurs (by a factor of two), 
the nuclear spin of deuterium being I = l. 

For O2, the electronic ground state being 317;, the nuclear spin for 160 is 
zero and Xspin is necessarily symmetric. Then only odd K states are allowed. 
Thus only the rotational lines corresponding to iJ.K = ± 2 and involving odd 
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K states are observed in Raman spectroscopy (see Fig. 10.8). As soon as one 
of the nuclei is substituted by its isotope 170, all rotational lines are detected. 

For N2 , the nuclear spin being I = 1, the roto-vibrational structure shows 
the same alternation in the intensities expected for D2 (see Fig. 10.9). 

Analogous spectroscopic effects are observed in polyatomic molecules hav­
ing inversion symmetry, such as CO2 or C2H2 . 

It should be stressed that for Raman spectroscopy, where virtual electronic 
states are involved, the remarks given above imply that these states retain the 
symmetry properties of the ground state. For optical and UV transitions be­
tween different electronic states these considerations can be applied to the 
roto-vibrational fine structure. 

As a final remark one should observe that for ortho-Hydrogen molecules 
the lowest accessible rotational state in practice is the one at K = 1, unless 
one waits for the thermodynamical equilibrium for very long times. Thus even 
at the lowest temperature the molecules (in solid hydrogen) are still rotating. 
This is an example of the so called quantum rotators. 
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"1111' 10 ,," III ••• " •••• 
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1700 1550 1600 1550 1500 1450 1/00 

Fig. 10.8. A Stokes Raman component in 160 2 displaying the rotational structure. 
At D ::: 1556 cm-1 the Q branch (§1O.5) , for 11K = 0, is observed (broad line) . 
The lines with even K are missing (experimental spectrum reported in the book by 
Haken and Wolf (2004) quoted in the preface) . 

18 " 10 6 2 000 2 6 10 14 K 

2500 24SO 2"1)0 2350 2300 22SO 2200 e ..... 1 

Fig. 10.9. Roto-vibrational Raman spectrum in N2 (for 14N _14 N) . The alternation 
in the line intensities is in the ratio 1:2 (experimental spectrum reported in the book 
by Haken and Wolf (2004) quoted in the preface). 
It can be mentioned that the bosonic character of 14 N nucleus has been claimed for 
the first time by Heitler and Herzberg in 1929 just from the alternation in the 
line intensities, before the discovery of the neutron which later on explained why 
1 = 1. 
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Problems X.9 

Problems X.9.1 For the molecules 3He2 and 4He2 (existing in excited 
states, assumed of L; character), derive the rotational quantum numbers 
that are allowed. By assuming thermal equilibrium obtain the ratio of the 
intensities of the absorption lines in the roto-vibrational spectra, at high tem­
perature. 

Solution: 
The nuclear spin for 3He is 1 = 1/2 while for 4He is 1 = O. Therefore in 3He2 
only states at K even are possible for total spin 0 and only states at K odd 
for total spin 1. The intensity of the lines for EK « kBT is proportional to 
the degeneracy. Therefore, by remembering that the rotational degeneracy is 
(2K + 1) , while (21 + 1)(1 + 1) spin states are symmetric and (21 + 1)1 are 
antisymmetric, one can expect for the ratio of the intensities 

Intensity of transitions from 2K 1(4K + 1) 
Intensity of transitions from (2K - 1) (1 + 1)(4K - 1)· 

For large rotational numbers the ratio reduces to 1/(1 + 1), namely 1:3, as 
discussed at §10.9. 
For 4He2, 1 being 0, no antisymmetric nuclear spin functions are possible, only 
the rotational states at K = 0,2 , 4 ... are allowed and every other line is absent. 

Problem X.9.2 In the assumption that in the low temperature range 
only the rotational states at K ::; 2 contribute to the rotational energy of the 
H2 molecule, derive the contribution to the molar specific heat. 

Solution: 
Since the ortho-molecules (on the K = 1 state) cannot contribute to the 
increase or the internal energy U rot upon a temperature stimulus, only the 
partition function Z~~;a of the para-molecules (on the K = 0 and K = 2 
rotational states) have to be considered in 

From LK(2K + 1) exp[K(K + l)Brot/T] (with Brot == 1?,2/2IkB ':::' 87 K in H2) , 
Z~~;a ':::' 1 + 5exp[-6Brot/T]. Then Urot ':::' NkB 30Brot · exp[-6Brot/T]. 
Since the number of para-molecules in a mole can be considered N A /4, 



348 10 Nuclear motions in molecules and related properties 

Problem X.9.3 Estimate the fraction of para-Hydrogen molecules in a 
gas of H2 at temperature around the rotational temperature Brot = 87 K and 
at T ':::' 300 K, in the assumption that thermal equilibrium has been attained. 
(Note that after a thermal jump it may take very long times to attain the 
equilibrium, see text). Then evaluate the fraction of para molecules in D2. 

Solution: 
For T ':::' 300K the fraction of para molecules is controlled by the spin statis­
tical weights. Thus, for H2, jpara ':::' 1/(1 + 3) ':::' 0.25. Around the rotational 
temperature one writes 

f - LKeven (2K + l)exp[-K(K + l)Brot/T ] ~ 
para - Zpara + Zortho -

1 + 5e-6 + ... 
6 [2 12 ] ':::' 0.49 1 + 5e- + ... + 3 3e- + 7 e- + ... 

For D2 the rotational temperature is lowered by a factor 2 and the spin sta­
tistical weights are I + 1 = 2 for K even and I = 1 for states at K odd. At 
T ':::' 300K jpara = 0.33. At T ':::' 87 K one writes 

j _ LK odd(2K + 1) exp[-K(K + 1)erot/2T] ~ 3exp[-Brot/T] ~ 0 35 
para - 2EK even ... + 1 LK odd .... - 2 + 1[3e- 1] - . 

Problems F.X 

Problem F.X.1 Derive the temperature dependence of the mean square 
amplitude < (R - R e)2 >==< Q2 > of the vibrational motion in a diatomic 
molecule of reduced mass J.L and effective elastic constant k. Then evaluate 
the mean square amplitude of the vibrational motion for the I H35 CI molecule 
at room temperature, knowing that the fundamental absorption frequency is 
Vo = 2990 em-I. 

Solution: 
From the virial theorem < E > = 2 < V > and then 
< E >= 2 . (k / 2) < Q2 > == J.LW 2 < Q2 > (see also Eq. 10.34). 

Since (see Problem F.I.2), for the thermal average 

fj,w 

with < n >= l / (e kBT - 1) 

one writes 
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- kBT 
< Q2 >':::' canst + --2 . 

J.Lw 
(see plot in Prob. X.5.2). 

For hvo » kBT < Q2 >':::' (lj2)hvojk and J < Q2 > ':::' ylhj8Jf2VoJ.L ':::' 
0.076 A. 

Problem F .X.2 At room temperature and at thermal equilibrium con­
dition the most populated rotational level for the CO2 molecule is found to 
correspond to the rotational quantum number KM = 21. Estimate the rota­
tional constant B. 

Solution: 
From Eq. 10.14, by deriving with respect to K one finds 

( 2kBT) 1/2 
2KM + 1 = Bhc 

Then Bhc = 2kBT j (2KM + 1)2 = 4.48 . 10- 17 erg. 

Problem F.X.3 When a homogeneous and static electric field £ = 
1070 V cm -1 is applied to a gas of the linear molecule OCS the rotational line 
at 24325 MHz splits in a doublet , with frequency separation Llv = 3.33 MHz. 
Evaluate the rotational eigenvalues for K = 1 and K = 2 in the presence 
of the field , single out the transitions originating the doublet and derive the 
electric dipole moment of the molecule. 

Solution: 
From Eq. 10.20 

E (I , M, £) = 2Bhc + J.L2£2(2 - 3M2)j20Bhc 
E (2 , M, £) = 6Bhc + J.L2£2(2 - M 2)j84Bhc 

The transitions at LlK = ± 1 and LlM = 0 yield the frequencies v = Vo + 
6v (M) , where Vo = 4Bc while the correction due to the field is 

6v (M) = J.L2£2 (29M2 - 16) 
Bh2c 210 

Then 6v (0) = - (8 j 105)(J.L2£2)j(Bh2c), 6v (1) = (13 j 210)(J.L2£2)j(Bh2c) and 
the separation between the lines is 

The dipole moment of the molecule turns out 
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105 
SSvoLlv = 2.37.10- 21 erg cm V-I = 0.71 Debye 

Problem F .X.4 Derive an approximate expression, valid in the low tem­
perature range, for the rotational contribution to the specific heat of a gas of 
Hel molecules. 

Solution: 
At low temperature only the first two rotational levels Eo and El can be 
considered and the rotational partition function is written 

The e nergy is Urot = - f)[nZ/8(3 , ((3 = l/kB T) and then 

Urot(T -+ 0) = 3E1 e-E,fkBT 

and the specific heat (per molecule) becomes 

(C) - 3Er e-E,fk BT v T -.O - kBT2 . 

This expression can actually be used only for 

where B = 10.6 cm - 1 

(see §10.2.2), i.e. for 
Tval «30K. 

Problem F.X.5 Derive the longitudinal normal modes for the system 
sketched below, assuming that the force constant of the spring in between the 
two masses is twice the ones for the lateral springs, that are stuck at fixed 
points (the springs have negligible mass). 

M M 

Solution: 
In terms of local coordinates (see §10.6) 
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The equations of motion in Lagrangian form are 

Mrji + 3kql + 2kq2 = 0 and Mrj2 + 3kq2 - 2kql = 0 

By multiplying by Cl,2 and summing 

The normal form in terms of the coordinates Qi is obtained for 

yielding the secular equation 

I 
AM - 3k 2k I 

2k AM - 3k = O. 

with roots Al = 5k jM (implying Cl = -C2 ) and A2 = k jM (Cl = C2), so 
that 

The equations of motion in the normal form are: 

One normal mode corresponds to ql = q2, and frequency W2 = Vk jM, while 
the second one corresponds to ql = - q2 and frequency WI = V5kjM. 
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Crystal structures 

Topics 

Elementary crystallography 
Translational invariance 
Reciprocal lattice 
The Bragg law 
Brillouin zone 
Typical crystal structures 

In this Chapter and in the following three Chapters we shall be concerned 
with the general aspects of the solid state of the matter , namely the atomic 
arrangements where the interatomic interactions are strong enough to keep the 
atoms bound at well defined positions. We will address the bonding mechanisms 
leading to the formation of the crystals, the electronic structure and the vibrational 
dynamics of the atoms. The liquid and solid states are similar in many respects, 
for instance in regards of the density, short range structure and interactions. The 
difference between these two states of the matter relies on the fact that in the 
former the thermal energy is larger than the cohesive energy and the atoms cannot 
keep definite equilibrium positions. 

Before the advent of quantum mechanics the solid-state physics was practically 
limited to phenomenological descriptions of macroscopic character , thus involv­
ing quantities like the compressibility, electrical resistivity or other mechanical , 
dielectric , magnetic and thermal constants. After the application of quantum me­
chanics to a model system of spatially ordered ions (the crystal lattice , indicated 
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by Laue X-ray diffraction experiments) quantitative studies of the microscopic 
properties of solids began . 

During the last forty years the study of the condensed matter has allowed 
one to develop the transistors, the solid state lasers, novel devices for opto-
electronics, the SQUID , superconducting magnets based on new materials , 
etc ... . As regards the development of the theory, solid state physics has triggered 
monumental achievements for many-body systems, such as the theories for 
superconductivity or of quantum magnetism for strongly correlated electrons, 
as well as the explanation of the fractional quantum Hall effect. 

Besides the spatially ordered crystalline structures there are other types 
of solids, as polymers, amorphous and glassy materials, Fibonacci-type quasi­
crystals, which are not characterized by regular arrangement of the atoms. Our 
attention shall be devoted to the simplest model , the ideally perfect crystal , 
with no defects and / or surfaces, where the atoms occupy spatially regular posi­
tions granting translational invariance . In the first Chapter we shall present 
some aspects of elementary crystallographic character in order to describe the 
crystal structures and to provide the support for the quantum description of 
the fundamental properties. Many solid-state physics books (and in particular 
the texts by Burns, by Kittel and by Aschcroft and Mermin recalled in 
the foreword) report in the introductory Chapters more complete treatments of 
crystallography, the "geometrical" science of crystals. 

11.1 Translational invariance, Bravais lattices and 
Wigner-Seitz cell 

In a n ideal crystal t he physical properties found at t he posit ion r 

r' 

are also found at the position r' = r + 1, where 

1 == ma + nb + pc (11.1) 

wit h m , n, p integers and a , b , c fundamental translational vectors which 
characterize the crystal structure. 
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r the lattice 

B 

_ Acfj 
a possible basis 

This property is called translational symmetry or translational in­
variance. As we shall see in Chapter 12, it is a symmetry property analogous 
to the ones utilized for the electronic states in atoms and molecules. 

The extremes of the vectors I, when the numbers m, n , p in Eq. 11.1 are 
running, identify the points of a geometrical network in the space, called 
lattice. By placing at each lattice point an atom or an identical group of 
atoms, called the basis, the real crystal is obtained. Thus one can ideally 
write crystal= lattice + basis. 

The lattice and the fundamental translational vectors a , b, c are called 
primitive when Eq. 11.1 holds for any arbitrary pair of lattice points. Ac­
cordingly, in this case one has the maximum density of lattice points and the 
basis contains the minimum number of atoms, as it can be realized from the 
sketchy example reported below for a two-dimensional lattice: 

non-primiti ve (three lattice points in the unitary cell) 

1/# 
o jf, /':<"'-'" 
~-----

r:rimiti ve (one lattice point in the cell) 

The geometrical figure resulting from vectors a, b, c is called the crys­
talline cell. The lattice originates from the repetition in space of this funda­
mental unitary cell when the numbers m , nand p run. The unitary cell is 
called primitive when it is generated by the primitive translational vectors. 
The primitive cell has the smallest volume among all possible unitary cells 
and it contains just one lattice point. Therefore it can host one basis only. 

Instead of referring to the cell resulting from the vectors a , b, c one can 
equivalently describe the structural properties of the crystal by referring to the 
Wigner-Seitz (WS) cell. The WS cell is given by the region included within 
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the planes bisecting the vectors connecting a lattice point to its neighbors, as 
in the example sketched below. 

(WS cell 

The lattice points are then at the center of the WS cells. 
The translation of the WS cell by all the vectors I belonging to the group 

T of the translational operations (see Eq. 11.1) generates the whole lattice. 

A few statements of geometrical character are the following: 
i) The orientation of a plane of lattice points is defined by the Miller in-

dexes (hkl), namely by the set of integers without common factors, inversely 
proportional to the intercepts of the plane with the crystal axes . The reason 
of such a definition will be clear after t he discussion of the properties of the 
reciprocal lattice (§11.2). 

ii) A direction in the crystal is defined by the smallest integers [hkl] having 
the same ratio of its components along the crystal axes. For example, in a 
crystal with a cubic unitary cell the diagonal is identified by [111]. One should 
observe that the direction [hkl ] is perpendicular to the plane having Miller 
indexes (hkl) (see Problem F.XI.1). 

iii) The position of a lattice point, or of an atom, within the cell is usually 
expressed in terms of fractions of the axial lengths a, band c. 

The symmetry operations are the ones which bring the lattice into itself, 
while leaving a particular lattice point fixed. The collection of the symmetry 
operations is called point group (of the lattice or of the crystal). When also 
the translational operations through the lattice vectors are taken into account, 
one speaks of space group. For non-monoatomic basis the spatial group also 
involves the symmetry properties of the basis itself. The point groups a re 
groups in the mathematical sense and are at the basis of an elegant theory 
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(the group theory) which can predict most symmetry-related properties of 
crystal just from the geometrical arrangement of the atoms. 

Crystal System Bravais Lattice Unit Cell Dimensions 

Triclinic Primitive (P) a;tb;tc 
a.;t~;ty;t90° 

Monoclinic Primitive (P) a;tb;tc 
Base-Centered (C) a. = y = 90° ;t ~ 

Orthorhombic Primitive (P) a;tb;tc 
Base-Centered (C) a. = ~ = y = 90° 
Body-Centered (I) 
Face-Centered (F) 

Trigonal R-Centered (R) a=b;tc 
a. = ~ = y ;t 90° < 120° 

Hexagonal Primitive (P) a=b;tc 
a. = ~ = 90° y = 120° 

Tetragonal Primitive (P) a=b;tc 
Body-Centered (I) a. = ~ = y = 90° 

Cubic Primitive (P) a = b = c 
Body-Centered (I) a. = ~ = y = 90° 
Face-Centered (F) 
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t§l@J~ 
Cubic bee fcc 

c~ ~~ 
o a Tetragona& 

@@t9J~ 
Orthorombic 

OJ 
Monoclinic Tricl inic 

Fig. 11.1. Bravais crystal lattices with the conventional unitary celis, with the 
relations among the lattice lengths and among the characteristic angles. 

The crucial point is that the requirement of translational invariance 
limits the number of symmetry operations that can be envisaged to 
define the crystal structures. To illustrate this restriction it is customary to 
recall that in a plane the unitary cell cannot be a pentagon (which is charac­
terized by a rotational invariance after a rotation by an angle 27r /5) since in 
that case one cannot achieve translational invariance. 

In three dimensions (3D) there are 32 point groups and 230 space 
groups collecting all the symmetry operations compatible with translational 
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invariance and with the symmetry of the basis. These groups define 14 fun­
damental lattices, called the Bravais lattices. These lattices are shown 
in Fig. 11.1 , where the unitary conventional cell generally used is indi­
cated. It is noted that some cells might appear non-primitive, since t here is 
more than one lattice point within them (see for instance the bcc lattice). 
However, one can easily identify the fundamental lattice vectors defining the 
primitive cell of the body-centered-cubic (bcc) Bravais lattice, in terms of the 
more frequently used non-primitive cubic lattice vectors a, b, c shown in the 
Figure. For the analogous case of the fcc (face-centered cubic) lattice, see Fig. 
11.4 and Prob. F.xI.4. 

11.2 Reciprocal lattice and Brillouin cell 

As a consequence of the translational invariance in the ideal crystal, any local 
function f(r) of physical interest (for instance, the energy or the probability 
of presence of electrons) must be spatially periodic, in other words invariant 
under the translation T, by a vector belonging to the translational group: 

Td(r) = f(r + 1) = 1.f(r). (11.2) 

Then one can abide by the Fourier expansion of f(r) and by referring for 
simplicity to a crystal with orthogonal axes a , band c and choosing x, y and 
z along these axes, one writes 

+= += 
f(r) = L AnJy, z)e[inx x(27r/a)] = L A9 x e[i9 x X] , 

where nx is an integer and gx = nx(27rja) are reciprocal lattice lengths. The 
coefficients Anx can be Fourier-expanded along y and z and so one can put 
the function f (r) in the form 

where 

f(r) = L Ag eig.r 
g 

1 J+= . Ag = - f(r)e -,g· rdr, 
Vc _= 

(11.3) 

(11.4) 

Vc being the volume of the unitary cell. g is a reciprocal lattice vector built 
up by linear combination, with integer numbers n x,y,z, of the fundamental 
reciprocal vectors, i.e. 

(11.5) 

It follows that for any reciprocal lattice vector g and for any translational 
vector 1, given by Eq. 11.1, one has 
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eig .1 = 1 , (11.6) 

corresponding to the necessary and sufficient condition to allow the Fourier 
expansion of local functions. 

The above arguments can be generalized for non-orthogonal crystal axes 
by defining the fundamental reciprocal vectors a *, b * and c* in the form 

a * = 27f 27f 
( b) (b x c) = - (b x c) , 
a x .c Vc 

* 27f ( ) b = -c x a , 
Vc 

27f 
c* = -(a x b). 

Vc 
(11.7) 

The set of points, in the reciprocal space, reached by the vectors 

g = ha* + kb* + lc* (11.8) 

with h, k and l integers, defines t he reciprocal lattice: 

~- -;--------
i C 

!a* b . 
I ______________ . " 
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Instead of referring to the reciprocal lattice cell defined by a*, b* and c*, 
it is often convenient to use its Wigner-Seitz equivalent, having a reciprocal 
lattice point at the center. This cell is called the Brillouin cell and it is 
shown schematically below for orthogonal axes: 

c*/2 -a*/2 a*/2=rc/a 

b*/2= rc / b 
, 

-b*/2 b*/2 
, 

, ----
, , 

a */2 -c*/2 , , , 
c*/2= rc / c , , 

For instance, the Brillouin cell for the fcc lattice is obtained by taking 
eight reciprocal lattice vectors (bcc lattice, see Problem F.X!.4) bisected by 
planes perpendicular to such vectors and when the six next-shortest reciprocal 
lattice vectors are also bisected. This Brillouin cell is depicted in Fig. 11.2. 

Fig. 11.2. Brillouin cell for fcc lattice 

From the definitions of reciprocal lattice and of fundamental reciprocal 
vectors, one can derive the following properties (see Problem F.X!.1): 

i) g(h, k, l) is perpendicular to the planes with Miller indexes (hkl); 
ii) Igl is inversely proportional to the distance among the lattice planes 

(hkl) . 
The reciprocal lattice plays a relevant role in solid state physics. Its impor­

tance was first evidenced in diffraction experiments when it was noticed that 
each point of the reciprocal lattice corresponds to a diffraction spot. When the 
momentum of the electromagnetic wave (or of the De Broglie neutron wave) 
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as a consequence of the scattering process changes by any reciprocal lattice 
vector, then the wave does not propagate through the crystal but undergoes 
Bragg reflection, as sketched below: 

g 

B 
(hkl) plane 

This condition corresponds to the Bragg law in the form 

nA = 2dsinB (11.9) 

for the constructive interference of the radiation diffused by adjacent planes 
(d separation between the planes, n= 1,2,3 ... , X-ray beam incident at the an­
gle B the planes). In fact ilk = g is equivalent to 27f / I ilkl = d( hkl), while 
Ik inel = Ikseattl = 27f/A (for elastic scattering) and ilk = (47f/A)sinB. 

Furthermore, as we shall see at Chapter 12, the generators of the Brillouin 
cell, cut in a way related to the number of the cells in a reference volume, define 
the generators of a three-dimensional network in the reciprocal space. These 
vectors correspond to the wave-vectors of the excitations that can propagate 
through the crystal. Meantime they set the quantum numbers of the electron 
states. 

11.3 Typical crystal structures 

CsCl is the prototype of a family of cubic primitive (P) crystals with the basis 
formed by two atoms, one at position (0,0,0) and the other at (1/2,1/2,1/2). As 
sketched below the coordination number, i.e. the number of nearest neighbors 
around the Cs (or CI) atoms is 8: 

+ 

lallice (cubic P) 

CI (1 12, 112, 112) 

o 

o «0, 0, 0) 

basis crySlal cell 

Cs 
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Other diatomic crystals with the same structure are TlBr, TlI, AgMg, 
AlNi and BeCu. Elements having the simple cubic (the basis being formed by 
one atom) Bravais lattice are P and Mn. 

0 
• Ti 

BU;'/!-O 0 

Ba Crystal Ba 

Ba Ba 

Fig. 11.3. Sketch of the crystal cell in BaTi03 (in the cubic phase). 
At Tc ~ 120 C a displacive phase transition occurs , to a structure of tetragonal 
symmetry. The arrows indicate the directions of the displacements of the ions , having 
taken the oxygen ions at c/2 fixed (also a slight shrinkage in the ab plane occurs) . The 
displacement of the positive and negative ions in opposite directions are responsible 
for the spontaneous polarization arising as a consequence of the transition from 
the cubic to the tetragonal phase (ferroelectric state). 

A group of interesting crystals having a P cubic lattice with a more com­
plex basis are the perovskite-type titanates and niobates, such as BaTi03, 
NaNb03, KNb03. At high temperature (T ?: 120 C for BaTi03) the atomic 
arrangement is the one reported in Fig. 11.3. The oxygen octahedra having 
the Ti (or Nb) atom at the center result from the d2 sp3 hybrid orbitals (see 
Fig. 9.3). These octahedra are directly involved in the structural transitions 
driven by the softening of the q = 0 or of the zone-boundary vibrational modes 
(see §10.6 for a comment and Chapter 14). The distortion of the cubic cell is 
the microscopic source of the ferroelectric transition and of the electro­
optical properties which characterize that crystal family. For all the crystal 
lattices described above the reciprocal lattice is cubic and the Brillouin cell is 
also cubic. 

NaCl crystal is a typical example of face-centered cubic (fcc) lattice. The 
non-primitive, conventional, unitary cell and the primitive cell are shown in 
Fig. 11.4. The basis is formed by two atoms at the positions (0,0,0) and 
(1/2,1/2,1/2). The coordination number is 6. The fcc lattice characterizes 
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71liona.1 cell 

Primili\'c ce ll 

Fig. 11.4. Conventional and primitive cells for NaC!. 

also the structure of KBr, AgBr and LiH and of several metal elements such 
as AI, Ca, Cu, Au, Pb, Ni, Ag and Sr. 

The fcc lattice also characterizes the diamond (C) and the semiconductors 
Si, Ge, GaAs and InSb. In these cases the basis is given by two atoms (both 
C for diamond, Si and Ge) at the positions (0,0,0) and (1 /4,1/4,1/4). Each 
atom has a tetrahedral coordination that may be thought to result from the 
formation of sp3 hybrid atomic orbitals (§9.2) , as sketched below: 

TClrahedral arrangcment 

Carbon is known to crystallize also in the form of graphite, where the Sp2 

hybridization of the C atomic orbitals yields a planar (2D) atomic arrange­
ment. The 2D lattice is formed by two interpenetrating triangular lattices (see 
Fig. 11.5). 

It should be mentioned that carbon can also crystallize in other forms, as 
for example in the fcc fullerene , where at each fcc lattice site there is a C60 

molecule, with the shape of truncated icosahedron (a cage of hexagons and 
pentagons) . 

Another relevant crystalline form is the one having the hexagonal close­
packed lattice, with the densest packing of hard spheres placed at the lattice 
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'>I<~~_ 6-fold 

Fig. 11.5. In-plane atomic arrangement of C atoms in graphite. 

points. The arrangement is obtained by placing the atoms at the vertexes of 
planar hexagons and then creating a second layer with "spheres" superim­
posed in contact with the three spheres of the underlying layer. The crystal 
lattice is the P hexagonal and the basis is given by two atoms placed at (0,0,0) 
and at (2/3,1/3,1/2). 

In the hard sphere model 74 % of the volume is occupied and the ratio 
cia is 1.633. In real crystals with this structure one has values of cia slightly 
different, as 1.85 for Zn and 1.62 for Mg. 

Problems F .XI 

Problem F.XI.1 From geometrical considerations derive the relation­
ships between the reciprocal lattice vector g(hkl) and the lattice planes with 
Miller indexes (hkl). 

Solution: 
For 

g = ha* + kb* + lc*. 

let us take a plane perpendicular, containing the lattice points ma, nb and 
pc. Then, since ma - nb, ma - pc and nb - pc lie in this plane, one has 

g.(ma - nb) = g.(ma - pc) = g.(nb - pc) = 0. 

Then hm - kn = 0, mh = pl and nk = pl, yielding m = l/h, n = l/k and 
p = l/l. 
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From the definition of the Miller indexes one finds that the plane perpen­
dicular to g , passing through the lattice points ma, nb and pc is the one 
characterized by (hkl). 

Now it is proved t hat the distance d(hkl) between adjacent (hkl) planes is 
271"/ lg(hkl) l. Let us consider a generic vector r connecting the lattice points of 
two adjacent (hkl) planes. Since g(hkl) is perpendicular to these planes one 
has r.g(hkl) = d(hkl). One can arbitrarily choose r = a / h. Then a.g(hkl) = 
27rh and since 9 = g/Igl one has r.g = 27r /Igl. Therefore 

27r 
d(hkl) = Ig(hkl) 1 

Problem F.XI.2 Derive t he density of the following compounds from 
their crystal structure and lattice constants: 

Iron (bcc, a = 2.86 A), Lithium (bcc, a = 3.50 A) , Palladium (fcc, a = 
3.88 A), Copper (fcc, a = 3.61 A) , Tungsten (bcc, a = 3.16 A). 

Solution: 

Fe 
atomic mass· 2 - 3 

P = = 7.93 g cm . 

Li = 2.1.660.10- 24 .6.939 = 0 537 cm- 3 
p (3.5.10- 8)3 . g . 

Pd : p = 12.095 g cm- 3 . 

Cu : p = 8.968 g cm- 3 . 

W : p = 19.344 g cm- 3 . 

Problem F .X1.3 Estimate the order of magnitude of the kinetic energy of 
the neutrons used in diffraction experiments to obtain the crystal structures. 
By assuming that the neutron beam arises from a gas, estimate the order of 
magnitude of the temperature required to have diffraction. 

Solution: 
The neutron wavelength has to be of the order of the lattice spacing, i.e. of the 
order of 1 A. Then E kin = h2 / 2MnA2 ':::' 80 m eV. The corresponding velocity 
is around 4 x 105 cm/s. Since E kin = 3kB T / 2, one has T ':::' 630 K. 

Problem F .X1.4 Show that the reciprocal l attice for the fcc lattice is a 
bcc lattice and vice-versa. 
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Solution: 
In terms of t he side a of t he conventional cubic cell the primitive lattice 
vectors of the fcc structure are (Fig. 11.4): 

a (. .) al = 2" 1 + J 

a2 = ~(i + k) 

a3 = ~(j + k) 

(i,j , k orthogonal unit vectors parallel to the cube edges). Then the primitive 
vectors of the reciprocal lattice are 

* 21fa2 x a 3 
a 1 = a3 /4 

and similar expressions for a2 and a3 (Eq. 11.7) (in the unit cube of volume 
a3 there are four lattice points). Thus 

* 21f (. . k) a 1 = - - 1 - J + 
a 

* 21f (. • k) a 2 = - - 1 + J -
a 

* 21f (. • k) a 3 = - I - J -
a 

The shortest (non-zero) reciprocal lattice vectors are given by the eight vectors 
(21f/a)(± i ± j ± k) which generate t he bcc (reciprocal) lattice. 

A similar procedure applied to t he primitive translational vectors of the 
bcc lattice 

al = ~(i + j + k) 

a2 = ~(- i + j + k) 

a3 = ~(- i - j + k) 
2 

(yielding t he volume a3 /2 for the primitive cell) implies 

* 21f (. k) a 1 = - 1 + 
a 

* 21f(. .) a 2 = - - 1 + J 
a 

* 21f ( • k) a 3 = - - J + a 
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as primitive vectors of fcc lattice. 
The Brillouin cell of the bcc lattice is shown below (compared to the one 

in Fig. 11.2). 
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Electron states in crystals 

Topics 

The band of energy levels 
Bloch orbital and crystal momentum 
Effective electron mass 
Density of states 
Free-electron model and properties of metals 
Perturbative effects on free-electron states and energy gap 
Tight-binding model 

12.1 Introductory aspects and the band concept 

A fundamental issue in solid state physics is the structure of the electronic 
states. Transport , magnetic and optical properties, as well as the very nature 
(metal, insulator or semiconductor) of the crystal, are indeed controlled 
by the arrangement of the energy levels. 

The complete form of the Schrodinger equation for electrons and nuclei 
can hardly be solved, even by computational approaches. Therefore to de­
scribe the electron states in a crystal it is necessary to rely on adequate 
approximate models. Usually the crystal i s ideally separated into ions (the 
atoms with the core electrons practically keeping their atomic properties) and 
the valence electrons, which are affected by the crystalline arrangement. The 
Born-Oppenheimer separation (§7.2) is usually the starting point, often in the 
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adiabatic approximation 1. From the many-body problems for the electrons, 
by means of Hartree-Fock description, one can devise the one-electron effec­
tive potential that takes into account the interaction with the positive ions, 
the Coulomb-like repulsion among the electrons as well as the generalized 
exchange integrals. We shall not derive the potential energy in detail on the 
basis of that approach. Rather, similarly to atoms and molecules, we shall 
address the main aspects of the electronic structure in crystals on the basis of 
the fundamental symmetry property, namely the translational invariance 
for the potential energy: 

V(r + I) = V(r) (12.1) 

with I lattice vector (Eq. 11.1 and §11 .2). 
First we shall derive the general properties and a suitable classification 

of the electronic states. Then a deeper description will be made on the basis 
of particular models, at the sake of illustration of the generalities, meantime 
describing typical groups of solids. 

Henceforth, by extending the molecular orbital approach (§8.1) in the 
LCAO form, one can express the one-electron wave function as Bloch or­
bital. This is somewhat equivalent to the delocalized MO introduced for the 
benzene molecule (§9.3). 

Generalizing the concept used for Hydrogen molecule (§8.2) and referring 
to an ideal crystal formed by a chain of N one-electron atoms, 

"resonance" "resonance" 

i-I i-th atom i+ 1 
a 

the formation of the band of electron levels can be understood as resulting 
from the removal of the degeneracy of the atomic levels. In fact , by taking into 
account the resonance of one electron among neighboring atoms (see sketch 
above), the wave function of the electron centered at i-th site is written 

(12.2) 

where A < 0 is the resonance integral between adjacent sites (equivalent 
to HAB in §8.1). From what has been learned for the Ht molecule, we look 
for a solution of Eq. 12.2 in the form 

1 As already mentioned (§7.1) several relevant phenomena, for instance electrical 
resistivity and superconductivity, require to go beyond the adiabatic approxima­
t ion. 
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'l/Ji = ¢ie-iEt/1i (12.3) 

where E is the unknown eigenvalue, while ¢i is the electron eigenfunction for 
the atom centered at the site i. Then 

(12.4) 

with ¢i = ¢(Xi) and ¢i±l = ¢ (Xi ± a). By looking for a solution of the form 
exp(ikxi ), typical of the difference equations and already used for the benzene 
molecule, Eq.12.4 is rewritten in the form 

(12.5) 

yielding 
E = Eo + 2Acos(ka) (12.6) 

The formation of a band of electronic levels, each level labelled by k , as 
a consequence of the removal of the degeneracy existing for non-interacting 
atoms, is illustrated b elow 

Eo t+t+t,t+ 
large interatomic distance distance ---+ a 

as a function of k 

The band of N e lectron levels is the generalization of the 9 and u levels 
in the H2 molecule or of the four levels in the C6H6 molecule. The energy 
interval between two adjacent bands, related to different atomic eigenvalues 
Eo, will be called gap. We shall come back to the problem of labelling the 
electron states and to the mechanisms leading to the appearance of a gap, 
after the discussion of the crystal models (§12. 7). 

12.2 Translational invariance and the Bloch orbital 

In ideal crystals, with no defects and without surfaces, the translation operator 
T\ (see Eq. 11.2) commutes with the Hamiltonian: 

T\H(r)¢ (r) = H(r + l)¢(r + I) = H(r)T\¢ (r) 
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Then the one-electron eigenfunction ¢ must be eigenfunction of TI also, with 
eigenvalues CI satisfying the condition ICJ I2 = 1, since 

On the other hand, two translations Th TI2 == TIl +12' must yield the same 
result of the translation by h + 12 : 

This suggests for the eigenvalue the form CI = exp(iAI) , so that 

TJ, +12 ¢ = TIl e i .\2 ¢ = e i .\2 ei.\l ¢ = ei(.\l +.\2) ¢ , 

with AI real number. 
For any translation vector lone can find in the reciprocal space a vector 

k so that AI = kl. Therefore one writes 

and by multiplying by e-ik.r 

e-ik.r¢ (r) = e-ik.(r+l)¢(r + 1). 

This condition shows that the function uk(r) = exp(-ikr)¢(r) has the pe­
riodicity of the lattice. 

Then the one-electron wave function can be written as Bloch orbital, i.e. 

¢dr) = udr)eik.r 

uk(r + 1) = uk(r) , (12.7) 

which couples the free-electron wave function exp( ik r) (characteristic of the 
empty lattice, namely in the limit V(r) ---+ 0) with an unknown wave function 
uk(r) having the lattice periodicity. 

It can be remarked that up to now k in the Bloch orbital is just a vector in 
the reciprocal space used to label the one-electron states in a periodic poten­
tial. In the next Section we shall discuss the role and the physical properties 
of k 

In order to illustrate the Bloch orbital we will take into consideration 
a particular form for the function Uk (r). Uk (r) can be found from the one­
electron Schrodinger equation H ¢ (r) = E¢(r) by writing for ¢ (r) the Bloch 
orbital according to Eq. 12.7: 
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r within the cell 
~~.. ... ... . 

in the insulated 
r atom 

x 

Fig. 12.1. Sketch of uk=O(r) for 38 electron in the Na crystal, derived by Wigner 
and Seitz by means of the cellula r method (by approximating the WS cell to a 
sphere; see also the book by Slater quoted in the preface) . 

k=O 

Fig. 12.2. Sketchy illustration of the Bloch orbital in the Na crystal along the [111] 
direction for different values of k, with a interatomic distance. 

(12.8) 

Under the assumption that uk(r) is weakly k-dependent, i.e. uk(r) c::: uk=O(r) , 
one can write <Pk(r) = uk=O(r)eik.r . From Eq. 12.8 one sees that for k = 0 
uk=O(r) is the solution of the atomic-type Schrodinger equation. The only 
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difference is in the boundary conditions which impose the continuity at the 
border of the Wigner-Seitz cell (see §11.1). In Fig. 12.1 the function uk=O(r) 
for the 38 electron, in the Na crystal derived under these constraints (this 
procedure is the core of the so-called cellular method), is sketched. The 
corresponding Bloch orbitals are schematically depicted in Fig. 12.2. 

12.3 Role and properties of k 

The reciprocal space vector k , labelling the eigenvalues of the translational 
operator, is a constant of motion: its components kx , ky and kz have to be 
considered as good quantum numbers for the one-electron states. Hence, as 
far as the translational invariance condition holds, the electron remains in a 
given state k. 2 

A first illustration of the role of k can be provided by considering the lim­
iting case of vanishing potential energy V(r), often called the empty lattice 
condition, as already mentioned. Then the eigenfunctions are 

(12.9) 

with eigenvalues 

(12.10) 

Therefore for the empty lattice, k represents the momentum of the elec­
tron, in n units. 

When V(r) i= 0 nk is no longer the momentum of the electron (it is not 
the eigenvalue of -inV). In fact, by referring for simplicity to the x direction, 
one sees that 

The expectation value of the momentum is given by 

-in u* e- t xX _u et xXdx = nk + (-in) u*-u j. ·k a ·k J a 
kx ax kx x kx ax kx , (12.11 ) 

where the second term can be considered as an "average momentum" trans­
ferred to the lattice. Nevertheless, even for V(r) i= 0, k continues to be a 
constant of motion and labels the state. Furthermore k plays the role of an 
electron momentum in regards of external forces. 

2 The translational invariance can be broken by defects, free surfaces or by the 
vibrational motions of the ions. In this respect, it should be observed that, at 
variance with the states in molecules, here the k-electron states are very close 
in energy and the vibrational motions of the ions may cause variation of the 
electron state. These processes contribute to the electrical resistivity (§13.4 for 
qualitative remarks). 
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A semiclassical way to prove this role of k is to consider the elemental 
work oL made by an external force F e (e.g. the one due to an external electric 
field). Since 

with the group velocity Vg = (l/li)8Ek/ok , one has 

loEk 
oL = F e'h: ok ot 

By equating the elemental work oL to oE = (OEk/ok).ok, one derives 

(12.12) 

One sees that lik behaves as a momentum and thus it can be defined as 
pseudo-momentum or crystal momentum. 

Up to now k is a continuous vector in the reciprocal space. As already 
seen in atoms and in molecules, the boundary conditions determine discrete 
values for k. In this respect one possibility would be to fix the nodes of the 
wavefunctions at the surface of the crystal. The same quantum conditions 
found for a particle in a box would be obtained. However, this procedure 
would imply the transformation of the wavefunctions from running waves to 
stationary waves and surface effects would arise. It is often more convenient to 
impose periodic boundary conditions (Born-Von Karman procedure) , 
as we shall see in the next Section. 

Problems XII.3 

Problem XII.3.l For k-dependence of the electron eigenvalues given by 

derive the eigenvalue E(k*) for which phase and group velocities of the elec­
trons are the same. Give the proper order of magnitude and units for the 
coefficients A and B. 

Solution: 
From Vph = w/k = (Ak - Bk3 )/li and Vg = ow/ok = (2Ak - 4Bk3 )/li, one 
has 2A - 4Bk*2 = A - Bk*2 , yielding 
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and E * = k*2 (A - Bk*2 ) = 2A2/ gB . The orders of magnitude of A and B 
are A rveV A2 and B rveV A4. 

Problem XII.3.2 Discuss the trajectory of an electron under the Lorentz 
force due to an external magnetic field along the z-direction, for energy eigen­
values Ek = o:k~ + (3k~. 

Solution: 
According to the extension of Eq. 12.12, from 

11 dk = -ev g x H 
dt c ' 

with v 9 the group velocity, one has 

For magnetic field along the z-direction one finds 

or 

yielding 

where 

dk _ 2eH ( k . _ (3k .) 
d - 2 0: xJ y l t 11 c 

. 2eH 
kx = - - 2- (3ky 

11 c 

. 2eH 
ky = - - 2- o:kx 

11 c 

The trajectory in the k plane is an ellipse, as well as the one in the real 
space. The motion induced by the magnetic field is called cyclotron motion 
(see App.XIII.1 for details). 

Problem XII.3.3 In a cubic crystal the k-dependence of the electron 
eigenvalues is 

E(k) = C - 2V1 [cos kxa + cos kya + cos kza] 

(a form that can be obtained in the framework of the tight-binding model, 
see §12.7.3). Derive the acceleration of an electron due to an electric field. 
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Solution: 
From the time derivative of the group velocity v g, by considering that 

k = F e/'Ii the tensor describing the relationship between the electric field £­
and the acceleration v 9 turns out 

(
ACOSkxa 0 0) 

o Acoskya 0 , 
o 0 Acoskza 

with A = 2j;l . Then, for £- = £-xi + £-yj + t'zk the acceleration is 

Since no off-diagonal elements of the tensor are present , the acceleration is 
along the same direction of the field. The ratio between the external force and 
the acceleration leads to the concept of effective mass (see §12.6). 

12.4 Periodic boundary conditions and reduction to the 
first Brillouin zone 

Let us refer to a region of macroscopic size in an ideal crystal containing N 
cells, Nl along the a direction, N2 along band N3 along c. The reference 
volume is Nvc , with Vc = (a x b).c. The electron wavefunctions 1Yk have 
to be identical in equivalent points of that region and of a replica region. By 
assuming for simplicity that the crystal axes are perpendicular and considering 
the vector L = N1a + N 2b + N 3c, according to Eq. 12.7 one has to write 

eik.r = eik.(r+L) , 

the equality of uk(r) being obviously granted. Then 

271" 
kX=n1- N ' a 1 

(12.13) 

(12.14) 

with ni integers. By referring to the reciprocal lattice vectors (§11.3) a* , b*, c*, 
thus extending the above arguments to non-perpendicular crystal axes, the 
periodic boundary conditions yield 

(12.15) 

It should be noticed that k can be outside of the Brillouin cell. However, 
as we shall see in the following, an electron state k outside the Brillouin cell 
(or first Brillouin cell (BZ)) is equivalent to a state within the cell. Therefore, 
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one can classify the states by means of the set of discrete N vectors k given by 
Eq. 12.15, with ni such that k lies within the Brillouin zone. This statement 
can be understood with the aid of the planar reciprocal lattice given below: 

BZ 

b* 

a* 

reciprocal lattice vector 
g'= 3 a* + b* 

g' is a reciprocal lattice vector that brings from k' outside the BZ to a 
point inside it. Thus k = k' - g' and the wavefunction rPk' can be written 

(12.16) 

One has to observe that eig'ruk,(r) has the lattice periodicity since, according 
to Eq. 11.6, eig'. l = 1. Hence eig'.ruk,(r) = udr) is the function which makes 
rPk a Bloch orbital. Then 

(12.17) 

and the electron states can be classified by means of N vectors k in-
side the BZ. The states k' outside this zone merely correspond to equivalent 
states, in a representation called extended zone representation. This rep­
resentation has to be compared to the reduced zone representation where 
all states are reported inside the BZ. The detail of the electron states in the 
framework of specific models (see §12.7) will better clarify this aspect. 
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For a one-dimensional (lD) crystal one has the illustrative plots reported 
below, for a band of the form as in Eq. 12.6. 

Lattice 
WScell 

[ E) ] I = ma 

• • • • • a 
basis crystal cell 

Reciprocal lattice Brillouin cell 

-0 0 0 0 0 0-
-rrJa rrJa 

a* '" 2roa 

Energy curve 

k 

extended zone representation 

12.5 Density of states, dispersion relations and critical 
points 

As discussed in the previous Section, the e lectron states can be described by 
referring to the reciprocal space and in particular to the first Brillouin zone. 
The state of the whole crystal can be thought to result from the assignment 
of two electrons, with opposite spins, to each state k , in a way similar to the 
aufbau principle used in atoms and in molecules. For the moment we shall refer 
for simplicity to the condition of zero temperature, so that one can disregard 
the thermal excitations to higher energy states. 
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One can sketch the situation as below, 

" limiting" surface 
,;-- (a sphere in the 

empty lattice model) 

with a limit surface in the reciprocal space including all electron states. 
This surface, corresponding to a sphere in the empty lattice model (Eq. 12.10) , 
is called Fermi surface. 

The following points should be remarked: 
i) if one increases the reference volume Nvc, by increasing the number of 

crystal cells, the total number of k states increases; 
ii) if the crystal cell is expanded (vc increases) the BZ volume decreases; 
iii) for mono atomic crystals, with the basis formed by a single atom with 

one valence e lectron, the BZ is half filled by occupied states; 
iv) again for monoatomic crystal, when each atom contributes with two 

valence e lectrons, the BZ is fully occupied (the surface of the Brillouin cell 
not necessarily coincides with the Fermi surface). 

The density of k states D(k) can be derived once it is noticed that within 
the BZ there are N states, equally spaced in the reciprocal volume. Then, the 
BZ volume being v~ = 871"3/vc , one has 

D(k) = N = Nvc. 
v~ 871"3 

(12.18) 

The reference volume is often assumed 1 cm3 . Since for such a volume the 
number of states within the BZ is around 1022 , although k in principle is a 
discrete variable, in practice it is often convenient to treat it as a continuous 
variable, so that 

~ -7 J D(k)dk == ~:; J dk (12.19) 
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The sequence of energy levels E(k) is the band, that we have already in­
troduced qualitatively in §12.1. In analogy to wave optics, the k-dependence 
of the eigenvalues is called dispersion relation. 

An important quantity characterizing the structure of the energy levels is 
the density of energy states D( E) (density of states), namely the number of 
electronic states within a unitary interval of energy around E = E(k). D(E) 
is related both to D(k) and to the dispersion relation. A general expression 
for D(E) can be obtained by estimating the number of states lying between 
the two surfaces, in the reciprocal space, having constant energy given by E 
and E + dE, respectively (see sketch below). 

kx 

Surface at constant 
energy £+d£ 

The number of states in the volume VE is 

Nvc 
D(E)dE = 8n3 .2.vE , 

the factor 2 accounting for the spin degeneracy. For the volume VE in between 
the two surfaces one has 

VE = is dSEdkl. = is dSE IVkd:(k) I 

since dkl. = dE/loE/okl. Therefore 

Nvc j' 1 
D(E) = 4n3 s dSE IVkE(k) I' (12.20) 

From the above expression it is evident that D(E) has singularities (Van 
Hove singularities) whenever the gradient of E(k) in the reciprocal space 
vanishes. The points, in the reciprocal space, where this condition is fulfilled 
are called critical points. These critical points are particularly relevant for 
the optical and transport properties since they imply a marked denseness of 
states. As it will be shown in the next Section, electrons around a critical 
point behave as if they had particular effective masses. 
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12.6 The effective electron mass 

As shown in Section 12.3 the k-dependence of the e nergy controls the behavior 
of the e lectron under external forces. In fact nk = F e, while the group velocity 
is Vg = (1/n)(8E(k)/8k). 

By differentiating v 9 one has 

a _ dVg _ ~ 82E(k) 8k _ ~ 82E(k)F 
- dt - n 8k2 8t - n2 8k2 e 

(12.21 ) 

On the basis of the classical analogy, the relationship between the force and 
the acceleration points out that the e lectron reacts to the external force as if 
it had a mass 

-----; = 1;2(82E(k)) _1 
m It 8k 2 . (12.22) 

In the empty lattice limit, or free electron model, the effective mass co­
incides with the real electron mass: m * = n2 /[82(n2k2 / 2m) /8k2 ] == m. 

In order to illustrate the concept of effective mass let us refer to the dis­
persion curve derived in Section 12.1 by applying to a linear chain the idea of 
resonance among adjacent atoms: E(k) = 2Acos(ka) , with k along x axis and 
A < o. In this case, from Eq. 12.22, t he effective mass turns out 

n2 1 
m * == - ----..,.,.---,-

2Aa2 cos(ka) 

(Fig. 12.3) . 

-x/a 

BZ 

mlf' ~ oo 

+x/a 

Negative 
e ffective mass 

(12.23) 

k 

Fig. 12.3. Behavior of the effective mass m * as a function of k for a 1D model 
crystal, in correspondence to the dispersion relation E(k) = 2Acos(ka) , with A < o. 
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Finally it should be remarked that in general the effective mass m * is a 
tensor. Its components are 

(12.24) 

(see Problem XII.3.3). 

Problems XII.6 

Problem XII.6.1 In a one-dimensional crystal the dispersion relation is 

2 (ka) E(k) = E1 + (E2 - Ed sin 2 ' 

with lattice s tep a = 1 A. By assuming t hat a single e lectron is present and 
by neglecting a ny scattering process (with defects, boundaries or impurities) 
derive the effective mass, t he velocity and t he mot ion of the e lectron in the 
real space, under the action of a const ant electric field E. For E = 100 V / m 
and (E2 - Ed = 1 eV, obtain the period and the amplitude of the oscillatory 
motion. 

Solution: 
The group velocity is Vg = [a(E2 - Ed / 2n] sin(akx). The effective mass 

is m * = n2[d2 E / dk;]- l = mo sec(akx), where mo = [2n2/ a2(E2 - E1)] is the 
mass at the bottom of the band. m * becomes infinite for kx = ±1f / 2a (see 
plots). 

For a single non-scattered electron in a time-independent electric field Ex 
t he force implies dkx/dt = (-eEx/n). Then kx scans repetit ively through the 
Brillouin zone, with period t* = (21fn / aeEx). 

In the assumption that at t = 0 E = E1 , m * = m o , kx = 0, the e lectron 
has finite positive mass for some time, becoming infinite at t = t * / 4. 
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At the time t = t* 12 the electron arrives at kx = - (7r I a). The equivalence 
of this state with the one at kx = + 7r I a corresponds to the return into the 
BZ from this point (this process corresponds to the Bragg reflection of the 
De Broglie wave, see also §12.7.2). Then kx decreases again and the mass 
divergence is reached at t = (3/4 )t* . 

From the velocity 

Vg = [a(E2 - Ed / 2n] sin( - 27rtlt* ) = [a(E2 - Ed/2n] sin( - ae£xt l n) 

it is found that in the real space an oscillatory motion occurs: 

For a = 1A and £x = 102 V 1m, t* ':::' 4 X 10- 7 s and the distance covered is 
about 1 cm. 
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For the case of a sinusoidally modulated electric field , see the problem 3.30 
in the book by Blakemore quoted in the preface. 

12.7 Models of crystals 

Now we are going to apply the general formulation given in previous Sections 
to particular models of crystals. This should allow one to achieve a better 
understanding of the physical concepts. Meantime the models to be referred 
to, to a good approximation correspond to particular groups of solids. 

12.7.1 Electrons in empty lattice 

The condition of potential energy V(r) going to zero has already been occa­
sionally addressed. Now we shall explore in more detail this ideal situation 
and derive some finite-temperature properties which reflect the thermal exci­
tations and the statistical effects. 

When V(r) -+ 0 the electrons delocalize in the reference volume Nvc and 
are described by Bloch orbitals (Eq. 12.7) with constant uk(r). According to 
the one-electron Schrodinger equation one has 

and 

E(k) = h2k2 . 
2m 

(12.25) 

(12.26) 

The valence electrons can be thought to move freely in the reference volume 
and they become responsible for the electric conduction. This model is suited 
to describe the metals. 

The theory of metals in the framework of the free electron model was 
actually developed b efore the advent of quantum mechanics. Significant suc­
cesses were achieved, as the derivation of Ohm law and of the relationship 
between thermal and electrical conductivity (Wiedemann-Franz law). At 
variance, the behaviour of other quantities, such as the heat capacity and the 
magnetic susceptibility, requiring in the derivation the use of Fermi-Dirac dis­
tribution, could hardly be explained in the early theories. On the other hand, 
in spite of the successful quantum mechanical description, the limits of the 
free electron model become obvious when one recalls the huge change in the 
electrical conductivity from metals to insulators or the existence of semicon­
ductors. In these compounds the role played by a non-zero lattice potential is 
crucial (see next Section). 
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The dispersion curve for electrons in empty lattice (Eq. 12.26) is reported 
in Fig. 12.4 in the extended, reduced and repeated zone representations, 
along a reciprocal space axis. 

a) 

First Brillouin 
zone 

k 
-3rr1a -2rr1a -rrla rrla 2rr1a 3rr1a 

b) 

E 

c) 

E 

k 
-3rr1a -2rr1a -rrla rrla 3rr1a 

Fig. 12.4. Dispersion curves for the empty lattice model , in a crystal of lattice step 
a, within: a) the extended zone scheme, b) the reduced zone scheme, c) the repeat ed 
zone scheme. The indexes (in b» indicate the number of reciprocal lattice vectors 
a * required for the reduction to the first BZ. 

The constant energy surfaces in k space are spherical, as sketched below 

Fermi surface, 
at energy E ~ EF 

At T = 0 the electrons fill all the states up to a given wavevector of 
modulus kF, called the Fermi wavevector, which corresponds to the radius 
of the Fermi surface (see §12.6) . In a crystal with N cells, each containing Z 
electrons, kF can be directly derived by considering the volume of the Fermi 
sphere, the density of states D(k) (Eq. 12.18) and the spin variable for each 
k state: 

ZN = Nvc 47f k3 
87f3 .2. 3 F 

The Fermi energy EF = n?k}/ 2m turns out 

E - Ji2 (3 2 Z )2/3 2/ 3 
F - - 7f - ex nd 

2m Vc ' 

(12.27) 

(12.28) 
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where nd = Z/vc is the number density of electrons (per cubic centimeter). 
The Fermi wavevector kF is of the order of 108 cm- 1 , the correspondent 

velocity is of the order of 108 cm/s, while the Fermi energy is of the order of 
1 - 10 eV. 

The density of states can be derived starting from Eq. 12.20: 

The density of states per unit cell is reported below: 

D(E) 

3Z12EF 

(per unit cell) 

EF E 
D(E) is often defined per unit volume or per atom. 

Now we briefly discuss the situation occurring at finite temperature, when 
the statistical excitation of the electrons above the Fermi level has to be taken 
into account. The probability of occupation of the level at energy E is given 
by the Fermi function 

1 f(E) = ... ;0;.:::.;:; ........ . (12.29) 
e';;'ij'r + 1 

where the chemical potential J.L can b e considered to coincide with the 
Fermi energy E F , for temperatures much lower than the Fermi temperature 
T F = E F/k B , (of the order of 104 K). 
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Then the distribution function and the density of occupied states take the 
forms plotted below: 

I (E, T) 1 +--___ -=--------------------, T=O 
k T D(E). ..... ·· 

..-L. .... - .... --

E 
F 

The average energy is 

< E >= J ED(E)f(E)dE, 

and for T -----+ 0 

j ' EP 3 
< E >= ED(E)dE = -NZEF , 

o 5 
(12.30) 

while at finite temperatures (Prob. F.XII.1) it turns out 

3 7r 2 T 
< E >=':::' -NZEF + -NZkBT-

5 4 TF 
(12.31 ) 

It is noted that the contribution at T -I- 0 takes a form of the classical 
energy 3kBT /2 (per electron) times the "fraction" rv T / TF of electrons in the 
neighborhood of the Fermi level. 

The specific heat C v and the magnetic susceptibility XP can be derived 
as illustrated in the Problems F.XII.1 and XII.7.6. 

A simple way to estimate the order of magnitude of Cv and XP is to 
consider that only a fraction T / TF of all the e lectrons can be thermally or 
magnetically excited. In fact, the states at E « EF are all occupied and the 
Pauli principle prevents double occupancies. Then, from the classical expres­
sions for Boltzmann statistics one can approximately write 

(12.32) 

and 

(12.33) 
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12.7.2 Weakly bound electrons 

As already mentioned the free electron model cannot account for the proper­
ties of crystals different from metals, as for instance the semiconductors, not 
even at a qualitative level. In order to explain the basic aspects of those solids 
one has to take into account, at least in the perturbative limit, the effects of 
the lattice potential in the so called nearly free electron approximation. 
Even a weak perturbation causes relevant modifications with respect to the 
empty lattice situation and yields the appearance of the gap, namely the en­
ergy interval where no electron states can exist. In particular, the gap arises 
for the electrons at De Broglie wavelength (of the order of the inverse of Ik l) 
close to the lattice step, in analogy with the diffraction phenomenon in optics. 

The simplest way to account for the effect of the lattice potential V(r) in 
modifying the electron dispersion curve E(k) is to consider the perturbative 
correction to empty-lattice states EO(k): 

° " 1 < klV(r) lk' > 12 
E(k) = E (k)+ < klV(r) lk > + k~k EO(k) _ EO(k') , (12.34) 

where 

1 < klV(r) lk' >= J e-i(k-k').rV(r)dr. (12.35) 

For k - k' i= g, with g reciprocal lattice vectors, the integral vanishes 
due to the fast oscillations with r of the function e-i(k-k').r. Whereas for 
k - k' = g the matrix element reads 

1 < klV(r) lk - g >= J e-igrV(r)dr = Vg , (12.36) 

which is non zero since it corresponds to the coefficent Vg of the Fourier 
expansion of the periodic lattice potential: 

V(r) = 2:Vgeig.r. 
g 

(12.37) 

It can be remarked that for degenerate states, where EO(k) = EO(k') at 
the denominator in Eq. 12.34, one should rely on the perturbation theory for 
degenerate states and still < klV(r) lk' >= 0 for k' i= k + g. 

Therefore Eq. 12.34 is rewritten 

VO = J V(r)dr (12.38) 

which modifies the dispersion curve for free electrons at the second order. 
The validity of Eq. 12.38 requires the convergence of lV(g)12 , which should 
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be granted by the choice of a plausible lattice potential (often a pseudo­
potential). In addition it requires that 

which corresponds to avoid the wavevectors k at the BZ boundary. In fact , 
recalling that EO(k) = 1i2 k2 / 2m, the condition EO(k) = EO(k - g) implies 
(k)2 = (k - g)2 and then 

(12.39) 

corresponding to k at the BZ boundary, as depicted below for a 2D lattice. 

BZ 

g 

Thus at the BZ boundaries, where the states cPk and cPk -g have the same 
energy, the perturbative approach leading to Eq. 12.38 breaks down. 

The situation arising at the zone boundaries can be deduced by mean of 
arguments essentially based on the perturbation theory for degenerate states. 
An illustrative example is easily carried out for a one-dimensional lattice, 
with perturbative periodic potential of the form sketched below: 

a 
x 

V(x) = Vo cos (21r x/a) 

The zero-order wave function is 

and the secular equation becomes 

( < klV(r) lk > -E 

< k -glV(r) lk > 
<klV(r)lk-g> )-0 

< k -glV(r) lk - g > -E -
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The choice of the potential implies < klV(r) lk >=< k -glV(r)lk -g >= 0 
and 

(12.40) 

Thus the correction to the unperturbed eigenvalues turns out E± = ± Vo12, 
implying a gap for the states around the BZ boundaries, as schematically 
shown in Fig. 12.5 (to be compared to Fig. 12.4). 

+£ ......... 1 .................................................................................................. J ........ +£ 
-t: V;t 0 -t: 

-n/a n/a k 

Fig. 12.5. Schematic representation of the dispersion curve for 1D crystal, in the 
nearly free electron approximation, by taking into account that for k far from the BZ 
boundaries Eq. 12.38 is a good approximation, while approaching the BZ boundaries 
the correction given by Eq. 12.40 has to be considered. 

The gap can be thought to arise from the Bragg reflection occurring 
when the De Broglie wavelength is A = 2a. In fact , in this case (see Eq. 11.9) 
the Bragg reflected wave, travelling in opposite direction, induces standing 
waves, as sketched below: 

The cosine and sine standing waves formed by the ± linear combination of 
exp[(±ikx)], with k = 7f la, yield different distributions of probability density. 
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Thus the electron charge p(x) around the lattice sites imply different en­
ergies: 

• • • • • 

.\ 6 61:\ 1:\ I. 

.f\N\!\/\ 

For a travelling wave 
p(x) is homogeneous 

p(x) goes as 

cos2(1txla) 

The characteristic feature of the gap generation for weakly perturbed elec­
trons can be derived by constructing the complete k-dependence of the eigen­
values in a periodic square-well potential, in one dimension. The potential 
energy in the Schrodinger equation is assumed V(x ) = 0 for 0 < x ~ a and 
V (x) = Vo for a < x ~ a + b, the lattice parameter being (a + b). Kronig and 
Penney solved this artificial model and derived the k-dependent eigenval­
ues. In the limit where V(x) is characterized by Dirac <5 functions separated 
by distance a (the product Vob remaining finite) the dispersion curve in the 
extended zone scheme has the form sketched below: 

E 

1/ 
k 

-2n l a -nla n l a 2n l a 
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12.7.3 Tightly bound electrons 

In this model the electrons are assumed to keep, to a large extent, the prop­
erties they have in the neighborhood of the atoms. Only in the region in 
between the atoms sizeable effects occur and the atomic levels are thus spread 
in a band. The model allows one to understand how the Bloch orbitals are 
related to the atomic states, in a way similar to the case discussed for the 
benzene molecule (§9.3). 

Let us refer to the lattice potential reported in Fig. 12.6, along a given 
direction in the crystal. 

By extending the idea of the molecular orbital used for the delocaliza­
tion of the 2p electrons along the C6H6 ring, we shall assume a one-electron 
wavefunction of the form 

(12.41 ) 

1Ya (r - 1) is an atomic wavefunction centered at the l-th site and an eigenfunc­
tion of the equation 

(12.42) 

To show that 1Yk in Eq. 12.41 is a Bloch orbital, one multiplies by exp(ik.r). exp( -ik.r): 

1Yk(r) = eik.r L e- ik.(r-I)1Ya(r - 1) . 
I 

Then it can be observed that the term multiplying the plane wave function 
has the lattice periodicity and plays the role of ud r) in Eq. 12.7, as requested. 
One also notices that 1Yk in the form 12.41 is a combination of localized atomic 

+ + + + V(x) 
--0 I 0 0 

................... Va 
I .. .... 

Fig. 12.6. Schematic form of the potential energy for tightly bound electrons, along 
a given direction in the crystal. 
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orbitals and in the neighborhood of an atom the orbital behaves in a way sim­
ilar to the one for insulated atoms. The phase factor exp( ik.l) modifies the 
orbital from site to site while l<Pkl2 is unaffected. 

To obtain t he e igenvalues Ek, the e igenfunction in Eq. 12.41 is inserted 
in the one-electron Schrodinger equation (_ 112'\12 12m + V) <pk = Ek <Pk. By 
recalling E q. 12.42 one obtains 

(12.43) 

By multiplying both sides of t his equation by <p~ (r - 1) and integrating, one 
has 

(Ek -Ea ) L eik.1 J <p~ (r- l') <Pa (r- l)dr = L J <p~ (r -l')(V - Va)eik.l <pa (r - l)dr. 
I I 

(12.44) 
When t he orthogonality condit ion for 1 i= I' is assumed 

J <p~ (r - l') <Pa (r - l)dr = 0 , (12.45) 

by t aking into account that the sum in Eq. 12.44 only depends on the difference 
h = I - I', one finds 

Ek = Ea + L ei k .h J <p~ (r + h)VI<Pa (r)dr. 
h 

(12.46) 

In the matrix element in this equation, somewhat analogous to the resonance 
integral (§8.1. 2) , VI is t he difference between the local V (r) and the atomic 
potential energy Va (see F ig.12.6). The matrix e lement is negative. 

For cubic c rystal, with atoms of the same s pecies, 

z 

y 

a 

x 

assuming VI i= 0 only w hen nearest n eighbors a re involved, Eq. 12.46 takes 
t he form 
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depicted in Fig.12.7, along the kx direction. 

------+-----~---+----~----~------ Ea 

-rtla rtla 

Fig. 12.7. Dispersion relation E(k) for k along one of the reciprocal lattice axis in 
a cubic monoatomic crystal, according to Eq. 12.47. Vo is usually negligible. 

The band E(k) results from the spread of the atomic energy level when 
the interatomic distance in the crystal is reduced. The gap is the direct con­
sequence of the discrete character of the atomic eigenvalues Ea's. One also 
realizes that the number of states in a single band is N(21 + 1) , for N atoms 
in the reference volume of the crystal (I quantum number for the atomic or­
bital momentum). The band width is proportional to VI and, therefore, to 
the overlap, in a way somewhat equivalent to the molecules (see §8.1). This 
explains why the internal bands are narrow and why the cores states are little 
affected by the formation of the crystal, as sketched below: 

R ~oo 
• 

gap 

R ~ R«l R ~oo 
• 
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In the framework of the tight binding model the effective mass of the 
electron can be derived from Eq. 12.47. For small k , by expanding Ek , one 
obtains 

yielding 

and the electron responds to external forces as a positive charge. 
When the spread of the atomic levels leads to the superposition of adjacent 

bands related to different states, one has a degenerate band that can be 
thought to result from hybrid atomic orbitals: 

Band 
overlap 

This happens, for instance, in the case of diamond, Si and Ge, as shown 
in Fig. 12.8. 

The energy bands are usually labelled by referring to the atomic orbitals 
which lead to their formation. Furthermore, since the k-dependence of the 
energy in the reciprocal space reflects all the symmetry properties of the point 
group, one could classify the electron states in a crystal on the basis of the 
symmetry properties. 
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E 

---....,p 

s 

filled 
valence , 
band R' 

C Si Ge Pb R 
Fig. 12.8. Sketchy picture of the e nergy bands for (n3?(np)2 electronic config­
urations , showing how below a certain interatomic distance R the p and 3 bands 
overlap, changing the e lectronic structure of the crystal. While for R > R* one has 
a partially filled p band and the possibility of charge transport (see Chapter 13) 
(this is the case of Pb, in regards of the 6p and 63 electrons) , for R < R * one has 
an entirely filled v alence band and therefore a n insulator. 
Note that for those elements there are two atoms for each unitary cell. Thus for 
R < R* when the zones overlap , the lower zone system is exactly filled by eight 
electrons per unit cell. When the gap to the upper band (which is empty at T = 0) 
is comparable to the thermal energy kBT, then the electrons can be promoted to the 
upper conducting band. In this case one can have a semiconductor, as it happens 
for Si and Ge, in terms of the n = 3 and n = 4 electrons (see §13.1). 

Problems XII. 7 

Problem XII. 7.1 The Fourier components of a perturbative one-dimensional 
potential energy are Vc. Evaluate the behavior of the effective mass m * for 
k = 0 in terms of the lattice step a. 

Reformulate the evaluation for Vex) = 2V1 cos(27rxja). 
Solution: 
From (see Eq. 12.38) 
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with E~ = 112 k2 12m, one has 

The effective mass is given by 

For k = 0 one finds 

For V(x) = 2V1 cos(2Kxla) only VG for n = 1 is non-zero and then 

Problem XII. 7.2 For a 1D crystal of lattice step a, generalize the result 
obtained at §12.7.2 at the zone boundary in order to obtain the e nergy E(k) 
when k is close to Ki a. 

Solution: 
Near k = Kia the wavefunction is written as the linear combination of the 

two degenerate unperturbed eigenfunctions at the two boundaries of the BZ, 
as it was done in order to derive Eq. 12.40: 

'if; = cleikx + C2 ei (k-27r/a)x. 

By substituting that tentative wavefunction into the Schrodinger equation 

112 d2'if; 
- 2m dx 2 + V 'if; = c'if; , 

first multiply by e-ikx and integrate over all space. Then multiply by e- i (k-27r/a)x 

and integrate over all space. From the secular equation for Cl and C2 (see the 
equivalent at §12.7.2) , the eigenvalues turns out 

The energy E reduces to the free e lectron eigenvalues for k well away from 
the zone boundary, while for k = Ki a implies the gap Vo, as in §12.7.2. 
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Problem XII. 7.3 Consider a metal with one electron per unit cell in 
geometric dimension n = 1,2 and 3 and derive the density of states D(E) as a 
function of n. Then give a general expression for D(E) in terms of the Fermi 
energy. 

Finally derive the chemical potential f-L (Hint: write the total number of 

electrons in terms of the Fermi distribution and use the identity J!": f(t) (1~~Z)2 = 
f(O) + "62 1"(0)). 

Solution: 
From EF = n2k}/2m, since 

N = 2D(k) 4Jrk~ for n = 3 
3 

N = 2D(k)Jrk} for n = 2 

N = 2D(k)2JrkF for n = 1 

one finds EF = (n2 / 2m) (37r2 N/vc )2/3 for n = 3, EF = 7rn2 N/mac for 
n = 2 and EF = (n2/2m)(N/ 2Ic )2 for n = 1. 

One can write 

D(k)dnk = 2(vf2m,)ndnx 
27rn 

with x = YE. From D(E)dE = J D(k)dnk one finds 

D(E) = 3N E 1/ 2 for n = 3 
2 E3/ 2 

F 

m 
D(E) = - 2 for n = 2 

7rn 
N E - 1/ 2 

D(E) = -~ for n = 1 
2 EF 

In general D(E)dE = Nd(E/ EF) n/2 . 

The total number of electrons is 

N = r oo D(E) dE = N r oo 1 d( ~ )n/2 = Jo e{3(E- M) + 1 Jo e{3(E-M) + 1 EF 

=N j oo _1_d(f-L + (t /(3 ))n/2=N j oo e t (f-L + (t/ (3 ))n/2dt 
_{3Met+ 1 EF _{3M(et + 1)2 EF 

For (3 ----+ 00 (i.e. T ----+ 0) one finds 
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yielding 
]f2 T 

J.L = EF(l - -(n - 2)(_)2 + .... ) 
12 TF 

Problem XII. 7.4 The specific mass (density) of alluminum is d = 
2.75 g/ cm3 . Evaluate the Fermi energy, the Fermi velocity, the average ve­
locity of the conduction electrons and the quantum pressure (for T ---7 0). 

Solution: 
The number of atoms per cubic cm is 

N = 0.54 . 1023 

Thus, for three free-electrons per atom 

(with Ne = 3N) and 

J2EF 8 V F = -:;;;: = 2.03 . 10 cm/s, 

The distribution function for the velocity is 

then 

< v >= vp(v)dv = - VF = 1.44.108 cm/s. l VP 3 

o 4 
From Eq. 12.30 and 

23 
P = - 8 < E > /8V = 35 N eEF = 1.2.1012 dyne/ cm2 . 

Problem XII.7.5 In the assumption that the electrons in a metal can be 
described as a classical free-electron gas, show that no magnetic susceptibility 
would arise from the orbital motion. 

Solution: 
For the classical free-electron gas the partition function is 
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Neglecting the electron magnetic moment, in the presence of a magnetic field 
the partition function becomes 

with A the vector potential. Therefore the only effect of A is to shift the origin 
of the integration, yielding no effect on the integral. The partition function 
and then also the free energy are field independent and the magnetization is 
zero. 

Problem XII. 7.6 Derive the paramagnetic susceptibility due to the free 
electrons in a metal (Pauli susceptibility). 

Solution: 
In the absence of a magnetic field the number of electrons with spin up 

N + is equal to the number of electrons with spin down N _ and the total 
magnetization of the metal M = fJB(N+ - N_) is zero. 

In a field H the energy of spins up is lowered by an amount fJBH, while 
the one of the spins down is increased by the same amount. The unbalance in 
the populations yields a non-zero magnetization. The number of spins up is 

N+ = l co f(E, T) D(E ~fJBH) dE, 
- MBH 

(the factor 1/2 in the density of states D(E) takes into account that we a re 
considering the electrons with spin up only). Introducing E' = E + fJBH one 
can write 

N+ = ( CO f(E' _ fJBH, T) D(E') dE'. lo 2 

In the weak-field limit f(E' - fJBH,T) c::: f(E' ,T) - fJBH(8f/ 8E)E' and 

N+ = ~ {CO f(E' , T)D(E')dE' _ ~ ( CO fJBH( 8f )E,D(E')dE'. 
2 lo 2 lo 8E 

In the same way 

N _ = ~ l co 
f(E' , T)D(E')dE' + ~ l co fJBH(~~)E'D(E')dE' 

For H ----+ 0 XP = M / H and therefore from M = fJB(N+ - N _), 

XP = fJ1 1 co (~a; )E, D(E')dE' 

For EF » kBT and provided that the density of states varies smoothly around 
EF , one writes (- 8f /8E)E' c::: 5(E' - EF ), so that 
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(see Eq. 12.33). (D(E) density of states per unit volume and XP is dimen­
sionless). 

Problem XII. 7.7 For a metal with bcc structure and lattice step a = 5 
A and electron density 2 x 10- 2 electrons per cell, evaluate the tempera­
ture at which the e lectron gas can b e considered degenerate and write the 
approximate form for the specific heat above that temperature. 

Solution: 
The electron density is 

2 X 10- 2 3 
n = 3 = 1.6 X 1020 e/cm 

a 

and the average spacing among the electrons is d c::: (3/41fn)1 /3 c::: 11 A. The 
electron gas can be considered degenerate when d ::; ADB, the De Broglie 
wavelength. Since ADB = h/J3mkBT, the gas can be considered degenerate 
for T < h2 / (3d2mkB ) c::: 8600 K. Above that temperature the gas is practically 
a classical one and the specific heat (per particle) is C v c::: (3/2)kB . 

Problem XI1.7.8 The bulk modulus B = - V(8P/8V)r of potassium 
crystal at low temperature is B = 0.38 X 1011 dyne/cm2 . Discuss this result 
in the assumption that B is entirely due to the electron gas. 

Solution: 
The pressure of the electron Fermi gas is P = (2/5)nEF' with n electron 

density. Then 
8P 2 

B = - V 8V = 3nEF 

For potassium, at density 0.86 g/cm3 , the electron density is 1.4 x 1022 e/cm3 

and the Fermi energy is EF = 2.1 eV. Then B c::: 0.32 X 1011 dyne/cm2 , in 
rather good agreement with the experimental finding. 

Problem XI1.7.9 Prove that in a semiconductor at thermal equilibrium 
the concentration of holes and electrons is given by 

where 
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EF is the Fermi level (in the middle of the gap), Ee the bottom of the conduc­
tion band and Ev the top of the valence band (me and mh are the effective 
masses of electrons and holes). Assume parabolic bands, going as (k - ke )2 
and (k - kv )2. 

Then evaluate 
(a) the value of Ne for me = m (m == electron mass) and T = 3000 K 
(b) the carriers concentration in Si, at T = 300o K, assuming me = mh = m , 

and a gap of 1.14 eV. 

Solution: 
At thermal equilibrium the concentration of electrons is given by 

the density of states De(E) per unit volume being 

The Fermi-Dirac distribution for (E - EF) » kET can be approximated as 

Then 

yielding 

In an analogous way the hole concentration can be derived. 
For intrinsic Si at 3000 K one has Ne = 2.51 x 1019cm-3 and the electron 

and hole concentration are n = p = 3.14 x 109cm- 3 . 
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Problems F .XII 

Problem F .XII.1 Derive the contribution to the specific heat associated 
with the conduction electrons in a metal for temperature small compared to 
EF / kB . 

Solution: 
In a way analogous to the derivation of the Pauli susceptibility (see Prob­

lem XII.7.6) the increase of the electron energy when the temperature is 
brought from 0 to T is written in the form 

U(T) = roo (E - EF )f(E)D(E)dE + rEp (EF - E)(l - f(E))D(E)dE . JEp Jo 
In the second integral (1 - f(E)) gives the probability that an electron is 
removed from a state at energy below E F . Then 

Since 
of (E - EF ) e(E-Ep)/kBT 

oT kBT2 [e( E - E p)/k BT + 1]2 

by utilizing J~oo x2ex dx/(eX + 1)2 = (n2/3 ), one obtains 

This result can be read as the derivative of the product kBT times the fraction 
T /T F of the electrons in the energy range k B T around E F. 

Problem F.XII.2 Derive the equation of state (relation between P, V 
and T) for the Fermi gas, in the limit T --+ o. 

Solution: 
From the e nergy (see Eq. 12.31) 

( 5n2 (kBT)2 ) U = (3/5)N EF 1 + 12 EF + ... 

with 
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p=_~~=~N~F (1 _51~2 (k;;)2 + ... ) 

namely 

PV = (2 /5 )NEF (1 - 51~2 (~) 2 + ... ) 

(see Prob. XII.7.3). 

Problem F .XII.3 The temperature dependence of the specific heat in 
Gallium is reported in the Figure 

~ 
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Derive the Fermi energy and the electric field gradient at the nucleus 
(assuming for simplicity that 69Ga with I = 3/2 and Q = 0.168 barn is the 
only isotope and noticing that at low temperature the contribution to the 
specific heat due to lattice vibrations can be neglected). 

Solution: 
From the measurements one deduces the straight line Cv T2 = (a + bT3 ) 

with a c:::: 4 .1O- 4mJ . K /mole and b c:::: 0.6mJ /moleK2, the second contribution 
being associated with conduction electrons. From Cv = (7f2/3)· k B 2TD(EF ) , 

one derives EF c:::: 6 eV. 
The first term for Cv , going as 1/T2 , is the high-temperature tail of 

the Schottky-like specific heat C;; associated with the hyperfine split by 
quadrupolar interaction, with energy separation E. Since for kBT » E , 
C;; = NAkB(E/kBT)2, one finds E c:::: 6.6 X 10- 20 erg. For I = 3/2 the 
splitting between the M J = ± 1/ 2 and MJ = ±3/2 levels due to quadrupole 
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interaction is E = 2eQVzz , with Vzz the principal component of the electric 
field gradient (see §5.3). Then one obtains Vzz = 4 X 1014 u.e.s.jcm3 . 

Problem F.XII.4 Consider two cubic clusters of Lithium (lattice step a = 
3.5 A and bcc structure) formed by 1.6 x 107 and 16000 atoms, respectively. 
Evaluate the Fermi energy for each cluster and estimate the separation among 
the electronic levels in proximity of the center of the Brillouin zone. 

Solution: 
The electron density is n = 2j a3 = 4.6 x 1022 cm-3 and the Fermi energy 

EF = 4.7 eV, size independent . The size affects the spacing among k states. 
The first cluster is a cube of size L1 = 200a, while the second one of size 
L2 = 20a. Then the separation among the lowest energy levels is 

11E = ~( 27r )2 
1 ,2 2 L ' m 1,2 

namely 11E1 = 1.6 X 10- 15 erg and 11E2 = 1.6 X 10- 14 erg. 

Problem F.XII.5 The density of Lithium is 0.53 gjcm3 . Evaluate the 
contribution to the bulk modulus due to electrons, in the low temperature 
range. Compare the estimated value with the experimental result B c::: 0.12 X 

1012 dynejcm2 . 

Solution: 
Following Problem XII.7.S 

oP 2 
B = - V- = -nEF 

OV 3 

The electron density is n = 4.6 x 1022 ejcm3 and the Fermi energy turns out 
EF = 4.7 eV. Then B = 2.4 X lOll dynejcm2 , not far form the experimental 
result. 

Problem F .XII.6 In semiconductors the concentration of itinerant elec­
trons is low and one can expect that the Pauli susceptibility turns to a Curie­
like susceptibility characteristic of localized electrons. Discuss the derivation 
of the P auli susceptibility for semiconductors (neglect the electron-electron 
Coulomb interaction). 

Solution: 
The Pauli susceptibility is (see Problem XII.7.6) 
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(see Problem XII.7.6). 
For diluted Fermi gas, at room temperature the statistical distribution 

function can be written 
f(E) c::: e-(E-Ep)/kB T (see Problem XII.7.9). 

Thus -of joE = f jkBT and the susceptibility turns out 

with n concentration of conduction electrons. 
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Miscellaneous aspects related to the electronic 
structure 

Topics 

Covalent, metallic, ionic and molecular crystals 
Cohesive energies and bonding mechanisms 
Lennard-Jones potential 
Crystal-field effects in magnetic ions 
Electric current flow 
Magnetic properties of itinerant electrons 

13.1 Typology of crystals 

In the light of the main aspects involving the electronic properties, a classifi­
cation of crystalline solids can be devised. This can be done either in a valence 
bond scenario by looking at the bonding mechanisms or by referring to the 
electric conduction and to the band structure. 

In the first case the crystals can be divided in covalent, metallic , 
ionic and molecular. In covalent crystals the bonding mechanism and 
the strength of bonds are similar to the ones in covalent molecules. In other 
words, the crystal can be conceived as a "macroscopic" molecule with marked 
directional bonds between pairs of atoms where spin-paired electrons can be 
placed. Therefore, covalent crystals are stiff, scarcely plastic and fragile. Illus­
trative examples can be found in carbon-based crystals, such as diamond and 
graphite. Diamond, as well as the isostructural Ge, Si, Sn and Pb crystals, re­
sult from an ideally infinite network of sp3 hybrid orbitals (§9.2). On the other 
hand, in graphite the sp2 hybridization yields a planar atomic arrangement, 
with weak interaction among adjacent planes (see §11.3). 
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Metallic crystals are somewhat equivalent to large molecules with elec­
trons delocalized through all the volume, an extension of what discussed in 
benzene (§9.3). The description of these systems in a VB-like framework would 
require the superposition of a large number of equivalent configurations. It is 
evident that a Bloch-like approach is more convenient for the metallic crys­
tals. A suitable way to describe these solids is to refer to a model of positive 
ions at the lattice sites embedded in a sea of electrons, with a nearly uniform 
charge distribution. In general the bonds are not saturated. For instance, in Li 
metal (bcc structure) each ion has 8 nearest neighbors and in a molecular-like 
picture one can think that there is 1/4 of electron on each orbital. 

In ionic crystals the electrons are characterized by molecular-like orbitals 
centered at the atoms having larger electronegativity, as in the case of strongly 
heteronuclear molecules (see §8.5). The attractive interaction may often be 
approximated to the one for point charge ions and in a crude approximation 
the ions can be assumed to have the closed shells configurations. For example, 
in LiF crystal, the (ls)2 shell for Li+ and the (2p)6 shell for F-. From the 
X-ray diffraction peaks one can estimate the actual number of electrons at a 
given site. For instance, in NaCI it turns out that there are 17.85 electrons 
at CI site. Thus the order of magnitude of the bond energy per pair is 
- (O.85e)2 / R, with R interatomic distance. 

The hydrogen bond O-H-O typical of hydrides, of the ferroelectric KDP 
(potassium dihydrogen phosphate) and of other organic compounds, can be 
considered as a type of ionic bond. The hydrogen atom can be thought in 
a local double-well potential. Several electric and elastic properties of these 
crystals are rather well explained within this simple model. 

In molecular-like scenarios one can hardly devise any bonding mechanism 
for neutral molecules at high ionization energy or for closed shell atoms, such 
as inert gases. In these cases the aggregation into a solid state can occur 
because of an interaction that we have not directly considered in molecules: 
the Van der Waals forces, associated with fluctuating electric dipoles. This 
mechanism yields a weak attractive potential decreasing as R - 6 and leads 
to the formation of molecular crystals (a mention has been given in Prob­
lem VIII.3.1 and that interaction shall be described in some detail at §13.2.2). 

The classification scheme based on the bonding mechanisms is not very 
suited to describe the properties involving the electrical transport. This aim 
is better achieved by referring to the band scheme, in the framework of Bloch 
orbitals. Let us remind that a band arising from s atomic states can be oc­
cupied by 2N electrons (N the number of atoms in a reference volume) while 
in the p band this number is 3 x 2N. As already mentioned , the electrical 
conductivity originates from the "acceleration" (namely from the change of 
state) induced by the electric field , for a single electron described by the equa­
tion fidk / dt = -eE (see §12.3). A few observations can be made in regards 
of the current flow (for some more detail see §13.4). In a fully filled band 
each k state is occupied by two electrons and a neat flow of current is not 
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possible (unless the electric field is so strong to alter the unperturbed bands) 
and one has an insulator. For a partially filled band electrical transport can 
occur and one has a conductor. When the gap between full valence band 
and an empty conduction band is of the order of 0.1-1 eV, then one has 
an intrinsic semiconductor. These crystals are insulators for T ---+ 0, while 
progressive increase in the conductivity with increasing temperature occurs, 
as a consequence of the partial filling up of the conduction band. At variance, 
in a metal the conductivity decreases with increasing t emperature due to the 
increase in the scattering rate between the electrons and the ionic vibrational 
modes. 

In such a scenario one can predict that alkali crystals Li, Na, Rb, etc ... and 
transition metals as Cu, Ag and Au are metallic conductors, since they have 
an odd number of electrons per unit cell. This rule however, is not quite valid 
and often one has to pay attention to other details. For instance, although As, 
Sb and Bi atoms convey five electrons in the conduction band, they generate 
a crystal which is essentially an insulator. Without going into the real aspects 
of the electronic band structure, we only mention that the reason for the 
quasi-insulating character is related to the generation of five bands that are 
completely filled by the valence electrons of the two atoms present in the unit 
cell. 

In some crystals there is also the possibility of a tiny superposition of 
bands, giving a small metallic character and causing electrical conduction 
with a particular temperature dependence: these are the semimetals. 

Strong band overlap can drastically change the simplified picture given 
above. For instance, according to the previous statements Be crystals (atomic 
configuration (ls)2(2s)2) should be insulators. This is not the case: the over­
lap between sand p orbitals generates a partially occupied hybrid band, a 
situation similar to the one in diamond (see Fig. 12.8). The overlap of these 
bands yields a fully occupied valence band and an empty conduction band in 
this latter crystal. At the equilibrium distance characteristic of Si and Ge the 
gap between the two band diminishes and a semiconducting behavior can be 
observed. On the other hand, Sn can undergo a transition from metallic to 
semiconductor, in view of the proximity to the overlap condition. Finally Pb 
is a metal, since the 6p band is only partially filled (Fig. 12.8). 

Semiconducting behavior can be expected for a class of materials with 
tetrahedral structure generated by sp3 hybridization. The so-called III-V semi­
conductors are the crystals in which the basis, instead of being formed by the 
same two atoms at (0,0,0) and (1/4,1/4,1/4) in the fcc structure (as in C, Si, 
Ge and Sn) involves one element of the third group (Ga for instance) and one 
of the fifth group (As, for example). The covalent "transfer" of one electron 
from As to Ga gives rise to the S2p2 configuration in both atoms, as in Ge 
or Si, thus triggering the sp3 hybrid bands and the semiconducting behavior. 
The band gaps in Ge (0.75 eV) and in Si (1.17 eV) (indirect gaps, the maxi­
mum of the valence band and the minimum of the conduction band occurring 
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at different points of the Brillouin zone) are of the same order of magnitude 
in GaAs (1.52 eV) and in GaSb (0.81 eV). 

In ionic crystals the gap between the fully occupied valence band and the 
empty conduction band can be larger than about 5 eV, thus explaining their 
insulating behavior. 

13.2 Bonding mechanisms and cohesive energies 

The cohesive energy is defined as the difference between the energies of 
the atoms for interatomic distance R --+ 00 and the one for R = Re , the 
interatomic equilibrium distance. From thermodynamical and spectroscopic 
measurements the order of magnitude of the cohesive energies turn out: 

i) around 5 eV /atom in covalent crystals (e.g. 7.36 eV for diamond); 
ii) around 1 eV /atom in metallic alkali crystals; 
iii) around 5-10 eV /(pair of atoms) in ionic crystals; 
iv) from 10- 2 to 10- 1 eV in molecular crystals, with a sizeable increase in 

the binding energy with increasing atomic number for inert atoms crystals. 

Quantitative estimates of the cohesive energy are evidently difficult , since 
in principle they correspond to the derivation of the eigenvalues in the 
Schrodinger equation for the electronic states. It is possible to achieve sat­
isfactory descriptions of the relevant aspects of the binding mechanisms and 
to obtain rather good estimates of the cohesive energies by referring to limit 
ideal situations. For instance, one usually refers to molecular-like scenarios 
or to ionic atomic configurations. In covalent crystals, where the bonds are 
similar to the ones in molecules, the cohesive energy per molecule is expected 
around the one described at Chapter 8. The bonding mechanism in metals 
can be considered as due to the attractive term related to the electron delo­
calization (favored by the band overlap) and the repulsive term arising from 
the increase of the Fermi energy when the electron density increases (see Eq. 
12.28). 

More quantitative descriptions of the binding energies for ionic and molec­
ular crystals shall be given in the subsequent Subsections. 

13.2.1 Ionic crystals 

Let us refer to a crystal with N positive and N negative ions, per cubic cm. 
In the point-charge approximation the interaction between two ions is written 

e2 
V; = ± - + Be-Rij / p 

'J R.. ' 
' J 

(13.1) 

where the sign of the first term depends on the signs of the charges at the i-th 
and j-th ions. The second term has the Born-Mayer form used to take into 
account the short-range repulsion in heteronuclear molecules (Eq. 8.36). 
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For a given i-th ion the energy is Vi = L~ Vij and by writing the distance 
R ij = Pij R (R being the nearest neighbour distance) one has 

(13.2) 

where in view of its short-range character the repulsive term has been limited 
to the z nearest neighbours. Then the total energy becomes 

(13.3) 

with 
ex = L (± 1), 

j Pij 
(13.4) 

the Madelung constant. 
From Eq. 13.3 one realizes that ex has to be positive, in order to grant 

the aggregation of the ions to form a crystal. At the equilibrium interatomic 
distance 

( dV) _ _ Nexe2 NZ B -Re/p - R-R - 0 - -- - - e 
dR - e R~ p 

(13.5) 

and then (pexe2 jzB) = R~e-Relp, thus giving for the total energy 

(13.6) 

The characteristic constant p « R e can be estimated from the crystal 
compressibility (see Problem XIII.2.1) and usually turns out of the order of 
O.IRe. Thus Eq. 13.6 shows that the cohesive energy is of the order of the 
dissociation energy of the ideal molecule formed by positive and negative ions 
and that it is largely controlled by the Madelung constant. 

The estimate of ex is not trivial due to the slow convergence of the sum 
in Eq. 13.4. It has to be noticed that the series of the positive and of the 
negative terms, taken separately, diverge in 3D crystals. Numerical methods 
to grant fast convergence for ex have been d evised a long ago, based on the 
choice of reference regions where the monopole contribution vanishes (Ewald 
procedure). The remaining dipole or quadrupole contributions converge with 
increasing distance faster than the Coulomb terms. 

Typical values for the Madelung constants are ex = 1.7475 for crystals with 
NaCI-type structure and ex = 1.7626 for crystals with CsCI-type structure. In 
the simple case of a chain with alternating positive and negative ions the 
evaluation of ex is straightforward: 

1 1 1 
ex = 2[1 - - + - - - + ... J = 21n2. 

234 
(13.7) 
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13.2.2 Lennard-Jones interaction and molecular crystals 

In order to describe the bonding mechanism in molecular crystals let us 
first derive the form of the attractive interaction among the atoms when no 
molecular-like mechanisms (as the ones described in Chapters 8 and 9) are ac­
tive. The mechanism we shall consider originates from fluctuating electric 
dipoles , first described as Van der Waals interaction and later on known 
in the quantum mechanical scenario as London interaction. 

To derive the London interaction let us refer to two hydrogen atoms along 
the x direction: 

x 

The distance R is larger than the one at which the bonding mechanisms 
leading to the Hydrogen molecule would become relevant (in other words R is 
a distance where the overlap, resonance or exchange integrals can be neglected; 
see Problem VIII.3.1). Then the unperturbed wavefunction is 

(13.8) 

with eigenvalue EO = E~l , ll + E~2 , 12' The perturbation Hamiltonian is the 
dipolar one 

that is rewritten in the form 

(13.9) 

From second order perturbation theory the ground-state energy turns out 

(13.10) 

Hdip is an odd function and < 0IHdiPI O >= o. 
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By resorting to arguments already used in the derivation of the atomic 
polarizability (§4.2) and noticing that the denominator varies from _e2 lao to 
-3e2 14ao , one can write 

(13.11) 

Thus from Eq. 13.9, 

o ao e4 [ 2 2 2 2 2 2] E(R) c::: 2El s - e2 R6 4 < X l >< X2 > + < Yl >< Y2 > + < Zl >< Z2 > . 

(13.12) 
For Hydrogen the expectation values of the square of the components X, Y and 
Z are < r2 > 13 = a; and then 

(13.13) 

showing that an attractive interaction has arisen. 
The London interaction can b e depicted as related to the dipolar interac­

t ion between an instantaneous dipole in one atom and the one induced in the 
neighboring atom, thus explaining the role of the atomic polarizability ex ex a~ 
(see §4.2), as schematically described below 

)..1.1 

R 

112 = ac '" alli/R 3 

interaction - 1l11l21R 3 _ a1l2/R 6 

(the interaction is attractive for 

any direction of )..1.1 ) 

~-------~~--------_/ 

The result in Eq. 13.13 can be generalized, leading to the assumption of 
an attractive potential energy of the form 

(13.14) 

with ex proper atomic polarizability. A short-range repulsive term given by 
Vr ep = B I R12 can b e heuristically added. 

The Lennard-Jones potential between two atoms collects the concepts 
described above and it reads 

[ 
(J 12 (J 6] Vij(R) = c (-) - 2(-) , 

Rij Rij 
(13.15) 
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where c and CJ are related to the repulsion coefficient B and to the atomic 
polarizability 0:. 

Note that according to the form 13.15 for the Lennard-Jones potential c 
and CJ are simply related to the shape of the interaction energy: 

V(R) 

R 

£ 

To evaluate the cohesive energy in molecular crystals one can proceed in a 
way similar to the one carried out in ionic crystals (§13.2.1). At variance with 
that case one can now limit the summation to the z first nearest neighbors for 
both the repulsive and the attractive terms. From the condition of minimum 
at R = R e , one derives 

eq Nz 2 2 V; = - ------- e a 0: 
T 2R~ o· 

(13.16) 

20 ;;-
<I) s 
~ 

Ne 

~ 

Xe 

-20 

R (A) 

Fig. 13.1. Energy curves in crystals of inert atoms as a function of the interatomic 
distance . 
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The assumption of London interaction and of short-range repulsion as in 
Eq. 13.15 qualitatively justifies the cohesive energy in inert atoms crystals. In 
particular, through the dependence of the atomic polarizability from the third 
power of t he "size" of the atom, Eq. 13.16 explains why the cohesive energy 
increases rapidly with the atomic number (see Fig. 13.1). 

Problems XIII.2 

Problem XIII.2.1 For ionic crystals assume that the short-range repul­
sive term in the interaction energy between two point-charge ions is of the 
form R -n . Show that the cohesive e nergy is given by 

E = _ No:e2 (1 - .!.) 
Re n 

with 0: Madelung constant and Re equilibrium nearest neighbor distance. 
Then, from the value of the bulk modulus B = 2.4 . 1011 dyne/ cm2 , estimate 
n for N aCl crystal. 
In KCl Re is 3.14 A and the cohesive energy (per molecule) i s 7.13 eV. 
Estimate n. 

Solution: 
Modifying Eq. 13.3 we write 

( o:e2 1 ) E(R) =-N - - A-R Rn 

where A = pz (z number of first nearest neighbors and p a constant in the 
repulsive term p/ R'ij ). From 

( dE(R) ) = 0 
dR R=Re 

No:e2 ( 1) E( Re) = - -- 1 - -
Re n 

The compressibility is defined 

k = _~ dV 
VdP 

and from dE = - PdV the bulk modulus is 

B = k- 1 = V d2E 
dV2· 
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(see Problem F.XII.5). For N molecules in the fcc Bravais lattice the volume 
of the crystal is V = 2N R3 and then 

From 

one obtains 

Since 

d2 E _ dE d2 R d2 E (dR) 2 

dV2 - dR dV2 + dR2 dV 

1 

d2 E = - N [2a e2 _ n(n + I)A] 
dR2 R 3 Rn+2 ' 

k- 1 = (n - l)ae2 

18R~ 

For NaCI a = 1.747 while R e = 2.82A, therefore n c:::: 9.4. 
For KCI, from E(Re) = 7.13 eV / molecule, one obtains n = 9. 

Problem XIII.2.2 In KBr the distance between the first nearest-neighbors 
is R e = 3.3 A, while the Madelung constant is a = 1.747. The compressibility 
is found k = 6.8.10- 12 cm2 / dyne. Evaluate the const ant p in the Born-Mayer 
repulsive term and the cohesive energy. 

Solution: 
From V = 2N R3 and dV = 6N R 2dR the pressure is 

p = _ _ I_dE 
6R2 dR' 

where E is the cohesive e nergy per molecule. Then 

The second term being zero, the compressibility becomes 

Since 

k = _~ dR. 
RdP 

18Re 

k 
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and 

one finds 

so that 

and p c::: 3 . 10- 9 em. 

E= - - 1 - - e P 
ae2 [ Rp _ ( R e - R ) ] 

R R~ , 

( 18R4) - I 2 + __ e 

ae2 "" 

Re 
-~9 p - , 

The cohesive energy per molecule turns out 

E = -~: (1 - !L) c::: - 6.8 eV. 

13.3 Electron states of magnetic IOns in a crystal field. 

In a crystal the energy levels of partially filled d and f shells of transition 
metal and rare earth atoms are modified by the electric field generated by the 
neighboring atoms, yielding significant changes in the magnetic properties. To 
account for the perturbative effect two approaches can be used: the crystal 
field (CF) approximation or the ligand field theory. 

In the first case the magnetic ion is assumed to be surrounded by point 
charges (with no covalency) which modify the electronic energies, in a way 
analogous to the Stark effect (§4.2). Thus one writes 

H = Hatom + V C F, (13.17) 

where 

1<2 Z 2 2 
"" n 2 e "" e "" (i) Hatom = ~(-2\7i - --) + ~ - + ~~nl li .si 

i m 'i i> j ' ij i 

(13.18) 

The ligand field theory, at variance, t akes into account the formation of co­
valent bonds with the neighboring atoms, within the molecular-orbital theory. 

Let us discuss a few basic aspects of the electronic states for a magnetic 
ion within t he CF approach. As regards the order of magnitude of the VC F 

term one can remark the following: 

a) for 4d and 5d states usually one has V C F > L i> J" :2 > ~nl. In this 
'J 

strong field limit the CF yields splitting of the atomic levels of the order of 
104 cm- I . 

2 

b) for 3d states one usually has L i> j :ij 2 Vc F > ~nl· In this case the 

splitting of the atomic levels due to the CF is of the order of 103 - 102 cm- I . 
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2 
c) for rare-earth atoms L i>j :ij > ~nl > VC F , since the CF on the 4f 

electrons is sizeably shielded by the 58 and 5p electrons. Thus small CF split­
ting occurs, of the order of 1 em-I. 

To understand qualitatively the role of the CF local symmetry in removing 
the d electron degeneracy, let us first consider the effect of point charges Z e 
placed at distances a from the reference ion along the x, y , z axes: 

Then the perturbative potential, for instance from the charge at (a , 0, 0) 
is 

Ze2 

V C F = -I ·1 r - al 

where, is the nucleus-electron distance within the reference ion. 
For, « a, by collecting the various terms and using 

X 3x2 5x3 35x4 
(1 + X)-1/2 = 1 - - + - - - + -- + ... 

2 8 16 128 

one writes 

2 [6 35 4 4 4 3 4 ] VCF = -Ze - + - 5 (x + y + z - - , ) + .... 
a 4a 5 

(13.20) 

More in general, the CF potential due to the surrounding ions, on a given 
i-th electron is written 

(13.21 ) 

with Zk the charge of the ion at R k . Since 'i « R k , the validity of the 
Laplace equation \72V(ri ) = 0 is safely assumed. Then the CF potential can 
be expanded in terms of Legendre polynomials Pt (see Problem II.2.1): 

(13.22) 
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with [h i angle between f i and Rk. By expressing Pl in terms of spherical 
harmonics 

the CF Hamiltonian is written 

with 

n 00 l 

JiCF = L L L AiriYlm(ei , ¢i ), 
i= l l= O m=-l 

- 47re2 ~ ZkYlm *(ek, ¢k ) 
Ai = ~,------,-:- ~ 

(21 + 1) k=l RilH ) , 

(13.23) 

(13.24) 

(13.25) 

The coefficients Ai can be calculated once that the local coordination of 
the ion is known. 

To give an example, l et us consider the CF potential on one e lectron of a 
transition metal ion placed at the center of a regular octahedron formed by 
six negative charges Z e at distance R along the coordinate axes. In this case 
Eq. 13.24 reads 

(13.26) 

resembling Eq. 13.20. 
Now one has to look for the effects of this perturbative hamiltonian on the 

degenerate d states. The electron wavefunction has to be of the form 

(13.27) 

where ¢ 0,±1,±2 are eigenfunctions of the unperturbed Hamiltonian. 
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One can notice that the matrix elements < ¢0,±1,±211tCFI¢0,±1,±2 > are 
all of the form nDq, with n an integer, D = Ze2/6R5 and q cx< rA >. 

~l 
i·/ 

~;/ 

/ Duolo A',Y :::;~~:---- -~2--
! See Eq. 13.26 

~:. .................................................. . ~g (zx, xy, yz) 

Free ion 

~o= lODq 
Crystal field 

splitting 

Fig. 13.2. Crystal field splitting of the 3d electron levels in regular octahedral 
coordination. The elongation of the octahedron along the z axis would cause the 
further splitting of the upper eg levels. 

The secular equation becomes 

o 
- 4Dq - E 

o 
o 
o 

o 
o 

6Dq -E 
o 
o 

o 
o 
o 

- 4Dq - E 
o 

(13.28) 

with solutions El = E2 = 6Dq and E3 = E4 = E5 = - 4Dq, in correspondence 
to the eigenfunctions ¢~ == ¢o == dz 2 , ¢~ = (1/V2)(¢2 + ¢-2) == dx Ly2, 

¢~ = (1/V2)(¢1 + ¢-d == dxz , ¢~ = (-i/V2)(¢l - ¢-d == dy z and ¢~ = 
(- i/V2)(¢2 - ¢-2) == dxy . 

The structure of the energy levels is shown in Fig. 13.2. 
The core of high-temperature superconductors is an octahedron of oxygen 

atoms surrounding the Cu2+ 3d9 ion, yielding the splitting of the 3d levels 
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depicted in Fig. 13.2 (it should be reminded that the CF levels for a single 
hole in the 3d sub-shell are equivalent to the ones for a single electron). 

The case of one p electron in a perturbative CF due to an octahedron 
of ions is discussed in Problem F.XIII.3, including the effect of an external 
magnetic field. 

13.4 Simple picture of the electric transport 

Let us first recall a few introductory remarks based on the Drude model , 
basically classical considerations for a free electron gas, which help to grasp 
some aspects of electrical conductivity in solids. 

In analogy to the molecular collisions in classical gases, for the electrons 
colliding with impurities or with the ions (oscillating around their equilibrium 
positions, see Chapter 14) one can define a mean free path A. This is the 
average distance covered by an electron between two collisions, while it is 
moving with an average velocity < v >. This average velocity can be related 
to the Fermi energy EF by referring to the average energy < E >c::: 3EF / 5 
(see §12.7.1): < v >= v < y2 > rv JEF/m c::: 108 cm/s. 

An external electric field £ modifies the random motions of the electrons 
in such a way that a charge flow opposite to the field arises, with a neat drift 
velocity Yd. The drift velocity is estimated as follows. After a collision a given 
electron experiences an acceleration a = e£ / m, for an average t ime A/ < v >. 
Then Vd = aA/ < v >= -eEAjm < v >, which is usually much smaller than 
< v >. Then, indicating with n the electron density, the current density turns 
out 

. ne2£A 
J = -ney d = . (13.29) 

m <v > 
This equation corresponds to the Ohm law, where the resistivity is p = E / j. 
The mobility fL , defined by the ratio IVd l/I£I, is thus given by 

fL = eAjm < v > and the conductivity CT is 

(13.30) 

For totally filled bands the conductivity is zero, as it will be emphasized 
subsequently. When a band is almost filled an expression for the conductiv­
ity due to positive c harges (holes) can be considered. A contribution to the 
conductivity analogous to Eq. 13.30 can then be written: CTh = nhehfLh. 

It should be noticed that due to the opposite sign of their charges and 
of their drift velocities, both electron and hole conductivities contribute with 
the same sign to the electric transport . 

In the Drude model for met allic conductivity all the free electrons con­
tribute to the current, a situation in contradiction to the Pauli principle. In 
fact, the electron at energy well below EF cannot acquire energy from the 
field, the states at higher energy being occupied. Furthermore the tempera­
ture dependence of the conductivity (which around room temperature goes as 
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CJ ex T - 1 ) is not explicitly taken into account in Drude-like descriptions, the 
ions being considered immobile. 

The quantum mechanical description of the current flow would require 
solving Schrodinger equation in the spatially periodic lattice potential in the 
presence of an electric field. Here we shall limit to a semi-classical picture in 
order to better clarify the phenomenological concepts given above, taking into 
account the band structure and resorting to the wave-packet-like properties 
of the electrons. 

In the semiclassical approach the motion of the electron (see §12.3 and 
§12.6) is based on the equation for the increase of energy bE in a time Ot , due 
to the force associated with the electric field £: 

bE = -e£.vOt. (13.31 ) 

Here v r epresents the group velocity of the Bloch wave-packet describing 
the electron: 

(13.32) 

It is recalled that in order to have particle properties, still retaining the 
required wave-like structure, an electron cannot have a precise definite mo­
mentum but must possess a range of k values. 

From Eqs. 13.31 and 13.32 the equation of motion 

fik = - £e (13.33) 

describes how the wave-vector and hence the state of the electron, changes. 
From Eqs. 13.32 and 13.33 the effective mass m*, reflecting the effect of the 
crystal field included in E(k), was obtained (§12.6). From the components of 
the acceleration 

the components of the effective mass tensor turn out (see Eq. 12.24 and Prob. 
XII.3.3) 

* - 1 1 82E(k) 
(m )af3 = fi 2 8ka8kf3 ' (13.34) 

As already discussed at §12.6, the effective mass concept is useful to de­
scribe the effect of the lattice in regards of the response of the electrons to 
external forces. It has already been emphasized how the effective mass changes 
along a given band E(k), so that the electrons can move along the direction 
of the electric field or along the opposite direction. 

By extending Eq. 13.32 and considering that the density of k states is 
N vc /87r3 , the current density (Eq. 13.29) can be written 
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(13.35) 

where the integration is over all states occupied by electrons, within the Bril­
louin zone. For a fully occupied band the integral extends over all the BZ. 

It must be remarked that for each electron with velocity v(k) there is 
another electron at - k for which 

(since E(k) = E( - k) , due to the inversion symmetry). Thus the current 
associated with a full band is zero, as it was anticipated . The crystal i s an 
insulator, if no thermal excitation to the upper empty band is considered. 

For a partially filled band, according to Eq. 13.33 the electric field redis­
tribute the electrons, so that the distribution is no longer symmetric around 
k = O. Therefore for a certain time interval there is no cancellation of the 
contributions to the drift and an electronic current flow along - e. occurs, as 
sketched below in a one-dimensional reciprocal space: 

E 

-nla 

I t = 0 

time t later 

occupied 
states 

nla 

'--. 

E 

-nla nla 

By extending to the band what has been derived for a single electron 
at Problem XII.6.1 , one realizes that after some time the distribution in k­
space changes. The states at positive k are refilled , as sketched below (for the 
moment , as in Problem XII.6.1, no scattering process is assumed to occur). 
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states at positive 
~ k are refi lled 

~ totalj ~ O 
I 

-nla nla 

Then, at this moment the current flows due to the regions at positive and 
at negative k 's compensate each other. Later on a neat flow in opposite direc­
tion (see Eq. 13.36) should occur. Therefore, as a whole, an oscillating current 
should be expected upon application of a constant electric field (the so-called 
Bloch oscillations, see Problem XII.6.1 for a single e lectron). However , we 
have to take into account the inelastic collisions of the electrons with impu­
rities or oscillating ions. In a simple description one can imagine that after 
each collision the entire group of electrons is forced to re-take the equilibrium 
thermal distribution over the k-states. Then, for frequent collisions, only the 
evolution of the system in the first t ime interval mentioned above is practically 
effective. The net effect of the field can be thought to generate a stationary 
distribution skewed in the opposite direction of the field: 

E 

-nla nla 

yielding a net flow of current. 
For almost totally filled bands a description in terms of pseudo-particles 

(the holes) occupying the empty states can be given, as anticipated. In fact , 
the integral in Eq. 13.35 extends only over the occupied states. Therefore for 
the current density one can write 

j = -~ [l v(k)dk -1 V(k)dk] = +-;. l v(k)dk 
87f J BZ empty 87f J empt y 

(13.37) 
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Thus the current has been formally transformed to a current of positive 
particles occupying empty electron states. To those quasi-particles Eqs. 
13.31-13.35 and the related concepts do apply. 

At the thermal equilibrium the holes are usually confined to the k states 
in the upper p art of the band, where the e lectron effective mass is usually 
negative. Thus the holes behave as positive charges with a positive effective 
mass mh moving along the electric field direction. 

These concepts are particularly useful in int rinsic semiconductors, where 
the thermal excitations promote a limited number of electrons from the va­
lence band (fully occupied at T = 0) to the conduction band (fully empty 
at T = 0). Since the holes in the valence band and the electrons at the bot­
tom of the conduction band move along opposite directions and have opposite 
charges, the neat effect is that the electron and hole conductivities sum up. 

Appendix XIII.1 Magnetism from itinerant electrons 

The magnetic propert ies associated with localized magnetic moments, 
therefore of crystals with magnetic ions, have been addressed at Chapter 4. 
At §12.7 and Problem XII.7.6 the paramagnetic susceptibility of the Fermi 
gas has been described. 

The issue of the magnetic propert ies associated with an ensemble of delo­
calized electrons, with no interaction (Fermi gas) or in the presence of electron­
electron interactions is much more ample. In this Appendix we first recall 
the diamagnetism due to free electrons (Landau diamagnetism). Then 
some aspects of the magnetic properties of interacting delocalized electrons 
(ferromagnetic or antiferromagnetic metals) are addressed, in a simpli­
fied form. 

The conduction electrons in metals are responsible of a negative suscep­
tibility, associated with orbital motions under the action of external magnetic 
field. To account for this effect one has to refer to the generalized momentum 
operator (see Eq. 1.26) - inV + (ejc)A, with A = (0, H x , 0) (second Landau 
gauge) 1, for a magnetic field H along the z axes. 

Then the Schrodinger equation takes the form 

(A.XIII.1.1 ) 

Since - in v y,z describe constants of motion with eigenvalues nky ,z one can 
rewrite this equation in the form 

(A.XIII.1.2) 

1 This gauge is translationally invariant along the y-axis, with eigenstates of the 
y-component of the momentum. 
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where the first two terms represent the Hamiltonian for a displaced linear 
oscillator, with characteristic frequency 

eH 2JLBH We = - = -- = 2WL (A.XIII.1.3) 
me n 

(WL Larmor frequency, see Prob.III.2.4). We is t he cyclotron frequency , 
while Xo = neky jeH is the center of the oscillations. 

Therefore, from Eq. A.XIII.1.2 the eigenvalues turn out 

where the quantum number n labels the Landau levels. 
The one-electron eigenfunctions in the presence of the magnetic field are 

plane waves along one direction (dependent on the choice of the gauge for A) 
multiplied by t he wavefunctions for the harmonic oscillator. 

The semiclassical view of the result given at Eq. A.XIII.1.4 is that under 
the Lorenz force FL = - (eje)vg x H (with Vg the group velocity) the evo­
lution of the crystal momentum ndkj dt = FL induces a cyclotron rotational 
motion in t he xy plane while the electron propagates along the z direction 
(see Problem XII.3.2). 

It is noticed that each Landau level is degenerate, the degeneracy depend­
ing on the number of possible values for Xo. For a crystal of volume 
V = Lx.Ly.Lz , then 0 ::; Xo ::; Lx, while one has 0 ::; ky ::; LxeH jne == k;;,ax. 
Then , ky being quant ized in steps i1ky = 27r j Ly, the degeneracy of each L an­
dau level, given by the number of oscillators with origin within the sample, 
is 

k;;,ax e p(H) 
NL(H) = i1ky = LxLyH he = ~ , (A.XIII.1.5) 

where p(H) is the flux of the magnetic field across the crystal and Po = 
heje c::: 4 x 10- 7 Gauss cm2 is t he flux quantum 2. 

It is observed that the degeneracy, the same for all the n levels, increases 
linearly with H. Hence, by increasing H one can vary the population of each 
level and eventually when H is very high (and for moderate electron densities) 
all electrons will occupy just the first n = 0 level. Accordingly, on increasing 
H different Landau levels will cross the Fermi energy. 

By resorting to the results outlined above one can calculate the energy of 
the electrons E(H) in presence of the field and then the magnetization. One 
can conveniently distinguish two regimes, for kBT large or small compared 
to nWe. For kBT « nWe an oscillatory behaviour of E(H) is observed. The 

2 It can be noticed that the flux quantum here is by a factor 2 larger than the 
superconducting fluxon Pse = hc/2e, since in the latter case a Cooper pair, of 
charge 2e, is involved. 
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oscillations occur when the Landau level pass through the Fermi surface and 
cause changes in the energy of the conduction electrons, namely for 

(A.XIII.1.6) 

Characteristic oscillations in the magnetization, known as De Haas-Van 
Alphen oscillations can be detected. 

For kBT » nwc the discreteness of the Landau levels is no longer effective 
and the energy increases with H2: 

corresponding to an increase by nwc of the energy for all the nWcD(EF) 
electrons in a Landau level (D(EF) density of states at the Fermi level, see 
§12.7.1). Therefore, the susceptibility turns out 

(A.XIII.1.7) 

kF being the Fermi wave vector. From the Pauli susceptibility Xp (see Problem 
XII.7.6) one can write 

1 
XL = - -XP 

3 
(A.XIII.1.S) 

Modifications in XL (as well as in Xp) have to be expected when the 
effective mass m* of the electrons is different from m e. For instance, when 
m* « me (as for example in bismuth, where m* rv O.Olme) the metal can 
become diamagnetic. In fact, the total susceptibility for non-interacting delo­
calized electrons has to be written 

For further insights on the behaviour of the Fermi gas in the presence of 
constant magnetic field , Chapter XV in the book by Grosso and Pastori 
Parravicini (quoted in the Preface) should be read. 

In transition metals, with partially occupied d bands, the electrons in­
volved in the magnetic properties are itinerant with relevant many-body 
correlation effects. The Fermi-gas picture for the conduction electrons is no 
longer adequate and significant modifications to the Pauli susceptibility have 
to be expected , including the possibility of the transition to an ordered state. 
In these cases one often speaks of ferro (or antiferro )magnetic metals. For 
example, an experimental evidence of a particular itinerant ferromagnetism 
is iron metal: the magnetic moment per atom is found around 2.2J.LB. This 
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value cannot be justified in terms of localized moments on Fe2+ ion, in the 
5 D4 state (see §3.2.3). 

The simplest model to account for the correlation effect s on the magnetic 
propert ies of it inerant e lectrons is the one due t o Stoner and Hubbard. In 
this model the e lectron-electron Coulomb interaction is replaced by a constant 
repulsive energy U between electrons on the same site, with opposite spins 
according to Pauli principle. Then the total H amiltonian is written 

'H. = L E(k)(nk,r + nk,l ) + U LPm,rPm,l (A.XIII.1.9) 
k m 

where the first term is the usual free electron kinetic Hamiltonian, while the 
second term describes the repulsive on-site interaction, with the sum running 
over all lattice sites. 

The total magnetization can b e derived in a way analogous t o the one used 
for the Pauli susceptibility (Problem XII.7.6) , by estimating the numbers of 
electrons with spin up and spin down, following the application of the magnetic 
field. For N electrons per cubic cm, in the conduction band of width larger 
than U, Nr and Nl are t he numbers of electrons of spin up and spin down 
respectively. Then the e nergy for spin-up electrons turns out 

(A.XIII. 1. 10) 

while for electrons w ith spin-down 

(A.XIII.1.11) 

where nu = NU/N. 
The decrease of the e nergy of the spin-down band with respect to the 

spin-up band yields an increase in the population of spin-down electrons and 
a non-zero magnetization. Since (see again Problem XII.7.6) for N U one 
writes 

1100 N l = - f(E)D(E - Unr + J-L BH)dE ':::' 
2 U n r - f.J. B H 

1100 1 ':::' - f(E)D(E)dE + -(J-LBH - Unr )D(EF) (A.XIII.1.12) 
20 2 

while 

(A.XIII.1.13) 

The magnetization (per unit volume) becomes 

(A.XIII.1.14) 

(V the reference volume). Therefore t he magnetic s uscept ibility becomes 
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Xp 
(A.XIII.1.15) 

1 - (UXp/2Ji,~N) , 

with XP Pauli susceptibility (for bare electrons) and D(EF) the density of 
st ates per unit volume. 

It is noted that when U D(EF )/ 2N ----+ 1 (Stoner criterium) the s uscep­
t ibility diverges and ferromagnetic order i s attained. 

Even if the Stoner condition is not fulfilled, Eq. A.XIII.1.15 shows that 
the susceptibility is significantly modified with respect to the one for bare 
free-electrons. Eq. A.XIII.1.15 can be considered a p articular case of Eq. 4.33, 
where the enhancement factor corresponds to the mean field acting on a par­
t icular electron due to the interaction with all t he others. Stoner criterium 
rather well justifies the ferromagnetism in metals like Fe, Co and Ni, as well 
as the enhanced susceptibility (about 5 Xp) measured in Pt and Pd metals. 

Finally a few words a re in order about the magnetic behaviour of it inerant 
electrons w hen the concentration n is reduced (diluted electron fluid in the 
presence of electron-electron interaction). As shown in Problem F.XIII.2 
the Coulomb repulsive energy of the electrons goes as < Ec >cx: e2n 1/ D 

(D t he dimensionality) , while for the kinetic e nergy (for T ----+ 0) one has 
< T >cx: n 2/ D. Thus t he e lectron dilution causes a decrease of the a verage 
kinetic energy which is more rapid than the one for the average Coulomb 
repulsion. Eventually, below n3D = 1.4 x 10- 3 /a~ and below n2D = O.4/a; , 
when < Ec > becomes dominant , a spontaneous "crystallization" should 
occur, in principle (Wigner crystallization). 

Monte Carlo simulations predict a three-dimensional cryst allizat ion at 
densities below 2 x 1018 cm- 3 , while at densities below 2 x 1020 cm- 3 the 
Coulomb interaction should be strong enough to align all spins, according 
to the Stoner criterium. Charge or spin ordering are hard to be experimen­
tally tested, mainly because of the difficulty of the physical realization of the 
electron fluid at low density sufficiently free from impurities and/ or defects. 

Problems F .XIII 

Problem F . XII!. 1 Silver i s a monovalent met al, with density 10.5 g/ cm3 

and fcc structure. From the values of the resistivity at T = 20K and T = 295K 
given by P20 = 3.8 . 10- 9 [l cm and P295 = 1.6 . 10- 6 [l cm, estimate the mean 
free paths of the electrons. 

Solution: 
The Fermi wavevector turns out kF = 1.2.108 cm - 1 and then the Fermi 

energy is E F = 63800 K. 
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From p = m/ne2T and < v >= eE>./mj = (e>.m)p, with>' =< v > T and 
< v >rv y'EF/m (see the incipit at §13.4), one derives 

>. = 5.2 . 10- 12 cm at 295 K and >. = 0.2 . 10- 8 cm at 20 K . 

Problem F.XIII.2 For three-dimensional and for two-dimensional met­
als, in the framework of the free-electron model and for T -+ 0, evaluate the 
electron concentration n at which the average kinetic energy coincides with 
the average Coulomb repulsion (which can be assumed U = e2 / d, with d the 
average distance between the electrons). 

Solution: 
In 3D d = 1/(41fn/3 )1/3, while in 2D d = l /n1/2. Thus 

U3D = e2 (41f ) 1/3n 1/3 and U 2D = e2n 1/2 
3 

The average kinetic energy per electron (for T -+ 0) is < E >= IoEF D(E)EdE, 
with D(E)3D = (3 / 2)E1/2 / E;f2 and D(E)2D = 1/ E F. 

Then < E >3D= (3 /5 )EF and < E >2D= (1/2)EF. 
The average kinetic energy coincides with the Coulomb repulsion for n3D = 
1.4 x 1O- 3 /a5 and n2D = 0.4/a6, with ao Bohr radius. 

Problem F.XIII.3 A magnetic field is applied on an atom with a single 
p electron in the crystal field at the octahedral symmetry (§13.3), with six 
charges Z e along the ±x, ±y , ±z axes. Show that without the distortion of 
the octahedron (namely a = b, with a the distance from the atom of the 
charges in the xy plane and b the one along the z axis) only a shift of the p 
levels would occur. Then consider the case b i- a and discuss the effect of the 
magnetic field (applied along the z axis). Prove that quenching of the angular 
momentum occurs and derive the eigenvalues. 

Solution: 
By summing the potential due to the six charges, analogously to the case 

described at §13.3, for r « a the crystal field perturbation turns out 

vc F =-ze2{(:3 - bI3)r2 +3 (bI3 - : 3) z2 } + ..... = A(3z2 -r2) + const 

where A i- 0 only for b i- a. 
From the unperturbed eigenfunctions the matrix elements of VCF are 

< ¢Px IVCFI¢px > = AI r2 lR(rWr2dr I sin2 Bcos2 ¢ (3cos2 B- 1) sinBdBd¢ 

= - A < r2 > ~; =< ¢py IVCFI¢py > 
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while 
2 167r 

< ¢Pz IVCFI¢pz >= A < r > 15' 

In the absence of magnetic field the energy levels are 

r--lC------- pz EI I A<~8mS 
'======== Px,Py E2 

In the presence of the field, the total perturbative Hamiltonian becomes 
VCF + J.LBl z H. 
The diagonal matrix elements of lz in the basis of the unperturbed eigenfunc­
tions are zero. In fact , 

(Problems F.IV.l and F.IV.2) and, analogously, 

The non-diagonal matrix elements are < ¢2Pvl l z I ¢2px > = 
in = - < ¢2px 11zl¢2py >. 

The secular equation becomes 

Eo - E -iJ.L BH 0 
iJ.LBH Eo - E 0 = 0 

o 0 E1 - E 

yielding E' = E1 and E" = Eo ± J.LBH, i.e .: 

unchanged 

PX'PY ___ / 2""H m,,,,"" 'pli,Ii", 

/ '---'-------
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Vibrational motions of the ions and thermal 
effects 

Topics 

Elastic waves in crystals 
Acoustic and optical branches 
Debye and Einstein models 
Phonons 
The melting temperature 
Mossbauer effect 

14.1 Motions of the ions in the harmonic approximation 

Hereafter we shall afford the problem of the motions of the ions around their 
equilibrium positions in an ideal (disorder- and defect-free) crystal. The mo­
tions are called lattice vibrations. The Born-Oppenheimer separation and 
the adiabatic approximation (§7.1) will be implicit and the concepts involved 
in the description of the normal modes (§10.6) in the harmonic approximation 
will be used. In fact, the crystal cell will be considered as a molecular unit: 
its normal modes propagate along the crystal with a phase factor, in view of 
the spatial periodicity. 
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According to the definitions sketched below, 

y 
II 

II 

atom at site s in the cell at l 

within the harmonic approximation the potential energy will be written 

1 " " ( 82V) , , V2 = "2 ~,~ 80:(1,8)8,6(1' ,8') 0 ua(l, 8)u,6(1 ,8 ) 
I ,s,a I ,s ,,6 

== L L <pi~ :f,~s' ua(l , 8 )U,6 (1' , 8') , (14.1) 
l ,s,a I' ,s' ,/3 

where <pi~' Y! s' involves the force along the x direction on the ion at site 8 of 
the [-th ~eil ~hen the ion at site 8' in the [' cell is displaced by the unit length 
along the y direction. From Eq. 14.1 the equations of motion turn out 

m s d2ul ,s = - 8V2 = - "<PI s I' s' Ul' s', 
dt2 8u ~ , " , 

l ,s I' ,s' 
(14.2) 

namely 3SN coupled equations (S number of atoms in each cell). 
Recalling the normal modes in the molecules (§10.6) it is conceivable that 

due to the translational invariance, the motion of the atom at site 8 in a given 
cell differs only by a phase factor with respect to the one in another cell (this is 
the analogous of the Bloch orbital condition for the e lectron states). Therefore 
the displacement of the (1, 8) atom along a given direction is written in terms 
of plane waves propagating the normal coordinates within a cell: 

(14.3) 

where q are the wavevectors defined by the boundary conditions (the analo­
gous of the electron wavevector k, §12.4). 
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From Eqs. 14.3 and 14.2 for each q , by taking h = 1 - 1' , one has 

msw~Ua(S, q) = L U{3(s', q)Ma,{3(s, s', q), (14.4) 
{3,s' 

where 
M ( , ) - ""' Ai.(a ,{3) iq·h 

a ,{3 S , S ,q = ~ 'i'l ,s,l' ,s,e (14.5) 
h 

is the dynamical matrix, namely the Fourier transform of the elastic con-
stants. 

14.2 Branches and dispersion relations 

For a given wave-vector Eq. 14.4 can be rewritten in the compact form 

(14.6) 

where M is a square matrix of 38 degree, m is a diagonal matrix and U is 
a column vector. As for the normal modes in molecules (see Eq. 10.53) the 
condition for the existence of the normal coordinates is 

(14.7) 

For each wavevector q Eq. 14.7 yields 38 angular frequencies W~ ,j' Here j is a 
branch index. 38 - 3 branches are called optical since, as it will appear at 
§14.3.2, they can be active in infrared spectroscopy, while 3 branches are called 
acoustic, since in the limit q ----+ 0 the crystal must behave like an elastic 
continuum, where Wq = Vsound q. At variance, for the optical branches (see 
§14.3.2) for q = 0 one has Wq,j i- O. 

The q-dependence of Wq,j is called dispersion relation. In analogy to the 
density of k-states for the electrons (§12.5), one can define a density of q values 
in the reciprocal space: D( q) = N vc/87r3 . One also defines the vibrational 
spectrum Dj(w) for each branch, with the sum rule 2:J~l J Dj(w)dw = 3N8. 

In the next Section illustrative examples of vibrational spectra will be 
given. 

14.3 Models of lattice vibrations 

In this Section the classical vibrational motions of the ions within the har­
monic approximation will be addressed for some model systems. 
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14.3.1 Monoatomic one-dimensional crystal 

Let us refer to a linear chain of identical atoms, for simplicity by considering 
only the longitudinal motions along the chain direction: 

a 
UI.s III ~ 

~.~----~. __ ----~.~~~--~. __ ----~.~---.~ 10 

celli 
site s '" I 

N"cell s" 

The equations of motions are of the form Eq. 14.2, the index s being 
redundant. One first selects in the reciprocal space a wavevector q = n 1 27f / N a, 
with - N /2 ~ nl ~ N /2. Then one writes the Ul,s displacement as due to the 
superposition of the ones caused by the waves propagating along the chain, 
for each q (correspondent to Eq. 14.3). From Eq. 14.2 and 14.4 one writes 

msw~U(s, q) = L U(s',q)M(s, s', q), (14.8) 
s' 

where 
M( , ) - "" fF.. iq.h S,S , q = ~ 'l'1,s ,I',s,e (14.9) 

h 

is the collective force constant, representing the Fourier transform of the 
elastic constants. Eqs. 14.8 and 14.9 describe the propagation of the normal 
modes of the "cell" along the chain. 

By limiting the interaction to the nearest neighbors, 

r "cell" 0, single site, index 0 

--o.--~~--. ---------0---, -- -------0-
-2 -I r 0 + 1 +2 

. ~'d spnng constant In ex 

the equation of motion for the atom in the cell at the origin (l = 0) turns out 

d2uo 
m dt2 = - 2kuo + kUl + kU-l (14.10) 

implying <1>(0 , 0) = 2k and <1>( ± 1, 0) = - k. 
The dynamical matrix (Eq. 14.5) is reduced to 

M = <1>(0,0) + L <1>(n, O)eiqna 

n=±l 

and Eq. 14.8 takes the form 

mw~Uq = (2k - 2kcos(qa))Uq, (14.11) 
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namely the one for a single normal oscillator, with an effective elastic con­
stant taking into account the coupling to the nearest neighbors. 

The solubility condition (Eq. 14.7) corresponds to 

2k w; = -(1 - cos(qa)), 
m 

(14.12) 

yielding the dispersion relation 

fk. 
Wq = 2y -:;;;sm(qa/2) (14.13) 

sketched below: 

w=vq 

-rria o 1ta q 

The vibrational spectrum, or density of states D(w) = D(q)dq/dw, with 
D(q) = Na/27r, turns out 

D(w) = (2N/7rJw;, - w2 ) , (14.14) 
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reported below 

D(OJ) 

D( OJ) = (Na/2n) • 2 • (2 / a) • 1/( lVtn2 - oJf5 

i 
only q>O are considered here 

2N / ltOJ.ll 1-----

OJ." == 2 (klm)' !2 OJ 

The situation arising at the zone boundary, where wq = 7r / a == W m , is equiv­
alent to the one encountered at the critical points of the e lectronic states (see 
§12.5). 

14.3.2 Diatomic one-dimensional crystal 

For a chain with two atoms per unit cell, with mass ml and m2 (ml > 
m2) , again considering the longitudinal modes and assuming a single elastic 
constant and nearest neighbour interactions, 

ce ll 1-1 celli cell 1+1 
r---------"II---------.lrl --------~ 

--e~~~~~ 
111 1 1112 .- Q -. .- a -. \ 

single elastic 
constant 

the equations of motions for the atoms at sites s = 1 and s = 2, within the 
l-th cell, are 

(14.15) 

Again resorting to solutions of the form 



14.3 Models of lattice vibrations 441 

and 
u(I ,2) = U2eiq(a+ 2Ia)e -iwq t 

(the index q in U1,2 is dropped here), one has 

The dynamical matrix is 

( 2k 
M = - k( e-iqa + eiqa) 

and the solubility condition 

leads to 

( 2k - mlw2 

-2kcos(qa) 
- 2kcos( qaj) = 0 
2k - m2W 

1 

2 1 1 [1 1 2 4 . 2 ]2 W = k(- + -) ± k (- + -) - --sm (qa) 
q m2 ml m2 ml mlm2 

The dispersion relations are shown in Fig.14.1, with f.L reduced mass. 

-1[/2 a o 

(2k1m2) 112 

(2k1m J) J/2 

1[/2 a q 

(14.16) 

(14.17) 

Fig. 14.1. Frequencies of the acoustic (A) and optical (0) longitudinal modes in 
one-dimensional diatomic crystal, according to Eq. 14.17. 
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At the boundaries of the Brillouin zone (q = ±7r /2a) the frequencies of 
the acoustic and optical modes are wA = y'2k/ ml and wo = y'2k/m2 , re­
spectively. 

It is noted that when ml = m2 the two frequencies coincide, the gap at the 
zone boundary vanishes: the situation of the monoatomic chain is restored, 
once that the length of the lattice cell becomes a instead of 2a. 

For a given wavevector one can obtain the atomic displacements induced 
by each normal mode. For instance, by choosing q = ° for the acoustic branch 
one derives UA (O , 1) = UA (O,2), the same displacement for the two atoms, 
corresponding to the translation of all the crystal. For the optical mode, again 
for q = ° one has m1Uo(O, 1) = - m2Uo(O, 2), keeping fixed the center of mass. 
As for the diatomic molecule (see §10.6) the difference of the two displacements 
corresponds to the normal coordinate. 

In a similar way one can derive the displacements associated with the 
zone boundary wavevectors (Fig. 14.2, where also the transverse modes are 
schematized) . 

Longitudinal modes 
q=O 

Acoustic mode ()-+ 

Optical modt+--e 

q = rrJ2a 

Acoustic mode 0 0-- 0 +--{] o 

Optical mode ..... 0 o ..... 0 

Transverse modes 

q =O 
Acoustic 

Optical mod..::.e ___ ---'::"L..-L. ____ ---''''''_""'''''' ____ ---':L..._ 

q = rrJ2a 

Acoustic n~~~ 

Optical mode 

Fig. 14.2. Atomic displacements associated with the q = 0 and the q 7r /2a 
acoustic (A) and optical (0) modes, for one-dimensional diatomic crystal. 
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From the dispersion relations (Eq. 14.17) the vibrational spectra reported 
in Fig. 14.3 are derived. 

D(w) 

+-- (2k11') 1f2 

w 

Fig. 14.3. Vibrational spectra for the longitudinal acoustic (A) and optical (0) 
branches in one-dimensional diatomic crystal. 

Up to now only longitudinal modes have been considered. To describe the 
transverse vibrations the elastic constants for the displacements perpendicu­
lar to the chain should be considered. In this way, for a given wave-vector, 
3 vibrational branches would be obtained for the monoatomic chain and 6 
branches for the diatomic one, at longitudinal (L) and transverse (T) optical 
and acoustic characters (see Fig. 14.2). 

Finally one should observe that the interaction with electromagnetic waves 
requires the presence of oscillating electric dipole within the cell. To grant 
energy and momentum conservation, the absorption process should occur in 
correspondence to the photon momentum q = fiwjc, which for typical 
values of the frequencies (w rv 1013 - 1014 rad s-l ) is much smaller than hj2a. 
For q ---+ 0, at the center of the Brillouin zone, the acoustic modes do not 
yield any dipole moment. Therefore only the optical branches, implying in 
general oscillating dipoles (as schematized in Fig. 14.2) , can be active for the 
absorption of the electromagnetic radiation, similarly to the case described 
for the molecules. 

14.3.3 Einstein and Debye crystals 

The phenomenological models due to Einstein and to Debye are rather well 
suited for the approximate description of specific properties related to the 
lattice vibrations in real crystals. 

The Einstein crystal is assumed as an ensemble of independent atoms 
elastically connected to equilibrium positions. The interactions are somewhat 
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reflected in a vibrational constant common to each oscillator, yielding a char­
acteristic frequency WE . As regards the dispersion curves, one can think that 
for each q there is a threefold degenerate mode at frequency WE . Thus, the 
vibrational spectrum could be schematized as below: 

D(oo) 3N 3 (00 - 00.,) 

00 

Although int roduced to justify t he low-temperature behavior of the specific 
heat (see §14.5), the Einstein model i s often applied in order to describe the 
properties of the optical modes in real crystals. In fact, the optical modes are 
often characterized by weakly q-dependent dispersion curves with a narrow 
D(w), not too different from the delta-like vibrational spectrum of the Einstein 
model h euristically broadened, as sketched b elow: 

Ol schematic 
r= __ ~r dispersion curve 

- OlE ! -r 

zone boundary J q 

In the D ebye model it is assumed that the vibrational properties are 
basically the ones of the elastic (and sometimes isotropic) continuum, with 
ad hoc conditions in order to take into account the discrete nature of any real 
crystal. In particular: 

i) the Debye model describes rather well the acoustic modes of any crystal, 
since for q -+ 0 the dispersion curves of the acoustic branches practically 
coincide with the ones of the continuum solid, the wavelength of the vibration 
being much larger than the lattice step. 

ii) the model cannot describe the vibrational contribution from optical 
modes. 

iii) one has to introduce a cutoff frequency WD in the spectrum in order 
to keep the number of modes limited to 3N (for N atoms). 
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iv) only 3 branches have to be expected, with dispersion relations of the 
form wg = v~oundq, where the sound velocity can refer to transverse or to 
longitudinal modes. 

For a given branch, in the assumption of isotropy, the vibrational spectrum 
turns out 

D( ) - Nvc d _ Nvc 2d _ Nvc 47rw2 
J W - 8 3 q - 8 3 47rq q - 8 3 3' 

7r 7r 7r Vj 
(14.18) 

One can introduce an average velocity v and again in the isotropic case, 
3/v3 = 2/v~ + l/v'i. Therefore 

(14.19) 

the typical vibrational spectrum characteristic of the continuum. 
Now a cutoff frequency WD (known as Debye frequency) has to be in­

troduced. The role of WD in the dispersion relation and in the vibrational 
spectrum D( w) is illustrated below: 

D(m) 

COD CO 

WD can be derived from the condition J D(w)dw = 3N or, equivalently, 
by evaluating the Debye radius qD of the sphere in the reciprocal space which 
includes the N allowed wavevectors. 

Thus (Nvc/87r 3 )(47rq1/3) = N and then 

(14.20) 

and 

( 6 2) t 
WD = VqD = v: . (14.21 ) 
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In real crystals detailed description of the vibrational modes are difficult. 
One can recall the following. In the q ----+ 0 limit one can refer to the conditions 
of the continuum and the acoustic branches along certain symmetry directions 
can be discussed in terms of effective elastic constants. These constants are 
usually derived from ultrasound propagation measurements. 

The frequencies of the various branches can become equal in correspon­
dence to certain wavevectors, implying degeneracy. Although the optical 
branches have non-zero frequency even for q = 0 they are not always optically 
active, since do not always imply oscillating electric dipoles. For instance, 
in diamond, although the optical modes cause the vibration of the two sub­
lattices (see §11.3) against each other, no electric dipole is induced and no 
interaction with the electromagnetic waves can occur. 

The dispersion curves are usually obtained by inelastic neutron spec­
troscopy. The schematic structure of a triple axes spectrometer is reported 
below: 

q=k'-k 

hw=E'-E 

Reactor 

Monochromator 

(J) 

• 
liw fixed 

• 

Dispersion curve 

/} .... 
/l .. 
• • 

q 

q 
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14.4 Phonons 

While discussing the normal modes in molecules (§1O.6) it was shown how a 
non-normal Hamiltonian (in terms of local coordinates) could be transformed 
into a normal one by writing the local displacements as a superposition of 
excitations, each one associated to a normal oscillator. The collective normal 
coordinate was shown to be a linear combination of the local ones. The treat­
ment given at §10.6 can be extended to the displacements of the atoms around 
their equilibrium positions in a crystal. Thus, returning to Eq. 14.3, for each 
branch (j) we write the displacement in the form 

U = L Uq eiq.Re-iwqt 

q 

(14.22) 

Therefore the problem is reduced to the evaluation of the normal coordinates 
Q~) of the crystal cell, that one can build up from the amplitudes U q by 
including the masses and the normalization factors. The translational invari­
ance of the crystal implies the propagation of the normal excitations of the 
cell with phase factor eiq.R . 

Hence, one can start from Hamiltonians of the form 'H = Lj 'Hj [Qj(q) ], 
for each wavevector q of a given branch j. By indicating with Q the group of 
the normal coordinates and with ¢(Q) the related wavefunction, one expects 

¢(Q) = II ¢~) (Qj(q)) (14.23) 
q ,j 

In the harmonic approximation ¢~) is the eigenfunction of single normal 
oscillator, characterized by quantum number nj (q) and eigenvalues 

The total energy is 

ET = LL(nj(q) + ~)nw~). (14.24) 
j q 

Therefore the vibrational state of the crystal is defined by the set of 3SN 
numbers I ... , ... , nj (q), ... > that classify the eigenfunctions of the normal oscil­
lators. At T = 0, the ground-state is labelled 10,0,0 ... > and the wavefunction 
is the product of Gaussian functions (see §10.3.1). 

At finite temperature one has to take into account the thermal excitations 
to excited states, for each normal oscillator. Two different approaches can be 
followed: 
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A) - the normal oscillators are distinguishable and the numbers nj(q) 
select the stationary states for each of them. Then the Boltzmann statistics 
holds and for a given oscillator with characteristic frequency v the average 
energy is 

(14.25) 
v 

with 

and 
E v =(v+1/2)hv v=O,1,2, .... 

For each normal mode the average energy E is found as shown at Problem 
F.I.2 for photons (Planck derivation), here having to include the zero-point 
energy: 

- 1 1 
E = hv( -2 + hv ) 

e kBT - 1 
(14.26) 

The energy turns out the one for the quantum oscillator, provided that an 
average excitation number 

is introduced. 

1 
< v > = ----",-'v--

e kBT - 1 
(14.27) 

The total thermal energy of the crystal is obtained by summing Eq. 14.26 
over the various modes, for each branch. 

B) - the crystal is considered as an assembly of indistinguishable 
pseudo-particles, each of energy liwq ,j and momentum liq = (liwq ,j/vj,q)q. 
These quasi-particles are the quanta of the elastic field and are called phonons 
in analogy with the photons for the electromagnetic field. 

Then the total energy has to be written 

(14.28) 
q ,] 

where the average number of pseudo-particles is given by the Bose-Einstein 
statistics, i. e. 

(14.29) 

for a given branch j. 

The two ways A and B to conceive the quantum aspects of the lattice 
vibrations give equivalent final results, as it can be seen by comparing Eq. 
14.26 (summed up to all the single oscillators) and Eq. 14.28. The derivation 
of some thermal properties (§14.5) will emphasize the equivalence of the two 
ways to describe the quantum aspects of the vibrational motions of the ions. 
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14.5 Thermal properties related to lattice vibrations 

As usual, all the thermodynamical properties related to the vibrational state of 
the crystal can be derived from the total partition function ZTOT = Oq,j Zq ,j , 
with 

(14.30) 

where the sum is over all energy levels, for each q-dependent oscillator of each 
branch. 

The thermal energy can be directly evaluated by resorting to the vibra­
tional spectra D(w) , in the light of Eqs. 14.28 and 14.29, by writing 

u = Jnw(~ + "w I )D(w)dw. 
2 ekBT- l 

(14.31 ) 

For instance, for Einstein crystals where D (w) = 3N 15 (w - WE) one derives 

TiwE 

U = 3NnwE[lj2 + I j (e kBT - 1)]. 

The molar (N = N A ) specific heat for T » 8 E 

CV ':::' 3R. For T« 8 E one has 

8 E 2 - eFJ 
Cv ':::' 3R(-) e-----YC-

T 

nWEjkB turns out 

(14.32) 

For Debye crystals, from Eq. 14.31 by resorting to Eq. 14.19, one writes 

[) j .WD 1 
Cv = ;::'T{ D(w)nw...lli:L dw} 

u 0 e kBT - 1 

and then 

(14.33) 

with z = nw j kBT. 
For T» 8 D, with 8 D == nWD j kB (known as Debye temperature), one 

again finds the classical result Cv ---+ 3R. 
In the low temperature range (8D jT ---+ 00) Eq. 14.33 yields Cv ':::' 

(127r4 j 5)R(T j8D)3. 
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The temperature behavior of t he molar specific heat in the framework of 
Einstein and Debye models is sketched below: 

,-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-,-,-,-,-,-,-,-,-,-,-,-,-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-" " " "-"-,-,-,-, 3R 

E 

In T 

For T --+ 0 the Debye specific heat cF vanishes less rapidly than the 
Einstein c~. The different behavior of cF for T --+ 0 originates from the 
fact that t he vibrational spectrum in the Debye model includes oscillatory 
modes with energy separation of t he order of kET, even at low temperature. 
On the contrary in the Einstein crystal in the low-temperature range one has 
nWE» kET. 

In the Table below the Debye temperatures of some elements are reported. 

~~ Debye temperature in Kelvin r c fff~ 
Li Be (estimated at low temperature) 2230 N 0 F Ne 

344 1440 .. . (diamond) .. . . . . ... 75 

~[Mgi---I ---iAIlsilPlslclfA;:-
11581400 1428 I 645 I ... I ... I··· 192 

1~1~1~1~~I~I~~I~~I~I~I~~I~I~I:I~I~I~~f~ 
1~11~1~1~1~I~Wcl:I:I~I~I~II~I~I~I~[~ 
1~1~~I~I~~I~I!I~I~I~I~I~I~~I~~51~1~~I~F~ 

By resorting to t he expression for t he thermal energy in terms of the 
vibrational spectra, t he mean square displacement of a given ion as a function 
of temperature can be directly derived. According to t he extension of Eq. 14.3 
to include all the normal excitations, the mean square vibrational amplitude 
of each atom around its equilibrium position is written 

< lul2 >= L IUq,j 12 
q ,j 

(14.34) 
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By recalling that for each oscillator the mean square displacement can be 
related to the average energy mw2 < u 2 >=< E >, then for a given branch j 
one can write IUq l2 =< Eq > /Nmw~. Hence, 

< u2 >= _1_ L < Ei,j > = ~ J [~ + ~ 1 D(w) dw. (14.35) 
mN . Wq). mN 2 ekBT - 1 w q ,) , 

For Debye crystals, at temperatures T» eD , from Eq. 14.19 one obtains 

2 9kB T 
< u >~ --2-' 

mWD 
(14.36) 

It can be remarked that < u2 > controls the temperature dependence 
of the strength of the elastic component in scattering processes, through the 
Debye-Waller factor e-47r <u2>/>,2, with A wavelength of the radiation (see 
§14.6 for the derivation of this result). 

According to the Lindemann criterium the crystal melts when the mean 
square displacement < u2 > reaches a certain fraction ~ of the square of the 
nearest neighbor distance R, < u2 >= ~R2. 

Empirically it can be devised that ~ is around 1.5 x 10- 2 (V < u2 > ~ 
O.12R). This criterium allows one to relate the melting temperature Tm to 
the Debye temperature. From Eq. 14.36 one writes ~R2 = 9kB Tm /mw'b and 
then 

(14.37) 

Problems XIV.5 

Problem XIV.5.l Derive the vibrational entropy of a crystal in the low 
temperature range (T « e D)' 

Solution: 
From c{l (Eq. 14.33) in the low temperature limit, by recalling that 

s = rT c{l dT Jo T 

the molar entropy is S(T) = [12R1f4 / (15e1) ]T 3 . The contribution from opti­
cal modes can be neglected. 
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Problem XIV.5.2 Derive the temperature dependence of the vibrational 
contribution to the Helmoltz free energy and to the entropy, for Einstein 
crystals. 

Solution: 
For N oscillators the total partition function is ZT = ZN, with 

(remind that L Xn = 1/(1 - x), for x < 1). 
Then the total free energy turns out 

and the entropy is 

_ 8F _ - hWE/kB T nWE 1 
S - - (8T)v - -NkB{ln(l - e ) - kBT ehWE/kBT - I} 

Problem XIV.5.3 Evaluate the specific heat per unit volume for Ag 
crystal (fcc cell, lattice step a = 4.07 A) at T = 10 K , within the Einstein 
model (the elastic constant can be taken k = 105 dyne/cm) and within the 
Debye model, assuming for the sound velocity is v c::: 2 X 105 cm/s. 

Solution: 
The Einstein frequency WE c::: y'k/MAg , corresponds to Einstein temperature 
B E c::: 180 K. In the unit volume (1 cm3 ) there are n = 1/ (NA vc ) moles, with 
Vc = a3 /4 the primitive cell volume. Then, since T = 10K « BE, from Eq. 
14.32 one derives C~ c::: 112 erg/K. 

The Debye frequency can be estimated from Eq. 14.21 and the correspond­
ing Debye temperature turns out BD c::: 230 K» 10 K. Then 

Problem XIV.5.4 Specific heat measurements in copper (fcc cell, lattice 
step a = 3.6 A, sound velocity v = 2.6 X 105 cm/s) show that C v /T (in 
10- 4 Joule/ mole K2) is linear when reported as a function of T2, with extrap­
olated v alue (Cv /T) for T ---+ 0 given by about 7 and slope about 6. Derive: 
i) Fermi temperature, ii) Debye temperature, iii) the temperature at which 
the electronic and vibrational contributions to the specific heat are about the 
same. 
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Solution: 
From the specific mass p = 9.018 g/cm3 the number of electrons per cm3 

is n = 8.54· 1022cm- 3 . Then the Fermi temperature turns out 
",2 ( 2) 2/3 4 TF = 2mkB 37f n = 8.2 . 10 K. 

( 2) 1/3 
The Debye temperature, for the primitive cell of volume Vc is eD = ~~ 6,: = 
343K. 

From 
7f2 T* 1 47f4 (T*) 3 -nkB - = 32-kB- -
2 TF VC 5 eD 

the temperature T* at which the electronic and vibrational contributions are 
the same is obtained: T* = V5vcn(8D)3/2 /( 167f-jTF) ~ 1 K. 

Problem XIV.5.5 Write the zero-point vibrational energy of a crystal in 
the Debye model and derive the bulk modulus for T --+ O. 

Solution: 
The zero-point energy is Eo = ~ Jow o nwD(w)dw (Eq. 14.31). From Eq. 14.19 
one derives Eo = 9NnwD/8. 

At low temperature the bulk modulus is (B ~ V eP Eo/8V 2 ). Then, by 
writing WD in terms of the volume V = Nvc one finds 

IN 
B = --nwD 

2V 

14.6 The Mossbauer effect 

The recoil-free emission or absorption of , -ray (for the first time experimen­
tally noticed by Mossbauer in 1958) is strictly related to the vibrational prop­
erties of the crystals. Meantime it allows one to recall some aspects involving 
the interaction of radiation with matter. 

Let us consider an atom, or a nucleus, ideally at rest , emitting a photon 
due to the transition between two electronic or nucleonic levels. At the pho­
ton energy hv is associated the momentum (hv / c). Then in order to grant 
the momentum conservation the atom has to recoil during the emission with 
kinetic energy ER = (hv/c)2 / 2M, with M the atomic mass. 
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Because of the energy conservation the emission spectrum (from an as­
sembly of many atoms) displays a Lorentzian shape, 

l emis (E) 

E 

EB-EA 

at least with the line broadening iJ.E related to the life-time of the level 
(the inverse of the spontaneous emission probability, see Prob. F.I.l). An­
other source of broadening arises from the thermal motions of the atoms and 
the emission line usually takes a Gaussian shape, with width related to the 
distribution of the Doppler modulation in the emitted radiation (see Problem 
F.I.7). 

Let us suppose to try the resonance absorption of the same emitted 
photon from an equivalent atom (or nucleus). Again, by taking into account 
the energy and momentum conservation in the absorption process, the re­
lated spectrum must have an energy distribution of Gaussian shape, centered 
at E = (Es - EA) + ER: 

labs (E) 

E 

From the comparison of the emission and absorption spectra one realizes 
that the fraction of events that grant the resonance absorption is only the one 
corresponding to the energy range underlying the emission and absorption 
lines. 

In atomic spectroscopy, where energy separations of the order of the e V 
are involved, the condition of resonant absorption is well verified. In fact, 
the recoil energy is ER rv 10- 8 eV, below the broadening iJ.E rv 10- 7 eV 
typically associated with the life time of the excited state. At variance, when 
the emission and the absorption processes involve the J'-rays region, with 
energies around 100 keY, the recoil energy increase by a factor of the order 
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of lO lD . Since the lifetime of the excited nuclear levels is of the same order of 
the one for electronic levels, only a limited number of resonance absorption 
processes can take place, for free nuclei. 

In crystals, in principle, one could expect a decrease in the fraction of res­
onantly absorbed 1'-rays upon cooling the source (or the absorber), due to the 
decrease of the broadening induced by thermal motions. Instead, an increase 
of such a fraction was actually detected at low temperature. This phenomenon 
is due to the fact that in solids a certain fraction f of emission and absorption 
processes occurs without recoil. Thus the spectrum schematically reported 
below 

emission absorption 

)\J\J~ 
E 

can be conceived, with a sizeable superposition of events around the energy 
difference (EB - EA)' 

The momentum conservation is anyway granted, since the recoil energy 
goes to the whole crystal, with negligible subtraction of energy to the emitted 
or absorbed photons. The reason for the recoilless processes can be grasped 
by referring to the Einstein crystal, with energy nWE larger than E R . It is 
conceivable that when the quantum of elastic energy cannot be generated, 
then the crystal behaves as rigid. 

Another interpretation (not involving the quantum character of the vibra­
tional motions) is based on the classical consideration of the spectrum emitted 
by a source in motion. For a sinusoidal motion with frequency ws, the emitted 
spectrum has Fourier components at Wi, Wi ± ws, ... , so that a component at 
the intrinsic frequency Wi should remain. 

The fraction f of recoilless processes can be evaluated by considering, in 
the framework of the time dependent perturbation theory used in App.I.3, 
the emitting system as one nucleus imbedded in the crystal, looking for the 
transition probability between states having the same vibrational quantum 
numbers, while the nuclear state is changed. Since the long wave-length ap­
proximation cannot be retained, the perturbation operator reads Li Ai,Vi 
(the sum is over all nucleons) (see Eq. A.I.3.3). 

Let us refer to an initial state corresponding to the vibrational ground-state 
10, 0, 0, ... >, by writing the amplitude of the time-dependent perturbative 
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Hamiltonian L i eik.R ,. Expressing R i in terms of the nucleon coordinates 
with respect to the center of mass, the effective perturbation term entering the 
probability amplitude f1 /2 is of the form eik.u , with u the displacement of the 
atom from its lattice equilibrium position: f1 /2 cx< O, O, O ... leik.u IO,O ,O ... >. 

The proportionality factor includes the matrix element of the variables 
and spins of the nucleons as well as the mechanism of the transition. 

The vibrational ground-state (see Eq. 14.23) for a given branch is 11 0, 0, 0 ... >= 
ITq e- Q ;/4Ll;. The displacement u can be written as a superposition of the 
normal modes coordinates: u = Lq O!qQq (O!q normalizing factors which in­
clude the masses). Then, by referring to the component along the direction of 
the 1'-rays, one writes 

The mean square displacement turns out 

< O, O··· lu;I O,O ... >=< 0, 0··· 1 L O!qQqO!q,Qq,IO, 0 ... >= 
q,q' 

= LO!~ < O,O ... I Q~ I O , O ... >= L O!~Ll~ 
q q 

and then 

Since for k = ° one can set f = 1, one has 

(14.38) 

For T ----+ ° f depends from the particular transition involved in the emission 
process (through k 2 ) and from the spectrum of the crystal through the zero­
point vibrational amplitude < u 2 (T = 0) >. 

The temperature dependence of f originates from the one for < u2 >. f 
is also known as the Debye-Waller factor, since it controls the intensity of 
X-ray and neutron diffraction peaks. The Bragg reflections , in fact, do require 
elastic scattering and therefore recoilless absorption and re-emission. 

By evaluating < lu l2 > for the Debye crystal, for instance, (see Eq. 14.36) 
for T « 8 D one has 

(14.39) 
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The typical experimental setup for Mossbauer absorption spectroscopy is 
sketched below 

Source 

y-emiss ion 

~ 
-- r--. motIon 

Counter 

Absorber 

o 
v=O 

o 
o 

o 
o 

o 
o 

o 
o 

~Area 

o _0 

isomer shift 

Detector counters 

D 
v (mmlsec) 

The source (or the absorber) is moved at the velocity v in order to sweep 
through the resonance condit ion. As a function of the velocity, one observes 
the Mossbauer absorption line, the area being proportional to the recoilless 
fraction f. 

The shift with respect to the zero-velocity condition, isomer shift , is 
related to the finite volume of the emitting and absorbing nuclei (try to un­
derstand the shift by returning to Problem 1.4.6 and F.V.16). 

Since the motions do not affect the linewidth, the resolution of the 
Mossbauer line in principle depends only on the intrinsic lifetime of the level. 
Typically, for rv 100 keY ,-rays, a resolution around 10- 14 can b e achieved. 
Therefore, the Mossbauer spectroscopy can be used in solid state physics to 
investigate the magnetic and electric hyperfine splitting of the nuclear levels. 
It has been used also in order to detect subt le relativistic effects (see Problem 
F.XIV.9). 



458 14 Vibrational motions of the ions and thermal effects 

Problems F .XIV 

Problem F .XIV.1 Show that an approximate estimate of the Debye 
temperature in a monoatomic cryst al can b e obtained from the specific heat , 
by looking at the temperature at which Cv c::: 23 . 107 erg/ mole K. 

Solution: 
From Eqs. 14.31 and 14.19 

U = 1wD nw D()d = ~ N vc 1wD nw3 d 
Iiw W W 2 2 3 Iiw W , 

o ekBT - 1 7r V 0 ekBT - 1 

(having neglecting the zero-point energy which does not contribute to the 
thermal derivatives). v is the sound velocity (an average of the ones for lon­
gitudinal and transverse branches). The specific heat turns out 

[ ( T ) 3 j. o§J z3 B D 1 1 
C v = 9R 4 - - z dz - ----.,.-----0n eD 0 e - 1 T e""""'J" - 1 

For T = BD 

[1 1 z3 1 ] Cv(T = eD ) c::: 36R --dz - -
o eZ - 1 1.72 

and then 
7 erg 

Cv(T = eD ) c::: 2.856R c::: 23.74·10 1 K· 
mo e 

Problem F.XIV.2 In a linear diatomic chain of alternating Be and Li+ 
ions (lattice step a = 2 A) t he sound velocity is v = 2.7.105 em / s. Derive the 
effective elastic constant under the assumption used at §14.3.2 and the gap 
between the acoustic and optical branches. 

Solution: 
From Eq. 14.7 the sound velocity is 

and the elastic constant turns out 

The gap covers the frequency range from Wmin = (2k / md1/2 to Wmax = 
(2k / m2)1 /2, with 
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Wmin = 0.15 . 1Q14rad s-1 and Wmax = 0.989 . 1Q14rad s-1. 

Problem F.XIV.3 For a cubic crystal, with lattice step a, show that 
within the Debye model and for T « 8D, the most probable phonon energy 
is nwp c::: 1.6kBT and that the wavelength of the corresponding excitation is 
Ap c::: a8D / T. 

Solution: 
In view of the analogy with photons (see Problem F.I.2) the number of 
phonons with energy nw is given by 
n(w) = D(w)/(eliw/k8T - 1). 

From Eq. 14.19 and from dn(w) / dw = 0, one finds 

nwp eliw/kBT = 2(eliw/kBT _ 1) 
kBT 

and then nWp / kBT c::: 1.6. 
Since Ap(wp/27f) = v one has Ap c::: 27fvn/ 1.6kBT. For cubic crystal 8D = 

(vn/kBa)(67f)1/3, and then Ap c::: a8D/T. 

Problem F.XIVA Evaluate the root-mean squared amplitude of the 
atomic displacement within the Debye model, at low and at high temperatures. 

Solution: 
From Eq. 14.35 for T» nWD/kB one has 

2 9kB T <u >c::: --2-' 
mWD 

while at low temperature < u 2 >c::: -4 91i . 
mW D 

Problem F.XIV.5 Show that in a Debye crystal at high temperature the 
thermal energy U is larger than the classical one by a factor going as 1 / T2 . 

Solution: 
From 

T j.XD x 3 x 3 
U = 9NkB T(-;::;-)3 (-- + -)dx 

IJD 0 eX - 1 2 

with XD = 8D/T and x = nw/kBT, for x ----+ 0 and after series expansion of 
the integrand 

lxD x3 x3 j.XD x3 x3 lxD x 2 
(--+- )dx c::: ( 2 3 +- )dx c::: x2(1+ - - .... )dx, 

o eX - 1 2 0 x + x2 + x6 + ... 2 0 12 

one can write 
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The specific heat turns out 

Problem F.XIV.6 In the Figures below 
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the low temperature s pecific heats of two crystals are reported. Are they 
metals or insulators? 

Estimate the Debye temperatures and the Fermi energy. 
Solution: 

From Cv / T = A + BT2, A = R(7r2/ 3)D(EF ) is the term associated with the 
free-electron contribution (see §12.7.1), while B = (127r4 / 5)(R/ 8 1 ) originates 
from the phonon contribution. Hence the Figure on the left refers to a metal 
while the one on the right to an insulator. 

From the data on the left A c:::: 2.1 x 1Q4erg/ K2mole one finds EF c:::: 2.1 
eV. From B c:::: 2.6 x 104erg/ K4 mole, then 8 D c:::: 90 K. From the data on the 
right B c:::: 590 erg/ K4 mole, yielding 8D c:::: 320 K. 

Problem F .XIV. 7 D erive the vibrational contribution to the specific heat 
for a chain, at high and low temperatures, within the Debye and the Einstein 
approximations. Compare the results with the exact estimates obtained in the 
harmonic approximation and nearest-neighbor interactions (§14.3.1). 
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Solution: 
Within the Debye model D(w) = Na/(21fv) and then 

N N l wD nw UD = -nw + - (3/i dw 
2 WD 0 e w-1 

The specific heat turns out Cv c::: R for T » 8 D and Cv c::: 21 R(T /8 D) for 
T « 8 D , with 1 = fooo x/(eX - l)dx. 

Within the Einstein model D(w) = N(j(w - WE) and results independent 
from the dimensionality are obtained (see Eq. 14.32). 

In the harmonic approximation with nearest neighbors interactions the 
density of states is D(w) = (2N/ 1f) (1/ Jw~ - w2 ) for w ::; wm, while it is zero 
for w > Wm (see Eq. 14.14). Then 

with x = (3nw and Xm = (3nwm. For T» 8 m = nwm/kB one has 

U c::: Nnw + 2NkBT (~_ xm + ... ) 
2 1f 2 2 

and Cv c::: R. For T « nwm/kB 

so that 
41 T 

Cvc::: -R-
1f 8 m 

showing that the Debye approximation yields the same low temperature be­
havior. 

Problem XIV.8 A diatomic crystal has two types of ions, one at spin 
S = 1/2 and 9 = 2 and one at S = o. The Debye temperature is 8 D = 200K. 
Evaluate the entropy at T = 20 K in zero external magnetic field and for 
magnetic field H = 1 kGauss. Assume no interaction among the magnetic 
moments and the same atomic masses. 

Solution: 
The vibrational entropy is 

S . = r Cv(T') dT' 
vtb Jo T' 

where (per ion and in kB units) 
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Cv(T') = ~7r5 (T')3 
5 eD 

Then, for T' = 20 K 

4 (T')3 Svib = 15 7r5 eD = 0.078. 

The magnetic partition function is 

Zmag = exp (- ~Y) + exp (~Y) 
with 

= fL BgH '" 0.9· 10- 20 H = 6 72. H. 10-5 
Y kBT - 1.38· 10- 16 9 T . 9 T . 

Then, from 

one has 

namely 

and 

Smag (T') c:::: In 2 

S = _ 8F 
8T 

1 
S = Svib + 2Smag = 0.078 + 0.34 = 0.42 , 

S = 0.42 kB/ion. 

Problem XIV. 9 The life time of the 57Fe excited state decaying through , 
emission at 14.4 keY is T c:::: 1.4 X 10- 7 s (see Problems F.I.l, F.I.7 and F.III.6). 
Estimate the height at which the , -source should be placed with respect to 
an absorber at the ground level, in order to evidence the gravitational shift 
expected on the basis of Einstein theory. 

Assume that a shift of 5 % of the naturallinewidth of Mossbauer resonant 
absorption can be detected [in the real experiment by Pound and Rebka 
(Phys. Rev. Lett. 4, 337 (1960)) by using a particular experimental setup 
resolution of the order of 10- 14 - 10- 15 could be achieved, with a fractional 
full-width at half-height of the resonant Lorentzian absorption line of 1.13 x 
10- 12] . Try to figure out why the source-absorber system has to be placed in 
a liquid He bath. 

Solution: 
On falling from the height L the energy of the , photon becomes 

hv(O) = hv(L) [1 + g~ ] 
c 
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where mgLl mc2 (mass independent and therefore valid also for photons) is 
the ratio of the gravitational potential energy to the intrinsic energy. The 
natural linewidth of the Mossbauer line is 2fi1T. Therefore, to observe a 5% 
variation 

and then 

2fi = hv(L)gL 
20T c2 

fic2 
L = = 284m 

lOgT14.4keV 

(in the real experiment the height of the tower was about 10 times smaller!). 
Note that the naturallinewidth, when sweeping with velocity v the absorber 
(or the source) corresponds to a velocity width 

2fic 
L1v = - c::: 0.2 mmls 

hVT 

(the actual full-width at h alf height in the experiment by Pound and Rebka 
was 0.43 mm/s ). 

A difference in the temperatures of the source and the absorber of 1 K could 
prevent the observation of the gravitational shift because of the temperature­
dependent second-order Doppler shift resulting from lattice vibrations, since 
< v2 >"'-' kBTIM. Low temperature increases the /,-recoilless fraction f. 
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correlation diagram (separated-uni ted 

atoms) , 245 
correlation effects, 119, 430 
correlation time, 164 
correspondence principle, 25, 166, 306 
cosmological principle, 54 
Coulomb integral, 75, 77, 79, 117 
covalent crystals , 409 , 412 
Cr3+ ion, 157 
critical points, 381 , 440 
crystal field, 419 
crystal momentum, 428 
CU06 octahedron , 291 , 422 
current density, 423, 426 
cyclotron motion and frequency, 165, 

376, 428 

d2 Sp3 hybridization, 292, 363 
D2 molecule dissociation energy vs the 

one in H2 
and zero point energy, 321 
and Raman spectra, 344, 345 

Darwin term, 62 
DBr molecule, 308 



De Broglie wavelength, 361, 384, 389, 
402 

De Haas-Van Alphen oscillations, 429 
De Mille D.P. , 43, 284 
Debye, 225 
Debye frequency and radius 445 
Debye model for lattice vibration, 

443-445, 450-452, 458 , 461 
Debye temperature, 449 , 450, 452 , 453, 

457, 460 , 461 
Debye-Waller factor, 451, 456 
degeneracy from dynamical equivalence, 

5 
degeneracy, accidental and necessary, 11 
degeneracy, accidental or necessary, 134 
degree of ionicity, 277 
delocalization, 286 
density (of k-modes or of k-states) , 51, 

380 
density (of modes or of energy states), 

381, 439 
density functional theory, 120, 285 
density matrix, 153, 162, 218 
determinantal eigenfunctions, 63 
Deuterium, 23, 25 
diamagnetic susceptibility, 130, 152 

for inert gas atoms, 152, 153 
diamagnetism (atomic), 151 
diamond (see also carbon), 364, 396, 

409 , 411 , 412 , 446 
diatomic 

crystal, 461 
one-dimensional crystal, 441, 443 

diffuse (series lines), 71 
digonal hybridization, 291 
dipolar field, 195 
dipole moment 

field induced , 338 
dipole-dipole interaction, 175, 194 
Dirac, 28, 30, 62 , 92 , 174, 185 
Dirac 0 function , 45, 392 
dispersion relations, 379, 437, 443, 445 
dissociation energy, 266 
distribution (of the Maxwellian 

velocities) , 57, 60 
Doppler 

second-order shift, 199, 463 
modulation, 454 
broadening, 57, 60 , 198 

Index 467 

double excited states, 73 
doublet (spin-orbit) , 63 
Drude model, 423, 424 
dynamical matrix, 437, 438 

effective electron mass, 382, 403 
effective hyperfine field, 171 
effective nuclear charge, 5, 76, 81, 87, 

153 
effective potential , 3, 5 
Einstein 

model of crystal, 435, 443, 449-452, 
460 

relativity theory, 462 
Einstein relations, 43 , 47 
electric and magnetic field effects in 

atoms, 129 
electric dipole 

oscillating (in crystals), 443 
electric dipole (mechanism of transi­

tion), 44 
electric dipole (quantum, associated to 

a pair of states), 46 
electric dipole moment (induced) , 335 
electric field gradient, 180 
electric polarizability, 133 

for quantum oscillator, 137 
electric quadrupole (mechanism of 

transition), 46, 127 
electric quadrupole moment , of 

deuteron, 187 
electric quadrupole selection rules, 120 
electric transport , 423 
electrical harmonicity, 319, 335 
electrical permeability, 154 
electro-optical properties, 363 
electromagnetic ranges, 39 
electromagnetic symmetry, 155 
electromagnetic units, 156 
electron affinity, 83, 273, 280, 281 
electron states in crystals, 369, 396 
electron-electron repulsion, 78 
electronic configuration, 35, 99 
ellipsoidal coordinates, 243, 254 
empty lattice model, 380, 386 
energy functional , 81 
entropy 

from rotational motion , 314 
magnetic and lattice, 225 



468 Index 

of the radiation , 53 
vibrational, 461 

entropy and specific heat , 190, 235 
EPR, 191, 217 
equipartition principle, 51 
evanescent field condition, 155, 232 
Ewald procedure, 413 
exchange degeneracy, 1, 94 
exchange integral, 77, 92 , 99 , 151, 213 

extended (in molecules), 269 
reduced, 269 

exchange interaction, 63 
exchange symmetry, 6, 76 , 77 

F quantum number , 172 
Ft,267 
F-center, 135 
Fanfoni,90 
Fermi,120 

energy, 460 
temperature, 452 

Fermi contact interaction, 89 
Fermi gas, 427 
Fermi surface, 380, 386 
Fermi wave vector and energy or level, 

429 
Fermi-Dirac statistic or distribution, 

385, 403 
ferroelectric transition , 334, 363 
ferromagnetic or antiferromagnetic 

metals, 427, 429 
order 431 

Feynman, 42 
Fibonacci crystals, 354 
FID (free induction decay) 221 , 231 
fine structure, 30, 35 
fine structure constant, 46, 62 , 156, 185 
finite nuclear mass, 23 
finite size of the nucleus, 20 
fluctuation-dissipation theorem, 162, 

209, 232 
fluctuations 

of the e.m. field , 186 
of the magnetization, 209 

flux quantization , 428 
Fock, 5, 118, 120 
Fourier 

components, 397 
expansion , 359, 389 

Fourier transform, 437, 438 
Franck-Condon 

factor , 341 
principle, 340, 342 

free electron model, 382 
Frenkel , 29 
Friedman R.S ., 120 
fullerene , 364 
fundamental constants, 39 

GaAs, 364, 412 
Gallium (specific heat) , 405 
gamma-ray, 453 , 454 , 456 
gap (energy gap in crystals) , 371 , 389, 

391 , 403 , 411 
GaSb , 412 
Gaussian distribution (around the mean 

value), 209 
generalized moment , 27 
Gerlach, 121 
germanium 

crystal, 364, 396, 409 
germanium atom, 113 
Giulotto, 185 
graphite, 364 
Grosso G. , 429 
Grotrian diagram, 64 
ground states (of various atom) , 101 , 

109 
group theory, 357 
group velocity, 375, 376, 382 
Gunn diodes, 306 
gyromagnetic ratio, 34, 91 , 95, 108, 155, 

168 

H2 molecule 
and Raman spectra, 344 
mechanical anharmonicity, 320 
specific heat, 347 
rotational constant , 308, 309 
rotations and vibrations, 321 
vibrational constant , 320 

H20 , 278, 286 
Ht , 251-260, 370 
Ha line, 25, 185 
Hahn, 221 
Haken H., 222, 346 
Hall effect (fractional) , 354 
Hansch , 185 



harmonic approximation , 258, 316, 319, 
435, 437, 447 

Hartree, 4, 5, 91 , 118, 120 
Hartree-Fock theory, 370 
HBr , 278 

rotational constant , 313 
Hel, 276, 278 

rotational states and specific heat , 
350 

rotovibrational spectrum and 
deuterated molecule, 328 

Hel rotational constant , 308 
Hel vibrational temperature and 

specific heat , 330 
Heisenberg exchange frequency, 164 
Heisenberg Hamiltonian, 78 , 159 
Heisenberg principle, 47, 249 
Heitier , 346 
Helium atom, 2, 6, 72 , 73, 77, 79 , 84, 

85, 92, 116, 153, 268, 269, 344 
Hellmann-Feynman theorem, 260 
Helmholtz free energy, 223, 235 
Hermite polynomials, 138, 317 
Herzberg, 346 
Heteronuclear molecules , 275, 319 
HF, 278, 309, 324 
holes, 402, 423, 426-427 
Homonuclear molecules (MO scenario), 

262 
Hubbard, 430 
Hund rules, 99, 103, 109, 265 
hybrid band, 411 
hybrid orbitals , 87, 286, 289, 3 63, 364 
hybridization , see also hybrid orbitals , 

d2sp3, 409 
Hydrogen atom, 7 
hydrogen bond, 414 
hyperfine structure, 33, 167 

in Hydrogen, 184 
Na doublet , 187 
for Hydrogen molecule ion, 282 

independent electron approximation, 74 
inert gas atoms 

cohesive energy, 412 
diamagnetic susceptibility, 153 

infrared radiation, 318 
InSb, 364 
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intergalactic Hydrogen, 60 
international system of units , 154 
interval rule, 96 , 97, 110, 172 
inversion doublet, 287, 296, 297 
inversion symmetry, 339 
inverted multiplet , 99 
ionic crystals, 409- 412, 416 

cohesive energy, 412 , 416 
Iron crystal, 366, 429 
Ising model, 213 
isomer shift , 204, 457 
isotopic shift , 23, 72 
itinerant electrons, 431 
itinerant electrons, magnetic properties, 

427, 429 

Jahn-Teller effect , 242 
jj scheme, 93-113 

K+ , 281 
k , momentum of the electron, role and 

properties, 374, 375 
KBr, 418 
KBr crystal, 364 
Kel, 278, 417, 418 
KDP, 410 
KF, 278 
Kimball D.F ., 43 , 284 
Kittel e., 354 
Koopmans theorem , 119 
Kronig and Penney, 392 

Lamb, 30, 174, 185 
Landau 

diamagnetism, 427 
gauge, 427 
levels, 428, 429 

Lande' g factor , 35, 140 
Langevin 

susceptibility, 230 
Langevin function , 149 
Laplace equation, 183, 420 
Larmor 

precession, 141 , 215 
Larmor frequency, 98 , 108, 130, 136, 

428 
laser, 25 , 198 
lattice vibrations, 435 



470 Index 

Laue X-ray diffraction, 354 
LCAO 

molecular orbitals, 256 
lead 

crystal, see also Pb, 409 
Legendre polynomials, 75, 80, 117, 420 
Lennard-Jones potential , 409 , 414 , 416 
Li crystal, 410 
Lb , 281 
LiF crystal , 410 
life-time, 25, 454, 457, 462 
ligand-field theory, 419 
LiH, 278, 281 
LiH crystal, 364 
Lindemann criterium, 451 
line at 21 cm, 173 
linear electric approximation, 319 
linear response theory, 151 
Lithium 

bulk modulus, 406 
crystal , 366, 406 

Lo Surdo, 132 
local density approximation, 120, 285 
London interaction, 272, 414, 416 
long-wave length approximation, 44 
Lorentz force, 154, 376 
Lorentz gauge, 28 
Lorentz oscillator, 137 
LS scheme, 93-95, 113, 114, 116, 

120-122, 139, 161 

Mossbauer effect , 57, 204, 435, 453, 457, 
462 

Madelung constant, 413, 418 
magnetic dipole (mechanism of transi­

tions) , 46, 161 , 181 , 183, 185, 191 , 
207,214 

magnetic dipole selection rules, 120 
magnetic field Hamiltonian, 138 
magnetic moment 

in field, 148 
magnetic moment (effective) , 101 , 147 
magnetic moments, 27, 92, 98 
magnetic permeability, 154 
magnetic resonance , 214-221 
magnetic splitting, 29 , 3 2 
magnetic susceptibility, 155 
magnetic temperature, 223 
magnetization 

field induced, 208 
saturation, 149 

magnetron, 306 
maser, 47, 297 
matrix Hamiltonian , 42 
Maxwell-Boltzmann statistics, 51 
mean field interaction, 129, 147 
mean free path, 423 , 431 
mercury atom, 79 
Mermin N.D. , 354 
metals and metallic crystals, 409 , 412 
Mg crystal, 365 
Miller indexes, 356, 361, 365, 366 
MKS system of units , 154 
Mn,363 
mobility, 423 
MO-LCAO, 252-276 
MO-LCAO-SCF, 252 
modes (of the radiation) , 50 
molecular crystals, 409- 410, 412, 416 
molecular orbitals (MO) , 256 
moments , angular, magnetic and 

quadrupolar, of the nuclei, 168 
mono atomic one-dimensional crys-

tal ,lattice vibrations, 438 
Morse potential, 321 , 323- 324 
Moseley law, 58 
Mossbauer effect , 57 
motional broadening, 57 
multi-electron atoms, 1 
multiplets (quantum theory) , 116 
muon molecule, 258 
muonic atoms, 1, 24, 176, 203 

N2 
rotational constant, 308 
rotovibrational structure and Raman 

spectra, 345, 346 
vibrational constant , 317 

Na crystal, 374 
Na2 vibrational constant, 317 
NaCI 

rotational constant, 308 
vibrational constant , 318, 328 

NaCI crystal, 363, 410, 413 , 417, 418 
NaNb03 , 363 
natural broadening, 47, 55 
nearly free electron model, 389, 391 
neutron 



diffraction, 362, 366, 456 
spectroscopy, 446 

Ni crystal, 364, 431 
NMR, 205- 217 

imaging, 221 
NO, 278 
normal coordinates, 333 
normal modes 

in polyatomic molecules, 303, 335 
infrared active, 350 
spectroscopically independent , 335 

nuclear g-factor, 206 
nuclear magneton, 168 
nuclear moments, 167 
nuclear motions 

in diatomic molecules (separation 
of rotational and vibrational 
motions), 303-308 

in molecules, 303, 350 
nuclear spin statistics (in homo nuclear 

diatomic molecules) , 343, 347 
nuclear-size effects, 26 

O2 

Raman spectra and rotational lines, 
344 

rotational constant, 308 
vibrational constant , 317 

oblate rotator, 312 
OCS molecule, rotational states in 

electric field , 349 
octahedral coordination 

crystal field , 422 , 432 
of oxygen atoms, 422 

Ohm law, 385, 423 
optical electron, 66, 74 
optical pumping, 142, 283 
orientational electric polarizability, 

310-311 
ortho molecules an rotational states, 

344 
ortho-Hydrogen , 345 
orthohelium , 74, 89 
overlap 

band overlap, 411 
overlap integral, 253 
Oxygen atom , 128 

P and R branches, 326-327 

P crystal, 362 
Palladium 

crystal, 366 
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para molecules and rotational states, 
343 

para-Hydrogen , 343 
parahelium, 74, 89 
paramagnetic susceptibility, 130, 149, 

150, 232, 406 
for Fermi gas, 427 

paramagnetism, 130, 151, 152 
partition function , 449 
Paschen-Back 

effect , 138 
on the Na doublet , 144, 145, 174, 188 
regime, 99, 140, 142 

Pastori Parravicini G., 429 
Pauli principle, 6, 77, 84, 91, 94, 127, 

388, 423 
Pauli susceptibility, 406, 429, 430 

and paramagnetism, 401 
Pb crystal, 364, 396 
Pb crystal, see also lead, 409 
Pd metal, 431 
periodical conditions, 51 
perturbation effect s (in two levels 

system) , 40 
phase transitions, 149, 151, 334 
phonons, 448 
phosphorus atom, 106 
photon echoes, 221 
photons (as bosonic particles), 50 
photons momentum, 455 
Planck (distribution function), 50, 448 
point groups, 357 
polarizability 

anisotropic, 339 
in HCI, 322 
in hydrogen , 415 
in molecule, 331 
of the harmonic oscillator, 331 
orientational, 310-311 
pseudo-orientational, 135 

polarization of the radiation and 
transitions, 45 , 141 

polyatomic molecules, 285 
normal modes, 332 

population inversion, 49 
positronium, 23, 26 
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Zeeman effect , 144, 174, 188 
potassium crystal, 402 
Pound, 462 , 463 
pre-dissociation, 242 
primitive 

cell and vectors, 355 
lattice, 357, 367- 368 

principal (series lines) , 70 
prolate rotator, 312 
proton magnetic moment, 206 
protonium, 26 
pseudo-potential, 390 
pseudo-spin interaction, 78 
Pt metal, 431 
Purcell E .M., 156 

Q-branch , 313, 327, 346 
quadrupole interaction and quadrupole 

coupling constant , 178 
quadrupole moment , 168 

of Gallium, 405 
of Deuterium, 187 

quantum defect, 64 , 68 , 72 
quantum electrodynamics, 28 
quantum number F , 167 
quantum pressure (from electron gas) , 

400 
quantum rotator, 345 
quenching of orbital momenta, 157, 432 

Rabi, 193, 214, 283, 298 
Rabi equation, 43 
radial equation and radial functions , 7 
radial probability density, 10, 68 
radiation damping, 49 
radiofrequency spectroscopy, 214 
radius of the first orbit (in Bohr atom) , 

7 
Raman spectroscopy, 345 
random phase approximation, 151 
rare earth atom (electronic configu-

ration and magnetic moments) , 
99 

Rayleigh diffusion, 336, 344 
RbH molecule, vibrational frequency 

and dissociation energy, 324 
Rebka, 462 , 463 
reciprocal 

lattice, 353, 356, 359-361 

vectors (fundamental) , 361 
recoil energy, 57, 454 , 455 
recoilless fraction , 455-456 
reduced mass, 23, 24 , 203 
relativistic mass, 185 
relativistic terms, 30 

effects, 457 
relativistic transformation , 29 
residual charge, 6 
residual first-order Doppler broadening, 

200 
resistivity, see also conductivity, 431 
resonance absorption, 57 (see also 

Mossbauer effect), 454, 455 
resonance integral, 253, 255, 370 
resonance technique, pulsed , 216 
Roothaan , 120, 285 
rotational constants, 306 
rotational temperatures, 308, 309 
roto-vibrational 

eigenvalues, 327 
levels, 330 

rubidium atom, 72, 411 
hyperfine field , 171 

Rydberg atoms, 1, 23, 25 , 27, 165 
Rydberg constant , 7, 72 
Rydberg defect, 64 

scalar potential, 27, 44 
scattering, of photons, 338 
Schottky anomaly, 191 , 236, 405 
screening cloud, 3 
selection rules, 43 , 120, 134, 139, 140 

electric dipole, 307, 339 
for quantum magnetic number, 141, 

187 
self-consistent field , 5 
semimetals , 411 
sharp (series lines) , 70 
shift (relativistic) , 31 , 33, 199 
SI system of units, 154 
silicon crystal, 364, 396, 397, 409 
silver , 226, 431 
Slater determinant , 6, 63, 84 
Slater J .C., 373 
Slater radial wavefunctions, 116 
Slater theory for multiplets, 7, 116 
Slichter C . P ., 218 



Sodium atom, 57, 138, 139 
hyperfine field, 187, 189, 199 
Paschen Back effect , 144 
Zeeman effect , 140 

solid state lasers, 354 
Sommerfeld quantization, 16, 185 
sound velocity, 445, 458 
Sp2 hybridization, 287, 364, 409 
Sp3 hybridization, 286, 366, 409, 411 
space groups, 357 
spatial quantization , 16 
specific electronic charge (e / m ) , 158 
specific heat , 153, 213, 225, 309 
spectroscopic notations, 35 
spherical harmonics, 4, 7, 22 , 46 

addition theorem , 80, 421 
spin, 28 
spin echoes, 205, 218, 221 
spin eigenfunctions, 28 , 88 
spin-exchange collisions, 283 
spin statistics, 205 
spin temperature, 208, 210, 226, 229 

negative, 226 
spin thermodynamics, 205, 209 
spin-orbit interaction, 1, 24, 27, 28 , 30, 

32, 35, 56, 63, 70 , 77, 79, 92 , 103, 
106, 110, 138-140, 160, 170, 185 

spin-orbital, 28 , 30 
spin-spin interaction, 94-99, 106 
spin-spin transitions, 208 
spontaneous emission, 25 , 47, 49 
squaring rule, 78 , 96 
SQUID, 354 
Stark effect , 315 

linear, 134 
on the Na doublet , 135 
quadratic, 132 

stationary states, 16 
statistical populations , 47, 205, 206 
statistical t emperature, 49 
statistical weights, 47 
Stefan-Boltzmann law, 53 
Stern-Gerlach experiment , 121 
stimulated emission, 47, 49 
Stirling approximation, 210 
Stokes and anti-Stokes lines, 337, 338 
Stoner , 430 

criterium, 431 
sun, 56 

energy flow , 56 
superconductors 

high-temperature, 422 
superselection rule, 84, 85 
susceptibility 

magnetic , 385, 400 
negative, 427 
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of Fermi gas (see also Landau 
diamagnetism) , 427 

see Pauli susceptibility, 401 
Svanberg S., 199, 318 

T I , 147-148, 208, 220, 226, 231 , 299 
T 2 , 208, 220 
tetrahedral (or tetragonal hybridization, 

288 
thermal 

effects in crystals, 449 , 457 
energy in Debye crystal, 459 

thermal broadening, 61 
thermal properties (related to lattice 

vibrations), 449, 451 
Thomas, 29, 120 
Thomas and Frenkel semiclassical 

moment , 29, 32, 62 
Thomas-Fermi method , 120 
Thomson model, 20, 137 
tightly bound electron model, 393, 395 
time-dependent perturbation , 41 
tin 

crystal, 409 
tin atom, 113 
Townes, 297 
transition metals ions, in crystal field, 

419 
transition probabilities, 43 
translational 

invariance or translational symmetry, 
354, 355, 370-371 

operations , 356, 357, 374 
trigonal hybridization , 289 
Tungsten crystal, 366 

ultrasound propagation, 446 
unitary cell, 355, 358 
universe (expansion) , 50 
Unsold theorem, 22 , 92 

vacuum permeability, 156 
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valence band , 411 
valence bond (see VB) , 251 
Van der Waals, 264, 410 , 414 
Van Hove singularities, 381 
Van Vleck paramagnetism, 152 
variational principle, procedure, 5, 81 
VB approach, 267, 270, 271 , 275, 410 
vector potential, 27, 131, 170, 200 
vectorial model, 31, 85, 92, 116, 169 
Verbin Y., 209 
vibrational 

models of lattice vibrations, 437, 
444-445 

vibrational motions 
in crystals, 437 
in polyatomic molecules, 305 

vibrational spectra, 437, 443-444 
vibrational temperature, 324, 330 
Von Neumann-Wigner rule, 248 

weak magnetic field (condition or 
regime) , 97, 129, 191 

Wiedemann-Franz law, 385 
Wien law, 50, 52 
Wigner crystallization, 431 
Wigner-Eckart theorem , 98 , 116, 120, 

139, 141 , 171 , 202 

Wigner-Seitz cell, 354, 355, 361 
Williams, 296 
Wolf H.C., 222, 346 

X-ray lines, 57-58 
X-ray diffraction (see also Bragg law), 

361 , 410, 456 

yellow doublet (for Na atom) , 27 

Zeeman effect 
anomalous, 138 
in positronium, 144 
normal, 138 

Zeeman levels , 206, 220 
Zeeman regime 

on hyperfine states, 189 
weak field , 139 

zero-point energy, 258 
zero-temperature rotations, 343 
Zn crystal, 365 
zone representation (reduced , extended , 

repeated), 378 
zone representations (reduced, 

extended , repeated) , 386 
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